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Preface to the Springer Edition

The first edition of the book titled “A First Course in Heat Transfer” was published
about 15 years ago. The second edition appeared in 2009. Time was ripe to revise
the book further and the result was this third edition, which was published by Ane
Books Pvt. Ltd. in 2017. With corrections, the same is now being brought out as
Springer edition.

At one time it appeared that the field of ‘heat transfer’ had reached saturation and
there was not much new in it. However, things have changed significantly in recent
times. New applications in fields such as microelectronic devices, nuclear reactors,
space propulsion systems, 3D printing made it necessary to move beyond what was
possible only a few years ago. Improvements in computers and measuring instru-
ments have made the field interesting once more and there is scope for much
research in this area. The author has been involved in several of these developments
and feels that it is time to look at the subject with renewed interest!

This edition is brought out with a complete overhaul of the book. Many new
worked out examples are included in this edition. Also, many new topics have been
added to bring the book, undoubtedly not only to a higher level, but also to a higher
level of relevance. I have tried to intersperse the elementary aspects with several
advanced topics so that the interested reader can explore more recent developments
in heat transfer with a higher level of preparation.

The aim of the present edition remains the same as the earlier editions, viz., to
move from elementary to advanced in a slow but steady progression. In order to
keep the length of the book under check, I have tried to reformat the entire book
using more advanced features available in “latex” along with the graphic envi-
ronment “tikz”. All plots have been redone using QtiPlot and the line drawings have
been redone using “tikz”. Problems at the end of each chapter are still the best way
the reader will be challenged to test his learning of the material discussed in the
chapters of the book.
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I have tried to correct as far as possible all errors of various types in the earlier
editions. However, I will be grateful if the reader would bring to my notice any
errors still found in this edition.

Chennai, India S. P. Venkateshan
May 2020
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Preface to the Second Edition

The present book is an augmented and fully revised version of my earlier book A
First Course in Heat Transfer. The book is now out of print and not available.
Several typographical and factual errors that had crept into the book have now been
corrected in the present book, which is titled “Heat Transfer”. The change of the
title seemed reasonable because the contents had been augmented to include many
topics that were omitted in the earlier book. The number of chapters have grown to
17 as against 15 in the earlier book. Notable new material is to be found in all topics
of heat transfer. Convection heat transfer and radiation heat transfer portions have
been significantly improved with additional material that takes these closer to the
current literature in these areas. I have also included the most relevant references as
footnotes for the convenience of the reader. The present revised augmented book
has taken over two years of my time.

I have improved the level of the book with additional materials included in
almost all the topics. In view of the growing importance of numerical methods I
have expanded the part that deals with numerical methods. Several appendices
dealing with background material not easily accessible to the student are added to
make it possible to deal with more advanced heat transfer topics in the book. The
first time reader may want to skip some of these topics, without loss of continuity.

A few years ago I recorded a set of video lectures on Heat Transfer through the
Educational Technology Cell of the Indian Institute of Technology, Madras. These
are available in DVD form from the Educational Technology Cell, IIT Madras.
These have subsequently been broadcast periodically over Eklavya, the Technology
channel. As a part of the video effort I prepared notes on the various topics covered
in the lecture series. The notes looked interesting and I felt that it would be worth
while converting the Notes in to a book form and make it available to a wider
audience. It seemed that, with many of the Regional Colleges of Engineering being
upgraded to National Institutes of Technology, an introductory book directed
towards students joining these institutes would be worth publishing and the present
book is the result. With the general level of undergraduate programs undergoing
qualitative change, the book should be relevant to undergraduate students studying
in any of the many engineering colleges that have started functioning throughout
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the country. I believe the present book can be covered in a semester, say in the third
year of the B.Tech. program as is done at the IIT’s including IIT Madras. Some
advanced sections may be omitted for this purpose.

Heat transfer as a discipline has grown over the past two centuries to a mature
science. Rapid developments took place during the Second World War. Later the
space age brought a new emphasis to the study of heat transfer under harsh con-
ditions. The energy crisis focused the attention of heat transfer experts on solar
energy applications. Developments in microelectronics have in recent times moti-
vated heat transfer research. Heat Transfer in manufacturing processes like laser
machining, electron beam welding, metal casting, to name a few, have also been
major areas of recent research. However, it is fortunate that most of these have not
required any more mathematics than that contained in a book like “Advanced
Engineering Mathematics” by Kreyszig 1993. The knowledge of Physics required
is more or less that covered in the Plus 2 followed by what is taught in the first year
in most engineering colleges in the country. The background knowledge of Fluid
Mechanics may be obtained from a book like “Introduction to Fluid Mechanics” by
Fox and McDonald 1995. A good grounding in the fundamentals of thermody-
namics, as is covered in the first year of engineering, is all that is needed to
undertake a study of heat transfer. The present book assumes that the student has
already had exposure to the above by the time he decides to use this book.

I do not have any pretensions regarding the originality of the material that forms
the bulk of the book. These have been considered in one form or another by all the
previous authors who have written books on Heat Transfer. I can only claim to a
certain way the material has been presented in the present book. I use examples that
are close to reality. A practicing Heat transfer engineer would probably think of
similar examples when he is designing thermal systems. The problems are not the
plug and play type. They do require some amount of “modeling” effort on the part
of the student. Also, exercises at the end of each chapter require a fair amount of
thinking on the part of the reader. I have deliberately avoided giving answers to
problems. This will discourage the student from trying to get the provided answer by
hook or by crook. We all make mistakes, in modeling or in calculations, and we learn
more from mistakes than from perfectly executed solutions, the first time. This, I
believe, is the best way of attaining some self sufficiency on the part of the student.

The writing of the book has involved support from several people.
Dr. N. Ramesh, a former student of mine produced the first hand written version
of the notes. Mrs. Lakshmi Suresh typed the first draft with a lot of care. I made all
the figures and plots using the many software resources available on my PC.
Particularly useful was MathCad 7 Professional and Microsoft EXCEL which
helped in checking and rechecking the many solved examples presented in the book.

I have enjoyed writing the book since it gave me opportunity to learn a lot of
new things. I hope the book also interests the students and other readers who may
use it for learning heat transfer.

S. P. Venkateshan
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Nomenclature

Note:

• Many symbols have more than one meaning. The context will indicate the
specific meaning.

• Symbols in limited use are not given here.

Latin Alphabet Symbols

A Aspect ratio of a cavity, non-dimensional; Area (m2)
a Speed of sound (m=sÞ
B Rotational constant (1=s)
Bi Biot number (non-dimensional)
Cp or c Specific heat (J=kg � K or J=kg�C)
C Thermal capacity (W=°C)
c0 Speed of light in vacuum (m=s)
Cf Friction coefficient (non-dimensional)
d Diameter (m)
D Diameter (m)
DH Hydraulic diameter (m)
E Electric field intensity (N=coul); Emissive power (W=m2) (total) or

(W=m2lm) (spectral)
En Exponential integral function of order n
Ec Eckert number (non-dimensional)
Ec Total energy stored (J)
erf Error function
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erfc Complementary error function
Eu Euler number (non-dimensional)
Fij Diffuse view factor between surface i and surface j (non-dimensional)
f Frequency (Hz); Friction factor (non-dimensional); Fraction of black

body radiation between 0 and kT (non-dimensional)
Fo Fourier number (non-dimensional)
g Acceleration due to gravity (m=s2)
G Heat generation rate (W=m3); Irradiation (W=m2)
Gr Grashof number (non-dimensional)
Gz Graetz number (non-dimensional)
h Heat transfer coefficient (W=m2�C); Planck’s constant (J� s); Enthalpy

(J=kg)
H Magnetic field intensity, Non-dimensional heat generation parameter
hR Radiation heat transfer coefficient (W=m2�C)
hsf Latent heat of melting/solidification (J=kg)
I Moment of inertia (kg �m2)
I Radiation intensity (W=m2 � sr) (total); Radiation intensity (W=m2� lm �

sr) (spectral)
J Radiosity (W=m2)
J Rotational quantum number
k Boltzmann constant (kJ=kmol � K)
k Thermal conductivity (W=m�C or W=m � K)
L Length (m)
LMTD Logarithmic mean temperature difference (�C or K)
Lm Mean beam length (m)
m Complex index of refraction; Fin parameter for a uniform area fin (m�1);

Mass (kg)
M Mach number (non-dimensional); Reduced mass (kg)
N Environmental parameter (non-dimensional)
n Refractive index
n! Unit normal vector
NRC Radiation conduction interaction parameter (non-dimensional)
NTU Number of transfer units (non-dimensional)
Nu Nusselt number (non-dimensional)
p Fin parameter for a variable area fin (m�1

2)
P Perimeter (m); Power (W)
p Pressure (bar or Pa)
Pe Peclet number (non-dimensional)
Pr Prandtl number (non-dimensional)
q Heat flux (W=m2)
q! Heat flux vector (W=m2)
Q Total heat transfer (W)
R Electrical resistance (X)
r Radial coordinate or radius (m); Recovery factor (non-dimensional)

xxvi Nomenclature



R Radius (m); Ramp rate (°C=s); Capacity ratio (non-dimensional);
Thermal resistance (�C=W or m2�C=W)

Ra Rayleigh number (non-dimensional)
Re Reynolds number (non-dimensional)
Rf Fouling resistance (�C=W or m2�C=W)
S Conduction shape factor (non-dimensional); Solar constant (W=m2);

Surface area (m2)
SD Diagonal pitch (m)
SL Longitudinal pitch (m)
St Stanton number (non-dimensional)
ST Transverse pitch (m)
Ste Stefan number (non-dimensional)
T Temperature (�C or K)
t Time (s)
t Transmittivity or transmittance
t� Time lag (s); Charging time (s)
Tm Melting temperature (�C or K)
Tref Reference temperature (�C or K)
U Free stream velocity (m=s); Overall heat transfer coefficient (W=m2�C)
u x component of velocity, (m/s)
V Potential energy (J)
v y component of velocity (m=s)
v Vibrational quantum number
V Volume (m3)
x x-coordinate (m)
y y-coordinate (m)
z z-coordinate (m)

Greek Symbols

a Absorptivity (no unit); Thermal diffusivity (m2=s)
b Isobaric volumetric expansion coefficient (K�1); Wedge angle (rad or �)
c Ratio of specific heats (no unit); Surface tension (N=m)
d Boundary layer thickness (m); Condensate layer thickness (m); Depth of

penetration (m); Phase angle (rad)
e Eddy viscosity (kg=m � s); Effectiveness of a fin array (no unit); Emissivity

(no unit); Heat exchanger effectiveness (no unit)
eH Eddy diffusivity of heat (m2=s)
/ Sub-cooling parameter (non-dimensional)
g Blasius similarity variable (non-dimensional); Fin efficiency

(non-dimensional); Heat exchanger effectiveness (non-dimensional)
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gR Radiating fin efficiency (non-dimensional)
j Absorption coefficient (m�1)
k Vacuum wavelength (m)
l Cosine of angle with respect to normal (no unit); Dynamic viscosity

(kg=m � s); Non-dimensional fin parameter (no unit)
m Kinematic viscosity (m2=s); Photon frequency (Hz)
h Angle (� or rad); Characteristic rotational temperature (K); Non-dimensional

temperature (no unit)
href Environmental parameter (non dimensional)
q Density (kg=m3); Reflectivity (no unit); Resistivity (X�m)
r Stefan–Boltzmann constant (W=m2K4); Surface tension (N=m)
¿ Characteristic time (s); Optical thickness (no unit); Shear stress (Pa); Time

constant (s); Transmittivity (no unit)
ˆ Stream function (s�1); Film resistance number (non-dimensional); Radiation

number (non-dimensional)
x Circular frequency (rad=s)
X Solid angle (sr)

Subscripts

amb Pertaining to the ambient
c Pertaining to convection
ch Based on a characteristic length scale
f Liquid
fg Liquid-vapor
i Pertaining to insulation layer
k Pertaining to conduction
sat Saturation condition
sf Solid-liquid
R Pertaining to radiation
r Radial
w At the wall
1 Pertaining to free-stream or ambient
1,2, etc. Pertaining to a specific position
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Chapter 1
Introduction to the Study of Heat
Transfer

Heat transfer is an important area of study since its applications are universal. Heat
transfer plays a role in all sciences and technologies. It plays an important role in

both living and non-living things. The scale at which heat transfer takes place spans the
smallest scales at the atomic level to very large scales at the level of the universe. The
present book is an introduction to the field of “Heat Transfer”, not necessarily covering
all its aspects. The present book aims to develop the subject ground up and brings it to a
level sufficient to motivate the reader to look at current heat transfer literature.

1.1 Introduction

Heat transfer or the lack of it and its consequences are important in most day-to-day
activities in industry and human life.Most engineering design involves, at some stage
or the other, a consideration of heat transfer and its prediction for reliable operation of
the designed system or product. Though a catalog of problems needing heat transfer
prediction can be given, it is fortunate that, from a physical point of view, we can
put them all under a small number of basic processes. The study of such processes
forms the material of the course on “Heat Transfer”.

Historically the birth of the discipline of heat transfer took place some twohundred
and fifty years ago. The formulation of the basic principles of heat transfer paralleled
developments in mechanics, thermodynamics, and the principles of fluid flow. The
inclusionof the conservation principles and the lawsof thermodynamics have brought
the subject to a form,which is recognized today as “Heat Transfer”. Themathematical
foundation for the study of heat transfer was laid by the work of Newton, Fourier,
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Fig. 1.1 Heat transfer—an interdisciplinary area

Laplace, and later by the work of Prandtl, Nusselt1 and others. Developments in
various branches of mathematics have also contributed to making the study of heat
transfer a rigorous one.

Heat transfer is basically an interdisciplinary area. Figure1.1 indicates why it is
so. As indicated in the chart the discipline of heat transfer depends on the theoretical
framework of the other disciplines indicated. With changing times, new situations
requiring knowledge of heat transfer processes have become important. To this cat-
egory belongs heat transfer for space applications, exploitation of solar energy, heat
transfer in nuclear power applications, cooling of miniature electronic components,
and so on. These applications have led to the development of new technologies solely
for taking care of heat dissipation for the reliable operation of the components.

Basically, we recognize three modes of heat transfer—1. Conduction, 2. Convec-
tion, and 3. Radiation. However, it is seldom that these take place independently and
in isolation, in a given application. It is a combination of these that takes place and
hence the problems become mathematically very complex when we try to obtain the
solution. These complications have led to the development of advanced analytical
methods, approximate analytical methods, and numerical methods. With the avail-
ability of inexpensive computers, numerical methods of solution have also become
attractive. Of course, experimental studies continue to be important in the study of
heat transfer processes.

1.2 Basic Assumptions in the Study of Heat Transfer

Heat transfer takes place, in the presence of temperature differences within a system,
or where there is a temperature difference across a boundary, which separates two
systems. Whenever thermal energy leaves or enters a system, (except when there is
a change of phase) its temperature changes. If this energy transfer is very rapid, the
internal modes of energymay not all equilibrate and hence a temperature, under such

1These scientists were early contributors to the field of heat transfer; between 1600 and 1950 CE.
Several Non-dimensional numbers in Fluid Mechanics and Heat Transfer are named after them.
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conditions, does not characterize the system. We assume that such is not the case
and hence assume that LocalThermodynamicEquilibrium or LTE prevails. Thus we
associate a temperature to the smallest part of a system that may not, on the whole,
be in thermodynamic equilibrium with the neighboring parts of the system.

The second assumption we make is that the matter within the system is a contin-
uum. Hence, properties are defined as continuous functions of the space coordinates.
Thus temperature, heat flux, pressure, enthalpy, etc., may be assigned to the small-
est part of the system we may want to consider. The continuum is associated with
a field—temperature, pressure, etc.—which are continuous functions of space and
time. The local thermodynamic equilibrium assumption means that a macroscopic
systemmay be defined as a collection of subsystems, each of which may be assigned
properties such as density, temperature, pressure, etc.

Continuum and LTE may break down in case we encounter (a) Very low densities
or (b) Very-high-speed flows (fluid velocity much much larger than the speed of
sound in the fluid).

Continuum hypothesis

Matter is assumed to exist in the space-time continuum. However, matter is
made up of discrete particles at the molecular or atomic level. The assumption
that matter is distributed as a continuum breaks down as we reduce the size of
the domain that containsmatter. In the case of solids and liquids, the continuum
assumption breaks down at the molecular level where the domain size is a few
Angstroms (1 AA = 10−10 m = 0.1nm). However, in the case of gases, the
assumption may become invalid even at much larger domain sizes, depending
on conditions that are discussed below.

Transport processes take place in gases due to collision between gas
molecules as they keep moving around inside the gas volume. Two molecules
will collide if the separation between them is less than or equal to themolecular
diameter. The distance traveled by a molecule between successive collisions
is known as the mean free path �. The mean free path may be calculated using
the formula

� = �T√
2πd2NAP

(1.1)

where � = 8.3145J/K mol is the universal gas constant, NA = 6.022 ×
1023 /mol is the Avogadro’s number, T is temperature (K), P is pressure (Pa),
and d is themolecular diameter (m).Atmean sea level P = 1.013 × 105 Pa and
with T = 288.15K the mean free path is � = 9.82 × 10−8 ≈ 10−7 m assum-
ing mean molecular diameter of d = 3 × 10−10 m. Since the mean free path
at sea level is of the order of a 0.1µm the continuum hypothesis is valid as
long as the characteristic length of the gas volume is more than a µm. Fre-
quent collisions between gas molecules and the presence of a large enough
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number of molecules within the smallest volume makes it possible to justify
the continuum hypothesis.

As opposed to the above, the mean free path in the atmosphere at an altitude
of 100km is of the order of 0.1m. The regime is one of slip flow. At an altitude
of 300km themean free path is of the order of a 10km.This regime corresponds
to the free molecular flow regime.

The ratio of mean free path � to a characteristic length scale L , Kn = �
L

the Knudsen number (after Martin Knudsen, 1871–1949, Danish physicist), is
useful in classifying the flow regime.

Knudsen Number Flow regime
Range

Kn < 0.01: Continuum flow regime
0.01 < Kn < 0.1: Slip flow regime
0.1 < Kn < 10: Transitional regime

Kn > 10: Free molecular regime

When flow velocities are high such as in hypersonic flows (e.g.: reentry of
a vehicle in to the atmosphere) shocks, regions of large gradients, are formed
with a characteristic thickness smaller than the mean free path. Continuum
hypothesis will break down in these cases also.

InMEMS (MicroElectroMechanicalSystems) devices, themean free path
may again become larger than the characteristic dimension, say the diameter
or width of passages. Continuum hypothesis may break down.

1.3 Basic Heat Transfer Processes and Examples

Heat transfer processes may be classified broadly as follows:

Diffusion Heat conduction, momentum transfer due to viscosity, mass diffu-
sion2—generally, diffusion is a short mean free path process (for the
molecules).

Radiation Thermal radiation—generally a long mean free path process (for the
photons).

Convection Transport of mass, momentum, and energy by a moving fluid.

In engineering applications, these do not take place in isolation. A combination of
two or more is common. The mathematical complexity is because of this. Typical
examples are presented below.

2Mass transfer is not considered in the present book.
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A Candle Flame

Acandle flame is a fairly complex system.Air and fuel (hydrocarbon in thewax) react
to form a flame. The reaction is exothermic and is dissipated by radiation (photons
are released; we are able to see the flame since some of the photons are in the visible
part of the electromagnetic spectrum) and is convectively transported and dissipated
by the plume. Some heat is conducted/radiated into the candle and it melts. Figure1.2
shows the state of affairs.

Heat Flow Across a Solid Wall

Figure1.3 shows the situation schematically. The wall is a conducting element and
heat transfer is by conduction across the solid. At the two boundaries, heat transfer
is by convection and radiation. The temperature variation within the wall and the
regions adjacent to the two boundaries of the wall, under steady conditions, is as
shown in the figure. Note that the temperature variation adjacent to each boundary
represents that in the ambient medium. Heat flux q is in the direction of decreasing
temperature.

Cooling System for an Internal Combustion Engine

Figure1.4 shows a schematic representation of the cooling system for an internal
combustion engine used in automobiles. Cooling water is forced through the water
jacket of the cylinder to maintain the cylinder wall at the desired temperature level.

Fig. 1.2 Heat transfer
processes in a burning candle

Fig. 1.3 Heat flow across a
wall
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Fig. 1.4 Schematic of an IC Engine cooling system

The water picks up heat here and dissipates this heat to the atmosphere through
the radiator. The radiator consists of passages through which the water flows and
airflow takes place across the outside of the passages. Usually, fins (also referred to
as extended surfaces—more on this later) are provided on the air-side to augment
heat transfer.

The working of the engine cooling system is self-explanatory from the figure.
Mechanisms of heat transfer involved are

• Forced convection to water in the jacket.
• Forced convection on the water-side of the radiator.
• Conduction in the passage walls and within the fins on the air-side of the radiator.
• Forced convection to the air outside the radiator—radiation is not the important
mode of heat transfer and hence the name “radiator” is probably a misnomer.

Solar Collector

A solar collector is a device that is used for transferring the radiant energy from the
sun to a fluid. In the case of a solar water heater, the fluid that gets heated is water that
may be used for process applications. The cross section of a typical solar collector
is shown in Fig. 1.5.

It consists of an absorber plate (with high solar absorptivity and high thermal
conductivity), oriented such that it is normal to the solar radiation, that absorbs solar
radiation incident on it. Embedded channels/tubes carry water that is to be heated.
The back of the collector is insulated with a low thermal conductivity material to
reduce heat loss. Cover plate(s) (essentially plane glass sheets) are provided to pass
solar radiation “in” but block infrared radiation (emitted by the collector plate) going
“out”.
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Fig. 1.5 Cross-sectional view of a typical solar collector

The following heat transfer processes take place in this application:

• Radiation from the sun is transmitted by the cover plate(s) and absorbed by
the collector plate.

• Heat is conducted to the embedded tubes by conduction.
• Heat is transferred to water flowing in the tubes by convection.
• Some heat is lost from the back by conduction through the insulation.
• Some heat is convected/conducted across the air gap.
• Some heat is lost from the cover plate(s) by reflected solar radiation as well
as by heat convection to the ambient.

1.3.1 Basic Definitions

Temperature field

The concept of the temperature field is that in a physical domain D, we associate
temperature T to every point P(x, y, z) at a given t (see Fig. 1.6). Time t is counted
as positive from a conveniently chosen initial value. If T (x, y, z, t) = constant, then
D is an isothermal domain. In case T is a function of t alone, we have an unsteady
lumped system. If T is a function of only (x, y, z), then the temperature field is steady.
In such a case, T = constant defines surfaces which are referred to as isothermal
surfaces. An example of a two-dimensional steady temperature field is shown in
Fig. 1.7. Several isotherms (solid lines) and several heat flux lines (dashed lines,
assuming heat transfer is solely by conduction, tangent to flux line is the direction of
heat flux) are shown thereon. Isotherm at T2 intersects a heat flux line as indicated in
the figure. These two intersect orthogonally and hence the angle between the tangents
AB and CD is 90◦. In general, isotherms and flux lines form a net of curvilinear
rectangles.
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Fig. 1.6 Concept of
temperature field.
Temperature at point P is
specified as T (x, y, z, t)

Fig. 1.7 Orthogonality of
isotherms and heat flux
lines—two-dimensional
temperature field

Fig. 1.8 Heat flux vector

Heat Flux Vector

Imagine an area element d A with its normal along n̂ (see Fig. 1.8).
If �q is the heat flux vector, we define the power crossing area element (i.e., energy
crossing per unit time) d A as

P = �q · n̂ d A = q cos θd A (1.2)
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Note that P has units of power, i.e., W , �q has units of W/m2 and d A has units
of m2. Heat flux lines (see Fig. 1.7) are curves the tangents to which we define the
direction of the heat flux vector.

Conduction Heat Transfer in a Homogeneous Medium

Conduction heat transfer in a homogeneous medium3 at rest is the first mode of heat
transfer we consider. Some general statements4 that may be made are

1. Heat transfer takes place from a region of higher temperature to a region of
lower temperature (i.e., no violation of Second law of thermodynamics).

2. No heat flows along an isotherm (definition of an isotherm).
3. Heat flows along the direction of largest temperature change and hence

normal to an isotherm (flux lines and isotherms intersect at 90◦ as indicated
in Fig. 1.7).

4. Heat flux isdirectly proportional to the temperature gradient (linearmodel).

The above observations led Fourier5 to postulate a linear relation between con-
duction heat flux �qk and the temperature gradient vector as

�qk = −k∇T (1.3)

where, for a homogeneous medium, k is a constant and is known as the thermal
conductivity. The negative sign makes sure that the heat flux is in the direction of
decreasing temperature. Thermal conductivity k is assumed to be a property of the
medium. Equation1.3 represents Fourier law of heat conduction.

Heat Transfer by Radiation

Radiation is an independent mode of heat transfer. It takes place via electromagnetic
waves or photons. It is a fact that bodies radiate solely due to their being at a tem-
perature above 0K. The most efficient radiator at a temperature T is called a black
body. It radiates an amount of energy per unit time and area qr (radiant heat flux)
given by

qr = σT 4 (1.4)

3The medium is assumed to have the same property at all locations inside it.
4These are in the nature of postulates or axioms used in modeling conduction heat transfer in a
homogeneous medium.
5Jean-Baptiste Joseph Fourier 1768–1830, French mathematician and physicist.
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where σ = 5.67 × 10−8 W/m2K4 is the Stefan–Boltzmann constant.6 If there are two
black bodies that are at temperatures T1 and T2, respectively, the radiant heat transfer
between them is given by

q1−2 = Fσ
(
T 4
1 − T 4

2

)
(1.5)

where “F” is a geometric factor. We note that the radiation heat transfer varies non-
linearly with the temperatures. In the special case where (T1 − T2) << T1 or T2 we
may approximate T 4

1 − T 4
2 as

T 4
1 − T 4

2 = (T 2
1 − T 2

2 )(T 2
1 + T 2

2 )

= (T1 − T2) (T1 + T2)
2Tre f

(T 2
1 + T 2

2 )

≈2T 2
re f

≈ 4T 3
re f (T1 − T2)

where Tref = T1+T2
2 . Equation1.5 may then be rewritten as

q1−2 = 4σT 3
re f F(T1 − T2) = hr (T1 − T2) (1.6)

where hr = 4σT 3
re f F is referred to as the radiation heat transfer coefficient. Equa-

tion1.6 represents what is called “linearized” radiation. It resembles Newton’s law
of cooling (to be presented below, in the case of convection heat transfer, see Eq.1.8),
in this special case.

Example1.1

A surface that is maintained at 310 K is losing heat to a background at 300 K by
radiation. What is the appropriate radiation heat transfer coefficient? Is it alright to
use this concept? Justify.

Solution:
Figure1.9 shows the geometrical arrangement along with the way radiation interac-
tion takes place between the surface and the surroundings. The ambient receiving
radiation is idealized as a black surface at the ambient temperature.

We assume that the radiation interchange is wholly between the surface and the
surroundings, i.e., the geometric factor is F = 1. The reference temperature is taken
as the mean of surface temperature and the temperature of the surroundings.

Step 1 Surface temperature is Ts = 310 K
Temperature of the surroundings is Tamb = 300 K
Reference temperature is

6Jožef Stefan, 1835–1893 and Ludwig Boltzmann—1844–1906, Austrian physicists.
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Fig. 1.9 Geometry for
Example 1.1 showing
radiation interaction

Tref = Ts + Tamb

2
= 310 + 300

2
= 305K

Step 2 We use Eq.1.6 to calculate the radiative heat transfer coefficient as

hr = 4 × 5.67 × 10−8 × 3053 = 6.43W/m2K

Step 3 The heat transferred between the surface and the ambient is approximately
equal to

qs−amb ≈ hr (Ts − Tamb) = 6.43 × (310 − 300) = 64.3W/m2

Step 4 We look at what will be the exact value obtained by the use of Eq.1.5.

qs−amb = 5.67 × 10−8 × (3104 − 3004) = 64.4W/m2

Step 5 Since the two values are very close to each other linear approximation is a
valid approximation.

Heat Transfer by Convection

It is common knowledge (or experience, all you have to do is to sit under a ceiling
fan on a hot day) that a flowing fluid increases the heat transfer from a surface. The
reason for this is that the heated fluid near a surface moves away, carrying with it, the
heat from the surface and cold fluid moves in to replace what has been swept away.
The fluid motion thus promotes heat transfer. Figure1.10 shows what is going on.

The fluid in contact with the surface is at rest if the body is standing still or
otherwise, is moving with the same velocity as that of the surface (known as no-
slip condition). The fluid velocity is the undisturbed fluid velocity U some distance
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Fig. 1.10 Velocity and
temperature variations in a
moving fluid adjacent to a
solid boundary

away from the surface. The zero velocity at the surface is a consequence of fluid
viscosity. Thus a velocity field is developed as shown in the figure. Correspondingly
the temperature field shows the indicated profile. The temperature of the fluid and
the body are identical at the surface (no temperature slip), specified as Ts(x). A
short distance away the temperature of the fluid is the undisturbed value T∞. The
zero temperature difference between the solid surface and the fluid adjacent to it is
a consequence of the thermal conductivity of the medium. Thus a temperature field
is developed as shown in the figure. Since the medium is essentially at rest at the
surface, the wall heat flux is given by the conductive heat flux in the fluid adjacent to
the wall. The conductive heat flux component normal to the surface is written down
using Fourier heat conduction law (Eq.1.3) as

qw(x) = −k f
∂T

∂y

∣
∣∣∣
y=0

(1.7)

The coordinate x is measured along the surface and the coordinate y is measured
normal to the surface. k f is the thermal conductivity of the fluid flowing past the
surface. Equation1.7 highlights the fact that the heat flux may vary with x . Also, the
heat flux considered here is in the “local” y direction. The effect of movement of the

fluid is an increase in the temperature gradient at the wall, ∂T
∂y

∣∣∣
∣
y=0

as compared to

the case where the fluid is at rest. This is shown schematically in Fig. 1.11.
The process of convection is difficult to model since

1. Velocity and temperature fields are, in general, interdependent;
2. The velocity problem is generally governed by a non-linear partial differential

equation;
3. Flow and temperature fields exhibit different regimes such as laminar, transition

and fully turbulent regimes.

Hence very few cases may be handled by analytical methods. One way of circum-
venting this problem is to rewrite Eq.1.7 in the form
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Fig. 1.11 Effect of fluid flow on the temperature variation adjacent to the wall

qw(x) = h(x) {Tw(x) − T∞} (1.8)

where we have postulated a linear relation between the surface heat flux and the
temperature difference between the surface and the free stream. “h(x)” is referred to
as the “local” heat transfer coefficient and Eq.1.8 is referred to as Newton’s7 law of
cooling. It is to be noted that Eq.1.8 does not really represent a “law” and, at best,
it is an expression that defines the heat transfer coefficient. Again the (x) indicates
that the considered quantity may be a function of the position along the surface. The
term “local” refers to this aspect. In applications, we also use a mean or an average
value, in which case, the reference to (x) will have to be dropped. Generally the
heat transfer coefficient “h” (units W/m2 ◦C) depends on many variables like the
fluid velocity U , fluid viscosity ν, the geometry of the body through a characteristic
dimension L , fluid thermal conductivity k f , and so on. Most of the time the task of
relating h to the flow variables is a challenging task. This will receive attention later
on. The heat transfer coefficient values cover a wide range of values as indicated in
Table1.1.

It is to be noted that the entries in the table are to be interpreted in a general way,
in that, the heat transfer mechanism may not be by convection alone. In fact, for an
object in still air, “free” or “natural” convection heat transfer rate and radiation heat
transfer rate, are of the same order of magnitude. The entry number 3 in Table1.1 is
the combined heat transfer due to natural convection and surface radiation obtained
by using the concept of the radiation heat transfer coefficient introduced through
Eq.1.6.

Example1.2

A flat plate of dimensions 100 × 50mm and negligible thickness, maintained at
42 ◦C, is losing 0.85W from both sides by natural convection to ambient air at

7Isaac Newton 1643–1727, English physicist and mathematician.
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Table 1.1 Heat transfer coefficient values in some representative cases

No. Case h, W/m2 ◦C
1 Air - Heating or cooling 1–50

2 Polished surface in still air: 7–17.5

small temperature difference

3 Blackened surface in still air: 17.5–25

small temperature difference

4 Surface in contact with oil: 60–1,700

heating or cooling

5 Surface in contact with water: 300–17,000

heating or cooling

6 Surface in contact with boiling water: 1,700–50,000

30 ◦C. What is the heat transfer coefficient? Is it in agreement with the range shown
in Table1.1?

Solution:
The size of the surface is specified by L = 100mm = 0.1m and W = 50m =
0.05m. Since the surface loses heat from both sides, the surface area for heat transfer
is

A = 2L × W = 2 × 0.1 × 0.05 = 0.01m2

Surface temperature is Ts = 42 ◦C
Ambient temperature is Tamb = 30 ◦C
Total heat transferred from the two exposed surfaces of the plate is Q = 0.85W
By definition, the heat transfer coefficient is given by

h = Q

A(Ts − Tamb)
= 0.85

0.01 × (42 − 30)
= 7.08W/m2 ◦C

This value is certainly in tune with the range shown in Table1.1.

Concluding Remarks

In this chapter, we have given an overview of what constitutes the study of heat transfer. The

succeeding chapters deal with a detailed study of each mode of heat transfer, in the order in

which they have been presented above. The last chapter in the bookwill provide an introduction

to multi-mode heat transfer, bringing all the modes of heat transfer together, in some simple

cases amenable to an elementary treatment. That will also lead the reader beyond what is

possible at the level of the present book.
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1.4 Exercises

Ex 1.1 Answer the following in as much detail as you can. Some general reading
is called for.

• Why does water kept in an earthen pot remain cool?
• Why does a metal chair feel cool while a wooden chair does not, on a
cold day?

• Loose fitting clothes are known to be more comfortable in the tropics.
What may be the reason for this?

• A healthy human being has the body temperature maintained at 37 ◦C.
Explain how the human body accomplishes this.

• A friend tells you that keeping the door of a refrigerator open will cool
the room. Do you agree with this? Explain giving reasons.

• Explain why a hot flat surface facing downwards in still air will lose
heat at a lower rate than if it faces upwards.

• Why is the ventilator in a building at the roof level? Explain.

Ex 1.2 What a heat exchanger essentially does is to transfer a certain amount of
heat per unit time fromfluid 1 to fluid 2. In a certain heat exchanger, the state
of affairs is as indicated in Fig. 1.12. By thermodynamic analysis determine
the maximum possible heat exchange Qmax between the two fluids. What
is the actual heat transfer Qact between the two fluids? Can you attach any
significance to the ratio of the latter to the former?

Ex 1.3 A steam power plant operates on the Rankine cycle. Make a schematic
sketch of such a power plant and indicate the types of heat transfer equip-
ment involved. Figure out what modes of heat transfer are involved in such
equipment. It would help if you make a T − s plot, i.e., temperature vs
entropy plot of the cycle.

Fig. 1.12 Heat exchanger
example in Exercise 1.2
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Ex 1.4 An inventor claims that he has designed a heat exchanger that will cool
1 kg/s of air from 80 ◦C to 40 ◦C using 2 kg/s of cold water that heats up
from 25 ◦C to 30 ◦C. Do you think the claim is genuine? Explain.

Ex 1.5 In a certain material of uniform thermal conductivity k, the temperature
field is T (x, y) = 50 ln(x2 + y2). Determine x and y components of the
heat flux at the point (3,2). What is the resultant heat flux and its direction?
Make a sketch of isotherms and heat flux lines.

Ex 1.6 A fluid of thermal conductivity 0.5W/m◦C flows past a surface. The heat
transfer coefficient has been measured to be 45W/m2 ◦C when the surface
temperature is 70 ◦C and the fluid temperature far away from the surface is
25 ◦C.What is the heat flux at the surface?What is the temperature gradient
within the fluid normal to the surface?
Hint: Convection heat flux at the surface is equal to the conduction heat
flux in the medium at the surface.

Ex 1.7 For free or natural convection in air the heat transfer coefficient from a
horizontal surface is about. 6W/m2 ◦C. Determine the largest heat flux
that can be supported by a surface cooled by air at 30 ◦C if the surface
temperature is not to exceed 100 ◦C.

Ex 1.8 A certain horizontal surface placed in air is losing heat by natural convec-
tion and radiation to an ambient at T∞ = 300K. The plate temperature is
maintained at Ts = 380K. The free convection heat transfer coefficient is
h = 10W/m2 ◦C. The plate surface has been coated with a paint that gives
it an emissivity of ε = 0.85. Determine the heat loss from the plate by radi-
ation and compare it with that due to free convection. Compare the heat
loss by radiation computed above with the calculation based on linear radi-
ation based on the radiation heat transfer coefficient hR = 4εσT 3

re f , where
σ is the Stefan–Boltzmann constant and Tref is a suitably chosen reference
temperature. Is the linear radiation model valid in this case? Explain giving
reasons.



Chapter 2
Steady Conduction in One Dimension

It is traditional to consider simple conduction problems in one dimension to
initiate the beginning student to the study of heat transfer. Steady conduction in one

dimension leads to ordinary differential equations that are easy to solve. We present
steady conduction in a slab, a cylinder, and a sphere to highlight the role of geometry in
the temperature variations. Other modes of heat transfer such as convection and
radiation make their appearance in the form of boundary conditions.

2.1 Preliminaries

This chapter begins a detailed study of conduction heat transfer. Preliminaries like
units of quantities, thermal properties of various materials are considered before
getting into the study of conduction heat transfer. In Chap. 1, we have already
encountered the basic quantities that appear in conduction heat transfer. These are
recapitulated here in Table 2.1.

2.1.1 On Thermal Conductivity Values

Thermal conductivity values of materials encountered in practice vary over some
6 orders of magnitude. Gases have the smallest thermal conductivity values of all
materials. Liquids have thermal conductivity values in between those of gases and
solids. Some fibrous (and hence porous) materials have values of thermal conduc-
tivity in between those of gases and liquids. Figure 2.1 shows the ranges of thermal
conductivity values for gases, liquids, and solids. The thermal conductivity values
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Table 2.1 Units of physical quantities in heat transfer

Physical quantity Unit

Temperature: ◦C or K

Heat Flux: W/m2

Thermal Conductivity: W/m◦C or W/mK

Heat Transfer Coefficient: W/m2◦C or W/m2K

Fig. 2.1 Thermal conductivity of gases, liquids, and solids

are indicated on a logarithmic scale. Typical materials are shown on this line at loca-
tions that correspond to the respective thermal conductivity values. These values are
typical since the thermal conductivity shows variation primarily with temperature
and the presence of impurities in the sample.

The following points regarding some observed behavior of thermal conductivity
of materials are of importance, in the study of heat transfer.

Some observed behavior of thermal conductivity of materials

1. Thermal conductivity of pure metals decreases with temperature.
2. Even small amounts of impurities reverse the above trend.
3. Thermal conductivity of most liquids decreases with temperature.
4. Thermal conductivity of gases increaseswith temperature. The thermal con-

ductivity of gases decreases (in general) with increasing molecular weight
(see Table 2.2).

5. Except at very high pressures, thermal conductivity is not influenced by
pressure.
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Table 2.2 Thermal conductivity of several gases at atmospheric pressure and 0 ◦C
Gas Thermal Molecular

Conductivity Weight

Hydrogen 0.1672 2

Helium 0.1416 4

Nitrogen 0.0240 14

Air 0.0241 28

Carbon Monoxide 0.0232 28

Argon 0.0164 40

Carbon Dioxide 0.0154 44

2.1.2 Approaches to the Study of Conduction Heat Transfer

In general, there are two approaches to the study of conduction heat transfer. In the
first, the general equation that governs the temperature field in a stationary medium
is derived, from first principles, applying the law of conservation of energy to a
volume element. The volume element may be represented using any one of the three
orthogonal coordinate systems, viz., the Cartesian, the cylindrical, or the spherical
coordinates. The material medium may be homogeneous with identical properties
along all directions or a material with anisotropic properties. The thermo-physical
properties may be allowed to vary with temperature. The resulting equation known as
the “Heat Diffusion Equation” or simply the “Heat Equation” is a partial differential
equation thatmaybe solved either by analyticalmethodswhen amenable or otherwise
by numerical methods. The simpler cases that correspond to, for example, steady
conduction in one dimension, transient conduction in one dimension, etc., are then
derived as special cases of the Heat Equation. This approach is more satisfying in
terms of its elegance.

However, in the second approach, that is being followed in this book, we start
directly with the special but simple cases and gradually build up the theoretical
framework to culminate in the general Heat Equation. This approach is more satis-
factory for the first time learner.

2.2 Steady One Dimensional Conduction

Steady one-dimensional conduction may take place in a plane wall (it is assumed to
be infinite in extent or, at least, very much larger than the thickness of the plane wall
so that edge effects are not significant), a long cylinder or a cylindrical annulus (in
principle infinitely long but in practice the length of cylinder is very large compared
to the outer diameter) and a sphere or a spherical shell. The plane wall represents the
simplest geometry since the area for heat transfer does not vary with the independent
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space variable, say x . Usually, the calculations are based on a unit area perpendicular
to the x-direction.When heat transfer takes place radially in a cylinder or a cylindrical
annulus, the area available for conduction heat transfer increases linearly with the
radial coordinate r . In the case of radial heat transfer in a sphere or a spherical shell,
the area available for conduction heat transfer increases as the square of the radial
coordinate r .

The governing equations in the three cases thus have significant differences and
these lead to interesting consequences. The three cases are considered in what fol-
lows, in that order.

2.2.1 One-Dimensional Conduction in a Uniform Area Bar

Uniform Area Bar with Constant Thermal Conductivity
Consider a bar of material whose cross-sectional area is uniform. By uniform, we
mean that the area does not change with x , as shown in Fig. 2.2. The temperature is
assumed to vary only with x as shown in the figure that corresponds to the case of a
bar with constant thermal conductivity (i.e., k is independent of T ).

We write Fourier law for this case as

qx = −k
dT

dx
= constant (2.1)

where the heat flux has a non-zero component qx along the x-direction. The con-
duction heat flux is constant since the temperature field is steady. Since the thermal
conductivity is constant, we may conclude that the temperature gradient dT

dx is itself
a constant. Temperature variation along the rod is thus linear and is as indicated in
Fig. 2.2. Based on the temperature variation in the bar, we have

dT

dx
= CE

AC
= TL − T0

L
(2.2)

Fig. 2.2 Conduction of heat in a uniform area rod a Geometry b Temperature distribution
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and
dT

dx
= EF

DF
= T − T0

x
(2.3)

Equating these two alternate expressions for the temperature gradient, after some
minor manipulation, we get

T − T0
TL − T0

θ

= x

L
ξ

or θ = ξ (2.4)

where θ = T−T0
TL−T0

is the non-dimensional temperature while ξ = x
L is the non-

dimensional axial distance from the left end. In this form, the temperature profile is
independent of various temperatures, the length of the bar, and the constant thermal
conductivity of the bar material. We may refer to this as the “universal temperature
profile” for steady conduction in the bar. However, if one wants to calculate the heat
transferred across the bar, all the physical variables will come in to the picture!

Uniform Area Bar with Variable Thermal Conductivity
When the thermal conductivity varies with temperature, the analysis becomes more
complicated since the governing equation becomes non-linear. In order to get the
flavor of this but not the complexity we look at the case of a bar of material whose
thermal conductivity varies linearly with temperature according to the relation

k(T ) = k0(1 + bT ) (2.5)

where k0 and b are specified constants. Equation 2.1 will have to be replaced by the
equation

qx = −k(T )
dT

dx
= −k0(1 + bT )

dT

dx
= −A (2.6)

where A is a constant. Equation 2.6 may be written in the expanded form

k0
dT

dx
+ k0bT

dT

dx
= k0

dT

dx
+ k0b

d(T 2/2)

dx
= A (2.7)

Equation 2.7 may be integrated with respect to x to get

k0T + k0b
T 2

2
= Ax + B (2.8)
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where B is an integration constant. The two constants A and B are obtained by using
the two boundary temperatures of the bar, viz., T (x = 0) = T0 and T (x = L) = TL .
These two give

(a) k0T0 + k0b
T 2
0

2
= B (b) k0TL + k0b

T 2
L

2
= AL + B (2.9)

Subtract Eq. 2.9(a) from 2.9(b) to get

A = k0
(TL − T0)

L
+ k0b

(
T 2
L − T 2

0

)

2L
(2.10)

This may be rearranged, noting that T 2
L − T 2

0 = (TL − T0) (TL + T0), as

A = (TL − T0)

L
k0

(
1 + b

(TL + T0)

2

)

km (T0,TL )

(2.11)

We note that the term shownwith underbracket in Eq. 2.11 is the thermal conductivity
km (T0, TL) of the material at the mean temperature (TL+T0)

2 . Thus Eq. 2.11 may be
rewritten in the compact form

A = km (T0, TL)
(TL − T0)

L
(2.12)

Similarly Eq. 2.8 may be recast in the compact form

(T − T0) km (T0, T ) = km (T0, TL)
(TL − T0) x

L
(2.13)

Finally we may recast this in the non-dimensional form as

(a)
T − T0
TL − T0

= km (T0, TL)

km (T0, T )

x

L
or (b) θ = km (T0, TL)

km (T0, T )
ξ (2.14)

where θ = T−T0
TL−T0

and ξ = x
L . Eq. 2.14(b) will reduce to Eq. 2.4 in case b = 0, i.e.,

the thermal conductivity is independent of temperature. In this case the variation θ

varies linearly with ξ .
Consider the case where T0 > TL and b > 0, thermal conductivity increases with

temperature. It is easily seen that km (T0, TL) should be less than km (T0, T ) since
the mean temperature (T0 + TL) /2 is less than the mean temperature (T0 + T ) /2.
Hence it is easily seen that θ < ξ . We may conclude, by a similar argument, that for
T0 > TL and b < 0, θ > ξ . Of course, at the two end points θ = ξ in all the cases.
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Example2.1

Thermal conductivity of a syntheticmaterial varies linearlywith temperature accord-
ing to the relation k(T ) = 12.3{1 − 0.007(T − 30)} W/m ◦C. The validity of this
relation is limited to temperature range given by 30 ≤ T ≤ 115 ◦C. In a certain
application, a 0.05m thick layer of this material is used. One exposed surface of the
slab is maintained at 95 ◦C while the other exposed surface is maintained at 35 ◦C.
What is the heat transferred across a square meter of slab? What are the temperature
gradients at the two surfaces of the slab?

Solution:
Step 1 Let T0 = 95 ◦C be the temperature of the first surface and TL = 35 ◦C the

temperature of the second surface. Given:

k0 = 12.3W/m ◦C; b = −0.007 ◦C−1; L = 0.05m

Step 2 The mean thermal conductivity km(T0, TL) is calculated as

km(T0, TL) = k0

[
1 + b

(
T0 + TL

2
− 30

)]

= 12.3 ×
[
1 − 0.007 ×

(
95 + 35

2
− 30

)]
= 9.287W/m ◦C

Step 3 Using Eq. 2.12, the heat transfer across the slab per unit area is then given
by

q = km(T0, TL)
(T0 − TL)

L
= 9.287 × 95 − 35

0.05
= 11143.8W/m2

Step 4 The gradients at the two surfaces of the slab are calculated based on Fourier
law. At the surface at T0, we have

dT

dx

∣∣
∣∣
0

= − q

k(T0)
= − 11143.8

12.3 × [1 − 0.007(95 − 30)] = −1662.4 ◦C/m

At the surface at TL , we have

dT

dx

∣
∣∣∣
L

= − q

k(TL)
= − 11143.8

12.3 × [1 − 0.007(35 − 30)] = −938.9 ◦C/m

Step 5 It is interesting to make temperature profile plots in two ways, using
non-dimensional coordinates and using dimensional variables as shown
in Fig. 2.3. The former makes the bounding values equal to 0 and 1 and
the non-dimensional temperature increases with the non-dimensional dis-
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Fig. 2.3 Two types of plots of data in Example 2.1

Fig. 2.4 Conduction in a
slab with internal heat
generation

tance. However the dimensional plot shows that the temperature decreases
with increasing x . Both ways of plotting show that the temperature distri-
bution is non-linear.

Plane Wall with Internal Heat Source
Consider a plane wall as shown in Fig. 2.4. Heat is generated internally (within the
wall). Let the heat generation rate per unit volume be G W/m3. This may, in general,
be a function of x . Consider an element of volume 1 × 1 × �x as indicated in the
figure.

Under steady-state conditions, energy balance requires that the rate at which heat
leaves the control volumebyconductionbe equal to the rate atwhichheat is conducted
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in to the control volume and the rate at which heat is generated within the control
volume.
Using Fourier law, we have

Rate of heat conducted in = − 1 × 1 × k
dT

dx

∣∣∣
∣
x

(2.15)

Rate of heat generation within the control volume = 1 × 1 × �x × G (2.16)

Rate of heat conducted out = − 1 × 1 × k
dT

dx

∣∣
∣∣
x+�x

(2.17)

We use Taylor expansion to recast Eq. 2.17 as

Rate of heat conducted out = −1 × 1 × k

[
dT

dx

∣∣∣∣
x

+ d2T

dx2

∣∣∣∣
x

�x

]
+ O(�x2)

(2.18)
With these energy balance requires

−k
dT

dx

∣∣∣∣
x

+ �x × G = − k

[
dT

dx

∣∣∣∣
x

+ d2T

dx2

∣∣∣∣
x

�x

]
+ O(�x2) (2.19)

We now take the limit �x → 0 and get

d2T

dx2
+ G

k
= 0 (2.20)

This is a non-homogeneous, second-order ordinary differential equation. Equation
2.20 is to be solvedwith the boundary conditions at the two faces of the slab, specified
as follows.

x = 0, T = T0; x = L , T = TL (2.21)

The reader should note that the boundary conditions are referred to as of first kind
(or Cauchy condition)1 since the function (dependent variable) is specified at the
two boundaries. Other types of boundary conditions are also possible and will be
considered later on. One integration of Eq. 2.21 yields

dT

dx
+ G

k
x = A

1Named after Baron Augustin-Louis Cauchy 1789–1857, French mathematician.
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assuming G to be a constant. Here A is a constant of integration. Second integration
gives

T + G

k

x2

2
= Ax + B (2.22)

where B is a second integration constant. The integration constants are determined
by the use of the boundary conditions. Using the boundary condition at x = 0 and
x = L in Eq. 2.22, we get

(a) T = T0 = B (b) TL + G

k

L2

2
= AL + B = AL + T0 (2.23)

From Eq. 2.23(b), we obtain A as

A = TL − T0
L

+ GL

2k
(2.24)

The constants A and B are substituted back in Eq. 2.22 and simplified to finally
obtain

T − TL = (T0 − TL)
(
1 − x

L

)
+ GL2

2k

(
x

L
− x2

L2

)
(2.25)

We introduce the following non-dimensional quantities:

θ = T − TL
T0 − TL

; ξ = x

L
; H = GL2

2k(T0 − TL)
(2.26)

The quantity H is referred to as the heat generation parameter. Equation 2.25 is then
recast as

θ = (1 − ξ)(1 + Hξ) (2.27)

The solution to the slab problem with internal heat generation, when cast in
this non-dimensional form, depends on only one parameter H . The heat generation
parameter combines the four quantities T0, TL ,G, and k in to a single parameter that
governs the problem.
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Fig. 2.5 Influence of H on
temperature profiles

Heat generation parameter
This parameter may be rewritten as

H = GL2

2k(T0 − TL)
= GL

(
2k(T0 − TL)

L

) = Heat generation rate in the slab

2 × Heat conduction rate across slab

In this form, the heat generation parameter is seen to be the ratio of heat
generatedper unit time inside the slab to twice the heat conductedby conduction
across the slab per unit time, in the absence of heat generation. The magnitude
of the temperature in the slab is affected by this ratio.

A plot of Eq. 2.27 is shown in Fig. 2.5 for various values of H . The profiles are
non-linear for H �= 0 and show the presence of an optimum (either a maximum or
minimum in θ ) under conditions to be derived below. The condition for optimum is
given by

dθ

dξ
= −(1 + Hξ) + H(1 − ξ) = 0 or ξ = H − 1

2H
(2.28)

Noting that the value of ξ should be in the interval 0–1, an optimum exists only
if |H | > 1. When H > 1, heat is to be removed at both the boundaries and when
H < 1, heat is to be supplied at both the boundaries. When H = 1, the maximum
temperature occurs at ξ = 0. When H = −1, the minimum temperature occurs at
ξ = 1. The heat flux at ξ = 0 vanishes in the former case and hence the wall at
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Fig. 2.6 Sketch giving the
notation used in Example 2.2

x = 0 becomes an adiabatic boundary. In the latter case, the heat flux at x = L
vanishes and hence becomes an adiabatic boundary. All the heat generated within
the slab will then have to be removed at x = L in the former case and at x = 0 in the
latter case. When −1 < H < 1, heat will have to be supplied at one boundary and
removed from the other boundary, and the profile does not exhibit an optimum. The
case H = 0, corresponding to the no heat generation case, gives a linear profile, as
it should (Fig. 2.6).

Example2.2

A large slab of thickness 0.1m of a material of thermal conductivity equal to 10
W/m◦C is generating heat at a constant volumetric heat generation rate of 105 W/m3.
The slab is covered on both sides by 0.025m thick slabs of thermal conductivity 0.5
W/m ◦C. The two exposed surfaces are maintained at 85 ◦C by an external cooling
arrangement. Determine the maximum temperature in the heat-generating slab and
the temperature gradient in the covers.

Solution:
Step 1 The given data is written down first along with an explanatory sketch:
Step 2 Consider unit area (1m2) of the slab in a direction perpendicular to its

thickness direction. The heat generated within the volume of the slab per
unit surface area must equal the heat q going out per unit area through the
two side covers. Because of symmetry half of this will pass through each
cover.

Thus heat conducted across each cover qc = q

2

= GLS

2
= 105 × 0.05

2
= 5000W/m2

Step 3 This will set up a temperature difference across each cover. Using Fourier
law, the interface temperature Tc may be calculated as

Tc = Ta + qcLc

kc
= 85 + 5000 × 0.025

0.5
= 335 ◦C
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Step 4 The temperature field is seen to be symmetric with respect to themid-plane
of the heat-generating slab since the two covers have identical temperatures
on their outer surfaces. The mid-plane of the heat-generating slab is thus
an adiabatic surface and the temperature in the slab is maximum there.
This will thus correspond to H = 1. The characteristic dimension is L =
LS
2 . We use Eq. 2.26 and identify the various quantities appearing in the
definition of H as: (a) Maximum temperature in the slab Tm = T0; (b)
Interface temperature Tc = TL . H = 1 may be recast as

H = 1 = GL2

2kS(T0 − TL)
= G

( LS
2

)2

2kS(Tm − Tc)

This may be solved for the mid-plane temperature Tm as

Tm = Tc + G
( LS

2

)2

2kS
= 335 + 105 × (

0.05
2

)2

2 × 10
= 338.13 ◦C

Step 5 Again, because of symmetry the magnitude of the temperature gradient
in each of the covers is the same. While the gradient is negative in the
right-side cover, it is positive in the left-side cover. The magnitude of the
temperature gradient is obtained using Fourier law as

∣∣∣∣
dT

dx

∣∣∣∣
c

= Tc − Ta
Lc

= 335 − 85

0.025
= 104◦C/m

Plane Wall Subject to Convection at Both Boundaries
In both cases considered above, the temperatures at the boundaries were specified
and the boundary conditions were referred to as being of the first kind. In many
engineering applications, it may not be possible to specify the boundary temperature
because it is likely to be determined, by a balance between conductionwithin the solid
and convection away from the boundary to an ambient fluid of specified temperature.
Newton’s law of cooling (see Chap. 1) provides a relationship that is to be satisfied
at the boundary. The boundary temperature, indeed, floats at a value such that there
is a balance between internal conduction and external convection. The boundary
condition is referred to as boundary condition of the third kind or Robin condition.2

Refer to Fig. 2.7 now. At the two boundaries, neither the temperature nor the heat
flux is specified, as mentioned above. For example, at x = 0 the temperature T0 must
take on such a value that the heat conducted into the solid is equal to the heat transfer
by the fluid at T1 to the surface at x = 0. A similar situation exists at x = L .

2After Victor Gustave Robin, 1855–1897, French mathematical analyst and applied mathematician.
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Fig. 2.7 Steady conduction
in a slab subject to
convection at the two
boundaries

Assuming constant thermal conductivity and no heat generation (G = 0, k =
constant), and a convection heat transfer coefficient of h1 we have the following
relation at the left face of the slab:

h1(T1 − T0) = qc(x = 0) (2.29)

Similarly we have the following relation at the right face of the slab:

qc(x = L) = h2(TL − T2) (2.30)

In the present case of steady heat transfer across the plane wall, the two heat transfer
rates qc(x = 0) and qc(x = L) are the same and are given by the relation

qc(x = 0) = qc(x = L) = k(T0 − TL)

L
(2.31)

Of course, T0 and TL are as yet unknown. These have to adjust to satisfy the two Eqs.
2.29 and 2.30. Using Eqs. 2.29 and 2.31, we have

T1 − T0 = kT0
h1L

− kTL
h1L

This may be rearranged as

[
1 + k

h1L

]
T0 − k

h1L
TL = T1 (2.32)

Similarly, using Eqs. 2.30 and 2.31, we get

− k

h2L
T0 +

[
1 + k

h2L

]
TL = T2 (2.33)

Subtract Eq. 2.33 from Eq. 2.32 and rearrange to get the following interesting result.
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T0 − TL = T1 − T2(
1 + k

h1L
+ k

h2L

) (2.34)

At once we may calculate the heat transfer across the plane wall as (using Eq. 2.31)

qc = k

L

T1 − T2(
1 + k

h1L
+ k

h2L

)

which may be simplified to

qc = T1 − T2(
1

h1
+ L

k
+ 1

h2

) (2.35)

Note that this is also the heat transferred across the wall from the fluid at T1, to
the fluid at T2.

Electrical analogy
If we look at any one of the Eqs. 2.29–2.31, we see that heat transfer is
analogous to a current, temperature difference is analogous to a potential
difference, 1

h1
or 1

h2
is analogous to a resistance (referred to as Convective or

film resistance R f ) and L
k is also analogous to a resistance (referred to as the

conduction resistance Rc ). With these ideas in mind, Eq. 2.35 indicates that
all the three resistances are in series and hence add up just as in the case of an
electrical circuit containing three resistances in series (Fig. 2.8). The overall
or equivalent thermal resistance is thus given by

REQ = 1

h1
+ L

k
+ 1

h2
(2.36)

These ideas find an interesting application in thermal engineering. The walls of a
furnace are made of layers of different materials such as alumina brick layer facing
the fire (k1, L1), low-cost bricks (k2, L2), and metallic outer layer (k3, L3), where
the bracketed quantities represent the thermal conductivity values and thicknesses
of the layers. One dimensional heat transfer assumption may be adequate in many
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Fig. 2.8 Electrical analog of
the slab problem subject to
convection at the two
boundaries

cases and the overall conductive resistance is given by

Rc(overall) = L1

k1
+ L2

k2
+ L3

k3
(2.37)

The brick layers are usually thick and provide a large conductive resistance because
these materials have low thermal conductivities. The metal layer is usually thin
(mostly provides structural rigidity) and provides a small thermal resistance because
the thermal conductivity is normally very large. The brick layers act as thermal
barriers and reduce the heat transfer from the fire side to the ambient. The application
is one where the goal is to reduce heat transfer and the layered plane wall is an
“insulating” system. Layering of the insulating materials is to reduce cost by using
“high” temperature insulation facing the fire and “low” temperature insulation behind
it. In case the layers do not form good “thermal” contact, additional conduction
resistances are introduced and these are referred to as contact resistances. Contact
resistance will introduce a significant temperature drop across any interface! Contact
resistance at an interface depends on many factors such as the nature of the two
surfaces that form the interface (smooth or rough), cleanliness of the two surfaces
and the contact force, and so on. In applications where the contact resistance needs
to be small one may use a thin layer of high conductivity grease at the interface.

Example2.3

The walls of a large furnace are made of two layers of materials as shown in Fig.
2.9. The special brick surface facing the high-temperature environment receives heat
from the high-temperature interior at 250 ◦C subject to a heat transfer coefficient of
45 W/m2◦C. The outside ambient is at 25 ◦C and removes heat via a heat transfer
coefficient of 9 W/m2◦C. Determine the heat transfer per unit area across the wall
and all the unknown temperatures indicated in the figure.



2.2 Steady One Dimensional Conduction 33

Fig. 2.9 Figure showing the geometry and nomenclature for Example 2.3

Solution:

Step 1 We make use of the concept of thermal resistance to solve the problem.
The given data is written down first.

High-temperature side:T1 = 250 ◦C, h1 = 45W/m2◦C
Ambient side:T2 = 25 ◦C, h2 = 9W/m2◦C

Special brick layer:k1 = 0.2W/m ◦C, L1 = 100mm = 0.1m
Steel layer:k2 = 20W/m ◦C, L2 = 3mm = 0.003m

Step 2 Equivalent thermal resistance between the inside and outside is calculated
as

REQ = 1

h1
+ L1

k1
+ L2

k2
+ 1

h2
= 1

45
+ 0.1

0.2
+ 0.003

20
+ 1

9
= 0.63348m2◦C/W

Step 3 Heat transfer per unit area is then obtained as

q = T1 − T2
REQ

= 250 − 25

0.63348
= 335.2W/m2

Unknown temperatures are calculated in the next step.
Step 4 Temperature Ti : The above heat transfer should also equal the heat trans-

fer by convection to the inner face. Hence, we have

q = h1(T1 − Ti ) or Ti = T1 − q

h1
= 250 − 335.2

45
= 242.1 ◦C

Temperature Tc: The heat transfer may also be equated individually to
the conduction heat transfer across the two layers of the wall. Thus:

q = k1
Ti − Tc
L1

or Tc = Ti − qL1

k1
= 242.1 − 335.2 × 0.1

0.2
= 64.5 ◦C
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Fig. 2.10 Steady conduction
in a slab with heat
generation; one adiabatic
boundary and one boundary
convectively cooled

Temperature To:

q = k2
Tc − To

L2
or To = Tc − qL2

k2
= 64.5 − 335.2 × 0.003

20
= 64.45 ◦C

Comment: It is noted that there is a negligibly small temperature drop
across themetal layer.Most of the temperature drop occurs across the brick
layer. If the heat transfer is considered to be excessive, it may be necessary
to increase the brick layer thickness or back the special bricks with a
layer of ordinary bricks of suitable thickness, thus introducing another
conduction resistance.

Steady conduction ina slabwithheat generationandconvectionat oneboundary
Consider steady conduction in a slab as shown in Fig. 2.10. The slab has a thickness
L and the uniform internal heat generation rate is G. The boundary of the slab at
x = 0 is adiabatic while the boundary at x = L communicates convectively with a
fluid environment as indicated. Note that the boundary temperatures T0 and TL are
as yet unknown. Adiabatic boundary condition is equivalent to specifying the heat
flux, in this case, to be zero. This type of boundary condition is referred to as the
boundary condition of the second kind or Neumann condition.3 We note that the
temperatures at both boundaries are unknown and hence need to be determined. We
know, from the earlier discussion following Eq. 2.28, that the temperature within the
slab is non-linear but corresponds to H = 1. Thus we have the important result from
that analysis, viz.

T0 − TL = GL2

2k
(2.38)

3After Karl Gottfried Neumann 1832–1925,German mathematician.
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A second relation is obtained by noting that all the heat generated in the slab is
removed by convection at the boundary at x = L . Thus

h2(TL − T2) = GL or TL = T2 + GL

h2
(2.39)

Substituting the value of TL from Eq. 2.39 in Eq. 2.38 we get the value of T0 as

T0 = TL + GL2

2k
= T2 + GL

h2
+ GL2

2k
(2.40)

From Eqs. 2.38 and 2.40, we also get

T0 − TL
T0 − T2

=
GL2

2k(
GL

h2
+ GL2

2k

) = 1
(
1 + 2k

h2L

) = 1
(
1 + 2

Bi2

) (2.41)

where Bi2 = h2L
k is known as the Biot modulus or Biot number.

Biot number

This is a non-dimensional quantity and represents the ratio between a repre-
sentative convective heat flux qc and a representative conduction heat flux qk .
This may be verified by noting that

Bi2 = h2L

k
= h2�T

(
k�T

L

) = qc
qk

where �T is a characteristic temperature difference in the problem. We notice
that when the Biot number tends to infinity, the convective heat transfer dom-
inates and the boundary temperature is the same as the fluid temperature, i.e.,
TL = T2. This case corresponds to the one in which the boundary temperature
is specified (case H = 1 in Fig. 2.5).

Example2.4

Heat is generated in a slab according to the relation G = G0 cos
(

πx
L

)
where x is

measured from the left boundary of the slab that is perfectly insulated and L is the
thickness of the slab. The right boundary is exposed to a convective environment
at a temperature of Tamb with a heat transfer coefficient of h. Make a plot of the
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temperature variation across the slab with the following data:
L = 0.05m, k = 3W/m ◦C, h = 15W/m2◦C, G0 = 106 W/m3 andTamb = 30 ◦C.

Solution:
Equation governing the problem is given by Eq. 2.20, where G is taken as a function
of x as specified in the problem. This equation is integrated with respect to x once
to get

dT

dx
+ G0

k

∫
cos

(πx

2L

)
dx = dT

dx
+ 2LG0

πk
sin

(πx

2L

)
= A (2.42)

where A is a constant of integration. A second integration yields the temperature
given by

T − 4L2G0

π2k
cos

(πx

2L

)
= Ax + B (2.43)

where B is a second constant of integration. Since the left boundary is insulated—i.e.,
dT
dx = 0 at x = 0—constant of integration A = 0 in Eq. 2.42. Hence this equation
gives, on putting x = L ,

− k
dT

dx

∣∣∣∣
x=L

= 2LG0

π
= qc(x = L)

We equate this conductive flux inside the slab to the convective flux away from the
slab to get

qc(x = L) = 2LG0

π
= h(TL − Tamb)

where TL = B (from Eq. 2.43 at x = L) is the temperature at the right surface of
the slab. Solve the above for TL and introduce in the equation for T to finally get the
temperature profile as

T = Tamb + 2LG0

hπ
+ 4G0L2

kπ2
cos

(πx

2L

)
(2.44)

Wemake use of the data given in the problem to get the following temperature profile.

T = 30 + 2 × 0.05 × 105

15 × π
+ 4 × 105 × 0.052

3 × π2
cos

(
πx

2 × 0.05

)

= 242.21 + 33.77 cos (10πx)

(2.45)

Figure 2.11 shows a plot of temperature variation across the slab.
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Fig. 2.11 Temperature
profile across the the slab in
Example 2.4

2.2.2 Steady One-Dimensional Conduction in Cylindrical
Coordinates

Steady Conduction in a Long Cylindrical Annulus with Temperatures Specified
at Boundaries

The difference between the slab geometry and the cylindrical geometry is mainly due
to the increase of area available for conductive heat transfer in the radial direction
with an increase in r . This makes the temperature variation non-linear in the radial
direction even when i) there is no internal heat generation or ii) the thermal conduc-
tivity is constant. Figure 2.12 defines the geometry and introduces the nomenclature.
Consider a unit thickness in a direction perpendicular to the plane of the figure.
Steady condition requires that the total radial heat transfer at any r remain constant.
Thus

Fig. 2.12 Steady radial conduction in an annulus
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Qr = 2πrq(r) = (2πr)

[
−k

dT

dr

]
= constant, say A′ (2.46)

This may be recast by dropping the factor −2πk to get

r
dT

dr
= constant, say A or dT = A

dr

r
(2.47)

On integration the above leads to the relation

T = A ln(r) + B (2.48)

where B is a constant of integration. Applying the boundary conditions, we have

T1 = A ln(r1) + B and T2 = A ln(r2) + B (2.49)

By subtraction we eliminate B to get

T1 − T2 = A ln(r1) − A ln(r2) = A ln

(
r1
r2

)
or A = T1 − T2

ln

(
r1
r2

) (2.50)

From Eq. 2.49 we then have

B = T1 − A ln(r1) = T1 − T1 − T2

ln

(
r1
r2

) ln(r1)

=
T1 ln

(
r1
r2

)
− T1 ln(r1) + T2 ln(r1)

ln

(
r1
r2

) = T2 ln(r1) − T1 ln(r2)

ln

(
r1
r2

) (2.51)

The heat transfer per unit length of the annulus may now be calculated using Eq.
2.46 as

Qr = −2πk A = 2πk
T1 − T2

ln

(
r2
r1

) (2.52)

It is seen from Eq. 2.52 that electrical analogy is again valid with the conduction
resistance of the annulus being given by

Ra = 1

2πk
ln

(
r2
r1

)
(2.53)
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Fig. 2.13 Non-dimensional
temperature profile in an
annulus

The temperature profile in the annulus may be represented in the non-dimensional
form by the use of the following normalized non-dimensional variables:

η = r − r1
r2 − r1

, θ = T − T2
T1 − T2

We also define the non-dimensional radius ratio ρ = r2
r1
. We may use Eqs. 2.48, 2.50

and 2.51 to show that

θ = 1 − ln[1 + η(ρ − 1)]
ln(ρ)

(2.54)

It is easily verified that θ = 1 at η = 0 and θ = 0 at η = 1. Figure 2.13 shows
a plot of the non-dimensional temperature variation with non-dimensional radial
coordinate, for a specific value of the radius ratio ρ = 2. The temperature profile
is dependent only on a single parameter, the radius ratio, and is independent of the
boundary temperatures as well as the thermal conductivity of the annulus material.

Example2.5

Consider a long cylindrical annulus of 50 mm ID and 100 mm OD. The material of
the annulus has a thermal conductivity of 14.5 W/m◦C. The inner surface is main-
tained at 100 ◦C while the outer surface is maintained at 30 ◦C. What is the heat
transferred across the annulus inW/m?Make a plot of the temperature profile within
the annulus. What are the temperature gradients at the inner and outer boundaries?
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Solution:
Step 1 We use the notation that has been used in the text. Accordingly, the given

data is written down as

T1 = 100 ◦C; r1 = 0.025m; T2 = 30 ◦C; r2 = 0.05m and k = 14.5W/m ◦C

Step 2 The thermal resistance of the annulus is calculated using Eq. 2.53 as

Ra = 100 − 30
1

2 × π × 14.7
× ln

(
0.05

0.025

) = 0.007608m ◦C/W

Step 3 Heat transfer per unit length of the annulus is then given by

Qr = T1 − T2
Ra

= 100 − 30

0.007608
= 9201W/m

Step 4 The dimensional temperature profile is given by T (r) = A ln(r) + B.
Using Eqs. 2.50 and 2.51 we have

A = 100 − 30

ln

(
0.025

0.05

) = −100.99 and B = 100 + 100.99 × ln(0.025) = −272.54

Hence, we have T (r) = −100.99 ln(r) − 272.54 . Note that r is inm and
T in ◦C in this expression. Temperature variation across the annulus has
been plotted in Fig. 2.14. Note that the radius ratio is 2 in this example also.
Comparison may be made of Fig. 2.14 (plot uses dimensional variables)
andFig. 2.13 (plot uses non-dimensional variables). The shape is preserved
in the two plots, if scales along the axes are chosen properly.

Step 5 The temperature gradient at any r is obtained by differentiating T (r) with
respect to r .

dT

dr
= −100.99

r

Hence the gradients at the two boundaries are

dT

dr

∣∣∣∣
r1

= − 100.99

0.025
= −4039.6 ◦C/m and

dT

dr

∣∣∣∣
r2

= − 100.99

0.05
= −2019.8 ◦C/m

Cylinder with Convection at the Outer Boundary
This configuration is important because it is applicable to insulation design. Tubes
carrying hot or cold fluids need to be insulated from the surroundings so as to reduce
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Fig. 2.14 Dimensional plot
of temperature variation in
an annulus of Example 2.5

heat loss form or heat gain by the fluid flowing inside. One can imagine the annulus
in Sect. 2.2.2 to be an insulating material with a thin-walled pipe carrying a hot fluid
placed inside it. The outer boundary at r = r2 loses heat by convection to an ambient
at T∞ via a heat transfer coefficient h. Thus, we have

Qc = 2πr2h(T2 − T∞) (2.55)

Under steady conditions, we should equate Eq. 2.55 and 2.52 so that temperature T2
may be eliminated. Thus,

2πk
T1 − T2

ln

(
r2
r1

) = 2πr2h(T2 − T∞)

or solving for T2

T2 =
T1 + hr2

k
T∞ ln

(
r2
r1

)

1 + hr2
k

ln

(
r2
r1

)
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Thus the outside surface temperature of the insulation is seen to be a weighted mean
of the two fluid temperatures. This is a consequence of the assumption that the pipe
is thin walled, has a high thermal conductivity, and attains the temperature of the
fluid flowing inside the pipe. We substitute this value of T2 in Eq. 2.55 to get the heat
loss from the pipe per unit length as

Qr = Qc = 2πr2h(T2 − T∞) = T1 − T∞[
1

2πr2h
+ 1

2πk
ln

(
r2
r1

)] (2.56)

Again we see that the heat transfer per unit length of annulus is the ratio of an
overall temperature (potential) difference and an overall thermal resistance given by
the sum of a film resistance and a conductive resistance of the annulus. The denom-
inator of equation is thus the sum of R f = 1

2πr2h
and Ra given by expression 2.53.

We shall look at the overall resistance in more detail now. The overall resistance may
be written in the form

Roverall = R f + Ra = 1

2πr2h
+ 1

2πk
ln

(
r2
r1

)
= 1

2πk

[
k

hr2
+ ln

(
r2
r1

)]

(2.57)

Introduce the following non-dimensional quantities:

Non-dimensional resistance: R = 2πkRoverall

Biot number: Bi = hr1
k

Radius ratio: ρ = r2
r1

Using Eq. 2.57, we then have

R = 1

ρBi
+ ln(ρ) (2.58)

The non-dimensional resistance shows very interesting properties. Firstly it is valid
only forρ > 1. Secondly, it shows amonotonic behaviorwithρ for Bi > 1.However,
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Fig. 2.15 Variation of
overall resistance with radius
ratio. Symbols show the
location of the respective
minima

for Bi < 1 the resistance decreases, and reaches aminimumvalue and then increases.
This may be verified by differentiating Eq. 2.57 with respect to ρ and equating the
derivative to zero, keeping Bi fixed. Thus,

∂R

∂ρ

∣
∣∣∣
Bi−fixed

= − 1

Biρ2
+ 1

ρ
= 0 (2.59)

This is satisfied for

ρ = ρcri tical = 1

Bi
(2.60)

We have called the radius ratio that leads to an optimum as ρcri tical , the critical
radius ratio. If Bi > 1 the critical radius ratio is less than one and this is physically
not possible. For Bi < 1, the critical radius ratio is physically meaningful and gives
the radius ratio for which the resistance is a minimum, as verified by the fact that the
second derivative of R with respect to ρ is positive. For ρ < ρcri tical , the heat transfer
actually increases with an increase in the insulation thickness. However for Bi > 1,
increase in ρ ( and hence an increase in insulation thickness) always decreases heat
transfer. Figure 2.15 shows plot of non-dimensional resistance with radius ratio, for
various values of the Biot number.
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A note on Biot number
As explained earlier the Biot number represents the ratio of a representative
convective heat flux at a boundary to a representative conduction heat flux
within a conducting medium. This non-dimensional number occurs whenever
conduction and convection occur together. In a typical practical problem, of
course, the two processes take place simultaneously. The heat transfer coeffi-
cient and hence the film resistance is determined from a solution of a conjugate
problem where the mathematical equations governing conduction and convec-
tion are to be solved simultaneously with the “boundary” condition becoming
an interface condition.

It means that the present model is a simplified one wherein the convection
heat transfer at the boundary imposes a constant heat transfer coefficient at the
boundary of the conduction domain, i.e., at the outer surface of the annulus.
Now we look at Eq. 2.58 from a physical view point. The first term represents
the non-dimensional film resistance while the second term represents the non-
dimensional conduction resistance. With an increase in the outer radius of
the annulus, the convective resistance reduces while the conductive resistance
increases. There is thus a competition between these two, the relative decrease
and increase is determined by the Biot number. This competition, when the
Biot number is less than one, leads to the appearance of an optimum or critical
radius, as discussed already.

Example2.6

Apipe (material thermal conductivity 45W/m◦C) carrying saturated steam at 180 ◦C
has an one dimension of 50 mm and an OD of 55 mm. The outside surface is exposed
to an ambient at 30 ◦C . The heat transfer coefficient from the outer surface of the
pipe to the ambient has been estimated to be 25W/m2◦C. What is the heat loss from
the pipe per meter length? In a bid to reduce the heat loss the pipe is insulated by a
25.3 mm layer of an insulating material of thermal conductivity equal to 0.1W/m◦C.
What is the heat loss per meter length of pipe now? Assume that the heat transfer
coefficient remains the same in the two cases. Evaluate all the temperatures.

Solution:
Figure 2.16 shows the geometry and the nomenclature for the two cases, Case 1:
without insulation and Case 2: with insulation.

The corresponding electrical equivalent shows that there are three resistances in
series in Case 1 while there are four resistances in series in Case 2. In both cases, the
film resistance R f 1 is negligibly small since the steam side heat transfer coefficient
is very large (see Table 1.1). Hence it is reasonable to ignore the film resistance
on the steam side. Hence the pipe inner wall temperature is the same as the steam
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Fig. 2.16 Geometry and nomenclature for Example 2.6. Case 1 is without insulation, Case 2 is
with insulation

temperature. The outside film coefficient R f 2 is different in the two cases as will be
seen later on. The given data is written down below:

Pipe inner wall temperature: T1 = 180 ◦C
Pipe inner radius: r1 = 0.025m
Pipe outer radius: r2 = 0.0275m

Pipe material thermal conductivity: kp = 45 W/m ◦C
Ambient fluid temperature: Tamb = 30 ◦C

External heat transfer coefficient: h = 25W/m2◦C

Case 1: Bare pipe without insulation
The thermal resistances are calculated as follows:
Conduction resistance of the pipe:

Rp = 1

2πkp
ln

(
r2
r1

)
= 1

2π × 45
ln

(
0.0275

0.025

)
= 3.371 × 10−4 m ◦C/W

Outside film resistance:

R f 2 = 1

2πr2h
= 1

2π × 0.0275 × 25
= 0.232m ◦C/W

The overall resistance to heat transfer is then given by

Roverall = R f 1 + Rp + R f 2 = 0 + 3.371 × 10−4 + 0.232 = 0.232m ◦C/W

The heat loss from steam per meter length of pipe is obtained as

Q = T1 − Tamb

Roverall
= 180 − 30

0.232
= 647W/m
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The pipe outside wall temperature is then calculated as

T2 = T1 − QRp = 180 − 647 × 0.000337 = 179.8 ◦C

Thus there is a very a marginal temperature drop across the pipe wall.

Case 2: Pipe with insulation
In this case there is an additional thermal resistance due to the insulation layer. The
thickness of the insulation layer is t = 0.0253m and hence the outer radius of the
insulation layer r3 is

r3 = r2 + t = 0.0275 + 0.0253 = 0.0528m

Insulation layer conduction resistance:

Ri = 1

2πki
ln

(
r3
r2

)
= 1

2π × 0.1
ln

(
0.0528

0.0275

)
= 1.038m ◦C/W

Outside film resistance:

R f 2 = 1

2πr3h
= 1

2π × 0.0528 × 25
= 0.1206m ◦C/W

We see that the outside film resistance has changed to a lower value! The overall
resistance to heat transfer is then given by

Roverall = R f 1 + Rp + Ri + R f 2

= 0 + 3.371 × 10−4 + 1.038 + 0.1206 = 1.159m ◦C/W

The heat loss in the presence of insulation is given by

Q = T1 − Tamb

Roverall
= 180 − 30

1.159
= 129.4W/m

The pipe outside wall temperature (this is also the temperature of the insulation layer
in contact with the pipe wall) is

T2 = T1 − QRp = 180 − 129.4 × 0.000337 = 179.96 ◦C

The temperature drop across the pipewall is indeed negligible. The insulation outside
surface temperature (T3) is given by

T3 = T2 − QRi = 179.96 − 129.4 × 1.038 = 45.6 ◦C
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There is thus a substantial temperature drop across the insulation layer. We note in
passing that the maximum allowable temperature of the outer surface of insulation,
from safety considerations, is around 60 ◦C.

2.2.3 Steady Radial Conduction in a Solid Cylinder with
Internal Heat Generation

Temperature Specified at the Boundary
A very-long-current-carrying conductor, very common in engineering applications,
may be modeled as a solid cylinder with internal heat generation. Heat generated is
by Joule heating and may be assumed uniform across the diameter of the conductor
when the current is DC or when the frequency of the current is not very high. The
formulation of the problem can be explained with reference to Fig. 2.17. Consider
a cylindrical rod of radius R as shown. If the heat generation per unit volume is G,
energy balance requires that all the heat generated within the cylinder of radius r
(shown shaded in the figure) be conducted away at its boundary.

As usual we consider a unit length of the cylinder and hence we have

Gπr2 = 2πrqr = −2πrk
dT

dr
(2.61)

This may be simplified to

dT

dr
+ Gr

2k
= 0 (2.62)

Only one boundary condition may be specified as T = Ts at r = R. Integrate Eq.
2.62 with respect to r to get

Fig. 2.17 Conduction in a
cylindrical rod with internal
heat generation
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T + G

2k

r2

2
= constant, say A (2.63)

Applying the boundary condition at the surface of the cylinder, we get

Ts + G

2k

R2

2
= A (2.64)

Subtract 2.64 from 2.63 to get

T − Ts = G

4k
(R2 − r2) (2.65)

We easily see that the maximum temperature T0 occurs at r = 0 and is given by
T0 − Ts = GR2

4k . As usual we would like to represent the temperature variation with
radius in the non-dimensional form since it leads to a single universal profile.

Introduce the following non-dimensional variables:

Non-dimensional temperature: φ = T−Ts⎡

⎣
GR2

4k

⎤

⎦

Non-dimensional radius ratio: ρ = r
R

Equation 2.65 may then be written as

φ = 1 − ρ2 (2.66)

Temperature distribution given by Eq. 2.66 is shown plotted in Fig. 2.18.

Fig. 2.18 Non-dimensional
temperature profile in a
heat-generating cylinder
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Convection at the Surface to an Ambient at T∞
This case is more appropriate in practice since the cylinder surface is exposed to an
ambient fluid (usually the room air) and heat transfer from the surface is by convec-
tion, governed by a specified heat transfer coefficient h. The surface temperature Ts
is eliminated by equating the conduction heat flux at r = R within the cylinder to
convection heat flux from the boundary to the ambient fluid. Alternately Ts may be
eliminated by requiring that the total heat generated within the cylinder equal the
heat removed by convection at the boundary. Thus

πR2G = 2πRh(Ts − T∞) (2.67)

or

Ts − T∞ = GR

2h
(2.68)

Equation 2.65 may be rewritten as

T − Ts = GR2

4k

[
1 −

( r

R

)2
]

(2.69)

Adding Eqs. 2.68 and 2.69 we get the desired result.

T − T∞ = GR

2h
+ GR2

4k

[
1 −

( r

R

)2
]

(2.70)

Again, the maximum temperature occurs at r = 0 and is given by

T0 − T∞ = GR

2h
+ GR2

4k
= GR

4h
[2 + Bi] (2.71)

where Bi = hR
k , is the Biot number. The non-dimensional temperature profile may

then be obtained as

φ = T − T∞
T0 − T∞

= 2 + Bi(1 − ρ2)

2 + Bi
(2.72)

where ρ = r
R . The profile is a one parameter family of curves with Bi , the Biot

number as the governing parameter. Figure 2.19 is a plot of Eq. 2.72 for several
values of Bi . Note that the case Bi = ∞ corresponds to the case where the boundary
temperature is specified (Ts = T∞). Note that for ρ = 1, i.e., at the cylinder surface,
the non-dimensional temperature is given by
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Fig. 2.19 Temperature profile in a heat-generating cylinder subject to convection at the boundary

φs = Ts − T∞
T0 − T∞

= 2

2 + Bi
(2.73)

For example, when Bi = 5, the non-dimensional cylinder surface temperature is
φs = 2

7 ≈ 0.286.

Example2.7

A round wire of 6 mm diameter is heated by a current passing through it. The heat
dissipated per meter of the wire is 100W. The wire is covered by a layer of insulation
of outer diameter equal to 12 mm. The insulation has a thermal conductivity of 0.4
W/m ◦C. The outer surface of the insulation is exposed to an inert gas at 30 ◦C. The
temperature of the outer surface of the insulation is measured and found to be 60 ◦C.
Determine all the temperatures and the maximum temperature in the wire if the wire
material has a thermal conductivity of 15 W/m ◦C.

Solution:
Step 1 Let h be the convection heat transfer coefficient to the inert gas from the

outside surface of the insulation. This needs to be estimated from the data
given in the problem.
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Step 2 Given data is written down as:

Outside surface temperature of the insulation: Ts = 60 ◦C
Ambient temperature: T∞ = 30 ◦C
Heat loss from the wire: q = 100 W/m

Insulation layer outer radius: r2 = 0.012
2 = 0.006m

Using the above data we calculate the convective heat transfer coefficient
as

h = q

2πr2(T2 − T∞)
= 100

2 × π × 0.006 × (60 − 30)
= 88.4W/m2◦C

Step 3 Now consider the insulation layer. The geometric and thermal parameters
are:
Inner diameter of insulation layer r1 is the same as the radius of the current
carrying conductor = 0.006

2 = 0.003m.:
Thermal conductivity of the insulation material is ki = 0.4 W/m ◦C.:
As far as the insulation and its interaction with the inert gas ambient is con-
cerned, we may use the thermal resistance concept to model the process.
Conduction resistance Ri of the insulation layer is calculated as

Ri = 1

2πki
ln

(r2
r1

)
= 1

2 × π × 0.4
ln

(0.006
0.003

)
= 0.276m ◦C/W

The wire outer temperature T1 which is the same as the temperature of
the inner surface of the insulation is given, using the thermal resistance
concept as

T1 = Ts + qRi = 60 + 100 × 0.276 = 87.6 ◦C

Step 4 The volumetric heat generation rate G is such that the total heat generated
in the wire equals the heat loss per meter length of wire. Thus

G = q

πr21
= 100

π × 0.0032
= 3.537 × 106 W/m3

The maximum temperature in the wire occurs at its axis. This is calculated
as

T0 = T1 + Gr21
4kw

= 87.6 + 3.537 × 106 × 0.0032

4 × 15
= 88.1 ◦C
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where kw is the thermal conductivity of the wire material. There is thus a
mere 0.5 ◦C difference in temperature between the axis and the surface of
the heat-generating wire.

Step 5 Alternately T0 may be obtained using Eq. 2.73. The Biot number is based
on the overall heat transfer coefficient based on the wire surface area. We
have

Roverall = Ri + 1

2πr2h
= 0.276 + 1

2 × π × 0.006 × 87.6
= 0.579m ◦C/W

The overall heat transfer coefficient hw based on the wire surface area is
then such that Roverall = 1

2πr1hw
or

hw = 1

2πr1Roverall
= 1

2 × π × 0.003 × 0.579
= 91.66W/m2◦C

The Biot number is then based on this heat transfer coefficient.

Bi = hwr1
kw

= 91.66 × 0.003

15
= 0.0183

Using Eq. 2.73, we then get

φs = T1 − T∞
T0 − T∞

= 2

2 + Bi
= 2

2 + 0.0183
= 0.991

We then get the maximum temperature in the wire as

T0 = T∞ + T1 − T∞
φs

= 30 + 87.6 − 30

0.991
= 88.1 ◦C

Even though the alternate method is some what lengthy, it has been pre-
sented to point out that alternate methods are possible in solving the prob-
lem. The alternate method has also brought out the way one interprets the
concept of overall thermal resistance.

2.2.4 One-Dimensional Radial Conduction in Spherical
Coordinates

Conduction in spherical coordinates has interesting applications in (i) spherical pres-
sure vessel, (ii) spherical dish ends of a boiler shell, (iii) nuclear reactor containment
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Fig. 2.20 Radial heat
conduction across a spherical
shell

vessel, and (iv) spherical tanks used to store natural gas and so on. In spherical
coordinates, the area available for conduction in the radial direction varies as the
square of the radius. Heat transfer in spherical food products may be modeled this
way. Spherical particles are also used in many industrial process applications and
heat conduction within the particles may be modeled using the analysis that will be
developed below.

One-Dimensional Steady Conduction in a Spherical Shell
Consider the typical case of steady heat conduction across a shell of inner radius r1
and outer radius r2. Let the corresponding temperatures be specified as T1 and T2.
The material has a constant thermal conductivity k. It is clear (see Fig. 2.20) that the
total radial heat transfer Q given by

Q = −4πr2k
dT

dr
(2.74)

remains constant across the shell, under steady heat transfer condition. The heat flux
lines are radial lines and isotherms are spherical surfaces with a common center as
indicated in Fig. 2.20.

Denoting − Q
4πk as A, we get

dT

dr
= A

r2
(2.75)

Integrate Eq. 2.75 once with respect to r to get

T = − A

r
+ B

where B is a constant of integration. Using the boundary conditions specified in Fig.
2.20, we have

T1 = B − A

r1
and T2 = B − A

r2
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From these we get A as

A = T1 − T2(
1

r2
− 1

r1

) (2.76)

Having determined A, B may be calculated from either one of the boundary relations.
Using the definition of A, we see that

Q = −4πk A = T1 − T2

1

4πk

( 1

r1
− 1

r2

)

Rk

(2.77)

Equation 2.77 shows that electrical analogy may be invoked in the case of radial
heat conduction in spherical coordinates also. The thermal conduction resistance of
the shell is simply the denominator of Eq. 2.78 (indicated as Rk).

One-Dimensional Steady Conduction in a Spherical Shell with Convection at
Both Boundaries
It is not necessary to work out this case in detail. We invoke the thermal resistance
concept. Let the convective heat transfer coefficients be h1 and h2 at the inner and
outer boundary respectively. Let the corresponding ambient temperatures be T1 and
T2. We recognize three resistances in series as follows:

Film resistance at inner boundary: R f 1 = 1
4πr21 h1

Conduction resistance of the shell: Rk = 1
4πk

(
1
r1

− 1
r2

)

Film resistance at outer boundary: R f 2 = 1
4πr22 h2

As usual the total resistance is some of these three resistances in series. The heat
transfer across the shell is then given by

Q = T1 − T2
R f 1 + Rk + R f 2

(2.78)

Steady Conduction in a Sphere with Uniform Internal Heat Generation
Consider a sphere of radius R losing heat to an ambient as shown in Fig. 2.21. Let G
be the constant volumetric heat generation rate. Under steady conditions, it is clear
that the heat generated within the sphere of radius r must leave it by conduction. We
thus have

Qgenerated = Qconducted or
4

3
πr3G = −4πr2k

dT

dr
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Fig. 2.21 Heat removal by convection from a heat-generating sphere

Canceling common factor 4π , and simplifying, we get the following first-order ordi-
nary differential equation.

dT

dr
+ Gr

3k
= 0 (2.79)

Integration of Eq. 2.79 with respect to r gives

T + Gr2

6k
= B (2.80)

where B is a constant of integration. At the surface of the sphere, r = R, T = Ts (as
yet unknown) and the total heat generatedwithin the sphere is removed by convection
from the surface. Hence, we have

4

3
πR3G = 4πR2h(Ts − Tamb) or (Ts − Tamb) = RG

3h
(2.81)

From Eq. 2.80

Ts = B − GR2

6k

Inserting this in Eq. 2.81 yields the appropriate value of B as

B = Tamb + GR2

6k
+ RG

3h
(2.82)

The temperature variation in the sphere is obtained using Eqs. 2.82 and 2.80 as

T = Tamb + RG

3h
+ G

6k
(R2 − r2) (2.83)
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The maximum temperature in the sphere, of course, occurs at r = 0 and is

T0 = Tamb + RG

3h
+ GR2

6k
(2.84)

From Eqs. 2.83 and 2.84, we have, the non-dimensional temperature profile

T − Tamb

T0 − Tamb
=

RG

3h
+ G

6k
(R2 − r2)

RG

3h
+ GR2

6k

or φ = 2 + Bi(1 − ρ2)

2 + Bi
(2.85)

where Bi = hR
k and ρ = r

R . Note that the non-dimensional temperature is identical
to the expression 2.72 that was obtained for the case of a cylinder. Figure 2.19 also
represents the present case. However, the expression for the maximum temperature
T0 is different and is given by Eq. 2.84. Non-dimensional temperature φ is a function
of non-dimensional radial position ρ with a parametric dependence on Bi . The non-
dimensional temperature varies between 1 at the center of the sphere to a value equal
to 2

2+Bi at the surface. For Bi << 1, the temperature throughout the sphere is close
to the maximum value. For Bi >> 1, however, the surface temperature is close to
the ambient temperature. These observations are consistent with the observations
made with respect to the heat-generating slab problem as well as the heat-generating
cylinder problem. These observations are also consistent with the physical meaning
of the Biot number.

Example2.8

Consider a spherical shell of inner radius 5 cm and outer radius 10 cm. The inner and
outer surfaces are maintained at 100 ◦C and 30 ◦C respectively. Make a plot of tem-
perature variation with the radial position inside the shell. Compare this profile with
those for a slab and annulus of the same thickness and the same surface temperatures.

Solution:
Inner radius and temperature of spherical shell: r1 = 5 cm, T1 = 100 ◦C
Outer radius and temperature of spherical shell: r2 = 10 cm, T2 = 30 ◦C
The temperature at any r is given by T = − A

r + B. From Eq. 2.76, we have

A = 100 − 30
1

10
− 1

5

= −700

Then B is obtained by using one of the boundary conditions, in this case, the inner
boundary condition as
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Fig. 2.22 Comparison of
temperature profiles in a
slab, a cylindrical annulus,
and a spherical shell

B = T1 + A

r1
= 100 − 700

5
= −40

The temperature profile is thus T = 700
r − 40 where r is in cm and temperature is

given in ◦C (shown in Fig. 2.22 by full line). Note that the constants A and B will
be different if r is used in m (i.e., in SI unit). It is left as an exercise for the reader to
derive the appropriate relations in the slab and cylindrical annulus.The plot shown
in Fig. 2.22 shows all the three profiles. It is noticed that the profile is linear in the
case of a slab. It is non-linear in both the cylindrical annulus as well as the spherical
shell. The profiles do not depend on the thermal conductivity of the material of the
spherical shell or the cylindrical annuls or the slab.

2.3 Generalization

The present chapter has dealt with heat conduction in one dimension—the dimension
being a space dimension. All the problems were steady, with no changes with respect
to time. The governing equations turn out to be ordinary differential equations, basi-
cally of second order, but cleverly written as first-order equations, using physical
arguments!

We examine some general features of all the problems we have considered till
now. The following development is for the more adventurous reader!



58 2 Steady Conduction in One Dimension

General features
In case of steady conduction in one dimension, the general feature is that the
total conduction heat transfer does not change with x in the slab or r in the
case of cylinder and sphere. We may write the total conduction heat transfer
Qk as

Qk = −k A
dT

dx
= constant (2.86)

where A = 1 in the case of slab geometry, A = 2πr × 1 in the case of cylinder
or 4πr2 in the case of the sphere. Using the symbol x to represent either x or
r , and assimilating the factor k or 2πk or 4πk as appropriate in to the constant
on the right hand side, we may write Eq. 2.86 as

xn
dT

dx
= constant (2.87)

where n = 0 in the case of slab, n = 1 in the case of the cylinder and n = 2
in the case of the sphere. If we differentiate Eq. 2.87 with respect to x , we get
the following second-order differential equation.

d

dx

(
xn

dT

dx

)
= 0 (2.88)

This equation is the general formof the steadyone-dimensional heat conduction
equation. In case of problem involving internal heat generation, we will have
to modify the above equation in the following manner.

Heat generated dQgenerated within an elemental volume dV can be written
as

dQgenerated = GdV (2.89)

where G is the heat generation rate per unit volume. The volume element may
be written as

dV = cxndx (2.90)

where c = 1, n = 0 for the slab, c = 2π × 1, n = 1 for the cylinder and c =
4π, n = 2 in the case of the sphere. Figure 2.23 shows how these are obtained.

The net heat transferred across the volume element may be written as

dQk = − d

dx

(
kcxn

dT

dx

)
(2.91)
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Fig. 2.23 Volume element in slab, cylinder, and sphere

Conservation of energy requires that the net heat transfer across the volume
element must represent the heat generated within the volume element. We may
remove the factor 1 or 2π or 4π as appropriate to get the following equation.

d

dx

(
xn

dT

dx

)
+ Gxn

k
= 0 (2.92)

Of course Eq. 2.92 reduces to Eq. 2.88 when internal heat generation is zero.
Equation 2.92 is the most general form of equation that represents steady
conduction heat transfer in one dimension. The reader may verify that Eqs. 2.1,
2.46, 2.74, 2.20, 2.62, and 2.79 are obtained by performing one integration of
the generalized equation presented here. We may refer to the equations cited
above as representing an integral or integrated form of the general governing
equation.

It is also clear that one integration constant is already present in the integral
form of the equation. However, the general form of the equation is of second
order and hence supports two boundary conditions. It is rather unusual to
specify two conditions at a single boundary (referred to as initial conditions)
and hence all the problems considered in this chapter were boundary value
problems.

Concluding Remarks

This chapter has dealt with steady conduction in one dimension. Problems of this type are the

simplest to solve and occur in all three coordinate systems, viz., Cartesian, cylindrical, and

spherical coordinate systems. Problems involving variable thermal conductivity, internal heat

generation, convection at one or more boundaries have been considered. Toward the end of the

chapter, we have given generalized governing equations that apply to steady one-dimensional

conduction in all three coordinate systems.
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2.4 Exercises

Ex 2.1 It is desired to limit the heat gain through the door of a refrigerator
to 30W/m2. The door may be considered to be made of an insulating
material having a constant thermal conductivity of 0.1 W/m◦C. If the
inner surface is at 3 ◦C and the outer surface is at 25 ◦C, determine the
thickness of the insulation that needs to be provided. Do you think this
thickness is realistic?

Ex 2.2 Thermal conductivity of a certain low carbon steel varies with tem-
perature according to the formula k(T ) = 55 − 0.03T , where T is in
◦C, k is in W/m ◦C and the formula is valid in the temperature range
0 ≤ T ≤ 400 ◦C. In a certain application, a uniformarea pin of diameter
10 mm and length 100 mm of this material is used to connect two struc-
tural members. The temperatures of these members are, respectively,
200 ◦C and 120 ◦C. Determine the heat transferred inW through the pin
by conduction. What is the maximum temperature gradient in ◦C/m
andwhere does it occur?Also determine the location and themagnitude
of the largest departure of temperature from the linear profile.

Ex 2.3 A certain material has thermal conductivity varying linearly with tem-
perature. The thermal conductivity of this material is specified as 15.5
W/m◦C at 25 ◦C and 19.5 W/m◦C at 60 ◦C. A slab of this material
has a thickness of 0.15m and its two surfaces are at 53 ◦C and 25 ◦C
respectively. What is the heat transfer per unit area across the slab?

Ex 2.4 A brick partition 0.2m thick and of thermal conductivity 0.72 W/m◦C
is covered with a 0.05m thick fiberglass insulation of thermal conduc-
tivity 0.04 W/m◦C as shown in Fig. 2.24. The exposed brick surface
is maintained at 25 ◦C while the exposed surface of the insulation is
maintained at 5 ◦C. Determine the heat transfer per unit area and the
temperature at the brick fiberglass interface.

Ex 2.5 A composite wall is made of three layers of materials as shown in Fig.
2.25. The accompanying numbers indicate the data. Determine the heat
transfer per unit area in this case. Also determine, using the electrical
analogy, the temperatures at both the interfaces. Specify the conditions
that are satisfied at an interface between the plaster and the brick.

Ex 2.6 A slab of thickness 0.05m and of thermal conductivity 10 W/m◦C is
generating heat at a uniform rate of 3 × 105 W/m3. The slab is sand-
wiched between two slabs (referred to as clad material) of equal thick-
ness of 0.01m and of thermal conductivity of 45 W/m◦C. The external

Fig. 2.24 Heat transfer
across composite wall of
Exercise 2.4
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Fig. 2.25 Steady heat
transfer across layered wall
of Exercise 2.5

surfaces of the clad layers are exposed to an ambient at 30 ◦C subject to
a heat transfer coefficient of 67W/m2◦C. Determine the surface tem-
perature of the material exposed to the convective environment as well
as themaximum temperature. Assume that there is no contact resistance
at the interface between the heat-generating slab and the surrounding
clad layers.
If there is a thermal contact resistance between the heat-generating slab
and the clad material what will happen to the clad surface temperature
exposed to the ambient? Justify your answer.
If the heat transfer coefficient specified previously is increased what
will happen to the temperature? Justify your answer.

Ex 2.7 A slab of material of constant thermal conductivity k and thickness L
is generating heat at a uniform volumetric heat generation rate G. The
surfaces at x = 0 and x = L are in contactwith afluid at temperatureT∞
and are subject to convection to the fluid via a heat transfer coefficient h.
Obtain an expression for the maximum temperature in the slab. Where
does this maximum occur? What is the temperature at any one surface
of the slab?

Ex 2.8 Consider a slab of material of thickness L and thermal conductivity
k. Heat generation in the slab varies with x according to the relation
G(x) = G0

(
1 − x

L

)
where G0 is a constant. Both faces of the slab are

maintained at a temperature equal to T0. Derive an expression for the
temperature T at any location inside the slab. Also, determine the loca-
tion at which the temperature has themaximumvalue and themaximum
value of the temperature. You are expected to present the analysis in
non-dimensional formusing suitably chosen non-dimensional variables
and parameters.

Ex 2.9 A bare 2.5 cm diameter pipe has a surface temperature of 150 ◦C and is
placed in air at 30 ◦C. The convection heat transfer coefficient between
the surface and air is 6 W/m2◦C. It is desired to reduce the heat loss
to 60% of its present value by the addition of a layer of insulation
with k = 0.1 W/m◦C. Assuming that the pipe surface temperature and
the heat transfer coefficient remain the same determine the required
insulation thickness.
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Ex 2.10 A copper rod of thermal conductivity 380 W/m◦C, 0.3 cm diameter
and 30 cm long has its two ends maintained at 15 ◦C by circulating cold
water through support structures in contact with the ends. The lateral
surface of the rod is perfectly insulated. Determine the largest current
that may be passed through the rod if the temperature in the rod is not
to exceed 100 ◦C. Specific resistance of copper is 1.73 × 10−6
 · cm.

Ex 2.11 A certain thin-walled pipe of diameter 25 mm is conveying steam at
a temperature of 110 ◦C. It is to be insulated such that the heat loss
per meter of the pipe is at most equal to 15W. The insulation material
available has a thermal conductivity of 0.04 W/m◦C. The heat transfer
from the outside surface of the insulation is known to take place with
a heat transfer coefficient of 15W/m2◦C to room air at 35 ◦C. What is
the insulation thickness? On a certain day, the room power fails and the
heat transfer coefficient reduces to 5W/m2◦C5. What will be the heat
loss per meter on such a day? Comment on the result.

Ex 2.12 A cylinder of radioactive material of radius 50 mm, and thermal con-
ductivity 42 W/m◦C generates heat at the rate of 106W/m2. A 3 mm
thick cladmaterial of thermal conductivity equal to 1.5W/m◦Cprotects
it. The composite cylinder is exposed to an environment that provides a
heat transfer coefficient of 450W/m2◦C to an ambient at 30 ◦C. Deter-
mine the maximum temperature, the outside surface temperature of the
clad, and the value of heat flux at the clad outer surface.

Ex 2.13 A small diameter copper wire of diameter 3 mm is found to be at a
temperature of 50 ◦C when a certain current is passed through it and it
is exposed to ambient air at 20 ◦C. Assuming that copper has a resis-
tivity of 1.73 × 10−6
 · cm, determine the current if the heat transfer
coefficient to ambient air has been estimated to be 6W/m2◦C. It was
decided to insulate the wire by a 0.6mm plastic insulation layer of ther-
mal conductivity equal to 0.45 W/m◦C. Assuming that the heat trans-
fer coefficient remains unchanged and the current is held at the same
value, determine the wire temperature.Would you advise an increase or
decrease of insulation thickness if the goal is to increase heat transfer?

Ex 2.14 A material of thermal conductivity 200 W/m◦C is in the form of a
very long cylinder of diameter D = 5 mm. An air stream subjects the
surface of the cylinder to cooling with a heat transfer coefficient of
h = 6W/m2◦C. Can we consider the cylinder to be isothermal when it
is subject to uniform internal heat generation ofG = 105 W/m3?What-
ever your answer is to the above, calculate the maximum temperature
inside the cylinder.

Ex 2.15 An electrical heating element is shrunk in a hollow cylinder of carbon
with a thermal conductivity of k = 1.6 W/m◦C as shown in Fig. 2.26.
The outer surface of carbon is in contact with air at 20 ◦C subject to
a convection heat transfer coefficient of h = 67W/m2◦C. Determine
the maximum allowable heat generation rate per meter length if the
maximum temperature of carbon is not to exceed 180 ◦C. The heating
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Fig. 2.26 Heat transfer in a
composite cylinder: Exercise
2.15

element itself may be assumed to be isothermal. Refer to figure for
other details

Ex 2.16 An insulating material of unknown thermal conductivity is sandwiched
between two spherical shells of steel. The inner shell has an one dimen-
sion of 100mmand awall thickness of 5mm. The outer shell has an one
dimension of 150 mm and a wall thickness of 2 mm. In a certain experi-
ment, it was found that the inner surface of the inner shell was at 110 ◦C
when the outer surface of the outer shell was at 66 ◦C. The ambient fluid
is air at 30 ◦C and the heat transfer coefficient from the spherical surface
to the ambient has been estimated to be 6W/m2◦C. What is the thermal
conductivity of the insulating material? Take the thermal conductivity
of steel as 45 W/m◦C. The experiment was repeated another day when
the ambient temperature had decreased to 14 ◦C. What will be the tem-
perature of the outer surface of the outer shell this time if the inner
surface of the inner shell indicated the same temperature?

Ex 2.17 A spherical shell of inner radius r1, outer radius r2 of a material of
thermal conductivity k has the inner and outer boundaries at tempera-
tures T1 and T2, respectively. Derive an expression for the heat transfer
across the shell. Represent the solution in a non-dimensional form, after
defining suitable non-dimensional variables.
If the outer surface of the shell is losing heat to an ambient at T∞ sub-
ject to a convective heat transfer coefficient h, what is the heat transfer
across the shell? Work out the appropriate electrical analogy for this
problem?



Chapter 3
Unsteady Heat Transfer in Lumped
Systems

When internal conduction resistance is much smaller than the thermal resistance
for heat transfer from its surface, a solid body may be assumed to be at the same

temperature throughout. The solid body is treatable as a lumped system. Similarly, a
volume of liquid/gas may be considered to be a lumped system if it is well stirred.
Cooling/heating of a lumped system is governed by ordinary differential equations with
time t as the independent variable. Both first-order and second-order thermal systems
are considered in this chapter.

3.1 Preliminaries

In Chap. 2 we have considered, in a simple way, the interaction of conduction within
a solid and convection at its boundaries. The interaction manifests through the non-
dimensional parameter, the Biot number. It was indicated that the magnitude of the
Biot number determines the variation of temperature within the conducting medium.
In the limit of Bi → 0 (in practice, Bi < 0.1), the internal conductive resistance
becomes very small in comparisonwith the film resistance at the surface. In this limit,
the temperature gradientswithin the solid tend to zero. For example, in a solid cylinder
with internal heat generation, the temperature difference between the center and the
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surface is less than 5% of the difference between the center and the temperature of the
ambient medium, when Bi < 0.1. A lumped system approximation is a reasonable
model, in such a case.

In the lumped system formulation, the temperature within the conductingmedium
is approximately the same throughout and hence a single temperature characterizes
the system. Transient in a lumped system leads to a one-dimensional problem with
time as the independent variable.

Examples of such systems are

• A thin shell cooling in air; Lch = shell thickness (characteristic length scale).
• Thermometer bulb immersed in a hot/cold fluid.
• Well-stirred temperature-controlled bath or a well-stirred tank of hot water.

3.2 Governing Equation and the General Solution

Assumptions made in analyzing such a problem are explained with reference to
Fig. 3.1. Note that the ambient temperature T∞ may be either a constant or a specified
function of time. For the following simplified analysis, the heat transfer coefficient
h is assumed to be a constant.

If the temperature of the lumped system is different from the temperature of the
ambient medium, heat transfer will take place between the system and the ambient.
The temperature of the system will change with time and it is desired to determine
this variation.

Fig. 3.1 Transient in a
lumped system
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3.2.1 Governing Equation

Consider the general case in which heat is generated within the system at a uniform
volumetric rate of G, W/m3. Let the following constant properties characterize the
system:

Density of the conducting medium: ρ, kg/m3

Volume of the system: V, m3

Surface area exposed to the ambient: S, m2

Heat capacity of the conducting medium: c, J/kg◦C

Assume that the lumped system temperature is greater than the ambient temper-
ature. Consider a time duration of �t at t . In this time interval, the heat generated
within the system is Qg = GV�t . The heat transferred from the surface to the ambi-
ent fluid is Qc = hS(T − T∞)�t . Since the temperature of the system changes in
this interval, the change in the internal energy of the system is Qi = ρVc dT

dt �t .
Energy balance applied to the lumped system requires that Qi = Qg − Qc or

ρVc
dT

dt
= GV − hS(T − T∞) (3.1)

where we have dropped the time interval �t that is common to all the terms. Equa-
tion3.1 may be recast in the form

dT

dt
= G

ρc
− hS

ρVc
(T − T∞) (3.2)

This is a first-order ordinary differential equation that can support an initial con-
dition of the form T = T0 at t = 0. Since the governing differential equation is of
first order, the lumped system is referred to as a first-order system. Consider now the
quantity hS

ρVc . This quantity has the units of reciprocal time (s−1) and is denoted by

the symbol 1
τ
, where τ a characteristic time that governs the transient is referred to

as the first-order time constant of the lumped system.

3.2.2 Electrical Analogy

A first-order system is analogous to an electrical circuit containing a resistance and a
capacitance as shown in Fig. 3.2. The resistance R in the electrical circuit is analogous
to the thermal resistance 1

hS while the capacitance C is analogous to the thermal
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Fig. 3.2 Electrical analog of a first-order thermal system

capacity of the system given by ρVc orMcwhereM = ρV is themass of the lumped
system. The input voltage to the electrical circuit is analogous to the impressed
temperature while the output voltage is analogous to the system temperature. Note
that the system temperature appears as output voltage across the capacitance in the
electrical circuit. It is well known from electrical circuit theory that the time constant
of the R-C network is τ = RC . It is seen that the product of thermal resistance and the
thermal capacity gives the time constant of the thermal system, i.e., τ = 1

hS × ρVc.

