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Abstract. Automated generation of human readable text from struc-
tured information is challenging because grammatical rules are complex
making good quality outputs difficult to achieve. Textual Case-Based
Reasoning provides one approach in which the text from previously
solved examples with similar inputs is reused as a template solution
to generate text for the current problem. Natural Language Generation
also poses a challenge when evaluating the quality of the text generated
due to the high cost of human labelling and the variety in potential good
quality solutions. In this paper, we propose two case-based approaches
for reusing text to automatically generate an obituary from a set of
input attribute-value pairs. The case-base is acquired by crawling and
then tagging existing solutions published on the web to create cases as
problem-solution pairs. We evaluate the quality of the text generation
system with a novel unsupervised case alignment metric using normalised
discounted cumulative gain which is compared to a supervised approach
and human evaluation. Initial results show that our proposed evalua-
tion measure is effective and correlates well with average attribute error
evaluation which is a crude surrogate to human feedback. The system
is being deployed in a real-world application with a startup company in
Aberdeen to produce automated obituaries.

Keywords: Natural Language Generation · Textual Case-Based
Reasoning · Text evaluation

1 Introduction

Text generation from structured information is a common requirement for prob-
lem solving in variety of tasks and domains, such as compiling incident reports,
writing customer reviews, and presenting weather forecasts [4,9,12]. These use-
case examples typically have a common problem representation in that the gener-
ated text is the combination of the structured data (a set of pre-defined attribute
values) and textual content, required to improve human readability. In this paper
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we address a similar task in which a text generation system is required to auto-
matically generate an obituary based on information about the deceased’s life.
The information typically includes: personal details; relationships, such as next-
to-kin, spouse, children, friends; and details about funeral arrangements for the
funeral or memorial.

The effectiveness of text generation system depend on the quality of the text
produced, in terms of accuracy and readability, as well as the diversity of texts
generated from the system. One approach is to use a standard abstract template
with all the pre-defined attributes available as slots to be filled. But having a
single template for every problem are difficult to construct for complex scenar-
ios and result in very repetitive text outputs. Textual Case Based Reasoning
(TCBR) gives an opportunity to develop dynamic templates with diverse text
by re-using previous experiences.

In general, a TCBR system has a case-base containing information about
previous experiences as its central knowledge source, which is used together
with other key knowledge sources: the case representation and similarity knowl-
edge [14]. In combination these knowledge sources enable the retrieval of similar
cases from the case-base, providing a mechanism to re-use knowledge captured
in previous examples to solve a new problem. Thus TCBR, as with CBR more
generally, relies on the basic principle that “similar problems have similar solu-
tions” [1]. Supervised Machine Learning approaches take advantage of this prin-
ciple to learn more tailored representation or retrieval knowledge in order to
improve some evaluation metric e.g. accuracy. However, in TCBR learning from
labelled solutions is difficult because each solution tends to be unique and so
simple feedback metrics are not so easily available to either refine or evaluate
developing systems. We introduce a novel approach to evaluation that measures
the extent to which similar problems have similar solutions by investigating the
alignment between local neighbourhoods in the problem and solution space. This
approach reduces the requirement for human evaluations.

In this work we generate a case-base by crawling the web to extract obituar-
ies from Funeral Notices websites1. The information extracted from the website
is plain text and needs pre-processing for building the case-base. In particular
generating a structured representation in a knowledge rich manner. By manually
analysing the processed obituaries, relevant attributes are identified to provide
alternative representations for the problem component of the cases. An unsu-
pervised evaluation technique is developed to evaluate the alternatives.

The main contributions of the work are as follows:

1. developing a real world system based on a TCBR approach for automatically
generating obituaries which is being deployed by a start-up company;

2. a novel technique for evaluation of text generation with TCBR employing a
case alignment approach using normalised discounted cumulative gain; and

3. demonstrating the effectiveness of the approach with experiments and com-
parison of results with other baselines and an average attribute error as a
crude surrogate to human feedback.

1 https://funeral-notices.co.uk/.

https://funeral-notices.co.uk/
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The rest of the paper is organised as follows. The problem domain is dis-
cussed in more detail in Sect. 2 before relevant related works are highlighted
in the Sect. 3. The proposed case-based methodology for generation of textual
obituaries identifies our alternative approaches to representation and similar-
ity measuring in Sect. 4. The experimental design is discussed in Sect. 5, where
we also introduce our novel evaluation method. In the Sect. 6, we discuss the
results obtained from our experiments, before concluding the paper and looking
at future works in Sect. 7.

