
Chapter 12
Laminar Convection In Internal Flow

We commence the study of convection heat transfer in this chapter. After looking
at fluid properties of interest in convection heat transfer, we present notion of

similarity to understand scaling principles that play a crucial role in convection heat
transfer. Laminar fully developed flow and heat transfer in internal flows are covered in
great detail. Useful relations are presented for heat transfer in the developing region.

12.1 Introduction

In Chap.1, we have introduced the concept of convection through a phenomenolog-
ical description by introducing h, the convection heat transfer coefficient. The heat
transfer coefficient was introduced through the so-called “Newton’s law of cooling”.
In many problems encountered in conduction heat transfer, we have made use of a
suitable “h” value to describe what happens at a boundary between a solid and the
ambient fluid. However, no effort was made to describe the basis for choosing a par-
ticular value of h. In what follows we would like to calculate h by using fundamental
heat transfer principles that are involved in the case of a flowing fluid.

12.1.1 Classification of Flows

Themain goal of the study of convection heat transfer is to understand the dependence
of the convection heat transfer coefficient on (1) The nature of the fluid, (2) The nature
of flow, and (3) The type of flow.
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(1) The nature of fluid
Basically, the nature of the fluid is mirrored by its physical and transport properties.
Also, the variation of these properties within the flow domain decides the method of
analysis. The fluid may be described by any of the following models, depending on
the circumstance.

Incompressible fluid: Fluid density remains fixed irrespective of variations
in pressure and temperature.

Compressible fluid: Fluid density varies with position and time due to
changes in pressure or temperature. In high speed flows (flow speed com-
parable to the speed of sound in the fluid), the compressibility effects may
become significant. However, the same fluid may be treated as incompress-
ible if the fluid speed is small compared to the speed of sound in themedium.

Inviscid or non-viscous and non-heat conducting fluid: This is also referred
to as an ideal fluid. A flow, far away from boundaries, even when the fluid
has a non-zero viscosity, may sometimes be treated this way.

Viscous and heat conducting fluid: The fluid is referred to as a real fluid. As
a subset of this, the fluid may be Newtonian or non-Newtonian. Newtonian
fluid has a linear relationship between shear stress and velocity gradient
while the non-Newtonian fluid has a more complex relationship. We con-
sider only a Newtonian fluid in this text.

Fluid with constant thermo-physical properties: For such a fluid the prop-
erties like viscosity and thermal conductivity have very insignificant vari-
ation with temperature and pressure. In flows with small variation of tem-
perature constant, property assumption may be justified.

Fluid with variable thermo-physical properties: The fluid properties such
as viscosity and thermal conductivity vary significantly in the flow domain.
Most important variation that needs to be considered is with respect to fluid
temperature. Variation with pressure is seldom significant. Constant prop-
erty assumption is not necessarily connected with the variation or otherwise
of the fluid density.

(2) Nature of flow and attendant heat transfer
The nature of the flow is important since it affects heat transfer to a great extent. In
practical applications, it is usual to look for flow conditions that enhance heat transfer
significantly in comparison with conduction heat transfer that will take place in a
stationary fluid.
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Compressible high-speed flow: High speed means M , the Mach number (the
ratio of fluid velocity to the speed of sound in the fluid) is large. Incom-
pressible, low speed flow approximation is valid, in gases, for M ≤ 0.3.

Laminar flow: Laminar flow is orderly or “streamline” flow. Laminar flow
is also characterized by weak mixing except in regions of flow close to
boundaries.

Turbulent flow: Turbulent flow exhibits temporal variations in velocity and
temperature fields even when the flow is steady. Rapid mixing normal to
the flow direction is a characteristic of turbulent flow.

Forced Convection: Flow is created or forced to take place by an external
agency like a pump. The pump creates a pressure gradient that promotes
and maintains the flow.

Free or natural convection: Flow is generated by temperature differences
and the consequent density differences within the flowing medium. The
flow may be assumed to be incompressible except for the buoyancy effect.

Mixed convection: Forced and free convection occur simultaneously and are
of comparable importance. The buoyancy effects may either aid or oppose
the forced flow.

(3) Type of Flow
The flow may also be classified according to the following types.

Internal Flow: Flow inside tubes and ducts. These occur in applications such
as air handling systems, heat exchangers, energy conversion devices like
turbines, engines, etc.

External Flow: Flow over extended surfaces, flow past a tube bundle in a heat
exchanger, flow past vehicles, etc.

Steady flow: Velocity and temperature fields do not change with time.
Unsteady flow: Velocity and temperature fields change with time.

12.1.2 Fluid Properties and Their Variation

Thermo-physical properties of the fluid influence flow and the consequent heat trans-
fer. Details of flow and temperature fields are affected by the properties as well as
their variations with temperature and pressure of the flowing fluid. Hence, we shall
look at some of the important thermo-physical properties and their variations with
temperature and pressure in this section.
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Fig. 12.1 Viscosity of a
Newtonian fluid

(1) Fluid Viscosity
For a Newtonian fluid, the dynamic viscosity μ is defined through a linear relation
between the shear stress and the velocity gradient.

τ = μ
dv

dy
(12.1)

Here, τ = shear stress, μ =dynamic viscosity, v =velocity, y =coordinate normal
to v. The velocity field varies with y as shown in Fig. 12.1 when a viscous fluid flows
past a boundary. The fluid at lower velocity tends to decelerate the flow with a higher
velocity. The unit of dynamic viscosity μ is given by

[μ] = [τ ]
dv
dy

=
N
m2

m/s
m

= kg

m s
=
[
M

LT

]
(12.2)

In Eq.12.2, the brackets indicate that the unit of the quantity within the brackets
is being considered and not the magnitude. The last entry indicates the dimensions
as will be explained later on.

Newton’s law of viscosity resembles Hooke’s law in solid mechanics and Fourier
law of thermal conduction. For gases, μ increases with temperature. At 300K, air has
a dynamic viscosity of 18.46 × 10−6 kg/ms which increases to 42.4 × 10−5 kg/ms
when the temperature changes to 1000K. Dynamic viscosity of liquids decrease
with temperature. For saturated liquid water, the dynamic viscosity decreases from
8.67 × 10−4 kg/ms at 300K to 9.01 × 10−5 kg/ms at 573K.

(2) Kinematic Viscosity
This is defined as the ratio of dynamic viscosity of the fluid and its density ρ.
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Table 12.1 Variation of thermal conductivity with temperature

Air Water

T,K 300 2000 300 400 580

k,W/m ◦C 0.0267 0.1149 0.611 0.685 0.516

ν = μ

ρ
(12.3)

Itmay be verified that the unit of kinematic viscosity ism2/s. The readermay note that
the same unit also characterizes the thermal diffusivity encountered in conduction
heat transfer. Generally, the kinematic viscosity of gases increases with tempera-
ture. However, for liquids, the kinematic viscosity decreases with temperature. For
example, the kinematic viscosity of air increases from 15.89 × 10−6 m2/s at 300K
to 12.9 × 10−5 m2/s at 1000K. The kinematic viscosity of saturated water decreases
from 8.004 × 10−7 m2/s at 303K to 1.265 × 10−7 m2/s at 573K.

(3) Fluid Thermal Conductivity
Fourier law (already familiar to us from conduction heat transfer study) introduces
the conductivity of the fluid. The unit of thermal conductivity is either W/m ◦C or
W/mK. Thermal conductivity of gases increases with temperature while it may show
increasing as well as decreasing trends in the case of liquids. Examples are given in
Table12.1.

(4) Thermal Diffusivity of a Fluid
This is defined in the usual way as α = k

ρc where c is the specific heat capacity of

the fluid in J/kg ◦C or J/kgK. Thermal diffusivity has the units of m2/s.

(5) Prandtl Number
The ratio of kinematic viscosity to thermal diffusivity occurs very often in heat and
fluid flow problems and hence is given a specific name, the Prandtl number, Pr .1

Thus,

Pr = ν

α
= μ/ρ

k/ρc
= μc

k
(12.4)

It has no dimensions. The ranges of Pr values are given in Table12.2.

1Named in honor of Ludwig Prandtl, 1875–1953, a German engineer. He proposed the boundary
layer theory which is successful in explaining pressure drop and heat transfer in the flow of a viscous
heat conducting fluid and gave impetus for much development in Fluid Mechanics.
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Table 12.2 Ranges of Prandtl number of various fluids

Fluid Pr range Remarks

Liquid Metals-Hg, Na, K ,
etc.

0.001–0.05 Decrease with temperature

Gases-H2, He, Air, CO2, etc. 0.5–1 More or less independent of
temperature

Liquids—Water, Organic
liquids, etc.

5–30,000 Decrease with temperature

Table 12.3 Prandtl number of two common liquids

Saturated Water Unused engine oil

T,K 300 400 580 280 300 400

Pr 5.9 1.4 0.94 27,000 6600 154

Fig. 12.2 a Variation of properties of air with temperature b Variation of properties of saturated
liquid water with temperature

Table12.3 shows Prandtl number variation for two common liquids.

Since air and water are commonly used in heat transfer applications, their
property variations with temperature are shown in Fig. 12.2a, b on p.550.
While the properties are for air at 1 atm, the properties of water are for saturated
water at the indicated temperatures. Prandtl number of air varies very little with
temperature and hence is not included in Fig. 12.2a. However, Prandtl number
of water varies significantly with temperature and hence has been included in
Fig. 12.2b.
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12.2 Dimensional Analysis and Similarity

Non-dimensional parameters are useful in discussing the behavior of thermal sys-
tems. They naturally evolve while solving the governing differential equations, as
we have already seen in the case of conduction problems. We have already seen
how parameters such as the Biot and Fourier numbers evolve while solving conduc-
tion problems in one and two dimensions. We have introduced a non-dimensional
parameter, the Prandtl number in Sect. 12.1. Many more non-dimensional parame-
ters become appropriate in fluid flow and heat transfer problems. These are discussed
with the concept of similarity in mind. Similarity may be of two types:

1. Geometric similarity
2. Dynamic similarity

– involves motion, forces, temperatures, heat fluxes, etc.

These two concepts are elucidated below using examples from fluid flow and heat
transfer.

12.2.1 Dimensional Analysis of a Flow Problem

Thefirst examplewe consider is a flowproblem inwhich a viscous fluid flows steadily
through a straight tube of circular cross section. Two fluid flow situations are shown
in Fig. 12.3. At the left is a circular tube of diameter D1 carrying a fluid 1. At the
right is a circular tube of diameter D2 carrying a fluid 2. Geometric similarity would
require that both be circular tubes. If one tube is straight, the other also should be
straight. However, dynamic similarity requires that suitable non-dimensional param-
eters remain the same for the two cases.

The quantity of interest to us is the pressure drop between stations 1 and 2 or sta-
tions 1′ and 2′ . We first identify all the variables that enter the problem and also write
out the units of these variables, using the SI system of units and also the length, mass,
time system (refer to Table12.4). In this last method, [M]will represent mass dimen-
sion, [L] will represent length dimension, and [T ] will represent time dimension.
Buckingham π theorem (π theorem because each non-dimensional parameter was
represented by the symbol π) states that the number of non-dimensional parameters
that characterize the problem are (n − r)where “n” is the number of variables (= 6 in

Fig. 12.3 Pressure drop in a fluid flowing in a straight tube
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Table 12.4 Physical quantities and their dimensions

Physical quantity Unit/Dimension

�p: Pressure drop across L1 or L2
N
m2 = Pa = kg m/s2

m2 = kg
m s2

=
[

M
LT 2

]
ρ: Fluid density kg

m3 =
[
M
L3

]
μ: Fluid viscosity kg

m s = [ M
LT

]
V : Fluid velocity m

s = [ LT ]
L: Tube length m =

[
L
]

D: Tube diameter m =
[
L
]

the present case) and “r” is the number of primary dimensions involved (= 3; Mass,
Length, Time or [M], [L] and [T ]).2 Thus, we expect three non-dimensional param-
eters to characterize the problem. In order to obtain these parameters, we represent
�p as a function of all the other variables that occur in the problem. Thus,

�p = f (ρ,μ, V, L , D) (12.5)

It is possible as it happen many times that the functional relation is of the type

f (ρ,μ, V, L , D) = K
{
ρaμbvcLd De

}
(12.6)

where K is a numerical constant and a, b, c, d, e are numerical exponents. If indeed
this is valid, then the unit of �p must be the same as the unit of the quantity inside
the flower brackets in Eq.12.6. This may be written using units of various quantities
as

Units :
(

kg

m s2

)
=
(
kg

m3

)a ( kg

m s

)b (m
s

)c
(m)d (m)e

Dimensions:

[
M

LT 2

]1
=
[
M

L3

]a [ M

LT

]b [ L
T

]c
[L]d [L]e

(12.7)

Dimensional homogeneity requires that the left-hand side and right-hand side of
Expression12.7 have identical dimensional units. This will require the right choice
of all the exponentsa − e. Thismaybedoneby equating the exponent of eachprimary
dimension mass, length, and time on the two sides. These lead to the following three
equations:

(a) [M] :1 = a + b (b) [L] : −1 = −3a − b + c + d + e (c) [T] : −2 = −b − c

(12.8)
There are only 3 equations (number of equations is equal to the number of primary
dimensions) but 5 unknowns. Hence, we solve for any 3 of them in terms of the
other two. In this case, exponents b, d are chosen as the two that may be assigned

2Edgar Buckingham, 1867–1940, American physicist.
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arbitrary/suitable numerical values and exponents a, c, e are solved in terms of
them. From Eq.12.8(a) we have a = 1 − b. From Eq.12.8(c), we have c = 2 − b.
Substitute these in Eq.12.8(b) to get

e = 3a + b − c − d − 1 = 3(1 − b) + b − (2 − b) − d − 1 = −b − d

With these Eq.12.5 may be rewritten, using Eq.12.6 as

�p = Kρ1−bμbV 2−bLd D−b−d = K

(
μ

ρvD

)b ( L

D

)d
ρV 2 (12.9)

or, on rearrangement,

�p

ρV 2
= K

(
μ

ρvD

)b ( L

D

)d
or Eu = K Re−b

D

(
L

D

)d
(12.10)

Dimensional analysis cannot give the values of K , b, and d. They have to be deter-
mined from solution of appropriate equations that govern the fluid flow problem or
from experiments. Both these alternates are used in practice. These will be presented
later on.

