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Abstract. Research on eXplainable AI has proposed several model
agnostic algorithms, being LIME [14] (Local Interpretable Model-
Agnostic Explanations) one of the most popular. LIME works by mod-
ifying the query input locally, so instead of trying to explain the entire
model, the specific input instance is modified, and the impact on the
predictions are monitored and used as explanations. Although LIME is
general and flexible, there are some scenarios where simple perturba-
tions are not enough, so there are other approaches like Anchor where
perturbations variation depends on the dataset. In this paper, we pro-
pose a CBR solution to the problem of configuring the parameters of
the LIME algorithm for the explanation of an image classifier. The case
base reflects the human perception of the quality of the explanations
generated with different parameter configurations of LIME. Then, this
parameter configuration is reused for similar input images.

Keywords: Specific explanations · User experience · Model-agnostic
explanations · Case-based explanations

1 Introduction

With the success of Machine Learning (ML) interpretability for ML systems have
become an active focus of research. XAI research tries to solve several questions
related to the increasing need for interpretable models, such as: How should inter-
pretable models be designed? How do we evaluate the resulting explanations?
What knowledge do we need for building explanations? How does interpretabil-
ity change interactions between the AI systems and the users? What to explain?
When to explain? How to deal with the fact that different users have different
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expectations and explanation needs? From the CBR perspective, research in XAI
has pointed out the importance of taking advantage of the human knowledge to
generate and evaluate explanations [16,19].

At a high level, the literature distinguishes between two main approaches
to interpretability: model-specific (also called transparent or white box) models
and model-agnostic (post-hoc) surrogate models to explain black box models
[12,13,24]. Transparent models are ones that are inherently interpretable by
users. So, the easiest way to achieve interpretability is to use algorithms that
create interpretable models, such as decision trees, nearest-neighbour or linear
regression. However, the best performing models are often not interpretable, or
they are interpretable only if features are few in number or where the model
is sparse, and where the features have a readily understandable semantics [10].
Besides, for the sake of performance, it is typical to use ensembles of several mod-
els that cannot be interpreted, even if every single model could be interpreted,
like in the random forest algorithm. Model-agnostic interpretation methods pro-
pose separating the explanations from the ML model. Although the main advan-
tage is flexibility, as the interpretation methods can be applied to any model,
some authors consider this type of post-hoc explanations as limited justifications
because they are not linked to the real reasoning process occurring in the black
box.

LIME [14] (Local Interpretable Model-Agnostic Explanations) is a well-
known model agnostic model that attempts to understand the model by perturb-
ing the input of data samples and understanding how the predictions change.
The intuition to local interpretability is to determine which feature changes will
have the most impact on the prediction. According to its authors, the algorithm
fulfils the desirable aspects of a model-agnostic explanation system regarding
flexibility. The LIME interpretation method can work with any ML model and
is not limited to a particular form of explanation and representation. An essen-
tial requirement for LIME is to work with an interpretable representation of the
input, like images or bag of words, that is understandable to humans. The out-
put of LIME is a list of explanations, reflecting the contribution of each feature
to the prediction of a data sample.

Although LIME is general and flexible, there are some scenarios where sim-
ple perturbations are not enough, so there are other approaches like Anchor
[15] where perturbations variation depends on the dataset. Either in LIME or
Anchor, the configuration variables are set up by default. However, the adequacy
of the variables to the input query instance is critical to provide quality expla-
nations. In fact, the type of modifications that need to be performed on the data
to get proper explanations are typically use case specific. The authors gave the
following example in their paper [14]: “a model that predicts sepia-toned images
to be retro cannot be explained by presence or absence of superpixels”.

In this paper, we propose a CBR solution to the problem of configuring the
default parameters of the LIME algorithm for an image classifier. The case base
reflects the human perception of the quality of the explanations generated with
different parameter configurations of LIME. Then, this parameter configuration
is reused to generate explanations for similar input images.
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This paper is organized as follows: Sect. 2 presents related work, whereas
Sect. 3 introduces the LIME algorithm and some of its limitations. Section 4
describes the CBR-LIME method and the case base elicitation process. In Sect. 5
we demonstrate the benefits of our approach using both off-line and on-line
evaluations. Concluding remarks are discussed in Sect. 6.