3.2.3 Characteristic Length Scale

It is interesting to interpret the time constant in a different way. We may write it as

τ = ρc

h
× V

S
= ρc

h
× Lch (3.3)

where Lch = V
S is a characteristic geometric length scale while the other factor

involves only thermal parameters. Thus the time constant of a first-order system is
determined partly by the thermal parameters and partly by the characteristic length
scale. Table3.1 gives useful formulae for calculating Lch in cases of practical impor-
tance.

Table 3.1 Characteristic length scale for a first-order system

Geometry Lch

Large slab of thickness δ δ/2

losing heat from both sides

Long solid cylinder of diameter D D/4

Solid sphere of diameter D D/6

Long tube of small wall thickness δ << D δ

losing heat from outside

Spherical shell of small wall thickness δ << D δ

losing heat from outside
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A Note on Time Constant
It is clear from the above that the time constant of a first-order thermal system is not
a property of the system. It depends on parameters that relate to the system as well
as the parameters that define the interaction between the system and the surrounding
medium, specifically the thermal resistance to heat transfer between the system and
the surroundings. Time constant also depends on the thermal mass of the system.
The thermal mass depends on the physical size as well as the thermal properties
of the material of the system. The way the time constant is written, as a product
of thermal and geometrical factors, it is possible to manipulate the time constant
of a system. Thermal mass reduction is one possibility. The other possibility is the
reduction of thermal resistance. This may be achieved by increasing the interface
area between the system and the medium. In general, this means a reduction in the
characteristic dimension Lch of the system. If time constant data is to be specified for
a particular system it is necessary also to specify the thermal environment in which
the time constant has been determined. For example, time constant is specified, for
a particular temperature sensor (which may be treated as a first-order system) as
follows:

Time constant = 0.14 s: in water at room temperature
Time constant = 2.2 s: in still air at 25 ◦C

3.2.4 General Solution

Equation3.2 may be rewritten in the form

dT

dt
+ T

τ
= G

ρc
+ T∞

τ
(3.4)

This is a non-homogeneous equation that is amenable to solution by the use of
an integrating factor given by e

t
τ . On multiplication by the integrating factor, the

left-hand side of Eq.3.4 becomes a total differential given by
d
(
T e

t
τ

)

dt . Hence we can
integrate the governing equation with respect to time to get the general solution

T e
t
τ = 1

τ

t∫

0

(
Gτ

ρc
+ T∞

)
e
t
τ dt + A or T = e− t

τ

⎡
⎣ 1

τ

t∫

0

(
Gτ

ρc
+ T∞

)
e
t
τ dt + A

⎤
⎦

(3.5)
The constant of integration A is easily obtained by the use of the initial condition as
A = T0. Thus the general solution to the response of the first-order system is
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T = e− t
τ

⎡
⎣1

τ

t∫

0

(
Gτ

ρc
+ T∞

)
e

t
τ dt + T0

⎤
⎦ (3.6)

The general solution given by Eq.3.6 shows interesting features. The quantity
e− t

τ tends to zero as t → ∞. Generally t → ∞ may be interpreted as t > 5τ for
which e− t

τ < 0.01. Terms on the right-hand side of Eq.3.6 that contain the factor e− t
τ

become unimportant for large time, interpreted as mentioned above. Terms on the
right-hand side that survive for large time constitute what is called the steady-state
solution. In practical problems, the interest may be in the steady state solution when
the transients have died down.

3.2.5 Response of a First-Order System in Particular Cases

In this section, we are going to look at several interesting cases that are also of
practical importance. The general idea is to study the response of a first-order system
subject to specific inputs.

Response of a First-Order System to Step Input
Let a first-order system that is initially at temperature T0 be exposed to an ambient
at a constant (time invariant) temperature T∞. Also, let the internal heat generation
rate be G = 0. The problem is said to involve step input since the system, initially
at a temperature different from the ambient temperature, is exposed to the ambient
for t > 0. In practice, one may achieve this boundary condition, by quickly moving
the system from one constant temperature environment with which it is in thermal
equilibrium to another environment at a different temperature.

We may use the general solution given by Eq.3.6, put G = 0 and take T∞ outside
the integral sign to get the solution to the present case. We note then that the integral
on the right-hand side is

t∫

0

e
t
τ dt =

[
τe

t
τ

]∣∣∣
t

0
= τ

(
e

t
τ − 1

)

Substitute this in Eq.3.6 to get

T = e− t
τ

[
T0 + T∞

τ
τ(e

t
τ − 1)

]
= (T0 − T∞)e− t

τ + T∞

On rearrangement the non-dimensional response given by
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Fig. 3.3 Response of a
first-order system to step
input

T − T∞
T0 − T∞

θ

= e− t
τ (3.7)

The response given by Eq.3.7 is shown plotted in Fig. 3.3.
The response is an exponential decay of the initial temperature difference between

the system and the ambient. At the end of one time constant, it is about 37% of the
initial value. As t → ∞ the temperature difference between the system and the
ambient tends to zero, i.e., the system comes to equilibrium with the ambient. This
represents the final steady state of the system and hence the steady-state response of
the system is one in which the system is at T∞, the ambient temperature.

Example 3.1

A thin shell of aluminum of diameter 5mm and thickness 0.3mm drops off a con-
veyor vertically down to the ground. The temperature of the shell is initially 75 ◦C.
While it is falling to the ground that is some 15m below, the shell cools by losing
heat to the ambient air at 20 ◦C via a constant average heat transfer coefficient of
90W/m2◦C. Determine the temperature of the shell as it hits the ground.
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Solution:
With the usual notation, the given data is given in the table. The Biot number is then
calculated as

τ = ρcLch

h
= 2700 × 896 × 0.0003

90
= 8.064 s

Bi = hLch

k
= 90 × 0.0003

236
= 1.14 × 10−4

Since the Biot number is less than 0.1 it is reasonable to use lumped formulation to
solve the problem.

The first-order time constant may now be calculated using Eq.3.3, to describe the
temperature transient in the aluminum shell, as it falls to the ground.

Characteristic length(see Table 3.1): Lch = 0.3 mm = 0.0003 m
Thermal conductivity of aluminum: k = 236 W/m◦C

Density of aluminum: ρ = 2700 kg/m3

Specific heat of aluminum: c = 896 J/kg◦C
Heat transfer coefficient: h = 90 W/m2 ◦C

Height of fall of shell: s = 15 m
Acceleration due to gravity: g = 9.8 m/s2

Note: Properties of aluminum are taken from Table I.4

Time taken by the shell to fall to the ground is now calculated. Motion of the shell is
under gravity and it is assumed that the shell starts to fall with zero initial velocity.
The time t of travel before the shell hits the ground is

t =
√
2s

g
=

√
2 × 15

9.8
= 1.75 s

The temperature of the shell at the end of this time is determined using the response
of a first-order system to a step input. With initial temperature of shell of T0 = 75 ◦C
and ambient temperature of T∞ = 20 ◦C, temperature of the shell as it hits the ground
is obtained using Eq.3.7 as

T = T∞ + (T0 − T∞)e− t
τ = 20 + (75 − 20)e− 1.75

8.064 = 64.3 ◦C
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Example 3.2

A copper sheet of dimensions 50 × 100 × 2 mm is exposed on both sides to an
ambient fluid at 25 ◦C with an average heat transfer coefficient of 7W/m2◦C. Is it
proper to consider the copper sheet as a lumped system for transient analysis? If
the answer is yes, determine the time constant of the first-order system. If the initial
temperature of the plate is 100 ◦C how long does one have to wait for the temperature
to become 50 ◦C?

Solution:
Properties of copper are taken from Table I.4. They are

Density: ρ = 8950 kg/m3

Specific heat: c = 385 J/kg◦C
Thermal conductivity: k = 386 W/m◦C

The characteristic length scale in the problem is semi plate thickness (see Table3.1)
given by Lch = 0.001m. The Biot number is calculated as

Bi = hLch

k
= 7 × 0.001

386
= 1.813 × 10−5

Since the Biot number is smaller than 0.1 it is indeed reasonable to treat the cooling
process as a lumped first-order process. The time constant for the cooling process is
obtained as

τ = ρcLch

h
= 8950 × 385 × 0.001

7
= 492.3 s

Other appropriate data specified in the problem are given below:

Initial temperature of copper plate: T0 = 100 ◦C
Ambient temperature: T∞ = 25 ◦C

Final temperature of copper plate: T f = 50 ◦C

We solve for t using Eq.3.7 to get

t = −τ × ln

(
T f − T∞
T0 − T∞

)
= −492.3 × ln

(
50 − 25

100 − 25

)
= 540.8 s ≈ 9min

Response of a First-Order System to a Periodic Input
If T∞ is not a constant, but varies with time, interesting features result. For exam-
ple, we may be interested in measuring a time-varying temperature of a fluid using
a thermometer (system). A typical example is the variation of temperature inside
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an internal combustion engine cylinder. The variation is certainly periodic, with the
period dependent on the speed of the engine. The temperature variation is a complex
wave with the shape dependent on the processes that take place within the cylinder.
The analysis is made for a single sinusoidal temperature variation since any periodic
function may be built up as a sum of its Fourier components (Fourier series represen-
tation will be considered in detail in Chap. 5). In case of an arbitrary periodic input,
the output response will be a weighted sum of the response of the system to each of
the Fourier components, since the system is governed by a linear differential equa-
tion. Let us assume that T∞ is a periodic function of time, given by T∞ = Ta cos(ωt),
where Ta is the amplitude and ω the circular frequency in rad/s (ω = 2π f , where
f is the frequency in Hz). The circular frequency of the Fourier components vary as
integer multiples of a fundamental frequency. Assuming G = 0, the general solution
has to be obtained by writing Eq.3.6 as

T = e− t
τ

⎡
⎣1

τ

t∫

0

Ta cos(ωt)e
t
τ dt + T0

⎤
⎦ (3.8)

The integral appearing on the right-hand side of Eq.3.8 may be obtained by the
repeated use of integration by parts.

I =
t∫

0

e
t
τ cos(ωt)dt =

(
τe

t
τ cos(ωt)

)∣∣∣
t

0
+

t∫

0

ωτe
t
τ sin(ωt)dt

= τ
[
e

t
τ cos(ωt) − 1

]
+ ωτ

{[
τe

t
τ sin(ωt)

]∣∣∣
t

0
− ωτ

∫ t

0
e

t
τ cos(ωt)dt

}

= τ
[
e

t
τ cos(ωt) − 1

]
+ ωτ 2e

t
τ sin(ωt) − ω2τ 2 I

We see that the integral I has repeated itself after two integrations by parts. The
above may be solved for I to get

I = τe
t
τ
cos(ωt) + ωτ sin(ωt)

1 + ω2τ 2
− τ

1 + ω2τ 2
(3.9)

The integral contributes the following to the solution.

e− t
τ

τ
I = cos(ωt) + ωτ sin(ωt)

1 + ω2τ 2
− e− t

τ

1 + ω2τ 2
(3.10)

The first term on the right-hand side of Eq. 3.10 may be rearranged as

cos(ωt) + ωτ sin(ωt)

1 + ω2τ 2
=

1√
1 + ω2τ 2

cos(ωt) + ωτ√
1 + ω2τ 2

sin(ωt)
√
1 + ω2τ 2

(3.11)
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Fig. 3.4 Phase of a
first-order system subject to
periodic input

Refer now to Fig. 3.4. The ratios appearing as coefficients of ‘cos’ and ‘sin’ terms
in the numerator of Eq.3.11 may be interpreted as follows:

1√
1 + ω2τ 2

= cos δ,
ωτ√

1 + ω2τ 2
= sin δ

With these and familiar trigonometric identity (cos(A − B) = cos(A) cos(B) +
sin(A) sin(B)) Eq.3.11 may be written as

cos(ωt) + ωτ sin(ωt)

1 + ω2τ 2
= cos(ωt − δ)√

1 + ω2τ 2
(3.12)

Substituting these in Eq.3.8 we finally get the solution as

T =
[
T0 − Ta(

1 + ω2τ 2
)
]
e− t

τ

Transient response

+ Ta√
1 + ω2τ 2

cos(ωt − δ)

Steady state response

(3.13)

where δ = tan−1 (ωτ).

Steady-State Response
A reference to Eq.3.13 shows that the first term on the right-hand side decays to
zero as t → ∞ because of the exponentially decreasing factor. This term represents
the transient set up due to the fact that there is an initial temperature difference
between the mean of the imposed periodic input (in the present case, the mean is
zero). However for t → ∞, the transient dies down and the steady-state response
persists, given by the last part on the right-hand side of Eq.3.13. We see that the
steady-state response is periodic with the same period or frequency as the input, but
with a phase lag δ. The amplitude is also smaller by the factor 1√

1+ω2τ 2 . Figure3.5
shows the variation of the amplitude and phase with ωτ product. It is seen that
the amplitude reduction is marginal until about ωτ = 0.1. Beyond this value, the
amplitude reduces rapidly. Similarly the phase lag is marginal up to ωτ = 0.1 and
increases rapidly beyond that and reaches an angle of 90◦ or π

2 rad as ωτ → ∞.
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Fig. 3.5 Amplitude and phase response of a first-order system subject to periodic input

Example 3.3

A first-order system is characterized by a time constant of τ = 0.1 s. The system
is initially at a temperature of T0 = 30 ◦C. It is subject to a periodic exchange
of heat at a circular frequency of 33 rad/s with an ambient that is given by
T∞ = 50 + 20 cos(33t)where t is in s. Determine the time lag between the input and
the system response when the steady state has been reached. Make a plot showing
both the input and the response in the same plot.

Solution:
The problem will make use of the solution obtained above for a first-order system
subject to periodic input.

1. The pertinent parameters in this problem are

Time constant: τ = 0.1 s
Input wave circular frequency: ω = 33 rad/s

Initial temperature of the system: T0 = 30 ◦C
Mean temperature of the input: Tm = 50 ◦C

Amplitude of the input disturbance: Ta = 20 ◦C

2. The phase lag is calculated referring to Fig. 3.4 as

δ = tan−1(ωτ) = tan−1(33 × 0.1) = tan−1 3.3 = 1.277 rad or 73.14◦

3. The time lag tL is defined through the relation δ = ωtL and hence we have

tL = δ

ω
= 1.277

33
= 0.039 s
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Fig. 3.6 Input and response for Example 3.3

4. The amplitude reduction factor ARF is given by

ARF = 1√
1 + ω2τ 2

= 1√
1 + 332 × 0.12

= 0.290

5. Having completed the calculations, we make a plot as required in the statement
of the problem. Since the mean temperature of the input is not zero, we need to
combine (or superpose) the solutions obtained for the case of step input (Eq.3.7)
and the solution obtained for periodic input (Eq.3.13). The solution turns out to
be

T = Tm +
[
T0 − Tm − Ta

1 + ω2τ 2

]
e− t

τ + Ta√
1 + ω2τ 2

cos(ωt − δ)

or T = 50 − 21.57e− t
0.1 + 5.8 cos(33t − 1.276) ◦C

We have made a plot of this in Fig. 3.6. Time lag tL ≈ 0.04 s is also shown in the
figure.
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Observations
Refer to Fig. 3.6. During the initial transient (that lasts about 5 time constants
or 0.5 s in the present case) the system gets heated such that its temperature
approaches the mean temperature. However, the oscillatory part asserts itself
by imposing alternating heating and cooling of the system. The heat capacity
effects manifest as a time lag, when the steady state is reached. The amplitude
of the periodic response is less than the imposed input since heat transfer
between the ambient and the system requires a finite temperature difference.
This temperature difference is also determined by the heat capacity effects and
the convective resistance since the amount of heat transfer required to bring
about a given temperature change is directly related to the heat capacity.

When the input waveform is not a pure wave at one frequency we may
decompose it in to Fourier components. The output will then be a linear com-
bination of the Fourier components each of which will undergo a frequency-
dependent phase change and amplitude change. Hence the output will be a
modified wave with a change in shape.

As an example consider the input to be Ta = 5 cos(33t) + 2 cos(66t)where
the fundamental and thefirst harmonic alone are present in the input.Depending
on the time constant of the system, the output will be modified since the phases
and amplitudes in the output are dependent on τ and the individual frequencies.
In the present case, these are as tabulated below for two systems with time
constant of τ = 0.1 s and τ = 0.01 s, respectively.

τ, s 0.1 0.1 0.01 0.01
ω, rad/s: 33 66 33 66
δ, rad 1.277 1.420 0.319 0.583
ARF 0.290 0.150 0.950 0.835

The steady-state outputs of the two systems are obtained by the use of
respective phases and amplitudes from the table. A plot is made and is shown
in Fig. 3.7.

In the case of system with τ = 0.1 s, the output does not resolve the minor
peak present in the input. Both amplitude and phases change such that there
is a significant reduction in amplitude as well as time delay between the input
and the output. It is also clear from the figure that τ = 0.01 s itself is not
small enough for a faithful reproduction of the input wave. In fact, a value of
τ = 0.003 s or smaller will be required to give a fairly faithful response.

Response to a Ramp Input
A first-order system is subject to an ambient whose temperature varies linearly with
respect to time given by T∞ = Tm + Rt where Tm is the initial temperature of the
ambient and R is the constant rate of temperature increase. This type of input is met
with in “thermal analysis systems” (instruments used for material characterization)
where linear temperature rise with respect to time is quite common. The solution
may easily be worked out by substituting the linearly varying temperature input in
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Fig. 3.7 Output of two
systems with input
containing two frequency
components

the general solution given by Eq.3.6. The constant part Tm leads to a response that is
like the step input given by Eq.3.7. The contribution to the general solution because
of this part is written as

Tm + (T0 − Tm)e− t
τ (3.14)

The ramp part requires an integral that is obtained as follows, using integration by
parts.

I =
t∫

0

te
t
τ dt =

(
tτe

t
τ

)∣∣∣
t

0
− τ

t∫

0

e
t
τ dt

= tτe
t
τ − τ 2e

t
τ

∣∣∣
t

0
= tτe

t
τ − τ 2

[
e

t
τ − 1

]
(3.15)

Introducing Eqs. 3.14 and 3.15 in to the general solution 3.6, and after some minor
manipulations we get the response of the first-order system to ramp input as

T = Tm + (T0 − Tm + Rτ)e− t
τ + R(t − τ) (3.16)

The steady-state response is easily obtained by dropping the exponential term to
get

T − (Tm + Rt) = T − T∞ = −Rτ (3.17)
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Thus the steady sate response has a constant lag equal to Rτ with respect to the
input.

Example 3.4

A temperature sensor initially at 20 ◦C is introduced into an oven whose temper-
ature is increasing linearly as T = 35 + 0.15 t where T is in ◦C and t is in s. The
temperature sensor behaves as a first-order system with a time constant of 10 s.
Make a sketch of the response of the system, using both dimensional as well as
non-dimensional coordinates. Show also the input in the dimensional plot.

Solution:
Given data is written down as follows:

Initial temperature of sensor: T0 = 20 ◦C
Initial temperature of oven: Tm = 35 ◦C
Time constant of the sensor: τ = 10 s

Ramp rate: R = 0.15 ◦C/s

Introducing these numbers in to Eq.3.16 we get the ramp response as

T = 35 + (20 − 35 + 0.15 × 10)e− t
10 + 0.15t − 0.15 × 10

= 33.5 − 13.5e− t
10 + 0.15 t

The above relation is plotted in the form of a dimensional temperature—time plot in
Fig. 3.8a. There is an initial “catching up” phase of roughly 60 s (≈ 6 time constants)
when the initial temperature difference between the sensor and the oven continuously
reduces. Once the steady state is reached the temperature of the sensor increases
linearly with the same rate as the input ramp but with a constant lag of 1.5 ◦C.

The non-dimensional plot requires the following definitions:

Non-dimensional temperature: θ = T∞−T
Rτ

Non-dimensional time: η = t
τ

Introducing the numerical values, we have

θ = 35 + 0.15t − T

0.15 × 10
= 35 + 0.15t − T

1.5
; η = t

10

A plot of θ against η is shown in Fig. 3.8b. The numerical value of θ is 10 at η = 0
and asymptotically approaches unity as η → ∞.
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Fig. 3.8 a Dimensional response for Example 3.4 b Non-dimensional response for Example 3.4

Application to a Practical Problem: Constant Temperature Bath
In many laboratory applications, it is necessary to provide a constant temperature
environment. A typical example is a water or oil bath that is used for the calibration
of temperature sensors. Another example is a thermostat-controlled hot water system
used in dwellings. The system is expected to maintain a certain mass of water or oil
at a reasonably uniform temperature. Of course, since thermal losses are ubiquitous
the temperature cannot be maintained at a desired value with perfect precision. The
temperature of the system may be maintained around a narrow or acceptable band
around the desired value, referred to as the set point. Different types of controllers
are possible. However, in the present discussion, we consider the simplest of them,
viz., an on-off controller. The controller is basically a switch that automatically turns
on or off power to a heater that is immersed in the bath.

When the temperature of the bath goes below the set point by a small but measur-
able value the controller will switch on the heater. The heater will tend to increase
the temperature back toward the set point. When the temperature goes above the set
point by a small but measurable amount, the controller will switch off power to the
heater. The bath will start cooling down. On-off cycles will go on perpetually or as
long as the bath is in operation. The water bath problem may be simulated using
the general equation for a first-order system that was presented as Eq. 3.2. During
the “on” part of the cycle, G is non-zero while it is zero during the “off” part of the
cycle. The temperature at the end of the “on” period provides the initial condition for
the “off” period to follow. Similarly the temperature at the end of the “off” period
provides the initial condition for the “on” period to follow.
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When the bath is turned “on” from the cold, the heater will remain on till the
temperature reaches the upper value and then the off-on cycle will take over.

We introduce the appropriate nomenclature for the simulation of the bath. Apart
from the symbols that have been used earlier in the discussion leading to Eq.3.2, the
following are additionally made use of.

Set point temperature: Tsp
Temperature for “on” for start from cold: T∞

Temperature for “on” for start from low point: Tlp
Temperature for “off”: Thp

We shall assume that all the thermal and physical parameters are independent of
temperature and remain fixed throughout. Even though heat is added by an immersed
heater, the stirrer is expected to even out the temperature throughout the bath. Hence
we assume the bath to be a lumped system. Assuming the ambient temperature to
remain fixed during the operation of the bath, we may use the temperature difference
θ = T − T∞ as the dependent variable to simplify the governing equation, during
the “on” period as

dθ

dt
+ θ

τ
= G

ρc
(3.18)

whereG may be written asG = Q
V where Q is the power dissipated by the heater and

V is the volume of the bath. Equation3.18 may be solved by using integration factor
as before. The initial condition for the on period is t = 0, T = T∞ for cold start and
t = t0, T = Tlp for subsequent operation. The solution may easily be shown to be
(the reader should do this, as an exercise)

Cold start: θ = Gτ

ρc

[
1 − e− t

τ

]

Subsequent
operation:

θ = (Tlp − T∞)e− t−t0
τ + Gτ

ρc

[
1 − e− t−t0

τ

]
(3.19)

The solution given by Eq.3.19 is useful till time thp such that the temperature reaches
the high point of Thp. At this time the power to the heater is switched off and the
governing equation becomes

dθ

dt
+ θ

τ
= 0 (3.20)

with the initial condition t = thp, T = Thp. The solution during the cooling period is
given by

θ = (Thp − T∞)e− t−thp
τ (3.21)

This solution is valid till t = tlp at which time T = Tlp. At this time the heater will
turn on and the on-off cycle will repeat.
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Example 3.5

Consider a constant temperature bath that is in the form of a cylindrical vessel
of 0.1m diameter and 0.25m height. The vessel contains water whose density and
specific heat may be taken as 1000 kg/m3 and 4200 J/kg◦C respectively. The vessel is
fairly well insulated and hence has an overall heat transfer coefficient of 5W/m2◦C
and interacts with an environment at 25 ◦C. The vessel is equipped with a small
electric heater that provides 200W when it is “on”. The bath has an on-off controller
that is adjusted to switch on when the temperature reduces to 53 ◦C and switches
off when the temperature goes up to 57 ◦C. The bath is expected to have a set point
temperature of 55 ◦C. Perform a simulation of the system.

Solution:

Step 1 The required background for the simulation has been presented above. The
given data is written down first.

System related data:
Diameter of cylindrical vessel: D = 0.1 m
Height of cylindrical vessel: H = 0.25 m

Density of water: ρ = 1000 kg/m3

Specific heat of water: c = 4200 J/kg◦C
Heater power: Q = 200 W

Environment related data:
Ambient temperature: T∞ = 25 ◦C

Heat transfer coefficient: h = 5 W/m◦C
Controller related data:

Set point temperature: Tsp = 55 ◦C
Heater “on” temperature: Tlp = 53 ◦C
Heater “off” temperature: Thp = 57 ◦C

The volume of the bath is calculated as

V = πD2H

4
= π × 0.12 × 0.25

4
= 0.00196m3

The surface area of the bath interacting with the environment is

S = πDH + 2
πD2

4
= π × 0.1 × 0.25 + 2 × π × 0.12

4
= 0.0942m2

The time constant of the bath treated as a first-order system is

τ = ρVc

hS
= 1000 × 0.00196 × 4200

5 × 0.0942
= 17500 s
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The internal heat generation rate is calculated assuming that the heater
output is uniformly released throughout the volume of the bath.

G = Q

V
= 200

0.00196
= 101859W/m3

Step 2 The simulation is done in two parts. In the first part, the bath starts from
cold and the temperature is brought up to the operating temperature. For
this part, the initial temperature is 25 ◦C and the heater is switched on
at t = 0. The final temperature attained is 57 ◦C when the controller will
switch off the heater. The bath temperature follows the first of relation
3.19.

T = 25 + 101859 × 17500

1000 × 4200

(
1 − e

−t
17500

)
= 25 + 424.41 ×

(
1 − e

−t
17500

)

Temperature reaches Thp at t = 1372 s at which the heater is switched off
by the controller. The cooling of the bath follows the Eq.3.21 with the
origin for time at 1372 s.

T = 25 + 32e− t−1372
14500

The temperature reaches a value of 53 ◦C at t = 3714 s. Thus the very first
on-off cycle from cold start is of duration equal to 3714 s.

Step 3 Second and subsequent on-off cycles are now considered. During the
on period the temperature variation with time is given by the second of
Eq.3.19 with t0 = 3714 s. Hence we have

T = 25 + (53 − 25)e− t−t0
17500 + 101859 × 17500

1000 × 4200

[
1 − e− t−t0

17500

]

= 25 + 28e− t−3714
17500 + 424.4

[
1 − e− t−3714

17500

]

Calculations show that the temperature reaches the upper limit of 57 ◦C at
thp = 3891.5 s. Subsequent cooling process is governed by Eq.3.21 which
translates to

θ = (Thp − T∞)e− t−thp
τ

or

T = 25 + (57 − 25)e− (t−3891.5)
17500 = 25 + 32e− (t−3891.5)

17500

Calculations show that the temperature reduces to 53 ◦C at tlp = 6161.5 s.
Thus one on-off cycle takes 6161.5 − 3714 = 2447.5 s. The temperature
variation of the bath during one on-off cycle is shown in Fig. 3.9. The
duration of an on-off cycle is decided by the choice of the temperatures
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Fig. 3.9 Temperature
variations during “on” and
“off” periods in Example 3.5.
a—First on-off period from
cold start, b—second and
subsequent on-off periods

Tlp and Thp. If these are closer to the set point, the cycle time reduces. The
on time is also determined by the heater dissipation. Larger the Q smaller
the “on” time. If the range Tlp, Thp is chosen very small the on-off periods
will reduce and in the limit the switch may go in to rapid flutter!

3.3 Second-Order Thermal System: Response to Step Input

We have considered, in Example 3.5 a constant temperature bath as a first-order
system. This is an acceptable model if the vessel itself is of negligible thermal mass.
In many applications, this may not be a satisfactory assumption and the application is
modeled as a second-order system. A second-order system is governed by a second-
order ordinary differential equation (ODE). In mechanics, second-order systems
are very common. For example, a spring–mass system is a second-order system
since the governing equation is a second-order ODE. Mercury column in a U-tube
manometer is also a second-order system when it is disturbed from the equilibrium
position. However some types of pressure sensors are basically of first order!1 A
simple example of a lumped system that is of second order is given in Fig. 3.10. The
system consists of a thin-walled tank that contains a well-stirred liquid. The outside
surface of the vessel at T1 interacts with surroundings at T∞ with a heat transfer
coefficient h1. The liquid in the container at T2 interacts with the vessel from the
inside with a heat transfer coefficient h2.

Let us assume that T1 = T2 = T0 at t = 0, T∞ �= T0 and T∞ is constant. Thus at
any t > 0, we have, T1 �= T2 �= T∞.

1See, for example, S.P.Venkateshan, Mechanical Measurements, 2nd Edition, Ane Books and
Athena Academic—Wiley, 2015.
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Fig. 3.10 A second-order
thermal system

We shall characterize the vessel as system 1 with the following properties:

Density of vessel material: ρ1, kg/m3

Volume of material of the vessel: V1, m3

Outer surface area of the vessel: S1, m2

Inner surface area of the vessel: S2, m2

Specific heat of the vessel material: c1, J/kg◦C

We shall characterize the liquid in the vessel as system 2 with the following
properties:

Density of liquid: ρ2, kg/m3

Volume of liquid in the vessel: V2, m3

Surface area of contact with the vessel: S2, m2

Specific heat of liquid: c2 J/kg◦C

Energy balance for system 1 requires that the following hold:

ρ1c1V1
dT1
dt

= h1S1(T∞ − T1) − h2S2(T1 − T2) (3.22)

The above energy balance is made assuming that, at any time t , T∞ > T1 > T2. The
left-hand side represents the change in the energy stored in the vessel, the first term
on the right-hand side represents the heat gained by the vessel from the ambient and
the last term represents the heat lost by the vessel to the liquid contained in the vessel.
Similarly we may perform energy balance for system 2 to get

ρ2c2V2
dT2
dt

= h2S2(T1 − T2) (3.23)

In this case the left-hand side represents the increase in the energy stored in the liquid
while the right-hand side represents the heat transfer to the liquid from the vessel.

The reader will realize that there are two dependent variables T1, T2 in this prob-
lem.Onewould, however, be interested in the liquid bath and hence the time variation
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of temperature T2 is of interest to us. It is thus obvious that we should eliminate tem-
perature T1 from the two Eqs. 3.22 and 3.23 to get a single equation that governs the
variation of T2 with time. We do this, by introducing the following three time scales:

τ1 = ρ1c1V1

h1S1
, τ2 = ρ2c2V2

h2S2
, τ3 = ρ1c1V1

h2S2
(3.24)

The time scales τ1 and τ3 are associated with system 1, the vessel, since it has thermal
interactions with both the ambient and system 2, the liquid in the vessel. However,
τ2 is a single time scale that characterizes the thermal interaction between systems 2
and 1. Introducing the three time scales, the two governing equations may be recast
in the form

(a)
dT1
dt

= T∞ − T1
τ1

− T1 − T2
τ3

(b)
dT2
dt

= T1 − T2
τ2

(3.25)

Differentiate Eq.3.25(b) once with respect to time to get

d2T2
dt2

= 1

τ2

[
dT1
dt

− dT2
dt

]
(3.26)

From Eq.3.25(b) we also have

T1 = T2 + τ2
dT2
dt

(3.27)

We substitute Eq.3.27 in 3.25(a) to get

dT1
dt

= T∞ − T2 − τ2
dT2
dt

τ1
− T2 + τ2

dT2
dt − T2

τ3
or

dT1
dt

= T∞ − T2
τ1

− τ2

(
1

τ1
+ 1

τ3

)
dT2
dt

(3.28)

Substitute Eq.3.28 in 3.26 to get

d2T2
dt2

= 1

τ2

[
T∞ − T2

τ1
− τ2

(
1

τ2
+ 1

τ3

)
dT2
dt

− dT2
dt

]

= T∞ − T2
τ1τ2

−
(
1

τ1
+ 1

τ2
+ 1

τ3

)
dT2
dt

(3.29)

We now introduce the following:

θ = T2 − T∞,
1

τ1
+ 1

τ2
+ 1

τ3
= 1

τs
,

1

τp
= 1

τ1τ2
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With these the governing equation describing the variation of the bath temperature
with time is

d2θ

dt2
+ 1

τs

dθ

dt
+ θ

τp
= 0 (3.30)

The equation has turned out to be a second-order equation and hence the system
is referred to as a second-order system. This equation requires two initial con-
ditions to be specified. Using the conditions T1 = T2 = T0 at t = 0, we see that
θ = (T2 − T∞)|t=0 = (T0 − T∞) = θ0(say). Also from Eq.3.25(b) the derivative of
T2 and hence the derivative of θ vanishes at t = 0. Thus the initial conditions that
accompany Eq.3.30 are

θ = θ0 and
dθ

dt
= 0 at t = 0 (3.31)

This equation may be solved easily using the two roots of the characteristic equation

m2 + 1

τs
m + 1

τp
= 0

The roots are given by

m1 = −
1
τs

+
√

1
τ 2
s

− 4
τp

2
, m2 = −

1
τs

−
√

1
τ 2
s

− 4
τp

2
(3.32)

Both roots are real as long as 1
τ 2
s

≥ 4
τp
. Thus the solution is written down as

θ = Aem1t + Bem2t (3.33)

where A and B are constants of integration. These are determined by the initial
conditions. The first initial condition requires that

A + B = θ0 (3.34)

The second initial condition requires that

Am1 + Bm2 = 0 (3.35)

From Eq.3.34 we have B = θ0 − A. Substituting this in Eq.3.35, we get
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Am1 + (θ0 − A)m2 = 0 or A = θ0m2

m2 − m1

But m2 − m1 =
√

1
τ 2
s

− 4
τp
. Hence we have

A = −θ0

2
×

1
τs

−
√

1
τ 2
s

− 4
τp√

1
τ 2
s

− 4
τp

(3.36)

Using this value of A we may find B as

B = θ0

2
×

1
τs

+
√

1
τ 2
s

− 4
τp√

1
τ 2
s

− 4
τp

(3.37)

A worked example will bring out the nature of the solution obtained in the closed
form above. Example 3.6 considers an interesting application where the response of
a temperature sensor in the form of a thermocouple immersed in a liquid is to be
described.

Example 3.6

A thermocouple is immersed in a liquid contained in a cylinder of inside diame-
ter of 3 mm and an outside diameter of 3.5 mm. The cylinder material is copper with
a specific heat of 383 J/kg◦C and density 8900 kg/m3. The heat transfer coefficient
on the outer and inner surfaces, respectively, of the cylinder are 15 and 45 W/m2◦C.
The density and specific heat of the liquid are known to be 1040 kg/m3 and 3650
J/kg◦C, respectively. The effective length of the cylinder is 10 mm. Obtain the step
response of the thermocouple treating it as a second-order system. Make a plot of
this response using suitable non-dimensional coordinates.

Solution:

Step 1 We follow the notation used in the text and specify the given data.

Outside heat transfer coefficients: h1 = 15 W/m2 ◦C
Inside heat transfer coefficients: h2 = 45 W/m2 ◦C

Outer diameter of cylinder: D1 = 0.0035 m
Inner diameter of cylinder: D2 = 0.003 m
Effective cylinder length: L = 0.01 m

Density of cylinder material: ρ1 = 8900 kg/m3

Specific heat of cylinder material: c1 = 383 J/kg◦C
Density of liquid: ρ2 = 1040 kg/m3

Specific heat of liquid: c2 = 3650 J/kg◦C
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Heat transfer areas are calculated as

S1 = πD1L = π × 0.0035 × 0.01 = 1.1 × 10−4 m2

S2 = πD1L = π × 0.003 × 0.01 = 9.425 × 10−5 m2

Volume of cylinder material is

V1 = π(D2
1 − D2

2)L

4
= π × (0.00352 − 0.0032) × 0.01

4
= 2.553 × 10−8 m3

Volume of the liquid is calculated as

V2 = πD2
2L

4
= π × 0.0032 × 0.01

4
= 7.069 × 10−8 m3

Step 2 Characteristic times:
Characteristic time τ1 is calculated as

τ1 = ρ1V1c1
h1S1

= 8900 × 2.553 × 10−8 × 383

15 × 1.1 × 10−4
= 52.75 s

Characteristic time τ2 is

τ2 = ρ2V2c2
h2S2

= 1040 × 7.069 × 10−8 × 3650

45 × 9.425 × 10−5
= 63.27 s

Characteristic time τ3 is

τ3 = ρ1V1c1
h2S2

= 8900 × 2.553 × 10−8 × 383

45 × 9.425 × 10−5
= 20.52 s

With these, the two parameters that govern the problem are

τp = τ1τ2 = 52.75 × 63.27 = 3337.5 s2

τs =
[
1

τ1
+ 1

τ2
+ 1

τ3

]−1

=
[

1

52.75
+ 1

63.27
+ 1

20.52

]−1

= 11.98 s

Step 3 Solution:
Using Eq.3.32, we obtain the exponents m1 and m2.

m1 = −
1

11.98 +
√

1
11.982 − 4

3338

2
= −0.0797 s−1

m2 = −
1

11.98 −
√

1
11.982 − 4

3338

2
= −0.00376 s−1
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Fig. 3.11 Response of a
second-order system to step
input

The constants of integration are obtained now. Using Eq.3.36

A = −θ0

2

1
11.98 −

√
1

11.982 − 4
3338√

1
11.982 − 4

3338

= 1.0495θ0, and B = θ0 − A = −0.0495θ0

Introduce the following non-dimensional variables

φ = θ

θ0
; τ = t

τ2

to obtain the response as

φ = 1.0495e−0.0797t − 0.0495e−0.00376t

Step 4 Plot of response of second-order system: The response of the second-
order system shown in Fig. 3.11 uses the above non-dimensional variables
along the two axes.

Comments

The second-order response is also compared with the first-order response with
time constant equal to τ2. The second-order system response is sluggish as
compared to the first-order system. There is a time delay due to the wall that
has to respond before the liquid starts responding to the input.
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The two roots of the characteristic equations may be interpreted as two
reciprocal time constants. One of them is labeled τh and the other is labeled τl .
These may be obtained as

τh = 1

0.00376
= 266.2 s

τl = 1

0.0797
= 12.54 s

It is interesting to note that,when h2 	 h1, the smaller of the two time constants
tends to 0 and the larger of the two time constants tends to ∞. The response
of the system becomes a first-order response with the bigger time constant.
To demonstrate this, we redo Example 3.6 with h1 = 5W/m2◦C and h2 =
100W/m2◦C. The coefficients now become A = −0.0102 and B = 1.0102.
Also the two time constants become τl = 6.75 s and τh = 668 s. The temper-
ature response becomes

φ = 1.0102e− t
668 − 0.0102e− t

6.75

Since the second term on the right-hand side is very small compared to the first
term, the response is basically that of a first-order one with a time constant of
668 s.

Concluding Remarks

This chapter has dealt with transient response of lumped systems.When Biot number based on

a characteristic dimension is small, typically Bi < 0.1, the system may be treated as lumped,

i.e., the entire system is at a uniform temperature at any time t. The governing equation is an

ODE. The response of a first-order system to step—periodic and ramp inputs are discussed.

The chapter closes with the analysis of a second-order thermal system.

3.4 Exercises

Ex 3.1: It is proposed to manufacture glass beads of diameter 0.5mm by spray-
ing them into 20 ◦C air and allowing them to harden as they fall to
the ground. Assume that the initial temperature of the glass bead is
Ti = 500 ◦C, the bead to air heat transfer coefficient is h = 324W/m2◦C
and the constant downward velocity is U = 3.8m/s. Glass properties are
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ρ = 2800 kg/m3,C = 810 J/kg◦C and k = 0.81W/m◦C. The design calls
for the production of beadswhose temperature at the center does not exceed
40 ◦C at the instant it reaches the ground. From what height should the
beads fall? Calculate the temperature of the bead surface when its center
temperature reaches 40 ◦C. Compare these two temperatures and comment
on whether the lumped capacitance method is applicable in the late stages
of the cooling process.

Ex 3.2: A first-order system initially at T0 is exposed to an ambient whose temper-
ature varies linearly with time according to the relation T∞(t) = T1 + Ct
where T1 and C are specified constants. The heat transfer coefficient may
be assumed to be constant and equal to h. Determine the temperature of the
system at any time t > 0. Obtain the steady-state response of the system.
IfT0 = 20 ◦C, T1 = 30 ◦C,C = 0.5◦C/s and τ = 10 s calculate the steady-
state response of the system. Make a plot of system temperature as a func-
tion of time till the steady state is reached.

Ex 3.3: A thermometer initially at room temperature of 30 ◦C is immersed in boil-
ing water at 100 ◦C. The thermometer indicates a temperature of 76 ◦C
at the end of 10 s. Assuming the thermometer to be a first-order system,
calculate its time constant in boiling water. The thermometer has a mass
of 10−3 kg, specific heat capacity of 7700 J/kg◦C and a surface area of
10−4 m2. Determine the heat transfer coefficient in boiling water.
The thermometer in the above case reads 85 ◦C when it is removed and
placed in an air stream at 30 ◦C. The thermometer shows a reading of 45 ◦C
after a lapse of 30min. Determine the heat transfer coefficient in air.

Ex 3.4: Afirst-order systemwith a time constant of 10 s in boilingwater is exposed
to boiling water at 100 ◦C for 15 s. The initial temperature of the system
may be taken as 30 ◦C. The system, at the end of 15 s exposure to boiling
water is transferred in to a bath of ice-cold water at 0 ◦C in which the
time constant of the system is 25 s. How long should one wait for the
temperature of the system to reach 5 ◦C?

Ex 3.5: A certain first-order system initially at a temperature of 100 ◦C is subject
to convective cooling by a fluid at 30 ◦Cwith a time constant of 10 s. After
the system has been cooling for 5 s the time constant suddenly changes to
5 s because of a change in the fluid velocity. The fluid temperature remains
the same. Determine the temperature of the first-order system at 10 s and
30 s from the start.

Ex 3.6: Piston in an engine receives a thermal flux from a radiation source at the
end of the cylinder. It loses energy by convection from the upper sur-
face with a heat transfer coefficient of h = 150W/m2◦C. The piston is
made of stainless steel with thermal conductivity k = 14.5W/m◦C, spe-
cific heat capacity C = 460 J/kg◦C, density ρ = 7810 kg/m3. The radia-
tion absorbed at the lower surface is a function of time and is given by
q(t) = q0 cos(ωt)where q0 = 32000W/m2 and ω = 6 rad/s. Assume that
the initial temperature of the piston is the same as the temperature of the
fluid medium of 26 ◦C. Take the thickness of the piston as L = 6mm.
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If the internal resistance due to conduction is neglected, show that the
governing equation for transient temperature of the piston can be written
as

dθ

dt
+ mθ = n cosωt

where m = h
ρCL and n = q0

ρCL . Solve this equation and discuss the nature
of the steady-state solution. Note that θ is the temperature excess with
respect to the temperature of the medium.

Ex 3.7: The volume of the bulb of a thermometer is 0.25ml and contains mercury
just filling the bulb when the temperature is 0 ◦C. The bulb communicates
with a capillary tube of 0.25mm diameter. The bulb may be assumed to
be perfectly rigid. The heat capacity of the bulb itself may be neglected
in comparison with the heat capacity of the mercury contained within.
The bulb is completely immersed in hot water at a temperature of 50 ◦C.
The heat transfer coefficient between water and the bulb is known to be
45W/m2◦C. Determine the time constant of the thermometer. The volume
expansion coefficient of mercury is known to be 1.82 × 10−6/ ◦C. Calcu-
late the length of the mercury column at a time equal to τ

2 . Also, determine
the rate at which the mercury column is changing at the above time.
Other properties of mercury are
Specific heat C = 140 J/kg · ◦C and density ρ = 13600 kg/m3

Make use of reasonable assumptions in solving the problem, after justify-
ing them.

Ex 3.8: Two sensors experience the same heat transfer environment subject to the
same heat transfer coefficient. The first sensor is in the form of a solid
sphere of diameter D = 0.003m while the second sensor is in the form of
a square foil of thickness δ = 0.0002m and side of square of such length
that the volume of the foil material is the same as that of the spherical
sensor. Both the sensors are made from the same material. Determine the
ratio of the time constant of spherical sensor to that of the foil-shaped
sensor.

Ex 3.9: Afirst-order system has a time constant of 10 s in a particular environment.
The environmental temperature has a sinusoidal variationwith a frequency
of 0.2Hz. What is the phase lag and the amplitude of the temperature
indicated by the system. What is the maximum frequency acceptable if
the phase lag is to be less than 10◦ of angle? What is maximum frequency
acceptable if the amplitude ratio is not less than 0.95 of the impressed
value?

Ex 3.10: An engine runs at a maximum speed of 4500 rpm. It is desired to measure
the temperature of the gases inside the engine cylinder, which may be
assumed to vary periodically at a frequency corresponding to the engine
speed. What should be the time constant of the sensor if the phase lag is
to be limited to 1◦ of angle? What will then be the amplitude reduction
factor?
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Ex 3.11: A second-order system is characterized by τ1 = 10 s, τ2 = 15 s and τ3 =
5 s. Determine the two time constants that characterize the solution. Make
a plot similar to Fig. 3.11, but using dimensional coordinates when T0 =
50 ◦C and T∞ = 90 ◦C.



Chapter 4
Heat Transfer from Extended Surfaces

Improving heat transfer from a base surface may be accomplished by increasing the
surface area exposed to the ambient medium. This is accomplished by attaching fins

or extended surfaces to the base surface. Fins are useful when the internal conduction
resistance of the fin is less than the convective resistance at its surface. Both uniform and
nonuniform area fins are considered in this chapter. Optimum profiled fins for minimum
mass are also discussed. Analysis of an array of fins is given toward the end of the
chapter.

4.1 Introduction

The present chapter looks at basically one-dimensional problems in heat conduction
arising when there is an interaction between conduction along one direction and con-
vection along a different direction. Thismodel assumes that the temperature variation
within the solid is significant along the former direction and insignificant along the
latter direction. The conductive heat flux and convective heat flux are oriented along
perpendicular directions. Just when this happens and when the model makes sense
will be considered first. The analysis of such problems will follow afterward. The
analysis assumes significance since there are many important applications where
these conditions are satisfied. All these applications involve extended surfaces or
fins.

Recall that convection heat transfer from a surface is given by

Qc = hA�T (4.1)

where the symbols have the usual meanings. One will be able to increase convection
heat transfer by increasing any one or all the three quantities that go on the right-hand
side of Eq. 4.1. In practice, as we shall see later, increase of h is possible by aug-
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Fig. 4.1 Two types of extended surfaces

mentation methods. However, these are limited by pressure drop penalties. Increase
in the temperature difference is certainly a possible solution. However, there may be
constraints on�T because of safety or reliability considerations. Increase in the area
available for heat transfer is certainly an option. An extended surface is essentially
the use of this option. The intention is to increase the overall heat transfer from a
base structure by providing an extra area attached to the base structure. Providing
extra area will be beneficial only if the conductive resistance of the extended surface
is not excessive. This may be assured by the choice of a high conductivity material
and of proper geometric proportions. Typical examples of fins are shown in Fig. 4.1.
In the first case shown in the figure, the fins are longitudinal (i.e., oriented parallel
to the axis of the fluid-carrying tube), and are of uniform area for conduction. In the
second case shown in the figure, the fins are placed normal to the tube axis and are of
non-uniform area for conduction. The external surfaces of the fins are convectively
cooled by a fluid flowing either parallel to the axis of the tube or normal to the axis
of the tube. In either case, the present chapter will treat the heat transfer coefficient
as being specified, and of constant value over the entire area of contact between the
fluid and the extended surface.

Typical applications of extended surfaces

• Air-cooled Internal Combustion Engine Cylinder,
• Refrigerator Condenser,
• Automobile Radiator,
• Air compressor inter-cooler,
• Fins for cooling of electronic components—“heat sinks”, and
• Cooling fins for radiation source in an optical instrument.

We have seen in Chap. 3 that lumping is justified when the Biot number is very
small. Extended surfaces are normally made using a thin sheet of a material of
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high thermal conductivity. Typical materials are aluminum, copper, and brass. The
thickness may be a fraction of a millimeter to a fewmillimeters. If there is significant
temperature variation along the plate surface, we may consider the state of affairs
over a small area element on the surface that is at a temperature Ts . The convective
heat transfer to an ambient at Tamb will then be given by

Qc = h�A(Ts − Tamb)

If the thickness of the sheet is 2t , the conductive heat transfer within the sheet is
given by

Qk = k�A
(Tm − Ts)

t

where Tm is the mid-plane temperature within the sheet. At the surface, under steady
state, there should be a balance between conduction and convection. Thus we have

Qk = Qc or k�A
(Tm − Ts)

t
= h�A(Ts − Tamb)

or Tm − Ts = ht

k
(Ts − Tamb) = Bi(Ts − Tamb)

(4.2)

In the above, Bi represents the Biot number based on semi plate thickness. It is
reasonable to expect that Bi will be small in most fin-related applications. The
temperature variation across the thickness of the fin may be ignored, leading to the
one-dimensional conduction along the length of the fin.

Typical example
Fin is 3mm thick of aluminum alloy of thermal conductivity 200W/m◦C.
The convection heat transfer coefficient h is 50W/m2 ◦C (typical). The base
structure temperature is 100 ◦C and the fluid temperature is 30 ◦C. On the right-
hand side of Eq. 4.2, Ts may be replaced by the maximum possible value, i.e.,
100 ◦C. Then

Tm − Ts = 50 × 0.0015

200
(100 − 30) = 0.026 ◦C

This temperature difference is indeed very small and hence Tm ≈ Ts and the
one-dimensional assumption holds. The Biot number in this case is

Bi = 50 × 0.0015

200
= 0.000375

Indeed the Biot number is extremely small (much smaller than 0.1) in this case.



100 4 Heat Transfer from Extended Surfaces

It will become clear as we develop the analysis that the temperature variation
along the length of the fin will be significant and cannot be ignored. Also, the ther-
mal performance of fins as augmenters of heat transfer will be determined by the
longitudinal temperature distribution.

4.2 Fins of Uniform Area

4.2.1 Analysis

Figure 4.2 shows an example of a constant area fin. The fin is in the form of a flat
plate attached at one end to the hot base structure at Tb. The lateral surfaces of the fin
are cooled by a stream at Tamb via a constant heat transfer coefficient h. The length of
the fin is L while its thickness is 2t . The heat transfer analysis makes the following
assumptions :

• The fin is in the steady state.
• Conduction heat transfer in the fin is one-dimensional and is along the x-direction.
• Heat loss from the sides is by convection with a constant heat transfer coefficient
h to an ambient at uniform temperature Tamb.

In Fig. 4.2, the inset shows an elemental slice of fin for analysis. Consider a unit
width of the fin in a direction perpendicular to the plane of the figure. Energy balance
for the slice element requires that

Qk,x = Qk,x+�x + Qc,x (4.3)

Conduction heat transfer takes place across the constant area of cross section of the
element given by A = 2 × t × 1 = 2t . The surface area from which convection heat
transfer takes place is�S = 2 × �x or�S = P�x , where P is the perimeter wetted
by the ambient fluid. The reason we write the surface area in this form is that it is

Fig. 4.2 Heat balance for an element of a uniform area fin
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possible to generalize the analysis to a fin of any shape, as we shall see later. We use
Fourier law to write Eq. 4.3 as

−k A
dT

dx

∣
∣
∣
∣
x

= −k A
dT

dx

∣
∣
∣
∣
x+�x

+ hP�x(T − Tamb) (4.4)

Taylor series expansion of the first term on the right-hand side of Eq. 4.4 gives

−k A
dT

dx

∣
∣
∣
∣
x+�x

= −k A
dT

dx

∣
∣
∣
∣
x

− k A
d2T

dx2

∣
∣
∣
∣
x

�x − O(�x)2 (4.5)

Introduce Eq. 4.5 in 4.4, cancel the −k A dT
dx term on the two sides, remove common

factor �x , and take the limit as �x → 0, and rearrange to get the fin equation

d2T

dx2
− hP

kA
(T − Tamb) = 0 (4.6)

Let the temperature difference T − Tamb be denoted by θ . Since Tamb is a constant
dT
dx = dθ

dx ,
d2T
dx2 = d2θ

dx2 . Represent the composite parameter hP
kA asm2 to rewrite Eq. 4.6

in the standard form.

d2θ

dx2
− m2θ = 0 (4.7)

The fin equation, being a second-order ordinary differential equation, requires two
boundary conditions. These are specified at the two ends, viz., x = 0 and x = L . It
is customary to specify the temperature at x = 0 (the base of the fin) as T = Tb (first
kind of boundary condition) or θ = θb. Presumably this is the temperature (or the
base temperature excess with respect to the temperature of the ambient, as the case
may be) of the base structure to which the fins are attached. The location x = L is
referred to as the tip of the fin and any of three possible boundary conditions (BC)
may be specified there. Even though the insulated tip condition will be used in what
follows immediately, the other types of boundary conditions are discussed here, for
the sake of completeness and use later on.
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On Boundary Conditions
The three types of boundary conditions are

I kind: T (x = L) = Tt or θ = θt

II kind: − k dT
dx

∣
∣
x=L

= − k dθ
dx

∣
∣
x=L

= qL

III kind: − k dT
dx

∣
∣
x=L

= ht (Tt − Tamb) or − k dθ
dx

∣
∣
x=L

= htθt

where ht is the heat transfer coefficient for convection heat transfer from the tip
surface. Note also that θt = Tt − Tamb. In most applications, the boundary condition
of the second kind is chosen by specifying the heat flux to be zero at the tip. This
boundary condition is justified on the assumption that the heat loss from the small
area of the tip surface is negligibly small. This amounts to specifying an insulated
condition there, as indicated in Fig. 4.2. One may also, use a more general, third kind
of boundary condition that will account for the heat loss from the tip as given by the
boundary condition of the third kind.

In Eq. 4.7, parameter m is referred to as the fin parameter. It may easily be
verified that m has the unit 1

[L] , i.e., reciprocal length or m−1. Now we consider
typical examples to indicate how the fin parameter may be obtained.

Fin parameter in typical cases

1. Flat fin of uniform thickness: In the case of a fin in the form a flat
plate the perimeter P is 2 (width—both top and bottom—of the fin in a
direction perpendicular to the plane of Fig. 4.2) and the area A is 2t . The
fin parameter m then is

m =
√

h × 2

k × 2 × t
=

√

h

kt

2. Pin fin of circular cross section: In the case of a pin fin of uniform area
and circular cross section the arrangement is as indicated in Fig. 4.3a. The
perimeter P is πD and the area A is πD2/4. Hence the fin parameter is

m =
√
√
√
√
√

h × π × D

k × π × D2

4

=
√

4h

kD

3. Pin fin of square cross section of side 2t: In the case of a pin fin of uniform
area and square cross section the arrangement is as indicated in Fig. 4.3b.
The perimeter P is 8t and the area A is 4t2. Hence the fin parameter is
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Fig. 4.3 Uniform area fins of various cross section shapes

Table 4.1 Fin parameter of pin fins of elliptic cross section

AR m AR m AR m

2
√

1.542h
kb 1.5

√

1.683h
kb 1.25

√

1.806h
kb

1.125
√

1.891h
kb 1†

√

2h
kb

†Cross section is a circle with b = D/2

m =
√

h × 8 × t

k × 4 × t2
=

√

2h

kt

4. Pin fin of elliptic cross section: In the case of a pin fin of uniform area
and elliptic cross section the arrangement is as indicated in Fig. 4.3c. The
semi-major and semi-minor axis lengths are a and b, respectively. The
ratio P/A depends on the aspect ratio AR = a/b. Hence the fin parameter
values are given by the values shown in Table 4.1.

4.2.2 Solution to the Fin Equation

Insulated Tip Case
Equation 4.7 has the general solution given by

θ = Aemx + Be−mx (4.8)

Using the base boundary condition, we have

θb = A + B (4.9)
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Consider the second kind of boundary condition to hold at the tip (at x = L), with
zero heat flux condition. We then have

dθ

dx
= AmemL − Bme−mL = 0 (4.10)

From Eq. 4.9 A = θb − B. Introduce this in Eq. 4.10 and solve for B to get

B = θbemL

[

emL + e−mL
] (4.11)

Then we also get

A = θb − B = θb − θbemL

[

emL + e−mL
] = θb

[

emL + e−mL − emL
]

[

emL + e−mL
] = θbe−mL

[

emL + e−mL
]

(4.12)
Introduce these in Eq. 4.8 to get

θ = θbe−mL

[

emL + e−mL
]emx + θbemL

[

emL + e−mL
]e−mx = θb

[

em(x−L) + e−m(x−L)
]

[

emL + e−mL
] (4.13)

The above solution may be recast using hyperbolic functions as

θ = θb
cosh [m(x − L)]

cosh(mL)
(4.14)

At this stage, it is instructive to recast the solution in non-dimensional form. For this
purpose introduce the following non-dimensional quantities:

φ = θ

θb
; ξ = x

L
and μ = mL (4.15)

The non-dimensional independent variables are like the ones introduced earlier while
studying other one-dimensional problems. The last one is the non-dimensional fin
parameter that is the ratio of a characteristic length scale L in the problem to a
characteristic internal length scale 1

m—reciprocal of the fin parameter m—in the
problem. More about this later.

The solution may now be rewritten, noting that the hyperbolic cosine is an even
function, as
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Fig. 4.4 a Fin temperature profile variation with fin parameter for a uniform area fin b Variation
of efficiency of a uniform area fin with fin parameter

φ = cosh[μ(1 − ξ)]
cosh(μ)

(4.16)

φ represents the non-dimensional temperature distribution in terms of the non-
dimensional x coordinate ξ . It is seen that the temperature variation depends on
the non-dimensional fin parameter μ.

For typical values of h, P, A and L , μ depends inversely on k. The higher the k
is, the smaller is the μ and more “full” is the temperature profile, as shown in Fig.
4.4a. The temperature at the fin tip approaches the base temperature, i.e., φt → 1
when μ → 0. When μ → ∞ the tip temperature tends to the ambient temperature
(φt → 0).

Heat Transfer from Fin
The heat loss from the fin may be easily calculated by determining the heat Qb

entering thefin at the base, by conduction. This is so because, under steady conditions,
the same amount of heat is lost from the surface of the fin to the ambient by convection
as Qc. By Fourier law, we have

Qc = Qb = −k A
dT

dx

∣
∣
∣
∣
x=0

= −k A

L
θb
dφ

dξ

∣
∣
∣
∣
ξ=0

(4.17)

The derivative in Eq. 4.17 is obtained from Eq. 4.16 as

dφ

dξ

∣
∣
∣
ξ=0

= μ

− sinh[μ(1 − ξ)]
∣
∣
∣
ξ=0

cosh(μ)
= −μ tanh(μ)
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We introduce this in Eq. 4.17 to get

Qb =
[

−k A

L
θb

]

[−μ tanh(μ)] = mkAθb tanh(mL) (4.18)

Note that Qb is in W/m in the case of a fin in the form of a wide flat plate while it
is in W in all the cases shown in Fig. 4.3. If L → ∞ we note that tanh(μ) → 1 and
hence the heat loss becomes

Qb = mkAθb =
√

hP

kA
kAθb = √

hPkA θb (4.19)

The temperature profile in the fin becomes

θ = θbe
−mx (4.20)

A consequence of this is that the temperature of the fin approaches the ambient
temperature for large x .

Fin Efficiency
The best that one may expect, or the maximum heat transfer one may expect occurs
when the entire fin is at the base temperature. The heat loss in that case would be

Qmax = Fin surface area × Heat transfer coefficient × Temperature difference

= P × L × h × (Tb − Tamb) = 2Lhθb (4.21)

Obviously, the actual heat loss from the fin surface Qb, given by Eq. 4.18 is less than
or equal to Qmax . Hence one may refer to the ratio of the former to the latter as fin
efficiency η to get

η = Qb

Qmax
= mkAθb tanh(mL)

PLhθb
= tanh(mL)

mL
= tanh(μ)

μ
(4.22)

The last step follows from the defining expression for the fin parameter. A plot of
fin efficiency η as a function of non-dimensional parameter μ is shown in Fig. 4.4b
on page 105. It is seen that η decreases monotonically with increasing μ. The fin
efficiency is unity in the limit μ → 0. In this limit, the actual heat transfer from the
fin is zero! The fin parameter plays a very important role in determining the amount
of heat transfer from the fin. We shall consider the fin parameter in more detail now.

The Fin Parameter
We may rearrange the square of the non-dimensional fin parameter as
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μ2 = (mL)2 = hP

kA
L2 = hL

k
× PL

A
= Bi ×

[
PL

A

]

(4.23)

where the now familiar Biot number appears as a factor. The second factor shown
within braces is purely a geometric parameter that represents the ratio of two rep-
resentative areas that characterize the fin geometry. In fact, the ratio is nothing but
the ratio of surface area to the cross-sectional area of the fin. In practice, the Biot
number is small but the area ratio is large. Recall that the Biot number represents
the ratio of the two heat transfer rates, viz., the conduction within the fin over its
length to convection from the surface to the ambient. In the limit Bi → 0, the fin
parameter will indeed tend to zero and the fin heat transfer tends to zero even though
the fin is entirely at the base temperature (see temperature profile in Fig. 4.4). This
limit is appropriate when the heat transfer coefficient is relatively small compared to
the thermal conductivity and the fin length is also not too large. Naturally, the heat
transfer from the fin is small. In the other limit of Bi → ∞ the fin efficiency tends to
zero. The fin, to a large extent of its length, will remain at the ambient temperature
(refer Fig. 4.4) and does not really lose any heat to the ambient! This case actually
represents the weak conduction limit. The reader is encouraged to figure out the
details. The extended area is largely useless in the heat transfer process and hence
inefficient. Thus very long fins are to be avoided in practice. Somewhere between
these two limits lies the useful range of μ values. We shall look into this later when
we discuss a simple optimum configuration.

The advantage of the graphical representation is that the fin heat lossmay be easily
calculated by reading off η from the graph and multiplying it by the expression for
Qmax given by Eq. 4.21, thereby avoiding the cumbersome calculations involving
hyperbolic functions.

Example 4.1

Consider a flat fin of thickness 1mm, length 4 cm, and made of aluminum of ther-
mal conductivity equal to 237W/m◦C. The fin is losing heat to an environment by
convection subject to a heat transfer coefficient of 150W/m2 ◦C. Calculate the fin
heat loss per unit width and per unit temperature difference between the base and
the ambient. Rework the problem with an iron fin with a thermal conductivity of
45W/m◦C, all other parameters being held fixed. Show the temperature profiles in
the two cases on a common plot for a base temperature of 100 ◦C and an ambient
temperature of 30 ◦C.

Solution:
Step 1 Given data is listed:

Fin thickness: 2t = 1 mm = 0.001 m
and hence t = 0.0005 m

Fin length: L = 4 cm = 0.04 m
Heat transfer coefficient: h = 150 W/m2 ◦C
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Case 1: Aluminum fin

Step 2 With thermal conductivity of k = 237W/m◦C the fin parameter is calcu-
lated based on Table 4.1 as

μ = L

√

h

kt
= 0.04 ×

√

150

237 × 0.0005
= 1.423

The fin efficiency is calculated using Eq. 4.22 as

η = tanh(1.423)

1.423
= 0.626

The heat loss per unit width and unit temperature difference θb = 1 ◦C is
then calculated as

Qb = 2hLη = 2 × 150 × 0.04 × 0.626 = 7.512W/m◦C

Step 3 Wenowgenerate the desired data formaking aplot of temperature variation
along the fin. The temperatures are taken as

Tb = 100 ◦C; Tamb = 30 ◦C

We rewrite Eq. 4.15 in dimensional form as follows:

T (x) =30 + (100 − 30)
cosh

[

1.423
(

1 − x
0.04

)]

cosh(1.423)

=30 + 31.89 cosh
[

1.423
(

1 − x

0.04

)]

Case 2: Iron fin

Step 4 With thermal conductivity of k = 45W/m◦C, the fin parameter is calcu-
lated based on Table 4.1 as

μ = L

√

h

kt
= 0.04 ×

√

150

45 × 0.0005
= 3.266

The fin efficiency is calculated using Eq. 4.22 as

η = tanh(3.266)

3.266
= 0.305

The heat loss per unit width and unit temperature difference θb = 1 ◦C is
then calculated as
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Qb = 2hLη = 2 × 150 × 0.04 × 0.305 = 3.66W/m◦C

Wenowgenerate the desired data formaking aplot of temperature variation
along the fin. The temperatures are taken as

Tb = 100 ◦C; Tamb = 30 ◦C

We rewrite Eq. 4.15 in dimensional form as follows:

T (x) =30 + (100 − 30)
cosh

[

3.266
(

1 − x
0.04

)]

cosh(3.266)

=30 + 5.33 cosh
[

3.266
(

1 − x

0.04

)]

Step 5 The temperature data generated above is plotted in Fig. 4.5.
The figure compares the temperature variations along the fins of the two
different materials. The figure indicates that the temperature variation is
strongly affected by the thermal conductivity of the material. Temperature
variation ismore pronounced in iron (lower thermal conductivitymaterial)
as compared to that in aluminum (higher thermal conductivity material).
It is as though the iron fin is thermally “longer” than the aluminum fin.

Fig. 4.5 Temperature
variations in fins of two
different materials in
Example 4.1
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4.2.3 Uniform Area Fin Subject to Third Kind Boundary
Condition at the Tip

The second kind of boundary condition was justified, in Sect. 4.2.2, on the plea
that the area available for heat transfer is small. We shall assess this assumption
by changing it to the third kind of boundary condition. The general solution to the
problem is still given by Eq. 4.8. The boundary condition at the base yields Eq. 4.9
as before. Now apply the tip boundary condition to get

−k
(

mAemL − mBe−mL
) = ht

(

AemL + Be−mL
)

or AemL

(

1 + ht
km

)

− Be−mL

(

1 − ht
km

)

= 0
(4.24)

We use Eq. 4.9 in Eq. 4.24 to get A after some manipulations as

A = θb

e−mL

(

1 − ht
km

)

emL

(

1 + ht
km

)

+ e−mL

(

1 − ht
km

) (4.25)

Substitute this back in Eq. 4.9 and get

B = θb

e−mL

(

1 + ht
km

)

emL

(

1 + ht
km

)

+ e−mL

(

1 − ht
km

) (4.26)

Note that the denominator in either Eq. 4.25 or Eq. 4.26 may be written in terms
of hyperbolic functions as 2

[

cosh(mL) + ( ht
km

)

sinh(mL)
]

. When A and B given
above are introduced in Eq. 4.8, the numerator may again be recast using hyperbolic
functions as

Numerator = 2θb

[

cosh{m(L − x)} +
(

ht
km

)

sinh{m(L − x)}
]

The solution is then obtained as

θ

θb
=

cosh{m(L − x)} +
(

ht
km

)

sinh{m(L − x)}

cosh(mL) +
(

ht
km

)

sinh(mL)

(4.27)
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Fig. 4.6 Comparison of
temperature profiles in a fin
with and without tip heat loss

Note that if we set ht = 0we get back the solution given by Eq. 4.14, that corresponds
to the insulated tip case. In the present case, an extra parameter given by

( ht
mk

)

plays
a role in addition to the fin parameter. In case we assume that the heat transfer
coefficient ht is equal to h, this second parameter turns out to be

ht
km

= h

km
= h

k

√

hP

kA

=
√

hA

kP
(4.28)

Notice that this parameter is non-dimensional. For a fin of uniform area in the form
of a plate, this parameter is actually equal to

√

hA

kP
=

√

h × 2 × t

k × 2
=

√

ht

k
= √

Bit (4.29)

where Bit ia a Biot number based on fin semi-thickness! We mentioned earlier that
the one-dimensional assumption is based on a small value for this parameter! Hence
the effect of the terms containing the hyperbolic sine in Eq. 4.27 is indeed small!
The insulated tip condition would thus be a good assumption.

We consider the fin of Example 4.7 again, but by changing the boundary condition
at the tip to that of third kind with ht = h = 67W/m2 ◦C. We make a plot of the
temperature profile with this boundary condition and compare it with that obtained
assuming insulated tip condition, in Fig. 4.6. It is seen that the two profiles are
extremely close to each other and the difference does not exceed a maximum of
around 0.3 ◦C!
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Practical approach to account for tip heat loss
In practice, it is possible to account for heat loss from fin tip by extending
it by half the fin thickness and assuming adiabatic condition at the fin
tip. This was suggested in the pioneering work by D. R. Harper and W. B.
Brown,“Mathematical equations for heat conduction in the fins of air cooled
engines,” NACA Rep. 158, National Committee on Aeronautics, Washington,
DC, USA, 1922. The heat loss from the fin would be slightly enhanced by the
added length. It is equivalent to assuming that the heat transfer coefficient for
heat transfer from the additional lateral surface is the same as that along the
rest of the fin.

Example 4.2

A pin fin of brass of diameter D = 3mm = 0.003m and length L = 60mm =
0.06m is used to remove heat from a parent surface maintained at Tb = 70 ◦C. Fin
loses heat to an ambient at a temperature of Tamb = 20 ◦C via convection with a uni-
form heat transfer coefficient of h = 26W/m2 ◦C.What is the heat transfer from the
parent surface via the fin? What is the temperature at the fin tip? Take into account
heat transfer from the fin tip assuming ht = h.

Solution:

Step 1 Fin parameter is calculated as m =
√

4h
kD =

√
4×26

116×0.003 = 17.287. Hence
the non-dimensional fin parameter is μ = mL = 17.287 × 0.06 = 1.037.
Parameter that accounts for tip heat loss is calculated as ht

km = h
km =

26
116×17.287 = 0.013.

Step 2 Temperature gradient at the base of pin fin is obtained by differentiating
with respect to x expression 4.27 and substituting x = 0 in the resulting
expression. Thus we have

1

θb

∂θ

∂x

∣
∣
∣
∣
x=0

= −m

⎛

⎜
⎝

sinh(μ) + ht
km

cosh(μ)

cosh(μ) + ht
km

sinh(μ)

⎞

⎟
⎠

Substituting the numerical values we get

1

θb

∂θ

∂x

∣
∣
∣
∣
x=0

= −m

(
sinh(1.037) + 0.013 cosh(1.037)

cosh(1.037) + 0.013 sinh(1.037)

)

= −13.603m−1
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Step 3 Heat loss from the fin may then be calculated as

Q = −k

(
πD2

4

)

(Tb − Tamb)
1

θb

∂θ

∂x

∣
∣
∣
∣
x=0

= −116

(
π × 0.0032

4

)

(70 − 20)(−13.603) = 0.558W

Step 4 Tip temperature is determined by letting x = L in Eq. 4.27 as

θt

θb
=

cosh(0) + ht
km

sinh(0)

cosh(μ) + ht
km

sinh(μ)

= 1

cosh(μ) + ht
km

sinh(μ)

We thus have

θt

θb
= 1

cosh(1.037) + 0.013 sinh(1.037)
= 0.617

Hence the fin tip temperature is

Tt = Tamb + θt = 20 + (70 − 20) × 0.617 = 50.86 ◦C

4.3 Variable Area Fins

Material of a fin is effectively utilized when the longitudinal conduction heat flux
within the fin is uniform. We return to this theme in Sect. 4.4. In the case of a
uniform area fin, we have seen that the conduction flux reduces monotonically from
the base as we move toward the tip. This may be easily appreciated by looking at
the temperature profiles shown in Fig. 4.4. The longitudinal temperature gradient,
i.e.,

∣
∣ dT
dx

∣
∣ is largest near the base and reduces to zero at the tip. Even when the tip

heat loss is accounted for, as in Fig. 4.6, the state of affairs is not much different.
Thus it is clear that if the temperature gradient were to be made more uniform, the
longitudinal heat transfer may be made more uniform. This is possible by the use of a
variable area finwherein the area reduceswith x ,

∣
∣ dT
dx

∣
∣ becomesmore uniform and the

material is used more efficiently in the heat transfer process. Thus a fin of triangular
or trapezoidal profile represents a more efficient fin shape. In applications where
radial fins of either uniform or non-uniform thickness are used, the area available for
heat transfer, in fact, increases with the radial coordinate. Hence the fins are perforce
of non-uniform area.
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Hence the study of non-uniform or variable area fins is of importance from the
viewpoint of applications.

4.3.1 General Analysis of Variable Area Fins

We start the analysis by formulating the governing equation for a pin fin of the
variable area shown schematically in Fig. 4.7. The nomenclature used is also defined
in this figure.

Consider an elemental length dx located at a distance x from the base plane. The
lateral surface area of the fin from x = 0 to x is shown by the shaded surface. It is
clear that the surface area of the element (that experiences convection to the ambient,
shown in solid gray) is dS = dS

dx dx . Area of the section A is also a specified function
of x . Energy balance for the element under steady state requires

[

Conduction in −
Qk,x

]

=
[

Conduction out −
Qk,x+dx

]

+
[

Convection out −
Qc

]

Convection leaving the element is shown as an elemental quantity since the surface
area involved is an elemental area. Using Fourier law, we have

Qk,x = −k A(x)
dT

dx
; Qk,x+dx − Qk,x = −k

d

dx

[

A(x)
dT

dx

]

dx

Based on Taylor expansion

; dQc = h
dS

dx
(T − Tamb)dx

With these energy balance equation becomes

d

dx

[

A(x)
dθ

dx

]

− h

k

dS

dx
θ = 0 (4.30)

where, as usual, θ = T − Tamb. Expanding the first term, we have

Fig. 4.7 Pin fin of variable area
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d

dx

[

A(x)
dθ

dx

]

= A
d2θ

dx2
+ d A

dx

dθ

dx
(4.31)

Introducing this in Eq. 4.30 and dividing throughout by A(x), we have

d2θ

dx2
+ 1

A

dA

dx

dθ

dx
− 1

A

dS

dx

h

k
θ = 0 (4.32)

The coefficients 1
A
dA
dx and 1

A
dS
dx are, in general, functions of x and hence the governing

equation is anODEwith variable coefficients. This is the essential difference between
fins of constant area andfins of non-uniformarea.Theboundary conditions applicable
to Eq. 4.32 are

x = 0, θ = θb; dθ

dx

∣
∣
∣
∣
x=L

= 0 if A(L) �= 0 or θL is finite if A(L) = 0 (4.33)

4.3.2 Particular Cases of Variable Area Fins

Even though Eq. 4.32 was derived for a variable area fin in the form of a pin fin, it
is very general and is valid for all variable area fins. These include fins of variable
area made from a plate like structure or pin fins of variable area are usually referred
to as “spines”. By substituting expressions for S and A that characterize a particular
fin shape, we get the appropriate fin equation, as particular/special cases.

Trapezoidal Fin
Analysis of a trapezoidal fin is made using the coordinate system and the nomen-
clature given in Fig. 4.8. Origin is located as indicated. Consider unit width in a
direction normal to the plane of the figure.
Using the notation of Eq. 4.32, we have

A(x) = 1 × 2y = 2y

From similar triangles OAB and OCD, we have

2yb
L

= 2y

x
or y = yb

L
x

Hence A(x) = 2 yb
L x and hence d A

dx = 2 yb
L . With this we get
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1

A

dA

dx
= 1

2
yb
L
x

· 2 yb
L

= 1

x
(4.34)

The surface area is seen to be

S(x) = 2	 × 1 = 2
√

(x − xt )2 + (y − yt )2 = 2(x − xt )

√

1 +
(
y − yt
x − xt

)2

Since y−yt
x−xt

= yb
L the above may be recast as

S(x) = 2(x − xt )

√

1 +
( yb
L

)2

Hence
dS

dx
= 2

√

1 +
( yb
L

)2

and

1

A

dS

dx
= 2

√

1 +
( yb
L

)2

2
ybx

L

= L

ybx

√

1 +
( yb
L

)2
(4.35)

On substituting Expressions given by 4.34 and 4.35 in Eq. 4.32, we get the governing
equation for a trapezoidal fin as

d2θ

dx2
+ 1

x

dθ

dx
− p2

x
θ = 0 (4.36)

where the parameter p2 is given by

Fig. 4.8 Trapezoidal fin geometry nomenclature
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p2 = hL

kyb

√

1 +
( yb
L

)2
(4.37)

Solution to the Trapezoidal Fin Problem
Analytical solution to Eq. 4.37 is possible in terms of special functions called modi-
fied Bessel functions. These are tabulated functions available in handbooks of math-
ematics. An introductory discussion on these special functions, along with some
useful formulae and tables of these functions is given in Appendix A.

Special Case of a Trapezoidal Fin: Triangular Fin
A fin of triangular profile is a special case of a trapezoidal fin when xt = 0 and
yt = 0. In this case, the solution is very simple and is given by

θ

θb
= I0(2p

√
x)

I0(2p
√
L)

(4.38)

where I0 is the modified Bessel function of first kind and order zero. Note that in the
case of triangular profiled fin, the length L is also the same as the physical length of
fin. Using non-dimensional variables, as before, Eq. 4.38 may be rewritten as

φ = I0(2μ
√

ξ)

I0(2μ)
(4.39)

where φ = θ
θb

is the non-dimensional temperature and μ = p
√
L is the non-

dimensional fin parameter. Using formulae for derivatives of modified Bessel func-
tions given by Eqs. A.55 in Appendix A it is possible to derive an expression for the
fin efficiency as

η = I1(2μ)

μI0(2μ)
(4.40)

where I1 is the modified Bessel function of first kind and order one.
The dependence of the temperature profile in a triangular fin on the fin parameter

is brought out in Fig. 4.9. The most noticeable feature, when Fig. 4.9a is compared
with Fig. 4.4(uniform area fin with insulated tip) is that the temperature gradient
is non-zero at the tip. Since the area is zero at the tip for a triangular profiled fin,
the temperature gradient need not vanish to make the heat flux zero. The second
observation is that the temperature gradient is more uniform along a fin of triangular
profile as compared with a fin of uniform area, even for a reasonably large value of
μ such as μ = 1. This signifies that a triangular fin uses the material more optimally
as compared to a uniform area fin. Figure 4.9b shows the variation of efficiency of a
fin of triangular profile with fin parameter μ.
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Example 4.3

A fin of triangular section is made of an aluminum alloy of thermal conductivity
equal to k = 185W/m◦C. It has a base thickness of 2yb = 3mm and a length of
L = 56mm. The lateral surfaces of the fin are cooled by air at Tamb = 25 ◦C with a
heat transfer coefficient of h = 47W/m2 ◦C. Howmuch heat does the fin dissipate if
its width is W = 0.3m and the base is maintained at Tb = 86 ◦C? Use fin efficiency
from Fig. 4.9b to solve this problem.

Solution:
From the given data yb = 1.5mm = 0.0015m. The fin parameter is calculated using
definition 4.37 as

p =
√

hL

kyb

√

1 +
( yb
L

)2 =
√

47 × 0.056

185 × 0.0015

√

1 +
(0.0015

0.056

)2 = 3.08m− 1
2

Hence the non-dimensional fin parameter is

μ = p
√
L = 3.08 × √

0.056 = 0.729

From Fig. 4.9b, the fin efficiency is read off as, η = 0.77. Hence the total heat loss
from the fin is calculated as

Fig. 4.9 a Fin temperature profile variation with fin parameter for a triangular fin b Variation of
efficiency of a triangular fin with fin parameter
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Qb = 2L

√

1 +
( yb
L

)2
Whη(Tb − Tamb)

= 2 × 0.056

√

1 +
(0.0015

0.056

)2 × 0.3 × 47 × 0.77(86 − 25) = 74.2W

The next example compares the relative thermal performance of uniform area fin
with a triangular fin. We take the same length and base thicknesses in the two cases.
This example looks at the effect of the longitudinal profile of fin on heat transfer.

Example 4.4

Compare the heat loss per unit mass for the following two configurations, viz.,
(a) Uniform area flat plate type fin, (b) Triangular fin. Both fins are 10 cm long.
The thickness of the flat plate type fin and the base thickness of the triangular fin are
both equal to 1.2mm. Compare on the basis of unit width of fin in both the cases. The
material of the fin is pure aluminum with thermal conductivity equal to 237W/m◦C
and density of 2700 kg/m3. The base and ambient temperatures are, respectively, 60
and 15 ◦C. The heat transfer coefficient has been determined to be 26W/m2 ◦C in
both cases.

Solution:
Data that is common to the two cases are

Fin length: L = 0.1 m
Thermal conductivity: k = 237 W/m◦C

Heat transfer coefficient: h = 26 W/m2 ◦C
Base temperature: Tb = 60 ◦C

Ambient temperature: Tamb = 15 ◦C
Density of material of fin: ρ = 2700 kg/m3

Case (a) Uniform area fin:

Step 1 The data specific to this case is

Fin thickness: 2t = 1.2mm or t = 0.0006m

The fin parameter may be calculated as

ma = √
hkt = 26

237 × 0.0006
= 13.522m−1

where the subscript “a” represents Case (a). The non-dimensional fin
parameter is then calculated as

μa = maL = 13.522 × 0.1 = 1.352
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Step 2 The fin efficiency is calculated as

ηa = tanh(μa)

μa
= tanh(1.352)

1.352
= 0.647

Alternately the efficiency may be read off Fig. 4.4b.
Step 3 The heat loss from the fin may be calculated as

Qa = 2hLηa(Tb − Tamb) = 2 × 26 × 0.1 × 0.647 × (60 − 15) = 151.4W/m

Step 4 Per unit width the volume of the fin is

Va = 2t L = 2 × 0.0006 × 0.1 = 0.00012m3

Mass of fin per unit width is

Ma = ρVa = 2700 × 0.00012 = 0.324 kg/m

Heat loss per unit mass of fin material is then given by

qa = Qa

Ma
= 151.4

0.324
= 467.3W/kg

Case (b) Triangular fin:

Step 5 The data specific to this case is

Base thickness: 2yb = 1.2mm or yb = 0.0006m

The fin parameter may be calculated as

pb =
√

hL

kyb

√

1 +
( yb
L

)2 =

√
√
√
√ 26 × 0.1

237 × 0.0006

√

1 +
(
0.0006

0.1

)2

= 4.276m− 1
2

where the subscript “b” represents Case (b). The non-dimensional fin
parameter is then calculated as

μb = pb
√
L = 4.276 × √

0.1 = 1.352

Step 6 The fin efficiency is read off Fig. 4.9b as ηb = 0.58. The heat loss from
the fin may be calculated as
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Qb = 2hL

√

1 +
( yb
L

)2
ηb(Tb − Tamb)

= 2 × 26 × 0.1

√

1 +
(0.0006

0.1

)2 × 0.58 × (60 − 15) = 135.9W/m

Step 7 Per unit width the volume of the fin is

Vb = t L = 2 × 0.0006 × 0.1 = 0.00006m3

Mass of fin per unit width is

Ma = ρVb = 2700 × 0.00006 = 0.162 kg/m

Heat loss per unit mass of fin material is then given by

qb = Qb

Mb
= 135.9

0.162
= 839.1W/kg

Step 8 Even though the heat loss is a bit lower in the case of the triangular fin,
it is seen that per unit mass it loses 839.1/467.2 = 1.796 ≈ 1.8 times the
heat loss by the uniform area fin.

Conical Spine
Performance of a flat fin of uniform thickness could be improved by replacing it with
a fin of triangular profile. Similarly the performance of a fin in the form of a rod of
uniform diameter may be improved by replacing it by a conical spine. The resulting
fin will look like what is shown in Fig. 4.10.

The governing equation for this case may be derived starting from the general fin
Eq. 4.32. For this purpose, we identify the axial coordinate x as in Fig. 4.10. Area
of the fin as a function of x is given by

A(x) = πr2 = π
(rbx

L

)2
(4.41)

The coefficient of the first derivative term is then given by

Fig. 4.10 Conical spine
geometry and nomenclature
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1

A

dA

dx
=

2πx
(rb
L

)2

π
(rbx

L

)2 = 2

x
(4.42)

The surface area S(x) is given by

S(x) = 2π

√

1 +
(rb
L

)2
r = 2

(

π
rb
L

)
√

1 +
(rb
L

)2 · x (4.43)

The second coefficient that appears in the fin equation is then given by

h

kA

dS

dx
= 2hL

krbx

√

1 +
(rb
L

)2
(4.44)

On substitution in Eq. 4.32, the general fin equation simplifies as

d2θ

dx2
+ 2

x

dθ

dx
− p2

x
θ = 0 (4.45)

where p2 = 2hL
krb

√

1 + ( rb
L

)2
. The boundary conditions are specified as θ(x) = θb at

x = L and θ = finite at x = 0. Equation 4.45 may be brought to standard form by
multiplying throughout by x2. It may be compared with the standard differential Eq.
A.46 to write the general solution in terms of modified Bessel functions as

θ = A
I1(2p

√
x)√

x
+ B

K1(2p
√
x)√

x

Since the latter term is unbounded at x = 0, we choose the integration constant
B = 0. Setting θ(x = L) = θb constant, A is obtained as A =

√
L

I1(2p
√
L)
. Hence the

solution may be written down as

θx

θb
=

√

L

x

I1(2p
√
x)

I1(2p
√
L)

= 2p
√
L

X

I1(X)

I1(2p
√
L)

(4.46)

where we have set X = 2p
√
x . Heat loss from the spine may be calculated based

on conduction flux at the base. Noting that d
dx = dX

dx
d
dX = p√

x
d
dX , using the identity

d

⎛

⎝

I1(X)

X

⎞

⎠

dX = I2(X)

X heat conducted into the spine at its base may be shown to be
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Qb = kπr2b pθb√
L

· I2(2p
√
L)

I1(2p
√
L)

The maximum possible heat loss Qmax occurs if the spine is at the base temperature
throughout its length. It is given by

Qmax = hπrbLθb

Efficiency of the spine is given by the ratio of these two and hence we have

η = krb p

hL
3
2

· I2(2p
√
L)

I2(2p
√
L)

(4.47)

Example 4.5

A conical spine of a material of thermal conductivity k = 45W/m◦C, base diam-
eter of db = 3mm and length L = 100mm is used to remove heat from a par-
ent surface maintained at Tb = 120 ◦C. Fin loses heat to an ambient at a temper-
ature of Tamb = 20 ◦C via convection with a uniform heat transfer coefficient of
h = 15W/m2 ◦C. Make a plot of temperature variation along the fin. Determine the
efficiency of the spine. What is the heat loss from the spine?

Solution:

Step 1 Radius of cross section of spine at its base is rb = db
2 = 0.003

2 = 0.0015m.
Length of spine is L = 100mm = 0.1m. Base radius to length ratio is
hence given by rb

L = 0.0015
0.1 = 0.015. Hence parameter p may now be cal-

culated, neglecting the factor involving this ratio as

p =
√

2hL

krb
=

√

2 × 15 × 0.1

45 × 0.0015
= 44.4444

We then have p
√
L = 2 × 44.4444

√
0.1 = 2.1082.

Step 2 Weshall introduce non-dimensional location along the spine by the relation
ξ = 1 − x

L such that ξ = 0 corresponds to the base of the spine and ξ = 1
corresponds to the tip of the spine. With φ = θ

θb
where θb = Tb − Tamb =

120 − 20 = 100 ◦C the non-dimensional temperature variation with ξ is
given, using Eq. 4.46, as

φ(ξ) = 1√
1 − ξ

I1
(

2p
√
L(1 − ξ)

)

I1
(

2p
√
L)

) = 1√
1 − ξ

I1
(

4.2164
√

(1 − ξ)
)

I1(4.2164)
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Fig. 4.11 Non-dimensional
temperature profile in the
conical spine of Example 4.5

Step 3 A plot of φ vs ξ is shown in Fig. 4.11.
The tip temperature is obtained by letting ξ = 1 in the expression for φ. It
is noted that the ratio I1(4.2164

√
t)√

t
as t → 0 is required. This ratio is given

by p
√
L and hence the tip temperature is obtained as

φ(ξ = 1) = 2.1082

I1(4.2164)
= 0.1774

Hence the dimensional tip temperature is T (x = 0) = 0.1774 × 100 =
17.74 ◦C.

Step 4 We calculate the fin efficiency using expression 4.47 as

η = 45 × 0.0015 × 44.4444

15 × 0.13/2
· I2(4.2164)
I2(4.2164)

= 0.6387

Maximum possible heat transfer by the spine is given by

Qmax = 15 × π × 0.0015 × 0.1 × 100 = 0.707W

Hence the heat loss from the spine is given by

Qb = Qmaxη = 0.707 × 0.6387 = 0.452W

Radial Fin of Uniform Thickness
A second example is that of a radial flat fin of base radius r1, tip radius r2, and
uniform thickness 2t . Such fins are used to enhance heat transfer from the surface
of a fluid-carrying tube. The nomenclature appropriate to this geometry is shown
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Fig. 4.12 Nomenclature for
a radial fin of uniform
thickness

in Fig. 4.12. The governing equation for this case may be derived starting from the
general fin Eq. 4.32. For this purpose we identify the radial coordinate r as x in that
equation. Area of the fin as a function of r is given by

A(r) = (2πr) × (2t) = 4πr t (4.48)

The coefficient of the first derivative term is then given by

1

A

dA

dr
= 4π t

4πr t
= 1

r
(4.49)

The surface area S(r) is given by

S(r) = 2 × [π(r2 − r21 )] (4.50)

The second coefficient that appears in the fin equation is then given by

1

A

dS

dr
= 1

4πr t
(4πr) = 1

t
(4.51)

Substituting Expressions 4.49 and 4.51 in Eq. 4.32, we get

d2θ

dr2
+ 1

r

dθ

dr
− p2θ = 0 (4.52)

where p =
√

h
kt represents the fin parameter appropriate to this case. Making use of

insulated boundary condition at the tip, we also have
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θ |r=r1 = θb; dθ

dr

∣
∣
∣
∣
r=r2

= 0 (4.53)

The general solution to Eq. 4.52 is given by (see Example 1 in Appendix A)

θ = AI0(pr) + BK0(pr) (4.54)

where I0 and K0 are the Modified Bessel functions of first and second kind, respec-
tively, and of order 0. The constants of integration may be obtained using the bound-
ary conditions. The resulting temperature profile is given by (see Example 3 in
Appendix A)

θ

θb
= K0(pr2)I0(pr) + I1(pr2)K0(pr)

K0(pr2)I0(pr1) + I1(pr2)K0(pr1)
(4.55)

In the above I1 and K1 represent the modified Bessel functions of first and second
kind, respectively, and of order 1. An expression for fin efficiency may be derived as
(see Example 3 in Appendix A)

η =
(

2α

μ
(

1 − α2
)

) (
K1(αμ)I1(μ) − I1(αμ)K1(μ)

K0(αμ)I1(μ) + I0(αμ)K1(μ)

)

(4.56)

Thus there are two parameters that govern the problem, viz., the radius ratio,

α = r2
r1

and the non-dimensional fin parameter, μ = r2
√

h
kt . From an application

point of view, it is useful to present a graph of efficiency versus fin parameter μ as
shown in Fig. 4.13. A family of curves is obtained for different values of α. Useful
or applicable range of μ and α are considered in making the plot.

Example 4.6

Consider an annular fin of uniform thickness equal to 1.6mm. The base radius
of the fin is 20mm while the tip radius is 40mm. The base structure to which the
fin is attached is at 77 ◦C while the air flowing over the fin is at 15 ◦C. The aver-
age heat transfer coefficient is given to be 15W/m2 ◦C while the fin has a thermal
conductivity of 16W/m◦C. Determine the heat loss from a single fin.
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Fig. 4.13 Efficiency of a radial fin of uniform thickness

Solution:
The given data is recorded below, in the notation of the text.

r1 = 0.02 m; r2 = 0.04 m; t = 0.0008 m; h = 15 W/m2 ◦C;
k = 16 W/m ◦C; Tb = 77 ◦C; Tamb = 15 ◦C

The two parameters that characterize the fin are calculated now.

α = r2
r1

= 0.04

0.02
= 2; μ = r2

√

h

kt
= 0.04 ×

√

15

16 × 0.0008
= 1.369

The fin efficiency from is read off Fig. 4.13 as η = 0.82. The heat loss from a single
fin is then calculated as

Qb = 2π(r22 − r21 )hη(Tb − Tamb)

= 2 × π × (0.042 − 0.022) × 15 × 0.82 × (77 − 15)

= 5.75W
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4.4 Fins of Minimum Mass

In this section, we consider optimum fins that dissipate the largest amount of heat per
unit mass of the extended surface. The profile of the fin, i.e., longitudinal section of
the fin may have different shapes such as uniform area or variable area. We consider
in some detail the case of uniform area fin in the form of a thin plate. Following this,
we give some results without giving details. We also consider in detail the case of a
spine of optimal proportions in the form of a circular cylinder. The section concludes
with some general observations on optimal fin shapes.

4.4.1 Uniform Fin of Optimum Proportions

Section 4.2.2 has shown that the fin parameter plays a significant role in determining
the thermal performance of a fin. We have already dealt with the behavior of fin
efficiency with asymptotic values of μ → 0 and μ → ∞. The pertinent question to
ask now is whether a particular value of μ is the most desirable. For this, of course,
we should set forth some criteria.

Consider a uniform area fin in the form of a flat plate made of a specific material.
Let the heat transfer coefficient have a specified value. Thus the values of h and k are
fixed. Let the base and ambient temperatures also have specified fixed values. It is
desired to find the proportions of a fin of given mass per unit width that dissipates the
largest amount of heat from the base structure to the ambient. Since the material of
the fin is fixed and width may be taken as unity, the requirement may be rephrased by
saying that the desire is to find the proportions of a fin of specified profile area Ap =
2t L = constant that loses the most heat. The analysis should find a combination
t∗, L∗ that

Maximizes Qb for Ap = 2t L = constant for fixed h, k, Tb, Tamb (4.57)

The optimization may be done by standard calculus method. The fin parameter may
be represented as

μ =
√

h

kt
L =

√
√
√
√
√

h

k

(
Ap

2L

) L =
√

2h

kAp

=K

L
3
2 = K L

3
2

where the constant K involves h, k and Ap which are all held fixed. The fin heat
transfer per unit width and temperature difference may now be written using Eqs.
4.21 and 4.22 as

Qb

θb
= 2hLη = 2h

tanh
(

K L3/2
)

K L1/2
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Defining QbK
2hθb

as Q, we have to maximize

Q = tanh
(

K L3/2
)

L1/2
(4.58)

by the right choice of L . The condition that has to be satisfied is ∂Q
∂L = 0. Thus, we

have

∂Q

∂L
=

sech2
(

K L3/2
) × 3

2
× K L1/2

L1/2
− tanh

(

K L3/2
)

2L3/2
= 0 (4.59)

Equation 4.59 may be rearranged to read

3μ sech2(μ) − tanh(μ) = 0 (4.60)

This transcendental equation needs to be solved by a numerical method to find
the desired root. Newton–Raphson method may be used as follows. Rewrite the
hyperbolic functions in terms of the exponentials to recast Eq. 4.60 as

f (μ) = e2μ − e−2μ − 12μ = 0 (4.61)

Ignoring the trivial root μ = 0, the desired root may be determined by using the
Newton–Raphson iterative scheme

μnew = μold − f (μold)

f ′(μold)
= μold − e2μold − e−2μold − 12μold

2
(

e2μold + e−2μold
) − 12

(4.62)

where f ′ is the derivative of f (μ) with respect to μ. The iteration starts with a
guess value shown with the subscript “old” and yields a better value shown with the
subscript “new”. Convergence is very rapid as indicated in the following sequence:

µ old 1.50000 1.42799 1.41934 1.41922

µ new 1.42799 1.41934 1.41922 1.41922

It is sufficient to take the optimumvalue asμ∗ = 1.4192. The corresponding value
of fin efficiency is η∗ = 0.6267. We consider a typical example now.

Example 4.7

A sheet of aluminum alloy 1.5mm thick is available for providing fins in a heat
transfer application. Determine the length of the fin you would suggest such that it is
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an optimum fin. The thermal conductivity of the material of the sheet is 200W/m◦C
while the heat transfer coefficient is 67W/m2 ◦C. What is the heat loss per unit tem-
perature difference between the fin base and the ambient? Discuss a few non-optimal
cases.

Solution:
Step 1 Since the fin material is of specified thickness we assume that this corre-

sponds to the optimum thickness. Thus

t = t∗ = 0.0015

2
= 0.00075m

Step 2 The length of the fin is chosen such that μ = μ0 = 1.4192. Since μ0 =
m∗L∗, we have

L∗ = μ∗

m∗ = μ0
√

h

kt∗

= 1.4192
√

67

200 × 0.00075

= 0.067m

Step 3 Figure 4.14 compares non-optimal proportioned fins with a fin that is
proportioned to obtain optimal behavior. The figures are to scale. All the
cases have a profile area Ap equal to 2t∗L∗ = 2 × 0.00075 × 0.067 =
0.0001m2.

Step 4 Heat transfer per unit temperature difference may then be calculated as

Qb

θb
= 2hL∗η∗ = 2 × 67 × 0.067 × 0.6267 = 5.639W/m◦C

Heat transfer from the fin per unit volume and temperature difference is
thus given by

Qb

θb Ap
= 5.639

0.0001
= 56390W/m3 ◦C

Step 5 The calculations have been performed also for a number of non-optimal
fins and the resulting data has been shown plotted, in Fig. 4.15, as a graph

Fig. 4.14 Fins of different
proportions but of constant
profile area: conditions as in
Example 4.7
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Fig. 4.15 Performance of
fins of different proportions
but of constant profile area:
conditions as in Example 4.7

of ratio heat transfer from the fin per unit volume to the maximum possible
heat transfer per unit volume and temperature difference, as a function of
fin length. The optimum value is shown by the black circle labeled (b) in
this figure.

4.4.2 Uniform Spine (pin Fin) of Optimum Proportions

We now consider a spine in the form of cylinder of circular cross section. It is desired
to find the optimum diameter D∗ and optimum length L∗ of a cylindrical pin fin that
loses themost heat per unit volume of fin, i.e., fixed V = πD2

4 L . Thematerial thermal
conductivity, heat transfer coefficient, base, and ambient temperatures are also held
fixed, as before in the case of a fin in the form of a flat plate.

From Table 4.1, the fin parameter in this case is m =
√

4h
kD . Heat loss from the fin

is given by Eq. 4.19. We thus have

Qb = √
hPkAθb tanhmL =

√

hπDkπ
D2

4
θb tanh

(√

4h

kD
L

)

= θbπ
√
hk

D3/2

2
tanh

(√

4h

kD
L

)

Define a volume parameter V ′ = D2L such that L = V ′
D2 . Then the argument under

the hyperbolic tangent becomes
√

4h
kD L =

√
4h
kD

V ′
D2 = 2V ′

√
h
k

1
D5/2 . Introducing K1 =

θb
π

√
hk

2 and K2 = 2V ′
√

h
k the above expression may be recast as

Qb = K1D
3/2 tanh

(
K2

D5/2

)
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Introducing β = K2
D5/2 , the above may be finally brought to the form

Q = Qb

K1K
3/5
2

= 1

β3/5
tanh(β) (4.63)

The optimum proportion is obtained by maximizing the above expression by proper
choice of β. This is done by equating the derivative of the above expression with
respect to β to zero. Accordingly, we should have

∂Q

∂β
= −3

5
β−8/5 tanh(β) + β−3/5sech2β = 0

This may be easily brought to the form

sinh (2β) = 5

3
(2β) (4.64)

Transcendental Eq. 4.64 may be easily solved by Newton–Raphson method to get
β∗ = 0.9193. With this value of β the optimum diameter and length are given by

(a) D∗ = 1.3647

(
V ′2h
k

)1/5

(b) L∗ = 0.5370

(
V ′k2

h2

)1/5

(4.65)

Example 4.8

A spine in the form of a right circular cylinder, made of a material with thermal
conductivity k = 45W/m◦C, is attached to a base structure at Tb = 120 ◦C. It loses
heat to ambient air at Tamb = 20 ◦C by convection via a heat transfer coefficient
h = 15W/m2 ◦C. Determine the proportions of an optimum spine if the volume
parameter is V ′ = 10−6 m3. How much heat does it lose to the ambient? What is the
heat loss per unit volume of the material of spine?

Solution:

Step 1 With the data specified in the problem, we calculate the parameters that
appear in the optimum spine.

K1 = θb
π

√
hk

2
= (120 − 20)

π
√
15 × 45

2
= 4081.0486

K2 = 2V ′
√

h

k
= 2 × 10−6 ×

√

15

45
= 1.1547 × 10−6

Step 2 The diameter of optimum spine is obtained using Eq. 4.65a as
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D∗ = 1.3647

(
10−12 × 15

45

)1/5

= 0.0044m

The length of optimum spine is obtained using Eq. 4.65b as

L∗ = 0.5370

(
10−6 × 152

452

)1/5

= 0.0526m

Step 3 Heat loss from the spine is then calculated as

Qb = K1D
3/2 tanh β∗ = 4081.0486 × 0.00443/2 tanh 0.9193 = 0.8529W

Step 4 Spine volume is given by

V = π
D∗2L
4

= πV ′

4
= π × 10−6

4
= 7.854 × 10−7 m3

Heat transfer per unit volume is then given by

Q = Qb

V
= 0.8529

7.854 × 10−7
= 108590W/m3 = 1.0859MW/m3

Note on fin profile for optimum heat loss per unit mass:
Example 4.4 has indicated that per unit mass basis a triangular profile fin
loses more heat than a rectangular profile fin. We have seen earlier that the
temperature distribution in both cases is non-linear with distance from the fin
base. The derivative of temperature decreases monotonically from the base to
tip. This means that the conduction flux decreases monotonically from base to
tip. It is conceivable that a fin with a profile that leads to a linear temperature
variation with x and hence a constant temperature gradient will be the best
profile. In order to elaborate on this, we work out the details in what follows.

Consider a fin profile that achieves a linear temperature variation with x
given by θ = θb

(

1 − x
L

)

where L is the fin length. Then we have dθ
dx = − θb

L

and d2θ
dx2 = 0. In Eq. 4.32, we take A = 2y(x)—wherey(x) is semi-fin thickness

at a location x along the fin, dS
dx ≈ 2 (thin fin approximation), substitute the

linearly varying θ to get

0 + 1

2y
× 2

dy

dx
× −θb

L
− 1

2y
× 2

h

k
θb

(

1 − x

L

)

= 0
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This simplifies to yield

dy

dx
+ hL

k

(

1 − x

L

)

= 0 (4.66)

that defines the fin profile. We integrate the above once with respect to x , take
y = 0 at x = L to get

y = hL

k

(
L

2
− x + x2

2L

)

(4.67)

The profile area Ap is related to the fin mass and may be easily calculated by

the integral
∫ L
0 2ydx . Thus

Ap =
L∫

0

2
hL

k

(
L

2
− x + x2

2L

)

dx = hL3

3k
(4.68)

Consider a typical example where h = 15W/m2 ◦C, k = 45W/m◦C, L =
0.1m and θb = 100 ◦C. Fin profile is given by

y = 0.033(0.05 − x + 5x2) where 0 ≤ x ≤ L

The profile is concave parabolic and becomes very thin as we approach the
tip. The profile area is calculated as Ap = 0.00011m2. Fin profile (top half) is
shown plotted in Fig. 4.16 as “Constant gradient profile”. The fin is symmetric
with respect to the x axis and has the same profile for −y.

It is seen that the temperature gradient at x = 0, in this case, is dθ
dx = − θb

L =
−10θb and hence the fin heat loss per meter width of fin is

q = −2ky(0)
dθ

dx
= 2 × 45 × 0.00167 × 10 × 100W/m = 150W/m

Figure 4.16 also shows half profiles of optimum proportioned rectangular
and triangular fins. Both these are designed for maximum heat loss per profile
area Ap, the same as that of the constant gradient fin. For a rectangular fin
of minimum mass, we have μ∗ = 1.4192. By definition, we have μ = mL =
√

h
kt L and profile area Ap = 2t L . From the latter we have L = Ap

2t . This in the
former gives

L =
(
k Apμ

2

2h

) 1
3
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Taking the optimum value of μ, i.e., μ∗, the corresponding fin length L∗ is
obtained as

L∗ =
(
45 × 0.00011 × 1.41922

2 × 15

) 1
3

= 0.0695m

The fin semi-thickness is then given by t = 0.00011
2×0.0695 = 0.0008m. This profile

is also shown in Fig. 4.16 labeled “Optimum rectangular profile”. Heat loss
from this fin may be calculated as under. Fin efficiency is given by

η∗ = tanh(μ∗)
μ∗ = tanh(1.4192)

1.4192
= 0.627

Fin heat loss per unit width is then given by

q = 2L∗hθbη
∗ = 2 × 0.0695 × 15 × 100 × 0.627 = 130.7W/m

It may be shown by an analysis similar to that presented in the case of a fin
of uniform area that an optimum fin of triangular profile satisfies the relation

y∗
b =

(

0.583hA2
p

k

) 1
3

=
(
0.583 × 15 × 0.000112

45

) 1
3

= 0.00134m

The fin length is then given by L∗ = Ap

y∗
b

= 0.083m. The corresponding half-
profile is shown in Fig. 4.16 as “Optimum triangular profile”. Heat loss from
this fin may be calculated as under.

Fin parameter p may be calculated as

p =
√

hLopt

kyb,opt
=

√

15 × 0.083

45 × 0.00134
= 4.5460

Hence μ = p
√

Lopt = 4.5460
√
0.083 = 1.3097. Fin efficiency is given by

η∗ = 1

μ∗
I1(2μ∗)
I0(2μ∗)

= 1

1.3097

I1(2 × 1.3097)

I0(2 × 1.3097)
= 0.5936

Hence the fin heat loss per unit width is given by

q = 2L∗hθbη
∗ = 2 × 0.083 × 15 × 100 × 0.5936 = 147.8W/m
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Fig. 4.16 Profile of a fin
with linearly varying
temperature compared with
rectangular and triangular
profiled fins

Comment: It is seen that the constant gradient profile is the best followed by the
triangle profile. The least performance is shown by uniform area fin. However,
the difference between the constant gradient profile fin and triangle profile fin
is very small! Hence the triangle profile fin is a good choice in applications.

4.5 Heat Transfer from Fin Arrays

In applications, it is seldom that a single fin is made use of. It is common to have a
parent surface covered with an array of fins. In such a case one may use either one
of the following concepts:

(1) Overall surface efficiency (2) Effectiveness for the fin array

These two alternate concepts are described below in detail.

4.5.1 Overall Surface Efficiency of a fin array

Let At = total exposed area including fins, and A f = total area of fins. Hence, the
exposed parent area in the fin array is Ae = At − A f . The total heat transferred from
the fin array may be written as a sum of two parts: the first part is due to the exposed
parent area given by Qe = Aehθb and the second part is due to the exposed area of
fins given, using the concept of fin efficiency, as Q f = A f hθbη. Thus the total heat
transfer is given by
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Qt = Qe + Q f = Aehθb + A f hθbη

= (At − A f )hθb + A f hθbη = Athθb

[

1 − A f

At
(1 − η)

]

(4.69)

In the above, η is the efficiency of each fin in the array, θb is the temperature excess
of the base structure with respect to the ambient, and h is the constant heat transfer
coefficient for heat transfer by convection from all the exposed surfaces. The reader
will recognize that Athθb is the largest possible heat transfer rate Qmax that can take
place from the fin array. Hence, analogous to the fin efficiency, an overall surface
efficiency ηo is defined as

ηo = Qt

Qmax
=

[

1 − A f

At
(1 − η)

]

(4.70)

4.5.2 Effectiveness of a Fin Array

An alternate concept is that of effectiveness of a fin array, which is defined as the
ratio of heat transfer in the presence of fins to the heat transfer, which would take
place if fins were not provided. Let the parent area of the surface to which fins are
attached be Ap. The heat transfer that would take place in the absence of fins is
the heat transfer that would take place from this area by convection and is given by
Qp = Aphθb. The heat transfer that takes place when fins are mounted on the parent
surface is given by Qt given by Eq. 4.69. Hence, the effectiveness ε of the fin array
is given by

ε = Qt

Qp
= Ae + A f η

Ap
(4.71)

Consider a typical fin array shown in Fig. 4.17. The parent surface is flat and the fins
are attached normal to the parent surface. We consider a unit width in a direction
normal to the plane of the figure. The fins may be of uniform thickness as shown
in the figure, or in general, may be of non-uniform thickness. The parent surface is
occupied by fins of total base area equal to 1 × n × 2t = 2nt and n − 1 gaps of area
1 × (n − 1) × S = (n − 1)S. Hence, the area of parent surface is easily recognized to
be Ap = 2nt + (n − 1)S. The exposed fin array area is A f = 2nL , since each fin has
two heat losing sides. The total heat transfer area is given by At = 2nL + (n − 1)S.
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Fig. 4.17 Nomenclature for
heat transfer from a fin array

The heat transfer when fins are not present is given by

Qwithout fins = [2nt + (n − 1)S]hθb (4.72)

The heat transfer when fins are present is given by (again the fins have an individual
fin efficiency η)

Qwith fins = hθb[2nLη + (n − 1)S] (4.73)

where we have assumed the fins to satisfy the insulated tip condition. Using the above
two expressions, the effectiveness of the fin array is obtained as

ε = Qwith fins

Qwithout fins
= 2nLη + (n − 1)S

2nt + (n − 1)S
(4.74)

4.5.3 Fin Array Applications

Fins are attached to a parent surface to enhance heat transfer. The parent surface may
itself be subject to different environments over its exposed surfaces. For example, in
the case of a wall, the inside may communicate convectively with one environment
while the outside may communicate convectively with a different environment. The
heat transfer coefficients on the two sides may have different values. In many appli-
cations two different fluids, such as water or a liquid on one side and air or a gas on
the other side, may be involved. In such a case, the gas side heat transfer coefficient
is normally the smaller of the two heat transfer coefficients. It is meaningful to attach
fins on the side that experiences the lower heat transfer coefficient.

Fins Attached to a Plane Wall
A practical application is a plane wall with fins on one side as shown in Fig. 4.18.
The figure also shows the electrical analog of the thermal problem. There are three
thermal resistances in series given by the expressions in the figure. We have made
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Fig. 4.18 Plane slab with fins on one side

use of the overall surface efficiency concept. Note that A is the area of the slab and
At is the total exposed area on the finned side. The total thermal resistance may be
written down as

Rtot = R1 + R2 + R3 = 1

h1A
+ L

kA
+ 1

h2ηo At
(4.75)

Heat transfer across the wall may now be calculated as

Q = T1 − T2
(

1

h1A
+ L

kA
+ 1

h2ηo At

) (4.76)

Example 4.9

Eight uniform area fins of thickness 1.2mm and length 35mm are integral with
a base in a heat sink used in electronic cooling application. The thermal conductivity
of the material (an aluminum alloy) is 187W/m◦C. All the exposed surfaces are
convectively cooled by ambient air at 22 ◦C subject to a heat transfer coefficient of
16.5W/m2 ◦C. The base temperature has been measured at 64 ◦C. Determine (a) the
overall surface efficiency and (b) effectiveness of the fin array. Also determine the
heat loss from the heat sink. The heat sink is 98mm wide and the spacing between
the fins is 4mm.

Solution:

Step 1 The nomenclature follows that given in Fig. 4.18. The given data may be
written down as under.
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Fin length: L = 35 mm or 0.035 m
Fin semi-thickness: t = 0.6 mm or 0.0006 m
Width of fin array: W = 98 mmor 0.098 m

Fin spacing: S = 4 mm or 0.004 m
Fin material thermal conductivity: k = 187 W/m◦C
Fin side heat transfer coefficient: h = 16.5 W/m2 ◦C

Parent structure temperature: Tb = 64 ◦C
Ambient temperature: Tamb = 22 ◦C

Step 2 The fin parameter is then calculated as

m =
√

h

kt
=

√

16.5

187 × 0.0006
= 12.13m−1

The non-dimensional fin parameter is then obtained as

μ = mL = 12.13 × 0.035 = 0.424

Step 3 Fin efficiency is then calculated using Eq. 4.22.