We notice that Eq. 12.10 contains three non-dimensional parameters. They are
• Euler number Eu:

Eu = �p

ρV 2
(12.11)

Euler number is nothing but a non-dimensional pressure drop that uses
the “dynamic head” ρV 2

2 as the reference pressure drop. The factor 1
2 may

appropriately be absorbed in the coefficient K .
• Reynolds number ReD:

ReD = ρV D

μ
(12.12)

The subscript D is used to indicate that the Reynolds number is based on
diameter of tube as the characteristic “length scale” in the problem.

• Length to diameter ratio or the non-dimensional length L ′:

L ′ = L

D
(12.13)
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12.2.2 Notion of “Similarity”

Equation12.9 may be interpreted as follows using the concept of similarity. Apart
from the geometric similarity that was alluded to earlier, dynamic similarity requires
additional conditions to be satisfied. For example, if we compare the two cases shown
in Fig. 12.3with L1, D1 fluid 1 and L2, D2 fluid 2, the non-dimensional pressure drop

�p1
ρ1V 2

1

= �p2
ρ2V 2

2

or Eu1 = Eu2 (12.14)

if and only if

(a)
ρ1V1D1

μ1
= ρ2V2D2

μ2
or ReD1 = ReD2; (b)

L1

D1
= L2

D2
(12.15)

Alternately, we may state that dynamic similarity exists if and only if the Reynolds
numbers and length to diameter ratios are the same in the two cases.A typical example
shows the utility of this concept.

Example 12.1

Air at atmospheric pressure and at a temperature of 300K flows in a 2m long smooth
circular tube of 25mm inner diameter. The velocity is adjusted such that the Reynolds
number is 15,000. What is the velocity? What is the mass flow rate? The pressure
drop is measured to be 100Pa. If the fluid flowing in the tube is replaced by water at
300K what will be the mass flow rate and the corresponding pressure drop?

Solution:

Step 1 Since the concept of similarity applies to the cases, the following param-
eters are common to both cases.

Diameter of tube: D1 = D2 = 0.025 m
Length of tube: L1 = L2 = 2 m
Reynolds number: ReD1 = ReD2 = 15,000

Case (a) Fluid is air

Step 2 The air properties are taken from table of properties at T = 300K. All
quantities are shown with a subscript 1 to indicate that the fluid is air.

ρ1 = 1.1614 kg/m3; ν1 = 15.89 × 10−6 m2/s

Step 3 Using the given value of Reynolds number, air velocity in the tube is
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V1 = ReD1ν1

D1
= 15000 × 15.89 × 10−6

0.025
= 9.534 m/s

Step 4 The mass flow rate of air is then given by

ṁ = ρ1 · πD2
1

4
· V1 = 1.1614 × π × 0.0252

4
× 9.534 = 0.00545 kg/s

Step 5 It is given that the pressure drop has been measured with air as �p1 =
100Pa. Hence, the Euler number (the non-dimensional pressure drop)may
be calculated as

Eu1 = �p1
ρ1V 2

1

= 100

1.1614 × 9.5342
= 0.9473

Case (b) Fluid is water

Step 6 The properties of water are taken from tables of properties at 300K. All
quantities are shown with a subscript 2 to indicate that the fluid is water.

ρ2 = 995.7 kg/m3; ν2 = 8.004 × 10−7 m2/s

Step 7 Using the given value of Reynolds number, water velocity in the tube is

V2 = ReD2ν2

D2
= 15000 × 8.004 × 10−7

0.025
= 0.48 m/s

Step 8 The mass flow rate of water is then given by

ṁ = ρ2 · πD2
2

4
· V2 = 995.7 × π × 0.0252

4
× 0.48 = 0.235 kg/s

Step 9 The two cases satisfy dynamic similarity since the length to diameter ratio
and the Reynolds number are unchanged. Hence, the Euler number is the
same for the two cases. With this, we can calculate the pressure drop with
water as

�p2 = ρ2V
2
2 Eu2 = ρ2V

2
2 Eu1 = 995.7 × 0.482 × 0.9473 = 217.3 Pa
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12.2.3 Dimensional Analysis of Heat Transfer Problem

Consider fluid flow in a tube with heat addition to the fluid as shown in Fig. 12.4.
We shall think of some average temperature difference �Tref as a representative

temperature difference applicable to this problem. Then, we can define a suitable
mean heat transfer coefficient h based on a representative area Sref as h = Q

Sref�Tref
.

Variables entering the problem along with their dimensions are given in Table12.5.
The tube length drops out of consideration since our interest is on the mean heat

transfer coefficient defined for the entire length of the tube. There are thus r = 7
parameters that govern the problem. We use n = 4 in the M, L , T, θ—mass, length,
time, temperature—system. By Buckingham π theorem, there are n − r = 7 − 4 =
3 non-dimensional parameters that describe the problem. Let us assume that the
functional relation we seek is of form

h = KρaμbV ccdkeD f (12.16)

Hence, the dimensional equation may be written in the form

[
M

T 3θ

]1
=
[
M

L3

]a [ M

LT

]b [ L
T

]c [ L2

T 2θ

]d [
ML

T 3θ

]e
[L] f (12.17)

Dimensional homogeneity requires the following balances.

Fig. 12.4 Tube flow with heat addition

Table 12.5 Physical quantities and dimensions

Physical quantity Unit/Dimension

h: Heat transfer coefficient W
m2 K

= N m
s m2 K

= kg m2

s3 m2 K
= k

s3 K
=
[

M
T 3θ

]
where [θ] is the dimension of the fourth
primary quantity, temperature

ρ: Fluid density kg
m3 =

[
M
L3

]
μ: Fluid viscosity kg

m s = [ M
LT

]
V : Fluid velocity m

s = [ LT ]
c: Fluid specific heat J

kg K = N m
kg K = kg m m

s2 kg·K = m2

s2 K
=
[

L2

T 2θ

]
k: Fluid thermal conductivity W

m K = N m
s m K = kg m2

s3 m K
= kg m

s3 K
=
[
ML
T 3θ

]
D: Tube diameter m = [L]
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[M] balance: 1 = a + b + e or b = (1 − a − e) (12.18)

[L] balance: 0 = −3a − b + c + 2d + e + f or f = +3a + b − c − 2d − e
(12.19)

[T ] balance: − 3 = −b − c − 2d − 3e (12.20)

[θ] balance: − 1 = −d − e or d = 1 − e (12.21)

There are 6 unknowns and 4 equations (equal to the number of fundamental units).
We solve for four of the unknowns, b, c, d, f in terms of a and e. Using Eqs. 12.18
and 12.21 in Eq.12.19 gives

f = 3a + (1 − a − e) − c − 2(1 − e) − e = 2a − c − 1 (12.22)

From Eq.12.20, using Eq.12.21, we have

b = 3 − c − 2(1 − e) − 3e = 1 − c − e

Comparing this with Eq.12.18, we conclude that a = c. Using this in Eq.12.22, we
finally get

f = 3a + (1 − a − e) − a − 2(1 − e) − e = a − 1 (12.23)

Substituting all these back in Eq.12.16, we have

h = Kρaμ1−a−eV ac1−ekeDa−1 (12.24)

Grouping terms with the same exponent, Eq. 12.24 takes the form

h = K

(
ρV D

μ

)a ( k

μc

)1−e ( k

D

)
or

(
hD

k

)
= K

(
ρV D

μ

)a ( k

μc

)1−e

This may be recast in terms of non-dimensional groups as

NuD = K ReaD Pr
e−1 (12.25)

The above relation links the three non-dimensional parameters that are important in
the problem. Two of these, the Reynolds number ReD = V D

ν
and the Prandtl number

given by Pr = μc
k are already familiar to us. The third non-dimensional parameter

that appears here is the Nusselt number given by NuD = hD
k which is based again

on the tube diameter as the characteristic length.3 Note that the Nusselt number is

3Named after Ernst Kraft Wilhelm Nusselt, 1882–1957, a German engineer.
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similar to the Biot number that was defined in problems involving conduction with
convection at a boundary. However, the Biot number is based on the solid thermal
conductivity while the Nusselt number is based on the fluid thermal conductivity.
Similarity, in this case means that the Nusselt number is invariant if and only if
f (ReD1 , Pr1) = f (ReD2 , Pr2). Note that K , a, and e are not obtainable by dimen-
sional analysis alone. Either experiments or analysis will have to give these.

The Nusselt number may be given a physical interpretation. It is the ratio
of two heat fluxes, the convective heat flux in the moving medium to the
conductive heat transfer in the stationary fluid. We may easily verify this by
writing the Nusselt number as

NuD = hD

k
= (h�Tref)(

k�Tref
D

) = qc
qk

(12.26)

The numerator qc is a representative convective heat flux, and the denominator
qk is a representative conductive heat flux. Since NuD is invariably greater
than unity, convection enhances heat transfer to a value bigger than the repre-
sentative conductive flux.

Example 12.2

Consider the situation described in Example 12.1. It is estimated that the heat trans-
fer coefficient with air is 46W/m2 K. The Prandtl number of the fluid is expected
to affect the Nusselt number by a factor proportional to Pr0.36. What will be the
heat transfer coefficient when the fluid flowing in the tube is changed to water?

Solution:
The data specified in Example 12.1 is reproduced below for ready reference. These
are fluid independent.

ReD1 = ReD2 = 15,000, D1 = D2 = 0.025 m, L1 = L2 = 2 m

Nusselt number with air as the fluid :
The heat transfer coefficient with air as the fluid is given as h1 = 46W/m2 K.
From table of properties of air, we have, at 300K,
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k1 = 0.0267 W/m K, Pr1 = 0.71

The Nusselt number with air as the flowing medium is then calculated as

Nu1 = h1D1

k1
= 46 × 0.025

0.0267
= 43.07

Nusselt number with water as the fluid :
Since the Reynolds number and the length to diameter ratio are held fixed, theNusselt
number is affected only by the change in the Prandtl numberwhen the fluid is changed
from air to water. We have the following property values for water at 300K.

k2 = 0.611 W/m K, Pr2 = 5.9

Using similarity law given by Eq.12.25, we may identify the exponent e − 1 as 0.36.
Hence, the Nusselt number, Nu2 with water as the fluid follows the relation

Nu2
Nu1

=
(
Pr2
Pr1

)0.36
=
(

5.9

0.71

)0.36
= 2.143

Hence, the Nusselt number with water is

Nu2 = 43.07 × 2.143 = 92.31

Heat transfer coefficient with water as the fluid is then obtained as

h2 = Nu2k2
D2

= 92.31 × 0.611

0.025
= 2256 W/m2 K

There is thus a dramatic increase in the heat transfer coefficient when the fluid is
changed from air to water keeping all other things the same!

12.3 Internal Flow Fundamentals

Convection heat transfer involves an interaction between flow (velocity) and tem-
perature fields. Hence, it is not possible to discuss convection heat transfer without a
clear understanding of fundamentals of fluid flow. As mentioned earlier in Sect. 12.1
there are several ways of classifying a flow. Here our interest will be the steady flow
of a real (viscous and heat conducting) incompressible fluid. We attempt to under-
stand laminar flow. Subsequently, in a later chapter, the attention will be directed
toward internal as well as external turbulent flow. Special cases like compressible
flows will also be taken up later on in Chap. 17.
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12.3.1 Fundamentals of Steady Laminar Tube Flow

Consider steady laminar fluid flow in a straight tube of circular cross section. Exper-
iments indicate that Laminar flow prevails in the tube for ReD < 2300 based on the
mean velocity U and the tube diameter D. Assume that the fluid enters the tube at
z = 0 with a uniform velocity profile, i.e., the velocity is uniform across the tube
cross section. Thus, the velocity uz in the axial direction is equal to a constant given
uz(r, 0) = U = constant.

Figure12.5 shows the details of how the velocity profile changes from entry down
the length of the tube. Because of viscosity, the fluid velocity becomes zero at the
tube wall and the flow field varies with r and z as indicated. Boundary layer—non-
uniform velocity region near the boundary is referred to as boundary layer—develops
from the periphery of the tube such that the velocity profile is non-uniform in the
boundary layer and uniform in the core. Since the velocity is <U near the tube wall,
the velocity in the core region is>U , to guarantee that the volume flow rate (the flow
is incompressible) across the tube cross section is the same for all z. The boundary
layer occupies the entire tube cross section for z ≥ Ldev, where Ldev is referred to as
the entry length. Beyond z = Ldev, the velocity profile remains invariant with respect
to z. Thus, the velocity profile is a function of “r” only for z > Ldev. Experiments
and analysis indicate that the entry length depends on ReD and is given by

Ldev

D
= 0.05 ReD (12.27)

The flow beyond z = Ldev is referred to as fully developed flow. Analysis of
the flow in this region is fairly simple and will be done below by two methods.
First method derives the appropriate equation governing fully developed tube flow
starting from the first principles. The second method starts with the Navier Stokes
(NS) equations presented in AppendixH and obtains the governing equation by
simplifying them.