2 Related Work

CBR can provide a methodology to reuse experiences and generate explanations
for different AI techniques and domains of applications. Therefore, we can find
several initiatives in the CBR literature to explain AI systems. Some relevant
early works can be found in the review by [8]. For example, [19] presents a
framework for explanation in case-based reasoning (CBR) focused on explanation
goals, whereas [2] develops the idea of explanation utility, a metric that may be
different to the similarity metric used for nearest neighbour retrieval.

Recently there is a relevant body of work on CBR applied to the explana-
tion of black-box models, the so-called CBR Twins. In [6], authors propose a
theoretical analysis of a post-hoc explanation-by-example approach that relies
on the twinning of artificial neural networks with CBR systems. [9] combine
the strength of deep learning and the interpretability of case-based reasoning
to make an interpretable deep neural network. [4] investigates whether CBR
competence can be used to predict confidence in the outputs of a black box sys-
tem when the black box and CBR systems are provided with the same training
data. [23] demonstrates how CBR can be used for an XAI approach to justify
solutions produced by an opaque learning method, particularly in the context of
unstructured textual data. As we can observe, most of these works are post-hoc
explanation systems, where CBR follows the model-agnostic approach to explain
black-box models. However, there are other works that, instead of explaining the
outcomes of the model, they try to explain the similarity metrics [17].

Outside the CBR community, many algorithms follow the same model-
agnostic approach than LIME. Partial dependence plots (PDP) show the
marginal effect that one or two features have on the predicted outcome of
a machine learning model [3]. The equivalent to a PDP for individual data
instances is called individual conditional expectation (ICE) plot [5]. It displays
one line per instance that shows how the instance’s prediction changes when a
feature changes. Other approaches, referred to as permutation feature impor-
tance, measure the increase in the prediction error of the model after permuting
the feature’s values [1].

The global surrogate model is an interpretable model that is trained to
approximate the predictions of a black box model [13]. In contrast, local sur-
rogates, such as LIME or Anchors [14,15], focus on explaining individual predic-
tions. Another popular local surrogate model similar to LIME is SHAP [11]. It is
based on the game theory concept of Shapley values and explains the prediction
of an instance by computing the contribution of each feature to the prediction.
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Once we have reviewed the most relevant contributions of CBR to XAI and
presented an overview of model-agnostic explanation methods, the next section
focuses on the LIME algorithm that is the basis of this paper.

3 Background

LIME focuses on training local surrogate models to explain individual predictions
given by a global black-box prediction model. In a general way, it analyses the
behaviour of the global prediction model through the perturbation of the input
data.

In order to figure out what features of the input are contributing to the
prediction, it perturbs the input data around its neighbourhood and evaluates
how the model behaves. Then, it trains an interpretable local model that weights
these perturbed data points by their proximity to the original input. This local
model should be a good and explainable local approximation of the black-box
model. Mathematically, it is formulated as follows [14]:

explanation(x) = arg min
g∈G

L(f, g,Πx) + Ω(g) (1)

This equation defines an explanation as a model g ∈ G, where G is a class
of potentially interpretable models, such as linear models or decision trees. The
goal is to minimize the loss function L that measures how close the explanation
is to the prediction of the original model f given a proximity measure Πx. This
proximity measure defines the size of the neighbourhood around the predicted
instance x that is used to obtain the explanation. Additionally, it is necessary
to minimize the complexity (as opposed to interpretability) of the explanation
g ∈ G, denoted as Ω(g).

Regarding the perturbation of the input data, it depends on its type. For
tabular data, LIME creates new samples by perturbing each feature individually
based on statistical indicators. For text and images, the solution is to remove
words or parts of the image (called superpixels). Here, the user can also configure
how these superpixels are computed and replaced. By default, LIME uses the
Quickshift clustering algorithm [22] that finds areas with similar pixels using a
hierarchical approach. This clustering algorithm depends mainly on the Gaussian
kernel used to define the neighbourhoods of pixels considered, that in practice
defines the number of clusters. Once the image has been segmented, it is neces-
sary to perturb the image to generate the training set for the surrogate model by
removing superpixels randomly. Next, the definition of the proximity measure
Πx should also be chosen carefully to select the neighbourhood of perturbed
images. Current implementations of LIME use an exponential smoothing kernel
where the kernel width defines how close an instance must be to influence the
local model.