η = tanh(0.424)

0.424
= 0.944

Step 4 Various areas needed are calculated now. Number of fins is specified as
n = 8. The breadth of the base is hence given by

B = 2nt + (n − 1)S = 2 × 8 × 0.0006 + (8 − 1) × 0.004 = 0.0376m

The total exposed area for convection may now be calculated as

At =2LWn + SW (n − 1) = 2 × 0.035 × 0.098 × 8+
0.004 × 0.098 × (8 − 1) = 0.0576m2

Area of fins may be calculated as

A f = 2LWn = 2 × 0.035 × 0.098 × 8 = 0.0549m2

Step 5 (a) Overall surface efficiency may now be calculated using Eq. 4.70.

ηo =
[

1 − 0.0549

0.0576
(1 − 0.944)

]

= 0.9466

Area of parent surface is calculated as

Ap = BW = 0.0376 × 0.098 = 0.00369m2
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Exposed parent area is given by

Ae = (n − 1)SW = (8 − 1) × 0.004 × 0.098 = 0.00274m2

Step 6 (b) The effectiveness may now be calculated using Eq. 4.71 as

ε = 0.00274 + 0.0549 × 0.944

0.00369
= 14.78

Step 7 Heat loss from the heat sink may now be calculated using two different
methods as follows.
Based on the overall surface efficiency concept, we have

Qb = Ath(Tb − Tamb)ηo = 0.0576 × 16.5 × (64 − 22) × 0.9466 = 37.79W

Based on the effectiveness concept, we have

Qb = Aph(Tb − Tamb)ε = 0.00369 × 16.5 × (64 − 22) × 14.78 = 37.79W

Example 4.10

An extruded aluminum alloy heat sink consists of 4 parallel flat fins integral on
a flat base. Air is blown parallel to fin flats and the convective heat transfer coef-
ficient has been estimated from experiments to be h = 28W/m2 ◦C. Aluminum
alloy has a thermal conductivity of k = 175W/m◦C. The base of heat sink is
W = 30mm, H = 50mmwith the fins being parallel to the 50mm edge. All the fins
as well as the base have a thickness of 2t = 0.4mm. Choosing optimal proportioned
fins determine the heat loss from the heat sink when the base is at a temperature of
Tb = 65 ◦C and ambient air is at Tamb = 30 ◦C.

Solution:

Step 1 With the data specified in the problem, we assume the material thickness
to be 2t∗ = 0.4mm or t∗ = 0.2mm. We choose μ = 1.4192 to obtain the
fin length as

L∗ = μ∗

m
= μ∗

√
h
kt∗

= 1.4192
√

28
175×0.0002

= 0.05018m ≈ 50.2mm

Step 2 With n = 4 and W = 30mm, fin spacing is given by

S = W − 2nt∗

(n − 1)
= 30 − 2 × 4 × 0.2

(4 − 1)
= 9.47mm
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Fig. 4.19 Heat sink in
Example 4.10. H = 50mm
is the dimension of the base
and fins in the direction
normal to the plane of the
figure

Heat sink cross section will appear as shown in Fig. 4.19.
Step 3 Fin efficiency is then calculated using Eq. 4.22.

η = tanh(1.4192)

1.4192
= 0.627

The effectiveness of fin array may now be calculated using Eq. 4.71 as

ε = 2 × 4 × 0.0502 + (4 − 1) × 0.0947

0.03
= 9.332

Step 4 Heat transfer in the absence of fins is given by

Qno fins = WHhθb = 0.03 × 0.05 × 28 × (65 − 30) = 1.47W

Hence the heat transfer from heat sink is given by

Qheat sink = ε × Qno fins = 9.332 × 1.47 = 13.72W

Finned Tube
Another example that is used often is a tube with fins on one side (say the
outside—automobile radiator and condenser coil in an air conditioner—are exam-
ples).
Figure 4.20 shows the details along with the applicable nomenclature. The corre-
sponding electrical analog is also shown in the figure. The difference between the
previous example and the present one is because of area variation due to cylindrical
geometry. We may again use the concept of thermal resistance. The various thermal
resistances are again in series. The concept of overall surface efficiency is used in
writing down the appropriate thermal resistances. Expressions for the inner thermal
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Fig. 4.20 Heat transfer from a fluid flowing in an externally finned tube

resistance R1, tube wall conduction resistance R2 and the fin side resistance R3 are
as indicated in Fig. 4.20. The total resistance is then given by

Rtot = R1 + R2 + R3 = 1

2πri Lh1
+ 1

2πLk
ln

(
ro
ri

)

+ 1

ηoh2At
(4.77)

Note that the total area on the finned side is given by

At = 2πro(L − 2nt) + 2π(r22 − r2o )n (4.78)

where n represents the number of fins in length L of the tube and r2 is the tip radius
of the radial fin. The heat transfer from the externally finned tube is then given by

Q = T1 − T2
1

2πri Lh1
+ 1

2πLk
ln

(
ro
ri

)

+ 1

ηoh2At

(4.79)

Alternately we may use the concept of fin array effectiveness in representing the
thermal resistance R3 on the outside. We note that the heat transfer from the outside
is given by

Qb = 2πroLεh2θb

The corresponding thermal resistance is
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R3 = 1

2πroLh2ε
(4.80)

Thus Eq. 4.79 is replaced by

Q = T1 − T2
1

2πri Lh1
+ 1

2πLk
ln

(
ro
ri

)

+ 1

2πroLh2ε

(4.81)

Example 4.11

A brass tube of 6mm ID and 7mm OD has short integral fins of height 7mm
and 0.3mm thickness arranged with a spacing of 3mm. The heat transfer coefficient
to the hot fluid at 75 ◦C flowing inside the tube is 270W/m2 ◦C. The fins and the
external surface of the tube are exposed to air at 20 ◦Cwith a heat transfer coefficient
of 45W/m2 ◦C. Determine the heat transfer from a meter length of tube.

Solution:

Step 1 The nomenclature for this problem is based on Fig. 4.20. The given data
is written down.

Tube inner radius: ri = 0.003 m
Tube outer radius: ro = 0.0035 m

Fin length: L = 0.007 m
Fin tip radius: r2 = ro + L

= 0.0035 + 0.007 = 0.0105 m
Fin semi-thickness: t = 0.00015 m

Fin spacing: S = 0.003 m
Thermal conductivity of

tube and fin material: k = 111 W/m◦C
Tube side heat transfer coefficient: h1 = 270 W/m2 ◦C
Fin side heat transfer coefficient: h2 = 45 W/m2 ◦C

Tube side fluid temperature: T1 = 75 ◦C
Fin side fluid temperature: T2 = 20 ◦C

Step 2 Non-dimensional fin parameter is calculated as

μ =
√

h2
kt

· r2 =
√

45

111 × 0.00015
· 0.0105 = 0.546

Radius ratio that characterizes the fin is
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α = r2
ro

= 0.0105

0.0035
= 3

Step 3 Fin efficiency is read off in Fig. 4.13 as η = 0.92. The various areas needed
are calculated per meter length of tube basis. Since the fin spacing is
S = 3mm or 0.003m, the center to center distance between fins S′ is

S′ = S + 2t = 0.003 + 2 × 0.00015 = 0.0033m

The number of fins per m length of tube is determined as

n = 1

S′ = 1

0.0033
≈ 303

The above is obtained by rounding the number to an integer. The parent
area per m of tube length is obtained as

Ap = 2πro = 2 × π × 0.0035 = 0.02199m2

Fin area per m of tube length is

A f = 2π(r22 − r2o )n = 2 × π × (0.01052 − 0.00352) × 303 = 0.1866m2

The total exposed area on the outside is

At = A f + 2πro(n − 1)S

= 0.1866 + 2 × π×0.0035 × (303 − 1) × 0.003 = 0.2065m2

Step 4 The overall surface efficiency may now be calculated, using Eq. 4.70 as

ηo =
[

1 − 0.1866

0.2065
(1 − 0.92)

]

= 0.928

The three resistances that correspond to those shown in Fig. 4.20 are

R1 = 1

2πri h1
= 1

2 × π × 0.003 × 270
= 0.1965m◦C/W

R2 = 1

2πk
ln

(
ro
ri

)

= 1

2π × 111
ln

(
0.0035

0.003

)

= 2.2103 × 10−4 m◦C/W

R3 = 1

h2Atηo
= 1

45 × 0.2065 × 0.928
= 0.1160m◦C/W

The overall thermal resistance is then given by

Rtot = 0.1965 + 2.2103 × 10−4 + 0.1160 = 0.3127m◦C/W
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Step 5 Tube heat loss per m of tube length is then given by

Q = T1 − T2
Rtot

= 75 − 20

0.3127
= 175.9W/m

Concluding Remarks

This chapter has presented an important application of conduction heat transfer, viz., enhance-
ment of heat transfer by the use of extended surfaces. When the conductive resistance within
the extended surface is smaller than the convective resistance from the surface of the extended
surface, the addition of the extended surface enhances heat transfer. Analysis has been pre-
sented for both uniform and non-uniform area fins. Optimization of fin profile for minimum
mass has been presented in the case of flat as well as pin fins. Toward the end, we have
presented an analysis of fin arrays that are very useful in applications.

4.6 Exercises

Ex 4.1: Consider an aluminumfin of thermal conductivity 200W/m◦C.The fin is
in the form of a plate, which is 3mm thick and 150mm long. It is exposed
to an ambient at 30 ◦C with a heat transfer coefficient of 67W/m2 ◦C.
Howmuch heat is dissipated per meter by the fin if the base is at 100 ◦C?

Ex 4.2: A straight fin of uniform circular cross section of area 0.2 cm2, length
15 cm and thermal conductivity 200W/m◦C has its two ends maintained
at 100 ◦C and 50 ◦C, respectively. The ambient air is at 30 ◦C and the
convection heat transfer coefficient is 15W/m2 ◦C. Determine the total
heat loss from the fin to the ambient. What is the minimum temperature
in the fin and where does it occur? Can you define fin efficiency for this
case?

Ex 4.3: Ametal cleaning brush with bristles of steel, which are 0.3mm diameter
and 10mm long has the bristles mounted with center to center distance
of 0.75mm between adjacent bristles. The bristles are in an “in line”
arrangement forming a square grid pattern. The bristles are mounted on
a base block of the same material of size 75 × 25 × 10mm. The bris-
tles as well as the base block material have a thermal conductivity of
45W/m◦C.
The brush has been left, inadvertently, in an upward-facing position on a
hot boiler accessory, which is at 80 ◦C, with the base of the brush in inti-
mate contact with the accessory. The ambient temperature is 30 ◦Cand all
exposed surfaces are subject to a heat transfer coefficient of 15W/m2 ◦C.
Determine the total heat loss from the accessory due to the brush. Assume
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that there is a margin of 0.4mm between the edges of the base and the
nearest bristle. Mention any assumptions you make.

Ex 4.4: A uniform area pin fin of circular cross section has a diameter of 5mm
and a length equal to 125mm. The base is at a temperature of 80 ◦C
while the tip temperature (tip itself is treatable as insulated) has been
measured to be 54 ◦C. The ambient temperature is 30 ◦C and the fin
material thermal conductivity is known to be 45W/m◦C. Estimate the
heat transfer coefficient between air and fin surface assuming it to be
uniform. Based on the magnitude of the heat transfer coefficient identify
a possible mode for heat exchange between the fin surface and air.

Ex 4.5: Water flows at 65 ◦C over the outside of a copper tube of 60mm out-
side diameter, giving rise to a heat transfer coefficient of 1000W/m2 ◦C
between the water and the tube. Air at 25 ◦C flows inside the tube
whose inner diameter is 50mm. The tube side heat transfer coefficient
is 25W/m2 ◦C. To increase the heat transfer rate, four straight copper
fins (thermal conductivity of copper may be taken as 400W/m◦C) of
rectangular profile and 1.5mm thickness are added to the tube side as
shown in Fig. 4.21.
Calculate the heat transfer per meter of pipe with and without the internal
fins. Assume that the tube side heat transfer coefficient does not change
in the presence of the fins.

Ex 4.6: A heat sink used in electronic cooling is represented in its cross section
as indicated in Fig. 4.22. The overall foot print of the heat sink is
45 × 45mm.The fins shown are 0.5mm thick and are 25.4mm tall. The
convection heat transfer coefficient may be assumed to be 8W/m2 ◦C
from all the exposed surfaces. The material of the heat sink is an

Fig. 4.21 Defining sketch
for Exercise 4.5

Fig. 4.22 Cross-sectional
view of heat sink in Exercise
4.6. Thickness is uniform at
0.5mm
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alloy of aluminum and magnesium having a thermal conductivity of
175W/m◦C.What is the heat loss if the base is at a temperature of 60 ◦C
when the ambient air temperature is 26 ◦C?Make suitable assumptions
as necessary. What is the effectiveness of the heat sink?
A consultant has indicated that the heat transfer coefficient may be
increased to 20W/m2 ◦C by the use of a small instrument fan mounted
such that air is blown parallel to the fins and the base. What will be
the base temperature if the same amount of heat is dissipated as above?
What is the effectiveness of the heat sink in this case?

Ex 4.7: A circular disk of radius R, thickness δ, and thermal conductivity k
is insulated on one side and absorbs a uniform heat flux of q on the
other side. The circumference of the disk is maintained at a constant
temperature of TR . Derive the equation governing the variation of tem-
perature in the disk. Specify suitable boundary conditions. Solve for
the temperature. Obtain an expression for the maximum temperature in
the disk.
A circular disk of thermal conductivity k = 24W/m◦C, thickness
δ = 0.05mm and radius R = 5.08mm is absorbing radiant heat at a
constant rate of q = 10000W/m2 at one of the surfaces. The other sur-
face is perfectly insulated. However, the periphery of the disk is cooled
by chilled water to 10 ◦C. Determine the maximum temperature in the
disk.

Ex 4.8: Derive the general fin equation for a variable area extended surface.
Consider the particular case of a fin in the form of a cone with base
diameter db and cone angle 2α. Deduce the particular fin equation
governing heat transfer in this fin, starting from the general fin equation.
Can you think of an appropriate boundary condition that should be
specified at the apex of the cone?

Ex 4.9: A thin circular disk of thickness 2mm and radius 100mm is held at a
constant temperature of 100 ◦C along its periphery. The lateral surface
of the disk loses heat from one surface only to ambient air at 30 ◦C
subject to a heat transfer coefficient of 15W/m2 ◦C. Determine the
total heat loss from the disk to air and also the disk center temperature.

Ex 4.10: A circular plate of aluminum of thermal conductivity 205W/m◦C,
4mm thick and 100mm radius is insulated on one side and is exposed
to an ambient at 30 ◦C. The circular edge of the plate is maintained
at 100 ◦C and the plate center temperature is measured to be 70 ◦C.
Estimate the heat transfer coefficient.

Ex 4.11: Annular aluminum fins (k = 205W/m◦C) 2mm thick and 15mm
long are installed on an aluminum tube of 30mm diameter. The ther-
mal contact resistance between fins and the tube is known to be
2 × 10−5 m2 ◦C/W. If the tube wall is at 100 ◦C and the adjoining fluid
is at 25 ◦C, with a convection coefficient of 75W/m2 ◦C, what is the
rate of heat transfer from a single fin? What would be the rate of heat
transfer if the contact resistance could be eliminated?
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Fig. 4.23 Figure for
transistor problem in
Exercise 4.13

Ex 4.12: A refrigerator coil has a tube of 3mm ID and 4mmODwith radial fins
of outer radius 10mm and thickness 0.2mm attached to the outside
with a spacing of 2mm. Other pertinent data are

• Temperature of fluid flowing inside the tube: 60 ◦C.
• Heat transfer coefficient on the tube side: 270W/m2 ◦C.
• Temperature of the fluid on the outside of the tube: 30 ◦C.
• Heat transfer coefficient on the outside: 24W/m2 ◦C.
• Tube and fin material thermal conductivity: 380W/m◦C.

Determine the heat transfer per meter length of the coil.

Ex 4.13: A transistor (see Fig. 4.23) may be considered as a short cylinder 4mm
long and 5mm diameter. The surface of the cylinder may be assumed
to be at a uniform temperature of 70 ◦C during its operation. If the heat
transfer coefficient from the surface of the transistor is 5W/m2 ◦C how
much heat will be dissipated to an ambient at 30 ◦C. Assume that the
bottom side of the transistor is essentially insulated.
In order to improve heat transfer, a heat sink is attached to the transistor.
The heat sink essentially is equivalent to adding three 0.5mm thick annu-
lar fins of 5mm ID and 10mm OD. The heat sink material has a thermal
conductivity of 207W/m◦C. The heat transfer coefficient remains the
same as in the previous case. What will be the operating temperature of
the transistor in this case if the heat dissipation remains the same as in
the previous case?

Ex 4.14: Apin fin is in the form of a rod of uniform diameter D, L longmade of a
material with a thermal conductivity k. The base of the fin is maintained
at a temperature Tb greater than the ambient temperature T∞. The heat
transfer coefficient is h from all the exposed surfaces. Formulate the
problem and specify the boundary conditions. Obtain an expression for
the variation of temperature in the fin. Also obtain an expression for
the efficiency of the fin.
What is the tip temperature if Tb = 77 ◦C, k = 100W/m◦C, and h =
22W/m2 ◦C for a pin fin with D = 6mm and L = 115mm? What is
the heat loss from the fin? What will these become if the heat loss from
the fin tip is ignored?

Ex 4.15: A very wide 3mm flat metal plate of thermal conductivity 15W/m◦C
is 0.15m long. The two edges of the plate are maintained at a uniform
temperature of 40 ◦C. The lateral surfaces of the plate are in thermal
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contact with amoving fluid at 40 ◦C subject to a heat transfer coefficient
of 27W/m2 ◦C. Heat is internally generated in the plate at a uniform
volumetric rate of GW/m3. Determine the maximum value of G such
that the maximum temperature in the plate is limited to 100 ◦C. If the
volumetric heat generation rate ismaintained at this value and the lateral
surfaces of the plate are perfectly insulatedwhatwould be themaximum
temperature in the plate?

Ex 4.16: Ametal rodwith a thermal conductivity of 16.5W/m◦Cis left immersed
up to a depth of 10 cm in a pot of boiling water. The total length and
the diameter of the rod are 15 cm and 6mm respectively. The surface
of the rod outside the water loses heat by convection to room air at
35 ◦C with a heat transfer coefficient of 8W/m2 ◦C. What is the lowest
temperature in the rod? If this temperature should be less than 50 ◦C
what should be the total length of the rod? If the rod length may not be
changed, what will have to be the material thermal conductivity such
that the minimum temperature is just equal to 50 ◦C?



Chapter 5
Multidimensional Conduction Part I

We commence a study of multidimensional heat conduction in this chapter.
Two types of problems will be dealt with—(a) conduction heat transfer involving

transient one-dimensional heat conduction, i.e., temperature varies with one space
dimension and with respect to time, (b) steady conduction heat transfer in two space
dimensions. Similarity analysis and the approximate integral method are useful in
one-dimensional transient conduction. However, the basic approach is the use of the
method of separation of variables to solve the governing equations in these two cases.
We also present the use of complex variables for the solution of steady heat conduction
in two dimensions. Conduction shape factors are introduced to analyze steady
conduction in two dimensions.

5.1 Introduction

In Chaps. 2–4, we have been basically considering conduction in a single dimension
(either one dimension in space or one dimension in time). We shall commence a
study of multidimensional conduction now. Multidimensional conduction poses a
challenge since the governing equation is a partial differential equation. The solution
of such equations requires a mathematical background that will be built up as a part
of the discussion here.

5.1.1 Integral Form of Governing Equation

Consider a volume of material of arbitrary shape shown in Fig. 5.1. We intend to
make an energy balance for this volume now.Various quantities that affect the amount
of energy within the volume are written down. The rate at which heat is generated

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. P. Venkateshan, Heat Transfer,
https://doi.org/10.1007/978-3-030-58338-5_5

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58338-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-58338-5_5


152 5 Multidimensional Conduction Part I

Fig. 5.1 Integral
formulation of conduction in
three dimensions

inside the volume V is given by integrating the volumetric heat generation rate over
the volume as

Rate at which heat is generated =
∫∫∫

V

GdV (5.1)

The net heat transfer across the boundary S of the volume V is given by the following
surface integral.

Net rate of heat transfer across boundary =
∫∫

S

�qk · �ndS (5.2)

In the above, the integrand is the dot product of conduction heat flux vector �qk at the
surface and the unit normal �n to the surface. The rate at which energy is stored inside
the volume V is given by

Rate of energy storage inside = ρc
∫∫∫

V

∂T

∂t
dV (5.3)

where ρ is the density and c the heat capacity of the medium inside V . We have
assumed that the properties are constant independent of temperature. Energy bal-
ance for the volume requires that the rate of energy storage within volume V equals
the difference between the rate at which heat is generated within the volume V and
the rate at which heat is transferred across the boundary S. Hence, we have, using
Eqs. 5.1–5.3 the integral form of the energy equation

ρc
∫∫∫

V

∂T

∂t
dV =

∫∫∫

V

GdV −
∫∫

S

�qk · �ndS (5.4)
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5.1.2 Differential Form of Governing Equation

In order to write the governing equation in the differential form, it is necessary to
apply the integral equation to a differential volume. The differential volume may
be represented in any of the three orthogonal systems of coordinates—Cartesian,
cylindrical, or spherical. We begin the exercise by applying Eq. 5.4 to a volume
element shown in Fig. 5.2. The volume element is easily recognized to be dV =
dxdydz. The two volume integrals given by Eqs. 5.1 and 5.3 become very simply

∫∫∫

V

GdV = Gdxdydz, ρc
∫∫∫

V

∂T

∂t
dV = ρc

∂T

∂t
dxdydz (5.5)

The interpretation of these two is that the volume integral is simply the product of
the integrand, evaluated say at the center of the volume element, and the differential
volume of the element. The surface integral requires some effort. We should like to
write it in the form of a volume integral. This is done by the use of Fourier law and
the application of Taylor expansion, retaining first-order terms, and taking the limits
as the element shrinks to zero volume.

For this purpose, fluxes crossing boundaries are calculated as indicated below.
The surface area S consists of six faces of a parallelepiped element as shown—a
typical face is 1234. Flux crossing face 1234 is given by

qk,x
x component

of conduction flux

× dydz

Area
normal to x

(5.6)

Flux crossing face 5678 is calculated by using Taylor expansion of the x component
of the conduction heat flux

qk,x+dxdydz =
[
qk,x + ∂qk,x

∂x
dx

]
dydz (5.7)

Fig. 5.2 Conduction in three dimensions—differential volume in Cartesian coordinates
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Thus, the net flux crossing the volume element along the x-direction is given by the
difference between the leaving and entering fluxes. Thus the net flux because of heat
transfer across the two faces of the volume element normal to the x-direction is

∂qk,x
∂x

dxdydz = −k
∂2T

∂x2
dxdydz (5.8)

where the last part is based on Fourier law of heat conduction, assuming constant
thermal conductivity. It is clear that the above has transformed the surface integral
to a volume integral! Similarly the net heat transfer across the other four surfaces
along with the above leads to

∫∫

S

�qk · �ndS = −k

[
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

]
dxdydz (5.9)

Substitute Eqs. 5.5 and 5.9 in the integral form of energy Eq. 5.4 and cancel the
common factor dxdydz to get

ρc
∂T

∂t
= G + k

[
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

]
(5.10)

or

[
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

]
+ G

k
= 1

α

∂T

∂t
(5.11)

where α = k
ρc is a property of the medium and is referred to as the thermal diffu-

sivity. The terms in Eq. 5.11 that contain the second derivatives of temperature are
represented in the operator form as

[
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

]
T = ∇2T (5.12)

where the operator∇2 is known as the Laplace operator or the Laplacian. The impor-
tant thing to note is that the energy equation written in the form

∇2T + G

k
= 1

α

∂T

∂t
(5.13)
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Fig. 5.3 Conduction in three dimensions—a differential volume in cylindrical coordinates, b dif-
ferential volume in spherical coordinates

is independent of the coordinate system. It holds for cylindrical as well as spherical
coordinates. Only thing that needs to be done is to use the proper expanded form of
the operator ∇2 in these coordinate systems. This may actually be done by applying
the integral form of the energy equation to volume elements in cylindrical coordi-
nates (Fig. 5.3a) and spherical coordinates (Fig. 5.3b). This is left as an exercise to the
interested reader. The appropriate expressions are given below for ready reference.

Laplacian in cylindrical coordinates:

∇2 = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2
∂2

∂θ2
+ ∂

∂z2
(5.14)

Laplacian in spherical coordinates:

∇2 = 1

r2
∂

∂r

(
r2

∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 φ

∂2

∂φ2
(5.15)

In both the cylindrical as well as spherical coordinates, the area changes in the
direction of heat flow and this accounts for the complicated looking derivatives that
appear in Eqs. 5.14 and 5.15.
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5.1.3 Simplified Form of Energy Equation

Equation 5.13 is the energy equation or heat conduction equation or simply the heat
equation in the differential form. All the cases that have been considered in the
previous chapters are special or simplified forms of the heat equation. For example,
the steady heat equation in one dimension is obtained bywriting∇2 = d2

dx2 and setting
the right-hand time derivative in Eq. 5.12 to zero. In case there is no heat generation,
the equation is further simplified by putting G = 0. In case of steady conduction in
two dimensions, say T is a function of x and y, the governing equation reduces to

∂2T

∂x2
+ ∂2T

∂y2
+ G

k
= 0 (5.16)

This equation is known as the Poisson equation. If there is no heat generation, the
heat equation reduces to

∂2T

∂x2
+ ∂2T

∂y2
= 0 (5.17)

This equation is known as the Laplace equation in two dimensions.
The heat equation in cylindrical and spherical coordinates also may be simplified

in case of one-dimensional and two-dimensional problems, as done earlier in the case
of Cartesian coordinates. As an example, steady radial heat conduction in a cylinder
is governed by the equation

1

r

d

dr

(
r
dT

dr

)
+ G

k
= 0

In the case of steady two-dimensional heat conduction in a cylinder (T is a function
of r and z), the appropriate equation is

1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2
+ G

k
= 0

However, in case T is a function of r and θ, we get

1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2
∂2T

∂θ2
+ G

k
= 0

Both arePoisson equations in cylindrical coordinates. If, in addition,G = 0 these two
represent Laplace equations in two dimensions and cylindrical coordinates. Similar
simplifications are also possible in the case of problems in spherical coordinates.
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Table 5.1 Thermal diffusivity of materials

Material Condition Thermal diffusivity m/s2

Gases Air at 300 K 0.225 × 10−4

Steam at 373 K and 1 atm 0.205 × 10−4

Liquids Engine oil, unused at 300 K 0.859 × 10−7

Saturated water at 373 K and 1 atm 1.683 × 10−7

Solids Pure aluminum 9.71 × 10−5

–Metals Pure copper 1.17 × 10−4

Solids Aluminum oxide 0.151 × 10−4

–Insulating Concrete 0.519 × 10−6

materials Common brick 0.449 × 10−6

For example, steady radial conduction in spherical coordinates is governed by the
equation

1

r2
d

dr

(
r2

dT

dr

)
+ G

k
= 0

5.1.4 Thermal Diffusivity

The heat equation involves a single parameter, the thermal diffusivity, which char-
acterizes the material in which thermal conduction or heat diffusion takes place. An
equation that involves the Laplacian operator represents, in general, a diffusion phe-
nomenon and hence the name. The thermal diffusivity given by k

ρc has units of
m2

s , in
SI system of units. Before we take up solution of the heat equation, it is instructive
to look at typical thermal diffusivity values, which are shown in Table 5.1. It is seen
that the thermal diffusivity of materials covers a range of roughly three orders of
magnitude. Since thermal diffusivity is a composite parameter, this range includes
some five orders of magnitude variation of thermal conductivity values, toned down
by the range of density specific heat product, which itself varies over some six orders
of magnitude.

5.2 One-Dimensional Transient Conduction

The simplest multidimensional conduction problems, of much practical interest, are
those that involve a transient variation of temperature field with respect to one space
dimension. Such problems are referred to as one-dimensional transients. The tran-
sients may be either in a semi-infinite medium or in a finite domain such as a rod
or slab. Short time solution (more precise definition will come later) even in a finite
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Fig. 5.4 Unsteady
conduction in a semi-infinite
solid subject to step change
in surface temperature

domain may be treated as that in a semi-infinite domain. This has many practical
applications, as, for example, in the experimental determination of thermal conduc-
tivity and thermal diffusivity of materials.

5.2.1 Transients in a Semi-infinite Solid

Semi-infinite solid subject to step input at surface
As a typical example, we consider a semi-infinite solid initially at zero temperature.1

This solid is subject to a step change in surface temperature for t > 0, as indicated
in Fig. 5.4. If we set G = 0 (no internal heat generation) and ∇2 = ∂2

∂x2 (temperature
variation is confined to one space dimension in Eq. 5.12), the following equation
results.

α
∂2T

∂x2
= ∂T

∂t
(5.18)

The initial and boundary conditions, as shown in Fig. 5.4 are

t = 0; T = 0 for 0 ≤ x ≤ ∞ (5.19)

x = 0; T = Ts for t > 0; T → 0 as x → ∞ for all t (5.20)

Equation 5.18 may be solved by the method of similarity. The method of similarity
assumes that the time-varying temperature profile possesses a time-invariant shape,
if the temperature profile is described in terms of a single composite variable that
has both x and t in it. For this purpose, introduce the transformation

η = Axt B (5.21)

where A and B are to be determined as a part of the analysis. The requirement is
that Eq. 5.18 be transformed into an ordinary differential equation in terms of the
single independent variable (also known as the similarity variable) η. Transformation

1Since the heat equation is linear, any datum value of T may be set as zero!
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(5.21) leads to the following expressions for the derivatives, based on rules of partial
differentiation:

∂

∂x

∣∣∣∣
t

= ∂η

∂x

∣∣∣∣
t

d

dη
= At B

d

dη

∂2

∂x2

∣∣∣∣
t

= ∂

∂x

(
∂

∂x

)∣∣∣∣
t

= ∂

∂x

(
At B

d

dη

)∣∣∣∣
t

= At B
∂η

∂x

∣∣∣∣
t

d2

dη2
= A2t2B

d2

dη2

∂

∂t

∣∣∣∣
x

= ∂η

∂t

∣∣∣∣
x

d

dη
= ABxt B−1 d

dη
= B

η

t

d

dη

With these, the heat equation becomes

αA2t2B
d2T

dη2
= B

η

t

dT

dη
(5.22)

Equation 5.22 is to be an ordinary differential equation, hence x and t should not
appear explicitly in it, but only in the combination (5.21). This condition is satisfied
if the exponent of t on both sides of equation are the same. Thus

2B = −1 or B = −1

2

Under this condition, Eq. 5.22 becomes

αA2 d
2T

dη2
= −η

2

dT

dη

In addition, if we set 4αA2 = 1 or A = 1
2
√

α
(this choice is arbitrary and purely for

convenience) the governing equation reduces to

d2T

dη2
+ 2η

dT

dη
= 0 (5.23)

where the similarity variable η is given by

η = x

2
√

αt
(5.24)

Now we take a look at the initial and boundary conditions. These also have to be
represented in terms of η if the above procedure is to make sense. In addition, since
the governing equation has become a second-orderODE, the initial and two boundary
conditions must become the two boundary conditions on Eq. 5.23. Thus
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• Initial condition: t = 0 means η → ∞ for any x and hence T → 0
• Surface boundary condition: x = 0 and t > 0 means η = 0, and hence T = Ts
• Boundary condition as x → ∞: and t > 0 means η → ∞ and T → 0

Thus the two boundary conditions to be satisfied by Eq. 5.23 are

η = 0, T = Ts and η → ∞, T → 0 (5.25)

Thus, the original problem has reduced to the solution of Eq. 5.23 subject to the
boundary conditions (5.25). Equation 5.23 is in the variable separable form and may
be written as (

d2T

dη2

)
(
dT

dη

) dη = −2ηdη (5.26)

which on one integration with respect to η yields

ln
dT

dη
= −η2 + C1 or

dT

dη
= e(−η2+C1)

A second integration with respect to η yields

T =
η∫

0

e(−η2+C1)dη + C2 (5.27)

where C1 and C2 are constants of integration. Using the surface boundary condition
in (5.27), we get C2 = Ts . The boundary condition at η → ∞ requires that

∞∫

0

e(−η2+C1)dη + Ts = 0 or eC1 = − Ts∫∞
0 e−η2dη

Thus, the desired solution to the problem is

T

Ts
= 1 −

∫ η

0 e−η2
dη∫∞

0 e−η2dη
(5.28)

It is easily shown that
∞∫

0

e−η2
dη =

√
π

2
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With this, the solution becomes

T

Ts
= 1 − 2√

π

η∫

0

e−η2
dη = 1 − erf η = erfc η (5.29)

In the above, erf η is the error function and erfc η is the complementary error function.
Error function and the complementary error function are available in tabular form in
handbooks of Mathematics. A short extract from such a table is given in Table 5.2.
The table indicates that T

Ts
→ 0 at η = 3.6 (less than a significant figure in the sixth

decimal place). This means that, at any time t , the temperature has penetrated a
distance δ into the material, given by the condition

ηδ ≈ 3.6 or δ ≈ 7.2
√
t

Table 5.2 Error function and complementary error function

η erf η erfc η η erf η erfc η

0 0.000000 1.000000 1.9 0.992790 0.007210

0.1 0.112463 0.887537 2 0.995322 0.004678

0.2 0.222703 0.777297 2.1 0.997021 0.002979

0.3 0.328627 0.671373 2.2 0.998137 0.001863

0.4 0.428392 0.571608 2.3 0.998857 0.001143

0.5 0.520500 0.479500 2.4 0.999311 0.000689

0.6 0.603856 0.396144 2.5 0.999593 0.000407

0.7 0.677801 0.322199 2.6 0.999764 0.000236

0.8 0.742101 0.257899 2.7 0.999866 0.000134

0.9 0.796908 0.203092 2.8 0.999925 0.000075

1 0.842701 0.157299 2.9 0.999959 0.000041

1.1 0.880205 0.119795 3 0.999978 0.000022

1.2 0.910314 0.089686 3.1 0.999988 0.000012

1.3 0.934008 0.065992 3.2 0.999994 0.000006

1.4 0.952285 0.047715 3.3 0.999997 0.000003

1.5 0.966105 0.033895 3.4 0.999998 0.000002

1.6 0.976348 0.023652 3.5 0.999999 0.000001

1.7 0.983790 0.016210 3.6 1.000000 0.000000

1.8 0.989091 0.010909
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Fig. 5.5 Analogy with slab
model

Let us now determine the heat flux at the front face x = 0 (or η = 0). We have

dT

dη

∣∣∣∣
η=0

= − 2√
π
Tse

−η2

∣∣∣∣
η=0

= − 2√
π
Ts

The surface heat flux is given by (using the definition of η)

q(t)|x=0 = − k
dT

dx

∣∣∣∣
x=0

= −k At B
dT

dη

∣∣∣∣
η=0

= − k

2
√

αt

[
− 2√

π
Ts

]
= kTs√

παt

(5.30)

It is seen that q(t) → ∞ as t → 0 and q(t) → 0 as t → ∞. Equation 5.30 may be
interpreted in terms of an equivalent slab, whose thickness is increasing with time
as

√
παt . This is explained in Fig. 5.5. It is easily seen from this analogy that as

long as the depth of penetration δ is less than the thickness of the equivalent slab,
the transient in it may be modeled as that in a semi-infinite solid.

Integrating expression (5.30) with respect to time, we get the total heat per unit
area qs that has entered the semi-infinite solid in time t .

qs =
t∫

0

q
∣∣∣
x=0

dt = kTs√
πα

t∫

0

dt√
t

= 2kTs

√
t

πα
(5.31)

Thus the heat entering the body grows as square root of time. In practical terms,
the penetration depth may be defined more meaningfully as indicating the depth at
which the temperature is about 1% of the value at the surface, since this may be
a measurable quantity in practice (see Fig. 5.5). From Table 5.2, this corresponds
to η ≈ 1.82. This is very close to 50% of the value quoted earlier! This value of η
also indicates the time up to which a slab of given thickness may be considered as a
semi-infinite slab, as will become clear from Example 5.1.

Example 5.1

A large slab of concrete of thickness equal to 200 mm is exposed to high tem-
perature radiant environment on one side. The surface facing it attains a temperature
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of 125 ◦C almost instantaneously. The slab is initially at a temperature of 30 ◦C. The
thermophysical properties of concrete are: density ρ = 2150 kg/m3, specific heat
c = 950 J/kg◦C, thermal conductivity k = 1.06 W/m◦C. Till what time is it reason-
able to treat the concrete slab as a semi-infinite solid? How much heat would have
entered the slab per square meter, in this period? Make a plot of the temperature
profile in the slab, at this time.

Solution:
From the given property data, the thermal diffusivity of concrete may be ascertained.

Thermal diffusivity of concrete: α = k

ρc
= 1.06

2150 × 950
= 5.19 × 10−7 m2/s

The other pertinent data specified in the problem are listed below:

Thickness of concrete slab: L = 200 mm or 0.2 m
Initial temperature of slab: Ti = 30 ◦C

Imposed surface temperature: Ts = 125 ◦C

In order to determine the time tss up to which the semi-infinite solid assumption is
valid, we equate the penetration depth (defined as the depth at which the temperature
is 1% of the surface value, given by η = 1.82) to the slab thickness. Thus

η = 1.82 = L

2
√

αtss
or tss = L2

4 × η2 × α

= 0.22

4 × 1.822 × 5.19 × 10−7
= 5817.2s ≈ 1 h 37 min

The front surface of the slab is subject to a constant temperature givenbyTs = 125 ◦C.
The initial temperature of the solid is Ti = 30 ◦C. The latter temperature corresponds
to the datum value. Hence the heat that will enter per square meter of the slab is
calculated using Eq. 5.31 by replacing Ts by Ts − Ti .

qs = 2k(Ts − Ti )

√
t

πα
=2 × 1.06 × (125 − 30) ×

√
5817.2

π × 5.19 × 10−7

=12.03 × 106 J/m2

Now for the temperature distribution. Using Eq. 5.29 and replacing zero temperature
by the datum value

T (η) = Ti + (Ts − Ti )erfc η with η =
√

x

4αtss

where x varies from 0 to 0.2 m. This is plotted as shown in Fig. 5.6.
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Fig. 5.6 Temperature
distribution in the slab of
Example 5.1 at
t = tss = 5817 s

Example 5.2

Consider a semi-infinite solid subjected to a constant surface temperature excess of
100 ◦C for t > 0. Obtain an expression for the surface heat flux as a function of time
for two materials. (a) Concrete with properties as in Example 5.1 and (b) Aluminum
with the following properties: density ρ = 2701 kg/m3, specific heat c = 903 J/kg◦C,
and thermal conductivity k = 237 W/m◦C.Make a plot of surface heat flux variation
with time for the two materials. Compare the energy that has entered the unit area of
the two materials in 1000 s.

Solution:
The expression for heat flux is given by Eq. 5.30. The property values are substituted
to get the surface heat flux in the two cases. Surface temperature excess is interpreted
as Ts − Ti . We have

qs = k(Ts − Ti )√
παt

= (Ts − Ti )

√
ρck

πt
= K√

t

where K is a constant given by (Ts − Ti )
√

ρck
π

The property values for concrete are taken from Example 5.1. The constant K =
Kc for concrete is obtained as

Kc = 100 ×
√
2150 × 950 × 1.06

π
= 83015.5 Ws

1
2 /m2

More suitable way of expressing the above will be as K = 83.02 kW s
1
2 /m2.

The property values for aluminum are given above in the Example statement. The
constant K = Ka for aluminum is obtained as

Ka = 100 ×
√
2702 × 903 × 237

π
= 1356706 Ws

1
2 /m2
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More suitablewayof expressing the abovewill be as K = 1357 kW s
1
2 /m2.Figure 5.7

shows the plot of surface heat flux history for the two materials. It is seen that the
surface heat flux is much larger in the case of aluminum than concrete. Thermal
properties of the material play a very important role in the transient response. Both
the density and heat capacity are of comparable size for the two materials. However,
thermal conductivity of aluminum is more than 200 times that of concrete and the
surface heat flux mirrors this! It is interesting to compare the total energy that has
entered the two materials in 1000 s for which the plot has been made. We make use
of expression (5.31) for this purpose. The thermal diffusivity of concrete has been
calculated in Example 5.1 as αc = 5.19 × 10−7m2/s.
Heat that has entered concrete in 1000 s is calculated using Eq. 5.31 as

qs(concrete) = 2 × 1.06×100

√
1000

π × 5.19 × 10−7
= 5.25 × 106 J/m2

=5.25 MJ/m2

From the given data, the thermal diffusivity of aluminum is

αa = 237

2702 × 903
= 9.71 × 10−5 m2/s

Hence the heat that has entered aluminum in 1000 s is calculated as

qs(aluminum) = 2 × 237 × 100

√
1000

π × 9.71 × 10−5
= 85.82 × 106

= 85.52 MJ/m2

Fig. 5.7 Surface heat flux in
concrete and aluminum of
Example 5.2
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Semi-infinite Solid Subject to Constant Heat Flux at its Surface

This case is easily realized in practice. A very large solid medium may be subject
to step heating at its surface by turning on very rapidly a radiant source like a laser
or a lamp. As explained earlier, the process may be assumed to be that in a semi-
infinite solid if the thickness of the solid is larger than the depth of penetration. The
governing equation, for this problem, is again the one-dimensional heat Eq. 5.18.
The boundary conditions are specified as follows:

q = qs at x = 0; T → 0 as x → ∞ for all t (5.32)

The initial condition, of course, is as indicated in Fig. 5.8. The boundary condition
at x = 0 can be rewritten in terms of T , using Fourier law, as

q(0, t) = −k
dT

dx

∣∣∣∣
x=0

(5.33)

Based on Fourier law, we also know that

q(x, t) = −k
dT

dx

∣∣∣∣
x

(5.34)

We differentiate Eq. 5.18 with respect to x to get

α
∂

∂x

(
∂2T

∂x2

)
= α

∂3T

∂x3
= ∂T

∂x∂t

Noting from Eq. 5.34 that ∂T
∂x = − q

k , and noting that order of taking the indicated
derivative on the right-hand side may be interchanged, the above equation may be
written down as

α
∂2q

∂x2
= ∂q

∂t
(5.35)

Fig. 5.8 Semi-infinite solid
subject to constant heat flux
at the surface



5.2 One-Dimensional Transient Conduction 167

Mathematically, Eq. 5.35 along with the conditions (5.32) are the same as those
encountered in the problem with step change in temperature. (The clue is, wherever
q appears, replace it by T and we get the equation applicable for the previous case).
Hence we conclude that the solution must be

q = qserfc η (5.36)

where η is, the now familiar, similarity variable.Wewould like, however, to obtain the
solution to the temperature field. This may be accomplished by substituting Eqs. 5.34
in 5.36 to get

−k
∂T

∂x
= qs

⎡
⎣1 − 2√

π

η∫

0

e−η2
dη

⎤
⎦

This may be integrated once with respect to x to get

T = −qs
k

x∫

0

⎡
⎣1 − 2√

π

η∫

0

e−η2
dη

⎤
⎦ dx + C

where C is a constant of integration. Noting that T → 0 as x → ∞, we have

0 = −qs
k

∞∫

0

⎡
⎣1 − 2√

π

η∫

0

e−η2
dη

⎤
⎦ dx + C

From the above two equations, we may eliminate C and get

T = qs
k

∞∫

x

⎡
⎣1 − 2√

π

η∫

0

e−η2
dη

⎤
⎦ dx

We note that integration with respect to x would mean that we hold t fixed. Thus,
using the definition of η, we have

dx = 2
√

αtdη
∣∣∣
t

Therefore we write the above as

T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qs
k

∫ ∞

η

[
1 − 2√

π

∫ η

0
e−η2

dη

]
dη

︸ ︷︷ ︸
I

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
2
√

αt
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Integral I within the flower braces may be obtained by repeated use of integration
by parts.

I = η

[
1 − 2√

π

∫ η

0
e−η2

dη

]∣∣∣∣
∞

η︸ ︷︷ ︸
As η→∞ these terms go to zero

−
∞∫

η

η

{
− 2√

π
e−η2

}
dη

= −ηerfc η + 2√
π

∞∫

η

ηe−η2
dη = −ηerfc η + 1√

π
e−η2

(5.37)

Hence, we have the temperature field within the solid as

T = qs
k

× 2
√

αt

[
−ηerfc η + 1√

π
e−η2

]
= qs

k

[√
4αt

π
e−η2 − x erfc η

]

(5.38)

It is interesting to note that the surface temperature of the medium is given by

(a) Ts = qs
k

√
4αt

π
or (b) Ts = qs

√
4t

πρck
(5.39)

Example 5.3

Consider a semi-infinite solid subjected to a constant surface heat flux of 1000W/m2

for t > 0. Obtain an expression for the surface temperature as a function of time
for two materials: (a) Concrete and (b) Aluminum. Use the property values given in
Example 5.2. Make a plot of surface temperature versus time for the two materials.

Solution:
The surface temperature is given by expression (5.39). The property values are sub-
stituted to get the surface temperature in the two cases. Surface heat flux has been
specified as qs = 1000 W/m2. Using Eq. 5.39(b), the surface temperature variation
with time may be recast as Ts = K

√
t where K = 2qs/

√
πρck.

In case of concrete and aluminum, the constant K = Kc is and K = Ka are
given by

Kc = 2 × 1000/
√

π × 2150 × 950 × 1.06 = 0.767 ◦C/s
1
2



5.2 One-Dimensional Transient Conduction 169

Ka = 2 × 1000/
√

π × 2702 × 903 × 237 = 0.047 ◦C/s
1
2

It is thus seen that aluminum showsmuch less temperature increase at its front surface
as compared to concrete.

Figure 5.9 shows the plot of surface temperature history for the two materials.

Examples 5.2 and 5.3 have considered the transient response of twomaterials for two
different boundary conditions. Concrete is classified as a poor thermal conductorwith
a low thermal diffusivity (α = 5.19 × 10−7 m2/s) while aluminum is classified as a
good conductor with high thermal diffusivity (α = 9.71 × 10−5 m2/s). Note that the
thermal diffusivity of aluminum is roughly 165 times the thermal diffusivity of con-
crete. In the case of step change in surface temperature, the heat entering aluminum
(actually the heat that has to be supplied to maintain the surface temperature at the
indicated value) is much larger than that in the case of concrete. Thermal diffusion is
a process that spreads the heat within the medium. The larger the thermal diffusivity
more rapid is the spreading process. In the second case where the surface flux is
maintained at a constant value, because the spreading is more rapid in the case of
aluminum, the surface temperature increases gradually. Concrete, on the other hand,
does not transmit the heat rapidly into the bulk and hence the surface temperature
increases very rapidly. The incident heat is stored right close to the front surface!
People living in the tropics prefer houses with thick mud walls for the simple reason
that these keep the solar heat out and keep the interior cool. The reader is encouraged
to look for other examples!

Semi-infinite solid with periodic surface temperature variation
Problems with periodic heating occur in geophysical applications. The variation of
the temperature below the earth’s surface, due to daily, seasonal, annual, and long-
term variations of temperature at its surface may bemodeled this way. The governing
equation is the same as Eq. 5.18. Initially the solid is at T = 0 throughout. For t > 0,

Fig. 5.9 Surface
temperature history in
concrete and aluminum
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a sinusoidal temperature variation is imposed at the surface according to the relation.

T (0, t) = Ts sinωt (5.40)

Obviously, there will be an initial period in which a transient (see Chap. 3) will
prevail in the solid. After a sufficiently long time, the solution should tend to a
periodic variation of temperature throughout the solid. One expects the amplitude
to decrease with depth x with a depth-dependent phase lag. We may assume that
the solution should have the same period (this is so since the governing equation is
linear) and hence we seek a solution of the form.

T (x, t) = Tse
−Ax sin(ωt − Bx) (5.41)

where A and B are positive and real constants to be determined. The form chosen for
the solution automatically satisfies the boundary and the other conditions specified
above. From Eq. 5.41, the following may be obtained:

∂T

∂x
= −ATse

−Ax sin(ωt − Bx) − BTse
−Ax cos(ωt − Bx)

∂2T

∂x2
= A2Tse

−Ax sin(ωt − Bx) + 2ABTse
−Ax cos(ωt − Bx)

−B2Tse
−Ax sin(ωt − Bx)

∂T

∂t
= ωTse

−Ax cos(ωt − Bx)

Substituting these in Eq. 5.18, canceling the common factor e−Ax and grouping terms,
we get

α[(A2 − B2) sin(ωt − Bx) + 2AB cos(ωt − Bx)] = ω cos(ωt − Bx) (5.42)

This equation will hold for any t and x only if the coefficients of “sin” and “cos”
terms individually balance on the two sides. Thus

A2 − B2 = 0 or A = B (5.43)

2ABα = ω or 2A2α = ω or A =
√

ω

2α
(5.44)

Thus the solution is

T

Ts
= e−x

√
ω
2α

Depth dependent
attenuation

sin

(
ωt −

√
ω

2α
x

Depth dependent
phase lag

)
(5.45)
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Table 5.3 Response to periodic surface temperature variation

Material α, m2/s α, m2/h t∗, h Attenuation

Aluminum 8.39×10−5 0.302 2.5 0.52

Steel 1.17×10−5 0.042 6.7 0.17

Clay 1×10−6 0.0036 23 0.0024

Wood 1.19×10−7 0.00043 66 2.6×10−8

The exponential term indicates attenuation with depth while the oscillatory term
shows a depth-dependent phase lag. Table 5.3 shows what happens when the period
of the wave is 24 h and the depth inside the medium from the surface is 1 m. The
attenuation as well as the phase lag depend strongly on the thermal diffusivity of the
medium.Wemay define a time lag t∗ such that the phase lag isωt∗. Thus t∗ is given by

t∗ = 1

ω

√
ω

2α
x = x√

2αω
(5.46)

In the case presented in Table 5.3, the time lag is t∗ = 1√
2αω

since x = 1 m.

Example 5.4

The temperature below the ground is affected by the daily variations of temperature
above it. The period of the daily variation may be taken as 24 h. The amplitude of the
variation of the temperature at the surface is taken as the unit. The material of the top
layers is known to be gravelly sand with a thermal diffusivity of 1.403 × 10−7 m2/s.
Determine the depth at which the temperature amplitude is just equal to 5% of the
amplitude at the surface. What is the time lag at this depth? Make a plot of the
response at a depth of 0.1 m below the surface. Assume that the problem may be
treated using the semi-infinite solid model and that there is no internal heat source
below the ground.

Solution:
Since the problem involves the time scale of the order of hours the problem is solved
using time in hours. The thermal diffusivity needs to be converted to m2/h. This
may be done as follows.

α = 1.403 × 10−7 × 3600 = 5.05 × 10−4 m2/h

Let x5% be the depth at which the amplitude is 5% of that at the ground level. The
period of oscillation is given as T = 24 h. The circular frequency of the oscillation
ω is then given by

ω = 2π

T
= 2π

24
= 0.262 rad/h
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We then have
T

Ts
= 0.05 = e−√

ω
2α x5%

Taking natural logarithms, we get

x5% = − ln 0.05√
ω
2α

= − ln 0.05√
0.262

2×5.05×10−4

= 0.186 m

The time lag at this depth is calculated using Eq. 5.46 as

t∗5% = x5%√
2αω

= 0.186√
2 × 5.05 × 10−4 × 0.262

= 11.434 h

Now consider the state of affairs at a depth of x = 0.1 m. The amplitude at this depth
is given by

T0.1m
Ts

= e
−0.1×

√
0.262

2×5.05×10−4 = 0.2

The time lag at this depth is calculated as

t∗0.1m = 0.1√
2 × 5.05 × 10−4 × 0.262

= 6.147 h

The response at this depth is then given by

T0.1m
Ts

= 0.2 sin[0.262(t − 6.147)]

where t is in h. This is plotted in Fig. 5.10 along with the input, i.e., the temperature
variation at the surface.

Fig. 5.10 Surface and
sub-surface temperature
histories in Example 5.3
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Example 5.4 shows that the amplitude decays rapidly with depth for a medium with
low thermal diffusivity. Cave dwellers (in Australia, China, and elsewhere) take
advantage of this fact to keep themselves away from large temperature fluctuations
that take place above the ground. Caves also keep away the overground noise.

5.2.2 Approximate Integral Method Due to Goodman

One-dimensional transient in a semi-infinite solid has been shown to exhibit a sim-
ilarity solution in two different cases considered in Sect. 5.2.1. For example, we
have alluded to an analogy with a slab problem in the case of the transient with a
step change in surface temperature. An approximate method of solution based on an
integral formulation is possible, and was exploited for the first time, by Goodman.
Hence the method is known as Goodman’s integral method. Consider the state of
affairs shown in Fig. 5.11. The case corresponds to a semi-infinite solid subject to
a step change in temperature at its surface, for t > 0. The initial temperature of the
solid is zero throughout, it being the datum value, as mentioned earlier. At some
positive time, t the temperature variation is as indicated by the dashed curve, with
the depth of penetration being δ(t). A little later, at t + δt the depth of penetration
has increased by dδ = dδ

dt dt and the temperature profile has changed as shown by the
full curve. Let us look at the total energy contained in the solid.

The change in energy contained in the solid may be written in two parts. The
first part is due to the change in temperature everywhere in the interval 0 ≤ x ≤ δ(t)
given by

T (x, t + dt) − T (x, t) ≈ ∂T

∂t
dt

The first part of increase in energy is thus given by

dE

dt

∣∣∣∣
I

= ρc
d

dt

δ∫

0

T dx (5.47)

Fig. 5.11 Sketch used in
arriving at the integral
method
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The second part is due to the fact that δ has increased by dδ and hence has brought
an extra thickness of material in to the heated zone. The rate of energy change due
to this may be written as

dE

dt

∣∣∣∣
I I

≈ dδ

dt
�T (5.48)

The integral has been replaced by a product because the change in δ is a differential
quantity. The temperature change indicated, i.e., �T is in the region δ(t) ≤ x ≤
δ(t + dt) and is, in fact, zero since the temperature has the datum value beyond δ.
Hence the rate of energy change for the second part is zero. The rate of energy change
within the heated zone of the solid is hence given by Eq. 5.47 itself.

This rate of change of energy contained within the solid must have been brought
about by qs , the heat transfer at the surface (note that there is no heat transfer at δ).
Using Fourier law, we thus have

ρc
d

dt

δ∫

0

T dx = qs = −k
∂T

∂x

∣∣∣∣
x=0

(5.49)

Equation 5.49 is the starting point for the approximate method due to Goodman.2

The above equation itself is exact. The approximation involves the use of an assumed
temperature profile in the interval 0, δ in the form T (x, t) = T (y)where y = x

δ
. The

assumed profile may be in the form of a suitable polynomial in y. The coefficients
of the polynomial are pure numbers that will be determined partly by the boundary
conditions and partly by extra or auxiliary conditions, as we shall see below. The
depth of penetration is itself determined as a solution to the integral equation (5.49).

Approximate solution using a polynomial
We demonstrate the approximate solution method by using a second-degree polyno-
mial (i.e., a quadratic) in the form

T (y) = Ay2 + By + C (5.50)

At y = 0 the temperature is specified as T = Ts and hence C = Ts . At x = δ, y = 1
and T = 0 = A + B + C = A + B + Ts . We need one more condition to determine
all the coefficients. We assume that the profile joins smoothly the datum value at
y = 1 and hence require dT

dy = 0 there. Thus, we have, 2A + B = 0 or B = −2A.

2T. R. Goodman, Application of integral methods to transient nonlinear heat transfer, Advances in
Heat Transfer (T. F. Irvine and Hartnett J. P., Eds.), Academic Press, N.Y., Vol. I, pp. 51–122, 1964.
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This in the previous condition gives A − 2A + Ts = 0 or A = Ts . Hence we also
have B = −2A = −2Ts . The polynomial eventually becomes

T (y) = Ts(y
2 − 2y + 1) = Ts(1 − y)2 (5.51)

We may now obtain the integral in Eq. 5.49 as

δ∫

0

T dx = δ

1∫

0

T (y)dy = δ

1∫

0

Ts(1 − y)2dy = −Tsδ
(1 − y)3

3

∣∣∣∣
1

0

= Tsδ

3
(5.52)

Using Eq. 5.51, we also have

∂T

∂x

∣∣∣∣
x=0

= 1

δ

dT

dy

∣∣∣∣
y=0

= −2Ts
δ

(5.53)

Substituting Eqs. 5.52 and 5.53 in the integral equation we have

ρc

3

dδ

dt
= k

2

δ
or δ

dδ

dt
= 6α (5.54)

where the thermal diffusivity α makes its appearance. The above is a first-order
ordinary differential equation in variable separable form. It may be integrated with
the initial condition δ(t = 0) = 0 to get

δ = √
12αt (5.55)

With this, the variable y becomes

y = x√
12αt

(5.56)

Using Eq. 5.53, we then have

qs = k
2Ts
δ

= kTs√
3αt

(5.57)

It is interesting to compare thiswith the exact value given byEq. 5.30. The percentage
error due to the approximation may be calculated as

Error % =
qs

(approximate)

− qs
(exact)

qs
(exact)

× 100 =

(
1√
3

− 1√
π

)
(

1√
π

) × 100 = 4.72% (5.58)
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Fig. 5.12 Comparison of
approximate temperature
profile with the exact
temperature profile

Also the depth of penetration has an error given by

Error % =
δ

(approximate)

− δ
(exact)

δ
(exact)

× 100 =
√
12 − 3.6

3.6
× 100 = −3.8% (5.59)

Even though the approximate integral solution used a very simple profile the errors
in both quantities are rather small! Finally, we compare the approximate quadratic
temperature profile with the exact profile in Fig. 5.12. The abscissa is x/δ where
δ = √

12αt . The ordinate shows the normalized nondimensional temperature θ = T
Ts
.

The quadratic approximate profile appears to be a good representation of the tem-
perature profile!

5.2.3 One-Dimensional Transient Problem: Space Domain
Finite

One-dimensional transient conduction may occur in a slab of finite thickness or
a bar of material that is insulated perfectly over the lateral surface. In both cases,
appropriate boundary conditions are to be specified alongwith the initial temperature
profile within the slab or the bar. Figure 5.13 shows the nomenclature appropriate to
this case. Equation 5.18 is the governing equation for this problem also. The initial
and boundary conditions that will be considered here are given below.

Initial condition: Boundary conditions:
T (x, 0) = f (x) T (0, t > 0) = 0, T (L , t > 0) = 0

(5.60)
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Fig. 5.13 Nomenclature for one-dimensional transient in a finite domain a Slab geometry b Bar
geometry: bar is of uniform cross section

Thus both faces of the slab (or the two ends of the bar) are specified with the same
temperature for t > 0, which is also taken as the datum value.

The technique of separation of variables is used to obtain the solution to the
problem. For this purpose, seek a solution in the form of a product of two functions.

T (x, t) = F(x) × G(t) (5.61)

Denoting derivative with respect to t by a “dot” (i.e., Ġ means dG
dt ) and with respect

to x by a “prime” (i.e., F ′ means dF
dx and F ′′ means d2F

dx2 ), the governing equation
becomes

FĠ = αGF ′′ or
Ġ

αG
= F ′′

F
(5.62)

It is obvious that Ġ
αG is a function of “t” only and F ′′

F is a function of “x” only. Hence,
each of these must be equal to a constant if Eq. 5.62 should make sense. Let us call
this constant a “separation constant” and let it equal −p2. This choice assures that
the separation constant is negative since p2 is always positive for real p. The reason
why the separation constant should be negative will become clear later on. Then
Eq. 5.62 becomes equivalent to two ordinary differential equations given by

(a) Ġ + αp2G = 0 (b) F ′′ + p2F = 0 (5.63)

From Eq. 5.63(a) we have, on integration with respect to t ,

G = C ′e−αp2t (5.64)

whereC ′ is a constant of integration. Separation constantwas indeed taken as negative
so that G (t) would decrease with time! The second-order equation governing F
(Eq. 5.63(b)) may be integrated easily as



178 5 Multidimensional Conduction Part I

F = A′ sin(px) + B ′ cos(px) (5.65)

where A′ and B ′ are constants of integration. Now let us look at the boundary con-
ditions. The boundary condition at x = 0 requires that F(0).G(t) = 0 (for t > 0).
This is possible only if F(0) = 0. This means that B ′ = 0. The boundary condition at
x = L , requires A′ sin(pL) = 0. This is satisfied by a multiplicity of p values given
by pnL = nπ where n is an integer. Hence the separation constant has an infinity of
values given by

pn = nπ

L
, n = 1, 2, . . . ,∞ (5.66)

Each of the pn is known as an eigenvalue of the second-order ordinary differential
equation (5.63(b)). Since every value of pn gives a solution of form (5.65), the general
solution must be of the form

Fn = A′
n sin(pnx) = A′

n sin
(nπx

L

)
(5.67)

Since each such solution satisfies both boundary conditions, the most general solu-
tion to the second-order ODE for F(x) must be given as a linear sum of the form
(superposition of solutions for a linear ODE)

F(x) =
∞∑
n=1

A′
n sin

(nπx

L

)
(5.68)

and hence the solution to the one-dimensional heat equation should be

T (x, t) =
∞∑
n=1

Ane
−α
(

nπ
L

)2
t sin

(nπx

L

)
(5.69)

where An = A′
nC

′
n . Lastly we look at the initial condition. At t = 0, the exponential

term becomes unity, and hence we require that

T (x, 0) = f (x) =
∞∑
n=1

An sin
(nπx

L

)
(5.70)

Equation 5.70 is just the Fourier series representation of f (x) in the interval 0 < x <

L . The Fourier coefficients or weights An may be obtained by using the orthogonal
property of sin

(
nπx
L

)
in the interval 0 < x < L .

Orthogonality property
Consider the following integral:

Imn =
L∫

0

sin
(nπx

L

)
sin
(mπx

L

)
dx (5.71)
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When m �= n, we have, using trigonometric identities,

Imn =
L∫

0

[
cos

{
(m − n)πx

L

}
− cos

{
(m + n)πx

L

}]
dx

=

[
sin
{

(m−n)πx
L

}
(m−n)π

L

− sin
{

(m+n)πx
L

}
(m+n)π

L

] ∣∣∣∣
L

0

2
= 0 (5.72)

However, when m = n, using trigonometric identities, we have

Inn =
L∫

0

sin2
(nπx

L

)
dx =

L∫

0

[
1 − cos

(
2nπx

L

)]
dx

=

[
x − sin( 2nπx

L )
2nπ
L

] ∣∣∣∣
L

0

2
= L

2
(5.73)

Equations 5.72 and 5.73 embody what is known as the orthogonal property of the
function sin

(
nπx
L

)
over the interval 0 < x < L .

Evaluation of Fourier coefficients
Evaluation of the coefficients An is straightforward, based on the orthogonal property
of the sinusoidal function over the interval 0 < x < L . If we multiply Eq. 5.70 by
sin
(
mπx
L

)
and integrate with respect to x between x = 0 and x = L , only one term

survives in the summation, viz., the term corresponding to m = n. All other terms
vanish. Hence it is easy to see that we should have

An = 2

L

L∫

0

f (x) sin
(nπx

L

)
dx (5.74)

The solution to the problem will then be given by

T (x, t) =
∞∑
1

e− αn2π2 t
L2

⎡
⎣ 2

L

L∫

0

f (x) sin
(nπx

L

)
dx

⎤
⎦ sin

(nπx

L

)
(5.75)
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Example 5.5

A bar of length L of uniform cross section is perfectly insulated over its lateral
surface. The bar is initially at a constant temperature of T0 throughout. For t > 0,
the two ends of the bar are maintained at zero temperature. Obtain the solution to
the problem using Eqs. 5.74 and 5.75. Discuss the nature of the solution specifically
with respect its dependence on time.

Solution:

Step 1 In this case f (x) = T0 in the interval 0 < x < L . The Fourier coefficients
are obtained using Eq. 5.74 as

An = 2

L

L∫

0

T0 sin
(nπx

L

)
dx = 2T0

L

{
− cos

(
nπ
L

)
nπ
L

} ∣∣∣∣
L

0

= 2T0
nπ

[1 − cos(nπ)]

But cos(nπ) = −1 for odd values of n and cos(nπ) = 1 for even values
of n. Hence, An will be zero whenever n is even and will be 4T0

nπ
whenever

n is odd. The solution to the temperature field in the bar then becomes,
using Eq. 5.75

T (x, t) = 4T0
π

∞∑
n=1,3,5...

sin
(
nπx
L

)
n

e− αn2π2 t
L2 (5.76)

Step 2 Solution (5.76) may be recast in nondimensional form by introducing the
following nondimensional variables:

Non-dimensional temperature: θ = T (x,t)
T0

Non-dimensional x co-ordinate: ξ = x
L

Non-dimensional time or Fourier number: Fo = αt
L2

Then Eq. 5.76 takes the form

θ(ξ, Fo) =
∞∑

n=1,3,5...

sin(nπξ)

nπ
e−n2π2Fo (5.77)

Step 3 In order to discuss the behavior of the solution we consider the mid-plane
temperature (i.e., at x = L

2 or ξ = 0.5) variation with Fourier number.
Since the result (5.77) is in its nondimensional form, it is applicable to
any material. We compare a one-term approximation with the exact in
Fig. 5.14. The one-term approximation truncates the series with just the
first term and hence is given by
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θ(ξ, Fo) ≈ sin(πξ)

π
e−π2Fo

It is seen from the plot that a one-term approximation is an excellent
representation of the solution for Fo > 0.04 or thereabouts. The one-term
approximation is also referred to as the fully developed profile since the
shape of the profile in the interval 0 < ξ < 1 remains sinusoidal (and hence
invariant) with the amplitude alone varying with Fo.

The Fourier numbermay be interpreted as the ratio of actual time and a refer-
ence or a characteristic time, determined by the size and the material property,
the thermal diffusivity. Thus Fo = t

tch
where tch = L2

α
is a characteristic time

determined by the physical size L of the bar and thermal diffusivity α of the
material. The state of affairs for Fo < 0.04 may be termed as the short time
solution, i.e., solution for time much smaller than the characteristic time. In
this region all or many terms in the Fourier summation contribute significantly
to the solution, for a given ξ. However, when the time is larger than the charac-
teristic time the first term alone contributes to the solution. This is because of
the fact that exponential terms involving e−n2π2Fo ≈ e−10n2Fo fall off rapidly.

Example 5.5, incidentally, has also demonstrated how a Fourier series can represent
a periodic function. Fig. 5.15 indicates how the function f (x) = 1 is approximated
by the summation of Fourier components. The figure shows the result of truncating
the summation with a given number of terms. The function is approximated crudely
whenwe use only a few terms. Large amplitude oscillations are present.When a large
enough number of terms are included (maximum of 20 terms are shown in the figure)
the oscillations die out and the function is well represented by the Fourier sum, for

Fig. 5.14 Mid-plane
temperature history in the bar
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Fig. 5.15 Fourier series
approximation of f (x) = 1

the most part of the interval. However, there will always be some oscillations (the
approximate value is more than 1 or less than 1) near the two ends of the domain (near
x = 0 and x = L) as seen in the figure. This is referred to as Gibb’s phenomenon.3

Example 5.6

Consider the bar in worked Example 5.5 to be made of (a) concrete and (b) alu-
minum. The length of each bar is given as L = 0.1 m. The thermal diffusivity of
concrete and aluminum are αc = 5.19 × 10−7 m2/s and αa = 9.71 × 10−5 m2/s,
respectively. Determine the time beyond which the one-term approximation is valid,
in these two materials.

Solution:
Concrete: The characteristic time is

tch−c = L2

αc
= 0.12

5.19 × 10−7
= 19268 s

As indicated earlier, the one-term approximation is valid beyond a critical value of
Focrit = 0.04. In the case of concrete, the actual time that corresponds to the limiting
value of Fourier number is

tc = Focrit × tch−c = 0.04 × 19268 = 770.7s ≈ 13 min

Aluminum: The characteristic time is

tch−a = L2

αa
= 0.12

9.71 × 10−5
= 103 s

3After Josiah Willard Gibbs (1839–1903) an American scientist.
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In the case of aluminum, the actual time that corresponds to the limiting value of
Fourier number is

ta = Focrit × tch−a = 0.04 × 103 = 4.12 s

In order to further clarify the state of affairs, we calculate the first three terms at
t = 770.7 s in the case of concrete or t = 4.12 s in the case of aluminum. The
exponential terms containing Fo are given by

First term: e−π2×0.04 = 0.673825
Second term: e−9π2×0.04 = 0.028637
Third term: e−25π2×0.04 = 5.172319 × 10−5

We note that the exponential factors diminish very rapidly. Thus, we have

θ(ξ, 0.04) = 4

π

[
0.673825 sin(πξ) + 0.028637

3
sin(3πξ) +

5.172319 × 10−5

5
sin(5πξ) + · · ·

]
≈ 0.85794 sin(πξ)

The error in using the one-term approximation is not more than 1.4%! Thus, we see
that the solution reduces to a sinusoidal profile in as little as 4.2 s from the start, in
the case of the aluminum bar.

5.3 Steady Conduction in Two Dimensions

Many practical problems of interest to the thermal engineer, under the steady state,
exhibit two-dimensional temperature fields. The solution to these problems basically
involves the solution of either the Laplace equation or Poisson equation in two dimen-
sions. Typical but important problems that fall into this category are considered here.

5.3.1 Steady Conduction in a Rectangle

Consider a rectangular block of material as shown in Fig. 5.16. The boundary condi-
tions are specified, for the so-called standard problem, as shown in this figure. The
lower edge of the rectangle is maintained at unit temperature and all the other edges
are maintained at zero temperature. The equation governing the temperature field is
the Laplace equation in two dimensions (Cartesian form) assuming that there is no
internal heat generation.

∂2T

∂x2
+ ∂2T

∂y2
= 0 (5.78)
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Fig. 5.16 Steady conduction
in two dimensions; the
standard problem with a
rectangular domain

This equation may be solved by separation of variables technique. The procedure is
similar to the one used in the case of one-dimensional transient in a finite bar. We
seek the solution in the form of a product function

T (x, y) = F(x) × G(y) (5.79)

Substitute (5.79) in (5.78), divide through by F × G and rearrange to get

1

F

d2F

dx2
= − 1

G

d2G

dy2
= −p2 (5.80)

where p2 is again a separation constant. The negative sign used with the separation
constantwill be justified in due course. Equation 5.80 is equivalent to the twoordinary
differential equations given by

(a)
d2F

dx2
+ p2F = 0 (b)

d2G

dy2
− p2G = 0 (5.81)

The solution to Eqs. 5.81(a) and (b) are seen to be

(a) F(x) = A sin(px) + B cos(px) (b) G(y) = C sinh(py) + D cosh(py)
(5.82)

where A, B,C, D are constants of integration.
We now look at the boundary conditions. T should vanish on line x = 0 as well

as on line x = a. This means that F must vanish for x = 0 and x = a. Obviously
this will require B = 0 and p = nπ

a where n is an integer. Thus Eq. 5.82(a) may be
rewritten as

Fn(x) = An sin
(nπx

a

)
(5.83)

Since at y = 0, T = 1 (in the interval 0 < x < a) F(x) × G(0) = 1. We can satisfy
this if we take F(x) = 1 and G(0) = 1. With this, borrowing the results from the
solution leading to Eq. 5.76, An are given as 4

nπ
for odd values of n and 0 for even

values of n. With this we have
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T (x, y) = 4

π

∞∑
n=1,3,5...

1

n
sin
(nπx

a

) [
Cn sinh

(nπy

a

)
+ Dn cosh

(nπy

a

)]
(5.84)

Since G(0) = 1, Dn = 1 will satisfy the required condition that T = 1 on y = 0.
However on y = b, we have

T (x, b) = 4

π

∞∑
n=1,3,5...

1

n
sin
(nπx

a

) [
Cn sinh

(
nπb

a

)
+ cosh

(
nπb

a

)]

Term=0,for each n

= 0

(5.85)
The term shown with underbracket is set to zero to get Cn as

Cn = −cosh
(
nπb
a

)
sinh

(
nπb
a

) (5.86)

We substitute this back in Eq. 5.84 to get

T (x, y) = 4

π

∞∑
i=1,3,5...

1

n
sin
(nπx

a

)[
−cosh

(
nπb
a

)
sinh

( nπy
a

)
sinh

(
nπb
a

) + cosh
(nπy

a

)]

Simplified as shown in Eq. 5.87

The term shown with underbracket may be simplified and recast, using identities
involving hyperbolic functions. The temperature distribution then takes the final form

T (x, y) = 4

π

∞∑
n=1,3,5...

1

n
sin
(nπx

a

) sinh { nπ(b−y)
a

}

sinh
(
nπb
a

) (5.87)

Figure 5.17 shows the isotherm pattern, wherein the bottom edge is maintained
at 100 ◦C while all the other edges are at 0 ◦C. The ratio b/a = 1 in the case shown.

5.3.2 Steady Conduction in a Rectangle With Heat
Generation

When internal heat generation is included the governing equation becomes non-
homogeneous and is given by the Poisson equation (5.16). Consider a rectangular
domain of width 2L and height 2l (unit thickness in a direction perpendicular to the
plane of the figure) as shown in Fig. 5.18. Uniform volumetric heat generation at rate
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Fig. 5.17 Isotherms in the
standard problem.
Temperatures are in ◦C

Fig. 5.18 Rectangular
domain with heat generation

G takes place throughout the domain. All the boundaries are maintained at the datum
value that has been taken as zero. The origin is placed at the center of the domain
as shown in the figure. This case is amenable to solution by using the superposition
principle and the method of separation of variables.

The equation to be solved is written down again for convenience as

∂2T

∂x2
+ ∂2T

∂y2
+ G

k
= 0 (5.88)

The boundary conditions are specified as

(a) T (x = −L ,−l ≤ y ≤ l) = 0; (b) T (x = L ,−l ≤ y ≤ l) = 0;
(c) T (−L ≤ x ≤ L , y = −l) = 0; (d) T (−L ≤ x ≤ L , y = l) = 0 (5.89)

Let us assume that the solution to Eq. 5.88 is given by4

T (x, y) = ψ(x, y) + φ(x) (5.90)

4Alternately we may take T (x, y) = ψ(x, y) + φ(y).
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Substitute Eq. 5.90 in Eq. 5.88 to get

d2φ

dx2
+ ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ G

k
= 0 (5.91)

Equation 5.91 may be written down as two equations given by

(a)
d2φ

dx2
+ G

k
= 0; (b)

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0 (5.92)

The boundary conditions given by Eqs. 5.89(a)–(d) may be satisfied by the following
set of conditions:

(a) φ(−L) = 0 (b) φ(L) = 0
(c) ψ(−L ,−l ≤ y ≤ l) = 0 (d) ψ(L ,−l ≤ y ≤ l) = 0
(e) ψ(−L ≤ x ≤ L ,−l) = −φ(x) (f) ψ(−L ≤ x ≤ L , l) = −φ(x)

(5.93)

Equation 5.92(a) may easily integrated to get φ(x) = Ax + B − Gx2

2k , where A and
B are constants of integration. Using the boundary conditions given by Eqs. 5.93(a)
and (b), the two constants may be obtained, respectively, as A = 0 and B = GL2

2k .
With this φ(x) is given by

φ(x) = GL2

2k

[
1 −

( x
L

)2]
(5.94)

We may use the method of separation of variables to obtain ψ(x, y). The details are
not given here because the steps are similar to those used in Sect. 5.3.1. The general
solution may be written down as

ψ(x, y) =
∞∑
0

an cos(λnx) cosh(λn y) (5.95)

where the eigenvalues satisfy the condition (to satisfy the boundary conditions
(5.93)(c) and (d))

cos(λn L) = 0 or λn L = (2n + 1)π

2
, n = 0, 1, 2 . . . ∞ (5.96)

Note that both φ(x) and cos(λnx) are even functions of x . To satisfy the boundary
conditions given by Eqs. 5.93(e) and (f), we should have

∞∑
0

an cos(λnx) cosh(λnl) = −GL2

2k

[
1 −

( x
L

)2]
(5.97)

Again we make use of orthogonality property of the cosine function over the interval
(−L , L) to obtain the coefficients an . Thus we will be expressing the solution in
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terms of Fourier cosine series. Avoiding long intermediate steps, we directly give the
expression for an as

an = −4(−1)n

(λn L)3

GL2

2k

1

cosh(λnl)
(5.98)

Example 5.7

A very long bar of a material of thermal conductivity k = 2.5 W/m K has a
square cross section of side L = l = 0.1 m. Heat is generated at a uniform rate
of G = 104 W/m3 inside the bar. All the surfaces of the bar are maintained at a
temperature of T = 0. Determine the temperature at x = y = 0; x = 0.05, y = 0;
x = 0, y = 0.05; and x = 0.05, y = 0.05 where all lengths are in m.

Solution:
Evaluation of the desired temperatures are based on the solution presented above.
With the data specified in the problem, reference temperature due to heat generation
is calculated as

Tref = GL2

2k
= 104 × 0.12

2 × 2.5
= 20 K

The function φ(x) is then given by Eq. 5.94 as

φ(x) = 20

[
1 −

( x

0.1

)2]

The temperatures required to be calculated at different locations specified in the
problem require the summation of Fourier series to obtain ψ(x, y). Consider the
location x = y = 0 that is at the center of the square cross section. Both the cos and
cosh functions are unity at this point. Hence the function ψ(0, 0) =∑∞

0 an where
an are given by Eq. 5.98. For convergence to 5 digits after the decimal point 3 terms
in the series are adequate. These are shown in the table below.

n λn L an
0 1.570796 −8.226191
1 4.712389 0.013734
2 7.853982 −0.000128
Sum of three terms = −8.21258

Hence the temperature at x = 0, y = 0 is obtained as

T (0, 0) = ψ(0, 0) + φ(0) = −8.21258 + 20 = 11.787417 ≈ 11.79 ◦C

Similarly temperatures at other locations specified in the problem are obtained. The
cosine and hyperbolic cosine factors are to be used appropriately. As an example,
the calculations are shown for x = y = 0.05 in the following tabulation:
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n λn L an Fourier terms
0 1.570796 −8.226191 −7.704980
1 4.712389 0.013734 −0.051691
2 7.853982 −0.000128 0.002301
3 10.995574 0.000002 0.000174
4 14.137167 0.000000 −0.000017
5 17.278760 0.000000 −0.000002
Sum of five terms = −7.75421

Hence the temperature at x = 0.05, y = 0.05 is obtained as

T (0.05, 0.05) =ψ(0.05, 0.05) + φ(0.05)

= −7.75421 + 20

[
1 −

(
0.05

0.1

)2
]

≈ 7.25 ◦C

It is left as an exercise to the reader to show that the temperatures at the other two
points specified in the problem are the same and equal to 9.17 ◦C. We show in
Fig. 5.19a, b the temperature variations along two directions. First direction is along
x, y = 0 or y, x = 0. The second direction is along direction x = y that passes
through origin. Note that the coordinates are non-dimensionalized with L as the
characteristic length. r in Fig. 5.19b is defined as r = √x2 + y2 = x

√
2 = y

√
2.

Fig. 5.19 Temperature profiles in Example 5.7
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5.3.3 Steady Two-Dimensional Conduction in Cylindrical
Co-Ordinates

Elementary solution to Laplace equation in cylindrical coordinates
Many interesting and important thermal applications involve heat transfer in cylin-
drical coordinates. A case that has already been considered in Chap. 2 is that of
steady radial conduction in a cylinder. In that special case the problem reduced to
that in one dimension. We have seen that the isotherms and heat flux lines in a cylin-
der are disposed as shown in Fig. 5.20a. We have seen that the temperature varies
as the natural logarithm of r . The heat flux lines are obviously radial lines and are
specified by lines of constant θ. The solution is, in fact, an elementary solution to
Laplace equation in two dimensions and in cylindrical coordinates (Eq. 5.14 with
temperature varying with r only!). This elementary solution represents the temper-
ature field set up by a line heat source (or sink) at O, as shown in Fig. 5.20b. The
solution for source or sink may be obtained as under or by using complex variable
theory as shown in Appendix C. Consider the function

φ = − s

2πk
ln(r) (5.99)

which is the real part of the complex potential w = − s
2πkLn(z). This represents a

steady temperature field in cylindrical coordinates (i.e., r, θ coordinates). Of course,
the temperature field happens to be a function of r alone and hence is one dimensional
in nature. It is easily verified that r = constant represents an isotherm. The heat flux
lines are radial lines passing through the origin. The origin itself is a singular point
since φ is not finite at the origin. If we exclude the origin the function is finite and
hence well behaved everywhere. One may visualize the solution (function φ) to be
that due to a source of heat (s, W/m) placed at the origin. Note that the temperature
decreases with r for a source. We know that the conduction heat flux is radial and is
given by

qr = −k
∂φ

∂r
= s

2π

1

r
(5.100)

Fig. 5.20 Elementary solutions to Laplace equation in cylindrical coordinates
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The total heat transfer across any isotherm is given by

q = 2πrqr = s (5.101)

This is nothing but the strength of the heat source! We may visualize the heat flux
lines as radial lines given by [also visualized as being represented by the imaginary
part of w = − s

2πkLn(z)]

ψ = − sθ

2π
(5.102)

such that ψ = 0 corresponds to θ = 0 and ψ = −s corresponds to θ = 2π. Thus
ψ represents mathematically the heat flux lines. The isotherms and heat flux lines
form an orthogonal net as indicated in Fig. 5.20a and the source is indicated as in
Fig. 5.20b.

Another elementary solution
We shall look at a second elementary solution to Laplace equation in cylindrical
coordinates. Consider steady heat flow, in the absence of internal heat generation, in
a right-angled channel bend shown in Fig. 5.21. The bend consists of circular inner
and outer boundaries with the common center at C . The bend extends to infinity in a
direction perpendicular to the plane of the paper. The isotherms are now radial lines
and heat flux lines are concentric circular arcs as indicated in the figure. In fact this
elementary solution is represented by the same complex potential viz. w = Ln(z).
The real and imaginary parts are interchanged, in this case, as against the previous
case. Temperature is, in fact, seen to be a function of θ alone and hence the Laplace
equation reduces to

d2T

dθ2
= 0 (5.103)

When integrated twice, we get
T = Aθ + B

where A and B are constants of integration. Use now the boundary conditions indi-
cated in Fig. 5.21. T = T1 at θ = 0 requires that B = T1. T = T2 at θ = π

2 requires

Fig. 5.21 Heat flow in a right-angled channel bend. Boundaries AB and CD are adiabatic
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that A = 2(T2−T1)
π

. With these the solution turns out to be

T (θ) = (T2 − T1)θ
π
2

+ T1 (5.104)

We now determine the heat transfer rate by noting that the θ component of heat flux
alone is nonzero and is given by

qθ = −k
1

r

dT

dθ
= −k

T2 − T1
rπ
2

(5.105)

The total heat transferred across the curved channel is given by integrating Eq. 5.105
with respect to r from R1 to R2.

Q = −k
T2 − T1

π
2

R2∫

R1

1

r
dr = k

T1 − T2
π
2

ln

(
R2

R1

)
(5.106)

Elementary solutions and superposition: The dipole
Elementary solutions to Laplace equation may be used to write down solutions to
complex problems by superposingmany elementary solutions. This is a consequence
of the fact that the Laplace equation is a linear partial differential equation. When
we combine elementary solutions the only thing one needs to do is to see that the
resultant solution satisfies all the boundary conditions imposed in the problem. We
show the use of superposition by considering a simple case shown in Fig. 5.22. A
source and a sink of equal strength (magnitude s) are located at A and B as indicated
in the figure, placed symmetricallywith respect to the origin O . The distance between
the two is 2l. We shall assume that l → 0 and s → ∞ such that the product μ = 2ls
is a finite quantity. The temperature at the field point P(r, θ) is obtained by adding
that set up by the source and sink as (using Eq. 5.99)

φ = − s

2πk
ln(r1) + s

2πk
ln(r2) (5.107)

Fig. 5.22 Source sink pair
lying along the x-axis
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From geometry, we have

r1 =
√
r2 + l2 − 2rl cos(θ) ; r2 =

√
r2 + l2 + 2rl cos(θ)

These may be approximated, respectively, as

r1 ≈
√
r2 − 2rl cos(θ) ; r2 ≈

√
r2 + 2rl cos(θ)

The approximation is valid since we assume that l  r and hence l2 is negligible as
compared to the other two terms. Introduce this in Eq. 5.107 to get5

φ = s

2πk
ln

[
r2
r1

]
≈ s

2πk
ln

⎡
⎣
√
r2 + 2rl cos(θ)

r2 − 2rl cos(θ)

⎤
⎦ = s

4πk
ln

⎡
⎢⎣
1 + 2l cos(θ)

r

1 − 2l cos(θ)

r

⎤
⎥⎦

≈ s

4πk
ln

[
1 + 4l cos(θ)

r

]
≈ 4ls cos(θ)

4πkr
= μ cos(θ)

2πkr
(5.108)

where μ = 2ls is referred to as the dipole moment. The above expression is actually
the far field temperature variation since very close to the origin the approximation that
led to Eq. 5.108 will not be valid. Note that the temperature field varies inversely with
r . Isotherms and flux lines shown in Fig. 5.20c are based on the solution presented
in Eq. 5.108.

It is also seen that the temperature field given by Eq. 5.108 is the real part of the
complex potential w = μ

z . This is made use of in Appendix C.

Generalization to a distribution of sources
The superposition principle used above for obtaining the solution to the dipole prob-
lem may be generalized to a problem that involves a distribution of sources over a
volume. Consider a volume V to contain a continuous distribution of line sources
of source strength G(r ′, θ′) per unit volume as shown in Fig. 5.23. The response is
required at the field point (r, θ) represented by the vector �r . We make use of Eq. 5.99
to write the potential φ (temperature represents a potential since the conduction heat
flux is defined as �q = −k∇T ) at the field point P as

φ = − 1

2πk

∫∫∫

V

G(r ′, θ′) ln(r − r ′)dV (5.109)

Note that the summation (in the case of dipole we added two elementary solutions) is
replaced by an integral when the sources are distributed continuously over a volume

5We have used ln
(
r2
r1

)
= ln (r2) − ln (r1) and ln (1 ± x) ≈ ±x when x << 1 in arriving at the

final expression in Eq. 5.108.
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Fig. 5.23 Potential due a
source distribution

Fig. 5.24 Nomenclature for
the buried cable problem
showing a “ghost” sink

(note that the volume element is an elemental area in the plane of Fig. 5.23multiplied
by a unit length perpendicular to the plane of the figure).

Buried cable problem and the “conduction shape factor”
Consider a buried cable, a cylinder of radius r0, placed at a depth a inside a firmly
packed medium like soil, as shown in Fig. 5.24. The cable is generating heat at a
constant rate of q permeter length. Themedium surrounding the cable terminates at a
level isothermal surface at T = Ts . The cable surface temperature is assumed to take
on a steady value of T0. These are the specified boundary conditions in the problem.
The problem involves steady heat conduction in cylindrical coordinates. This means
that the Laplace equation in two dimensions involving r, θ is to be solved. The
procedure adopted here consists of the construction of the solution using elementary
solutions to the Laplace equation and then invoking the superposition principle to
obtain the complete solution.

In order to solve the buried cable problem, we consider a source of heat to be
located at a distance b below the ground and a sink of equal strength to be located a
distance b above the ground. We shall see later that b is only slightly different from
a, the distance of the center of the cable below the ground level. The sink is entirely



5.3 Steady Conduction in Two Dimensions 195

fictitious and is used only to build the solution to the problem. Consider a field point
P(x, y) as shown in Fig. 5.24. The radii r1 and r2 may be written down as

r1 =
√
x2 + (b − y)2 ; r2 =

√
x2 + (b + y)2

We superpose the temperature induced by source sink pair by defining a temperature
difference function as

φ = T − Ts = − q

2πk
ln(r1) + q

2πk
ln(r2) = q

4πk
ln

[
x2 + (b + y)2

x2 + (b − y)2

]
(5.110)

The difference between this solution and the solution to the dipole problem is that
b does not have any condition attached to its magnitude in comparison with r . Also
we have used Cartesian description of coordinates even though the problem is one in
cylindrical coordinates. This is just a ploy to make the solution come out in a simple
fashion. If one is able to choose the proper values for q and b such that the boundary
conditions shown in Fig. 5.24 are satisfied, one has solved the buried cable problem!
It is seen that φ = 0, i.e., T = Ts if r1 = r2! Thus one boundary condition is auto-
matically satisfied by Eq. 5.110. In order to satisfy the second boundary condition,
let T = T0 in the above. Let us also define a constant C as

C = eC
′
whereC ′ = T0 − Ts( q

4πk

) (5.111)

Then Eq. 5.110, after some algebraic manipulation, takes the form

C = x2 + (b + y)2

x2 + (b − y)2
(5.112)

We may expand the square terms and rearrange to finally get

x2 + y2 + b2 + 2by

[
1 + C

1 − C

]
= 0 (5.113)

This equation should represent the equation of the boundary onwhich the temperature
has been specified as T = T0.We are given that this should be the surface of the cable!
In order to verify this, we complete squares and rewrite Eq. 5.113 as

x2 +
[
y + b

(
1 + C

1 − C

)]2
= 4b2C

(1 − C)2
(5.114)

Equation 5.114 is the equation of a circle whose center is at

x = 0, y = −b

(
1 + C

1 − C

)
(5.115)
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and whose radius is given by

r20 = 4b2C

(1 − C)2
(5.116)

In fact Eq. 5.116 determines the value of C and hence q when all other quantities
in Eq. 5.111 are given or known. Equation 5.116 may be rewritten as a quadratic
equation for C as

C2 − 2

[
1 + 2b2

r20

]
+ 1 = 0 (5.117)

The above equation may be solved for C to get

C =
{
1 + 2b2

r20

}
±
√{

1 + 2b2

r20

}2
− 1 (5.118)

Assuming that the radius of the cable r0 is much smaller than the depth b of the
source below ground level (normally satisfied in practice), we may approximate

{
1 + 2b2

r20

}
as

2b2

r20

Also only the bigger root makes physical sense and is given as

C ≈ 4b2

r20
(5.119)

Under the same condition, Eq. 5.115 shows that the center of the circle is at y ≈ −b.
Also it is seen that b ≈ a.

Using the definition of C ′ and C given by Eq. 5.111, we have

C ′ = ln(C) = ln

(
4b2

r20

)
≈ ln

(
4a2

r20

)
= 2 ln

(
2a

r0

)
= T0 − Ts( q

4πk

)

Solving the above for q the heat transfer per meter length of the cable, we have

q = k
2π

ln

(
2a

r0

) (T0 − Ts) (5.120)

For different values of temperature T , the corresponding value of C will yield cir-
cles centered along the y-axis and radius given by the expression derived earlier. In
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particular, for T = Ts , C ′ = 0 and hence C = 1 and the radius of the circle → ∞,
corresponding to the flat surface of the ground.

Conduction shape factor
The heat loss from the cable per meter given by Eq. 5.120 may be written in the
general form

q = k(T0 − Ts) × S (5.121)

where S is a geometric parameter called the “conduction shape factor”. Since the
problem has been solved from first principles, it is possible to obtain S for the buried
cable problem as

SBuried cable = 2π

ln

(
2a

r0

) (5.122)

Example 5.8

A cable whose surface temperature is 100 ◦C has a diameter of 10 cm. Its center
is at a depth of 1 m under soil whose thermal conductivity is known to be 1 W/m◦C.
Determine howmuch heat it will lose per meter length if the soil surface temperature
is 30 ◦C. Make a plot of the temperature variation as a function of distance vertically
above the center of the cable.

Solution:

Step 1 Nomenclature used in this problem follows that in Fig. 5.24. The given data
is summarized as under: a = 1 m, r0 = 5 cm or 0.05 m, k = 1 W/m◦C,
T0 = 100 ◦C and Ts = 30 ◦C. Using this data we calculate the conduction
shape factor, following Eq. 5.122 as

S = 2 × π

ln
(
2×1
0.05

) = 1.7033

Step 2 The heat loss per meter of cable may then be calculated, using Eq. 5.121 as

q = 1 × 1.7033 × (100 − 30) = 119.2 W/m

Step 3 In order to make the plot specified in the example, the requisite data is gen-
erated using the following additional definitions (compare with Eq. 5.111).
Let
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CT = eCT ′ whereCT ′ = T − Ts( q
4πk

)

In terms of CT , the coordinate of the center of the isotherm located along the
y axis is given by

yT = a

[
CT + 1

CT − 1

]

The corresponding radius of the isotherm is given by

rT = 2a
√
CT

CT − 1

It is easily seen from Fig. 5.24 that the height of the isotherm above the
center of the cable is dT = 1 − yT + rT . The calculations are now shown in
Table 5.4.

Step 4 Figure 5.25 shows the variation of the temperature of the soil vertically above
the axis of the cable.
This example is typical of what happens in power stations. The results also
are applicable to a buried pipe conveying hot liquids (such as hot water) and
vapors (such as steam).

Table 5.4 Temperature depth data for Example 5.8

Temperature, T 100 90 80 70 60 50 40 30

Distance, yT ,m 0.05 0.081 0.134 0.217 0.341 0.517 0.742 1

Fig. 5.25 Variation of soil temperature with height vertically above the cable in Example 5.8
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Fig. 5.26 Map of complex
potential ζ = i z

Illustration of use of complex variable method to an interesting problem
To round off the above, we consider a final example that uses complex potential
approach to solving a problem in steady heat conduction in two dimensions. We
look at an interesting transformation given by

w = cosh(z) (5.123)

This looks somewhat unfamiliar at first sight. However it is nothing but a combination
of two complex potentials given by ez and e−z since cosh(z) = ez+e−z

2 . We may
also look at the transformation as w = cosh(z) = cos(i z) which is equivalent to the
following two transformations:

ζ = i z; w2 = cos(ζ) (5.124)

The first of these is rotation of the complex number by π
2 while the second is mapping

by the function cos(ζ). A sketch is presented in Fig. 5.26 to demonstrate the former.
Both z and ζ are shown on the same plane (plot). The dashed line indicates the point
z in the z plane that is changed to the point ζ due to the transformation.

Nowconsider the latter transformation.Wemayeasilywrite the real and imaginary
parts as below:

cos(ζ) = cos(−y + i x) = cos(y) cosh(x)
Real part

+i sin(y) sinh(x)
Imaginary part

(5.125)

Let us look at the salient features of this transformation. The origin in the z plane
maps on to the point

φ = cos(0) cosh(0) = 1; ψ = sin(0) sinh(0) = 0

Consider a point on the imaginary axis in the z plane given by x = 0, y = π. Corre-
sponding to this we have

φ = cos(π) cosh(0) = −1; ψ = sin(π) sinh(0) = 0
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Fig. 5.27 Map of complex potential w = cos(ζ)

Thus the point has been mapped on to a point on the negative real axis. We also have
the following that may be easily verified:

x → ∞, y = 0 maps on to φ → ∞, ψ = 0
x → ∞, y = π maps on to φ → −∞, ψ = 0
x ≥ 0, 0 ≤ y ≤ π maps on to ψ ≥ 0

Thus the inside of the strip shown with hatched lines is mapped on to the upper half
of the w plane, as shown in Fig. 5.27. Point O maps on to the point O ′ and point A
maps on to the point A′.

Now we are ready to consider the solution of steady heat conduction in the strip.
The boundary conditions are specified as

T = 1 on x = 0 and 0 ≤ y ≤ π

T = 0 on y = 0 or y = π and 0 ≤ x ≤ ∞ (5.126)

This simply means that in thew plane shown in Fig. 5.27 the potential function must
take on the values given by

T = 1 on ψ = 0 and − 1 ≤ φ ≤ 1

T = 0 on ψ = 0 and φ > 1 or φ < −1 (5.127)

In order to satisfy the boundary conditions specified in thew plane we look at another
transformation given by the function

w1 = T0
π
Ln

[
w − 1

w + 1

]
(5.128)

Letting w1 = u(φ,ψ) + iv(φ,ψ), we may write the above in the alternate form

w1 = T0
2π

ln

[
(φ − 1)2 + ψ2

(φ + 1)2 + ψ2

]

u(φ,ψ)

+i
T0
π

[
tan−1

(
ψ

φ − 1

)
− tan−1

(
ψ

φ + 1

)]

v(φ,ψ)

(5.129)



5.3 Steady Conduction in Two Dimensions 201

Fig. 5.28 Flux plot for the strip problem

Since w1 is an analytic function u and v automatically satisfy the Laplace equation.
In addition let us identify the complex part as the temperature function. Thus let

T = T0
π

[
tan−1

(
ψ

φ − 1

)
− tan−1

(
ψ

φ + 1

)]
= T0

π
(θ1 − θ2) (5.130)

where θ1 = tan−1
(

ψ
φ−1

)
and θ1 = tan−1

(
ψ

φ+1

)
. Consider a point on the φ axis that

is to the right of φ = 1. For such a point both angles are zero and hence T = 0. For
a point on the φ axis that is in the range −1 < φ < 1 θ1 = π and θ2 = 0 and hence
T = 1. For a point on theφ axis that is to the left ofφ = −1 both angles becomeπ and
hence T = 0. Thus the required boundary conditions are satisfied by the function T
defined by Eq. 5.130. Hence this must be the solution to the temperature distribution
in the strip. We may identify the real part u as the flux function to complete the
solution. A flux plot made as in Fig. 5.28 shows some isotherms and iso-flux lines.
The isotherms are spaced at equal intervals of 0.05. The solution shows symmetry
with respect to y = π

2 . Also the temperature is substantially the same as the top and
bottom edge temperatures (i.e., zero or the datum value) for x > 2.5.

5.3.4 Shape Factors for Some Useful Configurations

Eccentric insulation on a pipe
Earlier we have studied, in Chap. 2, heat transfer in the case of a cylinder with a
coaxial cylindrical insulation layer. Sometimes the insulation may have to be non-
coaxial (or eccentric) because the pipe to be insulated may be in the close vicinity
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Fig. 5.29 Heat transfer
between eccentric cylinders

of the walls. In such cases, the geometry will be as shown in Fig. 5.29 below. The
particular case with z = 0 corresponds to the earlier coaxial insulation geometry.
The conduction shape factor for this case may, in fact, be obtained by using the same
technique as was employed in the case of the buried cable problem. It is seen that all
one has to do is to identify two appropriate circular isotherms in the earlier case as
corresponding to the inner and outer circles in Fig. 5.29. From such an analysis, we
have

S = 2π

cosh−1

[
D2 + d2 − 4z2

2Dd

] (5.131)

When z = 0, the denominator of Eq. 5.131 becomes

cosh−1

[
D2 + d2 − 4z2

2Dd

]
= cosh−1

[
D

2d
+ d

2D

]

Let x = cosh−1
[
D
2d + d

2D

]
. Then, cosh x = D

2d + d
2D or, by definition, cosh x =

ex+e−x

2 = D
2d + d

2D . Hence we have

ex = D

2d
or x = ln

[
D

2d

]
(5.132)

Finally Eq. 5.131 reduces to

S = 2π

ln

[
D

2d

] = 2π

ln

[
R

2r

] (5.133)

where R and r correspond to the radius of the outer and inner circle, respectively.
Equation 5.133 is in agreement with thewell-known relation for a cylindrical annulus
given in Chap. 2.
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Example 5.9

A thin-walled pipe of 38 mm OD carrying high-pressure steam at a temperature
of 120 ◦C is insulated by a high temperature insulating material of thermal con-
ductivity equal to 0.106 W/m◦C. The insulation is eccentric with an eccentricity of
50 mm and the diameter of the outer surface of the insulation is 204 mm. Determine
the heat loss per meter from steam. The outer surface of the insulation has a mean
temperature of 44 ◦C. If the same heat loss takes place with insulation having no
eccentricity, what will be the outer diameter of the insulation? Assume that there is
no change in the temperature values.

Solution:
Case (a) Eccentric insulation:
Using the notation of Fig. 5.29, we have

D = 0.204 m, d = 0.038 m, z = 0.05 m

The conduction shape factor is calculated, using Eq. 5.131 as

S = 2π

cosh−1

[
0.2042 + 0.0382 − 4 × 0.052

2 × 0.204 × 0.038

] = 4.52

The other pertinent quantities are specified as

Inner surface temperature: T1 = 120 ◦C
Outer surface temperature: T2 = 44 ◦C

Insulation thermal conductivity: k = 0.106 W/m◦C

Heat loss from steam per meter length of pipe is then given by

q = kS(T1 − T2) = 0.106 × 4.52 × (120 − 44) = 36.4 W/m

Case (b) Insulation layer without eccentricity:
If the concentric insulation loses the same amount of heat per meter of pipe length,
the temperatures are the same and the thermal conductivity of the insulation material
is the same, then the conduction shape factor has to be the same as in the previous
case, i.e., S = 4.52. However, in this case the shape factor is given by Eq. 5.133.
Hence the outer diameter of insulation is given by

D = de
2π
S = 0.038 × e

2π
4.52 = 0.153 m

Thus there is much saving of insulation material if eccentricity is avoided!

Soil thermal conductivity measurement problem
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Fig. 5.30 Application:
measurement of soil thermal
conductivity

A vertical cylinder of diameter D and length L is inserted vertically into the ground
(or any other medium) as indicated in Fig. 5.30. In the application indicated in the
figure, the cylinder is heated electricallywith a heater input of Q watts.When L � D
the shape factor is given by the relation

S = 2π

ln

(
4L

D

) (5.134)

The thermal conductivity is then determined by the formula

k = Q/L

S(T1 − T2)
(5.135)

Example 5.10

A cylindrical heating element of diameter 0.1 m and length 2 m is driven tightly
into a hole drilled in the ground. Heat is produced in the heater electrically at a rate
of 100 W. The heater surface temperature is measured at ten locations along the
length of the heater. It is found that the average temperature is 84.9 ◦C. The ground
surface temperature is measured some distance away from the hole and is found to
be 25.5 ◦C. Estimate the thermal conductivity of the soil.

Solution:
Nomenclature used here is according to that in Fig. 5.30. The given data is written
down as

Diameter of heating element: D = 0.1 m
Length of the heater: L = 2 m

Heat generated by the heater: Q = 100 W
The surface temperature of heater: T1 = 84.9 ◦C
The surface temperature of soil: T2 = 25.5 ◦C
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We calculate the conduction shape factor using Eq. 5.134 as

S = 2π

ln

(
4 × 2

0.1

) = 1.434

Hence the thermal conductivity of the soil is given by Eq. 5.135 as

k = 100/2

1.434 × (84.9 − 25.5)
= 0.587 W/m◦C

Heat transfer between buried pipes
Buried pipes carrying hot fluids are encountered in industrial applications such as
in thermal power plants and chemical process industries. The geometry is shown in
Fig. 5.31. The conduction shape factor for this configuration is given by

S = 2π

cosh−1

[
4L2 − (D2

1 + D2
2)

2D1D2

] (5.136)

Fig. 5.31 Conduction between two long cylinders in an infinite medium
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Example 5.11

In a process industry, two pipes of an equal diameter of 0.025 m run parallel to
each other. The two pipes are buried under the soil of thermal conductivity equal to
0.106 W/m◦C. One of the pipes carries steam at 120 ◦C while the other carries a
cold organic fluid at −5 ◦C. Determine the heat transfer from steam to organic fluid
per meter length of pipes if the axes of the two pipes are 0.3 m apart.

Solution:
Wemake use of the nomenclature in Fig. 5.31 and Eq. 5.136 for solving this problem.

Diameter of steam carrying pipe: D1 = 0.025 m
Diameter of the organic fluid carrying pipe: D2 = 0.025 m
Center to center distance between pipes: L = 0.3 m
Steam temperature: T1 = 120 ◦C
Organic fluid temperature: T2 = −5 ◦C
Soil thermal conductivity: k = 0.106 W/m◦C

The conduction shape factor is calculated using Eq. 5.136 as

S = 2π

cosh−1

[
4 × 0.32 − (0.0252 + 0.0252)

2 × 0.025 × 0.025

] = 0.989

Then the heat transfer from steam to organic fluid per meter length of the pipes is

q = 0.106 × 0.989 × (120 + 5) = 13.1 W/m

5.3.5 Solution to Laplace Equation in a Cylinder

In Sect. 5.3.3we have explored the possibility of solvingLaplace equation in cylindri-
cal coordinates using elementary solutions to the Laplace equation.We now consider
the application of separation of variables technique for the solution of Laplace equa-
tion in a finite length cylinder. TheLaplace equation needs to be solved in a cylinder of
radius R and length L . The face of the cylinder at z = L ismaintained at a temperature
distribution that varies with r alone. The left face (at z = 0) and the lateral surface of
the cylinder (r = R, 0 ≤ z ≤ L) are maintained at zero temperature (see Fig. 5.32).

The governing differential equation is the Laplace equation given by

1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂r2
= 0 (5.137)
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The separation of variables technique seeks a solution to Eq. 5.137 in the product
form

T (r, z) = θ(r)Z(z) (5.138)

As before, we substitute Eqs. 5.138 in 5.137, use similar manipulation to get the
following two ordinary differential equations:

(a)
1

r

d

dr

(
r
dθ

dr

)
+ λ2θ = 0, (b)

d2Z

dz2
− λ2Z = 0 (5.139)

where−λ2 is the separation constant, the signbeingdecidedon considerations similar
to the earlier ones. The function Z has the general solution given by

Z(z) = C1 cosh(λz) + C2 sinh(λz) (5.140)

On z = 0 the temperature is zero and hence constant C1 has to be taken as zero.
The equation governing θ(r) is recognized as the Bessel equation of order zero
(Appendix B). Requiring that the solution be well behaved (finite) along the axis of
the cylinder, the solution is given by

θ(r) = C3 J0(r) (5.141)

Representing the product C2C3 as a, the solution to the Laplace equation is of the
form

T (r, z) =
∞∑
1

an sinh(λnz)J0(λnr) (5.142)

where λn are the zeros of the Bessel function of order 0. The Fourier Bessel coeffi-
cients an are determined by the requirement T (r, L) = f (r). Borrowing the results
from Appendix B, the Fourier Bessel coefficients are determined as

an = 1

sinh(λn L)
×

2
∫ R

0
r f (r)J0(λnr)dr

R2 J 2
1 (λn R)

(5.143)

Fig. 5.32 Steady conduction in a finite cylinder
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Fig. 5.33 A practical problem in cylindrical coordinates

5.3.6 Solution to a Practical Problem

An interesting application of solution to Laplace equation in cylindrical coordinates
is shown in Fig. 5.33. The geometry is typical of a thick-walled boiler tube that is
facing the furnace over one half (0 < θ < π) and is insulated by the brick wall of the
boiler over the other half (π < θ < 2π). The temperature of the inside surface of the
tube (r = R1, 0 < θ < 2π)is the same as the fluid temperature T1 (probably steam)
while the exposed outer surface of the tube is subject to constant heat flux q over
the exposed portion. The tube material has a thermal conductivity of k. Assuming
that the tube is very long in a direction perpendicular to the plane of the figure,
the temperature within the tube is a function of r, θ. The governing equation is the
Laplace equation (5.14) with the partial derivative with respect to z set to zero. Thus
the temperature within the tube satisfies the equation

1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2
∂2T

∂θ2
= 0 (5.144)

The applicable boundary conditions are

(a) r = R1, 0 ≤ θ ≤ 2π, T = T1
(b) r = R2, 0 ≤ θ ≤ π, ∂T

∂r = q
k , (c) r = R2, π ≤ θ ≤ 2π, ∂T

∂r = 0
(5.145)

The separation of variablesmethod is applicable to this case also. The dependent vari-
able is taken as z = T − T1. The solution requires the superposition of two solutions
corresponding to those shown in Fig. 5.34.

The solution to the configuration indicated at the left of this figure is a function of
r alonewhile the solution to the configuration at the right is a function of r, θ.We note
that the two solutions together will be able to satisfy the boundary condition on R2.
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Fig. 5.34 Superposition of two configurations that is equivalent of configuration in Fig. 5.33

Let z = h(r) + z1(r, θ)where z1(r, θ) = f (r)g(θ).With the already familiar pro-
cedure three ordinary differential equations are obtained, with the separation con-
stant λ2.

(a)
d

dr

(
r
dh

dr

)
= 0; (b)

d

dr

(
r
d f

dr

)
− λ2 f

r
= 0; (c)

d2g

dθ2
+ λ2g = 0 (5.146)

The applicable boundary conditions are

(a) h(R1) = 0; (b)
dh

dr

∣∣∣∣
r=R2

= q

2k
(c) z1(r = R1, 0 ≤ θ ≤ 2π) = 0

(d)
∂z1
∂r

∣∣∣∣
r=R2

= q

2k

(0≤θ≤π)

(e)
∂z1
∂r

∣∣∣∣
r=R2

= − q

2k

(π≤θ≤2π)|

(5.147)

We can easily solve Eq. 5.146(a) for h(r) by integrating the equation twice to get

h = A ln(r) + B (5.148)

where A and B are constants of integration. The inner boundary condition
(Eq. 5.147(a)) requires that B = −A ln(R1). The outer boundary condition
(Eq. 5.147(b)) requires

dh

dr

∣∣∣∣
r=R2

= A

R2
= q

2k
or A = qR2

2k

With these the solution, after minor manipulation, reduces to

h(r) = qR2

2k
ln

(
r

R1

)
(5.149)
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We may verify by direct substitution that f (r) = Crλ + Dr−λ satisfies Eq. 5.146(b)
whereC and D are constants of integration. Also the solution to Eq. 5.146(c) is given
by g = E sin(λθ) + F cos(λθ) where E and F are again constants of integration.
Thus, as we did earlier, the general solution for z1 is given by

z1(r, θ) =
∞∑
n=1

[Cnr
λn + Dnr

−λn ][En sin(λnθ) + Fn cos(λnθ)] (5.150)

Boundary condition (5.147(b)) requires that z1 vanish at R1 for all θ. This is possible
only if we choose

CnR
λn
1 + DnR

−λn
1 = 0 (5.151)

This requires that CnR
λn
1 = −DnR

−λn
1 = Gn(say). Also note that the function f (r)

is single valued only if λn is an integer, i.e., λn = n. Hence we may write

Cn = Gn

Rn
1

; Dn = −GnR
n
1 (5.152)

Letting an = GnEn and bn = GnFn , the solution may be written as

z1(r, θ) =
∞∑
n=1

[(
r

R1

)n

−
(

r

R1

)−n
]

[an sin(nθ) + bn cos(nθ)] (5.153)

Consider now the boundary conditions given by Eqs. 5.147(d) and (e). In order to
apply these we calculate ∂z1

∂r by term by term differentiation of Eq. 5.153.