Fig. 12.5 Fluid flow in a straight tube
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12.3.2 Governing Equation Starting from First Principles

The fluid element in the form of a cylinder
Consider force balance on a cylindrical fluid element as shown in Fig. 12.6a. The
fluid element is located in the fully developed region, is of radius r and is of length�z
as shown in the figure. Under the fully developed condition, there is no change in the
velocity uz with z. Hence, the rate at which momentum enters the cylinder through
the left face of the cylindrical fluid element is the same as that leaving through the
right face. Hence, there is no net momentum change for the fluid across the element
length dz. Thus, the forces that are acting on the fluid element are as shown in
Fig. 12.6a. The forces are the pressure forces at the two end faces and the shear stress
on the curved cylindrical portion. All forces involved are along the z-direction. Force
balance requires the following:

πr2 p(z) + 2πr�z τ = πr2 p(z + �z) (12.28)

Note that the shear stress is shown pointing toward +z. The convention is that the
axial velocity uz is an increasing function with r . Using Taylor expansion, we have

p(z + �z = p(z) + dp

dz

∣∣∣∣
z

�z + O(�z2)

Inserting these in Eq.12.28, we get

πr2 p(z) + 2πr�zτ = πr2 p(z) + dp

dz

∣∣∣∣
z

�z

Fig. 12.6 Sketches to help in force balance from first principles a cylindrical fluid element b
cylindrical annular fluid element
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Assuming the fluid to be a Newtonian fluid, the shear stress is related to the deriva-
tive of velocity with respect to r as τ = μ duz

dr . On substituting this in the previous
equation and on simplification, taking limit as �z → 0, we get

duz

dr
= r

2μ

dp

dz
(12.29)

We note that the governing equation is a first-order differential equation. This equa-
tion is also obtained if we integrate Eq.12.32, once with respect to r !

Fluid element in the form of a thin cylindrical shell
Consider force balance on a cylindrical shell element of length�z and thickness�r .
The comments made while describing the cylindrical fluid element also apply in the
present case. Thus, the forces are the pressure forces at the two ends and the shear
stresses on the cylindrical portions. All forces involved are along the z-direction.
Force balance requires the following:

2πr�r p(z) + 2π�z (rτ )|r+�r = 2πr�r p(z + �z) + 2π�r�z (rτ )|r
(12.30)

Using Taylor expansion, we have

p(z + �z) = p(z) + dp

dz

∣∣∣∣
z

�z + O(�z2)

(rτ )|r+�r = (rτ )|r + d(rτ )

dr

∣∣∣∣
r

�r + O(�r2)

Inserting these in Eq.12.30, we get

2πr�r p(z) + 2π�z

[
(rτ )|r + d(rτ )

dr

∣∣∣∣
r

�r + O(�r2)

]
=

2πr�r

[
p(z) + dp

dz

∣∣∣∣
z

�z + O(�z2)

]
+ 2π�z (rτ )|r

On canceling common terms and the common multiplier �r�z, taking limit as
�r → 0 and �z → 0, we get

d(rτ )

dr
= r

dp

dz
(12.31)

With the Newtonian fluid assumption, the above equation becomes
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d

dr

(
r
duz

dr

)
= r

μ

dp

dz
(12.32)

We note that the governing equation is a second-order ordinary differential equation.

12.3.3 Governing Equation Starting with the NS Equations

Equations of motion of an incompressible fluid in steady
(

∂
∂t ≡ 0

)
laminar flow are

given by the Navier Stokes Equations. The present case involves axisymmetric flow
for which the appropriate equations are given by Eqs.H.31 and H.32 since we are
considering only the flow problem here. In the fully developed region the velocity
component ur ≡ 0, the velocity uz is a function of only r . With these, the equation
of continuity is identically satisfied. The r momentum equation (Eq.H.31) reduces
on taking ur ≡ 0 and ∂uz

∂z = 0 to

− ∂ p

∂r
= 0 (12.33)

thus showing that the pressure is a function of z alone. The z momentum equation
(Eq.H.32) then simplifies to

0 = −1

ρ

dp

dz
+ ν

1

r

d

dr

(
r
duz

dr

)

or, on rearrangement to
d

dr

(
r
duz

dr

)
= r

μ

dp

dz
(12.34)

Note that, for obvious reasons, all partial derivatives are now changed to total deriva-
tives. Equation12.34 is identical to Eq.12.32 derived from first principles.

12.3.4 Solution

The governing equation for fully developed flow requires two boundary conditions
or one boundary condition depending on whether we use the second-order equation
or the first-order equation. In the first case, the two boundary conditions are specified
as

Tube wall: uz = 0 at r = R; Tube axis: uz is finite at r = 0 (12.35)
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The first of these boundary condition corresponds to “no slip” at the tube wall. In the
second case, only the tube wall boundary condition needs to be imposed. The other
conditions are automatically satisfied.

We may integrate Eq.12.29 with respect to r , noting that dp
dz is independent of r ,

to get

uz(r) = 1

2μ

dp

dz

r2

2
+ A (12.36)

where A is a constant of integration. In general, A could have been a function of
z. However, it as well as dp

dz cannot be functions of z since the velocity profile is
invariant with respect to z. We apply the boundary condition at the tube wall. We
then have

0 = 1

2μ

dp

dz

R2

2
+ A (12.37)

Subtracting Eq.12.37 from 12.36 the constant of integration gets eliminated and
hence

uz(r) = r2

4μ

dp

dz
− R2

4μ

dp

dz
= − R2

4μ

dp

dz

[
1 −
( r
R

)2]
(12.38)

We notice that at r = 0, i.e., at the axis of the tube, uz has the maximum value
given by, say uz(r = 0) = umax. The maximum value is obtained by putting r = 0
in Eq.12.38 as

umax = − R2

4μ

dp

dz
(12.39)

This will be a positive quantity if the pressure decreases in the direction of flow!
Equation12.38 may be recast in the non-dimensional form

uz

umax
= 1 −

( r
R

)2
(12.40)

The relationship between velocity and radius is a parabolic relation and is referred
to as the Hagen–Poiseuille solution.4 The average velocityU is defined such that the
volume flow rate through the tube is V̇ = πR2U . Note that U is also the uniform
velocity at entry to the tube. To conserve mass flow across the tube this must also be
equal to the volume flow rate at any z. The volume flow rate in the fully developed
region may be obtained the fully developed velocity profile given by Eq.12.40.

4Gotthilf Heinrich Ludwig Hagen, 1797–1884, German physicist and hydraulic engineer and Jean
Léonard Marie Poiseuille, 1797–1869, French physicist and physiologist.
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V̇ =
R∫

0

uz(r)
Local velocity

2πrdr
Elemntal area

(12.41)

Using the parabolic velocity profile, taking r
R as ζ, the above expression becomes

V̇ = 2πR2umax

1∫
0

(
1 − ζ2

)
ζdζ = 2πR2umax

[
ζ2

2
− ζ4

4

]∣∣∣∣
1

0

= πR2umax

2
(12.42)

Equating the volume flow rate obtained above with V̇ = πR2U , we see that the mean
velocity is just half the maximum velocity, i.e.,

U = umax

2
(12.43)

The pressure gradient may now be obtained in terms of the mean velocity, using
Eq.12.39.

dp

dz
= −4μumax

R2
= −8μU

R2
(12.44)

The pressure gradient is a constant as already indicated. Hence, we may write it as
the ratio of pressure drop �p over a length L in the fully developed region. Thus,
we also have

dp

dz
= �p

L
= −8μU

R2
(12.45)

It is customary to define a Darcy friction factor f such that the pressure drop is given
by

�p = − f × L

D

Length to

diameter ratio

× ρU 2

2
Dynamic head

(12.46)

We notice then that− f L
2D is the Euler number that was obtained by the use of Buck-

ingham π theorem in Sect. 12.2. We also note that the present analysis provides the
undetermined exponents in the expression obtained by dimensional arguments. The
friction factor may be expressed as
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f = −
�p

ρU 2

L

2D

=
8μUL

R2ρU 2

L

2D

=
32μU

D2ρU 2

1

2D

= 64μ

ρUD
= 64

ReD
or f ReD = 64

(12.47)

using Eq.12.45 and by noting that R = D
2 . With these, we may write for the Euler

number the relation

Eu = 32

ReD

L

D
(12.48)

Comparing this with Eq.12.10, we identify the constant K as 32, exponent b as 1,
and exponent d as 1.

Example 12.3

Engine oil at 20 ◦C is made to flow in a tube of 12mm diameter. What is the maxi-
mummass flow rate if the Reynolds number is not to exceed 10?What is the pressure
drop in a length of 10m under this flow condition?

Solution:

Step 1 The density and kinematic viscosity of engine oil are taken from table of
properties.

ρ = 885.23 kg/m3, ν = 0.0009 m2/s

The tube diameter and length are given as L = 10 m, D = 12 mm =
0.012 m.The Reynolds number based on the diameter is taken as the lim-
iting value of ReD = 10 given in the problem.

Step 2 Velocity calculation:
The mean velocity corresponding to this Reynolds number is obtained as

U = ReD ν

D
= 10 × 0.0009

0.012
= 0.75 m/s

Step 3 The mass flow corresponding to this flow velocity is obtained as

ṁ = ρ
πD2

4
U = 885.23 × π × 0.0122

4
× 0.75 = 0.075 kg/s
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Step 4 Pressure drop calculation:
It is seen that the flow is laminar. The friction factor is calculated, using
Eq.12.47 as

f = 64

ReD
= 64

10
= 6.4

The flow development length is calculated based on Eq.12.27 as

Ldev = 0.058ReDD = 0.058 × 10 × 0.012 = 0.00696 m

The tube length of 10m is much much larger than the development length,
and hence, we make the assumption that the pressure drop is based on the
fully developed assumption throughout the length of the tube.

Step The pressure drop is calculated using Eq.12.46 as

�p = 6.4 × 10

0.012
× 885.23 × 0.752

2
= 1.328 × 106 Pa ≈ 13 atm

12.3.5 Fully Developed Flow in a Parallel Plate Channel

Governing equation
Consider steady laminar flow of a viscous incompressible fluid between two parallel
plates with a spacing of 2b, as an example of flow in Cartesian coordinates. The coor-
dinate axes are chosen such that the origin is at the center of the entry plane and the
x-axis is parallel to the two plates. The governing equation for fully developed flow
may be derived starting from first principles. Consider a fluid element of thickness
�y and length �x as shown (enlarged for clarity) in Fig. 12.7. Let the thickness of
the element in a direction perpendicular to the plane of the figure be one unit.

Fig. 12.7 Laminar fluid flow between two parallel plates



568 12 Laminar Convection in Internal Flow

The velocity u along the x-direction varies only with y while the pressure p varies
only with x . A force balance may be made on the element as follows.

τ (y + �y)�x + p(x)�y = τ (y)�x + p(x + �x)�y (12.49)

Using Taylor expansion, we have the following.

τ (y + �y) = τ (y) + dτ

dy
�y + O(�y2); p(x + �x) = p(x) + dp

dx
�x + O(�x2)

(12.50)
Substitute these in Eq.12.49 to get

dτ

dy
�y�x + O(�y2�x) = dp

dx
�x�y + O(�x2�y)

The common factor�y�x (this is nothing but the volume of the element) is removed
and in the limit �x → 0, �y → 0 we obtain

dτ

dy
− dp

dx
= 0 (12.51)

Using Newton’s law of viscosity, we then get

μ
d2u

dy2
− dp

dx
= 0 (12.52)

The same equation may be obtained by starting with the NS equations in cartesian
coordinates and by suitable simplification. This is left as an exercise to the reader.

Boundary conditions
Since the governing equation is a second-order equation, we need to specify two
boundary conditions. These are specified by the no slip conditions at the two bound-
aries, i.e.,

u = 0 at y = −b and y = b (12.53)

Alternately, we may specify the first kind of boundary condition at the top plate, i.e.,
u = 0 at y = b and symmetry condition at y = 0 as du

dy = 0.

Solution
Equation12.52 may be integrated twice with respect to y to get

(a)
du

dy
− 1

μ

dp

dx
y = A; (b) u − 1

μ

dp

dx

y2

2
= Ay + B (12.54)

where A and B are constants of integration to be determined by the use of the
boundary conditions. The symmetry condition at y = 0 requires that the constant A
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be set to zero. The constant B is then obtained by using the no slip at top (or bottom)
wall as

0 − 1

μ

dp

dx

b2

2
= B (12.55)

Substituting Eqs. 12.55 in 12.54(b), we get

u = − 1

μ

dp

dx

(
b2

2
− y2

2

)
(12.56)

The maximum velocity umax obviously occurs at y = 0 and is given by

umax = − 1

μ

dp

dx

b2

2
(12.57)

Mean velocity
Let us denote the mean velocity as U . It is defined such that the volume flow rate
V̇ = 2bU (per m length in a direction perpendicular to the plane of the figure) is
equal to that obtained with the actual velocity profile given by Eq.12.56. Thus, we
have

V̇ = 2bU = − 1

μ

dp

dx

b∫
−b

(
b2

2
− y2

2

)
dy = − 1

μ

dp

dx

(
b2y

2
− y3

6

)∣∣∣∣
b

−b

= − 1

μ

dp

dx
× 2

(
b3

2
− b3

6

)
= − 1

μ

dp

dx

2b3

3

(12.58)

The mean velocity is thus given by

U = − 1

μ

dp

dx

b2

3
(12.59)

Using Eqs. 12.57 and 12.59, we have the important relation

U = 2

3
umax (12.60)

Friction factor
The Darcy friction factor f is defined through the relation



570 12 Laminar Convection in Internal Flow

f = −
�p

ρU 2

L

2DH

(12.61)

where �p
L = dp

dx , DH is the hydraulic diameter given by Ac
Pw

where Ac is the flow area
and Pw is the wetted perimeter, i.e., the wall in contact with the fluid. In the case
of the channel, the area is given by 2b and the wetted perimeter is 2. Hence, the
hydraulic diameter is DH = 4×2×b

2 = 4b. Hence, the friction factor may be written
using Eq.12.59 as

f = (3U )(2DH )

ρU 2μb2
= 96UDH

ρU 2μD2
H

= 96

ReDH

or f × ReDH = 96 (12.62)

12.3.6 Concept of Fluid Resistance

Fluid resistance R f is introduced by treating the mass flow rate ṁ through the
tube/channel as a current and the pressure drop �p across the length L of the
tube/channel as the potential difference.

