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Abstract. In this paper, we present a novel extension of CBR that
allows cases to be more proactive at problem solving, by enriching case
representations and facilitating richer interconnectedness between cases.
We empirically study the improvements resulting from a holographic
realization on experimental datasets. In addition to making CBR more
cognitively appealing, the idea has the potential to lend itself as an ele-
gant general CBR formalism of which diverse realizations of CBR can
be viewed as instances.
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1 Introduction

Case-Based Reasoning (CBR) is founded on the central premise of reusing past
experiences to solve problems, and this is particularly effective in ill-defined
domains, where sufficiently rich logical or mathematical models of the domain
are unavailable. In a help desk domain where the goal is to answer user queries
on malfunctioning of a software, no domain model of the software is available
for model-based diagnosis, but logs of past episodes of problems solving can
be exploited to build a CBR diagnosis system. Thus, one appeal of CBR is in
its ability to reduce human (expert) effort needed to engineer rich top down
domain knowledge. In this respect, CBR seems, on the surface, to share some
commonalities with Machine Learning (ML) which uses bottom up methods,
largely driven by induction, to acquire knowledge. Unsurprisingly, there is a
growing trend in the CBR community to embrace state-of-the-art ML techniques,
for instance those from the field of Deep Learning, to CBR. In reality, however,
CBR is a problem solving paradigm, broad enough in its scope, to elegantly
embrace both top down and bottom up approaches effectively to solve a problem
in a given domain. We hold the view that to bring back CBR to the centre stage
of AI, it is imperative to appreciate CBR as a paradigm closely driven by the
problem specific to the domain under consideration, rather than as a toolkit (like
a set of ML algorithms) that can be easily adapted to suit diverse problem needs
but is distanced from the nuances of the actual problems being solved.

Dijkstra had once remarked: “Computer science should be called computing
science for the same reason why surgery is not called knife science”. In saying
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so, he intended to point out the futility in trying to understand the solution
technique (the knife) without a keen appreciation of the problem at hand (the
patient anatomy). Machine Learning methods are analogues of knives that can
dissect a wide range of problems, starting from very simple ones (apples) to very
complex ones (a human patient). Their effectiveness depends on the extent to
which its user is aware of the problem complexities. CBR, on the other hand
is a paradigm for problem solving, for performing a surgery, which may use the
knife of Machine Learning when appropriate, but may need several other tools
as well. In particular, CBR critically relies on a top down model of the domain,
that decides the representation of cases, and in particular, the knowledge con-
tainers required by the reasoner, viz. cases, vocabulary, similarity and adaptation
knowledge [23].

Bottom up methods, such as Machine Learners that induce similarity knowl-
edge from data accumulated over time, can feed into these knowledge containers
and can be used effectively in many situations to alleviate knowledge engineering
bottleneck. The way top down knowledge is traded off for bottom up knowledge,
or vice versa, is a key design choice that differentiates CBR systems deployed
till date in diverse domains. Knowledge rich domains (i.e. domains where the
domain knowledge is readily available) may rely more on top down knowledge,
while knowledge light domains rely more on bottom up learners to compensate
for absence of rich domain knowledge [9]. Irrespective of the nature of domains,
however, the design choice is critically guided by the need to minimize what
we call the “representation gap”: the information loss incurred by an expert in
the process of recording his problem solving experiences in the CBR knowledge
containers. The effectiveness of a CBR system in a given domain is critically
dependent on how well this representation gap is bridged.

In this paper, we propose the concept of holographic CBR, that aims at bridg-
ing this representation gap by breaking free of certain presuppositions implicit
in conventional CBR systems. One such presupposition is that cases are passive
knowledge containers, and hence case addition or deletion does not affect the
rest of the case base. Clearly, human memories are more interesting; the experi-
ence of encountering a new problem and solving it, not only adds this experience
passively to our storehouse of experience, but can lead to a re-organization of the
remaining set of experiences, as well. Holographic CBR is founded on the philos-
ophy that cases can be made more proactive in problem solving by embedding in
them a richer model of how they relate to the CBR system as a whole. In prac-
tical terms, it involves enriching the representation of cases; in particular, each
case can have its own local similarity, adaptation and vocabulary knowledge,
which it can use, in addition to shared knowledge containers, to refer to other
cases and collaborate in order to arrive at a solution to the problem. We show
that holographic CBR not only leads to more cognitive realizations of CBR, but
also offers us a fresh perspective that allows us to picture conventional CBR,
and a large class of CBR realizations reported in literature in specific domains,
as special instances of holographic CBR systems.

