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Abstract. Recently, a groundswell of research has identified the use of coun-
terfactual explanations as a potentially significant solution to the Explainable AI
(XAI) problem. It is argued that (i) technically, these counterfactual cases can be
generated bypermuting problem-features until a class-change is found, (ii)psycho-
logically, they are much more causally informative than factual explanations, (iii)
legally, they are GDPR-compliant. However, there are issues around the finding of
“good” counterfactuals using current techniques (e.g. sparsity and plausibility).
We show that many commonly-used datasets appear to have few “good” counter-
factuals for explanation purposes. So, we propose a new case-based approach for
generating counterfactuals, using novel ideas about the counterfactual potential
and explanatory coverage of a case-base. The new technique reuses patterns of
good counterfactuals, present in a case-base, to generate analogous counterfactuals
that can explain new problems and their solutions. Several experiments show how
this technique can improve the counterfactual potential and explanatory coverage
of case-bases that were previously found wanting.
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1 Introduction

In recent years, there has been a tsunami of papers on Explainable AI (XAI) reflecting
concerns that recent advances in machine learning may be limited by a lack of trans-
parency (see e.g., [1, 2]) or by government regulation (e.g., GDPR in the EU, see [3, 4];
for reviews [5–7]). Historically, Case-Based Reasoning (CBR) has always given a cen-
tral role to explanation, as predictions can readily be explained by cases, akin to human
reasoning from precedent/example [8–12]). Indeed, Kenny & Keane’s [13, 14] twin sys-
tems approach, explicitly maps black-box deep-learning systems into CBR systems to
find post-hoc explanatory cases for their predictions. Typically, CBR uses “factual cas-
es”; nearest like neighbors that explain why a prediction was made [14]. But, recently,
another class of explanatory cases is attracting interest, counterfactual cases; nearest
unlike neighbors that explain how a prediction might be changed. For example, a loan
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application system might explain its decision to refuse a loan by presenting a factual
case: “you were refused because a previous customer had the same salary as you and
they were refused a loan for this amount”. In contrast, the same loan system might,
arguably, provide a better explanation by presenting a counterfactual case; effectively
saying “if you asked for a slightly lower amount you would have been granted the loan”.
Researchers championing the use of counterfactual explanations, argue that they provide
better solutions to the XAI problem [7, 15–18] (see Sect. 2).

In this paper, we consider counterfactual explanations from a CBR perspective.
Though any CBR system can explain its predictions directly using counterfactual cases,
here, we assume a twin-system context [13, 14]; where some opaque machine-learning
model (e.g., deep learningmodel) generating predictions to be explained by finding case-
based explanations from a twinned CBR1. We assess how many “good” counterfactuals
are available in a given case-base (i.e., ones that are easily comprehended by people). So,
we systematically map the topology of “good” counterfactuals in different case-bases,
what we call their counterfactual potential (see Sect. 2). Initially, we perform an analysis
of 20 frequently-used case-bases from the ML/CBR literature (see Sect. 3). To presage
our results, to our surprise, we find that in most case-bases “good” counterfactuals are
quite rare. This leads us to the novel notion of explanatory coverage by analogy to
predictive coverage [19–21], from which we develop and evaluate a new case-based
technique for counterfactual generation in XAI (Sects. 4 and 5).

2 Counterfactual Explanation: Promise, Problems and Prospects

Intuitively, counterfactual explanations seem to provide better explanations than factual
ones; nearest-unlike-neighbor (NUN) explanations are better than nearest-like-neighbor
(NLN) explanations2. Imagine you using the drink-&-drive app, DeepDrink, that can
predict whether you are under/over the alcohol limit for driving. DeepDrink knows your
physical profile and when you tell it (i) how many drinks you have taken, (ii) your
recent food intake and (iii) when you started drinking, it predicts you are over the limit
explaining it with a factual case; saying that a person with a similar profile to you
was also over the limit when they were breathalysed (see Table 1). This explanation is
reasonable but perhaps less informative than a counterfactual case; which would tell
you that someone with your profile who drank a similar amount over a longer period,
ended up being under the limit (see “good” counterfactual in Table 1). The counterfactual
directly tells you more about the causal dependencies in the domain and, importantly,
provides you with “actionable” information (i.e., if you stopped drinking for 30 min
you could be under the limit). Technically, counterfactuals can tell you about the feature

1 This context assumes an existing (albeit opaque) model to which cases can be presented to find
predictions/labels; all counterfactual-generation techniques make this assumption, though there
is some discussion around whether the training data would also always be accessible (obviously,
we assume the training-data/case-base is available).