Resistance in tube flow
Based on Eq.12.45, the pressure drop is given by −�p = 8μUL

R2 . The mass flow rate
is obtained by using the definition of mean velocity as ṁ = ρπR2U . Fluid resistance
R f is then defined as

R f = −�p

ṁ
=

(
8μUL

R2

)

ρπR2U
= 8μL

πρR4
(12.63)

This expressionmay also bewritten based on the tube diameter D as the characteristic
length as

R f = 128μL

πρD4
(12.64)

We see that the fluid resistance is directly proportional to tube length and inversely
proportional to the fourth power of diameter of the tube.

Resistance in channel flow
Using Eq.12.59, the pressure drop is given by −�p = 3μUL

b2 . The mass flow rate is
obtained by using the definition of mean velocity as ṁ = 2ρbU . Thus, we have by
definition
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R f = −�p

ṁ
=

3μUL

b2

2ρbU
= 3μL

ρb4
(12.65)

The above expression may be recast, using the characteristic length DH = 4b, as

R f = 768μL

ρD4
H

(12.66)

We see that the fluid resistance is directly proportional to channel length and inversely
proportional to the fourth power of the hydraulic diameter.

Example 12.4 demonstrate the use of resistance concept in fluid flow distribution
in two tubes in parallel.

Example 12.4

A highly viscous oil flows under a head of 0.5m of water through two tubes that
are arranged in parallel. The first tube has a diameter of 3mm and the second has a
diameter of 4mm. Both tubes are 1m long. Determine the volume flow rates in the
two tubes. The viscosity of oil may be taken as 3 times the viscosity of water and the
relative density of oil is 0.8. Take water properties at 30 ◦C.

Solution:

Step 1 Water properties at 30 ◦C are taken from table of properties of water. They
are

ρw = 995.7 kg/m3, μw = 7.97 × 10−4 kg/m s

The flowing fluid is oil with the following properties:

Viscosity: μoil = 3 × μw = 3 × 7.97 × 10−4 = 2.39 × 10−3 kg/m s
Density: ρoil = 0.8 × ρw = 0.8 × 995.7 = 797 kg/m3

Step 2 The given data is written down as below

Tube 1: Diameter: D1 = 0.003 m Length: L1 = 1 m
Tube 2: Diameter: D2 = 0.004 m Length: L2 = 1 m

Step 3 Available pressure drop is given to be equal to a head ofwater of h = 0.5m.
The corresponding pressure drop is given by

�p = ρwgh = 995.7 × 9.81 × 0.5 = 4884 Pa

where we have used the standard value for the acceleration due to gravity
of g = 9.81m/s2. We shall assume that the flow through both tubes is
laminar. Of course we shall verify it later on.

Step 4 The flow resistance of the tubes may be obtained using Eq.12.64.
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Tube 1: R f 1 = 128×2.39×10−3×1
π×797×0.0034 = 1.510 × 106 Pa s/kg

Tube 2: R f 2 = 128×2.39×10−3×1
π×797×0.0044 = 4.777 × 105 Pa s/kg

Step 5 Using the definition of flow resistance, the mass flow rates in the two tubes
may be calculated now.

Tube 1: ṁ1 = �p
R f 1

= 4884
1.510×106 = 3.235 × 10−3 kg/s

Tube 2: ṁ2 = �p
R f 2

= 4884
4.777×105 = 1.022 × 10−2 kg/s

The corresponding oil velocities in the two cases are given by

Tube 1: U1 = ṁ1
ρoilA1

= 4ṁ1

ρoilπD2
1

= 4×3.235×10−3

797×π×0.0032 = 0.575 m/s

Tube 2: U2 = ṁ2
ρoilA2

= 4ṁ2

ρoilπD2
2

= 4×1.022×10−2

797×π×0.0042 = 1.021 m/s

Step 6 We now verify whether the flow is laminar in the two cases. This is done
by making sure that the larger of the two Reynolds numbers is less than
2300. The Reynolds number in the case of 4mm tube is the larger of the
two and is

ReD2 = ρoilU2D2

μoil
= 797 × 1.021 × 0.004

2.39 × 10−3
= 1361

The flow is indeed laminar and the use of laminar flow resistance formula
is justified.

Step 7 The volume flow rates are obtained now.

Tube 1: V̇1 = ṁ1
ρoil

= 3.235×10−3

797 = 4.06 × 10−6 m3/s

Tube 2: V̇2 = ṁ2
ρoil

= 1.022×10−2

797 = 12.83 × 10−6 m3/s

12.4 Laminar Heat Transfer in Tube Flow

Heat transfer to or from a fluid flowing in a tube is of great importance since this
configuration is very common in heat transfer devices such as heat exchangers. Even
though laminar flow is not very common, the analysis of laminar flow provides an
opportunity to learn about convection in internal flow using simplemathematics. Two
boundary conditions that are easily achieved in practice are the constant heat flux and
the constant wall temperature conditions. The former is obtained by electrical heating
of a highly conducting tube and the latter by having condensing or evaporating fluid
in contact with the outside of the tube wall.
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12.4.1 Bulk Mean Temperature

Recall from the discussion in Sect. 12.3.4 where the mean velocity for flow in a tube
was defined. The fluid flowing at the mean velocity transports a constant amount of
fluid per unit time along the tube. In a heat transfer application,wewould be interested
in determining the rate at which enthalpy is transported across any cross section of
the tube. This is easily done by introducing the so called bulk mean temperature
(also known as the mixing cup temperature). The rate at which enthalpy Ḣ(z) is
transported across any section of the tube is obtained by the following integral:

Ḣ(z) =
R∫

0

CpT (r, z)dṁ

where dṁ is the mass flow rate through an elemental area given by 2πrdr and
CpT (r, z) is the magnitude of the enthalpy of the fluid entering the elemental area.
The elemental mass flow rate itself is obtained as the product of density, area, and
the velocity as

dṁ = ρ × 2πrdr × uz(r, z)

Combining these we get

Ḣ(z) =
R∫

0

2ρπruz(r, z)CpT (r, z)dr (12.67)

We shall equate the rate of enthalpy crossing the tube section by introducing the
mean velocity introduced earlier and the bulk mean temperature TB(z) such that
Ḣ(z) = ṁCpTB(z) = (πR2ρU )CpTB(z). Note that this is the product of the mass
flow rate across the section and the mean value of enthalpy of the entering fluid.
Thus, we get for a constant property fluid

(
πR2ρU

) (
CpTB(z)

) =
R∫

0

2ρπruz(r, z)CpT (r, z)dr

or TB(z) = 2

πR2U

R∫
0

uz(r, z)T (r, z)dr

(12.68)

Note that the bulk mean temperature as defined above is valid at any z along the
flow and may, in fact, vary with z. However, U is independent of z because of mass
conservation, even though uz may be a function of r and z. In what follows we shall
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be interested in applying the above to the fully developed region where uz will be a
function of r alone.

12.4.2 Variation of the Bulk Mean Temperature

The bulk mean temperature varies with z, and this variation depends on the condition
applicable at the tube wall. In most practical applications the tube wall is thin, and
hence it is customary to neglect axial heat conduction in the tube wall, i.e., heat con-
duction along the z-direction. Hence, heat transfer across the tube wall is assumed
to be radial. This heat transfer may be subject to a very small temperature variation
across the tube wall if it is thin and made of a material with a high thermal conduc-
tivity. Hence, it is possible to make a simple analysis assuming that heat transfer to
the fluid or away from the fluid takes place radially and is specified at the fluid–solid
interface.

The analysis may be made using the control volume shown in Fig. 12.8. The
control volume is taken in the form of a short cylinder of length �z and of radius R,
equal to the inner radius of the tube.

Heat balance may be made for the control volume as follows:
[

Heat convected
across left boundary

]
+
[
Heat transfer entering

at tube wall

]
=
[

Heat convected
across right boundary

]

The heat transfer by convection entering through the left boundary is obtained by the
use of the bulk mean temperature as ρπR2UCpTB(z). The heat transfer by convec-
tion leaving through the right boundary may be written as ρπR2UCpTB(z + �z) =
ρπR2UCp

[
TB(z) + dTB

dz �z
]
.We havemade use of theTaylor expansion and retained

only the first-order term. The heat transfer entering at the tube wall is given by
2πRqw�z. Introducing these in the heat balance equation and simplifying, we get

dTB

dz
= 2qw

ρUCpR
(12.69)

Fig. 12.8 Control volume
for heat transfer analysis
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The above equation is general in that it applies to any variation of qw with z. In
the special case in which qw is constant, the bulk mean temperature increases (or
decreases if qw is negative, i.e., heat is lost from the fluid element to the tube wall)
linearly with z.

12.4.3 Tube Flow with Uniform Wall Heat Flux

Consider tube flowwith heat transfer as indicated in Fig. 12.9. The fluid enters with a
uniform temperature T0 as indicated. The wall is subjected to a constant heat flux qw.
There is a thermal entry length L ′

dev over which the temperature distribution develops
just as the flowdevelopmentwould take place over an entry length Ldev discussed ear-
lier. For laminar flow, the entry length is given by L ′

dev/D = 0.05ReDPr = 0.05Pe
where the Reynolds number Prandtl number product has been represented as Pe,
the Peclet number.5 For z > L ′

dev the temperature is fully developed, and for
qw = constant, both Tw and TB increase linearly at the same rate, keeping a con-
stant difference between the two. Here, TB is the bulk mean temperature of the fluid,
as defined earlier through Eq.12.68.

Fig. 12.9 Tube flow with constant heat flux at its surface

5Named after Jean Claude Eugène Péclet 1793–1857, a French physicist
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12.4.4 Fully Developed Temperature with Uniform Wall Heat
Flux

The idea of fully developed temperature profile is analogous to the fully developed
velocity profile considered earlier. We look for a suitably defined non-dimensional
temperature profile that is a function of r only, being thus independent of z. This is
in spite of the fact that the temperature of the fluid varies with both r and z. Consider
the non-dimensional temperature ratio given by

θ(r) = T (r, z) − Tw(z)

TB(z) − Tw(z)
(12.70)

where Tw(z) stands for the wall temperature and TB(z) is the bulk mean temperature
of the fluid. As indicated in Eq.12.70, θ is a function of only r and hence ∂θ

∂z ≡ 0.
This requires that

∂θ

∂z
=

∂T (r, z)

∂z
− dTw(z)

dz
TB(z) − Tw(z)

− T (r, z) − Tw(z)

[TB(z) − Tw(z)]2

(
dTB(z)

dz
− dTw(z)

dz

)
= 0

(12.71)
which may be rewritten, by removing the common factor TB(z) − Tw(z) in the
denominator, as

[TB(z) − Tw(z)]∂θ

∂z
=
[
∂T (r, z)

∂z
− dTw(z)

dz

]
− θ(r)

[
dTB(z)

dz
− dTw(z)

dz

]
= 0

(12.72)
In the present case of uniform tube wall flux, the above expression will hold only if

∂T (r, z)

∂z
= dTw(z)

dz
= dTB(z)

dz
(12.73)

This may be combined with Eq.12.69 to get

∂T (r, z)

∂z
= dTw(z)

dz
= dTB(z)

dz
= 2qw

ρUCpR
(12.74)

where the wall heat flux qw is a constant independent of z. Hence, the axial temper-
ature gradient ∂T (r,z)

∂z is a constant, and hence the second derivative of T (r, z) with
respect to z is zero. This means that the axial heat conduction does not change with
z and hence the axial diffusion term drops off.