∂z1
∂r

=
∞∑
n=1

n

r

[(
r

R1

)n

+
(

r

R1

)−n
]

[an sin(nθ) + bn cos(nθ)] (5.154)

The boundary condition at r = R2 requires that the infinite series

∞∑
n=1

n

R2

[(
R2

R1

)n

+
(
R2

R1

)−n
]

[an sin(nθ) + bn cos(nθ)] (5.155)

represent the function shown in Fig. 5.35. The function is a square pulse of ampli-
tude q

2k . it is an odd function of θ as is clear from the figure. This is represented by
a Fourier sine series with bn = 0 for all “n”6 and

a(2n−1) · (2n − 1)

R2

[(
R2

R1

)(2n−1)

+
(
R2

R1

)−(2n−1)
]

= q

πk(2n − 1)
(5.156)

6The Fourier series has odd nonzero coefficients and zero even coefficients.
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Fig. 5.35 Function to be
represented by series 5.155

Finally the solution reduces to

z(r, θ) = 2qR2

kπ

∞∑
1

sin[(2n − 1)θ]
(2n − 1)2

×

×
⎡
⎢⎣
(

r
R1

)(2n−1) −
(

r
R1

)−(2n−1)

(
R2
R1

)(2n−1) +
(

R2
R1

)−(2n−1)

⎤
⎥⎦+ qR2

2k
ln

(
r

R1

)
(5.157)

Note that 2n − 1 is 1, 3, 5, . . . for n = 0, 1, 2 . . ..

Example 5.12

A tube arranged on the wall of a furnace as indicated in Fig. 5.33 has an inner
diameter of 25 mm and an outer diameter of 32 mm. The tube is made of a material
of thermal conductivity 45 W/m◦C. The heat flux incident on the exposed part is
given to be 106 W/m2. The inner wall temperature of the tube is 100 ◦C.Make a plot
of the temperature variation on the outer surface of the tube as a function of angle.
Also, plot the temperature variation across the thickness of the tube at θ = π

2 .

Solution:

Step 1 We make use of the nomenclature introduced in Fig. 5.33 and write down
the given data:

Inner radius of tube: R1 = 0.025
2 = 0.0125 m

Outer radius of tube: R2 = 0.032
2 = 0.016 m

Thermal conductivity of tube material: k = 45 W/m◦C

Datum temperature: T1 = 100 ◦C

Heat flux parameter: qR2

k = 106×0.016
45 = 355.56 ◦C

Step 2 In order to make a plot of the angular variation of temperature of the tube
outer surface, we make use of Eq. 5.157 with r = R2. The data is calculated
at 5◦ angular intervals from 0 to 360◦. The Fourier summation needs a large
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Fig. 5.36 a Tube outer surface temperature variation with angle b Radial variation of temperature
in the tube at θ = 90◦

number of terms and the data is generated using a computer program with
1000 terms. The resulting plot is shown in Fig. 5.36a. It is observed that the
maximum tube wall temperature of 231.7 ◦C occurs, as expected, at θ = 90◦.

Step 3 The second plot wemake is actually for this angular location. Equation 5.157
is used to generate the data by taking the angle to be 90◦ and varying the
radial position from R1 to R2. The resulting plot is shown in Fig. 5.36b). It is
observed that the temperature varies very steeply within the tube wall. The
radial temperature gradient is roughly 38000 ◦C/m!

5.3.7 Solution to Laplace Equation in Spherical Co-ordinates

Laplace equation in spherical coordinates is also amenable to solution by the use of
the separation of variables technique. We consider the case where the temperature
field is a function of r, θ only. Figure 5.37 shows the geometry that is being studied.
A solid sphere has its outer surface maintained at a specified temperature variation
with respect to the polar angle θ. The applicable equation is obtained by setting
the derivatives with respect to φ to zero and G = 0 in the steady heat equation in
spherical coordinates.

∂

∂r

(
r2

∂T

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
= 0 (5.158)

The applicable boundary conditions are specified as

(a) T (r = 0, θ) = Finite, (b) T (r = R, θ) = f (θ), −π

2
≤ θ ≤ π

2
(5.159)
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Fig. 5.37 Steady conduction in a solid sphere

We seek a solution, as in earlier cases, in the product form

T (r, θ) = F1(r)F2(θ) (5.160)

Substituting this in Eq. 5.159, after the usual manipulations we get the following two
ordinary differential equations that involve a separation constant λ.

(a)
1

r

d

dr

(
r2

dF1

dr

)
− λF1 = 0, (b)

1

sin θ

d

dθ

(
sin θ

dF2

dθ

)
+ λF2 = 0 (5.161)

Consider first the solution of Eq. 5.161(b). We substitute x = cos θ. We then see that
sin θ = √

1 − cos2θ = √
1 − x2. Also, we have

dx = − sin θdθ = −
√
1 − x2dθ or

d

dθ
= −

√
1 − x2

d

dx

Use these in Eq. 5.161(b) to get

1√
1 − x2

[
−
√
1 − x2

d

dx

(√
1 − x2 ·

√
1 − x2

dF2

dx

)]
+ λF2 = 0

or
d

dx

[
(1 − x2)

dF2

dx

]
+ λF2 = 0

(5.162)

It is normal practice to take λ = n(n + 1). With this Eq. 5.162 takes the standard
form

(1 − x2)
d2F2

dx2
− 2x

dF2

dx
+ n(n + 1)F2 = 0 (5.163)

This equation is the same as the Legendre equation discussed in Appendix B. We
know from there that the solution is given by

F2(x) = F2(cos θ) = Pn(x) = Pn(cos θ) (5.164)
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where n = 0, 1, 2, . . .. This solution is regular in the interval −1 ≤ x ≤ 1 or −1 ≤
cos θ ≤ 1. Now consider Eq. 5.161(a). By substitution we may easily verify that the
solution is given by

F1(r) = arn + br−(n+1) (5.165)

where a and b are arbitrary constants. Since the second part in solution (5.165)
diverges at the origin we have to choose b = 0. Hence the general solution to the
Laplace equation in spherical coordinates may be written as

T (r, θ) =
∞∑
0

anr
n Pn(cos θ) (5.166)

The boundary condition on the surface of the sphere (Eq. 5.159(b)) requires that

∞∑
0

an R
n Pn(cos θ) = f (θ) (5.167)

Coefficients an may be obtained by using the orthogonality property of the Legendre
function in −1, 1 (Eq. B.16). Thus, we have

an = (2n + 1)

2Rn

1∫

−1

f (x)Pn(x)dx (5.168)

where x = cos θ. Note thus that the given function f (θ) needs to be represented as
a function of cos θ in the form f (cos θ).

Concluding Remarks

We have considered two-dimensional heat conduction problems comprising of transient con-
duction in one dimension and also steady conduction in two dimensions. In latter case, prob-
lems in all three coordinate systems, viz., Cartesian, cylindrical, and spherical coordinates
have been considered. Similarity analysis and integral method of the solution are possible
in the case of one-dimensional transients. Separation of variables is otherwise the method
which is applicable in all cases. Solution for temperature is represented as a Fourier series
involving (a) circular functions in the Cartesian system of coordinates, (b) Bessel functions in
cylindrical coordinates, and (c) Legendre polynomials in the case of spherical coordinates.
Use of complex variables to solve conduction problems in two dimensions is an alternative
which is also useful.
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5.4 Exercises

Ex 5.1: By performing energy balance for a suitably chosen volume element derive
the heat diffusion equation in three dimensions in cylindrical and spheri-
cal coordinate systems. Verify that the function T (x, y) = 20 ln(x2 + y2)
recast in the form T (r) = 40 ln(r) is a solution to the Laplace equation
written in the cylindrical coordinate system.

Ex 5.2: A semi-infinite solid of thermal diffusivity 10−5 m2/s is subject to a con-
stant surface heat flux of 103 W/m2 for t > 0. The initial temperature of
the solid is 20◦C . Determine the time at which the surface temperature
would be 50 ◦C. At this time what would be the temperature at a depth of
5 mm from the surface? What is the depth of penetration, as defined in the
text, at this time? What would the answers be if the surface heat flux is
increased to 105 W/m2?

Ex 5.3: A semi-infinite solid initially at 30 ◦C has its surface temperature reduced
to−10 ◦C for t > 0. Determine the surface heat fluxwhen the temperature
at a depth of 5 mm within the solid is 0 ◦C. Also determine the heat fluxes
at the surface as well as at the interior point, at this time.

Ex 5.4: The solution to the standard problem is given by Eq. 5.87. Determine the
temperature gradient at x = a

2 , y = b for the casewith b
a = 0.5.Determine

also the direction of the heat flux at (a) x = a
4 , y = b, (b) x = a, y = b

2
and (c) x = a

4 , y = b
4 .

Ex 5.5: Consider a long rod of square cross section of side 0.05 m. The bottom
side of the square is maintained at 100 ◦C, the left side is insulated while
the other two sides are maintained at 20 ◦C. Show that this problem can
be reduced to the standard problem considered in the text. Deduce the
solution by inspection of the solution given in the text.

Ex 5.6: Consider steady two-dimensional temperature field in a rectangle of width
a and height b subject to the boundary conditions indicated in Fig. 5.38.
Formulate the problem and solve the governing equation using the method
of separation of variables. Express the solution in terms of suitable nondi-
mensional variables and parameters.

Fig. 5.38 Steady
temperature field in a
rectangle: Exercise 5.6
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Fig. 5.39 Steady
temperature in a long bar:
Exercise 5.7

Fig. 5.40 Initial temperature
profile in infinite slab of
Exercise 5.9

Ex 5.7: Obtain the solution to the case shown in Fig. 5.39. The temperature goes
to zero as y → ∞ for all x . The temperature is specified on the edge
0 ≤ x ≤ L , y = 0 as T (x, 0) = T0 sin πx

L where T0 is a constant.
Ex 5.8: A bar of uniform cross section is of length L = 10 cm. It is at a uniform

temperature of 100 ◦C at t = 0. The lateral surface of the bar is perfectly
insulated. Using the method of separation of variables determine the solu-
tion when the two ends at x = 0 and x = L are maintained at 30 ◦C for
t > 0. Plot the variation of temperature at x = 5 cm as a function of time.
Take the thermal diffusivity of the bar material as 10−5 m2/s. What is the
temperature profile for a large time? Express the solution in the nondimen-
sional form.

Ex 5.9: Consider a 0.2 m thick infinitely large wall of a material of thermal dif-
fusivity equal to 10−5 m2/s Initial wall temperature variation across its
thickness is as indicated in Fig. 5.40. The two ends are maintained at the
initial temperature for t > 0 Obtain an expression for the variation of mid-
plane temperature with time.Make a plot of one-term approximation to the
mid-plane temperature and indicate its validity. What is the instantaneous
heat flux at the mid-plane?

Ex 5.10: A chimney 5 m tall has a uniform cross section as shown in Fig. 5.41.
The chimney material has a thermal conductivity of 0.72 W/m ◦C. An
estimate of the total rate of heat transfer through the chimney is required
when the inside surface is at a uniform temperature of 100 ◦C and the
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Fig. 5.41 Chimney problem
of Exercise 5.10

outside surface is at a uniform temperature of 20 ◦C. Use the shape factor
concept to solve this problem.

Ex 5.11: In a certain insulation application, a pipe is insulated by an eccentrically
placed insulation of thermal conductivity 0.15 W/m◦C. The pipe diameter
is 50 mm while the insulation has a diameter of 150 mm. The eccentricity
is 15 mm. Determine the heat loss from a meter length of pipe if the pipe
is at 100 ◦C and the outer surface is losing heat to an ambient at 30◦C via
a heat transfer coefficient of 5 W/m2 ◦C. Make use of thermal resistance
concept in solving the problem.

Ex 5.12: A conductor of 3mm diameter carries a current that produces 100 W/m of
heat in the conductor. A coaxial layer of a material of thermal conductivity
equal to 0.5 W/m◦C and an outer diameter of 25 mm insulates it. What is
the temperature of the conductor if the outer surface of the insulation is at
25 ◦C? Compare this with the case wherein the insulation is eccentrically
mountedwith an eccentricity of 5mm?The outer diameter of the insulation
remains the same.

Ex 5.13: A very long tube of 50 mm I D and 55 mm OD carries a hot fluid at
an average temperature of 70 ◦C. The tube side heat transfer coefficient is
250 W/m2 ◦

C and the thermal conductivity of the tube wall is 45 W/m◦C.
The tube is buried under the soil of thermal conductivity of 0.5 W/m◦C
at a depth of 1 m. The soil surface is at 20 ◦C. Determine the heat loss per
meter length of the tube. Make use of the thermal resistance concept in
solving the problem.

Ex 5.14: In a power station a power cable of diameter 5 mm and a coolant carrying
pipe of 50 mm diameter are buried deep in the ground. The cable and the
pipe run parallel to each other at an axial distance of 0.3 m. The cable
generates heat at the rate of 100 W/m. Thermal conductivity of the soil is
known to be 1 W/m◦C If the coolant temperature is 10 ◦Cwhat is the cable
temperature? Assume that all the heat generated by the cable is removed
by the coolant.

Ex 5.15: A power cable that may be essentially approximated as a very long cop-
per cylinder of 3 mm diameter surrounded by a 1 mm-thick plastic-clad
material. Such a cable carries a current of 100 A and is laid 0.6 m below
the ground. Determine the operating temperature of the cable if the tem-
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perature at the ground level is 30 ◦C Thermal conductivity of the ground
and the plastic-clad material, respectively, are 0.5 and 1 W/m◦C. Ther-
mal conductivity and the specific resistance of copper are, respectively,
380 W/m◦C and 1.67 × 10−8 � · m.



Chapter 6
Multidimensional Conduction Part II

This chapter considers multidimensional conduction involving transients in two
and three dimensions. Separation of variables technique forms the backbone of the

analysis. It is shown that for large times a one-term approximation is adequate and leads
to useful charts that facilitate easy calculation. Problems involving transient conduction
in all three coordinate systems, viz., Cartesian, cylindrical, and spherical coordinates,
are considered in this chapter.

6.1 Preliminaries

6.1.1 Introduction

InChap. 5, attentionwasgiven toproblems involving conduction in twodimensions—
either steady conduction in two space dimensions or unsteady one-dimensional con-
duction involving one space coordinate and time. Semi-infinite, infinite, and finite
spatial domains have been considered. The analysis used the similarity method, the
method of separation of variables, the superposition of elementary solutions, and the
method of complex variables. The problems considered were in any of the three coor-
dinate systems, viz., Cartesian, cylindrical, or spherical. Engineering applications,
specifically in material processing like heat treatment, food processing, etc., involve
transient multidimensional (two and three dimensions) conduction. Such problems,
that are amenable to solution by themethod of separation of variables, are considered
in this chapter.
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Fig. 6.1 One-dimensional
transient in a slab: the basic
problem in Cartesian
coordinates

6.1.2 Basic Problem in Cartesian Coordinates

The problem that forms the basis for analyzing problems in two and three dimensions
in Cartesian coordinates is the problem of transient conduction in an infinitely large
slab. We consider a slab of thickness 2Lx initially at a temperature Ti . In general, the
initial temperature profile may vary arbitrarily with respect to x as shown in Fig. 6.1.
However uniform initial temperature throughout is the case that shall be of interest
to us and hence Ti is treated as a constant in what follows. The two surfaces of the
slab are exposed to an ambient fluid at temperature T f different from Ti . The slab
starts cooling/heating by convection at the two exposed surfaces by convection via
a heat transfer coefficient h.

Placing the origin for x in themid-plane as shown, and identifying the temperature
excess T (x, t) − T f as θx and identifying initial temperature excess as θ0 = Ti − T f

wedefine thenon-dimensional temperature asφx (x, t) = θx (x,t)
θ0

. Thegoverning equa-
tion for the one-dimensional transient then is given by

1

α

∂φx

∂t
= ∂2φx

∂x2
(6.1)

subject to the following initial and boundary conditions:

φx (x, 0) = 1

initial condition

and
∂φx

∂x

∣
∣
∣
∣
(±Lx ,t)

= ∓φx (±Lx , t)

boundary conditions

(6.2)

In case symmetry exists (as will be assumed in what follows) about the slab mid-
plane (i.e., x = 0), the problem domain may be replaced by 0 ≤ x ≤ Lx with the
boundary conditions given by
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∂φx

∂x

∣
∣
∣
∣
(0,t)

= 0; ∂φx

∂x

∣
∣
∣
∣
(Lx ,t)

= φx (Lx , t) (6.3)

Solution by Separation of Variables Method
This problem may be solved in a routine way by the separation of variables method.
The general solution is given by (intermediate steps may be supplied by the reader,
following the details given in Chap. 5)

φx (x, t) =
∞

∑

n=1

e−λ2
nαt [An cos(λnx) + Bn sin(λnx)] (6.4)

We notice that the sine function is asymmetric with respect to the mid-plane while
the cosine function is symmetric with respect to the mid-plane. Hence we put Bn = 0
for all n and write the solution as

φx (x, t) =
∞

∑

n=1

e−λ2
nαt An cos(λnx) (6.5)

We now apply the boundary condition at x = Lx to get

−
∞

∑

n=1

λne
−λ2

nαt An sin(λn Lx ) = −h

k

∞
∑

n=1

e−λ2
nαt An cos(λn Lx ) (6.6)

This can be satisfied (for any t ≥ 0) if and only if

λn sin(λn Lx ) = h

k
cos(λn Lx ) or cot(λn Lx ) = λn Lx

Bix
(6.7)

In the above, Bix is the Biot Number defined as Bix = hLx
k . The values of Xn = λn Lx

( λn are known as eigenvalues or characteristic values) that satisfy Eq.6.7 (this is a
transcendental equation) are graphically shown in Fig. 6.2a, b.

The curve y = cot(Xn) and the straight line y = Xn
Bix

are plotted as shown. The
points of intersection of the curve and the line (three of them appear in the figure)
give the first three roots of Eq.6.7a. The value of the Biot number has been taken
as 1 in the example shown in the figure. In practice, the roots are determined by a
numerical procedure that will be presented in Example 6.1.

An alternate way of plotting is shown in Fig. 6.2b. Here the ordinate is the quantity
f (X) = X sin(X) − cos(X) and the abscissa is X . The advantage of this plot is that
the function is well behaved without any singularities. The zero crossings (seven of
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Fig. 6.2 Graphical representations of roots of Eq.6.7 in two different ways

them occur within the range of the figure) correspond to the required roots Xn =
λn Lx .

Using the initial condition, we have

1 =
∞

∑

n=1

An cos(λnx) (6.8)

An are givenby theFourier coefficients (thismay easily be shownby the orthogonality
property of cosine function over the interval of interest to us)

An =

Xn∫

0
cos(X)dX

1

2
+ sin(2Xn)

4

= sin(Xn)

1

2
+ sin(2Xn)

4

(6.9)

Example 6.1

Consider a large slab of thickness 2Lx subject to convection at its boundaries. The
solution requires the roots of Eq. 6.7. Calculate the first few (say 6) roots of this equa-
tion. Determine the mid-plane temperature at t = 50 s by (a) summing six terms and
(b) using only one term in the infinite series. The material has a thermal diffusivity
of α = 10−5 m2/s and Lx = 0.05 m. Assume a value of 1 for the Biot number. The
slab is initially at a uniform temperature of Ti and the fluid temperature is T f .
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Fig. 6.3 Alternate method
of visualizing the roots of
Eq.6.7

Solution:

Step 1 Weuse theNewton–Raphsonmethod to determine the roots. It is seen from
Fig. 6.2 that the first root lies between 0 and π and the second root between
π and 2π and so on. It is also clear from Fig. 6.3 that the roots may be
visualized to lie between 0 and π for all roots if the value of x is replaced
by x + nπ , n = 0, 1, 2 . . ., on the right-hand side of the transcendental
Eq.6.7. Once the root x is found after transforming the right-hand side as
shown, the actual root is given by Xn = x + nπ . Let us find the first root
that lies between 0 and π .

Step 2 The applicable transcendental equation is writtenwith Bix = 1, as f (x) =
cot(x) − x . The derivative of the function is given by f ′(x) = − cot2(x) −
2, as may be verified. We start the process of determining the root by using
a guess value, say xg = 1. An improved value xb for the root is given by
the rule

xb = xg − f (xg)

f ′(xg)
= xg − cot(xg) − xg

− cot2(xg) − 2
(6.10)

We repeat this process by replacing the guess value by the better value.
The values starting with the guess value of xg = 1 converges to the correct
value 0.86033 in just 4 iterations. Thus the first root of the transcendental
equation is X1 = 0.86033.
The root that lies between π and 2π is obtained by solving the equation
cot (x) − x − π = 0 with the understanding that the x value is between
0 and π ! The Newton–Raphson algorithm is used by replacing f (xg) by
cot (xg) − xg − π .We start with a guess value of xg = 0.1 (quite arbitrary)
and obtain the converged value of 0.28403 in 5 iterations. The required
second root is then X2 = 0.28403 + π = 3.42561.
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Step 3 This processmay be used to obtain any number of roots as needed. The first
six roots that have been obtained are 0.86033, 3.42561, 6.43730, 9.52934,
12.64258, and 15.77128.

Step 4 The corresponding Fourier coefficients may now be calculated. We make
use of the numerical data specified in the problem.

Semi-thickness of slab: Lx = 0.05 m
Thermal diffusivity of slab material: α = 10−5 m2/s

Time: t = 50 s

The Fourier number is calculated as

Fox = αt

L2
x

= 10−5 × 50

0.052
= 0.2

The Fourier coefficients are given by expression 6.9. Using the roots of the
transcendental equation obtained above, the first six Fourier coefficients,
corresponding to f (x) = 1, are calculated and given in the form of a table.

n Root Fourier Coefficient
Xn An

1 0.86003 1.11905
2 3.42561 −0.15169
3 6.43730 0.04659
4 9.52934 −0.02167
5 12.64258 0.01197
6 15.77128 −0.00799

Step 5 (a) Six-term sum for mid-plane temperature:
The mid-plane corresponds to x = 0 and hence cos(λnx) = 1 for all n.
The six-term Fourier sum is obtained for Fox = 0.2 as

φ(0, 0.2) ≈
6

∑

n=1

Ane
−X2

n Fox =
6

∑

n=1

Ane
−0.2X2

n = 0.95064

Step 6 (b) One-term approximation for mid-plane temperature:
The one-term approximation is given by the first term alone in the Fourier
series as

φ(0.0.2) ≈ A1e
−X2

1Fox = 1.11905 × e−0.860032×0.2 = 0.96514

Step 7 The percentage error in using the one-term approximation is thus given by

Percentage error = 0.95064 − 0.96514

0.95064
× 100 = −1.525%
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In engineering terms, the one-term approximation is an acceptable esti-
mate for the mid-plane temperature at Fox = 0.2. In general, the error
will be smaller than the above for Fox > 0.2 and hence the one-term
approximation is an acceptable approximation for Fox > 0.2.

Heat Loss Fraction
In applications, it is necessary to determine the total amount of energy that has entered
or left the slab in time t . This may be done in any one of two ways.

1. Calculate the heat transfer at the boundary and integrate this with respect to time
from t = 0 to t

2. Calculate the energy Ex (t) contained within the slab at time t and the difference
between the initial energy Qx0 and Ex (t) gives the heat transferred in time t

The latter yieldsmore accurate results since, at any time t , the temperature distribution
within the slab is known with good accuracy, say the one-term approximation. The
result is thus not dependent on the heat transfer history at the slab surface.

We base the calculation on the one-term approximation. Note that the non-
dimensional temperature for any x within the slab is then given by

φ(x, t) ≈ A1e
−X2

1Fox cos(X1ξ) (6.11)

where ξ = x
Lx
. The total energywithin the solid Ex (t) at any time t may be calculated

by integrating the above with respect to x , after multiplying by the product of density
of the slab material ρ, specific heat of the slab material c and the temperature differ-
ence Ti − T f , i.e., by ρcLx (Ti − T f ). The resulting quantity represents the energy
excess or deficit within the slab with respect to that at a datum temperature of T f .
We thus have

Ex (t) = 2ρcLx (Ti − T f )

∫ 1

0
A1e

−X2
1Fox cos(X1ξ)dξ

= 2ρcLx (Ti − T f )A1e
−X2

1Fox
sin(X1)

X1
(6.12)

Factor 2 is to account for the thickness of the slab of 2Lx . The energy contained in
the slab at t = 0 or Fox = 0 is simply given by

Qx (0) = Qx0 = 2ρcLx (Ti − T f )

The energy that has entered/left at the slab surface, by energybalance, is the difference
between Qx0 and E(t). The ratio, viz., Qx0−Ex (t)

Qx0
is usually of interest to us and is

given by
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Qx0 − Ex (t)

Qx0
= Qx (t)

Qx0
= 1 − A1e

−X2
1Fox

sin(X1)

X1
(6.13)

where Qx(t) represents the total heat exchange (per unit area) at the slab surface.
It is normalized with respect to the energy initially present within the slab material.
The fraction Qx (t)

Qx0
is referred to as the heat loss fraction, basically with Ti > T f in

mind.

Example 6.2

Consider again the data given in Example 6.1. Calculate the heat that would enter or
leave the slab per unit area in (a) 100 s and (b) 1000 s.

Solution :
Case (a): t = 100 s
Fourier number at the end of 100 s is given by

Fox (t = 100) = αt

L2
x

= 10−5 × 100

0.052
= 0.4

Then we have

Qx (t)

Qx0
= 1 − 1.11913 × e−0.860332×0.4 × sin(0.86033)

0.86033
= 0.267

About 27% of total heat transfer that would take place if we were to allow cooling
to continue for t → ∞ has taken place in the first 100s.
Case (b): t = 1000 s
Fourier number at the end of 1000 s is given by

Fox (t = 1000) = αt

L2
x

= 10−5 × 1000

0.052
= 4

Then we have

Qx (t)

Qx0
= 1 − 1.11913 × e−0.860332×4 × sin(0.86033)

0.86033
= 0.949

About 95% of total heat transfer that would take place if we were to allow cooling
to continue for t → ∞ has taken place in the first 1000s.
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6.1.3 Basic Problem in Cylindrical Coordinates

We consider an infinitely long cylinder of radius R that is initially at a uniform tem-
perature Ti throughout. It is subject to a convective environment at T f subject to a
convective heat transfer coefficient of h. The governing equation is the heat equation
in cylindrical coordinates with φr (r, t) = T (r,t)−T f

Ti−T f
, given by

∂φr

∂t
= α

(
∂2φr

∂r2
+ 1

r

∂φr

∂r

)

(6.14)

The initial condition is specified as

φr (r, 0) = 1 (6.15)

The boundary conditions are specified as

φr (0, t) is finite; ∂φr

∂r

∣
∣
∣
∣
r=R

= −h

k
φr (R, t) (6.16)

Solution by Separation of Variables Method
Using the familiar method of separation of variables the solution is sought in the
form

φr (r, t) =
∞

∑

n=1

fn(r)e
−αλ2

n t (6.17)

On substitution in Eq.6.14, we get

d2 fn
dr2

+ 1

r

d fn
dr

+ λ2
n fn = 0 (6.18)

Solution to this equation is given in terms of Bessel function of order zero, as may
be verified from Appendix A. The general solution may thus be written down as

φr (r, t) =
∞

∑

n=1

Ane
−αλ2

n t J0(λnr) (6.19)
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Fig. 6.4 Transcendental
equation plotted for the
cylinder problem

where An are recognized as the Fourier Bessel coefficients. In writing the above,
we have set to zero the coefficients of Y0(λnr) so as to have a finite value for the
temperature at r = 0. The eigenvalues λn are determined by satisfying the boundary
condition at the surface of the cylinder. We obtain the following equation (compare
with the slab case considered in Sect. 6.1.2) in order that the solution satisfies the
surface boundary condition.

d J0
dr

∣
∣
∣
∣
r=R

= −h

k
J0(λn R) (6.20)

Using the results ofAppendixA,wemay rewrite this in the formof the transcendental
equation

X J1(X) − Bir J0(X) = 0 (6.21)

where X = λn R and Bir = hR
k . A plot of this function shown in Fig. 6.4 for Bir = 1

looks similar to the plot shown in the slab case (compare with Fig. 6.2a, b).
The roots of the transcendental equation correspond to the zero crossings in

Fig. 6.4b. The first six roots, obtained by the use of Newton–Raphson method are:
1.25578, 4.07948, 7.15580, 10.27099, 13.39840, 16.53116. The Fourier coefficients
are then evaluated as

An =

Xn∫

0
X J0(X)dX

Xn∫

0
X J 2

0 (X)dX

(6.22)

Correspondingly the first six Fourier coefficients turn out to be 1.20709, −0.29015,
0.12891, −0.07557, 0.05088, and −0.03718. Again the first term alone survives for
Bir ≥ 0.2 and we have the familiar one-term approximation given by



6.1 Preliminaries 229

φr (0, For ) ≈ 1.20709e−1.255782For (6.23)

Heat Loss Fraction
The arguments made in the slab problem hold in this case also. The energy contained
within the cylinder at any time t > 0 is calculated by integrating the temperature
profile after multiplication by the material density ρ, heat capacity c, and the ini-
tial temperature difference Ti − T f . The elemental volume, in this case is given by
2πrdr . Hence we have

Er (t) = ρc(Ti − T f )

∫ R

0
2πrφ(r, t)dr (6.24)

The one-term approximation is used for φr (r, t) as φr (r, t) = A1e−X2
1For J0(X1ρ

′)
where ρ ′ = r

R . Substituting this in Eq.6.24 and performing the indicated integration
gives

Er (t) = 2A1πR2ρc(Ti − T f )e
−X2

1For

1∫

0

ρ ′ J0(X1ρ
′)dρ ′

= Qr02A1e
−X2

1For

X1∫

0
x J0(x)dx

X2
1

= Qr02A1e
−X2

1For
J1(X1)

X1

(6.25)

The above result follows from the following two observations:

1. Qr0 is the energy initially contained in the cylinder given by πR2ρc(Ti − T f ).

2.
x∫

0
x J0(x)dx = x J1(x)—based on properties of the Bessel function.

As in the case of the slab problem, we may then write for the heat loss fraction

Qr (t)

Qr0
= 1 − Er (t)

Q0
= 1 − 2A1e

−X2
1For

J1(X1)

X1
(6.26)

6.1.4 Basic Problem in Spherical Co-Ordinates

We consider a sphere of radius R initially at a uniform temperature Ti throughout
that is subject to convection at its surface to an ambient fluid at T f via a heat transfer



230 6 Multidimensional Conduction Part II

coefficient h for t > 0. Heat transfer within the sphere is by unsteady conduction in
the radial direction. The governing equation for φ = T (r,t)−T f

Ti−T f
is given by the one-

dimensional heat equation

1

r2
∂

∂r

[

r2
∂φ

∂r

]

= 1

α

∂φ

∂t
(6.27)

The initial and boundary conditions are given by

φ(r, 0) = 1 (6.28)

and

φ(r = 0, t) is finite; ∂φ

∂r

∣
∣
∣
∣
(R,t>0)

= −h

k
φ(R, t > 0) (6.29)

Solution by the Separation of Variables Method
The separation of variables method is used by seeking the solution in the form

φ(r, t) =
∞

∑

n=1

An fn(r)e
−λ2

nαt (6.30)

On substitution in Eq.6.27, the equation that governs fn(r) is obtained as

1

r2
d

dr

[

r2
d fn
dr

]

= −λ2
n fn(r) (6.31)

It may be verified by actual substitution that the general solution to Eq. 6.31 is given
by

fn(r) = An
sin(λnr)

r
+ Bn

cos(λnr)

r
(6.32)

Since the solution that goes as cos(λnr)
r is singular at r = 0, the solution contains only

the sin(λnr)
r part. Hence we have

φ(r, t) =
∞

∑

n=1

An
sin(λnr)

r
e−λ2

nαt (6.33)
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Fig. 6.5 Transcendental
equation plotted for the
sphere problem

where An are Fourier coefficients. The boundary condition requires that

λn cos(λn R)

R
− sin(λn R)

R2
= −h

k

sin(λn R)

R
for all n. (6.34)

Letting λn R = Xn , we may recast Eq.6.34 as

Xn cos(Xn) − (1 − Bir ) sin(Xn) = 0 (6.35)

where Bir = hR
k is the Biot number. The transcendental Eq.6.35 plots is shown in

Fig. 6.5. The zero crossings are the desired roots to show the role played by the Biot
number,we have plotted two cases corresponding, respectively, to Bir = 2 and Bir =
0.2. The roots are obtained easily byNewton–Raphsonmethod. The first six roots, for
Bir = 2, are givenby2.02876, 4.91318, 7.97867, 11.08554, 14.20744, and17.33638.
The root located at the origin leads to a trivial solution and hence is of no consequence.
TheFourier coefficients An are obtainedbynoting that the function r fn(r) = sin(λnr)
is orthogonal in the interval 0, λn R, i.e., 0, Xn . The Fourier coefficients are thus
obtained from the initial condition 6.28 as

An =

Xn∫

0
X sin(X)dX

Xn∫

0
sin2(X)dX

= 4[sin(Xn) − Xn cos(Xn)]
[2Xn − sin(2Xn)] (6.36)

The first six Fourier coefficients for Bi = 2 are obtained as 1.47932, −0.76726,
0.48988, −0.35650, 0.27948, and −0.22958. At a value of For = 0.2, the non-
dimensional center temperature of the sphere φ(0, For ) obtained with the six terms
is 0.64334 as compared to one-term value of 0.64948. The difference is small and
indicates that, in this case also, a one-term approximation is adequate for For ≥ 0.2.
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Heat Loss Fraction
Since the sphere is at a uniform temperature at t = 0, the total energy contained
within the sphere is given by

Qr0 = 4

3
πR3ρc(Ti − T f ) (6.37)

As in the two previous cases, we calculate the heat loss fraction by calculating the
energy within the sphere at any time t > 0 by using the one-term approximation to
the temperature given by

φ(r, t) = A1e
−X2

1For
sin(X1ρ

′)
X1ρ ′

where ρ ′ = r
R . The energy contained in the sphere is then calculated as

Er (t) = 4πR3ρc(Ti − T f )A1e
−X2

1For

1∫

0

ρ ′2 sin(X1ρ
′)

X1ρ ′ dρ ′

= 3Qr0A1e
−X2

1For

X1∫

0

x
sin(x)

X3
1

dx = 3Qr0A1e
−X2

1For

[
sin(X1) − X1 cos(X1)

X3
1

]

(6.38)
The heat loss fraction is then seen to be given by

Qr (t)

Qr0
= 1 − 3A1e

−X2
1For

[
sin(X1) − X1 cos(X1)

X3
1

]

(6.39)

Example 6.3

A long cylinder of an alloy of diameter 0.104m emerges from a furnace with a
uniform temperature across the cross section of 200 ◦C in to an ambient at 65◦C .
The ambient medium imposes a convection heat transfer coefficient of 30W/m2 ◦C at
the cylinder surface. Determine the temperature at the axis of the cylinder 5 minutes
after its exposure to the ambient. What is the surface temperature of the cylinder at
this time? Properties of the alloy have been specified as follows:
Density: ρ = 4500 kg/m3, Specific heat: c= 320.5 J/kg ◦C , Thermal conductivity:
k = 26 W/m◦C.
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Solution : (a) Calculation of temperature at axis:
Step 1 The given data is written down using the already familiar notation.

Initial cylinder temperature:Ti = 200◦C
Ambient temperature:T f = 65◦C

Heat transfer coefficient:h = 30 W/m2 ◦C
Radius of cylinder:R = D

2 = 0.104
2 = 0.052 m

Time at which temperatures are needed:t = 5 min. = 300 s

From the property data specified in the problem, the thermal diffusivity is
calculated as

α = k

ρc
= 26

4500 × 320.5
= 1.803 × 10−5 m2/s

The Biot number is determined as

Bi = hR

k
= 30 × 0.052

26
= 0.06

The Fourier number is calculated as

Fo = αt

R2
= 1.803 × 10−5 × 300

0.0522
= 2

Step 2 From Fig. D.4 (Heisler chart), the non-dimensional axial temperature is
read off as φ = 0.8. The corresponding temperature is given by

T (0, 300) = T f + (Ti − T f )φ = 65 + (200 − 65) × 0.8 = 173◦C

(b) Surface temperature calculation:

Step 3 The surface is characterized by r
R = 1. The reciprocal Biot number is given

by 1
Bi = 1

0.06 = 16.67. The correction factor is now read off Figure D.5 in
Sect. 6.2 as 0.971. Thus we have

T (0.052, 300) = T f + (Ti − T f )φ × Correction factor

= 65 + (200 − 65) × 0.8 × 0.971 = 169.9◦C

Step 4 Comment: It is seen that there is a temperature difference of a mere 3.1◦C
between the axis and surface of the rod. This is not surprising since the
Biot number of 0.06 is very small and hence the cylinder behaves very
closely as a lumped system along the radial direction.
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Example 6.4

A spherical cannon ball of diameter 0.104 m is initially at a uniform tempera-
ture of 300 ◦C . It is exposed to an ambient at 35 ◦C for t > 0. The ambient medium
imposes a convection heat transfer coefficient of 120 W/m2 ◦C at the surface of the
cannon ball. Determine the center temperature of the cannon ball 10 minutes after
its exposure to the ambient. What is the surface temperature of the cannon ball at
this time? What percentage of heat originally in the sphere has been lost by the
sphere? Properties of the material of the cannon ball have been specified as under:
Density, ρ = 7800 kg/m3, Specific heat, c = 450 J/kg ◦C, Thermal conductivity,
k = 75 W/m ◦C.

Solution :
(a) Axial temperature calculation:

Step 1 The given data is written down using the already familiar notation.

Initial cannon ball temperature: Ti = 300◦C
Ambient temperature: T f = 35◦C

Heat transfer coefficient: h = 120 W/m2 ◦C
Radius of cannon ball: R = D

2 = 0.104
2 = 0.052 m

Time at which temperatures are needed: t = 10 min. = 600 s

From the property data specified in the problem, the thermal diffusivity is
calculated as

α = k

ρc
= 75

7800 × 450
= 2.14 × 10−5 m2/s

The Biot number is determined as

Bi = hR

k
= 120 × 0.052

75
= 0.083

The Fourier number is calculated as

Fo = αt

R2
= 2.14 × 10−5 × 600

0.0522
= 4.75

Step 2 From Figure D.7 in Sect. 6.2, the non-dimensional center temperature is
read off as φ = 0.34. The corresponding temperature is given by

T (0, 600) = T f + (Ti − T f )φ = 35 + (300 − 35) × 0.34 = 125.1◦C
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(b) Surface temperature calculation:

Step 3 The surface is characterized by r
R = 1. The reciprocal Biot number is given

by 1
Bi = 1

0.083 = 12.05. The correction factor is now read off in Figure D.8
as 0.96. Thus we have

T (0.052, 600) = T f + (Ti − T f )φ × Correction factor

= 35 + (300 − 35) × 0.34 × 0.96 = 121.5◦C

(c) Percent heat loss from the shell:
From Figure D.8 in Sect. 6.2, we read off the heat loss fraction as 59%.
This means 41% of total heat loss that would eventually take place has
taken place in the first 10 minutes.

Step 4 Comment: In this example also the sphere is behaving, more or less, as a
lumped system.

6.2 One-Term Approximation and Heisler Charts

In all the three cases involving transient one-dimensional conduction thatwere treated
in Sects. 6.1.1–6.1.4, a one-term approximation has been shown to be adequate.
Hence it is customary to give the one-term solution by appropriate plots, known as
Heisler charts,1 for convenience in solving problems. These charts are also useful
in dealing with transient conduction in more than one dimension. Heisler charts are
available in Appendix D.

6.3 Transient Conduction in More Than One Dimension

6.3.1 Introduction

Till now we have considered transient conduction in one dimension, in a slab, a
cylinder, or a sphere subject to convection at the exposed boundary. In engineering
applications, transient conduction may take place in more than one space dimension.
For example, in a long bar of rectangular cross section, transient temperature field is
a function of both x and y. In a block of material in the form of a brick, the transient
temperature field is a function of x, y, z. In the case of a cylinder of finite length,

1M.P. Heisler, Temperature charts for induction heating and constant temperature, Trans. ASME,
Vol. 69, pp. 227–236, 1947.
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the transient temperature field is a function of r and z. These problems are also
amenable to solution by the use of Heisler charts. The present effort is to develop
the methodology for treating such cases.

6.3.2 Transient Conduction in an Infinitely Long
Rectangular Bar

Consider the case of an infinitely long bar of rectangular cross section of width 2Lx

and height 2Ly as shown in Fig. 6.6. The bar is surrounded by a medium at T f that
removes heat by convection subject to a convective heat transfer coefficient h. Ini-
tially, the temperature distribution in the bar is specified as a given function of x and
y (as usual, the bar is isothermal at T (x, y, 0) = Ti ). The problem involves a tem-
perature field which is a function of three variables −2 space variables x and y and
one-time variable t . Choose the origin to lie at the intersection of the two mid-planes
as shown in Fig. 6.6. The governing equation, initial and boundary conditions are
Governing equation:

1

α

∂φ

∂t
= ∂2φ

∂x2
+ ∂2φ

∂y2
(6.40)

where φ(x, y, t) = T (x,y,t)−T f

Ti−T f
.

Initial condition:

Fig. 6.6 Transient
conduction in an infinitely
long rectangular bar
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t = 0; φ(x, u, 0) = 1 (6.41)

Boundary conditions for t > 0:

x = ∓Lx ,−Ly ≤ y ≤ Ly; ∂φ

∂x
= ±h

k
φ (6.42)

y = ∓Ly,−Lx ≤ y ≤ Lx ; ∂φ

∂y
= ±h

k
φ (6.43)

The± sign indicates that the positive sign holds at the first boundary and the negative
signholds at the secondboundary.There are situations inwhich the initial temperature
distribution F(x, y) is expressible in the form F1(x) × F2(y). An example is one
wherein the entire cross section is initially at a constant temperature. Then both F1(x)
and F2(y) are constants.We shall examine, under such a situation, whether φ(x, y, t)
is expressible as φx (x, t) × φy(y, t) . On substitution into Eq.6.40, we should then
have,

1

α

[

φy
∂φx

∂t
+ φx

∂φy

∂t

]

=
[

φy
∂2φx

∂x2
+ φx

∂2φy

∂y2

]

(6.44)

On re-arrangement, we should have

φy

[ 1

α

∂φx

∂t
− ∂2φx

∂x2

]

= φx

[ 1

α

∂φy

∂t
− ∂2φy

∂y2

]

(6.45)

This equation is equivalent to two equations given by

(a)
1

α

∂φx

∂t
= ∂2φx

∂x2
(b)

1

α

∂φy

∂t
= ∂2φy

∂y2
(6.46)

Now look at the initial and boundary conditions. Initial condition 6.41 requires that

φx (x, 0) = F1(x) = 1; φy(y, 0) = F2(y) = 1 (6.47)

The boundary conditions require the following to hold:

(a) x = ∓Lx ,
∂φx

∂x
= ±h

k
φx (b) y = ∓Ly,

∂φy

∂y
= ±h

k
φy (6.48)
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Fig. 6.7 Connection
between the rectangular bar
transient and the infinite slab
transient

Thus the original two-dimensional transient problem has been reduced to two one-
dimensional transients given by Eqs. 6.46(a) and (b).

Interpretation
Each of the one-dimensional transients given by Eqs. 6.46(a) and (b), along with the
respective initial and boundary conditions (6.47, 6.48(a) and (b)) are analogous with
the basic case considered in Sect. 6.1.2. Thus, the situationmay be graphically shown
by the equivalence, given in Fig. 6.7. A bar of infinite length and rectangular section,
is obtained, by the intersection of two infinitely large perpendicular slabs, as shown
in the figure.

Consider now the special case in which the temperature in the bar initially is
uniform at Ti . We introduce non-dimensional temperature functions given by

(a) φx = T1(x, t) − T f

Ti − T f
(b) φy = T2(y, t) − T f

Ti − T f
(6.49)

Thus both φx and φy are unity at t = 0, i.e., F1(x) = 1 and F2(y) = 1. The two
solutions may be obtained by the method of separation of variables as in Sect. 6.1.2.
Each of these solutions may be written down, using the one-term approximation as

(a) φx = A11e
−X2

11Fox cos(X11ξ) (b) φy = A21e
−X2

21Foy cos(X21η) (6.50)

where ξ = x
Lx
, η = y

L y
, Fox = αt

L2
x
and Foy = αt

L2
y
. The Fourier coefficients as also

the eigenvalues are double subscripted and have the following meanings:

X11 = λ11Lx , X21 = λ21Ly
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where λ11 is the first root of the equation cot(λ11Lx ) = λ11Lx
Bix

and λ21 is the first root

of the equation cot(λ21Ly) = λ21Ly

Biy
. Two Biot numbers make their appearance given

by Bix = hLx
k and Biy = hLy

k . With these, the Fourier coefficients may be evaluated
(see developments leading to Eq.6.8 and 6.9) to yield

A11 = sin(X11)

1

2
+ sin(2X11)

4

, A21 = sin(X21)

1

2
+ sin(2X21)

4

(6.51)

The one-term approximation is valid as long as Fox > 0.2 and Foy > 0.2. Under
these conditions, the charts presented in Figures D.1–D.3 may be used for obtaining
the solution. The Fourier and Biot numbers need to be interpreted as the respective
Fourier and Biot numbers, for the two directions.

Heat Loss Fraction
In the case of the rectangular bar, the initial energy within it is given by

Qxy0 = 4ρc(Ti − T f )Lx L y (6.52)

where 4Lx L y is the volume per unit length of the bar. At any time t > 0, the energy
contained within the bar is given by

Exy(t) = ρc(Ti − T f )

Lx∫

−Lx

L y∫

−Ly

φxφydxdy (6.53)

We may substitute the expressions for the φx and φy from 6.49 and perform the
indicated integration to get

Exy(t) = 4ρc(Ti − T f )Lx L y A11A21e(
−X2

11Fox−X2
21Foy) · sin X11

X11
· sin X21

X21
(6.54)

or, alternately as
Exy(t)

Qxy0
= Ex (t)

Qx0

Ey(t)

Qy0
(6.55)

where Ex (t)
Qx0

and Ey(t)
Qy0

are given, respectively, based on Eq.6.13 by

Ex (t)

Qx0
= 1 − Qx (t)

Qx0
; Ey(t)

Qy0
= 1 − Qy(t)

Qy0
(6.56)

Note that both Qx (t)
Qx0

and Qy(t)
Qy0

are read off Figure D.3 but by using the respective
Fourier and Biot numbers, for the two directions. With these the heat loss ratio for
the two-dimensional case becomes
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Qxy(t)

Qxy0
= 1 − Ex (t)

Qx0

Ey(t)

Qy0
= 1 −

(

1 − Qx (t)

Qx0

)(

1 − Qy(t)

Qy0

)

(6.57)

Example 6.5

A long rectangular bar of cross section 200 × 100 mm is initially at a tempera-
ture of 30 ◦C . It is convectively heated by an ambient at 250 ◦C subject to a constant
heat transfer coefficient of 67 W/m2◦C . Properties of the bar material are:
Density ρ = 3970 kg/m3, specific heat c = 765 J/kg◦C , and thermal conductivity
k = 33.4 W/m◦C .
(a) What is the temperature at x = 0, y = 0 after 10 minutes from the beginning of
the heating process? (b) What is the amount of heat transfer to the bar in the same
time? (c) What are the temperatures at the center of adjacent faces? (d) Determine
the temperature along the edges of the rectangle.

Solution :

Step 1 The data is written down with the notation introduced in the text.

Initial temperature of the bar: Ti = 30◦C
Ambient temperature: T f = 250◦C

Half width of bar: Lx = 0.1 m
Half height of bar: Ly = 0.05 m

Time at which results are needed: t = 10 min = 600 s

Step 2 From the material property data, the thermal diffusivity is calculated as

α = 33.4

3970 × 765
= 1.1 × 10−5 m2/s

Biot and Fourier numbers that characterize the solution are now deter-
mined.

Bix = 67 × 0.1

33.4
= 0.2; Biy = 67 × 0.05

33.4
= 0.1

Fox = 1.1 × 10−5 × 600

0.12
= 0.66; Foy = 1.1 × 10−5 × 600

0.052
= 2.64

Step 3 From Heisler chart D.1, we read off the following:

φx (0, 0.66) = 0.91; φy(0, 2.64) = 0.78

Step 4 (a) Temperature at 0,0 at t=600s: The temperature at (0, 0, 600) is then
obtained as
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T (0, 0, 600) = T f + (Ti − T f )φx (0, 0.66)φy(0, 2.64)

= 250 + (30 − 250) × 0.91 × 0.78 = 93.8◦C

Step 5 (b)Heat transferred to the bar in 600s: FromHeisler chart D.3 we read
off the following:

Qx (600)

Qx0
= 0.12; Qy(600)

Qy0
= 0.21

Using Eq.6.57, we then have

Heat loss ratio = 1 − (1 − 0.12)(1 − 0.21) = 0.305

The total energy contained within the bar per unit length, at t = 0 is
(Eq.6.52)

Qxy0 = 4 × 0.1 × 0.05 × 3970 × 765(30 − 250) = −1.336 × 107 J/m

The negative sign above indicates that heat is transferred to the bar. The
heat transferred to the bar in 600s may now be calculated as

Qxy(600) = −0.305 × 1.336 × 107 = −4.073 × 106 J/m ≈ −4 MJ/m

Step 6 (c) Temperatures at the centers of adjacent faces: The center on the
short face is located at ±0.1, 0. These points correspond to x

Lx
= ±1 and

y
L y

= 0. The reciprocal Biot number is

1

Bix
= 1

0.2
= 5

Correction factor is needed for φx alone and is read off Fig. D.2 as x-
Correction factor cx = 0.91. The temperature T (±0.1, 0, 600) is then
given by

T (±0.1, 0, 600) = T f + (Ti − T f )φx (0, 0.66)φy(0, 2.64) × cx
= 250 + (30 − 250) × 0.91 × 0.78 × 0.91 = 107.9 ◦C

The center on the long face is located at 0,±0.05. These points correspond
to x

Lx
= 0 and y

L y
= ±1. The reciprocal Biot number is

1

Biy
= 1

0.1
= 10
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Correction factor is needed for φy alone and is read off in Fig. D.2 as
y-Correction factor cy = 0.99. The temperature T (0,±0.05, 600) is then
given by

T (0,±0.05, 600) = T f + (Ti − T f )φx (0, 0.66)φy(0, 2.64) × cy
= 250 + (30 − 250) × 0.91 × 0.78 × 0.99 = 95.4 ◦C

Step 7 (d) Rectangle edge temperature: All the four edges are at the same tem-
perature. Correction factors are required for both directions and are the
values determined above. The edge temperature T (±0.1,±0.05, 600) is
then given by

T (±0.1,±0.05, 600) = T f + (Ti − T f )φx (0, 0.66)φy(0, 2.64) × cx × cy
= 250 + (30 − 250) × 0.91 × 0.78 × 0.91 × 0.99 = 109.3◦C

6.3.3 Transient Heat Conduction in a Rectangular Block
in the form of a brick

Consider a rectangular block of a material as shown in Fig. 6.8. In the light of the
discussion above with reference to Fig. 6.7, it is clear that the block (a rectangular
parallelepiped)may be visualized as being obtained by the intersection at right angles
to one another of three infinitely large slabs of thickness 2Lx , 2Ly , and 2Lz parallel
to the three coordinate directions. When the boundary conditions are appropriate as
in the previous case, this case is also amenable to a product-type representation of
the solution in terms of three one-dimensional slab solutions. When the one-term
approximation is valid, the results given in Figs. D.1–D.3 may be used for this case
also. Three Biot numbers (Bix , Biy , and Biz) and three Fourier numbers (Fox , Foy ,

Fig. 6.8 Transient heat
conduction in a rectangular
block in the form of a brick
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and Foz) will be involved in this case, since there are three characteristic length
dimensions involved in describing the geometry. The analysis follows the one that
was made for the rectangular bar problem. We summarize the results by indicating
the additions and changes that are to be incorporated in the results given in Sect. 6.3.2.
To the list of variables given in Eq.6.49 we add the following.

(c) φz = T3(y, t) − T f

Ti − T f
(6.58)

Eq.6.50 is augmented by

φz = A31e
−X2

31Foz cos(X31ζ ) (6.59)

where ζ = z
Lz
, Foz = αt

L2
z
. Equation6.51 is augmented by

X31 = λ31Lz (6.60)

where λ31 is the first root of the equation cot(λ31Lz) = λ31Lz

Biz
with Biz = hLz

k . Add
to Eq.6.51

(c) A31 = sin(X31)

1

2
+ sin(2X31)

4

(6.61)

In the case of the rectangular block the initial energy within it is given by

Qxyz0 = 8ρc(Ti − T f )Lx L yLz (6.62)

where 8Lx L yLz is the volume of the block. At any time t > 0, the energy contained
within the block is given by

Exyz(t) = ρc(Ti − T f )

Lx∫

−Lx

L y∫

−Ly

Lz∫

−Lz

φxφyφzdxdydz (6.63)

Wemay substitute the expressions for the φx , φy from 6.49 and φz from 6.59, perform
the indicated integration to get

Exyz(t) = c(Ti − T f )Lx L yLz A11A21A31e(
−X2

11Fox−X2
21Foy−X2

31Foz)

× sin X11

X11
· sin X21

X21
· sin X31

X31

or, alternately as



244 6 Multidimensional Conduction Part II

Exyz(t)

Qxyz0
= Ex (t)

Qx0

Ey(t)

Qy0

Ez(t)

Qz0
(6.64)

where Ez(t)
Qz0

is given, based on Eq.6.13 by

Ez(t)

Qz0
= 1 − Qz(t)

Qz0
(6.65)

Note that Qx (t)
Qx0

, Qy(t)
Qy0

and Qz(t)
Qz0

are read off using FigureD.3 but by using the respective
Fourier and Biot numbers, for the three directions. With these the heat loss ratio for
the three-dimensional case becomes

Qxyz(t)

Qxyz0
= 1 − Ex (t)

Qx0

Ey(t)

Qy0

Ez(t)

Qz0
= 1 −

(

1 − Qx (t)

Qx0

)(

1 − Qy(t)

Qy0

) (

1 − Qz(t)

Qz0

)

(6.66)

Example 6.6

A rectangular block of steel 0.1 × 0.075 × 0.05m is initially at room temperature
of 30◦C . It is hung in a preheated oven at 220◦C and thus starts heating up subject
to a moderate level of convection with a heat transfer coefficient of 45 W/m2 ◦C .
Determine the center temperature of the block after 600 s. Also, determine the tem-
perature at the center of all the faces of the block and at all the corners at this time.
The thermal diffusivity of steel is 1.15 × 10−5 m2/s and the thermal conductivity is
43 W/m◦C . Determine also the amount of heat added to the block in t = 600 s.

Solution :

Step 1 This example requires calculations similar to those in Example 6.5. The
required parameters are calculated or read off in Heisler charts and
arranged in the following table:

Direction Length Biot Fourier φ c Heat loss
number number fraction

x 0.05 0.052 2.64 0.92 0.96 0.12
y 0.0375 0.039 4.69 0.83 0.97 0.17
z 0.025 0.026 10.56 0.74 0.98 0.24

Step 2 The temperature at the center of the block is given by

T (0, 0, 0, 600) = 220 + (30 − 220) × 0.92 × 0.83 × 0.74 = 112.6◦C

Step 3 Centers of faces require the use of correction factors. The faces that are
parallel to the x axis require the correction factor cx and so on. The cor-
rection factors needed are shown in the last but first column of the table.
We then have



6.3 Transient Conduction in More Than One Dimension 245

T (±0.05, 0, 0, 600) = 220 + (30 − 220) × 0.92 × 0.83 × 0.74 × 0.96 = 116.9 ◦C
T (0,±0.0375, 0, 600) = 220 + (30 − 220) × 0.92 × 0.83 × 0.74 × 0.97 = 115.9 ◦C
T (0, 0,±0.025, 600) = 220 + (30 − 220) × 0.92 × 0.83 × 0.74 × 0.98 = 114.8 ◦C

Step 4 Corner temperatures are given by

T (±0.05,±0.0375,±0.025, 600) = 220 + (30 − 220) × 0.92 × 0.83

×0.74 × 0.96 × 0.97 × 0.98 = 122 ◦C

Step 5 We use Eq.6.66 and the respective directional heat loss fractions from the
last column of the table to get

Qxyz(600)

Qxyz0
= 1 − (1 − 0.12)(1 − 0.17)(1 − 0.24) = 0.445

Since α and k are given, the density-specific product ρc is given by

ρc = k

α
= 43

1.1 × 10−5
= 3.909 × 106 J/m3 ◦C

With this we have

Qxyz0 = 8 × 0.05 × 0.0375 × 0.025 × 3.909 × 106 × (30 − 220)

= −278520 J

Thus the heat loss fraction in absolute terms is

Qxyz(600) = 0.445 × (−278520) = −0.124 MJ

6.3.4 Transient Heat Conduction in a Circular Cylinder
of Finite Length

An example of considerable interest is the two-dimensional transient conduction in a
circular cylinder of finite length. The problem represents transient heat conduction in
cylindrical coordinates. The initial temperature throughout the cylinder is assumed
to be uniform at Ti . All the surfaces of the cylinder are subject to convection via a
heat transfer coefficient h to an ambient at T f . As shown in Fig. 6.9, the solution may
be obtained by considering an intersection between an infinite plane of thickness
equal to the length of the cylinder and an infinitely long cylinder of radius equal to
the radius of the cylinder. The solution is sought in the form of a product solution
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Fig. 6.9 Transient
conduction in a short
cylinder

involving these two cases. Placing the origin at the mid-plane of the infinite slab
and at the axis of the cylinder as shown, the solution may be represented by the
product solution φ(x, r, t) = φx (x, t) × φr (r, t) where (i) φx (x, t) represents one-
dimensional transient in an infinite slab and (ii) φr (r, t) represents one-dimensional
transient in an infinite cylinder. Each of these solutions has been obtained earlier
in Sects. 6.1.2 and 6.1.3 by the separation of variables method. The slab part of the
solution (i) involves exponential time terms and circular functions of x . The slab
solution is approximated by the one-term approximation and is available in Figures
D.1−D.3. The radial part of the solution (ii) involves exponential time terms and
Bessel functions of r . Infinite cylinder solution is also available in the form of charts
given in Figures D.4–D.6 . The solutions involve two Biot numbers (Bix and Bir )
and two Fourier numbers ( Fox and For ).

The heat loss fraction is obtained as follows. The total energy contained in the
cylinder at zero time is given by

Qxr0 = 2πR2Lxρc(Ti − T f ) (6.67)

where the cylinder radius and length are respectively equal to R and 2Lx . The energy
contained within the cylinder is obtained by using the slab and cylinder solutions as

Exr (t) = ρc(Ti − T f )2π

R∫

0

Lx∫

−Lx

φr (r, t)φx (x, t)rdrdx (6.68)

Performing the indicated integration, borrowing results from the infinite slab and
long cylinder transients, the above may be recast in the form of heat loss ratio as
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Fig. 6.10 Figure for
Example 6.7

Qxr (t)

Qxr0
= 1 − Ex (t)

Qx0

Er (t)

Qr0
= 1 −

(

1 − Qx (t)

Qx0

) (

1 − Qr (t)

Qr0

)

(6.69)

Example 6.7

A low-carbon steel cylinder of diameter 10 cm and 10 cm tall is initially at 200 ◦C
throughout. It is plunged into a quenching oil bath at 30 ◦C which provides convec-
tion cooling subject to a heat transfer coefficient of h = 250 W/m2◦C . Temperatures
at points 1 and 2 (Fig. 6.10) are desired at t = 60 s and t = 300 s respectively. Also
required is the amount of heat transfer that has taken place in 300s. Properties of
low-carbon steel are k = 54 W/m◦C and α = 1.474 × 10−5 m2/s.

Solution :
Case (1): Temperature at Point 1 at t = 60 s
Slab part of solution:

Ly = 5 cm = 0.05 m; y = 0 or η = 0

The Biot and Fourier numbers are calculated as

Biy = hLy

k
= 250 × 0.05

54
= 0.232

Foy = αt

L2
y

= 1.474 × 10−5 × 60

0.052
= 0.354

From Figure D.1, we read off the temperature as φy(0, 60) = 0.96
Cylinder part of solution:
The radius of the cylinder is R = 5 cm = 0.05 m and the temperature is desired on
the axis with ρ ′ = 0. The Biot and Fourier numbers are calculated as
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Bir = hR

k
= 250 × 0.05

54
= 0.232

For = αt

R2
= 1.474 × 10−5 × 60

0.052
= 0.354

From Figure D.4, we read off the temperature as φr (0, 60) = 0.92. The desired
temperature at Point 1 is

T (0, 0, 60) = T f + (Ti − T f )φy(0, 60)φr (0, 60)

= 30 + (200 − 30) × 0.96 × 0.92 = 180.1◦C

Case (2): Temperature at Point 2 at t = 300 s:
It is seen that point 2 is off mid-plane with respect to the slab solution and on axis
with respect to the cylinder solution. Hence we apply a correction factor for the slab
part alone using Figure D.2. Since t is different fromCase 1, we redo the calculations
as under.
Slab part of solution:
The Biot number Bix = 0.232 does not change. However the Fourier number is
calculated as

Foy = αt

L2
y

= 1.474 × 10−5 × 300

0.052
= 1.77

From Figure D.1, we read off the temperature as φy(0, 300) = 0.70. Position indi-
cated is such that y = 2.5 cm = 0.025 m. Hence the correction factor to the slab
solution is required at y

L y
= 0.025

0.05 = 0.5. The reciprocal Biot number is 1
Bi = 1

0.232 =
7.63. The position correction factor is read from Figure D.2 as cy = 0.94. Hence

φy(0.025, 300) = cyφ(0, 300) = 0.70 × 0.94 = 0.658

Cylinder part of solution:
As earlier, the Biot number based on cylinder radius is Bir = 0.232. The Fourier
number is given by

For = αt

R2
= 1.474 × 10−5 × 300

0.052
= 1.77

From Figure D.4 we read off the temperature as φr (0, 300) = 0.48. The desired
temperature at Point 2 is

T (0, 0, 300) = T f + (Ti − T f )φy(0.025, 300)φr (0, 300)

= 30 + (200 − 30) × 0.658 × 0.48 = 83.7◦C

Heat transfer to the cylinder in 300 s:
From the given property data, the density-specific heat product for high-carbon steel
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may be calculated as

ρc = k

α
= 54

1.474 × 10−5
= 3663500 J/m3 ◦C

The quantity Qyr0 is calculated as

Qyr0 = 2ρcπR2Ly(Ti − T f )

= 2 × 3663500 × π × 0.052 × 0.05(200 − 30) = 489142 J

From Fig. D.2 we have Qy(300)
Qy0

= 0.32. From Fig. D.6 we have Qr (300)
Qr0

= 0.56. using
Eq.6.69 the heat loss ratio for the cylinder is obtained as

Qyr (300)

Qyr0
= 1 −

(

1 − 0.32
)(

1 − 0.56
)

= 0.7

We then calculate the total heat transfer in 300s as

Qyr (300) = 489142 × 0.7 = 342399 J

Concluding Remarks

This chapter has considered transient conduction in one, two and three dimensions and in

all three corodinate systems viz. Cartesian, cylindrical and spherical coordinates. Based on

separation of variables technique a one term approximation valid for Fo > 0.2 has been

evolved. Heisler charts, based on one term approximation, have been presented for all one

dimensional transients. It is shown that these charts are also useful for transients in two and

three dimensions.

6.4 Exercises

Ex 6.1 A large slab of steel 15 mm is initially at a uniform temperature of 350◦C.
It is exposed to a neutral gas stream at 120◦C for t > 0. The gas stream
imposes a convection heat transfer coefficient of 40 W/m2 ◦C on both
surfaces of the slab.Determine the time atwhich themid-plane temperature
is 150◦C. What is the surface temperature at this time? Do you think it is
reasonable to treat the slab as a lumped system?

Ex 6.2 A very large block of metal of thickness 0.2 m is initially at a uniform
temperature of 400◦C. It is placed on a bed of mineral insulation and is
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exposed to ambient air at 45◦C on the other side. The thermal properties of
the metal are k = 15 W/m◦C and α = 10−6 m2/s. Calculate the temper-
ature difference across its thickness at intervals of 5 min and make a plot
of the same. Make use of the appropriate chart given in the text. Mineral
insulation is expected to prevent heat loss from themetal surface in contact
with it. Assume a suitable heat transfer coefficient for heat loss from the
surface to air.

Ex 6.3 Along cylinder of radius 200 mm of amaterial having a thermal conductiv-
ity of k = 170 W/m◦C and thermal diffusivity of α = 9.05 × 10−7 m2/s
is initially at a uniform temperature of 650◦C . For heat treatment pur-
poses the cylinder is quenched in a medium at 75◦C with a heat transfer
coefficient of 1700 W/m2 ◦C . It is desired to prolong the process till the
temperature at a depth of 20 mm from its surface reaches a temperature
of 250◦C . What is the time at which the process should terminate? What
is the temperature along the axis of the cylinder at this time?

Ex 6.4 A short brass cylinder of L = D = 0.05 m is initially isothermal at a tem-
perature of 100◦C . For t > 0, the surface of the cylinder is subject to
convection to an environment at 20◦C with a heat transfer coefficient of
67 W/m2 ◦C . Determine the temperatures at Points 1 and 2 indicated in
Fig. 6.11 after 2 and 20 minutes from the start.

Ex 6.5 Ashort cylinder has a diameter of 0.1 m and a length of 0.2 m. Thematerial
properties are: k = 18 W/m◦C and α = 9 × 10−6 m2/s. The cylinder is
initially at a uniform temperature of 250◦C . It is exposed to an ambient
fluid at 60◦C that cools the cylinder by convection with a heat transfer
coefficient of 67 W/m2 ◦C . Compare the center temperature on any one
of the flat sideswith themid-plane temperature on the surface of the curved
portion of the cylinder after 5 min from the start of the cooling process.
Comment based on your observation.

Ex 6.6 Temperature difference between the center of a sphere and its surface
is measured using a differential thermocouple. The smallest temperature
difference that may be measured in this arrangement is 0.5◦C . Sphere
of radius 0.1 m is made of a material of thermal diffusivity of 9.07 ×
10−6 m2/s and thermal conductivity of 6 W/m◦C . Initially, the sphere is

Fig. 6.11 Transient in a
short cylinder: Exercise 6.4
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heated to a uniform temperature of 150◦C . It is then exposed to convection
cooling to an ambient air stream at 30◦C with a heat transfer coefficient of
36 W/m2 ◦C . After some time the differential thermocouple reads 2.5◦C .
What is the time at which you would expect this reading? What would be
the temperature at the center of the sphere at this time?

Ex 6.7 A sensor used in unsteady measurements may be idealized as a sphere
of radius 6 mm with the following thermal properties: k = 45 W/m◦C
and α = 10−5 m2/s. Under what condition is it possible to consider the
sphere as a lumped system if lumping is justified when the temperature
difference between its center and the surface is not more than 0.5 ◦C?
The sensor initial temperature and the fluid temperature may be taken,
respectively, as 95 ◦C and 15 ◦C . Assume a suitable value for the heat
transfer coefficient typical of natural convection to a liquid such as water.

Ex 6.8 A spherical steel ball of diameter equal to 100mm initially at a uniform
temperature of 250 ◦C is dropped into a vessel full of water at 30 ◦C . It is
observed that water boils at the surface of the sphere as long as the surface
temperature of the sphere is more than 108 ◦C and during the boiling
process the heat transfer coefficient remains constant at 5000 W/m2 ◦C .
Determine the time at which boiling at the surface of the sphere stops.

Ex 6.9 An experiment is performed in which the temperature at the center of a
sphere is measured as a function of time in order to estimate the heat
transfer coefficient. The following data has been gathered:

Initial uniform temperature of the sphere: Ti = 250◦C
Diameter of sphere: D = 50 mm
Thermal conductivity of material of sphere: k =

18.5 W/m◦C
Thermal diffusivity of material of sphere: α = 9.7 ×

10−7 2/s
Fluid temperature: T f = 55◦C
Time of measurement of sphere center temper-
ature:

t = 150 s

Center temperature of sphere at this time: T0 = 121.5◦ C

Estimate the heat transfer coefficient from the above data.
Ex 6.10 A solid sphere, a solid cylinder of diameter equal to height and a solid cube

all have the same volume of 25 cm3 and are all made of brass. All these are
heated to a uniform temperature of 200 ◦C in an oven and are then exposed
to a convection environment at 35 ◦C with a heat transfer coefficient of
25 W/m2 ◦C for t > 0. What is the temperature at t = 5 min (a) at the
center of the sphere, (b) a point on the axis positioned at mid-height of
the cylinder and (c) at the meeting point of all the diagonals of the cube?
Comment on the result. How much heat would have crossed the boundary
in each case in this time?



Chapter 7
Numerical Solution of Conduction
Problems

ConductionProblems amenable to analytical solution have been considered
in Chaps. 1–6. These have included both steady and transient conduction in one or

more dimensions and in three different coordinate systems. In the present chapter, we
discuss commonly employed numerical methods for the solution of problems not
amenable to exact analysis. Emphasis is on the finite difference method. However, it is
possible to use other methods such as the finite volume and finite element methods to
solve conduction problems. The reader may refer to advanced texts for these methods.

7.1 Introduction

In the previous chapters, attention has been given to the analytical solution of heat
conduction problems. Many simplifying assumptions need to be made if one is bent
upon obtaining analytical closed-form solutions. Analytical solutions are possible
for only specific types of initial and boundary conditions. Variation of properties
with temperature could be taken in to account in only the simplest of cases, in
one-dimensional steady heat conduction. In spite of this the solution required the
introduction of special functions like theBessel functions andLegendre polynomials.

In recent times, numerical methods have become more and more popular because
of the improvements and easy access to computational facilities. Canned programs
are available with user friendly features. The user does not need to be an expert
in numerical methods to make use of the programs. Fairly complex problems are
treatable routinely by an average practicing engineer!

Traditionally heat diffusion problems have been used to introduce one to com-
putational methods. The present text is no exception to this. Even though several
numerical schemes are available, attention is directed to the finite difference method
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for solution of the heat equation. The underlying mathematics is very simple and a
beginner can write a program for solving heat conduction problems within a couple
of hours of learning the basic ideas.

7.1.1 A Simple Example: One-Dimensional Steady
Conduction

A bar of material of length L and uniform cross section area A, is insulated laterally
while the two ends are maintained at specified temperatures. Heat is generated within
the bar at the rate of G per unit volume. The geometry is shown in Fig. 7.1. The
equation that governs the problem is well known (see Chap.2) and is given by

d2T

dx2
+ G

k
= 0 (7.1)

The finite difference method consists in approximating derivatives by differences
after dividing the domain into discrete parts. The nodes are arranged as shown in
Fig. 7.1. The temperatures are specified at nodal points, which are placed at the
centers of each sub-domain or part (typical sub-domain bracketing the node 3 is
shown by the shaded rectangle). The nodal interval as well as the size of each part is
�x . Expand T (x) in a Taylor expansion around x as:

T (x + �x) = T (x) + dT

dx

∣
∣
∣
∣
x

�x + 1

2!
d2T

dx2

∣
∣
∣
∣
x

(�x)2 + O(�x)3 (7.2)

where O indicates the order of magnitude of the term. Similarly,

T (x − �x) = T (x) − dT

dx

∣
∣
∣
∣
x

�x + 1

2!
d2T

dx2

∣
∣
∣
∣
x

(�x)2 − O(�x)3 (7.3)

Subtracting Eq.7.3 from Eq. 7.2, we get

T (x + �x) − T (x − �x) = 2
dT

dx

∣
∣
∣
∣
x

�x + O(�x)3

Fig. 7.1 One-dimensional
conduction by finite
difference
approximation—Nodes are
numbered from 1 to N
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or on rearrangement

dT

dx

∣
∣
∣
∣
x

= T (x + �x) − T (x − �x)

2�x
+ O(�x)2 (7.4)

Adding Eqs. 7.2 and 7.3, we get

T (x + �x) + T (x − �x) = 2T (x) + d2T

dx2

∣
∣
∣
∣
x

(�x)2 + O(�x)4

or on rearrangement

d2T

dx2

∣
∣
∣
∣
x

= T (x + �x) − 2T (x) + T (x − �x)

(�x)2
+ O(�x)2 (7.5)

Expression 7.4–7.5, on ignoring terms of order O(�x)2 and above are respectively
the central difference approximation to the first and second derivatives at x (or node
i where x = (i − 1) × �x) in Fig. 7.1. Both expressions are second order accurate
since the error is proportional to (�x)2. The finite difference method consists in
approximating the derivatives as given above, in the governing Eq.7.1, and solving
for the discrete set of nodal temperature values by a suitable method. Using expres-
sion 7.5 to approximate the second derivative term and assuming that G is replaced
by the nodal value G(x), we replace the governing equation by

T (x + �x) − 2T (x) + T (x − �x)

(�x)2
+ G(x)

k
= 0

or T (x + �x) − 2T (x) + T (x − �x) = −G(x)(�x)2

k

(7.6)

Thismaybe rewritten, identifying the temperatures bynodal indices, in the alternative
form

Ti−1 − 2Ti + Ti+1 = −Gi (�x)2

k
(7.7)

Equation7.7 may be written for each interior node (i = 2 to N − 1). For the nodes
1 and N , we use the specified boundary conditions (these may be of any of the three
types of boundary conditions we are already familiar with). Finally we get a set of
simultaneous equations for obtaining all the nodal temperatures. We demonstrate
this by considering a typical example.
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Example 7.1

Consider a bar 0.1m long and of uniform cross section of a material of thermal con-
ductivity equal to 45W/m◦C. Heat is uniformly generated at the rate of 106 W/m3.
The two ends of the bar are held at 30 ◦C. Determine the steady temperature distri-
bution in the bar by finite differences using 2cm long elements. Compare the finite
difference solution with the exact solution.

Solution: (i) Finite difference solution

Step 1 With �x = 2 cm or 0.02m each, there are 5 sub-domains and 6 nodes
in this problem. The heat generation is constant and contributes the
following to the nodal equations:

Gi (�x)2

k
= 106 × (0.02)2

45
= 8.89◦C

for i = 2 − 5. The boundary nodes use the specified boundary condi-
tions. Hence T1 = T6 = 30◦C .

Step 2 The nodal equations for i = 2 − 5 are given by

Ti−1 − 2Ti + Ti+1 = −8.89

We notice from symmetry with respect to the middle of the bar (i.e.,
x = 0.5) that T2 = T5 and T3 = T4. Hence there are only two unknown
temperatures governed by the following two equations:

(a) T1 − 2T2 + T3 = −8.89

(b) T2 − 2T3 + T4 = −8.89 or T2 − T3 = −8.89

Step 3 From (a) we have 2T2 = T1 + T3 + 8.89 = 30 + T3 + 8.89 = 38.89 +
T3. This may be recast as T2 − T3 = 38.89−T3

2 . Substituting this in (b) we
obtain 38.89−T3

2 = −8.89 or T3 = 38.89 + 2 × 8.89 = 56.67◦C . With
this in (b) we have T2 = T3 − 8.89 = 56.67 − 8.89 = 47.78◦C . Thus
we have the nodal temperatures given by the entries in the following
table.

Node Temperature Node Temperature
No ◦C No ◦C
1 30 6 30
2 47.78 5 47.78
3 56.67 4 56.67

(ii) Exact solution:
Step 4 Eq.7.1 may be integrated twice with respect to x to get
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T (x) = Ax + B − Gx2

2k

Using the boundary condition at x = 0 we have B = 30◦C . The sec-
ond boundary condition at x = 0.1 m requires that 30 = 0.1A + B −
106×0.12

2×45 or A = 1111.1◦C/m. Thus the temperature is given by

T (x) = 30 + 1111.1x + 11111.1x2

Step 5 The temperatures at the nodal points may be calculated using the above
expression. The reader may verify that the values thus calculated are the
same as those shown in the table.

Step 6 Reason: The central difference formula is second-order accurate. The
exact solution to the problem is a quadratic (2nd degree polynomial).
Therefore, the solution obtained by the central difference formula is
identical to the exact solution, in this particular case.

7.1.2 Numerical Solution of a Fin Problem

Conducting convecting fins or extended surfaces have been considered in Chap. 4
in some detail. The appropriate governing equations were solved by available exact
analytical methods. It is instructive to consider numerical solution of the appropriate
equations, as a viable alternative. In Appendix E a typical case of uniform area fin has
been considered using the “shooting method” in combination with the fourth order
Runge Kutta method. The same example, numerics may be different, is considered
here, using the finite difference method.

Consider steady heat transfer in a straight fin of uniform cross sectional area as
shown in Fig. 7.2. The fin may be in the form of a flat plate or a rod of uniform
cross section. Consider the element surrounding node i . An energy balance for this
element may be written as

Fig. 7.2 Uniform area fin problem: the numerical values are considered in Example 7.2
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Fig. 7.3 Energy balance for
half element at the tip

Qk,i−1→i

Conduction entering

= Qk,i→i+1

Conduction leaving

+ Qc,i

Convection leaving

(7.8)

Various terms in the above equation are given by the following:

(a) Qk,i−1→i = −k A
θi − θi−1

�x
; (b) Qk,i→i+1 = −k A

θi+1 − θi

�x
; (c) Qc,i = hP�xθi

(7.9)
where θi = Ti − T f is the nodal temperature excess with respect to the ambient fluid
temperature. With these, Eq.7.8 becomes, on minor rearrangement,

θi−1 − (

2 + m2�x2
)

θi + θi+1 = 0 (7.10)

where m is the familiar fin parameter given by
√

hP
kA . Expression 7.10 is used for the

interior nodes i = 2 to i = N − 1. At the first node, the temperature is specified as
θ1 = Tb − T f . For the node N , the second kind boundary condition may be realized
by performing energy balance for a half-element, as shown in Fig. 7.3. The energy
balance performed on a half element ensures that the formulation is 2nd order accu-
rate. This will ensure a consistency between the formulation for interior nodes and
also for the tip (boundary) node. We have

Qk,N−1→N

Conduction entering

= Qc,N

Convection leaving

or − k A
θN − θN−1

�x
= hP

�x

2
θN (7.11)

which may be rearranged as

θN−1 −
(

1 + m2�x2

2

)

θN = 0 (7.12)
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Fig. 7.4 Fin heat transfer
calculation through energy
balance over a half element
adjacent to the base

Iterative Method of Solution
TheGauss iteration scheme presented in Appendix Ewill now be applied to solve the
nodal equations in the fin problem. Equations7.10 and 7.12 are arranged as follows
to apply the Gauss iteration scheme:

(a) θnew
i = θold

i−1 + θold
i+1

2 + m2�x2
, 2 ≤ i ≤ N − 1; (b) θnew

N = θold
N−1

1 + m2�x2
2

(7.13)

However, if the intention is to apply the Gauss–Seidel iteration scheme, the equations
are written as

(a) θnew
i = θnew

i−1 + θold
i+1

2 + m2�x2
, 2 ≤ i ≤ N − 1; (b) θnew

N = θnew
N−1

1 + m2�x2
2

(7.14)

The superscripts old and new represent, respectively, the nodal values before and
after the iteration. The iteration starts with guess values for all the nodal temperatures.
The iteration process is terminated when the following convergence criterion is met
at all the nodes. ∣

∣
∣
∣

θnew
i − θold

i

θnew
i

∣
∣
∣
∣
≤ ε (7.15)

where ε is a chosen tolerance (small).

Heat Transferred from the Fin
Consistent with the central difference scheme, the fin heat transfer is calculated by
an energy balance on a half element adjacent to the base as shown Fig. 7.4. Note that
in the figure, T1 − T2 is the same as θ1 − θ2 or θb − θ2. Heat balance requires that

Q1 = Qk,1→2 + Qc,1 (7.16)
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Using appropriate expressions for the various Q′s, we have

Q1 = k A
θb − θ2

�x
+ hPθb

�x

2
(7.17)

Example 7.2

Consider an iron fin with k = 57 W/m ◦C of circular cross section of diameter
D = 1.25cm and length L = 30cm. The base excess temperature is 100 ◦C. It
is subject to convection over the lateral surface via a heat transfer coefficient of
h = 9W/m2◦C. Obtain the temperature profile by finite differences, using an iter-
ative method of solution. Use 7 equidistant nodes along the length of the fin. The
tolerance for terminating the iteration process may be taken as 0.01%. Also perform
a grid sensitivity study and comment on the results.

Solution :

Step 1 The given data is specified using the notation shown in Fig. 7.2.

Diameter of pin fin: D = 1.25cm = 0.0125 m
Length of pin fin: L = 30cm = 0.3 m

Thermal conductivity of fin material: k = 57W/m◦ C
Convection heat transfer coefficient: h = 9W/m2 ◦C

Number of nodes: N = 7
Nodal spacing: �x = L

N−1 = 0.3
6 = 0.05 m

Step 2 We calculate the fin parameter as

m =
√

hP

kA
=

√

4h

kD
=

√

4 × 9

57 × 0.0125
= 7.10819

Step 3 Since the Gauss–Seidel scheme is proposed to be used here, Eqs. 7.14(a)
and (b) become:

θnew
i = θnew

i−1 + θold
i+1

2 + (7.10819 × 0.05)2
= θnew

i−1 + θold
i+1

2.12632

and

θnew
N = θnew

N−1

1 + (7.10819×0.05)2

2

= θnew
N−1

1.06312

The iterations start with a linear temperature profilewith the temperature
excess of 100◦C at x = 0 or i = 1 to temperature excess θ7 = 0 at
x = L . The solution which has been obtained by the above iterative
procedure is shown in Table7.1. The tolerance was set equal to 0.01%
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Table 7.1 Iterative solution—fin problem of Example 7.2

Node x θi θi

Number m Numerical Exact

1 0 100.00 100.00

2 0.05 71.24 71.10

3 0.10 51.47 51.26

4 0.15 38.21 37.98

5 0.20 29.78 29.54

6 0.25 25.12 24.87

7 0.30 23.62 23.38

Tolerance = 0.01%
Iterations for Convergence = 34

(as prescribed) and the number of iterations needed for convergence was
34.
The exact values are calculated using the analytical expression derived
in Chap. 4.

Step 4 The heat loss from the fin is calculated based on Eq.7.17 as

Q1 = 57 × π × 0.01252

4
× 100 − 71.24

0.05
+ 9 × π × 0.0125 × 100 × 0.05

2
= 4.907W

The exact value is calculated based on the fin efficiency concept devel-
oped in Chap. 4 and is

Q1(Exact) = πDLθb
tanh(mL)

mL

= π × 0.0125 × 0.3 × 100
tanh(7.10819 × 0.3)

7.10819 × 0.3
= 4.834W

Step 5 The grid sensitivity analysis consists in changing the number of nodes
and looking at the results, both the temperature profile as well as the
fin heat loss. The above iterative procedure of solution is performed
repeatedly with various N values. In each case the value of �x changes
and hence also the coefficient matrix. As N is increased, there is an
improvement in the numerical solution as indicated by the data pre-
sented in Table7.2. Both the fin heat loss Q1 and the tip temperature θN
show improvement as N is increased. Note that the number of iterations
required for convergence also depends on N .
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Table 7.2 Improvement of heat loss and tip temperature with number of nodes in Example 7.2. In
all cases, tolerance ε = 0.01%

N Q1 θN N Q1 θN

7 4.908 23.62 15 4.851 23.37

9 4.876 23.50 17 4.848 23.33

11 4.862 23.44 19 4.847 23.31

13 4.855 23.40 21 4.846 23.28

7.1.3 Solution of Nodal Equations by TDMA

An alternate method of solution of the nodal equations is to solve for all the nodal
equations simultaneously, noting that the nodal equations form a set of linear equa-
tions with a banded structure for the coefficient matrix.

The base of the fin is at a fixed temperature and hence θ1 = Tb − T∞ = θb. At
interior nodes, the nodal equations are given by Eq.7.10. AT the tip node Eq.7.12
holds. All the equations may be written down as a set of simultaneous equations as
given below.

θ1 = θb
θ1 − (

2 + m2�x2
)

θ2 + θ3 = 0
θ2 − (

2 + m2�x2
)

θ3 + θ4 = 0
· · · · · ·

θi−1 − (

2 + m2�x2
)

θi + θi+1 = 0
· · · · · ·

θN−1 −
(

1 + m2�x2

2

)

θN = 0

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.18)

The above equations may be recast in the form of a matrix equation

[A]{θ} = {B}

Matrix {θ} is a 1 × N column vector of nodal temperatures while {B} is a 1 × N
column vector of forcing function. These are respectively given by

{θ}T = {θ1 θ2 · · · θi · · · θN−1 θN }

and
{B}T = {θb 0 · · · 0 · · · 0 0}

Coefficient matrix [A] is an N × N square matrix given by
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[A] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
−1

(

2 + m2�x2
) −1 0 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 −1

(

2 + m2�x2
) −1 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 −1

(

2 + m2�x2
) −1

0 0 0 0 0 −1
(

1 + m2�x2
2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Matrix A is a banded matrix which is referred to as a tridiagonal matrix since the
matrix has non-zero elements along only three diagonals. The set of equations may
be solved by TDMA - TriDiagonal Matrix Algorithm - the details of which is given
in Appendix E. Example 7.2 is reworked using TDMA in Example 7.3.

Example 7.3

Redo Example 7.2, for N = 7 using the TDMA.

Solution: We have to determine the six unknown nodal temperatures θ2 − θ7 by
solving the nodal equations by the use of TDMA. The coefficient matrix is given,
using the parameters calculated in Example 7.2, as

[A] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
−1 2.12632 −1 0 0 0 0
0 −1 2.12632 −1 0 0 0
0 0 −1 2.12632 −1 0 0
0 0 0 −1 2.12632 −1 0
0 0 0 0 −1 2.12632 −1
0 0 0 0 0 −1 1.06316

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The nodal temperatures are represented by the column vector

{θ}T = [θ1 θ2 θ3 θ4 θ5 θ6 θ7]

Matrix [B] is given by

{B}T = [θb 0 0 0 0 0 0]

Negative of leading diagonal elements are written as ai , the upper diagonal elements
are written as bi and the lower diagonal elements as ci . Negative of the elements on
the right hand side matrix B are written as di . The auxiliary quantities Pi and Qi

are calculated from these. The solution is then obtained by back substitution. All the
parameters that have been computed in Example 7.2 are used in writing down the
coefficients a, b, c and d as shown in Table7.3. The auxiliary quantities P and Q
are shown as columns 6 and 7 of the same table. The nodal temperatures obtained
by back substitution are shown in the last column.
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Table 7.3 Table showing application of TDMA in Example 7.3

i ai bi ci di Pi Qi θi

1 1 0 0 100 0 100 100.00

2 2.12632 1 1 0 0.4703 47.0297 71.24

3 2.12632 1 1 0 0.6039 28.3993 51.48

4 2.12632 1 1 0 0.6568 18.6536 38.22

5 2.12632 1 1 0 0.6805 12.6940 29.79

6 2.12632 1 1 0 0.6917 8.7799 25.13

7 1.06316 0 1 0 0 23.6334 23.63

The comparison of the finite difference solution with the exact solution (refer to
last column of Table7.1) shows that the numerical values are remarkably close to
the exact values, even with just 6 nodes in the domain! Also, the TDMA is easy to
apply and yields the solution with very little effort. The iteration method involved
much larger amount of computational effort, as in Example 7.2.

7.1.4 Steady Radial Conduction in a Cylinder

A second simple example we consider is one-dimensional radial conduction in a
cylinder. The intent is to show that the finite difference method can be used for
conduction with variable area. Consider a long cylindrical annulus of inner radius
rin and outer radius rout with inner boundary maintained at Tin and outer boundary
exposed to a convective environment at T∞ subject to a heat transfer coefficient h.
Heat is generated at a uniform rate of G per unit volume within the annulus. We shall
derive the finite difference form of the governing equation directly by making flux
balance for an element bracketing the i th node (Fig. 7.5a). The interval rin ≤ r ≤ rout
is divided by uniformly spaced nodes in to a number of elements of radial thickness
�r as shown in the figure.Wemake energy balance, assuming steady state to prevail,
as

Qk(i − 1 → i) + Qk(i + 1 → i) + Qg(i) = 0 (7.19)

where subscript k refers to conduction and g refers to heat generation. Energy bal-
ance equation is written as a sum of all fluxes that enter the elemental volume. Fluxes
entering will automatically turn out to be positive while those that leave will auto-
matically become negative. The sum of all fluxes would then give zero. The various
terms appearing in Eq.7.19 are written down as below:
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Fig. 7.5 One-dimensional steady radial conduction in an annulus. a Interior node b Surface node

Qk(i − 1 → i) = 2πri− 1
2
k
Ti−1 − Ti

�r

Qk(i + 1 → i) = 2πri+ 1
2
k
Ti+1 − Ti

�r
Qg(i) = 2πri�rG

where ri− 1
2
and ri+ 1

2
are the radii, respectively at the middle of nodes i − i − 1 and

nodes i − i + 1. With the above, the heat balance Eq.7.19 will take the form

2πkri− 1
2

Ti−1 − Ti
�r

+ 2πkri+ 1
2

Ti+1 − Ti
�r

+ 2πri�rG = 0 (7.20)

This may be rearranged as

ri− 1
2
Ti−1 − (ri− 1

2
+ ri+ 1

2
)Ti + ri+ 1

2
Ti+1 + ri (�r)2G

k
= 0 (7.21)

It is easily verified that ri− 1
2
+ ri+ 1

2
= 2ri . Hence the nodal equation becomes

ri− 1
2
Ti−1 − 2ri Ti + ri+ 1

2
Ti+1 + ri (�r)2G

k
= 0 (7.22)

These are valid for 2 ≤ i ≤ (N − 1). At node 1 the temperature is specified. For
node N we consider energy balance for a half element (Fig. 7.5b), which is contained
between the nodes N − 1 and N . We have

Qk(N − 1 → N ) + Qc,N + Qg(N ) = 0 (7.23)

In the above, subscript c indicates convection at the surface node. The various quan-
tities may be written down as
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Qk(N − 1 → N ) = 2πrN− 1
2
k
TN−1 − TN

�r
,

Qc,N = 2πrout h(T∞ − TN ) and Qg(N ) = 2πrout
�r

2
=πrout�r

G

With these the nodal equation for node N simplifies to

rN− 1
2
TN−1 −

(

rN− 1
2
+ Bi�r

)

TN + BiT∞�r + rout (�r)2G

2k
= 0 (7.24)

where Bi = hrout
k is the Biot number. It may be shown that the nodal Eq. 7.24 is

second order accurate and is consistent with the second order accurate interior nodal
equations given by 7.22.

Equations7.22 and 7.24 along with the inner boundary condition provide enough
equations to determine all the nodal temperatures. Example 7.4 demonstrates this.

Example 7.4

A very long cylindrical annulus has inner and outer radii of rin = 0.025m and
rout = 0.05m respectively. The inner boundary is maintained at a temperature of
Tin = 30◦C by passing cold water through it. The outer surfaces is perfectly insu-
lated. Heat is generated internally in the annulus at a uniform volumetric rate of
G = 106W/m3. Thermal conductivity of the cylinder material is k = 15W/m◦C.
Obtain the temperature distribution within the annulus by finite differences. Use a
step size of �r = 0.005m. Determine the amount of heat transfer per meter at the
inner boundary numerically by using a half element adjacent to the inner boundary.

Solution: Since the outer surface of the cylinder is perfectly insulatedwe put h = 0 in
the nodal equation for TN . This is equivalent to taking Bi = 0 in the corresponding
nodal equation. With �r = 0.005m, there are 6 nodes and 5 elements. The heat
generation parameter that appears in the nodal equations is given by

G�r2

k
= 106 × 0.0052

15
= 1.666667 K

The nodal equations require the coefficients to be calculated. We shall normalize
these by dividing each of them with rin . We show the calculation for the second node
as a typical example. We have

r1 = 0.025m, r2 = rin + �r = 0.025 + 0.005 = 0.030m
r2
r1

= 0.030

0.025
= 1.2

r3 = r2 + �r = 0.030 + 0.005 = 0.035m
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r3
r1

= 0.035

0.025
= 1.4

From these we also have

r2− 1
2

= 0.030 − 0.0025 = 0.0275,
r2− 1

2

rin
= 0.0275

0.025
= 1.1

r2+ 1
2

= 0.030 + 0.0025 = 0.0325,
r2+ 1

2

rin
= 0.0325

0.025
= 1.3

We substitute these in the nodal Eq.7.22 for i = 2 to get

r2− 1
2
T1 − 2r2T2 + r2+ 1

2
T3 + r2(�r)2G

k
= 0

or
r2− 1

2

rin
T1 − 2

r2
rin

T2 + r2+ 1
2

rin
T3 +

r2
rin

(�r)2G

k
= 0

or 1.1T1 − 2.4T2 + 1.3T3 + 2 = 0

The nodal equation for node 6 follows from Eq.7.24 as

r5− 1
2
T5 −

(

r5− 1
2
+ Bi�r

)

T6 + BiT∞�r + rout (�r)2G

2k
= 0

or
r5− 1

2

rin
T5 −

(r5− 1
2

rin
+ Bi�r

rin

)

T6 + BiT∞�r

rin
+ rout (�r)2G

2krin
= 0

or 1.9T5 − 1.9T6 + 1.666667 = 0

Theother nodal equationsmaybederived in a similar fashion.Thenodal temperatures
thus follow a set of linear equations that have to solved simultaneously. The equations
may be written in the form of a matrix equation AT = B where A is a square (6 × 6
in this case) tridiagonal matrix, T is a column vector of unknown temperatures and
B is a column vector involving source terms.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0 0 0
1.1 −2.4 1.3 0 0 0
0 1.3 −2.8 1.5 0 0
0 0 1.5 −3.2 1.7 0
0 0 0 1.7 −3.6 1.9
0 0 0 0 1.9 −1.9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T1
T2
T3
T4
T5
T6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−30
−2

−2.33333
−2.66667

−3
−1.66667

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Again we make use of TDMA to solve the nodal equations. The results are shown
in Table7.4. Consider a half element adjacent to the inner boundary. It is bounded
by the inner boundary and a circle of radius rin + �r

2 = 0.025 + 0.005
2 = 0.0275m.

The conduction flux crossing into the element may be written as
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Table 7.4 Tabulation of results of TDMA for Example 7.4

i ai bi ci di Pi Qi ri Ti

1 1 0 0 30 0 30 0.025 30.00

2 2.4 1.3 1.1 2 0.5417 14.5833 0.03 40.61

3 2.8 1.5 1.3 2.33333 0.7157 10.1590 0.035 48.04

4 3.2 1.7 1.5 2.66667 0.7995 8.4203 0.04 52.93

5 3.6 1.9 1.7 3 0.8479 7.7265 0.045 55.68

6 1.9 0 1.9 1.66667 0 56.5531 0.05 56.55

Qc,2→1 = 2πr2− 1
2

k(T2 − T1)

�r
= 2 × π × 0.0275

15(40.61 − 30)

0.005
= 5499.83W/m

Heat generated within the volume element is

Qg = 2πrin
�r

2
G

= 2 × π × 0.025 × 0.005

2
× 106 = 392.7W/m

By energy balance for the half element we get the total heat transfer at the inner
boundary as

Qin = Qc,2→1 + Qg = 5499.83 + 392.7 = 5892.53W/m

Since the outer boundary is insulated, this should also represent the total heat gener-
ated within the annulus Qg,tper meter length.

Qg,t = π(r2out − r2in)G = π × (0.052 − 0.0252) × 106 = 5890.49W/m

The two results agree very closely and hence the finite difference solution with just
6 nodes gives satisfactory result!

The reader should note that the problem may easily be solved by analytical
methods to get a closed form solution to the problem. The reader is encouraged
to obtain such a solution and make comparisons with the numerical solution
presented in the example here.
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7.1.5 Steady Radial Conduction in a Spherical Shell

We consider a typical problem in spherical coordinates, viz. steady radial heat con-
duction in a spherical shell with uniform internal heat generation of G W/m3. We
may use Fig. 7.5a and b for this case also. Interpret the element with node i as a
spherical shell instead of an annular element as in the case of cylindrical annulus.
The heat transfer area associated with node i is given by 4πr2i in this case. Heat
balance requires that

Qk(i − 1 → i) + Qk(i + 1 → i) + Qg(i) = 0 (7.25)

where subscript k refers to conduction and g refers to heat generation. The various
terms appearing in Eq.7.25 are written down as below:

Qk(i − 1 → i) = 4πr2i− 1
2
k
Ti−1 − Ti

�r

Qk(i + 1 → i) = 4πr2i+ 1
2
k
Ti+1 − Ti

�r
Qg(i) = 4πr2i �rG

where ri− 1
2
and ri+ 1

2
are the radii, respectively at the middle of nodes i − i − 1 and

nodes i − i + 1. With the above, the heat balance Eq.7.25 will take the form

4πkr2i− 1
2

Ti−1 − Ti
�r

+ 4πkr2i+ 1
2

Ti+1 − Ti
�r

+ 4πr2i �r2G = 0 (7.26)

This may be rearranged as

r2i− 1
2
Ti−1 − (r2i− 1

2
+ r2i+ 1

2
)Ti + ri+ 1

2
Ti+1 + r2i (�r)2G

k
= 0 (7.27)

It is easily verified that r2
i− 1

2
+ r2

i+ 1
2

≈ 2r2i . Hence the nodal equation becomes

r2i− 1
2
Ti−1 − 2r2i Ti + r2i+ 1

2
Ti+1 + r2i (�r)2G

k
= 0 (7.28)

These are valid for 2 ≤ i ≤ (N − 1). At node 1 the boundary is specified to be
an adiabatic boundary. A half spherical shell element is used adjacent to the inner
boundary. Heat balance requires

Qk(2 → 1) + Qg(1) = 0 (7.29)
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This may be rewritten as

Qk(2 → 1) = 4πr21+ 1
2
k
T2 − T1

�r

Qg(1) = 4πr21
�r

2
G

This may be simplified to read

−r21+ 1
2
T1 + r2i+ 1

2
T2 + r21�r2G

2k
= 0 (7.30)

For node N we consider energy balance for a half element (Fig. 7.5b), which is
contained between the nodes N − 1 and N . We have

Qk(N − 1 → N ) + Qc,N + Qg(N ) = 0 (7.31)

In the above, subscript c indicates convection at the surface node. The various quan-
tities may be written down as

Qk(N − 1 → N ) = 4πr2N− 1
2
k
TN−1 − TN

�r
Qc,N = 4πr2out h(T∞ − TN )

Qg(N ) = 4πr2out
�r

2
G

With these the nodal equation for node N simplifies to

r2N− 1
2
TN−1 −

(

r2N− 1
2
+ r2out Bi�r

)

TN + r2out Bi�r T∞ + r2out (�r)2G

2k
= 0 (7.32)

where Bi�r = h�r
k is the elemental Biot number. It may be shown that the nodal

Eq.7.32 is second order accurate and is consistent with the second order accurate
interior nodal equations given by 7.28.

Equations7.28 and 7.30 along with the inner boundary condition provide enough
equations to determine all the nodal temperatures.
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Example 7.5

A spherical shell has inner and outer radii of 0.025 and 0.05m respectively. The
inner boundary is perfectly insulated. The outer surface loses heat by convection
to an environment at 30 ◦C via a heat transfer coefficient of 67W/m2 ◦C. Thermal
conductivity of shell material is 15W/m◦C. Heat is generated internally at a uniform
volumetric heat generation rate of 105W/m3. Obtain the temperature distribution
within the shell by finite differences. Use a step size of �r = 0.0025m.

Solution :

Step 1 The given data is summarized below:

Inner radius of shell: rin = r1 = 0.025 m
Outer radius of shell: rout = rN = 0.05 m

Thickness of shell elements: �r = 0.0025 m
Maximum node number: N = 1 + 0.05−0.025

0.0025 = 11
Ambient temperature: T∞ = 30◦C
Thermal conductivity: k = 15W/m◦C

Heat transfer coefficient: h = 67W/m2 ◦C
Heat generation rate: G = 105 W/m3

Step 2 Parameters that enter the problem are calculated as

Heat generation parameter:
G�r2

k
= 105 × 0.00252

15
= 0.04167

Elemental Biot number: Bi�r = h�r

k
= 67 × 0.0025

15
= 0.011167

Step 3 Nodal equationsmay bewritten downusingEqs. 7.28, 7.30 and 7.32. The
coefficients are divided by r2in so that the coefficientmatrix involves num-
bers of order unity. Student may refer to Example 7.4 where the nodal
equations were written down showing all the intermediate steps. The
calculations are best done with a spread sheet program. The nodal equa-
tions are keyed in as formulae in the cells of a worksheet of spreadsheet
program. The calculations may be done by copying down the formulae.
In the present case we summarize the results in the form of an extract
from a worksheet as shown in Table7.5.

Step 4 The solution, as can be seen, has been obtained byTDMA.The analytical
solution may easily be obtained by integrating the governing equation.
It is left as an exercise to the reader. In the last column shown as “Ti ,
Analytical”, we have given the analytically obtained nodal temperatures.
These compare very well with the numerically determined values.
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Table 7.5 Tabulation of TDMAresults for Example 7.5 and comparisonwith the analytical solution

Node ai bi ci di Pi Qi Ti Ti
i Analytical

1 1.1025 1.1025 0 0.0208 1 0.0189 53.17 53.16

2 2.425 1.3225 1.1025 0.0504 1 0.0539 53.15 53.14

3 2.885 1.5625 1.3225 0.0600 1 0.0840 53.09 53.08

4 3.385 1.8225 1.5625 0.0704 1 0.1107 53.01 53.00

5 3.925 2.1025 1.8225 0.0817 1 0.1348 52.90 52.89

6 4.505 2.4025 2.1025 0.0938 1 0.1570 52.76 52.75

7 5.125 2.7225 2.4025 0.1067 1 0.1777 52.61 52.60

8 5.785 3.0625 2.7225 0.1204 1 0.1973 52.43 52.42

9 6.485 3.4225 3.0625 0.1350 1 0.2160 52.23 52.22

10 7.225 3.8025 3.4225 0.1504 1 0.2339 52.02 52.00

11 3.847 0 3.8025 1.4233 0 51.78 51.78 51.77

Coeffcients in nodal equations Auxiliary
quantities

7.2 Conduction in Two Dimensions

Conduction in two dimensions may involve steady heat conduction in two space
dimensions or unsteady heat conduction in one space dimension, as we have seen
already in Chap. 5. The coordinate frames of reference in the former case may be any
one of three coordinate systems viz. Cartesian, cylindrical or spherical. Numerical
solution applicable to all these three coordinate systems will be dealt with here.
Similarly unsteady one-dimensional problem may involve transient heat transfer in
a slab, cylinder or a sphere. We shall look at all these cases in what follows.

7.2.1 Steady Heat Conduction in Two Dimensions: Cartesian
Coordinates

The Standard Problem
As a typical example we consider the standard problem of steady heat conduction in
a rectangle (see Chap. 5) as shown in Fig. 7.6.

The governing equation is Laplace equation in two dimensions given by

∂2T

∂x2
+ ∂2T

∂y2
= 0 (7.33)

The domain is divided into rectangular elements by choosing a step size of�x along
the x direction and a step size of �y along the y direction. Consider an element of
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Fig. 7.6 Steady conduction in a rectangular bar of infinite length

size �x × �y with the node (i, j) at its center. Central difference gives the required
partial derivatives as

∂2T

∂x2
= Ti−1, j − 2Ti, j + Ti+1, j

�x2

∂2T

∂y2
= Ti, j−1 − 2Ti, j + Ti, j+1

�y2
(7.34)

Denoting the ratio
(

�y
�x

)2
as r , the Laplace Eq.7.33 will read as

r
(

Ti−1, j − 2Ti, j + Ti+1, j
) + (

Ti, j−1 − 2Ti, j + Ti, j+1
) = 0 (7.35)

This may be rearranged in a form suitable for Gauss or Gauss–Seidel iteration as

Gauss: T new
i, j =

r
(

T old
i−1, j + T old

i+1, j

)

+ T old
i, j−1 + T old

i, j+1

2(1 + r)
(7.36)

Gauss-Seidel: T new
i, j =

r
(

T new
i−1, j + T old

i+1, j

)

+ T new
i, j−1 + T old

i, j+1

2(1 + r)
(7.37)

Equations such as 7.35 may be written for all the interior nodes, i.e., for 2 ≤ i ≤
N − 1 and 2 ≤ j ≤ M − 1 where N and M stand for the largest values for the
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node identifiers, respectively along x and y directions. All boundary nodes have
the temperatures specified in the problem. The number of unknown temperatures is
easily seen to be given by (N − 2) × (M − 2).

Example 7.6

Consider a very long square bar of 0.1 × 0.1 m cross section. The bottom edge is
maintained at 100 ◦C while the other three edges are maintained at 0 ◦C. Obtain the
steady state temperature in the plate by finite differences. Use Gauss-Seidel iterative
procedure with �x = �y = 0.0125m. Use a tolerance of ε = 0.01% to terminate
the iteration process.

Solution : With �x = �y = 0.0125 ratio r = 1. The number of nodes along the
two directions are the same and equal to 9. Unknown interior nodes are (9 − 2) ×
(9 − 2) = 49. The interior nodal equations are obtained by putting r = 1 in Eq.7.37.

T new
i, j = T new

i−1, j + T old
i+1, j + T new

i, j−1 + T old
i, j+1

4

Because of symmetry with respect to the plane x = 0.05m the solution needs to
consider the rectangle 0 < x < 0.05 and 0 < y < 0.1. For nodes along the symmetry
line, the temperature Ti−1, j = Ti+1, j and hence Eq.7.37 takes the form

T new
i, j = 2T new

i−1, j + T new
i, j−1 + T old

i, j+1

4

The iteration process starts with zero temperature at all the interior nodes. Table7.6
gives the nodal temperatures at the very beginning of the iteration process. Starting
with the values shown in Table7.6 the Gauss-Seidel iteration is performed once,
row-wise to get the first updates for the nodal temperatures shown in Table7.7.
Note that all the interior nodal temperatures change to non-zero values after just one
application of iteration step. This process is continued as many times as necessary
to achieve convergence within the specified tolerance. The number of iterations
needed to achieve the specified tolerance on the convergednodal temperatureswas 78.
The converged nodal temperatures are presented in Table7.8. Note that the thermal
conductivity of the material has no role to play in determining the steady temperature
distribution in the plate.

Heat Transfer at a Convective Boundary
Again, we take the case of a rectangle as shown in Fig. 7.7. In order to write the finite
difference equation, we consider an element shown shaded (compare this with what
we did in the case of the tip element of a fin). We direct our attention to node 1. There
are four fluxes that enter this node as indicated in the enlarged sketch of the element
at right. We have, for conservation of energy, the following.
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Fig. 7.7 A rectangle with convective cooling along one edge: ‘half element’

q1 + q2 + q3 + qa = 0

or

k
T2 − T1

�x
�y + k

T3 − T1
�y

�x

2
+ k

T4 − T1
�y

�x

2
+ h(T∞ − T1)�y = 0 (7.38)

Divide the above through by k
√
r to recast Eq.7.38 as

(T2 − T1) + T3 − T1
2r

+ T4 − T1
2r

+ h�y

k
Bi�y

1√
r
(T∞ − T1) = 0 (7.39)

Table 7.6 Initial temperatures for starting Gauss–Seidel iteration in Example 7.6

j ↓ i → 1 or 9 2 or 6 3 or 7 4 or 8 5

1 0 or 100 100 100 100 100

2–9 0 0.00 0.00 0.00 0.00

Table 7.7 Temperatures after one Gauss-Seidel iteration in Example 7.6

j ↓ i → 1 or 9 2 or 6 3 or 7 4 or 8 5

1 25 100 100 100 100

2 0 25.00 25.00 25.00 25.00

3 0 6.25 7.81 8.20 10.35

4 0 1.56 2.34 2.64 3.91

5 0 0.39 0.68 0.83 1.39

6 0 0.10 0.20 0.26 0.48

7 0 0.02 0.05 0.08 0.16

8 0 0.01 0.02 0.02 0.05

9 0 0 0 0 0
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Table 7.8 Converged nodal temperatures in Example 7.6

j ↓ i → 1 or 9 2 or 6 3 or 7 4 or 8 5

1 0 or 100 100 100 100 100

2 0 48.26 66.10 73.05 74.93

3 0 26.93 43.11 51.18 53.61

4 0 16.36 28.20 34.97 37.14

5 0 10.29 18.38 23.35 25.00

6 0 6.44 11.69 15.03 16.17

7 0 3.77 6.89 8.93 9.63

8 0 1.74 3.20 4.15 4.48

9 0 0 0 0 0

where Bi�y is the elemental Biot number. Grouping terms, we may write the nodal
temperature T1 as

T1 =
T2 + T3 + T4

2r
+ Bi�yT∞√

r

1 + 1

r
+ Bi�y√

r

(7.40)

We note in passing that these are second order accurate and hence are compatiblewith
the central difference formulation for interior nodes. Adiabatic boundary condition
is realized by putting Bi�y = 0 in Eq.7.40. Correspondingly the nodal equation will
become

T1 =
T2 + T3 + T4

2r

1 + 1

r

(7.41)

If�x = �y, the ratio r = 1 and Eqs. 7.40 and 7.41 take the respective simpler forms
given by

T1 =
T2 + T3 + T4

2
+ Bi�yT∞

2 + Bi�y
(7.42)

and
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Fig. 7.8 Heat transfer at an
internal corner: ‘three fourth
element’

T1 =
T2 + T3 + T4

2
2

(7.43)

Equations such as 7.40–7.41 or 7.42–7.43 are written for all the boundary nodes.

Heat Transfer at Corners
Many times it is necessary to consider the finite difference analog of the governing
equations at a corner, either an external or an internal corner.

(a) Internal corner:

The state of affairs at an internal corner is as shown in Fig. 7.8. Consider an element
(three fourth element) shown shaded. We have, for energy balance

q1 + q2 + q3 + q4 + qa = 0

Substituting the finite difference representation of the individual heat transfer rates
we get

k
T2 − T1

�x

�y

2
+ k

T4 − T1
�y

�x + k
T5 − T1

�x
�y + k

T3 − T1
�y

�x

2

+h(T∞ − T1)
(�x + �y)

2
= 0

(7.44)

Divide the above through by k
√
r to get

T2 − T1
2

+ T4 − T1
r

+ (T5 − T1) + T3 − T1
2r

+
(

Bi�x + Bi�y
)

2

(T∞ − T1)√
r

= 0

(7.45)
where Bi�x = h�x

k and Bi�y = h�y
k . The nodal equation for the corner node may

then be written as
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Fig. 7.9 Heat transfer at an
external corner: ‘quarter
element’

T1 =
T2
2

+ T3
2r

+ T4
r

+ T5 +
(

Bi�x + Bi�y
)

2
√
r

T∞

3

2
+ 3

2r
+

(

Bi�x + Bi�y
)

2
√
r

(7.46)

If �x = �y, the ratio r = 1 and Bi�x = Bi�y = Bi� (say), Eq. 7.46 reduces to

T1 =
T2
2

+ T3
2

+ T4 + T5 + Bi�T∞

3 + Bi�
(7.47)

(b) External corner:

An external corner element is shown shaded in Fig. 7.9. The element is a quarter
element in this case. We have, for energy balance, the following.

q1 + q2 + qa = 0

Substituting the finite difference representation of the individual heat transfer rates
we get

k
T2 − T1

�x

�y

2
+ k

T3 − T1
�y

�x

2
+ h(T∞ − T1)

�x + �y

2
= 0 (7.48)

Divide the above through by k
√
r to get

T2 − T1
2

+ T3 − T1
2r

+ Bi�x + Bi�y

2
√
r

(T∞ − T1) = 0 (7.49)

The nodal equation for the corner node may then be written as
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Fig. 7.10 Steady conduction
in a rectangle with different
boundary conditions along
its four edges

T1 =
T2
2

+ T3
2r

+ Bi�x + Bi�y

2
√
r

T∞

1

2
+ 1

2r
+ Bi�x + Bi�y

2
√
r

(7.50)

Again, as a special case, for �x = �y, (i.e., r = 1), Bi�x = Bi�y = Bi� (say) and
Eq.7.50 reduces to

T1 =
T2
2

+ T3
2

+ Bi�T∞

1 + Bi�
(7.51)

Example 7.7

A long bar of material of thermal conductivity k = 1.5W/m◦C is of square section as
shown in Fig. 7.10. The four sides of the bar are subjected to the different boundary
conditions indicated in the figure. Obtain all unknown temperatures. What is the
heat transfer by convection from the upper surface to the ambient? Steady conditions
prevail.