2 Though NUNs have been studied in CBR (e.g., [22, 23]), few consider counterfactual cases (aka
NUNs) for explanation; [24, 25] are exceptions but they viewed NUNs as being more important
as confidence indicators with respect to decision boundaries.
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differences that affect the decision boundary around a prediction. Accordingly, [20]
define counterfactual explanations as statements taking the form:

Score y was returned because variables V had values (v1, v2, ..). If V had values
(v1′, v2′ …), and all others remain constant, score y′ would have been returned.

where, in our example, score y would be the class “over the limit” and y′ the class
“under the limit”. Recently, researchers championing counterfactual cases for XAI have
argued that psychologically, technically and legally they provide better explanations than
other techniques for XAI [7, 16, 17, 26–29].

Table 1. A query case paired with a “Good” and a “Bad” Counterfactual from the Blood Alcohol
Content (BAC) case-base with the feature-differences between them (shown in bold italics)

Features Query case “Good” Counterfactual “Bad” Counterfactual

Weight
Duration
Gender
Meal
Units

80 kg
1 h
Male
Empty
6

80 kg
1.5 h
Male
Empty
6

80 kg
3 h
Female
Full
6.5

Bac Level Over Under Under

2.1 Counterfactual Promise

Many have argued that counterfactual thinking has a promising role to play in explana-
tion from philosophical, psychological, computational and legal perspectives. Philoso-
phers of science have argued that true causal explanation only emerges from contrastive
propositions, using counterfactuals [30, 31]. Psychologists have also shown that coun-
terfactuals play a key role in human cognition and emotion, eliciting spontaneous causal
thinking about what might have been the case [15, 16, 32]. Byrne [16] has explicitly
related this literature to the XAI problem, laying out the different ways in which coun-
terfactuals could be used (see also [7, 33]). For example, as counterfactuals engender
more active causal thinking in people, they are more likely to facilitate “human in the
loop” decision making [16]. Recently, Dodge et al. [34] assessed explanations of biased
classifiers using four different explanation styles and found counterfactual explanations
to be the most effective. In AI, Pearl [27] has proposed an influential structural Bayesian
approach to counterfactuals that can test the fairness of AI systems, but it has been
less used in explanation generation (e.g., see [35, 36]). In the XAI literature, the use
of counterfactuals has been used to counter popular post-hoc perturbation approaches
(e.g., LIME; [37, 38]), with many researchers arguing that counterfactuals provide more
robust and informative post-hoc explanations [18, 26, 38–40]; these “counterfactualists”
have also argued that counterfactual explanations are GDPR compliant [4, 39].
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2.2 Counterfactual Problems

However, the promise of counterfactuals for XAI comes with a number of problems; the
three main ones being prolixity, sparcity and plausibility.

Prolixity. Currently, most XAI systems generate counterfactuals using random pertur-
bation and search, making them somewhat prolix [4, 17]; that is, many counterfactuals
may be produced for a given prediction from which a “good” one must be filtered (e.g.,
in the loan system, one could be shown counterfactuals for every $10 incremental change
in one’s salary). Stated simply, this prolixity is handled by filtering counterfactuals on
the minimally-changed features to the query case that flip the prediction (i.e., the nearest
unlike neighbor). So, [20] propose the following loss function, L:

L
(
x, x′, y′, λ

) = λ
(
f
(
x′) − y′)2 + d

(
x, x′) (1)

arg min
x′ max

λ
L
(
x, x′, y′, λ

)
(2)

where x is the vector for the query case and x′ is the counterfactual vector, with y′ being
the desired (flipped) prediction from f (..) the trained model, where acts as the balancing
weight. In formula (2), λ balances the closeness of the counterfactual to the query case
against making minimal changes to the query case while delivering a prediction change,
using the L1 normweighted bymedian absolute deviation (MAD). This technique claims
to find minimally-mutated counterfactuals, solving the prolixity problem (see [17, 39,
40] and [39] for diversity between counterfactuals).

