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Preface

This volume contains the papers presented at the 28th International Conference on
Case-Based Reasoning (ICCBR 2020), which was held June 8–12, 2020. ICCBR is the
premier annual meeting of the Case-Based Reasoning (CBR) research community. The
theme of ICCBR 2020 was “CBR Across Bridges,” aiming to help guide future
developments in CBR by encouraging members from within and outside the CBR
community to discuss new ideas.

Previous ICCBRs, including the merged European Workshops and Conferences on
CBR, were as follows: Otzenhausen, Germany (1993); Chantilly, France (1994);
Sesimbra, Portugal (1995); Lausanne, Switzerland (1996); Providence, USA (1997);
Dublin, Ireland (1998); Seeon Monastery, Germany (1999); Trento, Italy (2000);
Vancouver, Canada (2001); Aberdeen, UK (2002); Trondheim, Norway (2003);
Madrid, Spain (2004); Chicago, USA (2005); Fethiye, Turkey (2006); Belfast, UK
(2007); Trier, Germany (2008); Seattle, USA (2009); Alessandria, Italy (2010);
Greenwich, UK (2011); Lyon, France (2012); Saratoga Springs, USA (2013); Cork,
Ireland (2014); Frankfurt, Germany (2015); Atlanta, USA (2016); Trondheim, Norway
(2017); Stockholm, Sweden (2018); and Otzenhausen, Germany (2019).

Of course 2020 was a very unusual year. ICCBR 2020 was planned to be held in
Salamanca, Spain, but as it became obvious that travel in June would be impossible,
due to the COVID-19 pandemic, a decision was made to hold the conference virtually.

ICCBR 2020 received 64 submissions from 23 countries, spanning Europe, North
America, and Asia. Three Program Committee members reviewed each submission.
Papers for which the reviewers did not reach consensus were referred to members
of the ICCBR Advisory Council and program chairs for meta-review. Of the 64 sub-
missions, 22 (34%) were selected for oral presentation. There were no posters in 2020
as delivering them was deemed impractical. Instead they were given as oral
presentations.

ICCBR 2020 began as the community assembled online on the afternoon of June 8,
2020. The only formal activity on that day was for the Doctoral Consortium (DC)
participants, who met their mentors for the first time and prepared for their upcoming
presentations. The DC provides opportunities for PhD students to share and obtain
mutual feedback on their research and career objectives with senior CBR researchers
and peers. After the DC session, all conference attendees gathered together for an
online social event.

The first full day of the conference started with an opening session that provided
information on how the online conference would be run. This session concluded with a
tribute to Professor Miltos Petridis who sadly died in April from COVID-19. Miltos
was a very regular attendee at ICCBR, he had been a local chair when the conference
was held in Greenwich, UK, and was a long-standing member of the Program
Committee. A moment’s silence in Miltos’ honor was followed by the presentation
of the Miltos Petridis Best Paper Award. This was awarded to Mark Keane and Barry



Smyth of University College Dublin, Ireland, for their paper “Good Counterfactuals
and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for
Explainable AI (XAI).” An honorable mention was made to Ikechukwu Nkisi-Orji1,
Nirmalie Wiratunga, Chamath Palihawadana, Juan A. Recio-Garcia, and David Corsar
for their paper “Clood CBR: Towards Microservices Oriented Case-Based Reasoning.”

The Best Paper Award was followed by an invited keynote talk by Professor
Francesco Ricci of the Free University of Bozen-Bolzano, Italy. His talk, “Computing
useful recommendations: still requires knowledge,” was well received. The main
technical track then continued throughout most of the day ending with a social event.

The third day started with a technical session on “New Paradigms” followed by
presentations from DC students on their research topics. The day ended with a social
event. The following day started with an invited keynote “Learning to Compare with
Few Data for Personalised Human Activity Recognition” given by Professor Nirmalie
Wiratunga of the Robert Gordon University, UK. This was followed by technical
sessions, and the day ending with an online gala dinner where attendees were
encourage to have a meal to virtually share with others. The final day finished off the
technical sessions followed by a private Program Committee meeting and an open to all
CBR community meeting. It was generally felt that the technical sessions had worked
very well online. The local chair, Juan Manuel Corchado of the University of
Salamanca, Spain, and his support team were praised for handling all of the technical
aspects involved with managing an online conference. The conference ended with a
final social event.

We gratefully acknowledge the support of the following people, without whose
contributions ICCBR 2020 would not have been possible. Local chair Juan Manuel
Corchado and his team managed the technical aspects of the online conference and also
managed the registration process. Workshop chairs, Hayley Borck and David Wilson,
planned a lively workshop program, but regrettably there were not enough submissions
to the workshops for whatever reason. We also extend our thanks to Stewart Massie
and Michael Floyd who chaired the DC, providing invaluable support to the next
generation of CBR researchers.

We extend our gratitude to the members of the ICCBR Advisory Council, Agnar
Aamodt, David Aha, David Leake, Mehmet Goker, and Ramon Lopez de Mantaras,
Barry Smyth, and Cindy Marling, for their advice and support. We would also like to
thank the Program Committee and additional reviewers, who thoughtfully assessed the
submissions and did an excellent job of providing constructive feedback to the authors.

July 2020 Ian Watson
Rosina Weber
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Computing Useful Recommendations:
Still Requires Knowledge

Francesco Ricci

Free University of Bozen-Bolzano, Italy

Abstract. Recommender systems have been introduced as information search
and filtering tools for providing suggestions for items to be of use to a user.
State-of-the-art recommender systems mostly focus on the usage of data mining
and information retrieval techniques to predict to what extent an item fits user
needs and wants. But often they end up making uninteresting suggestions,
especially in complex domains, such as tourism. In this talk, classical recom-
mender systems ideas will be introduced and critically scrutinized in the attempt
to better understand the role of observed and predicted choices and preferences.
We will discuss some of the key ingredients necessary to build a useful rec-
ommender system. Hence, we will point out some limitations and open chal-
lenges for recommender systems research. We will also present a novel
recommendation technique that leverages data collected from observation of
tourists behavior to generate more useful individual and group
recommendations.



Learning to Compare with Few Data
for Personalised Human Activity Recognition

Nirmalie Wiratunga

The Robert Gordon University, UK

Abstract. Recent advances in meta-learning provides an interesting opportunity
for CBR research, in similarity learning, case comparison, and personalized
recommendations. Rather than learning a single model for a specific task, meta-
learners adopt a generalist view of learning-to-learn, such that models are
rapidly transferable to related but different new tasks. Unlike task-specific model
training; a meta-learner’s training instance, referred to as a meta-instance is a
composite of two sets: a support set and a query set of instances. In our work, we
introduce learning-to-learn personalized models from few data. We motivate our
contribution through an application where personalization plays an important
role, mainly that of human activity recognition for self-management of chronic
diseases. We extend the meta-instance creation process where random sampling
of support and query sets is carried out on a reduced sample conditioned by a
domain-specific attribute; namely the person or user, in order to create meta-
instances for personalized HAR. Our meta-learning for personalization is
compared with several state-of-the-art meta-learning strategies: 1) matching
network (MN) which learns an embedding for a metric function; 2) relation
network (RN) that learns to predict similarity between paired instances; and
3) MAML, a model agnostic machine learning algorithm that optimizes the
model parameters for rapid adaptation. Results confirm that personalized
meta-learning significantly improves performance over non-personalized
meta-learners.
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Learning to Compare with Few Data for
Personalised Human Activity Recognition

Nirmalie Wiratunga1(B) , Anjana Wijekoon1 , and Kay Cooper2

1 School of Computing, Robert Gordon University,
Aberdeen AB10 7GJ, Scotland, UK

{n.wiratunga,a.wijekoon}@rgu.ac.uk
2 School of Health Sciences, Robert Gordon University, Aberdeen AB10 7GJ,

Scotland, UK
k.cooper@rgu.ac.uk

Abstract. Recent advances in meta-learning provides interesting oppor-
tunities for CBR research, in similarity learning, case comparison and
personalised recommendations. Rather than learning a single model for
a specific task, meta-learners adopt a generalist view of learning-to-
learn, such that models are rapidly transferable to related but different
new tasks. Unlike task-specific model training; a meta-learner’s training
instance, referred to as a meta-instance is a composite of two sets: a sup-
port set and a query set of instances. In our work, we introduce learning-
to-learn personalised models from few data. We motivate our contribu-
tion through an application where personalisation plays an important
role, mainly that of human activity recognition for self-management of
chronic diseases. We extend the meta-instance creation process where
random sampling of support and query sets is carried out on a reduced
sample conditioned by a domain-specific attribute; namely the person
or user, in order to create meta-instances for personalised HAR. Our
meta-learning for personalisation is compared with several state-of-the-
art meta-learning strategies: 1) matching network (MN) which learns
an embedding for a metric function; 2) relation network (RN) that
learns to predict similarity between paired instances; and 3) MAML,
a model agnostic machine learning algorithm that optimizes the model
parameters for rapid adaptation. Results confirm that personalised meta-
learning significantly improves performance over non personalised meta-
learners.

1 Introduction

Integrated human activity recognition (HAR) and assistive technologies promise
to enable people to live their life well regardless of their chronic conditions. A
systematic review of interventions to promote physical activity [10] illustrated

This work was part funded by SelfBACK, a project funded by the European Union’s
H2020 research and innovation programme under grant agreement No. 689043. More
details available at http://www.selfback.eu.

c© Springer Nature Switzerland AG 2020
I. Watson and R. Weber (Eds.): ICCBR 2020, LNAI 12311, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-58342-2_1
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that interventions involving behaviour change strategies are more effective for
sustaining longer-term physically active lifestyles than time-limited interventions
involving structured exercises alone. Advances in telecommunications and Arti-
ficial Intelligence (AI) technologies paves the way for personalised virtual health
companions to provide adherence monitoring along side behaviour change dig-
ital interventions. Innovative, person-centred strategies to monitor and predict
physical activity and exercise behaviours, to scan and anticipate environmental
barriers to activity, and to provide social and motivation support are required.

In this paper, we focus on one specific aspect of self-management; which is to
reason from sensing data to monitor adherence to personalised self-management
plans. A plan requires a user to follow physical activities such as walking and
specific physiotherapy exercises. Pervasive and ubiquitous AI enabled devices
are arguably best placed to continuously monitor a person’s adherence to self-
management plans, make real-time predictions about the likelihood of adherence
and the impact of that. What is lacking are HAR algorithms that can adapt to
differences in person-specific movements (e.g. gait, disabilities, weight, height);
and to do so with few data.

The idea of meta-learning is to train exactly as we would expect to deploy
the system [7]. What this means is that rather than treating a specific “activ-
ity” as a class to be recognised across all persons; we instead learn to recognise
the “person-activity” pair as the class; and importantly do so with a limited
number of data instances per person. This can be viewed as a few-shot classifi-
cation scenario [13,15] commonly used in image classification where the aim is
to train with one or few data instances. Meta-learning is arguably the state-of-
the-art in few-shot classification [5,11], where a wide range of tasks abstracting
their learning to a meta-model, such that, it is transferable to any unseen task.
Meta-learning algorithms such as MAML [5] and Relation Networks (RN) [14]
are grounded in theories of metric learning and parametric optimisation, and
capable of learning generalised models. The meta-learning concept of learning-
to-compare aligns well with personalisation where modelling a person can be
viewed as a single task; whereby a meta-model must help learn a model that
is rapidly adaptable or is applicable to a new person at deployment. Here we
propose Personalised Meta-Learning to create personalised HAR models, with
a small amount of data (about one minute worth of calibration data) extracted
from a person’s sensing devices. We make the following contributions:

– present personalised meta-learning in the context of matching networks (MN),
relation networks (RN) and MAML;

– perform a comparative evaluation with a self-management dataset from the
selfBACK EU project to compare the utility of personalised meta-learning
algorithms over conventional learning algorithms with focus on using few
data; and

– provide results from an exploratory study on the transferability of meta-
modals from physiotherapy experts to non-experts
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2 Reasoning with Sensor Data for HAR

Previous work has demonstrated the effectiveness of applying decision support
and reasoning systems to the management of a specific chronic disease. For
instance Case-based reasoning (CBR), has been successfully used to incorporate
evidence-base practices. For instance in managing diabetes types 1 and 2, CBR
uses records that provide details about periodical visits with a physician in a case
consisting of features that represent a problem (e.g. weight, blood glucose level),
its solution (e.g. levels of insulin) and the outcome (e.g. hyper/hypo(glycemia))
observed after applying the solution [8,9]. More recent work [4], explored the
self-management of diabetes type 1 to support monitoring of blood glucose levels
before, during and after exercises. Interventions recommend carbohydrate intake
based on similar cases retrieved for given HAR an exercise types.

In related work on self-management of low-back pain (LBP) [1], the Self-
BACK CBR system recommends personalised care plans from similar patients.
Management involves a human activity recognition (HAR) component to mon-
itor the patient activity using sensor data that is continuously polled from a
wearable device. Here a combination of patient reported monitoring, and HAR
from sensor data, are used by the SelfBACK system to manage exercise adher-
ence. Monitoring allows the system to detect periods of low activity behaviour,
at which point a notification is generated to nudge the user to be more active
- the intervention. An important contribution of this work is the integration of
behaviour change techniques such as goal setting to focus the expected level
of activity. Thereafter comparison of expected and actual behaviours to anal-
yse goal achievement. Personalisation is important to ensure that care plans are
tailored to the needs of the individual. Although there has been recent work
on personalised learning using matching networks [17], more work is needed
to understand them in the context of other state-of-the-art meta-learners like
MAML and RN with few data.

2.1 HAR Using selfBACK Accelerometer Data

Wearables, such as smart watches or phones, are the most common form of phys-
ical activity monitoring devices and sources of delivering digital interventions.
These are embedded with inertial measurement devices (e.g. accelerometers or
gyroscopes) that generate time-series data which can be exploited for human
activity recognition of ambulatory activities, activities of daily living, gait anal-
ysis and pose recognition [3,12,17]. In the selfBACK project the HAR dataset
has 6 ambulatory and 3 stationary activities1. Each activity has approximately
3 min of data with a 100 Hz sampling rate recorded with 33 participants using
two accelerometers on the wrist (W) and the thigh (T).

1 https://github.com/rgu-selfback/Datasets.

https://github.com/rgu-selfback/Datasets
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2.2 Multi-modal Exercise Recognition with MEx Data

Exercise recognition requires more sophisticated sensors such as pressure mats
and depth cameras to capture complex human movements. The MEx sensor-
rich dataset2 contains data from 7 exercises, selected by physiotherapists for the
self-management of LBP. Data is recorded with 30 participants, performing 7
exercises, each for 60 s (maximum). Of the 30 participants, 7 were qualified in
physiotherapy exercises (i.e expert users) whilst the others were general users (i.e.
non-expert users). Figure 1 shows the 4 modalities: a depth camera (DC) with a
frame rate 15 Hz & frame size of 240 × 320; a pressure mat (PM) using a frame
rate 15 Hz & frame size: 32 × 16; and two accelerometers 100 Hz sampling rate,
on the wrist (ACW) & the thigh (ACT).

Fig. 1. Multi modal data in the MEx dataset

2.3 Personalisation with Non-iid Data

Analysis of a single person’s pressure mat data, compared to data from the
general population shows that their are inherent variations between persons data.
For instance in Fig. 2, we have visualised 2-dimensional compressed pressure
mat data (using PCA) colour coded by exercise class. The class distribution
observed using all of the 30 persons data is very different from that observed
with individuals (e.g. Persons 1 and 2 in the figure). We view this as a non
identical and independent (non-iid) distributions problem where personalised
meta-learning needs to be able to cope with such distributions at deployment.
Accordingly we ensure that meta-modals are trained such that they are exposed
to learning from such non-iid samples.

3 Learning to Personalise with Few Data

A meta-learner learns a meta-model, θ, trained over many tasks, where a task is
equivalent to a “data instance” or “labelled example” in conventional machine
learning. In few-shot classification, meta-learning can be seen as optimisation of
a parametric model over many few-shot tasks (i.e. meta-train instances). Per-
sonalised meta-learning for HAR learns a meta-model θ from a population, P,
2 https://archive.ics.uci.edu/ml/datasets/MEx.

https://archive.ics.uci.edu/ml/datasets/MEx
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(a) All data (b) Person 1 (c) Person 2

Fig. 2. MEx data distributions visualised with MExPM data

while treating activity recognition for a person as an independent task. Figure 3
illustrates the task composition for such a setting, where a dataset, D, is organ-
ised over a person population, P, by creating person-centric tasks, where each
“person-task”, Pi, contains data for a specific person. For example, in Fig. 3, P1

has a support set of distinct human activities (or activity classes) formed with
data from one person. In this example we have just a single instance (i.e. Ks =
1) to represent each class (where C = 5).

Fig. 3. Composing a meta task for training and testing a meta-learner

Meta-train and meta-test sets, are formed by randomly selection Ks × |C|
number of labelled data instances from a person, stratified across activity classes,
C, such that there are Ks amount of representatives for each class. We follow a
similar approach when selecting a query set, Dq, for Pi. Each task contains an
equal number of classes but not necessarily the same sub set of classes. Typically
the query set, Dq, has no overlap with the support set, Ds similar to a train/test
split in supervised learning; and unlike the support set, composition of the query
set need not be constrained to represent all C. Once the meta-model is trained
using the meta-train tasks, it is tested using the meta-test tasks. An instance of
a meta-test task, P̂, has a similar composition to a meta-train task instance, in
that it also has a support set, D̂s, and a query set, D̂q. Unlike traditional classifier
testing; with meta-testing, we use the support set in conjunction with the trained
meta-model to classify instances in the query sets. How the meta-test support
and query sets are used change depending on the aim of the meta-learning.
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3.1 Learning to Match

Fig. 4. Training a Matching Network

Matching Networks (MN) [15] can be viewed as an end-to-end neural implemen-
tation of the otherwise static kNN algorithm. It aims to learn a feature space
by iteratively matching a query instance to a support set, which contains both
positive and negative matches to the query instance. It is essentially “training to
match” over representative instances from multiple classes in an iteration; which
is what sets it apart from other metric learners such as Siamese [2] and triplet
networks [6]. Further by training to match (instead of focusing solely on clas-
sification alone) makes it possible to add examples from new or unseen classes
with no re-training of the model for transfer to related domains [17].

Figure 4 illustrates the Personalised Matching Network, MNp, where each
support set instance, xs

i in Ds, and a query instance, xq in Dq, are created for
the person-specific task (i.e. using instances from Pi). All instances in a task are
transformed using the feature embedding function, θf (a neural network model),
into feature vectors. Thereafter the process of matching is applied to every pair
formed by each instance, xq in Dq, with every instance in Ds. In the figure we
can see that all pair-wise combinations are formed once Ds is duplicated thrice
for a Dq with three query instances.

Similarity between a query instance and each of its support set instance pairs
are calculated with an appropriate similarity metric (e.g. Cosine Similarity).
Finally an attention mechanism, att, in the form of similarity weighted majority
vote estimates the class, yq (see Eqs. 1 and 2).

att(θf (xq), θf (xs
i )) =

esim(θf (x
q),θf (x

s
i ))

∑|s|
esim(θf (xq),θf (xs

i ))
(1)

yq = arg max
i

|S|∑
att(θf (xq), θf (xs

i )) × ys
i (2)

During training, the network iteratively updates weights of θf to maximise the
similarity between the query instance and support set instance pairs from the
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same activity class. This is enforced by the loss function, categorical cross-
entropy, which quantifies the difference between the estimated, yq and actual
class, y, distributions. One-hot encoding is used to represent classes enabling the
attention kernel multiplication with the similarity value (in the range [0 . . 100]).

The concept of “learning to match” is achieved with attention where pair-
wise similarity computations are used to influence the network’s back propaga-
tion and consequent weight updates. This means that the embedding function
that is learnt is optimised for matching which is a proxy to class prediction. At
deployment, given a meta-test instance, P̂, MN predicts the label for a query
instance x̂q with respect to its support set D̂s. In other words, the network learns
to retrieve the best match from the support set elements, thereafter using them
with similarity weighted majority voting to predict the class.

3.2 Learning to Relate

Fig. 5. Training a Relation Network

Personalised Relation Networks RNp learns to relate by comparing query and
support instance pairs using the person-tasks (Pi) design discussed in Sect. 3.
A RNp has two parametric modules, one for feature representation learning, θf

(like with MNp) and a further one for relationship learning, θr (Fig. 5). Instead
of capturing the relationship with a similarity metric (e.g. cosine) in the feature
space, it is predicted as a score, rq,s

i , by θr which is a Convolutional Neural
Net (CNN) based on, |C| pair-wise relations.

rq,s
i = θr(C(θf (xq), θf (xs

i ))))), i = 1, 2, · · · , |C| (3)

yq = arg max
i

rq,s
i (4)

Unlike MNp, the similarity-weighted attention layer is replaced with a param-
eterised relation learning model, θr, which takes as input query and support
instance (concatenated) pairs to learn similarity such that matched pairs have
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similarity 1 and the mismatched pair have similarity 0. Here learning similar-
ity scores are viewed as a regression problem with mean-squared-error forming
the loss function that optimises both θf and θr. At deployment, as with MNp,
given a test query instance x̂q the RNp predicts the class label, with respect to
its support set D̂s.

3.3 Learning to Adapt

Fig. 6. Training a Personalised Model-Agnostic Meta-Learner, MAMLp

Unlike MNp and RNp, with Personalised MAML (MAMLp) there is less focus
on similarity and instance pairing, instead the aim is to learn a generic model
prototype (i.e. a meta-model), θ, such that it can be rapidly adapted to any
new person encountered at test time P̂. Task design for MAMLp is as described
in Sect. 3. Adaptation optimised learning is illustrated in Fig. 6. At the start
of each iteration (epoch), a set of person tasks are sampled, Pi to optimise
their person-specific model using a generic model θj as the model initialisation.
Thereafter each person-specific model, θi is locally trained by optimising over
the Ds

i using one or few steps of gradient descents. The loss computed using Dq

by each person-task is passed on to the meta-learner; which in turn aggregates
these losses and optimises, θj , using its own gradient descent step forming the
meta-update for the epoch. This process is repeated n epochs, to learn a generic
model prototype θ that can be rapidly adapted to a new P̂.

At deployment, P̂, not seen during training, uses its support set, D̂s for local
training of the parametric model θ̂, initialised by the meta-model θ. Thereafter,
the adapted, θ̂ is used to classify instances in P̂’s query set, Dq. Personalised
MAML is model-agnostic, which is advantageous for HAR applications with
heterogeneous sensor modalities or modality combinations.
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4 Evaluations

The aim of the evaluations is to compare performance of the 3 personalised meta-
learners discussed in Sect. 3 with several established benchmark algorithms.

DL: Best performing deep learners from benchmarks published in [16].
Meta-learners (MN, RN & MAML): The 3 meta-learners used in our com-

parison include; Matching Networks (MN) [15]; Relation Networks [14] (RN);
and MAML (using the first-order implementation) [5] .

Personalised meta-learners (MNp, RNp & MAMLp): Personalised ver-
sions of meta-learners discussed in Sect. 3.

We follow the person-aware evaluation methodology Leave-One-Person-Out
(LOPO) in our experiments; where data from one person is left out to create
meta-test instances and the rest used to create meta-train instances. Accuracy
on meta-test is presented and any significance reported is at 95% confidence
level using the Wilcoxon signed ranked test. Sensor data streams are converted
into instances by applying a sliding window of size 5 s, and an overlap of 3 and
2.5 for data sources MEx and selfBACK creating 30 and 88 data instance per
person-activity on average (K). We select Ks = 5 and Kq = K − Ks to create
meta-train and test instances.

MN and MNp are trained for 20 epochs, and MAML, MAMLp, RN and
RNp for 100 epochs; all using early stopping. MAML and MAMLp, use 5 and
10 as the number of gradients steps when training and testing respectively. MN ,
MNp, MAML and MAMLp use a single dense layer with 1200 units as θf and
θ. The θf in RN and RNp consists of a single layer CNN (64 kernels and kernel
size 3 × 3); θr is a single layer CNN (64 kernels and kernel size 3 × 3), followed
by 2 dense layers (120 units and 1 unit); here, the last dense layer has an output
of size 1 for the regression task (Sect. 3.2).

4.1 HAR Comparative Study

Results appear in Table 1 on 6 datasets derived from selfBACK and MEx.
As expected personalised meta-learning models significantly outperform con-
ventional DL and (non-personalised) meta-learning models on all datasets. The
two visual datasets; MExDC and MExPM , recorded the best performance with
MAMLp. Both accelerometer datasets from MEx and one dataset from self-
BACK achieved best performance with RNp. Notably, both MAMLp and RNp

fail to outperform the personalised few-shot learning algorithm MNp on the
SBW dataset which consists of sensing data obtained from the wrist having the
greatest degree of freedom and therefore most prone to “noisy” movements. Inter-
estingly, MNp, has comparable performance against MAMLp on the MExACT

dataset and outperform RNp model on the MExDC dataset. When compar-
ing conventional meta-learners (i.e. RN , MAML) and Personalised Few-Shot
Learner, MNp, we see that, MNp models achieve comparable performances
or significantly outperform at least one conventional meta-learner with all four
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Table 1. Comparative Study: mean accuracy results, LOPO, 5-shot

Algorithm MExACT MExACW MExDC MExPM SBT SBW

Best DL 0.9015 0.6335 0.8720 0.7408 0.7880 0.6997

MN 0.9073 0.4620 0.5065 0.6187 0.8392 0.7669

RN 0.9327 0.7279 0.8189 0.8145 0.9334 0.8276

MAML 0.8673 0.6525 0.9629 0.9283 0.8398 0.7532

MNp 0.9155 0.6663 0.9342 0.8205 0.9124 0.8653

RNp 0.9436 0.7719 0.9205 0.8520 0.9487 0.8528

MAMLp 0.9106 0.6834 0.9795 0.9408 0.8625 0.8075

experiments; which further confirm the importance of personalisation. Overall,
we find that optimisation based meta-learning algorithm (i.e. MAMLp) per-
forms well on visual sensing modalities; whilst comparison based meta-learners
(i.e. MNp and RNp) perform well on time-series data.

4.2 Discussion

In a real-world situation the data for meta-model training is likely to be provided
by physiotherapy experts performing exercises. Thereafter learnt models can be
applied to non-physio users. We can simulate this situation with the MEx dataset
where the 7 physio experts can be used to train a meta-modal and observe how
these transfer to the rest (23 persons).

Figure 7 plots meta-test accuracy for incrementally increasing values of meta-
train epochs for RNp for all 23 persons (in grey) against the average results
plot. We can observe the elbow point at about 40-50 epochs. Local learning
with no meta-learning as expected is very low (results x-axis = 0). The general
trend is that most persons show improvements in transferability with increasing
epochs. Even those that struggle to improve accuracy early on seem to benefit
from using the meta-modal with increasing epochs. MAMLp has benefited from
its local training and presents a gradual increase (∼5%) with increasing meta-
training. For comparison results of MAMLp before local training (no adapta-
tion) is included and highlights the importance of personalised model adaptation.

Figure 8 shows the impact of meta-learning on model adaptation with
MAMLp. The rising and falling cyclic pattern can be explained by observing
that local models, θ̂i, are initialised at each epoch with the meta-model, and have
a low meta-test accuracy starting point. As θ̂is are refined through local training,
we observe the rising trend in meta-test accuracy. We observed 3 distinct adap-
tation patterns among the 23 persons (bolded line graphs in Fig. 8): meta-model
being easily adapted with 1 or 2 gradient steps (blue); meta-model success-
fully adapted over several gradient steps (orange); and failure to adapt (green).
Overall it is evident that gains from personalised model transfer in most cases
gradually improve with increasing meta-training.
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Fig. 7. Transferability of meta-modals from physiotherapy experts to non-experts

Fig. 8. Adaptation of MAMLP over meta-model training (Color figure online)

5 Conclusion

Personalised meta-learning, supports model transfer to new situations in appli-
cations where there is few data. With HAR models can be transferred with
a few instances of calibration data obtained from the end-user at deployment.
MAMLp uses calibration data to adapt through re-training; whilst MNp and
RNp uses calibration data directly for matching (without re-training). Our
results on MEx and selfBACK datasets with personalised meta-learning show
significant performance improvements over conventional and non-personalised
meta-learning algorithms. Importantly we find, while RNp outperform MAMLp,
MAMLp performs significantly faster due to the absence of paired matching.
We hope that the parameterised learning-to-compare methods discussed here
will help inspire new ideas relevant for CBR research.
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Abstract. The similarity assessment of graphs is a fundamental prob-
lem that is particularly challenging if efficiency is of core importance.
In this paper, we focus on a similarity measure for semantically labeled
graphs whose labels are composed in an object-oriented manner. The
measure is based on A* search and is particularly suited for case-based
reasoning as it can be combined with knowledge-intensive local similarity
measures and outputs similarities and corresponding mappings usable for
explanation and adaptation. However, particularly for large graphs, the
search space must be pruned to improve efficiency of A* search at the cost
of sacrificing global optimality. We address this issue and present comple-
mentary improvements of the measure, which we systematically evaluate
for the similarity assessment of semantic workflow graphs. The experi-
mental results demonstrate that the new measure considerably reduces
the computation time and memory consumption while increasing the
accuracy.

Keywords: Semantic graphs · Graph matching · Graph similarity

1 Introduction

Graph-based case representations with semantically labeled nodes and/or edges
are significantly gaining importance in case-based reasoning (CBR). They allow
to represent arbitrary relational structures and thus considerably increase expres-
siveness compared to attribute-value or pure object-oriented representations.
However, the gain in expressiveness comes with the cost of increased complexity
in the similarity assessment during the retrieval phase. In the literature, vari-
ous similarity measures for graph-based representations have been proposed [12].
However, assessing the similarity in an efficient way is a fundamental problem due
to the computational complexity of the approximate graph matching involved. It
is particularly challenging for semantically enriched graphs since their similarity
is affected by structure and semantics.
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In this paper, we consider a specific form of semantically enriched graphs,
which we refer to as semantic graphs. A semantic graph is a generic directed
graph whose nodes and edges have different types and are associated with seman-
tic descriptions, which can be composed in an object-oriented manner. Semantic
graphs are particularly used as case representation in process-oriented case-based
reasoning (POCBR) for representing semantic workflows [2] but also for repre-
senting arguments [4] in case-based argumentation.

To assess the similarity of such graphs, Bergmann and Gil [2] proposed a
generic semantic similarity measure following the well-known local-global prin-
ciple [1,6] that is based on finding the best possible mapping of similar nodes
and edges between the graphs to be compared. In particular, this measure out-
puts the similarity values along with the corresponding mappings, which can
be the basis for adaptation [5] and which can be also used for explanation pur-
poses. The involved optimization problem can be solved in principle by applying
A* search, which is theoretically able to find the optimal mapping. However, in
practical applications with large graphs, the search space can become so large
that it must be limited, thus trading optimality against efficiency. To overcome
this performance issue during retrieval, several two-step MAC/FAC retrieval
approaches [5,9,10] have been proposed, which reduce the number of expen-
sive similarity computations by using an efficient pre-selection of cases. A recent
approach by Hoffmann et al. [8] shows promising results in approximating graph
similarities with siamese graph neural networks. In this paper, however, we follow
a different route of research as we aim at improving the efficiency of each single
similarity computation by speeding-up the A* search. We do so by reorganizing
the search space and by proposing a better-informed heuristic that guides the
search. In total, four complementary improvements are described and evaluated
systematically.

The following Sect. 2 introduces the graph representation and briefly sur-
veys approaches to graph similarity before we describe the A*-based similarity
measure to be improved. Section 3 presents the improvements for the measure
while Sect. 4 investigates the performance impact in an experimental evaluation.
Finally, we summarize the paper and discuss future work.

2 Background

2.1 Semantic Graphs

Based on the definition of semantic workflow graphs [2], we consider a semantic
graph as a quadruple G = (N,E, S, T ). The graph elements are defined by a
set of nodes N and a set of edges E ⊆ N × N . S : N ∪ E → Σ associates to
each graph element a semantic description from a semantic metadata language
Σ while T : N ∪ E → Ω associates to each graph element a type from Ω. While
types are assumed to be disjoint, semantic descriptions can be organized in a
hierarchy. Figure 1 gives an example of a semantic workflow graph represent-
ing a sandwich recipe. The graph consists of three different types of nodes and
edges, which can be distinguished by the different shapes and lines in the figure.
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The workflow node (diamond) represents general information about the recipe,
task nodes (rectangles) represent preparation steps, and data nodes (ovals) rep-
resent ingredients. Furthermore, control-flow edges (solid lines) define the exe-
cution order of preparation steps, data-flow edges (dotted lines) specify the con-
sumption and production of ingredients, and part-of edges (dashed lines) link
all nodes to the workflow node. Semantic descriptions of the nodes are writ-
ten in grey boxes. In this implementation, we treat the semantic descriptions in
an object-oriented fashion and use the local-global principle [1,6] for assessing
simΣ .

Fig. 1. Example of a semantic workflow graph

Following the CBR paradigm, the underlying retrieval problem that requires
computing graph similarities is the following: For a given query graph Gq, the
best-matching graph Gc ∈ CB is being searched in a repository of graphs CB,
which is referred to as case base. For this purpose, Gq is compared with each
case graph Gc and rated with a similarity sim(Gq, Gc) ∈ [0, 1].

2.2 Approaches to Similarity Assessment of Multi-labeled Graphs

In general, numerous similarity measures for graph-based representations have
been proposed in the literature [12]. For semantically labeled graphs and par-
ticularly for graphs with multiple labels (also referred to as multi-attributed
graphs), considerably less approaches exist. For such graphs, approaches based
on greedy search [7] and Tabu search [14] have been proposed. However, due to
the incomplete search only local optima are found and the similarity error can be
hardly controlled. Particularly tailored for large graphs, Zhu et al. [15] presented
an index-based approach combined with a greedy algorithm and Shemshadi
et al. [13] presented an approach based on graph simulation. The focus is put
on graphs with textual labels instead of composed semantic descriptions. More
recently, Li et al. [11] proposed an embedding approach with graph neural net-
works, which was extended by Hoffmann et al. [8] to support composed semantic
descriptions. Like any other supervised learning approach, a sufficiently large
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number of training data is required. To reduce the manual effort, further unsu-
pervised approaches to graph similarity are required that allow for assessing
graph similarity values in an appropriate and efficient manner.

Most approaches have in common that they restrict the semantic annotations
of graph elements to attribute-value representation. More importantly, they do
not allow for knowledge-intensive similarity assessments of semantic descriptions.
Ontañón [12] recently identified, among others, scalability and interpretability
as open research questions. While graph embeddings using neural networks is
a promising research direction to address scalability, interpretability remains a
major challenge.

2.3 Semantic Graph Similarity Following the Local-Global Principle

To assess the similarity between two graphs Gq = (Nq, Eq, Sq, Tq) and Gc =
(Nc, Ec, Sc, Tc), we follow the approach proposed by Bergmann and Gil [2] which
allows to consider the structure as well as the semantics of the graphs. The
proposed similarity measure applies the local-global principle [1,6] to allow for
assessing the similarity in a flexible manner. It enables the comparison of the
graph elements w.r.t. their semantic descriptions by knowledge-intensive local
similarity measures. For this purpose, a similarity function simΣ : Σ×Σ → [0, 1]
is modeled as part of the knowledge-engineering process such that semantic
descriptions of nodes and edges from query and case can be compared w.r.t. their
similarity. Depending on the choice of Σ, this similarity can itself be assessed fol-
lowing the local-global principle. This is particularly useful for semantic descrip-
tions represented in an object-oriented fashion. Thus, available similarity knowl-
edge for the graph elements can be considered in a flexible manner and the
computed similarity values are transparent and interpretable.

Following the local-global principle, the global similarity during graph com-
parison is obtained by an aggregation function combining the local similarities
of related graph elements from Gq and Gc. Based on this principle, the node
similarity simN (nq, nc) for nq ∈ Nq and nc ∈ Nc is defined as follows:

simN (nq, nc) =
{

simΣ(Sq(nq), Sc(nc)) if Tq(nq) = Tc(nc)
0 otherwise

Edge similarity does not only consider the semantic description of the edges
being compared, but also the nodes linked by the edges. We define edge similarity
simE(eq, ec) for eq ∈ Eq and ec ∈ Ec as follows:

simE(eq, ec) =

⎧⎪⎪⎨
⎪⎪⎩

FE

⎛
⎝simΣ(Sq(eq), Sc(ec)),

simN (eq.l, ec.l),
simN (eq.r, ec.r)

⎞
⎠ if Tq(eq) = Tc(ec)

0 otherwise

e.l denotes the left node of an edge e and e.r denotes its right node. The function
FE is an aggregation function that combines the semantic similarity between the
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edges and the similarities of the connected nodes to the overall similarity value.
In our implementations we define FE as follows: FE(se, sl, sr) = se · (sl + sr)/2.

The similarity simm(Gq, Gc) between Gq and Gc is defined with respect to a
legal mapping m : Nq ∪Eq → Nc ∪Ec that satisfies the following five constraints:

Tq(nq) = Tc(m(nq)) Tq(eq) = Tc(m(eq))
m(eq.l) = m(eq).l m(eq.r) = m(eq).r ∀x, y m(x) = m(y) → x = y

Please note that such a legal mapping m is type-preserving, i.e., only nodes
and edges of the same type can be mapped. The mapping is injective, which
means that a case node or edge can only be the target of one query node or
edge, respectively. Moreover, the mapping can be partial, i.e., not all nodes and
edges of the query must be mapped to case elements and can be mapped to
null instead. For instance, null mappings are required if more query elements
exist than case elements of a certain type. An edge can only be mapped if the
nodes that the edge connects are also mapped to the respective nodes that the
mapped edge connects. For a given mapping m, a second aggregation function
FG is defined that combines the individual similarity values for mapped elements:

simm(Gg, Gc) = FG

(
(simN (n,m(n))|n ∈ Nq ∩ Dom(m)),
(simE(e,m(e))|e ∈ Eq ∩ Dom(m)), |Nq|, |Eq|

)

Dom(m) denotes the domain of m. The parameters |Nq| and |Eq| enable FG to
consider partial mappings, i.e., nodes and edges not mapped should not con-
tribute to the similarity. In our implementation we define FG as follows:

FW ((sn1, . . . , sni), (se1, . . . , sej), nN , nE) =
sn1 + · · · + sni + se1 + · · · + sej

nN + nE

The overall similarity sim(Gq, Gc) is determined by the mapping with the
highest similarity:

sim(Gq, Gc) = max{simm(Gq, Gc)| m is legal mapping}

2.4 A*-Based Similarity Search

To find the best mapping m, Bergmann and Gil [2] proposed to apply an A*
search. The A* algorithm maintains a priority queue Q of partial solutions for
this optimization problem. In such a solution Sol, Sol.m represents the current
mapping and Sol.N and Sol.E are the not yet mapped nodes and edges of the
query graph. In each step, the first (best) solution in the queue first(Q) is
removed. If it represents a completely expanded solution, A* terminates. Other-
wise, the solution is expanded, i.e., the next query graph element xq is selected
and all legal mappings to the case graph elements are determined. For each such
mapping, a new solution extended by this additional mapping is created and
inserted into the priority queue. If more query elements exist than case elements
of a certain type, an additional null mapping must be added as a new solution
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to allow for partial mapping. The total amount of required null mappings cor-
responds to the difference between the query and case elements. The order in
which the solutions are inserted into the priority queue is essential for A*. There-
fore, each solution Sol is evaluated by a function f(Sol) = g(Sol) + h(Sol) and
the value is stored in the solution as Sol.f . In the traditional formulation, A*
aims at minimizing cost, hence g(Sol) are the cost already occurred and h(Sol)
is a heuristic estimation function for the remaining cost to the solution. As we
apply A* for maximizing the similarity value, g(Sol) is the similarity of the
current mapping Sol.m, while h(Sol) is a heuristic estimation of the additional
similarity that can be achieved through the mapping of the remaining nodes
and edges. Solutions are inserted into the priority queue in decreasing order of
f(Sol). Consequently, the solution with the highest f -value is expanded first.
To achieve an admissible heuristic estimation function, which ensures that the
optimal solution is found, h(Sol) must be an upper bound of the similarity.

A∗Search(Gq = (Nq, Eq, Sq, Tq), Gc = (Nc, Ec, Sc, Tc))
Q = insert(initSolution(), Q);
while first(Q).N �= ∅ ∧ first(Q).E �= ∅ do

Q = expand(Q);
end

return first(Q).f ;

initSolution()
Sol0.N = Nq ; Sol0.E = Eq; Sol0.m = ∅; Sol0.f = 1;

return Sol0;

expand(Q)
Sol = first(Q); Q = rest(Q); xq = select(Sol);
forall xc ∈ Nc ∪ Ec such that the mapping Sol.m ∪ (xq, xc) is legal do

Q = insert(newSolution(Sol, xq, xc), Q);
end
if Tq(xq) requires null mapping w.r.t. Sol.m then

Q = insert(newSolution(Sol, xq, ∅), Q);
end

return Q;

newSolution(Sol, xq, xc)

Sol′.N = Sol.N \ {xq}; Sol′.E = Sol.E \ {xq};
Sol′.m = Sol.m ∪ (xq, xc);
Sol′.f = simSol′.m(Gq, Gc) + h(Sol′);

return Sol′;

The overall A* search algorithm is sketched above. The function first(Q)
returns the first solution in the priority queue, rest(Q) removes the first solu-
tion and returns the rest and select determines the next graph element xq to be
mapped, which can be either a query node or edge. The function insert(Sol,Q)
inserts a solution Sol into Q according to the f -value. During insert, the maxi-
mum size of the queue can be restricted to prune the search space for improving
the performance on the risk of losing global optimality.

Bergmann and Gil [2] presented two A* variants named A*I and A*II with
different estimation and select functions. In this paper, we build up upon A*II :

hII(Sol) =
∑

x∈Sol.N∪Sol.E

(
max

y∈Nc∪Ec

{simN/E(x, y)}
)

· 1
|Nq|+|Eq|
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selectII(Sol) =
{

eq ∈ Sol.E if eq.l /∈ Sol.N ∧ eq.r /∈ Sol.N
nq ∈ Sol.N otherwise

simN/E(x, y) refers to the corresponding similarity function simN or simE . It
was shown that A*II clearly outperforms A*I since it uses a more informed
admissible heuristic. While hI uses the maximum similarity of 1.0 as estimation
for each not mapped query graph element, hII determines the best possible sim-
ilarity a mapping can achieve independent of the mapping of the other elements.
This can be computed in advance and cached. The select function chooses ele-
ments randomly according to an internal id and selects edges as soon as possible.
As mapping edges requires the linked nodes being mapped already, it requires
only a low number of new solutions to be added to the priority queue. Only one
solution is created, if between nodes there is at most one edge per type. Hence,
the size of the queue does not increase while the accuracy of f(Sol′) increases.

3 Improving the A*-Based Similarity Search

We now present four complementary improvements for enhancing the perfor-
mance of the A*-based similarity search. For illustration purposes, we refer to
the simple example graphs Gq and Gc depicted in Fig. 2. The graphs consist of
two different types of nodes and edges (depicted by different shapes and lines).
The semantic descriptions consist of symbolic values with Σ = {a, b, c} and
we assume simΣ to be defined as a binary measure returning 1 if symbols are
equal and 0 otherwise. Moreover, edges and diamond shaped nodes do not have
semantic descriptions and thus match with a similarity of 1. Please note that
the similarity assessment is asymmetric. Hence, sim(Gq, Gc) = 6

9 although Gc

is sub-graph isomorphic with Gq, i.e., sim(Gc, Gq) = 1.

Fig. 2. Example of a query and case graph

3.1 Search Space Reduction

According to the definition of semantic graphs, a query Gq = (Nq, Eq, Sq, Tq)
and a case graph Gc = (Nc, Ec, Sc, Tc) consist of different types Tq ⊆ Ω and
Tc ⊆ Ω of nodes and edges. A legal mapping of graph elements is type-preserving.
Consequently, we can add element pairs (xq, xc) to the initial solution for which
only one legal mapping exists. By this means, the search space can be reduced
prior to the A* search. Regarding the graph representation, it is advisable to
assign different types to graph elements whenever their semantic descriptions are
disjoint. To implement this improvement, we redefine initSolution as follows:
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initSolution2()
Sol0 = initSolution();
forall (xq, xc) ∈ Nq × Nc such that the mapping is legal ∧ (�x′

q : x′
q �= xq

∧ Tq(x
′
q) = Tq(xq)) ∧ (�x′

c : x′
c �= xc ∧ Tc(x

′
c) = Tc(xc)) do

Sol0 = newSolution(Sol0, xq, xc);
end

return Sol0;

In the given example, types Tq(n14) = Tc(n23) are equal and the mapping
of the nodes is the only possible legal mapping. Consequently, it can be added
to the initial solution. This improvement also comes into effect for the semantic
workflow graph representation depicted in Fig. 1 since such graphs have a single
workflow node linked to all other nodes via part-of edges. During the mapping
process, the already mapped workflow node enables that a part-of edge can be
always mapped subsequent to the mapping of another node.

3.2 Adaptive Mapping Orientation

If the query graph is larger than the case graph, we assume that the mapping
process can be made more efficient by orienting the mapping towards the case
elements. This is referred to as case-oriented mapping. Please note that the direc-
tion of the mappings and the similarity assessment is unaffected, i.e., mapping
and similarity are still oriented from the query elements to the case elements.
The mapping mode is selected prior to the search according to the following rule:

mapping mode =
{
case-oriented if |Nq ∪ Eq| > |Nc ∪ Ec|
query-oriented otherwise

To implement case-oriented mapping, the algorithm is modified as follows:
The collections of not mapped elements are initialized with the case graph ele-
ments Sol0.N = Nc and Sol0.E = Ec instead of the query elements. In each
expansion step (invocation of expand), the select-function identifies the next
case element to which all query elements are mapped:

selectIIC (Sol) =
{

ec ∈ Sol.E if ec.l /∈ Sol.N ∧ ec.r /∈ Sol.N
nc ∈ Sol.N otherwise

New solutions are created for each legal mapping and the f -value is updated
using the following modified heuristic estimation function:

hIIC (Sol) =
∑

y∈Sol.N∪Sol.E

(
max

x∈Nq∪Eq

{simN/E(x, y)}
)

· 1
|Nq|+|Eq|

When creating new solutions in case-oriented mapping mode, in contrast to
the query-oriented mapping mode, null mappings (∅, xc) are not meaningful to
the final mapping and thus are not added to the solution. Instead, it is checked
whether all case elements have been considered by the search. In this event, a
function completeSolution is invoked that adds a null mapping (xq, ∅) to the
solution for each not mapped query element xq. Following this approach, all
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required null mappings are added in a single step to the same solution. Conse-
quently, fewer solutions are added to the priority queue and we expect that the
computation time as well as the memory consumption is reduced. The effect of
the adaptive mapping orientation can be demonstrated with the given example.
Here, the required null mappings (n11, ∅), (e11, ∅), and (e14, ∅) are postponed
in case-oriented mapping mode. The modified functions are as follows:

initSolutionC()
Sol0.N = Nc; Sol0.E = Ec; Sol0.m = ∅; Sol0.f = 1;

return Sol0;

expandC(Q)
Sol = first(Q); Q = rest(Q); xc = selectC(Sol);
forall xq ∈ Nq ∪ Eq such that the mapping Sol.m ∪ (xq, xc) is legal do

Q = insert(newSolutionC(Sol, xq, xc), Q);
end
if Tc(xc) requires null mapping wrt. Sol.m then

Q = insert(newSolutionC(Sol, ∅, xc), Q);
end

return Q;

newSolutionC(Sol, xq, xc)

Sol′.N = Sol.N \ {xc}; Sol′.E = Sol.E \ {xc};
if xq �= ∅ then

Sol′.m = Sol.m ∪ (xq, xc);
end

if Sol′.N = ∅ ∧ Sol′.E = ∅ then
completeSolution(Sol′);

end

Sol′.f = simSol′.m(Gq, Gc) + h(Sol′);
return Sol′;

3.3 More Informed Heuristic

A well-informed admissible heuristic h(Sol) is crucial for the efficiency of the A*
search. Since h(Sol) must be an upper bound of the estimated similarity, a more
informed heuristic overestimates the similarity to a lower degree. Higher accuracy
is beneficial since it decreases the possibility that less expanded solutions are
ranked higher in the priority queue. Consequently, the search becomes more like
a depth-first search and expanding the same element is less often required.

We propose a novel heuristic hIII(Sol) that, in contrast to heuristic hII(Sol),
considers the current mapping Sol.m for determining the maximum possible sim-
ilarity a new mapping can achieve. It excludes mappings from the estimation that
do not lead to a legal mapping when added to Sol.m. Hence, this heuristic is
computationally more expensive since all independent mappings must be com-
puted in advance and the heuristic must be updated with respect to the current
mapping Sol.m. However, since the heuristic is more accurate, we expect that
partial solutions with non-optimal (but legal) mappings are ranked lower in the
priority queue and hence the overall performance of the search is improved. We
define the heuristic estimation function as follows:
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hIII(Sol) = 1
|Nq|+|Eq| (

∑
x∈Sol.N

max
y∈Nc

{simN (x, y)| �n ∈ Sol.N : (n, y) ∈ Sol.m}
+

∑
x∈Sol.E

max
y∈Ec

{simE(x, y)| �e ∈ Sol.E : (e, y) ∈ Sol.m

∧�(x.l, n) ∈ Sol.m : y.l 	= n
∧�(x.r, n) ∈ Sol.m : y.r 	= n
∧�(n, y.l) ∈ Sol.m : x.l 	= n
∧�(n, y.r) ∈ Sol.m : x.r 	= n})

An isolated mapping (x, y) between nodes/edges is invalid and thus not consid-
ered for estimating the similarity of x, if another node n/edge e was already
mapped to y. With respect to isolated edge mappings, it is required that if the
left/right node of the edge was already mapped to another node n, the mapping
must correspond with the node mapping that is prerequisite for the edge map-
ping. For the given example graphs, a mapping (n11, n21) ∈ Sol.m invalidates
e.g. the isolated mappings (n12, n21) and (e15, e23). Regarding case-oriented
mapping mode, hIII(Sol) is slightly modified analogous to hIIC (Sol).

3.4 Heuristic-Based Element Selection

Besides the heuristic, the selection of the next element to be mapped is essential
for the A* search and has a significant impact on the performance. If the next
element is mapped with a high similarity, the expanded solution is ranked in
front of the priority queue. For this reason, we propose to use the estimated
similarities from the heuristic. The new select function first selects the element
whose best-possible mappings are rated with the highest similarity. If several
of such elements exist, the element is chosen with the smallest number of best-
possible mappings. If still several elements remain, the element is chosen ran-
domly according to an internal id analogous to selectII(Sol). In contrast to
selectII(Sol), edges are not preferred over nodes. However, if an edge x is selected
with respect to the new criteria but the linked nodes have not been mapped yet
(x.l ∈ Sol.N ∨ x.r ∈ Sol.N), such nodes are mapped first. The select-function
is formalized as follows:

selectIII(Sol)
x = selecthIII

(Sol.N ∪ Sol.E);

if x ∈ Sol.E ∧ x.l ∈ Sol.N then
return x.l;

else if x ∈ Sol.E ∧ x.r ∈ Sol.N then
return x.r;

end

return x;

Here, selecthIII
(Sol.N ∪ Sol.E) determines the best graph element (node or

edge) to be mapped with heuristic hIII regarding the criteria mentioned above.

4 Experimental Evaluation

The evaluation is structured in two experiments. In the first experiment, we
evaluate the performance of the A* variants without pruning the solution space.
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Consequently, the measures ensure that the obtained graph similarity is the
global optimum. We compare the A* variants regarding the computation time
and the maximum number of solutions in the priority queue as an indicator of
memory consumption. In the second experiment, we enable pruning and com-
pare the best performing A* variant from the first experiment with the baseline
approach A*II. We compare the computation time and the similarity error for
different size limits of the priority queue.

The experiments are conducted with a set of 40 sandwich recipes represented
as semantic workflow graphs1 such as the graph depicted in Fig. 1 showing the
smallest workflow graph from the case base. In both experiments, all pairwise
similarities are computed between the graphs (i.e., each graph is used once as
query) resulting in a total of 1600 computations. The similarity values of the
graph pairs range from 0.0758 to 1.0 with an average of 0.4331. Table 1 shows
the quantities of graph elements in the case base. Even though the workflow
graphs have a particular structure such as a single workflow node, we note that
the improvements are largely independent of specific graph characteristics.

Table 1. Workflow graph elements in the case base

Size Workflow
nodes

Task nodes Data
nodes

Part-of
edges

Control-flow
edges

Data-flow
edges

Min 30 1 4 4 8 3 10

Median 72 1 8 12 20 7 24

Max 148 1 20 17 37 19 54

Avg 77 1 10 10 20 9 27

We implemented all A* variants in Java for the ProCAKE framework [3].
Each similarity computation is run on a new Java Virtual Machine (JVM)
instance to minimize the effects of JVM runtime optimizations. The experi-
ments are run on a computer with a 2.1 GHz processor and each JVM may use
a maximum of 80 GB of memory, which does not constitute a restriction.

4.1 Similarity Computation with Ensured Optimality

In the first experiment, we investigate the impact of each single A* improvement
and their combination on the performance of the similarity computation. Per-
formance is assessed with respect to the computation time and the maximum
number of solutions in the priority queue as an indicator of memory consump-
tion. We test the following hypotheses:

H1a Search Space Reduction improves the avg. performance of A* variants.
H1b Adaptive Mapping Orient. improves the avg. performance of A* variants.

1 For implementation details, please refer to [3].
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H1c The avg. performance of A*III variants (using the more informed heuris-
tic) is better than that of A*II variants.

H1d Heuristic-based Element Selection improves the avg. performance of A*III
variants.

In this experiment, the solution space is not pruned by limiting the priority queue
size, which ensures that a global optimum is found. However, a timeout of 120 s
is set for each computation. We tested all combinations of the various improve-
ments, resulting in a total number of 12 A* variants. A*II is used as baseline and
can be extended with Search Space Reduction (R) and Adaptive Mapping Orien-
tation (M). The new A* variant A*III that uses the more informed heuristic can
be combined with improvements R, M, and also with Heuristic-based Element
Selection (S).

Fig. 3. Performance of A* variants

Figure 3 shows the number of computations (line chart) completed before
the specified timeout of 120 s was reached. It also shows the maximum size
of the priority queue (box plots) recorded in that time span for each of the
1600 computations. With no A* variant all computations could be finished.
Comparing the baseline A*II with the fully supplemented variant A*III-RMS,
three times more computations completed and the maximum size of the priority
queue is about ten times smaller. The numbers indicate that A*III variants
expand considerably less solutions resulting in much smaller priority queues and
hence in a lower memory consumption than that of the A*II variants. The 436
computations completed with A*II took 13.07 s and required a maximum queue
size of 1,175,633 in average while the 1298 computations completed with A*III-
RMS took 8.78 s and a maximum queue size of 96,714 in average. Consequently,
the baseline measure is clearly outperformed.

The results also indicate that each improvement positively affects the per-
formance of A* variants. Search Space Reduction (R) considerably increased
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the number of completed computations for A*II variants but does not affect
or slightly reduces that of A*III variants. However, it reduces the maximum
queue size for every A* variant. Adaptive Mapping Orientation (M) has a higher
positive impact on both A*II and A*III variants regarding the completed com-
putations at the cost of an increased queue size. However, in combination with
Heuristic-based Element Selection (S) it reduces the queue size. Heuristic-based
Element Selection (S) itself results in an increased number of completed compu-
tations and reduced maximum queue size for the A*III variants. All in all, we
see hypotheses H1a to H1d confirmed.

4.2 Similarity Computation Without Ensured Optimality

The second experiment addresses the similarity computation with a pruned solu-
tion space. Pruning becomes particularly necessary for large graphs due to the
high memory consumption of the A* search. As pruning may cause a similarity
error, we investigate the impact of different queue size limits on the accuracy in
this experiment. We expect that the error decreases for higher limits of the pri-
ority queue. We compare the best A* variant from the previous experiment, i.e.,
A*III-RMS, with the baseline A*II regarding the computation time and simi-
larity error for different queue size limits. We formulate the following hypotheses
for the experiment:

H2a The accuracy of A*III-RMS is higher than that of A*II for a similar avg.
computation time.

H2b The memory consumption of A*III-RMS is lower than that of A*II for a
similar avg. computation time.

For each query graph, we store the highest similarity value obtained from all
computations as the global optimum for assessing the similarity error. We do
not set a timeout since computation time is restricted by the queue size limit.

Figure 4 depicts the results for selected queue size limits. The box plots show
the similarity errors (top left) and the computation times (top right) for different
queue size limits. For A*III-RMS with queue size limit of 10.000 four extreme
outliers (with a maximum value of 642) are cut off. The graphs below plot the
similarity error over the computation time (bottom left) and the computation
time over the queue size limit (bottom right).

It can clearly be seen, that A*III-RMS outperforms A*II regarding the sim-
ilarity error in terms of accuracy for similar average computation times. Con-
sequently, H2a is confirmed. It is apparent that the similarity errors of A*II
deviate more strongly than that of A*III-RMS, independent of the tested queue
size limits. For a queue size limit of one, A*III-RMS has an average similar-
ity error of 0.01 and a maximum error of 0.9 which seems acceptable for some
use cases particularly in consideration of the computation times and errors with
larger queue size limits. We observed that the queue size limit of A*III-RMS
must be chosen about five to ten times smaller than that of A*II for achieving
a similar computation time in average. Consequently, A*III has a considerably
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Fig. 4. Similarity error and computation time for different queue size limits

lower memory consumption than A*II, which confirms H2b. The computation
time increases proportionally to the queue size limit. For A*III-RMS, the com-
putation time increases more strongly for larger queue sizes in contrast to A*II.

5 Conclusion and Future Work

In this paper, we presented an improved similarity measure for assessing the
similarity of semantic graphs whose labels are composed in an object-oriented
manner. For such graphs, the efficient similarity computation is particularly
challenging since their similarity is affected by structure and semantics. The
measure discussed in this paper is based on A* search and is particularly suited
for case-based reasoning as it can be combined with knowledge-intensive local
similarity measures and outputs similarities and corresponding mappings usable
for explanation and adaptation. We presented four complementary improvements
that are suitable for enhancing the computation time and memory consumption
of the similarity computation. We also demonstrated that the improvements
considerably increase the accuracy of computations with pruned solution space.



A*-Based Similarity Assessment of Semantic Graphs 31

In a next step, we plan to add an additional parameter to the measure for
completing the A* search within a certain period or with limited memory con-
sumption. Based on the given limits, the A* search is performed with minimal
pruning that can be intensified dynamically if required. In future work, we also
plan to integrate this measure with different retrieval approaches. For instance,
Bergmann and Gil [2] presented a parallelized A*-based retrieval approach that
enables to compute the top k graphs from the case base without fully computing
the similarity for all graphs. To this end, the search process is parallelized for all
graphs and the search terminates, when at least k searches have terminated and
when the similarity of the k-best graphs is higher than all f-values of the remain-
ing computations. The integration of the improved measure with MAC/FAC
retrieval approaches seems also promising for performing knowledge-intensive
similarity computations in an efficient manner.
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Abstract. Our objective is to develop an approach based on case-based
reasoning that detects and handles unforeseen deviations that occur in
flexible workflow execution. With a case-based approach we aim at sup-
porting the continuation of a deviant workflow execution by utilizing
successfully completed processes, where similar deviations emerged. As
a first step, this work introduces a novel similarity measure based on
time sequence similarity that is able to compare running and completed
workflow instances. We implemented and evaluated our approach in the
ProCAKE framework. The proposed similarity measure achieves promis-
ing results considering runtime and similarity assessment.

Keywords: Knowledge management · Process management ·
Case-based reasoning · Flexibility by deviation

1 Introduction

Digitalization is advancing in today’s business. Small and medium-sized enter-
prises (SMEs) appear to be lagging behind compared to large companies.
Process-aware information systems [1] are well established for standardized pro-
cesses, but they lack support for flexibility, which is often required in SMEs and
may lead to competitive advantages. Additionally, in SMEs there are often few
experts who are responsible for certain processes. The knowledge about how
things are done is implicit, not stored digitally and information is often only
shared orally. These experts usually deviate and perform processes due to their
expertise and experiences without losing control or missing the objective, but
rather optimizing the process [19]. Tracing these processes automatically and
using them for process control may simplify the transfer and preservation of
“best practices”. This in turn may lead to an increase of efficiency and enhanced
assistance possibilities especially for inexperienced users. Furthermore, bypassing
the system and thus a loss of knowledge and transparency is prevented.
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A main characteristic of an adequate approach for SMEs is to allow unex-
pected deviations and support unforeseen changing circumstances. Thereby, the
key challenge is to determine how to continue with the workflow, while still
achieving a successful completion. Existing approaches either require a manual
handling of upcoming deviations or an extensive modeling of expert knowledge,
resulting in a large effort for knowledge acquisition and leading to high costs
for maintenance [2,5,7,8,15,19,21]. To avoid these disadvantages we propose to
utilize past experiences, more specifically, successfully completed processes that
contain similar deviations. Applying case-based reasoning (CBR) seems to be
promising, as previous made experiences are exploited for adapting to unknown
situations. Our objective is to develop an approach based on CBR that handles
deviations that occur in flexible workflow execution, but still guides the user
by recommending adequate work items. As a first, but important step into this
direction, this paper presents a novel similarity measure based on time sequence
similarity that is able to compare running and completed workflow instances.

In the next section, we introduce the notions of workflow flexibility and devi-
ation management as well as our pursued approach. Related similarity measures
are sketched in Sect. 3. Our proposed similarity measure is presented in Sect. 4,
while an evaluation of our concept is outlined in Sect. 5.

2 Deviation Management for Flexible Workflows

In this section our previous work on workflow flexibility and its limitations will be
presented, before we introduce the idea of a case-based deviation management.

2.1 Workflow Flexibility

Flexible workflows have been focused in research for more than a decade [18].
Four different flexibility principles are distinguished [18]. Flexibility by Design,
Change and Underspecification either require an entire awareness about all pos-
sible upcoming situations at design-time in order to manually model all possible
alternatives, or a remodeling of the workflow is necessary at run-time. Flexibility
by Deviation in contrast “is the ability for a process instance to deviate at run-
time from the execution path prescribed by the original process without altering
its process definition” [18]. Hence, the user is able to execute tasks that are not
suggested as next activity, as the work list is only seen as a guideline. Thus, single
instances may not fit to the process model. We therefore explicitly distinguish
between modeled workflow, denoted as de jure and executed workflow, called de
facto [1]. This, however, raises the problem of deciding how to continue with the
deviating workflow to achieve a successful completion. To solve this problem we
developed a workflow engine that facilitates flexibility by deviation.

2.2 Constraint-Based Workflow Engine

During the SEMAFLEX [11] and the SEMANAS [12] project we developed a
flexible workflow engine based on constraints. We presented an approach [9], that
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allows flexible deviations from prescribed workflows, but still maintains control
and recommends valid work items to some extent.

The proposed method is applied to imperatively modeled block-oriented
workflows, which additionally comprise semantic information. Block-oriented
workflows are constructed through a single root block element, which in turn
consists of a single task node, a sequence of two block elements or a control-
flow block. Start and end of control-flow blocks are clearly defined through
control-flow nodes, of which three different types exist (type ∈ {+,×, ◦}). These
workflows are represented as semantic graphs (denoted as NESTGraph), where
nodes and edges additionally link to semantic descriptions [3]. Figure 1 shows an
excerpt of the workflow, which we further on used for evaluating our approach.

This workflow consists of six task nodes (blue rectangles), three data nodes
(ovals), two control-flow nodes (red rhombuses), which represent an exclu-
sive block (“×”), and one workflow node (blue rhombus). Additionally, the
edges denote either control-flow (solid black lines), data-flow (solid grey lines,
input/output relation) or part-of edges (dashed lines). Furthermore each node
is associated with a semantic description (grey rectangles), which contains addi-
tional information, e.g. data node d3 is assigned a name “volume” with a value
of “1000000”.

In our approach [9] we transform these imperative workflow models into
declarative constraints, which indicate temporal dependencies between task acti-
vations, to be able to determine task activations and thus possible executions
in a specific state of the workflow. A constraint satisfaction problem (CSP) is
constructed on the basis of these generated constraints and logged task enact-
ments. A solution of the CSP is searched for, which represents a valid enactment
sequence of all tasks. Thus, with a CSP solution we are able to recommend which
task to execute next. As we only trace task executions, deviations from this pre-
scribed work list are permitted. Ideally, the user decides to do something else
if s/he is sure that this is more appropriate in this specific situation than what
the de jure workflow proposes. In such a case, constraints are violated but they
can be retracted easily and fast at run-time in order to restore consistency. By
regarding the remaining constraints, valid solutions can be computed and thus,
the workflow engine is re-enabled to recommend further work items to complete
the workflow.

However, a categorization of deviations and their cause is not considered until
now. Several strategies for resolving inconsistencies and their limitations have
been presented in [10]. Consider the example in Fig. 2, where the left upper row
shows the initial situation and the second row represents the following step with
an additionally executed task. Rectangles indicate tasks and edges represent
the execution order. Blue-filled nodes were already executed, green ones are
currently recommended and colorless nodes are not activated yet. In the left
lower row there is an executed task, which is not in a valid order, thus a deviation
occurred (marked in orange). The cause of the violation is not explicit without
semantic knowledge and there may be different reasons and consequences. Tasks
should be skipped either due to becoming obsolete or due to being executed but
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Fig. 1. Exemplary block-oriented semantic workflow graph (Color figure online)

without notice of the system (cf. a) in Fig. 2). Alternatively, task order should
be adopted due to unknown reasons according to b) in Fig. 2.

This scenario is a simple type of deviation, but nevertheless requires a deci-
sion about which resolving strategy to apply. Besides, deviations might lead to
additional deviations or might be more complex, which makes it impossible to
determine similar strategies to handle all possible scenarios. Several approaches
to deviation management exist, that utilize rules or knowledge which is specified
beforehand [2,5,7,8,15,19]. CBRFlow [21] is a system that exploits conversa-
tional CBR to react to unexpected deviations. Business rules are used to model
workflow run-time changes and may then be recommended in similar situations.
To handle deviations, these approaches either require user interaction or domain
knowledge resulting in a significant acquisition effort and limited usability.

Fig. 2. Example sequential workflow with deviation and different interpretation

2.3 Case-Based Deviation Management

Our aim is to construct methods that can be applied in an automated manner
and support the user without the need of manual intervention or prior knowl-
edge acquisition. Therefore we focus on CBR as a technique to overcome the
previously mentioned disadvantages. With a case-based approach we expect to
support workflow continuation after a deviation by recommending adequate work
items on the basis of similar cases. The overall approach is sketched in Fig. 3.

Case. As cases we regard all de facto workflows and their corresponding de jure
workflow. The de jure workflow is block-oriented and the de facto workflow
is a simple sequence of tasks, which were traced at run-time. This includes
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workflows with deviations as well as without deviations, as both cases might
be useful for task recommendation.

Query. A running workflow instance, i.e a de facto workflow which is not com-
pleted yet, will be used as the query. This instance is a subsequence of a
completed de facto workflow and contains at least one deviation (see orange-
coloured node in Fig. 3) concerning its de jure workflow that occurred at the
time of the request. The associated de jure workflow is also available.

Deviation Management. All phases of the CBR cycle are important for a
holistic view of deviation management and lead to a self-learning system.

Retrieve. With an adequate similarity measure we aim at searching for similar
de facto workflows whose subsequences match the current instance, containing
a similar deviation compared to the query.

Reuse. This most similar case or even several similar cases might then be used
to recommend tasks that were successive to the subsequence ending with the
deviation (see green-coloured nodes in Fig. 3). In some circumstances, a simple
transfer of the solution will not be reasonable, but rather an adaptation of
the recommended remaining workflow part might be necessary.

Revise. As tasks are only recommended , the user is still able to execute a task,
which was not part of the solution resulting from the reuse step. Thus, by
continuing the query workflow, the solution might be revised.

Retain. When the query workflow has successfully terminated, its de facto work-
flow, containing the actual execution, can be integrated in the case base.

In this paper we focus on the retrieval phase and present a similarity mea-
sure that is necessary for this case-based approach. The de facto workflows that
are compared are perceived as time series that consist of tasks with additional
semantic information. Therefore an adequate similarity measure based on time
sequence similarity is searched for.

Fig. 3. Case-based approach for handling deviations (Color figure online)
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3 Similarity Measures for Time Series

Two basic approaches of similarity measures for time series can be identified in
literature. Either the series are transformed into a representation format, such
as an n-dimensional vector, which then is compared, or the algorithm finds an
alignment between both series which is then assigned a similarity score by aggre-
gating local element similarities. Three promising approaches will be introduced
in more detail in this section.

3.1 Dynamic Time Warping

Dynamic time warping (DTW) was originally developed to properly align dis-
torted time series data collected from voice recordings [4,17]. Contrary to sim-
ple euclidean distance, which only evaluates distances between elements with
the same timestamps, DTW allows elements to be warped onto elements with
different timestamps. It therefore is resistant to compression and stretching.

Natively, DTW was defined using distance functions, however, since distances
can be losslessly converted into similarity scores, we will present the algorithm
using a similarity function. Given two sequences v and w with elements vi (i =
1, . . . ,m) and wj (j = 1, . . . , n) to be compared, their leading elements are first
set to a null value: v0 = w0 = − . The scoring matrix H is then constructed in the
following way. Its first row and column are initialized to zero: H0,j = Hi,0 = 0
for j = 0, . . . , n and i = 0, . . . ,m. Every other cell’s value can be calculated by
the recursive function Hi,j :

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi,j−1 + sim(vi, wj), step horizontally
Hi−1,j−1 + 2 ∗ sim(vi, wj), step diagonally
Hi−1,j + sim(vi, wj), step vertically
0

A cell (k, l) in the matrix is interpreted to hold the similarity score between
the subsequences v1v2 . . . vk and w1w2 . . . wl. In the fully constructed matrix, we
must therefore select the cell with the maximum score - representing the final
similarity value between best matching subsequences - and backtrack in the
inverted direction of each cell’s original calculation. Every cell (i, j) contained in
the path through the matrix represents a warp from element vi onto wj .

3.2 Smith-Waterman-Algorithm

Another adoption of finding subsequence alignments is the Smith-Waterman-
Algorithm (SWA) [20]. Inspired by the Levenshtein distance, the alignment is
found by successively either matching, inserting or deleting elements from one
series with regard to the other.

Initialization of the scoring matrix is conducted equivalently to DTW, how-
ever, the scoring function itself differentiates the two approaches. Horizontal and
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vertical steps in the matrix represent either deletion or insertion (indels) of an
element, while diagonal steps are interpreted as aligning two elements. There-
fore, a penalty scheme must be introduced that assigns a negative score to any
indel operation (cf. penaltyInsertion and penaltyDeletion). The scoring matrix
is constructed in the following way:

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi,j−1 + penaltyInsertion(bj), insertion
Hi−1,j−1 + sim(ai, bj), match/mismatch
Hi−1,j + penaltyDeletion(ai), deletion
0

Again, the highest score in the matrix represents the obtained similarity value.
However, the path found by backtracking in the matrix must be interpreted
differently. In contrast to DTW, only cells that originated from diagonal steps
represent an alignment of those elements. Horizontally and vertically created cells
represent insertions and deletions with regard to sequence v. This utilization of
indel operations makes the measure very noise-resistant.

In addition to the similarity score, both DTW and SWA find series alignments
which can be further exploited in the reuse phase of CBR. Their main difference
is the interpretation of the found alignment path. SWA considers sequences to
be equal if one is a subsequence of the other, whereas DTW considers sequences
as equal if they are simply stretched or compressed versions of each other. The
construction of quadratic matrices results in O(n2) comparisons. This however
can be significantly lowered [14].

Zarka et al. [23] adopt SWA for an approach called trace-base reasoning.
They utilize this method in order to find suggestions for workflow continuation
in a mobile video editing suite by also incorporating a CBR approach. However,
the context of deviations is not considered by the authors.

3.3 Weighted Vector Similarity

Contrary to the other two approaches which find series alignments by directly
comparing the sequences, a similarity measure introduced by Gundersen [13]
transforms the sequences into a vector representation. It is based on the assump-
tion that recent tasks are most important when comparing processes.

Originally, this measure was defined on event sequences. Therefore we define
the end of each task to be an event. Given n events, the sequence A is then
transformed into a vector VA = (w1, w2, ..., wn) with weights wi depicting each
event’s importance in A based on its temporal position posi, calculated as follows:

wi =
1

2
end−posi

h

(1)

The halving distance h specifies the distance to the end where the events’ impor-
tance is one half. Those weighted vector representations can now be compared
by utilizing measures such as cosine similarity and relative component fraction.
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The main strength of this measure is its efficiency having a computational
complexity of only O(n). Major drawbacks however include that it is not able
to consider semantic similarity and can only compare entire sequences.

4 Similarity Measure for Deviating Workflows

In this section we first sketch specific properties of flexibility by deviation that are
important for determining similarity. A pre-processing of the cases is described
subsequently. Finally, the developed algorithm for similarity assessment1 which
is based on the previously presented approaches is introduced in detail.

4.1 Characteristics of Similarity for Deviating Workflows

The similarity measure has to deal with a subset relation between query and
case, as the de facto workflow of the query has not terminated yet, whereas the
de facto workflows of the cases are complete.

Another important aspect of the pursued similarity is that under certain
conditions some mismatches of subsequences of case and query should have low
or rather no influence on the similarity score. This refers to two aspects. On
the one hand, we assume that differences with a greater temporal distance to
the occurrence of the deviation should have a lower impact on the similarity.
Therefore a weighting function will be included in the final similarity measure.

On the other hand, we incorporate a property of case and query which we
call model-consistency. Any de facto workflow or any subsequence of a de facto
workflow without a deviation, but conforming to the de jure workflow is denoted
as model-consistent. In some cases, if case and query contain the same deviation
but additionally differ in some other prior subsequences, which are both model-
consistent, this difference might be ignored if it is not related to the deviation.