In Sect. 2, we discuss the inspiration behind the holographic conception from
disciplines as diverse as physics, biology and organization structures. In Sect. 3,
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we discuss basic ideas of holographic CBR. Section 4 illustrates the essential idea
by way of two realizations of holographic CBR. In Sect. 5, we discuss how our
work relates to other work in literature, and how it can be further extended.
Section 6 summarizes our main conclusions.

2 Holographic Systems

The conventional view in neuroscience in the earlier part of the last century
was that specific memories were confined to specific locations in the brain. This
viewpoint was advocated, for example by Wilder Penfield, a Canadian neuro-
surgeon [17], who experimented by electrically stimulating various brain regions
of epileptic patients. In the mid-nineties, there was a surprise in store for the
neuroscience community, when Karl Lashley’s three decades of research culmi-
nated in evidences contrary to Penfield’s findings. Lashley had trained rats to
run a maze, and then surgically removed portions of their brains, with the aim
of completely removing the regions in their brains responsible for their maze
running abilities [13]. Interestingly, he discovered that irrespective of the brain
region that was removed, their memories refused to perish. Lashley was joined
by Karl Pribram, who hypothesized that the only explanation of Lashley’s find-
ings would be that memories, instead of being localized at specific brain regions,
were distributed throughout the brain [20]. Whatever was true with rats was also
true with humans, in that patients with portions of the brain selectively removed
did not have specific memories wiped out; rather they could hazily reconstruct
most of what was known before the surgery. To quote Talbott [28], who provides
an engaging account of Pribram’s findings, “Individuals who had received head
injuries in car collisions and other accidents never forgot half of their family,
or half of a novel they had read”. This phenomenon can be attributed to non-
localized or holographic memories, where each component contains an imprint of
the whole. The name “holographic” pervades study of complexity in diverse areas
such as biology, physics and organizational systems. For example, holism [26] is
a method of study which believes that the whole is greater than the sum of the
parts; the term ‘holon’ [12] refers to a system that is both a whole and a part;
a hierarchy of such self-regulating holons is called a holarchy [12].

We were tempted to explore if ideas of holographic systems can inspire the
engineering of systems more adept at simulating aspects of cognition. The tradi-
tional view of CBR is analogous to that of Penfield’s in neuroscience, in that the
cases are treated as isolated pieces of knowledge that do not interact with each
other. One fallout of such an assumption is in case base maintenance, where cases
can be deleted from the case base, or fresh cases can be added, without affecting
the rest of the case base. This is clearly inconsistent with cognitive findings on
human memory, where a new experience is known to affect related memories
in interesting ways that facilitate the creation of abstractions. Similarly, forget-
ting may not be localized to just one specific experience, but may result in the
blurring out of a class of memories associated with the experience being lost.
These observations gave rise to the design hypothesis that in a holographic model



Holographic Case-Based Reasoning 147

of CBR, the cases need not only be isolated passive pieces of knowledge but can
be proactively interconnected with other cases in ways more interesting that
explored by conventional CBR systems. It is through the interconnectedness of
cases, that a model where the whole is greater than the sum of parts, can be
realized.

3 Holographic CBR

Let us use an analogy to convey the essential idea behind holographic CBR.
Consider three different settings.

Setting 1: Let us consider the case of a person X who attempts to float an
organization to address requirements from client Y . X hires a set of employees
with diverse skillsets to address the client needs. X also hires a project manager
who acts as a mediator between the team members and Y . Y issues a query to the
mediator, who facilitates interaction between the project members, and responds
back to Y with a solution. The mediator has some coarse knowledge about the
skills of the team members, which helps in directing client queries to one or more
of them. The fine-grained knowledge of how best to get the problem solved, by
collaborating with each other, rests with each team member. So a team member
may receive a query from the mediator and choose to solve it; alternately, she
may direct it to another member whom she reckons to be more appropriate for
the job. In certain cases, the team member may like to get more clarity from the
mediator regarding the client query, and in case the mediator is not sure herself,
she may approach the client to get a clarification. In the course of interaction
with team members, the mediator may update her knowledge of skills of the
team members, and the team members keep enriching their knowledge of the
organization as a whole. Such an evolution of the mediator, along with the team
members, renders the system more competent in addressing subsequent queries.