Solution :

Step 1 The input data along with the nomenclature is shown in the Fig. 7.10.
Two parameters make their appearance in the nodal equations. These are
given by
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Elemental Biot number: Bi� = h�x

k
= h�y

k
= 45 × 0.005

1.5
= 0.15

Reference temperature
based on q : Tq

= q�y

k
= 2500 × 0.005

1.5
= 8.33◦C

Step 2 All nodal equations are developed now.
Node 1 is a corner node (external) and requires energy balance over a
quarter element as demonstrated earlier. The appropriate equation is

T1 =
T2 + T4

2
+ q�y

2k
+ Bi�

2
T f

1 + Bi�
2

Node 2 is on a plane boundary and is subject to convection. Energy
balance is made over a half element. The nodal equation may be written
based on Eq.7.42 as

T2 =
T5 + T1 + T3

2
+ Bi�T∞

2 + Bi�

Node 3 is an external corner. Energy balance is performed over a quarter
element. The right boundary is insulated and hence this node is like node
1 but with q = 0. The nodal equation may easily be written down as

T3 =
T2 + T6

2
+ Bi�

2
T f

1 + Bi�
2

Node 4 requires energy balance to be performed over a half element.
The nodal equation may easily developed as

T4 =
T1 + T7

2
+ q�y

k
+ T5

2

Node 5 is an interior node and the nodal equation is easily seen to be

T5 = T2 + T6 + T8 + T4
4

Node6 is again treated by performing energy balance over a half element.
This is similar to that for node 4, with q = 0. Thismay also be considered
as an internal node with symmetry along the right boundary. Thus we
have
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T6 =
T3 + T9

2
+ T5

2

Nodes 7-9 all have specified temperature values of 100 ◦C . Six nodal
equations need to be solved simultaneously to obtain the unknown tem-
peratures.

Step 3 Introducing the numerical values, the six nodal equations are written
down, in a form suitable for Gauss–Seidel iteration.

T new
1 =

T old
2 + T old

4

2
+6.4166667

1.075 ; T new
2 =

T5+
T new
1 + T old

3

2
+4.5

2.15

T new
3 =

T new
2 + T old

6

2
+2.25

1.075 ; T new
4 =

T new
1 + 100

2
+8.33+T old

5

2

T new
5 = T new

2 + T old
6 + 100 + T new

4

4
; T new

6 =
T new
3 + 100

2
+T new

5

2

Step 3 The nodal equations have been solved by Gauss–Seidel iteration with
a convergence criterion of 0.01%. The number of iterations for conver-
gence was 15. The results are given in Table7.9.

Step 4 Convection heat transfer rate from the upper surface per unit length
perpendicular to the plane of figure is obtained as

Qtop = h

[
(T1 − T f )�x

2
+ (T2 − T f )�x + (T3 − T f )�x

2

]

= 45 ×
[
(94.45 − 30) × 0.005

2
+ (89.30 − 30) × 0.005

+ (87.88 − 30) × 0.005

2

]

= 27.1W/m

Table 7.9 Nodal temperatures in Example 7.7 during Gauss-Seidel iteration

Node Initial Iteration Iteration · · · Iteration Iteration

Number Values 1 2 · · · 14 15

1 90 89.69 90.77 · · · 94.44 94.45

2 90 85.74 85.99 · · · 89.29 89.30

3 90 83.83 85.11 · · · 87.87 87.88

4 90 96.59 98.40 · · · 100.94 100.95

5 90 93.08 94.22 · · · 96.34 96.35

6 90 92.50 93.39 · · · 95.14 95.14
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7.2.2 Steady Heat Conduction in Two Dimensions:
Cylindrical Coordinates

We consider steady heat conduction in two dimensions and cylindrical coordinates.
The temperature field is a function of r, θ . A typical example is shown in Fig. 7.11.
The domain is an annulus with inside boundary I at a specified temperature TI , part
of the boundary ARB at specified temperature TR and the part of the boundary ALB
is perfectly insulated. We notice that the plane LR is a plane of symmetry and hence
it is sufficient to consider half annulus as indicated in Fig. 7.12. In order to apply the
finite difference method we divide the domain in to elements as shown in this figure.
Step size along the r direction is taken as �r and the step size along θ direction is
�θ . In the figure the number of nodes along r is 5 while it is 9 along the θ direction.
In general, we may choose a value such as M for the number of nodes along the r
direction and N for the number of nodes along the θ direction. The nodal equations
may be written down by considering the four types of elements indicated in Fig. 7.12.

Interior element
The interior element is represented by the node i, j . The element is a curvilinear
rectangle with radial thickness �r , inner boundary of length

(

ri − �r
2

)

�θ and outer
boundary of length

(

ri + �r
2

)

�θ . Heat balance for the element is given by

k

(

ri − �r

2

)

�θ
Ti−1, j − Ti, j

�r
+ k

(

ri + �r

2

)

�θ
Ti+1, j − Ti, j

�r

+k�r
Ti, j−1 − T i, j

ri�θ
+ k�r

Ti, j+1 − T i, j

ri�θ
= 0 (7.52)

The above equation may be written in the explicit form

Fig. 7.11 Steady two-dimensional conduction in an annulus
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Fig. 7.12 Four types of elements occurring in the annulus problem

Ti, j =

[(

ri − �r

2

)

Ti−1, j +
(

ri + �r

2

)

Ti+1, j

]

+
[

1

ri

(
�r

�θ

)2
(

Ti, j−1 + Ti, j+1
)

]

2

[

ri + 1

ri

(
�r

�θ

)2
]

(7.53)

Boundary element 1
The element considered for heat balance is as shown in Fig. 7.12. The element is a

half element with radial thickness equal to �r , inner boundary of size

⎛

⎝ri−
�r

2

⎞

⎠�θ

2

and outer boundary of size

⎛

⎝ri+
�r

2

⎞

⎠�θ

2 . Since the insulated boundary is a plane of
symmetry we may write the nodal equation by putting Ti, j−1 = Ti, j+1 in Eq.7.53.
Note also that j = 1 along the boundary.

Ti,1 =

[(

ri − �r

2

)

Ti−1,1 +
(

ri + �r

2

)

Ti+1,1

]

+
[

2
1

ri

(
�r

�θ

)2

Ti,2

]

2

[

ri + 1

ri

(
�r

�θ

)2
] (7.54)

It is seen that similar considerations apply to an element on the boundarywith j = N .
Equation7.54 will have to be recast as
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Ti,N =

[(

ri − �r

2

)

Ti−1,N +
(

ri + �r

2

)

Ti+1,N

]

+
[

2
1

ri

(
�r

�θ

)2

Ti,N−1

]

2

[

ri + 1

ri

(
�r

�θ

)2
]

(7.55)
Boundary element 2
The element is a half element with radial thickness �r

2 , inner boundary of length
(

rM − �r
2

)

�θ and outer boundary of length
(

rM + �r
2

)

�θ . Heat balance for the
boundary element requires that

k

(

rM − �r

2

)

�θ
TM−1, j − TM, j

�r
+ k

�r

2

TM, j−1 − TM, j

rM�θ
+

k
�r

2

TM, j+1 − TM, j

rM�θ
= 0 (7.56)

This may be simplified to get the nodal temperature as

TM, j =
2

(

rM − �r

2

)

TM−1, j +
[

1

rM

(
�r

�θ

)2

(TM, j−1 + TM, j+1)

]

2

[

rM − �r

2
+ 1

rM

(
�r

�θ

)2
] (7.57)

Nodal equations may thus be written for all the nodes where the temperature is
unknown. The solution may be obtained by the now familiar Gauss–Seidel iteration
scheme.

Corner element
The only corner element that requires a special treatment is the external corner with
node identifier M, N . The element to be considered is a quarter element as shown in
Fig. 7.12. Energy balance requires that

k
TM−1,N − TM,N

�r

(

rM − �r

2

)
�θ

2
+ k

TM,N−1 − TM,N

rM�θ

�r

2
= 0 (7.58)

This equation may be rearranged to get the nodal equation

TM,N =
TM−1,N

(

rM − �r

2

)

+ TM,N−1
1

rM

(
�r

�θ

)2

rM − �r

2
+ 1

rM

(
�r

�θ

)2 (7.59)
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Fig. 7.13 Template for heat
transfer calculation at the
boundary

Heat transfer at the boundary
Heat transfer at a boundary may be estimated using a half element as shown in
Fig. 7.13. We see that by energy balance heat transfer at the boundary may be written
as

qb = −qk,1 − qk,2 − qk,3 (7.60)

Using the notation in Fig. 7.12 the nodes 1–4 correspond respectively to nodes
M, j; M − 1, j; M, j + 1 and M, j − 1. Introducing finite difference expressions
for the conduction heat transfer rates, we have

qb = −k

[
TM−1, j − TM, j

�r

(

rM − �r

2

)

+ TM, j+1 − TM, j

rM�θ

�r

2
+ TM, j−1 − TM, j

rM�θ

�r

2

]

(7.61)
This expression will have to be modified suitably for corner nodes, an exercise left
to the reader.

Example 7.8

The geometry for this problem is given in Fig. 7.12. The inner radius of the annu-
lus is 0.04m while the outer radius is 0.2m. The inner boundary is maintained at
100 ◦C while the isothermal part of the outer boundary is maintained at 30 ◦C. Take
�r = 0.04m and �θ = 11.25◦ = 0.19635 rad. Obtain all the unknown nodal tem-
peratures by finite differences. Make use of Gauss–Seidel iteration with a stopping
criterion of 0.01% as themaximum allowable change from iteration to iteration. Also
obtain the heat transfer rate at the isothermal boundary maintained at 30 ◦C.

Solution : The given data is written down as follows:

Inner radius of annulus: ri = 0.04m
Outer radius of annulus: ro = 0.2m

Temperature of inner boundary: TI = 100◦C
Temperature of isothermal part of outer boundary: TR = 30◦C

Radial step size: �r = 0.04 m
Angular step size: �θ = 0.19635 rad

M and N are obtained as
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Table 7.10 Nodal temperatures in Example 7.8

q j ↓ i → 1 2 3 4 5 q

4.25 1 100.00 71.17 53.28 40.23 30.00 −4.52

8.48 2 100.00 71.22 53.33 40.26 30.00 −9.07

8.42 3 100.00 71.40 53.51 40.35 30.00 −9.15

8.33 4 100.00 71.72 53.83 40.53 30.00 −9.31

8.18 5 100.00 72.22 54.37 40.84 30.00 −9.58

7.97 6 100.00 72.95 55.22 41.37 30.00 −10.05

7.67 7 100.00 73.96 56.56 42.31 30.00 −10.88

7.27 8 100.00 75.32 58.63 44.12 30.00 −12.47

6.76 9 100.00 77.04 61.75 47.89 30.00 −26.43

6.17 10 100.00 79.05 66.07 56.59 50.87 0.00

5.55 11 100.00 81.15 70.48 64.15 61.80 0.00

4.97 12 100.00 83.12 74.37 69.93 68.67 0.00

4.47 13 100.00 84.84 77.52 74.19 73.36 0.00

4.06 14 100.00 86.21 79.92 77.24 76.60 0.00

3.77 15 100.00 87.21 81.59 79.29 78.75 0.00

3.59 16 100.00 87.80 82.57 80.47 79.99 0.00

1.77 17 100.00 88.01 82.90 80.86 80.39 0.00

First and the last columns show the heat transfer rates at the
boundary nodes

M = 1 + ro − ri
�r

= 1 + 0.2 − 0.04

0.04
= 5

N = 1 + π

�θ
= 1 + π

0.19635
= 17

The nodal equations are written down using the cases considered above, in a form
suitable for the application of the Gauss–Seidel iteration scheme. The equations
are arranged in the form of 5 columns corresponding to i = 1 to 5 and 17 rows
corresponding to j = 1 to 17. The specified nodal temperatures are 17 on the inner
boundary and 9 along the isothermal part of the outer boundary. Hence the nodal
temperatures that are to be determined are 59 in number. All these are initialized as
50◦C to start the iteration process. Point by point iteration starts at node 2, 1 and
proceeds serially, skipping the nodes at which the temperatures are known, to the
last node 5, 17.

Table7.10 shows the results of Gauss–Seidel solution to the nodal equations. Note
that the temperatures at the adiabatic boundaries vary with boundary location and
are obtained as a part of the solution.

The heat transfer rate at the isothermal boundary may be obtained by the use of
expression 7.61 written for all the nodes starting from M, 1 to M, 9. Of course the
extreme nodes require quarter elements. The last column of table shows the heat
transfer rates in W/m per unit thermal conductivity. The negative sign is indicative
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of the fact that the heat transfer is away from the boundary. The heat transfer rate
is zero for the adiabatic nodes as required by the boundary conditions specified in
the problem. The first column shows the heat transfer rates at the inner isothermal
boundary. These are positive indicating that the heat transfer is in to the boundary.

The total heat transfer at the inner boundary is obtained by adding all the ele-
ments in the first column to get qI = 101.67 W/m per unit thermal conductivity.
The total heat transfer at the boundary R is given by the sum of all the elements in
the last column to get qR = −101.44W/m per unit thermal conductivity. Since the
calculations have been made for the top half of the annulus, these values must be
multiplied by a factor of two for the full annulus. Energy balance for the annulus
requires qI + qr = 0. It is seen that the energy residue is only 0.23 in approximately
102, which is satisfactory.

7.2.3 One-Dimensional Transient in a Bar

Transient conduction in one space dimension is also a two-dimensional problem in
heat conduction. Consider transient conduction in a bar where the temperature is a
function of x and t . The lateral surface of the bar is insulated and boundary conditions
of third kind are specified at x = 0 and x = L . The domain is divided into N − 1
elements of �x each, as shown in Fig. 7.14. Consider the element shown with the
node i at its center. We know that heat diffusion is represented by second derivative
with respect to x, in the heat equation. In the central difference approximation to
the second derivative with respect to x , the nodal equation will involve Ti−1, Ti and
Ti+1. Since the T ′s are also functions of t , there are several ways of writing the finite
difference form of the heat equation. The heat equation appropriate to the present
case is the one-dimensional heat equation in Cartesian coordinates given by

1

α

∂T

∂t
= ∂2T

∂x2
(7.62)

The time derivative is invariably written as

∂T

∂t
= T (x, t + �t) − T (x, t)

�t
or

∂T

∂t
= Ti, j+1 − Ti, j

�t
Nodal form

(7.63)

where the time step j is defined such that t = ( j − 1)�t with j = 1 corresponding
to t = 0. The second derivative may be approximated in different ways as given
below.

Explicit Formulation
In the explicit formulation, the second derivative with respect to x is evaluated with
all the known temperatures at t . Thus,
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Fig. 7.14 One-dimensional
transient conduction in a bar
of uniform cross section

∂2T

∂x2

∣
∣
∣
∣
Explicit

= T (x − �x, t) − 2T (x, t) + T (x + �x, t)

�x2

or in the nodal form

∂2T

∂x2

∣
∣
∣
∣
Explicit

= Ti−1, j − 2Ti, j + Ti+1, j

�x2
(7.64)

Combining expressions 7.63 and 7.64, we directly evaluate T (x, t + �t) = Ti, j+1

in terms of the known temperatures at t . We then have

Ti, j+1 = α�t

�x2
[T i − 1, j + T i + 1, j] +

[

1 − 2
α�t

�x2

]

Ti, j (7.65)

We notice that the elemental Fourier number Foe = α�t
�x2 appears in the above equa-

tion. Equation7.65 may then be written in the form

Ti, j+1 = Foe[Ti−1, j + Ti+1, j ] + [1 − 2Foe]Ti, j (7.66)

Explicit scheme is simple to apply because the solution can start from the initial
profile and obtain all future temperatures by simple arithmetic operations. The third
kind of boundary condition is specified at the two ends of the bar wherein the ends
convectively interact with an environment at temperature T∞ via a heat transfer
coefficient h. Consider the left boundary node i = 1. A half element of thickness �x

2
is used for writing the appropriate nodal equation. In the explicit formulation all the
fluxes are calculated with known temperatures T1, j and T2, j . We have the following:

Convection to the half element = h(T∞ − T1, j ) (7.67)

Conduction to the half element = k
T2, j − T1, j

�x
(7.68)

Change in internal energy of the half element = ρc
T1, j+1 − T1, j

�t

�x

2
(7.69)
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For heat balance the sum of expressions 7.67–7.68 must equal the expression 7.69.
The nodal equation may then be obtained, after some simplification as

T1, j+1 = T1, j [1 − 2Foe(1 + Bie)] + 2FoeBieT∞ + 2FoeT2, j (7.70)

where Bie is the elemental Biot number given by Bie = h�x
k .

Stability Condition for the Explicit Scheme
We do not expect transient heat conduction problem to involve temperatures that are
outside the range of initial temperatures excepting when internal heat generation is
involved. Thus one expects temperature range to decrease with time and hence the
solution shows stability. However, numerical solution may become unstable because
it is an approximate solution thatmay show unstable behavior because of numerically
induced instability.

To find out if the scheme is numerically stable we assume that the temperature
field is given by any one term of a Fourier series representation given by

T (x, t) = A(t) cos(ωx) (7.71)

where A(t) is the amplitude at time t and the distribution with respect to space is
given by the cosine function with wavenumber ω = 2π

λ
where λ is the wavelength.

Using Eq.7.71 wemay nowwrite down the terms that enter the explicit scheme given
by Eq.7.66 as

Ti, j+1 = A(t + �t) cos(ωx)

Ti−1, j = A(t) cos(ωx − ω�x) = A(t)[cos(ωx) cos(ω�x) − sin(ωx) sin(ω�x)]
Ti+1, j = A(t) cos(ωx + ω�x) = A(t)[cos(ωx) cos(ω�x) + sin(ωx) sin(ω�x)]
Ti, j = A(t) cos(ωx)

We havemade use of well known trigonometric identities in writing the above. These
are introduced in to Eq.7.66 to get, after some minor manipulation, the following
expression for the Gain defined by the ratio A(t+�t)

A(t) .

G = 1 − 2Fox + 2Fox cos(ω�x) (7.72)

We note that −1 ≤ cos(ω�x) ≤ 1. If we assume that cos(ω�x) = 1, G = 1 for
all Fox . However if we assume that cos(ω�x) = −1, then G = 1 − 4Fox . Thus
|G| > 1 if Fox > 1

2 . Absolute value of gain should be less than or equal to one for
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the solution to be stable and not magnify any disturbances! At once we see that the
explicit scheme is stable only if Fox ≤ 1

2 . Since finite differences require small �x
for the approximation to be good, very small value of �t will be required, if this
condition is to be satisfied.

Implicit Formulation
In the implicit formulation, the spatial derivative is evaluated using temperatures at
t + �t (which are as yet unknown). The second derivative with respect to x is then
written as

∂2T

∂x2

∣
∣
∣
∣
Implicit

= T (x − �x, t + �t) − 2T (x, t + �t) + T (x + �x, t + �t)

�x2

or, in the alternate nodal form as

∂2T

∂x2

∣
∣
∣
∣
Implicit

= Ti−1, j+1 − 2Ti, j+1 + Ti+1, j+1

�x2
(7.73)

From Eqs. 7.63 and 7.73, we obtain

−FoeTi−1, j+1 + [1 + 2Foe]Ti, j+1 − FoeTi+1, j+1 = Ti, j (7.74)

We write such equations for all the interior nodes. For node 1 (similarly for node N )
expressions 7.67 and 7.68 are recast as

Convection to the half element = h(T∞ − T1, j+1) (7.75)

Conduction to the half element = k
T2, j+1 − T1, j+1

�x
(7.76)

Expression 7.69 however remains unchanged. The nodal equation will then be recast,
after some simplification as

−[1 − 2Foe(1 + Bie)]T1, j+1 + 2FoeBieT2, j+1 = −T1, j − 2BieFoeT∞
(7.77)

Thus we have a set of simultaneous equations which may be solved for the temper-
atures at t + �t . The matrix of coefficients is a sparse matrix and is tridiagonal in
nature. Such equations can be solved using TDMA introduced earlier. The limitation
on Foe as in the case of explicit formulation is not there in the implicit method. The
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method is unconditionally stable. This may be seen by noting that Eq.7.72 will take
the form

G = 1

1 + 2Fox − 2Fox cos(ω�x)
(7.78)

It may be verified that |G| < 1 for all Fo�x and hence the implicit scheme does not
have any restrictive condition on the magnitude of the elemental Fourier number.

Semi-Implicit or Crank–Nicolson (CN) Scheme
This scheme evaluates the spatial derivatives as an average of the second derivative
at times t and t + �t . This scheme is referred to also as a balanced scheme. Thus,
in nodal form, we have

∂2T

∂x2

∣
∣
∣
∣
CN

= Ti−1, j+1 − 2Ti, j+1 + Ti+1, j+1

2�x2
+ Ti−1, j − 2Ti, j + Ti+1, j

2�x2
(7.79)

From Eqs. 7.63 and 7.79, we then have, on rearrangement

− Foe
2

Ti−1, j+1 + (1 + Foe)Ti, j+1 − Foe
2

Ti+1, j+1 = Foe
2

(Ti−1, j + Ti+1, j ) + (1 − Foe)Ti, j (7.80)

Equation7.80 written for all the internal nodes leads to a tridiagonal system of equa-
tions. The scheme is unconditionally stable. This may be verified by noting that
Eq.7.72 will take the form

G = 1 + Fo�x
2 [2 cos(ω�x) − 2]

1 − Fo�x
2 [2 cos(ω�x) − 2] (7.81)

It may be verified that |G| < 1 for all Fo�x and hence the CN scheme does not have
any restrictive condition on the magnitude of the elemental Fourier number. The CN
scheme is said to be unconditionally stable.

For node 1 (similarly for node N ) expressions 7.67 and 7.68 are recast as

Convection to the half element = h

(

T∞ − T1, j + T1, j+1

2

)

(7.82)

Conduction to the half element = k

⎛

⎜
⎝

T2, j + T2, j+1

2
− T1, j + T1, j+1

2
�x

⎞

⎟
⎠ (7.83)
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Expression 7.69 however remains unchanged. The nodal equation will then be recast,
after some simplification as

−[1 + Foe(1 + Bie)]T1, j+1 + FoeT2, j+1 = −[1 − Foe(1 + Bie)]T1, j − 2Foe BieT∞ − FoeT2, j (7.84)

Example 7.9

Consider a uniform cross section bar of stainless steel of length L = 100mm. The
bar is initially at Ti = 30◦C and its two ends are exposed for t > 0 to a convec-
tive environment at T∞ = 100◦C subject to a convective heat transfer coefficient of
h = 67W/m2◦C. Obtain the solution for a few time steps by an explicit method.

Solution :

Step 1 Properties of stainless steel (usual notation) are taken as
ρ = 7900kg/m3, c = 477J/kg◦Cand k = 14.9W/m◦C. The thermal dif-
fusivity of stainless steel is then calculated as

α = k

ρc
= 14.9

7900 × 477
= 3.95 × 10−6 m2/s

Step 2 Choose element thickness of �x = 10 mm = 0.01 m. The explicit
method will give convergent solution if the elemental Fourier number is
less than or equal to 0.5. We choose a value of Foe = 0.25 and hence
the time step will be

�t = Foe�x2

α
= 0.25 × 0.012

3.95 × 10−6
= 6.32 s

With �x = 0.01 m, there are 11 nodes −9 interior nodes and 2 bound-
ary nodes. Since there is symmetry with respect to node number 6 we
consider only the nodes 1–6. The elemental Biot number is calculated
from the given data.

Bie = h�x

k
= 67 × 0.01

15.9
= 0.045

Step 3 An extract a spreadsheet written for the present example is given in
Table7.11 on page 293. Node identifiers as well as the coordinates
of nodes are given in the Table. Column 3 shows the Fourier number
defined as Fo = αt

L2 . The entries in the first row ( j = 1) are the initial
nodal temperature values specified in the problem. Entries starting with
the second row ( j = 2) in the columns identified by i values are the
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Table 7.11 Tabulation of nodal temperatures for Example 7.9

Spatial node, i or Location along bar, x, m

Temporal Time Fo i = 1 2 3 4 5 6

node, j s x = 0 0.01 0.02 0.03 0.04 0.05

1 0 0 30 30 30 30 30 30

2 6.32 0.0025 31.58 30.00 30.00 30.00 30.00 30.00

3 12.64 0.005 32.33 30.39 30.00 30.00 30.00 30.00

4 18.96 0.0075 32.88 30.78 30.10 30.00 30.00 30.00

5 25.28 0.01 33.34 31.13 30.24 30.02 30.00 30.00

6 31.6 0.0125 33.74 31.46 30.41 30.07 30.01 30.00

7 37.92 0.015 34.09 31.77 30.59 30.14 30.02 30.00

8 44.24 0.0175 34.41 32.05 30.77 30.22 30.05 30.01

9 50.56 0.02 34.71 32.32 30.96 30.32 30.08 30.03

10 56.88 0.0225 34.99 32.58 31.14 30.42 30.13 30.06

nodal temperatures calculated by the explicit scheme. At time t = 44.24
s or Fo = 0.0175 the temperature at the middle of the bar has started
responding. The temperature of the bar at its ends have increased by
about 5 ◦C at t ≈ 55 s. The reader may compare the solution obtained
here with the one term approximation presented in Chap. 6.

We have mentioned earlier that the explicit scheme does not work if Foe > 0.5.
This is demonstrated by doing the calculations in Example 7.9 with Foe = 0.3 and
Foe = 0.6. The solution at Fo = 0.054 obtained in these two cases are compared in
Fig. 7.15. While the solution obtained with Foe = 0.3 is well behaved the solution
obtained with Foe = 0.6 shows large oscillations. The solution obtained with the
larger time step is thus entirely useless!

Example 7.10

Consider a bar of length L = 0.1 m of uniform cross section which is insulated
on its lateral surfaces. The bar is initially at a uniform temperature of 100 ◦C and its
ends are cooled to 30 ◦C instantaneously and are maintained at that temperature for
t > 0. Making use of the Crank–Nicolson method, obtain the temperature in the bar
for the first two time steps taken such that the elemental Fourier number is equal to
one. Take the thermal diffusivity of the material of the bar to be 10−6 m2/s. Take
�x = 0.0125m.

Solution: The elemental length is �x = 0.0125m. Thermal diffusivity of the mate-
rial of the bar is α = 10−6 m2/s. Elemental Fourier number is to be taken equal to
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Fig. 7.15 Comparison of
solutions obtained with two
different time steps in
Example 7.9

Foe = 1. The time step for the numerical calculation is obtained as

�t = �x2

α
= 0.01252

10−6
= 156.25 s

Let the initial temperature in the bar be T0 = 100◦C and the two end temperatures
for t > 0 be Te = 30◦C. We shall define the non-dimensional temperature as

φ = T − Te
T0 − Te

Initially all the nodal temperatures are φ = 1 and the ends attain φ = 0 temperature
for t > 0. With �x = 0.0125 m there are 9 nodes along the bar. The two end nodes
have the temperature specified. However, since these two temperatures are identical
and the initial temperature in the bar is uniform, there is symmetry with respect to
the node at x = 0.05m (node number 5). This means that we may use insulated
boundary condition for this node. The equations governing the interior nodes 2–5
are obtained by letting Foe = 1 in Eq.7.84. Hence, for nodes 2 to 5 we have

Node 2: 4φ2,new − φ3,new = φ3,old

Node 3: −φ2,new + 4φ3,new − φ4,new = φ2,old + φ4,old

Node 4: −φ3,new + 4φ4,new − φ5,new = φ3,old + φ5,old

Node 5: −2φ4,new + 4φ5,new = 2φ4,old

Subscripts old represents the values at the end of the previous time step and new
represents the values after the current time step. The last of the equations for node
5 is based on either a half element as was done in the fin problem (near the tip) or
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Table 7.12 Crank–Nicolson results, for example, 7.10, first two time steps

First time step

Matrix elements Auxiliary quantities Nodal temperatures

a b c d P Q x φ(Old) φ(New)

4 1 0 1 0.25 0.25 0.0125 1 0.4639

4 1 1 2 0.2667 0.6 0.025 1 0.8557

4 1 1 2 0.2679 0.6964 0.0375 1 0.9588

4 0 2 2 0 0.9794 0.05 1 0.9794

Second time step

Matrix elements Auxiliary quantities Nodal temperatures

a b c d P Q x φ(Old) φ(New)

4 1 0 0.8557 0.25 0.2139 0.0125 0.4639 0.3797

4 1 1 1.4227 0.2667 0.4364 0.025 0.8557 0.6633

4 1 1 1.8351 0.2679 0.6084 0.0375 0.9588 0.8508

4 0 2 1.9175 0 0.9048 0.05 0.9794 0.9048

by invoking symmetry condition φ4,old = φ6,old and φ4,new = φ6,new for all t . The
appropriate interior nodal equation will then transform to the one that is shown.

The calculations start with φi,old = 1 for i = 2 to 5 at t = 0 and the solution of the
simultaneous equations yield the values at t = 156.25s. It is noted that the equations
are in the tridiagonal form and hence the TDMAmay be made use of. The results of
TDMA are shown in Table7.12 for the first two time steps. The first four columns
represent the augmented matrix. Columns 5 and 6 are the auxiliary quantities P
and Q that are calculated from the elements of the augmented matrix. The last two
columns represent the temperatures at the beginning and the end of the time interval.
The Crank–Nicolson method does not show any oscillations in the solution even
though we have used a value of 1 for the elemental Fourier number.

The calculations have been continued up to Fo = 0.0625 and the nodal tem-
peratures at this time are compared with those obtained analytically using the one
term approximation in Table7.13. The nodal temperatures are in very good agree-
ment even though we have used coarse grids with only 9 nodes in the computational
domain.

Further comparison is made between the present numerical solution and the exact
analytical solution in Fig. 7.16. The comparison is between themid plane temperature
(i.e., φ5) as a function of time, represented by Fo. The comparison appears to be
really good.
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Table 7.13 Tabulation of results for Example 7.10 and comparisonwith the one term approximation

x Fourier number One term

0 0.01563 0.03125 0.04688 0.0625 Approximation

Fo = 0.0625

0 0 0 0 0 0 0

0.0125 1 0.4639 0.3797 0.3077 0.2627 0.2629

0.025 1 0.8557 0.6633 0.5675 0.4832 0.4858

0.0375 1 0.9588 0.8508 0.7317 0.6308 0.6348

0.05 1 0.9794 0.9048 0.7912 0.6812 0.6871

0.0625 1 0.9588 0.8508 0.7317 0.6308 0.6348

0.075 1 0.8557 0.6633 0.5675 0.4832 0.4858

0.0875 1 0.4639 0.3797 0.3077 0.2627 0.2629

0.1 0 0 0 0 0 0

Fig. 7.16 Midplane
temperature variation with
time: comparison of
numerical with exact
solution in Example 7.10

7.2.4 Transient Heat Transfer in a Conducting Convecting
Fin

Transient heat transfer in a fin of uniform area is considered. The fin is in the form
of a flat plate of thickness 2δ, length L and initially at a uniform temperature Tb. For
t > 0 the lateral surfaces of the fin lose heat to an ambient medium at temperature
T∞ via a heat transfer coefficient h. The fin tip is assumed to satisfy the insulated
tip condition while the base remains at Tb. Numerical solution is desired using the
finite difference formulation. The explicit method is intended to be made use of.
Figure7.17a is useful in deriving the nodal equation for an internal node. For energy
balance we have the following:
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Fig. 7.17 Elements for
deriving nodal equations in a
uniform area fin

Qk1 + Qk2 + Qc = ρc2δ�x
Ti, j+1 − Ti, j

�t
Energy stored

(7.85)

The conduction heat transfer rates are given by

Qk1 = 2δk
Ti−1, j − Ti, j

�x
, Qk2 = 2δk

Ti+1, j − Ti, j
�x

Convection heat transfer rate is given by

Qc = 2�xh(T∞ − Ti, j )

We substitute these in Eq.7.85 and rearrange to get the nodal equation

Ti, j+1 = Ti, j + Foe(Ti−1, j − 2Ti, j + Ti+1, j ) + FoeBi�x (T∞ − Ti, j )

(
�x

δ

)

(7.86)

Figure7.17b helps in deriving the equation for the tip node. For energy balance we
have the following:

Qk1 + Qc = ρc2δ
�x

2

TN , j+1 − TN , j

�t
Energy stored

(7.87)

The conduction and convection heat transfer rates are given by

Qk1 = 2δk
TN−1, j − TN , j

�x
; Qc = 2

�x

2
h(T∞ − Ti, j )

We substitute these in Eq.7.87 and rearrange to get the nodal equation
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TN , j+1 = TN , j + 2Foe(TN−1, j − TN , j ) + FoeBi�x (T∞ − TN , j )

(
�x

δ

)

(7.88)

For the node at x = 0 the temperature is invariant with time and hence T1 = Tb for all
t. The elemental Fourier number and elemental Biot number that appear in Eqs.7.86
and 7.88 are defined as

Foe = α�t

�x2
; Bi�x = h�x

k

As always the value of the elemental Fourier number has to be less than 0.5.We leave
the formulation of Crank–Nicolson scheme for the present problem as an exercise
to the reader.

Example 7.11

Consider a fin in the form of a flat plate of thickness 2δ = 3mm and length
L = 100mm. The fin is made of aluminum with k = 237W/m◦C, ρ = 2702kg/m3

and c = 903J/kg◦C . The fin loses heat to a background at T∞ = 30◦C via a heat
transfer coefficient of h = 30W/m2 ◦C for t > 0. The fin is initially at a temperature
of T0 = 70◦C throughout and the fin base will remain at this temperature for all t .
Assume insulated tip condition. Obtain numerically the temperature profile in the
fin. Use 11 nodes along the fin length.

Solution:

Step 1 The elemental Fourier number is taken as Foe = 0.25 for this simulation.
With N = 11, we have �x = 0.1

11−1 = 0.01m. The thermal diffusivity of
aluminum is calculated as

α = k

ρc
= 237

2702 × 903
= 9.71 × 10−5 m2/s

The time step is then given by

�t = Foe�x2

α
= 0.25 × 0.012

9.71 × 10−5
= 0.26 s

The elemental Biot number is calculated as

Bi�x = h�x

k
= 30 × 0.01

237
= 0.001266

The ratio �x
δ

is given by
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�x

δ
= 0.01

0.0015
= 6.666667

Step 2 The nodal equations are written down based on Eqs. 7.86 and 7.88. For
the interior nodes we have

Ti, j+1 = Ti, j + 0.25
(

Ti−1, j − 2Ti, j + Ti+1, j
)

+0.25 × 0.001266 × 6.66667
(

30 − Ti, j
)

= Ti, j + 0.25
(

Ti−1, j − 2Ti, j + Ti+1, j
) + 0.00211

(

30 − Ti, j
)

For the tip node we have

T11, j+1 = T11, j + 0.5
(

T10, j − T11, j
)

+0.25 × 0.001266 × 6.66667
(

30 − T11, j
)

= T11, j + 0.5
(

T10, j − T11, j ) + 0.00211(30 − T11, j
)

Step 3 The solution has beenobtainedbywriting the formulae in to anworksheet
of a spreadsheet program. The results are tabulated in Table7.14 on page
300. The solution shows many interesting features. The steady state is
reached in about 375s or about 7min. The numerical solution, in the
steady state, is in excellent agreementwith the analytical values, obtained
by the well known solution given by

T (x) = cosh{m(L − x)}
cosh{mL}

where m, the fin parameter is given by m =
√

h
kδ =

√
30

237×0.0015 =
9.1863m−1.

7.2.5 One-Dimensional Transient in a Solid Cylinder

One-dimensional (radial) transient heat transfer in a solid cylinder subject to con-
vection at its boundary is considered now. The cylinder has a radius of R and is of a
material with specified k and α. Initial temperature field in the cylinder is specified as
a function T (r, 0) = f (r). Figure7.5a may be used for deriving the nodal equation.
We assume that there is no internal heat generation in the solid cylinder.
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Table 7.14 Tabulation of nodal temperatures for Example 7.11

j → 1 2 3 4 5 121 386 1446

t, s → 0 0.26 0.52 0.78 1.04 31.2 100.1 375.7 t → ∞
i ↓
1 70 70 70 70 70 70 70 70 70

2 70 69.92 69.85 69.8 69.75 68.25 67.58 67.5 67.5

3 70 69.92 69.83 69.75 69.68 66.8 65.48 65.32 65.32

4 70 69.92 69.83 69.75 69.66 65.61 63.68 63.44 63.43

5 70 69.92 69.83 69.75 69.66 64.65 62.15 61.83 61.83

6 70 69.92 69.83 69.75 69.66 63.89 60.88 60.50 60.50

7 70 69.92 69.83 69.75 69.66 63.3 59.85 59.42 59.42

8 70 69.92 69.83 69.75 69.66 62.87 59.07 58.60 58.59

9 70 69.92 69.83 69.75 69.66 62.57 58.52 58.01 58.01

10 70 69.92 69.83 69.75 69.66 62.39 58.19 57.66 57.66

11 70 69.92 69.83 69.75 69.66 62.34 58.08 57.54 57.54

Explicit Formulation

Interior Node
For heat balance we have

Qk(i − 1 → i) + Qk(i + 1 → i)
Conductive fluxes

= ρc2πri�r
Ti, j+1 − Ti, j

�t
Energy stored

(7.89)

In the explicit formulation quantities on the left hand side of Eq.7.89 are evaluated
using the known temperatures at time given by j . The terms on the left side are given
by

Qk(i − 1 → i) = 2kπri− 1
2

Ti−1, j − Ti, j
�r

; Qk(i + 1 → i) = 2kπri+ 1
2

Ti+1, j − Ti, j
�r

With these, and after minor simplification, we have

Ti, j+1 = T i, j + Foe

[ri− 1
2

ri

(

Ti−1, j − Ti, j
) + ri+ 1

2

ri

(

Ti+1, j − Ti, j
)
]

(7.90)

where Foe = α�t
�r2 is the elemental Fourier number.
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Fig. 7.18 Energy balance
terminology for the center
node

Surface Node
To derive the nodal equation, as usual, we make use of a half element adjacent to the
boundary. We may use Fig. 7.5b to write

Qk(N − 1 → N )

Conductive flux

+ Qc(N )

Convective flux

= ρc2πrN
�r

2

TN , j+1 − TN , j

�t
Energy stored

(7.91)

The terms on the left hand side are given by

Qk(N − 1 → N ) = 2kπrN− 1
2

TN−1, j − TN , j

�r
; Qc(N ) = 2πrNh(T∞ − TN , j )

Introducing these in Eq.7.91 and after minor simplification we get

TN , j+1 = TN , j + 2Foe(TN−1, j − TN , j )

r
N− 1

2
rN

+ 2Foe Bi�r (T∞ − TN , j ) (7.92)

where Bi�r is the elemental Biot number.

Center Node
The node at the center requires energy balance for half element of radius �r

2 sur-
rounding the center node at i = 1. Figure7.18 helps in understanding the situation.
For energy balance we have

Qk(2 → 1) = ρcπr21+ 1
2

T1, j+1 − T1, j
�t

= ρcπ
(�r

2

)2 T1, j+1 − T1, j
�t

(7.93)

The heat transfer rate on the left hand side of Eq.7.93 is written down as

Qk(2 → 1) = 2kπ
�r

2

T2, j − T1, j
�r
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With this, after simplification, we have the nodal equation

T1, j+1 = T1, j + 4Foe(T2, j − T1, j ) (7.94)

Explicit finite difference model for the problem is thus complete and the solution
may be obtained by simple arithmetic operations, starting from the initial temperature
distribution. As before, the elemental Fourier number has to be chosen less than 0.5.

Crank–Nicolson Scheme
The reader should be able to derive the finite difference equations for both the implicit
as well as the Crank–Nicolson schemes, following the procedure given for the slab
problem. For example, in the Crank–Nicolson case, Eqs. 7.90, refeq:7e91, and 7.94
are modified as given by the following equations:

Interior node:

− Foe
2

ri− 1
2

ri
Ti−1, j+1 + (1 + Foe)Ti, j+1 − Foe

2

ri+ 1
2

ri
Ti+1, j+1

= Foe
2

(ri− 1
2

ri
Ti−1, j + ri+ 1

2

ri
Ti+1, j

)

− (1 − Foe)ri Ti, j (7.95)

Surface node:

− Foe
2

rN− 1
2

rN
TN−1, j+1 +

(

1 + Foe
rN− 1

2

rN
+ FoeBi�r

)

TN , j+1

= TN , j

(

1 − Foe
rN− 1

2

rN
− FoeBi�r

)

+ 2FoeBi�r T∞ (7.96)

Center node:

T1, j+1(1 + 2Foe) − 2FoeT2, j+1 = T1, j (1 − 2Foe) + 2FoeT2, j (7.97)

7.2.6 One-Dimensional Transient in a Solid Sphere

One-dimensional (radial) transient heat transfer in a solid sphere subject to convection
at its boundary is considered now. The sphere has a radius of R and is of a material
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with specified k and α. Initial temperature field in the sphere is specified as a function
T (r, 0) = f (r). Figure7.5a may be used for deriving the nodal equation. We assume
that there is no internal heat generation in the solid sphere.

Explicit Formulation

Interior Node
For heat balance we have

Qk(i − 1 → i) + Qk(i + 1 → i)
Conductive fluxes

= ρc4πr2i �r
Ti, j+1 − Ti, j

�t
Energy stored

(7.98)

In the explicit formulation quantities on the left hand side of Eq.7.89 are evaluated
using the known temperatures at time given by j . The terms on the left side is given
by

Qk(i − 1 → i) = 4kπr2
i− 1

2

Ti−1, j − Ti, j
�r

; Qk(i + 1 → i) = 4kπr2
i+ 1

2

Ti+1, j − Ti, j
�r

With these, and after minor simplification, we have

Ti, j+1 = T i, j + Foe
[

r2i− 1
2

(

Ti−1, j − Ti, j
) + r2i+ 1

2

(

Ti+1, j − Ti, j
)]

(7.99)

where Foe = α�t
�r2 is the elemental Fourier number.

Surface Node
To derive the nodal equation, as usual, we make use of a half element adjacent to the
boundary. We may use Fig. 7.5b as a guide to write

Qk(N − 1 → N )

Conductive flux

+ Qc(N )

Convective flux

= ρc4πr2N
�r

2

TN , j+1 − TN , j

�t
Energy stored

(7.100)

The terms on the left hand side is given by

Qk(N − 1 → N ) = 4kπr2N− 1
2

TN−1, j − TN , j

�r
; Qc(N ) = 4πr2N h(T∞ − TN , j )

Introducing these in Eq.7.100 and after minor simplification we get
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TN , j+1 = TN , j + 2Foe
(

TN−1, j − TN , j
) r

2
N− 1

2

r2N
+ 2FoeBi�r

(

T∞ − TN , j
)

(7.101)

where Bi�r is the elemental Biot number.

Center Node
The node at the center requires energy balance for half element of radius �r

2 sur-
rounding the center node at i = 1. Figure7.18 helps in understanding the situation,
in this case also. or energy balance we have

Qk(2 → 1)
Conductive flux

= ρc
4

3
πr31+ 1

2

T1, j+1 − T1, j
�t

Energy stored

= ρc
4

3
π
(�r

2

)3 T1, j+1 − T1, j
�t

Energy stored

(7.102)

The heat transfer rate on the left hand side of Eq.7.93 is written down as

Qk(2 → 1) = 4kπ
(�r

2

)2 T2, j − T1, j
�r

With this, after simplification, we have the nodal equation

T1, j+1 = T1, j + 6Foe
(

T2, j − T1, j
)

(7.103)

Explicit finite difference model for the problem is thus complete and the solution
may be obtained by simple arithmetic operations, starting from the initial temperature
distribution. As before, the elemental Fourier number has to be chosen less than 0.5.

Crank–Nicolson Scheme
The reader should be able to derive the finite difference equations for both the implicit
as well as the Crank–Nicolson schemes, following the procedure given for the slab
problem. For example, in the Crank–Nicolson case, Eqs. 7.99, 7.101, and 7.103 are
modified as given by the following equations:

Interior node:

− Foe
2

r2i− 1
2
Ti−1, j+1 + (1 + Foe)r

2
i Ti, j+1 − Foe

2
r2i+ 1

2
Ti+1, j+1

= Foe
2

(

r2i− 1
2
Ti−1, j + r2i+ 1

2
Ti+1, j

)

− (1 − Foe)r
2
i Ti, j (7.104)
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Surface node:

− Foe
2

r2
N− 1

2

r2N
TN−1, j+1 +

⎛

⎝1 + Foe
r2
N− 1

2

r2N
+ FoeBi�r

⎞

⎠ TN , j+1

= TN , j

⎛

⎝1 − Foe
r2
N− 1

2

r2N
− FoeBi�r

⎞

⎠ + 2FoeBi�r T∞ (7.105)

Center node:

T1, j+1(1 + 3Foe) − 3FoeT2, j+1 = T1, j (1 − 3Foe) + 3FoeT2, j (7.106)

Example 7.12

A solid sphere of radius 0.1m is initially at a temperature of 100 ◦C throughout.
For t > 0 its surface is subject to convective cooling by an ambient fluid at 30 ◦C
via a heat transfer coefficient of 30 W/m2 ◦C. Consider 9 uniformly spaced nodes
along the radius of the sphere. The thermal conductivity of the material of the sphere
is 15 W/m◦C while the thermal diffusivity is given to be 9.76 × 10−7 m2/s. Obtain
the solution for a few time steps using an elemental Fourier number of 0.25. Use an
explicit scheme.

Solution : The given data is written down using the familiar notation:

T0 = 100◦C T∞ = 30◦C
k = 15W/m◦C h = 30 W/m2 ◦C
R = 0.1 m; N = 9 �r = 0.0125 m

α = 10−6m2/s, Foe = 0.25 �t = 0.25×0.01252

9.76×10−7 = 40 s

Bi = 30×0.1
15 = 0.2 Bi�r = 30×0.0125

15 = 0.025

The nodal temperatures are calculated based on nodal Eqs. 7.99, 7.101 and 7.103.
The calculations have been performed using a spreadsheet and the results are given in
Table7.15. The center temperature evaluated by the numerical method is compared
with the one term approximation for three values of the Fourier number (viz. Fo =
0.1, 0.3 and 0.5). The comparison can be termed as good. Fourier number is defined as
αt
R2 where t = ( j − 1)�t . Improvement in the explicit solution may be demonstrated
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Table 7.15 Tabulation of nodal temperatures for Example 7.12

ri → 0 0.0125 0.025 0.0375 0.05 0.0625 0.075 0.0875 0.1

i → 1 2 3 4 5 6 7 8 9

j ↓ t ↓ Fo ↓
1 0 0 100 100 100 100 100 100 100 100 100

2 40 0.004 100 100 100 100 100 100 100 100 99.13

3 80 0.008 100 100 100 100 100 100 100 99.75 98.65

4 120 0.012 100 100 100 100 100 100 99.93 99.49 98.27

5 160 0.016 100 100 100 100 100 99.98 99.81 99.23 97.95

6 200 0.02 100 100 100 100 99.99 99.93 99.68 98.99 97.67

7 240 0.024 100 100 100 100 99.98 99.87 99.53 98.76 97.40

8 280 0.028 100 100 100 99.99 99.95 99.79 99.37 98.54 97.16

9 320 0.032 100 100 100 99.98 99.90 99.69 99.21 98.32 96.92

10 360 0.036 100 100 99.99 99.96 99.85 99.59 99.05 98.11 96.70

11 400 0.04 100 99.99 99.98 99.93 99.79 99.48 98.89 97.91 96.49

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
26 1000 0.1 99.28 99.21 99.03 98.70 98.18 97.46 96.50 95.29 93.83

(99.99)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
76 3000 0.3 92.64 92.55 92.29 91.84 91.21 90.39 89.4 88.24 86.91

(92.37)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
126 5000 0.5 86.01 85.93 85.70 85.30 84.73 84.00 83.11 82.07 80.88

(85.57)

Figures in bracket are analytical one term approximation values

with smaller nodal spacing and correspondingly smaller time step size. In practice
one would perform a grid dependence study to determine the required nodal spacing
(see Sect. 7.1.2).

The reader is encouraged to use the CN scheme and redo the problem.

7.3 Transient Conduction in Two and Three Dimensions

In Chap. 6 we have already dealt with unsteady conduction in two and three dimen-
sions by the use of analytical methods leading to the one term approximation. The
discussion here will be the solution of such problems by the finite difference method,
and without the limitations that go with the one term approximation.
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Fig. 7.19 Typical nodes for
numerical solution of
transient heat conduction in a
rectangle

7.3.1 Transient Conduction in a Rectangle: Explicit
Formulation

The problem geometry is described by Fig. 6.6. One quarter of the physical domain is
treated as the computational domain based on the indicated symmetries. Figure7.19
shows the domain alongwith representative elements that need to bemodeled numer-
ically. The following types of nodes are to be considered:

Interior node (1) Face nodes (2,3,4,5)
External corners (6,7,8) Internal corner (9)

Nodal equations may be derived, in the case of an explicit formulation, using pro-
cedure that has been followed till now. The reader is encouraged to verify that the
following equations will result from such an exercise. The following parameters are
defined in writing the finite difference equations:

Number of nodes along x : M = Lx
�x + 1

Number of nodes along y : N = Ly

�y + 1
Elemental Fourier number based on δx : Fo�x = α�t

�x2

Elemental Fourier number based on δy : Fo�y = α�t
�y2

Elemental Biot number based on δx : Bi�x = h�x
k

Elemental Biot number based on δy : Bi�y = h�y
k
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Interior node (1):

T k+1
i, j − T k

i, j = Fo�x
(

T k
i−1, j − T k

i, j + T k
i+1, j

) + Fo�y
(

T k
i, j−1 − 2T k

i, j + T k
i, j+1

)

(7.107)
where 2 ≤ i ≤ M − 1 and 2 ≤ j ≤ N − 1.

Surface node (2):

T k+1
1, j − T k

1, j = 2Fo�x
(

T k
2, j − T k

i, j

) + Fo�y
(

T k
1, j−1 − 2T k

1, j + T k
1, j+1

)

(7.108)
where 2 ≤ j ≤ N − 1.

Surface node (3):

T k+1
i,1 − T k

i,1 = Fo�x
(

T k
i−1,1 − T k

i,1 + T k
i+1,1

) + 2Fo�y
(

T k
i,2 − T k

i, j

)

(7.109)

where 2 ≤ i ≤ M − 1.

Face node (4):

T k+1
M, j − T k

M, j = 2Fo�x
(

T k
M−1, j − T k

M, j

) + Fo�y
(

T k
M, j−1 − 2T k

M, j + T k
M, j+1

)

+2
√

Fo�x Fo�y Bi�y
(

T∞ − T k
M, j

)

(7.110)

where 2 ≤ j ≤ N − 1.
Face node (5):

T k+1
i,N − T k

i,N = Fo�x
(

T k
i−1,N − 2T k

i,N + T k
i+1,N

) + 2Fo�y
(

T k
i,N−1 − T k

i,N

)

+2
√

Fo�x Fo�y Bi�x (T∞ − T k
i,N ) (7.111)

where 2 ≤ i ≤ M − 1.

Corner node (6):

T k+1
1,N − T k

1,N = 2Fo�x
(

T k
2,N − T k

1,N

) + 2Fo�y
(

T k
1,N−1 − T k

1,N

)

+2
√

Fo�x Fo�y Bi�x
(

T∞ − T k
1,N

)

(7.112)

Corner node (7):

T k+1
M,1 − T k

M,1 = 2Fo�x
(

T k
M−1,1 − T k

M,1

) + 2Fo�y
(

T k
M,2 − T k

M,1

)

+2
√

Fo�x Fo�y Bi�y
(

T∞ − T k
M,1

)

(7.113)
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Corner node (8):

T k+1
M,N − T k

M,N = 2Fo�x (T
k
M−1,N − T k

M,N ) + 2Fo�y(T
k
M,N−1 − T k

M,N )

+2
√

Fo�x Fo�y
(

Bi�x + Bi�y
) (

T∞ − T k
M,N

)

(7.114)

Corner node (9):

T k+1
1,1 − T k

1,1 = 2Fo�x
(

T k
2,1 − T k

1,1

) + 2Fo�y
(

T k
1,2 − T k

1,1

)

(7.115)

In Eqs. 7.107–7.115 the superscript k is the time step index defined such that
t = (k − 1)�t . As before the explicit method works only if Fo�x + Fo�y ≤ 1

2 .
However the explicit method is simple to implement since the temperatures may be
updated in time by the application of the above nodal equations, starting with the
initial temperature values.

7.3.2 ADI Method

A superior scheme for solving multi-dimensional transient conduction problems is
the Alternate Direction Implicit or the ADI scheme.1 This scheme is unconditionally
stable and this is the most important advantage of the method.

The explicit formulation presented above has shown that the nodal temperature
(for an internal node such as 1 in Fig. 7.19) at t + �t depends on four nearest neighbor
temperatures that are prescribed at t . In case we were to use an implicit scheme
the four nearest neighbors would have to be updated along with the middle nodal
temperature and hence we would have a matrix equation with a banded coefficient
matrix that is not tridiagonal.However it is possible to reduce thematrix to tridiagonal
form if the two directions are treated alternately as implicit and explicit, as given
below. This in essence is the idea behind the ADI scheme. Another way of looking
at the ADI is to realize that a spatially two-dimensional problem is reduced to two
spatially one-dimensional problems.

The time step �t is divided in to two half steps of �t
2 each. Thus we define nodal

temperatures at t + �t
2 or k + 1

2 also. During the first half time step, i.e., from k to
k + 1

2 the spatial derivatives with respect to x are treated implicitly while the spatial
derivative with respect to y is treated explicitly. Thus the Laplacian is written as

∇2 T = T
k+ 1

2
i−1, j − 2T

k+ 1
2

i, j + T
k+ 1

2
i+1, j

�x2
+ T k

i, j−1 − 2T k
i, j + T k

i, j+1

�y2
(7.116)

1D.W. Peaceman and H.H. Rachford, The numerical solution of parabolic and elliptic differential
equations, SIAM, Vol. 3, pp. 28–41, 1955; see interesting note in SIAM News, Vol. 39, No. 2,
March 2006.
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The heat equation is thus written for an internal node (such as Node 1 in Fig. 7.19 as

− Fox
2

T
k+ 1

2
i−1, j + (1 + Fox )T

k+ 1
2

i, j − Fox
2

T
k+ 1

2
i+1, j = T k

i, j + Foy
2

(

T k
i, j−1 − 2T k

i, j + T k
i, j+1

)

(7.117)

During the second half time step, i.e., from k + 1
2 to k + 1 the spatial derivatives

with respect to y are treated implicitly while the spatial derivative with respect to x
is treated explicitly. The Laplacian takes the form

∇2 T = T
k+ 1

2
i−1, j − 2T

k+ 1
2

i, j + T
k+ 1

2
i+1, j

�x2
+ T k+1

i, j−1 − 2T k+1
i, j + T k+1

i, j+1

�y2
(7.118)

The heat equation is thus written for an internal node as

− Foy
2

T k+1
i, j−1 + (

1 + Foy
)

T k+1
i, j − Foy

2
T k+1
i, j+1 = T

k+ 1
2

i, j + Fox
2

(

T
k+ 1

2
i−1, j − 2T

k+ 1
2

i, j + T
k+ 1

2
i+1, j

)

(7.119)

Equations7.117 and 7.119 are valid for 2 ≤ i ≤ M − 1 and 2 ≤ j ≤ N − 1. The
reader may derive the equations for all the elements shown in Fig. 7.19 by following
the above procedure. The final form of nodal equations are given below.

Surface node 2, First half time step:

(1 + Fox )T
k+ 1

2
1, j − FoxT

k+ 1
2

2, j = T k
1, j + Foy

2

(

T k
1, j−1 − 2T k

1, j + T k
1, j+1

)

(7.120)
where 2 ≤ j ≤ N − 1.

Surface node 2, Second half time step:

− Foy
2

T k+1
1, j−1 + (1 + Foy)T

k+1
1, j − Foy

2
T k+1
1, j+1 = T

k+ 1
2
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(

−T
k+ 1

2
1, j + T

k+ 1
2

2, j
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(7.121)

Surface node 3, First half time step:

− Fox
2

T
k+ 1

2
i−1,1 + (1 + Fox )T

k+ 1
2

i,1 − Fox
2

T
k+ 1

2
i+1,1 = T k

i,1 + Foy
(−T k

i,1 + T k
i,2

)

(7.122)
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Fig. 7.20 Defining sketch for Example 7.13

where 2 ≤ i ≤ M − 1.

Surface node 3, Second half time step:

(1 + Foy)T
k+1
i,1 − FoyT

k+1
i,2 = T

k+ 1
2

i,1 + Fox
2

(

T
k+ 1

2
i−1,1 − 2T

k+ 1
2

i,1 + T
k+ 1

2
i+1,1

)

(7.123)

Example 7.13

A very long bar of square section 0.1 × 0.1m is initially at a uniform temperature of
1 throughout. For t > 0 all the surfaces of the bar are brought to 0 temperature and
held fixed at that value. Using the ADI method obtain the temperature distribution in
the bar for one ADI cycle. Choose 11 nodes along each direction and an elemental
Fourier number of 1. The material of the bar has a thermal diffusivity of 10−6 m2/s.

Solution:

Step 1 Referring to Fig. 7.20, we invoke symmetry and consider only quarter of
the bar as shown. The number of nodes within the computational domain
will be six in each direction. The elemental thicknesses are

�x = 0.1

11 − 1
= 0.01m and�y = 0.1

11 − 1
= 0.01m

With α = 10−6 m2/s and elemental Fourier number Foe = 1 (based on
either �x or �y) the time step is given by
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Table 7.16 Initial nodal temperatures in the computational domain

i ↓ j → 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 1 1 1 1 1

3 0 1 1 1 1 1

4 0 1 1 1 1 1

5 0 1 1 1 1 1

6 0 1 1 1 1 1

�t = Foe�x2

α
= 1 × 0.012

10−6
= 100 s

Step 2 The ADI method will thus split the time step in to two half steps of 50 s
each. The top and right boundaries will be imposed adiabatic boundary
conditionswhile the left and bottomare isothermal as shown in the figure.
With Foe = 1 the finite difference form of the nodal equation, during
the first step is written based on Eq.7.117 as

−T
k+ 1

2
i−1, j + 4T

k+ 1
2

i, j − T
k+ 1

2
i+1, j = T k

i, j−1 + T k
i, j+1

The above is valid for 2 ≤ i ≤ 5 and 2 ≤ j ≤ 5 The nodal equation for
the node on the adiabatic boundary, as for example 6, j is

−2T
k+ 1

2
5, j + 4T

k+ 1
2

6, j = T k
6, j−1 + T k

6, j+1

for 2 ≤ j ≤ 5. For node 6, 6 itself we have

−2T
k+ 1

2
5,6 + 4T

k+ 1
2

6,6 = 2T k
6,5

Step 3 The set of equations along each row is in tridiagonal matrix form and
may be solved by TDMA. The initial nodal temperatures are specified
as in Table7.16.
The row-wise calculation during the first step is shown for the second
row, as an example. Note that the first row does not need any calculation.
The nodal equations in matrix form are given, along with the solution
obtained by TDMA in Table7.17.

We complete the calculations for all the rows and get the nodal temper-
atures at t = 50 s as given in Table7.18.

Step 4 During the second step, the calculations proceed column-wise and the
procedure is similar to what has been used above. The nodal equations
are
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Table 7.17 Temperatures on Row 2 at t = 50 s

ai bi ci di P Q x T
3
2
2, j

4 1 0 1 0.25 0.25 0.01 0.3660

4 1 1 1 0.2667 0.3333 0.02 0.4641

4 1 1 1 0.2679 0.3571 0.03 0.4903

4 1 1 1 0.2679 0.3636 0.04 0.4972

4 0 2 1 0 0.4986 0.05 0.4986

Table 7.18 Nodal temperatures in the computational domain at t = 50 s

i ↓ j → 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0.3660 0.4641 0.4903 0.4972 0.4986

3 0 0.7320 0.9282 0.9807 0.9945 0.9972

4 0 0.7320 0.9282 0.9807 0.9945 0.9972

5 0 0.7320 0.9282 0.9807 0.9945 0.9972

6 0 0.7320 0.9282 0.9807 0.9945 0.9972

−T k+1
i, j−1 + 4T k+1

i, j − T k+1
i, j+1 = T

k+ 1
2

i−1, j + T
k+ 1

2
i1, j

The above is valid for 2 ≤ i ≤ 5 and 2 ≤ j ≤ 5 The nodal equation for
the node on the adiabatic boundary, as for example i, 6 is

−2T k+1
i,5 + 4T k+1

i,6 = T
k+ 1

2
i−1,6 + T

k+ 1
2

i+1,6

for 2 ≤ i ≤ 5. For node 6, 6 itself we have

−2T k+1
6,5 + 4T k+1

6,6 = 2T
k+ 1

2
5,6

Step 5 The final nodal temperatures at t = 100 s alone are given in Table7.19.
This completes one ADI cycle that takes the solution from t = 0 to
t = 100 s. Note that the solution shows symmetry with respect to the
diagonal, as it should.

Step 6 Theprocedure is continued for asmanyADI cycles as needed to complete
the solution.
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Table 7.19 Nodal temperatures in the computational domain at t = 100 s

i ↓ j → 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0.2154 0.3974 0.4461 0.4590 0.4615

3 0 0.3974 0.7333 0.8232 0.8469 0.8516

4 0 0.4461 0.8232 0.9241 0.9507 0.9560

5 0 0.4590 0.8469 0.9507 0.9780 0.9835

6 0 0.4615 0.8516 0.9560 0.9835 0.9890

7.3.3 Modification of the ADI Method for Three Dimensional
Transient Conduction

The ADI method presented above is conditionally stable for three dimensional prob-
lems. Douglas and Gunn method2 modifies the method to make it unconditionally
stable for three dimensional conduction problems. Consider transient heat conduc-
tion in a rectangular parallelepiped. Temperature varies with x, y, z and t . Time step
is split in to three parts as shown in Fig. 7.21. In the interval t, t + �t

3 the second
derivative with respect to x is considered semi-implicitly while the derivatives in the
y and z directions are considered explicitly. Thus, in Step I, at the node i, j, k (node
indices are i for the x , j for the y, k for the z directions and l for time) the heat
equation is represented in finite difference form as

T
l+ 1

3
i, j,k − T l

i, j,k
1
3�t

= δ2x T
l+ 1

3
i, j,k + δ2x T

l
i, j,k

2
+ δ2yT

l
i, j,k + δ2z T

l
i, j,k (7.124)

where δ2 stands for the central difference for the second derivative. For example,

δ2x T
l
i, j,k = T k

i−1, j,k−2T l
i, j,k+T l

i+1, j,k

�x2 and similarly for the other two directions. We note that
the above differs from the ADI in that the second derivative with respect to x is taken
as the mean of the values at l and l + 1

3 .
In Step II, the time changes from t + �t

3 to t + 2�t
3 and the heat equation is written

as

T
l+ 2

3
i, j,k − T l

i, j,k
2�t
3

= δ2x T
l+ 1

3
i, j,k + δ2x T

l
i, j,k

2
+ δ2yT

l+ 2
3

i, j,k + δ2yT
l
i, j,k

2
+ δ2z T

l
i, j,k (7.125)

Note that y direction is now treated as the semi-implicit direction. Finally, in Step III,
the z direction is treated as the semi-implicit direction and we write the heat equation

2J.Douglas Jr. and J.E.Gunn,Ageneral formulationof alternate directionmethods—part i. parabolic
and hyperbolic problems, Numerische Mathematik, Vol. 6, pp. 428–453, 1964.
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Fig. 7.21 Douglas Gunn scheme for three dimensional problem

in the form

T l+1
i, j,k − T l

i, j,k

�t
= δ2x T
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3
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i, j,k

2
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i, j,k

2
+ δ2z T
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i, j,k + δ2x T

l
i, j,k

2
(7.126)

Concluding Remarks

Numerical solution of heat conduction equation has been treated in adequate detail. One

dimensional space/time problems are modeled by ordinary differential equations (ODEs) that

are solved by a suitable ODE solver such as the Runge Kutta method. These may also be solved

by finite difference methods. Problems in more than one dimension requires the solution of

partial differential equations. Finite difference method is the simplest to understand and is

presented in this chapter. Explicit, implicit and Crank Nicolson schemes have been discussed

in detail. Question of numerical stability has been discussed. Finite Element and Finite Volume

methods are other alternatives which are best learned from specialized books on these topics.

7.4 Exercises

Ex 7.1 The temperature of a first order system satisfies the equation dT
dt +

0.05T = 0.75[1 + sin(0.05t)]. The temperature is in ◦C and time t
is in s. Initial system temperature is 30 ◦C . Obtain the response of
the system at 25 s by numerically solving the differential equation by
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Fig. 7.22 Defining sketch
for Exercise 7.2

Fig. 7.23 Variable area fin
of Exercise 7.5

choosing a proper time step. You may make use of the 4th order Runge
Kutta method. Compare this with the exact analytical value.

Ex 7.2 A circular rod of a material (see Fig. 7.22) of thermal conductivity
110W/m◦C has a diameter of 6mm and is 200mm long. The two ends
of the rod are maintained at 30 ◦C . The lateral surface loses heat to an
ambient at 35◦C subject to a heat transfer coefficient of 26W/m2 ◦C.
A current passes through the material and generates heat at a constant
rate of 105 W/m3.Assume that the temperature field is one-dimensional.
Determine the maximum temperature in the rod. Use the finite differ-
ence method with a suitable number of nodes along the length of the
rod.

Ex 7.3 Consider a circular disk of radius R = 0.05m and thickness δ =
0.003m made of a material of thermal conductivity k = 110W/m◦C.
It receives a constant heat flux of q = 104 W/m2 on one side while the
other side is perfectly insulated. The edge of the disk is maintained
at a temperature of Te = 15◦C. What is the temperature at the center
of the disk? You have to obtain the solution by the finite difference
method. You may divide the disk in the radial direction by taking steps
of �r = 0.01m. Use TDMA to obtain the solution to the nodal equa-
tions.

Ex 7.4 Afinmade of aluminumhaving a thermal conductivity of 200W/m◦C is
in the formof aflat plate that is 150mm long and6mm thick throughout.
The base is held at a temperature excess of 100 ◦C with respect to
the ambient that is at 25 ◦C. Neglect heat loss from the tip. Choose 6
uniformly spaced nodes from end to end along the length of the fin, use
central difference approximation and obtain the nodal temperatures.
Determine the heat loss from the fin per unit width. Compare this with
the exact value.
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Ex 7.5 A variable area fin shown in Fig. 7.23 has a longitudinal section in the
form of a trapezium as shown in the figure. The material of the fin has
a thermal conductivity of 45W/m◦C. The lateral surfaces lose heat to
ambient air at 25 ◦C with a heat transfer coefficient of 67W/m2 ◦C. The
base of thickness 0.006m is at 76 ◦C while the tip of thickness 0.003m
is perfectly insulated. Set up finite difference equations for nodal tem-
peratures by taking �x = 1.25cm. Solve for the nodal temperatures
using TDMA. What is the total heat loss from the fin? What is the fin
efficiency?

Ex 7.6 Solve the equation d2T
dx2 − 2T = 0 in the interval 0 ≤ x ≤ 1 with the

boundary conditions T = 1 at x = 0 and dT
dx = 0 at x = 1 using the

finite difference method.

• Formulate the nodal equations so that an iterative solution is possible
for the resulting equations. Carry out the calculations with�x = 0.2
and stop the iteration when the function converges to within 0.1%.

• Solve the problem using the TDMA.
• Compare the temperature at x = 1 obtained by the above two proce-
dures with the analytical value. Comment on the numerical solution
in light of the comparison.

• Compare the base heat flux obtained by all the three methods.

The reader is encouraged to use a PC for solving this problem.
A spreadsheet program may be useful for this purpose.

Ex 7.7 A very long rod of 100mm diameter and of a material of thermal con-
ductivity equal to 1.5W/m◦C is generating heat internally at a constant
rate of 105 W/m3. The surface of the rod is exposed to a convective envi-
ronment at 30◦C via a heat transfer coefficient of 45W/m2 ◦C. Obtain
the maximum temperature in the rod by the following two methods and
compare them: (a) analytical solution of the governing equation and (b)
numerical solution for the temperature distribution by finite differences.
In the latter case choose at least 6 nodes along the radial direction.

Ex 7.8 A certain steady two-dimensional temperature field has been analyzed
using finite differences based on equal step sizes of 0.1m in the x
and y directions. Some of the temperatures are indicated in Fig. 7.24.
Determine the temperatures at grid points labeled 1 and 2.

Ex 7.9 Figure7.25 shows the grid pattern used in a finite difference analysis
of steady conduction in two dimensions. The domain is subject to the
boundary conditions specified on the figure. Some of the temperatures
are indicated at the grid points. Determine the temperatures at grid
points 1, 2 and 3 using second order accurate analysis. The grid spacing
is 0.1m along both the x and y directions.

Ex 7.10 Steady two-dimensional conduction in a rectangle subject to the indi-
cated boundary conditions is shown in Fig. 7.26. The left side is isother-
mal at 100◦C while the right side is isothermal at 50◦C . The bottom
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Fig. 7.24 Finite difference
example of Exercise 7.8

Fig. 7.25 Finite difference
example of Exercise 7.9

Fig. 7.26 Finite difference
example of Exercise 7.10

Fig. 7.27 Finite difference
example of Exercise 7.11

side is perfectly insulated while the top is losing heat to an ambient at
30◦C via a convection heat transfer coefficient of 200W/m2 ◦C. Heat
is being generated at a uniform rate of 0.3MW/m3 in the material that
has a thermal conductivity of 20W/m◦C. Determine the temperatures
at nodes 1 and 2. Also estimate the heat lost from the top.
What will be the temperatures at nodes 1 and 2 if there is no heat
generation?
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Fig. 7.28 Finite difference example of Exercise 7.12

Fig. 7.29 Finite difference example of Exercise 7.13

Ex 7.11 Laplace equation is satisfied by the function T (x, y) in the rectangular
domain shown in Fig. 7.27. What are the values of T at the nodal points
1 and 2? All quantities are in consistent units.

Ex 7.12 A long bar of square cross section of side 0.1m is subject to the bound-
ary conditions shown in Fig. 7.28. Formulate the problem using finite
differences. Set up nodal equations for solution by Gauss elimination
method. Continue iteration till the nodal temperatures change by less
than 0.1% from iteration to iteration.

Ex 7.13 Figure7.29 shows the section of a very long duct of a material of ther-
mal conductivity equal to 15W/m◦C. The inner boundary is maintained
at a temperature of 70 ◦C while the outer boundary is maintained at a
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temperature of 30 ◦C. The temperature field is steady.

It is suggested from symmetry considerations that 1
8
th
of the physical

domain only be considered with insulated boundary conditions along
the boundaries shownwith hatching. Numerically obtain all the interior
nodal temperatures with�x = �y = 1.25cm. Use central differences.
Estimate the heat transfer across the wall.

Ex 7.14 Solve the heat equation ∂θ
∂τ

= ∂2θ
∂ξ 2 , with θ(ξ, 0) = 1 for 0 < ξ < 1 and

θ(0, τ > 0) = θ(1, τ > 0) = 0 by the Crank–Nicolson method. Use a
step size of �ξ = 0.125 and a suitable step size for �τ to obtain the
temperature time history up to τ = 0.1.

Ex 7.15 Solve the heat equation ∂θ
∂τ

= ∂2θ
∂ξ 2 , with θ(ξ, 0) = 4ξ(1 − ξ) for 0 <

ξ < 1and θ(0, τ > 0) = θ(1, τ > 0) = 0by theCrank–Nicolsonmethod.
Obtain the solution up till τ = 1.

Ex 7.16 A copper rod of 6mm diameter is 400mm long. Initially the entire
rod is at a temperature equal to the ambient temperature of 30 ◦C. An
electric current is passed through the rod starting at t = 0 that generates
heat uniformly at the rate of 104 W/m3. The two ends of the rod are
maintained at the initial temperature by a suitable cooling arrangement.
The lateral surface of the rod loses heat to an ambient at 30 ◦C via a heat
transfer coefficient of 67W/m2 ◦C. Derive the governing equation for
the problem by assuming that the temperature does not vary across the
cross section of the rod. Formulate the problem using finite differences
using (a) explicit formulation and (b) semi-implicit formulation. Make
an effort to obtain the solution for a few suitably chosen time steps by
both the methods. Compare the resulting transient temperature fields.

Ex 7.17 (a) A long bar is subject to the boundary conditions shown in Fig. 7.30.
Set up appropriate nodal equations and solve for the nodal temperatures.
(b)The steady conditions are disturbed by turning off the heat fluxon the
left side starting at t = 0. Write the nodal equations using the Crank–
Nicolson method. Take the specific heat and density of the material
of the bar as 300 J/kg◦C and 2500 kg/m3 respectively. Solve the nodal
equations for a few time steps.

Ex 7.18 Consider a very long bar of diameter D = 0.1m made of a material
with the following properties:
Thermal conductivity k = 14.9W/m◦C, density ρ = 7900 kg/m3 and
specific heat c = 0.477 kJ/kg◦C
The rod is initially at a uniform temperature of Ti = 250◦C. For t > 0
the cylinder surface loses heat to an ambient at T∞ = 45◦C with a
convective heat transfer coefficient of h = 67W/m2 ◦C. Numerically
obtain the temperature distribution inside the cylinder by using a uni-
form nodal spacing of �r = 0.005m. Obtain the solution till such
time that the one term approximation is expected to hold. Compare
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Fig. 7.30 Finite difference
example of Exercise 7.17.
�x = �y = 0.01m

the numerically obtained solution with the one term approximation.
Solution will require the use of computer.

Ex 7.19 A very long bar of brass has a rectangular cross section of sides
2Lx = 0.2m and 2Ly = 0.15m. Initially the bar is at a uniform tem-
perature of Ti = 200◦C throughout. For t > 0 the surface of the bar
starts losing heat to an ambient fluid at T∞ = 30◦C with a heat trans-
fer coefficient of h = 240W/m2 ◦C. Obtain numerically the tempera-
ture distribution inside the bar. Compare the temperature distribution
obtained numerically with that calculated using Heisler chart. Solution
will require the use of computer.

Ex 7.20 A spherical shell of inner diameter Di = 0.02m and outer diameter
Do = 0.06m is made of stainless steel. The shell is initially at a uni-
form temperature of Ti = 300◦C throughout. At a certain time the outer
surface of the shell starts losing heat to an ambient at T∞ = 25◦C with
a heat transfer coefficient equal to 25W/m2 ◦C. Obtain numerically the
temperature time history of the shell. Make a plot of inner and outer
surface temperatures of the shell as functions of time.What happens, to
the temperature difference between the two surfaces of the shell, with
time?

Ex 7.21 A very long cylindrical annulus of inner diameter Di = 0.02m and
outer diameter Do = 0.06m is made of stainless steel. The annulus is
initially at a uniform temperature of Ti = 300◦C throughout. At a cer-
tain time the outer surface of the annulus starts losing heat to an ambi-
ent at T∞ = 25◦C with a heat transfer coefficient equal to 25W/m2 ◦C.
Obtain numerically the temperature time history of the annulus.Make a
plot of inner and outer surface temperatures of the annulus as functions
of time. What happens, to the temperature difference between the two
surfaces of the annulus, with time?



Chapter 8
Basics of Thermal Radiation

Radiation heat transfer is an important mode of heat transfer that occurs even in the
absence of other modes of heat transfer. Radiation plays an important part in areas

such as space, solar energy applications, the earth’s weather. This chapter introduces
intensity and its moments as a means of describing thermal radiation. This chapter
provides the necessary background for the three chapters that follow it.

8.1 Introduction

Radiation is one of the basic mechanisms by which energy is transferred between
regions at different temperatures. The distinctive feature of radiation is that amedium
is not necessary for such transport of energy even though it originates in matter.
In fact, the presence of a medium tends to reduce it. Radiation energy transport
is a consequence of energy carrying electromagnetic waves. Sometimes the waves
behave as particles called photons, which are particles of zero rest mass, moving at
the speed of light. In addition, the energy carried by a photon is proportional to the
frequency of the electromagnetic waves, which represents radiation in its alternative
form as an electromagnetic wave.

Photons/radiation originate in matter due to the changes in their internal energy
content. The radiant energy depends solely on the nature of thematerial that gives rise
to it and its temperature. The emission of photons is independent of the surroundings.
The emission process may involve different radiant energy discharge processes. One
type of discharge process that is of special interest to us in connection with heat
transfer phenomena is that arising as a result of microscopic thermal activities in a
material close to thermal equilibrium. This type of radiant energy is called thermal
radiation and we limit our study to such radiation.
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Thermal radiation is involved, for example, in the description of heat transfer
in space applications, high-temperature plasmas, furnaces, fires, and atmospheric
phenomena that involve solar and terrestrial energy processes.

8.1.1 Fundamental Ideas

Electromagnetic Radiation and Photons

Consider electromagnetic radiation propagating in a vacuum as electromagnetic
waves or alternately as photons. The speed of propagation of electromagnetic radia-

tion in vacuum is given by the speed of light, c0 = 2.998 × 108 m/s . If the frequency

of the radiation is ν (in Hz or s−1), the energy E associated with the photon is

E = hν (8.1)

where h is Planck’s constant which has a value of 6.625 × 10−34 J s. The associated
vacuum wavelength λ0 of the electromagnetic radiation satisfies the relation

λ0 = c0
ν

(8.2)

Note that the frequency of radiation ν is independent of the medium through which
the radiation propagates. The speed of propagation and wavelength vary alike so that
the frequency remains invariant. If the speed of propagation of radiation is c in a
medium, the refractive index n of the medium is defined as

n = c0
c

(8.3)

By definition n ≥ 1, since the speed of light in a medium cannot exceed c0.

Electromagnetic Spectrum

Electromagnetic spectrum, in principle, spans the frequency range 0 to ∞ (or the
wavelength range ∞ to 0). However, in practice, thermal radiation (radiation that
originates due to thermal motions in a medium) is assumed to span the frequency
range 3 × 1012–3 × 1015 Hz (or wavelength range 0.1–100μm). Figure8.1 indicates
the nature of the electromagnetic spectrum. The figure is drawn using the wavelength
of radiation along the axis (engineers use more often the wavelength and scientists
use the frequency or the wave number ω, the reciprocal of wavelength in cm−1).
Note that wavelength of 1 μm will correspond to
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Fig. 8.1 Electromagnetic spectrum

1μm = 3 × 1014 Hz = 104 cm−1 (8.4)

The above is based on speed of light in vacuum rounded to c0 ≈ 3 × 108 m/s. The
spectral range of interest may be further divided into the ultraviolet (UV), the visible
and the infrared (IR) regions. The visible part of the spectrum (average human eye
is sensitive only in this band) occupies a narrow region between 0.4 and 0.7 μm. As
an example of abundant radiation, solar radiation spans the range from 0.1 to 3 μm.
Also radiation emitted by earth is in the IR region and has a peak at around 10 μm.
All these are indicated in Fig. 8.1.

8.1.2 Preliminaries and Definitions

Radiation propagates in three-dimensional space, and hence, radiation heat transfer
takes place in three-dimensional space. From a given surface area (boundary of
matter), radiation propagates in all directions. In order to describe such a propagation
process, we need to define the geometric concept of the solid angle.

Figure8.2 showshowan elemental solid angle is defined.Consider an area element
d A and an arbitrary point O outside it as shown in the figure. The elemental solid
angle is defined as the ratio of the area normal to the radius vector to the square of

Fig. 8.2 Definition of solid
angle
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the radius r . In the illustration, the normal −→n makes an angle θ with OP the radius
vector to a point P located at the middle of the area element. Thus, we have

d� = d A cos θ

r2
(8.5)

The solid angle is non-dimensional. However, it is measured in steradians or sr .
This is analogous to the concept of an angle which is defined as the ratio of an
elemental arc normal to the radius vector and the radius r . Angle is represented in
radians or rad.

Solid Angle and the Sphere

Consider an area element d A on a sphere of radius r . The area element is normal to
r , and hence, the elemental solid angle subtended by the area element at the center
of the sphere is given by

d�Sphere = d A

r2
sr (8.6)

The total area of the sphere is 4πr2. Hence, the solid angle subtended by the sphere
at its center 9or at any point within the sphere) is

�Sphere = 4πr2

r2
= 4π sr (8.7)

The reader should have no difficulty in showing that
1. the solid angle subtended by the sphere at any point inside it is 4π
2. the solid angle subtended by the hemisphere at any point on its base is 2π

Example 8.1

Determine the solid angle subtended by a circular disk of radius a at a point distant
b lying on the axis of the disk.

Solution:
This geometry is very common in optical instruments. One may imagine the disk to
be the aperture and the point 0 to be the focal point of an optical instrument.

Consider the ring element shown in Fig. 8.3. The elemental solid angle subtended
by it at O is given by d� = 2πr cos θdr

ρ2 .We notice that the radiusρ is equal to
√
b2 + r2

. By differentiation, we have rdr = ρdρ. Also cos θ = b
ρ
. The total solid angle is

obtained then by integration as follows:
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Fig. 8.3 Sketch for Example
8.1

� =
a∫

0

2πr cos θ

ρ2
dr =

√
a2+b2∫

b

2πρ

ρ2

b

ρ
dρ

= 2πb

[
− 1

ρ

]∣∣∣∣
√
a2+b2

b

= 2πb

[
1

b
− 1√

a2 + b2

]

In terms of the maximum angle θm (see Fig. 8.3), the above expression is easily seen
to be

� = 2π(1 − cos θm)

Spectral or Monochromatic Intensity of Radiation

Intensity is a field quantity that describes radiation propagating in space. As indicated
earlier, such radiation may propagate in all directions. It may also vary in different
directions and from point to point in a domain of interest to us. Consider an area
element d A (it may be a real area element on a surface or an imaginary area element
within the domain of interest to us) as shown in Fig. 8.4. Radiant energy may be
streaming through this element in all directions (represented by the anglewith respect
to the normal θ and the azimuthal angle φ). It is customary to construct a hemisphere
with the center of the area element as its center, to visualize the passage of radiation
across the area element.

Consider the radiant energy leaving d A in a direction (θ, φ), and within the solid
angle 
�. The intensity Iλ(θ, φ) is defined as the elemental monochromatic radiant
energy which leaves (or enters) the area d A normal to it due to the energy entering
(or leaving) through the elemental solid angle d� in a time interval dt and in the
spectral interval dλ. Thus, we have

Iλ(θ, φ) = lim
(
t,
�,
A,
λ →0)


4E(θ, φ)


t
�
A cos θ
λ
(8.8)
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Fig. 8.4 Radiation from/to
an area element

where all the indicated limits are taken simultaneously. Alternately, we may write
the spectral intensity as

Iλ(θ, φ) = d4E(θ, φ)

dtd�d A cos θdλ
(8.9)

Superscript 4 emphasizes that the differential is dependent on four variables. Unit of
intensity is W

m2μmsr since dλ is specified in μm even though, in SI units, this would

have been W
m3 sr . Intensity is referred to as the primitive since all quantities of interest

to us in radiation heat transfer are represented as moments of intensity, as will be
shown later.

Radiant intensity depends on the direction represented by the two angles, θ the
polar angle and φ the azimuthal angle. In words we may define the intensity as the
amount of radiant power leaving (or entering) per unit area normal to it and within
a unit solid angle.

We also notice from Fig. 8.4 that the elemental solid angle is given by

d� = Area element on sphere

r2
= r sin θdφrdθ

r2
= sin θdθdφ (8.10)

We shall introduce the notation μ = cos θ , commonly employed in radiation heat
transfer literature. We then have dμ = − sin θdθ . With this, Eq. 8.10 becomes

d� = −dμdφ (8.11)

The above expression for the elemental solid angle will be used extensively in what
follows. The intensity may then be represented in the form Iλ(θ, φ) = Iλ(μ, φ).

We now consider some derived quantities of interest in radiation heat transfer. All
these quantities are moments of spectral intensity.
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Fig. 8.5 Sketch facilitating
the evaluation of energy
density

In general, the nth moment of intensity is defined by the integral

2π∫

φ=0

1∫

μ=−1

Iλ(μ, φ)μndμdφ (8.12)

The first three moments, i.e., moments with n = 0, 1, and 2 have physical
meaning and will be discussed below.

Spectral or Monochromatic Energy Density

Let radiation be present in a region represented by the large dotted boundary in
Fig. 8.5. Even though the figure shows it as a circle of large radius, it may have any
shape. Consider a small volume element 
V within it, as indicated in the figure.
Using the definition of intensity given by Eq.8.9, we may write for the power dPλ

crossing d A, an elemental area on the big sphere and that also crosses d A′, an
elemental area on the small volume element as

dPλ = [Iλd A cosφ]

[
d A′ cos θ

r2

]
(8.13)

Here, the first term inside the braces on the right-hand side represents the rate at
which power leaves d A in a direction coincident with r . The second term inside the
braces represents the solid angle subtended by d A′ at the center of d A. Expression
8.13 is based on the definition on intensity introduced earlier. Let this power traverse
a distance � inside 
V . Since all photons travel at a fixed speed c0, the time for
which the power is in transit within the elemental volume has to be dt = �

c0
. Thus,

the energy that is in transit through the volume element is given by
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dEλ = Iλ
cosφd A

r2

Solid angle d�

�d A′ cos θ

c0

Volume dv intercepted in

V divided by c0, by radiation in transit

= Iλd�dv (8.14)

It is easy to see that the total energy in transit within the volume element 
V is to
be obtained by summing over all volume elements dv and solid angle d�. Thus, we
have


Eλ =
∫

v

∫

�=4π

Iλ
c0
d�dv = 
V

1

c0

∫

�=4π

Iλd� (8.15)

From Eq.8.15, we then have


Eλ


V
= 1

c0

∫

�=4π

Iλd� (8.16)

Further, we take the limit as 
V → 0 to define the energy density uλ given by

uλ = lim

V → 0


Eλ


V
= dEλ

dV
= 1

c0

∫

�=4π

Iλd� (8.17)

We may use Eq.8.11 to write the above in the alternate form

uλ = 1

c0

2π∫

φ=0

1∫

−1

Iλ(μ, φ)dμdφ (8.18)

It is seen that the integral on the right-hand side is the zeroth moment of intensity
obtained by letting n = 0 in the general expression 8.12.

Spectral or Monochromatic Radiant Heat Flux

Radiant heat flux is a quantity of ultimate interest in most heat transfer problems
involving radiation. Radiant heat flux is obtained in terms of the radiation intensity
by referring to Fig. 8.4. From definition of intensity given by Eq.8.9, the rate at which
radiant energy is leaving d A in the direction (μ, φ), per unit area is given by

dqRλ = d3E(μ, φ)

dtdλd A
= Iλ(μ, φ)μd� = −Iλ(μ, φ)μdμdφ (8.19)
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where the last step uses Eq.8.11 for the elemental solid angle. If we integrate expres-
sion 8.19 over all directions within the forward hemisphere,1 we get

q+
Rλ = −

2π∫

φ=0

0∫

μ=1

Iλ(μ, φ)μdμdφ =
2π∫

φ=0

1∫

μ=0

Iλ(μ, φ)μdμdφ (8.20)

This represents the heat flux leaving the surface and is indicated by the superscript
+. The unit of radiant heat flux is W

m2μm . Since radiation may be crossing the ele-
ment d A from below to above (forward stream) or from above to below (backward
stream),2 q−

Rλ is used to describe the backward streaming radiation. This is obtained
by integrating over the backward hemisphere3 as

q−
Rλ = −

2π∫

φ=0

−1∫

μ=0

Iλ(μ, φ)μdμdφ =
2π∫

φ=0

0∫

μ=−1

Iλ(μ, φ)μdμdφ (8.21)

It is easily seen that the net heat flux qRλ across d A may be obtained by summing
expressions 8.20 and 8.21 to get

qRλ =
2π∫

φ=0

1∫

μ=0

Iλ(μ, φ)μdμdφ +
2π∫

φ=0

0∫

μ=−1

Iλ(μ, φ)μdμdφ

=
2π∫

φ=0

1∫

μ=−1

Iλ(μ, φ)μdμdφ

(8.22)

It is seen from the above expression for net heat flux that it is the first moment of the
spectral intensity, i.e., it is obtained by taking n = 1 in expression 8.12.

Monochromatic Radiation Pressure

We have mentioned earlier that radiation may be considered also as particles called
photons. Photon energy may be visualized as the product of momentum pλ and

1Forward hemisphere is defined by 0 ≤ θ ≤ π
2 , 0 ≤ φ ≤ 2π .

2For a solid surface the backward stream will represent incident heat flux.
3Backward hemisphere is defined by π

2 ≤ θ ≤ π , 0 ≤ φ ≤ 2π .
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Fig. 8.6 Geometry for
defining radiation stress

the speed of propagation c0. When radiation is incident on a surface the rate at
which momentum is incident normally per unit area because of radiation within the
elemental solid angle may be obtained by referring to Fig. 8.6.

Rate at which energy is incident normal to area element d Adue to radiation within
the solid angle d� is given by dEλ

dt × d A × cos θ = dEλ

dt × d A × μ. If we divide this
by speed of light c0 and the area element d A, we should get the rate at which
momentum is incident per unit area and normal to the area element. Hence, we have

dpλ

dt
= μ

c0

dEλ

dt
= Iλ(μ, φ)

c0
μ2d� (8.23)

where we have linked the energy flux to the intensity introduced earlier. All we
have to do is to integrate this over the forward hemisphere to get the total rate of
momentum crossing normally the area element per unit area. This should be nothing
but the pressure due to radiation (actually the normal stress) given by

(a) σnλ =
2π∫

φ=0

1∫

μ=0

Iλ(μ, φ)

c0
μ2dμdφ (8.24)

Note that the radiation pressure involves the second moment of spectral intensity.
Radiation also gives rise to tangential stresses. These are obtained by calculating the
rates at which momenta are incident along l̂ and m̂ directions. The geometric factors
for these two directions are, respectively, given by sin θ cosφ = √

1 − μ2 cosφ and
sin θ sin φ = √

1 − μ2 sin φ. The corresponding stresses are given by



8.1 Introduction 333

(b) τl̂λ =
2π∫

φ=0

1∫

μ=0

Iλ(μ, φ)

c0

√
1 − μ2 cosφdμdφ

(c) τm̂λ =
2π∫

φ=0

1∫

μ=0

Iλ(μ, φ)

c0

√
1 − μ2 sin φdμdφ (8.25)

The normal and tangential stresses are, in fact, components of the stress tensor
which is symmetric.

Summary

In summary, we see that the various quantities that have been introduced above are
moments of the intensity at a point.Moments involve integration over the hemisphere
(or the sphere) after multiplication by factors that depend on μ and sin φ or cosφ.
There is one special case that is ofmuch interest in the study of radiation heat transfer,
the case of isotropic intensity Iλ(μ, φ) ≡ Iλ, that is independent of the direction. This
case satisfies the following, as may be easily verified by using the expressions given
above

uλ = 4π Iλ
c0

; qRλ = 0
σn̂λ = 4π Iλ

3c0
; τl̂λ = τm̂λ = 0

(8.26)

In this special case, the stress sensor reduces to only the normal stress which will
be represented by the symbol σn̂λ = pλ. In this case, we have a relation between the
energy density and the radiation pressure given by

pλ = uλ

3
(8.27)

Total Quantities

Total quantities are obtained by integrating the monochromatic quantities with
respect to λ from 0 to ∞. Thus, we have

X =
∞∫

λ=0

Xλdλ (8.28)

where Xλ is the monochromatic quantity and X is the corresponding total quantity.
In radiation heat transfer the total quantities are of interest, in the final analysis.
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Fig. 8.7 Geometry for example 8.2

Example 8.2

Calculate the flux incident on an elemental area parallel to a semi-infinite plane
slab that emits radiant energy in an isotropic manner with a direction independent
total intensity I . The area element is located opposite the edge of the semi-infinite
slab, as indicated in Fig. 8.7.

Solution:
Consider a ring element of radius r and width dr in the plane centered vertically
above the elemental area as shown in Fig. 8.7. All points on the elemental ring are at
a distance of R from the center of the elemental area. The solid angle subtended by
d A at the ring is obtained as

d� = cos θd A

R2

Radiant flux leaving ring element that is incident on d A is then given by

dq−
R = I × πrdr

Area of ring

cos θ × cos θ

R2
= π I

h2

R4
rdr

since cos θ = h
R . But R

2 = h2 + r2 and hence rdr = RdR.The total flux incident
on d A is obtained by integrating the above with respect to R from h to ∞.

q−
R = π I

∞∫

h

h2

R4
RdR = π

2
I

∞∫

0

h2

R4
dR2

Letting R2 = X , we have dR2 = dX and 1
R4 = 1

X2 . Performing the integration, we
have

q−
R = π

2
I h2

[
− 1

X

]∣∣∣∣
∞

h2
= π I

2
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Alternately, the solutionmaybeobtainedbynoting that the total solid angle subtended
by the semi-infinite plane at d A is the same as that subtended by a quarter sphere.
With the intensity independent of direction, Eq. 8.22 may be recast as

q−
R =

π∫

φ=0

1∫

μ=0

I (μ, φ)μdμdφ = π I

1∫

μ=0

Iμdμ = π I

[
μ2

2

]∣∣∣∣
1

0

= π I

2

8.2 Cavity or Black Body Radiation

8.2.1 Basic Ideas

Black body radiation is also referred to as equilibrium radiation. Consider an evac-
uated cavity (enclosure) whose boundary is impervious to the passage of heat and
mass, as shown in Fig. 8.8. Let the wall of the cavity be maintained at a uniform
temperature Tw. Since there are no temperature differences within the domain, there
can be no net heat transfer from any elemental area on the wall of this cavity. Also
the only means of heat transfer is by radiation since the cavity has been evacuated.
According to the definitions given earlier, qRλ = 0 for any elemental area on the
boundary, (or in general any elemental area within the enclosure). This can happen
only if Iλ(μ, φ) is a constant, given by, say, Ibλ. This isotropic radiation is referred
to as black body radiation.

Intensity of black body radiation depends on wavelength and temperature. The
wavelength dependence will be considered later on. If we integrate the black body
intensity over all wavelength, we get the total black body intensity Ib which is a
function only of temperature. The cavity considered above is full of black body
radiation in which photons are streaming in all directions and on balance the number
of photons arriving (incident) at any area element and in a particular direction with

Fig. 8.8 Radiation in an
evacuated enclosure
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respect to the wall is balanced exactly by the number of photons leaving the area
element (emission) in the same direction. Equilibrium within the enclosure is thus a
dynamic equilibrium.

Since the total black body intensity is isotropic it is characterized by the relation

pb = ub
3

(8.29)

where the subscript b emphasizes that we are considering black body radiation.
If we make a very small aperture (compared to the size of the cavity) on the wall

of the cavity (of course, the aperture may be a window that allows only radiation
through), a small amount of radiation will escape through the aperture. The aperture
acts as a source of black body radiation. If the escaping radiation is small, it will not
disturb the equilibrium within the cavity, which can of course be made up by adding
the same amount of heat to the cavity across its wall.

8.2.2 Thermodynamics of Black Body Radiation

Some interesting results may be obtained in respect of black body radiation by
thermodynamic arguments. We consider black body radiation integrated over all
wavelengths and governed by relation given by Eq.8.29. It is as if the cavity is full
of a substance whose total internal energy is given by ub.

Black Body Intensity Variation with Temperature

A reversible process consisting of expansion of the cavity with heat addition may be
visualized according to the relation

dQrev = d(ubV ) + pbdV
= ubdV + Vdub + pbdV = (ub + pb)dV + Vdub

(8.30)

where V is the volume of the cavity. The corresponding entropy change may be
written using Eq.8.30 as

ds = dQrev

T
= ub + pb

T
dV + V

T
dub (8.31)

Writing the entropy as a function of V and ub, we have

ds = ∂s

∂V

∣∣∣∣
ub

dV + ∂s

∂ub

∣∣∣∣
V

dub (8.32)
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Comparing Eqs. 8.31 and 8.32, we have

(a)
∂s

∂V

∣∣∣∣
ub

= pb + ub
T

; (b)
∂s

∂ub

∣∣∣∣
V

= V

T
(8.33)

Taking the derivative of Eq.8.33(a) with respect to ub, we get

∂2s

∂V ∂ub
=

d

[
pb + ub

T

]

dub
(8.34)

The total differential is indicated on the right-hand side since both pb and ub are
functions of only temperature. Taking the derivative of Eq.8.33(b) with respect to
V , we get

∂2s

∂ub∂V
= 1

T
(8.35)

Use Eq.8.29 to write Eq.8.34 as

∂2s

∂V ∂ub
=

d

[
4ub
3T

]

dub
= 4

3T
− 4ub

3T 2

dT

dub
(8.36)

Since the order of differentiation should not matter expressions given by 8.35 and
8.36 should be identical and hence we have

4

3T
− 4ub

3T 2

dT

dub
= 1

T
(8.37)

This may be recast as
dub
ub

= 4
dT

T

which integrates to
ub = CT 4 (8.38)

whereC is a constant of integration. Thus purely thermodynamic arguments indicate
a fourth power dependence for the black body energy density on temperature! The
total black body intensity is then given by (using Eq.8.26)

Ib = c0
4π

ub = c0
4π

CT 4 (8.39)

The black body heat flux q+
Rb or q

−
Rb which we shall represent as Eb is then given by
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Eb = c0
4
CT 4 = σT 4 (8.40)

where the quantity c0
4 C is replaced by the constant σ , referred to as the Stefan–

Boltzmann constant. This constant cannot be obtained based on thermodynamic
analysis.

Isentropic Process with Black Body Radiation

Another interesting result is obtained when we consider an isentropic process involv-
ing cavity radiation. In Eq.8.31, we set ds = 0 to get

pb + ub
T

dV + V

T
dub = 4ub

3
dV + Vdub = 0 (8.41)

Here, Eq.8.29 has been used to arrive at the final step. Equation8.41 can be recast as

4dV

3V
+ dub

ub
= 0

This will integrate to
ubV

4
3 = Constant

Using Eq.8.29, this may be rewritten in the form

pbV
4
3 = Constant (8.42)

Comparing this expression with the familiar expression pV γ = Constant for an isen-
tropic process with an ideal gas, we conclude that cavity radiation behaves as an ideal
gas with a gamma (ratio of specific heats) of 4/3 = 1.333.

8.3 Wavelength Distribution of Black Body Radiation

In the previous section, we have looked at the total radiation from a black body using
thermodynamic arguments. This has yielded knowledge regarding the temperature
dependence of total emissive power of a black body. However, the spectral informa-
tion is not available from that analysis. In order to gain this knowledge, it is necessary
to look at the wave nature of radiation. A brief note on waves necessary for this is
given before we turn our attention to cavity radiation.
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Fig. 8.9 Light—a transverse
electromagnetic wave

8.3.1 About Waves

Waves in One Dimension

Waves are governed by the wave equation which may be derived starting from the
Maxwell equations of electromagnetism (see Sect. 9.3 in Chap. 9). Electromagnetic
waves are transverse in nature and represent periodic variation of the electric and
magnetic fields in both space and time. The electric field, magnetic field, and the
direction of propagation of waves are mutually perpendicular. In what follows we
assume that the wave equation is known and our interest will be to look at the solution
of the wave equation so that we understand enough about cavity radiation to describe
the wavelength or frequency dependence of the same. The wave equation is given by

∇2φ = 1

c20

∂2φ

∂t2
(8.43)

where φ stands for the disturbance in electric or magnetic field due to wave motion
and c0 is the phase velocity in vacuum.

Consider electromagnetic waves of wavelength λmoving along the z-direction as
shown in Fig. 8.9. There are two possibilities, the one shown in the figurewith electric
field Ex and magnetic field Hy or a second one that involves Ey and Hx . These two
waves are referred to as the two polarizations. The direction of propagation is parallel
to the Poynting vector given by

−→
E × −→

H . The electric field or themagnetic field (they
are proportional to each other, according to Maxwell equations) varies with respect
to z and t . The case is governed by the one-dimensional wave equation obtained
by taking ∇2 ≡ ∂2

∂z2 . Consider the wave to be confined between z = 0 and z = L .
Since our interest will be to describe waves of a given wavelength or frequency, the
solution would be of the form4

φ(z, t) = φ0 sin
(nπ z

L

)
sin

(
2πc0t

λ

)
(8.44)

It may be verified by actual substitution that expression 8.44 satisfies the one-
dimensional wave equation as long as

4Alternately one may use the method of separation of variables to obtain the solution.
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Fig. 8.10 Mode shapes for
waves in one-dimension

n = 2L

λ
or

nλ

2
= L (8.45)

The parameter n is referred to as the mode number and has to satisfy the condition
that sin

(
nπ z
L

)
vanish at the two end points, i.e., at z = 0 and z = L . This requires

that n be an integer. The wave will, in fact, represent a standing wave set up over
the physical domain 0 ≤ z ≤ L . For a specified L and a given n there is a fixed λ.
Waves of different modes with n = 1, 2, and 3 are shown in Fig.8.10. Mode n = 1
corresponds to the fundamental and is such that there is a half wave in the interval
0, L . Mode with n = 3 has three half waves in the interval 0, L . The figure shows
the values of the disturbance at the extremes corresponding to the amplitude of the
waves. The shape varies continuously with time, again in a sinusoidal fashion.

Waves in More Than One Dimension

Waves in two and three dimensions have interesting characteristics that are directly
relevant to the cavity radiation problem. Consider waves in two dimensions in a
rectangular domain of sides L1 and L2. Standing waves are characterized by two
mode numbers, n1 for the x-direction, and n2 for the y-direction. The solution may
be written down as

φ(x, y, t) = φ0 sin

(
n1πx

L1

)
sin

(
n2πy

L2

)
sin

(
2πc0t

λ

)
(8.46)

The reader may verify, by actual substitution, that Eq. 8.46 indeed satisfies the wave
equation in two dimensions, viz.,

∂2φ

∂x2
+ ∂2φ

∂y2
= 1

c20

∂2φ

∂t2
(8.47)

The condition that is satisfied by the mode numbers, analogous to Eq.8.45 is given
by
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Fig. 8.11 Waves in a rectangle

(
n1
L1

)2

+
(
n2
L2

)2

= 4

λ2
(8.48)

where n1 and n2 are integers. A typical case of standing waves in a rectangle of
dimensions L1 = 6 and L2 = 3 is shown in Fig. 8.11a, with n1 = 18 and n2 = 6.
The grid pattern is generated by drawing lines of zero disturbance parallel to the two
axes. The disturbance also vanishes at all the edges of the rectangle. Using Eq.8.48,
the wavelength of the standing wave pattern with n1 = 18 and n2 = 6 is

λ =
√(

18
6

)2 + (
6
3

)2
4

= 0.5547

in the same length units as the specified lengths. What is interesting to note is that
there can be more than one n1, n2 combination that satisfies Eq.8.48. For example,
with L1 = 6 and L2 = 3, the twocombinationsn1 = 18, n2 = 6 andn1 = 12, n2 = 9
(see Fig. 8.11b) are characterized by the same λ given by

λ =
√(

18
6

)2 + (
6
3

)2
4

=
√(

12
6

)2 + (
9
3

)2
4

= 0.5547

These different combinations referred to as degenerate modes set up standing waves
along different directions, but having the same wavelength and hence also the fre-
quency.

Wave Number Vector

The standing waves set up in the rectangle may be visualized by defining a wave
number vector

−→
k which has components k1 = n1

L1
and k2 = n2

L2
along the x- and

y-directions, respectively. The direction of
−→
k represents the direction along which

the standing waves are set up. Thus, the directions in which standing waves are set

up in these two cases correspond to θ1 = tan−1
[
n2
L2

÷ n1
L1

]
= tan−1

(
3
2

) = 56.31◦ and
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θ2 = tan−1
[
n2
L2

÷ n1
L1

]
= tan−1

(
2
3

) = 33.69◦, respectively, with the x-axis. The wave
vectors are shown as short arrows along the directions as obtained above.

These ideas may be generalized to the case of standing waves in a three-
dimensional cavity, say in the form of a rectangular parallelepiped. Let the dimen-
sions along the three axes be L1, L2, and L3. The wave number vector has three
components given by

−→
k = k1 î + k2 ĵ + k3k̂ = n1

L1
î + n2

L2
î + n3

L3
î (8.49)

where î, ĵ, k̂ are unit vectors parallel to the axes, n1, n2, n3 are the mode numbers
along the three axes. The standing waves satisfy the condition (generalization of
Eq.8.48)

4

λ2
=

(
n1
L1

)2

+
(
n2
L2

)2

+
(
n3
L3

)2

(8.50)

The direction cosines of the wave number vector are

l = k1√
k21 + k22 + k23

, m = k2√
k21 + k22 + k23

, and n = k3√
k21 + k22 + k23

(8.51)

The standing waves show degenerate modes in this case also. Since there are three
mode numbers, the possibilities are even more than in the case of two dimensions.
We will look at this aspect in more detail in the ensuing section.

8.3.2 Number of Degenerates Modes in a Three-Dimensional
Cavity

We consider standing waves in a parallelepiped whose dimensions are much much
larger than the wavelength. This is specifically relevant to electromagnetic radiation
since the wavelength range of interest of 0.1–100 μm is certainly much smaller
than a cavity of reasonably big size, say of side equal to 0.1m. The mode numbers
involved are large, and hence, the number of combinations of the n’s that yield the
same wavelength for the standing waves is extremely large. Standing waves do not
transport energy and hence describe equilibrium radiation within the cavity.

Take a specific example. Let the wavelength we are interested in be λ = 1μm.
Equation8.50 will read as

k21 + k22 + k23 = 4 × 1012
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This represents all the points on a sphere of radius 2 × 106! Note that the k’s are
not necessarily integer values even though the n’s are integers. Since only positive
values are appropriate for the wave numbers, the points in the first octant only are
relevant. If we consider radiation of wavelength between λ and λ + dλ, the number
of modes is given by the volume of a spherical shell such that the number of modes
is given by

Number of modes = −
4π

(
2
λ

)2

8
d
(2
λ

)
L1L2L3 = 4π

λ4
dλL1L2L3

The − sign is taken because dn
dλ

is negative. The factor L1L2L3 occurs because of
conversion from k to n. Since there are two possible polarizations (Ex , Hy or Ey, Hx ),
the above expression has to be multiplied by a factor of 2 to get

dn = 8π

λ4
dλ (8.52)

where dn is the number of modes per unit volume of the cavity, since L1L2L3 is
nothing but the cavity volume.

8.3.3 Planck Distribution

The black body distribution of energy over wavelength may be obtained once we
know the mean energy of photons of a given wavelength λ. In order to find the mean
energy, we assume that the energy of photons is quantized. We consider a number
N of simple harmonic oscillators of wavelength λ having energies given by n hc0

λ

where n takes on discrete integer values 0, 1, 2 · · · . The energy levels are populated
according to the distribution given by

N (n) = N0 exp

[
−nhc0

λkT

]

where h is Planck’s constant and k is the Boltzmann constant. Letting x = hc0
λkT , the

above equation may be recast as

N (n) = N0e
−nx (8.53)

The total number of oscillators is then given by

N =
n=∞∑
n=0

N0e
−nx (8.54)



344 8 Basics of Thermal Radiation

This is a geometric progression with common ratio e−x , and the sum is given by

N = N0

1 − e−x
(8.55)

The total energy of the oscillators is given by

E =
n=∞∑
n=0

N0n
hc0
λ

e−nx (8.56)

Differentiate Eq.8.54 with respect to x to get

dN

dx
= −

n=∞∑
n=0

N0ne
−nx (8.57)

Comparing the above two equations, we see that

E = −hc0
λ

dN

dx
(8.58)

The required derivative may be obtained from Eq.8.55 as

dN

dx
= − N0e−x

(1 − e−x )2

Introducing this in Eq.8.58, we finally get

E = hc0
λ

N0e−x

(1 − e−x )2
(8.59)

The mean energy of the oscillators is then obtained by taking the ratio E
N to get, after

minor simplification
E

N
=

hc0
λ

ex − 1
=

hc0
λ(

e
hc0
λkT − 1

) (8.60)

The black body spectral energy density is given by using Eqs. 8.52 and 8.60 as

uλ = 8π

λ4
×

(
hc0
λ

)
(
e

hc0
λkT − 1

) = 8πhc0
λ5

1(
e

hc0
λkT − 1

) (8.61)

We can easily show that Ebλ = c0
4 uλ. Hence, the spectral emissive power of a black

body is obtained using Eq.8.61 as
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Ebλ = 2πhc20
λ5

1

e
hc0
λkT − 1

= C1

λ5

1(
e

C2
λT − 1

) (8.62)

where
(a) First radiation constantC1 = 2πhc20

(b) Second radiation constantC2 = hc0
k

(8.63)

The important thing to notice is that the spectral emissive power is obtained with all
the constants in terms of fundamental physical constants. Using the standard values
for all the physical constants, we get

C1 = 3.7413 × 108
Wμm4

m2
; C2 = 14388μmK

These constants are obtained with the assumption that the wavelength of radiation
will be specified in μm and the temperature in K . Correspondingly the spectral
emissive power will be in W/m2μm. The spectral emissive power of a black body
given by Eq.8.62 is known as the Planck distribution function.5

8.3.4 Properties of the Planck Distribution Function

Total Emissive Power of a Black Body

Integration of Eq.8.62 over the wavelength range 0 to ∞ gives the total black body
emissive power given by

Eb(T ) =
∞∫

0

C1

λ5

1(
e

C2
λT − 1

)dλ (8.64)

The integral may be recast by substituting, C2
λT = x such that −C2

dλ
Tλ2 = dx or dλ =

− Tλ2

C2
dx = −C2dx

T x2 , as

5After Max Karl Ernst Ludwig Planck 1858–1947, German theoretical physicist.
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Eb(T ) = −
0∫

∞

C1

C5
2

T 5x5 × C2dx

T x2(ex − 1)
= C1

C4
2

T 4

∞∫

0

x3

ex − 1
dx

P

The integral labeled P in the above equation may be obtained as under. The denom-
inator of the integrand may be rewritten as

1

ex − 1
= e−x

1 − e−x
= e−x

∞∑
n=0

e−nx

Hence, the integral required is recast as

P =
∞∑
n=0

∞∫

0

x3e−(n+1)xdx =
∞∑
n=1

∞∫

0

x3e−nxdx

Let u = nx such that dx = du
n and e−nx = e−u . The integral may then be written

down as

P =
∞∑
n=1

∞∫

0

u3

n3
e−u du

n
=

∞∑
n=1

1

n4

∞∫

0

u3e−udu

The integral appearing in the above equation may be recognized as �(4), on com-
parison with Eq. A.10. The summation may be considered separately now and is
nothing but the Riemann Zeta function given by ζ(4) = ∑∞

n=1
1
n4 = π4

90 . Thus, we
have the important result

P = ζ(4)�(4) = π4

90
× 6 = π4

15
(8.65)

With this the total black body emissive power is given by

Eb(T ) = C1π
4

15C4
2

T 4 (8.66)

The factor C1π
4

15C4
2
appearing inEq.8.66maybewritten in terms of fundamental physical

constants, using Eqs. 8.63 as 2π5k4

15h3c20
. It is normal practice to refer to it as the Stefan–

Boltzmann constant σ . Hence, the total black body emissive power is

Eb(T ) = σT 4 (8.67)
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The numerical value of σ is

σ = 5.67 × 10−8 W

m2K4 (8.68)

In Sect. 8.2.2, the fourth power dependence of emissive power on temperature was
predicted using purely thermodynamic arguments. The constant was left undefined.
The Planck distribution function yields the value of the constant in terms of funda-
mental physical constants.