Finally, the interpretable surrogate model used by LIME is linear regression,
corresponding to the Ω(g) function in Eq. 1. Here, the user has to define the
number of the top superpixels being considered. The lower top superpixels, the
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Table 1. Variables used to configure the LIME method.

Clusters size CCC This parameter defines the width of the Gaussian
kernel used to define the neighbourhoods of pixels
considered

Number of perturbations PPP Number of perturbed images generated through the

random removal of parts from the original image

Proximity measure ΠΠΠ Width of the exponential kernel that defines how close
a perturbation must be to be included in the linear
regression model

Number of features FFF Number of superpixels being considered by the linear
regression model, representing to the Ω(g) function in
Eq. 1

easier it is to interpret the model. A higher value potentially produces models
with higher fidelity.

The use of linear regression makes LIME unable to explain the model cor-
rectly on some scenarios where simple perturbations are not enough. Ideally, the
perturbations would be driven by the variation that is observed in the dataset.
The same authors proposed a new way to perform model interpretation which is
Anchors [15]. Anchor is also a local model-agnostic explanation algorithm that
explains individual predictions, i.e., only captures the behaviour of the model on
a local region of the input space. However, it improves the construction of the
perturbation data set around the query. Instead of adding noise to continuous
features, hiding parts of the image, to learn a boundary line (or slope) associated
to the prediction of the query instance, Anchors improves LIME using a “local
region” instead of a slope. Nevertheless, it also uses a generic configuration for
every image.

Once we have described LIME and its limitations, the next section introduces
the CBR-LIME method that improves its configuration through a case-based
reasoning process.

4 The CBR-LIME Method

As explained in the previous section, instead of using the default LIME setup,
its configuration can be optimized in order to achieve higher performance. Here,
an image-specific configuration of these parameters is critical in order to obtain
good explanations. In our approach, we will consider the parameters to con-
figure the LIME method listed in Table 1. In this table we have selected those
parameters with a higher impact in the final explanation after a preliminary
evaluation based on the results obtained by the LIME implementation provided
by the authors1. Figure 1 illustrates the impact of these parameters, showing
the resulting explanations for a given image when applying different LIME con-
figurations. In this case, the underlying neural network classifier identifies the
1 https://github.com/marcotcr/lime.

https://github.com/marcotcr/lime
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image as “ski”. However, the visual explanations provided by LIME change sig-
nificantly depending on its setup. As we can observe, the explanation generated
using the default parameters (top-left pair) is not a proper choice to explain the
outcome of the classifier.

C: 4, P : 150, Π:.25, F :4 (def) C: 7, P : 250, Π:.5, F :3

C: 2, P : 150, Π:.25, F :21 C: 10, P : 100, Π:.75, F :1

Fig. 1. Examples of LIME explanations for the same image using different setups. Each
pair shows the image segmentation on the left and the explanation generated according
to the parameters above. Top-left pair corresponds to the default values of the LIME
implementation.

A straightforward solution is to adjust these parameters according to the
predicted instance. However, as explanations depend on their utility to the user,
it is not possible to find an algorithmic solution to compute the best setup.
Therefore, we propose the use of a CBR approach where a case base of instances
and their most suitable configuration for LIME is collected and reused to provide
explanations.