Governing equation
The governing equation may be developed either from the energy equation in cylin-
drical coordinates (see AppendixH) or from first principles as is done here. Consider
energy balance over an annular element as shown in Fig. 12.10.
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Fig. 12.10 Annular control volume for developing the governing equation

Since conduction flux along the axis does not change with z, net convection
crossing the control volume in the axial direction is balanced by net conduction in
the radial direction. With this in mind, the fluxes crossing the control volume are as
shown in the figure. Energy balance may be spelt out in words as follows:
⎡
⎣ Conduction

leaving at
outer boundary

⎤
⎦−
⎡
⎣ Conduction
entering at inner

boundary

⎤
⎦ =

⎡
⎣ Convection
leaving across
right boundary

⎤
⎦−
⎡
⎣ Convection
entering across
left boundary

⎤
⎦

As usual we use Taylor expansion retaining first-order terms to write, after simplifi-
cation, the following governing equation.

k
∂

∂r

(
r
∂T

∂r

)
= ρuzCpr

∂T

∂z
(12.75)

We shall assume now that the velocity profile is given by the fully developed profile
(see Eq.12.40). We also use the variation of temperature along z given by Eqs. 12.69
and 12.74 to write the governing equation as

∂

∂r

(
r
∂T

∂r

)
= 4qwr

kR

[
1 −
( r
R

)2]
(12.76)

We may recast this equation in terms of the non-dimensional temperature θ(r) intro-
duced through Eq.12.70 as

d

dr

(
r
dθ

dr

)
= 4qwr

kR{TB(z) − Tw(z)}
[
1 −
{ r
R

}2]
(12.77)
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where the partial derivatives have become total derivatives since θ is independent of
z. Note also that TB(z) − Tw(z) in the denominator should be independent of z since
qw is independent of z. The ratio of wall heat flux to driving temperature difference
defines the convection heat transfer coefficient h which is a constant independent of
z. We define the Nusselt number NuH as the Nusselt number in the fully developed
region with constant flux boundary condition through the relation

NuH = qwD

k {Tw(z) − TB(z)} (12.78)

such that the governing equation may be recast as

d

dζ

(
ζ
dθ

dζ

)
= −2NuHζ(1 − ζ2) (12.79)

The accompanying boundary conditions are specified as

θ is finite at ζ = 0; and
qw

TB(z) − Tw(z)
− k

dθ

dr
= 0 at r = R (12.80)

in dimensional form. The boundary condition at tube wall is a statement of the fact
that the heat flux is continuous across the boundary. This may be rewritten in non-
dimensional form, using the Nusselt number defined above as

dθ

dζ
+ NuH

2
= 0 at ζ = 1 (12.81)

Solution
Equation12.76 is integrated once with respect to ζ to get

dθ

dζ
= −2NuH

(
ζ

2
− ζ3

4

)
+ C1

ζ

where C1 is a constant of integration. The boundary condition at ζ = 0 requires that
we choose C1 as 0. The resulting equation is integrated once more with respect to ζ
to get

θ = −2NuH

(
ζ2

4
− ζ4

16

)
+ C2 (12.82)

whereC2 is a second constant of integration. It is seen that the constant of integration,
in fact, represents the non-dimensional temperature θ0 at the axis of the tube, that is
not known as of now. Thus, we write Eq.12.82 as

θ − θ0 = φ(ζ)

Define

= −2NuH

(
ζ2

4
− ζ4

16

)
(12.83)
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The boundary condition at the tube wall is not available to us since it has been
implicitly used in deriving Eq.12.69 by overall energy balance. Consider the follow-
ing integral:

In =
R∫

0

uz(r)φ(r)rdr = R2

1∫
0

2U (1 − ζ2)φ(ζ)ζdζ

Using the non-dimensional temperature profile given by Eq.12.83, the above integral
is written as

In = −4UR2NuH

1∫
0

(1 − ζ2)

(
ζ2

4
− ζ4

16

)
ζdζ = −UR2NuH

∫ 1

0

[
ζ3 − 5ζ5

4
+ ζ7

4

]
dζ

= −UR2NuH

[
ζ4

4
− 5ζ6

24
+ ζ8

32

]∣∣∣∣
1

ζ=0
= −UR2NuH

(
7

96

)

(12.84)

Consider also the integral Id =
R∫
0
uz(r)rdr . We may easily obtain this integral as

Id = 2UR2

1∫
0

(ζ − ζ3)dζ = UR2

2
(12.85)

Finally, by division, we get
In
Id

= − 7

48
NuH (12.86)

We recognize this to represent θB − θ0. We may obtain from this the difference
θB − θw as

θB − θw = 1 = [θB − θ0] − [θw − θ0]

where the relation θB − θw = 1 follows from the definition of the non-dimensional
temperatures. The second term on the right-hand side is obtained by evaluating
Eq.12.83 at ζ = 1 as

θ − θ0 = −2NuH

(
1

4
− 1

16

)
= −3

8
NuH (12.87)

With these, we get

θB − θw = 1 = − 7

48
NuH + 3

8
NuH

or

NuH = 48

11
= 4.364 (12.88)
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Hence, the Nusselt number is a constant equal to 4.364 (the heat transfer coefficient
is also a constant) in fully developed tube flow with constant wall flux. Obviously,
the Nusselt number is not what is important when the wall heat flux is specified or
known. The above equation is useful in determining the difference between the wall
and bulk fluid temperature as

Tw(z) − TB(z) = 11

48

qwD

k
(12.89)

The non-dimensional temperature variation across the tube may now be represented
using Eqs. 12.83 and 12.87 as

θw − θ = (θw − θ0) − (θ − θ0) = −2NuH

(
ζ2

4
− ζ4

16

)
+ 3

8
NuH

Using the known value of NuH , the above becomes

θw − θ = 24

11

{
3

4
− ζ2 + ζ4

4

}
(12.90)

12.4.5 Tube Flow with Constant Wall Temperature

As mentioned earlier the constant wall temperature case is typical of what happens
when the outer wall of the tube is in contact with a fluid undergoing phase change,
such as in a condenser of a steam power plant. The tube side fluid (i.e., the fluid
that flows inside the tube) is usually water. The flow velocity and the tube diameter
are such that the flow in the tube is invariably turbulent. However, it is instructive to
look at the laminar flow case since fundamental ideas involved in heat transfer are the
same in the laminar case also. Schematic of tube flowwith constant wall temperature
is as shown in Fig. 12.11. The temperature field undergoes a development over an
entry length L ′

dev. The temperature in the core remains constant at T0 till z = L ′
dev.

Thereafter the thermal boundary layer fills the entire tube. The bulk temperature
varies as indicated graphically at the bottom of Fig. 12.11. Assuming that the fluid
in the tube is getting heated, TB will continually increase but the rate of heat transfer
continuously reduces since the driving temperature difference continuously decreases
with z. We shall see later that the temperature difference reduces exponentially with
z when the heat transfer coefficient is constant.
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Fig. 12.11 Tube flow with constant wall temperature

12.4.6 Fully Developed Tube Flow with Constant Wall
Temperature

Let us see what happens in the fully developed temperature region. We go back to
Eq.12.72 and notice that the fully developed condition holds only if

θ(r)
dTB

dz
= ∂T (r, z)

∂z
(12.91)

since dTw

dz = 0.
We shall look at this condition after deriving the appropriate equation that governs

the temperature field.

Governing equation
We derive the governing equation starting with the energy Eq.H.38 in cylindrical
coordinates given in AppendixH. Since the flow is steady ∂

∂t ≡ 0. The flow velocity
component along the axis of the tube alone is non-zero, and hence, the convective
term consists of only the term uz

∂T (r,z)
∂z . The diffusion terms (terms appearing in the

energy equation that account for conduction in the fluid) will involve both derivatives
with respect to r and z and the governing equation becomes

uz
∂T

∂z
= α
[1
r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2

]
(12.92)

On the right-hand side of Eq.12.92, we have the axial diffusion represented by the
second derivative of T with respect to z. In the case of tube flow with constant wall
heat flux this term dropped off since ∂T

∂z was a constant. In the present case, we shall
assume that this axial conduction term is negligibly small when compared to the
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radial conduction term represented by the derivative with respect to r . We justify
this assumption based on estimates for the derivatives. We may approximate the
derivatives by differences and hence

∂T

∂z
∼ TB,o − TB,i

L
and

∂2T

∂z2
∼ TB,o − TB,i

L2

where the inlet and outlet bulk temperatures are used to define the characteristic
temperature difference, and the length of tube to define the characteristic length.
However, for the derivatives in the r direction, we use the difference between the
mean of the bulk mean temperatures TB,mean = TB,o+TB,i

2 and wall temperature as the
characteristic temperature difference and tube radius R as the characteristic length
to write

1

r

∂

∂r

(
r
∂T

∂r

)
∼ TB,mean − Tw

R2

In applications, invariably the temperature difference of the fluid between the entry
and exit is smaller than that between the fluid and the wall. For example, the bulk
temperature difference may be 15 ◦C while the temperature difference between the
fluid and the wall may be 50 ◦C. Also the length of the tube L is normallymuch larger
than the radius R of the tube. For example, with a tube Reynolds number of 1000
fully developed conditions are obtained with L

D >
L ′
dev
D = 0.05 × 1000 × 5 = 250 or

L
R > 500 where the Prandtl number has been assumed to have a value of 5, typical of
water. With R = 0.005m, the corresponding L is about 2.5m. The axial and radial
diffusion terms are typically given by

Axial diffusion term:
TB,o − TB,i

L2
≈ 15

2.52
= 2.4 ◦C/m2

Radial diffusion term:
50

0.0052
= 2 × 106 ◦C/m2

It is thus clear that the axial diffusion term is much smaller than the radial diffusion
term, thus justifying the assumption suggested above. Hence, we approximate the
governing equation, neglecting axial conduction, as

uz
∂T

∂z
≈ α

1

r

∂

∂r

(
r
∂T

∂r

)
(12.93)

Further, we shall assume that uz is given by the fully developed velocity profile
specified by Eq.12.40. Additionally, making use of the fully developed temperature
condition Eq.12.91 and θ defined by Eq.12.70, we simplify the governing equation
to

α
1

r

∂

∂r

(
r
∂T

∂r

)
= 2U

[
1 −
( r
R

)2]
θ
dTB

dz
(12.94)
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By definition, the fully developed temperature profile is a function of r alone and
hence

∂T

∂r
= (TB − Tw)

Depends only
on z

dθ

dr

where Eq.12.70 has been made use of. Also the radial diffusion term takes the form

α
1

r

∂

∂r

(
r
∂T

∂r

)
= (TB − Tw)α

1

r

d

dr

(
r
dθ

dr

)

Thus, the governing equation takes the form of an ordinary differential equation
given by

1

r

d

dr

(
r
dθ

dr

)
= 2

U

α

[
1 −
( r
R

)2] dTB

dz
(TB − Tw)

θ (12.95)

We immediately see that

dTB

dz
(TB−Tw)

should be independent of z. This is, in fact, the real
import of the fully developed temperature profile. Using the relationship between
wall heat flux and the driving temperature difference given by Eq.12.69, we have

U

α

dTB

dz
(TB − Tw)

= − 2qw(z)

kR(Tw − TB)
= −NuT

R2
(12.96)

where NuT is the constant Nusselt number in the fully developed region in the
constant wall temperature case. Using the non-dimensional variable ζ = r

R , the gov-
erning equation takes the form

1

ζ

d

dζ

(
ζ
dθ

dζ

)
= d2θ

dζ2
+ 1

ζ

dθ

dζ
= −2NuT (1 − ζ2)θ (12.97)

This equation is to be solved with the boundary conditions given by

θ is finite at ζ = 0, and θ = 0 at ζ = 1 (12.98)

Solution
Since the governing equation is an ordinary differential equation with variable coef-
ficients, the solution may be obtained by using an infinite series to represent the
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temperature field.6 The solution that is finite at the origin will have only positive
powers of ζ in the series. Since the parameter NuH is not known, the solution will
involve this as a parameter. The boundary condition at the tube wall will determine
NuH as we shall soon see. Since the solution is axisymmetric, only even powers of ζ
will occur in the series solution. Hence, let the solution be represented by the series
given by

θ =
∞∑
n=0

C2nζ
2n (12.99)

On substitution in Eq.12.97, using term by term differentiation, collecting terms
containing same powers of ζ, we get the following:

ζ−2 : C0 × 0 Hence C0 �= 0

ζ0 : 4C2 + λ2C0

Hence C2 = −λ2

4
C0

· · ·
ζ2n : (2n)2C2n − λ2 (C2n−4 − C2n−2)

Hence C2n = − λ2

(2n)2
(C2n−4 − C2n−2) (12.100)

where, for convenience, λ2 stands for 2NuT . Hence, the solution may be written as

θ = C0

[
1 − λ2

4
ζ2 + λ2

16

(
1 + λ2

4

)
ζ4 − λ2

36

{
λ2

4
+ λ2

16

(
1 + λ2

4

)}
ζ6 − + · · ·

]

(12.101)
Note that both C0 and λ are unknown as of now. The non-dimensional temperature
has to vanish at the tube wall, and hence, the series given by Eq.12.101 should vanish
at ζ = 1. Luckily for us the series converges rapidly, and it is necessary to take only
10 terms. Since C0 is non-zero, the sum of terms within the braces have to vanish.
By trial, it may be verified that the sum vanishes for λ2 = 7.313588, and hence the
value of the Nusselt number is given by

NuT = λ2

2
= 7.313588

2
= 3.656794 ≈ 3.657 (12.102)

The value of the unknown constant C0 may be determined by using the heat flux
continuity condition at ζ = 1. This requires that (Eq.12.81 with NuH replaced by
NuT )

6M.S. Bhatti,“Fully developed temperature distribution in a circular tube with uniform wall tem-
perature”, Unpublished paper, Owens-Corning Fiberglass Corporation, Ohio, 1985 as cited by S.
Kakac and R.K. Shah,Handbook of Single Phase Convective Heat Transfer, JohnWiley, NY, 1987.
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Fig. 12.12 Fully developed
velocity and temperature
profiles

dθ

dζ

∣∣∣
ζ=1

= −NuT

2
= −3.656794

2
= −1.828397 (12.103)

The derivative required may be calculated by term by term differentiation of series
given by Eq.12.101 and inserting ζ = 1 to get

dθ

dζ
= C0 × (−1.01428) = −1.828397 or C0 = 1.802652 (12.104)

The fully developed temperature (constant wall heat flux and constant wall temper-
ature cases) and velocity profiles are shown in Fig. 12.12. While the velocity profile
is quadratic in ζ = r

R the temperature profile is a quartic in ζ, in the case of constant
heat flux case (identified as θH ) while it is given by an infinite series in the case of the
constant wall temperature case (identified as θT ). The maximum non-dimensional
temperature difference occurs between the wall and the fluid at the tube axis, in both
cases. The maximum velocity occurs along the tube axis.

Example 12.5

Ethylene glycol is flowing in a D = 6mm diameter thin-walled copper tube heated
electrically such that the wall heat flux is qw = 1000W/m2. At a certain section,
glycol has a bulk mean temperature of 70 ◦C. The volume flow rate of glycol has
been measured to be V̇ = 15ml/s. Determine the wall temperature at this location.
Also determine rate of change of the bulk temperature of glycol with axial distance.
Glycol properties may be taken as constant and are specified as below Den-
sity ρ = 1109kg/m3, Dynamic viscosity μ = 0.0144kg/ms, Thermal conductivity
k = 0.2814W/m ◦C, and Prandtl number Pr = 124.4.
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Solution:

Step 1 Flow area is calculated as

A = πD2

4
= π × 0.0062

4
= 2.82743 × 10−5 m2

Step 2 The mean velocity of glycol in the tube is then obtained as

U = V̇

A
= 15 × 10−6

2.82743 × 10−5
= 0.531 m/s

Step 3 The flow Reynolds number is determined as

ReD = ρUD

μ
= 1109 × 0.531 × 0.006

0.0144
= 245

Since the Reynolds number is less than 2300, the flow is laminar. The
results of preceding analysis of fully developed tube flow with constant
wall heat flux are used to get the desired results.