Sparcity. These methods also profess to solve the sparcity problem. All commenta-
tors argue that good explanatory counterfactuals need to be sparse; that is, they need
to modify the fewest features of the query case. For example, Table 1 shows, for the
blood alcohol domain, two different counterfactuals, one with a 1-feature change and
another with a 4-feature change, with the sparcity of the former making it better than the
latter. Wachter et al. [4] argue that the L1 norm delivers sparse counterfactuals, though
many of these appear to still involve high numbers of feature-differences (e.g., >4, see
[40]). Importantly, the argument for sparcity is a psychological one that has not been
specifically tested in the XAI literature. Typically, AI researchers propose sparcity is
important because of human working memory limits [41, 42], but we argue that peo-
ple prefer sparse counterfactuals because of limits on human category learning. For
example, [43] have shown that when people are learning categories for unfamiliar items
they prefer single-feature changes between to-be-learned items over multiple-feature
changes, because it makes the learning task easier (unless there is additional domain
knowledge on dependencies between features). Based on this evidence, we operational-
ize the sparcity of “good” counterfactuals (as itemswith 1 or 2 feature differences) versus
“bad” counterfactuals (those with >2 feature changes). This definition helps us develop
the novel idea of the counterfactual potential of case-bases, based on quantifying the
“good” counterfactuals they contain (see Sects. 4 and 5).

Plausibility. The final problem is that of plausibility; that is, the counterfactuals gener-
ated by these methods may not be valid data-points in the domain or they may suggest
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feature-changes that are difficult-to-impossible. Classic examples of such counterfactu-
als in loandecisions, are explanations that propose increasingone’s salary by an implausi-
ble amount (i.e., if you earned $1M, you would get the loan) or radically altering oneself
(i.e., if you changed gender, you would get the loan). Plausibility is the least-solved
problem facing counterfactual generation; many researchers propose to “lock” features
(e.g., not allow gender change) or to get users to provide inputs on feature weights [40]
(e.g., using interface sliders on salary boundaries). However, automated solutions to the
plausibility problem are thin on the ground3. Our proposal is to directly generate coun-
terfactuals analogically from the dataset, rather than producing them by “blind”, random
perturbation followed by filtering. As counterfactuals generated in this way are based on
“real experiences” in the problem domain, they should be inherently plausible. However,
this raises another question: namely, how many good counterfactuals “naturally” occur
in case-bases, what is their counterfactual potential.

2.3 CBR’s Prospects for Counterfactuals

Most techniques for generating counterfactuals for XAI perform random perturbations
of a query case followed by a search to find minimally-different items that are close
to the decision boundary (i.e., a NUN). These perturbation techniques can encounter
problems, notably in meeting sparcity and plausibility, which may benefit from a case-
based approach. Just as CBR has successfully explained predictions using factual cases
[10, 25], perhaps it can also deliver counterfactual cases that are sparse and plausible.
However, if CBR is to be used, we need to establish whether case-bases/datasets actually
contain good counterfactuals, whether they have high counterfactual potential.We define
a good counterfactual to be a NUN that differs from the query case by no more than
2 features. So, counterfactual potential can be computed from the feature-differences
for all pairwise comparisons of cases in the case-base. If these comparisons find many
“good” counterfactuals then the potential is high, if not then it is low. So, in our first
experiment, we computed the counterfactual potential of 20 classic ML/CBR datasets,
from the UCI repository [45]. From this analysis we develop the idea of explanatory
coverage before proposing a novel case-based technique for counterfactual generation
(Sect. 4). Finally, in Sect. 5, we report a set of experiments on five representative datasets
to show how our technique can enhance counterfactual potential.