2 Obituary Generation

An obituary is a written announcement of someone’s death which is traditionally
published in a local newspaper to inform the wider community about the death.
It generally outlines the life and personality of the deceased person and provides
the details of the funeral arrangements and memorials. In the growing digital
era, people are tending towards using digital website to publish the obituaries
instead of local newspapers to expand the audience from a local community to
the wider world on the internet.

There are approximately 57,000 deaths in Scotland each year, of these two
sites are providing obituaries notices currently. The main site captures only 10%
of all death notices. There is an opportunity to improve the service provided and
to integrate the latest AI technologies to support Funeral Directors to help the
next of kin with the creation of digital public obituary notices.

Our commercial partner is in the process of providing a publication platform
for obituary generation that focuses on supporting a sympathetic acknowledge-
ment of the recently departed as a digitisation of the traditional print obituaries.
In this paper, we investigated utilising a TCBR approach to generate dynamic
and individual obituaries that help the next of kin prepare their tribute. The
aim is to achieve a two-minute publication timeline, through an intuitive form
that will lead to the generation of five bespoke obituary options, the undertaker
and family can select the appropriate option with the ability to edit as required.
New solutions generated on the system can be retained to increase the case-base
size and diversity of solutions available.

A large number (around 100k) of obituaries, dating back to the year 2000,
have been crawled and extracted from the web. As initial pre-processing, 30k
obituaries created after 2015 are selected and out of these, the top 1000 notices
based on those with higher word count is selected. After analysing this data an
obituary can be divided into at least three distinct components: the personal
information component; the relationships component; and funeral component.

1. Personal Information: this component gives the personal details of the
deceased person, e.g. name, age, date and place of death, and cause of death.
It can also include the information about the person’s home town or previous
working places, as well their hobbies.
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2. Relations: this component presents the relatives’ details, e.g., spouse, chil-
dren, grand children, or in-laws. This component may also contain an emo-
tional message about the family & friends and how the person is going to be
missed by all who knew them.

3. Funeral: this component provides the details of funeral arrangements and
will typically have the date, time and place for the memorial service. The
component will also provide the information about the delivery of flowers and
the potential guest list. For example, flowers may only be welcome from family
members but all the friends and relatives are welcome to join at the memorial
service. Options for donations and charity name can also be provided in this
section in the lieu of flowers.

The main task for this project is to generate five diverse textual messages
(obituary) based on the features given by the user. A simple message can be
generated using an abstract template but then there will be no diversity in the
generations and all the obituaries will become monotonous. The challenge is to
generate human readable natural text which includes (almost) every feature to
the generation and is diverse in nature as well.

3 Related Works

Automated generation of human readable text from structured data has been
studied in various domains [6,9,13]. The studies mainly focus on the difficulties
of mapping unstructured text from previous experience to a structured repre-
sentation, measuring semantic or synaptic similarity for the retrieval & reuse of
previous cases and automated evaluation of the generated text.

3.1 Text Generation

In [2], the author proposed a CBR system to generate weather forecast texts
using examples from previous cases with similar weather states. For the retrieval
of similar cases it is necessary to have same number of weather states in the
retrieved one and the input query. The system fails to return a result if there’s
any mismatch in the number of states in input query and previous similar data.
The system uses NIST5 score for evaluation requiring substantial reference texts
for better performance. In [5] the textual summary of time series were generated
using an end-to-end CBR system. The summary generation involved two steps
where first an abstraction of time series is generated which in turns help the sys-
tem to generate the textual summary of that abstraction. The system generated
text was evaluated using a modified version of the edit distance measure [10]
which heavily relies on the domain specifications. This is a custom evaluation
approach that is difficult to use across different TCBR domains.
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3.2 Case Alignment

There have been several approaches to measuring the performance of unsuper-
vised CBR systems which focus on measuring the extent to which the problem-
side space and solution-side space of case representation align with each other.
In [7], authors proposed a case cohesion alignment to evaluate the performance
of a CBR system which measures the level of overlap in retrieval set. However,
the method requires a trial and error approach to set up a threshold for select-
ing the number of nearest neighbours in both the sets. A mechanism of case
alignment was presented in [9] where the alignment was measured by taking
the average solution similarity of its neighbours weighted by their problem-side
similarities. Authors in [17] modified the case alignment measure by utilising the
case ranking of similar cases in problem and solution sets by using a modified
version of Kendall tau distance. Although the method works well in several CBR
problems, it fails to scale in a TCBR scenario [17].