Step 4 The Nusselt number has the fully developed value of NuH = 48
11 = 4.364.

Using the definition of Nusselt number, the corresponding heat transfer
coefficient may be obtained as

h = NuHk

D
= 4.364 × 0.2814

0.006
= 204.65 W/m2 ◦C

Step 5 The driving temperature difference at any z in the fully developed region
is

Tw − TB = qw

h
= 1000

204.65
= 4.89 ◦C

Step 6 It is given that the bulk temperature at a certain location along the tube is
TB = 70 ◦C. Hence, the corresponding wall temperature is

Tw = 70 + 4.89 = 74.89 ◦C

Step 7 The specific heat of glycol may be obtained by making use of the thermo-
physical properties specified in the problem as

Cp = Pr · k
μ

= 124.4 × 0.2814

0.0144
= 2431 J/kg ◦C

Step 8 To determine the axial temperature gradient, we make use of Eq.12.74 to
get
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dTB

dz
= 2qw

ρUCpR
= 2 × 1000

1109 × 0.531 × 2431 × 0.003
= 0.47 ◦C/m

Example 12.6

Air is heated by passing it through a copper tube of 2.5 mm ID that is steam jacketed
with steam at 100 ◦C. The properties of air may be taken at a mean temperature of
40 ◦C. The steam side heat transfer coefficient is extremely large, and hence, the wall
of the tube may be assumed to be essentially at the steam temperature. At a certain
location along the tube, both flow and temperature are fully developed. Determine
the axial gradient of the bulk mean temperature at this location if the bulk mean
temperature is 60 ◦C when the mass flow of rate of air is 0.05 g/s.

Solution:
Air properties at 40 ◦C are

Density: ρ = 1.1169 kg/m3

Specific heat: Cp = 1005 J/kg◦C
Dynamic viscosity: μ = 1.91 × 10−5 kg/m s

Thermal conductivity: k = 0.0274 W/m◦C
Prandtl number: Pr = 0.699

Other data specified in the problem are

Tube diameter: D = 2.5 mm = 0.0025 m
Wall temperature: Tw = 100◦C

Bulk mean temperature: TB = 60◦C
Mass flow rate of air: ṁ = 0.05 g/s = 5 × 10−5 kg/s

Air velocity in the tube may be calculated as

U = ṁ

ρA
= 4ṁ

ρπD2
= 4 × 5 × 10−5

1.1169 × π × 0.00252
= 9.12 m/s

Tube Reynolds number is then given by

ReD = ρUD

μ
= 1.1169 × 9.12 × 0.0025

1.91 × 10−5
= 1340

Since the Reynolds number is less than 2300, the flow is laminar. Hence, we may use
the results of analysis presented previously to obtain the axial temperature gradient.
In particular, we make use of Eq.12.96 to get

dTB

dz
= −NuTα(TB − Tz)

UR2
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The thermal diffusivity α appearing in the above is obtained as

α = k

ρCp
= 0.0274

1.1169 × 1005
= 2.441 × 10−5 m2/s

Under the fully developed condition the Nusselt number NuT is equal to 3.657.
Hence, the axial gradient of the bulk mean temperature may be obtained as

dTB

dz
= −3.657 × 2.441 × 10−5(60 − 100)

9.12 × 0.001252
= 250.58 ◦C/m

12.5 Laminar Fully Developed Flow and Heat Transfer in
Non-circular Tubes and Ducts

12.5.1 Introduction

Tubes and ducts of non-circular cross section are used in many heat transfer appli-
cations. The concept of flow and temperature development applies equally to these
cases. TheReynolds andNusselt numbers are based on suitably defined characteristic
lengths. The characteristic length is also known as the hydraulic diameter in the case
of the flow problem and the energy diameter in the case of the heat transfer problem.
These two may or may not be the same, for a given duct or tube of non-circular cross
section.

Wehave earlier seen how the friction factor for a parallel plate channel is expressed
using the hydraulic diameter as the characteristic length scale. Figure12.13 shows
how the hydraulic diameter DH is defined, for the case of a duct or tube of any
cross section. For the flow problem, the hydraulic diameter uses the so-called wet-
ted perimeter Pw—the perimeter over which there is contact between the flowing

Fig. 12.13 Non-circular
duct nomenclature—the
hydraulic diameter
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fluid and the solid wall—where viscous shear is manifest. In the case of a tube of
circular diameter, the wetted perimeter is obviously the circumference of the circle
representing the cross section of the tube. The flow area is the cross-sectional area
Ac of the tube. In case of an annulus—the flow takes place in the region between an
inner and outer tube—the wetted perimeter is the sum of the circumferences of the
outer surface of the inner tube and the inner surface of the outer tube. The flow area
is the area of the annulus.

The hydraulic diameter DH is defined by the following relation:

DH = 4Ac

Pw

(12.105)

In the case of a circular cross-sectional tube, the hydraulic and actual diameter are
the same. In the case of an annulus with inner diameter Di and outer diameter Do,
we have

Pw = π (Di + Do) ; Ac = π
(
D2

o − D2
i

)
4

; DH =
4
π
(
D2

o − D2
i

)
4

π (Di + Do)
= (Do − Di )

12.5.2 Parallel Plate Channel with Asymmetric Heating

The fully developed flow in this geometry has been considered in Sect. 12.3.5. We
shall nowconsider the case of fully developed temperature problem.Detailed solution
is worked out for the case where the top wall is subject to uniform heat flux qw while
the bottom wall is adiabatic (refer Fig. 12.7). The energy equation may be written for
the present case starting from the cartesian form of equation given in AppendixH.
This is left as an exercise to the reader. The appropriate equation in non-dimensional
form is

d2θ

dζ2
= − 3

16
NuH (1 − ζ2) (12.106)

where the velocity field has been replaced using the fully developed profile given by

u

U
= 1 − ζ2

NuH in this case is defined as 4bqw

k(Tw−TB )
where Tw is the top (heated) wall temperature

and 4b is the hydraulic diameter. The boundary conditions are specified as

Top wall: θ|ζ=1 = 0

Bottom wall:
dθ

dζ

∣∣∣∣
ζ=−1

= 0 (12.107)



590 12 Laminar Convection in Internal Flow

Integrating the governing Eq.12.106 and applying the boundary conditions
Eq.12.107, we can easily show that the solution is

θ(ζ) = NuH

[
13

64
− ζ

8
− 3ζ2

32
+ ζ4

64

]
(12.108)

To determine the unknown Nusselt number, we use a procedure similar to that in
the case of fully developed temperature problem in the case of a circular tube with
constant wall heat flux considered in Sect. 12.4.4. We utilize the velocity and tem-
perature profiles to obtain the bulk-wall temperature difference and hence show that
NuH = 5.38459.

12.5.3 Parallel Plate Channel with Symmetric Heating

The case where both walls are subject to uniform heat flux is easily considered by
a few modifications to the above analysis. The governing equation is written by
modifying Eq.12.106 as

d2θ

dζ2
= −3

8
NuH (1 − ζ2) (12.109)

The boundary conditions are recast as

Top wall: θ|ζ=1 = 0

Bottom wall: θ|ζ=−1 = 0 (12.110)

Again the solution is obtained easily as

θ(ζ) = 3

16
NuH

[
5

6
− ζ2 + ζ4

6

]
(12.111)

By a similar procedure as in Sect. 12.4.4, the Nusselt number may be shown to be
NuH = 8.23529.

To highlight the differences in the asymmetric and symmetric heating cases, the
temperature profiles have been plotted in Fig. 12.14. The fully developed velocity
profile is also shown in the figure.

12.5.4 Fully Developed Flow in a Rectangular Duct

As an example of a non-circular section, we consider fully developed flow in a duct
of rectangular section of sides 2a and 2b parallel, respectively, to the x- and y-axes.
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Fig. 12.14 Temperature
profiles with asymmetric and
symmetric heating in the
case of parallel plate channel
a θ1—Asymmetric heating b
θ2—Symmetric heating

The origin is placed at the bottom left hand corner of the rectangle. Fluid velocity,
under the fully developed condition, is now a function of x and y, being independent
of z. The governing equation may be written down as,

∂2uz

∂x2
+ ∂2uz

∂y2
= 1

μ

dp

dz

representing balance between viscous and pressure forces. The velocity vanishes
along the four sides of the rectangle. We note that the right-hand side is a constant
being related to the pressure drop per unit length of the duct. Introduce the following
non-dimensional coordinates:

X = x

2a
, Y = y

2a
(12.112)

Introduce also a non-dimensional velocity given by

U = uz(x, y)

−4a2

μ

dp

dz

(12.113)

The governing equation takes the form

∂2U

∂X2
+ ∂2U

∂Y 2
= −1 (12.114)

The boundary conditions are now specified as
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Table 12.6 Fully developed velocity matrix in 1
4 section of a square duct

j → 0 1 2 3 4 5 6 7 8

i ↓ U (i, j)

0 0 0 0 0 0 0 0 0 0

1 0 0.00618 0.01041 0.01345 0.01567 0.01726 0.01834 0.01896 0.01916

2 0 0.01041 0.01809 0.02382 0.02807 0.03114 0.03323 0.03444 0.03484

3 0 0.01345 0.02382 0.03176 0.03774 0.04211 0.04508 0.04681 0.04738

4 0 0.01567 0.02807 0.03774 0.04512 0.05055 0.05427 0.05644 0.05716

5 0 0.01726 0.03114 0.04211 0.05055 0.05681 0.06111 0.06363 0.06446

6 0 0.01834 0.03323 0.04508 0.05427 0.06111 0.06584 0.06860 0.06951

7 0 0.01896 0.03444 0.04681 0.05644 0.06363 0.06860 0.07151 0.07247

8 0 0.01916 0.03484 0.04738 0.05716 0.06446 0.06951 0.07247 0.07345

Note X = 0.0625i, Y = 0.0625 j

U (X, 0) = 0, 0 ≤ X ≤ 1; U

(
X,

b

a

)
= 0, 0 ≤ X ≤ 1;

U (0,Y ) = 0, 0 ≤ Y ≤ b

a
; U (1,Y ) = 0, 0 ≤ Y ≤ b

a
(12.115)

The governing equation thus is the Poisson equation in two dimensions. This equation
is easily solved by finite differences using the methods discussed earlier, using equi-
spaced nodes along the two directions, with �X = �Y = 0.0625. As a particular
example, we consider the fully developed flow in a square duct for which b

a = 1.
The hydraulic diameter for this section is DH = 2a as may be easily verified. The
Poisson equation was solved by finite differences and the resultingU (X,Y ) is given
in Table12.6 as a matrix. Since the flow is symmetrical with respect to X = 0.5 and
Y = 0.5, only the velocities in 1

4 section of the square are presented in the table. By
numerical integration using Simpson rule (second-order accurate—as is the finite
difference method used in the solution of the Poisson equation), the mean velocity
may be obtained as

U =
1∫

X=0

1∫
Y=0

U (X,Y )dXdY = 0.03502

The maximum velocity occurs at the center of the section, i.e., X = Y = 0.5 and is
given by Umax = 0.07345. Thus, the ratio of mean to maximum velocity is given by

U

Umax
= 0.03502

0.07345
≈ 0.477

The actual mean velocity is then given by
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uz = −0.03502
4a2

μ

dp

dz
(12.116)

As before, we replace dp
dz by −�p

L and introduce friction factor f such that −�p
L =

f ρu2

2DH
. Introduce this in Eq.12.116 to get

uz = 0.03502
4a2

μ

f ρu2z
2DH

With 4a2 = D2
H , the above equation may be recast as

f = 2

0.03502

μ

ρuzDH
≈ 57

ReDH

(12.117)

12.5.5 Fully Developed Heat Transfer in a Rectangular
Duct: Uniform Wall Heat Flux Case

The corresponding heat transfer problem,with uniformwall heat flux,may beworked
out in a manner analogous to the flow problem. The governing equation may be
shown, following a method similar to that in the case of a circular tube, to be

∂2θ

∂X2
+ ∂2θ

∂Y 2
= uz(x, y)

uz
= U (X,Y )

U
(12.118)

where

θ = φ − φw

φB − φw

with φ = T(
8aqw

k

) (12.119)

where qw is the constant heat flux at the duct boundary. The subscript w represents
the wall, and subscript B refers to the bulk mean value. We see that the temperature
problem is also governed by Poisson equation but with the source term varying with
X,Y . Since θ vanishes along the four sides of the duct cross section, we have

θ(X, 0) = 0, 0 ≤ X ≤ 1; θ

(
X,

b

a

)
= 0, 0 ≤ X ≤ 1;

θ(0,Y ) = 0, 0 ≤ Y ≤ b

a
; θ(1,Y ) = 0, 0 ≤ Y ≤ b

a
(12.120)

The solution, in the specific case of a square duct, has been numerically obtained
and is given in matrix form in Table12.7.
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Table 12.7 Fully developed temperature matrix in 1
4 section of a square duct

j → 0 1 2 3 4 5 6 7 8

i ↓ φ(i, j)

0 0 0 0 0 0 0 0 0 0

1 0 0.00089 0.00289 0.00534 0.00779 0.00996 0.01164 0.01269 0.01305

2 0 0.00289 0.00973 0.01832 0.02708 0.03489 0.04098 0.04482 0.04614

3 0 0.00534 0.01832 0.03499 0.05221 0.06771 0.07982 0.08749 0.09013

4 0 0.00779 0.02708 0.05221 0.07846 0.10223 0.12095 0.13284 0.13692

5 0 0.00996 0.03489 0.06771 0.10223 0.13373 0.15858 0.17442 0.17986

6 0 0.01164 0.04098 0.07982 0.12095 0.15858 0.18841 0.20740 0.21392

7 0 0.01269 0.04482 0.08749 0.13284 0.17442 0.20740 0.22844 0.23567

8 0 0.01305 0.04614 0.09013 0.13692 0.17986 0.21392 0.23567 0.24316

Note X = 0.0625i, Y = 0.0625 j

Fig. 12.15 3D plot of
velocity in the square duct

It may easily be shown that the Nusselt number is related to the integral of the
product of U

U
and φ over the cross section of the duct represented in the form

φB =
1∫

X=0

1∫
Y=0

(
φ × U

U

)
dXdY (12.121)

The above integral is evaluated numerically and is equal to 0.069559. The Nusselt
number is then given by NuH = 1

4×0.069559 ≈ 3.6. Note that the characteristic length
used in the Nusselt number definition is the hydraulic diameter DH = 2a.