4.2 Pre-processing of the Case Base

The pre-processing algorithm is used to determine irrelevant workflow blocks
in case and query which are excluded from similarity assessment by deleting
these subsequences prior to comparison. This results in reduced cases and thus,
a potentially less complex and faster similarity assessment. Furthermore, pre-
processing can be done beforehand such that retrieval time is not affected but
rather enhanced. As prerequisite, case and query need to be based on the same
de jure workflow such that those subsequences might be deleted that belong to
corresponding parts. This is necessary for a reasonable and meaningful compar-
ison of reduced case and reduced query. As our overall approach is limited to
block-oriented workflows we exploit the block structuring for this purpose. The
pre-processing algorithm prepares the case base with further information which
is used when a query arises. An example is presented in Fig. 4.
1 An implementation is included in the ProCAKE framework V1.2 and publicly avail-

able under http://procake.uni-trier.de.

http://procake.uni-trier.de


A Time-Series Similarity Measure for Case-Based Deviation Management 41

Fig. 4. Exemplary pre-processing (Color figure online)

Step 1. First, the nodes of the de jure workflow of each case are labeled.
Every control-flow node pair, i.e. split and join node, is assigned a unique
id, bid ∈ blockids ⊂ N, and each task node t is labeled with certain informa-
tion. This includes the operator of the nearest preceding control-flow node
opt ∈ {+,×, ◦, \} that can be any type of control-flow node or “\”, which
denotes the highest level where tasks are not nested in a control-flow block.
Furthermore, a set of ids, idst ∈ P(blockids), of all preceding control-flow
split nodes that have not been joined until the currently regarded task node
is added to denote the position concerning levels of nested workflow blocks.

Step 2. These labels are subsequently transferred to all corresponding de facto
workflows of the cases. This can be done easily, since each task node in the
de facto instance contains a reference id of the specific task of the de jure
workflow.

Step 3. Model-consistency can be checked for each de facto workflow. For each
bid ∈ blockids the set of task ids TB = {t|bid ∈ idst} is extracted from the
de facto workflow, preserving their sequential order, and validated by the
constraint-based workflow engine. Every bid of consistent control-flow blocks
is stored in a set consistent ⊆ blockids. In the example in Fig. 4 this is shown
for the case workflow. The sequence for bid = 0 is not model-consistent,
as a deviation is included (cf. position of t5), whereas the subsequence for
bid = 1 is model-consistent and this bid is thus added to consistent. The
same procedure will be applied to the de facto workflow of the query.

Step 4. Prior to similarity assessment, query and cases can be reduced. If any bid
coincides in the set consistent of both query and case, every task t where bid ∈
idst can be deleted from the de facto workflows. Hence, these tasks do not
affect the similarity score. In the example in Fig. 4, bid = 1 ∈ consistentcase =
consistentquery and thus, t2 and t3 are deleted from both de facto workflows.
In this case the omission of tasks of the parallel workflow block is reasonable,
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since the order of the tasks may only differ due to the sequential tracing of
terminated tasks, whereas in reality in both cases tasks t2 and t3 might be
executed in parallel. As the deviation occurs not until after the parallel block,
the difference in the preceding part might have no impact on the deviation
and the right choice to continue. Therefore this partial mismatch is simply
ignored when assessing the similarity.

4.3 Similarity Assessment

As similarity measure we propose a combined approach of the previously men-
tioned techniques to take advantage of each algorithm’s specific strengths. We
adopt a dynamic programming approach, which includes either SWA or DTW,
and extend it by the idea of a weighting function considering temporal ordering.
Furthermore local task similarities include data-flow and semantic information.
The similarity assessment can either be applied to reduced cases or non-reduced
ones. We compare a de facto workflow of the query with m tasks to a de facto
workflow of a case with n tasks.

Local Task Similarity. We define local task similarity simt of a query task qti
and a case task ctj as follows:

simt(qti , c
t
j) =

lt ∗ simN (qti , c
t
j) + li ∗ simdf (inqti

, inctj
) + lo ∗ simdf (outqti , outctj )

lt + li + lo
(2)

This value is composed of task, input and output similarity, each assigned a
respective weight lt, li, lo. simN represents an aggregated similarity score of the
semantic description of the task nodes. simdf describes the similarity of input
and output data nodes respectively. The set of input data nodes of the query
inqti

is compared to the set of input data nodes of the case inctj
by finding the

best possible mapping. The same is applied to the sets of output data nodes
(outqti , outctj ). These three local similarities are finally summed up and normal-
ized by the sum of all weights.

Scoring Matrix. The scoring matrix that combines either SWA or DTW with
a temporal distance factor and the presented local similarity is defined as follows:

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi−1,j−1 + wTempi ∗ ALGi,j(diagonal),
Hi−1,j + wTempi ∗ ALGi,j(vertical),
Hi,j−1 + wTempi ∗ ALGi,j(horizontal),
0

(3)

As starting point the first row and column are initialized to 0, ∀j : 0, . . . , n :
H0,j = 0 and ∀i : 0, . . . ,m : Hi,0 = 0. The stepping function ALGi,j differs
depending on which algorithm is used. Equations 4 and 5 show both variants.
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SWAi,j(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

simt(qti , c
t
j) if x = ’diagonal’,

penaltyDeletion(qti) if x = ’horizontal’,
penaltyInsertion(ctj) if x = ’vertical’,
0 otherwise

(4)

DTWi,j(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 ∗ simt(qti , c
t
j) if x = ’diagonal’,

simt(qti , c
t
j) if x = ’horizontal’,

simt(qti , c
t
j) if x = ’vertical’,

0 otherwise

(5)

This score is further multiplied by the weight depending on temporal distance.
Therefore, Eq. 1 will be adapted as follows. Here, m is the length of the query,
as this serves as baseline for the similarity calculation. The halving time as a
parameter is assigned a value h ∈ [0,m].

wTempi =
1

2
m−i

h

(6)

Similarity Score. The non-normalized overall similarity score simraw can be
obtained by searching for the largest value in the last row of the matrix. By
limiting this search to Hm,j for 0 < j ≤ n, it is ensured that the found alignment
always ends with the last task of the query, thus, simraw = Hm,k with Hm,k >
Hm,j for all j ∈ {0, . . . , n}\{k}.

To normalize the obtained score, it must be divided by the maximum possible
score with regard to the query. In SWA, local positive similarity values are only
aggregated when stepping diagonally in the matrix, hence, the maximum possible
score can be calculated by finding the amount of diagonal steps in the alignment.
In contrast, DTW adds a positive value to the score when stepping in either
direction. Let align = {(0, 0), . . . , (m, k)} denote all cells from the alignment
path. Let diag = {(i0, j0), . . . , (ip, jp)} ⊆ align denote all cells that originated
from a diagonal step and let other = align\diag denote all other assignments.
Normalized similarity is then calculated as follows:

simSWA
defacto(q, c) =

simraw
∑

(i,j)∈diag

wTempi
(7)

simDTW
defacto(q, c) =

simraw
∑

(i,j)∈diag

2 ∗ wTempi +
∑

(i,j)∈other

wTempi
(8)
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5 Evaluation

We evaluated our method by comparing it to a baseline approach. Bergmann
and Gil, who developed the NESTGraph formalism, presented a graph-based
similarity measure for modeled workflows [3]. They utilize heuristic A* search in
order to find a mapping m that assigns nodes and edges from graph A to nodes
and edges of graph B. Given such a legal mapping m, local similarities between
the mapped elements are calculated and aggregated into a global similarity score.

While many related approaches have been researched [6,16,22] that all utilize
workflow mappings, the method presented by Bergmann and Gil constitutes
an exception to these mostly infeasible proposals for searching the mappings.
Therefore, their A* approach will serve as the baseline similarity algorithm.2 We
want to show that our approach outperforms A* both regarding the obtained
ranking when a retrieval is performed, and regarding overall retrieval times. To
validate this, three hypotheses are considered:

H1 For every query instance, our approach will retrieve the best case from the
case base at a higher or equal rank compared to the A* approach.

H2 Using pre-processing, rankings will be as high or higher than without.
H3 Our overall retrieval times are significantly lower than those of A*.

As prerequisite, we must clarify how we identify the best case from the case base
for each query. Through communication with field experts, we modeled a realistic
de jure workflow, based on a credit grant process, consisting of 31 task nodes,
18 data nodes and 4 control-flow blocks. As queries, non-terminated workflow
instances were created which contain at least one deviation at the end with
regard to the process model. Based on a pool of realistic deviations, randomly
chosen ones were further included in the queries.

Then, a matching best case was constructed for every query through inser-
tions of tasks leading to the termination of the query workflow. Additionally,
not more than three deviations from the pool which are not included in the
query have been added to this case. However, model-consistent passages may
have been replaced with different but still model-consistent passages in order to
evaluate pre-processing. Those generated instances were then inserted into the
case base. Thereby, each query is associated with exactly one best case. The case
base was filled up with additional 27 cases, each of which contains at least as
much deviations with regard to every query as their respective best cases.

We performed a simple linear retrieval using the A* approach and our
approaches with and without pre-processing for every query, respectively. Each
retrieval produces a ranking of the cases based on their respective similarities to
the query. The rank of each query’s best case is shown in Fig. 5. In 50% of the
retrievals, A* performs as well as at least two configurations of our approaches.

2 Note that, in contrast to our approach, A* additionally searches for mappings
between the two graphs’ edges which accounts for approximately half of the run-
times. Furthermore, due to resource restrictions, the search queue is limited to 10000
entries which may hinder the algorithm from finding the overall best mapping.
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However, in the other half, it produces significantly poorer results. In no case
does it outperform all of our approaches regarding the ranking. Thus, hypothe-
sis H1 is approved. Most of the time it does not matter whether pre-processing
was applied or not. Only in queries 6 and 14, the utilization of pre-processing
improves the rankings significantly. There are also queries (5,11,13) where it may
even impair the results. However, with the exception of query 11, this is due to
already poor results of DTW when no pre-processing is being applied. Thus,
hypothesis H2, only holds partially.

The retrieval times of the approaches differ by several orders of magnitude
even after correction for edge mapping. In our sample, mean retrieval time using
SWA or DTW was 45 ms in contrast to A* taking 13437 ms on average3. Pre-
processing can reduce runtimes even further. This shows a significant advantage
of our approach and verifies hypothesis H3.

Fig. 5. Similarity ranking for best matching cases (Color figure online)

6 Conclusion and Future Work

We presented an approach for a case-based deviation management in the context
of flexible workflow execution. In this paper we focused on the retrieval phase and
therefore proposed a similarity measure that is able to compare completed and
running workflow instances where a deviation occurred. Therefore we utilized
time sequence similarity enhanced by a weighting factor that determines the
temporal distance to the deviation. Furthermore, we presented a pre-processing
method for the case base in order to ignore differences that result from the
simple sequential tracing of tasks in the de facto workflows. We implemented
the developed algorithms in ProCAKE and evaluated our similarity measure in

3 Retrieval time of the A* approach was corrected for edge mapping which accounts for
approximately halve of the runtime. The experiments were conducted on a personal
computer with an 8-core Intel Core i7-6700 CPU @3.4 GHz and 32GB of RAM.
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comparison to a graph-based mapping algorithm based on A* search. The run-
time and similarity assessment comparison shows promising results. As we aim
at supporting workflow continuation with a retrieved similar case, an evaluation
of usefulness is still pending. Therefore recommended tasks after the deviation,
resulting from the most similar case, need to be rated.

Furthermore, as future work the remaining phases of the CBR cycle that were
not considered in detail until now, but rather briefly sketched, will be investi-
gated. Adaptation methods will be developed in order to increase the suitability
of the solution for the query. Therefore the existing constraints that are processed
by the workflow engine, will be taken into account, as they represent the de jure
workflow, actual information about the de facto workflow as well as additional
semantic information, e.g. state of the constraints (valid vs. violated).

Additionally, the application of the presented pre-processing algorithm needs
to be refined. The results of the evaluation already indicate that the reduc-
tion cannot be applied reasonably in every condition, but rather needs to be
weighed. The decision, whether model-consistency should be more important
than regarding additional differences between case and query, should rather be
made based upon the de jure workflow. Data-flow dependencies could be taken
into account or a manual decision about which workflow block simply needs to
be model-consistent during case comparison, for example depending on the type
of control-flow block (parallel vs. exclusive), could be considered. In case of an
exclusive block, the reduction would result in equal treatment of excluding task
executions, even if they possibly have a totally different impact on the deviation
or rather on the continuation after the deviation. A concept for deciding in which
circumstances reduction of case and query is appropriate will be elaborated.

Acknowledgements. This work is part of the research project SEMANAS and
is funded by the Federal Ministry of Education and Research (BMBF), grant no.
13FH013IX6.

References

1. van der Aalst, W.M.P.: Business process management - a comprehensive survey.
ISRN Softw. Eng. 2013, 1–37 (2013)

2. Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic,
extensible and context-aware exception handling for workflows. In: On the Move to
Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM
Confederated International Conferences, Vilamoura, Portugal, 25–30 November
2007, Proceedings, Part I, pp. 95–112 (2007)

3. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workflows. Inf. Syst. 40, 115–127 (2014)

4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: KDD Workshop, vol. 10, pp. 359–370 (1994)

5. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of
exceptions in workflow management systems. ACM Trans. Database Syst. 24(3),
405–451 (1999)



A Time-Series Similarity Measure for Case-Based Deviation Management 47

6. Dijkman, R., Dumas, M., Van Dongen, B., Krik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)
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Abstract. Stroke is a medical condition where poor blood flow to the
brain may result in cell damage, possibly leading to patient’s death or
disability. Acute stroke care is best performed in dedicated and well-
organized centers. Medical process trace classification can support stroke
management quality assessment, since it allows to verify whether better-
equipped Stroke Centers actually implement more complete processes,
suitable to manage complex patients as well. In our previous work, we
developed a semantic similarity metric able to compare process traces. In
this paper, we adopt such a metric to perform k-Nearest Neighbour (k-
NN) classification in the field of stroke management; moreover, we present
an alternative classification approach based on deep learning techniques.
Experimental results have shown the feasibility of deep learning classifi-
cation for stroke management quality assessment, which performed better
than the application of the semantic similarity metric. Improvements and
future research in this direction will therefore be considered. Difficulties
in classifying patients treated in less-equipped hospitals also suggest to
identify and manage possible organizational problems.

Keywords: K-NN classification · Deep learning · Process traces

1 Introduction

A stroke is a medical condition where poor blood flow to the brain can result
in cell death. Approximately 1.1 million inhabitants of Europe suffer a stroke
each year and, because of the aging population, the absolute number of stroke
is expected to dramatically increase in the near future: by 2025, 1.5 million
European people will suffer a stroke each year [5].

Acute stroke care in hospitals is best performed in organized Stroke Units,
where patient outcomes are better than those of patients managed in general
medical or neurological wards [13].

The European Stroke Organisation (ESO) Stroke Unit Certification Commit-
tee has worked on the definition of evidence-based needs for acute stroke care,
in order to stimulate the certification of more advanced stroke care facilities.
The Committee has thus established 2 certification levels: (1) ESO Stroke Units
(SUs) and (2) ESO Stroke Centers (SCs) [28]. ESO Stroke Centers must meet
c© Springer Nature Switzerland AG 2020
I. Watson and R. Weber (Eds.): ICCBR 2020, LNAI 12311, pp. 49–63, 2020.
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all the requirements of an ESO Stroke Unit, and additionally should provide
more advanced diagnostic and therapeutic equipment, have a larger staff and
have expertise on rare or complex stroke subtypes.

In Italy, the Ministry of Health has codified the two levels of stroke care in
2015, along the lines explained above. However, significant organizational prob-
lems are still observed not only in SUs, but sometimes also in SCs1. Therefore, a
thorough analysis of medical processes is needed, in order to verify if the actual
performance of an hospital is coherent with its declared level.

In this paper, we propose to tackle the above needs by considering stroke
management process traces (i.e., the sequences of activities actually executed on
the single patients at the hospital at hand, and logged in the hospital information
system). Traces can be interpreted as cases [1]; the identification of the k Nearest-
Neighbour (k-NN) cases and k-NN classification (distinguishing between the SU
class and the SC class) can then be implemented, to verify if the logged activities
are coherent with the level assigned to a given hospital, in a quality assessment
perspective.

In particular, we have realized classification according to two different
approaches:

– in the first approach, we have adopted a trace similarity metric, able to take
into account temporal information as well as domain knowledge, that we pub-
lished in recent years [22,23]. By exploiting this metric, we have implemented
k-NN trace classification;

– in the second approach, we have adopted a deep learning strategy [17]. Specif-
ically, we have resorted to an architecture based on Long Short Term Memory
(LSTM) networks [11] to extract deep features from process traces, and to
the Euclidean distance for k-NN classification in this feature space.

The first experimental results obtained by means of the metric in [22,23]
were not very satisfactory. We obtained a good improvement by separating the
SC class into two subclasses, in order to better distinguish between more com-
plex and simpler patients. The analogous separation, however, did not provide
an analogous amelioration in the SU class. Overall, we obtained much better
results (in both experiments) by resorting to the deep learning strategy; indeed,
deep learning techniques are being increasingly adopted and proving successful
in process classification and prediction, as described in Sect. 2. Our first exper-
iments suggest to further investigate in this direction in the future. Difficulties
in classifying traces within the SU class (experienced with deep learning as well)
also suggest to identify and manage possible organizational problems.

The paper is organized as follows: in Sect. 2 we summarize related work. In
Sect. 3 we detail our approaches to stroke trace classification for quality assess-
ment. In Sect. 4 we present experimental results, while Sect. 5 is devoted to
discussion and conclusions.

1 https://www.sanita24.ilsole24ore.com/art/medicina-e-ricerca/2017-04-14/stroke-
unit-merce-rara-strutture-e-personale-dati-lontani-dm-702015-162809.php?
uuid=AEEhud5.

https://www.sanita24.ilsole24ore.com/art/medicina-e-ricerca/2017-04-14/stroke-unit-merce-rara-strutture-e-personale-dati-lontani-dm-702015-162809.php?uuid=AEEhud5
https://www.sanita24.ilsole24ore.com/art/medicina-e-ricerca/2017-04-14/stroke-unit-merce-rara-strutture-e-personale-dati-lontani-dm-702015-162809.php?uuid=AEEhud5
https://www.sanita24.ilsole24ore.com/art/medicina-e-ricerca/2017-04-14/stroke-unit-merce-rara-strutture-e-personale-dati-lontani-dm-702015-162809.php?uuid=AEEhud5
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2 Related Work

The management of processes and process traces is nowadays an established area
of research within the Case Based Reasoning (CBR) community, as testified by
the workshops on Process Oriented CBR (PO-CBR) which have been co-located
with the International Conference on CBR, where the most recent one was held
in 20192.

In particular, process trace comparison has been tackled in, e.g., [12], which
introduces a distance definition able to combine a contribution related to activity
similarity and a contribution related to delays between activities, and in [22,23],
where activity similarity is dealt with in a semantic way (see also Sect. 3.1).

Trace comparison can be adopted to support process prediction/classification
[6], a task which exploits the activities logged in process traces to make predic-
tions about the future of a running trace (such as, e.g., the remaining time to
complete the work, the next activity to be executed, the needed resources), or
to classify the trace on the basis of some categorical or numerical performance
properties (as in our work). Process prediction and classification can be useful
both for a better planning of the needed resources, and for quality assessment,
by means of the identification of non-compliances with respect of the expected
performance.

In the literature, most works in this field are focused on the prediction of
the next activity in a running process trace. While classical business process
management approaches use an explicit model representation such as a state-
transition model [16] or an Hidden Markov Model [14], a more recent research
direction exploits deep learning.

In particular, several authors rely on Recurrent Neural Networks (RNNs) [27],
and more specifically on Long-Short-Term Memory (LSTM) networks [11]. The
idea in RNNs is to preserve the results of previous calculations with memories,
i.e., with feedback connections that provide a parameter sharing across different
parts of the model. In LSTM a cell state, more complex than the memory cell in
basic RNNs, is introduced, where information can be added or removed by gated
structures [11]; this solution reduces the training time. LSTM can potentially
learn the complex dynamics within the temporal ordering of input sequences;
therefore, they are well suited to manage the sequential data of process activ-
ity logs. Specifically, they can also manage long-distance dependencies between
activities. Indeed, in LSTM networks a long-term memory can be implemented,
where the information flows from cell to cell with minimal variations, keeping
certain aspects constant during the processing of all inputs.

In [32], the authors use LSTM networks to predict the type of the next
activity of an ongoing process trace and the time until the next activity (its
timestamp). The network architecture consists of a shared LSTM layer that
feeds two independent LSTM layers specialized in predicting the next activity
and in predicting times, respectively. The experiments show that the LSTM app-
roach outperforms model-based approaches. The work in [8] proposes a different

2 https://iccbr2019.com/workshops/process-oriented-case-based-reasoning/.

https://iccbr2019.com/workshops/process-oriented-case-based-reasoning/
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network architecture which comprises two LSTM hidden layers. An empirical
evaluation shows that this approach sometimes outperforms the approach of [32]
at the task of predicting the next activity. In [7] the authors combine the app-
roach in [8] with the idea of interleaving shared and specialized layers from [32] to
design prediction architectures that can handle large numbers of activity types.
The paper in [10], on the other hand, is more generally devoted to classification.
In this work, RRNs are used in a system designed to solve any classification
problem (including next activity prediction) based on activity sequences.

In [21] the authors propose to predict the next activity using a multi-stage
deep learning approach. In this approach, each activity is first mapped to a
feature vector. Next, transformations are applied to reduce the input dimen-
sionality, by extracting n-grams and applying a hash function; then, the input
is passed through two Autoencoder layers. The main idea behind Autoencoders
is to reduce the input into a latent space with fewer dimensions and then try
to reconstruct the input from this representation. By reducing the number of
variables which represent the data, the model is forced to learn how to keep
only meaningful information, from which the input is reconstructable. In [21],
the transformed input is finally processed by a feed-forward Neural Network
responsible for the next activity prediction.

A different approach [20] relies on Convolutional Neural Networks (CNNs)
[3]. CNNs operate by exploiting multiple convolution operators: a convolution
is an operation which takes a filter and multiplies it over the entire area of
the input. Convolution layers are then followed by pooling layers, meant to
further reduce dimensionality. In particular, in [20] the authors resort to the
inception architecture. The inception architecture [31] uses kernels of varied size
in a convolution layer to capture features at different levels of abstraction: it
processes information at different scales and then aggregates them to efficiently
extract relevant features. The authors have obtained better results in predicting
the next activity with respect to LSTM architectures in their experiments.

Overall, our approach is thus inserted in a very active research panorama,
which is recently focusing on promising deep learning solutions.

Interestingly, deep learning is being progressively considered in CBR research
as well (see, e.g., [4,29]), even if - to the best of our knowledge - not yet for
trace classification/prediction. Our work can therefore be seen as an innovative
contribution in this field.

3 Medical Process Trace Classification

This section presents the technical details of our work.
In particular, Subsect. 3.1 summarizes the main characteristics of the metric,

defined in [22,23], which we have used in this paper for stroke trace classification.
Subsect. 3.2 provides a description of the deep learning architecture we have

tested as an alternative to this classical approach.
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3.1 Classification Through Semantic Trace Comparison

As a first strategy to process trace classification, we have implemented a k-NN
classification approach, resorting to the metric we described in [22,23], which is
a semantic extension of the edit distance [19].

Indeed, every process trace is a sequence of activities, each one stored with
its execution starting and ending times, and an activity is basically a symbol
(plus the temporal information).

In the metric in [22,23], thus, we first take into account activity types, by
calculating a modified edit distance which we have called Trace Edit Distance
[22,23]. As the classical edit distance [19], Trace Edit Distance tests all possible
combinations of editing operations that could transform one trace into the other
one. However, if domain knowledge allows to organize activities in an ontology
or a taxonomy, as we have done in the field of stroke (see Fig. 1), the cost of a
substitution is not always set to 1: indeed, we can adopt a more semantic app-
roach, and apply Palmer’s distance [26], to impose that the closer two activities
are in the semantic structure, the less penalty we introduce for substitution.

Trace Edit Distance traceNGLD(P,Q) is then calculated as the Normalized
Generalized Levenshtein Distance (NGLD) [33] between two traces P and Q
(interpreted as two strings of symbols). Formally, we provide the following defi-
nitions:

Definition 1: Trace Generalized Levenshtein Distance.
Let P and Q be two traces of activities, and let α and β be two activities. The
Trace Generalized Levenshtein Distance traceGLD(P,Q) between P and Q is
defined as:

traceGLD(P,Q) = min{
k∑

i=1

c(ei)}

where (e1, . . . , ek) transforms P into Q, and:

– c(ei) = 1, if ei is an activity insertion or deletion;
– c(ei) = dt(α, β), if ei is the substitution of α (appearing in P ) with β (appear-

ing in Q), with dt(α, β) being Palmer’s distance [26] between the two substi-
tuted activities.

Definition 2: Trace Edit Distance (Trace Normalized Generalized Leven-
shtein Distance).
Let P and Q be two traces of activities, and let traceGLD(P,Q) be defined as
in Definition 1 above. We define Trace Edit Distance traceNGLD(P,Q) between
P and Q as:

traceNGLD(P,Q) =
2 ∗ traceGLD(P,Q)

|P | + |Q| + traceGLD(P,Q)

where |P | and |Q| are the lengths (i.e., the number of activities) of P and Q
respectively.
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Fig. 1. An excerpt from the domain taxonomy.
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The minimization of the sum of the editing costs allows one to find the opti-
mal alignment between the two traces being compared. Given the optimal align-
ment, we can then take into account temporal information. Indeed, starting and
ending times allow to get information about activity duration, as well as qual-
itative (e.g., Allen’s before, overlaps, equals etc. [2]) and quantitative temporal
constraints (e.g., delay length, overlap length [15]) between pairs of consecutive
activities.

In particular, we compare the durations of aligned activities by means of
a metric we called Interval Distance [22,23]. Interval distance calculates the
normalized difference between the length of two intervals (representing activity
durations in this case).

Moreover, we take into account the temporal constraints between two pairs
of subsequent aligned activities on the traces being compared (e.g., activity A
and B in trace P ; the aligned activities A′ and B′ in trace Q). We quantify the
distance between their qualitative constraints (e.g., A and B overlap in trace P ;
A′ meets B′ in trace Q), by resorting to a metric known as Neighbors-graph
Distance [22,23]. If Neighbors-graph Distance is 0, because the two pairs of
activities share the same qualitative constraint (e.g., A and B overlap in trace
P ; A′ and B′ also overlap in trace Q), we compare quantitative constraints by
properly applying Interval Distance again (e.g., by calculating Interval Distance
between the two overlap lengths).

In the metric in [22,23], these three contributions (i.e., Trace Edit Distance,
Interval Distance between durations, Neighbors-graph Distance or Interval Dis-
tance between pairs of activities) are finally put in a linear combination with
non-negative weights.

3.2 Deep Learning Classification

Inspired by existing literature contributions, we have tested a deep learning
approach for stroke trace classification.

In particular, motivated by the successful examples described in Sect. 2 (see,
e.g. [8,32]), we have defined and tested an LSTM-based architecture, which is
described in Fig. 2.

In this approach, process traces are first pre-processed by converting each
activity into a integer by means of an hashing layer; the overall trace is therefore
converted into a feature vector. The architecture then exhibits two LSTM block,
composed of 32 and 16 units (respectively) with tanh activation function and
followed by a dropout layer, which randomly forces a fraction of the input units to
be ignored at each update during training time, to help prevent overfitting [30].

The deep features produced by the following fully connected layer with Relu
activation function can then be provided as an input to a k-NN classifier. Specifi-
cally, we resorted to the open source tool Weka [9] and to the Euclidean distance
to perform k-NN classification in this feature space.
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All parameters were set experimentally.

Fig. 2. LSTM-based architecture

4 Experimental Results

Our dataset was comprised of 5013 process traces, composed by a number of
activities ranging from 10 to 25 (16 on average). In particular, 2629 traces were
generated in a SC, while 2384 were generated in a SU.

The deep learning approach was realized and tested by means of the tool
TensorFlow3.

Details of the results are presented in the following subsections.

3 https://www.tensorflow.org/.

https://www.tensorflow.org/
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4.1 Semantic Trace Comparison: Classification Results

In our experiments on classification relying on semantic trace comparison, we
conducted a 9-NN classification (k = 9 was the optimal parameter setting auto-
matically calculated by Weka [9]. Anyway, we also conducted a sensitivity analy-
sis, which demonstrated that results did not change significantly when changing
the value of k). Results are shown in Tables 1 and 2.

Table 1. Results (I) obtained by K-NN classification with semantic trace comparison,
by class

Class Precision Recall F-Measure Specificity

SU 0.73 0.59 0.65 0.69

SC 0.54 0.69 0.60 0.59

Weighted average 0.63 0.64 0.63 0.64

Table 2. Results (II) obtained by K-NN classification with semantic trace comparison

MCC K-stat Accuracy

0.27 0.27 0.63

Table 3 also reports the confusion matrix for the LSTM-based classifier, for
the sake of completeness.

Table 3. Confusion matrix obtained by K-NN classification with semantic trace com-
parison

SU SC

SU 1745 639

SC 1213 1416

As it can be observed from the tables, results are quite poor, reinforcing the
need to test different classification strategies.

Following the suggestion of medical experts, we made a second experiment.
In this case, we separated the SC class into two subclasses, in order to distinguish
between traces generated on particularly complex patients, and traces generated
on simpler patients. Such a distinction was made by experts referring to: (i)
clinical data and patient’s characteristics, available in the hospital information
system (such as, e.g., the presence of co-morbidities), and (ii) the presence of
specific activities in the trace (such as procedures for managing uncommon and



58 G. Leonardi et al.

problematic stroke types) or of repeated diagnostic/monitoring steps (such as
frequent Computer Assisted Tomographies, to monitor the evolution over time of
a particularly critical situation). Classification accuracy improved significantly
within the SC traces, as shown in Tables 4 and 5.

Table 4. Results (I) obtained by K-NN classification with semantic trace comparison
within the SC patients, by class

Class Precision Recall F-Measure Specificity

SC complex (905 traces) 0.59 0.72 0.65 0.80

SC simple (1724 traces) 0.88 0.80 0.84 0.72

Weighted average 0.78 0.78 0.77 0.75

Table 5. Results (II) obtained by K-NN classification with semantic trace comparison
within the SC patients

MCC K-stat Accuracy

0.50 0.49 0.78

On the other hand, when implementing the same distinction within the SU
class, we did not obtain significantly better results with respect to the initial
experiment. Some discussion can be found in Sect. 5.

4.2 Deep Learning: Classification Results

Tables 6 and 7 report the results obtained by the tool Weka in 5-NN classification
(in this case, k= 5 was the optimal parameter setting automatically calculated by
Weka [9]), when deep features were provided by the LSTM architecture depicted
in Fig. 2. As it can be seen, with respect to the adoption of semantic trace
comparison, this approach provided a better classification performance.

Table 6. Results (I) obtained by LSTM + K-NN classification, by class

Class Precision Recall F-Measure Specificity

SU 0.73 0.72 0.73 0.76

SC 0.75 0.76 0.75 0.72

Weighted average 0.74 0.74 0.74 0.74

Table 8 also reports the confusion matrix for the LSTM-based classifier, for
the sake of completeness.
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Table 7. Results (II) obtained by LSTM + K-NN classification

MCC K-stat Accuracy

0.48 0.48 0.74

Table 8. Confusion matrix obtained by the LSTM + K-NN classification

SU SC

SU 1713 671

SC 620 2009

Fig. 3. LSTM loss per epoch

Figure 3 shows the evolution of the loss, depending on the number of epochs.
As it can be observed from the figure, experimentally, working at 30 epochs

represented a good compromise, able to reduce the loss value without increasing
too much the computational effort (15 min were required for computation at 100
epochs, on Intel Xeon E3 - 2.70 GHz 4 processors with 4 GB RAM).

Also in this case, we repeated the experiment by distinguishing between more
complex patients and simpler patients. The deep learning strategy provided a
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Table 9. Results (I) obtained by LSTM + K-NN classification within the SC patients,
by class

Class Precision Recall F-Measure Specificity

SC complex (905 traces) 0.90 0.90 0.90 0.95

SC simple (1724 traces) 0.95 0.95 0.95 0.90

Weighted average 0.93 0.93 0.93 0.92

Table 10. Results (II) obtained by LSTM + K-NN classification within the SC patients

MCC K-stat Accuracy

0.85 0.85 0.93

much higher accuracy when working within the SC class patients (see Tables 9
and 10), while results did not improve much within the SU class patients.

5 Discussion and Conclusions

In this paper, we have proposed two very different approaches to stroke trace
classification. The first approach relies on a semantic similarity metric, followed
by k-NN classification. The second approach adopts deep learning techniques.

Our first experimental results have shown that the more traditional approach,
based on the semantic similarity metric, is not very successful, while the deep
learning strategy has performed better.

The rather poor results obtained by the semantic metric have improved signif-
icantly when focusing on the SC class, and distinguishing between more complex
patients and simpler patients, suggesting that two types of processes are actually
carried out, depending on the patient condition - which makes sense from the
medical viewpoint; however, an analogous improvement was not observed when
working within the SU traces. Interestingly, an analogous output was observed
also when applying deep learning. We thus make the hypothesis that SUs are
much more heterogeneous than SCs, and more affected by organizational prob-
lems, which may limit their capacity to apply the right protocol to the right
patient. Further experiments will be needed to support this claim.

As a more general consideration on our experimental results, we can conclude
that deep learning, which is nowadays frequently chosen by the business process
management community as a tool for trace prediction and classification, is indeed
a promising approach, to be further investigated in the future. To this end, we
will make other experiments, and consider different architectures as well, such
as, e.g., convolutional inception modules [20,31].

Since deep learning methods operate as black boxes, and it can difficult to
provide a meaning for the abstracted deep features, or to justify misclassification,
we will also consider the issue of explainability. To this end, we will investigate
whether it is possible to adapt the knowledge-based strategy we adopted in [18].
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Last but not least, we also believe that further improvements of classification
results, by both the approaches evaluated in this paper, might be obtained by
resorting to a trace abstraction technique, such as the one described in [24,25].
Such an approach can hide irrelevant details, that could lead to misclassifica-
tion, while keeping the most important information in the trace. This research
direction will be considered in our future research as well.
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Abstract. Training for the marathon, especially a first marathon, is
always a challenge. Many runners struggle to find the right balance
between their workouts and their recovery, often leading to sub-optimal
performance on race-day or even injury during training. We describe and
evaluate a novel case-based reasoning system to help marathon runners
as they train in two ways. First, it uses a case-base of training/workouts
and race histories to predict future marathon times for a target runner,
throughout their training program, helping runners to calibrate their
progress and, ultimately, plan their race-day pacing. Second, the system
recommends tailored training plans to runners, adapted for their current
goal-time target, and based on the training plans of similar runners who
have achieved this time. We evaluate the system using a dataset of more
than 21,000 unique runners and 1.5 million training/workout sessions.

Keywords: CBR for health and exercise · Marathon running ·
Race-time prediction · Plan recommendation

1 Introduction

With the advent of wearable and mobile devices it has become increasingly rou-
tine for runners to track their training using apps such as Strava, RunKeeper,
and MapMyRun. Researchers are harnessing this data to learn about how people
exercise [1,2], to provide personalised training advice [3–6] and motivational sup-
port [7–11], to predict their performance potential [12,13], and even to provide
them with real-time advice and guidance as they compete [14].

This work focuses on recreational (non-elite) marathon runners, although the
ideas described should be equally applicable to other running distances (ultras,
half-marathons, 10 km’s etc.) and endurance sports (cycling, triathlon, skiing,
speed skating etc.). Its main technical contribution is to support marathon run-
ners as they train, in two ways. Firstly, we predict a runner’s target race-time,
based on their current training progress. This is important because it helps to

c© Springer Nature Switzerland AG 2020
I. Watson and R. Weber (Eds.): ICCBR 2020, LNAI 12311, pp. 67–81, 2020.
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set appropriate race-day expectations for runners, helping them to better plan
their race, but it also allows them to calibrate and fine-tune their training. Sec-
ondly, if runners wish to adjust their training – perhaps by targeting a faster
or slower marathon time – then we describe a technique to generate a tailored
training plan based on their current training habits and their new goals. In what
follows, we describe and evaluate how both of these tasks can be fulfilled using
case-based reasoning (CBR) by leveraging a case-base of more than 1.5 million
training sessions logged by more than 21,000 marathoners. CBR is an appropri-
ate method for these tasks as, for race-time prediction, the training completed
by runners can be seen as the problem part, and race-time as the solution. Con-
versely, for training plan recommendation, the desired marathon finish-time is
the problem, while the training plan is the solution.

2 Related Work

Fitness and exercise applications are popular targets for machine learning
research, in part because of the volume of data that is now available, as people
track their activities online, but also because of the wealth of interesting problems
that exist when it comes to helping people to exercise safely and train effectively.
The world of sports and fitness has been exploring the data captured by wear-
able sensors to solve a variety of tasks related to exercise, personalised training,
motivation, and athlete performance [1–11]. Recently, case-based reasoning and
other machine learning techniques have been utilised to support marathoners on
race-day by providing them with real-time pacing advice [14].

A key task in this work is to predict future marathon times using train-
ing/workout data. This task is not new, but previous approaches have focused
on either using a full complement of training/workout data or past race-times to
generate predictions; see [12,13,15,16]. Instead, we predict future race-times at
various points during a training programme using incomplete training/workout
data. Recently, the work of [17–20] used case-based reasoning ideas to accurately
predict marathon performance but required runners to have completed at least
one recent marathon. This means that these approaches are not suitable for first-
time marathoners or novices. A key objective of the present work is to address
this shortcoming, by using training/workout data, which even first-timers will
generate at scale, instead of past marathon times.

Our second task involves recommending new training plans to runners. Such
a virtual coaching assistant has long been discussed in the literature [6,21,22]
but progress has been limited to some notable early efforts [23]. It is a chal-
lenging problem because generating a training plan depends on a complex mix
of physiological and sport-specific factors as well as personal preferences. But
this is precisely why a CBR approach is appealing: by reusing existing training
plans (or parts of existing plans) from similar runners, we can provide a runner
with tailored training recommendations without the need for an explicit domain
model.
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3 A CBR Approach to Marathon Training

Training for a marathon requires 12–16 weeks of dedicated effort, with most run-
ners following carefully scripted training programmes based on their goals and
ability. A typical week involves 3–6 training sessions, usually different types of
runs: some short (5–10 km), some longer (15–30 km), some slow, some fast. Some
runs introduce hills to build strength while others focus on stamina or recovery.
As training progresses, new types of sessions encourage the physiological adap-
tations necessary for race-day. In other words, training for a marathon involves
a complex mixture of workouts carefully balanced with rest and recovery.

By harnessing workout data, we provide runners with feedback as their train-
ing progresses. Predicting their likely marathon time will help runners to evalu-
ate their progress, while the ability to make training recommendations will help
them to adapt their otherwise one-size-fits-all training plan. In what follows, we
will describe how we do this, but first we need to transform the time-series data
from training sessions into a suitable representation for case-based reasoning.

3.1 From Training/Workout Sessions to Cases

The dataset used in this work includes approximately 1.5 million training activ-
ities by over 21 thousand marathon runners (73% male, 27% female) who com-
pleted either Dublin, London, or New York Marathons during the period 2014 –
2017; see Table 1. The anonymised dataset was produced by users of the popular
mobile and web-based running app, Strava,1 which has been made available as
part of a data sharing agreement with the authors. The activities in the dataset
all occur during a 16-week period directly before a marathon. This period was
chosen as marathon plans are typically 12–16 weeks however, it is possible that
some runners trained for less or more than 16 weeks. Each activity includes tim-
ing, distance, and elevation data sampled at 100 m intervals.

More formally, for a runner, r, we denote their training data as T (r), a time-
ordered sequence of training activities; see Eq. (1).

T (r) =
{
A1(r), A2(r), . . . , An(r)

}
(1)

Each activity, Ai(r) = (d, P ), includes the number of days before the race (d)
and a list of paces at 100 m intervals for the activity (P ). A runner’s activities
can be aggregated by week to extract key weekly features, including:

1. The number of sessions in the current week;
2. The total weekly distance in kms;
3. The mean pace for the week in mins/km;
4. The longest run distance;
5. The fastest/slowest 10 km/5 km/1 km paces.

1 www.strava.com.

www.strava.com
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These features were chosen as they have been found to capture important
aspects of marathon training in the past [16]. For example, the number and
duration of long-runs is often cited as an important success criteria while, long-
distance pacing typically correlates with marathon times.

In addition to these features that represent the current week of training,
we also calculate the corresponding features for the training period up to and
including the current week (e.g. longest run distance to date). Thus, for each run-
ner r, we can generate a feature-based description for training week w, F (r, w).
Figure 1 demonstrates how the training of a runner in week 12 is transformed
into a suitable feature representation.
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Fig. 1. An overview of a case-based reasoning system for supporting marathoners dur-
ing their training by predicting (P) their estimated marathon time and by recommend-
ing (R) tailored training plan for an adjusted marathon time.

We generate a case (C(r, w)), representing r’s training during week w, by
associating F (r, w) with their marathon time, MT (r), and also a pointer to
their next week of training, C(r, w − 1); see Eq. (2). These cases can be used in
two ways: (a) to predict a runner’s marathon time at week w, using the MT
components of similar cases; and (b) to recommend next week’s training, using
the C(r, w − 1) component of similar cases for a revised goal-time (MT + δ).

C(r, w) =
{
F (r, w),MT (r), C(r, w − 1)

}
(2)

When building a case-base of training activities we separate male and female
runners because the physiological differences between men and women have a
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significant bearing on training and performance. We also generate separate case-
bases for each week of training, based on the feature-based description for a
training week, F (r, w), previously described. The marathon time MT (r) for a
case C(r, w) encodes r’s marathon time in w weeks time and relates this to a
specific week (week w) of training. It would not be appropriate to reuse such a
case at a very different point in their training cycle, even for a similar runner.

3.2 Task 1: Predicting Goal Race-Times

The use-case for the first task is common: runner r in week w of training wishes to
estimate their likely marathon time for race-day; the estimated time is not their
current marathon time but rather their expected future marathon time, w weeks
from now, based on their training to date. This is useful to know for a number of
reasons. It helps r set appropriate race-day expectations and provides some level
of confidence that their training is on-track, depending on whether the predicted
time matches their goal. In addition, many marathon training programmes are
parameterised with respect to a runner’s goal marathon time – e.g., a long run
session might include 5–10 km at marathon pace – so it is important to have an
accurate estimate to work with.

To predict the marathon time of a runner r in week w, we use r’s current
week of training as a query, and compute a standard Euclidean distance metric
to identify the k most similar cases to r in the appropriate case-base (based on
gender and training week). The predicted marathon time is the weighted average
of the times for these similar runners; see P in Fig. 1. It is worth noting, but not
discussed further here, that we can also recommend a suitable pacing plan to
help the runner achieve this time on race-day, by reusing pacing profiles of the
marathons completed by the k most similarly trained runners as in [17,20].

3.3 Task 2: Recommending Tailored Training Programmes

To understand the use-case for the second task, imagine runner r has completed
week 10 of their training plan and their predicted marathon time is 245 min.
Given how well their training has gone so far, they decide that they want to break
the iconic 4-h finish-time. Should they change their training plan to improve their
chances of finishing faster? If so, how? What would a 4-h plan look like for them?
Alternatively, if r’s training is proving to be too much of a challenge, they may
wish to reduce their expectations and look for a training plan that suits a 4.5 h
finish. What might this plan look like with 10 weeks of training still to go?

Instead of using r’s current training as a query to predict a marathon finish-
time, we instead use their current training and their revised target time as a
query to identify a new case, C(r′, w) from a runner r′ who achieved the new
target time (±1 min), such that C(r′, w) is maximally similar to C(r, w). Then,
we can recommend C(r′, w−1) from the C(r′, w) case as r’s next week of training.

Note, for this task we focus on a single most similar case for r, rather than
retrieving and reusing k similar cases. The main reason for this is that since
runners can be following different types of training plans, it may not make sense
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to try and combine these training plans from a recommendation perspective.
That being said, it may make sense to offer r a choice of similar runners and
therefore a choice of possible training for the following week.

3.4 From Single Weeks to Multiple Weeks

So far the focus has been on matching runner cases based on a single current
week of training. Since many marathon programmes are designed around 4-week
training blocks – during which training intensity ramps-up and then down to
allow for recovery before the next block – it is also worth considering a longer,
4-week training period during prediction and recommendation. One way to do
this is to extend our representations so that each case encodes the features of
the previous 4 weeks of training.

Another option – and the one proposed here – is to use an ensemble approach
to combine the predictions produced by similar cases for the 4 weeks including
and preceeding the current week. For example, for week w = 10, we generate
4 predictions using the case-bases for weeks 10, 11, 12, and 13, and the final
prediction is produced from the median of these individual predictions.

One problem with the above approach is that runners who are on similar
training plans can sometimes be out of sync with respect to their individual
training weeks so that some weeks are “out of sequence”. To deal with this,
we also implement a variation of this 4-week ensemble such that the case-bases
used are produced by first ordering the 4 training weeks in ascending order of
training-load (longest run distance for now). For example, for week w = 10, we
use cases from weeks 10, 11, 12, 13, but we order them based on their longest run
distance. So the w − 3 case-base contains the shortest training week for runners,
the w − 2 case-base contains the next shortest training week etc. The advantage
of this approach is that it facilitates a better alignment between the training
weeks of runners over a 4-week period.

Obviously, the advantage of these ensemble approaches is that predictions
are based on an extended view of training, rather than a single-week snapshot,
which may lead to more accurate predictions. In what follows we will refer to
the first ensemble approach as the unordered ensemble – to indicate that the
weeks have not been ordered by training-load – and the second technique as the
ordered ensemble.

Training plan recommendations can also take advantage of these extended
approaches in a straightforward way, by using the ensemble methods to gener-
ate a (more accurate) race-time prediction and then using this single predicted
time as the basis for the subsequent training plan recommendation as described
previously.

4 Evaluation

We test the performance of our approach to race-time prediction and training
plan recommendation using the Strava dataset referenced previously. In what
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follows we describe this dataset in detail, and the evaluation methodology, before
presenting key results for the prediction and recommendation tasks.

4.1 Setup

The details of the dataset used in this study are summarised in Table 1. It
includes approximately 5,000 female runners who completed their marathon in
3–5 h and over 15,000 male runners who completed their marathons in up to 5 h;
while the original dataset included some sub 3-h females and some slower (>5 h)
males and females, these were relatively rare and excluded from this evaluation.
Using this dataset we generate case-bases of weekly marathon training sessions
for male and female runners, as previously described.

Each of the evaluations that follow adopt a similar, tenfold cross validation
methodology, separating test and training data for the male and female case-
bases for each week of training. During each iteration we extract 10% of the cases
to use as test queries with case-bases constructed from the remaining cases.

For the prediction task we calculate the RMSE between the predicted
marathon time and known marathon time for each test case. For the training-
plan recommendation task we compare the recommended training plan to the
corresponding plan for the test runner, to determine how its training load varies
under different target time adjustments; we will discuss the details of this in due
course.

In preparation for this evaluation we tested overall prediction accuracy for
different values of k (the number of cases retrieved and reused) finding that
accuracy improved (RMSE decreased) as k increased, before stabilising for k ≥
15. These results are not shown here for reasons of space but we use the k = 15
setting for the evaluations that follow.

4.2 Prediction Error by Training Week

One of the unique features of this work is the ability to generate marathon time
predictions at any point in a runner’s training plan, not just at the completion of
training. As such, it is important to understand how prediction accuracy changes
as training progresses.

Figure 2 shows the results of this analysis for men and women and for each of
the 3 CBR variants (single-week vs unordered 4-week vs ordered 4-week). As we
might expect, prediction error falls steadily as training progresses, for men and
women, and for each variant. A notable exception is one week before race-day for
the single-week version, where RMSE increases slightly. This can be explained
by the so-called marathon taper during which some runners significantly reduce
their training load, so that they are rested for their race. Runners vary in when,
how and even if they taper, so it is likely that the increase in error for the
single-week representation exists because of a lack of taper consistency among
the single-week cases, which is less problematic in the 4-week ensembles.

The 4-week variants produce more accurate predictions than the single-week
approach, with the ordered variant consistently producing the most accurate
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predictions overall, for each week and for men and women.2 In each case, for men
and women, the weekly differences in error between the ordered 4-week variant
and both the single-week and un-ordered 4-week variants are all statistically
significant (based on a one-sided t-test with p< 0.01). As a base-line, to further
support the validity of the CBR approach, a linear regression model was fitted
to each week of data. The results are omitted due to space constraints however,

Table 1. A summary of the dataset used in this study for runners of Dublin, London,
and New York marathons in the period 2014–2017. The table includes gender and age
information as well as mean (and standard deviation) data for age, race-time (minutes),
number of weekly activities, and weekly distance).

2 Prediction estimates are more accurate for women than for men, echoing similar
findings by [17] when using previous marathon times to predict future PBs.
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Fig. 2. The prediction error (RMSE in minutes) by training week for (a) men and (b)
women using the weekly and 4-week variants.

the linear regression model was statistical significantly (p< 0.01) less accurate
than the single-week variant (and therefore both 4-week variants).

Indeed, predictions made 10 weeks before race-day, by the ordered variant,
are as accurate as the predictions made by the single-week variant 5–6 weeks
later. This is an important difference because, as mentioned earlier, having an
accurate estimate of marathon time helps to inform subsequent training; work-
outs are often expressed relative to marathon pace. Thus, the availability of
more accurate marathon predictions, earlier in training, has the potential to
significantly optimise training.

4.3 Prediction Stability

While accuracy is important, it is not the only consideration when it comes to
selecting a variant to use in practice. For example, if predictions tend to vary
from week to week, then runners may be less likely to trust in them and therefore
less likely to heed the advice and recommendations being made. To evaluate this,
in Fig. 3 we calculate the absolute difference in the predicted marathon times
between consecutive weeks for each runner and present the average difference
for male and females and for each week of training and CBR variant.

Figure 3 shows that, in addition to enjoying better prediction accuracy, the
4-week variants also produce significantly more stable predictions, week on week.
For example, 8 weeks from race-day, the single week variant generates an average
prediction that differs from the previous week by approximately 9–10 min. By
comparison, the 4-week variants produce predictions that differ from the pre-
vious week by only about 4 min; a useful side-effect of the ensemble prediction
approach. In this case, the unordered variant produces more stable predictions
for men and women than the ordered variant. The differences between the 4-
week variants and the single-week variant are statistically significant based on a
one-sided t-test with p< 0.01.
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Fig. 3. The absolute difference in consecutive weekly predictions by training week for
(a) men and (b) women using the weekly and 4-week variants.

4.4 Prediction Error by Ability

Fig. 4 plots the prediction error by runner ability – using their actual marathon
times as a proxy for ability – for men and women at 10, 6, and 2 weeks before
race-day. For reasons of space, we only show the results for the 4-week ordered
variant, which proved to be the most accurate overall.

Fig. 4. The prediction error (RMSE in minutes) by marathon time (mins) for (a) men
and (b) women using the weekly and 4-week variants.

Error rates increase significantly for slower runners (males >225 min and
females >240 min) with the most accurate predictions associated with finish
times of 210 min for male runners and 240 min for female runners. This is at
least partly due to the distribution of marathon times in the training data: most
of the training data is for runners in the 3–4 h finish-time range with relatively
fewer faster and slower runners, leading to a paucity of training cases at the
extremes, and less reliable predictions as a result.
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There is a similar increase in error for faster (<210 min) females as there are
relatively few of these in the dataset; the effect is less pronounced for faster males
although still present. Generally speaking, we can also see how earlier predictions
(week 10) tend to be less accurate regardless of gender or finish-time.

Another explanation for the significant increase in prediction error for the
slower runners is that their training plans will tend to be less specific than those
for faster runners and, as a result, may provide fewer or less reliable signals that
can be used for prediction. For example, beginner training plans will tend to
focus on helping a runner to finish the marathon distance, rather than achieve
a particular time, and as such there will be less of a focus on pace, leading to
less reliable ‘fastest pace’ features.

4.5 Evaluating Training Plan Recommendations

Evaluating training plan recommendations is less straight forward as there is no
direct ground-truth to compare the recommendations to; after all, the aim is to
suggest a training plan that is different (harder or easier) from the current plan
for a given runner. Ideally, these recommended plans should be evaluated as part
of a live-user trial – perhaps by obtaining user feedback on their desirability or
suitability or by evaluating whether they lead to better outcomes, if and when
users adopt them.

Such a study is beyond the scope of the present work. Instead, we propose a
plausibility test by measuring how the training load of the recommended plans
compares to the runner’s default plan: we compare their recommended next-week
of training to their current next-week training plan. If a runner requests a plan
for a marathon time that is faster (δ < 0) than their current predicted marathon
time, then the recommended plan should have a higher training load than their
current plan, and vice versa if they request a plan for a slower (δ > 0) marathon
time. We use two measures of training load: (1) the average pace for the week;
and (2) total weekly distance. Higher training loads should be associated with
faster weeks or longer weeks or both. We calculate the percentage difference,
with respect to the runner’s current plan, for distance and pace.

The results are shown in Figs. 5 and 6 for weeks 4, 6 and 8 of training using
the ordered variant. We compare the recommendations produced when runners
request plans that are associated with marathon times that are 5, 10, 15, and
20 min faster or slower than their current predicted marathon time. The results
are generally consistent with expectations: when runners request training plans
that are faster than their current predicted finish-time (δ < 0) then mean weekly
pace tends to speed-up (a negative % difference as in Fig. 5) while total weekly
distance tends to increase (a positive % difference as in Fig. 6). The reverse is
true when they request a plan for a slower marathon time.

The changes in pace exhibit a very strong correlation with δ (R2 > 0.92 for
men and women). The changes in weekly distance are also strongly correlated
with δ for men (R2 > 0.90), but less so for women (R2 > 0.66 on average).
The relative changes in distance tend to be greater (for a given δ) than the
corresponding changes in pace. For example, for males to improve their predicted



78 C. Feely et al.

time by 15 min, means they will have to increase their weekly distance by up to
5% and speed-up by 2–3%.

While not definitive, these results are encouraging. Recommending new train-
ing plans is a very challenging recommendation task; conventional recommen-
dation techniques have largely focused on recommending simple, atomic items
(books, music, movies) rather than complex items, such as training plans, which
are made up of a complex mix of components and factors. The fact that we
can generate training plan recommendations that are consistent with a runner’s
modified goals is an encouraging start. And since these plans are based on the
real training plans of similar runners, this increases the chances that they will
be well received by runners.

Fig. 5. The difference in mean weekly pace (mins/km) for training plans based on
adjusted goal-times for (a) men and (b) women during training weeks 4, 6, and 8. Note:
δ < 0 implies the goal-time is δ minutes faster than the runner’s current predicted time.

Fig. 6. The difference in mean weekly distance (km) for training plans based on
adjusted goal-times for (a) men and (b) women during training weeks 4, 6, and 8.
Note: δ < 0 implies the goal-time is δ minutes faster than the runner’s current pre-
dicted time.
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5 Conclusions

In this paper, we described an initial study about how raw training/workout
data that is routinely collected by fitness apps can be used to support runners
as they train for the marathon. We focused on two important tasks in particular:
(a) race-time predictions, as training progresses; and (b) recommending tailored
training plans to runners if their goals change during training. A number of CBR
variations were described – reusing the training and racing experiences of similar
runners – and evaluated. The results are promising. It was possible to predict
marathon finish-times with a reasonable degree of accuracy and to recommend
training plans that are consistent with a runner’s changing goals. Unlike the
work of [17–20], which required runners to have run multiple marathons, this
approach is suitable for novice and veteran runners alike, because it is based on
current training data, with no requirement for previous marathon experience.

There are many opportunities to extend this research and improve the results
obtained. We are currently developing a Strava companion app for providing pre-
dictions and recommendations to users based on their logged training sessions,
making it possible to evaluate how users respond to this advice, and whether
their performances improve as a result. Further representation improvements are
also feasible, for example, by including heartrate data as a signal for effort and
intensity during training, or by using time-series analysis techniques [24–26] to
detect different types of training sessions. Another option is to employ feature
analysis and selection techniques to determine which features are best predic-
tors for race-time, as well as investigating different multi-week representations.
Additionally, it is planned to transform the predictions and recommendations
into a format that the runners could more easily interpret by providing upper
and lower bounds, alongside average values for the race-time and weekly training
completed by the similar runners retrieved from the case-base.

Finally, although the focus of this work has been exclusively on marathon
runners, it is straightforward to adapt these techniques for other running dis-
tances, from shorter 5k, 10k and half-marathon races to longer ultra marathons,
and it should also be possible to apply the work to other endurance sports such
as cycling, triathlons, adventure racing, skiing and even skating.
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Abstract. In the current era of medicine where clinicians and researchers
alike are seeking to personalize treatment plans to individuals, the inte-
gration of clinical data with microarray data is surprisingly absent. With
this in mind, clinical covariate data was used to pre-select previously clas-
sified breast cancer tissue, and employ these classifications to new test
cases. The pool of retrieved cases was then reduced further by investi-
gating similar DNA methylation patterns. We first compared breast can-
cer tissue to normal tissue samples. This work was then extended to dif-
ferentiating triple-negative breast cancer samples from ER-positive sam-
ples followed by investigating these subtypes at a genomic region level.
In order to use the clinical covariate data, categorical distance measures
were used to locate similar cases before being narrowed down with numeric
DNA methylation data. Classification was then carried out using a novel,
confidence-based procedure that automatically retrieves solved cases for
each test sample until a threshold is met. We find that integrating clini-
cal covariates increases the accuracy within our constructed two-stage sys-
tem as opposed to using microarray data alone. Further, we outperformed
random forest, naive bayes and kNN after refining the cases to a genomic
region level.

Keywords: Machine learning · Case-based reasoning ·
Bioinformatics · Breast cancer · k-nearest neighbor

1 Introduction

In this current era of personalized medicine, clinicians have sought after meth-
ods which specifically target the patient through carefully tailored treatment
plans. Throughout this movement, clinical and molecular profiles are constructed
and managed in unison for advanced treatment. While this is becoming more
prevalent on the frontlines of healthcare, the integration is surprisingly absent
in ’omics research. The term ’omics collectively refers to genomics, proteomics,
epigenomics and similar fields. Here, analysts are typically focused on a specific
subtype of ’omics data while paying little attention to the clinical information
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that define the research sample. Even in studies that span across ’omics, these
primary variables are neglected. As these clinical variables are more descriptive,
they increase focus and lend to a more explainable outcome. Therefore, it is
the intent of this research study to couple a stable epigenetic biomarker, DNA
methylation, with clinical data through a case-based reasoning structure built
for classifying breast cancer samples. The clinical variables that were selected are
the well-distinguished covariates age group, method of therapy, and race. Several
studies have found age [4,9], therapy [7,14], and race [12] to have a significant
effect on DNA methylation levels, making these common confounding variables.
With this in mind, we hypothesize that drawing similarities to cases in the case
base using these clinical covariates will aid in finding similar samples. Further,
we assert that adding clinical covariates will improve diagnostic accuracy.

Specifically, this paper uses CBRMiC (Case-Based Reasoning for Microarray
Classification), an R package designed by the authors to use clinical and microar-
ray data for classification tasks. CBRMiC makes use of two iterative feature
selection algorithms, computes distance matrices for categorical and numeric
data, and classifies using a novel procedure that finds the optimal number of
cases for each sample based on a confidence metric.

This paper outlines the methods used to be able to apply case-based reasoning
(CBR) and instance-based learning to methylation data, most often analyzed
through statistical methods. With four primary processes, retrieve, reuse, revise
and retain, CBR is a powerful tool with a transparent problem-solving process.
When a new case is presented to a CBR system, the similarity between the new
case and previously solved cases (called the case base) is used to retrieve the
most similar historic cases (the retrieve step). Then, the problem resolution of
the prior cases can either be used to solve the new case (reuse step), or modified
to fit any differences (revise step). Finally, the new case is stored in memory
to be used in the future (retain step). The measure of similarity is often the
most crucial, especially when there are different types of data as is the case
within this paper. The most widely used similarity measures are often distance-
based functions that compute the distance between cases using some or all of the
attributes that define the case. A popular distance measure for numerical data is
Euclidean distance (used within this study) though the addition of clinical data
requires a categorical distance metric (discussed in Sect. 3.3). Processed DNA
methylation is typically in the form of β values. β values are an estimation of
the methylation levels between 0 and 1 with 0 being completely non-methylated
and 1 being completely methylated. As such, these values are numerical.

Case-based reasoning (CBR) within the domain of microarray analysis is
mostly unexplored, especially for epigenetic data. The primary foundation for
CBR is its ability to consistently update with new cases, and adapt prior solu-
tions to fit a new problem. Within microarray analysis, however, problems exist
that make updating and adaptation particularly difficult. The first problem is
the high dimensionality with few samples. There are thousands of features for
a small subset of samples (specifically 485,000 for the standard chipset used in
DNA methylation), and these samples are often imbalanced between cases and
controls. A second problem is that technical variations, called “batch effects”,
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often exist. Batch effects are alterations of the data that occur when different
laboratories, technicians, or different equipment collects the data. Even when
the same technicians operate on the same equipment within the same labora-
tory, subtle varying factors such as the amount of humidity can alter expression
levels. These effects can be controlled to some degree through pre-processing,
but need to be performed again when new cases are investigated. Lastly, clin-
ical variables are all but ignored in any prior ventures in case-based reasoning
for microarray analysis. Typically, researchers investigate similarities in genetic
expression levels while disregarding whether samples are similar on a pheno-
typical level. [16] performed a multiple’omics study across 14 different cancer
types and found that integrating clinical variables led to improved prognostic
performance, while [13] found that clinical integration increased prediction per-
formance. It is plausible that investigating samples that are similar on a clinical
level as well as on a microbiological level will lend to more precise case selection,
and therefore greater precision in identifying samples.

Methylation data require a preprocessing pipeline leading to improved anal-
ysis, as this article shows. First, potential confounding factors such as batch
effects (discussed in Sect. 2.1) are eliminated. Following, methods which clus-
ter the probes into possible functional regions for gene transcription are applied.
Feature selection methods are also tested to further refine and select appropriate
probes. Eventually, these probes are grouped into genomic regions.

This paper shows that the integration of clinical covariates improves the
accuracy over microarray data alone. Further, we compare our results with four
other classification algorithms. We have outperformed one of these algorithms
during the first two tasks, before outperforming three after refining to a genomic
region level.

Specifically, we offer the following significant contributions:

1. Clinical and microarray integration: A methodology that integrates clin-
ical and microarray data, in the form of DNA methylation values. To the best
of the author’s knowledge, this is one of the first papers to take clinical covari-
ate factors into account.

2. Tailored case retrieval for each sample: A method which locates a
custom-tailored number of similar cases for each sample based on an auto-
matically defined level of confidence in each of the stored cases. Varying the
number of cases upon retrieval for each test case, and the method through
which it is performed are both novel contributions.

3. Multi-level case elaboration and refinement which examine biolog-
ical and statistical differences: Significantly different methylation levels
in the DNA found at a high-order cluster of probes that serve similar func-
tions were utilized and compared. Lastly, these probes are mapped to genetic
regions to capture their precise influence upon the gene.

4. One of the first applications of CBR using methylation data: While
studies using gene expression data in a CBR context have been performed
previously, very few applications using methylation data have been produced.
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2 Background

The term epigenetics was first introduced into modern biology by Conrad
Waddington as a means of defining interactions between genes and their prod-
ucts that result in phenotypic variations. Waddington’s landscape presents a cell
becoming more differentiated as time goes on. One of the events that can cause
this differentiation is methylation. Methylation is a covalent attachment of a
methyl group to cytosine. Cytosine (C) is one of the four bases that construct
DNA and one of only two bases that can be methylated. While adenine can
be methylated as well, cytosine is typically the only base that’s methylated in
mammals. Once this methyl group is added, it forms 5-methylcytosine where the
5 references the position on the 6-atom ring where the methyl group is added.
Under the majority of circumstances, a methyl group is added to a cytosine
followed by a guanine (G) which is known as CpG. While the methyl group is
added onto the DNA, it doesn’t alter the underlying sequence but it still has
profound effects on the expression of genes and the functionality of cellular and
bodily functions. Methylation at these CpG sites has been known to be a fairly
stable epigenetic biomarker that usually results in silencing the gene. Further,
the amount of methylation can be increased (known as hypermethylation) or
decreased (known as hypomethylation) and improper maintenance of epigenetic
information can lead to a variety of human diseases.

DNA methylation, tested with a chip known as a microarray, has recently
become more prevalent in genetic research studies in oncology. This paper pro-
poses to apply these findings in a study of the diagnostic accuracy of DNA
methylation signatures for classifying breast cancer samples when samples are
first compared on a clinical level. The first study will be breast cancer samples
versus normal tissue samples, while the second study is classifying two specific
subtypes of breast cancer. These subtypes are ER-positive samples and Triple
Negative samples. Breast cancer cells can be hormone receptor-positive, hor-
mone receptor-negative or triple-negative. Hormone receptor-positive samples
have either estrogen (ER) receptors, progesterone (PR) receptors or both. ER-
positive breast cancer, specifically, is the most common type of breast cancer
that’s currently diagnosed. Triple-negative breast cancer cells do not have estro-
gen or progesterone receptors and do not make much of the protein called HER2.
These cancers tend to grow and spread faster and do not respond to hormone
therapies or drugs that target HER2. Due to the common nature of ER-positive
breast cancer, and the aggressive nature of Triple Negative breast cancer, we
sought a method that could help distinguish the two.

2.1 Research Background

An additive nonparametric margin maximum for case-based reasoning method
(ANMM4CBR) was proposed in [15]. ANMM4CBR focuses on the retrieving and
reusing stages of CBR and feature selects using additive nonparametric margin
maxima. The nonparametric margin maximum is defined based on the nearest
between-class distance maximization and the furthest within-cluster distance
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minimization. They first perform pre-selection and then cluster using hierarchi-
cal clustering. Finally, they apply an additive approach where, at each iteration,
a feature is selected. When a feature is selected, for each sample the nearest
between-class neighbor and furthest within-cluster neighbor may change. They
state that maintaining the distance between any two samples in each iteration
is computationally expensive and therefore maximize instead of directly opti-
mizing. This allows them to test each feature on a training set and select the
top-ranked. In order to reduce redundancy among features, they assign weights
to training samples and update the weights where a sample that has a larger
margin will receive a lower weight. Surprisingly, their case base is samples in
one class. Testing with 10, 20, 30, 40 and 50 iterations on 4 different datasets,
ANMM4CBR performed better than LogitBoost, SVM and kNN at every itera-
tion on colon cancer. For leukemia, small round, blue cell tumors (SRBT), and
global cancer map (GCM) data, ANMM4CBR had comparable results but did
not outperform the others.

[2] built a framework with the kNN classifier as its backing. Also using gene
expression data, they tested on child leukemia, colon cancer and prostate can-
cer. First, they preprocess the training data. Beginning with feature selection,
they apply a Balanced Iterative Random Forest (BIRF) algorithm to select the
relevant features (discussed further in Sect. 3.5). They follow this stage with
dimensionality reduction through principal component analysis and weight fea-
tures either through eigenvalues or a genetic algorithm. If classes are imbal-
anced, they oversample using the SMOTE algorithm. During testing, samples
are reduced to the selected features and kNN is used to retrieve similar cases.
Revision and retention is not employed through their framework. On leukemia,
the best results were with a k of 5 which resulted in an average accuracy of 73%.
A balanced accuracy of 93% was achieved on the colon data, and 98% on the
prostate data.

More recently, [10] proposed a CBR method that visualizes results. The CBR
system was rather straight-forward, retrieving cases through a distance mea-
sure, though their specialization was in the explainability. Qualitative attributes
between cases were shown using rainbow boxes, where labeled and colored rect-
angles extend through columns that represent the cases, clearly showing what
was similar or dissimilar between cases. Quantitative attributes are provided in
scatter plots that center on the query case and accurately display the similar
cases.

In the domain of instance-based retrieval methods is the work of [3]. Con-
structed for gene expression data, [3] proposed a modified k -nearest neighbor
algorithm. Their methodology consists of projecting the data through the gene
expression values, computing the center of each class, and computing the dis-
tance between each class item and the center of the class. With this data, they
compute each item’s weight. They then compute the distance between the center
of the class and a test point and pick the smallest and largest of these distances
(Ds and Dl). Neighbors are selected within the circles created with radius Ds

and Dl, with the distances between the test item and these neighbors calculated
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to determine the strength of the neighbors. The test point is then assigned to
the class with the highest summation of item strength.

3 Methods

Methylation data for breast cancer (BRCA,1) was downloaded from The Cancer
Genome Atlas (TCGA,2) using the R package TCGAbiolinksGUI [6]. Molecular
data was filtered for only the Illumina Human Methylation 450 microarray plat-
form and prepared as an RStudio object. This data pertained to 892 samples and
the 485,577 probes that exist on the Illumina Human Methylation 450 beadchip.
The methylation β values were then extracted. β values are an estimation of the
methylation levels between 0 and 1 with 0 being completely non-methylated and
1 being completely methylated. Tissue samples were either from the primary
cancer tumor, normal breast tissue (typically from the opposite, non-cancerous
breast), or the metastasized site. For the validation set, cancer tumor tissue was
subsetted to only those samples having an ER positive or a Triple Negative sta-
tus. Similarly, the BRCA clinical data was downloaded. Variables of interest in
the clinical data were the age at initial diagnosis, race, and therapy method.

3.1 Data Preprocessing

Metastatic tissue samples (those pertaining to the metastasized site, not the
primary cancer site) were discarded from the methylation data, as well as samples
from males. Age group was determined based on which decade the sample’s
diagnosed age fell into. A sample extracted from an individual who was diagnosed
with breast cancer at age 45 would be in group 4, while a sample from someone
who was diagnosed at age 53 would be in group 5 for example. Batch effects
were then located and removed using the R package ComBat. TCGA barcodes
have a plate identifier, and this identifier was used to determine the batch. After
pre-processing and batch correction, 782 cancer samples, 96 normal samples and
364,464 features (DNA methylation probes) were used. These probes were then
used to locate differentially methylated regions (DMR) using the TCGAbiolinks
R package. Differentially methylated regions are clusters of probes that are a
possible functional region for gene transcriptional regulation. Here, this process
served as a feature reduction mechanism using a biological methodology. The
number of features were reduced to 8,722. Once this data was constructed, it
was passed into the CBRMiC system where it was tested.

3.2 System Overview

Retrieval and classification was carried out using an author-constructed R pack-
age called CBRMiC. CBRMiC is a modular system that allows a user to split

1 https://portal.gdc.cancer.gov/projects/TCGA-BRCA.
2 https://www.cancer.gov/tcga.

https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://www.cancer.gov/tcga
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data into K-folds, perform class balancing, undergo feature selection, calculate
distance matrices for categorical and numeric features and finally classify.

When a dataset is loaded in, it is split into training and testing folds. Infor-
mation is gleaned from the training folds so that it may serve as a case base for
the testing folds. The training data can then be class-balanced and/or feature
selected prior to distance calculation.

3.3 Distance Measures

Distance for the microarray features is calculated for a novel test case using
Euclidean distance, while clinical (categorical) variables are calculated using
either the Goodall3 or Lin measures [5]. The Goodall measure tries to normalize
the similarity between two objects by the probability that the similarity value
observed could be observed in a random sample of two points. A higher simi-
larity is assigned to a match if the value is infrequent. In its third iteration, the
measurement assigns a higher similarity if the matching values are infrequent
regardless of the frequencies of the other values. To contrast, the Lin measure
assigns a higher weight to mismatches on infrequent values and if there are few
other infrequent values. A lower weight is assigned to mismatches if either of
the mismatching values are frequent or if there are several values that have fre-
quency in between the mismatching values. Operating these measures results
in a distance matrix where test samples have a notated distance to each of the
stored cases in the case base.

Fig. 1. Three query cases and their retrieved cases using the two-stage process.
Retrieved cases are based upon similar clinical covariate data as well as a similar
microarray signature.
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3.4 Retrieval Framework

During classification, similar cases are retrieved for each test sample using a con-
fidence metric. This confidence metric is the computed average of all distances to
samples of a different classification minus the average of all distances to samples
from the same classification for each case in the case base (shown in Algorithm
1). To frame it in terms of finding a cancerous sample among normal samples,
the best cancer sample during training would have the highest average distance
to all normal samples and the lowest average distance to all cancer samples.
These values are normalized, giving this prototypical case a perfect score of 1.0
to imply 100% confidence.

Algorithm 1: Constructing a confidence table
Input: Distance matrix of cases and distances, Table of cases and their
classification label
Output:Table of cases and their confidence levels
Result: Construct a table of cases and confidence levels
for each case cc do

get all samples of the same class as cc;
get all samples of the different class as cc;
get distances for same class samples;
get distances for different class samples;
Dsc = mean distance for samples in the same class;
Ddc = mean distance for samples in the different class;
confidence level for cc = Ddc - Dsc;
add cc and its confidence level to confidence table;

end
normalize confidence table;
return confidence table

During the two-stage process, cases in the case base are retrieved for each
test case by first finding cases with a similar age group, therapy method and race
(shown in Algorithm 2). This method uses the clinical covariate distance matrix
calculated with the categorical distance measures outlined above to determine
the distance between the test case and the case base. Then, once a pool of these
cases has been retrieved, it is further refined using a Euclidean distance matrix
from the DNA methylation features. Cases are continuously retrieved based on
each case’s confidence value until a threshold is reached. While this paper uses a
threshold of 1.0 in its methods, a threshold greater than 1.0 can be established if
the user wishes to retrieve more cases. In this manner, a distinct number of cases
in the case base are retrieved for each test case. The classification label assigned
to a testing case is then the majority label of the retrieved training cases. An
example of this methodology in action is depicted in Fig. 1. In this figure, three
randomly selected query cases are paired with their retrieved cases. Each query
case has a different number of retrieved cases, though they share highly similar
clinical traits which aids to the power and explainability of our system.
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To summarize, our method is distinguished from the traditional k-Nearest
neighbor through its usage of two distance matrices (one computed with a cat-
egorical distance measure and one computed with a numeric distance measure),
and a confidence threshold that tells the algorithm when to cease retrieving cases.