In this work, previous examples are marked up to act as dynamic templates
which can be populated with structured data to generate good quality, diverse
natural text. Alternative representations and similarity measures are compared.
We also evaluate the quality of the generated text with a problem-solution align-
ment measure but propose a novel, domain independent metric taken from infor-
mation retrieval.

4 Case-Based Methodology

Central to developing a CBR system is the availability of experiential knowledge
that can provide previously solved successful examples for reusing to solve new
problems. The crawled examples from the web provide a suitable source of past
examples. However as obituaries in natural language they provide a case solution
example but not with separate problem and solution representations required for
CBR systems. The first task in developing a TCBR system is to create a case
representation to effectively capture case knowledge as associated problem and
solution components. The second stage is to develop a similarity metric utilising
the problem representation to support retrieval.

4.1 Case Representation

In TCBR, cases are generally represented in two parts: problem and solution
component. The problem representation comprises a set of attributes whose
values can either be extracted from the crawled obituaries or are known for a new
problem. The solution representation is the natural language text of the obituary
but may be considered as a template with the associated problem attribute values
identifed and replaced by mark-up tags.

For example given an obituary: “OLIVIA WILSON, Peacefully on the 14th
May 2019 at home, Olivia of Patna. Beloved wife to the late James Wilson, much
loved mum to Jack and partner Emily, gran to Ava, Lucy and Logan, loving aunt,
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sister and a friend to all. Funeral service will be help at Patna Kirk, Patna on
Monday 26th May, 2019 at 11.00am and thereafter to Patna Cemetery to which
all friends are respectfully invited. Donations if desired to Cancer Research UK
and Strathcarron Hospice.”, Fig. 1 shows the case representation marked-up with
attribute-value pairs in XML format.

Fig. 1. Representation of a case marked-up in XML format.

Hence, an obituary contains information, as attribute values, on the different
people, relationships, places, organisations, etc involved, and can be used to build
an effective case representation that will be helpful for identifying similar cases
to new problems. Around 40 relevant attributes have been selected to represent
an obituary as a case in the case-base, as shown in Fig. 2 2. From the example
obituary, we can see that the first sentence talks about the personal details of the
deceased person, followed by relatives in second sentence and funeral information
in the last sentence. This is a typical paragraph construction, so we can divide
all the extracted obituaries into three components and annotate them with the
identified attributes.

The attributes identified for annotations are set to be gender independent.
For example, in Fig. 1 we have taken “mum” as a value for attribute “par-
ent gender”. That means, the deceased person was parent (in this case mother)
2 For the columns marked M/O: Mandatory/Optional, ‘-’: Attribute value filled auto-

matically based on the deceased’s gender.



Case-Based Approach to Automated Natural Language Generation 285

to “Jack” (“children name”). So if we have a target problem with “parent gender
→ father”, the case in fig. 1 can still be re-used as a possible solution. An ini-
tial case-base has been created to seed the system by manually annotating 100
samples.

(a) Personal Information (b) Relations Details

(c) Funeral Details

Fig. 2. Attributes used for representation of obituaries.

4.2 Similarity Measure for Retrieval

We investigate two variants of similarity measure for retrieval of similar cases
for a target problem. The first approach is straight-forward, where we match the
number of features in the target problem with number of features in each case
from the case-base. The first similarity measure (sim1) is defined by Eq. (1).

sim1 = |q ∩ c| (1)

where q is the list of attributes in target problem and c is the list of attributes
in each case from case-base.

There can be a problem with Eq. (1) where the target case has fewer features
than the case retrieved from the case-base. Let’s take an example where the
target case has only 10 attributes out of a possible 40. In that scenario, cases
with more than the 10 attributes will also have the same similarity score as cases
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with the exact 10 features. To counter this problem, we use a different similarity
measure (sim2), which is the Jaccard Similarity Coefficient (J) described in
Eq. (2).

sim2 = J(q, c) =
|q ∩ c|
|q ∪ c| (2)

4.3 Text Reuse

In the previous section we observed that there can be problems in situations
where there is a misalignment in the number of attribute values. We used a
different similarity measure to address this problem in Eq. (2). However, this
method can also lead to a problem. The set of retrieved cases for a target prob-
lem with very less attributes might have same number of attributes but have
different attribute types. For example, for a target problem with only “spouse
name” in “relation section” and “funeral place/time” in “funeral section” along
with all the attributes from “personal info section”, the retrieved cases might
contain only “name” and “home town” of the deceased person along with all
the attributes from “funeral section”. In that way the number of attributes may
be the same giving a high similarity score for the retrieved case but in practice,
it is not a good example of a similar case for re-use.