To complete this discussion, we present 3D plots of U (X.Y ) and φ(X,Y ) in
Figs. 12.15 and 12.16. Both figures indicate symmetry that was referred to earlier.
The temperature variations with respect to X for a given Y or with respect to Y
for a given X are close to being quadratic. The maximum velocity as well as the
temperature occurs at the center of the square duct.
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Fig. 12.16 3D plot of
temperature in the square
duct

12.5.6 Fully Developed Flow and Heat Transfer Results in
Several Important Geometries

Non-circular sections are many times used in applications like air handling systems,
power plants, etc. A non-circular duct may be treated in terms of an equivalent duct
of circular cross section with the diameter given by the hydraulic diameter DH .
Figure12.17 shows several cases that are important. Laminar friction coefficient—
Nusselt number results for all these cases, in the fully developed region, are shown in
Table12.8. The table also gives expressions for the appropriate hydraulic diameters.
The reader will recognize that a few of the results in the table have been worked out
in detail in previous sections.

Fig. 12.17 Ducts of different useful cross sections
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Table 12.8 Laminar fully developed relations for tubes of different cross sections

Case b
a DH NuH NuT f · ReDH

(a) — D 4.36 3.66 64

(b) 1 2a 3.61 2.98 57

2 8a
3 4.12 3.39 62.4

3 3a 4.79 3.96 68.8

4 16a
5 5.33 4.44 73.2

8 32a
9 6.49 5.6 82.8

(c) ∞ 4b 8.23 7.54 96

(d) – a√
3

3.11 2.47 53

(e) 0.9 1.893a 5.1 3.66 74.8

Case identifiers as in Fig. 12.17

12.6 Laminar Fully Developed Heat Transfer to Fluid
Flowing in an Annulus

Flow in an annulus is quite common in heat exchanger applications, such as in the
case of “tube in tube” heat exchanger.

In this case, the hot fluid may flow inside the inner tube of outer radius Ri while
the coolant flows in the annular region between the inner tube and an outer tube of
inner radius Ro as shown in Fig. 12.18. The outer tube is normally insulated on the
outside so that heat transfer takes place only across the inner tube wall.

12.6.1 Fully Developed Flow in an Annulus

The equation governing the problem is the same as Eq.12.34. However, the boundary
conditions are different and are given as

Inner boundary: r = Ri , uz = 0 Outer boundary: r = Ro, uz = 0 (12.122)

Fig. 12.18 Heat transfer in
an annulus
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Fig. 12.19 Fluid elements in an annulus for performing force and energy balances

The reader may derive the governing equation by making a force balance on a
differential element as shown inFig. 12.19c.Wemay integrate the governing equation
and apply the boundary conditions to get

uz(ζ) = − R2
0

4μ

dp

dz

⎡
⎢⎢⎣1 − ζ2 + 1 − a2

ln

(
1

a

) ln ζ

⎤
⎥⎥⎦ (12.123)

where ζ = r
R0

and a = Ri
R0
. The appearance of the logarithmic term is the main

difference between the flow in a circular tube and an annulus. Themaximum velocity
occurs at a location given by

duz

dζ
= 0 or −2ζ + 1 − a2

ln

(
1

a

) 1

ζ

Differentiating terms in square
bracket in Eq.12.123
with respect to ζ

= 0 or ζ =
√√√√√

1 − a2

2 ln

(
1

a

)

For example, when the radius ratio a = 0.5, the maximum velocity occurs at ζ =
0.73552 ≈ 0.736. Note that the inner boundary corresponds to ζ = 0.5 in this case.
Correspondingly the maximum velocity is given by

umax = − R2
0

4μ

dp

dz

⎡
⎢⎢⎣1 − 0.735522 + 1 − 0.52

ln

(
1

0.5

) ln 0.73552

⎤
⎥⎥⎦ = −0.12664

R2
0

4μ

dp

dz

The mean velocity may be obtained by using the usual definition by equating the
volume flow rates as
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U (R2
0 − R2

i ) = 2

R0∫
Ri

ruz(r)dr = − R2
0

4μ

dp

dz
R2
0

1∫
a

2ζ

⎡
⎢⎢⎣1 − ζ2 + 1 − a2

ln

(
1

a

) ln ζ

⎤
⎥⎥⎦ dζ

where we have used Eq.12.123 for the velocity. Performing the indicated integration,
after simplification, we get

U (1 − a2) = − R2
0

4μ

dp

dz

⎡
⎢⎢⎣12 − a4

2
− (1 − a2)2

2 ln

(
1

a

)
⎤
⎥⎥⎦ (12.124)

For the case with a = 0.5, we haveU = −0.08399 R2
0

4μ
dp
dz , and hence the ratio of mean

velocity to themaximumvelocity is equal to U
umax

= 0.08399
0.12664 = 0.66322.The important

thing to note is that the velocity profile may be represented in the non-dimensional
form as

uz

U
=

1 − ζ2 + 1 − a2

ln

(
1

a

) ln ζ

1

2
+ a2

2
− (1 − a2)

2 ln

(
1

a

)
(12.125)

An overall force balance may be made for the fluid contained in an element of length
�z of the annulus as shown in Fig. 12.19a. The net pressure force acting on the
element may be seen to be

Net Pressure Force = �p

�z
π(R2

0 − R2
i )�z (12.126)

This is in the negative z-direction. The net force due to viscous shear at the two
boundaries may be deduced as

[
Net viscous

force

]
=
[

Force at
outer boundary

]
−
[

Force at
inner boundary

]

or in terms of the derivatives of velocity as

Net Viscous Force = (2πRi�z)μ
duz

dr

∣∣∣∣
r=Ri

− (2πR0�z)μ
duz

dr

∣∣∣∣
r=R0

In terms of the non-dimensional velocity and radial coordinates, the above equation
may be recast as
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Net Viscous Force = (2πRi�z)μ
U

R0

d
(uz

U

)
dζ

∣∣∣∣∣∣∣
ζ=a

− (2πR0�z)μ
U

R0

d
(uz

U

)
dζ

∣∣∣∣∣∣∣
ζ=1

Note that the net viscous force is in the negative z-direction. The pressure gradient
term is negative as it should be. We may now use Eq.12.125 to obtain the derivatives
in the above equation as

d
(uz
U

)
dζ

∣∣∣∣∣∣∣
ζ=a

=

⎧⎪⎪⎨
⎪⎪⎩

−2a + 1 − a2

a ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

1

2

⎧⎪⎪⎨
⎪⎪⎩
1 + a2 − 1 − a2

ln

(
1

a

}
⎫⎪⎪⎬
⎪⎪⎭

;
d
(uz
U

)
dζ

∣∣∣∣∣∣∣
ζ=1

=

⎧⎪⎪⎨
⎪⎪⎩

−2 + 1 − a2

ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

1

2

⎧⎪⎪⎨
⎪⎪⎩
1 + a2 − 1 − a2

ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

(12.127)
Combining Eqs. 12.126 and 12.127, we may derive an expression for �p

�z that is the

same as �p
L where L is the length of the annulus in the fully developed region of the

flow. Again we introduce the familiar friction factor to represent the pressure drop
in terms of the dynamic pressure. The Reynolds number is represented in terms of
the hydraulic diameter DH = 2(R0 − Ri ) = 2R0(1 − a). The reader may supply the
intermediate steps to get the following expression:

f ReDH = 64(1 − a)2⎧⎪⎪⎨
⎪⎪⎩
1 + a2 − (1 − a2)

ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

(12.128)

This is shown as a plot in Fig. 12.20 for various values of a. Note that the friction
factor Reynolds number product tends to 96 as a → 1. In this limit, the annulus
behaves as a parallel plate channel. As a → 0 the value tends to 64 that for a circular
tube.

12.6.2 Fully Developed Temperature in an Annulus

We consider now fully developed region with constant heat flux qw specified at
the inner boundary. Energy balance over a short length element of the annulus
(Fig. 12.19b) will indicate that the z derivative of the bulk fluid temperature follows
the relation
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Fig. 12.20 Variation of
f · Re with a for an annulus

dTB

dz
Tw − TB

= αNuH

U R2
0

a

(1 − a)2(1 + a)
(12.129)

where the Nusselt number is based on the hydraulic diameter and Tw is the inner
wall temperature. By performing energy balance over an elemental volume element
shown in Fig. 12.19d, it is possible to show that the non-dimensional temperature θ
is governed by the following equation.

1

ζ

d

dζ

(
ζ
dθ

dζ

)
= −NuH

a

(1 − a)2(1 + a)

uz

U
(12.130)

The boundary conditions are given by

θ = 0 at ζ = a; dθ

dζ
= 0 at ζ = 1 (12.131)

The velocity ratio is the fully developed value given by Eq.12.125. The governing
equation along with the boundary conditions may be integrated twice with respect
to ζ to get the following solution.

θ

K
= 1

4

[
1 − (1 − a2)

ln
(
1
a

)
]
ln

(
ζ

a

)
−
[
(ζ2 − a2)

4
− (ζ4 − a4)

16

+ (1 − a2)

4 ln
(
1
a

) {ζ2(ln ζ − 1) − a2(ln a − 1)
}]

(12.132)

where
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Fig. 12.21 Fully developed
velocity and temperature
profiles in an annulus

K = 2NuH × a

(1 − a)2(1 + a)
{
1 + a2 − (1−a2)

ln ( 1
a )

}
=g(a)

(12.133)

The Nusselt number is determined by requiring that the weighted mean value of θ
K

is 1
K , i.e.,

(
θ

K

)
= 1

K
=

1∫
a

θ
uz

U
ζdζ

1∫
a

uz

U
ζdζ

= f (a) (12.134)

The ratio of the integrals is written as f (a) to stress the point that it depends on
a. Note that K is also a function of a and contains the Nusselt number as a factor.
Hence the Nusselt number is obtained as

NuH = 1

f (a) · g(a)
(12.135)

As an example, we consider the specific case of an annulus with a = 0.5. The
velocity and temperature profiles, normalized suitably are shown in Fig. 12.21. The
friction factor is given by f = 95.25

ReDH
, and the Nusselt number turns out to be NuH =

6.18.
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12.7 Flow and Heat Transfer in Laminar Entry Region

Flow and heat transfer in the entry region, i.e., z < Ldev; z < L ′
dev is more compli-

cated to handle since the velocity and temperature fields are functions of axial as
well as radial coordinates, in the case of tube flow. In the case of non-circular ducts,
the situation is even more complicated because of the dependence of velocity and
temperature on three space dimensions. The problem may occur in the following
variants:

• Flow is fully developed but temperature is developing—the tube is provided with
an entry length over which there is no heat transfer, the flow is allowed to develop
fully.

• Flow and temperature are both developing simultaneously—flow development as
well as heat transfer start at the entry to the tube.

The former case is handled more easily than the latter. The entry region heat transfer
problem is referred to as the Graetz problem.7 Contrary to the constant Nusselt
number observed in the fully developed region, theNusselt number varieswith z in the
developing region. The governing equations are solved, under suitable assumptions,
by separation of variables, the solution being expressed in terms of eigenfunctions
and eigenvalues.

12.7.1 Heat Transfer in Entry Region of Fully Developed
Tube Flow

As an example, we consider the casewhere the flow is fully developed but the temper-
ature starts developing from z = 0. The governing equation is written down using the
energy equation given in AppendixH as Eq.H.33. The flow and temperature fields
are steady, and hence, the time derivative does not occur. The velocity component uz

alone is non-zero, and hence, the convective term is restricted to that involving the
axial derivative of temperature. Thus, we have

uz
∂T

∂z
= α

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2

]
(12.136)

Introduce now the following non-dimensional variables:

Non-dimensional axial co-ordinate: Z = z
R·ReD Pr

Non-dimensional radial co-ordinate: ζ = r
R

Non-dimensional velocity: u+ = uz
U = 2(1 − ζ2)

Non-dimensional temperature: θ = Tw−T
Tw−T0

7Named after Leo Graetz, 1856–1941, German physicist
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where T0 is the uniform temperature of the fluid at z = 0. It is customary to refer to
1
Z as the Graetz number Gz. Equation12.136 is then recast as

(1 − ζ2)
∂θ

∂Z
= 1

ζ

∂

∂ζ

(
ζ
∂θ

∂ζ

)
+ 1

(ReDPr)2
∂2θ

∂Z2
(12.137)

The second term on the right-hand side is small even for moderate values of ReDPr
and hence may be neglected in comparison with the axial derivatives. Hence, the
governing equation is simplified as

1

ζ

∂

∂ζ

(
ζ
∂θ

∂ζ

)
= (1 − ζ2)

∂θ

∂Z
(12.138)

The following initial and boundary conditions may be specified:

Entry: θ(ζ, 0) = 1 for 0 ≤ ζ ≤ 1

Boundary condition: θ(1, Z) = 0

Boundary condition: θ(0, Z) is finite (12.139)

Equation12.138 subject to conditions Eq.12.139 may be solved by using the separa-
tion of variables technique. The solution is sought in the form θ(ζ, Z) = f (ζ) · g(Z).
The governing equation then may be written as two equations given by

d2 f

dζ2
+ 1

ζ

d f

dζ
+ λ2(1 − ζ2) f = 0; dg

dZ
+ λ2g = 0 (12.140)

where −λ2 is the separation constant. It is clear that the solution shows an exponen-
tially decreasingdependenceon Z . Thedependenceon ζ is through a set of orthogonal
functions over the interval 0, 1. Details of the solution including the eigenvalues λ
are available from the literature.8 We present here graphically the variation of Nusselt
number in Fig. 12.22, for both the constant wall temperature and constant wall heat
flux cases. Asymptotically these tend, respectively, to 3.66 and 4.36.