Setting 2: This is a hypothetical variant of Setting 1, where X hires a mediator
who has a complete knowledge of the skillsets of each team member. Given a
client query, the mediator solves it by assembling inputs from her members. In
comparison to Setting 1, the team members are passive, in that their role is
limited to answering queries from the mediator. They do not collaborate with
others, and have no knowledge either of the client query, or of the skillsets of
others in their project team.

Setting 3: This is yet another variant of Setting 2, in which the mediator
attempts to answer the client query, all by herself, on behalf of X. In case she is
not able to do so, she requests X to hire another employee having certain skills.
Employees thus progressively are added on demand, provided X agrees, given his
budget constraints and his level of confidence in the mediator. Each employee,
while being distinct to each other in terms of skills and competencies, is fully
aware of his or her role in the broader context of the problem being solved.

In the context of a CBR system, the client Y is analogous to the user who
presents a query to a CBR system, X is the designer of the CBR system, the
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Fig. 1. Mediator analogy Fig. 2. Cases with Solo (S) and Holo
(H) components

mediator is the case-based reasoner put in place by X to address the needs of Y ,
and the project members are the cases C1, C2, .., C5. This analogy is shown in
the schematic shown in Fig. 1. Setting 2 is the case of traditional CBR, where the
mediator (the reasoner) has full access to knowledge of cases. The reasoner uses
the knowledge of similarity to identify cases that may be useful, gets solutions
from them, and combines these solutions using adaptation knowledge to answer
the query posed by Y . Both similarity and adaptation knowledge are centralized
and available exclusively to the reasoner. In contrast, Setting 3 is holographic,
and Setting 1 is semi-holographic. We refer to the CBR systems in Settings
1, 2 and 3 as SH (for semi-holographic), TR (for traditional) and HG (for
holographic) respectively.

In HG, the case base is grown on demand. Each case, in addition to storing
a representation of the specific problem it solves, has knowledge of the reasoning
goals as well as knowledge of how it relates to the other cases. SH can be
conceived of striking a middle ground between the extremes of TR and HG,
where the cases are richer than those in traditional case bases. Since cases only
have local models of related cases, but are not equipped with the model of the
case base as a whole, they are critically reliant on the reasoner (mediator) to
dictate the retrieval process.

In Sect. 1, we had discussed that effectiveness of a CBR system can be
improved by minimizing the information loss incurred by an expert in the pro-
cess of recording his experiences of problem solving in the knowledge containers
provided by CBR. It is clear that the loss is maximal in TR, and minimal in HG,
with SH striking a middle ground. In HG, the cases have the highest autonomy
in that each case has a reasonably good model of the goals of the CBR system,
and also of the knowledge contained in every other case. We can visualize a
spectrum of CBR applications ranging from TR to HG, through SH. As we
move from TR to HG, the cases start having a richer representation of knowl-
edge contained in other cases, as well as of the overall goals of problems solving.
Henceforth, we shall use the term holographic to refer to systems that are either
SH or HG. In a holographic setting, each case has two components which we
call the solo component (referred to as the S component henceforth) and the
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holo component (referred to as the H component henceforth). The S component
is the traditional problem-solution part and represents the individual experience
that the case stands for. The H component, on the other hand embodies the
essence of the proposed holographic setting, in that it defines the role of the case
in relation to the case base and the underlying domain knowledge as a whole.
We can picture the cases interacting with each other via their H components
(see Fig. 2). Interestingly, such a holographic realization entails a change in our
perspective of knowledge containers in CBR. The H component in cases facil-
itates localization of adaptation and similarity knowledge within each case; in
other words, unlike in traditional CBR where knowledge containers other than
cases are centralized, in a holographic setting, adaptation and similarity knowl-
edge get distributed across the case base in holographic CBR. It may be noted
that the scheme still allows for capturing aspects of domain knowledge that are
shared by all cases, outside those in H components via the global knowledge
resources possessed by the reasoner. Secondly, the H component of each case
can capture diverse forms of relationships of a case with other cases in the case
base. We envisage that the H component of each case can be used to capture
how a case has been used, and its direct associations with other cases as well,
so that any case maintenance operation would, no longer, be agnostic to this
more general notion of ensuring case base competence. A schematic represen-
tation of a holographic reasoner for the problem of predicting animal names is
given in Fig. 3. It is interesting to observe that both the reasoner and the cases
have the same structure in a holographic reasoner. The reasoner holds the global
knowledge containers and uses them to solve the larger problem of predicting
the animal name given its representation. Each of the cases also hold the same
kind of knowledge containers locally and, hence, can be called ‘holonic’. These
holonic cases use their local knowledge containers to solve the problem that they
individually stand for. The problem part is pictorially depicted in the schematic
diagram and it can correspond to any type of representation chosen by the case
based designer for the problem part of experiences.