3 Experiment 1: Plotting Counterfactual Potential

In this experiment, we computed the counterfactual potential of 20 classic datasets from
the UCI repository [45], ones that have been commonly used in many CBR papers. This
analysis was done by computing the number of feature differences between all pairwise
comparisons of cases in the case-base, noting the proportion of “good” counterfactuals
found (i.e., ≤2 feature difference counterfactuals). This analysis provides us with an

3 Rare recent attempts include Laugel et al.’s [44] method to “justify” generated counterfactuals
using nearest neighbors in the training data, and [29] finding “feasible paths” to counterfactuals
in the dataset; both methods attempt to ground counterfactuals in prior experience.
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upper/lower bound on the potential of a case-base to deliver good counterfactuals. Obvi-
ously, in any specific CBR system, one might be able to adjust weights, how features are
matched or k-values to find such counterfactuals, but such fine-tuning will not improve
matters hugely if good counterfactual-cases are just not there.

3.1 Method: Data Sets and Procedure

Twenty UCI datasets were used in the experiment, selected on the basis of their common
usage in CBR.We compared all pairings of query cases (one side of a decision boundary)
to training cases (on the other side of a decision boundary) calculating the number of
feature differences found in each.

3.2 Results and Discussion

Table 2 shows the counterfactual potential of the UCI datasets, as the percentage of
counterfactuals from 1 to >5 feature-differences. The results show that “good” counter-
factuals are rare4; in nearly every dataset, the 1-diff and 2-diff counterfactual categories

Table 2. Percent counterfactuals for feature-differences in 20 UCI datasets (expt.1)

DataSets N of cases Feat. no. Class no. N of pairs 1-diff 2-diff 3-diff 4-diff >5-diff

Abalone 4177 10 8 15.6M 0% 0% 0% 0% 99.9%

Auto MPG 398 8 5 52.3k 0% 0% 0% 0.4% 99.6%

BAC 9291 7 2 19M 0% 1.5% 23% 3% 72%

Bupa liver 345 6 2 29k 0% 0% 0.1% 3.1% 96.8%

Credit 653 15 2 105.7k 0% 0% 0% 0% 99.9%

Cleveland heart 303 13 5 32.9k 0% 0% 0% 0.1% 99.9%

Ecoli 336 7 7 41k 0% 0% 0% 0.2% 99.8%

Glass 214 9 7 21.9k 0% 0% 0% 0% 99.9%

German credit 914 20 2 177k 0% 0% 0% 0% 99.9%

Horse colic 300 22 2 20.8k 0% 0% 0% 0% 99.9%

Indian liver 583 10 2 69.5k 0% 0% 0% 0% 99.9%

Ionosphere 351 34 2 28.3k 0% 0% 0% 0% 100%

Iris 150 4 3 7.5k 0% 0.3% 8.8% 91% n/a

Sonar 208 60 2 10.8k 0% 0% 0% 0% 100%

Soybean (large) 307 26 19 43k 0% 0% 0.2% 0.6% 99.2%

Thyroid 2800 27 3 355.8k 0% 0% 0% 0% 99.9%

Votes 435 17 2 44.8k 0% 0.3% 0.9% 1.9% 88.8%

Wine-Italian 178 13 3 10.4k 0% 0% 0% 0% 100%

Wisconsin breast 699 9 2 110k 0% 0% 0% 0.4% 99.5%

Yeast 1484 8 10 855.3k 0% 0% 0.3% 4.8% 94.9%

4 We extensively tested this Blood Alcohol Content (BAC) case-base [24, 25], but cannot report
it for reasons of space. Using a mechanical model for estimating BAC, we generated several
master-case-bases fromwhichwe sampled 50+ specific case-bases; across all of these case-bases,
to our astonishment, we repeatedly found the same absence of good counterfactuals.
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account for <1% of total counterfactuals. Most of the counterfactuals found have poor
sparcity (i.e.,>5 feature-differences) and would likely be hard for people to understand.