4.1 Case Base Elicitation

To ease the evaluation of explanation cases with users, we have focused on the
LIME method for images. The case base of images has been obtained from the
dataset provided by the Visual Genome project [7]. We selected 200 images
that were confidently classified by Google’s Inception deep convolutional neu-
ral network architecture [21] with a predominant class (precision > 95%). For
every image, we generated eight different explanations through the heteroge-
neous configuration of the variables in Table 1, plus the default configuration of
LIME. Then, these nine explanations were presented to users, that could select
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the most suitable explanatory image, as illustrated in Fig. 2. Explanations were
randomly shuffled, and the corresponding LIME configuration is not displayed
to the user. Each time the user selects an explanation, a new image and its
corresponding explanations are shown until the 200 images have been voted.
Concretely, users were asked to select the most specific explanation, meaning
that, in case of two similar images, they should choose the one with less image
area.

Fig. 2. Application used to vote for the best explanation and generate the case base.
The original image and the majoritarian predicted class is shown on the left. Images
on the right are generated through 8 random configurations of LIME plus the default
setup.

After repeating this process with 15 users we collected a total of 3.000 votes
(15 per image) that were used to generate the case base. The description of each
case is the image itself (its pixel matrix) plus the feature’s vector returned by the
classifier. Then, the solution of each case is the average of the values for C,P,Π
and F from the LIME configurations chosen by the users. This representation
of cases can be formalized as:

Case = 〈D,S〉 (2)
where

D = 〈image,f〉
S = 〈C,P,Π, F 〉
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The analysis of the configurations voted by the users confirmed our initial
hypothesis stating that the default configuration of LIME is not suitable for a
general-purpose explanation. As Fig. 3 shows, the default configuration values
for each parameter (red columns) are not predominant, and there is significant
heterogeneity. This conclusion is also contrasted by the analysis of the variability
on the user’s choices. If we compute the standard deviation of the configuration
values chosen for every image, we can study if users tend to select a similar
configuration for LIME as the best explanation. Through this analysis, we col-
laterally validate the central hypothesis of this paper, consisting of applying a
case-based reasoning solution to generate LIME explanations because similar
images should be explained using similar configurations of the algorithm. The
corresponding average standard deviation values are also displayed in Fig. 3.
As we can observe, this analysis validates our hypothesis as the variability on
the configurations chosen by the users is quite low, especially for the C and F
variables.

Clusters size (C) σ = 1.28 Number of perturbations (P ) σ = 40.44

Proximity measure (Π) σ = 0.20 Number of features (F ) σ = 2.57

Fig. 3. Histograms describing the values (x-axis) chosen by users when voting for the
best explanation. Red columns highlight the default values in LIME. Numbers inside
columns reflect the percentage of explanations chosen by users that were configured
with the corresponding value in the x-axis. σ values correspond to the average of the
standard deviation for each image. (Color figure online)



CBR-LIME: A Case-Based Reasoning Approach 187

4.2 Case-Based Explanation

Once the case base has been generated, we can define the CBR process used
to find the most suitable configuration for LIME given an instance and its cor-
responding classification by the global model. The first step is the retrieval of
similar images (and their corresponding LIME configurations) from the case
base. A straightforward method to retrieve similar images is the comparison
of the pixel matrix. However, in practice, this approach is not a good choice
because we must focus on the objects in the image that were identified by the
global model. Therefore, we have defined the retrieval process as the comparison
of the feature vectors f given by the global model. This way, once we have the
classification of the query image (q), we can compare its feature vector with the
vectors describing the cases simply by applying a distance metric such as the
Euclidean distance.

sim(Dq,Dx) = Eucl Dist(fq ,fx) (3)

Then, the k most similar images can be selected. This retrieval process is illus-
trated in Fig. 4, where the three most similar images (yellow border) to the query
(blue border) are displayed together with their feature vectors f . Here we can
observe that the feature-based similarity achieves our goal of retrieving related
images and avoids problems associated with pixel-based comparisons such as
colour or image contrast.

Fig. 4. Application used display the similarity between images using the features iden-
tified by the global model (Eq. 3). (Color figure online)

The following step in the CBR cycle is adaptation. Here, the final configu-
ration for the LIME algorithm is calculated as the average of the configurations
of the k most similar cases. This way, we are reusing the user’s experience to
generate the explanation instead of applying a setup by default.