Universal Form of Planck Function

Planck’s distribution function may be cast in the universal form

Ebλ

σT 5
= C1

σ

1

(λT )5

1(
e

C2
λT − 1

)

Function ofλT

(8.69)

In this form, the Planck function plots as a single curve as shown in Fig. 8.12. In this
form, the Planck distribution function is a function of λT only. The Planck function
vanishes for both λT → 0 and λT → ∞, is monotonic and has a single maximum
at

λT = 2897.8 μm K (8.70)

The above relation is known asWein’s displacement law.6 The above result is easily
obtained by differentiating the universal black body function with respect to λT and
setting it to zero. The equation may easily be solved using Newton Raphson method.
This is left as an exercise to the reader.

Rayleigh–Jean’s Approximation

In the large wavelength limit, i.e., when λT → ∞, e
C2
λT ≈ 1 + C2

λT and hence the
Planck distribution given by Eq.8.62 may be approximated as

Ebλ ≈ C1

λ5

1(
1 + C2

λT − 1
) = C1

C2λ5
λT = 2πc0

λ4
kT (8.71)

6After Wilhelm Carl Werner Otto Fritz Franz Wien 1864–1928, German physicist.
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Fig. 8.12 Universal black
body distribution

The last step is obtained by substituting for C1 and C2 in terms of the physical con-
stants using Eq.8.63. Equation8.71 is known as the Rayleigh–Jeans approximation.7

Wein’s Approximation

In the small wavelength limit, i.e., when λT → 0, the exponential term in the denom-
inator of Eq.8.62 is much larger than 1 and hence the Planck distribution may be
approximated as

Ebλ ≈ C1

λ5

1

e
C2
λT

= C1e− C2
λT

λ5
(8.72)

This is referred to as Wein’s approximation. This approximation is used in optical
pyrometry, the measurement of high temperatures using radiation emitted by sur-
faces. This approximation is good enough (to within 1%)for temperature as high as
5000 K when using visible radiation at 0.66μm, as is common in pyrometry.

Fraction of Energy of a Black Body in 0 − λT
The universal black body function may be used to define the function f0−λT , the
fraction of the radiation emitted in the range 0 − λT as

7After John William Strutt, 3rd Baron Rayleigh 1842–1919, British physicist; Sir James Hopwood
Jeans 1877–1946, British physicist, astronomer, and mathematician.
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Fig. 8.13 Fraction black
body function

f0−λT =

λT∫
0
Ebλdλ

σT 4
=

λT∫

0

Ebλ

σT 5
dλT (8.73)

The integration indicated in Eq.8.73 may be performed after substituting expression
8.69 in it. As before the integral may be expressed as an infinite series that converges
rapidly. Term by term integration then leads to the required result. Figure8.13 shows
a plot of the fraction function as a function of λT .

For computational purposes, it is desirable to tabulate the fraction function as
shown in Table8.1.

Planck Distribution over Frequencies

The Planck distribution may be represented in terms of frequency ν instead of λ.
Noting that λ = c0

ν
, Ibλ given by Eq.8.62 may be written as

Ebλ = C1ν
5

c50

1(
e

C2ν

c0T − 1
) (8.74)

The power radiated by the black body in the wavelength band dλ around λ is simply
given by Ebλdλ. Hence, we have
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Table 8.1 Black body fraction function
λT f0−λT λT f0−λT λT f0−λT λT f0−λT

1000 0.000321 10000 0.914155 19000 0.983405 56000 0.999210

1200 0.002134 10200 0.918135 19200 0.983867 57000 0.999250

1400 0.007790 10400 0.921877 19400 0.984312 58000 0.999287

1600 0.019718 10600 0.925400 19600 0.984741 59000 0.999321

1800 0.039340 10800 0.928717 19800 0.985155 60000 0.999354

2000 0.066727 11000 0.931845 20000 0.985553 61000 0.999384

2200 0.100886 11200 0.934795 20200 0.985938 62000 0.999413

2400 0.140253 11400 0.937580 20400 0.986309 63000 0.999439

2600 0.183115 11600 0.940211 20600 0.986668 64000 0.999464

2800 0.227884 11800 0.942699 20800 0.987014 65000 0.999488

3000 0.273223 12000 0.945052 21000 0.987348 66000 0.999510

3200 0.318091 12200 0.947280 22000 0.988858 67000 0.999531

3400 0.361722 12400 0.949391 23000 0.990137 68000 0.999551

3600 0.403592 12600 0.951392 24000 0.991229 69000 0.999570

3800 0.443366 12800 0.953291 25000 0.992166 70000 0.999587

4000 0.480858 13000 0.955092 26000 0.992974 71000 0.999604

4200 0.515993 13200 0.956804 27000 0.993675 72000 0.999620

4400 0.548774 13400 0.958431 28000 0.994286 73000 0.999635

4600 0.579256 13600 0.959977 29000 0.994821 74000 0.999649

4800 0.607534 13800 0.961449 30000 0.995291 75000 0.999663

5000 0.633720 14000 0.962850 31000 0.995706 76000 0.999676

5200 0.657942 14200 0.964185 32000 0.996074 77000 0.999688

5400 0.680330 14400 0.965458 33000 0.996401 78000 0.999699

5600 0.701016 14600 0.966671 34000 0.996693 79000 0.999710

5800 0.720126 14800 0.967828 35000 0.996954 80000 0.999721

6000 0.737785 15000 0.968933 36000 0.997188 81000 0.999731

6200 0.754106 15200 0.969989 37000 0.997399 82000 0.999740

6400 0.769199 15400 0.970998 38000 0.997589 83000 0.999749

6600 0.783163 15600 0.971962 39000 0.997762 84000 0.999758

6800 0.796092 15800 0.972884 40000 0.997918 85000 0.999766

7000 0.808071 16000 0.973767 41000 0.998060 86000 0.999774

7200 0.819179 16200 0.974612 42000 0.998189 87000 0.999781

7400 0.829488 16400 0.975421 43000 0.998308 88000 0.999789

7600 0.839063 16600 0.976196 44000 0.998416 89000 0.999795

7800 0.847965 16800 0.976940 45000 0.998515 90000 0.999802

8000 0.856248 17000 0.977653 46000 0.998606 91000 0.999808

8200 0.863962 17200 0.978337 47000 0.998690 92000 0.999814

8400 0.871153 17400 0.978994 48000 0.998767 93000 0.999820

8600 0.877863 17600 0.979624 49000 0.998838 94000 0.999826

8800 0.884130 17800 0.980230 50000 0.998904 95000 0.999831

9000 0.889987 18000 0.980812 51000 0.998965 96000 0.999836

9200 0.895467 18200 0.981371 52000 0.999021 97000 0.999841

9400 0.900599 18400 0.981910 53000 0.999074 98000 0.999845

9600 0.905408 18600 0.982427 54000 0.999123 99000 0.999850

9800 0.909920 18800 0.982926 55000 0.999168 100000 0.999854



8.3 Wavelength Distribution of Black Body Radiation 351

Ebλdλ = −C1ν
5

c50

1(
e

C2ν

c0T − 1
) c0

ν2
dν (8.75)

However, by definition the energy contained within the band dν around ν must be
given by Ibνdν. The negative sign is absorbed in the integration since dν and dλ are
of opposite sign! Hence, it is appropriate to define the black body energy distribution
over frequency by the relation

Ebν = C1ν
5

c50

1(
e

C2ν

c0T − 1
) c0

ν2
= C1ν

3

c40

1(
e

C2ν

c0T − 1
) (8.76)

Using Eqs. 8.63, this may be recast in the universal form

Ebν

T 3
= 2πk3

h2c20

(
hν
kT

)3
(
e

hν
kT − 1

) (8.77)

This distribution also vanishes at both the limits, i.e., ν = 0 and ν → ∞. It is mono-
tonicwithin this range and has amaximumat νmax = 5.879 × 1010 T where νmax is in
Hz. Note that this frequency is not the frequency that corresponds to the wavelength
that occurs for the maximum of the wavelength distribution.

Black Bodies of Interest in Engineering Application

Common radiation sources of interest to us are the radiation from earth and the sun.
The corresponding temperatures of interest, respectively, are 300 K and 5800 K.
Important features of these sources are given in Table8.2.

Figure8.14 shows the black body distribution for three sources at different tem-
peratures of 300, 1500, and 5800 K . Wein’s displacement law appears as a straight
line (note that the plot is made as a log-log graph) as shown therein.

Example 8.3

A surface emits thermal radiation with the intensity varying with angle θ to the
normal given by I = I0μ0.2 where I0 is a constant. Determine the emitted flux in
terms of I0. If I0 corresponds to the intensity of a black body at 2300K, calculate
the emitted flux in W/m2. Compare this with the emitted flux from a black body at
2300K.
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Table 8.2 Black bodies of interest

Earth Sun

Temperature—K 300 5800

Eb—W/m2 459.2 64.16 × 106

λmax ,μm 9.66 0.5

Fractions

UV 0 0.112

Visible 0 0.456

IR 1 0.432

Fraction

Below 4 μm 0.002 0.99

Above 4 μm 0.998 0.01

Fig. 8.14 Monochromatic emissive power of black bodies at different temperatures

Solution:
We make use of the definition of q+ to get

q+ = 2π

1∫

0

Iμdμ = 2π

1∫

0

I0μ
1.2dμ = 2π I0

μ2.2

2.2

∣∣∣∣
1

0

= π I0
1.1

The intensity I0 has been specified to be the same as that of a black body at T =
2300K. Hence
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Fig. 8.15 Intensity variation
with angle to the normal in
Example 8.3

Fig. 8.16 Geometry for the
sun-earth problem in
Example 8.4

I0 = σT 4

π
= 5.67 × 10−8 × 23004

π
= 505061.8W/m2 sr

With this, value of I0 the radiated flux is given by

q+ = π × 505061.8

1.1
= 1442453W/m2 ≈ 1.44MW/m2

The emissive power of the black body at 2300 K, however, is

Eb = σT 4 = 5.67 × 10−8 × 23004 = 1586698.5W/m2 ≈ 1.59MW/m2

It is interesting to plot the given intensity distribution as shown in Fig. 8.15.

Example 8.4

If the solar constant, the radiant energy incident per unit area and time of a surface
held normal to the sun’s rays, is taken as 1354W/m2 after correcting for atmospheric
absorption, estimate the effective sun surface temperature. The sun may be assumed
to be a black body. The solar radius is 0.696 × 106 km and the diameter of the earth’s
orbit is 299 × 106 km.
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Solution:

Step 1 A sketch (Fig. 8.16) will help in understanding the geometry and the
nomenclature used below. Let the intensity of radiation leaving the sur-
face of the sun be IS .

Step 2 The solar radius is

RS = 0.696 × 106 km

The earth orbit diameter is

DE = 299 × 106 km

Hence, the distance from earth to sun is

RE = DE

2
= 299 × 106

2
= 149.5 × 106 km

The angle subtended by the sun at a point on the earth’s orbit is

α ≈ DS

RE
= 2 × RS

RE
= 2 × 0.696 × 106

149.5 × 106
= 0.00931 rad

Step 3 This angle is quite small, and we may assume that the cosine of the half
of this angle is very close to one, i.e., cosα = 0.99999 ≈ 1. Hence, the
solid angle subtended by the sun at a point on the earth’s orbit may be
approximated as

�S = Solar disk area × cosα

R2
E

≈ π × R2
S

R2
E

≈ π × (0.696 × 106)2

(149.5 × 106)2
= 6.77275 × 10−5 sr

Step 4 Hence, the solar constant should be equal to S = IS�S . Hence,

IS = S

�S
= 1354

6.77275 × 10−5
= 1991877W/m2 sr

Since black body intensity is isotropic, the intensity is emissive power

divided by π . This last quantity must equal σT 4
S

π
where TS is the sun

surface temperature.
Step 5 Hence, the sun surface temperature is estimated as
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TS =
(

π IS
σ

) 1
4

=
(

π × 1991877

5.67 × 10−8

) 1
4

= 5769K

This is very close to the value of 5800 K quoted in Table8.2.

Concluding Remarks

This chapter has presented the basics of thermal radiation and sets the tone for the three
chapters to follow. Description of a radiation field by radiation intensity and its moments is
followed by description of black body radiation. Basic ideas about waves has been included
to understand the concept of equilibrium radiation inside an evacuated enclosure.

8.4 Exercises

Ex 8.1 Calculate the solid angle subtended by a square disk of side a at a point
distant H normal to the plane of the disk and lying along its axis as shown
in Fig. 8.17.

Ex 8.2 Determine the solid angle subtended by a sector of a disk of radius R at
a point a away from plane of the disk and positioned vertically opposite
C, as shown in Fig. 8.18.

Ex 8.3 Intensity of radiation leaving a surface varies as follows:

I (μ) = I0μ
0.3, 0 < μ < 0.5, I (μ) = 0.406I0, μ > 0.5

Fig. 8.17 Geometry for Ex
8.1

Fig. 8.18 Geometry for Ex
8.2
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where I0 is a constant. Determine the heat flux q+.
Ex 8.4 A radiating surface emits radiation according to the relation I (θ, φ) =

200 cos2 θ with the units W/m2 sr. What is the radiant heat flux in W/m2?
How does it compare with an isotropic radiator with I = 200W/m2· sr?

Ex 8.5 A point source of radiation emits isotropically with an intensity given by
I = 10000W/sr. What is the energy incident on a surface in the form of
a circular plate that is held normal to the radius vector between the point
source and the center of plate? The plate has a radius of R = 2m and the
radius vector is L = 5m long.

Ex 8.6 Radiant intensity leaving a surface follows the relation I (μ) = 0.15 +
1.8μ + 3μ2 − 2μ3 W/m2sr where μ has the usual meaning. What is the
mean intensity?

Ex 8.7 (a) The Planck spectral distribution function is given by Eq.8.62. When
C2
λT � 1, the abovemay be approximated by dropping the−1 in the brack-
eted termand the resulting expression isWein’s approximation.Determine
the percentage error in usingWein’s approximate instead of the exact rela-
tion for λT = 2898K. Note that Wein’s approximation is made use of in
pyrometry.8

(b) When C2
λT  1, the Planck distribution may be approximated by the

Rayleigh–Jean approximation given in the text. Calculate the error in
using the Rayleigh–Jean approximation instead of the exact relation for
λT = 105 μm K.

Ex 8.8 Filament of an electric bulb is maintained at a temperature of 2900K and
may be approximated as a gray body with an emissivity of 0.85. What
is the wavelength at which the monochromatic emissive power of the
filament is a maximum? Determine the fraction of the radiation emitted
in the visible part of the spectrum. If the surface area of the filament has
been estimated to be 10−5 m2, what are the total emission and the emission
in the visible part of the spectrum?

Ex 8.9 (a) A black body has total emissive power of Eb = 500W/m2. What is its
temperature? (b) A gray surface of emissivity ε = 0.8 has total emissive
power of E = 500W/m2. What is its temperature?

Ex 8.10 Figure8.19 shows a cavity radiator whose walls are maintained at 1000K.
The radiator has an opening 20mm in diameter. You may assume the
opening to emit as a black body at the cavity wall temperature. A radiation
detector of effective diameter of 20mm is placed as indicated in the figure.
Determine the following: (a) the total radiation leaving the opening, (b)
the irradiation on the detector, and (c) the fraction of the power leaving
the opening that is received by the detector.

Ex 8.11 Show that Planck’s distribution function in terms ofwavelength has amax-
imumatλmaxT = 2898μmK.NewtonRaphsonmethodmaybemade use
of to solve the appropriate equation.

8See, for example S.P.Venkateshan,Mechanical Measurements, 2nd Edition, ANE Books Pvt. Ltd.
India or Athena Academic—Wiley, 2015.
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Fig. 8.19 Geometry for
Exercise 8.10

Ex 8.12 Show that Planck’s distribution function in terms of frequency has a max-
imum at νmax

T = 5.879 × 1010 Hz/K. Newton Raphson method may be
made use of to solve the appropriate equation.

Ex 8.13 Consider an evacuated isothermal cavity whose walls are maintained at
3000K.

• Calculate the wavelength at which the spectral intensity of radiation
within the cavity is the maximum.

• Calculate the fraction of radiation that is below this wavelength.
• What is the wavelength below which 50% of radiation is present?
• Calculate the wavelength below which 95% of the radiation is con-
tained.

Ex 8.14 A closed insulated cavity whose walls are maintained at 2000K is evac-
uated to a residual pressure of 10Pa. What is the radiation pressure as a
fraction of this residual pressure? Also determine (a) the radiation inten-
sity and (b) the radiation density inside the enclosure. Assume that the
residual gas inside the cavity does not affect the radiationwithin the cavity.



Chapter 9
Surface Radiation

Radiation from surfaces is important in most engineering applications. Walls of
rooms, external surfaces of a satellite (while in outer space), and walls of furnaces

and ovens are familiar examples where surface radiation plays an important role in
energy transfer. Even though engineering surfaces are hard to characterize, it is possible
to describe the radiative properties of optically smooth surfaces using a theoretical
model based on the electromagnetic theory. Real and complex indices of refraction are
used as macroscopic properties that characterize the interaction of radiation with a
surface. Such a theory is described in detail in this chapter. The results are then extended
to engineering surfaces.

9.1 Introduction

Engineering applications require the modeling of thermal radiation leaving surfaces
such as those that occur in rooms, oven walls, furnace exterior walls, solar absorbers,
and so on. The surrounding ambient usually is low temperature air, which may be
assumed to be neutral to the passage of radiation, in that radiation passes through
it without any attenuation. Any surface we may be interested in is essentially an
interface between a medium whose boundary the surface is, and ambient air. For
all practical purposes, the ambient air may be treated as vacuum, except of course
that air may conduct heat or transfer heat by convection. For present purposes, we
ignore both these modes of heat transfer so that the basics of surface radiation may
be developed without complicating matters.
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Fig. 9.1 a Comparison of emission from black, gray, and non-gray surfaces: all surfaces are at
TS = 1000 K b Emissivity of gray and non-gray surfaces in (a)

9.1.1 Surface Types

In general, a surface emits radiation (because of its temperature) with an intensity
that will vary with direction and with wavelength. We look at the wavelength depen-
dence first. A surface maintained at temperature (TS) cannot emit more radiation
per unit area than a black body at the same temperature as may be easily shown by
thermodynamic arguments. Thus, the best we may expect is that the surface emits as
a black body. We refer to such a surface as a black surface. Most surfaces emit less
than a black surface at the same temperature as the surface. If the emitted intensity
is a constant fraction, independent of wavelength, of that emitted by a black body
at the same temperature, the surface is termed as a gray surface. If the fraction is
dependent on a wavelength, we refer to the surface as a non-gray surface. This last
type is the most general type and hardest to characterize.

Figure9.1 shows the three types of surfaces, all maintained at a common temper-
ature of TS = 1000 K. The wavelength dependence of black body radiation is that
given by the Planck distribution. Emission from the gray surface is a scaled version of
black body radiation with a constant scaling factor (ε—total hemispherical emissiv-
ity, to be defined later) between 0 and 1. The scale factor (ελ—spectral hemispherical
emissivity, to be defined later) varies with wavelength for the non-gray surface. The
illustration shows a non-gray surface that is characterized by a band model that will
be discussed later in more detail.
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Fig. 9.2 Incoming and
outgoing radiation at a
surface

9.2 Spectral and Hemispherical Surface Properties

The radiation leaving a surface may be due to emission from the surface or that part
of incident radiation which is reflected by the surface. Such radiation depends, in
general, on two angles, viz., the polar angle θ and the azimuthal angle φ. Detailed
knowledge of the angular dependence of the leaving intensity is seldom required in
engineering radiation heat transfer. Hence, one is usually content in defining hemi-
spherical quantities such as hemispherical emissivity and hemispherical reflectivity.
Of course, these quantities will depend on the angular distribution, an aspect that
will receive attention later on.

9.2.1 Spectral Hemispherical Quantities

Spectral Hemispherical Emissivity
Consider a surface whose temperature is TS .
This surface, by virtue of its temperature, will emit radiation to the surroundings into
a hemisphere (of solid angle 2π ) given by, say Eλ(TS) per unit area (shown as “Emit-
ted” in Fig. 9.2). In order to describe this radiation, the obvious thing to do would be
to compare it with the power radiated by a black body at the same temperature. We
know that the black body will emit Ebλ(TS) into the hemisphere. Then, the spectral
(or monochromatic) hemispherical emissivity is defined as

ελ,h = Eλ(TS)

Ebλ(TS)
(9.1)

Spectral Hemispherical Reflectivity
The surface under consideration may be receiving radiation from the hemisphere
given by q−

λ = Gλ (say) shown as “Incident” in Fig. 9.2. Gλ is the incident radiant
flux referred to as spectral irradiation. A part of this irradiation is reflected and shown
as “Reflected” in Fig. 9.2.
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The spectral (or monochromatic) hemispherical reflectivity is defined as

ρλ,h = Spectral reflected radiant heat flux

Spectral irradiation
= q+

λ,r

Gλ

(9.2)

Spectral Hemispherical Radiosity
The radiation leaving the surface—the radiosity—into the hemisphere is the sum of
the emitted radiation and reflected radiation as indicated by “Emitted + Reflected”
in Fig. 9.2. Using defining expressions 9.1 and 9.2, we have the spectral radiosity Jλ

given by

Jλ,h = ελ,h Ebλ,h(TS) + ρλ,hGλ (9.3)

Spectral Hemispherical Absorptivity
For an opaque surface, the radiation, which is not reflected, must be absorbed by it.
Hence, we define the spectral absorptivity αλ,h as

αλ,h = 1 − ρλ,h (9.4)

Using Eq.9.4 in 9.3, we also have

Jλ,h = ελ,h Ebλ(TS) + (1 − αλ,h)Gλ (9.5)

Kirchhoff’s Law
Imagine the surface that we have described above to be made a part of the wall of
an evacuated cavity maintained at temperature TS . The cavity is full of equilibrium
radiation with q+

λ equal to Ebλ(TS) everywhere on the cavity surface. Also the irra-
diation q−

λ anywhere on the surface is equal to Ebλ(TS) so that there is no net heat
transfer by radiation. Hence, we conclude that Jλ,h must also be equal to Ebλ(TS).
Thus, Eq. 9.5 must read

Jλ,h = ελ,h Ebλ(TS) + (1 − αλ,h)Ebλ(TS) = Ebλ(TS)

which may be rearranged, after canceling the common factor Ebλ(TS), as

ελ,h + 1 − αλ,h = 1or ελ,h = αλ,h (9.6)
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Table 9.1 Monochromatic emissivities of representative surfaces

λ,µm

Surface 0.6 0.95 3.6 9.3

Chromium 0.49 0.43 0.26 0.08

Steel (Polished) 0.45 0.37 0.14 0.07

White Paper 0.28 0.25 0.82 0.95

Platinum Black 0.97 0.97 0.93

Graphite 0.73 0.54 0.41

Thus, we have the very important result that the spectral hemispherical emissivity of
any opaque surface is equal to the spectral hemispherical absorptivity. This result is
known as Kirchhoff’s law. This does not apply automatically to the total quantities,
as we shall see later. Monochromatic or spectral emissivities of several surfaces are
given in Table9.1.

9.2.2 Total Hemispherical Quantities

Total Hemispherical Emissivity
Starting with spectral hemispherical emissivity given by Eq.9.1, integration with
respect to wavelength gives

E(TS) =
∞∫

0

Eλ(TS)dλ =
∞∫

0

ελ,h Ebλ(TS)dλ (9.7)

It is customary to define the total hemispherical emissivity εh such that E(TS) =
εhσT 4

S . We may hence define the total hemispherical emissivity through the relation

εh = 1

σT 4
S

∞∫

0

ελ,h Ebλ(TS)dλ (9.8)

We shall refer to εh also as the equivalent gray emissivity at temperature TS . It is
easily noticed that εh is a function of temperature Ts .

Total Hemispherical Reflectivity
From Eq.9.2, we have q+

λ,r = ρλ,hGλ. Integrating this with respect to a wavelength,
we have for the total quantity the relation
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q+
r =

∞∫

0

q+
λ,r dλ =

∞∫

0

ρλ,hGλdλ

Defining the total irradiation as G =
∞∫
0
Gλdλ, the above integral is written as ρhG

where ρh is the total hemispherical reflectivity. Thus, we have

ρh = 1

G

∞∫

0

ρλ,hGλdλ (9.9)

We shall refer to ρh also as the equivalent gray reflectivity at temperature TB ,
assuming that the irradiation is due to a black body at this temperature.

Is Kirchhoff’s Law Valid for Total Quantities?
The answer, in general, is a no! ρh depends on the nature of the incident radiation
and hence it is not related to emissivity at all. When the incident radiation is black
body radiation with an effective temperature of TB , Eq. 9.9 will read as

ρh = 1

Eb(TB)

∞∫

0

ρλ,h Ebλ(TB)dλ (9.10)

This will obviously be a function of TB and hence ρh will also be a function of
TB . In view of this, the total hemispherical absorptivity of the surface αh will also
be a function of TB since αh(TB) = 1 − ρh(TB) in order that energy is conserved,
assuming that the surface is opaque.

However, for a gray surface Kirchhoff’s law is valid for total quantities also.

9.2.3 Band Model for a Non-gray Surface

We shall introduce the band model using a typical example, the emissivity of alu-
minumoxide.A typical IR emission spectrumof aluminumoxide is shown inFig. 9.3.

The advantage of the band approximation is that the equivalent gray emissivity (or
absorptivity) may easily be calculated when the temperature is known. In the band
approximation the emission spectrum is replaced by bands of constant emissivity
but of variable width such that the collection of bands approximates the spectrum as
closely as desired. The integration indicated in Eq.9.8 is written as a sum of integrals
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Fig. 9.3 Spectral emissivity of aluminum oxide and the band approximation

over the bands. The integrals over the bands are obtained by using the black body
fraction function introduced in Sect. 8.3.4. Thus the equivalent gray emissivity of a
non-gray surface is calculated by

εh(TS) =
N∑
i=1

εh,(i−1) − (i) fλ(i−1)TS−λ(i)TS (9.11)

where there are N bands with constant band emissivities given by εi−1,i . Note also
that we may write the fraction function appearing in Eq.9.11 as

fλ(i−1)TS−λ(i)TS = f0−λ(i)TS − f0−λ(i−1)TS (9.12)

The f’s appearing in the summation are the fractional black body function given in
Table 8.1.

Example 9.1

Consider an anodized aluminum surface whose spectral emissivity is given in Fig.
9.3. The corresponding band data is shown in the inset table in the same figure.
Determine the equivalent gray emissivity of such a surface at T1 = 5800 K and
T2 = 300 K.

Solution:

Step 1 Three bands as shown in Fig. 9.3 approximate the emissivity of anodized
aluminum. With the band approximation the integrals appearing in the
calculation of absorptivity and emissivity may be replaced by summation
over the bands using the integral black body function presented in Table
8.1.
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Step 2 The emissivity (in practice, we shall be interested in the absorptivity at
this temperature) is calculated based on black body distribution at T1 =
5800 K.
Band1:
λ1 = 4 µm and for all practical purposes, we may take λ0 = 0. With
λ1T1 = 4 × 5800 = 23200 µm K, the interpolation of data in Table 8.1
yields

f0−23200 = 0.990137 + 200

1000
(0.991229 − 0.990137) = 0.990355

Band 2:
λ2 = 10.8µmand λ1 = 4µm.With λ2T1 = 10.8 × 5800 = 62640µmK,
the interpolation of data in Table 8.1 yields

f0−62640 = 0.999143 + 640

1000
(0.999439 − 0.999143) = 0.999332

Hence, we have

f23200−62640 = f0−62640 − f0−23200 = 0.999332 − 0.990355 = 0.008977

Band 3: λ3 = ∞ and λ2 = 10.8µm.With λ3T1 = ∞, we have f0−∞ = 1.
Hence, we have

f62640−∞ = f0−∞ − f0−62640 = 1 − 0.999332 = 0.000668

The emissivity of the surface at 5800 K and hence the absorptivity are then
obtained by the use of Eq.9.11 as

εh(5800K ) = 0.56 × 0.990355 + 0.96 × 0.008977 + 0.78 × 0.000668

= 0.563738 ≈ 0.564

Step 3 The emissivity is now calculated based on black body distribution at
T2 = 300 K.

Band 1:
λ1 = 4 µm and for all practical purposes, we may take λ0 = 0. With
λ1T2 = 4 × 300 = 1200 µm K, data in Table 8.1 yields

f0−1200 = 0.002134

Band 2:
λ2 = 10.8 µm and λ1 = 4 µm. With λ2T2 = 10.8 × 300 = 3240 µm K,
the interpolation of data in Table 8.1 yields
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Fig. 9.4 Equivalent gray
emissivity of anodized
aluminum

f0−3240 = 0.318091 + 40

200
(0.361722 − 0.318091) = 0.326817

Hence, we have

f1200−3240 = f0−3240 − f0−1200 = 0.326817 − 0.002134 = 0.324683

Band 3: λ3 = ∞ and λ2 = 10.8µm.With λ3T2 = ∞, we have f0−∞ = 1.
Hence, we have

f3240−∞ = f0−∞ − f0−3240 = 1 − 0.324683 = 0.675317

The emissivity of the surface at 300 K and hence the absorptivity are then
obtained by the use of Eq.9.11 as

εh(300K ) = 0.56 × 0.002134 + 0.96 × 0.324683 + 0.78 × 0.675317

= 0.839638 ≈ 0.84

Step 4 It is clear that the equivalent gray emissivity is a function of tempera-
ture. In order to appreciate this, Fig. 9.4 shows the variation of equivalent
gray emissivity of anodized aluminum from room temperature to 5000 K.
The “hump” in the variation is a consequence of the different bands hav-
ing a primary effect on the gray emissivity as the temperature is varied!
The reader should try to visualize this based on the nature of the spectral
variation of black body emissive power with temperature.
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9.2.4 Equilibrium Temperature of a Surface

Consider a surface that is receiving irradiation G from a background at an effective
black body temperature of TB . Let the surface be perfectly insulated at the back
side. Under this condition, the surface will attain an equilibrium temperature TS =
Teq wherein the radiosity of the surface is equal to the irradiation. Alternately, the
reader may verify that the emitted flux from the surface should equal the absorbed
irradiation. Thus, we have1

E(Teq) = εTeqσT
4
eq = αTBG

Note that the temperature at which the surface property is calculated is used now as
subscript. This equation may be solved for the equilibrium temperature to get

Teq =
(

αTBG

εTeqσ

) 1
4

(9.13)

It is interesting to note that for a gray surface αTB = εTeq , independent of temperature,
and hence the equilibrium temperature for a gray surface is given by

Teq =
(
G

σ

) 1
4

(9.14)

Example 9.2

An anodized aluminum surface is receiving solar flux of 1400 W/m2 on one side
while the other side is perfectly insulated. Determine its equilibrium temperature.
Use the anodized aluminum data given in the inset table in Fig. 9.3.

Solution:
The irradiation is from the sun that may be characterized by an effective black
body temperature of TB = 5800 K. Hence the absorptivity of the surface is equal to
the equivalent gray emissivity ε5800 = 0.564 at 5800 K that has been calculated in
Example 9.1.

Since the surface temperature is unknown, the surface emissivity is also unknown.
Hence Eq.9.13 cannot be used directly. We may use this equation with an assumed
value for Teq to calculate εTeq to get an estimate for Teq . This may then be used to
correct the assumed value of emissivity and the procedure continued till a converged
value of Teq is obtained.

1From this point onwards, subscript h for hemispherical will be dropped.
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Fig. 9.5 Ideal selective surfaces

Let us assume TS = T 0
eq = 300K as the first guess. The equivalent gray emissivity

at this temperature is also available from Example 9.1 and is α300 = 0.84. We use
Eq.9.13 to get a better value for T 1

eq as

T 1
eq =

( 0.564 × 1400

5.67 × 10−8 × 0.84

) 1
4 = 358.83 K

We may use this temperature to calculate a fresh value for the solar absorptivity and
continue the iteration. The reader may continue the iteration process and show that
the converged value of equilibrium temperature is 350.5 K.

9.2.5 Selective Surfaces

Non-gray surface properties play an important role in the thermal control of spacecraft
systems and in solar energy devices. These surfaces are known as selective surfaces.
The reader should ponder over why they are referred to as selective surfaces! In the
former, the aim is to keep solar heat away while in the latter the aim is to gather
as much of it as possible. Let us look first at a surface that is an ideal element for
keeping the solar heat away. Consider an ideal surface having low emissivity up to 4
µm and high emissivity beyond 4 µm as shown in Fig. 9.5a. The non-gray behavior
is modeled by a two-band approximation. Since solar radiation is negligibly small
beyond 4 µm (see Table 8.2), the solar absorptivity of the surface is close to the first
band value. We may calculate the equivalent gray absorptivity for solar radiation
using Eq.9.11 as

αS = 0.1 f0−23200 + 0.9 f23200−∞ = 0.1 × 0.9899

+0.9 × (1 − 0.0.9899) = 0.108

where the subscript S stands for “Solar”. Similarly, the emissivity for low frequency
radiation from the surface at its temperature that will be close to room temperature
(say 300 K), referred to as εI R , is
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εI R = 0.1 f0−1200 + 0.9 f1200−∞ = 0.1 × 0.000321

+0.9 × (1 − 0.000321) = 0.8997 ≈ 0.9

The equilibrium temperature of such a surface would be given, for incident solar flux
of 1400 W/m2 on one side and insulation on the other, by

Teq =
( 0.108 × 1400

0.9 × 5.67 × 10−8

) 1
4 = 233.3K (9.15)

This means that the surface will remain cool while dissipating some heat it may be
allowed to gain from the side that is assumed to be adiabatic. This is referred to
as a passive cooler since the cooling effect is obtained by the manipulation of the
radiative property of the surface.

Now we look at a solar collecting surface. Consider the ideal non-gray surface
with two bands as shown in Fig. 9.5b. In this case, the emissivity is high up to 4
µm and low beyond 4 µm. We may run through a calculation similar to the one
made for calculating the solar absorptivity. It is left as an exercise to the reader! The
appropriate numbers are (the iterative solution is called for; see Example 9.2)

αS = 0.892; εI R = 0.197 andTeq = 574K (9.16)

Of course, the temperature will be much less than what is indicated because there
will always be heat losses by conduction and convection in terrestrial applications
(note that the solar collector usually is on the roof top). Ideal surfaces with two bands
as indicated in Fig. 9.5 are not naturally available. Surfaces that come close to these
are made by the use of surface coatings (by painting or by vacuum deposition) and
by chemical treatment of the surfaces.

Example 9.3

Optical solar reflector (OSR), used in spacecraft temperature control, typically has
maximum absorptivity of 0.085 between 0.25–2.5µm. The emissivity of the OSR in
the range 5–50µm is 0.87.2 Determine the amount of heat it can dissipate if it runs
at 300 K and receives 1400 W/m2 of solar radiation on the sun-facing side.

Solution:

Step 1 Wecalculate the fractionof solar radiationbetween0.25–2.5µmfirst based
on TB = 5800 K, λminTB = 0.25 × 5800 = 1450 µm K, and λmaxTB =
2.5 × 5800 = 14500 µm K. Interpolation using Table 8.1 yields

f0−1450 = 0.00779 + 50

200
(0.019718 − 0.00779) = 0.010772

2Plain OSR(CMO)—PS 614 supplied by Qioptiq Space Technology, U.K.,www.qiotiq.co.uk.
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f0−14500 = 0.965458 + 100

200
(0.966671 − 0.965458) = 0.966065

Only 3.4% of irradiation is outside the band considered. Irradiation
absorbed by unit area of the surface is taken as

Qa = εTBG = 0.085 × 1400 = 119 W/m2

Step 2 Black body energy in the 5–50 µm band is calculated using TS = 300 K
with λminTS = 5 × 300 = 1500 µm K and λmaxTS = 50 × 300 =
15000 µm K. The fraction functions are obtained using Table 8.1.

f0−1500 = 0.00779 + 100

200
(0.019718 − 0.00779) = 0.013754

f0−15000 = 0.968933

Emission from the surface per unit area is then given by

Qe = εTS ( f0−15000 − f0−1500)σT
4
S

= 0.85 × (0.968933 − 0.013754) × 5.67 × 10−8 × 3004 = 372.88 W/m2

The fraction emitted is not rounded to 1 so that the calculation is conser-
vative.

Step 3 It is thus clear that the surface will run at a temperature below 300 K if the
surface is insulated at the back. The surface will be able to support a heat
gain of 372.9 − 119 = 253.9W/m2 on the back side. If sun-facing side of
a satellite is covered completely with the OSR, it will be able to dissipate
about 250 W/m2 of heat gained from within the satellite.

Example 9.4

Titanium-oxy-nitride3 is a coating used in solar absorber applications. It has solar
absorptivity of αS = 0.9 and an infrared emissivity of εI R = 0.05. This surface is
exposed to solar irradiation of 800 W/m2, on a partly cloudy day. Determine the
amount of heat that may be rejected by a square meter of surface to a coolant if the
absorber plate is at a mean temperature of TS = 370 K.

3TiNOX GmbH, Germany.
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Solution:
Heat absorbed per unit area of the absorber is given by

Qa = αSG = 0.9 × 800 = 720 W/m2

Heat emitted by the absorber is given by

Qe = εI RσT 4
S = 0.05 × 5.67 × 10−8 × 3704 = 53.1 W/m2

The heat rejected to the coolant is obtained by energy balance as

Qrejected = Qa − Qe = 720 − 53.1 = 666.9 W/m2

In practice, the heat rejected to the coolant may be less than this because of heat
losses that have not been accounted for.

Note on selective surfaces: Selective surfaces are used extensively in solar
energy applications and for passive thermal control of satellites. Selective
surfaces are also used in temperature control of buildings and in cryogenic
systems. Many selective surfaces have been developed, specifically with these
applications in mind, over the past 60 years. The surfaces are typically charac-
terized by the αS − εI R ratio. The available information gathered from various
sources is shown in Table9.2. The surfaces are arranged in increasing order
of αS − εI R ratio. The reader will note that the values in the last column will
guide in the selection of the surface for a specific application.

Selective properties may also be obtained by a suitable choice of thickness
of a film of a material deposited on a substrate. Desirable optical proper-
ties are obtained by a combination of transmittance and reflectance based on
absorption as well as the interference of light. Table9.3 shows the properties
of a typical sun film (supplied by 3M company under the description “Night
Vision 15”) used for controlling heat and light transmission through windows
in automobiles and buildings.

As indicated in the table, a solar film also reduces the glare. Camera and
spectacle lenses are coated with thin anti-reflection coatings that are based on
the optical properties of thin films. Refractive index and thickness play a role in
reducing reflection at a particular wavelength. It is usual to use multiple layers
of different thicknesses and refractive indices to achieve low reflectance over
a desirable part of the spectrum such as from 0.4–0.7 µm (visible radiation).
The reader may refer to books on Optics for more information on this topic.
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Table 9.2 Table of surface properties of selective surfaces

Surface αS εI R
αS
εI R

Barium Sulfate with
Polyvinyl Alcohol

0.06 0.88 0.07

Aluminum anodized 0.14 0.84 0.17

Titanium Oxide White
Paint with Potassium
Silicate

0.17 0.92 0.18

OSR (Optical Solar
Reflector)

0.16 0.81 0.19

Concrete 0.6 0.88 0.68

Anodize Black 0.88 0.88 1

3M Black Velvet Paint 0.97 0.91 1.07

Dull brass, copper,
galvanized steel,
aluminum

0.40–0.65 0.20–0.30 2.1

Silver, Highly polished 0.06–0.09 0.02–0.03 3

Aluminum polished 0.09 0.03 3

Aluminum foil 0.15 0.05 3

Metal, plated Nickel
oxide

0.92 0.08 11

Table 9.3 Typical sun control film properties: Performance Results on 0.25 inch (6 mm) clear glass

Visible Light Transmitted 15%

Total Solar Energy Rejected 72%

UV Light Rejected 99.9%

Glare Reduction 83%

Visible Light Reflected: Interior 11%

Visible Light Reflected: Exterior 38%

Solar Heat Reduction 66 %

Example 9.5

A thin aluminum wall 2 × 2 m in size is covered partly with OSR and partly left
as polished aluminum. Solar flux is illuminating one side with a uniform flux of
250 W/m2 while internal heat is dumped at a uniform rate of 100 W/m2. The alu-
minumwall may be assumed to be isothermal since heat spreads over it. What should
be the area covered with OSR if the wall temperature is to be 85 ◦C?
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Solution:

Step 1 Wemake use of surface properties given in Table9.2 to solve the problem.
The required data is written down below:

Surface αS εI R

OSR 0.16 0.81
Polished Al 0.09 0.03

Area of the wall is obtained as A = 2 × 2 = 4 m2. Surface temperature is
given to be Tw = 85 ◦C = 85 + 273 = 358 K. Emissive power of a black
body at this temperature is given by Ew = σT 4

w = 5.67 × 10−8 × 3584 =
931.35 W/m2.

Step 2 Solar flux on the wall is specified to be S = 250 W/m2. Let the fraction
of the surface covered with OSR be f . Then the heat absorbed Qa by the
surface exposed to solar radiation is given by

Qa =
⎛
⎝ f × αS

OSR

+ (1 − f ) × αS

Polished Al

⎞
⎠ AS = [0.16 f + 0.09(1 − f )] × 4 × 250

= (70 f + 90) W

Heat gain by the wall due to that dumped into it Qd is

Qd = 100 × 4 = 400 W

Step 3 We assume that heat is radiated only from the exposed wall. Hence, the
heat loss due to emission Qe is

Qe = EwA

⎛
⎝ f εI R

OSR

+ (1 − f )εI R
Polished Al

⎞
⎠ = 931.35 × 4( f × 0.81 + (1 − f ) × 0.03)

= 2905.8 f + 111.8

Step 4 Under thermal equilibrium we should have Qa + Qd = Qe. Hence, we
get

70 f + 90 + 400 = 2905.8 f + 111.8or f = 378.2

2835.9
= 0.133

Thus, the OSR covered fraction is 13.3% of the surface area exposed to
sun.
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9.3 Angle-Dependent Surface Properties

In this section, we pay attention to angle-dependent surface properties. There are two
extremes with reference to angle dependence: (a) Specular surface and (b) Diffuse
surface. In the case of the former, the angle dependence is easy to understand and
characterize using the laws of geometrical optics along with fundamental ideas from
the electromagnetic theory.4 In the case of the latter, the surfaces reflect without any
direction bias and the irradiation is scattered in to all the directions of the forward
hemisphere. The emerging or reflected radiation is isotropic. The more general sur-
face is one that is neither specular nor diffuse but has an angular dependence that
is somewhere in between. This case is the most difficult to characterize. We now
consider the above three cases in more detail.

9.3.1 Some Results from Electromagnetic Theory

We start with Maxwell’s equations written for charge-free space given by

(a) Faraday’s Law:∇ × −→
E = − ∂

−→
B

∂t (c) ∇ · −→
D = 0

(b) Ampere’s law: ∇ × −→
H = iv + ∂

−→
D

∂t (d) ∇ · −→
B = 0

(9.17)

Here,
−→
E is the electric field,

−→
B is themagnetic induction,

−→
H is themagnetic intensity,−→

i v is the current flux, and
−→
D is the electrical displacement vector. In a charge-free

or neutral medium, both
−→
D and

−→
B are solenoidal, i.e., vectors with zero divergence.

In addition to the above, the material properties yield the following relations5:

(a)
−→
D = ε

−→
E , (b)

−→
B = μ

−→
H , (c)

−→
i v = σ

−→
E (9.18)

where ε is the permittivity or the dielectric constant,μ is the permeability and σ is the
conductivity of themedium. Equation9.18(c) assumes that thematerial is electrically
conducting and follows Ohm’s law. Additionally, the force experienced by a charge
moving with a velocity −→v is given by

−→
F = q[−→E + v × −→

B ] (9.19)

4Refer to J. D. Jackson, “Classical Electrodynamics”, 3rd Edition, Academic Press, NY.
5Symbol σ should not be confused with the Stefan–Boltzmann constant.
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Table 9.4 Units of quantities appearing in Eqs. 9.17–9.19

Quantity Symbol Dimension Unit*

Electric field E Force/Charge N/C

Electric displacement D Charge/Area C/m2

Magnetic induction B Force/Velocity Wb/m2 or (V· s)/m2

Magnetic intensity H Current/Length A/m

Dielectric constant ε F/m or C/(V · m)

Permeability μ H/m or (V · s)/(A · m)

Electrical conductivity σ S/m or 1/(� · m)

C is Coulomb, Wb is weber, F is farad, H is Henry, S is Siemens

where −→v is the velocity vector. Units of various quantities appearing in Eqs. 9.17
and 9.18 are given in Table9.4.

In case of vacuum the dielectric constant is ε0 = 1
36π×109

F
m and permeability is

μ0 = 4π × 10−7 H
m .

Substitute Eq.9.18(b) in Eq.9.17(a) and take the curl of the resulting expression
to get

∇ × ∇ × −→
E = −μ

∂∇ × −→
H

∂t
(9.20)

Introduce Eq.9.18(a) in to Eq.9.17(b) to get

∇ × −→
H = σ

−→
E + ε

∂
−→
E

∂t
(9.21)

This in Eq.9.20 will yield

∇ × ∇ × −→
E = −μσ

∂
−→
E

∂t
− εμ

∂2−→E
∂t2

(9.22)

We make use of the vector identity ∇ × ∇ × −→
E = ∇(∇ · −→

E ) − ∇2−→E , and the
solenoidal property of the electric field to get

∇2−→E = μσ
∂
−→
E

∂t
+ εμ

∂2−→E
∂t2

(9.23)

It may easily be shown, using similar manipulations of the Maxwell equations,
that the magnetic intensity

−→
H also satisfies Eq.9.23. Thus
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∇2−→H = μσ
∂
−→
H

∂t
+ εμ

∂2−→H
∂t2

(9.24)

We shall now look at plane electromagnetic waves that propagate parallel to, for
example, the z−axis. Accordingly,

−→
E and

−→
H are functions of z and t only. The

condition ∇ · −→
E = 0 then translates to

∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
= 0 (9.25)

The first two terms on the left-hand side are individually zero since
−→
E is a function

of z and t only. Hence Ex , the x component of
−→
E , and Ey , the y component of

−→
E ,

are functions of z and t only and Ez , the z component of
−→
E , is at best a constant

independent of z. Wemay take Ez = 0 without loss of generality. The vector Eq.9.23
may then be written as the following set of two equations:

(a)
∂2Ex

∂z2
= μσ

∂Ex

∂t
+ με

∂2Ex

∂t2

(b)
∂2Ey

∂z2
= μσ

∂Ey

∂t
+ με

∂2Ey

∂t2

(9.26)

Using similar arguments, we may also write for the magnetic intensity the following
two equations:

(a)
∂2Hx

∂z2
= μσ

∂Hx

∂t
+ με

∂2Hx

∂t2

(b)
∂2Hy

∂z2
= μσ

∂Hy

∂t
+ με

∂2Hy

∂t2

(9.27)

Equations9.17(a) and 9.17(b) indicate that vectors
−→
E and

−→
H are related to each

other and also are perpendicular to each other. Hence, we associate Ex with Hy and
Ey and Hx . In fact, we may easily show from Eq.9.17(a) that

(a)
∂Ex

∂z
= −μ

∂Hy

∂t
; (b) ∂Ey

∂z
= μ

∂Hx

∂t
(9.28)

As indicated in Chap. 8, the solution to Eqs. 9.27 and 9.28 are transverse electro-
magnetic waves, indicated schematically in Fig. 8.9. We shall look at these in more
detail below.
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Fig. 9.6 Reflection and
transmission of radiation at
an interface between two
media

9.3.2 Specular Surface

Consider a perfectly smooth interface (shown with filled dot pattern) between two
media as shown in Fig. 9.6.

At such a surface, the reflection is specular with the angle of incidence θ equal to
the angle of reflection θ ′. Twowaves propagate along the direction of incidence (think
of this direction as the z-direction, in our terminology; see Fig. 8.9) as shown. The
first one is the parallel-polarized wave, characterized by the electric field E‖—the
electrical field vector of the incident wave lies in a plane consisting of the incident
direction and the normal to the plane (plane is shown with gray fill). This is also
referred to as the transverse magnetic mode or the TM mode. In our earlier termi-
nology, E‖ is Ex . The second is the perpendicularly polarized wave, characterized
by the electric field E⊥—the electrical field vector of the incident wave is normal to
the plane containing the incident direction and the normal to the surface. This is also
referred to as the transverse electric mode or the TEmode.In our earlier terminology,
E⊥ is Ey . These are accompanied by the corresponding magnetic fields H‖ (Hy—in
earlier terminology) and H⊥ (Hx—in earlier terminology). The parallel and perpen-
dicularly polarized waves behave differently, as far as reflection and transmission are
considered, and hence need to be considered separately.

More on Polarization

(a) Plane-polarized radiation:

Consider the parallel and perpendicular waves expressed as

(a)Ex = A sin(z − ct); (b)Ey = B sin(z − ct) (9.29)
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Fig. 9.7 Polarized radiation

The two rays traveling along the z−axis at speed c are in phase, with different
amplitudes. At a fixed z, the amplitude of each wave varies sinusoidally with
respective amplitudes A and B. The resultant vector always points along the
direction given by θp = tan−1

(
A
B

)
with respect to Ey , with an amplitude of√

A2 + B2 (see Fig. 9.7a. The radiation is said to be plane polarized.

(b) Elliptically polarized radiation:

Consider the parallel and perpendicular waves expressed as

(a)Ex = A sin(z − ct)(b)Ey = B sin(z − ct − φ) (9.30)

The two waves may be visualized as phasors with the resultant phasor as
indicated in Fig. 9.7b. The phase difference φ between Ex and Ey may have
any value in the interval 0, π

2 . The resultant vector traces out an ellipse as
indicated. The radiation is said to be elliptically polarized.

(c) Circularly polarized radiation:

In the special case when A = B and φ = π
2 , the resultant phasor traces out a

circle, and the radiation is said to be circularly polarized and is as shown in
Fig. 9.7c.

(d) Unpolarized or natural radiation:

In case there is no definite relation between the amplitudes and phases, we
have unpolarized or natural radiation. In practice, radiation sources are not
continuous and thephase relationship between the twocomponents, the parallel
and the perpendicular, may varywith time. In such a case, the polarization state
is determined by the use of time-averaged quantities. This aspect is covered in
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books on optics (see, for example, M.Born and E. Wolf, Principles of Optics,
Sixth (Corrected) Edition, Pergamon Press, 1989).

Case 1: Interface Between Two Dielectric Media
Let the interface separate two dielectric media. A dielectric medium is a non-
conductor of electricity, being characterized by a very small value for the electrical
conductivity (σ → 0). Equation9.27 simplifies to

(a)
∂2Hx

∂z2
= με

∂2Hx

∂t2
(b)

∂2Hy

∂z2
= με

∂2Hy

∂t2
(9.31)

Comparing these with Eq. 8.43, it is clear that the phase velocity, call it c in the
present case, is given by

c = 1√
με

(9.32)

for any medium and by

c0 = 1√
μ0ε0

(9.33)

in vacuum. The refractive index may then be defined as

n = c0
c

=
√

με

μ0ε0
(9.34)

Consider now the propagation of radiation from vacuum or air in to dielectric
such as glass. The interface is assumed to be perfectly flat.

The Following Hold in this Case:
• Incident ray, reflected ray, and the transmitted ray (refracted ray) all lie in
the same plane;

• Specular reflection means that
Snell’s law is valid with the incident and reflected rays lying on opposite

sides of the normal to the surface and

θ = θ ′

Refracted and incident ray are related by the relation

n1 sin θ = n2 sin θ ′′
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Here, n1 and n2 are the refractive indices of the two media that are separated
by the interface.

• In case of an air–glass interface n1 ≈ 1 and n2
n1

≈ n2 = n (say) is the relative
index of refraction of glass, typically a value close to 1.5. The reason the
parallel and perpendicular waves behave differently is due to the fact that
while the perpendicular wave E⊥ lies on the interface at the point of inci-
dence, the parallel wave E‖ makes an angle of (90 − θ) with respect to the
interface, at the point of incidence.

• At the interface, we require that the electric and magnetic fields be contin-
uous, as may be shown by the laws of electromagnetic theory.

Continuity of electric field:

(a) E⊥ + E ′
⊥ = E ′′

⊥(b) (E‖ − E ′
‖) cos θ = E ′′

‖ cos θ ′′ (9.35)

Continuity of magnetic field:

(a) H‖ + H ′
‖ = H ′′

‖ (b) (H⊥ − H ′
⊥) cos θ = H ′′

⊥ cos θ ′′ (9.36)

From the electromagnetic theory, we can show that E and H are related as below:

(a) H‖ = n1E‖; H ′
‖ = n1E

′
‖; H ′′

‖ = n2E
′′
‖

(b) H⊥ = n1E⊥; H ′
⊥ = n1E

′
⊥; H ′′

⊥ = n2E
′′
⊥

(9.37)

Introducing these in Eq.9.36(a) and (b), we have

(a) E‖ + E ′
‖ = nE ′′

‖ (b) (E⊥ − E ′
⊥) cos θ = nE ′′

⊥ cos θ ′′ (9.38)

where n = n2
n1
. Also, Snell’s law relates angles θ and θ ′′ as sin θ = n sin θ ′′. Hence

cos θ ′′ may be written as

cos θ ′′ =
√
1 − sin2 θ ′′ =

√
1 − sin2 θ

n2

From Eq.9.35(b), we then have

E‖ − E ′
‖ = E ′′

‖
cos θ ′′

cos θ
= E ′′

‖

√
1 − sin2 θ

n2

cos θ
(9.39)

Adding Eqs. 9.38(a) and 9.39, and after simplification we get
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E ′′
‖

E‖
= 2n cos θ

n2 cos θ +
√
n2 − sin2 θ

(9.40)

Subtracting Eq.9.39 from Eq.9.38(a), and after simplification we also get

E ′
‖

E‖
= n2 cos θ −

√
n2 − sin2 θ

n2 cos θ +
√
n2 − sin2 θ

(9.41)

Similarly we may derive the following two relations.

E ′′
⊥

E⊥
= 2 cos θ

cos θ +
√
n2 − sin2 θ

(9.42)

E ′
⊥

E⊥
= cos θ −

√
n2 − sin2 θ

cos θ +
√
n2 − sin2 θ

(9.43)

The four relations given by Eqs. 9.40–9.43 are known as the Fresnel relations.6 These
relate the strengths of the transmitted and the reflected fields to the incident electric
fields for the two polarizations. Since the intensities are proportional to the squares
of the corresponding electric fields, the reflectances are given by

(a) ρ‖ =
[
n2 cos θ −

√
n2 − sin2 θ

n2 cos θ +
√
n2 − sin2 θ

]2

(b) ρ⊥ =
[
cos θ −

√
n2 − sin2 θ

cos θ +
√
n2 − sin2 θ

]2

(9.44)

Since energy is conserved, the corresponding transmittances are given by

(c)t‖ = 1 − ρ‖ (d)t⊥ = 1 − ρ⊥ (9.45)

6NamedafterAugustin-JeanFresnel 1788–1827, French engineer andphysicistwhomade important
contributions to wave optics.
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Special Cases:
Normal Incidence With θ = θ ′′ = 0
In this case, both polarizations behave the same way since all the electric fields lie
on the interface, at the point of incidence. From Eq.9.44(a) and (b), we have

ρ‖ = ρ⊥ =
[
n − 1

n + 1

]2

(9.46)

Brewster Angle
ρ⊥ is a monotonic function of θ with the reflectance becoming unity at θ = π

2 , i.e.,
for grazing incidence. However, ρ‖ is a non-monotonic function that has a zero at an
angle between 0 ≤ θ ≤ 90o. For this purpose we set the numerator of Eq.9.44(a) to
zero to get

n4 cos2 θ = n2 − sin2 θ = n2 − (1 − cos2 θ)

This may be solved for cos θ to get cos2 θ = n2−1
n4−1 = 1

1+n2 . Hence, cos θ = 1√
1+n2

. It

is then easily seen that sin θ = √
1 − cos2 θ =

√
1 − 1

1+n2 =
√

n2
1+n2 = n√

1+n2
. Thus,

we have the important result

tan θB = sin θ

cos θ
= n (9.47)

where θB is known as the Brewster angle.
As an example, we consider an interface between air and glass with a relative

index of refraction of n = 1.5. Figure9.8 shows a plot of ρ‖, ρ⊥, and ρ, the mean
of the two reflectances as a function of the incidence angle θ in degrees. Note
that both components have a common reflectance of ρ‖ = ρ⊥ = [

1.5−1
1.5+1

]2 = 0.04
for normal incidence. The parallel-polarized component has a reflectance of zero at
θB = tan−1 1.5 = 56.3◦, the Brewster angle.

Consider incident radiation to be plane polarized with both components having
the same magnitude. Polarization angle is π

4 rad or 45◦. Using the Fresnel relations,
it is easy to see that the reflected radiation remains plane polarized but with the

polarization angle, given by θp = tan−1
√

ρ‖
ρ⊥ , varying with incident angle θ as shown

in Fig. 9.9. For normal and grazing incidences, the plane of polarization remains at
45◦. At incident angle equal to the Brewster angle, the polarization angle is zero.
The polarization angle varies between 0 and 45◦ otherwise.

Total Internal Reflection and the Critical Angle
An interesting phenomena known as the total internal reflection takes place when
n = n2

n1
< 1, i.e., when n2 < n1. Light is propagating from a high refractive index

material to a low refractive index material. An example will be light propagation
from glass to air or vacuum, from water to air, etc. Using Snell’s law, it is easily
seen that sin θ ′′ = n1

n2
sin θ = sin θ

n will take on the maximum value of unity (θ ′′ =
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Fig. 9.8 Reflectance of
glass with n = 1.5

Fig. 9.9 Variation of
polarization angle of
reflected radiation

π/2) when sin θ = n or θ = sin−1 n. This angle is referred to as the critical angle
θc. Transmitted (refracted) radiation is absent for θ ≥ θc. For θ ≥ θc, the incident
radiation is completely reflected and hence the total internal reflection takes place.

Consider as example reflection at an interface between glass and air/vacuum. In
this case, n = 1

1.5 = 2
3 . We make use of Fresnel relations to compute the reflectances

as a function of incident angle θ and make a plot as shown in Fig. 9.10. The figure
clearly shows that all reflectances are unity at and beyond the critical angle of θc =
sin−1

(
2
3

) = 41.81◦ or θc = 0.73 rad. The total internal reflectance is used for the
measurement of the refractive index of dielectric materials as will be discussed below
as one of the applications.
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Fig. 9.10 Reflectance at an
interface between glass and
air, n = 2

3

Some Applications

In what follows, we consider two applications that are based on the theory presented
above for interface phenomena between two dielectricmaterials. The first application
discusses anti-reflection coatings used in optical elements such as lenses.

Anti-reflection Coating:
Let the wavelength of incident radiation be λ. At the front surface, a part of the
incident radiation is reflected and emerges with a phase change of π as shown
in Fig. 9.11. This figure is drawn for normal incidence of incoming light. The
radiation that is reflected from the interface has a change in the phase of π

due to reflection as well as a change in phase due to the travel through double
the anti-reflection coating thickness, viz., 2δ where δ is the thickness of the
coating.The change of phase is due to change in the speed of light in the anti-
reflection coating as compared to air. The additional change of phase is due to
path length 2narδ. If the additional phase change is equal to π and hence the
additional path length is λ

2 , the light reflected from the interface and that from
the front surface will destructively interfere and the intensity of reflected light
will be reduced. We then have

2narδ = λ

2
or δ = λ

4nar
(9.48)

If the destructive interference is to be perfect, the front and interface reflectiv-
ities must be equal. For normal incidence, we should then have
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[
nar − 1

nar + 1

]2

=
[
ng − nar
ng − nar

]2

(9.49)

It is easily shown that nar = √
ng for this to happen. This is based on the

refractive index of air being taken as 1. In general, if the refractive index
of a medium above the anti-reflection coating is na , it may be shown that
nar = √

nang . We may choose nar such that destructive interference takes

place for a particular wavelength. Since visible radiation spans the region
0.4 ≤ λ ≤ 0.7 µm, we choose the wavelength at the middle of this band,
viz., λ = 0.4+0.7

2 = 0.55 µm which represents green color. Choosing nar =√
1.5 = 1.225 (MgF2 is a typical coating material) as shown in Fig. 9.11, the

anti-reflection coating thickness is

δ = 0.55

4 × 1.225
= 0.112 µm (9.50)

A change of phase will also take place for other wavelengths. However, com-
plete destructive interference will not take place and hence reduction in reflec-
tion will be less for these wavelengths. In order to improve the purpose of the
anti-reflection coating to serve over a range of wavelengths, multiple layers of
anti-reflection coatings of different refractive index values are used.

The above argument holds for normal incidence. However, when the inci-
dent radiation is at an angle the path length will be enhanced by 1

cos θ
, and

hence interference will become less effective in reducing reflected radiation. In
most optical instruments where anti-reflection coatings are used, themaximum
incident angle may be between 20–30◦. If nar is λ independent, destructive
interference will take place for higher wavelengths (toward red color) when
the incident is off normal.

Anti-reflection coatings are also used in the infrared part of the spectrum.
Recently, anti-reflection coatings have also been used over silicon-based solar
cells. Since silicon has a very high reflectivity of∼ 0.3, anti-reflection coatings
of Silicon dioxide (SiO2) and Titanium dioxide (TiO2) are deposited over the
solar cell to cut down reflectivity to a very small value.

The second application is in the measurement of the refractive index of dielectric
materials.

Measurement of Refractive Index by Total Internal Reflection
The total internal reflection has been seen to be dependent on the refractive
index of the dielectric material. If the critical angle is accurately measured,



9.3 Angle-Dependent Surface Properties 387

Fig. 9.11 Normal reflection
in the presence of
anti-reflection coating on a
glass substrate

one would be able to get an accurate estimate of the index of refraction of the
material.

An arrangement that is suitable for the measurement of the refractive index
of solid/liquid is shown schematically in Fig. 9.13. The dielectric samplewhose
index of refraction ns needs to be determined is placed adjacent to the base
of a prism of the index of refraction np > ns as shown in the figure. A point
source of light illuminates one of the faces of the prism. Light passes through
this face and is incident on the base of the prism. Light will be partly reflected
and partly transmitted as long as the angle of incidence is less than the critical
angle. For example, rays 1 and 2 are incident at angles less than the critical
angle, and hence both transmitted T rays (T1 and T2) and reflected R rays (R1

and R2) are present. After reflection, the light falls on the other face of the
prism as shown in the figure. For an incident angle equal to or greater than
the critical angle, the total internal reflection takes place and falls on the other
face of the prism (e.g., R3 and R4).

Thus, the face of the prism that receives reflected rays has a low-level illumi-
nation till just before the critical angle and high-level illumination thereafter.
By placing a high-resolution CCD camera close to the prism face, we may
determine the location where the reflection just reaches a maximum by digi-
tal image analysis. This corresponds to the critical angle. Hence, the critical
angle may be ascertained, and correspondingly the refractive index of the sam-
ple (actually np − ns) can be determined. With a known value of np, the index
ns may be determined.

Case 2: Interface Between a Dielectric and a Metal

A conductor has free electrons that interact strongly with the incident radiation. The
movement of these free electrons, under the influence of the incident radiation, leads
to Joule heating thus dissipating the radiation as heat. Because of this, the radiation is
strongly attenuated as it passes from a dielectric (vacuum or air) into the conducting
material (metal).
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Fig. 9.12 Angular reflectance of Platinum for 10 µm radiation

Fig. 9.13 Total internal
reflection at an interface
between two dielectrics for
ns < n p

The index of refraction is complex with the imaginary part accounting for the
attenuation of radiation as it passes through into the conducting medium. The atten-
uation is very strong and takes place in a very small thickness in the vicinity of the
interface. This thickness is a few microns at the most and hence the interaction of
radiation with the conducting mediummay be assumed to be a surface phenomenon.
Also, the magnitude of the index of refraction is much larger than one (typical value
is 50) so that θ ′′ ≈ 0.

We start with Eq.9.26(either one of them would do, say 9.26(a)) in which the
first derivative of the electric field with respect to time plays an important role. This
term accounts for attenuation of radiation as we shall see below. A solution that is
periodic in time is sought in the form Ex (z, t) = V (z)eiωt where the factor V (z) is
expected to be a function of z. We then have

∂2Ex

∂z2
= eiωt

d2V

dz2
,
∂Ex

∂t
= iωV eiωt ,

∂2Ex

∂t2
= −ω2 V eiωt

These in Eq.9.26(a) yield
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d2V

dz2
− (iμσω − ω2με)V or

d2V

dz2
− α2 V = 0 (9.51)

where
α2 = iμσω − ω2με (9.52)

Equation9.51 has a solution that decreases with z given by V (z) = V0e−αz where α

is a complex number with a positive real part. The solution for the function V (z) is
then given by

V (z) = e−αz (9.53)

The Electric field Ex (z, t) is then given by

Ex (z, t) = e−αz+iωt = e−α(z−i ω
α
t) (9.54)

This represents a wave propagating in the +z direction with amplitude decreasing
with z. We may identify the wave speed as

c = iω

α
(9.55)

By squaring the above, we get

c2 = −ω2

α2
(9.56)

The index of refraction may then be defined as

n2c = c20
c2

= −c20α
2

ω2
(9.57)

The index of refraction nc is complex and is usually represented in the form7

nc = n − ik (9.58)

By squaring nc, using Eq.9.52, we have

n2c = (n2 − k2 − 2ink) = −c20[iμσω − ω2με]
ω2

(9.59)

With c20 = 1
μ0ε0

, the real and imaginary parts of the refractive index satisfy the fol-
lowing relations:

(a) n2 − k2 = με

μ0ε0
, (b) 2nk = μσ

ωμ0ε0
(9.60)

7The imaginary part is sometimes represented as k = nκ .
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Eliminating k from these two equations, we get, after some minor simplification, the
following quadratic equation.

n4 − με

μ0ε0
n2 − μ2σ 2

4ω2μ2
0ε

2
0

= 0 (9.61)

This may be solved for n2 to get a physically meaningful result (note that n2 should
be positive)

n2 = με

2μ0ε0

[√
1 + σ 2

ω2ε2
+ 1

]
(9.62)

Using this in Eq.9.60(a), we also get

k2 = με

2μ0ε0

[√
1 + σ 2

ω2ε2
− 1

]
(9.63)

Noting that α is a complex quantity that may be represented as α = a + ib, we use
Eqs. 9.56,9.62, and 9.63 to arrive at the following

(a) a = ωk

c0
, (b) b = ωn

c0
(9.64)

where both n and k are positive. Using this in Eq.9.54, we see that the wave is

attenuated by the exponential factor e−az = e− ωk
c0
z . Thus, the imaginary part of the

refractive index accounts for the attenuation of the wave as it progresses into the
metal. It is customary to introduce an absorption coefficient κ as

κ = 2ωk

c0
= 4πk

λ
(9.65)

where the last part is obtained by expressing the radiation in terms of its vacuum
wavelength and also noting that radiant power is proportional to the square of the
electric field intensity. For highly conducting metals—very large σ—the attenuation
is very well approximated by the relation

e−az ≈ e−√
ωσμ

2 z (9.66)

noting that k ≈
√

μσ

2μ0ε0ω
. Attenuation takes place with a length scale given by δ =√

2
ωσμ

. The electric field is reduced by a factor of 1
e over this length, referred to as

the “skin depth”. In the case of copper, for example, we have

μ ≈ μ0 = 4π × 10−7 H/m; σ = 5.8 × 107 S/m
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The skin depth for radiation at 10 GHz is 6.6 × 10−7 m! The radiation is completely
absorbed within such a short distance from the interface that it may be considered to
be at the interface itself. Thus, metals are opaque and highly reflecting as we shall
see from the discussion below.

Consider an interface between a dielectric of refractive index n1 and a metal of
refractive index nc = n2 − ik2. We then define the relative index m as

m = n2
n1

− i
k2
n1

= n − in′ (9.67)

in case the dielectric is vacuum or possibly air, n1 ≈ 1 and hence n ≈ n2 and n′ ≈ k2.
Since the index of refraction is complex, the refraction angle θ ′′ is also complex. Since
hardly any radiation is transmitted across the boundary, we shall look at the reflected
radiation only. Consider the perpendicularly polarized component. The reflectivity
given in Eq.9.44(d) is valid with the relative index of refraction n replaced by the
complex index of refraction m and taking only the magnitude. Thus we should have

Reflectance: ρ⊥ =
[
cos θ −

√
m2 − sin2 θ

cos θ +
√
m2 − sin2 θ

]2

(9.68)

Since m is complex, let a − ib =
√
m2 − sin2 θ . The magnitude of the numer-

ator and denominator are then seen, respectively, to be
√

(a − cos θ)2 + b2 and√
(a + cos θ)2 + b2. The reflectance then becomes

ρ⊥ = (a − cos θ)2 + b2

(a + cos θ)2 + b2
(9.69)

By squaring, we have

(a − ib)2 = (a2 − b2) − i2ab = m2 − sin2 θ

= (n − in′)2 − sin2 θ = n2 − n′2 − sin2 θ − i2nn′

Equating the real and imaginary parts, we get the following two equations:

(a) a2 − b2 = n2 − n′2 − sin2 θ, (b) ab = nn′ (9.70)

We may solve these two equations for a and b to obtain the following relations:
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(a) a2 = 1

2

[√
(n2 − n′2 − sin2 θ)2 + 4n2n′2 + (n2 − n′2 − sin2 θ)

]

(b) b2 = 1

2

[√
(n2 − n′2 − sin2 θ)2 + 4n2n′2 − (n2 − n′2 − sin2 θ)

] (9.71)

It may also be shown that the reflectance for the parallel-polarized wave is given by

Reflectance: ρ‖ = ρ⊥
(a − sin θ tan θ)2 + b2

(a + sin θ tan θ)2 + b2
(9.72)

In the case of metals, both the real and imaginary parts of the refractive index are
very large. For example, in the case of Platinum, m = 37 − i41 for the radiation
of wavelength equal to 10µm. Since sin θ and cos θ are bounded between 0 and 1,
Eq.9.71 indicates that a ≈ n and b ≈ n′. The reflectances are approximated then as

(a)ρ⊥ ≈ (n − cos θ)2 + n′2

(n + cos θ)2 + n′2 ; (b)ρ‖ = ρ⊥
(n − sin θ tan θ)2 + n′2

(n + sin θ tan θ)2 + n′2 (9.73)

Special Case:

Normal Incidence with θ = 0
In this case, both polarizations behave the same way since all the electric fields lie
on the interface, at the point of incidence. Equations9.72 and 9.73 reduce to

ρ‖ = ρ⊥ = (n − 1)2 + n′2

(n + 1)2 + n′2 (9.74)

The angular variations given by the expressions 9.72 and 9.73 are quite unlike the
angular dependence for the dielectric case considered earlier andpresented inFig. 9.8.
The angular reflectivity plot shown in Fig. 9.12 brings this out. The case considered
is for the incidence of 10 µm (mid-IR) radiation from air on to an optically smooth
Platinum surface. The n and n′ values are 37 and 41, respectively. It is seen that the
metal reflects significantly at all angles and particularly strongly as θ → 0 as well
as when θ → 90◦. The perpendicularly polarized component shows a monotonic
variation with incident angle while the parallel-polarized radiation shows a non-
monotonic behavior.

As another example we show, in Fig. 9.14, the angular reflectance from a gold
surface with n = 0.181 and n′ = 3.068 for incident radiation from a Helium Neon
laser at a wavelength of 0.6328 µm (visible). In this case, also the reflectance is very
high for all incident angles.
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Fig. 9.14 Angular
reflectance of Gold for
0.6328 µm radiation from a
Helium Neon laser

Interface Between a Dielectric and a Semi-transparent Medium:
The case of the dielectric–dielectric interface considered previously is typical of
a transparent material like glass. The dielectric–metal case represents an opaque
material. When the transparent material such as glass contains some impurities,
radiation is weakly absorbed by the material and the material is translucent or semi-
transparent. Very thin metal layers also transmit radiation such as when the thickness
is less than the skin depth that was alluded to earlier. Radiation transfer across thin
films requires the application of wave optics accounting for the interference of light.
This is usually presented in books on optics.

Semi-transparent media require the consideration of the attenuation of transmitted
radiation by invoking the concept of the absorption coefficient. The treatment is
similar to that used in gas radiation and will hence be considered later.

9.3.3 Hemispherical Reflectance

In engineering applications, it is unlikely that the surfacewill be illuminated at a fixed
angle. The incident radiation is likely to be from all directionswithin a hemisphere. In
case the incident intensity variation with direction is known, it is possible to calculate
the total reflected radiation in to the hemisphere. The simplest of the incident intensity
distributions is the case of isotropic intensity, as for example, unpolarized radiation
fromablack body background at a specified temperature.Wemayuse the reflectances
for dielectric–dielectric and dielectric–metal interfaces given earlier to calculate the
hemispherical reflectance. Let ρλ(θ) be themonochromatic reflectance of the surface
for radiation incident at angle θ with respect to the normal. This is given by

ρλ(θ) = ρλ,‖(θ) + ρλ,⊥(θ)

2
(9.75)
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Fig. 9.15 Variation with
refractive index of
Hemispherical and Normal
reflectances for reflection at a
dielectric–dielectric interface

Let the incident intensity be constant independent of the incident direction. The
monochromatic irradiation is given byGλ = π Iλ. The reflectedmonochromatic radi-
ant flux is given by

q−
λ =

∫

2π

ρλ(θ)Gλ cos θd� = 2π Iλ

1∫

0

ρλ(μ)μdμ (9.76)

where we have used the relation μ = cos θ . The spectral hemispherical reflectance
of the surface is then given by

ρλ,h = q−
λ

Gλ

= 2

1∫

0

ρλ(μ)μdμ (9.77)

The indicated integration may be done numerically for both dielectric–dielectric and
dielectric–metal cases. Closed form expressions are also available, for sufficiently
large values of n and n′.8 In the case of Platinum, the hemispherical reflectance
is calculated for 10 µm radiation as 0.94. In the case of gold, it is computed by
numerical integration as 0.932, for 0.6328 µm radiation. The corresponding normal
reflectances are calculated, based on Eq.9.74, respectively, as 0.953 and 0.933.

It is interesting to look at the variations of hemispherical and normal reflectances
of a transparent material with the relative index of refraction as shown in Fig. 9.15.

The highest refractive index shown in the figure corresponds to that of silicon.
Both reflectances increasewith the index of refraction. The hemispherical and normal
reflectances are of comparable magnitude. For example, a material like glass with
n = 1.5 has hemispherical reflectance of 0.092 while the normal reflectance is 0.04.

8R. V. Dunkle, pp. 39–44, NASA SP-55, 1965.
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Fig. 9.16 Variation with the
wavelength of Hemispherical
and Normal reflectances of
polished aluminum

Diamond has a refractive index of 2.42 for visible radiation corresponding to a
wavelength of 0.59µm. Correspondingly, the hemispherical and normal reflectances
are 0.213 and 0.172, respectively. Such a high reflectance makes diamonds very
precious as gemstones.

As mentioned earlier, metals are highly reflecting. Literature data on the index
of refraction of aluminum 9 is used to determine the hemispherical and normal
reflectances of aluminum as functions of wavelength in the visible part of the elec-
tromagnetic spectrum. Figure9.16 presents the result. The normal reflectance appears
to be higher than the hemispherical reflectance throughout the wavelength range as
shown in the figure.

Example 9.6

A typical glass sheet has a mean refractive index of 1.514 in the visible part of
the spectrum between 0.4 and 0.7 µm. Assume that diffuse solar radiation is inci-
dent on it, with spectral characteristics that of a black body at 5800 K. Determine
the fraction of incident diffuse solar radiation that is reflected from the front face of
the glass sheet.

Solution:
The fraction of incident flux that is contained within the wavelength range λ1 =
0.4µm and λ2 = 0.6µm is calculated first. Equivalent black body temperature char-
acterizing solar radiation is Ts = 5800K . We then have

λ1Ts = 0.4 × 5800 = 2320 µmK; λ2Ts = 0.7 × 5800 = 4060 µmK

The linear interpolation of entries in Table 8.1 give the following:

9Shiles, E., Sasaki, T., Inokuti, M., and Smith, D. Y., Phys. Rev. Sect. B, 22, p-1612, 1980.
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f0−λ1Ts = 0.100886 + (2400 − 2320)

(2400 − 2200)
× (0.140253 − 0.100886) = 0.11663

f0−λ2Ts = 0.480858 + (4060 − 4000)

(4200 − 4000)
× (0.515993 − 0.480858) = 0.49140

The fraction of diffuse solar energy incident in the band under consideration is

fs = f0−λ2Ts − f0−λ1Ts = 0.49140 − 0.11663 = 0.37477

Since the incident radiation is diffuse, the reflected part is just given by the hemi-
spherical reflectance of the front surface of the glass sheet. For glass of relative index
of refraction n = 1.514, the hemispherical reflectance is read off from Fig. 9.15 as
ρh = 0.1 or calculated more accurately by numerical integration as ρh = 0.09383.
With this last value of the hemispherical reflectance, the fraction of incident diffuse
solar radiation that is reflected in the band under consideration is

fr = fsρh = 0.37477 × 0.09383 = 0.03516

Example 9.7

Diffuse solar radiation is incident on a windowpane made of transparent glass of
mean refractive index of 1.5 in the visible wavelength range 0.4–0.7 µm. The inci-
dent flux is known to be 200 W/m2. Determine the amount of diffuse radiation that
is reflected by the window pane per square meter of its surface. Assume that the
glass sheet is thin and of a very large area. We need to consider the reflection and
transmission of radiation across the pane by taking in to account the reflection from
the front and the back surfaces of the glass pane. Figure 9.17 shows the state of
affairs.

Solution:
Multiple reflections are involved from both surfaces of the pane. Because the incident
radiation is diffuse, we use the hemispherical quantities in the calculations. Since the
glass sheet is transparent, there is no reduction in intensity due to absorption within
the glass sheet. The fraction transmitted is obtained by summing all the transmitted
fractions10 given by the series

th,eff = (1 − ρh)
2 + ρ2

h(1 − ρh)
2 + ρ4

h(1 − ρh)
2 + · · · · · · = (1 − ρh)

2
∞∑
0

ρ2n
h

10If the glass sheet is not large, the series will truncate since the incident radiation walks along the
surface and will terminate at an edge.
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Fig. 9.17 Reflection and
transmission of radiation
across a thin window pane

This series is a geometric series with common ratio ρ2
h and hence

th,eff = (1 − ρh)
2 · 1

1 − ρ2
h

= 1 − ρh

1 + ρh

For the windowpane, we have n = 1.5 and hence the hemispherical reflectance is
read off from Fig. 9.15 as ρh = 0.09 or calculated more accurately by integration as
ρh = 0.092. With this, the transmittance of the windowpane is

th,eff = 1 − 0.092

1 + 0.092
= 0.832

The effective reflectance of the window pane is then obtained as

ρh,eff = 1 − th,eff = 1 − 0.832 = 0.168

The incident diffuse solar flux in the 0.4–0.7µmband is given to beGS = 200W/m2.
Hence, the effective reflected flux in this band is given by

RS = ρh,effGS = 0.168 × 200 = 33.7 W/m2
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Fig. 9.18 Reflection at a moderately rough surface

9.3.4 Real or Engineering Surfaces

Optically smooth surfaces are used in special optical applications involving mirrors,
lenses, beam splitters, and so on. They are also used in metrology. Most engineering
applications either do not need perfectly smooth surfaces or the cost precludes the
use of such surfaces. Engineering surfaces are basically not optically smooth and
hence the angular dependence of surface properties is different from the specular
cases we have considered in the previous sections.

Amoderately rough surface tends to reflect as shown in Fig. 9.18. Even though the
reflection is random, there is a preferential reflection close to the specular direction.
If the surface roughness elements have regularity, such as when parallel grooves are
etched on the surface, the reflection may show regular features. If the roughness
elements are small and comparable to the wavelength of the incident radiation, it is
likely that interference effects may be observable. Gratings used in spectrometry, in
fact, use fine parallel grooves that disperse radiation of different wavelengths along
different directions. Most surfaces used in engineering applications, however, have
three-dimensional features and hence reflect radiation in a fairly random fashion
along all the directions of a hemisphere.

For a planar real or engineering surface, the mean normal is oriented as shown in
Fig. 9.19a. However, the local normal is oriented along different directions because
of surface roughness. For a given direction of incidence, even though the reflection
is specular over a small area element, the change in the direction of the local normal
makes the reflected rays travel in different directions. The reflected light is thus
thrown into all directions in a random fashion.

If the incident radiation is reflected perfectly randomly, the reflected intensity
is independent of direction and is referred to as diffuse reflection. The rough or
engineering surface is then referred to as a diffuse surface. Such surfaces are met
with in radiation heat transfer very often and hence will be pursued in more detail.

Mildly rough surfaces are fairly common in many applications such as in space
applications. The roughness is measured by the standard deviation of the surface with
respect to the mean plane of the surface as indicated by σ in Fig. 9.19b. The surface
roughness is also characterized by the mean slope m = tan φ defined as indicated in
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Fig. 9.19 Reflection at a moderately rough surface

the figure. The slope is a measure of the ratio of the deviation of the surface with
respect to the mean plane and the autocorrelation distance α, the distance over which
the feature extends. Thus, we have

m√
2

= σ

α
(9.78)

Larger the m, the higher the deviation out of a plane or shorter the autocorrelation
distance. An optically rough surface is one for which σ

λ
� 1. An optically smooth

surface is one for which σ
λ

� 1. A slightly rough surface is one for which σ
λ

≤ 1.
The reflectance distribution from a surface uses the nomenclature shown in

Fig. 9.20. The incident direction is represented by θ, φ while the reflected direc-
tion is represented by θ ′, φ′. The elemental solid angles are represented by d� and
d�′ as indicated in the figure. The reflectance of a rough surface is modeled in terms
of a bidirectional reflectance distribution function (BRDF) as proposed by Beckman
and Spizzichino.11

f (θ, φ, θ ′, φ′) = fsp(θ)U (δ) + fic(θ, φ, θ ′, φ′) (9.79)

where the subscript sp stands for the specular part and subscript ic stands for the
incoherent part. While the specular part depends only on the incident angle θ , the
incoherent part is a function of the incident and reflected directions. In Eq.9.79, the
unit delta function U (δ) is given by

U (δ) = δ(θ − θ ′)
δ(φ − (φ′ + π))

cos θd�
(9.80)

11P. Beckman and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces,
Pergamon Press, 1963.
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Fig. 9.20 Nomenclature for reflectance from a rough surface

Since the BRDF is difficult to use in radiation heat transfer calculations, a simplified
model suggested by Schornhurst and Viskanta,12 Toor and Viskanta,13, and modified
with suggestion made by Torrance and Sparrow14 is given below. The reflectance is
specified as

f (θ) = [1 − ε(θ,m)]
[
1 − g(θ)

π
+ g(θ)U (δ)

]
(9.81)

where

g(θ) = exp

[
−

{
4πσ cos θ

λ

}2
]

(9.82)

and ε(θ,m), known as the directional emissivity, is the surface emissivity that
depends on angle θ and theRMSslopem. Birkebak andAbdulkadir15 suggest theway
the directional emissivity is calculated relating it to the blocking effect due to surface
undulations. The directional emissivity of a metal surface (or a surface coated with
a layer of metal) such as aluminum with n = 6.1 and k = 4.984 at λ = 4µm varies
with θ as shown in Fig. 9.21a. It is seen that the directional emissivity approaches
a diffuse behavior as m increases. A non-metallic coating (typically like aluminum
oxide) exhibits a different behavior as seen from Fig. 9.21b. The literature is available
on how to use the above model in radiation heat transfer calculations.16

In summary, (a) specular reflection takes place when the surface is optically
smooth, i.e., when the surface roughness is much smaller than the wavelength
of the incident radiation and (b) perfectly random or diffuse reflection occurs
when the surface is extremely rough, i.e., the surface roughness is much larger

12J. R. Schornhurst and R. Viskanta, AIAA Journal, 6,pp. 1450–1455, 1968.
13J. S. Toor and R. Viskanta, Int. J. Heat and Mass transfer, 11, pp. 883–897, 1968.
14K. E. Torrance and E. M. Sparrow, J. Heat Transfer, 87, pp. 283–292, 1965.
15R. C. Birkebak and A. Abdulkadir, Int. J. Heat and Mass transfer, 19, pp. 1039–1043, 1976.
16E. M. Sparrow and S. H. Lin, Int. J. Heat and Mass transfer, 8, pp. 769–779, 1965.
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Fig. 9.21 aDirectional emissivity of an aluminum surface bDirectional emissivity of an aluminum
oxide surface

than the wavelength of incident radiation. These are the two extreme limits that
one encounters in practice. Optical elements like prisms, lenses, and mirrors
used in optical instruments are polished to a high degree of smoothness and
are optically smooth. Surfaces encountered in heat transfer applications like
furnace walls, walls of buildings, etc., are rough and may be considered as dif-
fuse reflectors. These two cases are simple to model. However, some surfaces
may not belong to either category. Reflection from such surfaces are difficult
to model.
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Concluding Remarks

Reflectance and transmittance at an interface between twomedia has been described in detail.

These have been derived, for both parallel and perpendicular polarized radiation, using

electromagnetic theory of radiation. Angular dependence of reflectance has been brought out

for both dielectric -dielectric and dielectric - metal interfaces. Selective surfaces have been

dealt with in detail. The chapter has ended with a short section on radiation properties of

engineering surfaces.

9.4 Exercises

Ex 9.1 A certain selective surface has an emissivity in the infrared of 0.6 and
absorptivity for the solar band of 0.08. Suggest an application for such
a surface explaining the reason for your suggestion. The above surface
is insulated at the back and is exposed to a solar flux of 800 W/m2.
What will be the temperature of the surface?

Ex 9.2 A surface is characterized by spectral absorptivity variation given by

αλ = 0.1, 0 < λ < 2 µm;αλ = 0.8, 2 < λ < 4 µm;αλ = 0.5, λ > 4 µm

Determine (a) absorptivity of the surface for solar radiation, (b) emis-
sivity of the surface at 500 K, and (c) equilibrium temperature of the
surface if it is insulated on one side and is exposed to a solar flux of
1300 W/m2 on the other side.

Ex 9.3 A surface has a spectral emissivity of 0.2 from 0 to 4µm and a spectral
emissivity of 0.8 beyond. This surface is at a temperature of 200 ◦C. It
is also irradiated by a flux of 350 W/m2 from a source characterized
by a black body temperature of 2000 ◦C. Determine (a) emissive power
of the surface, (b) absorptivity of the surface for the incident radiation,
and (c) radiosity of the surface.
What will be a suitable application for this selective surface?

Ex 9.4 A real surface has spectral properties specified by three bands as shown
below.

αλ = 0.1, 0 < λ < 2 µm;αλ = 0.9, 2 < λ < 4 µm;αλ = 0.4, λ > 4 µm

This surface receives a total radiant flux of 500 W/m2 from a back-
ground characterized by a black body temperature equal to 1500 K.
The surface is insulated at the back and is hence at its equilibrium tem-
perature that needs to be estimated. Assume a starting guess value of
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350 K and perform iterations till the value converges. You may use a
tolerance of 0.1 K to stop the iterations.

Ex 9.5 The hemispherical spectral emissivity of a certain opaque surface may
be approximated by the distribution given below:

ελ = 0.2, 0 < λ < 2.5 µm; ελ = 0.8, 2.5 < λ < 6 µm; ελ = 0.4, λ > 6 µm

The surface temperature is varied between 600 K and 1800 K in steps
of 100 K. Evaluate the total emissive power of the surface at these
temperatures. Make a suitable plot.

Ex 9.6 A sheet of translucent material is 3 mm thick. The material has a
monochromatic complex refractive index for radiation at a wavelength
of 1 µm of nλ = 1.6 − i0.05. The monochromatic radiation of the
wavelength of 1 µm is incident normal to the first surface. Determine
the amount of radiation transmitted by the material.

Ex 9.7 Repeat Exercise 9.4 for an incident angle of 30◦ to the normal. All other
data remains unchanged.

Ex 9.8 Make a literature search for optical data of aluminum, gold, nickel,
and copper. Using the data, grade these materials in the order of their
reflectances for visible light of 0.6 µm wavelength. Assume, in each
case, that the material is in the form of a perfectly smooth foil.

Ex 9.9 Thin mylar films with aluminum deposited over them are used very
often in space applications. Why is this so? Give credible arguments.
Discuss how a blanket made of a large number of such films may be
used as an insulation.

Ex 9.10 Passive temperature control is a possible option in many satellite ther-
mal management applications. Consult the relevant literature and pre-
pare a note on such an application.

Ex 9.11 Solar energy applications make use of selective surfaces, as has been
indicated before. Study the relevant literature and prepare a note on
useful selective surfaces for solar energy applications. Grade them
according to their performance. Why are glass cover plates used in
solar collectors? What should be the optical properties of such glass
cover plates? Discuss how a solar film (used on windows of rooms and
automobiles) works. What are the desirable optical properties of such
films?



Chapter 10
Radiation in Enclosures

Radiation heat transfer models all problems as enclosure problems. All the surfaces
that take part in radiant heat exchange are assumed to form an enclosure. In case

all the surfaces are diffuse and gray, it is possible to calculate radiant interchange by
separating geometric and thermal aspects. Shape factors/view factors/angle factors take
care of the geometric part. Governing equations are written in terms of the radiosity of
each surface in the enclosure. The band model is useful in modeling diffuse non-gray
surfaces. Specular surfaces are treated using the concept of the exchange factor. When
uniform radiosity assumption is invalid, it is necessary to subdivide surfaces into a large
number of divisions to perform the analysis.

10.1 Introduction

The background regarding radiation interaction at different types of surfaces has
been developed in Chap. 9. Engineering applications deal mainly with radiation heat
transfer among such surfaces arranged to form an enclosure. In many of these appli-
cations, the enclosure may contain atmospheric air which may be assumed, without
loss of accuracy, to be transparent to the passage of radiation. Ignoring conduction
and convection heat transfer in the enclosed medium as being not of significance,
the enclosure analysis may proceed by considering only surface radiation, assuming
that the enclosure is evacuated!

In most cases, the surfaces that constitute an enclosure are opaque. Also, the sur-
faces are rough and hence diffusely reflecting except in specific applications that may
use specular surfaces. The first part of this chapter will hence deal with enclosures
having gray and diffusely reflecting walls. Later these restrictions will be relaxed
and we shall also consider enclosures with non-gray, semi-transparent as well as
specularly reflecting surfaces.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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The case of an enclosure with radiatively participating (absorbing and emitting)
medium will be taken up in Chap. 11.

10.2 Evacuated Enclosure with Gray Diffuse Walls

10.2.1 Assumptions

The following assumptions are generally made in enclosure analysis.

• Since engineering surfaces are generally rough, the diffuse assumption
seems to be well justified, as indicated toward the end of Chap. 9. This
means that the intensity of radiation leaving any surface is isotropic or angle
independent.

• Surfaces that are more or less isothermal also have a uniform radiosity
everywhere on the surface.

• Surfaces are assumed to be gray. Thismeans that we can treat total quantities
in the analysis without worrying about the distribution of radiation over
wavelength.

10.2.2 Diffuse Radiation Interchange Between Two Surfaces

Diffuse Radiation Interchange Between Two Area Elements
Consider the radiation leaving an area element d A j and incident on an area element
d Ai as shown in Fig. 10.1. Because of diffuse assumption, the intensity of radiation
leaving d A j , (i.e., I j ) is

J j
π
where Jj is the radiosity. In addition, Jj is assumed to be

uniform over A j , with d A j being an elemental area situated anywhere on A j . The
total power leaving d A j is

Fig. 10.1 Diffuse radiant
interchange between two
area elements
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dPj = Jjd A j = π I j d A j (10.1)

The power incident on d Ai from the total power leaving d A j is

dPi = I j d A j cos θ j d� (10.2)

where d� is the solid angle subtended by d Ai at d A j and is seen to be given by
d� = cos θi d Ai

r2 , where r is the length of the line joining the mid-points of d A j and
d Ai . Thus, the power incident on d Ai is given as

dPi = I j
d Aid A j cos θi cos θ j

r2
(10.3)

The ratio dPi
d Pj

obtained from Eqs. 10.1 and 10.3 as

dPi
d Pj

=
I j

(
d Aid A j cos θi cos θ j

r2

)

π I j d A j
= cos θi cos θ j d Ai

πr2

FdA j−d Ai

(10.4)

is a pure geometric parameter. This is referred to as the differential (or elemental)
angle factor (or view factor or shape factor) for diffuse radiant interchange between
two elemental areas and is symbolically represented as FdA j−d Ai . This parameter
represents the fraction of radiation that is leaving d A j that is intercepted by d Ai . If
we run through the above derivation, considering radiation leaving area element d Ai

and incident on d A j , it is clear that we should get

FdAi−d A j = cos θ j cos θi d A j

πr2
(10.5)

Equation10.5 gives the differential angle factor for radiant interchange between d Ai

and d A j . It is clear from Eqs. 10.4 and 10.5 that elemental area–elemental shape
factor product satisfies the relation

EdAi−d A j

d Ai × FdAi−d A j =
EdAi−d A j

d A j × FdA j−d Ai

Reciprosity relation

= cos θi cos θ j d Aid A j

πr2
(10.6)
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This relation is referred to as the reciprocity relation. The area angle factor prod-
uct is referred to as the exchange area for diffuse radiant interchange, denoted by
EdAi−d A j or EdA j−d Ai .

Diffuse Radiation Interchange Between an Area Element and a Finite Area
An integration of Eq.10.3 over the area Ai gives the power leaving d A j which is
incident on Ai . Thus, power leaving d A j that is incident on Ai is

Pi = I j

∫
Ai

d Aid A j cos θi cos θ j

r2
= Jj

∫
Ai

d Aid A j cos θi cos θ j

πr2
(10.7)

But the total power leaving d A j is PdA j = Jjd A j . Hence, the fraction of the power
leaving d A j that is incident on Ai is

FdA j−Ai =
∫
Ai

cos θi cos θ j

πr2
d Ai (10.8)

It is clear (how?) that the power leaving Ai that will be incident on d A j is

FAi−d A j = d A j

Ai

∫
Ai

cos θi cos θ j

πr2
d Ai (10.9)

Diffuse Radiation Interchange Between Two Finite Areas
In this case, the integration is to be performed over both the areas Ai and A j . We
may follow a similar procedure to show that the fraction of the total power leaving
Ai that is incident on A j (this may easily be obtained by integrating Eq.10.9 over
A j ) is

FAi−A j = 1

Ai

∫
Ai

∫
A j

cos θi cos θ j

πr2
d Aid A j (10.10)

Expression 10.10 is purely a geometric factor for radiant interchange between finite
areas and is called the angle factor (or view factor or shape factor). Similarly, we can
show that
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FAj−Ai = 1

A j

∫
Ai

∫
A j

cos θi cos θ j

πr2
d Aid A j (10.11)

From Eqs. 10.10 and 10.11, we see that

Ai · FAi−A j = A j · FAj−Ai = EAi−A j = EAj−Ai (10.12)

where EAi−A j or EAj−Ai is the exchange area for diffuse radiation interchange. The
above equality is referred to as the reciprocity relation. It shows that the exchange
area for diffuse interchange between two finite areas is the same irrespective of the
direction of radiant interchange.

Sum Rule
Consider a total of N surfaces in an enclosure.Conservationof radiant energy requires
that the sum of all the fractions of energy leaving the surface i and reaching surface
j should add up to unity. In this summation, we should include the self -angle factor
FAi−Ai in case the i

th surface is concave.1 Thus, we have the so-called sum rule that
states that

N∑
j=1

FAi−A j = 1 (10.13)

Reciprocity relations for surfaces taken in pairs, sum rule for each surface in an
enclosure, and the use of additional angle factor rules (presented in the next section)
constitute angle factor algebra.

10.2.3 Angle Factor Algebra and Its Applications

In most enclosure problems, we have radiant interchange among a set of surfaces
that comprise the enclosure. Assume that there are N diffuse surfaces that make up
the enclosure. The number of angle factors that are required for analysis is seen to
be N 2, i.e., all FAi−A j ’s for i = 1, 2, · · · N and j = 1, 2, · · · N . However, for each
surface the sum rule may be written such that there are N such relations available.

1Self-angle factor represents the fraction of energy leaving surface Ai that is incident on itself. The
reader should note that FAi−Ai =0 for a flat or a convex surface.
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Taken two at a time, there are NC2 reciprocity relations among the angle factors.
The number of angle factors that are to be determined independently Nin (say, by the
application of Eq.10.10) is given by

Nin = N 2 − N −N C2 = N (N − 1) − N !
(N − 2)!2!

= N (N − 1) − N (N − 1)

2
= N (N − 1)

2

(10.14)

In addition, if all the N surfaces are convex or flat, all the self-angle factors are zero,
i.e., FAi−Ai = 0 for i = 1, 2, · · · N . Hence, in this case the number of independent
angle factors that need to be determined is further reduced to

Nin = N (N − 1)

2
− N = N (N − 3)

2
(10.15)

It is thus clear that all angle factors may be determined by the use of angle factor
algebra when the number of surfaces is 3 or less (the lowest N is of course 2).

Another useful rule, the decomposition rule, is discussed below.

Decomposition Rule
Consider the three surfaces shown in Fig. 10.2a, b.
While Fig. 10.2a is themost general case, Fig. 10.2b is a typical application of interest.
We shall represent angle factor between A1 and A2 as F12, between A1 and A3 as
F13. Noting that the angle factors represent the fraction of energy leaving a surface
that is incident on another surface, we see that the fraction of energy leaving A1 that
reaches both A2 and A3 must be

F1(2+3) = F12 + F13

This may be recast in more useful form

Fig. 10.2 Illustration sketch
for decomposition rule

2

3

1

(a)

1

32

(b)
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F13 = F1(2+3) − F12 (10.16)

where it is presumed that both the angle factors on the right-hand side of Eq.10.16
are available or easily evaluated.

Two-Surface Enclosures
The simplest enclosure one can think of is a two-surface enclosure shown in its two
possible variants in Fig. 10.3a, b. In the first case, the cavity wall is concave and is
covered by a flat lid. In the second case, a convex surface is completely enclosed
within a concave surface. In both cases, angle factors may be obtained by angle factor
algebra. Since all the radiation leaving surface 1 reaches surface 2, the angle factor
F12 = 1. This is because surface 1 is convex (or flat) and hence F11 = 0. Now we
may use the reciprocity rule to write

A1F12 = A2F21 or F21 = A1

A2

The sum rule is used now to get the self-angle factor of surface 2 as

F22 = 1 − F21 = 1 − A1

A2

We may represent the angle factors in a matrix form as shown below:

[
F11 F12

F21 F22

]
=

[
0 1
A1
A2

1 − A1
A2

]

Cavity wall, A2

Cover or Lid, A1

(a)

Convex surface, A1

Concave surface, A2

(b)

Fig. 10.3 Typical two-surface enclosures
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Two-Dimensional Enclosures in the Form of Long Ducts
Triangular Duct
Angle factors are relatively easily evaluated for two-dimensional enclosures. These
occur very often, in engineering practice, in applications like ducts carrying condi-
tioned air in buildings, ducts transporting high-temperature gases in power plants,
and so on. If the fluid flowing in the duct is assumed to be transparent to radiation,
radiation transfer between the walls of the duct takes place purely due to surface
radiation. The simplest case is a very long duct of the triangular cross section as
shown in Fig. 10.4. Since N = 3, all the angle factors may be determined by the
application of angle factor algebra.

The sum rule is applied to each side of the triangular duct:

(a) Fab + Fac = 1, (b) Fba + Fbc = 1, (c) Fca + Fcb = 1 (10.17)

Three reciprocity relations are written down:

(a) aFab = bFba, (b) bFbc = cFcb, (c) aFac = cFca (10.18)

From Eq.10.17a, we have Fac = 1 − Fab. Using Eq.10.18(c), we then get

Fca = a

c
Fac = a

c
(1 − Fab) (10.19)

From Eq.10.18(b), using Eq.10.17(c) we have Fcb = b
c Fbc = 1 − Fca . With

Eq.10.19, this becomes
b

c
Fbc = 1 − a

c
(1 − Fab)

This may be recast as

Fbc = c

b

[
1 − a

c
(1 − Fab)

]
(10.20)

Using Eqs. 10.17(a) and (b), we also have

Fbc = 1 − Fba = 1 − a

b
Fab (10.21)

We equate the two expressions for Fbc given by Eqs. 10.20 and 10.20 to get

Fig. 10.4 A
two-dimensional enclosure
in the form a triangular duct

CB a

A

c b
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Fig. 10.5 A
two-dimensional enclosure
in the form a Trapezoidal
duct

a

b

c

dd2 d1

1 − a

b
Fab = c

b
− a

b
(1 − Fab) or 2

a

b
Fab = 1 + a

b
− c

b

or (a) Fab = a + b − c

2a

(10.22)

In words, Fab is the ratio of the sum of lengths of sides a (radiation leaving surface)
and b (radiation receiving surface) minus the third side c divided by twice the length
of side a. Using this, it is easily seen that the following should hold:

(b) Fac = a + c − b

2a
and (c) Fbc = b + c − a

2b
(10.23)

Reciprocity relations then give the other angle factors.
Polygonal Duct
The angle factors obtained above may be used as the basis for evaluating the angle
factors in a polygonal duct containing more than 3 surfaces. As an example, we
consider a duct of quadrilateral section as shown in Fig. 10.5. We demonstrate the
procedure by calculating the angle factor between opposite sides of the quadrilateral,
as for example, Fac. By drawing the diagonals, we apply the triangle formula 10.22
to triangle with sides a, b, and d1 to get Fab as

Fab = a + b − d1
2a

(10.24)

We apply the triangle formula 10.22 to a triangle with sides a, d, and d2 to get Fad
as

Fad = a + d − d2
2a

(10.25)

Applying now the sum rule to side a, we have

Fac = 1 − Fab − Fad

= 1 − a + b − d1
2a

− a + d − d2
2a

= (d1 + d2) − (b + d)

2a
(10.26)
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Fig. 10.6 Cross section of
the furnace in Example 10.1

4
r 1m

d2d1

1

4

2 3

2m

2m

The numerator is the difference between the sum of the crossed lengths (imagine a
string being held taut between the left corner of a and the right corner of c or the right
corner of a and the left corner of c) and the straight lengths (imagine a string being
held taut between the left corner of a and the left corner of c or the right corner of
a and the right corner of c). Expression 10.26 embodies what is called the Hottel’s
crossed string method.2

Example 10.1

A very long furnace has the cross section shown in Fig. 10.6. The cross section
has a rectangular part with a circular domed top. The surfaces are numbered as
shown in the figure. Determine all the angle factors for diffuse radiant interchange.

Solution:

Step 1 Surfaces 1,2, and 3 are flat and hence F11 = F22 = F33 = 0. By sym-
metry, it is clear that F12 = F13. Each of these may be determined by
the triangle formula. We denote the length of side 1 as l1 = 2 m, sides 2
and 3 as l2 = l3 = 1 m, and the circular dome as l4 = πr = π m. The
required diagonals are obtained as

d1 = d2 =
√
l21 + l22 =

√
22 + 12 = √

5 m

Step 2 Applying the triangle rule, we then get

F12 = l1 + l2 − d1
2l1

= 2 + 1 − √
5

2 × 2
= 0.191

Hence, F13 is also equal to 0.191.The reciprocity rule gives the following:

F21 = F31 = l1
l2
F12 = 2

1
× 0.191 = 0.382

2H. C. Hottel and A. F. Sarofim, Radiative Transfer, McGraw Hill, 1967.
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Step 3 We may determine the angle factor between 1 and 4′ by the application
of the crossed string method. We then have

F14′ = (d1 + d2) − (l2 + l3)

2l1
= 2 × √

5 − 2 × 1

2 × 2
= 0.618

Note that the last result could also have been obtained by applying the
sum rule to side l1.

Step 4 What is desired is the angle factor F14. We note that any radiation that
passes across the line 4′ from the bottom has to arrive on 4. Hence, the
angle factor between 1 and 4 should be the same as the angle factor
between 1 and 4′. Hence we have F14 = 0.618.

Step 5 The angle factor between 4 and 1 may be obtained by reciprocity as

F41 = l1
l4
F14 = 2

π
× 0.618 = 0.393

Step 6 The crossed string rule is applied to get either F23 or F32 which are equal
to each other because of symmetry. We have

F23 = F32 = (d1 + d2) − (l1 + l ′4)
2l2

= 2
√
5 − 2 × 2

2 × 1
= 0.236

Step 7 By symmetry, it is clear that F24′ = F34′ = F21 = F31 = 0.382.
Step 8 Again we see that the angle factor between 2 and 4′ or 3 and 4′ is the

same as that between 2 and 4 or 3 and 4. Hence, we have F24 = F24′ =
F34 = F34′ = 0.382.

Step 9 Reciprocity will now yield the remaining angle factors.

F42 = F43 = l2
l4
F24 = 1

π
× 0.382 = 0.122

Step 10 The application of the sum rule to surface 4 will now yield its self-angle
factor as

F44 = 1 − F41 − F42 − F43 = 1 − 0.393 − 2 × 0.122 = 0.363

The angle factors may be presented in the matrix form.

⎡
⎢⎢⎣
F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0.191 0.191 0.618
0.382 0 0.236 0.382
0.382 0.236 0 0.382
0.393 0.122 0.122 0.363

⎤
⎥⎥⎦
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Example 10.2

A very long tunnel has the shape of an isosceles triangle as shown in Fig. 10.7.
The tunnel has a thin partition wall down the middle as shown. Determine all the
relevant angle factors for diffuse radiant interchange among the surfaces that make
up the tunnel. Also, bring out the effect of shadowing by comparing FAB−DC in the
presence and absence of the partition.

Solution:
In all, there are 8 surfaces in this two-dimensional enclosure, considering the two
sides of the partition (represented by DEl facing ABD and DEr facing ACD)
and the gap (represented by AEl facing ABD and AEr facing ACD) as individual
surfaces.

Step 1 The lengths of all the sides are first calculated. Since the triangle ABC
is an isosceles triangle, AB = AC . Also BD = DC = BC

2 = 2
2 = 1 m

since the partition runs down the middle of the tunnel. Then AB =
AC = √

AD2 + BD2 = √
22 + 12 = 2.236 m. In the calculations, we

also require BE and CE that are equal to each other and given by
BE = CE = √

DE2 + BD2 = √
12 + 12 = 1.414 m. Now we are ready

to calculate the angle factors.
Step 2 Since all surfaces are flat, all self-angle factors are zero. Because of sym-

metry, we note the following:

FBD−AB = FDC−AC FBD−DEl = FDC−DEr

FBD−AC = FDC−AB FAB−DEl = FAC−DEr

FAB−BD = FAC−DC FAB−AC = FAC−AB

FAB−DC = FAC−BD

Reciprocity will indicate other similar equalities. The reader may draw up
the complete list based on these.
We look at individual angle factors now.

Step 3 Angle factor FAB−BD :
This may be obtained by applying the triangle formula to triangle ABD as

Fig. 10.7 Cross section of the tunnel in Example 10.2
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FAB−BD = AB + BD − AD

2AB
= 2.236 + 1 − 2

2 × 2.236
= 0.276

Step 4 Angle factor FAB−DEl :
This requires the application of the decomposition rule. We determine first
the angle factors FAB−ADl and FAB−AEl . The former is obtained by the use
of the sum rule applied to surface AB.

FAB−ADl = 1 − FAB−BD = 1 − 0.276 = 0.724

The latter is obtained by the use of the triangle formula applied to triangle
ABE.

FAB−AEl = AB + AEl − BE

2AB
= 2.236 + 1 − 1.414

2 × 2.236
= 0.407

Using the decomposition rule, we get

FAB−DEl = FAB−ADl − FAB−AEl = 0.724 − 0.407 = 0.317

Step 5 Angle factor FBD−AC = FDC−AB :
From the figure, it is clear that this angle factor is the same as FBD−AEl =
FDC−AEr which may be obtained again by the use of the decomposition
rule as done below. Applying the triangle formula to triangle ABD, we
have

FBD−ADl = BD + ADl − AB

2 × BD
= 1 + 2 − 2.236

2 × 1
= 0.382

Applying the triangle formula to triangle BED, we have

FBD−EDl = BD + EDl − BE

2 × BD
= 1 + 1 − 1.414

2 × 1
= 0.293

By the decomposition rule, we then have

FBD−AEl = FBD−ADl − FBD−EDl = 0.382 − 0.293 = 0.089

We thus have FBD−AC = FDC−AB = 0.089. Using the reciprocity rule, we
then have

FAB−DC = FAC−BD = DC

AB
FDC−AB = 1

2.236
× 0.089 = 0.040

Step 6 Angle factor FAB−AC = FAC−AB :
By inspection of the figure, it is clear that FAB−AEl = FAB−(AC+DC) =
0.407 as obtained earlier. By decomposition rule, we then have
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FAB−AC = FAB−(AC+DC) − FAB−DC = 0.407 − 0.040 = 0.367

Alternately, this angle factor may be determined by using the crossed
string method. Assume that a string is tightly stretched between B and
C . Obviously, the string will be represented by BEC . AB − BEC − CA
may be treated as a triangle that has three convex sides. The triangle rule
may be applied to this to get

FAB−AC = AB + AC − (BE + EC)

2AB

= 2AB − 2BE

2AB
= 2.236 − 1.414

2.236
= 0.367

Table10.1 summarizes the results for this example.
Step 7 Angle factor FAB−DC intheabsenceofthepartition :

We need to use the decomposition rule to obtain the desired angle factor.
By applying the triangle formula to ABC , we get

FAB−BC = AB + BC − AC

2AB
= 2.236 + 2 − 2.236

2 × 2.236
= 0.447

Applying the triangle formula to triangle ABD, we get

FAB−BD = AB + BD − AD

2AB
= 2.236 + 1 − 2

2 × 2.236
= 0.276

By the decomposition rule we then get, in the absence of the partition,

FAB−DC = FAB−BC − FAB−BD = 0.447 − 0.276 = 0.171

Step 8 Observation: On comparison, it is seen that the the effect of the partition
(shadowing body) is to reduce the angle factor between AB and DC from
0.171 to a mere 0.04!