It should be noted that in the above, we determine feature differences using an
exact match. Such an approach is inherently conservative with real-valued features. In
practice, a matching tolerance could be used by, for example, treating two feature-values
as equivalent if they arewithin 1%of each other.While this tolerance-matching improves
the results (albeit in a somewhat ad hoc fashion), the fraction of good counterfactuals
(≤2 feature differences) still typically remains very low (see Sect. 5 for tests).

On the face of it, these results suggest that a case-based approach to counterfactual
generation is a bad idea; if most datasets do not deliver good counterfactuals then case-
based techniques seem bound to fail? However, as we shall see in the following sections,
there are additional steps that can be used to meet and resolve this challenge.

4 A Case-Based Technique for Good Counterfactuals

Ironically, the above analysis suggests that CBR seems to have little to offer in using
counterfactuals for XAI. For most case-bases good counterfactuals are rare, few query
cases have associated good counterfactual cases. This may explain why the dominant
counterfactual XAI techniques use perturbation, where synthetic counterfactuals are
generated “blindly” from problem-cases and labelled using a machine-learning model,
without reference to other known cases in the training set [18, 26, 38–40]. In contrast
to these approaches, we believe that counterfactuals need to be explicitly grounded
in known cases (aka the training data) to ensure plausibility. Hence, we developed
a novel case-based technique for counterfactual-XAI which reuses patterns of good
counterfactuals that already exist in a case-base, to generate analogous counterfactuals
(as newdatapoints) that can explain new target problems and their solutions. In generating
new counterfactuals, these existing good counterfactuals provide ‘hints’ about what
features can and should be adapted and plausible feature-values to use in them. This
new technique relies on the notion of explanatory competence (see Sect. 4.1). Note,
the context for the use of this method is a twin-system approach to XAI, where an
opaque ML model is “explained” by twinning it with a more transparent CBR-system
to find explanatory cases [13, 14]; hence, along with all other counterfactual-generation
techniques,we assume anMLmodel is available to assign labels for any newly-generated
synthetic case.

4.1 Explanatory Competence

The notion of predictive competence or simply competence (i.e., an assessment of an
ML/CBR system’s potential to solve a range of future problems) has proved to be a very
useful development forAI systems [19–21]. For example, inCBR, predictive competence
can assess the overall problem-solving potential of a system, to help avoid the utility
problem as a case-base grows, to maintain case-bases and so on [19, 20]. A parallel
notion of explanatory competence can also be applied to any case-base.
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Just as the fundamental unit of (predictive) competence is a relation of the form
solves(c, c′) to indicate that case/example c can be used to solve some target/query c′, the
basic unit of explanatory competence is explains(c, c′) indicating that some case c can be
used to explain the solution of c′; where the explanatory cases (c) are the counterfactuals
of c′. So, the explanatory competence of a case-base C can be represented by a coverage
set (Eq. 3) and explanatory competence can be estimated as the size of the coverage set
as a fraction of the case-base (Eq. 4):

XP_Coverage_Set(C) = { c′ ∈ C |∃c ∈ C − {c′} & explains(c, c′)} (3)

XP_Coverage(C) = |XP_Coverage_Set(C)|/|C| (4)

4.2 Leveraging Counterfactual Cases for Explanation

Although good counterfactuals are rare, in practice most case-bases should offer some
examples where a query/problem-case can be associated with a good counterfactual,
with or without some matching tolerance (as mentioned above). For example, in the
Abalone dataset, even though there are few good counterfactuals (<1%), with a simi-
larity tolerance of 0.02, ~20% of cases are found to have good counterfactuals; for the
Liver dataset a tolerance of 0.025 results in ~4% of cases having associated good coun-
terfactuals. Can these query-counterfactual case-pairs guide the search for novel (good)
counterfactuals for new target problems that otherwise lack a good counterfactual?

Below, we refer to the pairing of a case and its corresponding good counterfactual
as an explanation case (XC). For any given case-base, we can generate a corresponding
case-base of these explanation cases for use during counterfactual generation; see Eqs. 5
and 6. By definition explanation cases are symmetric; either of the cases can be viewed as
the query or counterfactual, which, in practice,means that each pair of unlike neighbours,
which differ by ≤2 features, contributes two XCs to the XC case-base.

xc
(
c, c′) ⇔ class(c) �= class(c′) & diffs(c, c′) ≤ 2 (5)

XC(C) = {(c, c′) : c, c′ ∈ C & xc(c, c′)} (6)

Each XC is associated with a set of match-features (m), the features that are the same
between the query and counterfactual (using a specified tolerance), and a set ofdifference-
features (d), the ≤2 features that differ between the query and counterfactual.