Algorithm 2: The two stage retrieval process in CBRMiC
Input: Clinical covariate distance matrix C, Microarray distance matrix
M
Output:Retrieved cases for a query case q
Result: Two Stage Retrieval Process
for a query case q do

for every case c in C do
Retrieve nearest case c from C;
if current confidence > confidence threshold then

stop;
else

current confidence = confidence of c + current confidence;
Retrieve next nearest case c;

end
end
for every retrieved case from C do

Retrieve next nearest case m from M;
if current confidence > confidence threshold then

stop;
else

current confidence = confidence of m + current confidence;
Retrieve next nearest case m;

end
end

end
return Retrieved cases for case q

3.5 Feature Selection

Feature selection algorithms used were Balanced Iterative Random Forest
(BIRF), and random KNN (rKNN). BIRF was introduced in [1] and begins
with the entire set of features and reduces features with zero importance value
at each iteration. It continues to do so while the classification error rate of the
training set is less than the classification error of the validation set. At this
point, it considers the training set as being overfitted and concludes. rKNN is
discussed in [11] and is an ensemble of k -Nearest Neighbor models that are con-
structed from a random subset of the input variables. A support criterion is used
to rank features until the most relevant features can be used for classification.
Additionally, it was tested with only the microarray data being used to retrieve
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cases until the confidence threshold was achieved and again with the two-stage
clinical and microarray process.

4 Results

4.1 Test for Confounding Clinical Variables

To test whether the clinical variables had a significant effect on DNA methylation
when comparing cancer and normal tissue samples, we first computed the average
methylation for the samples using the differentially methylated regions. Then,
each sample’s average was separated into its respective age group, therapy group
or racial group with samples having an NA status being excluded. A series of
single-factor ANOVAs was used to determine if this status had a significant effect
on the sample’s average methylation level. For the samples used to differentiate
breast cancer tissue from normal tissue, age group was found to have a significant
effect on the average methylation level (F(7,855) = 2.29, p = 0.025). Therapy
group was not found to have a significant effect on the average methylation level
(F(3, 573) = 1.79, p = 0.147). Racial group also did not have a significant effect
on the average methylation level (F(4, 874) = 1.93, p = 0.102).

A similar test was performed for the validation set of Triple Negative and
ER Positive samples.The average methylation per sample was calculated using
the differentially methylated regions. Each sample’s average was separated into
its respective age group, therapy group or racial group depending on the test.
Again, null values were removed. A series of single-factor ANOVAs was used
to determine if these groups had a significant effect on the sample’s average
methylation levels. For the samples used to differentiate ER positive from Triple
Negative tissue, age group was again found to have a significant effect on the
average methylation level (F(6,125) = 2.40, p = 0.03). Therapy group (F(2,82) =
2.30, p = 0.10) and racial group (F(3,128) = 1.53, p = 0.20) were again found
to have non-significant effects.

Despite the non-significant effects in therapy and racial group for our
datasets, we decided to continue with their usage since there were important
differences between the groups, and also due to the support from the medical
literature.

4.2 Classification Tasks

Two different stages were conducted, with the first being a subjectively easier clas-
sification taskwhile the second was amore arduous task to validate the constructed
system by trying to identify specific subtypes. The first task was accurately iden-
tifying whether a new sample (query case) was cancerous breast tissue or nor-
mal breast tissue. For this test, 782 cancer samples and 96 normal tissue samples
were used. After identifying the differentially methylated regions, 8,722 features
remained corresponding to probes on the DNA methylation chip. Once this data
was constructed, it was passed into the CBRMiC system where it was tested with
and without the two feature selection algorithms and with each of the categorical
distance measures. These tests were performed using tenfold cross validation.
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The second task was to try and differentiate two specific subtypes of breast
cancer: ER Positive breast cancer and Triple Negative breast cancer. 48 ER
positive samples and 84 Triple Negative samples were found and used in the
TCGA BRCA dataset that met our selection criteria. After preprocessing and
differentially methylated region analysis, 1,123 features remained. It is important
to note that these samples were also used in the previous series of analyses. The
tests within the CBRMiC followed the same methodology as the first task.

4.3 First Task: Cancer Classification

For these tests, a confidence threshold of 1.0 was set. Balanced accuracy (com-
puted using the average of per-class accuracy), the F statistic and the Kappa
statistic were used for performance metrics. Table 1 has the results for CBRMiC.

As a means of comparison, four other classification algorithms were tested.
A kNN algorithm that uses a distance weight of 1/d where d corresponds to
the distance and k is found through cross-validation was tested. During this
test, the optimal k was found to be 10. Random Forest with 500 iterations,
a Support Vector Machine (SVM) and Naive Bayes were also tested. These
tests were conducted using the Waikato Environment for Knowledge Analysis
(WEKA) [8]. Additionally, we tested CBRMiC using microarray data alone.
Table 2 displays the results of these tests with our algorithm for comparison (the
microarray stage uses the rKNN and Goodall algorithms).

Table 1. Testing results for classifying cancer tissue versus normal tissue using a two-
stage process. (8,722 features)

Feature selection Categorical
distance measure

Balanced accuracy F statistic Kappa statistic

No Lin 94.25% 0.98 0.84

No Goodall 95.04% 0.98 0.84

BIRF Lin 95.96% 0.98 0.88

BIRF Goodall 96.68% 0.98 0.88

rKNN Lin 95.05% 0.98 0.85

rKNN Goodall 96.79% 0.98 0.85

Table 2. We compared our method, CBRMiC with four traditional algorithms, as well
as using microarray data alone.

Algorithm Balanced accuracy F statistic Kappa statistic

SVM 97.9% 0.98 0.93

kNN 97.85% 0.98 0.93

Näıve Bayes 97.4% 0.98 0.93

CBRMiC(rKNN, Goodall) 96.79% 0.98 0.85

CBRMiC(Microarray alone) 96.75% 0.99 0.91

Random Forest 95% 0.98 0.92
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4.4 Second Task: Cancer Subtype

As aforementioned, the second series of tests was to try and differentiate two
specific subtypes of breast cancer: ER Positive breast cancer and Triple Negative
breast cancer. This stage follows the same pipeline as in the first task. Table 3
displays the results with our two-stage algorithm.

Similarly, four comparison methods were tested following the same paradigm
as with the cancer versus normal tissue dataset. The results of these tests are avail-
able in Table 4 (the microarray stage uses the rKNN and Goodall algorithms).

Table 3. Testing results for classifying ER Positive versus Triple Negative breast cancer
tissue using only the DNA methylation data (1,123 features).

Feature Selection Categorical
distance measure

Balanced accuracy F statistic Kappa statistic

No Lin 76.61% 0.69 0.54

No Goodall 75.56% 0.68 0.52

BIRF Lin 75.15% 0.67 0.52

BIRF Goodall 73.88% 0.64 0.47

rKNN Lin 77.69% 0.71 0.58

rKNN Goodall 77.55% 0.70 0.57

Table 4. We again compared CBRMiC with four traditional algorithms, as well as
using microarray data alone.

Algorithm Balanced accuracy F statistic Kappa statistic

Random forest 80.35% 0.83 0.63

Näıve Bayes 79.9% 0.81 0.60

kNN 78.15% 0.81 0.58

CBRMiC(rKNN, Goodall) 77.55% 0.70 0.57

CBRMiC(Microarray) 77.06% 0.69 0.55

SVM 69.65% 0.74 0.44

4.5 Initial Findings

As shown, our proposed algorithm outperformed random forest during the
first task and SVM during the second task. Further, it can outperform using
microarray data alone. While our two-stage algorithm performed better than
one traditional algorithm at each of these tasks, we believed that it would pro-
duce stronger results when refining the cases to a genomic region level. As the
high dimensionality was reduced through integrating probes to a gene level, we
believed the additional dimension of the clinical covariate data would aid in
differentiating samples.
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4.6 Effect of Clinical Covariate Integration

First, we looked to see if integrating the clinical covariates had a significant
effect. A series of paired-samples two-tailed t-tests with an alpha of 0.05 were
conducted to determine if integrating the clinical covariate variables had a sig-
nificant effect on the balanced accuracy, F statistic, and Kappa statistic. We
utilized the scores obtained when using only the microarray data, and when
using the clinical variables in our two-stage process. While we did not observe
a significant increase when differentiating cancer from normal samples, we did
find a significant increase for ER Positive and Triple Negative samples. Specif-
ically, we found a significant effect on the balanced accuracy (t(5) = −3.238,
p = 0.022), a significant effect on the F statistic (t(5) = −3.415, p = 0.018)
and a significant effect on the Kappa statistic (t(5) = −3.627, p = 0.015). The
effect on balanced accuracy is shown in Table 5. A possible explanation of why
we did not observe the significant effect for our first dataset is that the cancer
versus normal dataset holds a greater number of samples and a greater num-
ber of features. Without the larger sample and feature size, the algorithm may
require more data through which to differentiate the samples and draw upon
the clinical covariate differences to a greater degree. More tests will need to be
conducted to determine whether this theory is correct.

Table 5. Effect of integrating clinical covariates on the balanced accuracy

Balanced accuracy

Microarray Two-stage Paired samples t-test

72.55 76.61 Mean

71.92 75.56 72.95 76.073

69.24 75.15 Variance

69.24 73.88 13.621 2.201

77.69 77.69 P(Two-tailed)

77.06 77.55 0.022

4.7 Case Refinement for Subtype Classification

After these initial tests, we wished to see if refining the cases further would
increase our ability to differentiate cancer subtypes. Towards this end, we
mapped each DNA methylation probe after DMR analysis to its associated gene
and genomic region. Probes within each genomic region had their mean β value
calculated. After mapping and calculating the means for each genomic region,
133 regions for the ER positive and Triple Negative data existed. Tests were
performed with the two-stage process, as well as with the traditional algorithms
as a means of comparison. A k of 15 was chosen when testing the kNN algo-
rithm. As displayed in Table 6, our proposed two-stage algorithm outperformed
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Naive Bayes, kNN, and SVM. Additionally, we re-display results prior to case
refinement to show that associating probes to genomic regions increased classifi-
cation accuracy for our proposed method. This indicates that initial hypotheses
were correct that integrating methylated probes to a genomic level would not
only reduce dimensionality, but lead to better performance from our constructed
system.

Table 6. Results of a case refinement stage where probes were mapped to associated
genomic regions. Comparisons were made with traditional algorithms at this stage, and
results prior to case refinement are reshown to display the effect of the refinement.

Algorithm Balanced accuracy F statistic Kappa statistic

Random forest 78.15% 0.81 0.58

CBRMiC(rKNN, Goodall) 78.08% 0.71 0.59

Näıve Bayes 77.22% 0.79 0.55

kNN 76.65% 0.80 0.56

SVM 53% 0.54 0.07

Before Case Refinement

CBRMiC(rKNN, Goodall) 77.55% 0.70 0.57

5 Discussion

Results indicate that integrating clinical covariates performs better than
microarray data alone within our proposed system during all tasks, and holds
strong results after refining the cases to a genomic region level. During the first
task, our two-stage system CBRMiC outperformed random forest, outperformed
SVM during the second task, and outperformed Naive Bayes, kNN and SVM
after case refinement. We believe that this current iteration of CBRMiC performs
stronger on datasets with reduced dimensionality and will seek to strengthen the
system to more appropriately handle the high dimensionality of DNA methyla-
tion data. We believe that a further increase in performance may occur with the
addition of other clinical variables, so that there are more dimensions through
which to differentiate the samples. Future directions will be to evaluate the
confidence metric and search for other mathematical formulae to instill a sin-
gle value upon samples as a means of determining how well that sample lends
itself towards classification. We would also like to test our methodology on other
independent datasets as well as incorporating other clinical information. Still, we
have found results that display the utility of integrating clinical covariates with
microarray information as well as the strength of using case-based reasoning for
cancer classification.
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Abstract. Image segmentation is an abundant topic for computer vision
and image processing. Most of the time, segmentation is not fully auto-
mated, and a user is required to guide the process in order to obtain cor-
rect results. Yet, even with programs, it is a time-consuming process. In
a medical context, segmentation can provide a lot of information to sur-
geons, but since this task is manual, it is rarely executed because of time.
Artificial Intelligence (AI) is a powerful approach to create viable solutions
for automated treatments. In this paper, we reused a case-based reasoning
(CBR) system previously developed to segment renal parenchyma with a
region growing algorithm and we completed its adaptation phase allow-
ing a better adjustment of parameters before segmentation. Compared to
the previous system, we added an adaptation for the thresholds values in
addition to the adaptation of the seeds coordinates. We compared several
versions of our new adaptation in order to determine the best and we con-
fronted it with a deep learning approach realized in similar conditions.

Keywords: Case-Based Reasoning · Convolution Neural Network ·
Segmentation · Cancer tumour · Healthcare imaging · Artificial
Intelligence

1 Introduction

Nephroblastoma, also called Wilms tumour, is one of the most frequent abdom-
inal tumours observed in young children, representing 5 to 14% of malignant
paediatric tumours, and affects kidney. Because of tumour’s presence, the kid-
ney can be very deformed and hard to segment. Radiologists and surgeons need
3-Dimensional (3D) representations of the tumour and the border organs in order
to establish the diagnosis and to plan the surgery

Segmentation is one of the key steps in the construction of such a 3D rep-
resentation. During this process, each pixel of all scans has to be affected to
one and only one region. Each region represents a given structure (right or left
kidney, medullas, tumours, muscles, veins, cavities, etc.). The problem resides
c© Springer Nature Switzerland AG 2020
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in the unforeseeable nature of the situation of the kidneys and radiologists and
surgeons must lead and verify the segmentations of more than 200 scans manu-
ally for each patient in order to improve the therapy, which, in practice, is out of
the question since the segmentation leading by a surgeon or a radiologist using
actual tools requires 6 to 8 h.

Artificial Intelligence (AI) is a powerful tool capable of automatically per-
forming image segmentation, but its performance is highly dependent on the
quantity and quality of the available data. A knowledge approach helps to limit
this dependence. In [16], we privileged the use of a CBR system coupled with a
region growing algorithm, in order to perform kidney segmentation reached by a
nephroblastoma. The main contribution of [16] was the adaptation of the seeds
coordinates which ensured that they were well placed in the parenchyma of the
pathologic kidney before starting segmentation. Despite the improvement in the
results, the experiments highlighted the need to extend the adaptation step to
the second type of parameters, namely thresholds, to avoid leakage phenomena
that could severely deteriorate the accuracy of the yielded segmentations. In
[15], we completed our work with a training method for CNN, but dedicated to
the segmentation of nephroblastoma, called OV 2ASSION .

In this paper, we will first briefly present our platform dedicated to the
segmentation of scanner images in children, COLISEUM-3D, before focusing on
the CBR system for the segmentation of the pathological kidney. In particular,
we will present a second adaptation dedicated to the threshold values used during
segmentation by region growth so that the system itself is able to modify these
values to find an optimal combination better adapted to the new problem.

2 Related Work

Many methods exist for image segmentation and some are commonly used for
medical applications. Huang et al. realized a recent and complete survey describ-
ing popular algorithms for breast tumour segmentation [10]. Thresholding is the
simplest way to compute a segmentation but, as a histogram-based method, it
is not very efficient for noisy images such as US images or CT-scans. Cluster-
ing is another classical method where pixels are divided into several groups and
given feature vectors for each of them. Yet, results widely depend on initializa-
tion. Region-based methods such as watershed and region-growing algorithms
have a similar problem. On the one hand, the watershed technique tends to
produce over-segmentation because each basin in the image corresponds to a
different region. In contrast, region-growing needs to be initialized with seeds.
Most often, parameters are manually determined. Seeds and threshold values are
respectively placed in the images and defined allowing to calculate a criterion
to drive the regions growing. Mohammed et al. developed a process for auto-
matic seed point selection in order to segment Nasopharyngeal Carcinoma (NC)
from microscopy images, using probability maps [18]. Another way would be to
enhance the region-growing process with Artificial Intelligence (AI). Despite its
sensitivity to noise and a phenomenon of recurrent leakage, the region-growing
algorithm is fast and efficient.
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Many research studies relative to segmentation enhanced by AI using CBR [5,
19,20], genetic algorithms [6], knowledge stored in ontologies [2,3,11,23], Markov
random fields [12] and Deep learning [14].

Though, in recent studies, Deep Learning appears to give the most accu-
rate results. This technique requires a lot of data in order to be trained. In
contrast, CBR gives an advantage to knowledge and enriches itself following its
experiments [13]. A large number of CBR systems designed for Health Science
(CBR-HS) can be found in [1,7–9,17,21,22]. For instance, Saraiva et al. [22]
designed a CBR and RBR (Rule Based Reasoning) system as a decision support
system for diagnosis of gastrointestinal cancer. Petrovic et al. [21] worked on a
CBR-HS to retrieve and adapt the best radiotherapy for patients. Gu et al. [7]
realized a CBR system for diagnosis of breast cancer. In the image segmentation
field, Perner [19] designed a system for segmentation of brain images with a cut
histogram method. Frucci and Perner [5] adapted and improved this system with
a watershed method. Burgos et al. [2] created another CBR system to retrieve
the best segmentation process following the input images but for an agricultural
application. This approach is inspired by Perner’s one. Another interesting appli-
cation was made by Ficet-Cauchard et al. [4]. The architecture of an interactive
system allows the user to use a set of freely selectable and configurable modules
to perform a particular image processing task as image segmentation.

3 Materials and Methods

This part presents the material and method aspect of our work. A first section
describes our COLISEUM-3D platform. Then, an overview of our CBR system
for kidney segmentation is showed as a part of the platform. The main section
concerns the update of the adaptation process for seeds position and especially
for thresholds values.

3.1 COLISEUM-3D

COLISEUM-3D (COLlaborative plateform with artificial Intelligence for
SEgmentation of tUmoral kidney in Medical images in 3D) is a platform dedi-
cated to the segmentation of scanner images for the detection of different abdom-
inal structures in children. The structures of interest are the parenchyma of the
pathological kidney, the corresponding renal cavities, the nephroblastoma and
the blood vessels (arteries and veins). The platform inputs are the different
images of the patient to be segmented. These images can be taken in vascular
time (when the contrast product is in the patient vessels) or in late time (when
this contrast product is evacuated through the kidney cavities) depending on
the structures of interest. Its output is a final and single segmentation of these
structures. An overview of the platform is showed in Fig. 1.

COLISEUM-3D is organized in layers, themselves made up of modules, as
shown in Fig. 1 and explained below:
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Fig. 1. Overview of COLISEUM-3D platform

– The data layer includes all the available data on which to base the solution of
segmentation problems. It is itself divided into 3 sub-layers: the atlas, expert
knowledge and the case base;

– The segmentation layer produces the different segmentations from the dif-
ferent inputs. It is composed of 4 distinct modules, each dedicated to the
segmentation of a particular structure. Currently, a CBR system is used to
segment the renal parenchyma and a Deep learning approach (presented in
[15]) focuses on the segmentation of nephroblastoma;

– The fusion layer then merges the different segmentations in order to produce
a single result. This involves label conflict resolutions.

3.2 CBR System for Segmentation of Pathological Kidney

Our system is an update of the one developed in our previous paper [16], ded-
icated to segmentation of renal parenchyma deformed by the presence of a
nephroblastoma, and is presented in Fig. 2. The input of the CBR system is
a new CT-scan to segment. It searches in the case base the closer image already
segmented (source case) for reuse its solution. For this search, It calculates a sim-
ilarity value for each stored case and extracts the source case with the highest
similarity during a retrieval phase. Then, extracted parameters of segmentation
are adapted to the current case through an adaptation phase. These adapted
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parameters are used to perform a new segmentation thanks to an region grow-
ing algorithm. Finally, the result is evaluated by an expert and stored in the
case base as new source case if the segmentation is relevant.

Fig. 2. Overview of our CBR system

Figure 3 describes the case structure. This case structure is an enhancement
of the one used in the previous version of this tool and presented in [16]. The
solution part is updated to take into consideration new criteria used during the
new adaptation phase. In addition, we added the following items: intensity of
seeds’ pixels, area, center of mass and orientation of segmentation.

Case =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

patient sex
patient age

patient height
patient weight
image mean

image kurtosis
image skewness
image variance

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

list of pretreatments
2D coordinates of kidney seeds

thresholds of kidney seeds
intensity of seeds′ pixels
area of segmentation

centre of mass of segmentation
orientation of segmentation

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Description of problem part Description of solution part

Fig. 3. The case model of the CBR: problem part and solution part
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3.3 Adaptation Phase

The adaptation phase aims to automatically modify the parameters of region
growing algorithm in order to maximize the relevance of the result. According
to the algorithm presented in [16], there are two main types of parameters to be
modified: the seed coordinates (used to initialize the process) and the threshold
values (controlling the propagation/growth of the regions). A modification of
these parameters, even minimal, may infer big difference for the resulting seg-
mentation. It is therefore paramount to achieve to create an adaptation phase
robust enough in order to ensure the efficiency of the system. The number of
seeds is never modified and the system only use the ones that come from the
retrieval phase.

Adaptation of the Coordinates of the Seeds. Part of the adaptation is
to correctly place the seeds in the image. In [16], we suggested an algorithm to
adapt the coordinates of the seeds. We automatically inferred the correct position
of seeds, considering the grey-level intensity I of the pixel and extending step
by step the neighborhood until finding it. We defined a coherence interval CI
for each object to segment, corresponding to an interval of grey-level intensity
a seed must be in, and a procedure to verify if a seed belongs to its dedicated
region. This previous version outperformed a Level-Set technique (Dice equal to
75%) and FCN-8s (59%). In this work, we made some updates about the way
we search the best position for seeds. First, we use a specific coherence interval
CI for each retrieved seed in regards of a benchmark intensity iseed. This value
corresponds to the intensity of the pixel used to host the seed in the stored case.
Secondly, the coherence interval CI is now dynamic around iseed following an
iteration value z. During a first step, the algorithm looks for a pixel with an exact
intensity value iseed in a window 50 × 50. If no position is found, the procedure
starts from scratch by incrementing the value z. We limit the search of a better
pixel intensity in a window in order to avoid seed placement in distant structures
with an average intensity close from renal parenchyma. As a result, the test to
verify the relevance of a seed position has changed as below:

∀seed, isCorrectlyP laced(seed) = true if I(seed) ∈ CIseed

with CIseed = [iseed − z, iseed + z]
(1)

Adaptation of the Thresholds of the Seeds. As the region growth algo-
rithm is very sensitive to initialization (different initial conditions have a lot
of impact on the result), it is essential to adapt the position of the seeds. But
this adaptation is not enough to guarantee the quality of the calculated seg-
mentation and it is common that even with good coordinates, growth of seeds
leads to an aberrant result. The problem is that the position adaptation does
not prevent the leakage phenomenon in complex and sometimes low contrast
images. If the location of the seeds plays a role in this, the sensitivity of the
algorithm to this phenomenon depends strongly on the threshold values used.
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The adaptation of the values of the thresholds aims at optimizing the values of 2
thresholds (local and global) per seed and determining an optimal combination.
This implies designing a function that quantifies the quality of a segmentation
(or the error) in order to maximize it (or respectively minimize it).

The Evaluation Criteria. This function is based on 3 different criteria to char-
acterize the calculated segmentation compared to the segmentation of the refer-
ence case. These 3 criteria correspond to the calculation of the first 3 geometrical
moments. The geometrical moment of order ij, for an image in which each pixel
has for coordinates (x, y) and for value I(x, y), has for expression :

mij =
∑

x

∑

y

xiyjI(x, y) (2)

The first criterion m00 is the order time 0. In a segmentation in which the
pixel values are binary (0 for the background and 1 for the segmented object), this
is equivalent to calculating the area, in number of pixels, of the segmentation.
Using Eq. 2, we end up with :

m00 =
∑

x

∑

y

I(x, y) (3)

The second criterion is the center of mass, or center of inertia, Cm with
coordinates (x̄, ȳ) :

x̄ =
m10

m00
ȳ =

m01

m00
(4)

Finally, the third criterion θ allows to characterize the orientation of the
segmentation in space :

θ =
1
2
arctan

(
2m11

m20 − m02

)
(5)

The Score Function. In addition to these criteria, we have built a function score
in order to evaluate the quality of a proposed segmentation. This function is
itself composed of sub-functions calculating a score for each criterion :

scoreGlobal = (a ∗ scoreSup+ b ∗ scoreCdM + c ∗ scoreOrient)/(a+ b+ c) (6)

Where scoreSup, scoreCdM and scoreOrient are the scores on the area
criterion, the center of mass criterion and the shape orientation criterion respec-
tively. a, b and c are weight values which make it possible, if necessary, to give
more weight to one criterion in relation to another in the calculation. Let xseg be
the x parameter calculated for the segmentation of the case to be solved and xref

the parameter x obtained for the segmentation of the retrieved case. The scores
are calculated by performing the difference |xseg − xref | and by standardizing
them in order to delete the difference in scale of values between the 3 criteria.
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Threshold Adaptation Algorithm. In order to determine an optimal combination
of parameters, we have defined the search intervals IRlocal and IRglobal around
the reference thresholds thresholdLocalref and thresholdGlobalref such that:

IRlocal = [thresholdLocalref − α, thresholdLocalref + α]
IRglobal = [thresholdGlobalref − α, thresholdGlobalref + α]

(7)

where α is a value to control the extent of the search. In order to limit the
complexity of the problem, we have used a maximum of 3 seeds to initiate the
segmentation. We have favored a heuristic approach that allows us to efficiently
explore a small part of the possibilities in order to obtain an acceptable solu-
tion, i.e. one that can be medically exploited. We have used the DICE and IU
indices in order to validate the segmentations obtained in relation to the manual
segmentation done by physicians.

Algorithm 1 proceeds by several stages for adapting the thresholds. First of
all, the seg segmentation is calculated a first time with the list of seeds lseeds
directly from the retrieval process. This provides the initial score as a basis for
finding a better combination of thresholds. The score calculation uses the weights
a, b and c as defined in Eq. (6). They must be defined empirically to maximize
the quality of the segmentations. Indeed, modifying these weights impacts the
different criteria (area, center of mass and orientation) in the definition of a
optimal segmentation and therefore modifies the results of the CBR system.
For each seed of the lseeds, all possible pairs (thresholdlocal, thresholdglobal)
are explored, in accordance with the following search intervals α, by setting the
other values and then the segmentation produced by each of them is evaluated.
If the score of the new segmentation is higher than that of the previous one,
the new threshold values are retained, otherwise, the old values are reassigned.
The algorithm returns the list of seeds, with adapted thresholds to the current
problem.

4 Results

This section presents our experiments and the results obtained. The first part
presents the way the experiments have been performed. The second part shows
our results for the determination of the best combination of weights for thresh-
olds adaptation and highlights the interest of our adaptation phase in the CBR
system. Finally, the segmentations obtained with this CBR system are compared
to the ones obtained with a CNN in the lart part of this section.

4.1 Database, Initial Hypothesis and Conditions, and Evaluation
Process

In order to evaluate the second stage of adaptation (modification of thresholds),
the experiments are based on a database of 33 CT-scans segmented using a region
growth manually guided by an expert, giving as many different cases. The cases
are extracted from the examinations of 3 different patients, which we will name
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Algorithm 1. Adaptation of seeds threshold values
Require: image, lseeds, infoSegref , α, a, b, c
Ensure: lseeds

seg ← segmentation(image, lseeds)
scoreArea ← calculScoreArea(seg, infoSegref .area)
scoreCoM ← calculScoreCoM(seg, infoSegref .centerOfMasse)
scoreOrient ← calculScoreOrient(seg, infoSegref .orientation)
scoreGlobal ← a ∗ scoreArea + b ∗ scoreCoM + c ∗ scoreOrient
for each seed s of lseeds do

localThresholdref ← s.localThreshold
globalThresholdref ← s.globalThreshold
for i from −α to α do

for j from −α to α do
localThresholdtemp ← s.localThreshold
globalThresholdtemp ← s.globalThreshold
s.localThreshold ← localThresholdref + i
s.globalThreshold ← globalThresholdref + j
seg ← segmentation(image, lseeds)
scoreArea ← calculScoreSup(seg, infoSegref .area)
scoreCoM ← calculScoreCdM(seg, infoSegref .centerOfMasse)
scoreOrient ← calculScoreOrient(seg, infoSegref .orientation)
scoreGlobalnew ← a ∗ scoreArea + b ∗ scoreCoM + c ∗ scoreOrient
if scoreGlobalnew > scoreGlobal then

scoreGlobal ← scoreGlobalnew

else
s.localThreshold ← localThresholdtemp

s.globalThreshold ← globalThresholdtemp

end if
end for

end for
end for
return lseeds

here respectively P1, P2 and P3. Table 1 summarizes the information on the
constitution of this base. Note that we limit ourselves here for each patient to
the sections in which the pathological kidney is present. Therefore, it does not
refer to the entire examination. Finally, we have 33 images used to build the case
base and 150 images to evaluate the system.

In order to improve the quality of the calculated segmentations, post-
processing was applied to the images output from the CBR system. The renal
parenchyma is organized in 2 distinct tissues, the cortex and the medulla. Actu-
ally, surgeons did not distinguish these 2 tissues during their segmentations con-
sidered as ground truth. But the region growing algorithm distinguished them
sometimes. The post-processing consists of therefore applying a filling algorithm
in order to merge these 2 structures in one.
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Table 1. Case base for evaluation of our CBR system

Nb of images Nb of images in the base Nb of tested images

P1 40 12 28

P2 55 13 42

P3 88 8 80

Total 183 33 150

4.2 Determination of Optimal Weights

The threshold adaptation step uses an overall score so that the system is able to
assess the relevance of a segmentation associated with a combination of threshold
values. The expression for the global score was given by Eq. (6). It uses a set of 3
weights a, b and c determining the influence of each criterion in the calculation.
The determination of these weights is empirical. In this part, we experiment the
adaptation of the threshold values for the seeds, according to Algorithm 1, with
different triplets (a, b, c).

Four versions of the adaptation algorithm called respectively AdaptV0,
AdaptV1, AdaptV2 and AdaptV3 are evaluated and faced to the lack of adap-
tation :

AdaptV0 Algorithm with adaptation of seeds positions only.
AdaptV1 Algorithm with a triplet weight (1,0,0).
AdaptV2 Algorithm with a triplet weight (a,b,c) without nomalization.
AdaptV3 Algorithm with a triplet weight (a,b,c) with nomalization.

Table 2 presents the results obtained for patients P1, P2 and P3 indicat-
ing, Dice scores for each of them. The score is determined for a patient at one
time by considering the whole examination as one and the same 3D image. This
method gives more relevant results than average because it is free from a calcu-
lation bias that can artificially decrease or increase the score. A large number of
weight combinations was tested during the experiments but only the results of
a sample of these combinations are presented. Without adaptation, we obtained
a Dice score from 0.245 to 0.543. An adaptation of seed position only succeeded
to significantly improve the performances for all patients. This improvement
increases with a fully adaptation step. AdaptV1 achieves Dice index between
0.817 and 0.867 . The introduction of 2 additional criteria by AdaptV2 allows
to have a clear improvement. AdaptV3 corresponding to a willingness to correct
a methodological bias in the calculation of the criteria by standardizing them
between 0 and 1. The best results are achieved for the triplet (20, 10, 1) enabling
a better mean segmentation accuracy for patients P1 and P3. These results also
show that it is difficult to find an optimal (a, b, c) weight triplet for all patients.
Some triplets may give the best result on one and the worst on another. The
(20, 10, 1) triplet appears to be the most relevant here because it provides good
segmentations on all patients tested, but it is likely to lose relevance on others.
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Table 2. Global Dice measures obtained by the region growth segmentations guided
by our CBR system with adaptation of the seeds positions and thresholds.

NoAdapt AdaptV0 AdaptV1 AdaptV2

(1,150,4500)

AdaptV3

(1,1,1)

AdaptV3

(8,2,1)

AdaptV3

(20,10,1)

P1 0.455 0.620 0.826 0.826 0.651 0.806 0.830

P2 0.245 0.319 0.817 0.824 0.816 0.827 0.824

P3 0.543 0.712 0.867 0.888 0.899 0.882 0.897

Figure 4 highlights the importance of this new adaptation phase in our CBR
system, as well as its effectiveness, with a series of examples. For the 4 images
presented, the system failed to correctly segment the renal parenchyma when
the threshold adaptation is missing (which corresponds to the previous version
of this CBR [16]). For these 4 cases, the activation of the adaptation phase
significantly increased the quality of the result, even if it did not manage to
produce a perfect segmentation.

Fig. 4. Results of the region growth segmentation of different CT-scans (a) : (b) ground
truths (c) without threshold adaptation (d) with threshold adaptation using triplet
(20,10,1)
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4.3 Comparaison with OV 2ASSION Approach for Segmentation
of Tumoral Kidneys

We have finally compared the segmentations obtained by CBR system (with its
complete adaptation phase) to the ones obtained using a CNN (FCN-8s), trained
according to our OV 2ASSION method from [15], for the segmentation of the
pathological renal parenchyma. The interest is that this method places the CNN
in a favorable situation (segmentations to be calculated close to those included in
the learning set LS) and optimizing the segmentation accuracies. The case base
of the CBR system is identical to that of the previous experiments. The same
patients P1, P2 and P3 have been used for these tests. We have used CBR with
its complete adaptation phase (seeds’ coordinates and threshold values), with
the weight combination (20, 10, 1). To perform the comparison under similar
conditions, we set up the method OV 2ASSION with a gap g = 4 and a vector
(V4)1. The constitution of both of the databases is presented in Table 3. Only
the number of data for P3 is significantly different (twice as many important for
FCN-8s).

Table 3. Contents of the databases for CBR and FCN-8s

Total Nb
of images

Nb of images case
base of CBR

Nb of images learning set
of FCN-8s (g = 4)

P1 40 12 8

P2 55 13 11

P3 88 8 18

Table 4 presents the scores of Dice and IoU of both approaches, calculated
only on missing images on the bases. For all patients, the CBR system is reached,
thanks to its adaptation phase, to calculate segmentations more accurate than
those proposed by FCN-8s. Both of the systems deliver performance very close
for P3 with an advantage in favour of the CBR system. The pathological kidney
of P3 has a healthy appearance on a large number of slices, this may explain
why the CNN also manages to give good results. However, CBR keeps a supe-
rior performance while relying on a weaker database than FCN-8s (8 images
versus 18).

5 Discussion and Future Work

Our results showed that our CBR system could significantly improve the accu-
racy of kidney parenchyma segmentation with a region growing algorithm,
despite strong deformations induced by the presence of nephroblastoma. These
good results are strongly linked to the existence of an adaptation of the seeds
positions and thresholds. This one allows first of all to improve the likelihood
that the seeds are properly placed and ensure better threshold values to lead
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Table 4. Comparison of Dice and IoU scores for the segmentation of renal parenchyma
(pathological) between our CBR system (with full adaptation) and FCN-8S trained
according to the OV 2ASSION method

RàPC-CR with full adaptation FCN-8s OV 2ASSION g = 4

Dice IoU Dice IoU

P1 0.830 0.710 0.763 0.617

P2 0.824 0.700 0.729 0.574

P3 0.897 0.814 0.881 0.788

the segmentation despite the small size of data base which is a medical con-
straint we have to deal with. A performance comparison when this adaptation
is activated or disabled has clearly highlighted this contribution. On the other
hand, the CNN showed poorer performance under the same conditions despite
an advantageous situation allowed by the OV 2ASSION method. The main lim-
itation of the current system, however, remains the small size of the case base,
which cannot be fully compensated for by adaptation. Of course, this limitation
becomes all the more problematic when the kidney of the considering patient is
of an original (unexpected) aspect (considering the system case-base). Beyond
the question of a novel shape/position of the tumour (and therefore of the kidney
by extension), there is also the problem of the laterality of the nephroblastoma.
There are situations in which the characteristics of the kidney to be segmented
may be very close to a stored case, which should logically lead to a relevant
segmentation, but for which the pathological kidney is on the other side in this
new target problem in relation to this stored case. This then leads to an inabil-
ity of the system to compute a correct segmentation when all the conditions are
met. The consequence is an under-exploitation of the knowledge available by the
system, implying the need to complete the case base to maintain its efficiency
and to predict the mirror cases. If we add the fact that including new cases is
very time-consuming, the optimal exploitation of this knowledge is an essential
point to work on. The relevance of the scoring criteria used for the adaptation
of the thresholds, namely area, center of mass and orientation of the segmented
form, should also be questioned. These criteria appear to be very interesting to
describe the image but they are insufficient in use to guarantee the convergence
of the algorithm towards the best possible segmentation. Thus, determining the
weights to be given for each of these criteria remains an area of improvement.

Other futur works will be considered in order to improve this CBR system
results. First, the determined weights are the best for the tested data but there
is no guarantee there are for all patients. Further experiments are required in
order to optimize these weight values. For example, the combination of weights
(a, b, c) could be also integrated in the case solution. Second, our adaptation step
does not allow all the differences between the stored cases and the new cases to
be solved. It would be interesting to be able to design a modular adaptation
capable of building an original solution from several different solutions stored in
the database according to the relevance of their different parts.
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6 Conclusion

The core of this work has enabled us to propose a segmentation solution by
AI to extract the renal parenchyma from CT-scans, with the important lock of
the limited amount of available data. This solution uses a Case Based Reason-
ing (CBR) system to guide a region growth algorithm. In particular, we have
imagined an adaptation phase for the main initialization parameters of such an
algorithm, namely the seed coordinates and the threshold values. We were able
to demonstrate the efficiency of this adaptation and the clear improvement of
induced performance. The presence of this adaptation has strongly limited leak-
age phenomena, which are common when a segmentation by growth of regions
is performed. This adaptation has also increased the probability of segmenting
the desired structure by correctly placing the seeds in the image.

Acknowledgments. The authors wish to thank Pr Frédéric Auber, Dr Marion Lenoir-
Auber and Dr Yann Chaussy of the Centre Hospitalier Régional Universitaire de
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Abstract. Speed skating is a form of ice skating in which the skaters
race each other over a variety of standardised distances. Races take place
on specialised ice-rinks and the type of track and ice conditions can have
a significant impact on race-times. As race distances increase, pacing also
plays an important role. In this paper we seek to extend recent work on
the application of case-based reasoning to marathon-time prediction by
predicting race-times for speed skaters. In particular, we propose and
evaluate a number of case-based reasoning variants based on different
case and feature representations to generate track-specific race predic-
tions. We show it is possible to improve upon state-of-the-art prediction
accuracy by harnessing richer case representations using shorter races
and track-adjusted finish and lap-times.

Keywords: CBR for health and exercise · Speed skating · Race-time
prediction · Case representation

1 Introduction

Speed skating has a long history as a popular winter sport. The International
Speed Skating Union was founded in 1892 and long-track speed skating has been
an Olympic sport since 1924 [1]. Olympic events include sprints (500/1000 m),
middle distance (1500 m) and long distance (3,000/5,000/10,000 m) races, which
impose different physiological, fitness, and pacing demands on skaters. Fast skat-
ing requires a high degree of technical skill, physical strength and dexterity: the
crouched body position with low knee and body angles, which is optimal over
shorter distances, is exceedingly difficult to maintain over longer distances [1,2].
Speed skating is also a time-trial event, with two skaters competing in separate
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lanes, so their performance mostly depends on their own abilities. Choosing a
pacing strategy that is optimal, given the distance, track, competition, and the
skater’s own ability is a challenge and it is interesting to consider whether we
can help skaters to achieve new personal-best (PB) times by recommending more
appropriate pacing strategies.

There is a growing interest in the use of machine learning techniques in
sports for performance prediction [3]. For example, recent research by [4–6] has
considered performance prediction among marathon runners, where pacing also
plays a role, showing how case-based reasoning can be used for PB prediction and
pacing recommendation. Briefly, by reusing a case-base of past race progressions,
each documenting the progress of a runner from a non-PB to a PB race, it was
possible to predict challenging but achievable PBs for runners with upcoming
races, based on the PBs of similar runners, and also to recommend a pacing plan
to help a runner achieve their predicted PB time.

In this paper we explore whether this approach can be adapted to predict
the race-times of skaters, bearing in mind that there are important and obvi-
ous differences between speed skating and marathon running. For example, speed
skaters compete over a range of distances and thus there is an opportunity to cre-
ate cases using multiple past races over different distances, unlike the marathon-
to-marathon format of the cases used by [4–6]. This also facilitates prediction
for distances that the target skater has not yet raced. While weather conditions
are no doubt important in marathons, such factors were not considered by [4–6];
although a simple weather adjustment was use for ultra-running prediction by
[7]. In skating the condition of the ice and the environment of the track are sig-
nificant enough that they need to be included, especially since a skater’s prior
races will tend to take place on a variety of different tracks; we will describe how
to normalise performances with respect to different tracks.

The remainder of this paper is organised as follows. In the next section
we introduce speed skating as our domain of interest, discussing the important
aspects of the sport, summarising the dataset that we will use, and highlight-
ing the main research questions that we wish to answer. Following this, we will
present our main technical contribution, by describing a case-based approach to
predicting track-specific race-times. In fact, we will describe a number of vari-
ants of this approach, which differ in terms of the race histories that are used
in cases, and the way that they are used. Finally, before concluding, we will
describe a detailed evaluation to compare the prediction accuracy of these dif-
ferent variants, showing how significant improvements in prediction accuracy can
be achieved relative to the state-of-the-art baseline approach proposed by [4,8].

2 An Introduction to Speed Skating

Speed skating is a unique sport that combines endurance and power with pacing
strategy and racing aerodynamics. In this section we briefly review the major
features of the sport before describing the details of the dataset used by this work.
We then go on to outline the key research questions that will be considered by
this research.
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2.1 The Anatomy of Speed Skating: Skaters and Races

Long-track speed skating is typically performed on an 400 m artificial ice-rink
(see Fig. 1) over the following distances:

1. Sprint: 500 m (comprising one straight end and one lap) and 1,000 m (2.5
laps);

2. Middle Distance: 1500 m (an opening of 300 m, with 3 additional laps) is
an important distance because it combines elements of sprint and endurance
skating;

3. Endurance: 3,000 m (7.5 laps), 5,000 m (12.5 laps) and 10 km (25 laps), all of
which demand a considerable degree or pacing strategy from skaters.

Fig. 1. The dimensions of a standard speed skating track and race configurations;
image provided courtesy of wikipedia.org

In competition, skaters achieve similar high speeds to cyclists: elite sprinters
reach 60 km/h while endurance skaters sustain average speeds in the 45–50 km/h
range. During a race, skaters have access to very limited information on their
performance – unlike runners and cyclists, GPS devices are useless as most tracks
are semi-covered or completely indoor – and typically they only have access to
their 400 m lap-times. Speed skating also places very different physical demands
on athletes, compared with running or cycling: the crouched body position and
low knee and trunk angles that are required for aerodynamic skating are physi-
ologically challenging because they restrict blood-flow to the active muscles [1].
This makes it especially difficult for skaters to maintain good form and pacing
over longer distances.

2.2 The Importance of Pacing

Previous research has focused on the pacing strategies used by elite skaters
for shorter [2,9] and longer distances [10]. For sprint distances (500/1000 m),
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pacing does not play a significant role and the best approach is typically an
all-out strategy with skaters going as fast as possible from the start and main-
taining this speed, as best they can, until the finish [9]. However, for distances
≥1500 m, which combine elements of anaerobic and aerobic exertion, pacing
plays an increasingly important role [11,12]. If a skater starts too fast, then they
run the risk of slowing during the final stages of a race, and research has shown
how maintaining a high speed in the 3rd lap (from 700–1,100 m) of 1,500 m races
is critical for faster finishing times; see also the work of [13] for an analysis of a
similar phenomenon among marathon runners.

Pacing is even more important in long-distance races, but in a way that differs
from marathon running. For example, in elite long-distance skating negative
splits – where the skater achieves a faster second-half time than first-half time –
are more rare than in elite long-distance running, likely due to the physiological
constraints and reduced blood-flow that is associated with good skating form.

For non-elite skaters lap-times typically slow as a race unfolds but the degree
of slowing depends on the race distance: shorter races present with more signifi-
cant slowdowns between laps than longer races, which are associated with more
consistent pacing. As with marathons, how skaters pace their races is important
when it comes to identifying similar skaters, thus motivating the importance of
lap-times as part of case representations.

While previous research has focused on small samples of elite speed skaters,
in this paper we focus on much larger samples of amateur and sub-elite speed
skaters. Usually amateur skaters are still learning how to race, and thus any
improvements to their pacing may enhance their PB prospects. Indeed, the pac-
ing issue is exacerbated for non-elite skaters with respect to longer distances,
in part because there are fewer opportunities to compete over longer distances,
compared with elites; in other words non-elite skaters have fewer racing experi-
ences when they need them.

2.3 The Dutch Speed Skating Data Set

The dataset used in this study was collected from http://www.osta.nl and com-
prises 329,080 race records from 15,590 unique Dutch skaters; thus each indi-
vidual skater is associated with an average of 21 races. The races took place
between September 2015 and January 2020 and race distances included all of
the common distances, 500 m, 700 m, 1,000 m, 1,500 m, 3 km, 5 km, and 10 km.
Each race record includes information about the skater (their name/id, gender,
age), the race date, distance and track, and the skater’s performance (finish-
time and segment/lap-times, whether or not the result was a personal-best, and
various age/gender rankings).

Skater Demographics: Speed skating is a somewhat unusual sport. In the
data set skaters ranged in age from 4 to 84 years-old, but as shown in Fig. 2
most skaters are young, between the ages of 10 and 18 years-old, and once they
graduate from high-school and go on to college most leave the sport, unless they

http://www.osta.nl
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Fig. 2. Age distribution of skaters in the Dutch data set

are especially competitive. However, it is not unusual for skaters to return to
the sport in their 40’s, especially men, perhaps as their own children start to
compete. In the Netherlands there exists a large population of older skaters who
remain active at so-called masters level. There is even an official national masters
championship.

Race Histories: There are 4 major categories of skaters in the dataset (Fig. 3:
pupils are younger than 12 years old and only compete over shorter distances
(100 m and 300 m, which are not in the data set, and 500 m, 700 m and 1000 m
which are present); the majority of races are completed by junior skaters between
13 and 18 years old, mostly in races up to 3000 m; senior and masters skaters
more frequently compete in 5 km and 10 km races, although they still remain
rare compared to shorter distances, in part at least because the economics of
ice-rinks make longer races more costly. The 500 m races are the most common
by far because skaters often combine them with another distance on the same
day or at the same event.

Track Types and Track Conditions: Track type and the ice conditions are
important factors that influence performance. The quality of the ice can have an
impact on race-times and is determined by a variety of factors including humidity
and temperature. Outdoor or semi-covered tracks require frequent reconditioning
of the ice (often every 20–30 min), while air-conditioned, closed-roof tracks pro-
vide more stable conditions, which are conducive to faster racing; high-altitude
tracks are also considered to be faster [10], due to reduced air-resistance, but
they are not present in the Dutch data set.

The data set contains records for a variety of track types, including: fully
enclosed, air-conditioned tracks like the one in Heerenveen (HV), which hosts
many international races; enclosed tracks without air-conditioning, typically with
direct ventilation; semi-closed tracks with some cover, but that are otherwise
exposed to the elements; and fully outdoor tracks without any cover at all.
Figure 4 shows the mean 500 m race-times for a variety of different tracks and
track types, and serves to highlight just how important track types are when
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Fig. 3. Speed skaters by age category and distance.

it comes to finish-times. The fastest air-conditioned tracks are associated with
finish-times that can be >10% faster that outdoor tracks (e.g. ≈45 s vs ≈53 s,
for HV vs AM).

Fig. 4. Boxplots of 500 m times by track; note times are in hundreds of a second.

2.4 Research Questions

The main research question to be explored in this work is whether it is possible
to accurately predict track-specific, personal-best times for skaters based on their
previous racing histories. Unlike the work of [4,5,8], which relied on marathon
race records from the same course, in this work each skater can be represented by
a more diverse mix of race distances across a variety of tracks. As such, the main
question becomes whether it is possible to predict the performances of skaters
over distances that are longer than they are used to, and for different types of
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tracks, using their shorter racing histories. This use-case is particularly impor-
tant to younger skaters because, when younger skaters graduate from shorter
sprints to longer endurance races they can benefit from advice about realistic
goal-times and pacing strategies.

For a given distance, differences in finish-times depend on track conditions,
but they also depend on the skaters. Therefore it is not enough to simply apply a
one-size-fits-all weighting to account for track differences when trying to predict
track-specific finish-times. For example, some tracks might attract very young
or much older skaters, who tend to be slower, while faster tracks like Heerenveen
(HV) tend to attract more competitive skaters, who want to improve their PB,
or those who wish to qualify for national championships.

3 Predicting Track-Specific Race-Times

Our approach to predicting finish-times is fundamentally case-based in nature:
to predict a finish-time for some skater s and distance d we reuse the finish-times
of skaters with similar race histories. To do this we describe a number of different
ways to represent race histories with or without track-specific adjustments, and
outline how the resulting case-bases can be used to generate predictions.

3.1 From Races to Cases

The work of [4,8] proposed pairing a runner’s non-PB marathon time (and 5 km
split-times) with their PB time (and split-times). The equivalent representation
in the present work would, for a given target distance, d, pair a skater’s non-
PB race for d, nPB(s, d), with their PB time for d, PB(s, d) as per Eq. 1; each
race, is represented by a finish-time, lap-times and a track id. In other words, to
predict the finish-time for s for an upcoming 3,000 m race, requires a case-base
that is made up of PB/non-PB times for 3,000 m races by other skaters. In what
follows we refer to this as the nPB case representation (cnPB) and it will serve
as the baseline against which to judge the variations that follow.

cnPB(s, d) =
〈
nPB(s, d) | PB(s, d)

〉
(1)

While this baseline remains valid in the present work, we are also interested
in predicting a target distance PB by using previous races from shorter (more
common) distances. Thus, one variation pairs a skater’s PB and lap-times for
shorter distances with their PB for a longer target distance, d, as in Eq. 2; in
this study the target distances used are 500 m, 1,000 m, 1,500 m, 3,000 m, and
5,000 m. We refer to this as the PB representation (cPB).

cPB(s, d) =
〈
PB(s, d′) ∀d′<d | PB(s, d)

〉
(2)

In this way each case encodes additional performance information for s –
their finish-times (and lap-times) for multiple shorter races – but these times
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are also personal-best times, reflecting recent best-efforts over these distances.
This contrasts with the nPB representations, where it is less clear if the transition
from nPB to PB is representative of a typical progression for a skater, or an
artefact of the pairing of an outlier nPB with a very good PB. Moreover, the
pacing patterns reflected in the lap-times of these shorter distance PBs encode
important information about the type of pacing employed by a skater, which is
important when it comes to finding cases that are similar in terms of their finish-
times and pacing strategy: a sprinter will likely use a different pacing strategy
on a 3000 m than an endurance skater, for example.

Of course, we can also combine the nPB and PB representations, so that
cases for some race distance d are made up of a nPB race for that distance
and PB races for shorter distances, as shown in Eq. 3, which we refer to as the
combined representation (ccom).

ccom(s, d) =
〈
PB(s, d′) ∀d′<d , nPB(s, d) | PB(s, d)

〉
(3)

3.2 Adapting for Track Variations

Given that track conditions can have a material impact on finish-times we also
produce modified versions of the above case representations, which use adjusted
finish-times to reflect these conditions. In our initial analyses we found that
simple adjustments for mean times per track (as reflected in Fig. 4) did not
improve our predictions, because there are many confounding factors at play,
such as different track-specific populations and type of races.

Since many skaters in our dataset have race times for a specific distance,
on different tracks, we can estimate within-person adaptations that overcome
most of these confounds. For each skater and each distance we calculate a PB
for each track they have raced on, and then fit a multilevel regression model to
this data to estimate within-person, track-specific differences relative to a single
reference track. The fixed effects of this multilevel regression model provide the
adjustments that can be used to standardise the finish-times of all races relative
to the reference track.

c′
nPB(s, d) =

〈
nPB′(s, d) | PB′(s, d)

〉
(4)

c′
PB(s, d) =

〈
PB′(s, d′) ∀d′<d | PB′(s, d)

〉
(5)

c′
com(s, d) =

〈
PB′(s, d′) ∀d′<d , nPB′(s, d) | PB′(s, d)

〉
(6)

These adjusted finish-times can then be used to produce new versions of our
nPB, PB and combined case representations, as shown in Eqs. 4–6, by replacing
raw timing data with normalised, track-adjusted timing data, as indicated by
nPB′ and PB′.
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3.3 Generating Predictions

For a given skater s and race distance d we predict their finish-time (using one
of the representations outlined above) by using the past races of s to identify the
k nearest cases, using a standard Euclidean distance similarity metric. As in the
work of [4,5,8], male and female skaters are separated so that the predictions
for male skaters are generated from the cases of male skaters, and vice versa for
females; this is because of the performance differences that exist between the
sexes due mainly to physiological differences. We also separate younger skaters
(≤20 years-old) from older skaters (≥40 years-old) to facilitate a later age-based
comparison.

Then a prediction is generated based on the distance-weighted mean of the
target distance PB times from these cases (PB(s′, d) or PB′(s′, d) as appropri-
ate, where s′ denotes a similar, nearest-neighbour skater). If adjusted timings
are used then (PB′(s′, d)) then obviously the resulting prediction needs to be
transformed back into an actual finish-time for the target track. As an aside, it
is worth noting that to predict a pacing plan for the target race we can adopt
a similar approach to that described in [4,8], by computing the average relative
lap-times from the k nearest cases. However, we do not focus on this particular
task further in this paper.

4 Evaluation

In this section we provide a detailed analysis of prediction accuracy, compar-
ing the baseline nPB approach originally described in [4,8] to the alternatives
proposed in this work.

4.1 Data and Methodology

We use the Dutch dataset introduced earlier to produce different case-bases
for three common target distances (1,500 m, 3,000 m, and 5,000 m), using the
different case representations (nPB, PB, and combined), and timing data (raw
times versus adjusted times). This leads to 18 (3 × 3 × 2) individual case-bases
for prediction. Note that the different target distances have quite different race
characteristics: there are ≈48k 1,500 m races, each with 4 lap times, compared
with ≈16k 3,000 m races (each with 8 lap times) and ≈2.7k 5,000 m races (with 13
lap times per race). The longer distances also facilitate richer PB representations
because there are more shorter component PB distances. Thus a 5,000 m PB or
combined case will have significantly more features than a 5,000 m nPB case,
because of its extra component PB cases, and their lap-times.

We adopt a standard 10-fold cross-validation approach to evaluate predic-
tion accuracy across these variations and for different values of k (1, 3, 5, 10.
20, 50). During each fold/iteration we select a random 10% of cases to use as
test problems with the remaining 90% of cases used as the training case-base.
Each test problem is solved (generating a race-time prediction) and compared
to the known race-time for that test problem. For each prediction we calculate a
percentage error and compute an average error across the folds for each variation.
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4.2 Prediction Error vs k

To begin, it is informative to explore how prediction error varies with k, the
number cases retrieved to make a prediction, and how this depends on the target
distance, representation, and whether or not track-adjusted timings are used.
Figure 5 shows the results, separately for each combination of (a) target distance,
(b) representation, and (c) timings.

Fig. 5. The mean error rates by k (the number of similar cases reused) for different
(a) target distances, (b) representations, and (c) timings (raw versus track-adjusted).

In general, as we might expect, the accuracy of predictions improves with k,
up to a point, and on average the best overall errors are available for values of
k in the range 10–20. It is also clear that the accuracy of the predictions, for a
given value of k, depends on the target distance, representation and timing and
it is worth discussing these accuracy differences further before proceeding.

The different error rates between the target distances can be explained by
the number and quality of the features used during prediction. Since the error
rates in Fig. 5(a) are averaged over all representations and timings, then cases
for longer target distances tend to use more features, since the combined and PB
representations will be made up of additional PB races and because longer races
will be made up of more lap-time features. This explains the lower combined
and PB error rates in Fig. 5(a). Moreover, since these longer distances are pre-
dominantly skated by the more skilled skaters, they are more predictable even
at lower k. However, for larger k, the error goes up, most likely because there
are fewer records for the longer distances and a larger k results in less represen-
tative similar cases being reused. This does not apply to the 1500 m distance,
which still benefits from larger k due to the much larger number of available
race records, and good similar cases can still be found even up to k = 50.

A related argument can be applied to explain the error differences by rep-
resentation, in Fig. 5(b): the combined cases contain more features than the PB
cases which, in turn, contain more features than the nPB cases. In addition, it
is reasonable to expect that the PB races used in the PB and combined cases
will be of higher quality, from a prediction viewpoint, than the lone nPB races
in the nPB cases. That being said, the improved error rates for the combined
cases over the PB cases indicates that these nPB races do add still value.
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Figure 5(c) presents a like-for-like comparison in terms of the number and
types of features in cases, the only difference being whether raw timings or
track-adjusted times are used. The difference in error is more modest across
values of k but indicates a benefit accruing to the track-adjusted timings.

In summary then, the novel case representations (PB and combined) and
track-adjusted timings proposed in this work lead to more accurate predictions
than the baseline nPB representation from [4,8].

4.3 Best Performers

Given the sensitivity of prediction to k, the target distance, the case representa-
tion, and the timings used, it is appropriate to examine the single best performing
k for each combination of distance, representation, and timings, so that we can
compare individual systems (single case-based predictors) more directly.

Figure 6 presents a table of these best performers for each of the 18 unique
combinations of distance, representation, and timings. Each row of the table
represents a single case-based predictor, with its corresponding value of k, and
shows the mean and standard error of the prediction errors produced by the 10-
fold cross-validation. The table is arranged in blocks by target distance (1,500 m,
3,000 m, and 5,000 m) and within each block the baseline and best performing
variants are indicated.

We can see that best predictors, for a given combination of distance, rep-
resentation, and timing, produce their most accurate predictions for different
values of k, from 3 to 50, although in most cases the best value of k is either 10
or 20. The combined representation using track-adjusted times provides the most
accurate predictions, regardless of target distance, with significant improvements
with respect to the baseline, as shown. For example, when predicting 1,500 m
times, the combined, track-adjusted variant generates predictions with a mean
error of 0.0154 and a standard error of 0.0015, as compared with 0.0298 and
.0016 for the baseline; a relative error improvement of more than 48% due to the
combined, track-adjusted approach. As the target distances increase the improve-
ments for the combined, track-adjusted variant, relative to the baseline, decrease,
but remain significant; we observe a relative error improvement of 29% and 21%
for 3,000 m and 5,000 m races, respectively.

It is interesting to note that these results appear somewhat at odds with the
average prediction errors by target distance from Fig. 5(a), where shorter dis-
tances were associated with larger errors. While this is true in general – Fig. 5(a)
averages over all representations and times for a given distance – the much higher
error for the nPB cases for the 1500 m tends to increases the overall error rate.
When we compare the single, best performing system for each distance, then the
shorter distances have lower best-errors. This may be due to the fact that there
are many more 1,500 m cases to choose from than there are for the 3,000 m or
5,000 m distances, as previously discussed.
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Fig. 6. Mean and standard error of prediction errors for the best performing value of
k for each of the 18 case-base variants.

Figure 6 also indicates that the PB representation is also associated with sig-
nificantly lower errors than nPB ; the latter has fewer, lower quality features than
the former. Moreover, for any given combination of distance and representation,
the best track-adjusted timing cases offer improved errors compared to the use
of raw timings; although the difference for a given distance and representation
tends to be modest and is not commonly statistically significant.

4.4 On Gender and Age

The work of [4,8] highlighted different marathon-time prediction errors for men
versus women: women enjoyed superior prediction accuracy, a result that is con-
sistent with the notion that female runners tend to pace their marathons more
evenly than men, and therefore are more predictable in their finish-times; see [14].
We consider a similar question here, by examining male and female prediction
accuracy, and also the accuracy associated with younger (≤20) and older (≥40)
skaters. We do this for two approaches – the best overall approach (combined
representation with track-based timing adjustments) and the baseline (nPB with
raw timings) – for the three target distances (1,500 m, 3,000 m, and 5,000 m).
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We define a relative advantage score for gender and for age as shown in Eq. 7,
so that the relative advantage for males versus females, for the baseline, is one
minus the baseline error rate for males divided by the baseline error rate for
females; thus, if RelAdvbaseline(males, females) < 0, then it means that the
baseline error rate for males is higher (worse) than the baseline error rate for
females, and vice versa.

RelAdvalg(x, y) = 1 − error(x)
error(y)

(7)

Figure 7 presents the scores for the best and baseline approaches, for the
target distances, comparing error rates for gender and age. RelAdvbest(males,
females) > 0 in Fig. 7(a) means that the best approach produces more accurate
predictions for men than for women. But RelAdvbaseline(males, females) < 0,
indicating that the baseline produces more accurate predictions for women than
for men, as with [4,8] for marathons. A similar pattern is observed in Fig. 7(b),
comparing younger and older skaters: For the best approach the race-times of
younger skaters are predicted more accurately RelAdvbest(younger, older) > 0
than older skaters, but for the baseline approach the finish-times of older skaters
are predicted more accurately, RelAdvbaseline(younger, older) < 0 (except in the
case of the 5,000 m target distance).

It is not clear why these approaches perform in this way, but it indicates that
the best approach offers a more balanced prediction accuracy than the baseline
approach, as well as its better overall accuracy. For example, the mean absolute
relative advantage of the best approach is ≈0.05, for gender and age, indicating
that the mean errors between genders and ages differ by only about 5%. This is
compared with corresponding scores of 0.08 and 0.19 for baseline, indicating a
much greater imbalance between genders and between age categories.

Fig. 7. A comparison of the relative error rates for the best and baseline approaches
with respect to gender and age. A relative advantage score <0 for gender means females
enjoy more accurate predictions than men, using a given approach, and a similar score
for age means older skaters enjoy better predictions than younger skaters.
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5 Conclusions

This paper extends the original work of [4,8], on predicting finish-times for
marathon runners, in a number of important ways. First, we apply the tech-
niques described by [4,8] to the very different sport of speed skating. Second,
we propose an alternative case representation which is better suited to speed
skating by representing case uses multiple races that are shorter than the target
race; this in turn addresses one of the key shortcomings of the [4,8] approach,
which required runners to have run at least one marathon in the past. Finally,
given the importance of track conditions in speed skating we also proposed a
technique for normalising race-times across a wide range of tracks. The results
of a large-scale evaluation demonstrate the benefits of the new approaches that
have been proposed. Using these approaches it has been possible to significantly
reduce the prediction error compared with the baseline approach of [4,8].

The ideas presented in this work are general enough that they may also be
applicable to marathons and other sports. For example, in marathon running,
course conditions may have a significant impact on performance, which speaks to
the value of a similar timing adjustment for marathon races to the one presented
here for speed skating. Moreover, since many marathoners will run shorter races
too (5k’s, 10k’s, half-marathons), then the idea of including PBs over shorter
distances is also likely to be worthwhile. We also plan to extend our current
work to include pacing recommendations as was the case for marathon races
[5,6] to help skaters to achieve their predicted PB times and even help skaters
to tackle a first race over a new, longer distance.
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Abstract. CBR applications have been deployed in a wide range of
sectors, from pharmaceuticals; to defence and aerospace to IoT and
transportation, to poetry and music generation; for example. However,
a majority of these have been built using monolithic architectures which
impose size and complexity constraints. As such these applications have
a barrier to adopting new technologies and remain prohibitively expen-
sive in both time and cost because changes in frameworks or languages
affect the application directly. To address this challenge, we introduce
a distributed and highly scalable generic CBR system, Clood, which
is based on a microservices architecture. This splits the application
into a set of smaller, interconnected services that scale to meet varying
demands. Experimental results show that our Clood implementation
retrieves cases at a fairly consistent rate as the casebase grows by several
orders of magnitude and was over 3,700 times faster than a compara-
ble monolithic CBR system when retrieving from half a million cases.
Microservices are cloud-native architectures and with the rapid increase
in cloud-computing adoption, it is timely for the CBR community to
have access to such a framework.

Keywords: Cloud CBR · Mircoservices · Elasticsearch · CBR
framework

1 Introduction

Several case-based reasoning (CBR) development frameworks and toolkits have
been introduced to the CBR community [13–15]. These have been extended
for recommender systems [8] and textual CBR [12] and more recently for self-
management systems [1]. However many of these CBR systems are mostly imple-
mented with monolithic architectures such as desktop standalone applications,
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with heavy demands due to siloed in-memory batch processing. This is not com-
patible with recent software development trends, which are increasingly using
REST APIs1 for communication with cloud computing platforms.

Cloud computing is a term used to describe the use of remote hardware and
software to deliver on-demand computing services through a network (usually
the Internet). In the past, applications or programs were run from software down-
loaded on to a physical computer or server. In contrast cloud computing lets users
access these applications through the internet. Implementing software applica-
tions in the cloud offer several benefits which include efficient/cost reduction,
scalability, mobility, and disaster recovery. Distribution of CBR applications and
cases enables, MapReduce type algorithms to exploit the parallelism opportunity
that is to be had with pair-wise similarity computations [19]. Interestingly, CBR
has also been applied to support cloud provisioning, whereby similar Amazon
Web Services (AWS)2 configurations are recommended given a characterisation
of a user’s compute task [9]. This helps the user to make decisions about the
types of cloud services for the given task. But having to monitor resource utili-
sation and change service requirements accordingly is a challenge which in turn
has paved the way for microservice based architectures.

A CBR framework using a microservice based architecture provides (amongst
other things) flexibility in both the technology being used (e.g., programming
language) as well as dynamic scalability that can adapt to user application
demands (e.g., spikes in casebase querying, seasonal effects). This is because,
individual microservices are independently scaled and developed such that the
overall system architecture is a scalable distributed application [6]. Importantly,
the computation of services are stateless since they are automatically provisioned
only when needed and then stopped when no longer required. This is particularly
advantageous to CBR in situations where there is in-memory demand due to its
inherent nature of being a lazy learner.

In this paper we discuss how the CBR cycle can be organised into multiple
microservices and how service discovery is facilitated between these independent
components using rest communications. A microservice is considered efficient
when the system is loosely coupled and highly cohesive [10]. Identifying which
functionalities within the CBR cycle should be decoupled and organising them
into microservices is a key design challenge that we address in this paper. We do
this by introducing, Clood3, a generic open-source CBR cloud-based microser-
vice framework, and make the following key contributions:

– create a novel design using the microservice paradigm for CBR;
– introduce, Clood, an extensible open source microservice CBR framework4;
– evaluate the scalability of the retrieval phase on a recommender task; and

1 An architectural style and approach for communication based on representational
state transfer (REST) that is often used in web services development.

2 https://aws.amazon.com.
3 Clood is “Cloud” in Scottish dialect.
4 Clood CBR repository: https://github.com/RGU-Computing/clood.

https://aws.amazon.com
https://github.com/RGU-Computing/clood
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– identify areas of future development that are essential for the sustainability
of Clood CBR.

Rest of the paper is organised as follows; in Sect. 2 we discuss existing frame-
works, jcolibri and myCBR. The design paradigm appears in Sect. 3 and the
Clood implementation is discussed in Sect. 4. Results from a scalability experi-
ment with half a million cases is presented in Sect. 5 followed by conclusions and
future directions in Sect. 6.

2 Related Work in CBR Development Architectures

There are two well-established open-source frameworks for building CBR appli-
cations: myCBR and colibri, though they follow different approaches and sup-
port different phases of the CBR application development.

myCBR5 has been a tool for researchers and practitioners over the last ten
years [16]. This framework is focused on the developing of a knowledge model
for representing cases and computing similarity through the myCBR-workbench
tool [2]. This knowledge model can be instantiated through the building blocks
and functionality provided by the myCBR-SDK, that is a Java library following
a classical monolithic software architecture. However, their authors have recently
presented the myCBR Rest API which exposes the functionality of both myCBR-
SDK and myCBR-workbench through a RESTful API [1]. Instead of forcing
users to integrate their myCBR systems into a Java environment, this novel
API enables users to model a CBR system using myCBR’s workbench and then
deploying the application as a web service. The goal is to make it easier to build,
test, compare and deploy CBR applications.

colibri, on the other hand, is focused on the development of a wide range of
CBR applications [11]. As a platform, colibri offers a well defined architecture
for designing CBR systems, a reference implementation of that architecture:
the jcolibri framework [13], and several development tools that aid users in
the implementation and sharing of new CBR systems and components. These
tools have been integrated in the colibri Studio development environment [14].
Both tools make up the COLIBRI platform following a two layer architecture.
jcolibri is the white-box layer of the architecture: a framework for develop-
ing CBR applications in Java. This framework represents the bottom layer of
the platform. It includes most of the code required to implement a wide collec-
tion of CBR systems: Standard, Textual, Knowledge-Intensive, Data-Intensive,
Recommender Systems, and Distributed CBR applications. It also includes eval-
uation, maintenance and casebase visualisation tools. All this functionality has
established jcolibri as a reference CBR framework with more than 35K down-
loads6. However, jcolibri still follows the same monolithic Java architecture like
myCBR and is not suitable for modern web environments.

5 http://mycbr-project.org.
6 http://gaia.fdi.ucm.es/research/colibri/jcolibri.

http://mycbr-project.org
http://gaia.fdi.ucm.es/research/colibri/jcolibri
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The need for both these platforms to evolve into web services architecture
is clear. However, there are different approaches to implement this evolution.
myCBR proposes wrapping its existing java components as web services. It is a
straightforward option but has several drawbacks. Mostly, the wrapping of the
existing java components does not allow to take advantage of the capabilities of
cloud architectures regarding availability or scalability. The alternative option
is to create a cloud-based CBR framework from scratch in order to exploit the
features of modern cloud architectures. This is the option adopted by Clood,
that can be considered as a re-implementation of the functionalities provided by
the jcolibri and myCBR frameworks, but instead of wrapping its existing java
components, it redesigns entirely the CBR architecture for the cloud. In this
manner, Clood adopts the CBR architecture defined in colibri based on a
pre/post-CBR-cycle to load/release required resources. Clood also reproduces
the case structure representation based on a composite pattern, and the simi-
larity computation through global/local similarity functions that both jcolibri
and myCBR implement.

In summary, our goal is to create a cloud architecture that is able to provide
the same functionalities using familiar methods currently being used in jcolibri
and, thereafter, further integrate existing web services found in myCBR. As we
will present in the following section, Clood re-implements jcolibri’s methods
using modern web services technologies such as Elasticsearch or JSON-based
communications that extend the existing capabilities of the framework regarding
flexibility and data-intensive processing.

3 Microservices Design Paradigm for CBR

A microservice is an independent process which can carry out specific tasks in
isolation [6]. These should be deployed, tested and scaled independently for a
single functional responsibility; such as similarity, ranking, casebase editing, etc.
Key to this architecture are the concept of serverless functions also referred to
as Function-as-a-Service (FaaS) [3] - logic that is split into small code snippets
and executed in a managed compute service. Well known examples include AWS
Lambda and Google Cloud Functions7.

3.1 Clood Architecture

Fig. 1 shows a high-level overview of the system’s design consisting of 3 main
components: REST API; serverless functions (compute service); and data ser-
vice. The core CBR tasks – retrieve, reuse, revise, retain – are implemented
as serverless computing functions. Functions can interact with external appli-
cations (e.g., a dashboard) and internally with other functions through REST
APIs. Decomposition of the CBR cycle into smaller functions provides flexibility
to introduce similarity functions and deploy them independently. Such func-
tions will also include relevant knowledge container provisions. The post-cycle
7 http://aws.amazon.com/lambda and http://cloud.google.com/functions.

http://aws.amazon.com/lambda
http://cloud.google.com/functions
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or maintenance tasks, like forgetting cases or recomputing footprint cases can
be confined to the Retain service. The data service is used as the casebase which
allows the serverless functions to query and retrieve. Data sources and connec-
tors forming the pre-cycle communicate with the casebase once they are synced
with the data service. Data sources can either be external or within the cloud
platform which gives flexibility for the community to use existing data sources.
An important distinction here with the pre-cycle is that it remains lean (as com-
pared to jcolibri, or myCBR); in that it does not involve loading cases into
memory once cases are made persistent.

Fig. 1. Proposed Clood CBR architecture diagram

3.2 The Casebase

Popular CBR systems like jcolibri keep the casebase in memory during opera-
tion. An in-memory casebase guarantees speed when interacting with the case-
base but will incur massive costs to scale up for big data. Also, using the CBR
system in a distributed manner can be problematic with in-memory casebase as
memory is an expensive resource even on the cloud. In the serverless architec-
ture, we maintain the casebase in the data service. The data service is a NoSQL
full-text distributed search engine for all types of data. Elasticsearch and Solr
are popular examples of such distributed, scalable open-source search tools for
textual, numerical, geospatial, structured, and unstructured data. These tools
provide a significant improvement regarding the representation of cases in pre-
vious CBR frameworks, because the case structure does not need to be fixed.
Therefore, the cases in the casebase can have different attributes, and similarity
metrics are applied according to each particular data types. Moreover, as these
search tools are built on Apache Lucene, they are extendable, allowing users
to write custom similarity metric scripts against a data index. Accordingly, the



134 I. Nkisi-Orji et al.

type of operations that would normally occur in-memory can be done in the
data store index which is usually file-based8.

3.3 Local Similarity

A subset of the serverless functions for the retrieve phase are used to gener-
ate similarity scripts to measure local similarity. These metric functions per-
form retrieval from the casebase at the attribute level. Each generated similarity
function script depends on the data type of the attribute. Supported data types
include string, numeric, boolean, date and object. Some similarity metrics, such
as metrics to retrieve exact matches, are in-built in several distributed search
engines that can be used for the data service. A suitable data service should
enable the implementation of custom similarity metrics functions to support
other local similarity functions that are used for CBR retrieval in the jcolibri
and myCBR frameworks.