4 Realization of a Holographic Reasoner

In this section, we discuss the realization of a holographic reasoner in two set-
tings: knowledge-rich and knowledge-light domains. A knowledge-rich domain is
one where the domain knowledge is readily available. In practice, there are many
domains where domain knowledge is not available readily or is costly to acquire
in terms of time. We refer to such domains as knowledge-light domains.

Knowledge-Rich Domain. A key difference between a conventional and a holo-
graphic reasoner is with respect to the case addition process. In conventional
settings, the reasoner is fully responsible for adding new cases to the case base.
Whereas, in a holographic reasoner, this responsibility is shared among the cases.
In the following pseudocode, the function ADD_CASE of HOLOGRAPHIC_REASONER
describes how the case addition process varies between a knowledge-rich and
knowledge-light settings. In a knowledge-rich setting, the holographic reasoner
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Fig. 3. Holographic Reasoner - A Schematic Diagram; S, V, A (in each case) stand for
the local Similarity, Vocabulary and Adaptation knowledge containers respectively.

(mediator) uses the global similarity knowledge to direct an incoming case with
its problem and solution components to its most similar case (a team member)
in the case base. The global similarity knowledge, which can be shallow (coarse)
compared to the local similarity knowledge in cases, enables the reasoner to
quickly reach the relevant area of the problem space. Next, the most similar case
spawns a case addition process that tries to predict a solution for the incom-
ing problem, that is, it forms an expectation. This is explained by the functions
ADD_CASE, PREDICT in the pseudocode for class HOLONIC_CASE_KRICH. If it faces
an expectation failure, then it engages in a conversation with the domain expert.
The expert feedback, together with a pointer to the new case, is stored as part
of the local vocabulary as explained in the function GET_EXPERT_FEEDBACK. It
is important to note that addition of a new case is performed by an existing
case itself when there is an expectation failure. Thus, the responsibility for case
addition lies not only with the reasoner but is also shared among the cases. On
the other hand, if a case does not face an expectation failure, then it may choose
not to do anything further or continue to add the new case to case base. This
depends on constraints such as case base size, response time, etc. as known to
the case base designer. In the PREDICT function, it is possible that the query gets
redirected multiple number of times and it terminates only when a case finds
itself to be the most similar one to the query.

Knowledge-Light Domain. In knowledge-light domains, a holographic reasoner
does not have a domain expert to interact with. The knowledge-light setting is
more like a conventional reasoner where the new cases are added to the case base
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as they arrive. Hence, the case acquisition process does not include any interac-
tion with the domain expert. Instead, a holonic case could spawn a process to
learn bottom up abstractions from their neighbourhood as shown by the func-
tion INTROSPECT in the class HOLONIC_CASE_KLIGHT. The H component of cases
will now contain the parameters corresponding to the local model of abstrac-
tion, which could be any machine learning model such as Logistic Regression or
Bayesian Classifier. This is like a human problem solver trying to learn some-
thing by observing their fellow problem solvers rather than asking the domain
expert directly.
Class HOLOGRAPHIC_REASONER
Vocabulary, Similarity, Adaptation, Case

Base // Global Knowledge Containers
Function ADD_CASE (newProblem, newSolution)
If the domain is knowledge-rich:
MostSimilarCase = RETRIEVE (newProblem)
If MostSimilarCase is not null:

MostSimilarCase.ADD_CASE (
newProblem, newSolution)

Else: //Adds the first case
newCase = new HOLONIC_CASE_KRICH()
newCase.Problem = newProblem
newCase.Solution = newSolution

Else If the domain is knowledge-light:
newCase = new HOLONIC_CASE_KLIGHT()
newCase.Problem = newProblem
newCase.Solution = newSolution
Store newCase in the CaseBase