To address this problem, we investigate an alternative case representation
where the case-base is broken down into three components, namely: personal
info component ; relations component ; and funeral component. In this way, we
can leverage our data and to find good retrieval examples with fewer cases. These
components can also be broken down further into different sub-components such
as: relations component could be separated in spouse component, parent com-
ponent, and grandparent component. But this further breaking will reduce the
attribute count in each sub-component and hence resulting into non-diverse case
retrieval for every target problem, which will lead into generation of similar kind
of text from the system every time. Thus, we need to find a balanced number of
components for breaking the obituary representations.

With these insights, we propose two kinds of case retrievals for text reuse:

– Basic: retrieving whole obituary as an one entity; and
– Component: retrieving cases as 3 different components.

In Fig. 1, we can see that the three components are marked-up with sepa-
rate “component tags”. For basic retrieval, whole obituary is retrieved as one
entity thus ignoring the component tags while for component retrieval, all three
components are retrieved separately. Then the retrieved case’s text is reused by
replacing the each attribute’s value with the attribute’s value from the target
problem. The new modified text is the solution generated by CBR system. In
case of component retrieval, we combine the texts generated for each component
separately to propose the final solution.
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4.4 Solution Adaptation

The proposed solution may contain some general mistakes such as: referring to
the deceased person with male pronoun even if the gender of the person is female
or vice-versa; or adding an attribute which is not given in the target problem.
These kinds of error occur because of the fact that the proposed solution is
generated only by simply reusing the text from solution-side of the retrieved
case after replacing the attributes’ values.

To tackle the gender problem, we apply a rule-based adaptation process where
each generated text is checked against the gender of the deceased person. If a
pronoun with different gender is found in the text, it is replaced with the same
pronoun of the deceased person’s gender. For the extra attributes problem, we
simply replace the attribute’s value with a blank for any attribute which is not
given in the target problem.

5 Experimental Evaluation

Evaluation of our TCBR system is a challenging task. It is difficult to auto-
matically measure the effectiveness of a system due to the diversity found in
the natural language output. Human evaluation is an alternative which, while
effective is expensive and very time consuming. Traditional machine transla-
tion and summarising metrics such as BLEU [11] and ROUGE [8] scores are
unlikely to work well because these metrics are based on the overlap of n-grams
of the generated text with an original reference text and so only consider lexical
similarity. Also, they require a lot of reference text to measure the quality of
generation which is very costly to get. To overcome these challenges we propose
a problem-solution alignment metric as an unsupervised evaluation measure.

5.1 Case Alignment

A key principle of CBR is that “similar problems have similar solutions”. The
extent to which this principle holds true can be assessed by measuring the align-
ment between the problem-side and solution-side space. It is surmised that a
good system design will have better alignment [9]. In this evaluation, we employ
a novel approach to measuring case alignment by using normalised discounted
cumulative gain to assess the correlation between problem-side and solution-side
nearest neighbours. If the alignment is good then for a given problem-solution
pair, the k nearest cases on problem-side must be similar as the k nearest-cases
on the solution side.

For a given case-base C containing all the cases {c1, c2, · · · , cn}. Cases in
C consist of problem−solution pairs, such that ci = {pi, si}, where pi ∈ P
(problem set) and si ∈ S (solution set). A target problem t represented using
the case knowledge, we will retrieve two lists pl & sl which are sorted in order
to the most similar cases both from the problem (pl) and the solution (sl) set
respectively. On the solution side, BERT [3] is used to encode the sentences and
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then cosine similarity [15] between the test sample and other samples is used to
generate the ordered list of similar cases. For the problem side the ordered list is
created using the retrieval methods discussed in Sect. 4. Both the lists will have
n − 1 items, where n is the size of the case-base.