3.4 Global Similarity

The global similarity function which aggregates local similarities determines the
order in which cases are retrieved from the casebase and their ranking. Both a
weighted and non-weighted form can be used to identify the nearest neighbours
and is managed directly by the data service. Each local similarity function script
is executed in the data service, in response to a single query, to obtain the global
similarity as a sum. Custom scripts can be created as needed to vary the weights
associated with different attributes. These weights can be dynamically modified
for each retrieval task or alternatively remain static for all queries. The latter
corresponds to learning an attribute weighting scheme that is used unchanged
with every casebase query; whilst the former provides the opportunity to change
attribute weights to suit the query context. The default global aggregation can be
replaced with a custom aggregation script; whilst this does offer greater flexibility
it will also incur greater computing memory when working with medium to large
casebases since all the cases that are returned by the local functions will be held
in memory (as with the monolithic organisation of jcolibri and myCBR).

3.5 Implication for CBR Cycle

The major improvement over the architectures used by jcolibri and myCBR
is the lack of a two-layer persistence strategy. In previous frameworks there is
a need to load cases into memory from a persistence media such as a database,
text file, etc. However, the use of the Clood data service allows to manage cases
directly from its internal data index.

Absence of the two-layer persistence strategy, has an immediate impact on
the application structure because unlike previously where a pre-cycle step was
8 Elasticsearch index store http://www.elastic.co/guide/en/elasticsearch/reference/7.

6/index-modules-store.html (accessed May 14, 2020).

http://www.elastic.co/guide/en/elasticsearch/reference/7.6/index-modules-store.html
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needed prior to the CBR cycle itself for loading cases into memory, this is no
longer required. However Clood maintain the possibility of executing a pre-
cycle (or its complementary post-cycle) in order to perform additional pre/post-
processing of the data, if the CBR system requires it.

Another significant benefit of cloud-based technologies is concurrency, which
directly creates the opportunity to execute CBR processes in parallel. This fea-
ture is quite limited in current frameworks and is also very relevant in order to
parallelise time-consuming algorithms such as kNN or noise removal methods
such as BBNR (Blame-based noise reduction), CRR (Conservative Redundancy
Removal), RENN (Repeated Edited Nearest Neighbour), RC (Relative Cover),
or ICF (Iterative Case Filtering) [5].

4 Clood CBR System

Clood is implemented using python functions following the design paradigm
presented in Sect. 3. These functions run on Amazon Web Services (AWS)
Lambda, which is the serverless event-driven computing service of AWS. The
casebase uses the AWS ES service and the client application is implemented with
JavaScript and HTML using the AngularJS framework9. Using a test application
provided by jcolibri10 we describe the Clood implementation (see Fig. 2) and
discuss how CBR functionality is achieved with cloud capabilities. Services that
are not core to CBR operations include Cognito which is used for authenticated
access to the system and Cloud Watch which is used to collect and monitor event
logs.

4.1 Casebase Using Elasticsearch

Elasticsearch (ES) is an open-source highly distributed and horizontally scalable
full-text search engine with various capabilities built on Apache Lucene [7]. ES
uses RESTful interfaces to manipulate its schema-free JSON document store and
performs searches at very high speeds maintaining an index that is about 20%
the size of the indexed documents [18]. Compared to traditional database man-
agement systems, the ES “index” is somewhat like the database table as queries
are executed against the index. While there are several schema-free databases
with search capability to choose from, we choose ES as the data service in our
implementation because of its popularity and close integration with existing
cloud service providers.

Although it is “schema-free”, ES internally generates a schema based on the
field (attributes/columns) values of documents to be indexed. Relying on an
ES-generated schema can be problematic in some cases. For example, a field
for storing alphanumeric values can be designated as numeric by ES if the first
documents to be indexed have numeric values only for that field. In order to
9 http://angularjs.org.

10 http://gaia.fdi.ucm.es/research/colibri/jcolibri/doc/apidocs/es/ucm/fdi/gaia/
jcolibri/test/test1/package-summary.html (accessed May 14, 2020).

http://angularjs.org
http://gaia.fdi.ucm.es/research/colibri/jcolibri/doc/apidocs/es/ucm/fdi/gaia/jcolibri/test/test1/package-summary.html
http://gaia.fdi.ucm.es/research/colibri/jcolibri/doc/apidocs/es/ucm/fdi/gaia/jcolibri/test/test1/package-summary.html
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Fig. 2. Clood CBR implementation on AWS

avoid undesirable field properties, we create an explicit mapping which indicates
the data type to be stored for each field in the casebase. The ES index “mapping”
is comparable to the database schema as it describes the fields (columns) in the
JSON documents along with their data types.

An explicit index mapping supports the specification of how a field’s values
should be indexed and the local similarity metric to be used for retrieving the
values of that field. Where possible, we delay specifying the local similarity
function for a field until retrieval time for greater flexibility. This is because
the index specification for a field cannot be modified once data is added to
the index. With query script similarity functions supplied at retrieval time, the
method of retrieval can be varied without having to modify the underlying index
mapping. Introducing a new attribute to an existing casebase can be done by
extending the index mappings with the new field. The structure of cases that
do not have values for newly created fields will remain unchanged. Clood’s
serverless functions interact with ES by HTTP requests and responses using a
python Elasticsearch client, elasticsearch-py11. The casebase is a separate service
which can be hosted anywhere with exposed API end-points further highlighting
the distributed nature of Clood.

4.2 Clood Similarity Functions

Table 1 shows the local similarity metric functions that are currently imple-
mented on Clood, reproducing some relevant functions available in jcolibri
and myCBR. Although several similarity metrics are currently missing in
Clood, the goal here is to demonstrate the potential of the framework
and to encourage code contributions in the future. Each similarity metric is

11 http://elasticsearch-py.readthedocs.io/en/master (accessed May 14, 2020).

http://elasticsearch-py.readthedocs.io/en/master
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implemented as a python function which generates and returns a Painless
script12 that can be executed on ES during retrieval operations. Painless is
the scripting language that is specifically designed for writing inline and stored
scripts on ES. Generated scripts for the local similarity of each case attribute
are combined into a single multi-match query script at retrieval.

Table 1. Clood’s local similarity metrics

Data type Similarity metric Description

All Equal Similarity based on exact match

String EqualIgnoreCase Case-insensitive string matching

BM25 TF-IDF similarity with TF normalisation
based on Okapi BM25 ranking function

Semantic USE Similarity based on the similarity of vector
representations

Numeric Interval Similarity of two numbers inside an interval

INRECA Similarity following the INRECA More is
Better and Less is Better

McSherry Similarity following the McSherry More is
Better and Less is Better

Enum EnumDistance Similarity of values based on their relative
positions within an enumeration

Date ClosestDate Similarity depending on the extent two
dates are to each other

McSherry, INRECA, Interval and EnumDistance are re-implementations of
local similarity metrics found in jcolibri. For textual CBR, we specifically
implemented the Semantic local similarity metric (Semantic USE) for text con-
tent, using the Universal Sentence Encoder (USE) which embeds texts in a dense
vector space of 512 dimensions [4]. This vector representation is generated using
a lite version of USE based on the Transformer architecture13 [17] and is stored
as a dense vector field on ES. Textual retrieval follows the same process of gener-
ating the vector representation of a query string. Afterwards, the Semantic USE
local similarity function measures the cosine similarity between query vectors
and documents’ vectors to identify the most semantically similar content.

4.3 REST API

REST APIs are stateless in that the API server does not remember the state
of its clients and every call to an end-point is independent of other calls. REST
12 http://www.elastic.co/guide/en/elasticsearch/painless/master/painless-guide.html

(accessed May 14, 2020).
13 http://github.com/tensorflow/tfjs-models/tree/master/universal-sentence-encoder

(accessed May 14, 2020).

http://www.elastic.co/guide/en/elasticsearch/painless/master/painless-guide.html
http://github.com/tensorflow/tfjs-models/tree/master/universal-sentence-encoder


138 I. Nkisi-Orji et al.

API uses existing protocols such as HTTP for Web APIs. As a result, client
applications do not need additional software to use the service. REST improves
portability to different types of platforms since all interactions are completed
through universally understood interfaces. With Clood, each REST API end-
point is a serverless function. The replication of an end-point and the resources
allocated to it vary to meet changing demands without affecting the other end-
points. REST APIs are created and published using the API Gateway (see Fig. 2)
and Table 2 summarises the major REST API end-points of Clood.

Clood is able to concurrently manage multiple CBR applications (use-
cases) referred to as “project” in Table 2. The system’s capabilities can be easily
extended by introducing new serverless functions (e.g., similarity functions, reuse
functions, revise functions). Functions that will become part of the REST API
are specified in a YAML file along with their access protocols.

Table 2. Clood’s REST API end-points

End-point Request method Description

/project HTTP GET Retrieves all the CBR projects

/project/{id} HTTP GET Retrieves a specific CBR project with
specified id

/project HTTP POST Creates a new CBR project. The details of
the project are included as a JSON object
in the request body

/project/{id} HTTP PUT Updates the details of a CBR project.
Modifications are included as a JSON
object in the request body

/project/{id} HTTP DELETE Removes a CBR project with specified id

/case/{id}/list HTTP POST Bulk addition of cases to the casebase of
the project with specified id. Cases are
included in the request body as an array of
objects

/retrieve HTTP POST Performs the retrieve task

/retain HTTP POST Performs the retain task

/config HTTP GET Retrieves the system configuration

/config HTTP POST Adds or updates the system configuration

4.4 Clood CBR Dashboard

Client applications can perform CBR operations through the RESTful API end-
points of Clood. The Clood CBR client application is a light-weight HTML
and JavaScript implementation that is able to manage multiple CBR projects
through API calls. Figure 3 shows the interface for specifying the attributes of a
project’s casebase. Clood system’s configuration provides guidance on allowed
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operations when specifying attributes. For example, it indicates that the Interval
local similarity metric only applies to numeric attributes. Once the attribute
specifications are completed, Clood generates an index mapping for the case
representation on ES.

Fig. 3. Specifying attributes for a casebase.

Fig. 4. Retrieve stage query specification.

Logstash is an open-source data processing pipeline from the ES stack for
ingesting data into ES14. Using Logstash, cases can be added to a Clood’s
14 http://www.elastic.co/guide/en/logstash/current/input-plugins.html (accessed May

14, 2020).

http://www.elastic.co/guide/en/logstash/current/input-plugins.html
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casebase from multiple data sources including files (e.g., CSV file), databases
with JDBC interfaces (e.g., MySQL), and NoSQL databases (e.g., MongoDB).
However, we also include a file upload utility for adding cases from CSV files
through a RESTful end-point and which should be sufficient for file sizes that
will not overwhelm the Web browser.

The retrieve operation begins with specifying some attribute values along
with weights for aggregating the local similarity measures. Attributes with known
values become part of the problem space while attributes with unknown values
form the solution space. Furthermore, a retrieve strategy can be specified per
attribute as shown on the user interface in Fig. 4. For example, the Best match
can be retrieved for one attribute while the Mean of the k best matches retrieved
for another attribute. The k nearest neighbours to retrieve and the global simi-
larity method can also be specified at the retrieve phase.

A reuse interface displays the retrieval results for reuse. The recommended
case (candidate solution) mixes the user-supplied attribute values with the
retrieved values for unknown attribute values. The k most similar cases to the
query case are also presented for possible reuse. The reuse button against a
retrieved case is used to make it the recommended case. The recommended case
can be revised by adjusting it as required. Afterwards, the case can be retained
by adding to the casebase.

5 Evaluation

A scalability test is conducted to evaluate Clood based CBR application, to
examine how resource demands both on the casebase and the serverless CBR
functions are met. We expect a fairly consistent compute performance for differ-
ent CBR tasks across different project sizes (compared to a jcolibriapplication).
We focus on case retrieval for evaluation since it is the most commonly performed
and time-consuming stage of the CBR cycle.

5.1 Experimental Setup and Dataset

Six CBR projects of increasing casebase sizes (10, 102, 103, 104, 105, and 540, 394)
were created from a used cars dataset15 (1.35 GB CSV file), and case retrieval effi-
ciency compared with Clood and jcolibri. A case has 25 attributes16 describ-
ing the physical attributes of a car (e.g., colour), identification attributes (e.g.,
vehicle identification number), and location attributes (e.g., region, state, coor-
dinates), and the listing price.

In the comparative study, 10 nearest neighbours (NN) are retrieved with
Equal similarities (Table 1) using the following query.
15 http://www.kaggle.com/austinreese/craigslist-carstrucks-data/data (accessed

February 25, 2020).
16 Dataset attributes are id, url, region, region url, price, year, manufacturer,

model, condition, cylinders, fuel, odometer, title status, transmission,

vin, drive, size, type, paint color, image url, description, county, state,

lat, long.

http://www.kaggle.com/austinreese/craigslist-carstrucks-data/data


Clood CBR: Towards Microservices Oriented Case-Based Reasoning 141

{ ‘ year ’ : ‘ 2017 ’ , ‘ manufacturer ’ : ‘ ford ’ , ‘model ’ : ‘ focus ’ ,
‘ cond i t ion ’ : ‘ good ’ , ‘ f u e l ’ : ‘ gas ’ , ‘ t i t l e s t a t u s ’ : ‘ clean ’ ,
‘ t ransmis s ion ’ : ‘ automatic ’ , ‘ dr ive ’ : ‘ 4wd’ ,
‘ s i z e ’ : ‘ compact ’ , ‘ p a i n t c o l o r ’ : ‘ grey ’ }

Time taken by the Retrieval function (Retrieve time) is recorded which for
Clood, consists of: the time spent to dynamically generate a query using the
appropriate similarity functions for the query case, retrieve the 10 NN of the
query case from the casebase, generate a recommended case for reuse using
specified reuse strategy, and generate a response through the API. We do not
include the time lapse between the client application and the API endpoints as
that is very dependent on the network connection speed and client’s platform
resources. For jcolibri, Retrieve time is measured in the cycle phase consisting
of: the time spent to retrieve the similarity configuration, perform NN scoring
over the cases (in-memory), and select the 10 best cases. jcolibri was run on a
Windows 10 PC having 6th generation Intel core i7 processor and 16 GB RAM
with 2GiB Java heap size. Clood uses AWS Lambda functions for its operations
while the casebase was hosted on a single cluster of the AWS ES Service with
2GiB and 1 vCPU (t2.small.elasticsearch instance).

5.2 Results and Discussion

Figure 5 shows the average case retrieve times for Clood and jcolibri on log
scales with standard deviations as error bars. jcolibri was marginally faster on
the smallest casebase (10) but the superior performance of Clood is apparent
with increasing casebase sizes. Similar case retrieval times were obtained by both
systems at about casebase size of 100 cases; however at casebase size of 1,000,
Clood was 5.5 times faster than jcolibri and at casebase size of 540,394,
Clood was 3,737 times faster than jcolibri. Close examination of Clood’s
Retrieve time spent on the ES casebase when measured separately (Query time)
shows to have increased due to time spent querying the casebase (see Fig. 6).
We used the smallest AWS ES instance, and we expect Query time to improve
when using an ES instance with improved resources. Also, several optimisation
techniques can be employed to improve Query time. In the current implementa-
tion, we apply each local similarity function to the target attribute of every case
in the casebase. An improvement can optimise the querying process such that it
uses filters to reduce the number of similarity computations. For example, in the
query above where the ‘year’ must match ‘2017’, we can apply the year limit as
a filter when matching ‘manufacturer’ so that it only searches for ‘ford’ in 2017
models.

The use of cloud services typically involves usage costs. The microservice
architecture with pricing per run-time keeps the costs minimal. For example,
running the CloodCBR system with core services (Lambda and ES and data
transfer) costs 14 USD a month. In comparison, a similar monolith system hosted



142 I. Nkisi-Orji et al.

Fig. 5. Case retrieve times as casebase
size increases. Both axes are log scales.

Fig. 6. Clood retrieve times compared
to the query times. X-axis is a log scale.

on a medium-sized AWS machine (t3a.medium and 50 GB storage) costs 22 USD
a month (cost estimates as of April 2020).

6 Conclusion

We introduced Clood CBR, a novel microservices-oriented CBR framework
which leverages the serverless architecture for CBR operations and a distributed
data storage service (Elasticsearch) for CBR knowledge persistence. Implementa-
tion of the extensible Clood CBR framework is an ongoing open-source project.
We demonstrated the robustness of Clood on a CBR project of half a million
cases and showed how Clood is scalable for different project sizes. Ongoing work
for the future sustainability of Clood include extending support for additional
similarity and data types (e.g., myCBR’s table similarity); and include functions
for reuse and revise, casebase maintenance and visualisation. Also, overcoming
the performance bottleneck of handling the intermediate results of local similar-
ity functions in-memory, when implementing custom global similarity functions,
is beneficial for extending the capabilities of Clood. We intend to make Clood
a Python library to reuse the Clood Elasticsearch similarity functions for the
community and add seamless integration for deploying on more cloud providers.
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Abstract. In this paper, we present a novel extension of CBR that
allows cases to be more proactive at problem solving, by enriching case
representations and facilitating richer interconnectedness between cases.
We empirically study the improvements resulting from a holographic
realization on experimental datasets. In addition to making CBR more
cognitively appealing, the idea has the potential to lend itself as an ele-
gant general CBR formalism of which diverse realizations of CBR can
be viewed as instances.

Keywords: Case-based reasoning · Case base maintenance · Holonic
cases · Holographic reasoner · Cognitive CBR · CBR formalism

1 Introduction

Case-Based Reasoning (CBR) is founded on the central premise of reusing past
experiences to solve problems, and this is particularly effective in ill-defined
domains, where sufficiently rich logical or mathematical models of the domain
are unavailable. In a help desk domain where the goal is to answer user queries
on malfunctioning of a software, no domain model of the software is available
for model-based diagnosis, but logs of past episodes of problems solving can
be exploited to build a CBR diagnosis system. Thus, one appeal of CBR is in
its ability to reduce human (expert) effort needed to engineer rich top down
domain knowledge. In this respect, CBR seems, on the surface, to share some
commonalities with Machine Learning (ML) which uses bottom up methods,
largely driven by induction, to acquire knowledge. Unsurprisingly, there is a
growing trend in the CBR community to embrace state-of-the-art ML techniques,
for instance those from the field of Deep Learning, to CBR. In reality, however,
CBR is a problem solving paradigm, broad enough in its scope, to elegantly
embrace both top down and bottom up approaches effectively to solve a problem
in a given domain. We hold the view that to bring back CBR to the centre stage
of AI, it is imperative to appreciate CBR as a paradigm closely driven by the
problem specific to the domain under consideration, rather than as a toolkit (like
a set of ML algorithms) that can be easily adapted to suit diverse problem needs
but is distanced from the nuances of the actual problems being solved.

Dijkstra had once remarked: “Computer science should be called computing
science for the same reason why surgery is not called knife science”. In saying
c© Springer Nature Switzerland AG 2020
I. Watson and R. Weber (Eds.): ICCBR 2020, LNAI 12311, pp. 144–159, 2020.
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so, he intended to point out the futility in trying to understand the solution
technique (the knife) without a keen appreciation of the problem at hand (the
patient anatomy). Machine Learning methods are analogues of knives that can
dissect a wide range of problems, starting from very simple ones (apples) to very
complex ones (a human patient). Their effectiveness depends on the extent to
which its user is aware of the problem complexities. CBR, on the other hand
is a paradigm for problem solving, for performing a surgery, which may use the
knife of Machine Learning when appropriate, but may need several other tools
as well. In particular, CBR critically relies on a top down model of the domain,
that decides the representation of cases, and in particular, the knowledge con-
tainers required by the reasoner, viz. cases, vocabulary, similarity and adaptation
knowledge [23].

Bottom up methods, such as Machine Learners that induce similarity knowl-
edge from data accumulated over time, can feed into these knowledge containers
and can be used effectively in many situations to alleviate knowledge engineering
bottleneck. The way top down knowledge is traded off for bottom up knowledge,
or vice versa, is a key design choice that differentiates CBR systems deployed
till date in diverse domains. Knowledge rich domains (i.e. domains where the
domain knowledge is readily available) may rely more on top down knowledge,
while knowledge light domains rely more on bottom up learners to compensate
for absence of rich domain knowledge [9]. Irrespective of the nature of domains,
however, the design choice is critically guided by the need to minimize what
we call the “representation gap”: the information loss incurred by an expert in
the process of recording his problem solving experiences in the CBR knowledge
containers. The effectiveness of a CBR system in a given domain is critically
dependent on how well this representation gap is bridged.

In this paper, we propose the concept of holographic CBR, that aims at bridg-
ing this representation gap by breaking free of certain presuppositions implicit
in conventional CBR systems. One such presupposition is that cases are passive
knowledge containers, and hence case addition or deletion does not affect the
rest of the case base. Clearly, human memories are more interesting; the experi-
ence of encountering a new problem and solving it, not only adds this experience
passively to our storehouse of experience, but can lead to a re-organization of the
remaining set of experiences, as well. Holographic CBR is founded on the philos-
ophy that cases can be made more proactive in problem solving by embedding in
them a richer model of how they relate to the CBR system as a whole. In prac-
tical terms, it involves enriching the representation of cases; in particular, each
case can have its own local similarity, adaptation and vocabulary knowledge,
which it can use, in addition to shared knowledge containers, to refer to other
cases and collaborate in order to arrive at a solution to the problem. We show
that holographic CBR not only leads to more cognitive realizations of CBR, but
also offers us a fresh perspective that allows us to picture conventional CBR,
and a large class of CBR realizations reported in literature in specific domains,
as special instances of holographic CBR systems.

In Sect. 2, we discuss the inspiration behind the holographic conception from
disciplines as diverse as physics, biology and organization structures. In Sect. 3,
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we discuss basic ideas of holographic CBR. Section 4 illustrates the essential idea
by way of two realizations of holographic CBR. In Sect. 5, we discuss how our
work relates to other work in literature, and how it can be further extended.
Section 6 summarizes our main conclusions.

2 Holographic Systems

The conventional view in neuroscience in the earlier part of the last century
was that specific memories were confined to specific locations in the brain. This
viewpoint was advocated, for example by Wilder Penfield, a Canadian neuro-
surgeon [17], who experimented by electrically stimulating various brain regions
of epileptic patients. In the mid-nineties, there was a surprise in store for the
neuroscience community, when Karl Lashley’s three decades of research culmi-
nated in evidences contrary to Penfield’s findings. Lashley had trained rats to
run a maze, and then surgically removed portions of their brains, with the aim
of completely removing the regions in their brains responsible for their maze
running abilities [13]. Interestingly, he discovered that irrespective of the brain
region that was removed, their memories refused to perish. Lashley was joined
by Karl Pribram, who hypothesized that the only explanation of Lashley’s find-
ings would be that memories, instead of being localized at specific brain regions,
were distributed throughout the brain [20]. Whatever was true with rats was also
true with humans, in that patients with portions of the brain selectively removed
did not have specific memories wiped out; rather they could hazily reconstruct
most of what was known before the surgery. To quote Talbott [28], who provides
an engaging account of Pribram’s findings, “Individuals who had received head
injuries in car collisions and other accidents never forgot half of their family,
or half of a novel they had read”. This phenomenon can be attributed to non-
localized or holographic memories, where each component contains an imprint of
the whole. The name “holographic” pervades study of complexity in diverse areas
such as biology, physics and organizational systems. For example, holism [26] is
a method of study which believes that the whole is greater than the sum of the
parts; the term ‘holon’ [12] refers to a system that is both a whole and a part;
a hierarchy of such self-regulating holons is called a holarchy [12].

We were tempted to explore if ideas of holographic systems can inspire the
engineering of systems more adept at simulating aspects of cognition. The tradi-
tional view of CBR is analogous to that of Penfield’s in neuroscience, in that the
cases are treated as isolated pieces of knowledge that do not interact with each
other. One fallout of such an assumption is in case base maintenance, where cases
can be deleted from the case base, or fresh cases can be added, without affecting
the rest of the case base. This is clearly inconsistent with cognitive findings on
human memory, where a new experience is known to affect related memories
in interesting ways that facilitate the creation of abstractions. Similarly, forget-
ting may not be localized to just one specific experience, but may result in the
blurring out of a class of memories associated with the experience being lost.
These observations gave rise to the design hypothesis that in a holographic model
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of CBR, the cases need not only be isolated passive pieces of knowledge but can
be proactively interconnected with other cases in ways more interesting that
explored by conventional CBR systems. It is through the interconnectedness of
cases, that a model where the whole is greater than the sum of parts, can be
realized.

3 Holographic CBR

Let us use an analogy to convey the essential idea behind holographic CBR.
Consider three different settings.

Setting 1: Let us consider the case of a person X who attempts to float an
organization to address requirements from client Y . X hires a set of employees
with diverse skillsets to address the client needs. X also hires a project manager
who acts as a mediator between the team members and Y . Y issues a query to the
mediator, who facilitates interaction between the project members, and responds
back to Y with a solution. The mediator has some coarse knowledge about the
skills of the team members, which helps in directing client queries to one or more
of them. The fine-grained knowledge of how best to get the problem solved, by
collaborating with each other, rests with each team member. So a team member
may receive a query from the mediator and choose to solve it; alternately, she
may direct it to another member whom she reckons to be more appropriate for
the job. In certain cases, the team member may like to get more clarity from the
mediator regarding the client query, and in case the mediator is not sure herself,
she may approach the client to get a clarification. In the course of interaction
with team members, the mediator may update her knowledge of skills of the
team members, and the team members keep enriching their knowledge of the
organization as a whole. Such an evolution of the mediator, along with the team
members, renders the system more competent in addressing subsequent queries.

Setting 2: This is a hypothetical variant of Setting 1, where X hires a mediator
who has a complete knowledge of the skillsets of each team member. Given a
client query, the mediator solves it by assembling inputs from her members. In
comparison to Setting 1, the team members are passive, in that their role is
limited to answering queries from the mediator. They do not collaborate with
others, and have no knowledge either of the client query, or of the skillsets of
others in their project team.

Setting 3: This is yet another variant of Setting 2, in which the mediator
attempts to answer the client query, all by herself, on behalf of X. In case she is
not able to do so, she requests X to hire another employee having certain skills.
Employees thus progressively are added on demand, provided X agrees, given his
budget constraints and his level of confidence in the mediator. Each employee,
while being distinct to each other in terms of skills and competencies, is fully
aware of his or her role in the broader context of the problem being solved.

In the context of a CBR system, the client Y is analogous to the user who
presents a query to a CBR system, X is the designer of the CBR system, the
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Fig. 1. Mediator analogy Fig. 2. Cases with Solo (S) and Holo
(H) components

mediator is the case-based reasoner put in place by X to address the needs of Y ,
and the project members are the cases C1, C2, .., C5. This analogy is shown in
the schematic shown in Fig. 1. Setting 2 is the case of traditional CBR, where the
mediator (the reasoner) has full access to knowledge of cases. The reasoner uses
the knowledge of similarity to identify cases that may be useful, gets solutions
from them, and combines these solutions using adaptation knowledge to answer
the query posed by Y . Both similarity and adaptation knowledge are centralized
and available exclusively to the reasoner. In contrast, Setting 3 is holographic,
and Setting 1 is semi-holographic. We refer to the CBR systems in Settings
1, 2 and 3 as SH (for semi-holographic), TR (for traditional) and HG (for
holographic) respectively.

In HG, the case base is grown on demand. Each case, in addition to storing
a representation of the specific problem it solves, has knowledge of the reasoning
goals as well as knowledge of how it relates to the other cases. SH can be
conceived of striking a middle ground between the extremes of TR and HG,
where the cases are richer than those in traditional case bases. Since cases only
have local models of related cases, but are not equipped with the model of the
case base as a whole, they are critically reliant on the reasoner (mediator) to
dictate the retrieval process.

In Sect. 1, we had discussed that effectiveness of a CBR system can be
improved by minimizing the information loss incurred by an expert in the pro-
cess of recording his experiences of problem solving in the knowledge containers
provided by CBR. It is clear that the loss is maximal in TR, and minimal in HG,
with SH striking a middle ground. In HG, the cases have the highest autonomy
in that each case has a reasonably good model of the goals of the CBR system,
and also of the knowledge contained in every other case. We can visualize a
spectrum of CBR applications ranging from TR to HG, through SH. As we
move from TR to HG, the cases start having a richer representation of knowl-
edge contained in other cases, as well as of the overall goals of problems solving.
Henceforth, we shall use the term holographic to refer to systems that are either
SH or HG. In a holographic setting, each case has two components which we
call the solo component (referred to as the S component henceforth) and the
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holo component (referred to as the H component henceforth). The S component
is the traditional problem-solution part and represents the individual experience
that the case stands for. The H component, on the other hand embodies the
essence of the proposed holographic setting, in that it defines the role of the case
in relation to the case base and the underlying domain knowledge as a whole.
We can picture the cases interacting with each other via their H components
(see Fig. 2). Interestingly, such a holographic realization entails a change in our
perspective of knowledge containers in CBR. The H component in cases facil-
itates localization of adaptation and similarity knowledge within each case; in
other words, unlike in traditional CBR where knowledge containers other than
cases are centralized, in a holographic setting, adaptation and similarity knowl-
edge get distributed across the case base in holographic CBR. It may be noted
that the scheme still allows for capturing aspects of domain knowledge that are
shared by all cases, outside those in H components via the global knowledge
resources possessed by the reasoner. Secondly, the H component of each case
can capture diverse forms of relationships of a case with other cases in the case
base. We envisage that the H component of each case can be used to capture
how a case has been used, and its direct associations with other cases as well,
so that any case maintenance operation would, no longer, be agnostic to this
more general notion of ensuring case base competence. A schematic represen-
tation of a holographic reasoner for the problem of predicting animal names is
given in Fig. 3. It is interesting to observe that both the reasoner and the cases
have the same structure in a holographic reasoner. The reasoner holds the global
knowledge containers and uses them to solve the larger problem of predicting
the animal name given its representation. Each of the cases also hold the same
kind of knowledge containers locally and, hence, can be called ‘holonic’. These
holonic cases use their local knowledge containers to solve the problem that they
individually stand for. The problem part is pictorially depicted in the schematic
diagram and it can correspond to any type of representation chosen by the case
based designer for the problem part of experiences.

4 Realization of a Holographic Reasoner

In this section, we discuss the realization of a holographic reasoner in two set-
tings: knowledge-rich and knowledge-light domains. A knowledge-rich domain is
one where the domain knowledge is readily available. In practice, there are many
domains where domain knowledge is not available readily or is costly to acquire
in terms of time. We refer to such domains as knowledge-light domains.

Knowledge-Rich Domain. A key difference between a conventional and a holo-
graphic reasoner is with respect to the case addition process. In conventional
settings, the reasoner is fully responsible for adding new cases to the case base.
Whereas, in a holographic reasoner, this responsibility is shared among the cases.
In the following pseudocode, the function ADD_CASE of HOLOGRAPHIC_REASONER
describes how the case addition process varies between a knowledge-rich and
knowledge-light settings. In a knowledge-rich setting, the holographic reasoner
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Fig. 3. Holographic Reasoner - A Schematic Diagram; S, V, A (in each case) stand for
the local Similarity, Vocabulary and Adaptation knowledge containers respectively.

(mediator) uses the global similarity knowledge to direct an incoming case with
its problem and solution components to its most similar case (a team member)
in the case base. The global similarity knowledge, which can be shallow (coarse)
compared to the local similarity knowledge in cases, enables the reasoner to
quickly reach the relevant area of the problem space. Next, the most similar case
spawns a case addition process that tries to predict a solution for the incom-
ing problem, that is, it forms an expectation. This is explained by the functions
ADD_CASE, PREDICT in the pseudocode for class HOLONIC_CASE_KRICH. If it faces
an expectation failure, then it engages in a conversation with the domain expert.
The expert feedback, together with a pointer to the new case, is stored as part
of the local vocabulary as explained in the function GET_EXPERT_FEEDBACK. It
is important to note that addition of a new case is performed by an existing
case itself when there is an expectation failure. Thus, the responsibility for case
addition lies not only with the reasoner but is also shared among the cases. On
the other hand, if a case does not face an expectation failure, then it may choose
not to do anything further or continue to add the new case to case base. This
depends on constraints such as case base size, response time, etc. as known to
the case base designer. In the PREDICT function, it is possible that the query gets
redirected multiple number of times and it terminates only when a case finds
itself to be the most similar one to the query.

Knowledge-Light Domain. In knowledge-light domains, a holographic reasoner
does not have a domain expert to interact with. The knowledge-light setting is
more like a conventional reasoner where the new cases are added to the case base
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as they arrive. Hence, the case acquisition process does not include any interac-
tion with the domain expert. Instead, a holonic case could spawn a process to
learn bottom up abstractions from their neighbourhood as shown by the func-
tion INTROSPECT in the class HOLONIC_CASE_KLIGHT. The H component of cases
will now contain the parameters corresponding to the local model of abstrac-
tion, which could be any machine learning model such as Logistic Regression or
Bayesian Classifier. This is like a human problem solver trying to learn some-
thing by observing their fellow problem solvers rather than asking the domain
expert directly.
Class HOLOGRAPHIC_REASONER
Vocabulary, Similarity, Adaptation, Case

Base // Global Knowledge Containers
Function ADD_CASE (newProblem, newSolution)
If the domain is knowledge-rich:
MostSimilarCase = RETRIEVE (newProblem)
If MostSimilarCase is not null:

MostSimilarCase.ADD_CASE (
newProblem, newSolution)

Else: //Adds the first case
newCase = new HOLONIC_CASE_KRICH()
newCase.Problem = newProblem
newCase.Solution = newSolution

Else If the domain is knowledge-light:
newCase = new HOLONIC_CASE_KLIGHT()
newCase.Problem = newProblem
newCase.Solution = newSolution
Store newCase in the CaseBase

Function RETRIEVE (incomingProblem)
If CaseBase contains zero cases: Return

null
Else: Return the case in the CaseBase that

is most similar to the
incomingProblem according to the
global Similarity knowledge

Function PREDICT (incomingProblem)
//The prediction process of the

holographic reasoner invokes the
prediction process of the most
similar case

MostSimilarCase = RETRIEVE (
incomingProblem)

Return MostSimilarCase.PREDICT (
incomingProblem)

------------------------------------------

Class HOLONIC_CASE_KRICH
Problem, Solution //Solo Components
Local Vocabulary, Local Similarity, Local

Adaptation //Holo Components
CaseBase // pointer to reasoner’s case base
Function ADD_CASE(newProblem, newSolution)
If PREDICT(newProblem) matches Solution:

//No Expectation Failure; No Case
Addition

Return null
Else:

newCase = new HOLONIC_CASE_KRICH()
newCase.Problem = newProblem
newCase.Solution = newSolution

GET_EXPERT_FEEDBACK (newCase)
Store newCase in the CaseBase

Function PREDICT (incomingProblem)
//MostSimilarCase is that case in the

local neighbourhood (including self)
which is most similar to the
incomingProblem and is determined
using the Local Vocabulary and Local
Similarity knowledge.

If MostSimilarCase is this holonic case
itself: Return Solution

Else: //Invokes the prediction process of
the most similar case
Return MostSimilarCase. PREDICT (

incomingProblem)

Function GET_EXPERT_FEEDBACK (newCase)
Get feedback from a domain expert as to

why the new case is being added, what
feature-value pairs differentiate

the new case from itself, etc. Update
the Local Vocabulary to include the

feedback and pointers to locally
added cases.

------------------------------------------

Class HOLONIC_CASE_KLIGHT
Problem, Solution //Solo Components
Local Vocabulary, Local Similarity, Local

Adaptation //Holo Components
CaseBase //pointer to reasoner’s case base
Model // to store model parameters
Function ADD_CASE(newProblem, newSolution)
newCase = new HOLONIC_CASE_KLIGHT()
newCase.Problem = newProblem
newCase.Solution = newSolution
Store newCase in the CaseBase

Function PREDICT (incomingProblem)
Predict a solution for the incomingProblem

using Model
Return the above prediction

Function INTROSPECT ()
//Invoked by reasoner (say after the case

base reaches a certain size)
Model = learn a model over the local

neighbourhood , for example, a
logistic regression model over the
ten nearest neighbours
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Observations from Experimental Datasets. Next, we present our observa-
tions on the characteristics of a holographic reasoner in the light of its realization
on experimental datasets.

Knowledge-Rich Domain. The zoo case base from UCI repository [7] is an
instance of a knowledge-rich domain and the nature of its domain (viz. animals)
facilitates the authors themselves to play the role of a domain expert. It is a sim-
ple database containing 17 Boolean-valued attributes, 7 classes of animals and
101 data instances. On this case base, we realized both a holographic reasoner
and a conventional case-based reasoner. In both the reasoners, global similarity
knowledge was represented using the following two weight vectors: S0, a uniform
weight vector and S1 emphasizing the attributes feathers, aquatic, backbone, legs
three times over the rest. We did not employ any global or local adaptation
knowledge. In the holographic setting, the expert gives her feedback using a list
of entries where each entry is of the form {feature_id:feature_value}. For
example, suppose the reasoner is adding a case dolphin to its case base and the
most similar case is dogfish. Then, dogfish would face an expectation failure when
it tries to predict the class of dolphin (as dolphin is a mammal). Expert feed-
back in this example could be {milk_feeding:True}. The holonic cases store
the expert feedback together with a pointer to the newly created cases. The local
vocabulary of a holonic case corresponds to those attributes used by an expert
for giving feedback. Jaccard coefficient was used for estimating local similarity.
In the conventional reasoner, we also found the footprint set [27], which is a
minimal set of cases that has the same competence (problem-solving ability) as
the entire case base. Competence based maintenance algorithms, such as the
footprint algorithm, compress the case base in a post-facto way i.e. compression
happens only after the experiences are stored. In terms of the representation
gap, the damage is already done. In contrast, a holographic reasoner is capable
of doing pre-facto compression i.e. it can compress the case base while adding
the experience itself. While the post-facto compression relies purely on the cases
to reduce the case base size, the pre-facto approach is able to acquire the knowl-
edge enabling compression from the domain expert herself. This can facilitate the

Table 1. Observations on a knowledge-rich domain: zoo case base; S0: uniform weight
vector and S1: weight vector that emphasizes feathers, aquatic, backbone, legs thrice
over others. Results are based on 3-fold cross validation.

Reasoner type Global similarity No. of cases
added

Case base
size

Test
accuracy %

Conventional
(full CB)

S1 67.3 67.3 96.2

Conventional
(footprint)

S1 13.6 94.3

Holographic S1 13.3 97.0

Holographic S0 67.3 11.3 94.3
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reducing of knowledge gap between a reasoner and the domain expert. Table 1
shows the total number of cases added by the reasoner to its case base, the result-
ing case base size and the prediction accuracy. It can be observed from the table
that the holographic reasoner performs best both in terms of case base compres-
sion and performance when the global similarity knowledge is S1. This can be
attributed to the impact of domain knowledge acquired in the form of expert
feedback. It can also be observed that when the global similarity knowledge is
coarse (S0), the holographic reasoner is still able to achieve better compression
and performance comparable to the footprint set. Hence, it makes it suitable for
domains where one could not easily get a rich global similarity measure and may
prefer to begin with a simple global similarity measure, progressively learning
local similarities based on expert feedback.

Knowledge-Light Domains. The datasets used are CPU from OpenML [29] and
Wine from UCI repository [7]. The CPU dataset contains 209 instances with 7
attributes and the task is to predict the relative cpu performance (regression).
The Wine dataset contains a total of 178 cases with 13 attributes and 3 classes.
The task is to predict the quality of wine given its attribute values (classifica-
tion). For regression, the case-based reasoner (traditional as well as holographic)
uses the distance-weighted average of the 3-nearest neighbours’ predictions. Each
holonic case learns a Locally Weighted Linear Regression (LWLR) [5] model
over its neighbourhood. For classification, the holonic cases learn a naive Bayes
classifier to model their local neighbourhood. The independence assumption in
naive Bayes has an advantage for small-sized case bases because the algorithm is
known to predict well even with small-sized training data. As elaborated in the
previous sections, the H components of cases store the LWLR parameters and
conditional probabilities in the regression and classification settings respectively.
In our experiments, the size of the local neighbourhood is fixed empirically to
be 10. It is important to note that knowledge-light holographic realizations in
practice can be far more sophisticated in terms of richness of holonic case rep-
resentations and processes they can spawn. The examples above use relatively
simplistic ML tools to illustrate the essential idea. In particular, it is easy to see
that the holographic perspective can accommodate richness in both top down
and bottom up knowledge, hence most existing CBR systems can be viewed as
instances of the general holographic CBR conception (see Sect. 5).

Here, we are interested in studying whether the global competence of cases
increase in a holographic setting. In all our experiments in knowledge-light set-
ting, the reasoner combines the solutions of the three nearest neighbours to solve
the query problem. This process of combining the solutions of multiple cases
in some appropriate way to solve the target problem is called compositional
adaptation. Retention score [15] is a global competence measure suited for such
scenarios and estimates the retention quality of a case based on its ability to
cover highly retainable cases with the support of a few but highly retainable
cases. This is achieved by a recursive formulation in the lines of PageRank [16].
We do not go into the details of this formulation but would like to emphasize
the following fact: retention scores can be used to order the cases in descending
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Fig. 4. Results on regression dataset (CPU); The top row shows the histograms of
differences in retention scores (holographic − traditional) corresponding to the different
settings of Acceptable Prediction Error (APE) shown in the bottom row.
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order of their global competence. In our experiments, we have used a variation
of retention scores called weighted retention scores in which every set of cases
that solves a target problem is weighed by its problem solving ability. After mea-
suring the retention scores of cases in conventional and holographic settings, we
plotted a histogram of their differences (holographic − traditional) to see if the
differences are more skewed towards the positive side. This would indicate that
a holographic design has resulted in an increase of competence for many cases.
We also tested the effectiveness of the increased competence by progressively
deleting the case base and observing its impact on the performance of reasoner
on test data. We would expect a holographic reasoner to perform better than a
conventional one even as the case base is progressively shrunk in size.

Figure 4 shows the results on the regression dataset. The top row shows the
histograms for different settings of Acceptable Prediction Error (APE). APE is
the percentage error allowed in the reasoner’s predictions and is typically fixed
by the user for the regression task. The more the right-skewedness, the better
is the holographic design in terms of case competence. In the CPU dataset, as
the histograms are skewed towards the right, it can be inferred that there is an
increase in the case competence under the holographic design. Holographic design
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is consistently better than the conventional ones with increase in the progressive
reduction of case base size. In Fig. 5, the histogram is skewed towards the right,
hence, increased competence of cases in this holographic design becomes evident.

5 Discussion and Related Work

In this paper, we have restricted our scope to demonstrating the effect of holo-
graphic realizations on case addition, though in practice we need to have a
mechanism for case deletion as well. We envisage two kinds of deletions: soft
and hard. It is easy to see that holonic cases carry information about their
local neighbourhood even after the neighbouring cases are deleted. We call this
soft deletion. Though this increases the robustness of reasoner, in cases where
we deliberately want to delete a (noisy) case, this may be undesirable, and a
hard deletion is called for. In soft deletion, the H components of neighbours are
retained, and is analogous to employees taking leave in a holarchic organization.
In hard deletion, the H components of neighbours are updated before a case
is deleted; this is analogous to handover-takeover processes in an organization,
when an employee leaves the organization (is fired). Another interesting aspect
not discussed in the paper is the impact of the order in which cases are acquired
by a holographic reasoner. We can draw inspiration from how a child progres-
sively acquires a storehouse of experience she encounters when systematically
guided by an adult. Educational material for children aims at presenting expe-
riences in an order that facilitates highest compression thereby improving the
learning experience, where lessons are not merely recorded as facts, but are richly
connected to each other. Reorganization of case interconnections over time to
facilitate more effective retrieval is out of scope of this paper, though it opens
up interesting area for future work.

In his work on Dynamic Memory [24], Roger Schank had emphasized the
role of expectation failures in triggering the need for explanations and conse-
quent generalization of memory structures. An event of visiting a restaurant
like McDonald’s where one has to pay before one eats, may lead to expectation
failure for someone used to paying after eating in a restaurant. She would then
attempt to find an explanation, generalize her memory structures and accom-
modate the new experience. This may involve creating a specific dimension (an
attribute) that discriminates between the two categories of restaurants. Thus,
while specific details of most restaurant trips are forgotten and abstracted out
(“mushed up”, to use Schank’s terminology), some restaurant trips (like the
McDonald’s trip) are thus more influential than others in effecting changes to
our memory structures. In the holographic setting, these changes that a case
causes should be recorded in its H component during insertion, so that the influ-
ence of the case is preserved even when the case is deleted. Ideally, active pro-
cesses must be spawned by the H component of cases as new cases are inserted,
deleted or updated, to make changes to similarity and adaptation knowledge of
related cases, facilitate case-to-case direct connections, or record and preserve
influence of the case on the underlying representations. In the context of main-
tenance, H components can also potentially carry explanations pertaining to
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poorly aligned cases. The holographic setting can also accommodate bottom up
knowledge induced from data in local similarity and adaptation knowledge con-
tainers in holonic cases to complement top down knowledge, thereby alleviating
the knowledge acquisition bottleneck that plagued Schank’s conceptualization
limiting its practical use.

Several classical CBR systems can be thought of as instances of the more
general holographic CBR framework. Aspects of it are ideologically close to the
proposed holographic design for a knowledge rich domain. PROTOS [4] is a case-
based reasoner built to serve as a learning apprentice system for heuristic based
classification. It is interesting to see that many ideas in PROTOS such as differ-
ence links, efficient retrieval, expert feedback were aimed at overcoming limits
of traditional CBR systems. In the early days of CBR, knowledge-rich reasoners
such as CYRUS [25] and CELIA [21] were built to demonstrate the cognitive
aspects of CBR. In CYRUS, which is an attempt to model the reconstructive
model of memory, the cases are stored as hierarchically indexed facts. CELIA
aims at modelling the passage from a novice to expert; the cases are composed of
interconnected case snippets. Knowledge-intensive CBR systems like CREEK [1]
reinforce the importance of integrating general domain knowledge with CBR sys-
tems and having rich knowledge representations. Some other interesting works
to explore in this direction include the CREEK-based knowledge-intensive con-
versational CBR system [10] and Bayesian-Network powered CBR system [2].
The holographic perspective shows these as instantiations of the same umbrella
framework, and is also suggestive of more proactivity on the part of cases that
can be realized if the full potential of holographic CBR is exploited, by realizing
richly interconnected cases that spawn active processes, and are empowered to
influence H components of related cases, and generate explanations for failures.

Distributed CBR [19] is a terminology used in the CBR community to indi-
cate research efforts towards organising knowledge in single versus multiple case
bases and processing knowledge using single versus multiple agents. There are
also many agent-based CBR approaches where knowledge is distributed such as
[3,14,18,22] where the focus is on knowledge modelling, architecture and build-
ing of CBR based systems. Unlike domain specific engineering realizations such
as distributed CBR, holographic systems are inspired differently: they are aimed
at repositioning a broad spectrum of CBR applications (including distributed
CBR systems) based on how they attempt to reduce the representation gap: all
that is lost of the intent with which a case is being recorded, in the process of
its representation. Such a repositioning has an essential cognitive appeal in that
it helps us get to the heart of appreciating discrepancies in system effectiveness
with respect to a human expert who solves problems using experiential reason-
ing. In future, it would be interesting to accommodate the study of analogical
reasoning in a comprehensive way into the fold of holographic systems.

A related perspective is from the very recent work by Susan Craw et al. [6]
where the authors present connections of CBR to cognitive models. In particular,
the authors refer to the dichotomy between two modes of thought as identified by
Kahneman [11]. While fast thinking relies on instinctive, unconscious, frequent
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and stereotypical decision making, slow thinking is more deliberative, conscious,
logical and calculating. Slow thinking can correct errors made by fast thinking.
In the CBR context, Craw et al. [6] suggest that simple retrieve/reuse may fall
in the realm of fast thinking and this is appropriate when case base alignment is
high, i.e. similar problems do indeed have similar solutions. On the other hand, in
the face of poor alignment deliberate slow processes (say, complicated adaptation
or multiple redirections) should intervene. It is compelling to picture the S and H
components as facilitating fast and slow thinking respectively. Finally, we note
that there are some recent claims that Deep Neural Networks (DNN) exhibit
holographic behaviour [8]. However, there has been no understanding of the
equivalents of holons and the organisational structure inside a DNN. DNNs do
not facilitate the integration of top down knowledge about the domain, thus
restricting their scope of applications in the context of CBR, where a problem-
centric view, that allows for flexible integration of top down and bottom up is
called for.

6 Conclusion

The historical roots of CBR can be traced to the seminal work by Roger Schank
on dynamic memory [24] where he proposed mechanisms for creation and update
of memory structures to account for abstraction, generalization, and goal based
reminding (as in analogical reminding) which play a central role in modelling
cognition. However, the cognitive emphasis in memory based reasoning waned
over time. On occasions, machine learning techniques appeared to present easier
alternatives to a principled mix of top down and bottom up knowledge that the
CBR paradigm would ideally exploit reasoning based on representations, that are
rich, and yet not too difficult to acquire to facilitate experiential problem solving.
The concept of holographic reasoner is an attempt to bring back to perspective a
wider set of possibilities than conventional CBR systems can offer, while showing
its ability to position diverse CBR realizations in a unifying framework.

In living systems, every cell has in its nucleus (analogous to the H com-
ponent) an imprint of the design of the organism as a whole. Not unlike the
organism it is part of, every cell has a digestive, respiratory, nervous an immune
system. This is remarkably different from a brick which is perhaps barely aware
of the design of the building, of which it is a part. The design almost wholly
resides in the mind of the designer. The difference between the ideal holonic case
and the traditional case in CBR is one of that between the cell and the brick.
As we foray into the ambitious realms of Artificial General Intelligence (AGI),
we speculate holographic systems may well hold clues, if not answers, to design
of computational models of cognition that can address certain limitations of
traditional approaches.
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Abstract. Recently, a groundswell of research has identified the use of coun-
terfactual explanations as a potentially significant solution to the Explainable AI
(XAI) problem. It is argued that (i) technically, these counterfactual cases can be
generated bypermuting problem-features until a class-change is found, (ii)psycho-
logically, they are much more causally informative than factual explanations, (iii)
legally, they are GDPR-compliant. However, there are issues around the finding of
“good” counterfactuals using current techniques (e.g. sparsity and plausibility).
We show that many commonly-used datasets appear to have few “good” counter-
factuals for explanation purposes. So, we propose a new case-based approach for
generating counterfactuals, using novel ideas about the counterfactual potential
and explanatory coverage of a case-base. The new technique reuses patterns of
good counterfactuals, present in a case-base, to generate analogous counterfactuals
that can explain new problems and their solutions. Several experiments show how
this technique can improve the counterfactual potential and explanatory coverage
of case-bases that were previously found wanting.

Keywords: CBR · Explanation · XAI · Counterfactuals · Contrastive

1 Introduction

In recent years, there has been a tsunami of papers on Explainable AI (XAI) reflecting
concerns that recent advances in machine learning may be limited by a lack of trans-
parency (see e.g., [1, 2]) or by government regulation (e.g., GDPR in the EU, see [3, 4];
for reviews [5–7]). Historically, Case-Based Reasoning (CBR) has always given a cen-
tral role to explanation, as predictions can readily be explained by cases, akin to human
reasoning from precedent/example [8–12]). Indeed, Kenny & Keane’s [13, 14] twin sys-
tems approach, explicitly maps black-box deep-learning systems into CBR systems to
find post-hoc explanatory cases for their predictions. Typically, CBR uses “factual cas-
es”; nearest like neighbors that explain why a prediction was made [14]. But, recently,
another class of explanatory cases is attracting interest, counterfactual cases; nearest
unlike neighbors that explain how a prediction might be changed. For example, a loan

© Springer Nature Switzerland AG 2020
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application system might explain its decision to refuse a loan by presenting a factual
case: “you were refused because a previous customer had the same salary as you and
they were refused a loan for this amount”. In contrast, the same loan system might,
arguably, provide a better explanation by presenting a counterfactual case; effectively
saying “if you asked for a slightly lower amount you would have been granted the loan”.
Researchers championing the use of counterfactual explanations, argue that they provide
better solutions to the XAI problem [7, 15–18] (see Sect. 2).

In this paper, we consider counterfactual explanations from a CBR perspective.
Though any CBR system can explain its predictions directly using counterfactual cases,
here, we assume a twin-system context [13, 14]; where some opaque machine-learning
model (e.g., deep learningmodel) generating predictions to be explained by finding case-
based explanations from a twinned CBR1. We assess how many “good” counterfactuals
are available in a given case-base (i.e., ones that are easily comprehended by people). So,
we systematically map the topology of “good” counterfactuals in different case-bases,
what we call their counterfactual potential (see Sect. 2). Initially, we perform an analysis
of 20 frequently-used case-bases from the ML/CBR literature (see Sect. 3). To presage
our results, to our surprise, we find that in most case-bases “good” counterfactuals are
quite rare. This leads us to the novel notion of explanatory coverage by analogy to
predictive coverage [19–21], from which we develop and evaluate a new case-based
technique for counterfactual generation in XAI (Sects. 4 and 5).

2 Counterfactual Explanation: Promise, Problems and Prospects

Intuitively, counterfactual explanations seem to provide better explanations than factual
ones; nearest-unlike-neighbor (NUN) explanations are better than nearest-like-neighbor
(NLN) explanations2. Imagine you using the drink-&-drive app, DeepDrink, that can
predict whether you are under/over the alcohol limit for driving. DeepDrink knows your
physical profile and when you tell it (i) how many drinks you have taken, (ii) your
recent food intake and (iii) when you started drinking, it predicts you are over the limit
explaining it with a factual case; saying that a person with a similar profile to you
was also over the limit when they were breathalysed (see Table 1). This explanation is
reasonable but perhaps less informative than a counterfactual case; which would tell
you that someone with your profile who drank a similar amount over a longer period,
ended up being under the limit (see “good” counterfactual in Table 1). The counterfactual
directly tells you more about the causal dependencies in the domain and, importantly,
provides you with “actionable” information (i.e., if you stopped drinking for 30 min
you could be under the limit). Technically, counterfactuals can tell you about the feature

1 This context assumes an existing (albeit opaque) model to which cases can be presented to find
predictions/labels; all counterfactual-generation techniques make this assumption, though there
is some discussion around whether the training data would also always be accessible (obviously,
we assume the training-data/case-base is available).

2 Though NUNs have been studied in CBR (e.g., [22, 23]), few consider counterfactual cases (aka
NUNs) for explanation; [24, 25] are exceptions but they viewed NUNs as being more important
as confidence indicators with respect to decision boundaries.
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differences that affect the decision boundary around a prediction. Accordingly, [20]
define counterfactual explanations as statements taking the form:

Score y was returned because variables V had values (v1, v2, ..). If V had values
(v1′, v2′ …), and all others remain constant, score y′ would have been returned.

where, in our example, score y would be the class “over the limit” and y′ the class
“under the limit”. Recently, researchers championing counterfactual cases for XAI have
argued that psychologically, technically and legally they provide better explanations than
other techniques for XAI [7, 16, 17, 26–29].

Table 1. A query case paired with a “Good” and a “Bad” Counterfactual from the Blood Alcohol
Content (BAC) case-base with the feature-differences between them (shown in bold italics)

Features Query case “Good” Counterfactual “Bad” Counterfactual

Weight
Duration
Gender
Meal
Units

80 kg
1 h
Male
Empty
6

80 kg
1.5 h
Male
Empty
6

80 kg
3 h
Female
Full
6.5

Bac Level Over Under Under

2.1 Counterfactual Promise

Many have argued that counterfactual thinking has a promising role to play in explana-
tion from philosophical, psychological, computational and legal perspectives. Philoso-
phers of science have argued that true causal explanation only emerges from contrastive
propositions, using counterfactuals [30, 31]. Psychologists have also shown that coun-
terfactuals play a key role in human cognition and emotion, eliciting spontaneous causal
thinking about what might have been the case [15, 16, 32]. Byrne [16] has explicitly
related this literature to the XAI problem, laying out the different ways in which coun-
terfactuals could be used (see also [7, 33]). For example, as counterfactuals engender
more active causal thinking in people, they are more likely to facilitate “human in the
loop” decision making [16]. Recently, Dodge et al. [34] assessed explanations of biased
classifiers using four different explanation styles and found counterfactual explanations
to be the most effective. In AI, Pearl [27] has proposed an influential structural Bayesian
approach to counterfactuals that can test the fairness of AI systems, but it has been
less used in explanation generation (e.g., see [35, 36]). In the XAI literature, the use
of counterfactuals has been used to counter popular post-hoc perturbation approaches
(e.g., LIME; [37, 38]), with many researchers arguing that counterfactuals provide more
robust and informative post-hoc explanations [18, 26, 38–40]; these “counterfactualists”
have also argued that counterfactual explanations are GDPR compliant [4, 39].
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2.2 Counterfactual Problems

However, the promise of counterfactuals for XAI comes with a number of problems; the
three main ones being prolixity, sparcity and plausibility.

Prolixity. Currently, most XAI systems generate counterfactuals using random pertur-
bation and search, making them somewhat prolix [4, 17]; that is, many counterfactuals
may be produced for a given prediction from which a “good” one must be filtered (e.g.,
in the loan system, one could be shown counterfactuals for every $10 incremental change
in one’s salary). Stated simply, this prolixity is handled by filtering counterfactuals on
the minimally-changed features to the query case that flip the prediction (i.e., the nearest
unlike neighbor). So, [20] propose the following loss function, L:

L
(
x, x′, y′, λ

) = λ
(
f
(
x′) − y′)2 + d

(
x, x′) (1)

arg min
x′ max

λ
L
(
x, x′, y′, λ

)
(2)

where x is the vector for the query case and x′ is the counterfactual vector, with y′ being
the desired (flipped) prediction from f (..) the trained model, where acts as the balancing
weight. In formula (2), λ balances the closeness of the counterfactual to the query case
against making minimal changes to the query case while delivering a prediction change,
using the L1 normweighted bymedian absolute deviation (MAD). This technique claims
to find minimally-mutated counterfactuals, solving the prolixity problem (see [17, 39,
40] and [39] for diversity between counterfactuals).

Sparcity. These methods also profess to solve the sparcity problem. All commenta-
tors argue that good explanatory counterfactuals need to be sparse; that is, they need
to modify the fewest features of the query case. For example, Table 1 shows, for the
blood alcohol domain, two different counterfactuals, one with a 1-feature change and
another with a 4-feature change, with the sparcity of the former making it better than the
latter. Wachter et al. [4] argue that the L1 norm delivers sparse counterfactuals, though
many of these appear to still involve high numbers of feature-differences (e.g., >4, see
[40]). Importantly, the argument for sparcity is a psychological one that has not been
specifically tested in the XAI literature. Typically, AI researchers propose sparcity is
important because of human working memory limits [41, 42], but we argue that peo-
ple prefer sparse counterfactuals because of limits on human category learning. For
example, [43] have shown that when people are learning categories for unfamiliar items
they prefer single-feature changes between to-be-learned items over multiple-feature
changes, because it makes the learning task easier (unless there is additional domain
knowledge on dependencies between features). Based on this evidence, we operational-
ize the sparcity of “good” counterfactuals (as itemswith 1 or 2 feature differences) versus
“bad” counterfactuals (those with >2 feature changes). This definition helps us develop
the novel idea of the counterfactual potential of case-bases, based on quantifying the
“good” counterfactuals they contain (see Sects. 4 and 5).

Plausibility. The final problem is that of plausibility; that is, the counterfactuals gener-
ated by these methods may not be valid data-points in the domain or they may suggest



Good Counterfactuals and Where to Find Them 167

feature-changes that are difficult-to-impossible. Classic examples of such counterfactu-
als in loandecisions, are explanations that propose increasingone’s salary by an implausi-
ble amount (i.e., if you earned $1M, you would get the loan) or radically altering oneself
(i.e., if you changed gender, you would get the loan). Plausibility is the least-solved
problem facing counterfactual generation; many researchers propose to “lock” features
(e.g., not allow gender change) or to get users to provide inputs on feature weights [40]
(e.g., using interface sliders on salary boundaries). However, automated solutions to the
plausibility problem are thin on the ground3. Our proposal is to directly generate coun-
terfactuals analogically from the dataset, rather than producing them by “blind”, random
perturbation followed by filtering. As counterfactuals generated in this way are based on
“real experiences” in the problem domain, they should be inherently plausible. However,
this raises another question: namely, how many good counterfactuals “naturally” occur
in case-bases, what is their counterfactual potential.

2.3 CBR’s Prospects for Counterfactuals

Most techniques for generating counterfactuals for XAI perform random perturbations
of a query case followed by a search to find minimally-different items that are close
to the decision boundary (i.e., a NUN). These perturbation techniques can encounter
problems, notably in meeting sparcity and plausibility, which may benefit from a case-
based approach. Just as CBR has successfully explained predictions using factual cases
[10, 25], perhaps it can also deliver counterfactual cases that are sparse and plausible.
However, if CBR is to be used, we need to establish whether case-bases/datasets actually
contain good counterfactuals, whether they have high counterfactual potential.We define
a good counterfactual to be a NUN that differs from the query case by no more than
2 features. So, counterfactual potential can be computed from the feature-differences
for all pairwise comparisons of cases in the case-base. If these comparisons find many
“good” counterfactuals then the potential is high, if not then it is low. So, in our first
experiment, we computed the counterfactual potential of 20 classic ML/CBR datasets,
from the UCI repository [45]. From this analysis we develop the idea of explanatory
coverage before proposing a novel case-based technique for counterfactual generation
(Sect. 4). Finally, in Sect. 5, we report a set of experiments on five representative datasets
to show how our technique can enhance counterfactual potential.

3 Experiment 1: Plotting Counterfactual Potential

In this experiment, we computed the counterfactual potential of 20 classic datasets from
the UCI repository [45], ones that have been commonly used in many CBR papers. This
analysis was done by computing the number of feature differences between all pairwise
comparisons of cases in the case-base, noting the proportion of “good” counterfactuals
found (i.e., ≤2 feature difference counterfactuals). This analysis provides us with an

3 Rare recent attempts include Laugel et al.’s [44] method to “justify” generated counterfactuals
using nearest neighbors in the training data, and [29] finding “feasible paths” to counterfactuals
in the dataset; both methods attempt to ground counterfactuals in prior experience.
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upper/lower bound on the potential of a case-base to deliver good counterfactuals. Obvi-
ously, in any specific CBR system, one might be able to adjust weights, how features are
matched or k-values to find such counterfactuals, but such fine-tuning will not improve
matters hugely if good counterfactual-cases are just not there.

3.1 Method: Data Sets and Procedure

Twenty UCI datasets were used in the experiment, selected on the basis of their common
usage in CBR.We compared all pairings of query cases (one side of a decision boundary)
to training cases (on the other side of a decision boundary) calculating the number of
feature differences found in each.

3.2 Results and Discussion

Table 2 shows the counterfactual potential of the UCI datasets, as the percentage of
counterfactuals from 1 to >5 feature-differences. The results show that “good” counter-
factuals are rare4; in nearly every dataset, the 1-diff and 2-diff counterfactual categories

Table 2. Percent counterfactuals for feature-differences in 20 UCI datasets (expt.1)

DataSets N of cases Feat. no. Class no. N of pairs 1-diff 2-diff 3-diff 4-diff >5-diff

Abalone 4177 10 8 15.6M 0% 0% 0% 0% 99.9%

Auto MPG 398 8 5 52.3k 0% 0% 0% 0.4% 99.6%

BAC 9291 7 2 19M 0% 1.5% 23% 3% 72%

Bupa liver 345 6 2 29k 0% 0% 0.1% 3.1% 96.8%

Credit 653 15 2 105.7k 0% 0% 0% 0% 99.9%

Cleveland heart 303 13 5 32.9k 0% 0% 0% 0.1% 99.9%

Ecoli 336 7 7 41k 0% 0% 0% 0.2% 99.8%

Glass 214 9 7 21.9k 0% 0% 0% 0% 99.9%

German credit 914 20 2 177k 0% 0% 0% 0% 99.9%

Horse colic 300 22 2 20.8k 0% 0% 0% 0% 99.9%

Indian liver 583 10 2 69.5k 0% 0% 0% 0% 99.9%

Ionosphere 351 34 2 28.3k 0% 0% 0% 0% 100%

Iris 150 4 3 7.5k 0% 0.3% 8.8% 91% n/a

Sonar 208 60 2 10.8k 0% 0% 0% 0% 100%

Soybean (large) 307 26 19 43k 0% 0% 0.2% 0.6% 99.2%

Thyroid 2800 27 3 355.8k 0% 0% 0% 0% 99.9%

Votes 435 17 2 44.8k 0% 0.3% 0.9% 1.9% 88.8%

Wine-Italian 178 13 3 10.4k 0% 0% 0% 0% 100%

Wisconsin breast 699 9 2 110k 0% 0% 0% 0.4% 99.5%

Yeast 1484 8 10 855.3k 0% 0% 0.3% 4.8% 94.9%

4 We extensively tested this Blood Alcohol Content (BAC) case-base [24, 25], but cannot report
it for reasons of space. Using a mechanical model for estimating BAC, we generated several
master-case-bases fromwhichwe sampled 50+ specific case-bases; across all of these case-bases,
to our astonishment, we repeatedly found the same absence of good counterfactuals.
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account for <1% of total counterfactuals. Most of the counterfactuals found have poor
sparcity (i.e.,>5 feature-differences) and would likely be hard for people to understand.

It should be noted that in the above, we determine feature differences using an
exact match. Such an approach is inherently conservative with real-valued features. In
practice, a matching tolerance could be used by, for example, treating two feature-values
as equivalent if they arewithin 1%of each other.While this tolerance-matching improves
the results (albeit in a somewhat ad hoc fashion), the fraction of good counterfactuals
(≤2 feature differences) still typically remains very low (see Sect. 5 for tests).

On the face of it, these results suggest that a case-based approach to counterfactual
generation is a bad idea; if most datasets do not deliver good counterfactuals then case-
based techniques seem bound to fail? However, as we shall see in the following sections,
there are additional steps that can be used to meet and resolve this challenge.

4 A Case-Based Technique for Good Counterfactuals

Ironically, the above analysis suggests that CBR seems to have little to offer in using
counterfactuals for XAI. For most case-bases good counterfactuals are rare, few query
cases have associated good counterfactual cases. This may explain why the dominant
counterfactual XAI techniques use perturbation, where synthetic counterfactuals are
generated “blindly” from problem-cases and labelled using a machine-learning model,
without reference to other known cases in the training set [18, 26, 38–40]. In contrast
to these approaches, we believe that counterfactuals need to be explicitly grounded
in known cases (aka the training data) to ensure plausibility. Hence, we developed
a novel case-based technique for counterfactual-XAI which reuses patterns of good
counterfactuals that already exist in a case-base, to generate analogous counterfactuals
(as newdatapoints) that can explain new target problems and their solutions. In generating
new counterfactuals, these existing good counterfactuals provide ‘hints’ about what
features can and should be adapted and plausible feature-values to use in them. This
new technique relies on the notion of explanatory competence (see Sect. 4.1). Note,
the context for the use of this method is a twin-system approach to XAI, where an
opaque ML model is “explained” by twinning it with a more transparent CBR-system
to find explanatory cases [13, 14]; hence, along with all other counterfactual-generation
techniques,we assume anMLmodel is available to assign labels for any newly-generated
synthetic case.

4.1 Explanatory Competence

The notion of predictive competence or simply competence (i.e., an assessment of an
ML/CBR system’s potential to solve a range of future problems) has proved to be a very
useful development forAI systems [19–21]. For example, inCBR, predictive competence
can assess the overall problem-solving potential of a system, to help avoid the utility
problem as a case-base grows, to maintain case-bases and so on [19, 20]. A parallel
notion of explanatory competence can also be applied to any case-base.
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Just as the fundamental unit of (predictive) competence is a relation of the form
solves(c, c′) to indicate that case/example c can be used to solve some target/query c′, the
basic unit of explanatory competence is explains(c, c′) indicating that some case c can be
used to explain the solution of c′; where the explanatory cases (c) are the counterfactuals
of c′. So, the explanatory competence of a case-base C can be represented by a coverage
set (Eq. 3) and explanatory competence can be estimated as the size of the coverage set
as a fraction of the case-base (Eq. 4):

XP_Coverage_Set(C) = { c′ ∈ C |∃c ∈ C − {c′} & explains(c, c′)} (3)

XP_Coverage(C) = |XP_Coverage_Set(C)|/|C| (4)

4.2 Leveraging Counterfactual Cases for Explanation

Although good counterfactuals are rare, in practice most case-bases should offer some
examples where a query/problem-case can be associated with a good counterfactual,
with or without some matching tolerance (as mentioned above). For example, in the
Abalone dataset, even though there are few good counterfactuals (<1%), with a simi-
larity tolerance of 0.02, ~20% of cases are found to have good counterfactuals; for the
Liver dataset a tolerance of 0.025 results in ~4% of cases having associated good coun-
terfactuals. Can these query-counterfactual case-pairs guide the search for novel (good)
counterfactuals for new target problems that otherwise lack a good counterfactual?

Below, we refer to the pairing of a case and its corresponding good counterfactual
as an explanation case (XC). For any given case-base, we can generate a corresponding
case-base of these explanation cases for use during counterfactual generation; see Eqs. 5
and 6. By definition explanation cases are symmetric; either of the cases can be viewed as
the query or counterfactual, which, in practice,means that each pair of unlike neighbours,
which differ by ≤2 features, contributes two XCs to the XC case-base.

xc
(
c, c′) ⇔ class(c) �= class(c′) & diffs(c, c′) ≤ 2 (5)

XC(C) = {(c, c′) : c, c′ ∈ C & xc(c, c′)} (6)

Each XC is associated with a set of match-features (m), the features that are the same
between the query and counterfactual (using a specified tolerance), and a set ofdifference-
features (d), the ≤2 features that differ between the query and counterfactual.

Figure 1(a) shows a two-class case-base of cases (C) with its corresponding XCs
– xc(x, x′), xc(y, y′), and xc(z, z′) – along with two query cases (p and q), which have
been classified by the underlying ML-model, and which now need to be explained. For
our purposes, we assume that there are no existing good counterfactuals for p or q in C,
hence the need to generate new good counterfactuals for them.
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Fig. 1. An illustration of (a) a two-class case-base with 3 explanation cases; (b) how a synthetic
counterfactual, (p, p′), is generated from an existing explanation-case, xc(x, x′).

4.3 A Case-Based Approach to Generating Good Counterfactuals

Wepropose a classical case-based reasoning approach to generatinggood counterfactuals
by retrieving, reusing, and revising a nearby explanation case as follows:

1. First, we identify the XC case whose query is most similar to p while sharing p’s
class; this is xc(x, x′) in Fig. 1. Since xc(x, x′) has a good counterfactual, x′, and
because the p is similar to x, then the intuition is that x′ is a suitable basis for a new
counterfactual p′ to explain p. The difference-features between x and x′, which are
solely responsible for the class change between x and x′, should play a critical role
in constructing p’.

2. For each of the match-features in xc(x, x′), we copy the values of these features in
p to the new counterfactual p′. Similarly, for each of the difference-features in xc(x,
x′) we copy their values from x′ into p′. In this way, p′ is a combination of feature
values from p and x′. It differs from p in a manner that is similar to the way in which
x′ differs from x and, by construction, p′ is a candidate good counterfactual because
these differences amount to no more than two features. This transfer of values from
p and x′ into p′ is illustrated in Fig. 1(b).

3. For p′ to be actually a good counterfactual, it has to be a different class from p,
which is not yet guaranteed. We determine the class of p′ by using the underlying
ML-model (from the twin-system) and, if it is different from p, then p′ can be used
directly as a good counterfactual to explain p (see Fig. 1(a)).

4. Sometimes, however, the class of the new counterfactual, after retrieval/reuse, is not
different from the target query. For example, the new counterfactual q′, which is
generated for q by reusing xc(y, y′) in Fig. 1(a), has the same class as q, because the
combination of the match-feature values (from q) and difference-features (from y′)
are not sufficient to change its class from that of q.

5. Since q′ is not a valid counterfactual, we perform an adaptation step to revise the
values of the difference-features in q′ until there is a class change; note, we cannot
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change the match-features in q′ without increasing the number of feature differences
with q. We can revise the values of the difference-features in q′ in various ways, for
example, by perturbing them to further increase their distance from q. However, we
instead iterate over the ordered nearest neighbours of q with the same class as y′,
until there is a class change5. The values of the difference-features from each nearest
neighbour leads to a new candidate, q′′, and adaptation terminates successfully when
the class of q” differs from that of q; if none of the neighbours produce a class
change, then adaptation fails. In Fig. 1(a), when the difference-feature values from
the neighbour, nn, are used to produce q′′, the result is a class change, and so q′′ can
be used as a good counterfactual for q.

Note that the primary contribution of explanation cases is to identify and distinguish
between common combinations of features (match-features and difference-features) that
tend to participate in good counterfactuals. Depending on the domain this may reflect
important relationships (causal or otherwise) that exist within the feature-space. In other
words, the XCs tell us about which features should be changed (or held constant) when
generating new counterfactuals in the feature-space near a query case.

Another advantage of this approach is that, because it reuses actual feature-values
from real cases, it should lead tomore plausible counterfactuals and, better explanations.
This contrasts with perturbation approaches, which rely on arbitrary values for features
(and may even produce invalid data-points) and is consistent with approaches that try
to ground counterfactuals in the training data [28, 44]. However, [28, 44] still use prior
experience in a less direct way; they justify/link the generated counterfactual to known
data-points rather directly using those data-points to directly create the counterfactual,
as we do here. Notably, this method reminds one of analogical extrapolation methods in
CBR [46] and structural analogical transfer [47, 48].

Finally, thoughour approachmay succeed infinding a suitable counterfactualwithout
the need for the adaptation/revision step, it may be desirable to proceed with this step,
nonetheless. This is because the adaptation step has the potential to locate a suitable
counterfactual that is closer to the query than the candidate counterfactual produced
by the retrieval step alone and finding counterfactuals that are maximally similar to the
query is an important factor when it comes to explanation [17].

5 Experiment 2: Evaluating Explanation Competence

A preliminary evaluation of the above approach was carried out using five popular
ML/CBRdatasets to demonstrate how explanatory competence can be improved over the
baseline level of good counterfactuals naturally occurring in a dataset. For theMLmodel
used to validate the generated counterfactuals, we used a k-NN model, to determine
whether the predicted counterfactual class differs from the test/query case, but other
classifiers could also be used if available.