Table 10.1 Angle factors in Example 10.2

FAB−BD 0.276 FBD−AB 0.618 FDEl−AB 0.707

FAC−CD FDC−AC FDEr−AC

FAB−DEl 0.317 FBD−DEl 0.293 FDEl−BD 0.293

FAC−DEr FDC−DEr FDEr−DC

FAB−AC 0.367 FBD−AC 0.089

FAC−AB FDC−AB

FAB−DC 0.04

FAC−BD
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Example 10.3

Cross sections of two hexagonal ducts are shown in Fig. 10.8. Lengths of some
of the sides are specified as under:

• Hexagonat left: AB = CD = 0.75; AC = BD = 1; AE = EC = BF = DF =
0.625

• Hexagon at right: AB = CD = 0.75; AE = CE = BF = DF = 0.52

Determine the diffuse angle factor between AB and CD in each case.

Solution :
Hexagon at left; Fig. 10.8a:
We shall use the crossed string method for solving the problem. We consider the
rectangle ABDC and note that the appropriate crossed lengths are:

BC =
√
AB2 + AC2 =

√
0.752 + 12 = 1.25

AD =
√
AB2 + BD2 =

√
0.752 + 12 = 1.25

Then the crossed string method gives

FAB−CD = (AD + BC) − (AC + BD)

2AB
= (2 × 1.25) − (2 × 1)

2 × 0.75
= 0.333

Hexagon at right; Fig. 10.8b:
The crossed lengths remain the same. The straight lengths are replaced by AE + EC
and BF + DF . We apply the crossed string method to the polygon AE − EC −
CD − DF − FB − BA to get

FAB−CD = (AD + BC) − (AE + EC + BF + DF)

2AB

= (2 × 1.25) − (2 × 1.04)

2 × 0.75
= 0.28

Fig. 10.8 Cross sections of
ducts in Example 10.3
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Comment: The reduction in the angle factor is due solely to the shadowing effect in
the second case!

10.2.4 Three-Dimensional Enclosures

Enclosures encountered in engineering applications generally involve surfaces ori-
ented in three-dimensional space such that the angle factor determination is more
complex than the simple analysis that involved only lengths of sides in the case of
two-dimensional enclosures. A catalog of angle factors and the vast literature avail-
able on these have been made by Howell.3 In Appendix G, we present angle factors
for commonly encountered geometries.

Rule of Corresponding Corners:
Apart from the data presented in Appendix G, angle factor algebra and angle factor
rules provide additional resources for evaluating angle factors. One of these, the
decomposition rule, has already been presented. Another useful rule dealing with
rectangles is the rule of corresponding corners that is illustrated using Fig. 10.9.

Consider the small rectangles shown numbered from 1 through 4. These smaller
rectangles are obtained by drawing lines parallel to the edges of the larger rectangles
as indicated. By writing down the angle factor relations explicitly in terms of double
integrals over each of the areas that make up the corresponding corner configurations,
it is possible to show that the following hold:

A1F12 = A3F34 and A2F21 = A4F43 (10.27)

Fig. 10.9 Rule of
corresponding corners

1
2

3

4

3Catalog is accessible at http://www.me.utexas.edu/~howell/index.html.

http://www.me.utexas.edu/~howell/index.html
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Example 10.4

Consider an enclosure consisting of diffuse walls in the form of a cube. Determine
all the required angle factors.

Solution:
Refer to Fig. G.1. For a cubical enclosure, a = b = c and hence X = a

b = 1 and
Y = b

c = 1. All angle factors between adjacent sides are equal and those between
opposite sides are equal. If we determine any one of them, all the angle factors may
be determined by angle factor algebra.

Consider the angle factor between opposite sides. The angle factor is read from
Fig. G.2 with X = Y = 1 to get FOpposite sides ≈ 0.2.4 The sum rule now gives

FAdjacent sides = (1 − FOpposite sides)

4
= 1 − 0.2

4
= 0.2

Amore accurate valuewouldbe0.20004.Thevalues readoff the graph are sufficiently
accurate for our purpose here. However, the use of accurate values are important in
analysis as pointed out in the appropriate literature.

Evaluation of View Factors in Complex Arrangements
Configuration involving rectangles
We shall look at some configurations for which the graphical data of angle factors
between rectangles may be made use of. Angle factors between rectangles that are
shown in Fig. 10.10a, b are considered. The first configuration consists of two per-
pendicular rectangles touching at one corner. The angle between the planes of the two
rectangles is 90◦. The second configuration consists of two parallel rectangles with
an offset. Both these configurations are easily handled using graphical data given in

1
2

4

3 (a)

3

4

2

1 (b)

Fig. 10.10 Configurations involving rectangles

4A more accurate value is obtained by calculation as 0.19982.
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Figs. G.2 and G.3 and angle factor algebra. The following development is common
to both configurations.

With reference to Fig. 10.10a, it is clear that F14, F32, and F(1+3)−(2+4) are evalu-
ated using the results for two perpendicular rectangles sharing a common edge. With
reference to Fig. 10.10b, it is clear that F14, F32, and F(1+3)−(2+4) are evaluated using
the results for two parallel rectangles of equal size. From the law of corresponding
corners, it is also clear that the following should hold:

A1F12 = A3F34 (10.28)

Using the decomposition rule, we have

A1+3F(1+3)−(2+4) = A1+3F(1+3)−2 + A1+3F(1+3)−4 (10.29)

Using reciprocity, followed by the decomposition rule, the first term on the right-hand
side of Eq.10.29 is written as

A1+3F(1+3)−2 = A2F2−(1+3) = A2(F21 + F23) (10.30)

Using the reciprocity rule, the above may also be rewritten as

A1+3F(1+3)−2 = A1F12 + A3F32 (10.31)

A similar procedure is used to write the last term in Eq.10.29 as

A1+3F(1+3)−4 = A4(F41 + F43) = A1F14 + A3F34 (10.32)

Introducing 10.31, 10.32 in 10.29, we then have

A1+3F(1+3)−(2+4) = A1F12 + A3F32 + A1F14 + A3F34

which becomes, with Eq.10.28,

A1+3F(1+3)−(2+4) = 2A1F12 + A1F14 + A3F32

This equation may be rearranged as

F12 = A1+3

A1
F(1+3)−(2+4) − F14

2
− A3

2A1
F32 (10.33)

All the angle factors on the right-hand side of Eq. 10.33 are read off either from Figs.
G.2 or G.3.
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Fig. 10.11 Configuration
for Example 10.5

90
1m

0.5m

0.5m

0.5m

1

3

2

Example 10.5

Determine the angle factor F12 for the configuration shown in Fig. 10.11. Use the
data presented in Fig. G.3 and angle factor algebra.

Solution:
Angle factor F(2+3)−1 :
These are two perpendicular rectangles that share a common edge. Hence, we may
use Fig. G.3 to determine F(2+3)−1. We have a = 1 m, b = 0.5 m, and c = 1 m. Thus
Z = a

b = 1
0.5 = 2 and Y = b

c = 0.5
1 = 0.5 or Y ′ = 1

Y = 2. From Fig. G.3, we read
off the angle factor as F(2+3)−1 = 0.15.5 A more accurate value from Table G.4 is
0.14930.

Angle factor F31 :
Again, these are two perpendicular rectangles that share a common edge. We have
for this configuration a = 1 m, b = 0.5 m, and c = 0.5 m. Thus, we have Z = a

b =
1
0.5 = 2 and Y = b

c = 0.5
0.5 = 1 or Y ′ = 1

Y = 1. Again, we read off the angle factor
as F31 = 0.24 from Fig. G.3. A more accurate value from Table G.3 is 0.23285
(comment in the previous footnote is valid here also).
View factor F12 :
By reciprocity, we then get

F1−(2+3) = A2+3

A1
F(2+3)−1 = 1 × 0.5

1 × 0.5
× 0.15 = 0.15

or by the use of a more accurate value

F1−(2+3) = A2+3

A1
F(2+3)−1 = 1 × 0.5

1 × 0.5
× 0.1493 = 0.1493

5Note that F1−(2+3) may be obtained directly by interchanging Z and Y ′ values.
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By reciprocity, we also get

F13 = A3

A1
F31 = 0.5 × 0.5

1 × 0.5
× 0.24 = 0.12

or by the use of a more accurate value

F13 = A3

A1
F31 = 0.5 × 0.5

1 × 0.5
× 0.23285 = 0.11643

By the decomposition rule, we then get

F12 = F1−(2+3) − F13 = 0.15 − 0.12 = 0.03

However, if we use the more accurate tabulated data, the above result is modified as

F12 = F1−(2+3) − F13 = 0.14930 − 0.11643 = 0.03287 ≈ 0.033

Configuration involving circular disks
Anexampleof a configuration involvingparallel diskgeometry is shown inFig. 10.12.
It is desired to determine F13, the angle factor between the top circle 1 and the annulus
3. This is quite simply done by the use of the decomposition rule. We have

F13 = F1−(2+3) − F12 (10.34)

Both angle factors on the right-hand side of Eq.10.34 may be obtained by the use of
Fig. G.4. Using reciprocity, we may easily obtain also the angle factor between the
annulus and the top disk as

F31 = A1

A3
(F1−(2+3) − F12) (10.35)

Now, we look at how to obtain the angle factor between the annulus and the two
curved surfaces labeled 4 and 5. We note that all the radiation that leaves 3 and

Fig. 10.12 Configuration
involving circular disks

r2

r3

r1
1

23

5 4 L
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Fig. 10.13 Configuration
for Example 10.6 Top - t

Bottom - b

Side - s

30

reaches 1 should necessarily pass through 4. Hence, the angle factor between 3 and
1 is also the angle factor between 3 and 4, i.e., F31 = F34. The sum rule applied to
surface 3 will then give the important result

F35 = 1 − F31 = 1 − A1

A3
(F1−(2+3) − F12) (10.36)

The application again of the sum rule to surface 1 yields the angle factor F15 as

F15 = 1 − F1−(2+3) (10.37)

It is left as an exercise to the reader to obtain all the other angle factors that are
required in this case.

Example 10.6

A frustum of a cone (see Fig. 10.13) has a base of diameter Db = 1 m, height
H = 0.3 m, and semi-cone angle α = 30◦. Determine all the diffuse angle factors
for this configuration.

Solution:

Step 1 The base diameter is specified as Db = 1 m. The height of the frustum of
cone is given as H = 0.3 m. The semi-cone angle is specified as α = 30◦.
Let Dt be the diameter of the top of the frustum. From the geometry, we
have

tan α = Db − Dt

2H
or Dt = Db − 2H tan α

Dt = 1 − 2 × 0.3 × tan 30◦ = 0.654 m

Step 2 Area calculations:

Base: Ab = πD2
b

4 = π×12

4 = 0.785 m2

Top: At = πD2
t

4 = π×0.6542

4 = 0.336 m2

Curved side: As = π(Db+Dt )

2
H

cosα
= π(1+0.654)

2
0.3

cos 30◦ = 0.9 m2
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Step 3 Angle factor calculations:
The base to top view factor Fbt is first calculated. The two non-dimensional
ratios that characterize the geometry are 1

R1
= H

rb
= 0.3

0.5 = 0.6 and R2 =
rt
h = 0.654

2×0.3 = 1.09. From Fig. G.4, we read off the base to top view factor
as Fbt = 0.284 (interpolated between curves for R2 = 1 and R2 = 1.5). A
more accurate value is obtained by the use of Table G.5 as

Fbt = 0.24388 + (0.47491 − 0.24388) × 0.09

0.5
= 0.28622 ≈ 0.286

The value interpolated from the figure is good enough. Using reciprocity,
the top to base view factor is obtained as

Ftb = Ab

At
Fbt = 0.785

0.336
× 0.284 = 0.664

Applying the sum rule to the bottom surface, we then have

Fbs = 1 − Fbt = 1 − 0.284 = 0.716

Applying the sum rule to the top surface, we have

Fts = 1 − Ftb = 1 − 0.664 = 0.336

The view factors from the curved side to the other two sides may be
calculated by the application of reciprocity rule. Thus

Fsb = Ab

As
Fbs = 0.785

0.9
× 0.716 = 0.624

Fst = At

As
Fts = 0.336

0.9
× 0.336 = 0.125

Since the curved surface s is concave, it is able to see itself and hence the
self-view factor is Fss is non-zero. The self-view factor for the curved side
is obtained by the application of the sum rule to it.

Fss = 1 − Fsb − Fst = 1 − 0.624 − 0.125 = 0.251

Step 4 Thus all the angle factors are available. These are presented in the form of
a matrix:
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⎡
⎣ Fbb Fbt Fbs

Ftb Ftt Fts

Fsb Fst Fss

⎤
⎦ =

⎡
⎣ 0 0.284 0.716
0.664 0 0.336
0.624 0.125 0.251

⎤
⎦

Note that only one angle factor was calculated using the graph presented
in Fig. G.4. All other angle factors have been deduced using angle factor
algebra.

10.3 Radiation Heat Transfer in Enclosures with Gray
Diffuse Walls

Radiation heat transfer calculations require the development of the basic methodol-
ogy, when the number of surfaces in the enclosures is not limited to a small number
like two or three. In this section, we treat simple cases first, in order to understand
the basic ideas before presenting general methods applicable to an enclosure with
any number of surfaces. The method of detailed balancing is used in a typical simple
application to begin our study.

10.3.1 Method of Detailed Balancing

Consider two isothermal infinite parallel planes as shown in Fig. 10.14. Consider a
test area element on surface 2 as shown.

Fig. 10.14 Two infinite parallel planes exchanging radiation
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Emitted power from this area element per unit area is given by ε2σT 4
2 . This is

incident totally on surface 1 because the angle factor F12 = F21 = 1. An amount
of power equal to ε2σT 4

2 × ρ1 is reflected by surface 1 while the balance equal to
ε2σT 4

2 × α1 is absorbed by surface 2. The reflected part, viz., ε2σT 4
2 × ρ1 undergoes

a second reflection at surface 2 and an amount equal to ε2σT 4
2 × ρ1 × ρ2 is incident on

surface 1. Surface 1 absorbs (ε2σT 4
2 × ρ1 × ρ2)α1 out of this. This process continues

endlessly so that the amount of power emitted by surface 2 that is absorbed by surface
1 is

P21 = ε2σT
4
2 α1[1 + ρ1ρ2 + (ρ1ρ2)

2 + · · · ] (10.38)

The quantity in square brackets is a geometrical progression with common ratio ρ1ρ2

that has the sum (to infinite terms) given by 1
1−ρ1ρ2

. Thus, power emitted by surface
2 that is absorbed by surface 1, per unit area, is

P21 = ε2σT
4
2 α1 × 1

1 − ρ1ρ2
(10.39)

Similarly, the power emitted by surface 1 that is absorbed by surface 2 is given by

P12 = ε1σT
4
1 α2 × 1

1 − ρ1ρ2
(10.40)

Hence, the net Radiant Flux transferred from 1 to 2 is obtained as

q1−2 = P12 − P21 = ε1σT 4
1 α2 − ε2σT 4

2 α1

1 − ρ1ρ2
(10.41)

Since the two surfaces are gray, we have α1 = ε1 and α2 = ε2 . Also ρ1 = 1 − ε1
and ρ2 = 1 − ε2. With these, Eq.10.41 may be simplified to read

q1−2 = ε1ε2σ(T 4
1 − T 4

2 )

1 − (1 − ε1)(1 − ε2)
= σ(T 4

1 − T 4
2 )(

1

ε1
+ 1

ε2
− 1

) (10.42)

The method of detailed balancing is not a convenient method to use for a general
problem involving radiation heat transfer among a large number of surfaces. The
method has been presented here with the sole purpose of bringing out the details of
processes that are involved in such problems. A general radiosity irradiation method
will be presented later. An interesting application of Eq.10.42 to that of radiation
shields is given below.
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10.3.2 Radiation Shields

A radiation shield is useful in reducing the heat transfer between two surfaces that
have specified surface properties and temperatures. Assume, for simplicity, ε1 =
ε2 = ε. Introduce a third infinite plane (thin foil) in between surfaces 1 and 2 as
shown in Fig. 10.15. Let the foil have a common emissivity of ε3 on both its sides.

Under steady conditions, it is obvious that we should have q1−3 = q3−2 = q1−2.
Each of the q’s may be evaluated using a formula of type given by Eq.10.42. Thus,
we have

q1−3 = σ(T 4
1 − T 4

3 )(
1

ε
+ 1

ε3
− 1

) , and q3−2 = σ(T 4
3 − T 4

2 )(
1

ε3
+ 1

ε
− 1

)

In both of the above equations, the unknown temperature T3 will adjust to a value
such that these fluxes are equal. Since the denominators in these two relations are
identical, the numerators must be equal and hence

T 4
1 − T 4

3 = T 4
3 − T 4

2 or T 4
3 = T 4

1 + T 4
2

2
(10.43)

Substituting this in expressions for either q1−3 or q3−2, we get the important result

q1−2 = q1−3 = q3−2 =
σ
(
T 4
1 − T 4

1 +T 4
2

2

)
(
1

ε
+ 1

ε3
− 1

) = σ(T 4
1 − T 4

2 )

2

(
1

ε
+ 1

ε3
− 1

) (10.44)

In case all the ε’s are the same, the presence of a radiation shield reduces the heat
flux by a factor of 2.

Fig. 10.15 Sketch for
radiation shield analysis
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Multi-layer Insulation or MLI
In practice, it is common to use many radiation shields in the form of a Multi-
Layer Insulation (MLI) blanket consisting of polyimide or polyester layers (5
to 30 layers) separated by very small diameter thread made of polyester or
nylon (in the form of a net). Each layer has vapor-deposited aluminum on both
sides thus providing very low emissivity. In principle, the analysis given above
may be extended, assuming that the layers of the MLI do not contact each
other except through the spacer threads and provide conduction paths, to get a
reduction of radiation transfer by the factor 1

n+1 where n is the number of layers
in the blanket. MLI blankets are commonly used in satellite applications.

Example 10.7

Two very large surfaces are maintained at 300 K and 400 K, respectively. Both
surfaces have an emissivity of 0.85. A third very thin plate of very large dimensions
is placed midway between the two surfaces. This surface has an emissivity of 0.05
on both sides. Compare the heat transfer per unit area in the two cases, with and
without the third surface. Determine the temperature of the third surface.

Solution:

Step 1 The nomenclature used in this example is as given in Fig. 10.15. Given
data:

T1 = 300K, T2 = 400K, ε1 = ε2 = 0.85, ε3 = 0.05

Step 2 In the absence of the third surface, the heat transfer from 1 to 2 per unit
area (using Eq.10.42) is

q1−2,No shield = σ(T 4
1 − T 4

2 )
1
ε1

+ 1
ε2

− 1
= 5.67 × 10−8(3004 − 4004)

1
0.85 + 1

0.85 − 1
= −733.4 W/m2

Step 3 In the presence of the shield, Eq. 10.44 gives

q1−2,Shield = σ(T 4
1 − T 4

2 )

2
(

1
ε1

+ 1
ε3

− 1
) = 5.67 × 10−8(3004 − 4004)

2
(

1
0.85 + 1

0.05 − 1
) = −24.6 W/m2

The negative sign indicates that radiation transfer is from surface 2 to
surface 1 in both cases.

Step 4 The temperature of the third surface from Eq.10.43 is
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T3 =
(
T 4
1 + T 4

2

2

) 1
4

=
(
3004 + 4004

2

) 1
4

= 360.3 K

Step 5 The heat transfer, in the presence of the shield, is roughly 1
30 of the heat

transfer in the absence of the shield!

10.3.3 Radiosity Irradiation Method of Enclosure Analysis

The radiosity irradiation formulation is a general method applicable to any number
of isothermal diffusely radiating, gray surfaces that make up an enclosure.

Assumptions made in the formulation are
• Each surface of an enclosure is at a uniform temperature.
• Radiosity of such a surface is uniform over its extent.
• Irradiation over such a surface is also uniform over its extent.

The second and third assumptions are somewhat difficult to justify. However, these
assumptions are made to make the formulation tractable. When these assumptions
are relaxed, the formulation requiresmore advanced treatment that will be considered
later on.

Radiosity formulation
Consider an evacuated enclosure consisting of N diffusely radiating, gray and isother-
mal surfaces. The radiosity of the i th surface Ji , is defined as the sum of its emissive
power Ei and the reflected irradiation Gi . Thus, all the quantities are defined per unit
area of the i th surface. We may thus write the expression for radiosity as

Ji = Ei + ρiGi = εiσT
4
i + (1 − εi )Gi (10.45)

where the gray assumption has beenmade towrite the reflectance in terms of emissiv-
ity of the surface.We know that the total radiation leaving a surface j in the enclosure
is A j J j . The fraction of this radiation that reaches the i th surface is Fji A j J j . Thus,
the radiation that leaves the j th surface and reaches the i th surface per unit area of
surface i is Fji A j J j

Ai
. Using the angle factor identity A j Fji = Ai Fi j , this expression

simplifies to Fi j J j . Since the surface receives radiation from all surfaces in the enclo-
sure (possibly including itself), the radiation received by surface i per unit area, i.e.,
the irradiation Gi is given by
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Gi =
N∑
j=1

Fi j J j (10.46)

Using Eqs. 10.46 in 10.45, we get the radiosity of surface i in terms of radiosities of
all the surfaces as

Ji = εiσT
4
i + (1 − εi )

N∑
j=1

Fi j J j (10.47)

In enclosure analysis, it is possible to have two types of surfaces. In the first case,
we may specify the temperature in which case equation such as 10.47 is written for
it. In the second case, the surface may have a specified heat flux. For example, a
surface that is heated by an external means, such as in a furnace, has the heat flux
specified, but the temperature is unknown. A special case of the latter is a surface
that is adiabatic, in which case the heat flux is zero and hence the temperature is
unknown.

To take care of the second case, we shall look at the heat flux at the i th surface.
The heat flux at surface i is obviously given by the difference between the radiosity
and the irradiation. Thus,

qi = Ji − Gi = Ji −
N∑
j=1

Fi j J j (10.48)

where the irradiation has been written in terms of radiosities using Eq.10.46. Alter-
nately, we may also solve for Gi using Eq.10.45 to get the heat flux as

qi = Ji − Ji − εiσT 4
i

1 − εi
= εi

1 − εi
· [σT 4

i − Ji ] (10.49)

when εi �= 1, i.e., if the surface is not black. However, for a black surface with εi = 1,
from Eq.10.45 we have the trivial result Ji = σT 4

i . Thus, equation such as Eq.10.48
is written down for a surface with specified heat flux such that the unknown tempera-
ture of the surface does not appear in the formulation. The heat flux for a surface with
specified temperature is obtained directly by the use of Eq. 10.49. The temperature
of the surface with specified heat flux, however, is determined by solving Eq.10.49
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for temperature in terms of the radiosity. Thus, we have the temperature of the heat
flux specified surface as

Ti =
[
Ji
σ

+ 1 − εi

εi
· qi

σ

] 1
4

(10.50)

In the special case of an adiabatic surface (the surface is said to be a reradiating
surface), qi = 0 and the temperature is given by the expression

Ti =
[
Ji
σ

] 1
4

(10.51)

which is independent of εi !
Solution of radiosity equations:
In summary, we write equations based on 10.47 for all the surfaces in the enclosure
with specified temperatures. For those surfaces for which the heat flux is specified,
equations such as 10.48 may be written down. We will then have N simultaneous
linear equations for the N unknown radiosities. These equations are solved to get
the radiosities of all the surfaces in the enclosure. Then the heat flux for T speci-
fied surfaces are obtained by using expression 10.49. For q specified surfaces, the
corresponding temperatures are obtained by using 10.50.

Application of Radiosity Method to Two-Surface Enclosures
We consider a simple two-surface enclosure consisting of a smaller convex surface
placed inside a larger concave surface as shown in Fig. 10.16a. This applies to a
two-dimensional enclosure in which the figure represents the cross section of a duct
with internal and external boundaries represented by the outer and inner curves. It
also applies to the case where the inner surface is that of a smaller convex shell and
the outer surface is the inner closed surface of an outer concave shell. As shown in
Fig. 10.16b, the former case is typical of a very long cylinder of radius R1 inside an

1

2

1: Convex surface A1, T1, 1
2: Concave surface A2, T2, 2

(a)

R1, 1,T1

R2, 2,T2

(b)

Fig. 10.16 Two-surface enclosure configurations
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outer very long cylinder of radius R2. An example of the latter is the case of a smaller
sphere of radius R1 placed inside a hollow sphere of larger radius R2.

Required angle factors are easily evaluated. Surface 1 is convex and hence F11 = 0
and F12 = 1. By reciprocity, we get F21 = A1

A2
. Hence, by the sum rule, F22 = 1 −

F21 = 1 − A1
A2
. Note that the placement of the inner surface anywhere within the

outer surface is all that is required for these to hold. Note that in the case of cylinders
A1
A2

= R1
R2

and in the case of spheres A1
A2

=
(

R1
R2

)2
.

Since the temperatures are specified for both surfaces, radiosity equations are
written down using Eq.10.47 as

J1 = ε1σT
4
1 + (1 − ε1)J2 (10.52)

J2 = ε2σT
4
2 + (1 − ε2)

A1

A2
J1 +

(
1 − A1

A2

)
J2 (10.53)

Using Eq.10.52 for J1 in 10.53, we get

J2 = ε2σT
4
2 + (1 − ε2)

A1

A2
[ε1σT 4

1 + (1 − ε1)J2] +
(
1 − A1

A2

)
J2

This may be solved for J2 as

J2 = ε2σT 4
2 + ε1(1 − ε2) · A1

A2
σT 4

1

ε2 + ε1(1 − ε2) · A1
A2

(10.54)

The heat flux at surface 2 may at once be evaluated using 10.49 as

q2 = ε2

1 − ε2

[
σT 4

2 − ε2σT 4
2 + ε1(1 − ε2) · A1

A2
σT 4

1

ε2 + ε1(1 − ε2) · A1
A2

]
= σ(T 4

2 − T 4
1 ) · A1

A2

1
ε1

+ A1
A2

(
1
ε2

− 1
)

(10.55)
The conservation of radiant energy requires that q1A1 + q2A2 = 0 and hence the
radiant heat flux at the inner surface may be written as

q1 = σ(T 4
1 − T 4

2 )

1
ε1

+ A1
A2

(
1
ε2

− 1
) (10.56)

Expression 10.56 has three interesting limiting cases.
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1. When A1
A2

→ 0, i.e., when a small object is placed inside a large room or
enclosure, q1 ≈ ε1σ(T 4

1 − T 4
2 ). The emissivity of the second surface has

no role to play!
2. When A1

A2
→ 1, the case corresponds to two very large surfaces with a

very narrow gap and Eq.10.56 reduces to Eq.10.42 obtained earlier by the
method of detailed balancing for the case of two large parallel planes.

3. In case both surfaces are black, i.e., ε1 = ε2 = 1, Eq.10.56 reduces to q1 =
σ(T 4

1 − T 4
2 ).

Example 10.8

A large thermos flask consists of two thin-walled coaxial cylinders with a narrow gap
such that the radius ratio R1

R2
= 0.95. The surfaces that face each other are silvered

and have an emissivity of 0.05 each. The annulus is evacuated. The length of the flask
is L = 0.3 m and the inner radius is R1 = 0.05 m. Calculate the heat loss when the
thermos flask is filled with hot water such that T1 = 373K while the outer cylinder
is at a temperature of T2 = 300 K. Also calculate the instantaneous rate of change
of the temperature of hot water, assuming it to be a lumped system.

Solution:

Step 1 The radius of the inner wall is specified as R1 = 0.05m. The radius ratio is
0.95 and hence the radius of the outer wall is R2 = R1

0.95 = 0.05
0.95 = 0.0526

m. The annular gap is thus obtained as s = R2 − R1 = 0.0526 − 0.05 =
0.0026 m. Since the length of the flask is some 6 times the radius and 100
times the gap, it is admissible to ignore end effects in the calculation. Thus,
the two surfaces may be assumed to form a two-dimensional duct-like
enclosure. The area ratio may hence be assumed as A1

A2
= R1

R2
= 0.95. The

given data is written down as ε1 = ε2 = 0.05; T1 = 373K ; T2 = 300K.
Step 2 Expression 10.56 may now be used to calculate the heat loss.

q1 = 5.67 × 10−8(3734 − 3004)
1

0.05
+ 0.95 ×

(
1

0.05
− 1

) = 16.77 W/m2

The total heat loss is a product of the heat flux q1 and the area A1. The
area is given by

A1 = 2πR1L = 2 × π × 0.05 × 0.3 = 0.0942 m2

Hence, the heat loss from surface 1 (and thus the heat loss from hot water
within the flask) is
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Q1 = q1A1 = 16.77 × 0.0942 = 1.58 W

Step 3 The initial rate of cooling of hot water (temperature =373 K or 100◦ C)
contained inside the flask may be calculated now. The properties of water
at 373 K are taken as
Density of water:ρ = 958.4 kg/m3, Specific heat of water:Cp = 4211
J/kg K. Volume of water in the tank is calculated as

V = πR2
1L = π × 0.052 × 0.3 = 0.002356 m3

Hence, the mass of water in the flask is

M = ρV = 958.4 × 0.002356 = 2.258 kg

Using the lumped system approximation, we then have the initial cooling
rate given by

dT

dt

∣∣∣∣
t=0

= − Q1

MCp
= − 1.58

2.258 × 4211
= −1.662 × 10−4 ◦

C/s or = 0.6◦C/h

Cavity Radiator—Sources of Black Body Radiation:
The analysis of a two-surface enclosure, by the radiosity irradiationmethod, is useful
inmodeling a cavity radiator that is used as a source of black body radiation. A typical
laboratory source of black body radiation is shown schematically in Fig. 10.17. The
source consists of a cavity (in this case, conical) that is electrically heated. The cavity
has an insert of a material like graphite. The cavity is encased in insulation as shown.
A small aperture as shown provides an outlet for radiation. A thermocouple is used to
measure the source temperature as well as for heater control to keep the temperature
at the desired level. As long as Aa

As
<< 1, as will be shown by the analysis below,

the radiation emanating from the aperture approximates closely the characteristics
of black body radiation. It is easily seen that the cavity radiator is essentially a
two-surface enclosure with the aperture acting as a convex surface (imagine that the
surface is a tightly stretched diaphragm across the opening) that is transparent to
radiation and is essentially a black surface. This is so since any radiation passing
out through the aperture does not return and hence is effectively absorbed by it! We
may identify the aperture Aa as surface 1 in our earlier discussion on the two-surface
enclosure problem. Similarly, we may identify As , the cavity surface, as surface 2. If
the surroundings are at a temperature much lower than the cavity wall temperature,
we may assume that the radiosity of the aperture is effectively zero, i.e., Ja = 0.
Hence, the radiosity of the cavity surface may be written down as

Js = εsσT
4
s + (1 − εs)

(
1 − Aa

As

)
Js
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Fig. 10.17 Black body radiation cavity

where the self-angle factor of the cavity surface has been written in terms of the area
ratio. We may solve the above for Js to get

Js = εsσT 4
s

1 − (1 − εs)
(
1 − Aa

As

) (10.57)

It is easily seen that the irradiation for the aperture is Fas Js = Js . Since its radiosity
is zero, the heat transfer (or loss) through the opening is given by

Qa = qa Aa = −Aa Js = −AaσT
4
s

⎡
⎣ εs

1 − (1 − εs)
(
1 − Aa

As

)
⎤
⎦

Equivalent emissivity
of cavity

(10.58)

The term within the large brackets on the right-hand side of Eq. 10.58 is referred to
as εeq , the equivalent emissivity of the cavity. Two limiting cases that are relevant
are

1. When the aperture area and the cavity surface area are equal, the equivalent
emissivity is the same as the emissivity of the cavity surface.

2. When the aperture area is very small compared to the area of the cavity
surface, the equivalent emissivity approaches unity, for any non-zero εs .
Thus, the aperture appears as a black body!

It is clear that εs close to 1 and
Aa
As

→ 0 are conducive to getting εeq very close to 1.
Thus, a deep cavity made of a material with high emissivity is desirable as a black



438 10 Radiation in Enclosures

body source. Figure10.18 shows a plot of the equivalent emissivity of a cavity as a
function of the area ratio. In practice, if we choose a surface with an emissivity close
to unity (graphite, as indicated in the figure, has an emissivity greater than 0.9), the
aperture will essentially radiate as a black body with the equivalent emissivity being
0.995 for an area ratio of 0.05.

A family of curves is shown for different values of εs . The increase in the effective
emissivity of a cavity may be physically explained by looking at what happens to a
typical ray of radiation that leaves a surface element of the cavity.

Figure10.19 shows that the ray will be reflected each time it hits the cavity wall
in a random direction since the cavity wall is assumed to be a diffuse surface. The
ray eventually gets out of the cavity, much weakened by the number of reflections
that take place. This argument may be justified by looking at what happens if the
arrows indicating the direction of the rays are reversed. A ray entering the cavity will
eventually be absorbed after a large number of reflections. Of course, there is a small
chance that a part of it may go back through the aperture. The multiple reflections
effectively make the cavity a black body!

Fig. 10.18 Characteristics
of a cavity radiator

Fig. 10.19 Cavity effect due
to multiple reflections

Cavity

dA

Aperture
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Rough surfaces may be visualized as having a large number of small cavities
adjacent to the surface. These minute cavities increase the effective emissivity of
the surface by the cavity effect and hence rough surfaces have higher emissivity as
opposed to smooth surfaces.

Example 10.9

A typical example of an enclosure with gray and diffuse walls is shown in Fig. 10.20.
The enclosure is a rectangular parallelepiped of length 1 m, width 0.5 m, and height
0.5 m. The top face identified as surface 1 is supplied with a heat input of 50 kW.
The bottom face identified as surface 2 is maintained at a temperature of 500 K. The
right face identified as surface 3 is maintained at a temperature of 600 K. The other
three sides (the front, the left, and the back faces) are specified as reradiating surfaces
and hence are clubbed together as a single surface 4 (it is concave). All surfaces are
specified to have a common emissivity of 0.8. Determine the temperatures of those
surfaces for which the heat fluxes are specified and the heat fluxes at the surfaces for
which the temperatures are specified.

Solution:
The solution is in two parts. In the first geometric part, the required angle factors
are evaluated. The second part uses the radiosity irradiation formulation to obtain
surface radiosities. The third part uses these radiosities to get the required answers.

1. Geometric part:
All the surfaces are either rectangles or consist of rectangles and hence the areas
are easily calculated and tabulated as shown in Table10.2. There are 4 surfaces and
hence the total number of angle factors is 42 = 16. However, there are 4C2 = 4!

2!2! = 6
reciprocity relations. Four expressions due to the sum rule are available. Out of 4
surfaces, 3 are flat and hence self-angle factors for these are zero. That is, there are 3
angle factors, which are known. Because of symmetry F13 = F23. Thus, the number
of angle factors that have to be independently determined is 16 − 6 − 4 − 3 − 1 = 2.
F12 and F31 are identified as the two angle factors that need to be independently

Fig. 10.20 An enclosure
with four surfaces for
Example 10.9

6 7

85

6 7

85
2

3

41

2
3

41

2

1

3

4 = Front(2376) + Back(1485) + Left(1265)
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Table 10.2 Areas in Example 10.8

Surface Area m2

1 1 × 0.5 = 0.5

2 1 × 0.5 = 0.5

3 0.5 × 0.5 = 0.25

4 1 × 0.5 + 1 × 0.5 + 0.5 × 0.5 = 1.25

determined. Surfaces 1 and 2 are two parallel and equal rectangles. Using the notation
of Fig. G.1, we have a = 1 m, b = 0.5 m, and c = 0.5 m. Hence, we have

X = a

c
= 1

0.5
= 2; Y = b

c
= 0.5

0.5
= 1

From Fig. G.2, we read off the required angle factor as F12 = 0.28. However, if we
use the results of Table G.1, the value is F12 = 0.28588 ≈ 0.286.

Surfaces 3 and 1 are two perpendicular rectangles sharing a common edge. Using
the notation of Fig. G.1, we have a = 1 m, b = 0.5 m, and c = 0.5 m. Hence, we
have

Z = a

b
= 1

0.5
= 2; Y = c

b
= 0.5

0.5
= 1 or Y ′ = 1

Y
= 1

From Table G.4, we read off the required angle factor as F31 = 0.23285 ≈ 0.233.
All other angle factors are obtained by any one of the following:

1. Symmetry condition
2. Reciprocity relation
3. Sum rule

Surface 1:
Since it is flat, the self-angle factor F11 = 0. The angle factor F12 has already been
obtained. By the use of the reciprocity rule, the angle factor between 1 and 3 is
obtained as

F13 = A3

A1
F31 = 0.5 × 0.5

1 × 0.5
× 0.233 = 0.116

Hence, the sum rule will give the remaining view factor as

F14 = 1 − F11 − F12 − F13 = 1 − 0 − 0.286 − 0.116 = 0.598

Surface 2:
Again F22 = 0 because the surface is flat. By symmetry F21 = F12 = 0.286. Also,
by symmetry F23 = F13 = 0.116. The sum rule then gives

F24 = 1 − F22 − F21 − F23 = 1 − 0 − 0.286 − 0.116 = 0.598
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Surface 3:
F33 = 0 since it is flat. By symmetry F32 = F31 = 0.233. Lastly, by the sum rule we
get

F34 = 1 − F33 − F32 − F31 = 1 − 0 − 0.233 − 0.233 = 0.534

Surface 4:
By reciprocity, we have

F41 = A1

A4
F14 = 0.5

1.25
× 0.598 = 0.239

By symmetry F42 = F41 = 0.239. By reciprocity

F43 = A3

A4
F34 = 0.25

1.25
× 0.534 = 0.107

Finally, by the sum rule we get

F44 = 1 − F41 − F42 − F43 = 1 − 0.239 − 0.239 − 0.107 = 0.415

The angle factor data is conveniently given in the form of a matrix. The two entries
shown in bold face are the only values obtained independently, i.e., without the use
of angle factor algebra.

⎡
⎢⎢⎣
F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0.286 0.116 0.598
0.286 0 0.116 0.598
0.233 0.233 0 0.534
0.239 0.239 0.107 0.415

⎤
⎥⎥⎦

2. Radiosity formulation and solution:
Surface 1: Heat flux specified
With Q1 = 50 kW and A1 = 0.5 m2, the heat flux at surface 1 is

q1 = Q1

A1
= 50000

0.5
= 100000 W/m2

But q1 = J1 − G1 and hence

(a) q1 = J1 − G1 = J1 − 0.286J2 − 0.116J3 − 0.598J4 = 100000

Surface 2: Temperature specified
Temperature has been specified on this surface as T2 = 500 K whose emissivity is
ε2 = 0.8. Hence, the emissive power of this surface is
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E2 = ε2σT
4
2 = 0.8 × 5.67 × 10−8 × 5004 = 2835 W/m2

The irradiation on this surface is

G2 = F21 J1 + F23 J3 + F24 J4 = 0.286J1 + 0.116J3 + 0.598J4

The radiosity equation for surface 2 is then written down as

J2 = E2 + (1 − ε2)G2 = 2835 + (1 − 0.8)(0.286J1 + 0.116J3 + 0.598J4)

This simplifies to

(b) − 0.057J1 + J2 − 0.023J3 − 0.120J4 = 2835

Surface 3: Temperature specified
Temperature has been specified on this surface as T3 = 600 K whose emissivity is
ε3 = 0.8. Hence, the emissive power of this surface is

E3 = ε3σT
4
2 = 0.8 × 5.67 × 10−8 × 6004 = 5878.7 W/m2

The irradiation on this surface is

G3 = F31 J1 + F32 J2 + F34 J4 = 0.233J1 + 0.233J2 + 0.534J4

The radiosity equation for surface 3 is then written down as

J3 = E3 + (1 − ε2)G3 = 5878.7 + (1 − 0.8)(0.233J1 + 0.233J2 + 0.534J4)

This simplifies to

(c) − 0.047J1 − 0.047J2 + J3 − 0.107J4 = 5878.7

Surface 4: Reradiating surface
Since this surface is reradiating, the heat flux q4 = 0 and hence J4 = G4. This may
be written as

J4 = G4 = F41 J1 + F42 J2 + F43 J3 + F44 J4
= 0.239J1 + 0.239J2 + 0.107J3 + 0.415J4

This may be rearranged as

(d) − 0.239J1 − 0.239J2 − 0.107J3 + 0.585J4 = 0
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The four equations (a) − (d) are solved simultaneously to obtain the four radiosi-
ties. One possible way of obtaining the solution is to eliminate J4 and reduce the
number of equations to three for the radiosities of the other three surfaces. The three
equations may be solved by Kramer’s rule. Another method of solution would be to
use the Gauss method of iteration. This has been discussed earlier while dealing with
numerical methods for solving heat conduction problems. The iteration would start
with assumed radiosities for surfaces 1 to 3. For surfaces 2 and 3, one starts with
J2 = E2 and J3 = E3. For surface 1 the starting value would be J1 = q1. Equation
(d) would then be used to get the first guess for J4. The iteration would stop when
the radiosities have converged to the desired level. This procedure was indeed used
to arrive at the following radiosity values:

J1 = 153765.6; J2 = 21169.4; J3 = 22096 and J4 = 75526 all in W/m2

3. Required answers:
Now, we are in a position to evaluate the desired answers set out in the problem.
Applying Eq.10.50 to surface 1, the unknown temperature T1 is obtained as

T1 =
⎡
⎢⎣

(1 − 0.8) × 100000

0.8
+ 153765.6

5.67 × 10−8

⎤
⎥⎦

1
4

= 1332.5 K

We apply Eq.10.51 to surface 4 to obtain the unknown temperature T4 as

T4 =
[

75526

5.67 × 10−8

] 1
4

= 1074.3 K

Applying Eq.10.49 to surface 2, we get the unknown heat flux q2 as

q2 = 0.8

1 − 0.8
× (5.67 × 10−8 × 5004 − 21169.4) = −70502.7 W/m2

Hence, the heat transfer from surface 2 is given by

Q2 = q2A2 = −70502.7 × (1 × 0.5) = −35251.4 W

Similarly, we get q3 as

q3 = 0.8

1 − 0.8
× (5.67 × 10−8 × 6004 − 22096) = −58990.9 W/m2

Hence, the heat transfer from surface 3 is given by

Q3 = q3A3 = −58990.9 × (0.5 × 0.5) = −14747.7 W
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We may check the calculations by performing power balance for the enclosure. Thus
4∑

i=1

qi Ai = 50000 − 35251.4 − 14747.7 = 0.9 W

Indeed the calculations have been performed with sufficient precision!

10.3.4 Electrical Analogy

The radiosity irradiation formulation may be approached alternately by the use of
electrical analogy. Starting from Eq.10.48, the heat flux for the i th surface in an N
surface enclosure may be written as

qi = Ji − Gi = Ji −
N∑
j=1

Fi j J j

= Ji ×
N∑
j=1

Fi j

equal to 1 by sum

rule applied to i

−
N∑
j=1

Fi j J j =
N∑
j=1

Fi j (Ji − Jj ) (10.59)

In writing the above, the sum rule has been applied to surface i . Equation10.59 may
be recast in the form analogous to Ohm’s law as

Qi = qi Ai =
N∑
j=1

Ji − Jj(
1

Ai Fi j

) =
N∑
j=1

Qi j (10.60)

With Ji − Jj representing a potential difference, Qi j representing current, we may
identify Ri j = 1

Ai Fi j
as a resistance that is usually referred to as the “space resistance”.

Equation10.49 may also be interpreted in analogy with Ohm’s law by writing it
as

Qi = Ebi − Ji(
1 − εi

Aiεi

) (10.61)
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Fig. 10.21 Electrical
network for a two-surface
enclosure
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Here, Ebi is the emissive power of a black body at the temperature of the surface
Ti . The potential difference is identified as the difference between Ebi and Ji , the
current with Qi , and hence the resistance known as “surface resistance” is identified
with Rsi = 1−εi

Ai εi
. Note that the surface resistance vanishes for a black surface and the

radiosity of such a surface is the same as black body emissive power at the specified
surface temperature.

Application of Electrical Analogy to Two-Surface Enclosure
We shall consider the problem of two infinite parallel planes considered earlier by
the method of detailed balancing. We consider all quantities on a per unit area basis,
taking unit area for both surfaces, i.e., A1 = A2 = 1. An electrical network may be
constructed as shown in Fig. 10.21. In this simple case of an enclosure with two
surfaces, the appropriate resistances are written down as

(a) Rs1 = 1 − ε1

ε1
(b) R12 = 1 (c) Rs2 = 1 − ε2

ε2
(10.62)

The three resistances are in series and hence the current (i.e., the heat flux) between
the two nodes 1 and 2 is given by

q1−2 = Eb1 − Eb2

Rs1 + R12 + Rs2
= Eb1 − Eb2

1 − ε1

ε1
+ 1 + 1 − ε2

ε2

= Eb1 − Eb2

1

ε1
+ 1

ε2
− 1

(10.63)

which agrees with the earlier result.
As is clear from this simple example, the electrical analogy is a good alternative

in case the network is easily analyzed. In the case of a complex enclosure, say with
more number of surfaces, the network may not be a simple alternative. In such a
case, the radiosity irradiation formulation is made use of.

Electrical Analogy for a Four-Surface Enclosure
We consider the four-surface enclosure of Example 10.9. The electrical network for
this example is given in Fig. 10.22.

The number of nodes where more than one electrical resistance comes together in
the electrical network is equal to the number of surfaces as shown in the figure. These
nodes have the respective radiosities as the potentials. Since there is no current in the
surface resistance Rs4, the corresponding node 4 “floats” as shown. All the nodes are
interconnected by surface resistances as indicated. Surfaces 2 and 3 have specified
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Fig. 10.22 Electrical
network for Example 10.9

temperatures and hence the corresponding surface potentials are Eb2 and Eb3 as
indicated. Surface 1 has specified heat flux and hence the current is as indicated. The
potential at surface 1 is to be determined.

Equations for the unknown radiosities are obtained by applying Kirchhoff’s Cur-
rent Law to the nodes which states that the sum of all the currents entering a node is
zero. For node 1, we have

Q1 + J2 − J1
R12

+ J3 − J1
R13

+ J4 − J1
R14

= 0

This may be rearranged as

J1
( 1

R12
+ 1

R13
+ 1

R14

)
− J2

R12
− J3

R13
− J4

R14
= Q1 (10.64)

Similarly, for node 4 we have

J4 − J1
R14

+ J4 − J2
R24

+ J3 − J4
R34

= 0

This may be rearranged as

− J1
R14

− J2
R24

− J3
R34

+ J4
( 1

R14
+ 1

R24
+ 1

R34

)
= 0 (10.65)

For node 2, we have

Eb2 − J2
Rs2

+ J1 − J2
R12

+ J3 − J2
R23

+ J4 − J2
R24

= 0

This may be rearranged as

− J1
R12

+ J2
( 1

Rs2
+ 1

R12
+ 1

R23
+ 1

R24

)
− J3

R23
− − J4

R24
= Eb2

Rs2
(10.66)

Similarly, we may write the equation for node 3 as
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(a) Enclosure geometry (b) Electrical network

Fig. 10.23 Three enclosure geometry of Example 10.10

− J1
R13

− J2
R23

+ J3
( 1

Rs3
+ 1

R13
+ 1

R23
+ 1

R34

)
− J4

R34
= Eb3

Rs3
(10.67)

Equations10.64–10.67 have to be solved simultaneously to obtain the surface radiosi-
ties. The solution of these equations is similar to that in the radiosity irradiation
formulation, and hence the procedure is more or less the same!

Example 10.10

A circular disk of diameter 1 m and at 600 K is kept directly opposite to a disk
of diameter 0.5 m and 400 K. The distance between the two disks is 0.3 m. Both
the disks have an emissivity of 0.6. The room in which the two disks are placed is
very large and is at a temperature of 300 K. Determine the heat transfer from each
surface. Use electrical analogy to solve the problem.

Solution:

Step 1 The nomenclature used in the problem is introduced through Fig. 10.23a.
The electrical analog is shown in Fig. 10.23b. The given data is written
down as

r1 = 1

2
= 0.5 m; T1 = 600 K; ε1 = 0.6; r2 = 0.5

2
= 0.25 m; T2 = 400

K; ε2 = 0.6

Node 3 may be visualized as a black surface at the temperature of the
room, with zero surface resistance.

ε3 = 1; T3 = 300K and J3 = Eb3 = σT 4
3 = 5.67 × 10−8 × 3004

= 459.3 W/m2

Step 2 Calculation of geometric parameters:
Areas of surfaces 1 and 2 are, respectively, given by A1 = πr21 = π ×
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0.52 = 0.7854 m2 and A2 = πr22 = π × 0.252 = 0.1964 m2. The angle
factor requires the following non-dimensional ratios:

L

r1
= 0.3

0.5
= 0.6; r2

L
= 0.25

0.3
= 0.8333

where L is the distance between the disks of 0.3 m. From Table G.5, the
required angle factor is obtained by interpolation as F12 = 0.175. Since
surfaces 1 and 2 are flat, F11 = F22 = 0. The sum rule applied to surface
1 gives F13 = 1 − F12 = 1 − 0.175 = 0.825. Reciprocity is used to get

F21 = A1

A2
F12 = 0.7854

0.1964
× 0.175 = 0.6998 ≈ 0.7

Applying the sum rule to surface 2, we get F23 = 1 − F21 = 1 − 0.7 =
0.3.

Step 3 The space resistances are calculated now.

R12 = 1

A1F12
= 1

0.7854 × 0.175
= 7.276 m−2

R13 = 1

A1F13
= 1

0.7854 × 0.825
= 1.543 m−2

R23 = 1

A2F23
= 1

0.1964 × 0.3
= 16.977 m−2

Surface resistances are calculated next.

Rs1 = 1 − ε1

A1ε1
= 1 − 0.6

0.7854 × 0.6
= 0.849 m−2

Rs2 = 1 − ε2

A2ε2
= 1 − 0.6

0.0.1963 × 0.6
= 3.395 m−2

Step 4 Radiation network and radiosity equations:
All the resistances are now available for defining the radiation network
shown in Fig. 10.23b. The black body emissive powers at temperatures of
surface 1 and 2 are

Eb1 = σT 4
1 = 5.67 × 10−8 × 6004 = 7348.3 W/m2

Eb2 = σT 4
2 = 5.67 × 10−8 × 4004 = 1451.5 W/m2

Equations in the radiosity formulation are obtained from the electrical
network by the application of Kirchhoff’s law to nodes 1 and 2. For node
1, we have

Eb1 − J1
Rs1

+ J2 − J1
R12

+ J3 − J1
R13

= 0



10.3 Radiation Heat Transfer in Enclosures with Gray Diffuse Walls 449

This may be rearranged as

J1
( 1

Rs1
+ 1

R12
+ 1

R13

)
− J2

R12
= Eb1

Rs1
+ J3

R13

J3, being known, has been taken to the right-hand side. Analogously, we
may write the radiosity equation for surface 2 as

− J1
R12

+ J2
( 1

Rs2
+ 1

R12
+ 1

R23

)
= Eb2

Rs2
+ J3

R23

Introducing the numerical values for the various quantities appearing in the
above, we get the following two simultaneous equations for the radiosities
of surfaces 1 and 2.

1.9635J1 − 0.1374J2 = 8954.6

−0.1374J1 + 0.4909J2 = 454.6

These equations are easily solved (use Kramer’s rule) to get

J1 = 4717.8 W/m2, J2 = 2247.0 W/m2

Step 5 Surface heat transfer rates:
The heat transferred from the three surfaces, respectively, are

Q1 = Eb1 − J1
Rs1

= 7348.3 − 4717.8

0.849
= 3099.0 W

Q2 = Eb2 − J2
Rs2

= 1451.5 − 2247.0

3.395
= −234.3 W

Q3 = J3 − J1
R13

+ J3 − J2
R23

= 459.3 − 7348.3

1.553
+ 459.3 − 2247.0

16.977
= −2864.7 W

Overall energy balance for the enclosure gives

3∑
i=1

Qi = 3099 − 234.3 − 2864.7 = 0 W

The solution is indeed very satisfactory.
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10.4 Enclosure Analysis Under Special Circumstances

Enclosure analysis that has been presented thus far has been based on several assump-
tions that may not always be valid. Gray assumption is alright as long as the surface
temperatures are not too widely different. When, for example, solar radiation is
involved, the gray assumption is inadequate and a non-gray analysis is warranted.
The diffuse assumption has been made under the premise that the surfaces in the
enclosure were engineering surfaces that have been obtained by normal machining
and fabrication techniques where surface finish is what may be termed as “rough”.
However, some of the surfaces may have been subject to refined methods of fabri-
cation where the surfaces may indeed turn out to be “smooth”. In such a case, the
surface may have to be treated as specular. The uniform radiosity assumption that has
been made thus far may not be valid when surfaces receive radiation from surfaces
that are at widely different temperatures and are located at widely differing distances.

This section is devoted to treating these exceptional cases.

10.4.1 Enclosure Containing Diffuse Non-gray Surfaces

In very simple cases with a broad-banded structure in emissivity, it is possible to
use the band approximation introduced in Chap. 9 to analyze enclosure problems
consisting of non-gray surfaces. If an enclosure contains surfaces with different
emissivity patterns, it is necessary to use a set of common bands for the analysis. Let
us take a simple case in which two surfaces are involved with different emissivity
patterns as shown in Fig. 10.24.

It is clear from the figure that the common bands would be defined by the series of
λ’s indicated on the λ axis. The radiosity irradiation formulation will have to bemade
separately for each of the bands using the emissivity values shown in Table10.3. We
may generalize the above to any number of non-gray surfaces in an enclosure; saym.
Plotting the band emissivities as in Fig. 10.24 and looking for all λ’s that are needed

Fig. 10.24 Two non-gray
surfaces showing common
bands. Note that B stands for
“Band”
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Table 10.3 Common bands and corresponding emissivities for enclosure with two non-gray sur-
faces

Band Wavelength Emissivity value

No. Range Surface 1 Surface 2

B1 0 − λ1 ε1,1 ε2,1

B2 λ1 − λ2 ε1,1 ε2,2

B3 λ2 − λ3 ε1,2 ε2,2

B4 λ3 − λ4 ε1,2 ε2,3

B5 λ4 − ∞ ε1,3 ε2,3

to describe the emissivities of all the surfaces, we identify a set of n common bands.
Within each band, the surfaces behave as gray surfaces. If we replace the total black
body emissive power by the fraction of the black body power in the i th band, the
radiosity for the j th surface in the i th band may be defined as

Jj,i = ε j,i f(λi−λi−1)Tj σT
4
j + (1 − ε j,i )

∑
k

Fi,k Jk,i (10.68)

In the example shown in Fig. 10.24, the radiosities of surfaces 1 and 2 in the 2nd
band are given by

J1,2 = ε1,1 f(λ3−λ2)T1σT
4
1 + (1 − ε1,1)

[
F11 J1,2 + F12 J2,2

]
J2,2 = ε2,2 f(λ3−λ2)T2σT

4
2 + (1 − ε2,2)

[
F21 J1,2 + F22 J2,2

] (10.69)

It is immediately clear that a set of radiosity equations may be written down for
all the surfaces and for each of the bands. The set of equations—for a given band
and all the surfaces in the enclosure—represents a gray enclosure problem. Thus the
original non-gray problem reduces to n gray problems. These may be solved for the
n band radiosities for each surface. These band radiosities are used to determine the
heat fluxes at each of the surfaces. It may easily be shown that the heat flux for the
j th surface is

q j =
n∑

i=1

ε j,i

(1 − ε j,i )

[
f(λi−λi−1)Tj σT

4
j − Jj,i

]
(10.70)

Thus we see that, in principle, the non-gray enclosure problem is analyzed using
the same method as that for the gray enclosure problem, but with more effort! The
electrical analogymay also be invoked for each of the common bands and the analysis
performed by making use of the electrical network. A simple two-surface enclosure
problem is solved below.
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Example 10.11

Two very large parallel planar surfaces are maintained at 400 K and 800 K, respec-
tively. The surfaces are non-gray and have the emissivity variation given below:

Surface 1: ε1,1 = 0.6 for 0 < λ < 3 µm; ε1,2 = 0.2 for λ > 3 µm
Surface 2: ε2,1 = 0.2 for 0 < λ < 3 µm; ε2,2 = 0.6 for λ > 3 µm

Determine the heat transfer between the two planes per unit area using a non-gray
analysis. Compare this with a gray analysis based on the equivalent gray emissivities
of the two surfaces at their respective temperatures.

Solution:

Step 1 There are two common bands in this problem. The first band spans the
wavelength region 0 to 3 µm and the second band spans the wavelength
region from 3µm to∞. Let f j,i represent the fraction of black body power
for the j th surface and the i th band.

Step 2 Surface 1:
With T1 = 800 K and λ1 = 3 µm, we have λ1T1 = 2400 µm K. From
Table 8.1, we then have f0−2400 = 0.150256 and hence f1,1 = 0.150256.
With λ2 = ∞we then have f1,2 = 1 − f1,1 = 1 − 0.150256 = 0.859744.

Surface 2:
With T2 = 400 K and λ1 = 3 µm, we have λ1T2 = 1200 µm K . From
Table 8.1, we then have f0−1200 = 0.002134 and hence f2,1 = 0.002134.
Withλ2 = ∞,we thenhave f2,2 = 1 − f2,1 = 1 − 0.002134 = 0.997866.

Step 3 Heat transfer from surface 1 to surface 2 per unit area:
It is calculated using expression 10.42 for each band. For band 1, we have

q1 = σ( f1,1T 4
1 − f2,1T 4

2 )

1

ε1,1
+ 1

ε2,1
− 1

= 5.67 × 10−8(0.150256 × 8004 − 0.002134 × 4004)
1

0.6
+ 1

0.2
− 1

= 581.7 W/m2

Similarly, for band 2 we have

q2 = σ( f1,2T 4
1 − f2,2T 4

2 )

1

ε1,2
+ 1

ε2,2
− 1

= 5.67 × 10−8(0.859744 × 8004 − 0.997866 × 4004)
1

0.2
+ 1

0.6
− 1

= 3260.6 W/m2



10.4 Enclosure Analysis Under Special Circumstances 453

Hence, the net heat transfer from surface 1 to surface 2 is

q = 581.7 + 3260.6 = 3842.3 W/m2

Heat transfer under the gray model:
The gray model calculation is based on the equivalent gray body emissiv-
ities of the two surfaces at the respective surface temperatures.

ε1 = f1,1ε1,1 + f1,2ε1,2 = 0.150256 × 0.6 + 0.002134 × 0.2 = 0.257

ε2 = f2,1ε2,1 + f2,2ε2,2 = 0.859744 × 0.2 + 0.997866 × 0.6 = 0.599

The gray calculation thus yields

q = σ(T 4
1 − T 4

2 )

1

ε1
+ 1

ε2
− 1

= 5.67 × 10−8(8004 − 4004)
1

0.257
+ 1

0.599
− 1

= 4771.8 W/m2

The example shows that a gray analysis is grossly in error.

10.4.2 Gray Enclosures Containing Diffuse and Specular
Surfaces

When an enclosure contains a combination of diffuse and specular surfaces, the
analysis is complicated by the nature of reflection at a specular surface. In order to
simplify the analysis, we assume that the specular reflection is angle independent.
This is strictly not valid, as we have seen from the results of the electromagnetic
theory. However, the analysis becomes extremely complex if this assumption is not
made. Also, the interest here is to discuss the method to be used when specular
surfaces are involved and this purpose is satisfied even with this assumption. The
method is developedwith a two-dimensional enclosure since view factor calculations
are simple in this case. However, the method is applicable without any change to the
general case of a three-dimensional enclosure.
Consider a two-dimensional enclosure (the length of the surfaces in a direction per-
pendicular to the plane of the figure is infinite) consisting of a diffuse surface (1), a
specular surface (2), and an opening (3) as shown in Fig. 10.25. The ambient temper-
ature is assumed to be very small compared to the temperature of surface (1) or (2),
and hence the opening is essentially a black surface at 0 K. The diffuse surface (1)
is maintained at a temperature of T1 and has an emissivity of ε1. We assume that the
specularly reflecting surface (2) is a reradiating surface with q2 = 0 and a specular
reflectivity of ρ2.
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Fig. 10.25 Three-surface
enclosure with one specular
surface
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Consider a small area element located on surface (1) at P as shown in Fig. 10.25.
The element radiates diffusely, and we can see that a ray such as PD goes out of
the opening directly. A ray such as PP ′R also goes out of the opening, but after a
reflection at the specular surface. This ray appears to come from an image point P ′
as indicated in the figure. Thus, the analysis has to take into account the direct as
well as reflected radiation in writing the appropriate radiosity equations.

Consider energy leaving (1) and incident on (3). The fraction that is directly
incident is given by the diffuse view factor F13. As explained above, the reflected
radiation appears to come from the image (1’), and hence the fraction of the reflected
radiation that is incident on (3) is given by F1′3. It is clear from the figure that this is
also equal to F13′ . We may thus write for the fraction of energy that leaves surface
(1) per unit area and incident on (3) as J1[F13 + ρ2F13′ ]. Similarly, we see that the
fraction of the radiation leaving (1) per unit area and incident on itself is J1[ρ2F11′ ]
because the surface is able to see its image. The bracketed terms in these expressions
are referred to as exchange factors6 and represented as

E11 = ρ2F11′ ; E13 = F13 + ρ2F13′ (10.71)

In the present case, there is only one specular reflection since only one surface in the
enclosure is specularly reflecting. In general, when several surfaces in an enclosure
reflect specularly, many images are formed and the exchange factor should include
the contribution of each one of the reflections. Ray tracing or the detailed balancing
method is required in taking care of all the specular reflections. The radiosity irradi-
ation formulation is similar to that given earlier with the view factors replaced by the
exchange factors. A simple numerical example is presented below to demonstrate
the procedure.

Example 10.12

Consider the enclosure shown in Fig. 10.25. Use the following data and calculate
the heat loss from surface (1) per unit length. What is the temperature of surface
(2)? Compare the above with an enclosure in which the surface (2) is also a diffuse
surface.

6Not to be confused with exchange area which is also represented by the same symbol.
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(a) Surface 1: Diffuse surface with T1 = 600 K, ε1 = 0.6 and OA = 0.4 m; (b) Sur-
face 2: Reradiating, specularly reflecting surface with ρ2 = 0.75, OB = 0.5 m; (c)
Surface 3: Opening effectively at T3 = 0 K and ε3 = 1

Solution:
In the first part of the solution, we use the exchange factor concept introduced in
the text. The opening is taken as a black surface with zero radiosity, i.e., J3 = 0.
The view factors needed are all calculated using the triangle rule or the crossed
string method and view factor algebra. OAB is a right-angled triangle and hence
AB = √

OB2 − OA2 = √
0.52 − 0.42 = 0.3 m

Step 1 Calculation of view factors :
Using the triangle rule, we get

F12 = OA + OB − AB

2OA
= 0.4 + 0.5 − 0.3

2 × 0.4
= 0.75

F13 = OA + AB − OB

2OA
= 0.4 + 0.3 − 0.5

2 × 0.4
= 0.25

F23 = OB + AB − OA

2OB
= 0.5 + 0.3 − 0.4

2 × 0.5
= 0.4

We now use reciprocity relations to get

F21 = OA

OB
F12 = 0.4

0.5
× 0.75 = 0.6

F31 = OA

AB
F13 = 0.4

0.3
× 0.25 = 0.333

F32 = OB

AB
F23 = 0.5

0.3
× 0.4 = 0.667

Also, the self-view factors for all the surfaces are zero.
The crossed string method is used for determining the angle factor F13′ .
The crossed string method requires the calculation of the diagonal AA′.
The angle AOB is obtained as

θ = cos−1

(
OA

OB

)
= cos−1

(
0.4

0.5

)
= 0.6435 rad

The diagonal AA′ is then given by (note that line AA′ cuts OB at right
angle)

AA′ = 2OA sin θ = 2 × 0.4 × sin(0.7435) = 0.48 m

Using the crossed string method, we then have
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F13′ = OB + AA′ − OA − AB

2OA
= 0.5 + 0.48 − 0.4 − 0.3

2 × 0.4
= 0.35

Using the triangle rule, we also have

F11′ = OA + OA′ − AA′

2OA
= 0.4 + 0.4 − 0.48

2 × 0.4
= 0.4

Step 2 Calculation of Exchange factors :
The required exchange factors are then given by

E11 = ρ2F11′ = 0.75 × 0.4 = 0.3

E13 = F13 + ρ2F13′ = 0.25 + 0.75 × 0.35 = 0.5125

Step 3 Radiosity irradiation formulation:The radiosity equations arewrittendown
now.

J1 = ε1σT
4
1 + (1 − ε1)(E11 J1 + F12 J2)

J2 = F21 J1

Substituting the latter in the former and simplifying, we get

J1 = ε1σT 4
1

(1 − ε1)(E11 + F12F21)

Step 4 Results for specular case:
Using the data, we then have

J1 = 0.6 × 5.67 × 10−8 × 6004

1 − (1 − 0.6)(0.3 + 0.75 × 0.6)
= 6298.6 W/m2

The heat loss from surface (1) is then given by

Q1 = OA · ε1

1 − ε1
(Eb1 − J1)

= 0.4 × 0.6

1 − 0.6
× (5.67 × 10−8 × 6004 − 6298.6) = 629.8 W/m

The radiosity of surface (2) is

J2 = F21 J1 = 0.6 × 6298.6 = 3779.2 W/m2

The temperature of surface (2) is then given by
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T2 =
(
J2
σ

) 1
4

=
(

3779.2

5.67 × 10−8

) 1
4

= 508.1 K

Step 5 Results for diffuse case:
In this case, the exchange factor E11 = 0 and hence the results are

J1 = 0.6 × 5.67 × 10−8 × 6004

1 − (1 − 0.6)(0.75 × 0.6)
= 5376.8 W/m2

Hence, the heat loss from surface (1) is given by

Q1 = OA · ε1
1 − ε1

(Eb1 − J1) = 0.4 × 0.6

1 − 0.6
× (5.67 × 10−8 × 6004 − 5376.8) = 1182.9 W/m

J2 = F21 J1 = 0.6 × 5376.8 = 3226.1 W/m2

The temperature of surface (2) is then given by

T2 =
(
J2
σ

) 1
4

=
(

3226.1

5.67 × 10−8

) 1
4

= 488.4 K

10.4.3 Enclosure Analysis with Surfaces of Non-uniform
Radiosity

In all the cases that were considered thus far, an enclosure is assumed to contain
surfaces that are isothermal and of uniform radiosity over the extent of each surface.
This assumption cannot be justified when the irradiation of a surface is from different
surfaces that are unevenly distributed spatially and have radiosities that vary widely.
In such a case, one has to subdivide each surface such that the uniform radiosity
assumption may be justified over each of the subdivisions. Of course, in the limit the
subdivisions are infinitesimally small, the radiosity is represented by a continuous
function and the summations in the radiosity equations are replaced by integrals. We
shall consider a simple example of a two-dimensional cavity first and later discuss
the general case.

Consider the two-dimensional cavity shown in Fig. 10.26. The analysis will make
use of two surfaces labeled as 1 and 2 in the simplest possible analysis, as indicated
in Fig. 10.26(a). Surface 1, the surface of the cavity, is at a uniform temperature of
Tc and is assumed to have a uniform radiosity J1. The opening is also assumed to be
described by uniform radiosity given by the emissive power of a black body at the
background temperature Tb.
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Fig. 10.26 Three different ways of analyzing a two-dimensional enclosure

A better analysis would be the one in which the bottom surface of cavity 1 is
assumed to have different radiosity as compared to the radiosities of the two sides
labeled as 3 and 4 as indicated in Fig. 10.26(b). Of course, because of symmetry we
have J3 = J4. The enclosure analysis thus considers four surfaces in the analysis.

The analysis may further be improved by assuming the sides of the cavity to be
divided into parts as shown in Fig. 10.26c. We note that there is essentially only one
more radiosity than in the previous case because J3 = J4 and J5 = J6.

If it is desired that the bottom also is a surface with non-uniform radiosity, it must
be divided in to at least three parts—say three equal parts. Dividing in to two equal
parts will not be enough since both the halves will have the same radiosity.

Since the cavity is two-dimensional, all the diffuse angle factorsmay be calculated
using the triangle formula or the crossed string method.

Example 10.13

Consider a two-dimensional cavity as shown in Fig. 10.27. The cavity surface is
maintained at a uniform temperature of Tc while the opening is looking at a back-
ground at Tb. The cavity surface may be assumed to be gray with an emissivity of
εc = 0.6. Calculate the heat transfer per unit length of cavity to the background.
Model the enclosure in both the variants shown in the figure.

Fig. 10.27 Two different
ways of analyzing a
two-dimensional enclosure
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Table 10.4 Angle factors for configurations in Fig. 10.27

Surface Case (a)

Number 1 2

1 0.4 0.6

2 1 0

Surface Case (b)

Number 1 2 3 4

1 0 0.72076 0.13962 0.13962

2 0.72076 0 0.13962 0.13962

3 0.41886 0.41886 0 0.16228

4 0.41886 0.41886 0.16228 0

Note The reader may verify the entries

Solution:
The analysis is presented for the two cases below. The results will be compared so
that the need or otherwise of the non-uniform radiosity analysis becomes clear.

Case (a):
The analysis is very simple in this case. The radiosity of surface 1 is written down as

J1 = εcEb(Tc) + (1 − εc)(F11 J1 + F12 J2)

= εcEb(Tc) + (1 − εc)(F11 J1 + [1−F11]J2)

where Eb represents the emissive power of a black body. This may be rearranged in
the form

J1 − J2 = εc[Eb(Tc) − J2] + (1 − εc)F11[J1 − J2]

Representing the radiosity difference J1 − J2 as Jd,1, noting that J2 = Eb(Tb) we
have

Jd,1 = εc[Eb(Tc) − Eb(Tb)] + (1 − εc)F11 Jd,1

The angle factors shown in Table10.4 will be made use of to get

Jd,1 = 0.6[Eb(Tc) − Eb(Tb)] + 0.16Jd,1 or Jd,1 = 0.714[Eb(Tc) − Eb(Tb)]

Heat loss from the cavity is easily seen to be given by

q2 = J2 − G2 = J2 − J1 = −Jd,1 = −0.714[Eb(Tc) − Eb(Tb)]

This agrees with the value predicted by Eq.10.58 when we note that As there corre-
sponds to A1 and Aa there corresponds to A2. The black body emissive power there
is to be replaced by the difference of black body emissive powers in the present case.
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Case (b): Because of symmetry, J3 = J4 and hence only three radiosity equations
are to be written down. We may again define radiosity differences as Jd,i = Ji − J2,
where i = 1, 3, or 4. Making use of the sum rule for each surface, the radiosity
equations may be written down as

Jd,1 = εc[Eb(Tc) − Eb(Tb)] + (1 − εc) · 2F13 Jd,3

Jd,3 = εc[Eb(Tc) − Eb(Tb)] + (1 − εc)(F31 Jd,1 + F34 Jd,3)

Introducing the numerical values for the angle factors and the surface emissivity, the
above equations become

Jd,1 − 0.1117Jd,3 = 0.6[Eb(Tc) − Eb(Tb)]
−0.1675Jd,1 + 0.9351Jd,3 = 0.6[Eb(Tc) − Eb(Tb)]

The two equations may be solved to get

Jd,1 = 0.6854[Eb(Tc) − Eb(Tb)]; Jd,3 = 0.7645[Eb(Tc) − Eb(Tb)]

The radiosities of surfaces 1 and 3 are certainly not the same and hence clubbing
these, as in Case (a), is not correct.

The heat loss from the cavity may be calculated as

q2 = J2 − G2 = −(F21 Jd,1 + 2F23 Jd,3) = −0.708[Eb(Tc) − Eb(Tb)]

Since the results of Case (a) and Case (b) are very close to each other, there is no
need to extend the analysis any further. Since the heat loss from the cavity is our
concern, the simple two-surface enclosure analysis may itself be adequate in the
present case.

Wedge-Type Cavity with Surfaces of Non-uniform Radiosity
An interesting application of the above ideas is to the case of a two-dimensional
wedge cavity with specified temperature variations along its surfaces. Figure10.28
shows the geometry. The wedge cavity consists of two surfaces 2 and 3 forming a
wedgewith included angle θ as shown. The openingmay be treated as a black surface
at the background temperature Tb. Distances are measured as x along surface 3 while
they are measured by y along surface 2. The surfaces of the wedge are divided
in to small elements as shown. For an element i situated on surface 3, the radiosity
difference defined as Jd,i = Ji − Eb(Tb) is written down as

Jd,i = ε3[Eb(Ti ) − Eb(Tb)] + (1 − ε3)

m∑
j=1

Fi j Jd, j (10.72)
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Fig. 10.28 Wedge cavity
nomenclature
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where Ti is the mean temperature of element i , and Fi j is the diffuse angle factor
between element i on surface 3 and element j on surface 2. Equations such as 10.72
may be written down for all the elements 1 ≤ i ≤ n. Similarly, we may write down
the radiosity of element j on surface 2 as

Jd, j = ε2[Eb(Tj ) − Eb(Tb)] + (1 − ε2)

n∑
i=1

Fji Jd,i (10.73)

All the symbols used may be interpreted analogously with Eq.10.72. Equations such
as 10.72 may be written down for all the elements 1 ≤ j ≤ m. All the angle factors
may be obtained by the application of either the triangle rule or the crossed string
method. m + n unknown radiosities are obtained by the simultaneous solution of all
the equations given above. The heat loss from the cavity is seen to be given by

q1 = J1 − G1 = −
⎡
⎣ n∑

i=1

F1i Jd,i +
m∑
j=1

F1 j Jd, j

⎤
⎦ (10.74)

Now consider what would happen if the size of the elements is shrunk such that the
size of each element is given by the differential amount dx or dy. We shall assume
that each surface of the wedge is L long. In this case, the elemental angle factors
become differential angle factors given by dFdx−dy , dFdy−dx . The summations are
replaced by integrals and Eqs. 10.72 and 10.73 are replaced by the following:

Jd(x) = ε3[Eb(T (x)) − Eb(Tb)] + (1 − ε3)

L∫
x=0

Jd(y)dFdx−dy (10.75)
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Jd(y) = ε2[Eb(T (y)) − Eb(Tb)] + (1 − ε2)

L∫
y=0

Jd(x)dFdy−dx (10.76)

In the above equations, Jd(x) = J (x) − Eb(Tb) and Jd(y) = J (y) − Eb(Tb). Equa-
tions10.75 and 10.76 are integral equations that are coupled to each other since Jd(x)
and Jd(y) are related to each other. In the special case where the two surfaces have
the same temperature distribution, and the two surfaces have the same emissivity
ε2 = ε3 = ε (say), the two equations reduce to one integral equation since Jd(x) and
Jd(y) represent the same function. Thus, we have, in this special case, the equation
governing Jd(x) or Jd(y) given by

Jd(x) = ε[Eb(T (x)) − Eb(Tb)] + (1 − ε)

L∫
y=0

Jd(y)dFdx−dy (10.77)

The formulation of the integral equation will be complete if the required elemental
angle factor is obtained. The required elemental angle factor is available from the
angle factor catalog compiled by Howell and is given by

dFdx−dy = xy sin2 θ

(x2 + y2 − 2xy cos θ)
3
2

dy (10.78)

Introducing Eq.10.78 in Eq.10.77, the integral equation is finally of the form

Jd(x) = ε[Eb(T (x)) − Eb(Tb)] + (1 − ε)

L∫
y=0

Jd(y)xy sin2 θ

(x2 + y2 − 2xy cos θ)
3
2

dy (10.79)

The above equation is of the general form

f (x) = u(x) + C

b∫
y=a

K (x, y) f (y)dy (10.80)

Here, u(x) is a specified function of x , K (x, y) is a function of x and y, and is referred
to as the Kernel,C is a constant, a and b are specified limits, and the integral equation
is known as the Fredholm integral equation of second kind.7 The reference cited also
deals with several methods of solving such equations. Here, we shall discuss only
one method, an iterative method for the solution of the integral equation.

7For more details, see F.B. Hildebrand, Methods of Applied Mathematics, Prentice Hall, 1965.
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Iterative Method of Solution
Let us assume that f (x) = f (0)(x) is a first guess for the solution. Introduce this
in the right-hand side of Eq.10.80 to get a superior approximation to the solution
f (1)(x) as

f (1)(x) = u(x) + C

b∫
y=a

K (x, y) f (0)(y)dy (10.81)

It would be ideal if the integral on the right could be obtained in a closed analytical
form. The process is continued by substituting f (1)(y) within the integral sign to
improve the solution to f (2)(x) and so on.

Example 10.14

Consider a wedge cavity as shown in Fig. 10.28 with a wedge angle of 60◦ such
that the enclosure has the shape of an equilateral triangle. Consider two cases:

1. Each surface of the wedge is at a uniform temperature of 500 K
2. The temperature of each surface of the wedge varies from 500 K at the vertex to

a temperature of 400 K at the tip.

The opening of the wedge may be treated as a black body at 300 K. The wedge
surfaces are gray having equal emissivities of ε = 0.6. Obtain the heat loss from the
wedge per unit wedge length with uniform and non-uniform radiosity assumptions.
Draw conclusions from the results. Solve the integral equation by a a numerical
method such as the Gauss–Seidel method (refer to Chap. 7) after writing the integral
as a sum over strips. Obtain all the required angle factors by the use of the triangle
rule.

Solution:
(1) Uniform wedge temperature case: Comparisons may be based on the improve-
ment made with reference to the two-surface enclosure model familiar to us already,
applied to the case where the wedge surfaces are at a uniform temperature of 500
K. The opening is represented as surface 0 while the wedge surfaces are represented
by a single surface 1. In this model, the angle factors are obtained by angle factor
algebra and are given by

F11 = 0.5; F10 = 0.5; F01 = 1; and F00 = 0

The radiosity of the wedge surface is given by

J1 = 0.6 × 5.67 × 10−8 × 5004 + (1 − 0.6)5.67 × 10−8 × 3004

1 − (1 − 0.6)0.5
= 2428.2 W/m2

Based on Eq.10.58, the heat flux leaving the cavity is given by
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Fig. 10.29 Wedge cavity
with four strips of
non-uniform temperature

500K

y ( j)

x (i)

60

3; 475K

4; 425K

1; 475K

2; 425K 400K

400K

0, 300 K (opening)

q = 0.6 × 5.67 × 10−8 × (5004 − 3004)

1 − (1 − 0.6) × 0.5
= 2313.4W/m2

(2) Variable wedge temperature case: If we apply the two-surface model to this case,
the temperature of each surface of the wedge is taken as the mean between the apex
and the tip of the wedge and is given by T1 = 450K. The radiosity of the wedge
surface is given by

J1 = 0.6 × 5.67 × 10−8 × 4504 + (1 − 0.6)5.67 × 10−8 × 3004

1 − (1 − 0.6)0.5
= 1514.2 W/m2

The heat loss from the wedge is then given by

q = 0.6 × 5.67 × 10−8 × (4504 − 3004)

1 − (1 − 0.6) × 0.5
= 1399.3 W/m2

The case where the wedge temperature varies significantly along its length cannot
be solved with the two-surface enclosure model since it is a gross approximation.
The solution may be improved by considering the radiosity variation by dividing the
wedge to a number of strips each of which is considered isothermal. For example,
eachwedge is divided in to two strips of equalwidth, as an improvement over the two-
surface analysis. This case is shown in Fig. 10.29 and the appropriate calculations
are shown below.

All the angle factors may be calculated by the use of the triangle formula or the
crossed string method. The reader is encouraged to verify the angle factors given in
Table10.5. Since J1 = J3 and J2 = J4, we have only two radiosity equations that
may be written down as

J1 = εEb1 + (1 − ε)(F10Eb0 + F13 J1 + F14 J2)

J2 = εEb2 + (1 − ε)(F20Eb0 + F23 J1 + F24 J2)
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Table 10.5 Angle factors for configurations in Fig. 10.29

Surface No. 0 1 2 3 4

0 0 0.1830 0.3170 0.1830 0.3170

1 0.3660 0 0 0.5 0.1340

2 0.6340 0 0 0.1340 0.2321

3 0.3660 0.5 0.1340 0 0

4 0.6340 0.1340 0.2321 0 0

Introducing the numerical values and rearranging, we get

0.8J1 − 0.05359J2 = 2193.5

−0.05359J1 + 0.90718J2 = 2242.7

These two simultaneous equations are solved to get J1 = 2348.7 and J2 = 1490.6.
The radiosity indeed varies significantly along the wedge length! The heat loss from
the wedge cavity may then be obtained as

q = 2(F01 J1 + F02 J2) − Eb0

= 2(0.183 × 2348.7 + 0.317 × 1490.6) − 459.27

= 1345.4 W/m2

The heat loss from the cavity has also changed significantly between the two- and
the four-surface models!

The procedure given at the end in Example 10.14 may be carried on with a larger
number of strips along each wedge surface. As an example, we consider the case
where each surface of the wedge is divided in to ten strips of equal width. The strips
are numbered from 1 to 10 along the bottom surface of the wedge and from 1′ to 10′
along the top surface of the wedge. Each strip is isothermal at a mean temperature
obtained by using the specified temperature variation between the apex and the tip
of the wedge. The radiosity variation along the two wedge surfaces are identical and
hence there are ten radiosity equations that need to be solved. The angle factor matrix
is symmetrical and is given in Table10.6 on page 466. The radiosity equations are
written following Eq.10.73. The resulting equations are solved by theGauss iteration
method familiar to us fromChap. 7. Thismethod is essentially the same as themethod
suggested earlier for the solution of the Fredholm integral equation, except that the
integral is replaced by a sum. The iterations start with the radiosities of the strip
taken as Jj = εσT 4

j where 1 ≤ j ≤ 10. The iteration scheme converges rapidly and
the desired solution is obtained after 9 iterations as indicated in Table10.7 on page
466. We observe that the radiosity values continuously decrease from the apex of the
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Table 10.6 Angle factors for configurations for wedge geometry with ten strips
Strip
No.

0 1 2 3 4 5 6 7 8 9 10

0 0 0.0270 0.0313 0.0362 0.0415 0.0471 0.0529 0.0585 0.0639 0.0687 0.0730

1′ 0.2697 0.5 0.1340 0.0432 0.0201 0.0115 0.0074 0.0052 0.0038 0.0029 0.0023

2′ 0.3129 0.1340 0.2321 0.1340 0.0707 0.0411 0.0263 0.0181 0.0132 0.0100 0.0078

3′ 0.3615 0.0432 0.1340 0.1458 0.1064 0.0707 0.0477 0.0334 0.0244 0.0185 0.0144

4′ 0.4148 0.0201 0.0707 0.1064 0.1056 0.0854 0.0642 0.0477 0.0359 0.0276 0.0217

5′ 0.4712 0.0115 0.0411 0.0707 0.0854 0.0826 0.0706 0.0570 0.0452 0.0359 0.0288

6′ 0.5288 0.0074 0.0263 0.0477 0.0642 0.0706 0.0678 0.0599 0.0507 0.0421 0.0347

7′ 0.5852 0.0052 0.0181 0.0334 0.0477 0.0570 0.0599 0.0574 0.0519 0.0453 0.0389

8′ 0.6385 0.0038 0.0132 0.0244 0.0359 0.0452 0.0507 0.0519 0.0498 0.0458 0.0409

9′ 0.6871 0.0029 0.0100 0.0185 0.0276 0.0359 0.0421 0.0453 0.0458 0.0440 0.0409

10′ 0.7303 0.0023 0.0078 0.0144 0.0217 0.0288 0.0347 0.0389 0.0409 0.0409 0.0394

Table 10.7 Gauss iteration results for radiosities (W/m2) of strips
Strip
No.→

0 1 2 3 4 5 6 7 8 9 10

Iteration
No. ↓
1 459.3 2042.5 1882.4 1731.8 1590.5 1458.1 1334.1 1218.1 1109.9 1009.1 915.3

2 459.3 2660.9 2421.3 2209.6 2019.6 1847.0 1689.6 1545.7 1414.2 1294.1 1184.3

3 459.3 2829.8 2558.3 2324.1 2116.7 1929.9 1760.4 1606.0 1465.6 1337.7 1221.4

4 459.3 2874.5 2592.1 2350.7 2138.3 1947.6 1775.0 1618.2 1475.7 1346.2 1228.5

5 459.3 2886.1 2600.3 2356.9 2143.2 1951.5 1778.2 1620.8 1477.8 1347.9 1230.0

6 459.3 2889.0 2602.3 2358.3 2144.3 1952.4 1778.9 1621.3 1478.3 1348.3 1230.3

7 459.3 2889.8 2602.8 2358.7 2144.5 1952.6 1779.0 1621.5 1478.4 1348.4 1230.4

8 459.3 2889.9 2602.9 2358.8 2144.6 1952.7 1779.1 1621.5 1478.4 1348.5 1230.4

9 459.3 2890.0 2602.9 2358.8 2144.6 1952.7 1779.1 1621.5 1478.4 1348.5 1230.4

wedge to the tip of the wedge. This variation is significant and hence there is a case
made out for the non-uniform radiosity analysis carried out here.

It is interesting to see the convergence of the heat loss from the cavity with the
number of strips. The following table shows the results for both caseswith the number
of strips.

Number Uniform Variable
of strips T case T case
1 2313.4 1399.3
2 2285.8 1345.4
4 2278.5 1329.0
6 2277.2 1325.7
8 2276.6 1324.4
10 2276.3 1323.8
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Concluding Remarks

General enclosure analysis for the calculation of radiant heat exchange amongst surfaces has

been presented. Diffuse gray, diffuse nongray and specular surfaces have been considered

in the analysis. Both uniform and nonuniform radiosity cases have been dealt with. Solution

methods presented include themethod of detailed balancing, radiosity-irradiation formulation

and electrical analogy based on resistance network.

10.5 Exercises

Ex 10.1 An enclosure has an inside area of 100 cm2 and its surface is polished
aluminum with an emissivity of 0.05. A small opening on the wall of
the enclosure has an area of 0.5 cm2. The radiant power leaving the
enclosure through the opening is 0.07 W. What is the temperature of
the surface of the enclosure? The gray calculation is expected to be
adequate.

Ex 10.2 In a rectangular box-type enclosure, there are 36 individual view fac-
tors between the 6 surfaces that constitute the enclosure. How many
independent view factors need to be determined?

Ex 10.3 In a cubical enclosure, there are 36 individual view factors between the
6 surfaces that constitute the enclosure. How many independent view
factors need to be determined?

Ex 10.4 A long duct is in the form of a regular pentagon. How many shape
factors need to be determined independently? Explain your answer.
Determine the shape factor between any one side and all the other sides.

Ex 10.5 A very long duct has a rectangular cross section with the sides in the
ratio of 1.5 : 1. Determine all the view factors.

Ex 10.6 A long duct has a regular hexagonal cross section. Determine the view
factor between opposite sides by view factor algebra.

Ex 10.7 In the duct of Exercise 10.6, a partition is placed as shown in Fig. 10.30.
Determine all the view factors.

Ex 10.8 A cube with 1 m edges is located inside a second cube with 2 m edges.
If the two cubes do not touch each other, determine the diffuse shape
factor between the inner surface of the outer cube and the outer surface
of the inner cube.

Ex 10.9 Two rectangular areas are arranged as shown in Fig. 10.31. Determine
the view factor F12. Use suitable tables and the decomposition rule
presented in the text.
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Fig. 10.30 Duct with
partition in Exercise 10.7

Regular heaxagon of side = 1.75m

Vertical parttion of length = 1.75m

Fig. 10.31 Geometry for
Exercise 10.9. Planes 1 and 2
are perpendicular to each
other
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Fig. 10.32 Geometry of
space capsule in Exercise
10.10 a a
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Ex 10.10 A space capsule has the shape shown in Fig. 10.32. Determine
(a) Solid angle subtended by the hemispherical cap at 0.
(b) Solid angle subtended by the cylindrical part of the space capsule
at 0.
(c) Diffuse view factor between the hemispherical cap and the base of
the cylinder.
(d) Diffuse view factor between the hemispherical cap and its own base.
(e) Diffuse view factor between the hemispherical cap and the curved
surface of the cylindrical part of the space capsule.
Hint: Parts c to e requires intelligent use of view factor algebra.
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Ex 10.11 A short solid cylinder of diameter D and height H is placed on the
ground with its axis vertical. What is the view factor between the
exposed surface of the cylinder and (a) the ground and (b) the sky?

Ex 10.12 Two infinite parallel planes, one at 400◦ C and the other at 150◦ C with
common gray emissivity of ε = 0.3, are to be shielded by placing a
third plane (with ε = 0.05 on each side) between them, and allowing
it to come to thermal equilibrium. Find the radiant flux between the
planes before and after the insertion of the third plane, and find the
equilibrium temperature of the shield.

Ex 10.13 Two very large parallel gray planes are maintained at 100◦ C and 25◦
C, respectively. The two planes have an equal emissivity of 0.15. Deter-
mine the heat transfer per unit area between them. Now a third surface
of equal area and very small thickness is placed in between to form a
shield. Both the sides of this shield have the same emissivity equal to
0.04. What is the heat transfer per unit area now?

Ex 10.14 Liquid oxygen (boiling point =−183◦ C) is to be stored in a spherical
container of outer diameter equal to 0.3 m. The system is insulated
by an evacuated space between the inner sphere and a surrounding 45
cm ID concentric sphere. Both spheres are of polished aluminum with
emissivity equal to 0.05. The temperature of the outer sphere is −1◦ C.
Estimate the rate of heat flow by radiation to oxygen.

Ex 10.15 A thermos flask may be idealized as a long double-walled cylinder,
ignoring the end effects due to the stopper. The space between the two
walls is evacuated and the surfaces that face each other are silvered to
obtain an effective emissivity of 0.035. The OD of the inner cylinder is
10.5 cmwhile the ID of the outer cylinder is 11 cm. The twowalls of the
double-walled cylinder are 0.5 mm thick and the thermal conductivity
of each is 0.2 W/m◦ C. The cylinder is filled with boiling water at 100◦
C. What is the heat loss per cm length of the double-walled cylinder?
Assume that the outer wall of the flask is exposed to an ambient at 20◦
C via a heat transfer coefficient of 6 W/m2 ◦

C.
Ex 10.16 A plane surface of a material of gray emissivity 0.6 has been machined

to obtain parallel grooves 0.1 mmwide and 0.2 mm deep. The grooves
have planar sides. The center-to-center distance between the grooves is
also 0.1 mm. Determine the effective emissivity of the grooved surface.

Ex 10.17 An evacuated enclosure is in the shape of a right circular cylinder of
diameter 0.3 m and height 0.45 m. The curved side is gray, has an
emissivity of 0.6, and is maintained at 450 K. At both the flat sides
(top and bottom having an emissivity of 0.8), a uniform cooling rate
of 500 W/m2 is maintained. Determine the temperature of the two flat
sides.

Ex 10.18 A long cavity radiator has the cross section shown in Fig. 10.33. Surface
1 is the active surface, which is maintained at 800 K and has a gray
emissivity of 0.85. Surface 2 is a reradiating surface. Opening 3 may
be assumed to be black and at a very low temperature. Determine
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Fig. 10.33 Geometry of cavity radiator in Exercise 10.18

(a) Heat flux leaving surface 1, (b) Temperature of surface 2, and (c)
Equivalent emissivity of the cavity radiator.

Ex 10.19 A cavity is constructed in the form of a cylinder cone combination as
shown by its cross section as in Fig. 10.34. The cone has an included
angle of 120◦ and is integrated with the cylinder part which has a diam-
eter D = 25 mm and length L = 100 mm. The front of the cylinder
has an aperture of diameter d = 3 mm. All the internal surfaces of the
cavity have a common gray diffuse emissivity of ε = 0.5. Determine
the effective emissivity of the aperture? Consider the conical part as
surface 1, the cylindrical part and the front cover as surface 2, and the
aperture as surface 3.

Ex 10.20 A cavity radiator is in the form of a cylinder with one end open as
shown in Fig. 10.35. The walls of the cavity are gray and diffuse with
an emissivity of 0.85. The geometry of the cavity may be changed

120
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2

3
3

Fig. 10.34 Cavity configuration in Exercise 10.19

Fig. 10.35 Cylindrical
cavity in Exercise 10.20

H

2R
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by varying the ratio of its depth to the radius of the opening, i.e., by
changing the ratio H

R . Obtain an expression for the equivalent emissivity
of the cavity radiator in terms of this ratio in the range 0.25–5. Make a
plot of the equivalent emissivity as a function of H

R .
Hint: Consider the cylinder inside the surface as a single zone.

Ex 10.21 A cavity is in the form of a cylinder of diameter 0.05 m and height 0.05
m. The bottom of the cavity is heated to a temperature of 1500 K while
the curved side is perfectly insulated. The top of the cylinder is open to
a low temperature ambient that may be taken effectively to be at 0 K.
What is the power leaving the cavity and what is the temperature of the
curved side of the cylinder? Assume that all actual surfaces are gray,
diffuse, and have an emissivity of 0.85.

Ex 10.22 A long furnace has a 3 m square cross section. The roof is maintained
at 2000 K by the circulation of hot combustion gases, while the floor
is at 800 K. The side walls are well insulated with refractory bricks.
Calculate the radiant heat flux into the floor if the roof and side walls
have an emissivity of 0.7 and the floor has an emissivity of 0.4.

Ex 10.23 The cross section of a very long tunnel is shown in Fig. 10.36. The
required geometric data is also provided in the figure. (a) It is desired to
determine the shape factors FAB−GH , FAC−GH , and FCE−GH . Make
use of the triangle rule, Hottel’s crossed string method, and view factor
algebra. (b) If all the surfaces internal to the tunnel are maintained at a
uniform temperature and if all the surfaces have the same emissivity of
ε = 0.6, what will be the effective emissivity of the opening?

Ex 10.24 A cavity is in the form of a vertical cylinder of 8 cm diameter and 16
cm length and is open at the top to black surroundings at 300 K. The
bottom end is heated electrically and is maintained at 1900 K. If the
side walls are at a uniform temperature of 1500 K, calculate the power
input to the heater and the heat loss to the surroundings through the
open end. Assume that all the inner surfaces have a gray emissivity of
ε = 0.85.

Fig. 10.36 Cross section of
the very long tunnel in
Exercise 10.23
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Fig. 10.37 Evacuated
enclosure in Exercise 10.27
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Ex 10.25 The floor of a large furnace acts as a plane at 800◦C , emissivity 0.6,
and the ceiling is a plane at 250◦ C, emissivity 0.8. The furnace is a
rectangular box 3 m wide, 4 m long, and 5 m tall. All the other surfaces
act as a single reradiating surface. What is the heat transfer from the
hot floor and the equilibrium temperature of the reradiating surfaces?

Ex 10.26 An evacuated enclosure is in the shape of a right circular cylinder of
diameter 0.3 m and height 0.45 m. The curved side is gray, has an
emissivity of 0.6, and is maintained at 450 K. At both the flat sides
(top and bottom having an emissivity of 0.8), a uniform cooling rate
of 500 W/m2 is maintained. Determine the temperature of the two flat
sides.

Ex 10.27 An evacuated enclosure is in the shape of a frustum of a cone of base
diameter D3 = 0.3 m, top diameter D2 = 0.25 m, and height L = 0.3
m. The curved surface 1 is gray, has an emissivity of ε1 = 0.6, and
is maintained at T1 = 450 K. At both the flat sides (top and bottom
having common emissivity of ε2 = ε3 = 0.8 ), a uniform cooling rate
of q2 = q3 = −500 W/m2 is maintained. Determine the temperatures
of the two flat sides. Use electrical analogy for solving this problem.

Ex 10.28 An enclosure is in the form of a short cylinder of diameter 1 m and
height 0.5 m. The top surface is reradiating while the bottom surface
and the lateral curved surface aremaintained, respectively, at 500 K and
350 K. The bottom surface has an emissivity of 0.45 while the curved
surface has an emissivity of 0.8. Determine the heat transferred from
the hot surface assuming that all surfaces are diffuse.

Ex 10.29 An igloo is in the form of a hemisphere as shown in Fig. 10.38. The
base of the igloo is at a uniform temperature of 30◦ C. The igloo is made
of blocks of ice, which are at −5◦ C. There is a small hole of diameter
equal to 0.3 m at the top for ventilation. The diameter of the igloo is
3 m. What is the amount of radiation leaving through the ventilation
hole if it is open to the night sky at an equivalent temperature of 5◦ C?
The emissivity of the floor of the igloo is 0.3 while the walls have an
emissivity of 0.1.
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Fig. 10.38 Igloo in Exercise
10.29

Floor

Hemispherical
wall

Ventilation
hole

Ex 10.30 A rectangular box has dimensions of 1 × 0.25 × 0.5 m. One of the 1×
m sides is maintained at a temperature of 450 K while the other 1×
m side is maintained at 350 K. Both these surfaces have an emissivity
of 0.8. All the other sides are in radiant balance, i.e., the radiant heat
flux is zero on all these surfaces. You will notice that the box may be
considered as an enclosure made of three surfaces. Calculate the heat
fluxes at the two surfaces where the temperatures are specified and
the temperature of the reradiating surface. Assume that all surfaces are
diffuse and gray.

Ex 10.31 An enclosure is in the form of a frustum of a cone. The base of the
frustumhas a diameter of 2 mwhile the top of the frustumhas a diameter
of 1 m. The height of the enclosure is 0.5 m. Determine all the view
factors for this enclosure.
In the above enclosure, the bottom is maintained at 400 K while the top
is maintained at 300 K. The emissivities of these are, respectively, 0.5
and 0.8. The curved side is assumed to be reradiating. Calculate the net
heat transfer from the bottom to the top. What is the temperature of the
curved side?

Ex 10.32 A thermocouple is used to measure the temperature of a hot gas in a
combustion chamber. If the thermocouple temperature is 1033Kand the
walls of the combustion chamber are at 700 K, what is the temperature
of the hot gas? Assume that all surfaces are black and the convection
heat transfer coefficient between the hot gas and the thermocouple is
568 W/m2 ◦C . Ignore conduction through the thermocouple leadwires.
Hint: Note that areas for convection and radiation heat transfer are the
same.

Ex 10.33 Consider the enclosure shown in Exercise 10.28with the curved surface
being a selective surface with the emissivity given by

ελ = 0.8, 0 < λ < 4 µm

ελ = 0.4, λ > 4 µm

All other data remains the same as in that problem. Determine the heat
transferred from the hot surface assuming that all surfaces are diffuse.
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Fig. 10.39 Cavity
configuration in Exercise
10.37
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Ex 10.34 Consider the enclosure shown inExercise 10.28with the bottom surface
alone being a specular reflector. All other data remains the same as
in that problem. Determine the heat transferred from the hot surface
assuming that other surfaces are diffuse.

Ex 10.35 A long open channel is 0.2 m deep and 0.1 m wide. The bottom of the
channel is maintained at a temperature of 500◦ C. The vertical faces
of the channel have a linear temperature along them with the bottom
end at 500◦ C and the top end being at 300◦ C. Determine the heat loss
through the opening per unit length of the channel. The channel opening
views a background at 30◦ C. Divide the non-isothermal vertical sides
of the channel suitably into several uniform radiosity parts and solve
the resulting equations numerically.

Ex 10.36 A deep open cylindrical cavity is 0.5 m deep and 0.2 m in diameter.
The bottom of the cavity is maintained at a temperature of 600◦ C. The
curved surface of the cavity has a linear temperature variation along
its height with the bottom end at 600◦ C and the top end being at 100◦
C. Determine the heat loss through the opening. The channel opening
views a background at 10◦ C. Divide the non-isothermal curved surface
of the cavity suitably into several uniform radiosity parts and solve the
resulting equations numerically.

Ex 10.37 A very long open channel has a rectangular section as shown in
Fig. 10.39. Surfaces identified as 1 and 2 are both 0.1 m wide, gray
and diffuse with temperature and emissivities of T1 = 600 K, ε1 = 0.8
and T2 = 500 K, ε2 = 0.6, respectively. The bottom surface shown as
4 is 0.05 m wide, specular, gray, and reradiating with a reflectivity of
ρ4 = 0.8. The opening may be assumed to be black at a very low tem-
perature. Determine the heat loss from the cavity per unit length. Make
use of the exchange area concept.



Chapter 11
Radiation in Participating Media

Radiation in participating media is important in applications such as in furnaces,
nozzles used in space applications, in the study of atmosphere and weather,

oceans, in glassmaking, etc. Since gases emit and absorb radiation in specific bands, gas
radiation is by force non-gray in nature. Modeling such radiation is made complex
because of the large path lengths over which such a process can take place. Both
geometric and thermal aspects are involved and the present chapter intends to present
the most important aspects of radiation in participating media.

11.1 Introduction

A medium that absorbs, emits, or scatters radiation is referred to as a participating
medium. Themediummay be in any of the three phases—solid, liquid, or gas. Other-
wise, transparent solid may absorb and emit radiation when impurities are present in
it. In the case of optical instruments, it is imperative thatwe account for the absorption
of radiation by optical elements such as lenses and optical windows in interpreting
data. Liquids may absorb radiation as it passes through them. Radiation transfer to
the depths of the ocean or lakes is important in geophysical studies. Gases absorb and
emit radiation in definite bands depending on the nature of the gas molecules. A gas
laden with dust particles will also scatter radiation. The study of radiation transfer
through participatingmedia is important because of its engineering applications such
as in combustion chambers. It is also important in atmospheric science where the
nature of absorption of solar and terrestrial radiation by the atmospheric constituents
affects overall energy balance and also global weather. In recent times, there is a lot
of concern about global warming that is primarily due to the way gases interact with
radiation.
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The reason why we club all the above in this chapter is due to the fact that the
underlying physics and the analysis methods are the same in all the cases.

11.2 Preliminaries

11.2.1 Definitions

Absorption and emission of radiation by a non-scattering participating medium are
described by the following quantities.

Definitions
• κλ—Monochromatic or spectral absorption coefficient (unit m−1). If inci-
dentmonochromatic radiation is characterizedby the intensity Iλ, the absorp-
tion by the medium per unit volume and solid angle is given by κλIλ.

• ελ—Monochromatic or spectral emission coefficient (unit m−1). The emis-
sion by the medium per unit volume and solid angle is given by ελIbλ(Tm)

where Ibλ(Tm) is the black body intensity at temperature Tm of the medium.

Note that in the case of a surface, the symbol ελ represents the spectral
emissivity which has no dimensions.

11.2.2 Equation of Transfer

The equation of radiation transfer (or simply the equation of transfer) governs the pas-
sage of radiation through a volume of participating medium. This equation describes
the variation of radiation intensity with position, taking into account both the emis-
sion and absorption of radiation by the medium. In order to derive the equation,
consider an elemental volume of the participating medium in the form of a “pillbox”
as shown in Fig. 11.1.

Fig. 11.1 Variation of
radiation intensity as it
traverses a volume element
of a participating medium
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Consider radiation traveling along the s direction. Orient the area element dA such
that it is normal to the s direction. Then we have the following:

1. Power absorbed by the volume element, according to the definition of κλ given
earlier, is κλIλdAds where dAds is the volume of the pillbox. The absorption
process tends to decrease the intensity.

2. Power emitted by the volume element, according to the definition of ελ given
earlier, is ελIbλ(Tm)dAds. The emission of radiation by the volume element tends
to increase the intensity.

3. If the intensity changes as indicated in Fig. 11.1, the change in monochromatic
radiant power per unit solid angle is given by

Iλ(s + ds)dA − Iλ(s)dA = dIλ
ds

dAds

The last result is obtained by retaining the first-order term in a Taylor expansion
of intensity Iλ around s.

From (1)–(3) it is clear that, after canceling the common factor dAds, we have

dIλ
ds

= ελIbλ(Tm) − κλIλ (11.1)

We may now imagine the participating medium to be placed within an isothermal
cavity whose walls are at temperature Tc = Tm. Then the intensity Iλ is isotropic and
invariant within the cavity and is equal to Ibλ(Tm). The derivative on the left-hand
side of Eq.11.1 is zero and hence

0 = ελIbλ(Tm) − κλIbλ(Tm) (11.2)

Thus, ελ = κλ which is the familiarKirchhoff’s law.With this, Eq. 11.1 takes the form

dIλ
ds

+ κλIλ = κλIbλ(Tm) (11.3)
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11.3 Absorption of Radiation in Different Media

11.3.1 Transmittance of a Solid Slab

Consider now a simple case of a slab of a solid material of thickness L which has
an absorption coefficient κλ and refractive index nλ. The absorption coefficient is
assumed to be small so that the imaginary part of the index of refraction is small.
This assumption is usually good in the case of glasses with low levels of impurities.
For example, soda lime glass (used in window panes) may have a very low level
of iron as contamination. The refractive index at a wavelength of λ = 0.6328µ m
(Helium Neon laser wavelength) is 1.507 and the absorption coefficient is typically
κλ = 24m−1. The imaginary part of the complex index of refraction is very small
and is given by

n′ = κλ × λ

4π
= 24 × 0.6328 × 10−6

4π
= 1.19 × 10−6

based on Eq. 9.65. If the temperature of the medium is small such that the emission
by the medium is insignificant, the transmission of a laser beam through the medium
follows the equation

dIλ
ds

+ κλIλ = 0 (11.4)

With intensity specified as Iλ = Iλ,0 at s = 0, the top surface of the glass slab, the
intensity at any distance inside the medium along the s direction is obtained as

Iλ(s) = Iλ,0e
−κλs (11.5)

The transmittance is then defined as

τλ(s) = Iλ(s)

Iλ,0
= e−κλs (11.6)

If we choose the s direction to be along a normal to the face of the glass sheet, the
transmittance of the sheet in this direction is obtained as

τλ(L) = Iλ(L)

Iλ,0
= e−κλL (11.7)

Expression 11.7 is referred to as Beer’s law.1

Consider now the case shown in Fig. 11.2. Radiation is incident at an angle onto
the top surface of a glass sheet and the interest is in determining the amount that is
transmitted across the sheet. We assume that the incident radiation is unpolarized

1After August Beer, 1825–1863, a German physicist.
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Fig. 11.2 Transmission of
radiation across a
semi-transparent slab

and hence all the optical quantities will be calculated as the mean for the parallel
and perpendicular components. Let ρ be the reflectance at each interface (we drop
the subscript λ for convenience).

The processes that place at each surface of the glass sheet are indicated in detail
in the figure. The intensities indicated in the figure are given by the following:

I2 = I1(1 − ρ) I3 = I1τ(1 − ρ) I4 = I1ρτ(1 − ρ)

I5 = I1ρτ 2(1 − ρ) I6 = I1ρ2τ 2(1 − ρ) I7 = I1ρ2τ 3(1 − ρ)

I8 = I1ρ3τ 3(1 − ρ) I9 = I1ρ3τ 4(1 − ρ) I10 = I1ρ4τ 4(1 − ρ)

I11 = I1ρ4τ 5(1 − ρ) I12 = I1ρ5τ 5(1 − ρ) ………… and so on

We also note from the figure that the transmitted intensities are given by

It1 = I1τ(1 − ρ)2; It2 = I1ρ
2τ 3(1 − ρ)2; It3 = I1ρ

4τ 5(1 − ρ)2; . . . . . . (11.8)

The total transmitted intensity is given by the following summation.

It = I1τ(1 − ρ)2[1 + ρ2τ 2 + ρ4τ 4 + · · · ] = I1
τ(1 − ρ)2

(1 − ρ2τ 2)
(11.9)

The last result is seen to arise out of the fact that the summation within the brackets
represents a geometric series with 1 as the first term and the common ratio ρ2τ 2. The
transmittance of the glass sheet t is then given by
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t = It
I1

= τ(1 − ρ)2

(1 − ρ2τ 2)
(11.10)

Example11.1

A glass slab 3 mm thick is illuminated by radiation at an incident angle of θ = 30◦ at
its top surface. The refractive index of glass is n = 1.514 while the absorption coeffi-
cient of glass is κ = 0.24 cm−1. Determine the transmittance of the glass sheet. The
incident radiation may be assumed to be a narrow band around λ = 0.632 µm such
that the optical properties may be assumed constant over the band. The subscript λ

may be dropped for convenience.

Solution:
We shall assume that the incident radiation is unpolarized and all properties are taken
as the mean of those for the two polarizations. The transmittance of the glass sheet
is determined by the combined effects of multiple reflections at the two surfaces and
by the transmittance of the glass sheet for radiation traversing endlessly across it due
to multiple reflections. Figure11.2 shows the details of the process that takes place.
For n = 1.514 and θ = 30◦ we have, by Snell’s law,

θ ′′ = sin−1

(
sin θ

n

)
= sin−1

( sin 30◦

1.514

)
= 19.28◦

The reflectance at each surface is calculated based onEq. 9.44(b) and (d) for reflection
at an interface between two dielectrics (air and glass).

ρ⊥ =
[
1.5142 cos 30◦ −

√
1.5142 − sin2 30◦

1.5142 cos 30◦ +
√
1.5142 − sin2 30◦

]2
= 0.0265

ρ‖ =
[
cos 30◦ −

√
1.5142 − sin2 30◦

cos 30◦ +
√
1.5142 − sin2 30◦

]2
= 0.0602

ρ = 0.0265 + 0.0602

2
= 0.0434

Radiation has a slant path of length L′ given by

L′ = L

cos θ ′′ = 0.003

cos 19.28◦ = 0.00346 m

With the given value of the absorption coefficient, the transmittance τ is obtained as
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τ = e−κL′ = e−0.24×100×0.00346 = 0.9203

The transmittance of the glass sheet for incident radiation may then be calculated
using Eq.11.10 as

t = 0.9203(1 − 0.0434)2

(1 − 0.04342 × 0.92032)
= 0.844

This may be compared with the transmittance in the absence of absorption by the
glass sheet (i.e., in case the sheet is perfectly transparent) given by (refer to Example
9.7 or by letting τ = 1 in Eq.11.10)

t = 1 − ρ

1 + ρ
= 1 − 0.0434

1 + 0.0434
= 0.958

The absorption of the glass sheet cuts down the transmittance by an additional 12%
as compared to the case where the glass is transparent and transmission loss is due
only to reflection at the two interfaces.