Function RETRIEVE (incomingProblem)
If CaseBase contains zero cases: Return

null
Else: Return the case in the CaseBase that

is most similar to the
incomingProblem according to the
global Similarity knowledge

Function PREDICT (incomingProblem)
//The prediction process of the

holographic reasoner invokes the
prediction process of the most
similar case

MostSimilarCase = RETRIEVE (
incomingProblem)

Return MostSimilarCase.PREDICT (
incomingProblem)

------------------------------------------

Class HOLONIC_CASE_KRICH
Problem, Solution //Solo Components
Local Vocabulary, Local Similarity, Local

Adaptation //Holo Components
CaseBase // pointer to reasoner’s case base
Function ADD_CASE(newProblem, newSolution)
If PREDICT(newProblem) matches Solution:

//No Expectation Failure; No Case
Addition

Return null
Else:

newCase = new HOLONIC_CASE_KRICH()
newCase.Problem = newProblem
newCase.Solution = newSolution

GET_EXPERT_FEEDBACK (newCase)
Store newCase in the CaseBase

Function PREDICT (incomingProblem)
//MostSimilarCase is that case in the

local neighbourhood (including self)
which is most similar to the
incomingProblem and is determined
using the Local Vocabulary and Local
Similarity knowledge.

If MostSimilarCase is this holonic case
itself: Return Solution

Else: //Invokes the prediction process of
the most similar case
Return MostSimilarCase. PREDICT (

incomingProblem)

Function GET_EXPERT_FEEDBACK (newCase)
Get feedback from a domain expert as to

why the new case is being added, what
feature-value pairs differentiate

the new case from itself, etc. Update
the Local Vocabulary to include the

feedback and pointers to locally
added cases.

------------------------------------------

Class HOLONIC_CASE_KLIGHT
Problem, Solution //Solo Components
Local Vocabulary, Local Similarity, Local

Adaptation //Holo Components
CaseBase //pointer to reasoner’s case base
Model // to store model parameters
Function ADD_CASE(newProblem, newSolution)
newCase = new HOLONIC_CASE_KLIGHT()
newCase.Problem = newProblem
newCase.Solution = newSolution
Store newCase in the CaseBase

Function PREDICT (incomingProblem)
Predict a solution for the incomingProblem

using Model
Return the above prediction

Function INTROSPECT ()
//Invoked by reasoner (say after the case

base reaches a certain size)
Model = learn a model over the local

neighbourhood , for example, a
logistic regression model over the
ten nearest neighbours
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Observations from Experimental Datasets. Next, we present our observa-
tions on the characteristics of a holographic reasoner in the light of its realization
on experimental datasets.

Knowledge-Rich Domain. The zoo case base from UCI repository [7] is an
instance of a knowledge-rich domain and the nature of its domain (viz. animals)
facilitates the authors themselves to play the role of a domain expert. It is a sim-
ple database containing 17 Boolean-valued attributes, 7 classes of animals and
101 data instances. On this case base, we realized both a holographic reasoner
and a conventional case-based reasoner. In both the reasoners, global similarity
knowledge was represented using the following two weight vectors: S0, a uniform
weight vector and S1 emphasizing the attributes feathers, aquatic, backbone, legs
three times over the rest. We did not employ any global or local adaptation
knowledge. In the holographic setting, the expert gives her feedback using a list
of entries where each entry is of the form {feature_id:feature_value}. For
example, suppose the reasoner is adding a case dolphin to its case base and the
most similar case is dogfish. Then, dogfish would face an expectation failure when
it tries to predict the class of dolphin (as dolphin is a mammal). Expert feed-
back in this example could be {milk_feeding:True}. The holonic cases store
the expert feedback together with a pointer to the newly created cases. The local
vocabulary of a holonic case corresponds to those attributes used by an expert
for giving feedback. Jaccard coefficient was used for estimating local similarity.
In the conventional reasoner, we also found the footprint set [27], which is a
minimal set of cases that has the same competence (problem-solving ability) as
the entire case base. Competence based maintenance algorithms, such as the
footprint algorithm, compress the case base in a post-facto way i.e. compression
happens only after the experiences are stored. In terms of the representation
gap, the damage is already done. In contrast, a holographic reasoner is capable
of doing pre-facto compression i.e. it can compress the case base while adding
the experience itself. While the post-facto compression relies purely on the cases
to reduce the case base size, the pre-facto approach is able to acquire the knowl-
edge enabling compression from the domain expert herself. This can facilitate the

Table 1. Observations on a knowledge-rich domain: zoo case base; S0: uniform weight
vector and S1: weight vector that emphasizes feathers, aquatic, backbone, legs thrice
over others. Results are based on 3-fold cross validation.