5 More generally, for multi-class datasets, this adaptation can be modified to iterate over all
ordered nearest neighbours with a different class to q, not just those with the same class as y′.
This provides a larger pool of difference-feature values and increase the likelihood of locating
a good counterfactual for q.



Good Counterfactuals and Where to Find Them 173

5.1 Method: Data and Procedure

Each of the datasets represent a classification task of varying complexity, in terms of the
number of classes, features, and training examples. The task of interest, however, is not
a classification one but an explanation one. As such we are attempting to generate good
counterfactuals in order to explain target/query cases and their classes. Thekey evaluation
metrics will be: (a) the fraction of target/query cases than can be associated with good
counterfactuals (explanatory competence); and (b) the distance from the target/query
case to the newly-generated good counterfactual (counterfactual distance).

As a baseline for explanatory competence we use the fraction of cases that can
be associated with a good counterfactual in each case-base. In each dataset we use a
matching tolerance of 1–2% with normalized features and the Minkowski similarity
metric was used throughout; variations in these settings will increase the fraction of
existing and generated good counterfactuals and future work will need to explore such
matters more completely. As a corresponding baseline for counterfactual distance, we
use the average distance between these cases and their good counterfactuals. A 10-fold
cross-validation was used to evaluate the newly-generated counterfactuals, selecting
10% of the cases at random to use as queries, and building the XC case-base from the
remaining cases. Then, we use the above technique to generate good counterfactuals
for the queries, noting the fraction of the queries that can be associated with good
counterfactuals, and the corresponding counterfactual distances, after the retrieval/reuse
and adaptation steps. Results reported are the averages for the 10 folds for each dataset.

5.2 Results and Discussion: Explanatory Competence

The explanatory competence results are presented in Fig. 2, showing the explanatory
competence (fraction of queries that can be explained) for the dataset (baseline), and
for the synthetic counterfactuals generated after the retrieval and adaptation steps of our
approach. The results show how explanatory competence can be significantly increased
by our case-based-counterfactual technique. For example, on average only about 11% of
the cases in these datasets can be associated with good counterfactuals (the average base-
line competence when a tolerance is applied) but by retrieving and re-using explanation
cases we can reach an average explanatory competence of just over 40%. Implementing
the adaptation step further increases the explanatory competence just under 94%, on
average. Notably, even datasets with very low baseline explanatory competence benefit
from significant improvements in explanatory competence particularly when the adap-
tation step is used. For example, the 6,400 case Wine dataset (12 features and 7 classes)
has a baseline explanatory competence of just 6%, but its 559 XC-cases can be used to
achieve almost 90% in explanatory competence.

5.3 Results and Discussion: Counterfactual Distance

Of course, just because it is possible to generate a counterfactual for a query that has no
more than 2 feature-differences, does not necessarily mean that the counterfactual will
make for an ideal explanation, in practice. To test this would require a succession of live
user-trials (currently planned), that are beyond the scope of the present work. As a proxy
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Fig. 2. The explanatory competence (XP_Coverage) of five case-bases/datasets, showing baseline
competence and how competence increases by reusing and adapting explanation cases.

for the utility of the explanation, however, we can use the distance between the query
and the generated counterfactual, on the grounds that counterfactuals which are closer
to a query are more likely to serve as more useful explanations. Since counterfactual
distance will vary from dataset to dataset, reflecting the nature of the feature space, we
use a relative counterfactual distance (RCF) measure by dividing the counterfactual
distances of the synthetic counterfactuals by the baseline counterfactual distance for the
dataset. Thus, if RCF >1, then it indicates that the synthetic counterfactual is farther
from the query that the average baseline counterfactual distance.

The results are presented in Fig. 3, which include the relative distance of the good
counterfactuals produced by the retrieval/reuse and the adaptation steps for each dataset.
We also show the relative distance results for an additional condition, Closest, which
is defined as follows: when both the retrieval/reuse and adaptation steps lead to a good
counterfactual, then choose the one with the lower counterfactual distance, otherwise if
only one good counterfactual is produced then use its distance.

Fig. 3. The counterfactual distance of good counterfactuals produced for five case-bases/datasets,
relative to the baseline counterfactual distance (between a query case and its counterfactual)

On average, good counterfactuals produced by the retrieval/reuse step are farther
from the test query than the baseline counterfactual distance (RCF ≈ 1.2). In most cases
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the additional distance beyond the baseline is modest with the exception of the Liver
dataset, where the retrieval/reuse step produces good counterfactuals that are 55% (RCF
≈ 1.55)more distant from the query than the baseline distance. The good counterfactuals
produced by the adaptation step are closer to the test queries – the average RCF ≈
1.1, and in 3 out of the 5 datasets the generated counterfactuals are closer than the
baseline (RCF < 1). If we select the closest counterfactual, when both retrieval/reuse
and adaptation produce one, then the RCF < 1 for all of the datasets. This further
validates the need for, and quantifies the benefits of, the adaptation step: it provides an
opportunity to choose a counterfactual that is significantly closer to the query.

6 Conclusions and Future Directions

In the last three years, there has been a significant upsurge in XAI research arguing for
the computational, psychological and legal advantages of counterfactuals. Most of this
work generates synthetic counterfactuals without reference to the training-data in the
domain and, as such, can suffer from sparsity and plausibility deficits. In short, these
methods do not guarantee the production of good counterfactuals and,may indeed, some-
times generate invalid data points. This state of affairs invites a case-based solution to
counterfactual generation that leverages the prior experience of the case-base, adapting
known counterfactual associations between query-problems and known cases. In this
paper, we advance just such a technique and show how it can improve the counterfactual
potential of many datasets. In developing this technique, we have (i) clarified the def-
inition of good counterfactuals, (ii) proposed the new idea of explanation competence,
(iii) reported significant new evidence for the utility of this novel technique.

This approach ismodel agnostic, in that it can operate with any underlying classifier
(e.g., deep learner, decision tree, k-NN) once it has access to the features of training data,
an agreed distance metric, and the dataset (see [49, 50] for a discussion of this issue).
However, the approach makes some assumptions that might limit its utility beyond the
datasets discussed. It assumes the availability of at least some explanation cases, which
is typically feasible; even though good counterfactuals are rare they are seldom so rare
as to exclude a minimally-viable explanation case-base, at least when a degree of match-
ing tolerance is allowed for when computing feature similarities and differences; note,
different degrees of matching tolerance, similarity metrics, and feature normalization
strategies may have an impact on outcomes. The approach also assumes the availability
of sufficiently accurate underlying ML-model (e.g., in a twin system) for the purpose
of counterfactual validation, though this is an accepted assumption in all approaches.
Finally, though previous psychological work supports our operational definition of good
counterfactuals, more user testing is required; notions of goodness in general (see [2])
need to be squared with sparcity goodness. Notwithstanding this future research, from
the current findings, it is clear that a CBR approach to counterfactuals has much to offer
the explainable AI (XAI) problem.
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Abstract. Research on eXplainable AI has proposed several model
agnostic algorithms, being LIME [14] (Local Interpretable Model-
Agnostic Explanations) one of the most popular. LIME works by mod-
ifying the query input locally, so instead of trying to explain the entire
model, the specific input instance is modified, and the impact on the
predictions are monitored and used as explanations. Although LIME is
general and flexible, there are some scenarios where simple perturba-
tions are not enough, so there are other approaches like Anchor where
perturbations variation depends on the dataset. In this paper, we pro-
pose a CBR solution to the problem of configuring the parameters of
the LIME algorithm for the explanation of an image classifier. The case
base reflects the human perception of the quality of the explanations
generated with different parameter configurations of LIME. Then, this
parameter configuration is reused for similar input images.

Keywords: Specific explanations · User experience · Model-agnostic
explanations · Case-based explanations

1 Introduction

With the success of Machine Learning (ML) interpretability for ML systems have
become an active focus of research. XAI research tries to solve several questions
related to the increasing need for interpretable models, such as: How should inter-
pretable models be designed? How do we evaluate the resulting explanations?
What knowledge do we need for building explanations? How does interpretabil-
ity change interactions between the AI systems and the users? What to explain?
When to explain? How to deal with the fact that different users have different
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expectations and explanation needs? From the CBR perspective, research in XAI
has pointed out the importance of taking advantage of the human knowledge to
generate and evaluate explanations [16,19].

At a high level, the literature distinguishes between two main approaches
to interpretability: model-specific (also called transparent or white box) models
and model-agnostic (post-hoc) surrogate models to explain black box models
[12,13,24]. Transparent models are ones that are inherently interpretable by
users. So, the easiest way to achieve interpretability is to use algorithms that
create interpretable models, such as decision trees, nearest-neighbour or linear
regression. However, the best performing models are often not interpretable, or
they are interpretable only if features are few in number or where the model
is sparse, and where the features have a readily understandable semantics [10].
Besides, for the sake of performance, it is typical to use ensembles of several mod-
els that cannot be interpreted, even if every single model could be interpreted,
like in the random forest algorithm. Model-agnostic interpretation methods pro-
pose separating the explanations from the ML model. Although the main advan-
tage is flexibility, as the interpretation methods can be applied to any model,
some authors consider this type of post-hoc explanations as limited justifications
because they are not linked to the real reasoning process occurring in the black
box.

LIME [14] (Local Interpretable Model-Agnostic Explanations) is a well-
known model agnostic model that attempts to understand the model by perturb-
ing the input of data samples and understanding how the predictions change.
The intuition to local interpretability is to determine which feature changes will
have the most impact on the prediction. According to its authors, the algorithm
fulfils the desirable aspects of a model-agnostic explanation system regarding
flexibility. The LIME interpretation method can work with any ML model and
is not limited to a particular form of explanation and representation. An essen-
tial requirement for LIME is to work with an interpretable representation of the
input, like images or bag of words, that is understandable to humans. The out-
put of LIME is a list of explanations, reflecting the contribution of each feature
to the prediction of a data sample.

Although LIME is general and flexible, there are some scenarios where sim-
ple perturbations are not enough, so there are other approaches like Anchor
[15] where perturbations variation depends on the dataset. Either in LIME or
Anchor, the configuration variables are set up by default. However, the adequacy
of the variables to the input query instance is critical to provide quality expla-
nations. In fact, the type of modifications that need to be performed on the data
to get proper explanations are typically use case specific. The authors gave the
following example in their paper [14]: “a model that predicts sepia-toned images
to be retro cannot be explained by presence or absence of superpixels”.

In this paper, we propose a CBR solution to the problem of configuring the
default parameters of the LIME algorithm for an image classifier. The case base
reflects the human perception of the quality of the explanations generated with
different parameter configurations of LIME. Then, this parameter configuration
is reused to generate explanations for similar input images.
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This paper is organized as follows: Sect. 2 presents related work, whereas
Sect. 3 introduces the LIME algorithm and some of its limitations. Section 4
describes the CBR-LIME method and the case base elicitation process. In Sect. 5
we demonstrate the benefits of our approach using both off-line and on-line
evaluations. Concluding remarks are discussed in Sect. 6.

2 Related Work

CBR can provide a methodology to reuse experiences and generate explanations
for different AI techniques and domains of applications. Therefore, we can find
several initiatives in the CBR literature to explain AI systems. Some relevant
early works can be found in the review by [8]. For example, [19] presents a
framework for explanation in case-based reasoning (CBR) focused on explanation
goals, whereas [2] develops the idea of explanation utility, a metric that may be
different to the similarity metric used for nearest neighbour retrieval.

Recently there is a relevant body of work on CBR applied to the explana-
tion of black-box models, the so-called CBR Twins. In [6], authors propose a
theoretical analysis of a post-hoc explanation-by-example approach that relies
on the twinning of artificial neural networks with CBR systems. [9] combine
the strength of deep learning and the interpretability of case-based reasoning
to make an interpretable deep neural network. [4] investigates whether CBR
competence can be used to predict confidence in the outputs of a black box sys-
tem when the black box and CBR systems are provided with the same training
data. [23] demonstrates how CBR can be used for an XAI approach to justify
solutions produced by an opaque learning method, particularly in the context of
unstructured textual data. As we can observe, most of these works are post-hoc
explanation systems, where CBR follows the model-agnostic approach to explain
black-box models. However, there are other works that, instead of explaining the
outcomes of the model, they try to explain the similarity metrics [17].

Outside the CBR community, many algorithms follow the same model-
agnostic approach than LIME. Partial dependence plots (PDP) show the
marginal effect that one or two features have on the predicted outcome of
a machine learning model [3]. The equivalent to a PDP for individual data
instances is called individual conditional expectation (ICE) plot [5]. It displays
one line per instance that shows how the instance’s prediction changes when a
feature changes. Other approaches, referred to as permutation feature impor-
tance, measure the increase in the prediction error of the model after permuting
the feature’s values [1].

The global surrogate model is an interpretable model that is trained to
approximate the predictions of a black box model [13]. In contrast, local sur-
rogates, such as LIME or Anchors [14,15], focus on explaining individual predic-
tions. Another popular local surrogate model similar to LIME is SHAP [11]. It is
based on the game theory concept of Shapley values and explains the prediction
of an instance by computing the contribution of each feature to the prediction.
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Once we have reviewed the most relevant contributions of CBR to XAI and
presented an overview of model-agnostic explanation methods, the next section
focuses on the LIME algorithm that is the basis of this paper.

3 Background

LIME focuses on training local surrogate models to explain individual predictions
given by a global black-box prediction model. In a general way, it analyses the
behaviour of the global prediction model through the perturbation of the input
data.

In order to figure out what features of the input are contributing to the
prediction, it perturbs the input data around its neighbourhood and evaluates
how the model behaves. Then, it trains an interpretable local model that weights
these perturbed data points by their proximity to the original input. This local
model should be a good and explainable local approximation of the black-box
model. Mathematically, it is formulated as follows [14]:

explanation(x) = arg min
g∈G

L(f, g,Πx) + Ω(g) (1)

This equation defines an explanation as a model g ∈ G, where G is a class
of potentially interpretable models, such as linear models or decision trees. The
goal is to minimize the loss function L that measures how close the explanation
is to the prediction of the original model f given a proximity measure Πx. This
proximity measure defines the size of the neighbourhood around the predicted
instance x that is used to obtain the explanation. Additionally, it is necessary
to minimize the complexity (as opposed to interpretability) of the explanation
g ∈ G, denoted as Ω(g).

Regarding the perturbation of the input data, it depends on its type. For
tabular data, LIME creates new samples by perturbing each feature individually
based on statistical indicators. For text and images, the solution is to remove
words or parts of the image (called superpixels). Here, the user can also configure
how these superpixels are computed and replaced. By default, LIME uses the
Quickshift clustering algorithm [22] that finds areas with similar pixels using a
hierarchical approach. This clustering algorithm depends mainly on the Gaussian
kernel used to define the neighbourhoods of pixels considered, that in practice
defines the number of clusters. Once the image has been segmented, it is neces-
sary to perturb the image to generate the training set for the surrogate model by
removing superpixels randomly. Next, the definition of the proximity measure
Πx should also be chosen carefully to select the neighbourhood of perturbed
images. Current implementations of LIME use an exponential smoothing kernel
where the kernel width defines how close an instance must be to influence the
local model.

Finally, the interpretable surrogate model used by LIME is linear regression,
corresponding to the Ω(g) function in Eq. 1. Here, the user has to define the
number of the top superpixels being considered. The lower top superpixels, the
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Table 1. Variables used to configure the LIME method.

Clusters size CCC This parameter defines the width of the Gaussian
kernel used to define the neighbourhoods of pixels
considered

Number of perturbations PPP Number of perturbed images generated through the

random removal of parts from the original image

Proximity measure ΠΠΠ Width of the exponential kernel that defines how close
a perturbation must be to be included in the linear
regression model

Number of features FFF Number of superpixels being considered by the linear
regression model, representing to the Ω(g) function in
Eq. 1

easier it is to interpret the model. A higher value potentially produces models
with higher fidelity.

The use of linear regression makes LIME unable to explain the model cor-
rectly on some scenarios where simple perturbations are not enough. Ideally, the
perturbations would be driven by the variation that is observed in the dataset.
The same authors proposed a new way to perform model interpretation which is
Anchors [15]. Anchor is also a local model-agnostic explanation algorithm that
explains individual predictions, i.e., only captures the behaviour of the model on
a local region of the input space. However, it improves the construction of the
perturbation data set around the query. Instead of adding noise to continuous
features, hiding parts of the image, to learn a boundary line (or slope) associated
to the prediction of the query instance, Anchors improves LIME using a “local
region” instead of a slope. Nevertheless, it also uses a generic configuration for
every image.

Once we have described LIME and its limitations, the next section introduces
the CBR-LIME method that improves its configuration through a case-based
reasoning process.

4 The CBR-LIME Method

As explained in the previous section, instead of using the default LIME setup,
its configuration can be optimized in order to achieve higher performance. Here,
an image-specific configuration of these parameters is critical in order to obtain
good explanations. In our approach, we will consider the parameters to con-
figure the LIME method listed in Table 1. In this table we have selected those
parameters with a higher impact in the final explanation after a preliminary
evaluation based on the results obtained by the LIME implementation provided
by the authors1. Figure 1 illustrates the impact of these parameters, showing
the resulting explanations for a given image when applying different LIME con-
figurations. In this case, the underlying neural network classifier identifies the
1 https://github.com/marcotcr/lime.

https://github.com/marcotcr/lime


184 J. A. Recio-Garćıa et al.

image as “ski”. However, the visual explanations provided by LIME change sig-
nificantly depending on its setup. As we can observe, the explanation generated
using the default parameters (top-left pair) is not a proper choice to explain the
outcome of the classifier.

C: 4, P : 150, Π:.25, F :4 (def) C: 7, P : 250, Π:.5, F :3

C: 2, P : 150, Π:.25, F :21 C: 10, P : 100, Π:.75, F :1

Fig. 1. Examples of LIME explanations for the same image using different setups. Each
pair shows the image segmentation on the left and the explanation generated according
to the parameters above. Top-left pair corresponds to the default values of the LIME
implementation.

A straightforward solution is to adjust these parameters according to the
predicted instance. However, as explanations depend on their utility to the user,
it is not possible to find an algorithmic solution to compute the best setup.
Therefore, we propose the use of a CBR approach where a case base of instances
and their most suitable configuration for LIME is collected and reused to provide
explanations.

4.1 Case Base Elicitation

To ease the evaluation of explanation cases with users, we have focused on the
LIME method for images. The case base of images has been obtained from the
dataset provided by the Visual Genome project [7]. We selected 200 images
that were confidently classified by Google’s Inception deep convolutional neu-
ral network architecture [21] with a predominant class (precision > 95%). For
every image, we generated eight different explanations through the heteroge-
neous configuration of the variables in Table 1, plus the default configuration of
LIME. Then, these nine explanations were presented to users, that could select
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the most suitable explanatory image, as illustrated in Fig. 2. Explanations were
randomly shuffled, and the corresponding LIME configuration is not displayed
to the user. Each time the user selects an explanation, a new image and its
corresponding explanations are shown until the 200 images have been voted.
Concretely, users were asked to select the most specific explanation, meaning
that, in case of two similar images, they should choose the one with less image
area.

Fig. 2. Application used to vote for the best explanation and generate the case base.
The original image and the majoritarian predicted class is shown on the left. Images
on the right are generated through 8 random configurations of LIME plus the default
setup.

After repeating this process with 15 users we collected a total of 3.000 votes
(15 per image) that were used to generate the case base. The description of each
case is the image itself (its pixel matrix) plus the feature’s vector returned by the
classifier. Then, the solution of each case is the average of the values for C,P,Π
and F from the LIME configurations chosen by the users. This representation
of cases can be formalized as:

Case = 〈D,S〉 (2)
where

D = 〈image,f〉
S = 〈C,P,Π, F 〉
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The analysis of the configurations voted by the users confirmed our initial
hypothesis stating that the default configuration of LIME is not suitable for a
general-purpose explanation. As Fig. 3 shows, the default configuration values
for each parameter (red columns) are not predominant, and there is significant
heterogeneity. This conclusion is also contrasted by the analysis of the variability
on the user’s choices. If we compute the standard deviation of the configuration
values chosen for every image, we can study if users tend to select a similar
configuration for LIME as the best explanation. Through this analysis, we col-
laterally validate the central hypothesis of this paper, consisting of applying a
case-based reasoning solution to generate LIME explanations because similar
images should be explained using similar configurations of the algorithm. The
corresponding average standard deviation values are also displayed in Fig. 3.
As we can observe, this analysis validates our hypothesis as the variability on
the configurations chosen by the users is quite low, especially for the C and F
variables.

Clusters size (C) σ = 1.28 Number of perturbations (P ) σ = 40.44

Proximity measure (Π) σ = 0.20 Number of features (F ) σ = 2.57

Fig. 3. Histograms describing the values (x-axis) chosen by users when voting for the
best explanation. Red columns highlight the default values in LIME. Numbers inside
columns reflect the percentage of explanations chosen by users that were configured
with the corresponding value in the x-axis. σ values correspond to the average of the
standard deviation for each image. (Color figure online)
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4.2 Case-Based Explanation

Once the case base has been generated, we can define the CBR process used
to find the most suitable configuration for LIME given an instance and its cor-
responding classification by the global model. The first step is the retrieval of
similar images (and their corresponding LIME configurations) from the case
base. A straightforward method to retrieve similar images is the comparison
of the pixel matrix. However, in practice, this approach is not a good choice
because we must focus on the objects in the image that were identified by the
global model. Therefore, we have defined the retrieval process as the comparison
of the feature vectors f given by the global model. This way, once we have the
classification of the query image (q), we can compare its feature vector with the
vectors describing the cases simply by applying a distance metric such as the
Euclidean distance.

sim(Dq,Dx) = Eucl Dist(fq ,fx) (3)

Then, the k most similar images can be selected. This retrieval process is illus-
trated in Fig. 4, where the three most similar images (yellow border) to the query
(blue border) are displayed together with their feature vectors f . Here we can
observe that the feature-based similarity achieves our goal of retrieving related
images and avoids problems associated with pixel-based comparisons such as
colour or image contrast.

Fig. 4. Application used display the similarity between images using the features iden-
tified by the global model (Eq. 3). (Color figure online)

The following step in the CBR cycle is adaptation. Here, the final configu-
ration for the LIME algorithm is calculated as the average of the configurations
of the k most similar cases. This way, we are reusing the user’s experience to
generate the explanation instead of applying a setup by default.

Sq = ∀
x∈kNN(q)

〈Cx, Px,Πx, Fx〉 (4)
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Then, the generated explanation is presented to the user that can revise the
configuration values in order to adjust its quality. Finally, the user can store the
new generated case into the case base to close the CBR cycle. Figure 5 shows a
capture of the CBR application that implements this process.

5 Evaluation

In order to demonstrate the benefits of CBR-LIME we have conducted two com-
plementary evaluations. Firstly, an offline evaluation compares the explanatory
images generated by the default LIME setup and our case-based approach using
cross-validation. Secondly, we implemented an online evaluation with users sim-
ilar to the experiment described in Sect. 4.1. This time, explanatory cases are
shown, and users must vote the most suitable explanation. Both offline and
online evaluations are presented next.

Fig. 5. Application implementing the full CBR cycle. It shows the original image, its
associated perturbation and the resulting explanatory image given by the configuration
obtained by CBR-LIME (Eq. 4). This configuration can be revised by the user, that
also can store the generated new case into the case base.

5.1 Offline Evaluation

The goal of the offline evaluation is to compare, using an image similarity met-
ric, the explanatory images generated by the default LIME setup and different
configurations of our CBR-LIME method. Given any image in a case of our case
base, we can compute the “optimal” explanatory image (according to the users’
votes) through the configuration stored in its solution. Then, other explanatory
images generated with different configurations of LIME can be compared to this
optimal explanation in order to measure their quality. If we repeat this process
throughout the whole case base using a leave-one-out approach we can evaluate
the performance of the default LIME setup in contrast to the configurations
provided by our CBR-LIME method (with different k values: 1NN, 3NN, etc.).
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A key element in this evaluation is the similarity metric used to compare the
explanatory images. There is an extensive catalogue of such metrics in the field
of Image Quality Assessment (IQA) that must be carefully chosen depending
on the nature of the image and the type of comparison that is required [18]. In
our case, we need to compare variations of the same original image where some
parts have been removed. Therefore, we need a metric that is able to compare
the structural changes in the image, such as the Structural SIMilarity (SSIM)
index. This metric that has demonstrated good agreement with human observers
in image comparison using reference images [25]. The SSIM index can be viewed
as a quality measure of one of the images being compared, provided the other
image is regarded as of perfect quality. It combines three comparison measure-
ments between the samples of x and y: luminance, contrast and structure. In our
evaluation, the explanation generated with the (average) configuration chosen
by the users is the image of perfect quality to compare with. In contrast, the
explanations generated with other configurations of LIME (default, 1NN, 3NN,
...) are the variations that we need to find out their comparative quality.

LIME CBR-LIME
default 1NN 3NN 5NN 7NN

SSIM 0.42 .51 .51 .53 .55

Fig. 6. Boxplot (top) and average SSIM values (bottom) obtained when comparing
explanatory images generated with different LIME configurations.

Results are summarized in Fig. 6 that shows a boxplot (top) and the average
(bottom) of the SSIM values obtained by the explanatory examples generated
with different configurations. We can observe that the SSIM index is higher using
the CBR-LIME method. As we have computed the SSIM index for the 200 images
in the case base we can contrast the resulting series in order to validate this
improvement statistically. Therefore, we have run a two-pair Wilcoxon signed-
rank test comparing the SSIM indexes obtained by the default LIME setup and
the values from the CBR-LIME configurations. In all cases, the improvement was
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statistically significant at p < 0.05. However, there is a little improvement when
increasing the k parameter of the CBR-LIME method, finding only statistical
evidence between k = 7 and k = 1, 3.

These series comparisons are graphically presented in Fig. 7 that plots the
difference between the SSIM values obtained by the kNN configurations and the
default LIME setup. As we can observe, the positive area (on the right side of
the y-axis) is much larger than the negative, indicating that the explanations
generated by CBR-LIME are more similar to the optimal explanatory image.

Fig. 7. Plots of the differences between the SSIM index obtained by the k-NN config-
urations minus the default LIME setup for every image.

5.2 Online Evaluation with Users

We have also conducted an online evaluation with users to corroborate the results
of the offline analysis. In this case, users had to choose between two explanatory
images: one is generated with the default LIME setup, and the other gener-
ated from the configuration obtained by CBR-LIME2. The application used to
conduct this evaluation (Fig. 8 left) shows the original image, the classification

Fig. 8. (left) Application used in the online evaluation where users have to vote for
the best explanation comparing the images generated by the default LIME setup and
the CBR-LIME configuration. (right) Percentage of votes given by the users to each
alternative (1600 total votes).

2 Explanations were generated using 3-NN as there are no significant changes with
other k values.
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given by the global model, and the two explanatory images. One more time, this
application shuffles the images to avoid any kind of bias in the users’ choices,
and the voting process must be repeated for all the images in the case base.

After collecting 1600 votes, results corroborate the benefits of CBR-LIME, as
76.7% of the images selected by the users as the best explanation were generated
using the configuration provided by our method.

6 Conclusions and Future Work

This paper presents a Case-based reasoning method that takes advantage of
human knowledge to generate explanations. Concretely, we have defined and
evaluated a CBR solution to the problem of configuring the well-known LIME
algorithm for images. This algorithm attempts to understand a global black-
box classification model by perturbing the input of data samples. However, this
method applies a generic setup for any image, that leads to inadequate explana-
tions as demonstrated in this paper through an evaluation performed with 200
images and 15 users. This evaluation let us collect a case base of images and their
associated “optimal” LIME configurations according to the users. From this case
base, we can implement a CBR-LIME method where, given a new query image,
similar images are retrieved, and their corresponding configurations are reused
to generate an explanation through the LIME algorithm.

To validate CBR-LIME, we have conducted two complementary evaluations.
The offline evaluation compares through cross-validation the explanatory images
generated by the default LIME setup and the configurations obtained by CBR-
LIME to the “optimal” explanation according to the users. To compare the
images, we use the SSIM image comparison index, that is a reference method in
image quality assessment, able to compare variations of the original image. The
results of the offline evaluation demonstrated that CBR-LIME improves up to
13% the similarity of the generated images with the optimal explanation. Then,
we conducted an online evaluation with real users in order to corroborate these
results. In this case, users had to choose between two explanations for the same
image, one generated with the default LIME setup, and the other with CBR-
LIME. Again, the results confirmed the benefits of the later as it obtained 76%
of the votes.

This paper leaves many open lines for future work. Firstly, we would like
to explore the impact of other configuration parameters of LIME that were
considered initially as less relevant to generate the explanation. For example,
the is a ratio threshold in the Quisckshift algorithm that defines the trade-off
between colour importance and spatial importance to create image clusters. This
parameter was not included in CBR-LIME because initial evaluations did not
demonstrate a significant impact on the performance of the method. However,
this must be methodologically validated.

The combination of these parameters as the solution of the cases also requires
further evaluation. Obviously, during the case base elicitation process, users did
not choose the same best explanation for a particular image. We, therefore,
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obtained several LIME configurations for each image, that were averaged to
compute the final solution of the case. Thus, other alternatives may be con-
sidered and evaluated, i.e., the median value or just selecting the most voted
configuration.

We must also analyze the impact of the case base quality in the explana-
tion process regarding cold-start scenarios where no similar images are available
in order to find out the minimum similarity threshold and class distributions
required to provide good explanations. Also, our evaluation only includes images
that are confidently classified by the neural network, so we need to evaluate the
impact of incorrect or ambiguously classified images. Additionally, the impact of
user bias in the case base elicitation and evaluation must be carefully analyzed
too.

Another relevant line of future work is the improvement of the similarity
metric. Equation 3 does not take into consideration the pixel matrix of the image
to retrieve similar cases. However, it was our initial idea, and we tested the SSIM
index and other feature matching methods like FLANN [20] as similarity metrics.
Unfortunately, results were disappointing due to the variability of the images in
the case base. So we discarded the pixel matrix comparison and focused on the
similarity of the image features. Nevertheless, further research is required in
order to enhance the similarity metric by including pixel-based comparisons.

An open implementation of CBR-LIME in Phyton is available at:
https://github.com/UCM-GAIA/CBR-LIME.
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Abstract. Recommender systems are useful to find relevant products
for a certain user. Some recommender techniques based on models, for
example, Matrix Factorization, act as a black box for users. Explana-
tions for recommender systems are useful to make recommendations more
effective and help the users to trust the system and understand why cer-
tain items have been recommended. In this paper, we propose a post-hoc
model-agnostic explanation system for MF recommendations based on
Case-Based Reasoning and Formal Concept Analysis. We have conducted
an experimental evaluation with real users to define what are the most
useful explanation features that allow users a better understanding of
the system recommendation.

Keywords: Explainable Artificial Intelligence · Case-based
explanations · Recommender systems · Formal Concept Analysis

1 Introduction

In recent years, there has been an increasing interest in Explainable Artificial
Intelligence (XAI) [1,9,14,18] to make AI algorithms comprehensible for the
final user. Explanations in recommender systems have also been an area of active
research [2]. Explanations in RS improve users’ trust in the recommended prod-
ucts [3,21,23,27]. Besides, explanations can persuade users to buy a recom-
mended product [13,29]. Content-based recommenders are more transparent, or
understandable for users, as they can make use of explanations based on the user
profile or the products with similar features [17]. However, collaborative filtering
techniques are considered as black-boxes as they are based on training models
with the user ratings [25] that are not easily interpretable.
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The research conducted in this paper is related to our previous work [16]. In
our previous work, we demonstrated that the latent factors obtained from the
matrix factorization process are useful as properties to build a case base of items
that are related to the recommended item. This methodology takes into account
the users’ experiences. The latent factors are obtained from the ratings the users
made. Furthermore, the case base is only built with the items with which the
target user has interacted. From this case base, using the cosine similarity metric,
we retrieve a set of explanatory items for the final user. However, the latent
factors are not interpretable, and it is not so understandable why the explanatory
items are similar to the recommended one. We observed that these items usually
have not got similar features at first sight. For instance, with our system, we got
two movies that are not very similar: Star Wars and The Shawshank Redemption.
In the current paper, we aim to build more informative explanations and propose
an approach based on Formal Concept Analysis (FCA) to build a property-based
explanation. We use the general approach described in [6], where FCA is used to
capture explanation knowledge from a set of objects and attributes. In this paper,
to explain why the explanatory items obtained with matrix factorization support
the recommendation, we apply FCA to get the maximal common groupings
among the set of explanatory items. FCA is an approach typically used to explain
data employing lattice theory [11]. In the past, our research group has also used
FCA to enrich the CBR processes [7,8].

In this analysis, we want to demonstrate the following hypotheses:

H1 Users prefer explanations where they can see the most specific common
features between the recommended item and the explanatory items. These
specific features are the discriminating ones that describe the items
accurately.

H2 Grouping items to explain a recommendation using the most discriminat-
ing features increases users’ understanding of the recommended item. The
grouping helps users to relate the common features among them.

The verification of the hypotheses is related to users’ opinions. Therefore,
we have made a questionnaire with real users where they select the most under-
standable explanations for a recommendation. This questionnaire allows us to
determine the essential features to show to users and design the final explanation
system. Furthermore, this questionnaire will help us to achieve a more effective,
transparent, and trustworthy explanation system.

The rest of this paper is organized as follows. Section 2 reviews related work
about explanations for recommender systems. Next, Sect. 3 describes the recom-
mender system and how to generate explanations for a recommendation using a
two-step process: retrieve explanatory items from the matrix factorization knowl-
edge and create and travel the FCA lattice to create comprehensive explanations.
Section 4 explains the experiment to determine which is the type of explanation
more attractive for users. Finally, Sect. 5 concludes the paper and describes some
lines of future work.
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2 Related Work

Currently, there is an active research line to generate explanations in recom-
mender systems. In the state-of-the-art, we can encounter several works that
have studied this problem. The work presented in [29] contains a survey about
explanation properties and aims in recommender systems, for example, trans-
parency and effectiveness. Based on these aims, we find some studies that propose
different visualization modes to improve the explanations [12,15]. Taking into
account the transparency in recommender systems, we can divide them in white-
box and black-box conceptual models [15]. The white-box models are transparent
to users; therefore, the explanations can be generated focusing on the process of
recommender technique used. An example is [28], which proposes an explanation
system using the similarity functions from the recommender system.

However, the most challenging task in XAI is to generate explanations for
black-box models [22]. The black-box models cannot convey the recommenda-
tion process to users. In these situations, it is necessary to generate explanations
independently of the model. One of the most studied black-box techniques in
recommender systems is collaborative-filtering based on models, like matrix fac-
torization. For example, [30] uses matrix factorization and sentiment analysis
on user reviews to make explanations in recommendations. In [32], the authors
describe an explanation proposal for matrix factorization that takes into account
the most critical items in the prediction of the ratings and the users’ opinions.
In the work [31], we can find an explanation approach that uses the latent fac-
tors as the knowledge source. Our current work proposes using information from
latent factors to build a CBR system that retrieves explanatory items. Many
examples use CBR systems to generate explanations. In [20], we observe a CBR
system proposal to explain recommendations, using reviews from users and user
profiles to build the case base. Other related work from our research group is [5],
where we proposed a CBR system to explain black-box recommendations using
interaction graphs to get the explanatory items. Another example is [24], where
we described an approach to visualize explanations for group recommendations
using social information.

As we have introduced, this paper extends previous research [16], where we
studied how to explain the recommendation results for the Non-Negative Matrix
Factorization (NMF) [10] algorithm. We proposed an item-based explanation
system to obtain a set of items from the NMF model. Using the latent factors
for each user and her ratings, we build a case base with the description of each
item.

3 Explanation System

In Artificial Intelligence, the so-called black-box techniques, such us Neural-
Networks, are not interpretable for users. Some recommender techniques, like
the models obtained by the matrix factorization algorithm, are also considered
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Fig. 1. General overview of the case-based explanation approach using FCA

as black-boxes because it is difficult to understand the reasons behind a rec-
ommendation, and what is the meaning of matrices values used to generate the
recommendation.

Taking into account that the model is a black-box, we propose an item-based
explanation to justify a recommendation. Using CBR, it chooses a set of items
that have similar conditions, based on the matrix factorization model, to the rec-
ommended item and uses them as explanatory items. Our method is a post-hoc
model-agnostic explanation system since we used introspective knowledge: we
use the recommendation model to justify the recommendation [4,19]. Moreover,
the use of CBR relates with the knowledge from the user experience: the latent
factors used to describe the cases in our case base are obtained from the previous
experiences that are reflected in the user ratings. On the other hand, we build
the set of items, or case base, with the description of the items with which the
target user has interacted. In Fig. 1, we show an overview of our proposal, that
can be structured according to the following steps:

Step 1 MF algorithm recommends the item rec for the target user.
Step 2 Build the case base using the latent factors, which reflects the user

experience in terms of ratings and interactions.
Step 3 Retrieve a set of explanatory items EI using the cosine similarity

measure.
Step 4 Build the FCA lattice using G={rec ∪ EI} and a subset of attributes

M . The lattice built is unique for a recommendation because it contains
rec and EI. We classify rec in the lattice, so we can know its features.

Step 5 Travel the lattice to get different explanations from the concepts and
dependencies, getting common features between rec and EI. Travel
the lattice means that we traverse the lattice from the top to the bottom
to explore the common nodes (attributes) that join two items.

Step 6 Show the explanation to the target user.

Next, we detail how our system works to retrieve all the possible explanations,
using CBR and FCA. In Sect. 3.1, we describe our system Step 1. Next, we detail
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the Steps 2 and 3 in Sect. 3.2. Later, we depict the Steps 4 and 5 in Sect. 3.3.
Finally, what we have to show in Step 6 to design our system is the goal of this
work and is verified in the user-centric evaluation in Sect. 4.

3.1 Matrix Factorization Recommender System

In collaborative filtering recommender systems, one of the main problems is the
sparsity in the set of ratings. It means that, usually, users only rate a small set
of items. Therefore we do not have got information about a large number of
users and items. One of the most popular methods to resolve this problem is
the matrix factorization model [10], which is based on the use of latent factors
to predict the unknown ratings. The main goal of this algorithm is to complete
the matrix R ∈ R

U×I that contains the ratings that users (U) have made on
items (I). It defines two new matrices: P ∈ R

U×N , which relates each user in U
to a set of latent factors of N dimensionality, and Q ∈ R

N×I , that relates the
items in I to the same latent factors. The dot product of both matrices returns
the R′ = PQT matrix, which contains the rating estimation for each user and
each item. The values in P and Q are learned by the approach of stochastic
gradient descent. In this approach, the algorithm calculates the error between
the known ratings (rui ∈ R) and its prediction (r′

ui ∈ R′). Then, it modifies the
value in P and Q in the opposite direction of the gradient. When this error is
minor than bias, the algorithm finishes, and we can use both matrices to suggest
recommendations.

The main problem in this algorithm is its opacity, i.e., it is difficult to under-
stand the meaning of the latent factors. We have used them to select a set of
items that can explain a recommendation for a specific user. The next section
describes the CBR system that uses the information in P and Q to retrieve
the explanatory items. Next, we apply the FCA method to generate the final
explanations.

3.2 Retrieving Explanatory Items

As we have mentioned, in previous work, we proposed a methodology that uses
dimensions from matrix factorization latent factors to obtain a set of explanatory
examples for a recommendation [16].

As we described before, P relates users (U) to N-dimension of latent fac-
tors. Values in P may be considered as the user preferences for each dimension.
It occurs similarly in Q, which relates the N-dimension to items (I). In this
case, values in Q could be considered as to how items are represented in each
dimension. Our methodology consisted of building new descriptions for the items
using the information calculated in both matrices. To do that, we created the
matrix Qu for each user. It transforms the values in Q into a collection of vectors
Qu = {qu1 , . . . , quM} where each qui = puqi represents the description of an item
multiplied by the user preferences.
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These vectors represent the features of each item based on preferences from
a specified user and constitute the case base for our system. Therefore, expla-
nations are personalized: the case base is an item description from the point of
view of this user.

It is not possible to understand the meaning of these values; however, we can
use the information saved in Qu to define a similarity metric to obtain items
with a similar description. We proposed applying the cosine similarity function
to compare the items using the Qu description. The main advantage of this
function is that it does not take into account the vector magnitude, and we
do not need to study the meaning of the values in each dimension. Then, the
function defined to search the similar items from a recommendation is as follow:

simQu

(i, rec) = cos(qui , q
u
rec) =

qui · qurec
|qui | · |qurec|

(1)

It selects the most similar items from the items rated by the user in the past.
The result is the explanatory item set (EI). The next step is to apply the FCA
methodology to obtain all possible features in common between EI, and the
item recommended (rec). It allows us to generate all possible explanations for
the recommended item.

3.3 Generating Explanations Using FCA

In [6], we proposed the use of Formal Concept Analysis (FCA) as a general
methodology to generate explanations for recommender systems based on differ-
ent ways to build and travel the concept lattice. FCA extracts the formal con-
cepts that relate the items according to the shared properties. There are three
elements in a formal concept < G,M, I > where G is the set of objects, M is the
set of attributes of objects, and I is the relation between objects and attributes.
The use of FCA helps in finding the knowledge structure and we demonstrated
how this knowledge is useful as the explanation knowledge applied to different
sets of items and properties. Note that the sense of the term explanation here
refers to justification. The explanation system based on FCA attempts to make
comprehensible the result of a black-box recommender system. Our previous
work was oriented to explanations of collaborative filtering approaches that rec-
ommend items based on users’ past behavior and ratings. We proposed different
approaches that vary in the way we build and travel the lattice. For example, we
create the user profile lattice, building a lattice using the set of the user personal
best-rated items. This lattice can be used itself to explain the user profile and
the diversity of her preferences and let her refine her ratings or understand why
a particular item has been recommended. The explanation lattice is computed
for each user, and it can be reused to generate personalized explanations for
different recommendation processes. Besides, we also explore how the dependen-
cies between attributes and the maximal groups of items are useful as explana-
tion knowledge in different ways: item-style, property-style and dependency style.
The FCA-based explanation algorithm (see Algorithm 1) allows us to organize



A User-Centric Evaluation to Generate Case-Based Explanations 201

the knowledge on the user preferences and obtain the vocabulary to explain the
user profile. According to this profile, we are able to justify why an item has
been recommended using either the item-style explanation, which includes the
similar items rated by the user; the property-style explanation, which describes
the properties of the formal concepts regarding the common attributes; and the
dependency-style explanation, that includes the description of the association
rules elicited by the FCA. The general process runs as follow:

Step 1 Select the Mu (attributes) and Gu (items) sets used to build the lattice.
Step 2 Apply FCA and evaluate and refine the resulting lattice.
Step 3 Choose between explaining the user profile or explain a specific

recommendation (rec), so we classify rec to generate more specific
explanations.

Step 4 Generate explanations from textual templates filled with the correspond-
ing elements obtained while travelling the lattice item-style, property-
style, dependency-style.

Algorithm 1: Travelling the lattice to build Explanations
Input: Gu, Mu, Iu, rec, selg, selm
Output: Expl-item, Expl-property, Expl-dependency

1 Gu
′ = selg(Gu)

2 Mu
′ = selm(Mu)

3 Ret = FCA(Gu
′,Mu

′, Iu)
4 Cr ← Ret.classify(rec) ‖ TOP
5 Expl-item ← {traverseLevels(Cr.extent) }
6 Expl-property ← {traverseLevels(Cr.intent) ) }
7 Expl-dependency ← {obtainRules(Ret) }

In this paper, we build the FCA lattice using G = rec ∪EI, i.e., the recom-
mended item and the set of explanatory items, and M , the set of attributes with
at least two common attributes between rec and EI. We propose to classify rec
in the formal concept lattice and using a property style explanation based on
those common attributes. The next section describes our experiment with users
to find out which relations in I are the most useful to explain a recommended
item. Figure 2 shows an example, where rec is the movie entitled “E.T” and
EI is the set of explanatory items obtained from latent factors of the MF algo-
rithm. The table includes explanations for the recommendation following the
Algorithm 1.

4 User-Centric Evaluation

As we have described in the previous sections, the explanation system proposed
has two foundations: the explanatory items found by the CBR system and their
common attributes with the recommended item that the FCA obtains. The
problem here is to select those attributes that are more useful to explain the
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“The system recommends you E.T. because...”

Level 0
“...share LAN:English, COUN:USA with Star Wars VI, Schindler’s List,

Pulp Fiction, American Beauty and Minority Report.”
Level 1 “...share DIR:Steven Spielberg with Minority Report and Schindler’s List”

“...share TYPE:Color with Minority Report, Star Wars VI, Pulp Fiction
and American Beauty”

Level 2 “...share GEN:Sci-Fi with Minority Report, Star Wars VI”
Level 3 “...share DIR:Steven Spielberg, GEN:Sci-Fi with Minority Report”

Fig. 2. Example of the lattice built with rec = {E.T.} and EI = {Minority Report,
Star Wars VI, Schindler’s list, Pulp Fiction, American Beauty} to get their common
features. In the table, we show the Property-style explanations extracted from lattice.

outcome of the recommender system. We hypothesize that the most specific
common attributes will be the most effective. It will provide effectiveness to our
system because it will help users to find the most interesting items, as stated in
previous results [29]. Moreover, users may prefer a short explanation with a few
specific attributes or a detailed one with a larger number of attributes.

The goal of this evaluation is to check whether this hypothesis is correct,
taking into account the users’ opinions. Eventually, we should be able to decide
which is the best way to travel the lattice. Therefore, the experimental setup
carried out was an online evaluation, i. e. with real users, to know the real
opinions from users about the different FCA-based explanatory strategies that
we can generate with our approach. Through the analysis of this feedback, we will
be able to optimize our final explanation system with the most suitable strategy
according to the users’ preferences and the lattice’s features. In consequence, we
have designed a test where we showed a movie recommendation to the users, and
we presented all the possible explanations that we can retrieve with our FCA-
based explanation system. These explanations consist of explanatory items and
the common attributes between them.
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Here below, we describe the dataset used to generate the recommendations
and the explanations. Later, we detail the experimental setup in Sect. 4.2. Finally,
we analyze the results in Sect. 4.3.

4.1 Data

In recommender systems, one of the most popular domains is movie recommen-
dation. Previously, we have demonstrated our recommendation methods in the
movie domain [6,16], and therefore, this choice follows this line of work.

We have required two datasets: the 100K MovieLens dataset1 and the IMDB2

dataset. On the one hand, we need the MovieLens dataset because it includes
information about the ratings provided by the users to different movies. This
information was necessary to train the CBR system based on the latent factors
obtained by the matrix factorization. On the other hand, the IMDB dataset was
required in order to build the lattice and find the common attributes among
movies.

4.2 Experimental Setup

As we explained before, the main goal in our evaluation is to select explanations
that allow users to better understand a recommendation. Therefore, it is nec-
essary to conduct an online evaluation with real users. To do that, we decided
to make an online questionnaire. In most of the literature about explanations in
recommender systems, authors use this type of evaluation to test their propos-
als [15,26]. These evaluations are more reliable than offline evaluations, allow us
to reach a larger population, and are suitable instruments to measure dimensions
such as transparency or trust.

The questionnaire was designed to include five recommendations where users
can select multiple explanations (Fig. 3). These five recommendations were
selected, trying to represent heterogeneous use cases regarding the features of
the FCA lattice that the recommendation comes from. This way, we generated
two small lattices with a low number of nodes (less than 5), two regular lattices
(5 to 10 nodes), and a large lattice (more than 11 nodes) that is more unusual
but feasible.

For each recommendation, presented as a question, we showed the recom-
mended item and all the possible explanations obtained by our system from the
corresponding lattice. Explanations contain a set of explanatory items and a sen-
tence that describes the common attributes between them and the recommended
item. Therefore, there are as many explanations as to the possible combination
of nodes in the lattice that are superconcepts of the recommended item. More-
over, each explanation is presented through the enumeration of the attributes
included in the considered nodes.

1 https://grouplens.org/datasets/movielens/100k/.
2 https://www.imdb.com/.

https://grouplens.org/datasets/movielens/100k/
https://www.imdb.com/
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Fig. 3. Question 1 from the questionnaire filled in our user study.

For example, Fig. 3 presents different explanations for the recommended
movie: “E.T.”, obtained from the lattice we have already described in Fig. 2.
This way, users have to select which explanations help them to better under-
stand the recommendation. After distributing the online questionnaire, we col-
lected answers from 111 users and analyzed them according to five features:
depth of the top-level concept and closest concept (most specific ancestor); total
concepts included in the explanation; and the total number of attributes and
objects from these concepts that are shown to the user.

In the next section, we present the results obtained through this evaluation
and analyze them in order to find the best explanation strategy for our FCA-
based method.

4.3 Results

Results are graphically analyzed in Fig. 4. It is organized in three subfigures
corresponding to (a) small lattices, (b) regular lattices, and (c) large lattice and
legend. For each lattice, built for a particular recommendation, we include a
table on the right with the number of votes for each explanation, highlighting
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(a) Small lattices

(b) Regular lattices

(c) Large lattice and legend

Fig. 4. Spider charts analysing the features of the most voted explanatory examples
according to size the lattice: small (a), regular (b) and large (c). (Color figure online)

the three top-voted answers (top-1 blue, top-2 green, and top-3 orange). We
analyzed each one of these top-3 explanations in the corresponding spider chart
on the left according to the five features of the lattice (top, closest and total
nodes, number of attributes, and objects), where the line color represents the
number of votes obtained by the explanation.

These charts show interesting patterns that are later averaged in Fig. 5. For
the small lattices (Fig. 4.a), we can see an analogous structure for the top-1
(blue) explanations, whose average is presented in Fig. 5.a. They are explana-
tions with a large number of objects (explanatory items) but low values for the
other dimensions. As small lattices correlate to explanatory objects with com-
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(a) small lattices (b) regular lattices (c) all lattices

Fig. 5. Average common patterns found for small, regular and all lattices. (Color figure
online)

mon features, this a consistent result because it represents that users tend to
choose those explanations with similar examples.

However, the structure of the regular lattices (Fig. 4.b) follows a slightly
different pattern, where the top-1 explanations are biased to include more speci-
fic/closest concepts and a larger number of nodes. This pattern is averaged in
Fig. 5.b. Interpretation is clear and confirms our preliminary hypothesis: when
the explanatory items are more heterogeneous, users prefer explanations that
point out the common attributes captured by the most specific concepts.

Lattice in Fig. 4 also remarks on the preference for a high number of objects.
However, this is an extreme case with a large number of objects and attributes
it is not possible to obtain a clear correlation, and further evaluation is required,
as presented in Sect. 5.

Finally, we can observe a remarkable pattern that is repeated throughout the
5 cases. This pattern is followed by one of the top-3 explanations for each lattice
and is biased towards a large number of attributes and to include the top-level
concept. This pattern is averaged in Fig. 5.c and should be considered as an
explanation strategy “by default” that is a good option, although not optimal,
if the system could not infer the properties of the lattice.

In order to validate the conclusions drawn from the evaluation of the lattices,
we have conducted a complementary evaluation using linear regression analysis.
The goal is to estimate the relationship between the five lattice features that
describe each explanation and the votes that the explanation received from the
users. This way, the number of votes is the dependent variable, and the features
of the explanation are the independent variables whose relevance we want to esti-
mate. Results are shown in Fig. 6, where we can observe the relationship between
including very specific concepts in the explanation and the votes received from
the users. This result validates the hypothesis of this paper and our previous
analysis of the top-3 spider charts. Moreover, in the case of small lattices, the
linear regression analysis also validates our conclusion regarding the importance
of including a large number of explanatory items.
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Fig. 6. Results of the linear regression analysis that relates the features of the expla-
nations and the number of votes received from the users. X-axis represents negative
(left) or positive (right) correlation.

5 Conclusions and Future Work

Nowadays, recommender systems are one of the most useful tools on the Internet.
However, users do not trust the recommendations provided because they do not
know how the systems work. Explanations in recommender systems are necessary
to justify to users why an item is interesting for them. Therefore, the users’ trust
rises, and the recommendations become more effective.

In our previous works, we proposed two explanations approaches for black-
box recommender systems. In the first one [16], we proposed an explanation
system based on CBR that uses the latent factors from NMF as the knowledge
source. As a result, we get some retrieved items that we want to present to
the users as explanatory items. The problem in this solution is that we need
to increase the information we present within the explanatory items because
some of them could not be understood. In the second work [6], we describe a
general methodology that uses FCA to show different modes of explaining a
recommendation taking into account the shared properties between the items in
the lattice. The goal of the current work is to apply the methodology proposed
in [6] to solve the problem that we have encountered in [16]. As a consequence,
we want to support the explanatory items obtained from the CBR system using
the FCA methodology to make the explanation more understandable. However,
using the proposed FCA methodology, we can traverse the lattice variously. We
had two hypotheses to verify in the current work. Users prefer explanations with
the most specific attributes that we can get from the lattice (H1), and grouping
the explanatory items using these specific common features is effective (H2).
Therefore, we have conducted an online evaluation to know which are the most
successful strategies to generate the best explanations according to users’ opin-
ions.

Experimental evaluation shows that the strategy to travel the lattice and
generate the explanation depends on its features. For small lattices correspond-
ing to explanatory items with common features, users prefer explanations that
include many examples. However, in regular lattices where explanatory items are
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more heterogeneous, users prefer explanations based on the most specific par-
ent nodes. Additionally, the evaluation shows a common pattern for any kind of
lattice that is not optimal but good enough that can be considered as a default
strategy. This strategy is focused on presenting to the user a large number of
attributes from the most specific parent nodes.

As future work, further analysis of the correlation between the properties of
the lattices and the explanations chosen by users must be extended to include
more use cases. Mainly, we must focus on the analysis of large lattices that are
too heterogeneous to draw significant conclusions without an in-depth ad-hoc
evaluation. Additionally, we plan to explore other types of FCA-based explana-
tions such us the item-style and the dependency-style that are presented in this
paper.
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ysis. In: Krötzsch, M., Stepanova, D. (eds.) Reasoning Web. Explainable Artificial
Intelligence. LNCS, vol. 11810, pp. 153–195. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31423-1 5

12. Gedikli, F., Jannach, D., Ge, M.: How should i explain? a comparison of different
explanation types for recommender systems. Int. J. Hum. Comput. Stud. 72(4),
367–382 (2014)

https://doi.org/10.1007/978-3-319-29659-3_9
https://doi.org/10.1007/978-3-319-29659-3_9
https://doi.org/10.1007/978-3-030-29249-2_2
https://doi.org/10.1007/978-3-030-29249-2_3
https://doi.org/10.1007/3-540-44593-5_13
https://doi.org/10.1007/3-540-44593-5_13
https://doi.org/10.1007/978-3-030-31423-1_5
https://doi.org/10.1007/978-3-030-31423-1_5


A User-Centric Evaluation to Generate Case-Based Explanations 209

13. Gkika, S., Lekakos, G.: The persuasive role of explanations in recommender sys-
tems. In: 2nd International Workshop on Behavior Change Support Systems (BCSS
2014), vol. 1153, pp. 59–68 (2014)

14. Gunning, D., Aha, D.W.: DARPA’s explainable artificial intelligence program. AI
Magazine 40(2), 44–58 (2019)

15. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

16. Jorro-Aragoneses, J., Caro-Martinez, M., Recio-Garcia, J.A., Diaz-Agudo, B.,
Jimenez-Diaz, G.: Personalized case-based explanation of matrix factorization rec-
ommendations. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol.
11680, pp. 140–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29249-2 10

17. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state
of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.)
Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://
doi.org/10.1007/978-0-387-85820-3 3

18. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

19. Molnar, C.: Interpretable Machine Learning. Lulu. com (2019)
20. Muhammad, K.I., Lawlor, A., Smyth, B.: A Live-USER study of opinionated expla-

nations for recommender systems. In: Proceedings of the 21st International Con-
ference on Intelligent User Interfaces, pp. 256–260 (2016)

21. O’Donovan, J., Smyth, B.: Trust in recommender systems. In: Proceedings of the
10th International Conference on Intelligent User Interfaces, pp. 167–174 (2005)

22. Papadimitriou, A., Symeonidis, P., Manolopoulos, Y.: A generalized taxonomy of
explanations styles for traditional and social recommender systems. Data Min.
Knowl. Disc. 24(3), 555–583 (2012)

23. Pu, P., Chen, L.: Trust-inspiring explanation interfaces for recommender systems.
Knowledge-Based Systems 20(6), 542–556 (2007), Special Issue On Intelligent User
Interfaces

24. Quijano-Sanchez, L., Sauer, C., Recio-Garcia, J.A., Diaz-Agudo, B.: Make it per-
sonal: a social explanation system applied to group recommendations. Expert Syst.
Appl. 76, 36–48 (2017)

25. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering rec-
ommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive
Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72079-9 9

26. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook.
LNCS, pp. 257–297. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-
387-85820-3 8

27. Sharma, R., Ray, S.: Explanations in recommender systems: an overview. Int. J.
Bus. Inf. Syst. 23(2), 248–262 (2016)

28. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: MoviExplain: a recommender
system with explanations. In: RecSys 2009 - Proceedings of the 3rd ACM Confer-
ence on Recommender Systems, pp. 317–320 (2009)

29. Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In:
2007 IEEE 23rd International Conference on Data Engineering Workshop, pp.
801–810. IEEE (2007)

https://doi.org/10.1007/978-3-030-29249-2_10
https://doi.org/10.1007/978-3-030-29249-2_10
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8


210 J. L. Jorro-Aragoneses et al.

30. Wang, H., Fi, Q., Liu, L., Song, W.: A probabilistic rating prediction and expla-
nation inference model for recommender systems. China Commun. 13(2), 79–94
(2016)

31. Wang, X., He, X., Feng, F., Nie, L., Chua, T.S.: TEM: tree-enhanced embedding
model for explainable recommendation. In: Proceedings of the 2018 World Wide
Web Conference, pp. 1543–1552 (2018)

32. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models
for explainable recommendation based on phrase-level sentiment analysis. In: The
37th International ACM SIGIR 2014, pp. 83–92 (2014)



Technical Session: Deep learning



Improved and Visually Enhanced
Case-Based Retrieval of Room
Configurations for Assistance

in Architectural Design Education

Viktor Eisenstadt1,2(B), Christoph Langenhan3, Klaus-Dieter Althoff1,2,
and Andreas Dengel1

1 German Research Center for Artificial Intelligence (DFKI),
Trippstadter Strasse 122, 67663 Kaiserslautern, Germany

{viktor.eisenstadt,klaus-dieter.althoff,andreas.dengel}@dfki.de
2 Institute of Computer Science, University of Hildesheim,

Samelsonplatz 1, 31141 Hildesheim, Germany
3 Chair of Architectural Informatics, Technical University of Munich,

Arcisstrasse 21, 80333 Munich, Germany
langenhan@tum.de

Abstract. This paper presents a system for case-based retrieval of archi-
tectural designs in the form of graph-based room configurations by means
of applying a case preselection process using a convolutional neural net-
work and the subsequent graph and subgraph matching on the prese-
lected cases. An integral part of the system is its specific user interface
that visualizes the architectural concepts of the system in the way famil-
iar for the target user group. The goal of the system is to support higher
architectural education with digital assistance methods by providing a
tool that can be used to enhance early design phases. The evaluation
showed that the system outperforms its predecessor and is suitable for
use in education. The approach was developed in context of a bigger
framework, however, the research can be considered self-contained and
the methods transferred to the domains other than architecture.

Keywords: Case-based design · Convolutional neural network ·
Architecture · Room configuration · Education · Contextualization

1 Introduction

Architectural design process is a multi-faceted discipline that combines many
creative phases and iterative decision-making stages in order to create the archi-
tectural unit (e.g. a floor plan or 3D model) that satisfies the requirements of
the client or the teaching supervisor. Common to all kinds of the architectural
design process is that they usually start with an early conceptual design phase
during which the first design ideas are created and elaborated, for example in
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the form of pen-drawn sketches that represent differently layouted variations of
the architectural design that has to be detailed out in the later design phases.

Considering this early design phase essential for setting up the design direc-
tion, future space layout, and utilization of the building, many designers use past
design references from digital or printed collections to find inspiration or take a
look at how the current design variation is used in similar contexts. While every
architect is familiar with this process, as the search for similar references has
proven itself over the years as a robust tool in early as well as in later phases, it
is still an absolute exception that digital assistance methods are used to perform
this search replacing the currently usual method of manual search.

One of the reasons that using digital assistance tools is still not considered
a standard procedure for early design phases is their absence in higher architec-
tural education. Currently, the architecture students are taught to make use of
pen and paper for sketching their ideas and manually search for similar design
references in the digital or printed collections. A digital assistance tool, how-
ever, can speed up the search process providing methods for standardized dig-
ital sketching of architectural designs and contextualized search with semantic
parameters defined by the user and/or derived by the system through analysis
of the different design variations for which the references should be found.

In this work, we present a combined digital system for support and assistance
during the early design phases, aimed specifically at architects in academia, i.e.
architecture students, teaching personnel, and researchers from the domain of
computer-aided architectural design (CAAD). The system consists of a design
retrieval component, that is based on the artificial intelligence (AI) methods
convolutional neural networks (CNN) and case-based reasoning (CBR), and a
visual component in the form of a user interface (UI) that uses standardized
methods of architectural design description to digitally configure and modify a
room layout and display the retrieval results in the user-friendly way.

The goal of the research work behind the system is to help to establish AI-
based digital assistance as the method of choice for designing of initial versions of
floor plans among designers in academia and so help to prepare the students for
digitization of early conceptual phases in the industry. The future of architectural
design was already linked with the AI-based digitization [5]. The system is a
result of research for the CAAD+AI projects Metis-I and Metis-II 1 and is the
successor to the other design retrieval approaches of the projects.

2 Concepts and Foundations of the System

2.1 Artificial Intelligence Methods

Case-based reasoning is a methodology for analogy-driven search and adaptation
of a suitable solution for the given problem. CBR is known for its robustness
when dealing with feature-rich data. Data in CBR is organized in cases – knowl-
edge units that are kept in a case base. CBR-based systems mostly implement the

1 Funded by German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).
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4R CBR cycle [1] whose steps Retrieve, Reuse, Revise, and Retain are responsi-
ble for finding the most similar case, adapting its solution to the current problem
and recording the new case based on evaluation of the solution.

The ability to handle knowledge-intensive data organized in particular units,
makes CBR a logical choice for retrieval approaches for support of architec-
tural design, as the knowledge base of such approaches consists of structurized
architectural data entities, e.g. floor plans. Approaches, such as ARCHIE [21],
PRECEDENTS [16], CBArch [7], or VAT [14] can be named as some of the
essential representatives of this research direction. These approaches provided a
number of foundational concepts as well as insightful experimental paradigms.

In the Metis-I project, different approaches for case-based retrieval of floor
plans in the form of graphs or attribute-value-based cases, were developed and
evaluated with the target user group [3,18]. The combined retrieval + UI system
presented in this paper is the continuation of this CBR research direction in the
Metis-II project and the evolution of the systems named above.

Convolutional Neural Networks are the sub-type of artificial neural networks,
whose showcase application is image classification using machine learning (ML)
methods of image convolution on multiple layers. CNNs were already applied for
the architectural design and related domains as well [2,19].

2.2 Room Configuration

In the early design phases, architectural building designs are represented by
abstract floor plan sketches that contain the essential space layout information
only, for example, which types of rooms are available and how they are con-
nected to each other. Shapes of the planned rooms are available in very abstract
forms only (e.g. as simple rectangles or bubbles), room connections are usually
represented by dashes (number of dashes stands for the type of connection).
This type of representation is also known as room configuration or spatial con-
figuration and is one of the core concepts of the early conceptual phases. In
computational terms, room configuration is a graph and can be formalized using
Definition 1.

Definition 1. Room configuration is an undirected graph G = (R,C) where the
set of vertices R �= ∅ represents the rooms available in the floor plan, and the set
of edges C �= ∅ represents the connections between the rooms. Each room r ∈ R
possesses at least one connection c ∈ C to another room of the configuration.

For the definition above, a number of room types were defined during the
Metis-I project, some examples are LIVING, SLEEPING, WORKING, BATH, CORRIDOR,
or KITCHEN. To complement them, a number of connection types were defined
as well, e.g. DOOR, WALL, PASSAGE, or ENTRANCE. These types are based on the
established architectural space description language Space Syntax. In Fig. 1, an
example of a room configuration graph derived from an early sketch is shown.

Closely related to room configuration is the concept of semantic fingerprints
of architecture [12], a collection of graph-based patterns for representation of
semantic spatial features. Based on established topological concepts such as
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Accessibility or Adjacency of rooms, the fingerprints (FP) can be applied as
semantic search patterns during retrieval of floor plan references, acting as a
similarity measure template between the query and the reference.

Fig. 1. An example of a room configuration graph and ARZ assignment.

2.3 Architectural Room Zones

Another essential concept that is used throughout the system presented in this
paper is the paradigm of architectural room zones (ARZ) introduced as an exten-
sible taxonomy for housing architecture [13]. Each such zone represents a build-
ing functionality and contains a selection of room types typical for this zone.
Room types (see Sect. 2.2) were assigned to the zones, such that each room type
is in at least one and maximum three ARZs. In a spatial configuration, zones
can overlap, that is, each room can be part of multiple zones.

The ARZ taxonomy (see Table 1) was conceptualized for modern housing
development in Germany, however, it can be extended for use in other archi-
tectural disciplines and cultural contexts. Figure 1 shows an example of zone
assignment to the room types in the room configuration, including the overlap-
ping of zones.

While room configuration and semantic FPs are established foundations for
almost all approaches of the Metis projects, the concept of ARZs was never
implemented before and makes its debut in the system presented in this paper.

2.4 Zoned Connection Map

The room configuration data for use in CBR methods is usually represented
in the form of attribute-value-based cases. To extend the research range and
use the room configuration cases in hybrid ML+CBR methods and so make
them available for application in the modern machine learning frameworks, such
as Keras, it is required to represent them as numerical tensor data. Different
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Table 1. Architectural room zones with the corresponding room types.

ARZ name Description Room types

Wet zone Frequent contact to water KITCHEN, TOILET, BATH

Dry zone No frequent contact to
water

LIVING, SLEEPING, WORKING CORRIDOR,

CHILDREN

Living zone Social + free time
activities

LIVING, KITCHEN

Sleeping zone Rest + relax activities SLEEPING

Habitation zone Frequent human contact LIVING, SLEEPING, WORKING KITCHEN,
CHILDREN, EXTERIOR

Service zone Rare presence of humans CORRIDOR, TOILET, BATH STORAGE,
PARKING, BUILDINGSERVICES

methods were examined by us to convert the room configuration graphs into
tensors. In the end, a 2D-matrix-based data structure, the connection map (also:
ConnMap), was created. It is partially inspired by the concept of architectural
morphospaces [20] and related to the geometry-based connectivity maps [15].

A ConnMap is a modified adjacency matrix of the graph that replaces the
relation indicators and weights with specific numerical connection codes that
encode relations between the rooms available in the room configuration. Each
code provides information about which room types are connected to each other
and by which connection type. To each room and edge type, a specific number
was assigned. For example, the connection code 542 represents the room types
KITCHEN (5) and CORRIDOR (4) connected by a PASSAGE (2). The ConnMap data
is then converted to a grayscale image and can be used, for example, in CNNs.

The original version of the case-to-map conversion was already used in our
approach for ML+CBR-based evolution of room configurations [9]. However, the
crucial issue with this version is that the ConnMap data produced by it does
not allow for versatile use in ML methods as many connection codes repeat.

Therefore, to allow for manifoldly differentiable ConnMaps, it was decided to
include the ARZ data in the tensor, producing the Z-ConnMap (zoned connec-
tion map) that adds information about zones of the connected rooms to the code.
For example, the connection code 51422 represents the room types KITCHEN (5)
from the Wet zone (1) and CORRIDOR (4) from the Dry zone (2) connected by a
PASSAGE (2). In Fig. 2, an example of a zoned connection map can be seen.

3 Combined Retrieval + UI System

This section contains the detailed description of the combined retrieval + UI
approach for digital assistance during the early phases of architectural design.
The system is part of the digital assistance framework MetisCBR2, it is the
next version of the retrieval component of the framework. The crucial factor for

2 http://veisen.de/metiscbr.

http://veisen.de/metiscbr
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examination and implementation of methods for the next version were the results
of the user study [3] (referred further as the coordinator study), in which the
previous version of the retrieval component was evaluated against the rule-based
retrieval coordination system that uses graph matching to find similar references.
In the next sections, the components of the new retrieval + UI system will be
presented in detail describing their mode of operation and available features.
The complete graphical overview of the approach is shown in Fig. 2.

Fig. 2. Overview of the retrieval process of the combined system.

3.1 Data Augmentation

During the coordinator study as well as other evaluations of Metis-related
approaches, one of the main issues was the insufficient amount of room con-
figuration data. This precluded the systems from working with diversified ref-
erences and so increasing the inspiration space. In many search scenarios, the
same references were provided. Additionally, the quantitative performance tests
could not be performed on big datasets. That is, for the retrieval component of
the combined system, one of the foremost tasks was to examine and implement
methods for data augmentation of cases in the room configuration case base.

To solve this task, it was decided to apply the currently widely used app-
roach GAN (Generative Adversarial Nets) [11]. In combination with CBR, GAN
was already used for the previously mentioned design evolution approach and
showed good results for this task [9]. This approach consisted of three modules:
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application of the room-replacement-based merge of query configuration with
the feature-wise most similar case configurations (Generator module), decision
on how strong the merge should be (Classificator), and rating if the results of the
merge can be considered a real evolution of the configuration (Discriminator).

For data augmentation, the design evolution GAN was reworked and adapted
for the requirements of the combined system. While the evolution version used
the non-zoned connection maps for the conversion of room configurations and
training of the Discriminator CNN, the data augmentation approach makes use
of the Z-ConnMaps (see Sect. 2.4) to convert graphs and train the CNN and
decide if the produced design can be considered real. Additionally, the room
replacement method was reworked: the classification step was skipped so that the
merge level remained constant for all augmentations, and the room replacement
method was modified in the way that a room in the query could be replaced
with the room from case only if they are in the same ARZ (see Sect. 2.3).

We assumed that the modifications will allow for generation of a sufficiently
large and diverse but at the same time structurally close to the original dataset of
room configurations that can be used in the comprehensive system evaluations.

3.2 Context-Based Preselection of Cases

A paramount task for all retrieval systems is to provide the most relevant results
that satisfy the expectation of the user. Especially in our case, it is also important
to decrease the retrieval time as much as possible, because the graph-based cases
are known for the complexity of knowledge they contain. I.e. our search strategy
should return the most relevant case references in the least possible time.

In MetisCBR’s previous retrieval component a case preselection method
based on MAC/FAC [10] was used to select the most relevant references: for
each query floor plan, the system looked for a certain amount of the most similar
rooms and edges in the case base and then filtered out all non-paired floorplans,
i.e. those whose elements were represented only by one entity type (i.e. either
rooms or edges). The remained cases were considered relevant and ordered by
the room type distance measure building the final result set. While this preselec-
tion method worked quite fast for a small amount of cases, there were reasonable
doubts that it will take too long for a bigger amount (see Sect. 3.1).

To improve the selection of the most relevant cases, it was decided to use
the Z-ConnMaps of query and cases. Using a multi-label classifier in the form
of a specifically configured CNN, the system analyzes the query’s Z-ConnMap
and assigns labels to it, and then selects the cases from the case base that have
the same labels. It can be configured how many labels should match between
query and case to add the case to the set of relevant cases. The labels represent
different design contexts that correspond to structural, temporal or typological
properties of the room layout (see Table 2). The contexts were either defined
during the Metis-II project or represent the well-known architectural concepts.

In order to train the multi-label CNN on room configuration cases in the case
base, structural contexts are initially assigned to these cases using a histogram
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Table 2. Currently implemented design contexts.

Type Contexts Explanation ×
Structural SparseConnections

RoomTypeDominance
Number of edges < number of
rooms A room type dominates the
configuration

OR

Temporal PreDesign FullDesign Different states of the room
configuration during the early
design phases

XOR

Typological SocialHousing
StandaloneHousing
UnknownHousing

Housing category of the room
configuration

XOR

of the room configuration’s room types for the RoomTypeDominance context and
comparing the room and edge counts for SparseConnections.

However, for the more important temporal and typological contexts, no
heuristics could guarantee correct labels, except the labels are explicitly avail-
able in the meta data of the floor plan. If they are not available, these contexts
are assigned manually by a CAAD expert and/or MetisCBR system designer.

3.3 Graph Matching

After the cases were preselected using the Z-ConnMap-based contexting, the
search for similar room configurations continues with the actual similarity assess-
ment between the query and cases in the case base using graph matching (also
known as graph isomorphism). This method was selected as a superior one to
the distance-measure-based sorting of cases used in the previous retrieval com-
ponent (see Sect. 3.2), because it provides possibilities to match exact as well
as inexact and complete as well as partial (also known as subgraph) structures
between the graphs providing a wide range of reference recommendations.

In the combined retrieval system two different graph matching algorithms
are currently used: VF2 [8] and Color Refinement Isomorphism (CRI) [6]. VF2
showed the best performance in a previous evaluation [18] and was migrated
to MetisCBR with extension of its tasks (e.g. inexact subgraph matching was
added). CRI was tested afterwards as an alternative and showed a faster perfor-
mance on the important task of pure structure matching (without preselection, as
identical structures are very rare). The algorithms were assigned to the semantic
fingerprints (see Sect. 2.2) used in the system as shown in Table 3.

At this point it should be explained in detail what we mean with the term
‘inexact matching’. While exact matching matches the structure and semantic
data in the case exactly as provided in the query (i.e. room and edge semantics
as well as structure should be fully identical), the inexact type of matching
applies the so-called replacement rules if the structure could be matched exactly
but the semantics could not. In this case, room for room and connection for
connection in the matched structure, the system looks if the currently compared
rooms are in the same ARZ (see Sect. 2.3) and if the connections have certain



Improved and Visually Enhanced Case-Based Retrieval 221

type relationships. Such rooms and edges are considered interchangeable. The
ARZ-based replacement is the new inexact matching method, while the edge
replacement was already used in a similar manner in the coordinator study.