We notice that the Nusselt number is theoretically infinite at z = 0 and decreases
rapidly as z increases. It is also seen from the figure that the fully developed values
are obtained for 1

Gz = Z ≈ 0.1 or for z
R ≈ 0.1ReDPr . It is seen that the result for

the constant wall temperature case is always below that for the constant wall heat
flux case.

8J.R. Sellars, M. Tribus and J.S. Klein, Trans. ASME, Vol.78, pp. 441–448,1956.
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Fig. 12.22 Nusselt number
variation in entry region of a
tube

12.7.2 Mean Nusselt Number and Useful Correlations

By definition, the heat transfer coefficient is given by h(z) = qw

Tw−TB
. In general,

qw, TB , and Tw are all functions of z, and hence h is a function of z. The local
Nusselt number at any z is defined as NuD(z) = h(z)z

k . Hence, the Nusselt number
is simply a scaled local heat transfer coefficient. Consider, as an example, the case
of Tw = constant. In this case, in the developing region, the variation of qw with z
is different from the variation of Tw − TB with z. Hence, h and NuD vary with z.
As z → ∞, qw and Tw − TB vary alike with z and hence the Nusselt number tends
to a constant value (3.66 in this case). If the tube is of length L , we may define an
average Nusselt number as

NuD(L) = 1

L

L∫
0

NuD(z)dz

Using the non-dimensional z coordinate, the above may be recast as

NuD(L∗) = 1

L∗

L∗∫
0

NuD(Z)dZ (12.141)

where L∗ = L
R

1
ReD Pr

= 2L
D·ReD Pr . The mean Nusselt number variation with tube

length is shown in Fig. 12.23 for both the constant wall temperature and the con-
stant wall heat flux cases.

For the case of constant wall temperature, Hausen9 has given a formula for NuD

as a function of L∗.

9H. Hausen, Z. VDI Beih. Verfahrenstech., Vol. 4, pp. 91–98, 1943.
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Fig. 12.23 Mean Nusselt
number for short tubes

NuD = 3.66 +
0.1336
L∗

1 + 0.0635

(L∗)
2
3

(12.142)

This formula is for a fluid whose properties remain constant and hence is applica-
ble to problems in which the variation of fluid temperature is not large. The above
is valid for the case where the velocity profile has already developed and only the
temperature profile is developing.

For the combined entry length case, taking into account the variation of properties
with temperature, Sieder and Tate10 give the following relation.

NuD = 2.34(L∗)−
1
3

(
μ

μw

) 1
4

(12.143)

This is valid under the following conditions:

• All properties are evaluated at the mean bulk fluid temperature except μw which
is evaluated at the wall temperature.

• 0.48 ≤ Pr ≤ 16, 700; 0.0044 <
μ
μw

< 9.75.

10E.N. Seider and G.E. Tate, Ind. Eng. Chem., Vol.28, pp. 1429–1435, 1936.
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Example 12.7

Water at a mean temperature of 10 ◦C flows in a 3m long tube of 12mm diame-
ter. The Reynolds number based on the tube diameter is 500. The wall of the tube is
maintained at a constant temperature of 30 ◦C. What is the mean value of the heat
transfer coefficient? Use the correlation due to Hausen, if appropriate. Also, calculate
the pressure drop over the length of the tube.

Solution:
The water properties needed are taken from tables of properties of saturated water
at 10 ◦C.

Density of water: ρ = 999.2 kg/m3

Dynamic viscosity of water: μ = 0.00131 kg/m s
Thermal conductivity of water: k = 0.585 W/m◦C

Prandtl number of water: Pr = 9.4

The geometrical parameters specified in the problem are

Tube length: L = 3 m; Tube diameter: D = 12 mm or 0.012 m

TheReynolds number for the flow is given to be ReD = 500. The development length
for temperature (assuming that the flow is fully developed at z = 0) is estimated as

L ′
dev = (0.05ReD Pr)D = (0.05 × 500 × 9.4) × 0.012 = 2.82 m

The development length is comparable to the tube length. Hence, we make use of
the correlation due to Hausen. The tube length parameter L∗ is calculated as

L∗ = 2
L

D

1

ReDPr
= 2 × 3

0.012
× 1

500 × 9.4
= 0.1064

Hausen correlation Eq.12.142 gives

NuD = 3.66 +
0.1336
0.1064

1 + 0.0635

0.1064
2
3

= 4.64

The mean value of the heat transfer coefficient is then given by

h̄ = NuDk

D
= 4.64 × 0.585

0.012
= 226.2 W/m2 ◦C

Thus, it would be unwise to use the fully developed value for the heat transfer
coefficient!
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The pressure drop may be calculated assuming that the flow is fully developed
across tube length. The friction factor is given by

f = 64

ReD
= 64

500
= 0.128

The mean water velocity across the tube section is calculated from the Reynolds
number as

U = μReD
ρD

= 0.00131 × 500

999.2 × 0.012
= 0.055 m/s

The pressure drop over the length of the tube is then given by

�p = f LρU 2

2D
= 0.128 × 3 × 999.2 × 0.0552

2 × 0.012
= 48.4 Pa

Concluding Remarks

Study of convection heat transfer has been initiated in this chapter. Fundamental
ideas regarding laminar internal flow and heat transfer are covered here. Useful
results are presented for fully developed and developing flow and heat transfer.

12.8 Exercises

Ex 12.1: In the case of tube flow, the following 10 parameters have a role to
play:

Fluid density ρ, fluid specific heat Cp, fluid viscosity μ, fluid
thermal conductivity k, mean velocity of the fluid U , the mean
temperature of the fluid Tm , thewall temperature Tw, the total heat
transfer to the fluid over the tube length Qw, the tube diameter
D, and the tube length L .

By defining a suitable mean heat transfer coefficient show that the
number of parameters may be reduced to 8. Indicate what these
parameters are. Make use of mass [M], length [L], time [T ], and
temperature [θ] as the four primary dimensions and perform a dimen-
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sional analysis of the problem. Obtain the relevant non-dimensional
parameters that govern the problem.

Ex 12.2: The velocity distribution in laminar flow between two parallel planes
is expressed as u(y) = ay(s − y) where a is a constant, s is the
distance between the planes, and y is the coordinatemeasured normal
to the plane with y = 0 representing the bottom plane. Determine
the ratio of average velocity to the maximum velocity. Based on the
above velocity profile determine an expression for the friction factor.

Ex 12.3: (a) In a laminar pipe flow that is fully developed the axial velocity
distribution is parabolic. What is the rate at which momentum is
transferred across the tube at any section? Compare this with the
momentum carried across the tube by the fluid moving at the mean
velocity.
(b) The temperature profile in the above case varies linearly from
the tube wall to a maximum value at r = 0.5R (where R is the tube
radius) and then remains constant. What is the energy flux across the
tube, in each case?

Ex 12.4: A certain oil has a specific gravity of 0.862. It flows at a mass flow
rate of 0.2kg/s in a tube 1.2cm inner diameter. At a temperature of
370K the pressure drop in a length of 3m is 31kPa. Calculate: (a) the
dynamic viscosity and (b) the kinematic viscosity of the oil. Justify
your answer.

Ex 12.5: Consider laminar fully developed flow between two infinite parallel
planes with a gap of 2b. Obtain the velocity profile starting from first
principles. What is the friction factor? Does it agree with the value
indicated in Table12.8?
Obtain the Nusselt number for fully developed conditions, in the
same case, assuming that the walls are subject to a uniform heat flux.
Does it agree with the value indicated in Table12.8?

Hint: Energy balance over an elemental length of the fluid will
indicate that the wall temperature, local fluid temperature, and
the bulk mean temperature of the fluid all vary at a constant rate.
Use this information to arrive at the governing equation.

Ex 12.6: (a) Air at 30 ◦C is flowing in a circular tube of inner diameter 25mm.
It is known that the flow may be considered laminar if ReD < 2000.
What is the largest mass flow that the tube can support in laminar
flow?
(b) If the air temperature at entry to the tube is 30 ◦C and the wall of
the tube is maintained at a constant temperature of 90 ◦C what is the
average heat transfer coefficient, assuming the tube to be very long?
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(c) What is the outlet air temperature if the tube is 15m long?
(d) What is the pressure drop between the entry and the exit?

Ex 12.7: A liquid metal (has a very low Prandtl number and hence ν � α)
may be assumed to flow with a uniform velocity across a tube of
radius R since the velocity field undergoes very little change. This
model for liquid metal flow is referred to as a plug flow model. For
such a flow, with a specified constant wall heat flux, determine the
Nusselt number in the thermally fully developed condition. Compare
this with the value that is obtained for the case of a fluid using the
parabolic velocity distribution.

Ex 12.8: Table12.8 presents the laminar pressure drop and heat transfer results
for fully developed conditions in terms of the hydraulic diameter as
the appropriate characteristic length scale, for several cases. In each
case verify the expression for the hydraulic diameter given in the
table.

Ex 12.9: A duct is of rectangular cross section of height 2b = 0.04m and
width 2a = 0.02m. Air flows through this duct with a mean velocity
of 1.5m/s. The air enters at a bulk temperature of 30 ◦C and leaves
the duct at 70 ◦C. Determine the length of the duct required for this.
The wall of the duct is maintained at a constant temperature of 90 ◦C.

Ex 12.10: Table12.8 indicates that NuH > NuT . Justify this from physical
considerations.

Ex 12.11: A fluid flows with an average velocity of 1m/s in a circular tube of
0.05mdiameter. If the samefluidflows in a square duct of side 0.05m
and has the same Reynolds number, what is the average velocity of
the fluid in the square duct? Compare the volumeflow rates in the two
cases?Which of the two cases will involve a bigger pressure drop per
unit length, assuming that the flow is laminar and fully developed,
in both cases?

Ex 12.12: Air at atmospheric pressure and 30 ◦C flows at 3m/s through a 1cm
ID pipe. An electrical resistance heater surrounds 20cm length of
tube toward its discharge end and supplies a constant heat flux to
raise the temperature of air to 90 ◦C. What is the power input? What
is the mean value of the heat transfer coefficient? Based on the above
determine themean temperature difference between the tubewall and
the fluid.

Ex 12.13: Consider the fully developed temperature problemwith wall temper-
ature held fixed at a temperature different from the initial uniform
temperature of the fluid. Assume that the velocity profile is given
by the fully developed parabolic distribution. The resulting equa-
tion governing the non-dimensional temperature variation with r has
been derived in the text. Solve this equation numerically using the
finite difference method. Use ten uniformly spaced nodes between
the center of the tube and the periphery of the tube.Derive theNusselt
number from the solution.
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Ex 12.14: A copper tube of inner diameter 50mm and outer diameter 55mm
is 10m long. Hot water enters it at an average velocity of 0.9m/s
and a uniform temperature of 60 ◦C and loses heat to an ambient
surrounding the pipe at a temperature of 15 ◦C. The heat transfer
coefficient between the tube outer surface and the ambient may be
taken as constant equal to 7.5W/m2 ◦C.What is themean temperature
of the water as it exits the tube?
A60mmthick layer of insulationof thermal conductivity 0.6W/m ◦C
is installed on the outside of the tube. The heat transfer coefficient to
the ambient may be assumed to remain the same. What is the water
exit temperature in this case?

Ex 12.15: A fluid flows at constant temperature through an annulus of inner
diameter Di and outer diameter Do. Assume that the flow is laminar
and fully developed. Formulate the governing differential equation
for the problem. Specify appropriate boundary conditions. Obtain
the velocity distribution in the annulus. Where does the maximum
velocity occur? What is the magnitude of the maximum velocity in
terms of the mean velocity?
From the solution obtain an expression for the pressure gradient in
the annulus. Express the result in terms of a suitably defined friction
factor.

Ex 12.16: Consider the fully developed flow in the annulus as in Exercise 11.17.
Assume that the flow is fully developed, the inner surface of the annu-
lus is maintained at a constant temperature different from the fluid
entry temperature and the outer surface of the annulus is adiabatic.
Formulate the governing energy equation for the problem in the non-
dimensional form and specify the appropriate boundary conditions.
Solve the equation using the finite difference method.

Ex 12.17: A fluid forced through its interstices cools a porousmedium. The dif-
ferential equations governing the temperature of the porous medium,
Tm , and the temperature of the coolant, Tc are

km
d2Tm
dx2

= hi (Tm − Tc); GcCpc
dTc
dx

= hi (Tm − Tc)

In the above hi is an internal volumetric heat transfer coefficient, Gc

is themass flow of coolant per unit area,Cpc is the specific heat of the
coolant, and km is the thermal conductivity of the porous medium.
The coolant travels through the porous medium of thickness L . At
x = 0 the porous medium is at Tm0 and the coolant enters at Tc0.
Measurement shows that the coolant leaves at a temperature equal to
TcL . Obtain an expression for the temperature of the coolant at any
location x inside the porous medium.
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