Reasoner type Global similarity No. of cases
added

Case base
size

Test
accuracy %

Conventional
(full CB)

S1 67.3 67.3 96.2

Conventional
(footprint)

S1 13.6 94.3

Holographic S1 13.3 97.0

Holographic S0 67.3 11.3 94.3
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reducing of knowledge gap between a reasoner and the domain expert. Table 1
shows the total number of cases added by the reasoner to its case base, the result-
ing case base size and the prediction accuracy. It can be observed from the table
that the holographic reasoner performs best both in terms of case base compres-
sion and performance when the global similarity knowledge is S1. This can be
attributed to the impact of domain knowledge acquired in the form of expert
feedback. It can also be observed that when the global similarity knowledge is
coarse (S0), the holographic reasoner is still able to achieve better compression
and performance comparable to the footprint set. Hence, it makes it suitable for
domains where one could not easily get a rich global similarity measure and may
prefer to begin with a simple global similarity measure, progressively learning
local similarities based on expert feedback.

Knowledge-Light Domains. The datasets used are CPU from OpenML [29] and
Wine from UCI repository [7]. The CPU dataset contains 209 instances with 7
attributes and the task is to predict the relative cpu performance (regression).
The Wine dataset contains a total of 178 cases with 13 attributes and 3 classes.
The task is to predict the quality of wine given its attribute values (classifica-
tion). For regression, the case-based reasoner (traditional as well as holographic)
uses the distance-weighted average of the 3-nearest neighbours’ predictions. Each
holonic case learns a Locally Weighted Linear Regression (LWLR) [5] model
over its neighbourhood. For classification, the holonic cases learn a naive Bayes
classifier to model their local neighbourhood. The independence assumption in
naive Bayes has an advantage for small-sized case bases because the algorithm is
known to predict well even with small-sized training data. As elaborated in the
previous sections, the H components of cases store the LWLR parameters and
conditional probabilities in the regression and classification settings respectively.
In our experiments, the size of the local neighbourhood is fixed empirically to
be 10. It is important to note that knowledge-light holographic realizations in
practice can be far more sophisticated in terms of richness of holonic case rep-
resentations and processes they can spawn. The examples above use relatively
simplistic ML tools to illustrate the essential idea. In particular, it is easy to see
that the holographic perspective can accommodate richness in both top down
and bottom up knowledge, hence most existing CBR systems can be viewed as
instances of the general holographic CBR conception (see Sect. 5).

Here, we are interested in studying whether the global competence of cases
increase in a holographic setting. In all our experiments in knowledge-light set-
ting, the reasoner combines the solutions of the three nearest neighbours to solve
the query problem. This process of combining the solutions of multiple cases
in some appropriate way to solve the target problem is called compositional
adaptation. Retention score [15] is a global competence measure suited for such
scenarios and estimates the retention quality of a case based on its ability to
cover highly retainable cases with the support of a few but highly retainable
cases. This is achieved by a recursive formulation in the lines of PageRank [16].
We do not go into the details of this formulation but would like to emphasize
the following fact: retention scores can be used to order the cases in descending



154 D. Ganesan and S. Chakraborti

−1 −0.5 0 0.5 1
0

20

40

60

Differences

Fr
eq

ue
nc

y

−1 −0.5 0 0.5 1
0

20

40

60

Differences
−1 −0.5 0 0.5 1
0

20

40

60

80

Differences

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

%Cases Deleted

Te
st

A
cc

ur
ac

y Conventional
Holographic

APE 2%

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

%Cases Deleted

Conventional
Holographic

APE 5%

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

%Cases Deleted

APE 10%

Fig. 4. Results on regression dataset (CPU); The top row shows the histograms of
differences in retention scores (holographic − traditional) corresponding to the different
settings of Acceptable Prediction Error (APE) shown in the bottom row.
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order of their global competence. In our experiments, we have used a variation
of retention scores called weighted retention scores in which every set of cases
that solves a target problem is weighed by its problem solving ability. After mea-
suring the retention scores of cases in conventional and holographic settings, we
plotted a histogram of their differences (holographic − traditional) to see if the
differences are more skewed towards the positive side. This would indicate that
a holographic design has resulted in an increase of competence for many cases.
We also tested the effectiveness of the increased competence by progressively
deleting the case base and observing its impact on the performance of reasoner
on test data. We would expect a holographic reasoner to perform better than a
conventional one even as the case base is progressively shrunk in size.