From the list pl, we shall create a new list of weighted scores for the problem-
side. We call it problem list weighted or plw. The weighting is done as follows:

plw(i) =

{
(k + 1) − i, if i ≤ k

1, otherwise
(3)

where k is the number of neighbours considered for retrieval and i is the index
of each element from the pl. Similarly the cases in sl are weighted according to
their pl counter-part and creating a solution list weighted or slw.

For example, if we have 10 cases in the case-base and for a given case ci, with
k = 3 the sl and pl are as follows:

pl = [8, 5, 6, 1, 4, 2, 3, 7, 0]
sl = [5, 6, 2, 4, 3, 7, 8, 1, 0]

These are the indices of the cases from both the sets. According to the Eq. (3),
weighted lists plw and slw are given as follows:

plw = [4, 3, 2, 1, 1, 1, 1, 1, 1]
slw = [3, 2, 1, 1, 1, 1, 4, 1, 1]

For an ideal case, both of the list should have same ranking order as they
are retrieved for the same case. To measure the alignment of a target case t we
can use the “normalised Discounted Cumulative Gain” (nDCG) [16] using the
following formula:

nDCG(t) =
DCG(slw)

DCG(plw)
(4)

where, slw and plw are the weighted lists for the target case while DCG is
the “Discounted Cumulative Gain”, defined for some list lw as:

DCG(lw) =
|lw|∑
i=1

lw(i)
log2(i + 1)

(5)

where, lw is some weighted list (e.g., plw or slw) and |lw| is the size of that
list. The value of nDCG ∈ (0, 1].

The alignment of whole case-base can be the average of nDCG score of all
the cases in the case-base (CB).

AlignScore(CB) =
n∑

i=1

nDCG(i)
n

,∀i ∈ CB (6)

where, n is the size of case-base. For component retrieval method, the total
alignment score would be the average of AlignScore of all the components. In
our experiments, we take the value of k = 5 because of the fact that we need to
show 5 options of automatically generated obituaries to the user.
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Table 1. Nomenclature of different methods.

Basic Component

sim1 BS1 CS1

sim2 BS2 CS2

5.2 Other Evaluations

In addition to the case alignment, we use BLEU score and cosine similarity for the
evaluation of our system. BLEU score counts the average of overlapped n-grams
from generated text with the reference texts. Cosine similarity on other hand
measures the cosine angle between the projection of vectors in multi-dimensional
space. For the vector representation of a sentence, we used BERT encoder to
produce a contextual embedding for each sentence.

5.3 Average Attribute Errors

We define a reference metric as the number of missed attributes in the generated
text as one measure of the competence of the evaluation metrics. In our scenario,
where the pre-defined attributes play an important role in the retrieval and
reuse of cases, it is important to measure the inclusion of these attributes in
the generated text. In the absence of a human evaluation, we employ Average
Attribute Error (AAE) as a crude surrogate for human feedback.

The average attribute error is defined as the average number of missed
attributes from the top 5 generated texts from our system. Again, top 5 cases
are chosen because of the fact that the system needs to provide 5 optional texts
to the user for a given input. For a target problem t, if we have na number of
attributes and the G = {g1, · · · , g5} as the set of top 5 generated texts from one
of the methods defined in Table 1. The average attribute error e would be:

e(t) =
∑5

i=1 ||(na − |gi|)||
5

(7)

where, |gi| is the number of attributes included in the ith generation. The
average of every sample’s attribute error in a case-base will be the average
attribute error for the case-base.

6 Results and Discussion

Our case-base contains 100 seed cases manually annotated to identify problem
and solution components. We use a leave-one-out experiment for both repre-
sentations described in Sect. 4.3 (Basic and Component) with both similarity
measures described in Sect. 4.2 (sim1 and sim2). Hence, We have four system
combinations to evaluate as named in Table 1.
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(a) Case Alignment (b) Attribute Errors

(c) BLEU Scores (d) Cosine Similarity

Fig. 3. Various results from leave-one-out-experiment

6.1 Different Evaluations

The results from applying the 4 evaluation metrics to the retrieval sets obtained
when employing the 4 system combinations are shown in Fig. 3. We start our
experiments with 40 cases initially, chosen to reflect the 40 attributes present in
the problem representation. We repeat the experiments with increasing number
of samples until we reach 100, i.e., the maximum number of seed cases available.