Sq = ∀
x∈kNN(q)

〈Cx, Px,Πx, Fx〉 (4)
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Then, the generated explanation is presented to the user that can revise the
configuration values in order to adjust its quality. Finally, the user can store the
new generated case into the case base to close the CBR cycle. Figure 5 shows a
capture of the CBR application that implements this process.

5 Evaluation

In order to demonstrate the benefits of CBR-LIME we have conducted two com-
plementary evaluations. Firstly, an offline evaluation compares the explanatory
images generated by the default LIME setup and our case-based approach using
cross-validation. Secondly, we implemented an online evaluation with users sim-
ilar to the experiment described in Sect. 4.1. This time, explanatory cases are
shown, and users must vote the most suitable explanation. Both offline and
online evaluations are presented next.

Fig. 5. Application implementing the full CBR cycle. It shows the original image, its
associated perturbation and the resulting explanatory image given by the configuration
obtained by CBR-LIME (Eq. 4). This configuration can be revised by the user, that
also can store the generated new case into the case base.

5.1 Offline Evaluation

The goal of the offline evaluation is to compare, using an image similarity met-
ric, the explanatory images generated by the default LIME setup and different
configurations of our CBR-LIME method. Given any image in a case of our case
base, we can compute the “optimal” explanatory image (according to the users’
votes) through the configuration stored in its solution. Then, other explanatory
images generated with different configurations of LIME can be compared to this
optimal explanation in order to measure their quality. If we repeat this process
throughout the whole case base using a leave-one-out approach we can evaluate
the performance of the default LIME setup in contrast to the configurations
provided by our CBR-LIME method (with different k values: 1NN, 3NN, etc.).
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A key element in this evaluation is the similarity metric used to compare the
explanatory images. There is an extensive catalogue of such metrics in the field
of Image Quality Assessment (IQA) that must be carefully chosen depending
on the nature of the image and the type of comparison that is required [18]. In
our case, we need to compare variations of the same original image where some
parts have been removed. Therefore, we need a metric that is able to compare
the structural changes in the image, such as the Structural SIMilarity (SSIM)
index. This metric that has demonstrated good agreement with human observers
in image comparison using reference images [25]. The SSIM index can be viewed
as a quality measure of one of the images being compared, provided the other
image is regarded as of perfect quality. It combines three comparison measure-
ments between the samples of x and y: luminance, contrast and structure. In our
evaluation, the explanation generated with the (average) configuration chosen
by the users is the image of perfect quality to compare with. In contrast, the
explanations generated with other configurations of LIME (default, 1NN, 3NN,
...) are the variations that we need to find out their comparative quality.

LIME CBR-LIME
default 1NN 3NN 5NN 7NN

SSIM 0.42 .51 .51 .53 .55

Fig. 6. Boxplot (top) and average SSIM values (bottom) obtained when comparing
explanatory images generated with different LIME configurations.

Results are summarized in Fig. 6 that shows a boxplot (top) and the average
(bottom) of the SSIM values obtained by the explanatory examples generated
with different configurations. We can observe that the SSIM index is higher using
the CBR-LIME method. As we have computed the SSIM index for the 200 images
in the case base we can contrast the resulting series in order to validate this
improvement statistically. Therefore, we have run a two-pair Wilcoxon signed-
rank test comparing the SSIM indexes obtained by the default LIME setup and
the values from the CBR-LIME configurations. In all cases, the improvement was
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statistically significant at p < 0.05. However, there is a little improvement when
increasing the k parameter of the CBR-LIME method, finding only statistical
evidence between k = 7 and k = 1, 3.

These series comparisons are graphically presented in Fig. 7 that plots the
difference between the SSIM values obtained by the kNN configurations and the
default LIME setup. As we can observe, the positive area (on the right side of
the y-axis) is much larger than the negative, indicating that the explanations
generated by CBR-LIME are more similar to the optimal explanatory image.

Fig. 7. Plots of the differences between the SSIM index obtained by the k-NN config-
urations minus the default LIME setup for every image.