Figure 1(a) shows a two-class case-base of cases (C) with its corresponding XCs
– xc(x, x′), xc(y, y′), and xc(z, z′) – along with two query cases (p and q), which have
been classified by the underlying ML-model, and which now need to be explained. For
our purposes, we assume that there are no existing good counterfactuals for p or q in C,
hence the need to generate new good counterfactuals for them.
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Fig. 1. An illustration of (a) a two-class case-base with 3 explanation cases; (b) how a synthetic
counterfactual, (p, p′), is generated from an existing explanation-case, xc(x, x′).

4.3 A Case-Based Approach to Generating Good Counterfactuals

Wepropose a classical case-based reasoning approach to generatinggood counterfactuals
by retrieving, reusing, and revising a nearby explanation case as follows:

1. First, we identify the XC case whose query is most similar to p while sharing p’s
class; this is xc(x, x′) in Fig. 1. Since xc(x, x′) has a good counterfactual, x′, and
because the p is similar to x, then the intuition is that x′ is a suitable basis for a new
counterfactual p′ to explain p. The difference-features between x and x′, which are
solely responsible for the class change between x and x′, should play a critical role
in constructing p’.

2. For each of the match-features in xc(x, x′), we copy the values of these features in
p to the new counterfactual p′. Similarly, for each of the difference-features in xc(x,
x′) we copy their values from x′ into p′. In this way, p′ is a combination of feature
values from p and x′. It differs from p in a manner that is similar to the way in which
x′ differs from x and, by construction, p′ is a candidate good counterfactual because
these differences amount to no more than two features. This transfer of values from
p and x′ into p′ is illustrated in Fig. 1(b).

3. For p′ to be actually a good counterfactual, it has to be a different class from p,
which is not yet guaranteed. We determine the class of p′ by using the underlying
ML-model (from the twin-system) and, if it is different from p, then p′ can be used
directly as a good counterfactual to explain p (see Fig. 1(a)).

4. Sometimes, however, the class of the new counterfactual, after retrieval/reuse, is not
different from the target query. For example, the new counterfactual q′, which is
generated for q by reusing xc(y, y′) in Fig. 1(a), has the same class as q, because the
combination of the match-feature values (from q) and difference-features (from y′)
are not sufficient to change its class from that of q.

5. Since q′ is not a valid counterfactual, we perform an adaptation step to revise the
values of the difference-features in q′ until there is a class change; note, we cannot



172 M. T. Keane and B. Smyth

change the match-features in q′ without increasing the number of feature differences
with q. We can revise the values of the difference-features in q′ in various ways, for
example, by perturbing them to further increase their distance from q. However, we
instead iterate over the ordered nearest neighbours of q with the same class as y′,
until there is a class change5. The values of the difference-features from each nearest
neighbour leads to a new candidate, q′′, and adaptation terminates successfully when
the class of q” differs from that of q; if none of the neighbours produce a class
change, then adaptation fails. In Fig. 1(a), when the difference-feature values from
the neighbour, nn, are used to produce q′′, the result is a class change, and so q′′ can
be used as a good counterfactual for q.

Note that the primary contribution of explanation cases is to identify and distinguish
between common combinations of features (match-features and difference-features) that
tend to participate in good counterfactuals. Depending on the domain this may reflect
important relationships (causal or otherwise) that exist within the feature-space. In other
words, the XCs tell us about which features should be changed (or held constant) when
generating new counterfactuals in the feature-space near a query case.