For example, LIVING and SLEEPING are interchangeable as both of them are
members of the habitation zone and the dry zone, while LIVING and BATH are not
interchangeable. DOOR and PASSAGE are interchangeable as both of them provide
an open connection to another room, while WALL is a closed connection and not
interchangeable with DOOR or PASSAGE. All rooms and edges in the case should
provide either exact or inexact match to be included in the final result set.

Table 3. Currently implemented graph matching methods and semantic FPs.

Sem. Fingerprint Algo. Matching types Features

Room Graph CRI Exact graphs w/o
preselection

Matches exact structure only
All semantics are ignored

Adjacency VF2 Exact and inexact
graphs and subgraphs

Semantics of edges are
ignored Matches rooms
semantics only

Accessibility VF2 Exact and inexact
graphs and subgraphs

Semantics of rooms are
ignored Matches edges
semantics only

Full Room Graph VF2 Exact and inexact
graphs and subgraphs

Matches rooms as well as
edges semantics

3.4 User Interface: RoomConf Editor

Richter [17] published a seminal work that examined CBR in architecture. While
Richter’s main conclusion was that for architects it is not native to use AI/CBR-
based digital assistance tools, our experience during the Metis projects suggests
that the missing link between the architects as user group and such systems
is the proper UI that visualizes relevant architectural concepts and knowledge
available in the room configuration cases in designer-friendly and intuitive way.

As a basis for this hypothesis, the coordinator study [3] revealed the improper
visualization of the results. Mainly, it was criticized that it was hardly possible to
examine similarity between query and result/case. According to the participants
of that study, this was a major issue, because architects, as the user group, are
interested in the effortless examination of similarity between the current design
and the reference. The participants suggested to implement a mapping view that
shows which rooms provide the highest similarity between query and result.

To provide a solution to the knowledge visualization problem, a specific UI
RoomConf Editor3 was developed for MetisCBR. The editor is the successor and
further development of the other UIs developed for the Metis projects, e.g. Metis-
WebUI [4]. In contrast to these other UIs, but also to the room layout editors
of the established architecture modeling software, an explicit goal of RoomConf
3 Source code and live version: https://github.com/cenetp/roomconf-editor.

https://github.com/cenetp/roomconf-editor
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Editor is not to mimic the sketching of a full floor plan (i.e. incl. geometry
or detailed light conditions). Instead, the editor was developed to digitize the
process of creation of an abstract spatial configuration using native digital user
interaction methods such as clicking and dragging and to be fully compatible to
MetisCBR (incl. its other functionalities such as design process autocompletion).

The user can quickly create a graph-based room configuration with a couple
of clicks using Add Room and Add Edge functions. Rooms and edges can be
edited after addition and enriched with type (see Sect. 2.2) and feature data
(area, label etc.). It is possible to send a request to MetisCBR for search for
similar references using the semantic FPs shown in Table 3. Before retrieval, the
user can select if the system should use all case graphs or just the Z-ConnMap-
preselected set and examine and manipulate zones to influence the Smallest
Degree Last Coloring algorithm-based initial ARZ analysis that delivers basis
for the Z-ConnMap (see Fig. 3 and Fig. 2). After receiving the results, similarity
between query and case can be examined using the mapping view (see Fig. 3).

Fig. 3. RoomConf Editor. Above: Pre-search zone modification window. Below: The
mapping between query (left) and case (right), where the room color codes indicate
matched rooms and the edge colors show the connection direction. The user can click
through different exact and inexact mappings. These are the mapping differences to
Metis-WebUI that used arrows for rooms and the per-FP visualization. In the back-
ground, the query and the search results can be seen. (Color figure online)



Improved and Visually Enhanced Case-Based Retrieval 223

4 Evaluation

To evaluate the combined retrieval system, a two-phase experiment was con-
ducted that should confirm that the retrieval process was indeed improved by
applying ARZs and zoned connection maps for context-based preselection in
combination with exact and inexact (sub)graph matching as well as with the
RoomConf Editor UI. It should also be revealed if the system can be used in the
architectural design education as assistance tool for the early design phases.

Both phases of the experiment were performed on 2852 room configuration
references in the case base, from which 250 were manually created ones and
the rest was generated using data augmentation (see Sect. 3.1). For the context-
based preselection of cases, the corresponding CNN was initially trained using
the Keras framework’s own data augmentator on the manual 250 cases to label
the generated cases, and then the second time on the labeled generated cases.

4.1 Quantitative Analysis

In the first phase of the evaluation, the automated comparative analysis should
reveal if the new system can outperform the old one in terms of performance on
a set of differently complex room configuration queries. 20 queries of different
complexity were used, the complexity value for each query was calculated as
|R| ∗ |C| (see Definition 1). Min. complexity value was 2 and max. was 56.

Preselection Results. First of all, we were interested if the new preselection
process is better than the previous one. The previous, CBR-based, process was
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set up to use 2900 elements for both rooms and edges (i.e. at least one room and
edge per case in order to ensure a chance for pairing for every floor plan). The new
preselection classifier CNN was configured with 3 Conv2D layers, 3 Dropouts,
and 2 MaxPoolings. Figure 4 shows the preselection evaluation results.

The results (see Fig. 4) showed that the CNN-based preselection clearly beats
the CBR-based. The new preselection method remained almost constantly under
0.3 s regardless of complexity, while the old one needed more than 2 s for the
majority of queries and its time increased with complexity (the times for the old
method would be even higher with a higher number of pairing candidates).

Graph Matching Results. Additionally to the preselection phase, we were
interested in how long the (sub)graph matching would take for the sets of relevant
cases produced by both preselection methods and how many graphs will be
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eventually matched. The time and matches were counted per semantic FP. As
for RoomGraph no preselection is used, only VF2-based FPs were evaluated.

The results (see Fig. 5) revealed that in this phase of the quantitative evalu-
ation, the new retrieval method showed the better performance as well. Regard-
ing graph matching times, searching for (sub)graphs in the sets produced by the
CNN-based preselection method required less time in a clear majority of queries.
Similar results were achieved regarding relation of preselected/matched graphs.

All things considered, the results achieved during the quantitative experiment
delivered multiple numerical evidences that the new retrieval component clearly
outperforms the old one and can be safely used for the subsequent user study.

4.2 User Study

In the second part of the evaluation, a user study at the Technical University
of Munich was conducted to collect feedback on potential of the new retrieval
system for use in early design phases education. Eight representatives of the
target group of the system, i.e. architects in academia, agreed to take part in
the study. Among them were graduates and undergraduates (for example, master
students with major in architecture), PhD candidates who work on their own
CAAD projects but also have teaching responsibilities, and the industry partners
that offer internship programs for students with CAAD-related research projects.

The participants were required to create a room configuration using the
RoomConf Editor UI, initiate search processes with the CNN-based preselec-
tion and zone modification for similar references using arbitrary semantic FPs,
and rate the relevance of the results using the similarity examination with the
mapping view (see Fig. 3). Afterwards they should tell if they would consider to
use the system for the education process of the early design phases.

The user study was performed as a free exploration session using the thinking
aloud method. That is, the participants explained comprehensively what they
do and why and how they feel about the user experience of the combined system.
We used this method to provide the closest possible setup to the real-world use.
For this part of the experiment, the manually created and validated results were
put before the data-augmented ones in the final result set in the user interface.

4.3 General Results

Regarding the general pre-search use of the system, all participants provided a
satisfactory feedback, RoomConf Editor was considered user-friendly, all visible
concepts, such as room configuration or room and edge attributes, were recog-
nized. An exception were the FPs, that were unknown to the industry partners.
The participants were explicitly not explained what the system does and had to
figure it out, all of them eventually found out the purpose of the system.

However, for improvement of the system’s user experience, the participants
made some suggestions. For example, it was suggested to implement multiple
weighted connections and set the bubble size in relation to the area of the room.
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The initial ARZ assignment by the system resulted in satisfactory feedback
as well, but some of the participants wished for more explanation on the ARZ
concept to the new users. Most of the participants also edited the zones to see
if they can influence the retrieval process and get other results.

The system managed to leave a good impression on the assignment of design
contexts as well. To evaluate this assignment, some participants tried to cre-
ate untypical, non-housing, room configurations. In some of such cases, the
system was irritated first, but then corrected itself when the room configura-
tion was slightly adapted. An example is the case where the floor plan was
on purpose designed as part of office building, was mistakenly classified as
StandaloneHousing first, but then correctly classified as UnknownHousing after
the zones were edited.

Likewise for the mapping view, the overall impression was good and the func-
tionality was perceived as user-friendly and worthwhile for the retrieval process.
Some users wished for functionality of a complete transfer of the result design
to the main design area in order to continue with it and not the own design.

The relevance of the delivered results was considered good as well, placing
the manually created and validated floor plans before the data-augmented ones
was considered a good decision. The data-augmented results were also the main
issue named by every participant: some of these results had structural problems,
e.g. the room that replaced the old one did not fit to the current position.

4.4 Feedback on Use in Education

To find out if the system has potential to be used in architectural design educa-
tion, the participants were explicitly asked if they would use it for their teaching
and learning activities. The answers can be seen, overall, as positive, ranging
from complete acceptance and wish to use the digital assistance tools in every-
day academia life (for example, to accomplish homework assignments), to more
moderate and critical reactions stating that the system needs to step-by-step fix
the issues named above first. None of the participants declined the use of the
system. Overall, it can be concluded that the combined system reached its goal.

5 Conclusion and Future Work

We presented and evaluated an AI-based digital assistance system developed for
architectural design education in the area of the early conceptual design phases.
A specific user interface is an inseparable part of the system and integrates deeply
into its concepts visualizing them for the user. The system uses convolutional
neural networks and graph matching to find similar references in a case base
of room configuration graphs. The system was evaluated with a quantitative
experiment and a user study. For the future, it is planned to use the feedback of
the user study to improve the system and evaluate it by professional architects.
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15. de Miguel, J., Villafañe, M.E., Pǐskorec, L., Sancho-Caparrini, F.: Deep form find-
ing using variational autoencoders for deep form finding of structural typologies.
In: eCAADe 37 / Sigradi 23, pp. 71–80. CumInCAD (2019)

https://doi.org/10.1007/978-3-319-47096-2_2
https://doi.org/10.1007/978-3-319-47096-2_2


228 V. Eisenstadt et al.

16. Oxman, R., Oxman, R.: Precedents: memory structure in design case libraries.
CAAD Fut. 93, 273–287 (1993)

17. Richter, K.: Augmenting Designers’ Memory: Case Based Reasoning in Architec-
ture. Logos Verlag Berlin GmbH (2011)

18. Sabri, Q.U., Bayer, J., Ayzenshtadt, V., Bukhari, S.S., Althoff, K.D., Dengel,
A.: Semantic pattern-based retrieval of architectural floor plans with case-based
and graph-based searching techniques and their evaluation and visualization. In:
ICPRAM 2017, February 24–26, Porto, Portugal (2017)

19. Silvestre, J., Ikeda, Y., Guéna, F.: Artificial imagination of architecture with deep
convolutional neural network. laissez-faire: loss of control in the esquisse phase. In:
CAADRIA 2016, pp. 881–890. The Association for Computer-Aided Architectural
Design Research in Asia (2016)

20. Steadman, P., Mitchell, L.J.: Architectural morphospace: mapping worlds of built
forms. Environ. Plan. 37(2), 197–220 (2010)

21. Pearce, M., Goel, A.K., Kolodner, I.L., Zimring, C., Sentosa, L., Billington, R.:
Case-based design support: a case study in architectural design. IEEE Expert 7(5),
14–20 (1992)



Using Siamese Graph Neural Networks
for Similarity-Based Retrieval in

Process-Oriented Case-Based Reasoning

Maximilian Hoffmann1(B) , Lukas Malburg1 , Patrick Klein1 ,
and Ralph Bergmann1,2

1 Business Information Systems II, University of Trier, 54296 Trier, Germany
{hoffmannm,malburgl,kleinp,bergmann}@uni-trier.de

2 German Research Center for Artificial Intelligence (DFKI),
Branch University of Trier, Behringstraße 21, 54296 Trier, Germany

ralph.bergmann@dfki.de

http://www.wi2.uni-trier.de

Abstract. Similarity-based retrieval of semantic graphs is widely used
in real-world scenarios, e. g., in the domain of business workflows. To
tackle the problem of complex and time-consuming graph similarity com-
putations during retrieval, the MAC/FAC approach is used in Process-
Oriented Case-Based Reasoning (POCBR), where similar graphs are
extracted from a preselected set of candidate graphs. These graphs result
from a similarity computation with a computationally inexpensive simi-
larity measure. The contribution of this paper is a novel similarity mea-
sure where vector space embeddings generated by two siamese Graph
Neural Networks (GNNs) are used to approximate the similarities of a
precise but therefore computationally complex graph similarity measure.
Our approach includes a specific encoding scheme for semantic graphs
that enables their usage in neural networks. The evaluation examines the
quality and performance of these models in preselecting retrieval candi-
dates and in approximating the ground-truth similarities of the graph
similarity measure for two workflow domains. The results show great
potential of the approach for being used in a MAC/FAC scenario, either
as a preselection model or as an approximation of the graph similarity
measure.

Keywords: Process-Oriented Case-Based Reasoning · MAC/FAC
Retrieval · Graph embeddings · Siamese Graph Neural Networks

1 Introduction

Nowadays, cases represented as semantic graphs are increasingly used in sev-
eral domains, e. g., as cooking recipes in the form of simple business workflows
[19], as scientific workflows to represent data mining tasks [28], or as argu-
ment graphs for case-based argumentation [14]. The problem-solving paradigm
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of Process-Oriented Case-Based Reasoning (POCBR) [3,16] focused on these
semantic graphs to represent workflows in scenarios of similarity-based retrieval
and reuse of procedural experiential knowledge. Especially in retrieval situations,
the main influencing factor on user experience is its runtime to retrieve useful
cases. However, due to the need for computing multiple pairwise semantic graph
similarities throughout a single retrieval, an increasing size and complexity of
the used graphs has a strong influence on the overall retrieval time, which in
turn results in slow and unresponsive applications for relatively large graphs.
The MAC/FAC (“Many are called, but few are chosen”) approach introduced
by Forbus et al. [9] can be used to counteract the previously mentioned problem
of slow retrieval times. To solve this, a two-phased retrieval is applied: The first
phase (MAC) utilizes a simplified and often knowledge-poor similarity measure
for a fast preselection of similar cases w. r. t. the query. The second phase (FAC)
then applies the computationally intensive graph-based similarity measure to
the results of the MAC phase. The strategy reveals the importance of a well-
chosen MAC similarity measure because the preselection of candidates must not
disregard highly similar workflows to maintain an appropriate retrieval quality.

Our previous work to design MAC similarity measures shifted the focus
from manually-modeled approaches [5] to approaches based on machine learning
techniques [13,18]. Recently, Klein et al. [13] embedded semantic graphs into a
low-dimensional vector space using the general-purpose unsupervised embedding
framework StarSpace [26]. In this approach, the graph similarity is determined
by applying a standard vector similarity measure on the generated graph embed-
dings. However, semantic annotations and the graph structure are not considered
at all, although this is indispensable in certain domains [14,28]. In this paper,
we continue to pursue the idea of automatically learned low-dimensional graph
representation vectors to speed-up retrieval. We investigate two novel siamese
Graph Neural Networks (GNNs) specifically tailored for graph structures intro-
duced by Li et al. [15], for generating more expressive graph embeddings. We
propose a generic approach to modify those GNNs to fully include semantic
annotations and the workflow structure into the embedding process.

In the following section, previous work on POCBR including representation of
semantic workflows, similarity assessment between these workflows, and different
MAC/FAC approaches is presented. Our concept for assessing the similarity
of semantic graphs with the help of GNNs is introduced in Sect. 3. Next, we
apply our developed concept to cooking recipes and evaluate it. Finally, Sect. 5
concludes the results and discusses future work.

2 Foundations and Previous Work

Research on Process-Oriented Case-Based Reasoning (POCBR) [3,16] deals with
the integration of CBR and Process-Aware Information Systems (PAISs) such
as workflow management systems [8]. For instance, the effectiveness of POCBR
has been demonstrated by Müller [19] for assisting workflow designers during
the task of workflow modeling with best-practice workflows from a case base.
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Thus, POCBR supports the development of workflows as an experience-based
activity [3,16]. Therefore, an appropriate case representation for workflows as
well as a similarity measure that assesses the suitability of a workflow w. r. t. a
new problem situation is important in POCBR.

2.1 Semantic Workflow Representation

For the representation of workflows, we use semantically annotated directed
graphs referred to as NEST graphs introduced by Bergmann and Gil [3]. More
specifically, a NEST graph is a quadruple W = (N,E, S, T ) that is composed
of a set of nodes N and a set of edges E ⊆ N × N . Each node and each edge
has a specific type from Ω that is indicated by the function T : N ∪ E →
Ω. Additionally, the function S : N ∪ E → Σ assigns a semantic description
from Σ (semantic metadata language, e. g., an ontology) to nodes and edges.
Whereas nodes and edges are used to build the structure of each workflow, types
and semantic descriptions are additionally used to model semantic information.
Hence, each node and each edge can have a semantic description.

To demonstrate the introduced representation and as part of the experimen-
tal evaluation, we use cooking recipes represented as workflows. Each workflow
consists of tasks that represent cooking steps and data nodes that represent
the ingredients that belong to the corresponding cooking steps. In the cooking
domain, the semantic metadata language is defined by taxonomic ontologies,
one for ingredients and one for cooking steps. Figure 1 shows a simple example
of a NEST graph that represents a cooking recipe for making a sandwich. The
cooking workflow contains two task nodes (coat and layer) as well as four data
nodes (mayo, baguette, sandwich dish, and gouda). Task nodes are connected
by control-flow edges that define the order in which tasks are executed. Further-
more, dataflow edges are used to connect task nodes with data nodes in order

mayo

coat layer

sandwich
dish

task node data node control-flow dataflow part-of

coat

Duration: 2 (Integer)

Auxiliaries: Spoon, Knife (List)
baguette

gouda

Sandwich
Recipe

workflow
node edge edge edge

Fig. 1. Exemplary Cooking Recipe represented as NEST Graph



232 M. Hoffmann et al.

to model that a task consumes inputs and produces outputs. For instance, the
dataflow edge between coat and layer indicates that baguette has an interaction
with the task coat and is consumed by the task layer. Semantic descriptions
of task nodes and data nodes are used to further specify semantic information
belonging to the workflow components in an attribute-value way. Figure 1 shows
an example of the semantic description of the task node coat. The provided
information is used to describe the task more precisely. In this case, a spoon and
a baguette knife is needed to execute the task (Auxiliaries) and the estimated
time that the task takes is two minutes (Duration).

2.2 Similarity Assessment

Determining the similarity between two NEST graphs, i. e., a query workflow
QW and a case workflow CW, requires a similarity measure that assesses the link
structure of nodes and edges as well as the semantic descriptions and types of
these components. Bergmann and Gil [3] propose a semantic similarity measure
that determines a similarity based on the local-global principle [21]. A global
similarity, i. e., the similarity between two graphs, is composed of local similari-
ties, i. e., the pairwise similarities of nodes and edges. The similarity between two
nodes with identical types is defined as the similarity of the semantic descrip-
tions of these nodes. The similarity between two edges with identical types does
not only consider the similarity of the semantic descriptions of the edges, but in
addition the similarity of the connected nodes as well. In order to put together a
global similarity by aggregating local similarities, the domain’s similarity model
has to define similarity measures for all components of the semantic descrip-
tion, i. e., simΣ : Σ × Σ → [0, 1]. The global similarity of the two workflows
sim(QW,CW) is finally calculated by finding an injective partial mapping m
that maximizes simm(QW,CW).

sim(QW,CW) = max {simm(QW,CW) | admissible mapping m} (1)

The process of finding the mapping that maximizes the global similarity between
a query QW and a single case CW is very complex due to the high number of
possible mappings and thus requires solving an optimization problem. Bergmann
and Gil [3] developed a parallelized version of the A∗ search algorithm that can
be used for finding a mapping solution by utilizing search heuristics and an
adjustable A∗ maximum queue size. The queue size defines the maximum number
of not expanded solutions to store and influences the trade-off between quality
of the mappings and time required for finding them, i. e., reducing the queue
size results in solutions with worse quality at a lower computation time and vice
versa. Only a queue of infinite length could deterministically find the optimal
solution. Even when using the A∗ search with a suitable heuristic, solving the
problem to find the best-possible mapping is still very complex w. r. t. time and
memory consumption (see [20] for more details). That mainly motivates this
paper.
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2.3 MAC/FAC Retrieval for POCBR

In contrast to Zeyen and Bergmann [27] who tackled the aforementioned prob-
lems by optimizing the A∗ search and its underlying heuristic, we used the
approach of a two-phase retrieval procedure, referred to as MAC/FAC [9], to
face long retrieval times [5,11,18]. It aims to decrease computation time by pre-
filtering the case base in order to reduce the number of cases that have to be
evaluated by an often computationally complex similarity measure. The major
difficulty with MAC/FAC retrieval in general is the definition of the filter con-
dition of the MAC stage, as it has a great impact on the overall retrieval quality
and performance.

Prior work of Bergmann and Stromer [5] addressed this issue by utilizing a
feature-based domain specific case representation of workflows and an appropri-
ately modeled similarity measure in the MAC stage. In order to avoid additional
modeling effort, Müller and Bergmann [18] developed a MAC/FAC approach
that uses a hierarchically partitioned cluster tree that can be traversed for find-
ing clusters with cases similar to the query. This algorithm shows acceptable
performance if the case base has a strong cluster structure. However, it has
not reached quality and retrieval speed of the feature-based MAC/FAC app-
roach. Our recent work [13] applied the general-purpose embedding framework
StarSpace [26] to POCBR. Therefore, the authors learned vector representations
in an unsupervised manner based on structural properties of workflow graphs,
e. g., relation between task, data, and workflow nodes. The resulting embed-
dings allow to efficiently compute the similarity between a given query and a
workflow from the case base by vector similarity measures, without any consid-
eration of knowledge-intensive manually-modeled similarity measures. The app-
roach achieves a nearly comparable performance to the feature-based MAC/FAC
retrieval w. r. t. retrieval time and quality. Since the embedding-based approach
does not adequately consider semantic descriptions or the graph structure that
are relevant for the semantic similarity assessment, we consider this weakness as
a starting point for improvements.

3 Similarity Learning for Workflow Graphs with Siamese
Graph Neural Networks

This section presents our approach for generating pairwise similarities of seman-
tic graphs by using neural networks. Since semantic labels of nodes and edges
contain valuable information for similarity assessment, it is necessary to provide
these semantics in combination with the workflow structure as input data for the
neural networks. To the best of our knowledge, the encoding of such semantic
information for learning graph similarities is a rather unexplored research area
(see [20] for an overview) also in POCBR. Consequently, we present our method
for encoding semantic graphs to be used as input data of neural networks (see
Sect. 3.1). Additionally, we show how this data can be used to determine graph
similarities with neural networks. Therefore, two graph neural networks devel-
oped by Li et al. [15] are adjusted in order to generate these similarities (see
Sect. 3.2) and to enable usage in retrieval scenarios (see Sect. 3.3).
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3.1 Encoding Semantic Graphs for Similarity Learning

Our encoding scheme for NEST graphs creates numeric vector space encodings
that can be fed into neural networks for similarity assessment. To the best of
our knowledge, encoding the semantic annotations of nodes and edges is often
not considered as a main aspect in papers that present novel neural network
structures (e. g., [2,15]) for processing graphs. However, for semantic graphs like
NEST graphs, the semantic annotations at nodes and edges reflect domain-
specific knowledge that has a great impact on the global similarity. Thus, it
is crucial that the encoding methods can transform this knowledge to vector
encodings. This leads to individually created encoding schemes for node and
edge types and their semantic annotations.

Encoding Node and Edge Types. Properly encoding node and edge types
is important because, during similarity assessment, only nodes and edges with
identical types are mapped (see Sect. 2.2). The types are encoded separately
for nodes and edges by one-hot encodings. One-hot encoding vectors encode
information in binary form by setting a single element as a 1 while all other vector
elements are set to 0. This way, a single one-hot encoding vector can only have
as many different value allocations as it has vector elements. For NEST graphs,
there are four different one-hot encodings of node types and edge types each (see
Fig. 2). The main advantage is that all encodings are clearly distinguishable by
a neural network that allows suitable processing of these vectors.

control-flow dataflow

part-of constraint

1 1

1 1

0 0 0000

0 0 0 0 0 0

task data

control-flow workflow

1

1 1

10 0 0 0 0 0

0 0 0 0 0 0

Fig. 2. One-Hot Encodings of Edge Types (left) and Node Types (right)

Encoding Semantic Descriptions. Encoding the semantic descriptions of
nodes and edges requires the transformation of several data types and complex
data relations. The data types that can be used inside of a semantic descrip-
tion are not specified in detail according to the NEST graph publication [3].
Referring to the ProCAKE framework1 [4] that fully supports NEST graphs, a
semantic description is composed of atomic data types and composite data types :
Atomic types comprise integer, double, boolean, string, void, and time and com-
posite data types consist of list, set, and attribute-value pairs. Each of these data
types requires an individual encoding approach in order to map the semantics
of the data to the encoding vectors as fully as possible. We implemented these
individual encoding algorithms but due to space restrictions in this paper, only
the general encoding approach of atomic and composite types is presented.
1 https://procake.uni-trier.de.

https://procake.uni-trier.de
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Each atomic type is encoded to a single encoding vector with length α that
is part of the vector space R

α. Thereby, these encoding vectors are made up of
two subvectors, where the first one encodes the atomic data type (e. g., string,
boolean, double) and the second one encodes the actual value to encode (e. g.,
“Hello World”, true, 1.0). The additional encoding of the used atomic data
type serves as further semantic information for the neural networks that pro-
cess the encoding vectors. By that, encodings of semantic description entries of
different types can be distinguished more easily although they are mapped to
a common vector space. Encoding composite types is not as straightforward as
encoding atomic types due to the complexity of semantic descriptions. The task
node coat from Fig. 1, for instance, is made up of composite attribute-value
pairs with three entries. The entry Duration is an atomic type and the entry
Auxiliaries is a list of atomic strings (composite type) that is nested inside
of the attribute-value pair. This arrangement of composite types nesting other
atomic or composite types can be visualized as a tree structure (see Fig. 3a).
Regarding the transformation of these semantic descriptions to numeric vectors,
this means that the encoding of a composite type aggregates the encodings of the
nested types. However, using tree-structured data in a neural network requires
the definition of complex layers and very special additional encoding schemes
(e. g., [22,24]). In order to simplify the tree structures to encode, each composite
type is redefined as a sequence of atomic types (see Fig. 3b). In case a composite
type contains another composite type (e. g., the tree structure in Fig. 3a), the
encoding sequences of parent type and child type are computed recursively and
put together to a single sequence. Converting tree structures to sequences is in
particular motivated by techniques that are used in natural language process-
ing (e. g., [7,23]), where a word or a sentence is often represented as a sequence
of encoding vectors. Similar to the previously mentioned approaches, we also
use Recurrent Neural Networks (RNNs) to process these sequences, which is
described in the next section.

Fig. 3. Tree and sequence arrangement of semantic description components
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3.2 Similarity Learning for Workflow Graphs

The neural networks that are used for graph retrieval are based on the Graph
Embedding Model (GEM) and the Graph Matching Network (GMN) introduced
by Li et al. [15]. In their work, they present two neural networks that are capable
of learning to assess the similarity of graphs. Both neural networks compute com-
pact vector representations of graphs that can be eventually compared using a
vector similarity measure. Thereby, the GEM is designed to enable a lightweight,
fast similarity assessment, whereas the GMN is optimized to learn more expres-
sive similarity patterns on the pairwise graph features. Both neural networks
feature three main components (see Fig. 4): the encoder, the propagation layer,
and the aggregator. We completely reuse the propagation layer of both networks
from the original implementation of Li et al.2 and adjusted the encoder and the
final graph similarity for our application scenario.

Fig. 4. GEM (left) and GMN (right) (based on [15])

The encoder transforms the raw graph input data into a first embedding of all
nodes and edges. The components that are embedded in this process cover the
semantic descriptions and types allocated to each node and edge (see Sect. 2).
These components are embedded independent of each other and concatenated
afterwards to a single embedding vector for each node and edge of the graph. This
way, separate neural network structures can be adequately trained to generate
suitable embeddings. Whereas the embeddings of the types are generated by using
separate feed-forward networks for node and edge types, the embedding procedure
of the semantic descriptions utilizes an RNN [7]. An RNN is specifically designed
to handle sequences of inputs as they are present in the encodings of semantic
descriptions. Please note that the influence of both parts of the embedding vector
can be controlled by manipulating the respective vector lengths.

2 https://github.com/deepmind/deepmind-research/tree/master/graph matching
networks.

https://github.com/deepmind/deepmind-research/tree/master/graph_matching_networks
https://github.com/deepmind/deepmind-research/tree/master/graph_matching_networks
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The propagation layer iteratively combines the node embeddings according
to the edge structure of the graph in order to capture information on the local
neighborhood in each node’s embedding. Therefore, an iterative process is used
that updates the node embeddings in multiple steps. In each step, the embed-
ding of a single node is updated by merging the node’s embedding with the
embeddings of nodes that are connected via an edge. This enables information
to be distributed by the node embeddings across the propagation steps. The
definition of a node’s neighborhood is the main difference of the propagation
approach present in GEM and GMN. As depicted in Fig. 4, the GEM only prop-
agates information within a single graph. This means that a node’s embedding
vector is updated according to all nodes that are connected via an edge that
only allows information flow within a single graph. In contrast, the GMN also
accumulates information across both graphs during the similarity assessment
by using an attention-based matching component. This enables information to
distribute between both graphs in an early state of similarity computation that
contributes to the increased expressiveness of GMN compared to GEM.

After iteratively propagating information within the graphs, the aggregator
merges the final node embeddings of all graph nodes to form an embedding for
the whole graph. The embeddings of each of the two graphs are then used to
determine a graph similarity value in [0, 1]. Therefore, we use cosine similarity
for the GEM and a feed-forward neural network layer for the GMN. Given two
graph embedding vectors, the cosine similarity is defined to be the dot product of
these two vectors, divided by the product of the Euclidian vector length of both
vectors. This leads to a computationally inexpensive way of generating the final
graph similarity value. The feed-forward neural network that is used to compute
the final similarity for the GMN can be trained in order to learn the characteris-
tics of the whole-graph embedding vectors resulting from the aggregator. Thus,
this process is more expressive than using a vector similarity measure, at the
expense of a higher computation effort.

The training procedure for both networks utilizes the gradient-descent-based
optimizer Adam [12] in a mini-batch setup. Each training graph pair from the
batch of training examples is labeled with the ground truth similarity value that
is determined using the semantic similarity measure sim introduced in Sect. 2.2.
This data is used to compute the Mean Squared Error (MSE) that serves as
a differentiable loss function. The MSE sums up all squared differences of the
similarity predicted by the neural network and the labeled similarity, and then
divides by the amount of all batched training examples to get the average devi-
ation.

3.3 Siamese GNN-Based Workflow Retrieval

In a workflow retrieval, the k-most similar cases CW are retrieved from the
case base CB, according to the similarity to a query workflow QW, i. e.,
sim(QW,CW). The neural networks can be integrated into this process as
the similarity measure for generating the pairwise graph similarities, i. e.,
fsim(QW,CW). Therefore, the query workflow and all cases from the case base
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have to be encoded to a numerical vector format first (see Sect. 3.1). After that,
an offline training session can be started that trains the neural networks GEM
and GMN for predicting the similarities of all cases from the case base. The
machine learning framework Tensorflow3 [1] is utilized for this purpose. Given
the encoded graphs and the trained neural networks, either GEM or GMN can be
used to determine the pairwise similarities for the query and all cases from the
case base, i. e., sim(QW,CW) is approximated by fsim(QW,CW). Eventually,
the retrieval result is finalized by putting together the k-most similar workflows
according to the similarity computed by the neural network.

4 Experimental Evaluation

To evaluate our approach, we measure performance and quality of GEM and
GMN in different retrieval scenarios. Thereby, both neural networks are com-
pared to the feature-based retriever by Bergmann and Stromer [5] (FBR), to
the latest embedding-based retriever by Klein et al. [13] (EBR), and to the
A∗-retriever by Bergmann and Gil [3] (A*R). We investigate the following
hypotheses in two experiments:

H1 Using GEM and GMN as a MAC retriever of a MAC/FAC retrieval leads
to better retrieval results than using EBR as MAC retriever.

H2 The GMN retriever is able to approximate the ground-truth graph
similarities better than A*R, using parameter settings such that the retrieval
time of both retrievers is comparable.

The first experiment examines the retrievers in a MAC/FAC setup, where the
focus is put on the suitability of GEM and GMN as a MAC similarity measure
(see H1). The second experiment examines to which degree the retrievers are
capable of approximating the ground-truth A∗-similarities (see H2).

4.1 Experimental Setup

In the evaluation, workflows representing cooking recipes [4] and workflows rep-
resenting Data Mining processes from RapidMiner4 [28] are examined, with a
training and a testing case base for each domain. The cooking workflows (CB-
I) are derived from 40 manually-modeled cooking recipes that are extended to
800 workflows by previously developed adaptation methods [19], resulting in 680
training cases and 120 testing cases. The workflows of the Data Mining domain
(CB-II) are built from sample processes that are delivered with RapidMiner,
resulting in 529 training cases and 80 testing cases. We build these different
case bases in order to investigate if our approach performs differently regarding
the complexity of the workflow domains. Therefore, we evaluate on the cook-
ing workflows with rather simple semantic descriptions and on the RapidMiner
workflows with more complex semantic descriptions.
3 https://tensorflow.org/.
4 https://rapidminer.com/.

https://tensorflow.org/
https://rapidminer.com/
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The metrics that are used to evaluate our approach cover performance and
quality. The performance is measured by taking the retrieval time in seconds.
The quality of the results to evaluate RLeval is measured by comparing them
to the ground-truth retrieval results RLtrue in terms of Mean Absolute Error
(MAE), correctness (see [6] for more details), and k-NN quality (see [13] and
[18] for more details). The MAE (ranged between 0 and 1) expresses the aver-
age similarity error between all pairs of query workflow and case workflow in
RLtrue and the same pairs in RLeval. The correctness (ranged between -1 and 1)
describes the conformity of the ranking positions of the workflow pairs in RLeval

according to RLtrue. Given two arbitrary workflow pairs WP1 = (QW,CW1) and
WP2 = (QW,CW2), the correctness is decreased if WP1 is ranked before WP2

in RLeval although WP2 is ranked before WP1 in RLtrue or vice versa. The k-NN
quality (ranged between 0 and 1) quantifies to which degree highly similar cases
according to RLtrue are present in RLeval. Therefore, the |RLeval| most-similar
cases from RLtrue are compared with RLeval. Each case from the most-similar
cases that is missing in RLeval decreases the quality, with highly relevant cases
affecting the quality stronger than less relevant cases.

All experiments are computed on a PC with an Intel i7 6700 CPU (4 cores, 8
threads) and an NVIDIA GTX 1080 GPU with 16 GB RAM, running Windows
10 64-bit. The retrievers (EBR, GEM, and GMN) that require an offline training
phase are trained with the two training case bases, resulting in two models per
retriever, i. e., one for each domain. The training time for GEM on both case
bases is approx. 12 h, for GMN approx. 18 h, and for EBR approx. 6 min. Each
retriever uses all processing cores of CPU or GPU for calculating the similarities.
A retrieval is always conducted with a query from the testing case base and with
the cases from the training case base. To produce meaningful performance and
quality values, the results of the retrieval runs of all query cases from a single
domain are averaged.

4.2 Experimental Results

The first experiment evaluates our neural networks as retrievers in a scenario
of MAC/FAC retrieval. Table 1 shows the results (k-NN quality and retrieval
time) as compared with FBR and EBR, since these two retrievers are specifi-
cally designed for MAC/FAC applications. For CB-I, FBR outperforms all other
retrievers w. r. t. quality for all combinations of FS and k. EBR and GMN have
quality values in a similar range, with both consistently outperforming the qual-
ity values of GEM.

When only considering the time, EBR and GEM clearly outperform all other
retrievers. For CB-II, the quality values of GMN outperform those of EBR and
are in a similar range as those of FBR. The quality values of GEM surpass those
of EBR with comparable retrieval times. The results show that the suitability
of GEM and GMN increases for retrieval situations with more complex seman-
tic descriptions of task and data nodes, as present in CB-II. The performance of
GEM and GMN for retrieving graphs from a rather simple domain, such as those
of CB-I, is respectable but does not lead to a replacement of current approaches
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Table 1. Evaluation results of MAC/FAC experiment

(EBR and FBR). Anyhow, the FBR with its manually-modeled similarity mea-
sure still performs best for both case bases, taking into account the combination
of quality and time. When only looking at the automatically-learned retrievers
in the results for CB-II, i. e., GEM, GMN, and EBR, GEM is the most suit-
able for a MAC/FAC scenario since it shows a good combination of very low
retrieval times and high quality values. Thus, H1 is partly confirmed due to dif-
ferent results for the two case bases. The results for CB-I do not confirm H1
since EBR outperforms GEM in terms of quality and even though GMN shows
better quality results than EBR, it has infeasible retrieval times for a MAC/FAC
setup. For CB-II, H1 can be clearly accepted due to higher quality values with
approximately equal retrieval times, when comparing GEM and EBR.

The second experiment examines to which degree GEM, GMN, EBR, and
FBR are able to approximate the ground-truth graph similarities. Since GMN
and GEM are evaluated as MAC retrievers in the first experiment, the second
experiment focuses more on the suitability as FAC retrievers by measuring the
prediction errors (see Table 2). Therefore, we compare all previously mentioned
retrievers to a variant of the A*R with an adjusted queue size (see Sect. 2.2) so
that the retrieval time of A*R is approx. equal to that of GMN. Aligning the
retrieval times of A*R and GMN enables a fair comparison of the resulting MAE
and correctness.

For CB-I, GMN has the lowest MAE and A*R has the highest correctness.
FBR achieves a high level of correctness but lags behind in terms of MAE.
When comparing the results of CB-I and CB-II, it becomes apparent that GMN
still has the lowest MAE and now also has the highest value of correctness.
This leads to the assumption that the suitability of GMN increases with more
complex cases. The reason for that might be the different levels of computational
complexity of both retrievers, i. e., exponential complexity for A*R and quadratic
complexity for GMN. GMN outperforming A*R in terms of MAE is even more
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Table 2. Evaluation results of A-Star approximation experiment

remarkable when considering that GMN learns to assess the similarity of graphs
without knowing the original algorithmic context, e. g., similarities of semantic
descriptions or node and edge mappings. Additionally, this experiment shows
that FBR and EBR are not suitable for generating similarities that are close
to the ground-truth similarities. The reason for this could be the inadequate
processing of semantic annotations and the workflow structure. Thus, we clearly
accept H2 for CB-II and partly accept this hypothesis for CB-I.

5 Conclusion and Future Work

This paper examines the potential of using two siamese GNNs in a retrieval
scenario in POCBR. Therefore, an encoding scheme is presented that covers the
workflow structure, the types of nodes and edges, and their semantic descrip-
tions. The encoded workflows are furthermore processed by two neural networks
GEM and GMN that are adjusted and optimized for being used in retrieval sce-
narios. The evaluation of both neural networks investigates how both approaches
perform in being used in a MAC/FAC setup and in approximating the ground-
truth similarities of the graph similarity measure. Compared to previous retriever
approaches, the results show great potential: GEM is suitable for a MAC/FAC
setup, due to its fast similarity computation and reasonable retrieval quality.
Furthermore, GMN shows great potential in approximating the ground-truth
graph similarities.

A focus of future research should be on optimizing the presented approach
of a GNN-based retrieval. This optimization ranges from aspects of parameter-
ization to adjustments of the data encoding scheme and the usage of different
neural network structures. The neural network structures could be optimized to
better process other graph domains, e. g., argument graphs [14], or even other
types of complex similarity measures [17]. Two more optimizations could be, for
instance, using a differentiable ranking loss function that optimizes according to
the ground-truth ordering of the retrieval results (e. g., [25]) or considering the
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relationships between different graphs from a case base during training (e. g.,
Neural Structured Learning5). Furthermore, the neural networks that are used
in this work are not capable of explaining the results they produce, i. e., black
boxes. In current research (also in the CBR community, e. g., [10]), this lack
of explainability is tackled in the context of Explainable Artificial Intelligence
(XAI). Future research should address this issue by investigating which methods
are suitable for increasing the explainability of the presented neural networks.

Acknowledgments. This work is funded by the German Research Foundation (DFG)
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Abstract. Case-based classification is normally based on similarity
between a query and class members in the case base. This paper pro-
poses a difference-based approach, class-to-class siamese network (C2C-
SN) classification, in which classification is based on learning patterns
of both similarity and difference between classes. A C2C-SN learns pat-
terns from one class Ci to another class Cj . The network can then be
used, given two cases, to determine whether their similarity and differ-
ence conform to the learned patterns. If they do, it provides evidence
for their belonging to the corresponding classes. We demonstrate the use
of C2C-SNs for classification, explanation, and prototypical case finding.
We demonstrate that C2C-SN classification can achieve good accuracy
for case pairs, with the benefit of one-shot learning inherited from siamese
networks.

Keywords: Case-based reasoning · Classification · Inter-class
pattern · Class-to-class · Difference measure · Prototypical cases ·
Siamese network · Similarity

1 Introduction

The success of neural networks in deep learning has underlined both their capa-
bilities and limitations. As they are applied in safety-critical task domains, such
as for autonomous and semi-autonomous vehicles, there has been much effort
to exploit their capabilities while providing explainability (e.g., [8]), as well as
interest in harnessing their capabilities while requiring fewer training examples.
This has prompted interest in the case-based reasoning (CBR) [16] community in
integrations of network methods with CBR (e.g., [10]). For example, case-based
reasoning, paired with a “black box” system, can provide explanations based on
similar cases [12].

Case-based classification is normally based on similarity between a query and
an already-classified case—not on the differences between the query and cases
from other classes. Interestingly, learning the difference between classes has been
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considered an essential part of human cognition [22]. For example, in counseling
psychology, both schizophrenia and delusional disorder are psychoses. To learn
to classify instances of the two illnesses, a counselor may put the cases of the two
classes side-by-side and focus on the differences: schizophrenia causes functional
impairment, while delusional disorder may not; furthermore, schizophrenia is
associate with hallucination, while delusional disorder may cause “non-bizarre”
delusions—that is, perceptions that might ordinarily occur.

Early research on case-based interpretation focused extensively on both simi-
larities and differences, through processes such as “compare and contrast” [1] and
the use of differences for indexing, to replace a retrieved case with a nearby alter-
native [2]. Automated classification methods for learning similarity have made
impressive progress, including the use of deep learning—in particular, applying
siamese networks [3]—to learn similarity [18,19]. However, such work generally
focuses on capturing similarity, with difference captured implicitly.

This paper presents an approach that uses inter-class patterns, the patterns of
similarity and difference between two classes, in case-based classification. Specifi-
cally, it applies a class-to-class (C2C) approach for learning to distinguish inputs
that belong to different classes, implemented with siamese networks, to create
what we call a class-to-class siamese network (C2C-SN). This work can be con-
sidered as a counter part of [19].

The proposed C2C-SN method is a knowledge-light approach that can make
and explain classification decisions using inter-class patterns. We demonstrate
that it can support classification tasks, one-shot learning, an enriched form of
explanation by cases, and prototype finding. For explanation, as in standard
case-based reasoning (CBR) systems, a system using C2C-SN can explain classi-
fications by retrieving a case similar to the query (“The patient Q has delusional
disorder because a similar patient A also has delusional disorder”). However, a
C2C-SN can also offer explanations for negative conclusions by providing a con-
trastive argument (“The patient Q does not have schizophrenia. Although both
Q and schizophrenia patient B have delusions, Q’s delusion is far less bizarre”).

The paper is organized as follows. First, we present background, briefly
describing the class-to-class approach to classification, siamese networks, and
explanation by presentation of cases. We next describe the C2C-SN approach
and an evaluation of its performance for classification and one-shot learning.
We then illustrate its value for providing explanations for classifications and for
generating prototypical cases, which can in turn be used for classification. We
close with conclusions and future directions.

2 Background

2.1 The Class-to-Class (C2C) Approach

The C2C approach is based on the assumption that there exist consistent simi-
larity and difference patterns between different classes. Such inter-class patterns
can be learned and reused for various purposes.
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The C2C approach was initially tested as a feature weighting method
(C2C weighting) for a k-nearest neighbors classification algorithm. In gen-
eral, the traditional weighting methods assume that similar cases share simi-
lar (non)important features [17,23]. C2C weighting adds another assumption:
that cases of different classes differ from each other, with respect to certain
features, in a consistent manner. Unlike traditional weighting methods, which
focus on finding the pattern of features within a class, C2C weighting aims to
learn the patterns between pairs of classes and to apply these patterns as an
additional information source for classification [24,25]. C2C weighting can be
used in classification, case retrieval, and explanation. However, C2C weighting
has limitations as well, such as poor classification accuracy when the inter-class
patterns involve hidden relations between features. The approach presented here
does not use C2C weighting.

2.2 Siamese Networks

Siamese networks (SN) were introduced in the 1990’s by Bromely et al. [3]. A
siamese network consists of a pair of identical networks, each receiving different
input vectors, but joined together at a distance measure layer, which outputs a
result value. The twin networks share the same weights and configuration and,
therefore, perform identical feature extraction on each of the two inputs. At
the distance layer, the distance between the extracted features is computed and
transformed to a value between 0 and 1 using a sigmoid function [4]. A siamese
network can be used for classification, similarity assessment, as well as feature
extraction in CBR [18,19].

In contrast to a neural network that learns to directly classify input cases into
classes, a siamese network learns a similarity function between cases. While a
neural network for classification needs many samples from every class, a siamese
network may even require only a single instance of a new class to achieve one-shot
learning ability [13].

An important benefit of siamese networks for learning from limited data is
that training is based on pairs of cases, rather than single cases [13]. If there are
n cases in a case base, a neural network for classification can train on n input
cases and their expected classifications, while a SN can train on n × n pairs
of input cases and their expected similarities (which, in the absence of other
information, can correspond to 0 if they belong to different classes and 1 if they
belong to the same class). When given a single case from a new class, a neural
network for classification can only train once for the new class, while a siamese
network can train on n+ 1 pairs of cases involving the new case, by pairing the
new case with n old cases and itself. This enables much more rapid training.

2.3 Explanation by Cases in CBR

From the early days of CBR, the ability to explain the outputs of CBR sys-
tems by presenting the cases on which they are based has been an important
benefit of case-based reasoning [14]. The value of such explanations has received
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experimental support [6]. A recent focus is explaining black-box systems such
as neural networks by “twinning” them with CBR systems [11]. In the twin
system, the artificial neural network (ANN) component is expected to produce
high-quality predictions while the CBR component provides explanations for
the ANN’s outputs. The explainability provided by the CBR system is post-
hoc, meaning that the CBR system provides explanation of the ANN’s output
after the ANN makes the prediction. Displaying the conclusion along with the
retrieved case is expected to boost the user’s confidence compared to simply
displaying the solution or displaying a rule used in finding the solution [6].

For explaining classifications based on cases, multiple approaches have been
advanced for providing convincing evidences. Doyle et al. [7] suggest that cases
between the query and the class boundary are more convincing support than the
nearest neighbor of the query. By using a metric based on explanation utility
rather than on similarity, their CBR system retrieves cases to best explain the
class prediction. To aid users of a design feasibility assessment system in assessing
the severity of design problems, Leake et al. [15] use bracketing cases (the most
similar cases and without the problem) to illustrate the limits of the problem.
Nugent et al. [20] illustrate an example of a fortiori arguments: A child pleading
to her parent to see the movie Harry Potter will use the example of a much
younger child who has seen the movie, instead of the example of a similar-age
child, based on the assumption that “the older you are, the more likely you are
allowed to see the movie.” The authors frame this in terms of the concept of
nearest unlike neighbor (NUN), the nearest neighbor of a different class. If the
difference between NUN and the query case is large, this contrastive evidence
suggests that the query is far from the class boundary and the prediction is thus
convincing.

3 Class-to-Class Siamese Networks

To combine C2C weighting with siamese networks for case-based classification,
we propose a new network approach, the class-to-class siamese network (C2C-
SN). The general structure of a C2C-SN is shown in Fig. 1. The network is
trained by pairs of cases to extract features that can be used to characterize a
pattern between two specific classes. The twin networks extract features from the
input cases. The difference between the extracted features is passed to a neural
network learning the inter-class pattern, which outputs a number between 0 and
1 indicating the extent to which the extracted feature difference matches with
the target pattern.

A premise of the approach is that, because the pattern between every pair
of classes is unique, so is the feature extraction procedure for this pattern. For
example, considering classifying psychotic diagnoses such as schizophrenia, delu-
sional disorder, and schizotypal personality disorder: The difference between
schizophrenia and delusional disorder may be focused on functional impairment;
while the difference between schizophrenia and schizotypal personality disorder
may be on delusions and illusions.
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case 1
Feature

Extraction extracted 1

case 2
Feature

Extraction extracted 2

twin networks sub(a,b) = a - b
Between-class

Pattern
Output in [0,1]

Fig. 1. The Structure of a C2C-SN

In the following, a C2C-SN learning the pattern from a class Ci to a class
Cj will be denoted as a Ci − Cj SN. When i = j, the corresponding siamese
network Ci − Ci SN learns the similarity pattern within the class Ci.

Each Ci −Cj SN can be trained by back propagation. The features of a pair
of cases (case1, case2) are the input. A pair of cases is a positive pair (with
output label 1) if the case1 is an element of Ci and case2 is an element of Cj .
All other pairs of cases are negative pairs (with output label 0). If there are m
classes, then there can be a family of up to m2 C2C-SNs as there are m2 pairs
of classes. If the inter-class patterns are symmetric, then the number of patterns
and networks is reduced by half.

3.1 Benefits of the C2C-SN Approach

A C2C-SN combines benefits from both the C2C approach and neural network
learning. The C2C approach enables explaining membership in a class Ci by the
fact that the input case is different from Cj cases in a way that existing Ci cases
are different from Cj cases, as shown in the C2C weighting [24]. In other words,
C2C-SN can offer a supportive/contrastive explanation by providing a case of
the same class or a different class.

The use of a siamese network provides several benefits beyond prior work on
the C2C approach: (1) Hidden Features and Relationships: Prior work on C2C
weighting assigns weightings to surface features to reflect inter-class patterns.
Use of the network in C2C-SN enables learning patterns in both surface features
and implicit features. (2) Flexible Patterns: A major flaw of C2C weighting is
that one weighting can only capture one pattern. If there exist multiple patterns
between two classes, multiple weightings are needed and training convergence
is more difficult. The ability of networks to represent rich concepts enables the
C2C-SN approach to capture complex relationships between two classes with
one network. (3) Difference Direction and Magnitude: C2C weighting learns the
direction of a inter-class pattern. In addition to the direction, C2C-SN also learns
the magnitude of an inter-class pattern. (4) Lastly, inherited from siamese net-
works, a C2C-SN has one-shot learning ability.
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3.2 Building a C2C-SN

Given a working SN for a task domain, a C2C-SN learning the Ci − Cj pattern
can be generated by converting the existing SN with following steps.

Assemble the network:

1. Reuse the upper layers of the network: If the SN performs well (as a clas-
sification tool or a similarity measure), then the upper layers are powerful
enough to extract hidden features for the task domain. The same configura-
tion (layers and connections) for the upper layers of the SN can be used in
a C2C-SN, however the trained weights and biases will be different.

2. Reconfigure the lower layers of the network: A SN’s lower layers are used
to calculate the distance between two extracted features, while a C2C-SN’s
lower layers are used to learn the pattern between the two extracted features.
Therefore the lower layers of the SN need to be replaced. Because the inter-
class pattern might be hidden, a dense network is recommended.

Train the network:

1. Assemble and relabel training/testing pairs: Collect pairs of cases for training
and testing. If the first case of the pair is of class Ci and the second case is
of class Cj , then the pair label is 1, otherwise 0.

2. Retrain: Train the network weightings using back-propagation.

4 Experiments

This section illustrates and tests the performance of a C2C-SN for classification,
one-shot learning, explanation, and prototypical case finding. Most experiments
were conducted on the MNIST dataset. The dataset contains 60,000 training
cases and 10,000 testing cases. Each case is a 28 × 28 image of a handwritten
numerical digit, with each digit considered a class, providing ten classes labeled
C0 through C9 for digits 0 through 9. Each digit appears in roughly the same
number of cases.

The standard SNs and C2C-SNs were trained and tested on pairs of cases.
Training pairs were assembled from the training set and testing pairs from the
testing set.

We modified an existing SN implementation for classification in MNIST [5] to
build C2C-SNs. In its original form, the upper layers first extract features from
two cases, and the lower layer is a distance layer that computes the Euclidean
distance between extracted feature vectors. The feature extraction layers are
optimized by contrastive loss. This SN is referred to as the standard SN.

We reused the same initial configuration for the upper layers because the
standard SN proved to be capable of extracting feature vectors for the classi-
fication task. The lower layers, however, are replaced with a subtraction layer,
calculating the element-wise difference between two hidden vectors, followed by
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Table 1. Pair accuracies for the MNIST dataset

i = 0 1 2 3 4 5 6 7 8

Ci − Ci SN 0.991 0.994 0.982 0.981 0.985 0.985 0.987 0.978 0.978

Ci − Ci+1 SN 0.992 0.987 0.982 0.981 0.984 0.985 0.980 0.978 0.969

four fully connected ReLU (rectified linear unit) layers of 128 nodes, and a final
output layer with a single node using sigmoid activation.

For a C2C-SN learning the Ci − Cj pattern, we assembled Ci − Cj pairs as
the positive examples (labeled 1), and Cx −Cy(x �= i or y �= j) pairs as negative
examples (labeled 0). Note that a Ci − Cy pair and a Cx − Cj pair are both
negative examples. Lastly, we retrained the network using contrastive loss [9].

4.1 Classification Accuracy of Pairs

Pair accuracy is defined as the percentage of correctly identified labels for pos-
itive and negative pairs. To illustrate the classification performance, we tested
the classification accuracies of multiple C2C-SNs. The Ci −Ci SNs illustrate the
capability of C2C-SNs that learn the similarity patterns within each class, while
the Ci − Ci+1 SNs illustrate the capability of C2C-SNs that learn inter-class
patterns.

For both training and testing, 5,000 positive and 5,000 negatives pairs were
used. For a Ci − Cj SN, all of the 5,000 positive pairs were Ci − Cj pairs. Of
negative pairs, 35% pairs were Ci − Cy pairs, 35% were Cx − Cj pairs, and the
remaining 30% were Cx − Cy pairs, where x �= i and y �= j. The breakdown of
negative pairs is intended to emphasize pairs that partially mismatch. Table 1
shows the performance of the best validation run chosen among 20 epochs.

In comparison, the original implementation of the standard SN (from which
we derived our C2C-SNs) achieved a pair accuracy of 97.2% after 20 epochs,
each epoch with 60,000 positive pairs and 60,000 negative pairs [5]. Note that
the meanings of accuracy are different for a standard SN and a C2C-SN, therefore
they are not directly comparable: (1) For the standard SN, a positive pair is a
pair of cases in the same class Ci, where i is unspecified (2) For a Ci − Cj SN,
a positive pair is of Ci − Cj , where i and j are determined.

4.2 One-Shot Learning

We tested the one-shot learning ability of C2C-SNs in comparison with SNs.
One-shot learning ability is the ability to learn when a minimum number of
training cases for a certain class are presented.

In this experiment, we restricted the number of C5 cases, n5, in the training
set, and compared the performance of the standard SN, the C5 − C5 SN, and
the C5 − C6 SN. The number of C5 training cases n5 is set to 1, 10, 100, and
1,000, for four different experiments.
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To ensure fairness and consistency in the comparison, each network was
trained with 1,000 positive pairs and 1,000 negative pairs. The pairs were differ-
ent for different networks. For the standard SN and the C5 − C5 SN: the posi-
tive pairs were 1,000 C5 − C5 pairs (which may include repeated pairs because
C5 cases are limited); the negative pairs were 350 C5 − Cj(j �= 5) pairs, 350
Ci − C5(i �= 5) pairs, and 300 Ci − Cj(i �= 5 and j �= 5) pairs. For the C5 − C6

SN: the positive pairs were 1,000 C5 − C6 pairs; the negative pairs were 350
C5 −Cj(j �= 6) pairs, 350 Ci −C6(i �= 5) pairs, and 300 Ci −Cj(i �= 5 and j �= 6)
pairs.

Additionally, the standard SN received 100 Ci −Ci training pairs for every i
except when i = 5. The extra training pairs were available only for the standard
SN but not for C2C-SNs, because the standard SN learns a distance measure
across all classes. We tested the performance of the standard SN with and with-
out the extra training pairs.

Number of Samples in C5
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cy
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0.8
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1 5 10 100 1000

standard SN standard SN (without bonus) C5-C5 SN C5-C6 SN

Fig. 2. The accuracies of networks under different one-shot learning constraint

After training, each SN was tested with 1,000 positive pairs and 1,000 nega-
tive pairs assembled from the testing dataset, in which the number of C5 cases
was not restricted. We recorded the highest validation accuracy across 20 epochs
of training and testing. The experiment was run 10 times and the average was
used as the final results. The results are shown in Fig. 2. We observe:

– The standard SN benefits strongly from the extra training pairs. A distance
measure trained for all classes rather than only for C5, giving additional data,
benefits performance on C5 as well. This contributes to the standard SN being
superior when a minimum number of C5 cases is available.

– The C5 −C6 SN performs better than the C5 −C5 SN. The positive examples
for the C5 − C5 SN are pairs of few C5 cases. Both sides of the C5 − C5

pairs have few cases and the knowledge available to exploit is minimal.
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On the other hand, the positive examples for the C5 − C6 SN are C5 − C6

pairs. While C5 cases are limited, C6 cases are abundant, leading to more
variety of training pairs and thus more knowledge to exploit.

– The C5 − C6 SN has the fastest accuracy growth throughout the multiple
experiments. As more C5 cases are available, the first case of C5 −C6 pairs is
no longer restricted to a single case, and the C5 −C6 pattern becomes easier
to learn. In Fig. 2, when n5 = 5 and n5 = 10, the C5−C6 SN achieves superior
accuracy, even in comparison to the standard SN with bonus training pairs.
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Fig. 3. The accuracy of C2C-SNs under different one-shot learning constraints. Dashed
lines are Ci − Ci SNs and solid lines are Ci − Ci+1 SNs

A second experiment was conducted using the same settings but for 10 Ci −
Ci SNs and 10 Ci −Ci+1 SNs where 0 ≤ i ≤ 9. The highest validation accuracy
across 10 training epochs was recorded for each SN. As shown in Fig. 3, Ci −Ci+1

SNs generally outperformed Ci −Ci SNs in one-shot learning settings, and they
eventually converged to similar accuracy when more cases were available.

4.3 Explanation by Cases

Here we illustrate the ability of C2C-SNs to support explanation. We start with
showing conventional CBR explanation (by presenting a similar case), followed
by explaining contrastively (by presenting a relevant different case from a non-
target class). Finally, we demonstrate its ability to find prototypical cases.

Explanation by a Similar Case in the Target Class: Given a query q, we
can pair it with Ci cases to form q − Ci pairs for each i, then apply a Ci − Ci

SN to the pairs. The highest activation achieved by a q − Ci pair indicates q
is of class Ci. The second case of the q − Ci pair is a similar case of class Ci,
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(a) (b) (c) 5 misclassi-
fied as 6

Fig. 4. The images of different 5s (top), and their paired cases (bottom) achieving
highest activation in Ci − Ci SNs

thus offering an explanation by a similar case in the target class. This follows
the usage standard SNs for classification.

Figure 4a and Fig. 4b show examples of explanation by a similar case.
Figure 4c shows a misclassification where a badly written digit 5 was misclassi-
fied as 6. In this experiment, when the activation threshold was lowered to 0.9,
there were 4,998 instances of digit 5s and 5,824 instances of digit 6s achieving
the activation threshold. This shows that although classification by C2C-SN is
not perfect, it has the potential to indicate the query case as an outlier which is
difficult to classify.

Note that the C5 − C5 pairs were not selected based on their similarity, but
based on the extent of which the pattern matches an average pattern between
two digit 5s. The second cases of C5 − C5 pairs in Fig. 4a and 4b were not
necessarily the most similar cases in terms of surface features.

Explanation by a Different Case in the Non-target Class: Given a query
q, for each i and j (i �= j), we can pair q with Cj cases to form q − Cj pairs,
and then use a Ci −Cj SN on the pairs. The highest activation of a Ci −Cj SN
achieved by a q − Cj pair suggests q is of class Ci. In this scenario, the second
case of the q − Cj pair is not a similar case, because it is of class Cj instead of
class Ci. Each q−Cj pair provides an explanation with a contrastive argument.

In this experiment, the top row of Fig. 5 shows the query q, a digit 5. The
bottom row of Fig. 5 shows the paired cases in digit 3s, 6s, and 8s achieving the
highest activation.

The second cases of the high-activation q − Cj pairs are often not the most
standard Cj cases, but rather the Cj cases that magnify the difference between
Ci and Cj when they are compared to the query q. For example: (1) In Fig. 5a,
the digit 3 has a large upper curve in the top right portion; (2) In Fig. 5b, the
digit 6 has no horizontal bar in the top portion and no sharp turn in the top
left portion; (3) In Fig. 5c, the digit 8 is large in the upper portion but small in
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(a) 5 classified
by 3

(b) 5 classified
by 6

(c) 5 classified
by 8

Fig. 5. The images of a single 5 (top), and its paired cases (bottom) achieving highest
activation in Ci − Cj SNs

(a) C5 − C6 (b) C5−C5 (c) C6−C6

Fig. 6. The most and least prototypical cases found from C2C-SNs. Top: prototypical
cases; middle: least prototypical cases; bottom: average of cases

the lower portion. These features are observable in Cj(j = 3, 6, 8) but not usual
in C5. These features are also not present in the specific digit 5 in the pairs.
Therefore the C5 − Cj pairs exemplify the C5 − Cj patterns.

4.4 Finding Prototypical Cases

A prototypical case is a case that best represents a class. Traditional machine
learning methods find a prototypical case by clustering algorithms that find the
center, or the average of cases of a class.

A Ci − Ci SN can find a prototypical case ai in Ci by finding the case with
the highest average score in all Ci − Ci pairs. A prototypical case of class Ci

thus represents the center of the intra-class pattern of class Ci. In addition, a
Ci − Cj SN can find a prototypical case bi in Ci by finding the case with the
highest average score in all Ci − Cj pairs. The prototypical case bi represents
the inter-class pattern of Ci − Cj , instead of the intra-class pattern of class Ci.
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A Ci − Cj SN can also be used to find the least prototypical case, the case
achieving the lowest average score in all Ci − Cj pairs.

Figure 6 illustrates the prototypical cases found in multiple C2C-SNs.
Figure 6a shows the most and the least prototypical 5s and 6s in the C5 − C6

pattern. Figure 6b and 6c show the most and least prototypical 5s and 6s respec-
tively in the C5 − C5 pattern and the C6 − C6 pattern. We observe:

– A prototypical case in a intra-class pattern is not necessarily close to the
average case, as shown in Fig. 6b and 6c.

– The least prototypical cases are outliers that do not conform to a C2C pattern.
In the C5 − C6 pattern, intuitively, a distinctive feature is the upper left of
the digit being a sharp bend (for digit 5s) or a curve (for digit 6s). Figure 6a
shows that the least prototypical 5 and 6 lack the corresponding features.

– The prototypical cases for the same class found from different C2C-SNs are
not necessarily alike, because they are representing prototypes in different
patterns. The same applies to the least prototypical cases.

To further illustrate the last point above, Fig. 7 shows the prototypical cases
in every class found from all C2C patterns. For reasons of efficiency, 1,000 sam-
ples from every class were used to assemble the case pairs. An entry on ith row
and jth column shows the prototypical Ci case in the Ci − Cj pattern. The
diagonals are intra-class prototypes while the rest are inter-class prototypes.

Fig. 7. The prototype matrix. A entry at (i, j) indicates the prototypical Ci case in
the Ci − Cj pattern

4.5 Using Prototypical Cases in Classification of a Case

A Ci − Cj SN has two prototypical cases, one for Ci and one for Cj . Instead of
pairing the query with each case, the CBR system can classify a query case by
pairing the query with prototypical cases of C2C-SNs and finding the highest
activation pairs.
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For reasons of efficiency, a prototypical case for Ci in the Ci − Cj pattern is
found among pairs made from n Ci cases and n Cj cases. When n = 300, the
number of pairs for training one C2C-SN is n2 = 90, 000. A query q is paired
with the prototypical Ci case of the Ci−Cj pattern, for every i and j. The Ci−q
pair with the highest activation is used for classification. The C2C-SN achieved
an accuracy of 92.6%.

Table 2. Pair accuracy for the fashion MNIST dataset

i = 0 1 2 3 4 5 6 7 8

Ci − Ci SN 0.931 0.976 0.894 0.954 0.895 0.958 0.839 0.979 0.975

Ci − Ci+1 SN 0.954 0.934 0.922 0.923 0.943 0.799 0.903 0.976 0.971

In Sect. 4.3, a digit 5 misclassified as a digit 6 is shown in Fig. 4c. This pair
actually achieved the highest activation possible, 1.0, in the C6 − C6 SN. Even
though the correct classification pairs achieved high scores, a certain misclas-
sification pair achieved the maximum score. To remediate this issue, instead of
finding the maximum activation pair, we changed the algorithm to have the pairs
vote, where each Ci − q pair for the Ci −Cj pattern with activation >0.5 counts
as one vote for the class Cj . This algorithm improved the accuracy to 94.23%.
In addition, 98.37% of the test cases’ true labels were within the top two votes.

Note that the classification accuracy for cases is different from the pair accu-
racy from Sect. 4.1. In comparison, the standard SN performing case classification
by finding the highest activation pair achieves an accuracy of 96.9%; A neural
network using the same structure of the upper layers of the C2C-SN and a final
classification layer achieved an accuracy of 98.31%.

Last, we note that we built C2C-SN on a simple SN implementation with
only dense layers. Preprocessing techniques such as deskewing, noise removal,
blurring, and other layers like convolutional layers and pooling layers may be
easily applied and could further improve performance. However, such refinements
are not the focus of this paper.

5 Additional Results and Future Directions

To assess the performances of the models on a second dataset, experiments were
conducted on the Fashion MNIST dataset, which contains images of 10 types of
clothing [21]. On this dataset the standard SN achieves pair accuracy of 91.6%
and case accuracy of 87.4%. The C2C-SNs pair accuracies are shown in Table 2.
Using prototype voting the C2C-SNs achieve case accuracy of 84.2%, and 95.0%
within top two votes.

The C2C-SN approach achieves good accuracy in the classification of pairs,
and offers a new perspective for explanations and prototypical cases. However,
its classification accuracy for cases does not equal existing techniques. It would
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be interesting to explore ensemble methods to unify all C2C-SNs for the purpose
of case classification.

One future direction concerns applying C2C-SNs for outlier detection. When
the C2C-SNs agree with each other, the prediction is of a single class. However,
when C2C-SNs disagree, the result is a set of votes for multiple classes. Such dis-
agreements may suggest outliers. Moreover, the votes may be used as attributes
to describe unseen classes for zero-shot learning.

6 Conclusion

Traditional classification methods focus on learning and reasoning from informa-
tion about the hidden patterns within a class, in the context of all classes, or rely
on similarities between individual cases. Similarity is a well studied topic, with
difference often simply defined as the complement of a similarity measure. How-
ever, differences between classes can be exploited in novel ways. This paper has
argued for the potential of learning about inter-class patterns for classification.
In service of this goal, it has shown how a standard siamese network design can
be converted into a C2C-SN, by replacing the lower layers and re-purposing the
network towards learning inter-class patterns. Experiments illustrated how the
C2C-SN approach provides a novel method for classification, one-shot learning,
explanation by contrastive cases, and finding prototypes.
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Abstract. The creation of believable characters is one of the most chal-
lenging problems in the interactive entertainment industry. Although
there are different tools available for designers and programmers to define
the behavior of non-player characters, it remains a complex and error
prone process that requires a high level of technical knowledge. Learning
from Demonstration is a promising field that studies how to build intel-
ligent agents that are able to replicate behaviors, learning from demon-
stration of human experts. This approach is interesting for developers
who do not have a computer science background, alleviating the need
of representing tasks and knowledge in a formal way. In this work we
present an online and case-based reasoning agent that learns how to imi-
tate real players of Pac-Man using an interactive approach in which both
the human player and the computational agent take turns controlling the
main character. In our previous work, the agent was in complete control
of the learning process so it decided when to give up or regain control of
the character. Now the system have been improved so the player can also
regain control of the character and go back in time to correct improper
behaviors manifested by the agent whenever they are detected. We also
present an evaluation of the system performed by three professional video
game designers, followed by the main insights we have gained.

Keywords: Interactive online learning · Learning from
Demonstration · Human behavior imitation · Interactive entertainment

1 Introduction

The creation of believable characters in video games is currently one of the most
challenging problems in the game industry. There is a widespread assumption
that the game experience generally improves when the non-player characters
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(NPCs) interact with the player in a more “human” way. These type of interac-
tions make the players perceive the game to be less predictable, more replayable,
and more challenging than when the bots are hand-coded [18]. For this reason,
player modeling in video games has been an increasingly important field of study,
not only for academics but for professional developers as well [22], and several
competitions on developing believable characters have emerged during the last
decade [6].

There are different tools available for game programmers and designers in
the game industry to define the behavior of NPCs1,2, and most of them are
based on two underlying technologies for decision-making: finite state machines
and behavior trees [1]. Although these tools are much more friendly nowadays
than they used to be and provide visual interfaces, the definition of complex
behaviors in different and changing scenarios is a difficult task. Unfortunately,
the creation of these behaviors remains a complex and error prone process that
requires a high level of technical knowledge and many hours of trial and error.

Learning from demonstration (LfD), on the other hand, studies the design of
agents that learn to behave and solve problems just from the imitation of human
experts. This approach is much more interesting for domain experts who do not
have a background in knowledge engineering, since it alleviates to a great extend
the need to represent problem solving knowledge in a formal representation. We
believe LfD might be an interesting and promising approach for game designers
to define the complex character behaviors required in modern video games.

Obviously, LfD also faces important challenges that must be solved before it
can be used in the game industry. For example, Machine Learning (ML) classical
techniques do not work well to learn behaviors from static datasets of games
traces because this setup violates the independent, identically distributed (i.i.d.)
data assumption of supervised learning, since the training data (states visited
by the players who train the agent) and test data (states reached by the agent
when it plays) does not come from the same distribution.

To overcome this kind of limitations, we presented an online case-based rea-
soning (CBR) agent that learned to imitate a human player to some extend using
an interactive approach in which both the human demonstrator and the CBR
agent took turns controlling the main character in a Pac-Man game [11]. This
intelligent agent was in complete control of the learning process and it decided
when to give up or regain control of the character.

In this work we improve our system so that the human expert can also regain
control of the character to correct improper behaviors of the CBR agent when-
ever they are detected. Note that this is an essential feature for game designers:
they must be able to overwrite or refine behaviors learned by the CBR agent
when they are not correct. Moreover, we have evaluated the system with three
professional video game designers and collected their impressions and thoughts
regarding the use of LfD to train video game characters.

1 Unity, https://unity.com.
2 Unreal Engine, https://www.unrealengine.com.

https://unity.com
https://www.unrealengine.com
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The rest of the paper is structured as follows: the next two sections sum-
marize the related work in the field and introduces the video game used in our
experiments. Section 4 describes our interactive and online CBR agent and how
the control changes between the human expert and the CBR agent. Next, Sects. 5
and 6 explain the evaluation with three game designers and discuss their impres-
sions and thoughts. Finally, we close the paper with some conclusions and future
lines of research.

2 Related Work

There are several works regarding the imitation of behavior in video games
in the scientific literature, for imitating human players and even other script-
driven characters. The behavior of an agent can be characterized by studying
its reactions to sequences of events over a period of time, but achieving that
involves a significant amount of effort and technical knowledge [21] in the best
case. ML techniques can be used to automate the problem of learning how to
play a video game either progressively using players’ game traces as input, in
direct imitation approaches, or using some form of optimization technique such
as Evolutionary Computation or Reinforcement Learning to develop a fitness
function that, for instance, “measures” the human likeness of an agent’s playing
style [19].

ML approaches like ANNs and Naive Bayes classifiers, have been used for
modeling human-like players in first-person shooter games by using sets of exam-
ples [5]. Other techniques based on indirect imitation like dynamic scripting and
Neuroevolution achieved better results in Super Mario Bros than direct imitation
techniques [12].

CBR has been used successfully for training RoboCup soccer players, observ-
ing the behavior of other players and using traces taken from the game, without
requiring much human intervention [4]. In this context, Floyd et al. [2] also
noted that when working in a setting with time constraints, it is very important
to study what characteristics of the cases really impact the precision of the sys-
tem and when it is better to increase the size of the case base while simplifying
the cases. Furthermore, they described how applying preprocessing techniques
to a case base can increase the performance of a CBR system by increasing the
diversity of the case base.

About how the case base is obtained, we follow a similar approach as the
described by Lam et al. [8], as the cases are generated in an automated manner
by recording traces of the player that will be imitated as pairs of scene state
(representation of the player’s point of view) and player’s outputs. Floyd and
Esfandiari [3] incorporated active learning with learning by observation studying
how to create sequences of problems to show to the expert. Finally, Lamontagne
et al. [9] also studied how the cases could be built from sequential traces during
game demonstrations in Pac-Man.

The problem of violating the i.i.d. assumption in LfD has been addressed
before with no regret algorithms in online learning settings, resulting in
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Fig. 1. A screenshot of the first maze of Ms. Pac-Man vs. Ghosts

algorithms like SMILe and DAgger proposed by Ross et al. [16,17] which out-
perform previous approaches like Searn [7] in the Super Tux Kart and Super
Mario Bros video games. However, these methods have limitations when the
demonstrator is a human player. Because of this, Packard and Ontañón pre-
sented SALT, which main idea is to let the learning agent play until it has
moved out of the space for which it has training data, giving the control to the
expert at this point to show the agent how to get back into this space, turning
the learning process into an i.i.d. task allowing the use of supervised learning
algorithms [13]. Further on, they extended this approach studying its efficiency
in environments where the amount of training data the learning agent is allowed
to request from the expert is limited [14]. These methods inspired the interactive
CBR system used in this work [11].