Case Alignment (CA) results are shown in Fig. 3a, where we plot the
change in case alignment score with respect to the number of cases used for
experiment. For a given value on the x-axis, the corresponding value on the
y-axis represent the average case alignment score of all the cases from the leave-
one-out experiment. We can see that with the number of samples increasing,
the case alignment is also improving. Which means with more data used for
experiment we are continuing to achieve improved results and do not appear to
have reached a plateau.

We can also observe that before 70 cases the alignment is better for component
retrieval compared to basic retrieval while after 70 samples, the basic retrieval
for both similarity measures gets better alignment than the component retrieval.
This indicates that after sufficient case data is available there may be no need to
break down the obituary representation into several components because with
more labelled cases, diversity in the case base is increased allowing sufficiently
similar cases to be retrieved.
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Table 2. Pearson coefficient score for correlation

Case alignment BLEU score Cosine similarity

Pearson Score −0.9238 −0.7019 −0.0296

Results from the Average Attribute Error (AAE) evaluation metric is
shown in Fig. 3b. Here we can see that with the change in number of cases used
for experiment, the average count of missing attributes is reducing for all the
four system combinations. Also, before 80 cases, the performance for component
is better, while after 80 basic for both similarity measures gives improved results.
This further supports the idea that with more cases available, there is no need
to split obituaries into components.

In Figs. 3c and 3d we show results for BLEU score (BLEU) and cosine
similarity (Cos) between the generated text and reference text. Both the met-
rics show little variations in score with respect to the change in number of cases
available. The BLEU score for BS1 and BS2 is always around 0.40 to 0.44 while
for CS1 and CS2 is 0.33 to 0.37. Similarly for cosine similarity, the average is
almost 0.99 for BS1 and BS2 during all the number of samples while the score
for CS1 and CS2 is around 0.975 go 0.98. This may be because these metrics
only consider lexical similarity while ignoring the measure of attributes inclusion
for generation.

6.2 Correlation of Metrics

We calculate the pearson correlation coefficient between average attribute error
and the other three automated evaluation metrics which is shown in Table 2.
Here, we can observe that our proposed case alignment metric is highly correlated
to the average attribute error. BLEU score is ranked second while the cosine
similarity is third and is much less correlated. This demonstrates that our case
alignment measure is an effective evaluation metric for the TCBR system.

6.3 Generated Texts

Some texts generated from the CBR system are shown in Fig. 4, one for each
method from Table 1. The texts shown here are generated from the case-base
with all 100 samples stored. It can be observed that the generations from sim2
measure are quite accurate and include most of the information correctly. On
the other hand, it can be observed that the generations from sim1 measure have
more tendency of making attribute’s related errors such as: in BS1, the two
major attributes, age and charity name are missing; while in CS1, the retrieved
case has some extra attributes which are not present in the target case, observe
the sentence “Cherished to and a dear of the family”. Here after cherished to, an
extra attribute value is present in the retrieved case which is absent in the target
problem and hence during the adaptation process, the value of that attribute is
replaced with a blank.
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Fig. 4. Text generations from the TCBR system. Errors are shown in red. (Color figure
online)

It is also noted that missing the < friends name > and < funeral attire >
attributes is common for all the four generations. We can also observe that the
component retrieval method is also prone to different punctuation errors such as:
ending the sentence with two full stops; or starting a sentence with small-caps
letter. This may be due to the mix and match property of text generated from
component retrieval methods.

7 Conclusion and Future Work

In this paper we presented a TCBR system developed for the automated genera-
tion of natural language obituaries from a large set of structured input attributes.
The paper introduced two alternative case representation approaches, along with
two different measures of similarity used for the retrieval of similar cases from
the case-base.

The performance of our methods is evaluated using a novel unsupervised case
alignment metric employing normalised discounted cumulative gain to compare
problem-side and solution-side retrieval sets. Extensive experiments are con-
ducted with an increasing number of seed cases available in a leave-one-out
experiment. The proposed case alignment evaluation metric is compared with
other commonly used supervised metrics as well as with average attribute error
score, a simple surrogate for human feedback. The experiment results show that
our unsupervised evaluation metric better correlates to the average attribute
error compared to BLEU score and cosine similarity. Our evaluation metric is
also domain independent and can be applied to different kinds of TCBR systems.

In future work for this project the intention is to measure and introduce
more diversity into the set of generated obituaries and to automate the process
of marking-up the data to ease the case-base creation process.
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