Another advantage of this approach is that, because it reuses actual feature-values
from real cases, it should lead tomore plausible counterfactuals and, better explanations.
This contrasts with perturbation approaches, which rely on arbitrary values for features
(and may even produce invalid data-points) and is consistent with approaches that try
to ground counterfactuals in the training data [28, 44]. However, [28, 44] still use prior
experience in a less direct way; they justify/link the generated counterfactual to known
data-points rather directly using those data-points to directly create the counterfactual,
as we do here. Notably, this method reminds one of analogical extrapolation methods in
CBR [46] and structural analogical transfer [47, 48].

Finally, thoughour approachmay succeed infinding a suitable counterfactualwithout
the need for the adaptation/revision step, it may be desirable to proceed with this step,
nonetheless. This is because the adaptation step has the potential to locate a suitable
counterfactual that is closer to the query than the candidate counterfactual produced
by the retrieval step alone and finding counterfactuals that are maximally similar to the
query is an important factor when it comes to explanation [17].

5 Experiment 2: Evaluating Explanation Competence

A preliminary evaluation of the above approach was carried out using five popular
ML/CBRdatasets to demonstrate how explanatory competence can be improved over the
baseline level of good counterfactuals naturally occurring in a dataset. For theMLmodel
used to validate the generated counterfactuals, we used a k-NN model, to determine
whether the predicted counterfactual class differs from the test/query case, but other
classifiers could also be used if available.

5 More generally, for multi-class datasets, this adaptation can be modified to iterate over all
ordered nearest neighbours with a different class to q, not just those with the same class as y′.
This provides a larger pool of difference-feature values and increase the likelihood of locating
a good counterfactual for q.
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5.1 Method: Data and Procedure

Each of the datasets represent a classification task of varying complexity, in terms of the
number of classes, features, and training examples. The task of interest, however, is not
a classification one but an explanation one. As such we are attempting to generate good
counterfactuals in order to explain target/query cases and their classes. Thekey evaluation
metrics will be: (a) the fraction of target/query cases than can be associated with good
counterfactuals (explanatory competence); and (b) the distance from the target/query
case to the newly-generated good counterfactual (counterfactual distance).

As a baseline for explanatory competence we use the fraction of cases that can
be associated with a good counterfactual in each case-base. In each dataset we use a
matching tolerance of 1–2% with normalized features and the Minkowski similarity
metric was used throughout; variations in these settings will increase the fraction of
existing and generated good counterfactuals and future work will need to explore such
matters more completely. As a corresponding baseline for counterfactual distance, we
use the average distance between these cases and their good counterfactuals. A 10-fold
cross-validation was used to evaluate the newly-generated counterfactuals, selecting
10% of the cases at random to use as queries, and building the XC case-base from the
remaining cases. Then, we use the above technique to generate good counterfactuals
for the queries, noting the fraction of the queries that can be associated with good
counterfactuals, and the corresponding counterfactual distances, after the retrieval/reuse
and adaptation steps. Results reported are the averages for the 10 folds for each dataset.

5.2 Results and Discussion: Explanatory Competence

The explanatory competence results are presented in Fig. 2, showing the explanatory
competence (fraction of queries that can be explained) for the dataset (baseline), and
for the synthetic counterfactuals generated after the retrieval and adaptation steps of our
approach. The results show how explanatory competence can be significantly increased
by our case-based-counterfactual technique. For example, on average only about 11% of
the cases in these datasets can be associated with good counterfactuals (the average base-
line competence when a tolerance is applied) but by retrieving and re-using explanation
cases we can reach an average explanatory competence of just over 40%. Implementing
the adaptation step further increases the explanatory competence just under 94%, on
average. Notably, even datasets with very low baseline explanatory competence benefit
from significant improvements in explanatory competence particularly when the adap-
tation step is used. For example, the 6,400 case Wine dataset (12 features and 7 classes)
has a baseline explanatory competence of just 6%, but its 559 XC-cases can be used to
achieve almost 90% in explanatory competence.