Finally, about the use of Pac-Man as test bed for imitation learning, it should
be noticed that, during decades, it has been considered a promising platform for
research due to its many characteristics that make it stand out from other games.
Thus, there have been nearly 100 different approaches covering a wide selection
of techniques used to develop controllers for Pac-Man or the ghosts, including
rule-based and finite state machines, tree search and Monte Carlo, evolutionary
algorithms, neural networks, neuro-evolution and reinforcement learning [15].

3 Ms. Pac-Man vs. Ghosts

Pac-Man is an arcade video game produced by Namco in 1980. In this game, the
player has direct control over Pac-Man (a small yellow character), pointing the
direction it will follow in each game step. The level is a simple maze full of white
pills, called Pac-Dots, that Pac-Man eats gaining points. There are four ghosts
with different behaviors trying to capture Pac-Man, causing it to lose one live.
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Pac-Man initially has three lives and the game ends when the player looses all of
them. In the maze there are also four special pills, bigger than the normal ones
and named Power Pellets or Energizers, which make the ghosts to be “edible”
during a short period of time. Every time Pac-Man eats one of the ghosts during
this period, the player is rewarded with several points.

Ms. Pac-Man vs Ghosts (see Fig. 1) is a new version of the classical video
game designed to develop bots to control both the protagonist and the ghosts.
This framework has been used in several academic competitions during the recent
years [15,20] to compare different AI techniques.

It is interesting to note that even a classic arcade game such as Pac-Man hides
a very high dimensional feature space that is a challenge for ML algorithms. The
full state representation of the game contains 256 different parameters and the
player can perform 5 possible actions at each game step (move left, right, up,
down or neutral). Typically, an averaged-skill human player needs between 1200
to 1800 game steps to complete one level of the game, so the trace of a game
contains thousand of state-action pairs.

4 An Online and Interactive CBR Agent

The CBR agent uses a case base in which each case is a pair (state, action) where
the state is an abstract representation of the real game state and the action is
the direction chosen by the player in that moment. The representation of the
state is based on a set of distances in each one of the 4 possible directions to the
closest Pac-Dot, Power Pellet and ghost, the time the nearest ghost will remain
edible in each direction, and the direction chosen by the player in the previous
game step. We compute the similarity between cases as the similarity between
states, and the states are compared using a linear combination of the similarities
between features. Finally, the similarities between features are computed using
the inverse of the euclidean distances [10]. Given the current game state, the
agent selects the action to execute using k Nearest Neighbor with k = 3.

The agent learns from the human player using an interactive approach in
which both the agent and the human demonstrator take turns controlling the
main character in Pac-Man [11]. In our previous work, the CBR agent was in
complete control of the learning process and it decided when to give up or regain
control of the character by following policies based on the similarities of the last
cases retrieved using a time window (i.e. considering the mean value and the
coefficient of the linear regression). The human demonstrator played for a while
until the game states were similar to the ones in the case base again, and then
the CBR agent regained control of the game. The intuitive idea is that when the
agent makes mistakes and reaches unknown areas of the state space, the human
demonstrator must teach the agent how to correct its mistakes and go back to
known scenarios. In order to avoid too many changes regarding who is in control
of Pac-Man, there are some minimum time intervals between control changes.
Finally, the CBR agent only learns new cases when the human demonstration is
playing the game.
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The new contribution of this work is that now the human demonstrator
can also interrupt the CBR agent and correct incorrect or strange behaviors
whenever they are detected. This way, game designers can teach to the agent
specific behaviors for specific situations or even to change the way the agent
plays towards a different style of playing. This interaction is different from the
previous one in which the game was paused a few seconds just to give time to the
human demonstrator to take control of the game. In this interaction, the human
demonstrator needs to be able to go back in time a few seconds to replay that
part of the game and teach the agent what to do. Note that we can only know
that the agent has made a mistake after the mistake is made, and in order to
correct it we might need to change some previous decisions that led to that error.
Currently, the human demonstrator can decide how many seconds to go back in
time interactively, watching the characters of the game undo their movements.

From the point of view of the CBR agent, there are basically two approaches
to correct a behavior: we can add new cases to the case base or delete old cases.
The first approach is preferred when the agent has learned a correct behavior for
some past situation but the current scenario is slightly different and requires a
different strategy. We are basically teaching more specific strategies to the agent
and refining its domain knowledge. However, we could also want to correct some
behavior that was learned because the human player made a mistake in some
previous game that the agent is replicating. In this situation we would like to
remove those cases from the case base. Unfortunately, from the perspective of
the human demonstrator is not easy to distinguish between these two situations.
Besides, removing those cases can lead to leave unreachable cases in the memory
of the agent or even to break more complex strategies. In our current approach,
we only add new cases when the human demonstrator takes control of the game.

5 Experimental Setup

We have performed an experiment with three professional game designers who
are used to define the behaviors of NPCs in different types of video games. Their
goal during the experiment was to create a Pac-Man agent with some specific
style of play using our system. It is important to remark that the goal was not
necessarily to train an agent for obtaining a high score but to play in some
specific way, described in a human way, so we expect the agent to make errors
as long as those errors are coherent with that style of play.

At the beginning of the experiment the game designers filled in a question-
naire regarding their skills as video game players and more specifically as Pac-
Man players, and their thoughts about the use of LfD techniques to define behav-
iors in video games.

Then each designer was asked to describe the type of agent they wanted to
create and, therefore, how they were going to play:

– Designer A wanted to create a fierce agent. His main goal was to maximize the
score eating several ghost in a row using the Power Pellets (each consecutive
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ghost eaten provides many more points than the previous one). In order to do
it, the player stays close to the Power Pellets waiting for the ghosts to come
close. This strategy can produce very high scores but it is also dangerous
because there are only 4 Power Pellets in the maze and the ghosts can corner
the player in different parts of the level. Ending the level is not a primary
goal for this player and he will only try to eat the Pac-Dots of the level when
there are no more Power Pellets available.

– Designer B wanted to create a conservative agent. His main goal was to
survive and complete the level. This player will try to eat the Pac-Dots unless
there are ghosts close in which case he will run away. This player will only
eat edible ghosts if they are on its way or very close but he will not chase
them through the maze.

– Designer C wanted to create a moderate agent. He will try to complete the
maze and maximize the score so he will combine eating Pac-Dots as fast as
possible with eating ghosts whenever possible.

Next, each player played 5 games using the style of play chosen. Each game
ends when the player finishes the maze by eating all the Pac-Dots and Power
Pellets, or when the player loses his 4 lives. We use these games to compute
some high level metrics to characterize their playing style. In addition, during
those games we also gather the traces to train an offline CBR system. We play
100 games with the offline CBR system to compute the same high level metrics.
Then we show 4 random games to the designer and ask him to answer some
questions about how well the agent is replicating his style of play.

In the second part of the experiment we use the interactive CBR agent
described in the previous section, but we do not allow the expert to correct
the agent (the designer only controls Pac-Man when the agent decides so). The
designer and the CBR agent take turns to control Pac-Man during 10 games.
Then we play 100 games with the interactive CBR agent to compute the same
high level metrics and show 4 random games to the designer to answer the same
questions regarding the imitation skills of the resulting agent.

In the third part of the experiment we use the last interactive CBR agent
and explain to the designer that he can correct unexpected behaviors stopping
the game at any time, go back in time, and replaying parts of the game. This
last part of the experiment ends when the designer is pleased with the behavior
of the agent or when he is bored to teach the agent. Then we evaluate the agent
in the same way, computing the high level metrics and showing 4 random games
to the designer.

Finally the experiment ends with a closing questionnaire to evaluate the
interactive online CBR system as a tool for building agents during a video game
development, including a free text section so that the designers can express their
conclusions and thoughts.

This way, we evaluate each one of the 3 agents using two different approaches:
(1) a phenomenological evaluation using a questionnaire with Likert scale ques-
tions, and (2) comparing some high level metrics automatically extracted from
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the game traces to characterize different ways to play the game. These metrics,
that are listed next, were detailed in previous works [10,11]:

Table 1. High level parameters obtained by the human designer A during his 5 com-
plete games and the CBR agent after the first (iCBR1) and second (iCBR2) stages of
the interactive CBR experiment (average values after 100 games).

HL param Player A (fierce) iCBR1 iCBR1 diff iCBR2 iCBR2 diff

Time 1, 846.43 1,264.85 31.50% 1, 486.37 19.50%

Score 7, 194.29 4,288.00 40.40% 4, 111.00 42.86%

Restlessness 1.25 0.96 23.42% 1.10 12.14%

Recklessness 42.71 49.52 13.75% 46.56 8.26%

Aggressiveness 9.43 5.69 39.65% 5.51 41.56%

Clumsiness 24.86 99.92 75.12% 28.48 12.72%

Survival 0.57 0 40.40% 0.02 96.50%

Craving 38.58 63.83 39.55% 42.25 8.67%

Hungry 641.10 451.63 29.55% 523.41 18.36%

– Time, duration of the game in game steps.
– Score, number of points gained at the end of the game.
– Restlessness, number of direction changes per second.
– Recklessness, average distance to the closest ghost.
– Aggressiveness, number of ghosts eaten.
– Clumsiness, number of game steps in which the player is stuck.
– Survival, number of lives left when the player completes the level.
– Craving, average time elapsed between a Power Pellet is eaten and the first

edible ghost is eaten.
– Hungry, average time between two eaten Power Pellets.

6 Results and Discussion

When analyzing the human games the desired style of play of each designer is
clearly represented on the high level parameters obtained. This can be seen on
the second column of Tables 1, 2 and 3. For example, designer A is the one who
obtained the highest scores but he has the lowest Survival value, which is just
what was expected as the designer’s main objective was to maximize the score
by eating ghosts, not paying attention in finishing the maze. Moreover he has
the highest Aggressiveness by far, lowest Recklessness and Craving and even the
highest Clumsiness as he is the player who spends more time in corners waiting
for the ghosts to come closer.

About the designer B playing style, is the one who faster ends the level
by eating all the Pac-Dots, he is also the one who spends less time waiting
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Table 2. High level parameters obtained by the human designer B during his 5 com-
plete games and the CBR agent after the first (iCBR1) and second (iCBR2) stages of
the interactive CBR experiment (average values after 100 games).

HL param Player B (conserv.) iCBR1 iCBR1 diff iCBR2 iCBR2 diff

Time 1, 152.20 1,163.80 1.00% 1, 245.78 7.51%

Score 3, 344.00 3,440.00 2.79% 3, 298.67 1.36%

Restlessness 1.17 0.98 16.34% 1.10 6.66%

Recklessness 49.75 54.49 8.72% 52.87 5.90%

Aggressiveness 3.80 4.38 13.24% 3.62 4.68%

Clumsiness 0.40 47.72 99.16% 8.76 95.43%

Survival 1.40 0 100.00% 1.09 22.22%

Craving 105.93 111.10 4.65% 119.81 11.58%

Hungry 428.17 418.68 2.22% 418.12 2.35%

Table 3. High level parameters obtained by the human designer C during his 5 com-
plete games and the CBR agent after the first (iCBR1) and second (iCBR2) stages of
the interactive CBR experiment (average values after 100 games).

HL param Player C (moderate) iCBR1 iCBR1 diff iCBR2 iCBR2 diff

Time 1, 287.57 1, 342.48 4.09% 1, 386.13 7.11%

Score 3, 561.43 4, 046.20 11.98% 3, 799.50 6.27%

Restlessness 1.09 1.00 8.14% 0.99 8.98%

Recklessness 47.14 47.72 1.22% 50.81 7.23%

Aggressiveness 3.71 5.00 25.71% 4.57 18.72%

Clumsiness 4.29 0.36 91.60% 3.90 9.00%

Survival 1.86 0.56 69.85% 0.10 94.62%

Craving 120.71 93.12 22.86% 96.99 19.65%

Hungry 464.04 421.84 9.09% 422.08 9.04%

(lowest Clumsiness value). On the order hand, designer C has some mixed values,
he takes a little longer to complete the maze but achieve a score slightly better
than B with similar number of ghost eaten, this is because designer C manages
to eat more ghosts in a row after eating a Power Pellet.

These tables also display the high level parameters obtained by the resulting
bots of the interactive CBR experiment. Column iCBR1 corresponds to 100 new
games of the agent after the second part of the experiment in which the bot and
the human player take turns. And column iCBR2 corresponds to 100 new games
at the end of the last part in which the designer can regain control of the game
at any moment and go back in time to correct specific mistakes of the bot.

Looking at the values obtained by the bot after each stage, we can see that
column iCBR2 displays, on average, better results. Although some measures
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Fig. 2. Evolution of the case base during the experiment and the average percentage
difference between the high level parameters obtained by the designer A and the ones
obtained by the CBR agent every game finished (on the left side) and every 100 extra
cases learned (on the right side). (Color figure online)

are slightly worse, the average difference between these parameters with the
ones obtained by the designer (first column) decreases. Revealing that the new
feature that gives the designers the ability to stop the bot at any time, go back
in time, and correct specific sections tested in the last part of the experiment,
seems to have an important impact by improving the results of the interactive
online CBR by adding a few new cases.

This is more clearly visible on Figs. 2, 3 and 4 where the red lines display
the evolution of the average percentage difference between the high level met-
rics obtained by the human designer in the 5 initial full games and the values
obtained by the CBR agent after each training game (labeled with the percent-
age values on the right y-axis). This figures also show the evolution of the case
base size throughout the experiment (displayed using blue bars and labeled with
the numbers of the left y-axis).

It is important to note that each graph is divided in two sides corresponding
to the second and the third part of the experiment. The left side corresponds
to the first stage of the interactive CBR experiment when the bot is tested
with the case base exported every game finished (x-axis is divided in complete
games). And the right side corresponds to the second stage of the interactive
CBR experiment in which the player can regain control at any time, where the
case base is exported and tested every 100 new cases (so in this side the x-axis
values increase every 100 new cases).

Looking at the evolution of the average difference (red lines), we have mixed
outcomes. As expected, Figs. 3 and 4 show how the resulting bots of the design-
ers B and C decrease their differences with the style of play of the designers
remaining almost constant throughout the experiments.
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On the other hand, this is not so evident in the experiment of designer A
(Fig. 2), where the average difference is quite fluctuating, undergoing noticeable
ups and downs. We think this is due to two different, but related, facts. Firstly,
the style of play of this designer (described in Sect. 5) is the one that entails
the greatest difficulty when playing and, consequently, to imitate. For example,
the action of waiting for the ghosts, stuck in a corner, close to a Power-Pellet,
and then, when ghost are close enough, eat the pill and go towards them seems
to be very difficult to generalize in cases, as this move can be planed in many
positions of the maze and involves many variables (e.g. having the four ghosts
very close and having a Power-Pellet close but in opposite direction). Secondly
the course of the experiment was quite irregular in terms of the evolution of
the player himself throughout the games, making a lot of mistakes and nonsense

Fig. 3. Evolution of the case base during the experiment and the average percentage
difference between the high level parameters obtained by the designer B and the ones
obtained by the CBR agent every game finished (on the left side) and every 100 extra
cases learned (on the right side). (Color figure online)

Table 4. Metrics taken during the last section of the experiment (interactive CBR
going back in time) of the three designers.

Metrics Player A Player B Player C

Number of corrections 38 58 42

Average bot steps per correction 266.61 407.21 325.05

Minimum bot steps per correction 16 19 15

Maximum bot steps per correction 2,061 3,274 1,362

Avg. game steps rewound per correction 38.03 21.29 19.05

Min game steps rewound per correction 15 7 7

Max game steps rewound per correction 62 70 59
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movements. However, as we will see in the designer evaluation, the resulting
bot was quite convincing (considering the irregularity of the evolution of the
experiment).

Focusing at the performance of the bots at the end of the experiment, and
comparing with the results after stage 1 of the interactive CBR experiment,
we can see that designer A (Fig. 2) achieve an improvement from 43.66% to
28.95% by adding 731 new cases (9.35% of the total), designer B (Fig. 3) advance
from 27.57% to 17.52% by adding 1166 new cases (16.57% of the total) and the
designer C (Fig. 4) decrease from 27.17% to 20.07% with 840 new cases (10.59%
of the total).

The actions of the experts during the third part of the experiment can be
seen on Table 4. Designer B is the one who made more corrections although he
let the bot play for longer periods of time. Designer A made fewer corrections
and, in average, took more time in realizing that the bot should be corrected (as
he has the highest value in game steps rewound per correction). On the other
hand, designer C seems to be the most agile in detecting errors in the bot.

Regarding the questionnaires answered by the experts before the experi-
ment (collected in Table 5), we can highlight some interesting ideas: they agree
in pointing that, during the development process of video games, the develop-
ment of intelligent agents represents an important amount of time. Although
they remind quite sceptical about the existence of LfD tools in real video game
development they believe that, if it existed, it would be a great help during the
development process. The three designers consider themselves expert video game
players (in general), and good Pac-Man players.

Fig. 4. Evolution of the case base during the experiment and the average percentage
difference between the high level parameters obtained by the designer C and the ones
obtained by the CBR agent every game finished (on the left side) and every 100 extra
cases learned (on the right side). (Color figure online)
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When evaluating the CBR agent after every step of the experiment, all the
experts point an improvement in the agent’s behavior, although they agree that
the bot is trying to imitate their movements since the first step (4 points), at
the question “the resulting bot plays as I though it should play” their score goes
from 2 at the end of the first step, to 4, an finally 4.66. There is also a clear
sense of progress throughout the experiment, marked at the end in the answers
to “The bot has improved during this part of the experiment comparing with the
previous one” with a score of 4.66, to “I think that the bot was really learning
from my gameplay” 4.66 after step two and three, and to “If this bot were the
final result of the system I would use it as a tool” 2.33 points after the first part,
4 after the second and 4.66 at the end.

The results of the questionnaire after the last stage (see Table 6) deliver other
positive results. The designers do not find the system tedious (2.3 points) and
they clearly see that the bot needs less expert intervention over time (4 points).

Finally, they all agree in pointing a promising evaluation of the system as a
tool: the questions “The Learning from Demonstration system is a good idea”
and “I find it easier to make a bot this way that programming its logic by
scripting” obtained 5 points each.

Some other comments point ideas to improve the system: “I would like to
be able to correct errors in the game made by me”, “I think there are still
some very specific situations that hasn’t arise during the experiment, so the bot
would probably confront wrongly”. Others point to specific characteristics of the
resulting bots: “There are some errors that make it clear that the player is not
a scripted bot”, “It nails the openings”.

Table 5. Results of the questionnaires after stage 1 and 2, questions are evaluated
using a Likert-type scale ranged from 1 to 5.
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Table 6. Results of the questionnaires at the end of the experiment, questions are
evaluated using a Likert-type scale ranged from 1 to 5.

7 Conclusions

During this work we have presented an experiment to test an interactive and
online case-based reasoning system firstly introduced in [11] in which a bot using
CBR gives control to a human player when it reaches unknown game states.
There are some new improvements in the system like the feature of giving the
human player full control to take control whenever a wrong action by the bot
is detected, and go back in time to that specific moment and correct it. During
the experiment, three different video games designers play a Pac-Man game in
order to teach a bot to play with a specific style.

The results show that the system allows human designers to create virtual
players with distinctly behaviors, that are capable, to some extend, to imitate
the style of play of human experts without needing large amounts of training
data.

Compared to previous approaches [10,11] the resulting bots are capable of
achieving a better level of imitation when the experts are able to correct specific
errors adding a few more cases into the case base.

Furthermore, the phenomenological evaluation given by the video game
designers during the experiments allow us to be reasonably optimistic regarding
the use of the system as a tool for building NPCs, moreover considering that this
was the first time the system was expose to these video game designers. However,
the resulting bots are not perfect and there is still room for improvement.

As part of the future work we would like to address the problem of deleting
specific cases from the case base to forget wrong behaviors, and better under-
stand the impact of those deletions, as during the experiment we saw that
unwanted errors during the training produce behaviors in the bot from which
it is very difficult to recover. Furthermore, we would like to explore the idea of
using our interactive approach to modify a collection of standard behaviors and
adapt them, instead of training a new agent from scratch. We think that having
such a library of behaviours could help game designers to test their ideas faster.
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Finally, we would like to improve our system from the perspective of the user
experience. Designer tools need to provide a powerful and intuitive interface so
that users can focus on the creative problems and test different solutions fast.
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13. Packard, B., Ontañón, S.: Policies for active learning from demonstration. In: 2017
AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, March
27–29, 2017 (2017)
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Abstract. Automated generation of human readable text from struc-
tured information is challenging because grammatical rules are complex
making good quality outputs difficult to achieve. Textual Case-Based
Reasoning provides one approach in which the text from previously
solved examples with similar inputs is reused as a template solution
to generate text for the current problem. Natural Language Generation
also poses a challenge when evaluating the quality of the text generated
due to the high cost of human labelling and the variety in potential good
quality solutions. In this paper, we propose two case-based approaches
for reusing text to automatically generate an obituary from a set of
input attribute-value pairs. The case-base is acquired by crawling and
then tagging existing solutions published on the web to create cases as
problem-solution pairs. We evaluate the quality of the text generation
system with a novel unsupervised case alignment metric using normalised
discounted cumulative gain which is compared to a supervised approach
and human evaluation. Initial results show that our proposed evalua-
tion measure is effective and correlates well with average attribute error
evaluation which is a crude surrogate to human feedback. The system
is being deployed in a real-world application with a startup company in
Aberdeen to produce automated obituaries.

Keywords: Natural Language Generation · Textual Case-Based
Reasoning · Text evaluation

1 Introduction

Text generation from structured information is a common requirement for prob-
lem solving in variety of tasks and domains, such as compiling incident reports,
writing customer reviews, and presenting weather forecasts [4,9,12]. These use-
case examples typically have a common problem representation in that the gener-
ated text is the combination of the structured data (a set of pre-defined attribute
values) and textual content, required to improve human readability. In this paper

c© Springer Nature Switzerland AG 2020
I. Watson and R. Weber (Eds.): ICCBR 2020, LNAI 12311, pp. 279–294, 2020.
https://doi.org/10.1007/978-3-030-58342-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58342-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-58342-2_18


280 A. Upadhyay et al.

we address a similar task in which a text generation system is required to auto-
matically generate an obituary based on information about the deceased’s life.
The information typically includes: personal details; relationships, such as next-
to-kin, spouse, children, friends; and details about funeral arrangements for the
funeral or memorial.

The effectiveness of text generation system depend on the quality of the text
produced, in terms of accuracy and readability, as well as the diversity of texts
generated from the system. One approach is to use a standard abstract template
with all the pre-defined attributes available as slots to be filled. But having a
single template for every problem are difficult to construct for complex scenar-
ios and result in very repetitive text outputs. Textual Case Based Reasoning
(TCBR) gives an opportunity to develop dynamic templates with diverse text
by re-using previous experiences.

In general, a TCBR system has a case-base containing information about
previous experiences as its central knowledge source, which is used together
with other key knowledge sources: the case representation and similarity knowl-
edge [14]. In combination these knowledge sources enable the retrieval of similar
cases from the case-base, providing a mechanism to re-use knowledge captured
in previous examples to solve a new problem. Thus TCBR, as with CBR more
generally, relies on the basic principle that “similar problems have similar solu-
tions” [1]. Supervised Machine Learning approaches take advantage of this prin-
ciple to learn more tailored representation or retrieval knowledge in order to
improve some evaluation metric e.g. accuracy. However, in TCBR learning from
labelled solutions is difficult because each solution tends to be unique and so
simple feedback metrics are not so easily available to either refine or evaluate
developing systems. We introduce a novel approach to evaluation that measures
the extent to which similar problems have similar solutions by investigating the
alignment between local neighbourhoods in the problem and solution space. This
approach reduces the requirement for human evaluations.

In this work we generate a case-base by crawling the web to extract obituar-
ies from Funeral Notices websites1. The information extracted from the website
is plain text and needs pre-processing for building the case-base. In particular
generating a structured representation in a knowledge rich manner. By manually
analysing the processed obituaries, relevant attributes are identified to provide
alternative representations for the problem component of the cases. An unsu-
pervised evaluation technique is developed to evaluate the alternatives.

The main contributions of the work are as follows:

1. developing a real world system based on a TCBR approach for automatically
generating obituaries which is being deployed by a start-up company;

2. a novel technique for evaluation of text generation with TCBR employing a
case alignment approach using normalised discounted cumulative gain; and

3. demonstrating the effectiveness of the approach with experiments and com-
parison of results with other baselines and an average attribute error as a
crude surrogate to human feedback.

1 https://funeral-notices.co.uk/.

https://funeral-notices.co.uk/
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The rest of the paper is organised as follows. The problem domain is dis-
cussed in more detail in Sect. 2 before relevant related works are highlighted
in the Sect. 3. The proposed case-based methodology for generation of textual
obituaries identifies our alternative approaches to representation and similar-
ity measuring in Sect. 4. The experimental design is discussed in Sect. 5, where
we also introduce our novel evaluation method. In the Sect. 6, we discuss the
results obtained from our experiments, before concluding the paper and looking
at future works in Sect. 7.

2 Obituary Generation

An obituary is a written announcement of someone’s death which is traditionally
published in a local newspaper to inform the wider community about the death.
It generally outlines the life and personality of the deceased person and provides
the details of the funeral arrangements and memorials. In the growing digital
era, people are tending towards using digital website to publish the obituaries
instead of local newspapers to expand the audience from a local community to
the wider world on the internet.

There are approximately 57,000 deaths in Scotland each year, of these two
sites are providing obituaries notices currently. The main site captures only 10%
of all death notices. There is an opportunity to improve the service provided and
to integrate the latest AI technologies to support Funeral Directors to help the
next of kin with the creation of digital public obituary notices.

Our commercial partner is in the process of providing a publication platform
for obituary generation that focuses on supporting a sympathetic acknowledge-
ment of the recently departed as a digitisation of the traditional print obituaries.
In this paper, we investigated utilising a TCBR approach to generate dynamic
and individual obituaries that help the next of kin prepare their tribute. The
aim is to achieve a two-minute publication timeline, through an intuitive form
that will lead to the generation of five bespoke obituary options, the undertaker
and family can select the appropriate option with the ability to edit as required.
New solutions generated on the system can be retained to increase the case-base
size and diversity of solutions available.

A large number (around 100k) of obituaries, dating back to the year 2000,
have been crawled and extracted from the web. As initial pre-processing, 30k
obituaries created after 2015 are selected and out of these, the top 1000 notices
based on those with higher word count is selected. After analysing this data an
obituary can be divided into at least three distinct components: the personal
information component; the relationships component; and funeral component.

1. Personal Information: this component gives the personal details of the
deceased person, e.g. name, age, date and place of death, and cause of death.
It can also include the information about the person’s home town or previous
working places, as well their hobbies.
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2. Relations: this component presents the relatives’ details, e.g., spouse, chil-
dren, grand children, or in-laws. This component may also contain an emo-
tional message about the family & friends and how the person is going to be
missed by all who knew them.

3. Funeral: this component provides the details of funeral arrangements and
will typically have the date, time and place for the memorial service. The
component will also provide the information about the delivery of flowers and
the potential guest list. For example, flowers may only be welcome from family
members but all the friends and relatives are welcome to join at the memorial
service. Options for donations and charity name can also be provided in this
section in the lieu of flowers.

The main task for this project is to generate five diverse textual messages
(obituary) based on the features given by the user. A simple message can be
generated using an abstract template but then there will be no diversity in the
generations and all the obituaries will become monotonous. The challenge is to
generate human readable natural text which includes (almost) every feature to
the generation and is diverse in nature as well.

3 Related Works

Automated generation of human readable text from structured data has been
studied in various domains [6,9,13]. The studies mainly focus on the difficulties
of mapping unstructured text from previous experience to a structured repre-
sentation, measuring semantic or synaptic similarity for the retrieval & reuse of
previous cases and automated evaluation of the generated text.

3.1 Text Generation

In [2], the author proposed a CBR system to generate weather forecast texts
using examples from previous cases with similar weather states. For the retrieval
of similar cases it is necessary to have same number of weather states in the
retrieved one and the input query. The system fails to return a result if there’s
any mismatch in the number of states in input query and previous similar data.
The system uses NIST5 score for evaluation requiring substantial reference texts
for better performance. In [5] the textual summary of time series were generated
using an end-to-end CBR system. The summary generation involved two steps
where first an abstraction of time series is generated which in turns help the sys-
tem to generate the textual summary of that abstraction. The system generated
text was evaluated using a modified version of the edit distance measure [10]
which heavily relies on the domain specifications. This is a custom evaluation
approach that is difficult to use across different TCBR domains.
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3.2 Case Alignment

There have been several approaches to measuring the performance of unsuper-
vised CBR systems which focus on measuring the extent to which the problem-
side space and solution-side space of case representation align with each other.
In [7], authors proposed a case cohesion alignment to evaluate the performance
of a CBR system which measures the level of overlap in retrieval set. However,
the method requires a trial and error approach to set up a threshold for select-
ing the number of nearest neighbours in both the sets. A mechanism of case
alignment was presented in [9] where the alignment was measured by taking
the average solution similarity of its neighbours weighted by their problem-side
similarities. Authors in [17] modified the case alignment measure by utilising the
case ranking of similar cases in problem and solution sets by using a modified
version of Kendall tau distance. Although the method works well in several CBR
problems, it fails to scale in a TCBR scenario [17].

In this work, previous examples are marked up to act as dynamic templates
which can be populated with structured data to generate good quality, diverse
natural text. Alternative representations and similarity measures are compared.
We also evaluate the quality of the generated text with a problem-solution align-
ment measure but propose a novel, domain independent metric taken from infor-
mation retrieval.

4 Case-Based Methodology

Central to developing a CBR system is the availability of experiential knowledge
that can provide previously solved successful examples for reusing to solve new
problems. The crawled examples from the web provide a suitable source of past
examples. However as obituaries in natural language they provide a case solution
example but not with separate problem and solution representations required for
CBR systems. The first task in developing a TCBR system is to create a case
representation to effectively capture case knowledge as associated problem and
solution components. The second stage is to develop a similarity metric utilising
the problem representation to support retrieval.

4.1 Case Representation

In TCBR, cases are generally represented in two parts: problem and solution
component. The problem representation comprises a set of attributes whose
values can either be extracted from the crawled obituaries or are known for a new
problem. The solution representation is the natural language text of the obituary
but may be considered as a template with the associated problem attribute values
identifed and replaced by mark-up tags.

For example given an obituary: “OLIVIA WILSON, Peacefully on the 14th
May 2019 at home, Olivia of Patna. Beloved wife to the late James Wilson, much
loved mum to Jack and partner Emily, gran to Ava, Lucy and Logan, loving aunt,
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sister and a friend to all. Funeral service will be help at Patna Kirk, Patna on
Monday 26th May, 2019 at 11.00am and thereafter to Patna Cemetery to which
all friends are respectfully invited. Donations if desired to Cancer Research UK
and Strathcarron Hospice.”, Fig. 1 shows the case representation marked-up with
attribute-value pairs in XML format.

Fig. 1. Representation of a case marked-up in XML format.

Hence, an obituary contains information, as attribute values, on the different
people, relationships, places, organisations, etc involved, and can be used to build
an effective case representation that will be helpful for identifying similar cases
to new problems. Around 40 relevant attributes have been selected to represent
an obituary as a case in the case-base, as shown in Fig. 2 2. From the example
obituary, we can see that the first sentence talks about the personal details of the
deceased person, followed by relatives in second sentence and funeral information
in the last sentence. This is a typical paragraph construction, so we can divide
all the extracted obituaries into three components and annotate them with the
identified attributes.

The attributes identified for annotations are set to be gender independent.
For example, in Fig. 1 we have taken “mum” as a value for attribute “par-
ent gender”. That means, the deceased person was parent (in this case mother)
2 For the columns marked M/O: Mandatory/Optional, ‘-’: Attribute value filled auto-

matically based on the deceased’s gender.
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to “Jack” (“children name”). So if we have a target problem with “parent gender
→ father”, the case in fig. 1 can still be re-used as a possible solution. An ini-
tial case-base has been created to seed the system by manually annotating 100
samples.

(a) Personal Information (b) Relations Details

(c) Funeral Details

Fig. 2. Attributes used for representation of obituaries.

4.2 Similarity Measure for Retrieval

We investigate two variants of similarity measure for retrieval of similar cases
for a target problem. The first approach is straight-forward, where we match the
number of features in the target problem with number of features in each case
from the case-base. The first similarity measure (sim1) is defined by Eq. (1).

sim1 = |q ∩ c| (1)

where q is the list of attributes in target problem and c is the list of attributes
in each case from case-base.

There can be a problem with Eq. (1) where the target case has fewer features
than the case retrieved from the case-base. Let’s take an example where the
target case has only 10 attributes out of a possible 40. In that scenario, cases
with more than the 10 attributes will also have the same similarity score as cases
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with the exact 10 features. To counter this problem, we use a different similarity
measure (sim2), which is the Jaccard Similarity Coefficient (J) described in
Eq. (2).

sim2 = J(q, c) =
|q ∩ c|
|q ∪ c| (2)

4.3 Text Reuse

In the previous section we observed that there can be problems in situations
where there is a misalignment in the number of attribute values. We used a
different similarity measure to address this problem in Eq. (2). However, this
method can also lead to a problem. The set of retrieved cases for a target prob-
lem with very less attributes might have same number of attributes but have
different attribute types. For example, for a target problem with only “spouse
name” in “relation section” and “funeral place/time” in “funeral section” along
with all the attributes from “personal info section”, the retrieved cases might
contain only “name” and “home town” of the deceased person along with all
the attributes from “funeral section”. In that way the number of attributes may
be the same giving a high similarity score for the retrieved case but in practice,
it is not a good example of a similar case for re-use.

To address this problem, we investigate an alternative case representation
where the case-base is broken down into three components, namely: personal
info component ; relations component ; and funeral component. In this way, we
can leverage our data and to find good retrieval examples with fewer cases. These
components can also be broken down further into different sub-components such
as: relations component could be separated in spouse component, parent com-
ponent, and grandparent component. But this further breaking will reduce the
attribute count in each sub-component and hence resulting into non-diverse case
retrieval for every target problem, which will lead into generation of similar kind
of text from the system every time. Thus, we need to find a balanced number of
components for breaking the obituary representations.

With these insights, we propose two kinds of case retrievals for text reuse:

– Basic: retrieving whole obituary as an one entity; and
– Component: retrieving cases as 3 different components.

In Fig. 1, we can see that the three components are marked-up with sepa-
rate “component tags”. For basic retrieval, whole obituary is retrieved as one
entity thus ignoring the component tags while for component retrieval, all three
components are retrieved separately. Then the retrieved case’s text is reused by
replacing the each attribute’s value with the attribute’s value from the target
problem. The new modified text is the solution generated by CBR system. In
case of component retrieval, we combine the texts generated for each component
separately to propose the final solution.
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4.4 Solution Adaptation

The proposed solution may contain some general mistakes such as: referring to
the deceased person with male pronoun even if the gender of the person is female
or vice-versa; or adding an attribute which is not given in the target problem.
These kinds of error occur because of the fact that the proposed solution is
generated only by simply reusing the text from solution-side of the retrieved
case after replacing the attributes’ values.

To tackle the gender problem, we apply a rule-based adaptation process where
each generated text is checked against the gender of the deceased person. If a
pronoun with different gender is found in the text, it is replaced with the same
pronoun of the deceased person’s gender. For the extra attributes problem, we
simply replace the attribute’s value with a blank for any attribute which is not
given in the target problem.

5 Experimental Evaluation

Evaluation of our TCBR system is a challenging task. It is difficult to auto-
matically measure the effectiveness of a system due to the diversity found in
the natural language output. Human evaluation is an alternative which, while
effective is expensive and very time consuming. Traditional machine transla-
tion and summarising metrics such as BLEU [11] and ROUGE [8] scores are
unlikely to work well because these metrics are based on the overlap of n-grams
of the generated text with an original reference text and so only consider lexical
similarity. Also, they require a lot of reference text to measure the quality of
generation which is very costly to get. To overcome these challenges we propose
a problem-solution alignment metric as an unsupervised evaluation measure.

5.1 Case Alignment

A key principle of CBR is that “similar problems have similar solutions”. The
extent to which this principle holds true can be assessed by measuring the align-
ment between the problem-side and solution-side space. It is surmised that a
good system design will have better alignment [9]. In this evaluation, we employ
a novel approach to measuring case alignment by using normalised discounted
cumulative gain to assess the correlation between problem-side and solution-side
nearest neighbours. If the alignment is good then for a given problem-solution
pair, the k nearest cases on problem-side must be similar as the k nearest-cases
on the solution side.

For a given case-base C containing all the cases {c1, c2, · · · , cn}. Cases in
C consist of problem−solution pairs, such that ci = {pi, si}, where pi ∈ P
(problem set) and si ∈ S (solution set). A target problem t represented using
the case knowledge, we will retrieve two lists pl & sl which are sorted in order
to the most similar cases both from the problem (pl) and the solution (sl) set
respectively. On the solution side, BERT [3] is used to encode the sentences and
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then cosine similarity [15] between the test sample and other samples is used to
generate the ordered list of similar cases. For the problem side the ordered list is
created using the retrieval methods discussed in Sect. 4. Both the lists will have
n − 1 items, where n is the size of the case-base.

From the list pl, we shall create a new list of weighted scores for the problem-
side. We call it problem list weighted or plw. The weighting is done as follows:

plw(i) =

{
(k + 1) − i, if i ≤ k

1, otherwise
(3)

where k is the number of neighbours considered for retrieval and i is the index
of each element from the pl. Similarly the cases in sl are weighted according to
their pl counter-part and creating a solution list weighted or slw.

For example, if we have 10 cases in the case-base and for a given case ci, with
k = 3 the sl and pl are as follows:

pl = [8, 5, 6, 1, 4, 2, 3, 7, 0]
sl = [5, 6, 2, 4, 3, 7, 8, 1, 0]

These are the indices of the cases from both the sets. According to the Eq. (3),
weighted lists plw and slw are given as follows:

plw = [4, 3, 2, 1, 1, 1, 1, 1, 1]
slw = [3, 2, 1, 1, 1, 1, 4, 1, 1]

For an ideal case, both of the list should have same ranking order as they
are retrieved for the same case. To measure the alignment of a target case t we
can use the “normalised Discounted Cumulative Gain” (nDCG) [16] using the
following formula:

nDCG(t) =
DCG(slw)

DCG(plw)
(4)

where, slw and plw are the weighted lists for the target case while DCG is
the “Discounted Cumulative Gain”, defined for some list lw as:

DCG(lw) =
|lw|∑
i=1

lw(i)
log2(i + 1)

(5)

where, lw is some weighted list (e.g., plw or slw) and |lw| is the size of that
list. The value of nDCG ∈ (0, 1].

The alignment of whole case-base can be the average of nDCG score of all
the cases in the case-base (CB).

AlignScore(CB) =
n∑

i=1

nDCG(i)
n

,∀i ∈ CB (6)

where, n is the size of case-base. For component retrieval method, the total
alignment score would be the average of AlignScore of all the components. In
our experiments, we take the value of k = 5 because of the fact that we need to
show 5 options of automatically generated obituaries to the user.
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Table 1. Nomenclature of different methods.

Basic Component

sim1 BS1 CS1

sim2 BS2 CS2

5.2 Other Evaluations

In addition to the case alignment, we use BLEU score and cosine similarity for the
evaluation of our system. BLEU score counts the average of overlapped n-grams
from generated text with the reference texts. Cosine similarity on other hand
measures the cosine angle between the projection of vectors in multi-dimensional
space. For the vector representation of a sentence, we used BERT encoder to
produce a contextual embedding for each sentence.

5.3 Average Attribute Errors

We define a reference metric as the number of missed attributes in the generated
text as one measure of the competence of the evaluation metrics. In our scenario,
where the pre-defined attributes play an important role in the retrieval and
reuse of cases, it is important to measure the inclusion of these attributes in
the generated text. In the absence of a human evaluation, we employ Average
Attribute Error (AAE) as a crude surrogate for human feedback.

The average attribute error is defined as the average number of missed
attributes from the top 5 generated texts from our system. Again, top 5 cases
are chosen because of the fact that the system needs to provide 5 optional texts
to the user for a given input. For a target problem t, if we have na number of
attributes and the G = {g1, · · · , g5} as the set of top 5 generated texts from one
of the methods defined in Table 1. The average attribute error e would be:

e(t) =
∑5

i=1 ||(na − |gi|)||
5

(7)

where, |gi| is the number of attributes included in the ith generation. The
average of every sample’s attribute error in a case-base will be the average
attribute error for the case-base.

6 Results and Discussion

Our case-base contains 100 seed cases manually annotated to identify problem
and solution components. We use a leave-one-out experiment for both repre-
sentations described in Sect. 4.3 (Basic and Component) with both similarity
measures described in Sect. 4.2 (sim1 and sim2). Hence, We have four system
combinations to evaluate as named in Table 1.
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(a) Case Alignment (b) Attribute Errors

(c) BLEU Scores (d) Cosine Similarity

Fig. 3. Various results from leave-one-out-experiment

6.1 Different Evaluations

The results from applying the 4 evaluation metrics to the retrieval sets obtained
when employing the 4 system combinations are shown in Fig. 3. We start our
experiments with 40 cases initially, chosen to reflect the 40 attributes present in
the problem representation. We repeat the experiments with increasing number
of samples until we reach 100, i.e., the maximum number of seed cases available.

Case Alignment (CA) results are shown in Fig. 3a, where we plot the
change in case alignment score with respect to the number of cases used for
experiment. For a given value on the x-axis, the corresponding value on the
y-axis represent the average case alignment score of all the cases from the leave-
one-out experiment. We can see that with the number of samples increasing,
the case alignment is also improving. Which means with more data used for
experiment we are continuing to achieve improved results and do not appear to
have reached a plateau.

We can also observe that before 70 cases the alignment is better for component
retrieval compared to basic retrieval while after 70 samples, the basic retrieval
for both similarity measures gets better alignment than the component retrieval.
This indicates that after sufficient case data is available there may be no need to
break down the obituary representation into several components because with
more labelled cases, diversity in the case base is increased allowing sufficiently
similar cases to be retrieved.
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Table 2. Pearson coefficient score for correlation

Case alignment BLEU score Cosine similarity

Pearson Score −0.9238 −0.7019 −0.0296

Results from the Average Attribute Error (AAE) evaluation metric is
shown in Fig. 3b. Here we can see that with the change in number of cases used
for experiment, the average count of missing attributes is reducing for all the
four system combinations. Also, before 80 cases, the performance for component
is better, while after 80 basic for both similarity measures gives improved results.
This further supports the idea that with more cases available, there is no need
to split obituaries into components.

In Figs. 3c and 3d we show results for BLEU score (BLEU) and cosine
similarity (Cos) between the generated text and reference text. Both the met-
rics show little variations in score with respect to the change in number of cases
available. The BLEU score for BS1 and BS2 is always around 0.40 to 0.44 while
for CS1 and CS2 is 0.33 to 0.37. Similarly for cosine similarity, the average is
almost 0.99 for BS1 and BS2 during all the number of samples while the score
for CS1 and CS2 is around 0.975 go 0.98. This may be because these metrics
only consider lexical similarity while ignoring the measure of attributes inclusion
for generation.

6.2 Correlation of Metrics

We calculate the pearson correlation coefficient between average attribute error
and the other three automated evaluation metrics which is shown in Table 2.
Here, we can observe that our proposed case alignment metric is highly correlated
to the average attribute error. BLEU score is ranked second while the cosine
similarity is third and is much less correlated. This demonstrates that our case
alignment measure is an effective evaluation metric for the TCBR system.

6.3 Generated Texts

Some texts generated from the CBR system are shown in Fig. 4, one for each
method from Table 1. The texts shown here are generated from the case-base
with all 100 samples stored. It can be observed that the generations from sim2
measure are quite accurate and include most of the information correctly. On
the other hand, it can be observed that the generations from sim1 measure have
more tendency of making attribute’s related errors such as: in BS1, the two
major attributes, age and charity name are missing; while in CS1, the retrieved
case has some extra attributes which are not present in the target case, observe
the sentence “Cherished to and a dear of the family”. Here after cherished to, an
extra attribute value is present in the retrieved case which is absent in the target
problem and hence during the adaptation process, the value of that attribute is
replaced with a blank.
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Fig. 4. Text generations from the TCBR system. Errors are shown in red. (Color figure
online)

It is also noted that missing the < friends name > and < funeral attire >
attributes is common for all the four generations. We can also observe that the
component retrieval method is also prone to different punctuation errors such as:
ending the sentence with two full stops; or starting a sentence with small-caps
letter. This may be due to the mix and match property of text generated from
component retrieval methods.

7 Conclusion and Future Work

In this paper we presented a TCBR system developed for the automated genera-
tion of natural language obituaries from a large set of structured input attributes.
The paper introduced two alternative case representation approaches, along with
two different measures of similarity used for the retrieval of similar cases from
the case-base.

The performance of our methods is evaluated using a novel unsupervised case
alignment metric employing normalised discounted cumulative gain to compare
problem-side and solution-side retrieval sets. Extensive experiments are con-
ducted with an increasing number of seed cases available in a leave-one-out
experiment. The proposed case alignment evaluation metric is compared with
other commonly used supervised metrics as well as with average attribute error
score, a simple surrogate for human feedback. The experiment results show that
our unsupervised evaluation metric better correlates to the average attribute
error compared to BLEU score and cosine similarity. Our evaluation metric is
also domain independent and can be applied to different kinds of TCBR systems.

In future work for this project the intention is to measure and introduce
more diversity into the set of generated obituaries and to automate the process
of marking-up the data to ease the case-base creation process.
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Abstract. Current multiagent systems require human operators to communicate
in real-time with one another. A better option would be to have a single human
operator control a swarm of agents using a natural interface, such as something
worn by the operator. This includes being able to control the shape and movement
of the agents in a dynamically shifting environment using an intuitive interface.
Prior research has focused on moving the collective of agents as a whole, and has
not used a case-based approach for this purpose. We show that a swarm can be
shaped into different formations via a case-based gesture control strategy using
a wearable (smart watch) interface. This approach enables a swarm to complete
a task by taking high-level commands from an operator/user. We describe our
approach, our initial results and demonstrations, and discuss next steps.

Keywords: Human-computer interface · Human-in-the-loop · Gesture
recognition · Case-based reasoning · Multiagent systems · Swarm · Smart watch

1 Introduction

We address the limitations of current approaches for controlling multiagent systems and
describe how a wearable device (a smart watch) and gesture recognition can be used
to control the movement and formation of swarms. Our method for gesture recognition
uses a simple case-based approach to match a human operator’s gesture with a library
of gestures known to the agents/robots in the swarm.

There are two schools of thought when it comes to multiagent systems that involve
human and robotic agents. The first is that a robot is a tool to complete a task. The second
is that a robot is a teammate that humans canworkwith to complete a task.This distinction
is important because the overall goal of our work is to create a seamless human-swarm
collaborative team. In this scenario, the human operator should be able to robustly control
the agents to change their goals or adapt their behavior to the circumstance at hand. This
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is useful for navigating dynamically shifting domains, such as those addressed in goal
reasoning research (Jaidee et al. 2013; Aha 2018).

Previous research on swarm control has focused on moving individual agents or
a swarm from one location to another. To the best of our knowledge, this is the first
attempt at manipulating the shape of a swarm with gesture-based controls. Changing the
shape is important; if you are in a geometrically constrained environment, have complex
tasks to complete, or have limited sensing, assistance from an external observer (the
operator/user) in adjusting the swarm’s shape can help it navigate, complete a task, and
otherwise make decisions using input from the external observer to make up for its
limited sensing.

Prior research on case-based robotics has not addressed this specific task. Work
exists on using case-based (or memory-based) approaches to control multiple robots,
such as for RoboCup Soccer (Ros et al. 2007; Altaf et al. 2016), or in simulation, such as
for controlling agents in games (Jaidee et al. 2013; O’Connor et al. 2018). Case-based
reasoning (CBR) approaches have also been used for several other robotics tasks (e.g.,
diagnosis (Olsson et al. 2004), learning reactive control strategies (Peula et al. 2009),
the interpretation of skill demonstrations (Fitzgerald et al. 2015), or other control tasks
(Atkeson et al. 1997). Finally, while some work exists on case-based gesture recognition
for robotic control, such as for recognizing hand gestures (Deng et al. 2007), we believe
ours is the first application of case-based reasoning for gesture recognition in the context
of swarm control.

Section 2 provides context for the taskwe address.We then describe ourmethodology
in Sect. 3, and report on initial demonstrations in Sect. 4. Our key finding is that a case-
based recognition approach works well for our relatively simple swarm control task. In
Sect. 5 we conclude and discuss some future work objectives.

2 Background

There are multiple ways to approach human-swarm research where the human user is
in the same workspace as the robotic agents. These include: (1) designing the swarms
to function as independently as possible (increasing autonomy), and (2) designing them
to collaborate closely with human operators (human-agent teaming (HAT)). In previ-
ous work, the majority of the focus has been on making agents function completely
autonomously so that they do not require a human operator. We instead focus here on
HAT scenarios.

For these situations,where the humanoperator is in the sameworkspace as the robotic
agents, we aim to increase teamwork efficiency by greatly decreasing the number of
human operators required to control a swarm. This is known as the conductor-orchestra
paradigm (Secchi et al. 2015). In previous research the level of human interaction with
the system varied depending on the teaming requirements and the system’s capabilities.
For example, there are HAT scenarios involving pre-programmed flight plans or trajec-
tories in which the role of the human operator is limited to only starting the program. In
this case, goals are assumed to be static and unmalleable. However, if the environment
or situation changes, the whole path plan may become obsolete. Often when goals need
to be changed, the human operator must stop the program/action, make changes, and
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then restart the program. Common human-computer interfaces for changing the pro-
gram include computers, tablets, smartphones, joysticks, and other like devices. Typical
feedback includes light, sound, and touch (haptic). Secchi et al. (2015) describe a novel
bilateral control architecture for teleoperating a group of mobile robots. This method is
useful but the physical haptic interface is inherently not portable and thus does not allow
the user to operate in the same workspace as the robotic agents. Such haptic devices
provide feedback to the user in the form of vibrations and force feedback. These devices
improve situational awareness, but can be limited in executable control (e.g., joysticks
are limited to executing forward, backward, right, and left commands). Gioioso et al.
(2014) created a system to control a swarm that uses the fingertips of the user (as tracked
by an RGB-D camera) to command the contact points between multiple aerial agents
and an object. Like the previous example, this system can control multiple agents but
requires the user to be in a separate workspace than the swarm due to the finger tracking
mechanism. Alternative methods of finger tracking for controlling these agents will be
examined in future work. Finally, Villani et al. (2017) show that using smart watches to
control agents can increase performance metrics and improve the human-robot interac-
tion experience. Their device allows the human operator to be in the field with the agents
and capitalize on the operator’s ability to adapt to new situations and goals. Villani et al.
show that using a smart watch interface to control an agent produces better task perfor-
mance than teleoperating the aerial vehicle with a joystick. Knowing this, we show that
it is possible to use a smart watch interface to control the shape of the swarm, which we
speculate can produce even better results in task performance than simply moving the
collective swarm through some non-gestural interface.

3 Methodology

3.1 System Architecture

To control the swarm, the human operator makes a recognizable gesture by using the
wearable device. The wearable device we use is a Samsung Gear S3 smart watch, which
we also used in our prior swarm research to provide feedback to the user about the
swarm’s formation (Lofaro et al. 2018). We used the inertial measurement unit (IMU)
on the smart watch to recognize gestures. Currently the raw IMUdata is sent to the swarm
server over a wireless network. IMU data is sent to the server every 50 ms (20 Hz). The
time that data is delivered is more important than if the data is delivered; thus, we
use the User Datagram Protocol (UDP) as the transmission protocol. Currently gesture
recognition is performed on the swarm server, but in future implementations, gesture
recognition will occur on the smart watch itself. Lofaro and Sofge (2018) provide further
detail about these methods for gesture recognition.

Lofaro and Sofge (2018) developed and described a smart watch control interface for
the lighter-than-air (LTA) agents. They used a control inputmethod based on theAndroid
Robot Controller (ARC) and Wearable Robot Controller (WRC) message type standard
by Lofaro et al. (2017). This method sends a human readable string type message over
UDP to the controller of the robots. In this instance, the string included 〈x, y〉 joystick
values and a button press message. The joystick commands control the translation of the
robot. The button press is a signal to stop. All of the latter messages are sent over UDP
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to reduce latency and to simplify robot sensing abilities. Figure 1 shows a picture of the
smart watch WRC.

Fig. 1. The Samsung Gear S3 Frontier smart watch Wearable Robot Controller (WRC).

TheLTAplatforms are controlledby sending commands to themotors on thevehicles.
We define the normalized power parameters PL and PR as:

PL = x

xmax
+ y

ymax
PR = x

xmax
− y

ymax
where:PL andPR are normalized power (±1.0) commands to the left and right propellers
respectively; xmax and ymax are the maximum values that the x or the y command inputs
can be; and x and y are the inputs from the watch. The left and right normalized motor
power commands PL and PR are applied to the left and right propellers and held as a
zero-order-hold between updated commands from the WRC interface.

When controlling the LTA agents the user might encounter situations where a robot
needs to be stopped. For this reason, a hand gesture is used to stop the robot. In this
instance, a raising of the hand is used as the stop command. When the stop command
is issued PL and PR are set to 0.0 and the altitude set point is set to its current altitude.
The addition of this stopping mechanism allows a user to naturally stop the LTA agent.
Note that for this effort no button press was used to halt the agents; only a recognized
Freeze gesture was used. The agents may be controlled to perform other maneuvers by
adjusting the control outputs of the motors as desired based upon receipt and recognition
of gestures as described below.

Once the swarm server determines the gesture, the appropriate control commands
are sent to the agents. Currently recognized gestures and formation pairs are:

• Gesture Up: Vertical formation command; it tells the agents to go to the same x and
y location while being separated by 1.5 m in z.

• Gesture Right: Horizontal formation command gesture; it tells the agents to go to the
same altitude and form a straight line with one another.

• Gesture Freeze: Agents stop their current action and station keep until further
instructed.

• Gesture Null: No gesture is found in the case library.

We define the mapping from gesture to formation methodology in Sect. 3.3. Figure 2
shows an example in which a user performs the Up gesture to the agents and their
real-time response.
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Fig. 2. A user makes the Up gesture, which is the vertical formation command gesture. This tells
the agents to go to the same x and y location but be separated in altitude (z) by 1.5 m between
each agent.

We use a motion capture system to receive world frame position and orientation
information from each agent. Future implementations will remove the motion capture
system and replace it with a local-frame localization system we developed called LPS
(Local Positioning System) (Lofaro 2017). Currently, the feedback to the user is visual.
Future iterations of the system will include auditory and haptic feedback from the smart
watch. This feedback will aid the user in recognizing when the agents believe that they
have completed their task, the agents’ physical interaction state, and other pertinent
information. Figure 3 depicts the complete system to control multiple agents via the
smart watch interface and the message types sent and received throughout the system.

Fig. 3. Systemdiagramof using awearable to control the formation of amultiagent/swarm system
using gesture control.

3.2 Gesture Creation, Recognition, and Validation

Creating gestures for users involves getting raw sensor data from the smart watch (as
explained in Sect. 3.1).We utilize the gesture training templates fromVillani et al. (2017)
as a starting point for our work. To create the templates, we recorded 40 repetitions for
each of three gestures (Up, Right, and Freeze) from one user, for 120 total templates. We
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Table 1. Confusionmatrix for gesture recognition using correlation coefficients.Up is the vertical
formation command; it tells the agents to go to the same x and y location while being separated
by 1.5 m in z. Right is the horizontal formation command gesture; it tells the agents to go to the
same altitude and form a straight line with one another. The null notation means that no gesture
is input. All values are percentages.

then used these to train a Hidden Markov Model (HMM) for each gesture.1 We chose
to use Hidden Markov Models (one per gesture) rather than Dynamic Time Warping for
this research due to time constraints. HMMs use observations to provide likelihoods of
a hidden state. We provided each HMMwith 40 templates, or 40 sets of observed sensor
data, to train themodel to recognize and classify the pattern of a gesture. EachHMM then
produced an ideal template of what observed sensor data should look like for a specific
gesture. These templates serve as cases for each gesture (i.e., there are only three cases
in our case library, one per gesture, where each case was generated by a trained HMM
for that gesture). We used a sliding window queue to view 50 real-time data points at
a time. The data-sampling period is 50 ms (20 Hz); the sliding window size is 2.5 s in
temporal duration. We chose this window length experimentally. Our algorithm’s case
similarity function compares the queue to each stored case by computing a Pearson
Product Moment Correlation Coefficient:

r = (Σxy) − (Σx)(Σy)√([
Σx2 − (Σx)2

][
Σy2 − (Σy)2

])

In the above equation, x is the queued sensor data, and y is the template of what observed
sensor data should look like for a specific gesture. If there is a correlation of over 60%
to a stored case, then we deem a gesture to be recognized (i.e., it matches one of the
stored cases). We selected this value for the correlation coefficient to reduce the amount
of false positives and determined it experimentally. Correlation coefficients higher than
that threshold resulted in higher precision but lower recall for theUp and Right gestures,
and higher recall but lower precision for the null gesture. In future iterations, more sensor
data will be used to create cases for the gestures, at which point we will increase the
correlation coefficient to account for more complex gestures. Table 1 depicts the gesture
recognition accuracy of the Up, Right, and null (i.e., meaning that no matching gesture

1 We leave as future work a comparison of this method vs. an alternative case-based method in
which the repetitions themselves, or a filtered subset of them, are stored and used as cases, where
each is compared with the queue during gesture recognition.
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was found) gestures using our approach. As shown, this simple case-based strategy has
relatively high gesture recognition accuracy.

3.3 Mapping Gestures to Formations

Controlling a specific swarm activity, such as creating formations or clustering, involves:
(1) polling each agent’s location; (2) allocating desired targets for the swarm; and (3)
planning the path for each agent to take to achieve the formation. Because we are using
a world-frame motion capturing system, we can obtain accurate position data for each
agent in the system. In this work, formation requires an anchor agent, which acts as the
local-frame origin for the formation. In addition, gestures are mapped to movements
that seem “natural” to the user. This means that it is transparent to the user as to why
the agents move into a specific formation once a gesture is made. For example, a sharp
upward movement (gesture Up) is mapped to the agents forming a vertical line, while
a sharp rightward movement (gesture Right) is mapped to a horizontal line. In future
work we plan to use a larger case library of gestures, drawing inspiration from standard
human/team collaborative hand signals.

4 Demonstrations

In this section we describe the system and platform that we use in our demonstrations,
and then the demonstrations themselves.

4.1 System and Platform

The smart watch interface can be used to control any multiagent system of homoge-
neous and/or heterogeneous types of agents. In this study we used several Miniature
Autonomous Blimps (Cho et al. 2017; Lofaro and Sofge 2018) to demonstrate our smart
watch interface. We used the Samsung Gear S3 Frontier smart watch; the sensor data
were 3-axis accelerometer readings.We based the smart watch interface onLofaro et al.’s
(2017) work on controlling static robotic/automated devices. We described the commu-
nications and computation structure in Sect. 3.1, the gesture recognition methodology
in Sect. 3.2, and the mapping of the gestures to formations in Sect. 3.3.

4.2 Demonstration 1: Gesture-Action Mapping

Our first objective was to demonstrate that one of our agents can follow a human oper-
ator until they perform a Freeze gesture. For this demonstration, we used a miniature
autonomous blimp, as shown in Fig. 4. When the demonstration begins, the blimp fol-
lows the operator autonomously, which is its default action when no gestures are given
(Fig. 4, top).

Alternatively, the operator can perform a Freeze gesture, which is the common hand
signal of the same name, by making a sharp upward hand movement (Fig. 4, lower
left). Upon gesture recognition, the agent stops following the operator and hovers as the
operator freely moves to another location. While continuing to make the Freeze gesture,



302 D. Srivastava et al.

the operator can continue to move without the agent following (Fig. 4, bottom). This
gesture maps to the agent stopping in place and holding its current position (station
keeping) until further instructions are provided. This is a natural and intuitive gesture,
as the agent performs the same freezing movement as humans do upon observing this
gesture.

Once the operator stops making this gesture (not pictured), the agent enters the null
gesture state, and resumes its task of operator following. In summary, this demonstration
shows that gesturing using a smart watch can be used to control an autonomous blimp’s
movement, and how a gesture can map intuitively to agent movement.

Fig. 4. Single agent responding to a gesture command. Default action is to follow the operator.
Gesture enabled action is toFreeze (i.e., to stop following theoperator).Top: Single agent following
the operator (no Freeze gesture detected). Bottom: Single agent detects the Freeze gesture and
stops following the operator. All frames are in time sequence from left to right.

4.3 Demonstration 2: Shaping the Swarm

Our second demonstration involved shaping a swarm using gesture control, in which the
human operator interacted with three aerial agents. (For this demonstration, the golden-
colored agent is the anchor agent as described in Sect. 3.3.) The agents start in their
station-keeping mode. If the human operator makes the Up gesture (i.e., the vertical
formation command gesture) then, upon recognition, the agents form a vertical line,
with a pre-defined distance (1.5 m) between neighboring agents. If the human operator
performs the Right gesture (i.e., the horizontal formation command gesture) the agents
form a horizontal line at a defined altitude (2m) and distance between neighboring agents
(1.5 m). If no recognized gesture occurs, then the system will return to the null state and
the agents will return to station-keeping mode. The agents’ reactions to the Up, Right,
and null gesture states can be seen in Fig. 5 (top, bottom, and middle, respectively). We
validate the locations of the agents using the feedback from the motion-capture system
to ensure that the agents performed as intended upon each gesture command. These
gestures are intuitive and natural to the operator as it is clear to them what each gesture
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does and how it maps to the agents’ formation. This shows that it is possible to control
the shape of a swarm using a form of case-based gesture recognition via a wearable
interface, in this case a smart watch.

Fig. 5. Multiple agents responding to gesture commands in real-time.Top: A user performs theUp
gesture. This gesture is the vertical formation command gesture. The vertical formation command
gesture tells the agents to go to the same x and y location but be separated in altitude (z) by 1.5 m
between each agent.Middle: The user does not make a recognized gesture, the multiagent system
falls into the null state, and the agents station-keep together. Bottom: The user performs the Right
gesture. This gesture is the horizontal formation command gesture. The horizontal formation
command gesture tells the agents to go to the same altitude and form a straight line with one
another.

5 Conclusion

In this paper we presented a novel application of case-based reasoning in which an
operator used a wearable device (a smart watch) to control a multiagent system of
lighter-than-air miniature autonomous blimps. We described the limitations of current
control interfaces ofmultiagent systems.We then described how our approach: (1) learns
a Hidden Markov Model (HMM) for each gesture; (2) generates an ideal sample (a tem-
poral sequence of 50 data points) from each HMM to serve as a case; and (3) uses this



304 D. Srivastava et al.

small case library in an attempt to match a human operator’s gesture. If that gesture is
sufficiently correlated with one of the stored cases (we use the Pearson Product Moment
Correlation Coefficient for case similarity, and assess a match exists if the correlation
exceeds 60%), then it is recognized as such and the agents respond accordingly (here,
by aligning themselves horizontally, vertically, or by holding steady in their respective
locations). Our demonstrations, in which the operator wore a smart watch to commu-
nicate her gestures, showed that we can attain high accuracy for gesture recognition,
though we have trained our system for only a small number of gestures. However, our
demonstrations showed that this approach works in our laboratory environment, and
there have been comparatively few prior studies on using gestures to control swarm
formations. Indeed, we are not aware of any prior efforts that use case-based reasoning
techniques for this task.

Future work will include creating more gesture templates (i.e., cases) to increase
the number of formations that the swarm can make. As the library of gestures expands,
we anticipate that similar, multiple gestures could simultaneously meet the correlation
coefficient. To mitigate the chance of a false positive recognition, we plan to (1) incor-
porate sensor data beyond IMU data to create more unique gestures, and (2) determine
the desired gesture by taking into account the sequential context of previously given
gestures. To accomplish this, we will train our system on patterns of gestures that tradi-
tionally occur sequentially, so that if multiple gestures meet the correlation coefficient,
the gesture predicted to be the next logical step in the pattern will be recognized. The
human operator reacts to the scenario in front of her to best guide the shape and move-
ment of the swarm. Accounting for the current sequential context would further provide
a way for the swarm to adapt to the specific environment at that instant.

To date we have made a key simplifying assumption: only one case is required per
gesture. In future work, we will test this assumption. In particular, our future work will
include multiple human operators communicating gestures under varying conditions
(e.g., distances, arm movement speeds, agent/blimp altitudes, relative locations, and
movements). Thus, we will examine an alternative of our approach that selectively
generates, stores, and uses multiple cases (per gesture) for gesture recognition. We
will also compare our approach with one that does not train a set of HMMs to produce
ideal cases, but instead stores user repetitions of gestures as cases (i.e., a lazy case-based
reasoning strategy). For both alternative approaches, selectively generating, storing,
and using multiple cases (per gesture) for gesture recognition may increase gesture
recognition accuracy and yield more robust performance under a variety of scenarios.

Finally, for both these eager and lazy approaches we will examine the role of case
adaptation, in which the agents’ responses may vary depending on environment context
(e.g., due to the presence of obstacles or other agents), and we will compare our case-
based approaches vs. others for swarm formation control (e.g., Nagavalli et al. 2017)
to better assess the unique contributions of CBR approaches for this interesting and
important robotics task.

Acknowledgements. Thanks to ONR for supporting this research. The first author conducted
the research described in this paper while working as a student employee at NRL. She is
currently pursuing her PhD at the Georgia Institute of Technology and can be contacted at
divya.srivastava@gatech.edu.
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Abstract. A common idea in the field of case-based reasoning is that
the retrieval step can be specified by the use of some similarity mea-
sure: the retrieved cases maximize the similarity to the target problem
and, then, the adaptation step has to take into account the mismatches
between the retrieved cases and the target problem in order to this lat-
ter. The use of this methodological schema for the application described
in this paper has proven to be non efficient. Indeed, designing a retrieval
procedure without the precise knowledge of the adaptation procedure
has not been possible. The domain of this application is the correction of
French sentences: a problem is an incorrect sentence and a valid solution
is a correction of this problem. Adaptation consists in solving an analog-
ical equation that enables to execute the correction of the retrieved case
on the target problem. Thus, retrieval has to ensure that this application
is feasible. The first version of such a retrieval procedure is described and
evaluated: it is a knowledge-light procedure that does not use linguistic
knowledge about French.

Keywords: Case-based reasoning · Retrieval · Analogy · Sentence
correction

1 Introduction

Case-based reasoning (CBR [8]) aims at solving a problem with the help of
a case base, where a case is the representation of a problem-solving episode.
It is often decomposed in several steps including its inference steps, retrieval
and adaptation. Retrieval consists in selecting one or several case(s) from the
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case base that is/are similar to the target problem (i.e., the problem to be
solved). Adaptation consists in modifying this/these retrieved case(s) in order
to obtain a plausible solution to the target problem. For many CBR applications,
the specification of retrieval is quite simple and amounts to choose a similarity
metric or a distance function on the problem space. Then, the main difficulty
of retrieval is algorithmic: how to design a program that efficiently implements
this specification. By contrast, adaptation is often considered as more difficult
to specify within a given application: the issue of its efficient implementation
comes only in a second time.

The CBR application presented in this paper contrasts with this viewpoint:
the adaptation has been rather simple to specify, whereas the first version of
retrieval giving some relevant results has not. This CBR application aims at
correcting linguistic errors in French sentences: its input is an incorrect sentence,
its output is a correction of this sentence. For the sake of readability, the examples
in this paper are in English. It is noteworthy that the correction is only at the
grammatical level: the corrected sentence is expected to be orthographically and
syntactically correct but there are no expected correction at the semantic level.
For example, consider the following example:

Input: Tomatoes grows outdoors in winter.
Output: Tomatoes grow outdoors in winter.

The output sentence is orthographically and syntactically correct, but no cor-
rection is made at the semantic level (that would consist, for example, in sub-
stituting winter with summer).

The system presented in this paper is called The French Correction (abbre-
viated in TFC) and has several features that are worth mentioning. First, this
first version of TFC is intentionally knowledge-light: almost all its knowledge lies
in the case base (very little domain knowledge). Therefore, the system should
give similar results in another alphabetic language using spaces for separating
words. Indeed, it works at the character level (letters and punctuation marks).
Second, TFC is not meant to be competitive with other correcting systems that
are currently used in, e.g., word processing systems. By contrast, TFC’s main
goal is to provide a playground for CBR research.

This paper is organized as follows. Section 2 presents some preliminaries: the
main assumptions and notations on CBR that are considered in this paper and
some notions related to strings and to analogies. Section 3 informally specifies
the TFC system. Building a CBR system requires the acquisition of a case base:
case authoring is described in Sect. 4. The case-based inference is described in
Sects. 5 and 6: adaptation first and then retrieval. Indeed, the TFC retrieval mod-
ule must be adaptation-guided for this application, hence this unusual order in
the presentation. Section 7 presents the evaluation of TFC. Section 8 discusses
the design of this system and, in particular, its originality with respect to the
respective design of the retrieval and adaptation phases. Finally, Sect. 9 con-
cludes this article with some research directions around The French Correction.
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Main Objective of this Paper. This paper presents a problem that is easy to
understand but not so easy to solve, together with a first baseline solution. Such
a problem could be a challenge for the CBR community, or even a benchmark.
The authors agree to distribute the case base and the test base for this purpose.

2 Preliminaries

This section recalls some notions related to CBR, strings and analogies. These
notions are used in particular to define the adaptation step of TFC which relies
on analogies on strings.

2.1 Preliminaries: Assumptions and Notations About CBR

Let P and S be two sets respectively called the problem space and the solution
space. A problem x (resp., a solution y) is by definition an element of P (resp.,
S). Let � be a relation on P × S. For (x, y) ∈ P × S, x � y is read “x has for
solution y” or “y solves x”. The relation � is in general incompletely known,
though it is known to hold for a finite set of pairs (xs, ys). This finite set is called
the case base, denoted by CB, and every (xs, ys) ∈ CB is called a source case.

CBR aims at solving a new problem, called the target problem and denoted
by xtgt, with the help of CB.

The process model of CBR consists (1) in selecting k source cases similar to
the target problem, (2) in inferring from these k source cases a candidate solution
ytgt of xtgt, (3) in confronting the hypothetical case (xtgt, ytgt) to, e.g., a human
that validate it as a case if xtgt � ytgt or correct ytgt otherwise, (4) in storing
the validated and potentially corrected case (xtgt, ytgt) in CB if this storage is
deemed useful. These steps are called (1) retrieval, (2) adaptation, (3) validation
and repair, and (4) storage (aka as retrieve, reuse, revise and retain in the 4 R’s
model of [1]). In many applications, as the one described in this paper, k = 1:
only one source case is retrieved and adapted to solve the target problem. For
some of these applications, adaptation consists in reusing as such the solution
of the retrieved case (i.e., ytgt = ys): this is called adaptation by copy.

Case retrieval is often performed thanks to a distance function dist on P:
the selected case(s) (xs, ys) being the one(s) that minimize(s) dist(xs, xtgt).1

Thus, dist induces a ranking ≺dist
xtgt between problems defined by xs ≺dist

xtgt xu

(“xs is more similar to xtgt than xu according to dist”) if dist(xs, xtgt) <
dist(xu, xtgt).

The knowledge model of CBR consists in four knowledge containers: the
case base CB, the domain knowledge DK, the retrieval knowledge RK and the
adaptation knowledge AK [7]. DK is also known as the domain ontology and
serves two purposes: giving a vocabulary for describing the cases and some
integrity constraints, i.e., some necessary conditions for a pair (x, y) to be a case

1 This can be equivalently defined by the maximization of the similarity measure sim

defined by sim(x1, x2) = 1
1+dist(x1,x2)

.
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(i.e., x � y). RK and AK contain the application-dependent knowledge for, respec-
tively, performing retrieval and adaptation. A CBR system is qualified as knowl-
edge light if most of the knowledge lies in CB.

2.2 Strings

Let A be a finite set; a character c is an element of A. Let A∗ be the set of strings
on A. The empty string is denoted by ε. The concatenation of two strings S and
T is denoted by the juxtaposition ST . For S, T ∈ A∗, S is a substring of T if
there exist X,Y ∈ A∗ such that T = XSY .

The length of a string S ∈ A∗ is denoted by |S|. For instance, |ε| = 0. For
c ∈ A and S ∈ A∗, #occ(c, S) is the number of occurrences of c in S, e.g.,
#occ(’t’, tomato) = 2.

Given S ∈ A∗, a subsequence of S is a string that can be obtained by removing
0 to |S| characters from S. For example, toto is a subsequence of tomato. Given
two strings S and T , an LCS (longest common subsequence) of S and T is a
string L that is a subsequence of both S and T of maximum length (it exists, but
it is not necessarily unique, though all LCSs of S and T have the same length).
For example, an LCS of tomato and toad is toa.

For S, T ∈ A∗, distLCS(S, T ) is the LCS distance from S to T defined by

distLCS(S, T ) = |S| + |T | − 2 |L|
where L is an LCS of S and T . It can be equivalently defined as the edit distance
with the “delete a character” and “add a character” edit operations with the
same cost of 1. For example, distLCS(tomato, toad) = 6 + 4 − 2 × 3 = 4.

2.3 Analogies

An analogy on a set U is a quaternary relation on U denoted, for (A,B,C,D) ∈
U4, by A:B ::C:D, and read “A is to B as C is to D” that satisfies the follow-
ing postulates (for any A,B,C,D ∈ U): (1) A:B ::A:B, (2) if A:B ::C:D then
C:D ::A:B, and (3) if A:B ::C:D then A:C ::B:D.