Figure 4 shows the results on the regression dataset. The top row shows the
histograms for different settings of Acceptable Prediction Error (APE). APE is
the percentage error allowed in the reasoner’s predictions and is typically fixed
by the user for the regression task. The more the right-skewedness, the better
is the holographic design in terms of case competence. In the CPU dataset, as
the histograms are skewed towards the right, it can be inferred that there is an
increase in the case competence under the holographic design. Holographic design
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is consistently better than the conventional ones with increase in the progressive
reduction of case base size. In Fig. 5, the histogram is skewed towards the right,
hence, increased competence of cases in this holographic design becomes evident.

5 Discussion and Related Work

In this paper, we have restricted our scope to demonstrating the effect of holo-
graphic realizations on case addition, though in practice we need to have a
mechanism for case deletion as well. We envisage two kinds of deletions: soft
and hard. It is easy to see that holonic cases carry information about their
local neighbourhood even after the neighbouring cases are deleted. We call this
soft deletion. Though this increases the robustness of reasoner, in cases where
we deliberately want to delete a (noisy) case, this may be undesirable, and a
hard deletion is called for. In soft deletion, the H components of neighbours are
retained, and is analogous to employees taking leave in a holarchic organization.
In hard deletion, the H components of neighbours are updated before a case
is deleted; this is analogous to handover-takeover processes in an organization,
when an employee leaves the organization (is fired). Another interesting aspect
not discussed in the paper is the impact of the order in which cases are acquired
by a holographic reasoner. We can draw inspiration from how a child progres-
sively acquires a storehouse of experience she encounters when systematically
guided by an adult. Educational material for children aims at presenting expe-
riences in an order that facilitates highest compression thereby improving the
learning experience, where lessons are not merely recorded as facts, but are richly
connected to each other. Reorganization of case interconnections over time to
facilitate more effective retrieval is out of scope of this paper, though it opens
up interesting area for future work.

In his work on Dynamic Memory [24], Roger Schank had emphasized the
role of expectation failures in triggering the need for explanations and conse-
quent generalization of memory structures. An event of visiting a restaurant
like McDonald’s where one has to pay before one eats, may lead to expectation
failure for someone used to paying after eating in a restaurant. She would then
attempt to find an explanation, generalize her memory structures and accom-
modate the new experience. This may involve creating a specific dimension (an
attribute) that discriminates between the two categories of restaurants. Thus,
while specific details of most restaurant trips are forgotten and abstracted out
(“mushed up”, to use Schank’s terminology), some restaurant trips (like the
McDonald’s trip) are thus more influential than others in effecting changes to
our memory structures. In the holographic setting, these changes that a case
causes should be recorded in its H component during insertion, so that the influ-
ence of the case is preserved even when the case is deleted. Ideally, active pro-
cesses must be spawned by the H component of cases as new cases are inserted,
deleted or updated, to make changes to similarity and adaptation knowledge of
related cases, facilitate case-to-case direct connections, or record and preserve
influence of the case on the underlying representations. In the context of main-
tenance, H components can also potentially carry explanations pertaining to
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poorly aligned cases. The holographic setting can also accommodate bottom up
knowledge induced from data in local similarity and adaptation knowledge con-
tainers in holonic cases to complement top down knowledge, thereby alleviating
the knowledge acquisition bottleneck that plagued Schank’s conceptualization
limiting its practical use.