5.3 Results and Discussion: Counterfactual Distance

Of course, just because it is possible to generate a counterfactual for a query that has no
more than 2 feature-differences, does not necessarily mean that the counterfactual will
make for an ideal explanation, in practice. To test this would require a succession of live
user-trials (currently planned), that are beyond the scope of the present work. As a proxy
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Fig. 2. The explanatory competence (XP_Coverage) of five case-bases/datasets, showing baseline
competence and how competence increases by reusing and adapting explanation cases.

for the utility of the explanation, however, we can use the distance between the query
and the generated counterfactual, on the grounds that counterfactuals which are closer
to a query are more likely to serve as more useful explanations. Since counterfactual
distance will vary from dataset to dataset, reflecting the nature of the feature space, we
use a relative counterfactual distance (RCF) measure by dividing the counterfactual
distances of the synthetic counterfactuals by the baseline counterfactual distance for the
dataset. Thus, if RCF >1, then it indicates that the synthetic counterfactual is farther
from the query that the average baseline counterfactual distance.

The results are presented in Fig. 3, which include the relative distance of the good
counterfactuals produced by the retrieval/reuse and the adaptation steps for each dataset.
We also show the relative distance results for an additional condition, Closest, which
is defined as follows: when both the retrieval/reuse and adaptation steps lead to a good
counterfactual, then choose the one with the lower counterfactual distance, otherwise if
only one good counterfactual is produced then use its distance.

Fig. 3. The counterfactual distance of good counterfactuals produced for five case-bases/datasets,
relative to the baseline counterfactual distance (between a query case and its counterfactual)

On average, good counterfactuals produced by the retrieval/reuse step are farther
from the test query than the baseline counterfactual distance (RCF ≈ 1.2). In most cases
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the additional distance beyond the baseline is modest with the exception of the Liver
dataset, where the retrieval/reuse step produces good counterfactuals that are 55% (RCF
≈ 1.55)more distant from the query than the baseline distance. The good counterfactuals
produced by the adaptation step are closer to the test queries – the average RCF ≈
1.1, and in 3 out of the 5 datasets the generated counterfactuals are closer than the
baseline (RCF < 1). If we select the closest counterfactual, when both retrieval/reuse
and adaptation produce one, then the RCF < 1 for all of the datasets. This further
validates the need for, and quantifies the benefits of, the adaptation step: it provides an
opportunity to choose a counterfactual that is significantly closer to the query.

6 Conclusions and Future Directions

In the last three years, there has been a significant upsurge in XAI research arguing for
the computational, psychological and legal advantages of counterfactuals. Most of this
work generates synthetic counterfactuals without reference to the training-data in the
domain and, as such, can suffer from sparsity and plausibility deficits. In short, these
methods do not guarantee the production of good counterfactuals and,may indeed, some-
times generate invalid data points. This state of affairs invites a case-based solution to
counterfactual generation that leverages the prior experience of the case-base, adapting
known counterfactual associations between query-problems and known cases. In this
paper, we advance just such a technique and show how it can improve the counterfactual
potential of many datasets. In developing this technique, we have (i) clarified the def-
inition of good counterfactuals, (ii) proposed the new idea of explanation competence,
(iii) reported significant new evidence for the utility of this novel technique.

This approach ismodel agnostic, in that it can operate with any underlying classifier
(e.g., deep learner, decision tree, k-NN) once it has access to the features of training data,
an agreed distance metric, and the dataset (see [49, 50] for a discussion of this issue).
However, the approach makes some assumptions that might limit its utility beyond the
datasets discussed. It assumes the availability of at least some explanation cases, which
is typically feasible; even though good counterfactuals are rare they are seldom so rare
as to exclude a minimally-viable explanation case-base, at least when a degree of match-
ing tolerance is allowed for when computing feature similarities and differences; note,
different degrees of matching tolerance, similarity metrics, and feature normalization
strategies may have an impact on outcomes. The approach also assumes the availability
of sufficiently accurate underlying ML-model (e.g., in a twin system) for the purpose
of counterfactual validation, though this is an accepted assumption in all approaches.
Finally, though previous psychological work supports our operational definition of good
counterfactuals, more user testing is required; notions of goodness in general (see [2])
need to be squared with sparcity goodness. Notwithstanding this future research, from
the current findings, it is clear that a CBR approach to counterfactuals has much to offer
the explainable AI (XAI) problem.
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