An analogical equation is an expression of the form A:B ::C:x where A,B,C ∈
U and x is a symbol called the unknown of the analogical equation. Solving
A:B ::C:x aims at finding the set of D ∈ U such A:B ::C:D. An analogical equa-
tion may have 0, 1 or several solutions, depending on the analogy.

For analogies on sentences, an analogy can be built at the string level (i.e.,
without taking into account linguistic knowledge neither on the lexical level nor
on the syntactic level) and it has been introduced for the purpose of machine
translation [4]. It is defined as follows, for A,B,C,D ∈ A∗:

A:B ::C:D if #occ(c,B) − #occ(c,A) = #occ(c,D) − #occ(c, C),
(for any c ∈ A)

distLCS(A,B) = distLCS(C,D) and distLCS(A,C) = distLCS(B,D)
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For example:

You don’t say! : He does not say it. :: You don’t know! : He does not know it.

Now, a quaternary relation R can be defined on A∗ that constitutes a
subrelation of this analogical relation: if R(A,B,C,D) then A:B ::C:D, for
A,B,C,D ∈ A∗. This relation is useful for the purpose of the presentation
of most examples in the paper as it appears to be at the same time simpler
to apprehend and sufficient for many examples. It is also used in the retrieval
procedure to make it more efficient. For A,B,C,D ∈ A∗, R(A,B,C,D) holds if
there exists a substring S common to A and C and a substring T common to B
and D such that B (resp., D) is obtained by a string replacement of S with T
in A (resp., in C). Formally, R(A,B,C,D) if there exist S, T,X, Y,X ′, Y ′ ∈ A∗

such that A = XSY , B = XTY , C = X ′SY ′ and D = X ′TY ′. For example
(with the occurrences of S and T underlined),

if
∣
∣
∣
∣

A = Do you want some coffee? C = This coffee is hot!
B = Do you want some tea? D = This tea is hot!

then R(A,B,C,D) and, thus, A:B ::C:D.

It can be noted that R is not an analogical relation (it satisfies the first and
second postulates, but not the third one).

3 Goals of the TFC System

TFC is a CBR system that takes as input a sentence xtgt that is supposed to be
incorrect and gives as output a sentence ytgt with the following objective: ytgt

is a correction of xtgt at the language level. For a source case (xs, ys), xs is an
incorrect sentence and ys is a sentence obtained by correcting xs.

It is practical, in particular for further explanations, to consider special types
of cases, called SR cases (SR stands for String Replacement). An SR case (x, y)
is such that y is obtained by a single string replacement of a substring S of x
by a string T where S and T contain no space (i.e., the modification lies within
a single word). For example, (xs, ys) defined below is an SR source case (with
S = es and T = ε):

xs = They goes to the beach. ys = They go to the beach

The TFC case base in its current version contains only French sentences,
though most of the ideas developed in this paper can be considered in another
alphabetical language. Let A be the set of characters in such a language (letters,
letters with diacritics, punctuation marks, space, etc.). Therefore, every problem
x and every solution y belongs to A∗, therefore P = S = A∗. It is noteworthy
that, in TFC, the problems and solutions belong to a common space (i.e., from
an algorithmic viewpoint, they have the same type), which is not the general
case in CBR.
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4 Case Authoring

Since TFC, at least in the version presented in this paper, is a knowledge-light
CBR system, the acquisition of its case base is crucial. For this purpose, two
approaches have been considered: a manual one and a semi-automatic one.

The manual case authoring approach has consisted in searching for documents
about French grammar, frequent mistakes, etc., and in defining cases reflecting
such errors. For example, in English, the case (xs, ys) can be found with:2

x
s = You like dance with me? y

s = Would you like to dance with me?

The irregular forms in the language can be used to define cases. For example,
the verb to meet is irregular: its preterit is met (and not meeted), hence the
following case:

xs = He meeted her yesterday. ys = He met her yesterday.

Then, other cases were added by various contributors. The case base built that
way is rather small (300 cases at the time of submission of this article), and the
source cases are chosen to cover frequent common mistakes. Of course, when
TFC fails to correctly solve a problem, the last steps of the CBR process (repair
and storage) leads to an enrichment of the case base. This aspect of the system
has not been studied in depth yet, but it is operational.

The semi-automatic case authoring approach uses WiCoPaCo [3] which is a
collection of sentence (or text) pairs (x, y) ∈ A∗2 taken from the Wikipedia
French pages, where x is a sentence written by an editor and y is a sentence
replacing it (in a next edition of the same article). WiCoPaCo comes with some
markups explaining some of the changes.

However, using WiCoPaCo as such for a TFC case base has appeared to
be inefficient. Indeed, a WiCoPaCo pair (x, y) is not necessarily a valid case,
for example, y may contain an error, or y corrects x at a semantic level, or
corresponds to an information update. Since WiCoPaCo contains hundreds of
thousands pairs, a manual selection of such pairs that could be used as TFC
cases would be too tedious for the project. Some automatic filters have been
defined for deleting some irrelevant pairs, but they are not currently sufficient
to obtain a TFC case base with a low level of noise. That is why, for this work,
it has been decided to use a small case base containing 300 well-formed cases
collected from several persons whose native language is French.

2 https://www.engvid.com/english-resource/50-common-grammar-mistakes-in-
english/.

https://www.engvid.com/english-resource/50-common-grammar-mistakes-in-english/
https://www.engvid.com/english-resource/50-common-grammar-mistakes-in-english/
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5 Adaptation

A single case adaptation is used in TFC. Consider first an example of adaptation
problem, with (xs, ys) the retrieved case and xtgt, the problem to be solved:

x
s = David would not eating his soup. y

s = David would not eat his soup.

x
tgt = Cindy will going to Nancy.

In this example, the error corrected in (xs, ys) corresponds to the inappropri-
ate -ing form at the end of the verb. The same error occurs in xtgt, thus the
transformation from xs to ys can be suggested as correction:

ytgt = Cindy will go to Nancy.

Therefore, with the analogy on strings defined in Sect. 2.3, ytgt is a solution of
the following analogical equation with unknown y:

xs:ys ::xtgt:y (1)

More generally, the adaptation of TFC consists in solving the analogical
Eq. (1). When this equation has no solution, adaptation fails. When it has several
solutions, TFC’s adaptation proposes all of them if there is no way to make a
preference among them: this issue is considered again in the next section.

In practice, if (xs, ys) is an SR source case, solving xs:ys ::xtgt:y consists, in
such a situation, in solving R(xs, ys, xtgt, y). This occurs for the above example:
ytgt is obtained by substituting ing with ε in xtgt.

Sometimes, there are several retrieved cases, when the retrieval procedure
cannot distinguish them. When this occurs, the adaptation is performed on all
these cases and this provides a multiset of solutions. The final result is an element
of this multiset with the highest multiplicity.

What makes this adaptation rather simple to define is first that it is based
on a previous work on analogy on strings [4] and second the fact that the prob-
lem and solution spaces coincide for this application. Moreover, although it is
defined at a character level (since it only relies on the analogical relation defined
on strings, without any linguistic knowledge), it gives results that are quite con-
vincing for the correction of sentences, provided that an appropriate correction
case exists in the case base, which is the role of the case authoring process, and
provided that such an appropriate case has been selected, which is the role of
case retrieval.

6 Retrieval

Retrieval aims at selecting a source case to be adapted. Given a target prob-
lem xtgt and two source cases (x1, y1) and (x2, y2), which one, if any, should be
preferred? Following the principle of adaptation-guided retrieval (AGR [9]), it
should be a case that is adaptable (i.e., the adaptation function returns a candi-
date solution to xtgt, given this case and xtgt). For comparing two cases (x1, y1)
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and (x2, y2) that both can be adapted in candidate solutions y1,tgt and y2,tgt

to the target problem xtgt, an ideal retrieval function will choose (x1, y1) if the
candidate solution y1,tgt is better than y2,tgt (e.g., y1,tgt is a correct solution of
xtgt while y2,tgt is not).

This principle of AGR adapted to the retrieval problem of TFC is considered
via an example. Then, the description of the knowledge-light retrieval approach
of the first version of TFC is presented.

6.1 Example

Consider the following target problem:

xtgt = George has read this books.

and the three source cases (xs, ys) (s ∈ {1, 2, 3}):

x1 = George have read this book. y1 = George has read this book.
x2 = You has read this book. y2 = You have read this book.
x3 = Put it on the tables, please. y3 = Put it on the table, please.

Now, consider someone who is agnostic to the task to be performed by the
TFC system and who does not know the solutions y1, y2 and y3. This person
is asked to rank x1, x2 and x3 according to their similarity to xtgt, without
any precision on what “similar” means. It is likely that he/she would give the
ranking x1 ≺xtgt x2 ≺xtgt x3 where ≺xtgt is read “is strictly more similar to xtgt

than”. This ranking is consistent with the one that is induced by, e.g., the LCS
distance function:

distLCS(x1, xtgt) < distLCS(x2, xtgt) < distLCS(x3, xtgt)

Now, it is argued that the ranking of these three cases with respect to the
target problem should be the reverse order, according to the defined adaptation
process and to the English language correctness.

First, the source case (x1, y1) is simply not adaptable to solve xtgt:
the analogical equation x1:y1 ::xtgt:y has no solution. Indeed, if y was a
solution, #occ(’v’, y1) − #occ(’v’, x1) = #occ(’v’, y) − #occ(’v’, xtgt), thus
#occ(’v’, y) = 0 − 1 + 0 = −1, which is not possible.

The source case (x2, y2) is adaptable to solve xtgt: the analogical equation
x2:y2 ::xtgt:y is solvable and its solutions are:

y = George have read this books. y = George has read thive books.

and y = George has read this bookve.

Unfortunately, both solutions are incorrect solutions of xtgt, since these two
sentences violate the English language.
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The source case (x3, y3) is also adaptable to solve xtgt, thus, according to the
adaptation-guided principle, both (x2, y2) and (x3, y3) are preferred to (x1, y1),
given the target problem xtgt. The solutions of x3:y3 ::xtgt:y are:

y = George ha read this books. y = George has read thi books.
and y = George has read this book.

The third solution is a correct correction of xtgt, therefore (x3, y3) is preferred
to (x2, y2) according to an a posteriori help from a domain expert (i.e., someone
who can say which sentence is correct in English and which is not). The design
of retrieval aims at finding a way of predicting which cases are the most likely
to provide a correct solution to xtgt.

What this third example shows is that, even with a retrieved case such that
adaptation gives a correct solution, it may give other solutions that are not:
among the 3 values for y proposed above, only the third one is correct. Therefore,
an interesting byproduct of retrieval would be to have some relevant information
in order to discriminate among these solutions.

With a sufficient level in English linguistic knowledge, retrieval could consist
in finding the error in xtgt and then in finding a source case that represents
the correction of the same error (at the character level). Now, a challenge is to
design a retrieval process that uses no linguistic knowledge. The retrieval process
presented in the next section is a first attempt to meet this challenge.

6.2 Proposed Retrieval Procedure

The retrieval procedure described below is knowledge-light. In particular, it uses
no linguistic knowledge about French, except for the fact that sentences can be
split in words.

The filter phase aims at discarding cases that are not adaptable to solve the
target problem xtgt such as the case (x1, y1) in the example. More generally,
a source case (xs, ys) is filtered if the analogical equation xs:ys ::xtgt:y has no
solution, which can be easily tested.

This filter can be efficiently implemented by considering necessary conditions
and sufficient conditions for (xs, ys) to be adaptable to solve xtgt (i.e., the ana-
logical equation xs:ys ::xtgt:y has at least one solution). If a necessary condition
does not hold, then the case is not adaptable and must be filtered. If a suffi-
cient condition holds, then the case is adaptable (no more testing is needed at
this phase of retrieval for this case). Examples of such conditions are presented
below.

A necessary condition based on the definition of the analogy on strings is
related to the character count. Indeed, if y is a solution of xs:ys ::xtgt:y, then,
for every character c,

#occ(c, y) = #occ(c, xtgt)
︸ ︷︷ ︸

1©
+ #occ(c, ys) − #occ(c, xs)

︸ ︷︷ ︸

2©
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So, #occ(c, y) can be computed fast, since 1© depends only on the target problem
and 2© depends only on the source case and, thus, can be computed offline. Now,
the number of occurrences of a character in a string has to be nonnegative, thus,
if the value computed for #occ(c, y) is negative, then (xs, ys) is not adaptable
to solve xtgt and can be filtered. It is noteworthy that only the characters c
occurring in xs, ys and/or xtgt need to be taken into account.

A sufficient condition is related to R, the subrelation of the analogical rela-
tion introduced in the preliminaries. Given a source case (xs, ys), there exist
ordered pairs of strings (S, T ) such that ys is obtained by substring replacement
of S with T in xtgt (since (S, T ) = (xs, ys) is such a pair, the existence of such
pairs is ensured). Now, a pair of strings (S, T ) with S of minimal length is associ-
ated to (xs, ys) in an offline process. The three cases (xs, ys) (s ∈ {1, 2, 3}) intro-
duced in the previous section are used below to illustrate the procedure. With
the cases (xs, ys) of the example developed in the previous section (s ∈ {1, 2, 3}):

for s = 1, (S, T ) = (ve, s) for s = 2, (S, T ) = (s, ve) for s = 3, (S, T ) = (s, ε)

Since S = s is a substring of xtgt, both (x2, y2) and (x3, y3) are adaptable to
solve xtgt. This does not hold for (x1, y1): S = ve is not a substring of xtgt.

The Ranking Phase is based on a preference relation between two source
cases that are adaptable in a candidate solution of xtgt. Let (xs, ys) be a source
case that has not been filtered. This involves that the replacements on xs to
obtain ys can be applied on xtgt (at one or several place(s)).

For the sake of simplicity of the explanations, let us assume that the transfor-
mation from xs to ys corresponds to a substring replacement of a string S by a
string T (e.g., (xs, ys) is an SR source case) and that S is also a substring of xtgt

(that is R(xs, ys, xtgt, y) is solvable). Now, let is be the position of the substring
S in xs such that the replacement S with T in xs is made at position is and
let itgt be a position of the substring S in xtgt (S may occur as a substring in
several positions in xtgt, so there are potentially several itgt’s). Case ranking is
based on a value score(S, xs, is, xtgt, itgt) ≥ 0, the higher this value is, the more
preferred is the source case (xs, ys) for adapting xtgt by substituting S with T
at position i. The definition of this score is based on a general assumption using
the notion of context.

In the following, this notion is explained, the assumption is presented, the
way the score is computed based on this assumption and in the knowledge-light
framework is presented and, finally, some future studies are discussed on how it
can be defined using linguistic knowledge about French. But first, an example is
introduced to illustrate these notions:

xs = You do not liked to eat beans. ys = You do not like to eat beans.

xtgt = We do wanted to go!

thus S = d, T = ε, is = 15 and itgt ∈ {3, 11}

(a position i in a string x being represented by a value i ∈ {0, 1, . . . , |x| − 1}).
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For a sentence x having a substring S at position i, the context of (S, i) in x
gathers pieces of information (characters, words, etc.) “around” S (“the” S at
position i). With this vague definition, the whole sentence x participates to the
context of (S, i), but the idea is that pieces of information “close” to S have a
greater importance in the context. Following this idea, score(S, xs, is, xtgt, itgt)
measures the matching between the context of (S, is) in xs and the context of
(S, itgt) in xtgt, hence the following general assumption (the underlined terms
are the ones that have to be instantiated in an implementation):

The closer a linguistic entity of xtgt is to the substring S at position i,
the more its similarity to a matching linguistic entity of xs contributes to
score(S, xs, is, xtgt, itgt).

This assumption is applied as follows for our current knowledge-light app-
roach to retrieval:

– The linguistic entities that are considered are words.
– The closeness between such entities is defined by the number of words that

separate the word in which S occurs (0 for this word, 1 for its neighbors in
the sentence, 2 for the neighbors of the neighbors, etc.). For example, for xtgt,
the closest word is wanted, the second closest words are do and to, etc.

– The similarity between two linguistic entities is binary: if the two words are
equal, their similarity measure is 1, otherwise, it is 0.

Only a short description of the score computing is given here. It is computed
on the basis on a best match between the sentences xs and xtgt. Assuming this
best match is, for the example (with itgt = 11):

You do not liked to eat beans .

We do wanted to go !
01� 1r2� 2r 3r

Then, score(S, xs, is, xtgt, itgt) is (with the matching lines indicated below):

0 × α0

︸ ︷︷ ︸

0

+ 1 × α1 × β
︸ ︷︷ ︸

1�

+ 1 × α1

︸ ︷︷ ︸

1r

+ 0 × α2 × β
︸ ︷︷ ︸

2�

+ 0 × α2

︸ ︷︷ ︸

2r

+ 0 × α3 × β
︸ ︷︷ ︸

3r

where α is a penalty for the distance to the word containing S and β is a
mismatch penalty, when there is a need of words insertions, which corresponds
to slanted lines in the matching (in the experiments, α = β = 0.5). The score
is computed for every position itgt of S in xtgt and its complexity in the worst
case is in O(#w(xs)×#w(xtgt)) where #w(xs)(x) is the number of words in x.

In future studies, the computing of the score may take into account linguistic
knowledge:

– Various linguistic entities could be considered, such as word parts, words or
groups of words.
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– The closeness between such entities could be more accurately defined than
the mere proximity in the string. Indeed, syntactical dependency shows that
words that are distant in a sentence may have strong connections.

– The similarity between two linguistic entities could be gradual. The cosine
similarity between word representations obtained from any pre-trained word
embedding model will do it.

A Simple Modification of the Retrieval Procedure has been developed
after some preliminary tests. It consists simply in extending the substring S to
its two neighbor characters. For example, if xs = I does it. and ys = I do it.,
then S = oes and T = o (for the filter and ranking phases). This modification
has improved the result of the knowledge-light retrieval procedure presented
above and has also highly increased the speed of retrieval, especially for cases
for which the replay consists only in adding a substring (i.e., in the previous
version, S = ε).

7 Evaluation

TFC uses a knowledge-light approach, i.e. working only on strings and without
language knowledge. This simple approach can be seen as a baseline for further
more sophisticated knowledge-based systems. So, the goal of the evaluation is to
establish the baseline.

The experiment consists in solving random problems using a case base. For
that, we use an initial CB containing 300 cases to build the set of problems,
called the test base and denoted by TB and smallest case bases, denoted by CBn,
where n is the size of the case base. The number of problems to be solved has
been fixed to 100 and the problems composing TB have been chosen randomly
from CB. Four sizes of case base have been used, with n ∈ {50, 100, 150, 200}, to
study the impact of the case base in the CBR system. The case bases CBn are
generated randomly from CB \ TB, with CB50 ⊂ CB100 ⊂ CB150 ⊂ CB200.

TFC is evaluated according to three measures: the answer rate, the answer
precision and the correct answer rate. Let ntp be the number of target problems
posed to the system, na be the number of (correct or incorrect) answers and
nca be the number of correct answers. Answer rate is defined as the average of
the ratios na/ntp, the precision is defined as the average of the ratios nca/na,
and the correct answer rate is defined as the average of the ratios nca/ntp. The
averages of the three measures are computed on 100 runs, one run consisting in
solving all the problems of TB using all CBn.

Table 1 presents the three measures for the different sizes of CB. The results
show that, even if all measures increase wrt |CB|, the precision and the correct
answer rate remain weak, e.g. a precision of 18.1% means that when the system
returns an answer, this answer if false in more than four times out of five, which is
not a surprising result. Another expected result is that the answer rate increases
with the case base size. With a small case base, the system is only able to solve
a few problems (59.2% of them for CB50). The reason is that no similar case can
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Table 1. Answer rate, answer precision and correct answer rate for the different sizes
of CB.

|CB| 50 100 150 200

Answer rate 59.2% 80.4% 89.7% 93.8%

Precision 15.9% 16.2% 17.2% 18.1%

Correct answer rate 9.4% 13.0% 15.4% 17.0%

be found because none of the case of CBn addresses the error of xtgt. By adding
more source cases in CBn, the probability to have, in CBn, an error similar to the
one of xtgt increases and the system is able to provide more answers.

However, studying the error causes shows that wrong substitutions are
applied, coming from a source case (the most similar to xtgt from a string point
of view) which is not a good case for solving xtgt, i.e. the way the xs is corrected
into ys is not suitable to solve xtgt. So, the crucial issue is the retrieval process
in order to retrieve a source case whose correction is suitable to the context of
the target case.

8 Discussion

For many CBR systems, the retrieval phase design precedes the adaptation phase
design. Then, this latter has to deal with the retrieved case to solve the target
problem. This makes sense in many applications, for which the principle “similar
problems have similar solutions” holds, where similarity between problems is
defined by some similarity measure (or distance function) suited to the problem
representation language and similarity between solutions reflects the easiness
of adaptation. This is true in particular when adaptation by copy gives good
results, or when adaptation consists in minor adjustments from ys to ytgt.

By contrast, for this first version of TFC, the reverse took place: the adap-
tation phase was designed before the retrieval phase. Indeed, an adaptation app-
roach at the character level can be easily specified based on the idea of string
replacement (which amounts to solve an equation R(xs, ys, xtgt, x)) and then
improved thanks to the analogy on strings defined in [4] (which applies when
several string replacements at non connected places of the target problem string
are needed). Therefore, for TFC, the main issue is how retrieval has to deal
with a given adaptation procedure. This can be considered at the light of two
previous lines of studies in CBR.

The principle of adaptation-guided retrieval (AGR) already mentioned above
is useful here. Indeed, AGR stands that a retrieved case has to be adaptable
to solve xtgt, which corresponds to the filter phase of the retrieval procedure
presented in Sect. 6.

In early research on case-based planning (called planning by analogy at that
time), the distinction between transformational and generative adaptations has
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been introduced [2] (actually, they were called “transformational and deriva-
tional analogies”, but have been renamed in the wider scope of CBR [12]).
Transformational adaptation aims at modifying ys in ytgt on the basis of the
differences between xs and xtgt. Generative adaptation consists in analyzing the
transformation τ : xs �→ ys and then in replaying τ on xtgt (which may involve
some modifications if τ is not applicable as such). TFC adaptation is a genera-
tive adaptation: τ is given by the string pair (S, T ) such that ys is obtained by
substituting S with T in xs and replay consists in making the same substitution
on xtgt.

This S can be linked to the notion of footprint of an initial state in a case-
based planner such as Prodigy/analogy [11], i.e., the part of the initial state of the
planning problem xs that “plays” a role in the plan. Therefore, if S denotes also
the footprint associated to a case (xs, ys) in Prodigy/analogy then the condition
“The target problem contains S” is, for both systems, a necessary and sufficient
condition for the case (xs, ys) be replayable as such on xtgt to get a solution ytgt

(hence the filter phase of TFC’s retrieval). A difference between these systems
is that Prodigy/analogy has a complete knowledge for determining whether a
solution y solves a problem x whereas TFC has not. Thus, in Prodigy/analogy,
the above condition entails that ytgt is a correct plan whereas in TFC this
condition is only a necessary condition for such a correctness, not a sufficient
one. This justifies the use of the notion of the context of S in the source and
target problems, with the idea that the more the contexts are similar, the more
likely the replay gives a correct solution to xtgt.

The idea of footprints has also been adapted for the system Resyn/CBR
which aims at proposing synthesis plans in organic chemistry [6] and uses a
hierarchical organization of state substructures (graphs in this application) to
speed-up the process: such a hierarchical organization could also be used for
TFC for the same purpose, but has not been implemented yet.

9 Conclusion

This paper has presented a challenge for the CBR community: how can correction
of sentences be treated by CBR?

A first version of the The French Correction has been implemented in order
to address this challenge for French sentences. A particularity of this application
is that a first version of the adaptation process has appeared to be much simpler
to design than the one of retrieval and also that designing adaptation before
retrieval has appeared to be the right thing to do. Indeed, the design of retrieval
without the knowledge of how the adaptation works has appeared to be a dead-
end, hence the necessity of an adaptation-guided approach to retrieval.

Now, the knowledge-light approach to retrieval with a rather small case base
that has been implemented gives weak results, which was not unexpected and
provides a baseline for future versions. Therefore, two main directions of work
for next versions of TFC can be envisaged. The first one consists in obtaining
a large case base: this constitutes an ongoing work with the exploitation of
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the WiCoPaCo collection (cf. Sect. 4). The second one aims at designing more
sophisticated inference engines. For this purpose, it is expected that the use of
linguistic knowledge about French will improve the results with respect to the
baseline defined in this first version (see Sect. 6.2). For this research directions,
the question raised is what additional cases and additional pieces of linguistic
knowledge will have a higher impact on the increase of TFC competence. For
this purpose, the research presented in [10], that addresses a different type of
case-based sentence modification and uses POS-tagging should be inspiring.

The first application of the analogy on strings defined in [4] is case-based
machine translation: a case is a pair (xs, ys), where xs is a sentence in a natural
language and ys is a translation of xs in another natural language. The approach
proposed in [4] and studied in [5] at the light of the CBR methodology consists
first in finding 3 source cases (xa, ya), (xb, yb) and (xc, yc) such that xa:xb ::xc:xtgt

holds and then in solving the analogical equation ya:yb ::yc:y: a solution y of this
equation is a candidate solution ytgt of xtgt. Now, this idea could be reused for
TFC: this would mean that the problems would be sentences in an “incorrect
French” language and the solutions would be sentences in a “correct French”
language.
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Abstract. The ability of case-based reasoning systems to deal with new
problems depends on the effectiveness of their case adaptation. One app-
roach to increasing flexibility for novel problems is to perform adapta-
tions by using adaptation paths—chains of adaptations—to address dif-
ferences beyond those addressable by applying single adaptation rules. A
recent approach to adaptation path generation, ROAD, proposes build-
ing adaptation paths using heuristic search guided by similarity, with a
“reset” mechanism for recovering when similarity fails to predict adapt-
ability. The ROAD approach is beneficial when similarity and adaptabil-
ity are well aligned, but can make poor choices when similarity and
adaptability diverge, increasing adaptation cost. This paper presents
methods for increasing adaptation efficiency by maintenance exploit-
ing information from adaptation path generation. The methods improve
the similarity measure to better reflect adaptability and condense the
adaptation rule set. Experimental evaluation supports the benefits for
improving adaptation efficiency while preserving accuracy.

Keywords: Adaptation paths · Adaptation rule maintenance · Case
adaptation · Case-based reasoning · Machine learning · Similarity
maintenance

1 Introduction

Case-based Reasoning (CBR) solves new problems by adapting previous solu-
tions to fit new circumstances (e.g., [16]). The case adaptation process is critical
to the flexibility of CBR systems, enabling stored cases to cover a range of new
problems. Case adaptation is often rule-guided, based on a set of adaptation
rules designed to cover each possible class of difference between old and new
problems in a single step (e.g., [6]). However, relying on one-step adaptations
may require a large set of adaptation rules, and it may be hard to anticipate
which rules will be needed. The knowledge acquisition problem for case adap-
tation is a classic problem for CBR (e.g., [7]). Covering problems with one-step
adaptation may be especially problematic for sparse case bases and domains
with highly novel problems. This has motivated research on path-based case
adaptation using sequences of adaptation rules [2,4,14].
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Making path-based adaptation effective depends on addressing two issues.
The first is selecting the sequence of adaptation rules to apply, given that adapta-
tion rules have varying reliability and that longer paths may be prone to quality
degradation [13]. The second is controlling the computational cost of search-
ing through sequences of adaptation rules. The RObust ADaptation (ROAD)
[14] approach proposes addressing these problems by using heuristics to guide
a greedy search process exploring alternative adaptation paths. As adaptation
rules are applied, ROAD generates intermediate ghost cases [12], and extends
the path from ghost cases closest to the target, based on similarity distance.
This process aims to control adaptation path generation cost by finding short
paths rapidly. To reduce the risk of solution quality degradation, ROAD uses
a reset mechanism that is triggered when the expected reliability of a path
falls below a threshold or when two paths are found to be developing divergent
solutions. Previous experiments showed that ROAD can increase accuracy com-
pared to relying on single-step adaptations. This paper presents methods aimed
at increasing efficiency of the ROAD process.

The efficiency of similarity-based search with resetting depends on the simi-
larity measure being a good proxy for adaptability. However, the correspondence
between similarity and adaptability is not guaranteed [19]. When similarity dis-
tances diverge from true adaptation distances, a similarity-based adaptation
path may proceed through ghost cases that are not easily adaptable, resulting
in longer paths. This paper presents two maintenance methods that use infor-
mation from the ROAD adaptation process to improve future performance. The
first refines the system’s similarity measure, bringing it closer to reflecting true
adaptability. We call this Reset-Induced Similarity Adjustment (RISA). RISA
uses knowledge of the final path to determine which prior cases should have been
retrieved to minimize adaptation cost, and adjusts similarity criteria accordingly
to improve future retrievals. This can be seen as ongoing CBR system mainte-
nance [21] of similarity criteria, based on failures revealed by resetting. The RISA
approach can be applied to any similarity measure that supports adjusting dis-
tances between pairs of cases (e.g., based on a ranking loss function).

The second maintenance method compacts the set of adaptation rules. Espe-
cially with the use of large-scale automatic rule generation methods, large sets of
adaptation rules may be generated, making rule filtering potentially important
to CBR system performance [9]. Also, in path-based adaptation using heuris-
tic search, decreasing the number of rules to consider decreases the branching
factor—and consequently, the computational cost—of the search. To compact
the adaptation rule set, we propose Compatibility-Based Adaptation Rule Selec-
tion (CARS), which prioritizes adaptation rules for retention based on analysis
of pairwise compatibility of adaptation rules in adaptation paths.

Experimental results in this study support that RISA, in conjunction with a
local weighting scheme, can improve the similarity measure to produce shorter
adaptation paths requiring fewer resets. They also show that trimming the adap-
tation rule set with CARS can decrease resets and result in shorter adaptation
paths while maintaining comparable error rates.
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The paper begins by reviewing the ROAD adaptation approach. It then
presents the RISA algorithm and evaluation, followed by CARS and its eval-
uation. It closes by summarizing related work and discussing future directions.

2 The ROAD Adaptation Approach

Using adaptation paths is a promising way to increase adaptation flexibility, but
depends on effective methods to guide path generation. ROAD [14] generates
paths by similarity-guided greedy search and improves accuracy with a retrieval-
based method for resetting the starting points of problematic paths.

2.1 Generating Adaptation Paths By Similarity-Guided Search

ROAD solves problems by retrieving the case most similar to the current problem
and applying an adaptation path. It builds the path by greedy search, guided by
similarity distance to the target, with the goal of generating short paths. When
an adaptation rule is applied to a case, ROAD adapts both its solution and
problem description to generate a hypothetical case, called a “ghost case” [12].
The next adaptation rule is selected in the context of that ghost case. After
applications of adaptation rules to a case, the resulting ghost cases are compared
to the target case, and the adaptation rule leading to the ghost case most similar
to the target is used as the next adaptation step in the path. ROAD can pursue
multiple paths simultaneously. Paths are prioritized based on their length where
the shortest path (unless terminated) is developed first.

An adaptation path is a list containing the retrieved case, a sequence of ghost
cases generated by adaptation, the adaptation rules applied, and the target case.
The ROAD algorithm is described in detail in Leake and Ye [14].

To illustrate a use of path-based adaptation, we consider the problem of
generating a recipe for making buttermilk pancakes from available ingredients,
starting from a recipe for regular pancakes, when the agent has no buttermilk
available. A first adaptation would be to substitute buttermilk for regular milk
in the recipe, thus generating the ghost case of a recipe for buttermilk pancakes.
That ghost case is more similar to the target, but still differs, because it does not
satisfy the constraint to use available ingredients. However, it is possible to make
buttermilk by mixing milk and vinegar. Consequently, a second adaptation could
be applied to the ghost case, substituting milk and vinegar for the buttermilk.
This two-step adaptation path would result in a recipe matching the target.

2.2 Improving Accuracy By Path Resetting

For a similarity measure that perfectly captures adaptation distance—i.e, that
enables perfect adaptation-guided retrieval [19]—the initially retrieved source
case would always have the smallest adaptation distance to the target of all
cases in the case base. However, if the similarity measure does not perfectly
capture adaptability, another case might be easier to adapt than the retrieved
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case. As the adaptation path generation process generates new ghost cases, the
ghost cases may be near existing cases in the case base which are closer to the
target than the retrieved case in terms of adaptation distance. To recover, ROAD
“resets” the path to start from the nearby case by moving the head of the path to
its nearby case. The rationale for such resets is to increase accuracy, by starting
from a solution known to be correct, rather than relying on the solution of a
ghost case generated from a sequence of adaptations. The accuracy benefit has
been supported experimentally [14].

The resetting process is illustrated in Fig. 1. C0 and C1 are two cases in the
case base. Given a query Q, for which the solution case would be T , the source
case C0 is retrieved. C0 is closer to T than C1 according to the similarity measure
(indicated by the dashed arc indicating a radius of equal similarity values). As
adaptation rules are applied successively, ghost cases G1 and G2 are generated.
The ghost case G2 is found to be more similar to C1 than C0. In this situation,
ROAD resets the path to C1. This is expected to increase reliability, because C1’s
reliability is guaranteed (as it is a real case), while G2 is a ghost case produced
after adapting C0 twice. At this point, the path continues from C1 and yields
the ghost case G3, which is then adapted to T .

Fig. 1. Illustration of path resetting, from Leake and Ye [14]

3 Reset-Induced Similarity Adjustment

The quality of a CBR system’s retrieval plays a critical role in system perfor-
mance. Retrieval is generally based on similarity, which is used as a proxy for
adaptability: the goal of retrieval is to retrieve the most adaptable cases [19].
With a perfect similarity measure, ROAD would never need to reset a path.
Consequently, when resets are needed, it reveals deficiencies in the similarity
measure. These are opportunities for similarity learning.

RISA uses generated adaptation paths to guide similarity learning. The goal
of learning is to adjust the similarity measure so that the case to which the path
was reset will become the initial retrieval in the future, enabling adaptation
to be performed with fewer steps and decreasing the processing cost of future
adaptations. The example in Fig. 1 illustrates the potential benefit of ROAD for
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adaptation path length. In the figure, ROAD would generate the same solution
regardless of whether it retrieves C1 or C0 in its initial retrieval. However, if the
system started by retrieving C1, it would avoid the effort of building the path
from C0 to C1.

3.1 The Reset-Induced Similarity Adjustment Algorithm

The RISA algorithm is shown in Algorithm 1. RISA takes as input (1) infor-
mation recorded about resets during adaptation, and (2) a procedure to adjust
feature weightings for similarity based on the stored information.

Information Recorded About Resets: To support RISA, the ROAD implemen-
tation was augmented with instrumentation to record its reset behaviors. Each
time the system resets a path, it also stores a path segment record of the form
(Cstart, Creset, T ) where Cstart is the case most recently retrieved prior to the
reset, Creset is the case retrieved by adapting and resetting from Cstart, and T
is the target case. For the first reset record for a path, Cstart is the case the
CBR system retrieved for the original problem. In each subsequent path seg-
ment record that is generated during resetting, Cstart is the case retrieved for
the previous reset—from which the path is continuing—and Creset is the case to
which it is reset.

There are two situations in which a path segment record may not include
a reset: When the path from the initially retrieved case can be pursued to the
target without resetting, and when the path from a reset case can be pursued to
the target without further resetting. In those cases the record uses null for Creset.
The presence of Creset indicates a potential defect in the similarity measure. One
strategy for addressing similarity defects, pursued in this paper and elsewhere
[3], is to adjust feature weights. Other issues such as insufficient vocabulary
knowledge and noisy cases might also lead to resets, but are beyond the scope
of this paper.

Adjusting Feature Weights: For a record (Cstart, Creset, T ) produced by a path
reset, RISA adjusts similarity criteria to increase the similarity of Creset and T
(pulling them closer), and to decrease the similarity of Cstart and T (pushing
them away from each other). As a result, the case retrieval process is more likely
to retrieve Creset directly for future problems similar to T .

A potential issue is that this adjustment may have ramifications for other
retrievals, possibly affecting situations in which prior retrievals were correct.
Consequently, for a (Cstart, null, T ) record produced by a path not involving
reset, RISA pulls Cstart and T closer, to help preserve the current correct
retrieval. The goal is to preserve the ability to generate high quality adaptation
paths for similar starting and ending points in the updated similarity measure.

In general, there are many ways in which the push/pull effect could be
achieved. For example, a feature weight updating policy can adjust the similar-
ity distance between two cases. In our testbed RISA system for evaluation, we
follow the approach of Bonzana, Cunningham and Smyth’s ISAC [3]. To pull two
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Algorithm 1. Reset-Induced Similarity Adjustment
Input:
Paths: records of paths (Cstart, Creset, T ). If the path is never reset Creset = null
SM: similarity measure
Pull(SM,A,B): Updating procedure for SM that pulls A and B closer
Push(SM,A,B): Updating procedure for SM that pushes A and B away
Output:
SM: the modified similarity measure

for all (Cstart, Creset, T ) in Paths do
if Creset = null then

Pull(SM,Cstart, T )
else

Push(SM,Cstart, T )
Pull(SM,Creset, T )

return SM

cases closer, ISAC increases weightings of their matching features and decreases
weightings of differing features. Similarity scores between the two cases are thus
increased. Similarly, to push two cases away from each other, ISAC decreases
weightings of matching features and increases weightings of unmatching features.
ISAC adjusts feature weightings using the update formula:

wi(t + 1) = wi(t) ± δ ∗ Fc

Kc
, (1)

where wi(t) is the i-th feature weighting at time step t. δ is a fixed value. Fc

is the number of times the case has been “falsely retrieved”—retrieved when
another case would have been more suitable—and Kc is the number of times the
case has been successfully retrieved. In the following evaluation, we apply this
update procedure in ROAD, with failed retrievals corresponding to retrievals
prompting a reset, and successful retrievals those for which no reset was needed.

3.2 Evaluation of RISA

The evaluation of RISA tested the effect of its similarity adjustment on adap-
tation efficiency and solution accuracy. Adaptation efficiency was measured by
the ability to generate shorter adaptation paths and to decrease the number of
resets required during adaptation. Solution accuracy was measured by relative
error for a numerical prediction task.

The criteria for adaptation efficiency directly measure the ability of the sys-
tem to retrieve adaptable cases; we expected RISA to increase the system’s abil-
ity to do so. We did not expect a strong effect on accuracy, but sought to observe
whether the decreased path length brought accuracy benefits. The experiments
tested RISA for two alternative similarity schemes: Global weighting and local
weighting. Because RISA’s feature weight adjustments could have unexpected
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side-effects on retrievals of distant cases when the adjusted weights are global,
we expected better performance for local weightings.

Experimental Design

Task Domain: The evaluation task was automobile price prediction, using the
Kaggle automobile dataset [10]. The first two features were removed because
they relate to insurance risk. Cases with missing features were removed as well,
leaving 193 cases, each with 13 numeric and 10 nominal features in addition
to price. Because the need for adaptation paths and difficulty of adaptation
are affected by case-base sparsity, the experiments simulated varying levels of
sparsity by removing the closest N cases to the target case before each trial, for
varying N . For additional discussion of that process, see Leake and Ye [14].

Similarity Measure: The similarity between two cases is a weighted sum of fea-
ture similarity, with each feature weighted by either global or local weighting.
Similarity of nominal features is 1 if they are identical and 0 otherwise; similarity
between numerical features is their absolute difference normalized into [0, 1]. All
feature weights were initialized to the same value.

Global vs. Local Similarity: We test the effect of RISA for two feature weighting
methods: (1) Global weighting relies on a single set of feature weights applied
for all similarity comparisons; (2) Instance-specific weighting allows each case to
have its own set of feature weightings, used for comparisons to that case [1,3,5].

Adaptation Rules: Adaptation rules were generated automatically from the case
base using the case difference heuristic (CDH) approach [7]. This approach com-
pares pairs of cases and generates rules that apply when a retrieved case and
target case have similar problem differences, and adjusts the solution of the
retrieved case according to the solution difference in the case pair from which
the rule was learned. The process used here follows the algorithm in Leake and
Schack [12]. The rule set generated depends on following parameters:

1. Rule Count: The number of rules to generate.
2. Rule Specificity: Rule specificity is determined by the number of feature

differences to record in the rules. For example, rspec = 0.1 if 10% of all feature
differences between two cases are included in the rule. Smaller rspec values
result in rules that are more generally applicable but less accurate, because
their antecedents take into account fewer features.

3. Rule Generating Distance: The distance between pairs of cases generating
rules. For example, if ruleGenDist = 0.1, rules are generated from cases
whose difference is less than 10% of the maximum possible difference. A small
ruleGenDist value leads to rules covering only small inter-case differences.

A set of 300 rules is generated from pairs of random cases (ruleGenDist =
1.0), using half of the feature differences (rspec = 0.5). These configuration
parameters were chosen based on a simple preliminary experiment to identify
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rule characteristics for which path lengths were high and increased efficiency
would be most useful. In every run of the preliminary experiments, the closest 150
stored cases were removed around the query case to increase the need for longer
paths. The average length of full paths and the average length of the paths after
their last resets are recorded. The difference between the two measures shows
the potential saving in efficiency: If the last reset case were retrieved directly,
the system would avoid building the path from the original source case to the
last reset case. The preliminary experiment used four rule sets of 300 rules. As
shown in Table 1, rule set #1 has the longest average length and the biggest
proportional benefit, so was chosen as the testbed rule set.

Table 1. Rule set configurations and corresponding path lengths

# Rule specificity Rule Gen Dist Avg Path Len Avg Path Len
after Last Reset

1 0.5 1.0 6.523 2.208

2 1.0 1.0 2.476 1.079

3 1.0 0.2 1.992 0.830

4 0.8 0.2 2.111 0.974

ROAD Configuration for Experiments: All experiments are based on adaptation
path generation by the ROAD system, described in Leake and Ye [14]. The per-
formance of ROAD depends on multiple parameters. The test version of ROAD
had the following configurations: (1) Multiple adaptation paths are generated
simultaneously (at most 5 paths); (2) Maximum path length is 10; (3) Paths are
reset when reliability decays below a threshold or when two paths disagree on
the solutions.

Experimental Results

Effect of RISA with Global Weighting: Using every case in the case base as a
target, by 10-fold cross validation, Tables 2 and 4 show that the effect of RISA
with global weighting consistently decreases average path length and the number
of resets. As shown, most differences are significant (p < 0.05).

Table 3 shows the effect of RISA with global weights on the average relative
error. After RISA, the effect on error is mixed. The rates tend to become worse,
but the differences are not significant. We hypothesize that this is due to the
coarse-grained nature of updating weights for global weighting. Updating global
weighting influences the similarities between all cases, which can have adverse
effects on similarities for cases other than those prompting the updates. Thus
with global weighting, RISA decreases path lengths as desired, but with possible
degradation of accuracy.
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Table 2. Effect of RISA on path length under global weighting

Number of cases removed 150 125 100 75 50 25

Before RISA Average path length 6.975 6.687 6.204 6.101 6.064 5.431

Sd of path length 1.670 1.682 1.666 1.683 1.688 1.663

After RISA Average path length 6.581 6.572 5.850 5.548 5.651 5.195

Sd of path length 1.671 1.687 1.620 1.643 1.648 1.666

P value .021 .505 .035 .001 .015 .17

Table 3. Effect of RISA on error under global weighting

Number of cases removed 150 125 100 75 50 25

Before RISA Average error 0.481 0.461 0.388 0.410 0.282 0.275

Sd of error 0.816 0.814 0.724 0.890 0.544 0.527

After RISA Average error 0.465 0.452 0.406 0.419 0.319 0.345

Sd of error 0.734 0.799 0.848 0.868 0.672 0.747

P value .83 .92 .82 .92 .55 .29

Effect of RISA with Instance-Specific Weighting: To address the issue of side-
effects for adaptation, we tested RISA for local weighting. With local weighting,
updating the feature weighting for a case only influences the similarities between
this case and other cases, but not the similarities among other cases.

Tables 6 and 7 show the effects of RISA on efficiency in the instance-specific
weighting configuration. In all runs, the number of resets and average path length
consistently drop. Most path length results are significant, while the change in
error is statistically insignificant, as shown in Table 5.

4 Compatibility-Based Adaptation Rule Selection

Commonly, adaptation rules are assumed to be independent, and selected with-
out regard for interactions with other rules. However, it is well known that rules
may not capture all aspects of a situation, resulting in uncertain outcomes,
potentially resulting in degradation of adaptation results [13]. An adaptation
path might further compound the cumulative error by applying multiple rules.
In response, we propose a method for using information about the interactions
of adaptation rules to learn which adaptation rules to favor.

Table 4. Effect of RISA on resets under global weighting

Number of cases removed 150 125 100 75 50 25

Before RISA Total number of resets 221 261 224 225 248 160

After RISA Total number of resets 177 248 202 182 196 145
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Table 5. Effect of RISA on the error under Instance-Specific Weighting

Number of cases removed 150 125 100 75 50 25

Before RISA Average error 0.438 0.381 0.430 0.410 0.340 0.293

Sd of error 0.691 0.617 0.835 0.832 0.683 0.529

After RISA Average error 0.451 0.393 0.372 0.410 0.321 0.265

Sd of error 0.709 0.631 0.673 0.828 0.700 0.501

P Value .85 .85 .45 .99 .78 .60

Table 6. Effect of RISA on resets under Instance-Specific Weighting

Number of cases removed 150 125 100 75 50 25

Before RISA Total number of resets 296 261 254 232 233 181

After RISA Total number of resets 261 238 237 201 219 160

Given a case base and an adaptation rule set, it is possible to estimate reli-
ability of adaptation rules by building paths with resetting disabled, and then
comparing the final solution from the path with the actual solution of the near-
est neighbor. The path’s error can then be used to represent the reliability of
the rules involved. This is the approach of CARS.

4.1 Compatibility-Based Adaptation Rule Selection Algorithm

Algorithm 2 shows the process that CARS uses to assess rule compatibility. It
computes a rule compatibility matrix representing the compatibility between
every pair of rules, calculated from a set of adaptation paths of length 2, gener-
ated based on test adaptations of a selected set of cases. This set of cases could
be the entire case base or a subset (for efficiency).

Given rcount rules, the compatibility matrix has dimension rcount×rcount.
The entry (i, j) in the matrix records that rulei and rulej are compatible if
rulei and rulej can be applied in sequence to a case. If adaptation rules are
commutative (e.g., if each rule is multiplying a numerical solution value by a
feature difference in a single dimension), entry (i, j) is equal to entry (j, i) and

Table 7. Effect of RISA on path length under Instance-Specific Weighting

Number of cases removed 150 125 100 75 50 25

Before RISA Average path length 7.154 6.712 6.502 6.218 6.003 5.794

Sd of path length 1.706 1.649 1.654 1.698 1.689 1.718

After RISA Average path length 6.652 6.278 6.205 5.737 5.672 5.494

Sd of path length 1.645 1.585 1.618 1.631 1.607 1.673

P value .004 .009 .08 .005 .05 .08
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Algorithm 2. Assessing Rule Compatibility
Input:
CaseSet: Cases for testing
rules: List of adaptation rules
Output: Rule compatibility matrix

R = size(rules), N = size(CB)
Initialize matrix M of size R × R
for i ← 1 to R do

for j ← 1 to R do
M [i][j] ← undefined

for i ← 1 to R do
for j ← 1 to R do

totalError = 0
errorCount = 0
for all case in CaseSet do

if rule[i].isApplicableTo(case) then
ghost1 = rule[i].applies(case)
if rule[j].isApplicableTo(ghost1) then

ghost2 = rule[j].applies(ghost1)
target = CaseSet.nearest(ghost2)
totalError+ = errorInSolution(ghost2, target)
totalCount+ = 1

else
continue

else
continue

if totalError �= 0.0 then
M [i][j] = totalError/totalCount

return M

the matrix is symmetric. However, in many domains rules depend on each other
and must be applied in a particular order (e.g., recipe generation).

CARS estimates compatibility between two rules based on an estimated error
value after the two rules are successively applied to a case in a 2-step adaptation
path. Error is estimated by retrieving the stored case closest to the ghost case
generated by the adaptation path, and comparing the stored case and ghost case
solutions. After computing the compatibility matrix, CARS uses the average
value of each row as a proxy for the overall reliability of the corresponding rule.

CARS compresses the adaptation rule set by retaining only the most reliable
rules. To do so, it sorts all rules based on reliability and trims the rule set by
retaining only those falling above a selected percentile of the original rule set.
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4.2 Evaluation of CARS

The evaluation of CARS addresses two questions:

– How does CARS rule deletion affect efficiency of adaptation path generation?
– How does CARS rule deletion affect solution accuracy?

Efficiency is measured in three ways: number of resets prompted by path reliabil-
ity decay, number of resets prompted by disagreement between alternative paths
being explored, and average adaptation path length. Tests assess the effect of
CARS both on ROAD and on a baseline ablated version of ROAD that performs
single-rule adaptation instead of using adaptation paths.

Experimental Design
As in the previous experiment, tests used the Kaggle automobile data set [10].
In all runs, after building the compatibility matrix based on the entire case
base, 75 cases around the target query are removed to simulate situations where
multiple adaptations are needed but the adaptation paths have moderate average
length. The experiment uses the previous rule set configuration (Rcount = 300,
RuleGenDist = 1.0, Rspec = 0.5), again with 10-fold cross validation. In the
experiments, CARS is applied to assess compatibility and retain the top 80%,
60%, 40%, and 20% of rules; these conditions are compared to a baseline of 100%
retention. We note that because of the case removals to simulate a sparse case
base, as well as the rule retention and path building mechanisms in ROAD, the
case bases and rules used to solve the test problems are different from those used
when building the rule compatibility matrix.

Experimental Results
Table 8 shows the experimental results. We observe:

– The number of resets consistently decreases when fewer rules are used. With
fewer rules the path searching algorithm explores fewer options, decreasing
the number of prior cases near the path. In addition, we hypothesize that
because the retained rules are more reliable, paths tend to agree with each
other more often, decreasing resets due to path disagreement.

– The average path lengths become smaller as fewer rules are retained, because
of fewer resets.

– The error improves markedly as the worst 20% of the rules are deleted (80%
retention). Observed error is better than the initial rule set for 60% and
40% retention, with the benefit dropping compared to 80% retention, but the
differences below 80% are not statistically significant.

Thus the results support the efficiency benefits of rule set compression, as well as
improved accuracy at low compression rates. Effects for higher compression rates
are an interesting question for future study. We expect a tradeoff between higher
average rule quality and lower coverage with the compressed rule sets, resulting
in decreasing accuracy when the rule set is too sparse. However, refining the
reliability estimate process might help to delay serious accuracy loss.
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Table 8. Performance by Rule retention level

Percent of rules retained 100% 80% 60% 40% 20%

Using single-rule reliability (baseline)

Resets due to reliability decay 227 152 99 37 14

Resets due to path disagreement 137 81 72 42 22

Average eror 0.372 0.268 0.323 0.324 0.427

SD of error 0.407 0.229 0.321 0.281 0.365

P value (Comparing to no trimming) N/A .002 0.19 0.18 0.16

Average path length 6.126 4.689 3.841 2.662 1.932

SD of path length 3.011 2.575 2.366 1.630 1.200

P value (comparing to no trimming) N/A <.001 <.001 <.001 <.001

Using reliability from compatibility matrix (CARS)

Resets due to reliability decay 227 49 17 1 0

Resets due to path disagreement 137 83 41 10 1

Average error 0.372 0.303 0.305 0.356 0.420

SD of error 0.407 0.267 0.244 0.281 0.316

P value (comparing to no trimming) N/A .049 .05 .65 .19

Average path length 6.126 3.322 2.346 1.548 1.231

SD of path length 3.011 2.053 1.366 0.719 0.468

P value (comparing to no trimming) N/A <.001 <.001 <.001 <.001

In summary, using CARS increases the efficiency of both the baseline and
ROAD by reducing the number of resets and reducing path lengths, with a
stronger effect on ROAD. Also, deletion of an initial set of the worst rules benefits
accuracy for both. Beyond that deletion level there is weak or no significant effect
on the accuracy until accuracy falls for very high deletion levels.

5 Related Work

RISA is a learning method for refining similarity criteria; CARS is a method for
prioritizing adaptation rules for retention.

Learning to Refine Similarity Criteria: An extensive body of CBR research has
addressed similarity learning (see, for example, Wettschereck et al. [20], and, for
a recent overview, Mathisen et al. [18]). RISA differs in aiming to refine existing
similarity criteria on the fly, rather than generating a similarity measure from
scratch. RISA’s failure-driven method for learning to refine similarity criteria
is most closely related to Bonzano, Cunningham and Smyth’s ISAC [3], which
adjusts similarity weights in response to failed and successful retrievals, and
whose updating strategy is applied by RISA. This work is also in the spirit of
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work on building similarity measures by Xiong and Funk [22], which adjusts
local similarity to reflect the utility of pairs of cases.

Learning to Prioritize Adaptation Rules: Hanney and Keane’s initial proposal
for generating adaptation rules by the case difference heuristic also proposed
selective retention, based on the frequency with which particular rules were gen-
erated from cases [8]. Adaptation rule maintenance to remove duplicates and
resolve conflicts was proposed by Li et al. [15]. Additional work focuses on how
to prioritize rule selection, without deleting rules from the rule set [11], and on
combining systematic accuracy testing with retention of top-ranked rules [9]. The
current work differs in addressing adaptation paths, rather than only individual
rules, and in focusing on minimizing adaptation path length.

6 Conclusion and Future Directions

This paper presents an initial investigation of applying information from adap-
tation paths to improving efficiency of path-based adaptation. It proposes two
knowledge-light approaches, focusing on similarity measures and adaptation
rules. By learning from path generation failures, as shown by path resets in
ROAD, RISA helps align the similarity measure with adaptability. Experimen-
tal results support its value for retrieving more adaptable cases. By favoring
pairs of rules that have participated in successful adaptation paths, CARS com-
presses the adaptation rule set while retaining useful rules. Experimental results
support its value for increasing adaptation efficiency and that deletion of least
reliable rules can improve accuracy, subject to an efficiency/coverage tradeoff.

A next step is to test the methods for additional domains and to gather
information on the domains for which the methods are most appropriate. For
similarity maintenance, we also plan to compare the alternative strategy of learn-
ing only from the final reset rather than all intermediate resets. Learning from
the final reset would focus on a more definitive retrieval, but would also reduce
the amount of data available to the learning algorithm. For adaptation rule set
compression, an interesting question is whether the criteria for assessing rule
usefulness could be refined, for example, by considering compatibility and result
accuracy separately, to prioritize rule retention based on a composite criterion.
Another interesting question is the possible benefit of retaining rules with limited
compatibility but adding constraints to avoid their use in combination.

A future opportunity is to apply information from adaptation paths for main-
taining the case-base. Mathew and Chakraborti [17] show the value of taking
potential adaptation chains into account when guiding case retention. In ROAD,
parts of the problem space for which ghost cases are generated suggest gaps in the
case base. Based on the CBR premise that similar problems are likely to recur
in the future, those gaps are good candidates for case acquisition to increase
efficiency by shortening commonly-used adaptation paths.
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Abstract. The case-based reasoning community is successfully pursuing
multiple approaches for applying deep learning methods to advance
case-based reasoning. This “Challenges and Promises” paper argues for
a complementary endeavor: pursuing ways that the case-based reasoning
methodology can advance deep learning. Starting from challenges in deep
learning and proposed neural-symbolic integrations based on specific tech-
nologies, it proposes studying how CBR ideas can inform choices of com-
ponents for a new reasoning pipeline.
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1 Introduction

Recent years have seen great accomplishments in deep learning. These have led
to enthusiasm in the case-based reasoning (CBR) [9] community for studying
how to apply deep learning methods in service of case-based reasoning. For
example, the Call for Papers for the 2019 Workshop on Case-based Reasoning
and Deep Learning states that the “successes of DL call for novel methods and
techniques that exploit DL for the benefit of CBR systems.”1 Research presented
at that workshop and other venues supports the promise of this approach for
advancing case-based reasoning. This “Challenges and Promises” paper proposes
that the CBR community consider the reverse perspective: How application of
case-based reasoning can shape the design of deep learning systems and help to
address challenges for deep learning and machine learning as a whole.

As background to the challenges, the paper begins by highlighting two views
on questions to address to advance deep learning and AI as a whole, presented in
invited talks by Yann LeCun and Henry Kautz at the AAAI 2020 Conference on
Artificial Intelligence in New York, NY. These focus, respectively, on challenges
for deep learning and architectures for integrating neural and symbolic methods.

1 https://iccbr2019.com/workshops/case-based-reasoning-and-deep-learning/.

c© Springer Nature Switzerland AG 2020
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The proposed integrations of neural and symbolic methods view each as a
different technology, with particular strengths for particular types of tasks. We
propose that the CBR community develop integrations shaped by a different
perspective, that of Ian Watson’s treatment of CBR as a methodology [16]. In
that view, case-based reasoning is seen as a general high-level process that defines
a set of tasks, but for which the needed functionality can be implemented using
various technologies, both neurally inspired and symbolic.

This perspective suggests an opportunity for the CBR methodology to shape
the high-level design of component-based deep learning systems, with collections
of subparts corresponding to components of the CBR process—retrieve, reuse,
revise, and retain [1]—and encoding the CBR knowledge containers—vocabulary,
case knowledge, similarity knowledge, and adaptation knowledge [12]. It also
raises questions of how such components can be implemented and integrated.
Especially interesting is the addition of forms of case adaptation in deep learn-
ing frameworks, to enable the transformation of solutions for novel contexts.
CBR can also play an important role in automated machine learning (AutoML),
by helping to exploit experiences with AutoML systems. The paper closes by
discussing the potential impact of the proposed initiatives.

2 Addressing Deep Learning Challenges Through
Integrations

Challenges for Deep Learning: Deep learning has achieved remarkable success
in many task domains. In fact, at least under some conditions, deep learning
can match or exceed human-level performance in face recognition [15], language
translation [4], and game playing [14]. However, important challenges remain.
LeCun pointed to three key challenges for deep learning:2

1. Learning with fewer labeled samples and/or fewer trials
2. Learning to reason
3. Learning to plan complex action sequences.

Each of these is well-trodden ground for case-based reasoning. This suggests
opportunities for integrations with case-based reasoning.

Models for Integrating Deep Learning with Symbolic Approaches: In his AAAI
2020 Engelmore lecture, Henry Kautz pointed to specific strengths of deep
learning, such as learning hierarchically and that deep learning representations
“directly support similarity.” On the other hand, various other processes, such as
combinatorial search, are natural for symbolic methods. In response to the diver-
gent strengths, he advocated bringing together neural and symbolic traditions
and proposed six possible combinations, including using the different technolo-
gies for specialized subroutines and a NeuroSymbolic approach in which symbolic

2 Quoted from
https://drive.google.com/file/d/1r-mDL4IX hzZLDBKp8 e8VZqD7fOzBkF/view.

https://drive.google.com/file/d/1r-mDL4IX_hzZLDBKp8_e8VZqD7fOzBkF/view
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rules are used to structure a neural system.3 This paper proposes integrations
at a more abstract level, in which the design of deep learning architectures is
structured by the high-level CBR methodology.

3 Implementing CBR with Deep Network Components

In the early days of case-based reasoning, CBR was often presented as an alterna-
tive technology to rule-based systems, associated with particular representation
and implementation methods. In an influential paper, Ian Watson made a key
observation: CBR can be implemented in many different ways using a range of
methods. For example, CBR retrieval can be done using database technology
[5]. Thus CBR is not a technology, but instead a methodology: a set of principles
for a process of problem solving, interpretation, and learning that can be imple-
mented using various technologies [16]. He frames the principles in terms of the
classic four “REs” of the Aamodt and Plaza CBR cycle [1]:

Retrieve similar cases, Reuse a similar case, Revise the solution to fit if nec-
essary, and learn by Retaining. Each of these steps can be applied using multiple
technologies.

Following this view, we can see CBR as a set of principles that could guide,
for example, integrating multiple deep learning approaches to provide a CBR
process for an end-to-end solution to a deep learning challenge problem. This
shares aspects with multiple items in Kautz’s categorization, but differs in that
the defining aspect is not the specific technology, but rather the need for a
particular functional sequence of processing steps.

The challenge for the CBR community is then to define the requisite tasks and
integration. Various steps have been taken to bring deep learning components
into CBR systems (e.g., [3,8,10,13]). This challenge calls for an end-to-end effort
to achieve CBR capabilities with a collection of deep learning-based components.
This would have multiple benefits:

– Providing CBR benefits while minimizing knowledge burdens: CBR
is no longer an alternative approach that loses the benefits of the knowledge-
light processing of deep networks. When CBR is a unifying principle for guid-
ing the design of deep learning systems, it can be implemented with the same
technology.

– Providing a framework for flexible technology integrations: Even
applying end-to-end CBR, the CBR process can still be implemented with
whatever technology is most appropriate; the use of deep learning for some
components does not preclude different technologies for others.

– Providing increased flexibility through adaptation: The reasoning part
of CBR follows from case adaptation, the ability to transform solutions to new
contexts. Explicitly integrating adaptation into deep learning systems could
provide a new means for transfer.

3 https://www.cs.rochester.edu/u/kautz/talks/Kautz%20Engelmore%20Lecture.pdf.

https://www.cs.rochester.edu/u/kautz/talks/Kautz%20Engelmore%20Lecture.pdf
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– Providing a new basis for learning from few examples: Implementing
a “true” case-based reasoning process able to reason and learn from single
cases could help address the challenge of learning from limited data.

– Providing a model for generating structured solutions: Similarly,
implementing a “true” case-based reasoning process able to manipulate struc-
tured cases could enable processing structured data such as action plans.

– Reducing storage requirements: Cases can capture knowledge compactly,
in contrast to the potentially enormous requirements of networks.

If it is not possible to fully develop such a process within a deep learning archi-
tecture, hybrid solutions can still provide powerful processing capabilities.

4 Questions for a CBR-Based Pipeline

As discussed, the CBR methodology is agnostic to technology. However, applying
that methodology in a neural network context requires addressing several key
questions:

– Case representation: How can the rich structured cases of CBR be repre-
sented in a network context?

– The role of cases: What are the tradeoffs of explicit case retrieval rather
than direct solution generation, and what are their respective roles? We con-
sider this further below.

– Case adaptation: How and where should adaptation be applied? Can case
adaptation be learned and applied within other processes of the CBR cycle,
such as via adaptation at interior points of the network, rather than only to
the retrieved solution? This might be seen as related to the question transfor-
mation of early CBR [6] and efforts at supporting analogical reasoning directly
with embedded representations [11]. Neural networks have previously been
applied to case adaptation [2], and recent efforts have applied deep learning
to case adaptation using the case difference heuristic [8].

– The meaning of the Retain step: A fundamental principle of CBR is
that results are retained as new cases. However, when learning is achieved
by gradient-based training methods, the cost of learning by retraining after
every case is prohibitive. Consequently, a core question is how to achieve
lazy learning in a neural network context, or whether the case store must
necessarily be implemented with another technology.

Developing a CBR-based pipeline raises the question of the role of explicit
case representation and manipulation. Deep learning systems are eager learners;
they receive (large quantities of) training data and learn weights that encode
generalizations from that data. Case-based reasoners are lazy learners, retaining
raw cases (or cases with limited processing) to re-use them. When using CBR to
shape a deep learning pipeline, a natural question is the role of cases. There are
three possibilities: To include an explicit case retrieval phase for “pre-packaged”
cases; to “assemble” or generate cases by a reconstructive process without literal
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case storage (cf. [7]), or to dispense with explicit case retrieval/generation, solely
adding an adaptation phase after solution generation, in the absence of cases.
Adding adaptation to deep learning pipelines is an interesting—and potentially
highly impactful—challenge for the CBR community. However, the full benefits
of CBR, such as single-example lazy learning and explainability, require the use
of cases.

5 CBR for AutoML

CBR can also be brought to deep learning—and other machine learning
methods—in the context of automated machine learning (AutoML). AutoML
focuses on methods to take as input a dataset, a challenge problem, and a library
of primitives including machine learning algorithms, to automatically develop
an end-to-end machine learning pipeline. It is being pursued by the DARPA
Data-Driven Discovery of Models (D3M) program.4 Most D3M teams focus on
algorithm selection and hyperparameter optimization. However, some apply a
“meta-learning” approach exploiting a database of prior solutions generated by
the former “first principles” methods. This can be seen as a case base, and the
CBR methodology, and specific lessons and methods for indexing, similarity,
and adaptation, could play an important role in exploiting it. However, to our
knowledge, this opportunity for synergy has not yet been pursued.

6 Conclusion: Future Paths

This challenge paper has proposed that beyond focusing on applying deep learn-
ing methods for CBR, the CBR community should focus on how the CBR
methodology can help address the next generation of deep learning challenges.
This may be especially beneficial for a CBR perspective on how to view problems
and design architectures.

Bringing CBR to deep learning has the potential for great impact on future
AI systems and to increase the reach of CBR. As a coarse-grained measure of
the degree of attention to deep learning, a search of the Semantic Scholar archive
of scholarly articles on May 6, 2020 yielded 11,500 results for “case-based rea-
soning” in the last five years, versus approximately 284,000 for “deep learning.”
Bringing case-based reasoning methodology to deep learning could also provide
components for a new generation of knowledge-light CBR applications. Bring-
ing CBR to AutoML provides an opportunity to harness strengths of CBR for
effective use of multiple machine learning methods.
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Abstract. Knowledge workers can benefit from tools to support them in
performing deep, concentrated work. Research in biofeedback has shown
success in training relaxation, but not in directly influencing task perfor-
mance. One reason for this may be the difficulties users have in contextu-
alizing biofeedback signals for different task situations. This presents an
opportunity to leverage the strengths of case-based reasoning to select
the feedback mechanism that will produce the best response. This paper
describes initial research into the Adaptive Choice Case-Based Reason-
ing (ACCBR) system, that learns from and interacts with a user to assist
them in achieving greater concentration and productivity.

Keywords: Neurofeedback · EEG · Flow · CBR

1 Introduction

By some estimates, there are currently more than 1 billion knowledge workers
in the world [1]. Knowledge work includes “non-routine cognitive jobs” that
require considerable amounts of concentration and creativity to perform. This
work benefits from long stretches of uninterrupted work, resulting in feelings of
“flow”, where work is simultaneously challenging, engaging, and enjoyable [2].

There are numerous productivity enhancement tools available to assist knowl-
edge workers in keeping track of tasks, appointments, and other necessities of
their work life [3]. However, there is little work on developing tools to support
workers in achieving and maintaining flow states for longer periods of time.

There have been numerous studies on neurofeedback therapies for a variety
of conditions and diseases [4]. Specifically for the task of increasing the frequency
and duration of deep, concentrated work, neurofeedback may provide the infor-
mation necessary for the correct feedback signals to be delivered.

Figure 1a shows how standard neurofeedback is used by an operator per-
forming a task. The operator must make choices based on task demands, and
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then update their mental state based on the new task state and the rewards
received. The operator then must integrate the neurofeedback signals with task
feedback signals in order to improve task performance, which could end up being
a divided attention task.

The Flow Choice Architecture (FCA) is being developed to integrate the
mental state and task performance of a knowledge worker in order to suggest
“nudges” that can help the knowledge worker enter and remain in flow. Nudges
are external aids such as rituals, sounds, speech, or other “mental hacks” that
subtly encourage behavior change [5]. If FCA classifies worker biosignals as dis-
traction, it may “nudge” the user by showing task completion lists, highlighting
the days work schedule, or verbalizing encouragement [6].

Fig. 1. (a) The user must integrate feedback from the task environment and neurofeed-
back. (b) The FCA observes the human and task states and reward signals to generate
task-relevant nudges.

Figure 1b shows the interaction of the FCA with the knowledge worker as
they perform their tasks. The mental and task states and rewards are used by
the FCA to determine if a nudge is warranted. This information, including if
there were previous nudges, is taken into account to determine the step most
likely to influence the knowledge worker to enter flow. Nudges that have little
effect on the operator’s mental state will be selected less often than those that
have a rapid and positive effect.

2 The Challenge Addressed

This domain features several difficult characteristics that CBR research can
address with effective solutions. First, the domain requires individualization.
The problem of motivating increased deep, concentrated work is inherently per-
sonal. The nudges that work for one person will not necessarily work for another,
requiring personalization for each user. CBR case creation based on user expe-
rience provides a natural way to gather this personalized knowledge.

Second, the domain requires context. Although the structure of electroen-
cephalogram (EEG) signals enables accurate tracking of user mental state, it
does not contain enough information to determine the feedback signals needed
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to motivate increased performance. Contextual information such as time, task,
and work history are also needed to determine a correct nudge. Cases provide a
natural way to associate other information with the EEG signal, such as time of
day, time spent working, task undertaken, operator traits, etc, to fine-tune the
effectiveness of nudges. This may be an ideal representation for both storing and
retrieving this contextual information.

Finally, solutions in the domain have uncertain effects. Nudges will be effec-
tive less than 100% of the time, meaning that even if the FCA makes the “cor-
rect” choice in nudges to suggest, the user may not give the desired response.
By retrieving a set of cases similar to the current EEG, task, and context, the
nudge suggestions made in FCA by the Adaptive Choice Case-based Reason-
ing (ACCBR) system can examine a range of alternatives and reason effectively
about the exploration - exploitation tradeoff.

3 Background Research

3.1 Measuring Operator State

Evaluation of operator state was traditionally performed with subjective mea-
sures based on interviews or questionnaires, where participants assessed their
state during or after a task [7]. These approaches depend on opinions of partic-
ipants reported on subjective scales, and do not always assure reliable, compa-
rable results. An alternative approach involves the monitoring of operator state
using psychophysiological measures such as EEG, heart rate variability (HRV),
electrodermal activity (EDA) and breathing rate.

Machine learning methods have been combined with feature selection tech-
niques to measure a subject-independent operator workload or cognitive effort
needed to perform a task [8]. Thejaswini et al. [9] used a channel-wise Support
Vector Machine (SVM) classifier to detect emotional state, and achieved average
classification accuracies of 79% (SEED dataset) and 76% (DEAP dataset).

3.2 CBR for Neurofeedback

Case-based reasoning has been successfully applied to the study of EEG signals
in several studies. Cai et al. [10] investigated classification of depression using
case representations containing four computed characteristics of EEG signals and
seven other demographic features of the test subject. Using feature weighting and
KNN as the retrieval mechanism, they were able to achieve a 91.25% accuracy
in diagnosing depression in patients, significantly improving on 81.44% accuracy
for EEG data alone and 88.97% from a previous study.

An integration of decision trees and CBR was used in [11] to classify patient
EEGs into one of seven different psychological or physical disorders, including
migraines and ADHD. Their work showed that even a very coarse discretization
of EEG signals in conjunction with psychological and behavior features can
produce accurate classification of different disorders.
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Like these systems, ACCBR computes features from the raw EEG signals
and combines them with other information to construct a case to be classified.
However, ACCBR differs from these system in that the determination to make
nudges is a continuous process, happening throughout the working day. This cre-
ates hundreds or thousands of case applications, allowing for continued learning
and updating of the case base. In this sense, it is more similar to the continuous
case-based reasoning work of [12].

4 ACCBR Description

ACCBR is one implementation of the “Nudge Controller” shown in Fig. 2. The
purpose of ACCBR is to determine if the current mental and task state suggests
that the operator would benefit from a nudge to achieve or remain in deep,
concentrated work. To do this, it continually balances the stream of classifications
of the EEG signals generated by the user with task and historical information
to result in a decision to produce a nudge or to remain silent.

Fig. 2. Pipeline architecture of the neurofeedback-driven FCA where the modules pro-
cess data on server and client threads in parallel.

4.1 ACCBR Cycle

The FCA begins with user demographic and trait information [13], knowl-
edge of the task and task rewards and then begins on that task. FCA
observes the operator and task state, and classifies the EEG signals being col-
lected into on of the standard quadrants of the valence arousal scale, labeled:
neutral, sad, fear, happy. When the classification has high confidence (i.e., when
the same classification has been made several times in a row), it is combined
with the task state and other contextual information to create a probe into case
memory.

The probe will return one to five cases from case memory and a response
based on the returned cases is generated. The response depends on the distri-
bution of responses and the history of previous nudges. The nudge is executed,
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and FCA monitors operator state to determine the effectiveness of the nudge.
The measurement of effectiveness comes from the transition of mental states to
a more positive mental state and from the task completion status. This process
continues until the end of work tasks or the operator is mentally fatigued.

5 Example of EEG Classification

Perhaps the most risky aspect of our approach is the belief that we can consis-
tently and accurately classify EEG signals into one of the four bins indicating
mental state (emotions). To alleviate this risk, we conducted an experiment to
test the FCA EEG classification, which will directly affect our ability to collect
high-quality cases.

In the experiment, we used the SEED-IV dataset, which contains EEG
recordings from 15 participants that conducted 72 video clip trials that evoked
one of four emotions: neutral, sad, fear, happy. Noise and artifacts such as blinks
and jaw clenches were filtered from the raw EEG data and then segmented into 4-
s epochs without overlap. A Fourier transform on each segment produced power
spectral density (PSD) features in 5 frequency bands which were then reduced
to three components using a Linear Discriminant Analysis (LDA) transforma-
tion that maximized the separability among the classes. These three components
were classified using a densely-connected three-layer neural network. The dataset
of 1,080 trials was randomly split 70:30 into training and test sets i.e. 756 and
354 trials respectively and run 10 times. Figure 3 shows the confusion matrix
for the average of 10 runs of the experiment, which produced an average overall
classification accuracy of 99% on the test trials.

Fig. 3. Left: Training and validation set accuracy. Right: Confusion matrix.

6 Conclusions and Future Work

Our next steps in this research are to collect one- to three-hour sessions of
users performing deep cognitive work tasks to determine the range of variability
between users. We will use these sessions to develop individualized case bases
and determine where additional efficiencies can be found.
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While this is early-stage work, the EEG classification results already obtained
and the methodology developed to contextualize the EEG signals shows promise
for the development of a productivity tool that will support deep cognitive work.

We believe that many of the problems that are faced when working with
neurofeedback and biofeedback systems in general can be addressed using the
tools and techniques that are available in the case-based reasoning community.
CBR systems have unique capabilities for knowledge acquisition and replay that
are directly applicable to domains where there is significant uncertainty, where
there are no general rules that will apply to all users, and where the signals
collected on a continuous basis must be augmented with context in order to be
effectively interpretable.
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