Several classical CBR systems can be thought of as instances of the more
general holographic CBR framework. Aspects of it are ideologically close to the
proposed holographic design for a knowledge rich domain. PROTOS [4] is a case-
based reasoner built to serve as a learning apprentice system for heuristic based
classification. It is interesting to see that many ideas in PROTOS such as differ-
ence links, efficient retrieval, expert feedback were aimed at overcoming limits
of traditional CBR systems. In the early days of CBR, knowledge-rich reasoners
such as CYRUS [25] and CELIA [21] were built to demonstrate the cognitive
aspects of CBR. In CYRUS, which is an attempt to model the reconstructive
model of memory, the cases are stored as hierarchically indexed facts. CELIA
aims at modelling the passage from a novice to expert; the cases are composed of
interconnected case snippets. Knowledge-intensive CBR systems like CREEK [1]
reinforce the importance of integrating general domain knowledge with CBR sys-
tems and having rich knowledge representations. Some other interesting works
to explore in this direction include the CREEK-based knowledge-intensive con-
versational CBR system [10] and Bayesian-Network powered CBR system [2].
The holographic perspective shows these as instantiations of the same umbrella
framework, and is also suggestive of more proactivity on the part of cases that
can be realized if the full potential of holographic CBR is exploited, by realizing
richly interconnected cases that spawn active processes, and are empowered to
influence H components of related cases, and generate explanations for failures.

Distributed CBR [19] is a terminology used in the CBR community to indi-
cate research efforts towards organising knowledge in single versus multiple case
bases and processing knowledge using single versus multiple agents. There are
also many agent-based CBR approaches where knowledge is distributed such as
[3,14,18,22] where the focus is on knowledge modelling, architecture and build-
ing of CBR based systems. Unlike domain specific engineering realizations such
as distributed CBR, holographic systems are inspired differently: they are aimed
at repositioning a broad spectrum of CBR applications (including distributed
CBR systems) based on how they attempt to reduce the representation gap: all
that is lost of the intent with which a case is being recorded, in the process of
its representation. Such a repositioning has an essential cognitive appeal in that
it helps us get to the heart of appreciating discrepancies in system effectiveness
with respect to a human expert who solves problems using experiential reason-
ing. In future, it would be interesting to accommodate the study of analogical
reasoning in a comprehensive way into the fold of holographic systems.

A related perspective is from the very recent work by Susan Craw et al. [6]
where the authors present connections of CBR to cognitive models. In particular,
the authors refer to the dichotomy between two modes of thought as identified by
Kahneman [11]. While fast thinking relies on instinctive, unconscious, frequent
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and stereotypical decision making, slow thinking is more deliberative, conscious,
logical and calculating. Slow thinking can correct errors made by fast thinking.
In the CBR context, Craw et al. [6] suggest that simple retrieve/reuse may fall
in the realm of fast thinking and this is appropriate when case base alignment is
high, i.e. similar problems do indeed have similar solutions. On the other hand, in
the face of poor alignment deliberate slow processes (say, complicated adaptation
or multiple redirections) should intervene. It is compelling to picture the S and H
components as facilitating fast and slow thinking respectively. Finally, we note
that there are some recent claims that Deep Neural Networks (DNN) exhibit
holographic behaviour [8]. However, there has been no understanding of the
equivalents of holons and the organisational structure inside a DNN. DNNs do
not facilitate the integration of top down knowledge about the domain, thus
restricting their scope of applications in the context of CBR, where a problem-
centric view, that allows for flexible integration of top down and bottom up is
called for.

6 Conclusion

The historical roots of CBR can be traced to the seminal work by Roger Schank
on dynamic memory [24] where he proposed mechanisms for creation and update
of memory structures to account for abstraction, generalization, and goal based
reminding (as in analogical reminding) which play a central role in modelling
cognition. However, the cognitive emphasis in memory based reasoning waned
over time. On occasions, machine learning techniques appeared to present easier
alternatives to a principled mix of top down and bottom up knowledge that the
CBR paradigm would ideally exploit reasoning based on representations, that are
rich, and yet not too difficult to acquire to facilitate experiential problem solving.
The concept of holographic reasoner is an attempt to bring back to perspective a
wider set of possibilities than conventional CBR systems can offer, while showing
its ability to position diverse CBR realizations in a unifying framework.

In living systems, every cell has in its nucleus (analogous to the H com-
ponent) an imprint of the design of the organism as a whole. Not unlike the
organism it is part of, every cell has a digestive, respiratory, nervous an immune
system. This is remarkably different from a brick which is perhaps barely aware
of the design of the building, of which it is a part. The design almost wholly
resides in the mind of the designer. The difference between the ideal holonic case
and the traditional case in CBR is one of that between the cell and the brick.
As we foray into the ambitious realms of Artificial General Intelligence (AGI),
we speculate holographic systems may well hold clues, if not answers, to design
of computational models of cognition that can address certain limitations of
traditional approaches.
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