5.2 Online Evaluation with Users

We have also conducted an online evaluation with users to corroborate the results
of the offline analysis. In this case, users had to choose between two explanatory
images: one is generated with the default LIME setup, and the other gener-
ated from the configuration obtained by CBR-LIME2. The application used to
conduct this evaluation (Fig. 8 left) shows the original image, the classification

Fig. 8. (left) Application used in the online evaluation where users have to vote for
the best explanation comparing the images generated by the default LIME setup and
the CBR-LIME configuration. (right) Percentage of votes given by the users to each
alternative (1600 total votes).

2 Explanations were generated using 3-NN as there are no significant changes with
other k values.
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given by the global model, and the two explanatory images. One more time, this
application shuffles the images to avoid any kind of bias in the users’ choices,
and the voting process must be repeated for all the images in the case base.

After collecting 1600 votes, results corroborate the benefits of CBR-LIME, as
76.7% of the images selected by the users as the best explanation were generated
using the configuration provided by our method.

6 Conclusions and Future Work

This paper presents a Case-based reasoning method that takes advantage of
human knowledge to generate explanations. Concretely, we have defined and
evaluated a CBR solution to the problem of configuring the well-known LIME
algorithm for images. This algorithm attempts to understand a global black-
box classification model by perturbing the input of data samples. However, this
method applies a generic setup for any image, that leads to inadequate explana-
tions as demonstrated in this paper through an evaluation performed with 200
images and 15 users. This evaluation let us collect a case base of images and their
associated “optimal” LIME configurations according to the users. From this case
base, we can implement a CBR-LIME method where, given a new query image,
similar images are retrieved, and their corresponding configurations are reused
to generate an explanation through the LIME algorithm.

To validate CBR-LIME, we have conducted two complementary evaluations.
The offline evaluation compares through cross-validation the explanatory images
generated by the default LIME setup and the configurations obtained by CBR-
LIME to the “optimal” explanation according to the users. To compare the
images, we use the SSIM image comparison index, that is a reference method in
image quality assessment, able to compare variations of the original image. The
results of the offline evaluation demonstrated that CBR-LIME improves up to
13% the similarity of the generated images with the optimal explanation. Then,
we conducted an online evaluation with real users in order to corroborate these
results. In this case, users had to choose between two explanations for the same
image, one generated with the default LIME setup, and the other with CBR-
LIME. Again, the results confirmed the benefits of the later as it obtained 76%
of the votes.

This paper leaves many open lines for future work. Firstly, we would like
to explore the impact of other configuration parameters of LIME that were
considered initially as less relevant to generate the explanation. For example,
the is a ratio threshold in the Quisckshift algorithm that defines the trade-off
between colour importance and spatial importance to create image clusters. This
parameter was not included in CBR-LIME because initial evaluations did not
demonstrate a significant impact on the performance of the method. However,
this must be methodologically validated.

The combination of these parameters as the solution of the cases also requires
further evaluation. Obviously, during the case base elicitation process, users did
not choose the same best explanation for a particular image. We, therefore,
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obtained several LIME configurations for each image, that were averaged to
compute the final solution of the case. Thus, other alternatives may be con-
sidered and evaluated, i.e., the median value or just selecting the most voted
configuration.

We must also analyze the impact of the case base quality in the explana-
tion process regarding cold-start scenarios where no similar images are available
in order to find out the minimum similarity threshold and class distributions
required to provide good explanations. Also, our evaluation only includes images
that are confidently classified by the neural network, so we need to evaluate the
impact of incorrect or ambiguously classified images. Additionally, the impact of
user bias in the case base elicitation and evaluation must be carefully analyzed
too.

Another relevant line of future work is the improvement of the similarity
metric. Equation 3 does not take into consideration the pixel matrix of the image
to retrieve similar cases. However, it was our initial idea, and we tested the SSIM
index and other feature matching methods like FLANN [20] as similarity metrics.
Unfortunately, results were disappointing due to the variability of the images in
the case base. So we discarded the pixel matrix comparison and focused on the
similarity of the image features. Nevertheless, further research is required in
order to enhance the similarity metric by including pixel-based comparisons.

An open implementation of CBR-LIME in Phyton is available at:
https://github.com/UCM-GAIA/CBR-LIME.
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