11.3.2 Absorption of Radiation by Liquids

Liquids absorb radiation by the interaction of radiation at the molecular level and
also with a cluster of molecules that are characteristic of liquids in bulk form. The
absorption coefficient shows large variations with the wavelength. Typical of such
a behavior is that of water for which the absorption data is shown in Fig. 11.3.2

The existence of peaks in the spectrum is indicative of absorption bands. These are

Fig. 11.3 Monochromatic
absorption coefficient of
distilled water

2S. A. Sullivan, J. Opt. Soc. America, Vol. 53, No. 8, pp. 962–968, 1963;W.M. Irvine, J. B. Pollack,
Icarus, 8, pp. 324–360, 1968.
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Fig. 11.4 Relative intensity
as a function of wavelength

ascribed to harmonics of the fundamental frequencies and combinations of these.
We shall have more to say on this while discussing absorption by water vapor, which
is water in the vapor form. However, the bands are wide and do not show any fine
structure since it is expected that the rotational motions of molecules are inhibited in
the liquid state. In the case of water, hydrogen bonding between water molecules to
form large clusters also accounts for the broadening of the spectral features. Water
absorbs strongly in the ultraviolet region due to electronic transitions. It is weakly
absorbing in the visible part of the spectrum. The absorption is again strong in the
infrared region.

It is interesting to look at what happens when solar radiation (with emphasis on
the visible and near-infrared part of the spectrum between 0.4 and 1 µm) is incident
at a free surface of a layer of water. The relative intensity (defined as the ratio Iλ/Iλmax )
of the incident radiation follows the black body distribution corresponding to a black
body at 5800 K. The relative intensity at a depth of 1 m is obtained by multiplying
the relative intensity at the surface by the monochromatic transmittance τλ = e−100κλ

where κλ is in cm−1. The distribution of relative intensity at the surface and at a depth
of 1 m is shown in Fig. 11.4. Near the peak wavelength (≈ 0.5 µm), transmission is
almost 98% while it is only about 5% at a wavelength of 0.8 µ m. The transmission
is even smaller at wavelengths in the infrared part of the spectrum. We can “see” far
in to the water because the visible part of the spectrum is weakly absorbed by water.
In deep layers, the scattering of radiation also needs attention.

11.3.3 Absorption of Radiation by Gases

In engineering applications such as furnaces, rocket plumes, and the atmosphere,
we come across many absorbing and emitting gases. The main gaseous absorbers
are carbon dioxide, water vapor, and to some extent carbon monoxide and unburnt
hydrocarbons. The last two constituents are present in combustion devices whenever
combustion is incomplete. At elevated temperatures, nitrogen in the air may also
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form oxides. These oxides are also radiatively active, i.e., they absorb and emit
radiation. The absorption by these gases is complicated by their inherent non-gray
nature. Absorption and emission take place over bands that have a characteristic
fine structure. Also, the absorption bands of different species overlap and hence
when a gas mixture is involved, the absorption pattern gets further complicated. A
clear understanding of gas radiation needs a background in quantum mechanics and
some understanding of the fundamentals of molecular spectroscopy. A very brief
description is given below so that the basic principles may be appreciated, at least to
a limited but desired extent.

Gas molecules that are of interest to us may be classified as

• Diatomic molecules like oxygen, nitrogen, carbon monoxide, and nitric oxide;
• Polyatomic molecules like carbon dioxide, water vapor, and nitrous oxide.

Oxygen and nitrogen are further classified as homo-nuclear molecules, and they do
not display any absorption properties and hence are said to be infrared inactive. Only
heteronuclear molecules like carbon monoxide and nitric oxide (the two atoms in
the diatomic molecule are different) are infrared active. The absorption and emission
spectra of diatomic molecules are very simple since they exhibit a single funda-
mental band. However, polyatomic molecules show complex structures since they
have several fundamental and combination bands. We consider examples to bring
out the salient features of the absorption and emission of diatomic and polyatomic
molecules.

Example of Diatomic Molecule, Carbon Monoxide
A molecule of carbon monoxide consists of a carbon atom and an oxygen atom
held together. The equilibrium distance between the two atoms is re = 1.18Å with
1Å = 10−8 m = 0.01 µm. If this distance ismade to change, a restoring force comes
to play and hence the two atoms act as a spring–mass system. The potential energy
versus the displacement is a parabola for small amplitudes and hence the oscillations
are harmonic. If the displacement from the equilibrium distance between the atoms is
r − re, the potential V is given by V = k

2 (r − re)2 where k is referred to as the spring
constant. The potential is shown schematically in Fig. 11.5. The spring–mass analogy
immediately tells us that the molecule can vibrate, and it does so with discrete energy
levels (follows from the quantum mechanical description) given by

Ev =
(
v + 1

2

)
hν0 (11.11)

where v is the vibrational quantum number which is either zero or an integer, h is
the Planck constant, and ν0 is the fundamental frequency of the harmonic oscillator.

When v = 0, the energy of the oscillator is given by 1
2hν0. This is known as

the zero point energy. If energy equal to D, the dissociation energy, is supplied to
the molecule, it will dissociate into an atom of carbon and an atom of oxygen. At
any given temperature, the molecules are distributed over the various vibrational
energy levels according to the Boltzmann distribution. Apart from the vibrational
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Fig. 11.5 Potential energy diagram for a diatomic molecule: carbon monoxide

motion, a carbon monoxide molecule can also perform rotational motion along two
perpendicular axes as shown in Fig. 11.5. The allowed rotational energy values are
again specified by angular momentum quantum number J (it is is either zero or an
integer) such that the rotational energy of the molecule in the state J is given by

Er = BhJ (J + 1) (11.12)

where B is known as the rotational constant of the molecule. The rotational constant
is given by

B = h

8π2I
(11.13)

In Eq.11.13, the moment of inertia I is given by

I = Mr2e (11.14)

where M is the reduced mass given by

M = mCmO

mC + mO
(11.15)

with mC and mO representing, respectively, the mass of carbon atom and oxygen
atom. Imagine a volume of isothermal gas at a temperature of Tg . At this temperature,
a certain proportion of molecules will occupy, say the excited state v = 1. Further,
these excitedmolecules are distributed over the accessible rotational states according
to the Boltzmann distribution given by

NJ = N0(2J + 1) exp

[
−θRJ (J + 1)

Tg

]
(11.16)
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Fig. 11.6 Allowed
transitions and the
vibrational rotational lines of
carbon monoxide

where NJ is the number of molecules in the vibrationally excited state and the factor
(2J + 1) is the degeneracy of the state with rotational quantum number J . The quan-
tity θR = Bhc0

k is the characteristic rotational temperature and has a unit of K . Here k
is the Boltzmann constant. Some of these molecules will undergo a transition to the
ground state v = 0, subject to the condition 
J = ±1. This is shown schematically
in Fig. 11.6. During such a transition, both the vibrational as well as the rotational
state of the molecule change and hence a photon is emitted with the energy given by

E = hν0 − 2BhJ for 
J = −1 − P Branch

E = hν0 + 2BhJ for 
J = 1 − R Branch
(11.17)

These transitions are shown schematically at the bottom part of Fig. 11.6. It is
noticed that a transition with 
J = 0 is not allowed and hence there is no emission
corresponding to frequency ν0 at all. Only the rotational lines governed by Eq.11.17
appear in the emission spectrum. It is easily seen that the rotation lines are regularly
spaced with a spacing of 2B with a missing line corresponding to ν0. This last
observation is valid as long as there is no interaction between the vibrational and
rotational states.

A synthetic emission spectrum of carbon monoxide gas at Tg=1000 K is shown
in Fig. 11.7. The parameters appropriate to carbon monoxide are given by ν0 =
2143 cm−1,B = 1.897 cm−1 and θR = 2.73K.3 At low resolution, the spectrum will
appear as an emission band indicated by the continuous curvewhile a high-resolution
spectrum will show the fine structure in the form of rotational lines. The maximum
in the spectrum occurs at a J value given by the nearest integer of the quantity

0.59
√

Tg

B . For the spectrum shown in Fig. 11.7, themaximum indeed occurs at J = 13
as predicted by this formula. The point worth noting is that the width of the spectrum
increases as the square root of the gas temperature.

3Note that energy is proportional to the photon wavenumber and is also expressible in temperature
units.
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Fig. 11.7 Synthetic emission spectrum of carbon monoxide at 1000 K

Fig. 11.8 Fundamental modes of a water vapor molecule

Note that the contributions from v = 2 and higher have not been included while
constructing the synthetic emission spectrum.At 1000K, thesewill also be populated
and hence will contribute to the emission. To an extent, anharmonicity will then
complicate the matters. The figure shows that the band occupies the region from
1950 to 2320 cm−1. The width of the band is a function of temperature and that is
one reason why the emission from carbonmonoxide shows temperature dependence.
The intensities of the lines have been indicated as being in terms of arbitrary units.
This will depend on the number of molecules of carbon monoxide in a given volume
and hence will also affect the total emission. From the point of view of radiation heat
transfer, this should also depend on the geometry of the containing vessel. Thus, the
gas emissivity is expected to depend on the gas pressure (and hence the density), the
temperature of the gas, and the geometry of the enclosure containing the gas.

Example of Polyatomic Molecule, Carbon Dioxide
Carbon dioxide is a linear triatomic molecule as shown in Fig. 11.9. The molecule
does not possess an intrinsic dipole moment, and hence the symmetric stretch mode
is infrared inactive. It has three fundamental vibrational modes as indicated. In the
asymmetric stretch mode, one of the bonds is increasing in length while the other
one is decreasing. In the symmetric stretch vibration, both the bond lengths increase
or decrease together. In the bending mode, the angle between the two bonds changes.
The molecule also displays combination modes at 1.9 µ m and 2.7 µ m.
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Fig. 11.9 Vibrational modes of a carbon dioxide molecule

A typical emission spectrum of carbon dioxide will span a range 500–6000cm−1.
The bands that appear in the infrared spectrum are the asymmetric stretch centered
at 2349 cm−1 (4.26µ m) and the bending mode at 667cm−1 (14.99 µ m). The
symmetric stretch mode is infrared inactive. In the case of the bending mode, transi-
tions with 
J = 0 are allowed and hence the spectrum shows three branches, the P
branch corresponding to 
J = −1, the Q branch corresponding to 
J = 0, and the
R branch corresponding to 
J = 1. Absorption corresponding to the band center is
now strong since many of the rotational lines merge in theQ branch. Each band con-
tains a rotational fine structure. Again, as we saw in the case of the carbon monoxide
molecule, the width of each band varies with temperature.

At elevated temperatures, several vibrational states may be populated to a signifi-
cant extent and hence combination bands also appear in the carbon dioxide spectrum.
These bands are centered at 3690 cm−1 (2.7 µ m) and 5260 cm−1 (1.9 µ m). Thus
unlike a diatomic gas for which only one band was seen, a polyatomic gas shows
a number of bands in its spectrum. A typical high-resolution absorption spectrum
of carbon dioxide is shown in Fig. 11.10 corresponding to the asymmetric stretch
vibration of the molecule.

Example of Polyatomic Molecule, Water Vapor
Water molecule is a polar molecule that has a bent shape as shown in Fig. 11.8. Since
it has an intrinsic dipole moment, it is infrared active in all the three fundamental
bands shown in the figure. Also, absorption is observed due to rotational transitions.
Because of this, the absorption of water vapor spans over a wide spectrum. Water
vapor exhibits a large number of absorption bands as indicated in Table11.1. Before
proceeding with the modeling of radiation from gases, we shall consider a simple
example involving radiation transfer across a slab of gray gas to bring out the role
of geometric factors in gas radiation. Subsequently, it will be possible to deal with
non-gray radiation from gases in a comprehensive fashion.
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Fig. 11.10 High-resolution absorption spectrum of carbon dioxide at room temperature (asymmet-
ric stretch mode)

Table 11.1 Absorption bands of water vapor

Band Band Center Band Limits Combination

μm cm−1 cm−1 (n1, n2, n3)∗

< 1000cm−1 Rotational

6.3 1587 1150–2050 (0, 1, 0)

4.7 2130 (1,−1,0)†

(0, −1, 1)

2.7 3760 2800–4400 (0, 2, 0)

(1, 0, 0)

(0, 0, 1)

1.87 5351 4800–5900 (0, 1, 1)

1.38 7246 6500–8000 (1, 0, 1)

1.1 9091 8300–9300 (1, 1, 1)

0.94 10638 10100–11500 (2, 0, 1)

(0, 0, 3)

*The n’s are zero or integers such that ν = n1ν1 + n2ν2 + n3ν3
† Negative n requires upper vibrational states to be populated
The band is referred to as a difference band

11.3.4 Radiation in an Isothermal Gray Gas Slab
and the Concept of Mean Beam Length

A plane isothermal gas layer problem is introduced through Fig. 11.11. An infinitely
large black wall at temperature Tw oriented normal to the x-axis is located at x = 0.
The plane layer of gas at temperature Tg is of thickness L as shown.

Intensity Variation with Angle
Consider an area element located at x = L as indicated in the figure. The radiation
incident on this element consists of two parts.

• Radiation leaving the wall at x = 0 which passes through the layer and then is
incident on the area element;

• Radiation emitted by the intervening gas that is incident on the area element.
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Fig. 11.11 Gas Radiation in
an isothermal slab of gas

In order to calculate these, let us consider two paths.

1. Straight path 1 coinciding with the x-axis;
2. Slant path 2, a representative one is as shown in the figure. Note that an infinite

number of slant paths are possible!

1. Straight path
The equation of transfer for path 1 is simply given by Eq.11.3 where we replace

Tm by Tg , Iλ as I+, Ibλ(Tg) by
σT 4

g

π
, and κλ by κ the gray absorption coefficient. The

equation now reads as
dI+

dx
+ κI+ = κσT 4

g

π
(11.18)

The solution to the equation consists of two parts. The first part, the complementary
function, is obtained by solving the homogeneous equation, i.e., by setting the right-
hand side term in Eq.11.18 to zero. Thus, we have

I+(x) = Ae−κx (11.19)

Here A is a constant of integration. The second part, a particular integral, is verified

by actual substitution to be given by I+ = σT 4
g

π
. The general solution is obtained by

adding the above two solutions. Thus

I+(x) = Ae−κx + σT 4
g

π
(11.20)

At x = 0, the intensity is nothing but the black body intensity at the wall temper-

ature, i.e., I+(0) = σT 4
w

π
. Substituting this in Eq.11.20, we have A = σ

π
(T 4

w − T 4
g ).

Substituting this expression for A in Eq.11.20, and on rearrangement, we get

I+(x) = σT 4
w

π
e−κx + σT 4

g

π
(1 − e−κx) (11.21)

The intensity at x = L is then given by
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I+(L) = σT 4
w

π
e−κL + σT 4

g

π

(
1 − e−κL

)
(11.22)

Introduce the non-dimensional quantity τ = κx, the optical thickness, and represent
the optical thickness of the layer as κL = τL, to recast Eq.11.22 as

I+(τL) = σT 4
w

π
e−τL + σT 4

g

π
(1 − e−τL) (11.23)

From the figure it is clear that along path 2, the slant length x
cos θ

= x
μ
replaces x along

the straight path. Hence, for the slant path we have the optical thickness equal to τL
μ
.

In the solution given by Eq.11.23, we simply replace τL by τL
μ
to get the intensity

incident on the area element at angle θ as

I+
(

τL

μ

)
= σT 4

w

π
e− τL

μ + σT 4
g

π

(
1 − e− τL

μ

)
(11.24)

Equations11.23 and 11.24 may be recast in the form

I+
τL

(μ) = σT 4
w

π
e− τL

μ + σT 4
g

π

(
1 − e− τL

μ

)
(11.25)

Expression 11.25 represents the angular variation of intensity at x = L. In spite of
the fact that both the emission from the wall and the gas are isotropic, the intensity
at x = L is not isotropic! This is due to the variation of path length or the optical
thickness with angle. Thus, the geometry plays an important role in determining the
angular variation of intensity.

Radiant Heat Flux
Based on the above solution, we calculate the radiant fluxes of interest to us. At
x = 0, the radiant flux leaving the black wall is q+(x = 0) = q+

0 = σT 4
w. At x = L,

the heat flux is calculated, using the definition of heat flux and Eq.11.25, as

q+
L = 2π

1∫
0

I+
τL

(μ)μdμ = 2π

⎡
⎣σT 4

w

π

1∫
0

e− τL
μ μdμ + σT 4

g

π

1∫
0

(1 − e− τL
μ )μdμ

⎤
⎦

(11.26)

We note that
1∫
0

μdμ = 1
2 and the integral

1∫
0
e− τL

μ μdμ = E3(τL), the exponential

integral of order 3, using the results from Appendix F. We may thus write Eq.11.26
as
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q+
L = 2σT 4

wE3(τL) + σT 4
g [1 − 2E3(τL)] (11.27)

The heat flux at x = L thus consists of two terms. The first term involves the wall
radiation multiplied by the factor 2E3(τL). The second term contains the contribution
due to emission from the gas that is a product of black body emissive power and the
factor 1 − 2E3(τL). These two factors are referred to, respectively, as the transmit-
tivity tg and the emissivity εg of the gas. Thus, we may rewrite Eq.11.27 as

q+
L = tgσT

4
w + εgσT

4
g (11.28)

where
tg = 2E3(τL), εg = 1 − 2E3(τL) (11.29)

Thus, we see that the emissivity and transmittivity of the gas depend on the absorption
coefficient as well as the path length through the gas. Consider the transmittivity of
the gas. It is given by twice the Exponential function of order 3 and having argument
τL or κL. The exponential integral function itself integrates an exponential function
over paths that are at different angles across the gas slab and hence different path
lengthswhich range fromLwhen θ = 0 to∞when θ = 90◦. It is therefore physically
meaningful to visualize it as an exponential with argument κLm where Lm is a mean
of all the possible paths—or simply the mean beam length. Thus, we introduce the
concept of mean beam length such that

2E3(κL) = e−κLm (11.30)

Further, this makes sense in that when κL 	 1, then e−κLm = 1 − κLm and 2E3

(κL) = 1 − 2κLm and hence the mean beam length, in this case of an optically thin
medium, i.e., κL 	 1, is just twice the slab thickness. We also see from Appendix
F that the Exponential integral function of order 3 is very closely approximated by
an exponential function given by 1

2e
−1.8t . Hence, we may identify 1.8L as the mean

beam length in a more general sense. The main conclusion to be drawn from the
above treatment is that the gas transmittivity may be calculated based on a suitably
defined mean beam length Lm such that

tg = e−κLm and εg = 1 − e−κLm (11.31)
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Example11.2

Consider a gray gas with an absorption coefficient of κ = 0.2m−1. It is maintained
at a temperature of 350K and is 0.5m thick. A black wall at 400K is located at
x = 0. Determine the intensity at x = 0.5m for a straight path as well as for a slant
path at 45◦. Make a plot of intensity as a function of angle at x = 0.5m

Solution :
Step 1 The given data is written down as

Tw = 400K, Tg = 350K, L = 0.5m and κ = 0.2m−1 τL = 0.5 × 0.2 = 0.1

Step 2 The intensity of radiation leaving the wall is

I+
0 = σT 4

w

π
= 5.67 × 10−8 × 4004

π
= 462.03 W/m2 sr

Step 3 Straight path: We make use of Eq.11.23 to evaluate the intensity at x =
0.5 m or τL = 0.1.

IL(μ = 1) = 5.67 × 10−8 × 4004

π
e−0.1

+ 5.67 × 10−8 × 3504

π
(1 − e−0.1) = 443.84 W/m2 · sr

Step 4 Slant path at θ = 45◦ or μ = 0.707: The intensity at x = L for the slant
path is obtained by settingμ = 0.707 and hence the effective optical thick-
ness as τ = 0.1

0.707 = 0.1414 in Eq.11.25. Thus

IL(μ = 1) = 5.67 × 10−8 × 4004

π
e−0.1414

+ 5.67 × 10−8 × 3504

π
(1 − e−0.1414) = 436.82 W/m2 · sr

Step 5 The intensities in other directions may be calculated to get the plot of
intensity as a function of the slant path angle shown in Fig. 11.12. When
θ = π

2 , the intensity at x = L is due only to the radiation from the gas as
the wall radiation is totally attenuated. The intensity tends to

IL(μ = 0) = σT 4
g

π
= 5.67 × 10−8 × 3504

π
= 270.84 W/m2 · sr
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Fig. 11.12 Variation of
radiation intensity with angle
at x = 0.5 m in Example
11.2

Example11.3

Consider the data given in Example 11.2. Use the exact, small t approximation
as well as the exponential approximation for evaluating the heat flux at x = 0.5 m
and comment on the results.

Solution :
From the data, the optical thickness of the gas layer is τL = 0.2 × 0.5 = 0.1. The
exact value of the exponential integral of order 3 is read off Table F.1 as 0.416291.
Using this value in Eq.11.27, the exact heat flux at x = L = 0.5 m is

q+
L = 5.67 × 10−8[2 × 4004 × 0.416291 + 3504(1 − 2 × 0.416291)]
= 1350.96 W/m2

The small t approximation yields E3(0.1) ≈ 1
2 − 0.1 = 0.4 . Using this value in

Eq.11.27, the heat flux at x = L = 0.5 m is

q+
L = 5.67 × 10−8[2 × 4004 × 0.4 + 3504(1 − 2 × 0.4)] = 1331.39 W/m2

The exponential approximation yields E3(0.1) ≈ 1
2 e

−1.8×0.1 = 0.417635. Using this
value in Eq.11.27, the heat flux at x = L = 0.5 m is

q+
L = 5.67 × 10−8[2 × 4004 × 0.417635 + 3504(1 − 2 × 0.417635)]
= 1352.57 W/m2
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Thus all three values are acceptable in this problem. The exact and the exponential
approximations are very close to each other.

Another Interpretation of Mean Beam Length
Themean beam length concept may be interpreted using radiation from a hemispher-
ical gas volume to an area element at its center as shown in Fig. 11.13. In this case, all
paths between the hemisphere and the area element have the same length and hence
we may set τL

μ
as κR for all μ, consider only emission from the gas in Eq.11.27 to

get
q−(0) = σT 4

g [1 − e−κR] (11.32)

If we are interested in monochromatic values, Eq.11.32 would read as

q−
λ (0) = π Ibλ(Tg)[1 − e−κλR] (11.33)

The center of the hemisphere is indicated by the argument 0 and the flux is shown
with a superscript—to indicate that it is incident on the area element. Since only the
gas radiation is assumed to be important, the non-grayness of the gas does not pose
any problem. In the optically thin case, Eq. 11.33 may be replaced by

q−
λ (0) ≈ π Ibλ(Tg)κλR (11.34)

Thus for a hemispherical gas volume, the monochromatic gas emissivity, under the
optically thin approximation, is given by

ελ = κλR (11.35)

Fig. 11.13 Radiation from a
hemispherical gas volume at
temperature Tg to an area
element at its center
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Thus the mean beam length is R itself. We may thus interpret the mean beam length
for an arbitrarily shaped gas volume as the radius of a hemispherical gas volume
radiating to an area element at its center.

It is possible to associate a mean beam length with commonly encountered gas
shapes as given in Table11.2.

Table 11.2 Mean beam length for radiation from the entire gas volume in common geometries

No. Geometry Lm

1 Sphere of diameter D radiating to
inside surface

0.65D

2 Hemisphere of diameter D radiating to
its center

0.5D

3 Infinitely long circular cylinder of
diameter D radiating to inside
cylindrical surface

0.95D

4 Semi-infinite circular cylinder of
diameter D radiating to

(a) Element at the center of its base 0.9D

(b) Entire base 0.65D

5 Circular cylinder of diameter D and
height H = 2D radiating to

(a) Plane end 0.6D

(b) Cylindrical surface 0.76D

(c) Entire surface 0.72D

6 Circular cylinder of diameter D and
height H = 0.5D radiating to

(a) Plane end 0.43D

(b) Cylindrical surface 0.46D

(c) Entire surface 0.45D

7 Volume between two infinite parallel
planes spaced L apart radiating to an
element on one face

1.8L

8 Cube of edge L radiating to any of its
six faces

0.6L

9 Gas volume outside an infinite bank of
tubes with tube diameter D and center
to center distance S radiating to a
single tube

(a) Equilateral triangle array S = 2D 3 D

(b) Equilateral triangle array S = 3D 7.6 D

(c) Square array S = 2D 3.5 D

10 Arbitrary volume V of surface area A 3.6V/A
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11.4 Modeling of Gas Radiation

The modeling of gas radiation is essential because of its manifold applications in
engineering and in many natural processes that occur in the earth’s atmosphere. In
most engineering applications such as furnaces, the path length is finite and may
at most be several meters. However, in atmosphere-related applications, the path
lengths may be several kilometers. Because of this, even very weak absorption lines
will play an important role in modifying radiation passing through the atmosphere.
As mentioned earlier, solar energy passing in through the atmosphere and long-
wavelength terrestrial radiation passing out through the atmosphere are two cases of
great importance in determining global weather as well as the long-term happenings
within the earth’s atmosphere. One may also use such radiation to interrogate the
atmosphere to determine its state by remote sensing using satellites. While heat
transfer applications may be satisfactorily carried out by average absorption over
absorption bands of atmospheric gases, the study of the behavior of the atmosphere
may require line-by-line calculations. The latter is performed using databases such
as the LOWTRAN 4 or the HITRAN5 accessible on the web. We shall consider only
heat transfer applications in what follows. The interested reader may consult the
appropriate literature for atmospheric radiation.

11.4.1 Basics of Gas Radiation Modeling

The absorption of radiation by gases is characterized by the spectral absorption coeffi-
cientoverthespectralregioninwhichaparticulargasmayabsorb(oremit).Theamount
absorbed depends, asmentioned already, on the amount of gas present, the path length
aswell as the temperature.As seenpreviously, gas absorption takes placeover discrete
bands with a fine structure due to rotational lines. No absorption or emission would
take place with lines of zero “width” since the probability of a photon having the cor-
rect transition frequencybecomesvanishinglysmall.However, these lineshaveafinite
“width” because of the broadening of the lines due to three reasons.

(1) Natural broadening:
The absorption or emission of radiation takes place by the transition of a molecule
from one energy level to another energy level. According to the uncertainty principle,
the transition cannot all take place with precisely the same energy change and hence
the absorbed or emitted photons will have a range of values around that calculated
using the energies of the two states. The line thus gets smeared or broadened.

(2) Collision broadening:
The gas molecules are continually in thermal motion and have frequent collisions
with other gas molecules. Collisions disrupt the process of transition between energy

4http://www1.ncdc.noaa.gov/pub/software/lowtran.
5http://www.cfa.harvard.edu/hitran.

http://www1.ncdc.noaa.gov/pub/software/lowtran
http://www.cfa.harvard.edu/hitran
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states involved and hence lead to the broadening of the absorption or emission line.
During each collision, the excess or deficit energy with respect to the line center is
taken care of by the collision process.

Both of the above mechanisms lead to a line shape given by the Lorentz profile.
While contribution due to natural broadening is very small, broadening due to colli-
sions is important. If the line central frequency is ν0, γc is the line half width, and S
is the integrated absorption coefficient or the integrated line strength (instead of κλ,
we use κν—these are interconvertible), the Lorentz line shape is given by

κν = S

πγc

1[
ν−ν0
γc

]2 + 1
(11.36)

where

S =
∫

ν

κνdν (11.37)

where
ν represents the interval of integration. Even though the integral is essentially
from −∞ to ∞, the interval is finite and is over several half widths only since the
integrand becomes very small beyond this range. The number of collisions depends
on the concentration (number density and hence on the pressure) as well as the tem-
perature. The number density is essentially dependent on p

T where p is the pressure.
The mean molecular speed varies as the square root of temperature T and hence the
number of collisions varies as

√
T . Hence, the line half width dependence on p and

T is of the form

γc = γc0
p

p0

√
T0
T

(11.38)

where the subscript 0 refers to a suitable reference state of the gas.

(3) Doppler broadening:
The absorption or emission of photons by moving molecules is shifted due to the
Doppler effect. If the central frequency is ν0, and if themolecule undergoing transition
is moving with a speed v in a direction parallel to the incident radiation (may be
positive or negative), the Doppler shift is given by

ν = ν0

(
1 + v

c

)
or ν − ν0 = ν0

v

c
(11.39)

where c is the speed of incident light. The line consequently gets broadened. Since
the molecular speed distribution follows the Boltzmann distribution, the line shifts
are also distributed according to the same distribution. With the Doppler half width
represented by γD, the Doppler broadened line shape is given by

κν =
√
ln 2

π

S

γD
exp

{
− ln 2

(
ν − ν0

γD

)2
}

(11.40)
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Fig. 11.14 Lorentz and Doppler broadened lines

where the Doppler half width is given by

γD = ν0

c

√
2kT

m
ln 2 (11.41)

In Eq.11.41, m is the mass of the molecule and k is the Boltzmann constant. In
Fig. 11.14, we compare Lorentz and Doppler line shapes, assuming that the half
width of the two are the same.
It is seen that the Collision broadened line is broader than the Doppler broadened
line.

Consider the equation of transfer 11.3 again. The equation has been written for a
particular wavelength λ or the corresponding ν. In application, this equation has to
be integrated over a line or a band if we are interested in the change in the integrated
intensity over a line or a band as the case may be. The integration may be carried out
using the strategy given below.

The line width associated with the broadening mechanisms described above is
usually of the order of a fraction of a wave number. For example, the rotational line
of carbon monoxide has a typical width of γ = 0.01 cm−1. The broadened line has
typically a width of ±5γ=0.05 cm−1. The Planck function (or the intensity) may be
assumed to be a constant over the line. Hence, the term representing absorption over
a line in Eq.11.3 may be written as the product of the intensity at the line center
wavelength and the integral over the line as

∫

ν

Iνκνdν = Iν

∫

ν

κνdν (11.42)
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where 
ν represents the width of the line which may be taken as some ±5γ around
the center of the line. Now consider the absorption of radiation over a vibrational
rotational band. Again, for example, the width of the band for carbon monoxide
is from ν1 = 1950 − ν2 = 2350 cm−1. The Planck function is very closely a linear
function of ν over the entire band. In case one would like to find the term representing
gas emission over the carbon monoxide band in Eq.11.3, the following may be done:

ν2∫
ν1

Ibνκνdν = Ibνc

ν2∫
ν1

κνdν (11.43)

where νc corresponds to the band center. The indicated integration may be made
if we know the positions of rotational lines and their shapes. The point is that the
integration over the frequency may be made independent of the Planck function. To
the extent that the shape of the line is dependent on the gas temperature and pressure,
the integrated absorption over the band will depend on these parameters.

The integration over the band is itself based on a suitable model for the position
of each line within the band and the strength of each line. One may use different
models for these and thus there is some variation in the description of absorptivity
or emissivity of a gas. The geometric part may be accounted for by using the mean
beam length coupled with an exponential dependence of the absorptivity or the
emissivity on the mean beam length absorption coefficient (integrated over a line or
an absorption band) product.

11.4.2 Band Models

Various band models have been used to describe the properties of a participating
medium. The vibration rotation band is modeled as being made up of a number of
lines using one of the following:

Narrowbandmodels: The narrowbandmodels account for the rapid variation
of spectral absorptivity due to rotational lines and the more gentle variation
due to the variation of line intensity due to various broadening mechanisms
dealt with earlier.
Wide band models: The wide band models describe the variation of mean
absorption coefficient over the band.

However, at a simpler level of description suitable for radiative transfer calcu-
lations, it is usual to describe the gas properties in terms of total quantities. This
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description leads to tables, charts, or correlations as given by Hottel6 and later by
Leckner,7 or the weighted sum of the gray gas model (WSGG).8

Leckner Model
Thismodel uses detailed spectral data for common combustion gases, carbon dioxide
and water vapor, to calculate the total emissivity by a statistical model with spectral
intervals of 5–25cm−1. The lines within such intervals are treated as being randomly
positioned and line strengths are exponentially distributed. Literature data is used in
the calculations. The emissivity of the gas is represented as

εi = 1 − exp

⎡
⎣− κiX√

1 + κiX
4ai

⎤
⎦ (11.44)

where κi is the mean value of the absorption coefficient in the interval in units
of (bar cm)−1, reduced to a reference temperature of T0 = 273 K and a reference
pressure of P0 = 1 bar. The quantity X is given by

X = pL

P0

T0
T

(11.45)

which is the optical path length in bar cm reduced to reference temperature and
pressure, p is the partial pressure of the gas specie in the gas mixture in bar, L is the
geometrical path length in cm and T is the gas temperature in K . ai, the fine structure
parameter for the interval, is defined as

ai = γ

di
(11.46)

where di is the mean line spacing in the interval in cm−1, γ is the mean line half
width of the gas at T , p and total pressure PT . The line half widths, as we have seen
earlier, depend on the broadening mechanisms, and are functions of pressure and
temperature. The gas mixture is assumed to consist of carbon dioxide, water vapor,
and nitrogen. The line widths for carbon dioxide and water vapor are given by

γCO2 = 0.07PT

√
T0T

(
1 + 0.28

pc
PT

)
(11.47)

γH2O = 0.09PT

√
T0T + 0.44pw

T0
T

(11.48)

where subscripts c andw stand, respectively, forCO2 andH2O. The total emissivity
of the gas mixture is then given by

6H. C. Hottel and A. F. Sarofim, Radiative Transfer, McGraw Hill, NY, 1967.
7B. Leckner, Combustion and Flame, Vol. 19, pp. 33–48, 1972.
8T. F. Smith et al., ASME Journal of Heat Transfer, Vol. 104, pp. 602–608, 1982.
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εg =
∑
i
f
ν(Tg)εi
ν

σT 4
g

(11.49)

where f
ν is the integrated Planck function over the interval 
ν. The emissivity
obtained as above is referred to as the Planck Mean since Eq.11.49 is nothing but an
expression of the form

εg =

∞∫
ν=0

Eb(ν)ενdν

∞∫
ν=0

Eb(ν)dν

(11.50)

Leckner also takes into account the overlapping of bands of CO2 and H2O and
uses correction factors. Finally, the total emissivity data is represented in terms
of polynomials of second degree as given in the previously cited reference. The
calculations also have been presented in the form of charts there. However, the
emissivity calculations may be performed using the spreadsheet program presented
by Ronney.9 The spreadsheet is appropriately named “PlanckMeanAndLeckner”.

Input data entered in the designated cells consist of the following:

Total pressure PT in atm
Path length L in m

Gas temperature Tg in K
Background (wall) temperature Tw in K

Mole fraction of water vapor Xw = pw
PT

Mole fraction of carbon dioxide Xc = pc
PT

The program output appears in the appropriate cells as

Emissivity εw of H2O
Emissivity εc of CO2

Emissivity correction 
ε

Gas mixture emissivity εg
Gas mixture absorptivity αg for Tg, Tw combination

Total absorption coefficient κ

WSGG Model
According to the WSGG model, the emissivity or absorptivity of a gas is considered
to be a sum of gray gas emissivities (independent of temperature) weighted with
temperature-dependent factors. The total emissivity is hence written in the form

εg =
I∑

i=1

ai(Tg)[1 − e−κipiL] (11.51)

9http://carambola.usc.edu/spreadsheets.

http://carambola.usc.edu/spreadsheets
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where i identifies the ith gray gas in the gas mixture with κi the absorption coefficient
and piL the partial pressure mean beam length product. The coefficient ai may be
interpreted as the fractional amount of radiation that exists in the absorption band
of the ith gray gas. To account for “windows” in the absorption spectrum of the
gas mixture, the gray gas i = 0 (clear gas) is assigned a value of a0 = 0. Since all
fractions must add to unity, we additionally have

I∑
i=1

ai = 1 (11.52)

The WSGG model is derived by the use of literature data on the absorption of
various gases that comprise the gas mixture. For example, if the gas mixture contains
three components (two gray gases and one clear gas), the three values of κi are,
respectively, 0, κ1 and κ2 and the corresponding weights are 0, a1 and a2. With
Eq.11.52 providing a condition, we require to essentially obtain three quantities.
The weights are themselves functions of temperature and are represented typically
in the polynomial form

ai =
J∑

j=1

bi,jT
j−1 (11.53)

where the polynomial coefficients are additional parameters that need to be deter-
mined. In case our interest is to determine the absorptivity of the gas, the weights
will be functions of the temperature of the surface from which radiation originates
and hence we should have polynomials of the form

ai =
J∑

j=1

(
K∑

k=1

ci,j,kT
k−1

)
T j−1 (11.54)

All the parameters that are required in the WSGG model are determined by using
appropriate data and using curve fitting procedures. More details may be obtained
from the reference cited earlier.

Example11.4

Consider a gas mixture at a total pressure of 1 atm containing equal proportions
of water vapor and carbon dioxide with the total partial pressure of 0.2 atm. The
rest may be assumed to be a non-absorbing constituent. The gas mixture is at a tem-
perature of 1000 K and background radiation is from a black wall at an effective
temperature of 600 K. The mean beam length may be taken as 1 m. Determine the
emissivity and absorptivity of the gas using Leckner and WSGG models.
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Solution :
Results based on Leckner model: The given data may be arranged as

Tg = 1000 K, P = 1 atm, pw = pc = 0.1 atm, Tw = 600 K, L = 1 m

Hence, the mole fractions of water vapor and carbon dioxide are given by

Xw = Xc = 0.1

1
= 0.1

We make use of the spreadsheet prepared by Ronney to obtain the desired output as

εw = 0.14980, εc = 0.10460, 
ε = 0.01688

εg = 0.23752, αg = 0.29554

Results based on WSGG: The values are based on the graph presented by Smith et
al. The parameters on the graph are

Gas temperature = 1000K
pw + pc

P
= 0.05 + 0.05

1
= 0.1

(pw + pc)L

P
= (0.05 + 0.05) × 1

1
= 0.1

The desired emissivity of the gas mixture is read from the graph as

εg = 0.22

Two significant digits is all that one can expect from the graph. Similarly, the gas
absorptivity is obtained as

αg = 0.28

The two ways of calculation are in good agreement.

Example11.5

Two very large gray planes are placed parallel to each other. The top plane 1 is
at 1200 K and has an emissivity of 0.85. The bottom plane 2 is at a temperature of
800 K and has an emissivity of 0.65. The gap between the planes is 1.5 m and is filled
with a gray gas at 1050 K with an absorption coefficient of 0.074 m−1. Determine
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the heat transfer at each of the boundaries. Also, determine the net heat transfer to
the gas. What would be the heat transfer across the gap in the absence of the gas?

Solution: This problem consists of two surfaces (number of surface zones is (2)
with an enclosed isothermal gas volume (number of gas zones is (1). Since all the
radiation leaving surface zone 1 reaches surface zone 2, the angle factor area product
is the area itself. We may base the calculations on a per unit area basis.

Step 1 Given data is written down as below.

Surface 1: T1 = 1200K ε1 = 0.85
Surface 2: T1 = 800K ε1 = 0.65
Gas: Tg = 1050 K κ = 0.074 m−1

L = 1.5 m

From Table11.2, the mean beam length for this geometry is

Lm = 1.8L = 1.8 × 1.5 = 2.7 m

The optical thickness of the gas is calculated as

τL = κLm = 0.074 × 2.7 = 0.1998

Step 2 The optically thin approximation is not valid. Using the data given in Table
F.1, we have E3(0.1998) = 0.352. The gas emissivity and transmittivity
are given by

εg = 1 − 2E3(0.1998) = 1 − 2 × 0.352 = 0.296

tg = 2E3(0.1998) = 2 × 0.352 = 0.704

Step 3 Emissive powers:
The black body emissive powers are calculated as

Eb1 = σT 4
1 = 5.67 × 10−8 × 12004 = 117573.1 W/m2

Eb2 = σT 4
2 = 5.67 × 10−8 × 8004 = 23224.3 W/m2

Ebg = σT 4
g = 5.67 × 10−8 × 10504 = 68919.2 W/m2

Step 4 Radiosity formulation:
For surface 1, we have
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J1 = ε1Eb1 + (1 − ε1)(εgEbg + tgJ2)

= 0.85 × 117573.1 + (1 − 0.85)(0.296 × 68919.2 + 0.704J2)

= 102997.1 + 0.1056J2

For surface 2, we have

J2 = ε2Eb2 + (1 − ε2)(εgEbg + tgJ1)

= 0.65 × 23224.3 + (1 − 0.65)(0.296 × 68919.2 + 0.704J1)

= 22235.8 + 0.2464J2

The two radiosity equationsmay bewritten in the formof amatrix equation

[
1 −0.1056

−0.2464 1

]{
J1
J2

}
=
{
102997.1
22235.8

}

Using Kramer’s rule, the solution to the above equations is

J1 = 108159.5 W/m2, J2 = 48886.3 W/m2

Step 5 Heat fluxes are calculated now.
q1, the heat flux at the hot surface, is

q1 = ε1

1 − ε1
(Eb1 − J1) = 0.85

1 − 0.85
(117573.1 − 108159.5) = 53343.7 W/m2

q2, the heat flux at the cold surface, is

q2 = ε2

1 − ε2
(Eb2 − J2) = 0.65

1 − 0.65
(23224.3 − 48886.3) = −47658 W/m2

The heat transfer to the gas qg may be determined by energy balance.

qg = −q1 − q2 = −53343.7 + 47658 = 5685.7 W/m2

It is seen that heat leaving the hot wall is transferred partly to the gas and
partly to the cold wall.

Step 6 Results in the absence of gas:
If the gap between the slabs is evacuated, the heat transfer may be calcu-
lated using a simple two-surface enclosure analysis presented earlier. The
heat transfer across the enclosure is given by Eq. 10.42 and hence
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q1−2 = σ
(
12004 − 8004

)
(

1

0.85
+ 1

0.65
− 1

) = 55016.1 W/m2

The heat transfer across the gap is more in the case of an evacuated enclo-
sure as compared to the gas-filled enclosure.

The calculations may easily be extended to the case of a gas mixture whose prop-
erties may be evaluated by using the Leckner or the WSGG model. We consider a
typical case to show how the calculation is performed.

Example11.6

Two very large black plane surfaces are 0.3 m apart and the space between them
is filled with a gas mixture containing 25% carbon dioxide, 25% water vapor, and
rest nitrogen, by volume. The total pressure of the gas mixture is 1 atmosphere. One
of the surfaces is at 1200 K while the other is at 600 K. Calculate the following:

1. The effective emissivity of the gas mixture at its temperature of 900 K
2. The effective absorptivity of the gas mixture to radiation from the two walls at

their respective temperatures
3. The net rate of heat transfer from the hot wall to the cold wall.

Solution :
The given data is written down as below.

Black Wall 1: T1 = 1200 K Black Wall 2: T2 = 600 K
Gas: Tg = 900 K Thickness: L = 0.3 m

Xc = 0.25 Xw = 0.25 P = 1 atm

The mean beam length may be calculated as

Lm = 1.8L = 1.8 × 0.3 = 0.54 m

Radiation properties of the gas mixture are calculated using the spreadsheet “Planck-
MeanAndLeckner”. For the first wall gas combination, the appropriate properties are
obtained as

εg = 0.290, αg1 = 0.242

where αg1 is the gas absorptivity for radiation emanating fromWall 1. For the second
wall gas combination, we have
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εg = 0.290, αg2 = 0.342

where αg2 is the gas absorptivity for radiation emanating fromWall 2. The radiosities
of the two walls are simply the corresponding black body emissive powers given by

J1 = Eb1 = 5.67 × 10−8 × 12004 = 117573.1 W/m2

J2 = Eb2 = 5.67 × 10−8 × 6004 = 7348.3 W/m2

Black body emissive power at gas temperature is

Ebg = 5.67 × 10−8 × 9004 = 37200.9 W/m2

The irradiations may be calculated as

G1 = J2tg2 + εgEbg

= 7348.3 × (1 − 0.342) + 0.290 × 37200.9 = 15612.5 W/m2

G2 = J1tg1 + εgEbg

= 117573.1 × (1 − 0.242) + 0.290 × 37200.9 = 99882.5 W/m2

Heat fluxes at the two walls are now calculated.

q1 = J1 − G1 = 117573.1 − 15612.5 = 101960.6 W/m2

q2 = J2 − G2 = 7348.3 − 99882.5 = −92534.1 W/m2

The gas absorbs an amount equal to 101960.6 − 92534.1 = 9426.5 W/m2. The net
heat transfer between the two walls is 92534.1 W/m2.

We present yet another example, this time an enclosure with a single wall enclos-
ing a gas mixture. The shape of the enclosure is taken as a sphere; its surface is gray
and diffuse.

Example11.7

A spherical vessel of diameter 0.4 m encloses a gas mixture at a total pressure of
P = 2 atm. The gas mixture contains nitrogen at a partial pressure of 1 atm, water
vapor at a partial pressure of 0.4 atm, and carbon dioxide at a partial pressure of
0.6 atm. The gas is at a temperature of Tg = 800 K, while the sphere surface is at a
temperature of Ts = 400 K. The sphere is gray with an emissivity of εs = 0.5. Deter-
mine the radiant heat transfer to the sphere. Figure11.15 gives a graphical description
of the problem.
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Fig. 11.15 Gas radiation with a single surface—Example 11.7

Solution :
In order to evaluate the gas emissivity and absorptivity, we need the mean beam
length for this configuration. From Table11.2, the mean beam length for a spherical
gas volume is Lm = 2

3D. Thus

Lm = 2

3
× 0.4 = 0.2667 m

Gas properties are now calculated using the Leckner model. The given data is
arranged as

Total pressure PT = 2 atm
Path length Lm = 0.2667 m

Gas temperature Tg = 800 K
Sphere temperature Ts = 400 K

Mole fraction of water vapor Xw = pw
PT

= 0.4
2 = 0.2

Mole fraction of carbon dioxide Xc = pc
PT

= 0.6
2 = 0.3

The output from spreadsheet “PlanckMeanAndLeckner” is given below:

Emissivity of water vapor: εw = 0.2264
Emissivity of carbon dioxide: εc = 0.1152

Emissivity correction: 
ε = 0.0208
Gas mixture emissivity: εg = 0.2264 + 0.1152

−0.0208 = 0.3207
Gas mixture absorptivity: αg=0.3925

The radiosity formulation may now be made noting that all the radiation that
leaves the surface is incident on itself. However, it is attenuated by gas absorption
and augmented by gas emission. Thus we have

Js = εsEbs + (1 − εs)(εgEbg + tgJs)
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We may solve this equation for Js to get

Js = εsEbs + (1 − εs)εgEbg

1 − (1 − εs)tg

We should note that tg = 1 − αg = 1 − 0.3925 = 0.6075 in this case. The two emis-
sive powers are given by

Ebs = 5.67 × 10−8 × 4004 = 1451.5 W/m2

Ebg = 5.67 × 10−8 × 8004 = 23224.3 W/m2

With these, the radiosity of the surface is obtained as

Js = 0.5 × 1451.5 + (1 − 0.5)0.3207 × 23224.3

1 − (1 − 0.5) × 0.6075
= 6391 W/m2

The irradiation on the surface is obtained as

Gs = εgEbg + tgJs = 0.3207 × 23224.3 + 0.6075 × 6391 = 11330.5 W/m2

The wall heat flux may then be calculated as

qs = Js − Gs = 6391 − 11330.5 = −4940.5 W/m2

The negative sign indicates that the surface gains heat.

11.5 Radiation in a Non-isothermal Participating Medium

Weare now ready to relax the condition that the gas volume is isothermal.Weconsider
a simple but important problem of radiative transfer in a slab of gas wherein the
temperature is a function of only one coordinate, the distancemeasured perpendicular
to one of the boundaries. Most atmospheric models are based on the plane parallel
layer model. The analysis is presented for a gray gas to make it simple. However, it is
possible to extend the analysis to a non-gray gas whose properties may be determined
by any of the methods presented earlier.

11.5.1 Radiation Transfer in a Gray Slab:

Consider a slab of gray gas of absorption coefficient κ of thickness L bounded by gray
diffuse walls at x = 0 and x = L. Let ε0,T0 and εL,TL be the specified emissivity
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temperature combinations at the two walls. Let us represent the radiosities of the two
walls, respectively, as J0 and JL. Let the gas temperature at any location x be T (x).
The equation of transfer is written for the forward intensity along the μ(= cos θ)

direction as

μ
dI+

dx
+ κI+ = κ

π
Eb(x) (11.55)

where Eb(x) is the black body emissive power at the local gas temperature Tg(x). We
may integrate this equation by making use of the integrating factor given by e

κx
μ to

get

I+(x) = Ae− κx
μ + κ

π

x∫
0

e
κ(x′−x)

μ Eb(x
′)
dx′

μ
(11.56)

where A is an integration constant that is determined by equating I+(x = 0) to J0
π
at

the left boundary. Hence, the solution is

I+(x) = J0
π
e− κx

μ + κ

π

x∫
0

e
κ(x′−x)

μ Eb(x
′)
dx′

μ
(11.57)

Introducing the optical thickness τ = κx, the above may be recast as

I+(τ ) = J0
π
e− τ

μ + 1

π

τ∫
0

e
τ ′−τ

μ Eb(τ
′)
dτ ′

μ
(11.58)

Using now the definition of the forward flux as q+ = 2π
1∫
0
I+μdμ, Eq. 11.58 may

be recast as

q+(τ ) = 2

1∫
0

⎛
⎝J0e− τ

μ +
τ∫

0

e
τ ′−τ

μ Eb(τ
′)
dτ ′

μ

⎞
⎠μdμ (11.59)

A similar procedure is used for obtaining the backward flux (q− = 2π
−1∫
0
I−μdμ) to

get

q−(τ ) = 2

1∫
0

⎛
⎝JLe− τL−τ

μ +
τL∫

τ

e
τ−τ ′

μ Eb(τ
′)
dτ ′

μ

⎞
⎠μdμ (11.60)

Using Exponential integrals defined by Eq. F.2, Eqs. 11.59 and 11.60 may be recast
as
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q+(τ ) = 2

⎛
⎝J0E3(τ ) +

τ∫
0

E2(τ − τ ′)Eb(τ
′)dτ ′

⎞
⎠

q−(τ ) = 2

⎛
⎝JLE3(τL − τ) +

τL∫
τ

E2(τ
′ − τ)Eb(τ

′)dτ ′
⎞
⎠

(11.61)

The net radiant flux is then obtained as

q = q+ − q− = 2J0E3(τ ) + 2

τ∫
0

E2(τ − τ ′)Eb(τ
′)dτ ′

−2JLE3(τL − τ) − 2

τL∫
τ

E2(τ
′ − τ)Eb(τ

′)dτ ′
(11.62)

11.5.2 Radiation Equilibrium

If the gas is in radiative equilibrium with the walls the net heat flux, which in general
is a function of τ , should be a constant. Hence dq

dτ
= 0. Taking the derivative of

Eq.11.62 with respect to τ and setting it to zero, we get

0 = −2J0E2(τ ) − 2

τ∫
0

E1(τ − τ ′)Eb(τ
′)dτ ′ + 2E2(0)Eb(τ )−

2JLE2(τL − τ) − 2

τL∫
τ

E1(τ
′ − τ)Eb(τ

′)dτ ′ + 2E2(0)Eb(τ )

(11.63)

In writing the above, we have made use of Leibnitz’ rule according to which

d

dx

b(x)∫
a(x)

F(x − x′)dx′ =
b(x)∫

a(x)

dF(x − x′)
dx

dx′

+ F[x − b(x)]db
dx

− F[x − a(x)]da
dx

and Eq. F.2 for the derivative of the Exponential integral function. We introduce the
non-dimensional emissive power given by

eb = Eb − JL
J0 − JL

(11.64)
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Consider the integrals appearing in Eq.11.63. We have, in terms of the non-
dimensional emissive power,

τ∫
0

E1(τ − τ ′)Eb(τ
′)dτ ′ =

τ∫
0

E1(τ − τ ′)[(J0 − JL)eb(τ
′) + JL]dτ ′

= (J0 − JL)

τ∫
0

E1(τ − τ ′)eb(τ ′)dτ ′ + JL[E2(0) − E2(τ )]

where the last part has used Eq. F.4 for integrating the Exponential integral over the
interval 0, τ . Similarly, we have

τL∫
τ

E1(τ
′ − τ)Eb(τ

′)dτ ′ =
τL∫

τ

E1(τ
′ − τ)[(J0 − JL)eb(τ

′) + JL]dτ ′

= (J0 − JL)

τL∫
τ

E1(τ
′ − τ)eb(τ

′)dτ ′ + JL[E2(0) − E2(τL − τ)]

Introducing these in Eq.11.63, noting that E2(0) = 1, combining the two integrals
and after simplification, we get

2eb(τ ) = E2(τ ) +
τL∫
0

E1(|τ − τ ′|)eb(τ ′)dτ ′ (11.65)

Define non-dimensional heat flux as

q∗ = q

J0 − JL
(11.66)

Noting that q and hence q∗ are constant under radiative equilibrium, it may be eval-
uated at any τ and hence say at τ = 0, in Eq.11.62. The reader may show that the
non-dimensional heat flux is

q∗ = 1 − 2

τL∫
0

eb(τ
′)E2(τ

′)dτ ′ (11.67)
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11.5.3 Solution of Integral Equation

Equation11.65 is easily recognized as the Fredholm integral equation of the second
kind. The integral equation is linear and the solution depends only on one parameter,
0., τL = κL. TheKernel in the present case isE1(|τ − τ ′|)which is singular at τ = τ ′,
i.e., E1(|τ − τ ′|) → ∞ as τ → τ ′. However, this does not create any problem as far
as the solution of the integral equation is concerned. Heaslet and Warming10 have
solved the integral equation using tabulated functions and hence their solutionmay be
termed “exact”. Usiskin and Sparrow11 presented a numerical solution by an iterative
scheme.

In order to appreciate the procedure, we shall solve the integral equation by assum-
ing the emissive power to be given by a piecewise constant representation of the
non-dimensional emissive power. Consider the case where τL = 0.1. The domain is
divided in toeightparts and themid-pointsof theseelements areassigned theunknown
emissive powers. The integral appearing in Eq.11.65 is replaced by a sum. The mid-
pointsoftheelementsarelocatedatτ1 = 0.00625, τ2 = 0.01875, τ3 = 0.03125, τ4 =
0.04375, τ5 = 0.05625, τ6 = 0.06875, τ7 = 0.08125, and τ8 = 0.09375. The inte-
gral equation is written for these 8 values of τ to get 8 simultaneous equations for the
nodal emissive powers ebi where 1 ≤ i ≤ 8. As an example, consider the first node at
τ1 = 0.00625. The integral equation applied to this point will read as

2eb1 = E2(0.00625) +
0.00625∫
0

E1(0.00625 − τ ′)eb1(τ ′)dτ ′

+
0.0125∫

0.00625

E1(τ
′ − 0.00625)eb1(τ

′)dτ ′ +
8∑

i=2

ebiIi

(11.68)

where Ii are integrals given by

Ii =
τi+0.00625∫

τi−0.00625

E1(τ
′ − 0.00625)dτ ′ (11.69)

These integrals may be obtained easily by using Eq. F.4 as

Ii =
τi+0.00625∫

τi−0.00625

E1(τ
′ − 0.00625)dτ ′ = E2(u) − E2(l)

10M. A. Heaslet and R. F. Warming, Int. J. Heat and Mass Transfer, Vol. 8, pp. 979–994, 1965.
11C. M. Usiskin and E. M. Sparrow, Int. J. Heat and Mass Transfer, Vol. 1, pp. 28–36, 1960.
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where u = τi + 0.0125 and l = τi are the upper and lower limits in the integral.
We may use the same procedure for all the other values of τ and write the integral
equation as a set of simultaneous equations given by

[A]{eb} = {B} (11.70)

where [A] is an 8 × 8 square matrix, {eb} is a column matrix of unknown emissive
powers, and {B} is a column matrix of E′

2s. The matrix [A] is a symmetric matrix as
can be easily seen by looking at the I ′

i s. All the diagonal elements are the same, as
may be easily verified. We thus have the following:

[A] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.9312 0.0483 0.0393 0.0344 0.0309 0.0282 0.0261 0.0243
0.0483 1.9312 0.0483 0.0393 0.0344 0.0309 0.0282 0.0261
0.0393 0.0483 1.9312 0.0483 0.0393 0.0344 0.0309 0.0282
0.0344 0.0393 0.0483 1.9312 0.0483 0.0393 0.0344 0.0309
0.0309 0.0344 0.0393 0.0483 1.9312 0.0483 0.0393 0.0344
0.0282 0.0309 0.0344 0.0393 0.0483 1.9312 0.0483 0.0393
0.0427 0.0282 0.0309 0.0344 0.0393 0.0483 1.9312 0.0483
0.0243 0.0427 0.0282 0.0309 0.0344 0.0393 0.0483 1.9312

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{eb} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eb1
eb2
eb3
eb4
eb5
eb6
eb7
eb8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and {B} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9656
0.9173
0.8780
0.8436
0.8128
0.7845
0.7584
0.7341

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

All entries have been rounded to four significant digits after decimals. However,
machine calculation proceeds with the available number of digits. The solution of the
set of linear equations is easily accomplished by the Gauss iteration. The coefficient
matrix exhibits diagonal dominance and hence the iterative scheme will succeed in
yielding the desired solution. The Gauss iteration requires “old” and “new” values—
a total of 16 entries to be stored. Table11.3 shows the results of the Gauss iteration
with 0.5 as the starting value for each of the unknown emissive powers.

It is seen that the Gauss iteration converges in just 3 iterations. To demonstrate
that the procedure is good over a large range of optical thicknesses, the calculations
were performed for τL = 1 also. The results are given in Table11.4.

The dimensionless heat flux may be obtained by the use of Eq.11.67 and per-
forming the indicated integration by using the discrete values of the dimensionless
emissive power. The results in the two cases considered above are

q∗ = 0.9157 for τL = 0.1; q∗ = 0.5550 for τL = 1
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Table 11.3 Gauss iteration results

Iteration Number

1 2 3 4

0.5 0.5537 0.5535 0.5535

0.5 0.5411 0.5414 0.5414

0.5 0.5242 0.5245 0.5245

0.5 0.5080 0.5082 0.5082

0.5 0.4920 0.4919 0.4920

0.5 0.4758 0.4756 0.4756

0.5 0.4631 0.4633 0.4633

0.5 0.4444 0.4449 0.4449

Table 11.4 Results for two optical thicknesses
τ
τL

eb, τL = 0.1 eb, τL = 1

0 0.5630 0.7493

0.0625 0.5535 0.7145

0.1875 0.5414 0.6486

0.3125 0.5245 0.5879

0.4375 0.5082 0.5291

0.5625 0.4920 0.4709

0.6875 0.4756 0.4121

0.8125 0.4633 0.3514

0.9375 0.4449 0.2855

1 0.4378 0.2507

Bold entries are extrapolated
values

All the results obtained by the above numerical method are in very good agree-
ment with the results reported in the two references cited above. While the solution
corresponding to τL = 0.1 is almost linear, the solution for τL = 1 is represented
excellently by a third-degree polynomial. The mean value of eb in both the cases is
0.5. Figure11.16 brings out these observations.

The extrapolated values shown in Table11.4 are also in excellent agreement with
the values given in the two references. It is observed that the eb values at τ = 0 and
τ = τL are not equal to the radiosities of the walls. Thus, the gas emissive power is
discontinuous at the two boundaries and there is a “slip” at the two walls. Of course,
the slip decreases with an increases in τL and vanishes for τL → ∞. The presence of
slip is because of the fact that the gas has been assumed to be non-conducting!

In the optically thin case, the dimensionless emissive power is very nearly constant
and is close to themean value of 0.5. Thus, the dimensional emissive power is just the
mean of the radiosities of the two walls. In case the two walls are black, the emissive
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Fig. 11.16 Variation of
emissive power across the
slab

power of the gas will be the mean of the black body emissive powers corresponding
to the temperatures of the two bounding walls.

Example11.8

Consider two large parallel black walls enclosing a gray gas. The temperatures of the
two walls are, respectively, 1000 K and 700 K. The spacing between the two walls
is 0.5567 m and the gas has an absorption coefficient of 0.998 m−1. Make a plot of
the temperature of the gas as a function of the position. What is the heat transfer
between the two walls?

Solution :
From the given data, we have the following.

Hot wall temperature: T1 = 1000 K ; Cold wall temperature: T2 = 700 K
Radiosity of hot wall: J0 = Eb1 = σT 4

1 = 5.67 × 10−8 × 10004 = 56700 W/m2

Radiosity of cold wall: JL = Eb2 = σT 4
2 = 5.67 × 10−8 × 7004 = 13613.7 W/m2

κ = 0.998 m−1, L = 0.5567 m, Lm = 1.8 × 0.5567 = 1.00006 ≈ 1 m

Since the optical thickness τLm = 0.998 × 1.00006 ≈ 1, the non-dimensional
emissive power is basically given by the values shown in the last columnofTable11.4.
The local black body emissive power Eb is obtained by the use of Eq.11.64 as

Eb = eb(J0 − JL) + JL
= eb(56700 − 13613.7) + 13613.7 = 43086.3eb + 13613.7

The local gas temperature is then given by
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Fig. 11.17 Variation of temperature across gas slab in Example 11.8

T =
(Eb

σ

) 1
4

The local temperature data is presented in a tabular form in the table shown at
the right in Fig. 11.17. The temperature “profile” is also shown as a plot in the same
figure. Noting that the non-dimensional heat transfer is q∗ = 0.5550, the heat transfer
between the two walls is obtained as

q = q∗(J0 − JL) = 0.5550(56700 − 13613.7) = 23912.8 W/m2

11.5.4 Discrete Ordinate Method

Background
We have seen in Example 11.2 that the analytical solution required calculation for
all (infinite in number) slant paths from the left wall to the right gas boundary and a
subsequent integration over all directions. An approximatemethod of calculation that
reduces the number of slant paths to a small number is the idea behind the discrete
order method or DOM, for short. Integration over angle is replaced by a weighted
sum in the DOM based on a suitable quadrature rule.

Central Idea
The quadrature rule replaces integration of a function with respect to a solid angle
by a summation given by
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Fig. 11.18 Description of
intensity of radiation
propagating along direction s

4π∫
0

f (s)d� =
i=n∑
i=−n

wif (si) (11.71)

where wi are the weights (weight may be looked upon as an effective solid angle
associated with the direction si).

Consider the radiation intensity propagating along s with direction cosines μ, η

and ζ (μ represents the cosine of polar angle α measured with respect to the x-axis,
η represents the cosine of polar angle β measured with respect to the y-axis, and ζ

represents the cosine of polar angle γ measured with respect to the z-axis) as shown
in Fig. 11.18.

Simplest Case
The simplest case corresponds to one in which we have a single direction in each
octant of the sphere (Fig. 11.19). We require that on rotation by π

2 , the direction
remains the same. This will satisfy the no flux condition when the intensity is
isotropic. It is then easy to see that the direction cosines are to be chosen such
that the direction has equal polar angles α = β = γ and hence

μ = η = β = 1√
3

(11.72)

Fig. 11.19 Discrete
ordinates in the S2 method.
There is one discrete ordinate
direction in the octant
indicated by direction OA
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The only weight must be the solid angle subtended by one octant, i.e., w = π
2 . This

is referred to as the S2 (symmetric) case. The squares of the direction cosines add
up to one.Whenwe consider the whole sphere, the eight directions are symmetrically
located, one direction per octant. The zeroth moment of isentropic intensity I will
yield 4π I as it should. Due to symmetry, the first moment of intensity will vanish,
as it should, satisfying the zero flux condition.

In the literature, we also come across the S2 (asymmetry) case. In this case, the
three directions are chosen as

μ = 1√
2
; η = β = 0.5 (11.73)

The sums of squares of direction cosines add up to unity. The weight remains
unchanged at w = π

2 .

More Useful Case: S4
Consider now the S4 method. In this method, we have 4 × (4 + 2) = 24 [in general,
Sn has n(n + 2)] discrete ordinates or directions in the entire sphere. These directions
are chosen such that they remain invariant with respect to rotation by π

2 and hence
yield only 3 ordinates in an octant of the sphere. It is enough to consider these three
directions for describing the S4 method.

Because of symmetry, it is easy to see that the weights associated with the three
directions are the same and equal tow1 = w2 = w3 = π

6 so that the sum of weights is
equal to π

2 , the solid angle subtended by the octant at its center. The three directions
are such that they correspond to the following:

⎡
⎣μ1 η1 ζ1

μ2 η2 ζ2
μ3 η3 ζ3

⎤
⎦ =

⎡
⎣ c2 c2 c1
c2 c1 c2
c1 c2 c2

⎤
⎦ (11.74)

Thus, there are only two parameters c1 and c2 to be determined. We impose the
condition that the sum of squares of the direction cosines yield unity, i.e.,

c21 + c22 + c22 = c21 + 2c22 = 1 (11.75)

In view of these, the three directions in an octant are as shown in Fig. 11.20. Now
consider the case of isotropic intensity. In this case, azimuthal variation is absent and
hence we can consider the directions in terms of any one of the direction cosines,
say μ. We require that the quadrature formula that uses these three directions also
satisfies the following half moment:

1∫
0

μdμ = π

2
or

π

6
c1 + 2

π

6
c2 = π

2
or c1 + 2c2 = 3

2
(11.76)

From Eq.11.76 we have, solving for c1, the relation
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Fig. 11.20 Discrete
ordinates in the S4 method.
There are three discrete
ordinate directions in the
octant indicated by direction
OA, OB, OC

c1 = 3

2
− 2c2

Introduce this in Eq.11.75 to get

(
3

2
− 2c2

)2

+ 2c22 = 9

4
+ 4c22 − 6c2 + 2c22 = 9

4
+ 6c22 − 6c2 = 1

The above reduces to the quadratic equation

c22 − c2 + 5

24
= 0

which has two solutions given by

c2 =
1 ±

√
1 − 5

6

2
= 1

2
± 1√

6
(11.77)

We choose the larger of the two roots obtained by taking the + sign in the above.
Using this, we then obtain c1 as

c1 = 3

2
− 2 ×

(
1

2
+ 1√

6

)
= 1

2
− 1√

24
(11.78)

It is interesting to note that the above choice guarantees the satisfaction of another

moment, viz.,
1∫
0

μ2dμ = 2π
3 . We may obtain DOM with a larger number of direc-

tions, using similar arguments.12 We choose even n (this will avoid singularity asso-
ciated with zero direction cosine) such that the DOM is defined by a method with n

12Discrete Ordinates Quadrature Generator, PSR-110 DOQDP, Oak Ridge National Laboratory,
RSICC Peripheral Shielding Routine Collection, September 1977.
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Table 11.5 Directions and weights in the Sn method

DO # μ η ζ Weight

S2—Symmetric

1 0.577350269 0.577350269 0.577350269 6.283185307

S2—Asymmetric

1 0.500000000 0.500000000 0.707106781 6.283185307

S4
1 0.295875855 0.295875855 0.908248291 2.094395102

2 0.295875855 0.908248291 0.295875855 2.094395102

3 0.908248291 0.295875855 0.295875855 2.094395102

S6
1 0.183867109 0.183867109 0.965601249 0.643807273

2 0.183867109 0.965601249 0.183867109 0.643807273

3 0.965601249 0.183867109 0.183867109 0.643807273

4 0.183867109 0.695051396 0.695051396 1.450587830

5 0.695051396 0.183867109 0.695051396 1.450587830

6 0.183867109 0.695051396 0.695051396 1.450587830

S8
1 0.142255532 0.142255532 0.979554351 0.684943622

2 0.142255532 0.979554351 0.142255532 0.684943622

3 0.979554351 0.142255532 0.142255532 0.684943622

4 0.142255532 0.577350269 0.804008725 0.396913784

5 0.577350269 0.804008725 0.142255532 0.396913784

6 0.804008725 0.142255532 0.577350269 0.396913784

7 0.142255532 0.804008725 0.577350269 0.396913784

8 0.804008725 0.577350269 0.142255532 0.396913784

9 0.577350269 0.142255532 0.804008725 0.396913784

10 0.577350269 0.577350269 0.577350269 1.846871738

segmented angles such as n = 6, n = 8..... Directions and weights are tabulated in
Table11.5 for S2 through S8.

Special Case of Radiation in One Dimension
We have considered an earlier one-dimensional problem in the form of radiation
transfer in a slab of participating medium. In such a case, azimuthal symmetry exists
with reference to the independent variable x. Discrete ordinate directions are rep-
resented with reference to only one of the three polar angles and hence one of the
direction cosines. Assuming that the direction cosine of interest is represented as μ,
the discrete ordinates now are represented in terms of only the μ values. For exam-
ple, in the case of S2-symmetric, we will have only one direction corresponding to
μ = 0.577350269 with the corresponding weight of w = 2π = 6.283185307.

In the case ofS4,we have only twodirections corresponding toμ = 0.2958758548
andμ = 0.9082482905. Directions 1 and 2 in Table11.5 merge, and the total weight
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Table 11.6 Directions and weights in the Sn method—One-dimensional case

DO # μ Weight DO # μ Weight

S2 S4
1 0.577350269 6.283185307 1 0.295875855 4.188790205

2 0.908248290 2.094395102

S6 S8
1 0.183867109 2.738202375 1 0.142255532 2.163714812

2 0.695051396 2.901175660 2 0.577350269 2.640699306

3 0.965601249 0.643807273 3 0.804008725 0.793827568

4 0.979554351 0.684943622

is the sum of these weights and hence given by w = 4.188790205. With this back-
ground, it is possible to arrange the directions and weights as shown in Table11.6.

Application of DOM to a Slab of Participating Medium
Having considered the basis for the DOM, we demonstrate its use in the case of a
simple slab problem where radiation transfer is along the thickness of the slab. For
simplicity, we assume the slab to be gray with an absorption coefficient of κ . The
slab is L thick and the temperature variation across the slab is specified. At x = 0,
there is a black wall with a temperature of Tw.

Consider an elemental absorbing and emitting gas slab of thickness 
x as shown
in Fig. 11.21. Radiation of intensity I+

x (μi) is incident on the left (west) face of the
gas slab at one of the angles chosen in the discrete ordinate method, viz., μi. The
intensity at x + 
x (east face) is related to the intensity at x as given by the following.

Fig. 11.21 Discrete ordinate method applied to an elemental slab
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I+
x+
x(μi) = I+

x (μi)e
− κ
x

μi + σT 4
g,j(x)

π

(
1 − e− κ
x

μi

)
(11.79)

Here, Tg,j is the temperature of the elemental gas layer j. The radiant flux is then
given by the following summation, where S8 approximation is used.

q+(x + 
x) =
4∑

i=1

μiI
+
x+
x(μi)wi (11.80)

The above process starts at the wall situated at x = 0. For the first elemental gas slab,
we have

I+

x(μi) = σT 4

w

π
e− κ
x

μi + σT 4
g,1

π

(
1 − e− κ
x

μi

)
(11.81)

For subsequent elemental slabs, we make use of Eq.11.79 for obtaining the intensi-
ties along the discrete ordinates and Eq.11.80 for obtaining the forward-going flux.
Eventually, we will be able to determine the flux leaving the gas from the east face
of the gas layer identified as N .

Example11.9

Consider Example 11.3 again. Compare the exact result obtained there with those
obtained using various Sn’s. Since the temperature of the gas is uniform across the
slab, the calculations may be made by treating the entire slab as a single elemental
slab. We shall calculate the flux leaving at the right using the S4 method. Similar
calculations may be performed for other Sn’s also.

Solution :
We make use of the directions and weights given in Table11.6. The intensity of
radiation leaving the black wall at the left is

I(τ = 0) = 5.67 × 10−8 × 4004

π
= 462.03 W/m2sr

The black body intensity corresponding to gas temperature is given by

Ig = 5.67 × 10−8 × 3504

π
= 270.84 W/m2sr

Along the slant path μ1 = 0.295876, the intensity leaving at the right is given by

Iμ1(τ = 0.1) = 462.03e− 0.1
0.295876 + 270.84

(
1 − e− 0.1

0.295876

)
= 407.20 W/m2sr

Along the slant path μ2 = 0.908248, the intensity leaving at the right is given by
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Iμ2(τ = 0.1) = 462.03e− 0.1
0.908248 + 270.84

(
1 − e− 0.1

0.908248

)
= 442.10 W/m2sr

With these two values of leaving intensities, the forward flux leaving the gas slab is
given by

q+(τ = 0.1) = 4.188790 × 0.295876 × 407.20 + 2.094395×
×0.908248 × 442.10 = 1345.64 W/m2

This compares pretty well with the exact value obtained in Example 11.3 of
q+(τ = 0.1, exact) = 1352.57 W/m2. The following table compares the exact and
the various Sn results .

DOM q+(τ = 0.1) Error %
S2-Symmetric 1565.77 15.76
S2-Asymmetric 1342.64 −0.73
S4 1345.64 −0.51
S6 1347.78 −0.35
S8 1348.73 −0.28
Exact 1352.57 0

It appears that S4 may be adequate in this problem.

Example11.10

Consider a gray gas with an absorption coefficient of κ = 0.5 m−1. The temper-
ature of the gas varies linearly from x = 0 to x = L = 1 m according to the relation
T = 400 − 100x where x is in m. Radiation emanates from a black wall at x = 0
maintained at a temperature of Tw = 400 K. Determine the radiant flux leaving the
gas slab at x = 1 m. Make use of the discrete ordinate method with S8 for solving
this problem.

Solution:

Step 1 With the given data, we may calculate the intensity of radiation leaving

the black wall at x = 0 as I+
w = σT 4

w
π

= 5.67×10−8×4004

π
= 462.03 W/m2sr.

Step 2 We divide the slab into 10 elemental slabs of thickness 
x = L
10 = 1

10 =
0.1 m. The optical thickness of the slab is τL = κL = 0.5 × 1 = 0.5 and
that of an elemental slab is 
τ = κL = 0.5 × 0.1 = 0.05.
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Step 3 We associate the gas temperature with the mid-point of each elemental
slab. The locations and temperature are calculated based on the linear
temperature variation specified in the problem and are tabulated as given
below.

j 1 2 3 4 5 6 7 8 9 10
x, m 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Tj, K 395 385 375 365 355 345 335 325 315 305

Note that the temperature profile is approximated by a staircase-type pro-
file that is familiar to us from the finite difference method presented in
conduction heat transfer.

Step 4 Consider the very first element next to the black wall. We calculate the
intensities at
x = 0.1 m along the four discrete ordinate directions using
Eq.11.81. For example, along μ1 = 0.14226 we have

I+

x(μ1) = σT4

w
π

e
− κ
x

μ1 +
σT4

g,1

π

(
1 − e

− κ
x
μ1

)
= 462.03 × e−

0.5×0.1
0.14226

+ 5.67 × 10−8 × 3954

π

(
1 − e−

0.5×0.1
0.14226

)
= 455.31 W/m2sr

Similarly, we get the following values along the other discrete ordinates.

μ2 = 0.57735 I+
x(μ2) = 460.15 W/m2sr
μ3 = 0.80401 I+
x(μ3) = 460.67 W/m2sr
μ4 = 0.97955 I+
x(μ4) = 460.90 W/m2sr

Step 5 We make use of these and Eq.11.79 to calculate the corresponding values
at x = 2
x. For example, along μ1 = 0.14226 we have

I+2
x(μ1) = I+
x(μ1)e
− κ
x

μ1 +
σT4

g,2

π

(
1 − e

− κ
x
μ1

)
= 455.31 × e−

0.5×0.1
0.14226 +

5.67 × 10−8 × 3854

π

(
1 − e−

0.5×0.1
0.14226

)
= 450.59 W/m2sr

Similarly, we calculate for the other ordinate directions also.
Step 6 The above calculations are continued till we reach j = 10. The results are

tabulated below as computed by a spreadsheet program.
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I+(μi)

j x, m Tj i = 1 i = 2 i = 3 i = 4
1 0.05 395 455.31 460.15 460.67 460.90
2 0.15 385 450.59 458.43 459.38 459.83
3 0.25 375 434.57 453.29 455.59 456.68
4 0.35 365 411.55 445.30 449.64 451.72
5 0.45 355 384.52 434.93 441.85 445.18
6 0.55 345 355.51 422.63 432.49 437.29
7 0.65 335 325.93 408.78 421.83 428.25
8 0.75 325 296.70 393.72 410.10 418.25
9 0.85 315 268.45 377.77 397.51 407.46
10 0.95 305 241.55 361.17 384.26 396.03

Step 7 The radiant flux leaving the slab at x = 1 m is obtained as a weighted sum
of the intensities shown in the last row of the table.

q+
L =

4∑
i=1

I+(μi)μiwi = 241.55 × 0.14226 × 2.16371+

361.17 × 0.57735 × 2.64070 + 384.26 × 0.80401 × 0.79382+
396.03 × 0.97955 × 0.68494 = 1135.95 W/m2

11.6 Enclosure Analysis in the Presence of an Absorbing
and Emitting Gas

We develop the analysis method for a gray gas bounded by gray enclosing walls. The
gas contained in the enclosure may in general be non-isothermal. In that case, we
divide the gas volume in to small volume elements within which the temperature is
assumed to be uniform. The gray diffuse walls are also considered as being isother-
mal, if necessary, by dividing a surface in to small elements. The method that will
be detailed is the so-called “zone” method.13 The development here follows closely
that given by Goyhénèche and Sacadura.14

13H. C. Hottel and H. S. Cohen, AIChE Journal, Vol. 4, pp. 3–14, 1958.
14J.M.Goyhénèche and J.F.Sacadura, ASME Journal of Heat Transfer, Vol. 124, pp. 696–703, 2002.
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11.6.1 Zone Method

Direct Exchange Areas (DEA)
WemakeuseofFig. 11.22 inderiving thebasic geometric factors that govern radiation
transfer in a gas-filled enclosure.

Consider two bounding surfaces i and j as shown in Fig. 11.22a. Each surface
is referred to as a zone. Consider the radiation that leaves zone i of area Ai and is
incident on zone j of area Aj by direct transfer. Similar to the procedure adapted in
treating surface radiation in an evacuated enclosure, we associate direct exchange
area (DEA—we referred to it as exchange area there) between these two zones
represented by sisj defined through the following relation:

sisj =
∫
Ai

∫
Aj

μiμje−κrij

πr2ij
dAidAj = sjsi (11.82)

We have used the notation μ = cos θ in writing the above equation. Note that the
above will be nothing but the area angle factor product (i.e., exchange area) in the
absence of the gas. The exponential factor accounts for the attenuation of radiation
as it transits between the zones through the gas. The symmetry of the integrand is an
indication that the DEA satisfies the reciprocity relation. Now consider radiant inter-
change between gas zone k and surface zone j—refer to Fig. 11.22(b). We introduce
a DEA for this case represented as gksj through the relation

gksj =
∫
Vk

∫
Aj

μjκe−κrij

πr2kj
dVkdAj = sjgk (11.83)

Fig. 11.22 Radiation transfer in an enclosure with a confined absorbing and emitting gas
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Again the exponential factor accounts for the transmittance of the intervening gas
path. The reciprocity rule is satisfied because of the symmetry of the integrand.

Consider now the radiation from gas zone k of volume Vk that reaches the gas
zone l of volume Vl as shown in Fig. 11.22c . The emission by elemental volume

Vk is given by κ
Vk . The amount of this absorbed by elemental volume 
Vl is
given by κ
Vl . Hence, we define the direct exchange area gkgl between gas zones
k and l as

gkgl =
∫
Vk

∫
Vl

κ2e−κrkl

πr2kl
dVkdVl = glgk (11.84)

Again the exponential factor accounts for the transmittance of the intervening gas
path. No μ factors are involved while dealing with gas emission since emission is
isotropic. The reciprocity rule is satisfied because of the symmetry of the integrand.
Note that κ has a unit of reciprocal length.

Radiosity Formulation
The radiosity formulation uses the DEA’s obtained above. For surface zone i, the
irradiation Gi may be written down as

AiGi =
Ns∑
j=1

sjsiJj +
Ng∑
k=1

gksiEb(Tk) (11.85)

where Jj represents the radiosity of a surface j and Eb(Tk) represents the total black
body emissive power at the temperature of the gas in zone k. Ns and Ng represent,
respectively, the number of surface and gas zones used in the enclosure analysis. The
radiosity of surface zone i may then be written down as

Ji = εiEb(Ti) + (1 − εi)Gi (11.86)

whereEb(Ti) represents total black body emissive power at the temperature of surface
i and εi is the diffuse gray emissivity of surface i. In the absence of scattering by the
gas (scattering may also be accounted for in the zone method), the absorption by the
gas in zone k may be written as

4κVkGk =
Ns∑
j=1

sjgkJj +
Ng∑
l=1

glgkEb(Tl) (11.87)

We may at once write the net radiative transfer to the surface and gas zones as
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(a) Qi = Ai(Ji − Gi), (b) Qk = 4κVk [Eb(Tk) − Gk ] (11.88)

The factor 4κVi accounts for radiation in to the sphere of solid angle 4π . If we
consider an isothermal enclosure, it is clear thatQk = 0 and Ji = Eb(Tk) for all i and
k. Then we have from Eqs. 11.87 and 11.88 the following important result:

Ns∑
j=1

sjgl +
Ng∑
k=1

gkgl = 4κVl (11.89)

for l = 1, 2 . . .Ng .
We thus see that the formulation closely follows that of an evacuated enclosure.

The radiosity formulation for an evacuated enclosure will be obtained by setting κ =
0 in the equations presented above. Introducing the irradiation from Eq.11.85 in to
Eq.11.86 will yield, as before, a set of simultaneous equations for the radiosities of
the surface zones. As before, we may have surface zones with specified temperatures
or specified fluxes (for example, reradiating surfaces). These may be treated in a
fashion identical to that used in the case of the evacuated enclosure. Additional
factors due to gas radiation need to be incorporated. These need to be solved before
the surface and gas fluxes are calculated.

Simple Case with One Gas Zone and Several Surface Zones
In this case, we assume that the entire confined gas is at a uniform temperature of Tg ,
i.e., Ng = 1. We shall use subscript g to indicate the gas volume. Only surface-to-
surface and surface-to-gas DEA’s are involved in this problem. While the expression
for surface-to-surfaceDEAremains unchanged from thedefinitiongiven inEq.11.82,
the gas-to-surface DEA is written down as

ggsj =
∫
Vg

∫
Aj

μjκe−κrgj

πr2gj
dVgdAj = sjgg (11.90)

Now consider a further special case where the gas is optically thin.

Special Case: Single Zone of an Optically Thin Gas
In the special case of an optically thin gas, it is possible to replace the exponential
factor e−κrij by 1 − κrij. The DEA between surfaces becomes

sisj ≈
∫
Ai

∫
Aj

μiμj(1 − κrij)

πr2ij
dAidAj = sjsi (11.91)

The integral separates to two integrals given by

(a) AiFij =
∫
Ai

∫
Aj

μiμj

πr2ij
dAidAj (b) AiLij =

∫
Ai

∫
Aj

μiμj

πrij
dAidAj (11.92)
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The former will be recognized as the area angle factor product. The second integral
has a unit of volume and is the mean area beam length product for radiation transfer
between zones i and j through the intervening gas. We may then rewrite Eq.11.90 as

sisj ≈ AiFij

(
1 − κLij

Fij

)
= AiFijtij (11.93)

where tij is the transmittance of the gas for radiant interchange between surfaces i
and j, given by the term within the brackets. Consider now the gas-to-surface DEA.
We may rewrite it using the optically thin approximation as

ggsj ≈
∫
Vg,1

∫
As,j

μjκ
(
1 − κr1j

)
πr21j

dVg,1dAs,j (11.94)

This integral is interpreted as the product of gas emissivity εg,j and the area of the
surface Aj. This is surface zone-specific and hence the subscript g, j on the gas
emissivity. Hence, Eq.11.94 may be rewritten as

ggsj = εg,jAj (11.95)

11.6.2 Example of Zone Analysis

We present zone analysis for a single gas zone enclosed within a cubical enclosure.
The angle factors between various surfaces of the enclosure may easily be obtained
by using Figs. G.2 and G.3. Themean beam lengths are calculated based on formulae
and charts presented in Appendix G. The gas emissivity is based on the choice of a
suitable mean beam length using Table11.2.

Example11.11

Combustion gases entering a cubical enclosure at Tg,i = 1370 K may be treated as
having a gray absorption coefficient of κ = 0.125 m−1. The base of the cube labeled
1 (see Fig. 11.23) is a gray diffuse heat sink with an emissivity of ε1 = 0.8. All the
other sides labeled 2 − 6 are reradiating. The cube is of 0.8 × 0.8 × 0.8 m size. The
gas flow rate is ṁ = 0.024 kg/s and the gas mixture has a specific heat capacity of
c = 1200 J/kg · K. Calculate the exit temperature of the gas? Assume that the entire
gas volume is a single zone at a temperature that is the mean of the entering and
leaving temperature.
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Fig. 11.23 Geometry for Example 11.11

Solution :

Step 1 We shall assume that the holes through which the gas enters and leaves the
enclosure are very small compared to the faces of the cube. Since the gas
exit temperature is not known, we start the computations with an assumed
value for the mean gas temperature of Tg,m = 1150 K. We aim to get the
correct value by an iterative process.

Step 2 Given data is written down now:

Length of sides of the cubical enclosure: L = 0.8 m
Gray absorption coefficient of the combustion
gas:

κ = 0.125 m−1

Gray emissivity of floor 1: ε1 = 0.8
Gas inlet temperature: Tg,i = 1370 K
Mass flow rate of combustion gases: ṁ = 0.02 kg/s
Specific heat capacity of combustion gases: c = 1200 J/kg K

Step 3 Calculation of gas emissivity:
Mean beam length for emission from the gas volume to any one face
of the cube may be calculated based on the recipe given in Table11.2 as
Lm = 0.6L = 0.6 × 0.8 = 0.48 m. The corresponding optical thickness is

τ = κLm = 0.125 × 0.48 = 0.06

Since τ < 0.15, the optically thin approximation may be assumed to be
valid. The gas emissivity may hence be calculated as

εg = τ = 0.06

Surface 1 is assigned a radiosity of J1. We note from the geometry that
the radiosities of surfaces 2–5 are all the same and hence we denote each
of them as J2. Surface 6 is assigned a radiosity of J3. The transmittances
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between surfaces are based on the mean beam lengths obtained using the
formulae or charts given by Dunkle.

Step 4 Calculation of transmittances:
There are basically two transmittances involved in this problem. The first
one is between the opposite sides of the cube. The mean beam length is
between two parallel squares (in general, in the case of a parallelepiped the
configuration corresponds to two parallel equal rectangles). The second
one is between adjacent sides of the cube.Themeanbeam length is between
two perpendicular squares that share a common edge (in general, in the
case of a parallelepiped the configuration corresponds to twoperpendicular
rectangles sharing a common edge).
For the cube case, the non-dimensional ratios that go into the calculation
of mean beam lengths as well as the angle factors are both equal to 1
(Appendix G). For the parallel squares configuration, we obtain

Zpar = FparArpar
V

= 0.2218

where the notation follows the abovementioned Appendix.

Zper = FperArper
V

= 0.1112

where the notation follows the abovementioned Appendix. In the case of
a cube, both angle factors are ≈ 0.2. With this, the mean beam lengths
between opposite sides of the cube are

rpar = ZparV

AFpar
= 0.2218 × 0.83

0.82 × 0.2
= 0.8872 m

The mean beam lengths between adjacent sides of the cube are

rper = ZperV

AFper
= 0.1112 × 0.83

0.82 × 0.2
= 0.4448 m

The corresponding optical thicknesses are obtained as

τpar = κrpar = 0.125 × 0.8872 = 0.1110

τper = κrper = 0.125 × 0.4448 = 0.0556

The corresponding transmittances tpar and tper are obtained, using the opti-
cally thin approximation as

tpar = 1 − τpar = 1 − 0.1110 = 0.8890

tper = 1 − τper = 1 − 0.0556 = 0.9444
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Step 5 Radiosity equations:
Radiosity equation for the floor:

J1 = ε1Eb1 + (1 − ε1)(εgEbg + 4FpertperJ2 + FpartparJ3)

Radiosity equation for any of the faces 2–5:
Radiation balance requires that J2 = G2, and hence we have

J2 = εgEbg + FpertperJ1 + (2Fpertper + Fpartpar)J2 + FpertperJ3

Radiosity equation for face 6:
Radiation balance requires that J3 = G3, and hence we have

J3 = εgEbg + FpartparJ1 + 4FpertperJ2

Using the numerical values given in the data and the calculated angle
factors, gas emissivity, and the transmittances, we may write the three
equations in the matrix form.

⎡
⎣ 1 −0.1511 −0.03556

−0.1888 0.4444 −0.1888
−0.1778 −0.7555 1

⎤
⎦×

⎧⎨
⎩
J1
J2
J3

⎫⎬
⎭ =

⎧⎨
⎩
19800
5950
5950

⎫⎬
⎭

Step 6 These three equations may be solved for the radiosities to get

J1 = 28049, J2 = 44166 J3 = 44306

where the J ′s are in W/m2.

Step 7 Desired answers:
Heat transfer to the floor may be calculated as

Q1 = A1
ε1

1 − ε1
(Eb1 − J1)

= 0.8 × 0.8 × 0.8

1 − 0.8
(5.67 × 10−8 × 8004 − 28049) = −12351 W

Since all other surfaces are in radiant balance, this heat must come from
the gas as it cools in passing through the enclosure. We calculate the gas
exit temperature Tg,e by energy balance as
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−Q1 = ṁc(Tg,i − Tg,e)

or

Tg,e = Tg,i + Q1

ṁc

= 1370 + −12351

0.024 × 1200
= 941 K

The mean gas temperature may then be calculated as

Tg,m = Tg,i + Tg,e

2
= 1370 + 941

2
= 1155.5 K

This is close to the assumed value of 1150 K and hence it is not necessary
to perform any iterations.
The solution indicates that J2 and J3 are very close to each other. This
means that the temperatures of all reradiating surfaces are more or less the
same. We may calculate the temperatures as

T2−5 =
(
J2
σ

)0.25

=
(

44166

5.67 × 10−8

)0.25

= 939.5 K

T6 =
(
J3
σ

)0.25

=
(

44306

5.67 × 10−8

)0.25

= 940.2 K

11.6.3 Application of DOM to Two-Surface Enclosure with a
Non-isothermal Participating Medium

Consider a participating medium between two large parallel surfaces as shown in
Fig. 11.24. Both surfaces are gray and diffuse with temperatures and emissivities as
indicated in the figure.

DOM requires the solution of the RTE along discrete ordinates such as the ones
shown in the figure. Since the RTE is a first-order differential equation, it can be
solved only as an initial value problem. We may start from the left boundary with
specified radiosity J (0)

1 (or assumed radiosity, to start the process) there and integrate
the equation along the “forward pass” with a chosenμi corresponding to one of those
in the DOM. Because the wall is assumed to be diffuse, the assumed radiosity will

yield a uniform intensity independent of μ given by I+(0)
μi

(x = 0) = J (0)
1
π
. Since the

intervening participating medium is non-isothermal, it is necessary to perform the
integration by dividing the medium into a number of thin isothermal elemental layers



11.6 Enclosure Analysis in the Presence of an Absorbing and Emitting Gas 535

Fig. 11.24 Radiation in a
two-surface enclosure with a
participating medium

as before. At the end of this pass, we will get the intensity I+(0)
μi

(x = L). Performing
similar integrations along all paths specified by DOM, we will be able to determine

the irradiation on the right wall given by G(0)
2 =

n∑
i=1

wiμiI+(0)
μi

(x = L).

With the irradiation calculated at the end of the forward pass, it is possible to
compute the radiosity J (0)

2 of the second surface. The intensity leaving the surface is

then given by I−(0)
μi

(x = L) = J (0)
2
π
. We may use this as the starting value and integrate

the RTE along the “backward pass” as indicated in the figure. At the end of this
pass, we will be able to compute the irradiation on the left surface G(0)

1 . With this,
it is possible to get a better value for the radiosity of the first surface as J (1)

1 . If the
radiosity change is small, we may stop the iterative process or we may continue with
another forward–backward pass combination to get a better value. An example is
worked out below to demonstrate the above methodology.

Example11.12

Consider a gray gas with an absorption coefficient of κ = 0.5 m−1. The temper-
ature of the gas varies linearly from x = 0 to x = L = 1 m according to the relation
Tg(x) = 400 − 100x where x is in m. A diffuse gray wall of emissivity ε = 0.8 is
located at x = 0 and is maintained at a temperature of T1 = 400 K. A second diffuse
gray wall of ε = 0.6 is located at x = 1 m and is maintained at a temperature of
T2 = 300 K. What is the heat transfer across the gas slab? Use the discrete ordinate
method with S4 to solve the problem.

Solution :
The solution follows the procedure described above. The S4 method involves two
discrete directions along the forward and backward paths. They are given by μ1 =
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Table 11.7 Calculation of quantities required before starting iteration

Black body emissive power at T1 Eb1 = 5.67 × 10−8 × 4004 = 1451.52 W/m2

Black body emissive power at T2 Eb2 = 5.67 × 10−8 × 3004 = 459.27 W/m2

Initial guess for radiosity of left wall J (0)
1 J (0)

1 = ε1Eb1 = 0.8 × 1161.22 W/m2

Initial value of forward intensity I+μ (x = 0) I+μ (x = 0) = J (0)
1
π

= 1451.52
π

=
459.27 W/m2 sr

Optical thickness of the slab τL τL = 0.5 × 1 = 0.5

Optical thickness of the elemental slab τ
L τ
L = 0.5 × 0.1 = 0.05

0.295876, μ2 = 0.908248 with corresponding weights w1 = 4.188790, w2 =
2.094395.

Step 1 We divide the gas slab in to 10 slabs of elemental thickness each of 
L =
0.1 m such that each slab may be assumed to be isothermal. Temperatures
of elemental slabs are as given below:

xj m 0.05 0.15 0.25 0.35 0.45
Tj, K 395 385 375 365 355
Eb(Tj)|;W/m2 1380.29 1245.74 1121.26 1006.36 900.53

xj m 0.55 0.65 0.75 0.85 0.95
Tg,j, K 345 335 325 315 305
Eb(Tg,j)|;W/m2 803.27 714.11 632.58 558.25 490.66

Using the given data, the quantities required before starting the iteration
process for obtaining the wall radiosities are calculated and are shown in
Table11.7. Note that the forward going intensity is isotropic, and hence it
is the same along both directions in the S4.

Step 2 We make use of Eqs. 11.79 and 11.81 to calculate the variation of the
forward intensity along μ1 and μ2. The calculations terminate when we
reach the right wall. In the present case, Table11.8 shows what happens
during the forward pass.

Step 3 From the values in the last two columns, we calculate the irradiation on
the right wall as

G(0)
2 = w1μ1I

+
μ1

(x = L) + w2μ2I
+
μ2

(x = L) = 4.188790 × 0.295876 × 264.76

+2.094395 × 0.908248 × 326.50 = 949.21 W/m2

The radiosity of surface 2 may then be evaluated as

J (0)
2 = ε2Eb2 + (1 − ε2)G

(0)
2 = 0.6 × 459.27 + (1 − 0.6) × 949.21 = 655.25 W/m2

Since surface 2 is diffuse, the intensity of radiation leaving this wall is
independent of μ and is given by I−

μ (x = L) = 655.25
π

= 208.57 W/m2 sr.
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Table 11.8 Forward Pass

Element
No., j

x, m Tg,j K Eb(Tg,j) W/m2 Ib(Tg,j) I+μ1
I+μ2

0 Guess value I+μ (x = 0): 369.63 369.63

1 395 1380.29 439.36

0.1 380.47 373.36

2 385 1245.74 396.53

0.2 382.97 374.60

3 375 1121.26 356.91

0.3 378.91 373.66

4 365 1006.36 320.34

0.4 369.81 370.80

5 355 900.53 286.65

0.5 356.88 366.29

6 345 803.27 255.69

0.6 341.14 360.37

7 335 714.11 227.31

0.7 323.44 353.24

8 325 632.58 201.36

0.8 304.46 345.10

9 315 558.25 177.70

0.9 284.75 336.14

10 305 490.66 156.18

1 Final value I+μ (x = L): 264.76 326.50

Note: Intensities in the last three columns are in W/m2 sr

Using this value, we perform the backward pass and tabulate the results
as in Table11.9.

Step 4 From the values in the last two columns, we calculate the irradiation on
the left wall as

G(0)
1 = w1μ1I

−
μ1

(x = L) + w2μ2I
−
μ2

(x = L) = 4.188790 × 0.295876 × 276.84

+2.094395 × 0.908248 × 364.24 = 1013.40 W/m2

The radiosity of surface 1 may then be updated as

J (1)
1 = ε1Eb1 + (1 − ε1)G

(0)
1 = 0.8 × 1451.52 + (1 − 0.8) × 1013.40

= 1363.90 W/m2

Since surface 1 is diffuse, the intensity of radiation leaving this wall is
independent ofμ and is given by I+

μ (x = 0) = 1363.90
π

= 434.14 W/m2 sr.
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Table 11.9 Backward Pass

Element
No., j

x, m Tg,j K Eb(Tg,j) W/m2 Ib(Tg,j) I−μ1
I−μ2

1 Guess value I−μ (x = L): 208.57 208.57

10 305 490.66 156.18

0.9 200.43 352.95

9 315 558.25 177.70

0.8 197.59 335.94

8 325 632.58 201.36

0.7 202.21 330.12

7 335 714.11 227.31

0.6 210.52 326.14

6 345 803.27 255.69

0.5 222.36 324.02

5 355 900.53 286.65

0.4 237.59 323.82

4 365 1006.36 320.34

0.3 256.14 325.60

3 375 1121.26 356.91

0.2 277.97 329.40

2 385 1245.74 396.53

0.1 303.06 335.29

1 395 1380.29 439.36

0 Final value I+μ (x = 0): 276.84 364.24

Note: Intensities in the last three columns are in W/m2 sr

Step 5 After one forward and one backward pass the change in radiosity of surface
1 is


J1 = J (1)
1 − J (0)

1 = 1363.90 − 1161.22 = 202.68 W/m2

The change is substantial and hence we continue the iteration process.
Iteration converges fast as seen in the following table.

Iter. No J1 J2 G1 G2

1 1161.22 655.25 1013.40 949.21
2 1363.90 689.46 1027.83 1034.73
3 1366.78 689.94 1028.04 1035.95
4 1366.82 689.95 1028.04 1035.97
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Step 6 We calculate the radiative fluxes at the two walls now.

q1 = J1 − G1 = 1366.82 − 1028.04 = 338.78 W/m2

q2 = J2 − G2 = 689.95 − 1035.97 = −346.02 W/m2

Concluding Remarks

Radiation transfer through a participating medium has been considered in some detail in this

chapter. The process of absorption or emission has been discussed with reference to solid,

liquid, and gaseous media. The presence of discrete absorption bands in gaseous media makes

them non-gray and complex to model. The equation of transfer is to be solved and several

methods have been presented. Themost useful, from an application point of view, is the discrete

order method that has been discussed in sufficient detail. A one-dimensional problem has

been considered for demonstrating its use. It may be extended to two- and three-dimensional

problems also.

11.7 Exercises

Ex 11.1 Compare the transmittance of two glass sheets (labeled A and B) for
normal incidence of monochromatic radiation at a vacuum wavelength
of λ = 0.5 µ m. Each glass sheet is 3 mm thick. Take into account
multiple reflections from both surfaces of the glass sheets. Assume the
incident radiation to be unpolarized. What would happen for incidence
at 40◦ to the normal, all other things remaining the same? The real and
imaginary indices of refraction are specified as n = 1.6, n′ = 10−5 for
sheet A while they are n = 1.8, n′ = 10−5 for sheet B.

Ex 11.2 A black surface at a temperature TB is observed through a plane layer
containing a gray absorbing and emitting gas at temperature Tg . Indi-
cate what would be the nature of the response of a detector kept at the
observation point that responds to the radiant heat flux, if the tempera-
ture of the black surface is varied continuously from a value less than
Tg to a value greater than Tg . Take the reading of the detector in the
absence of the gas as the datum.

Ex 11.3 Redo Exercise 11.7 for the case of a non-gray gas that absorbs and emits
only over a narrow band 
λ centered around λ. The detector may be
assumed to respond only to the radiation within the narrow band.

Ex 11.4 A gas of volume V = 1 m3 has an effective surface area of A = 5 m2.
What is themean beam length for the gas? If the gas is carbon dioxide at
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Tg = 2000 K and pg = 1 atm. what is the emissivity of the gas? What
will be your answer if the gas is a mixture of carbon dioxide and water
vapor with partial pressures given by pc = 0.7 atm. and pw = 0.3 atm.,
the temperature remaining the same?

Ex 11.5 A spherical vessel of 0.3 m diameter is filled with carbon dioxide at
a pressure of 1.5 atm. What is the absorptivity of the gas to radiation
characterized by a black body temperature of (a) 300 K and b) 1000 K?

Ex 11.6 A cubical enclosure of side 1 m contains a gas mixture containing 50%
by volume of carbon dioxide and 50% by volume of nitrogen. The total
pressure of the gas mixture is 2 atm. The walls of the enclosure are at
400 K while the gas mixture is at 600 K. Determine the emissivity of
the gas at its temperature. Also, determine its absorptivity to radiation
from the walls of the enclosure.

Ex 11.7 Two very large black plane surfaces are 0.3 m apart and the space
between them is filled with a gas mixture containing 24% carbon diox-
ide, 25% water vapor, and rest nitrogen, by volume. The total pressure
of the gas mixture is 1 atm.. One of the surfaces is at 1300 K while the
other is at 300 K. Calculate the following:

(a) The effective emissivity of the gas mixture at its temperature.
(b) The effective absorptivity of the gas mixture to radiation from the

two walls at their respective temperatures.
(c) The net rate of heat transfer from the hot wall to the cold wall.

Ex 11.8 Twovery large blackwalls are 0.3 mapart and aremaintained at temper-
atures of 800 K and 400 K, respectively. The intervening space between
the walls is filled with a gray gas having an absorption coefficient of
κ = 0.3 m−1. What is the net heat transfer between the hot wall and
the cold wall if the gas temperature at a certain instant is 500 K? What
is the net heat transfer to the gas at the same instant?

Ex 11.9 Twovery large blackwalls are 0.3 m apart and aremaintained at temper-
atures 800 K and 400 K, respectively. The intervening space between
the walls is filled with a gray gas having an absorption coefficient of
κ = 0.3 m−1. The gas is in radiation equilibrium. What is the net heat
transfer between the walls?

Ex 11.10 A cube of side L = 0.4 m contains a mixture of 25% carbon diox-
ide, 25% water vapor, and 50% nitrogen (all percentages by volume)
at a total pressure of 2 atm. The gas mixture is at a temperature of
Tg = 1000 K while the surface of the cube, which is gray, having an
emissivity of ε = 0.6 is maintained at Ts = 400 K.

• What is the emissivity of the gas?
• What is the absorptivity of the gas?
• Determine the net heat transfer to the surface of the cube
• Is it reasonable to assume that the gas volume is optically thin?
Explain.
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Fig. 11.25 Cylindrical
enclosure in Exercise 11.11

Fig. 11.26 Hemispherical
furnace in Exercise 11.12

Take mean beam length as Lm = 0.6L for calculating the emissivity as
well as the absorptivity of the gas mixture.

Ex 11.11 An enclosure is in the form of a right circular cylinder (see Fig. 11.25) of
diameter D = 1 m and height L = 1 m. Top surface labeled 1 is main-
tained at temperature T1 = 800 K and has a gray emissivity of ε1 = 0.6.
The curved surface labeled 2 is maintained at temperature T2 = 600 K
and has a gray emissivity of ε2 = 0.8. The bottom surface labeled 3
is a reradiating surface. The cylinder contains a gray gas at tempera-
ture Tg = 400 K and gray absorption coefficient κ = 0.5 m−1. Take the
mean beam length for calculating gas emissivity as 0.6 D. For calculating
the transmittivity between surfaces 1 and 3, the mean beam length may be
taken as 1.15 D. For calculating the transmittivity between surfaces 1 and
2 or 3 and 2, the mean beam length may be taken as 0.8 D.

• Calculate the matrix of diffuse shape factor values.
• Calculate the gas emissivity and transmittivity.
• Write a suitable network to represent the problem and obtain all the
resistances.

• Formulate the radiosity equations for all the surfaces.
• Solve the resulting equations for all the radiosities.
• Obtain the heat transfer from/to each surface in the enclosure.
• What is the temperature of the reradiating surface?

Ex 11.12 A furnace is in the form of a hemispherical enclosure as shown in
Fig. 11.26. The base of the hemisphere is a gray diffuse heat sink at a
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temperature of 475 K and has a surface emissivity of 0.85. The hemi-
spherical surface is under radiant balance. Flue gas, at 750 K and a
total pressure of 1 atm., passes through the furnace at a steady rate of
0.02 kg/s. The flue gas composition is given in terms of the partial
pressure of the constituents as partial pressure of CO2 = 0.1 atm., par-
tial pressure ofH2O = 0.2 atm. and the rest is N2. The average specific
heat of the flue gases may be taken as 1024 J/kg · K . Calculate the exit
flue gas temperature and the useful heat output of the furnace.

Ex 11.13 A gas at a temperature of 1000 K flows past a surface maintained at
300 K subjecting it to convection heat transfer with h = 45 W/m2 ◦C.
The gas also subjects the surface to a radiant heat flux since it has a gray
absorption coefficient of κ = 0.2 m−1 and has an effective mean beam
length of 0.5 m. Compare the magnitudes of the convection and radi-
ation components of the heat flux and comment on the result. Assume
the surface to be gray with an emissivity of εs = 0.6.

Ex 11.14 In a process application, a mixture of volumetric composition of 50%
carbon dioxide and 50% nitrogen and at a total pressure of 1 atm. is
used. The gasmixture is at a temperature of 1000 K.The gas is in radiant
balance with the walls of a gray container of emissivity εc = 0.65 that
is at a temperature of Tc = 760 K. Determine the mean beam length
for the gas.

Ex 11.15 Combustion generated gases at 1800 Kpass through a long circular duct
of 0.3 m diameter. The volumetric gas composition is CO2 = 75% and
H2O = 25%. The total pressure of the gas is 1 atm. The walls of the
duct that are black are maintained at a temperature of 500 K. What
is the net radiant flux on the duct wall? It has also been determined
independently that the heat transfer by convection is governed by a
heat transfer coefficient of 26 W/m2 ◦C. What is the convection heat
flux on the duct wall? Comment on the results.

Ex 11.16 Consider a gray gas slab of optical thickness 0.3. The boundary surfaces
are gray and have a common emissivity value of 0.5. The temperatures
of the boundary surfaces areTτ=0 = 600 KandTτ=0.3 = 400 K.Obtain
the temperature variation in the gas assuming that it is under equilib-
rium. Make use of the discrete ordinate method.

Ex 11.17 Figure11.27 shows a gas-filled enclosure. Bottom surface labeled 1 has
an area of 0.5 × 0.5 m, temperature T1 = 400 K, and ε1 = 0.6. Top
surface labeled 2 has an area of 0.5 × 0.5 m, temperature T2 = 800 K,
and ε2 = 0.8. The back of the enclosure is surface 3 that has an area of
0.5 × 0.5 m and is reradiating. The other three sides are openings that
communicate to a very low temperature background via transparent
windows.
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Fig. 11.27 Gas-filled
enclosure in Exercise 11.17

The enclosure is filledwith a gray gas atTg = 600 Kandκ = 0.15 m−1.
Assume that the gas may be treated as an optically thin medium. Deter-
mine the total radiation transfer to surfaces 1 and 2. Also determine the
heat loss to the surroundings via the transparent windows. (Hint: Treat
the gas volume as a single zone and use Dunkle’s charts to formulate
the radiosity equations.)



Chapter 12
Laminar Convection In Internal Flow

We commence the study of convection heat transfer in this chapter. After looking
at fluid properties of interest in convection heat transfer, we present notion of

similarity to understand scaling principles that play a crucial role in convection heat
transfer. Laminar fully developed flow and heat transfer in internal flows are covered in
great detail. Useful relations are presented for heat transfer in the developing region.

12.1 Introduction

In Chap.1, we have introduced the concept of convection through a phenomenolog-
ical description by introducing h, the convection heat transfer coefficient. The heat
transfer coefficient was introduced through the so-called “Newton’s law of cooling”.
In many problems encountered in conduction heat transfer, we have made use of a
suitable “h” value to describe what happens at a boundary between a solid and the
ambient fluid. However, no effort was made to describe the basis for choosing a par-
ticular value of h. In what follows we would like to calculate h by using fundamental
heat transfer principles that are involved in the case of a flowing fluid.

12.1.1 Classification of Flows

Themain goal of the study of convection heat transfer is to understand the dependence
of the convection heat transfer coefficient on (1) The nature of the fluid, (2) The nature
of flow, and (3) The type of flow.
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(1) The nature of fluid
Basically, the nature of the fluid is mirrored by its physical and transport properties.
Also, the variation of these properties within the flow domain decides the method of
analysis. The fluid may be described by any of the following models, depending on
the circumstance.

Incompressible fluid: Fluid density remains fixed irrespective of variations
in pressure and temperature.

Compressible fluid: Fluid density varies with position and time due to
changes in pressure or temperature. In high speed flows (flow speed com-
parable to the speed of sound in the fluid), the compressibility effects may
become significant. However, the same fluid may be treated as incompress-
ible if the fluid speed is small compared to the speed of sound in themedium.

Inviscid or non-viscous and non-heat conducting fluid: This is also referred
to as an ideal fluid. A flow, far away from boundaries, even when the fluid
has a non-zero viscosity, may sometimes be treated this way.

Viscous and heat conducting fluid: The fluid is referred to as a real fluid. As
a subset of this, the fluid may be Newtonian or non-Newtonian. Newtonian
fluid has a linear relationship between shear stress and velocity gradient
while the non-Newtonian fluid has a more complex relationship. We con-
sider only a Newtonian fluid in this text.

Fluid with constant thermo-physical properties: For such a fluid the prop-
erties like viscosity and thermal conductivity have very insignificant vari-
ation with temperature and pressure. In flows with small variation of tem-
perature constant, property assumption may be justified.

Fluid with variable thermo-physical properties: The fluid properties such
as viscosity and thermal conductivity vary significantly in the flow domain.
Most important variation that needs to be considered is with respect to fluid
temperature. Variation with pressure is seldom significant. Constant prop-
erty assumption is not necessarily connected with the variation or otherwise
of the fluid density.

(2) Nature of flow and attendant heat transfer
The nature of the flow is important since it affects heat transfer to a great extent. In
practical applications, it is usual to look for flow conditions that enhance heat transfer
significantly in comparison with conduction heat transfer that will take place in a
stationary fluid.
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Compressible high-speed flow: High speed means M , the Mach number (the
ratio of fluid velocity to the speed of sound in the fluid) is large. Incom-
pressible, low speed flow approximation is valid, in gases, for M ≤ 0.3.

Laminar flow: Laminar flow is orderly or “streamline” flow. Laminar flow
is also characterized by weak mixing except in regions of flow close to
boundaries.

Turbulent flow: Turbulent flow exhibits temporal variations in velocity and
temperature fields even when the flow is steady. Rapid mixing normal to
the flow direction is a characteristic of turbulent flow.

Forced Convection: Flow is created or forced to take place by an external
agency like a pump. The pump creates a pressure gradient that promotes
and maintains the flow.

Free or natural convection: Flow is generated by temperature differences
and the consequent density differences within the flowing medium. The
flow may be assumed to be incompressible except for the buoyancy effect.

Mixed convection: Forced and free convection occur simultaneously and are
of comparable importance. The buoyancy effects may either aid or oppose
the forced flow.

(3) Type of Flow
The flow may also be classified according to the following types.

Internal Flow: Flow inside tubes and ducts. These occur in applications such
as air handling systems, heat exchangers, energy conversion devices like
turbines, engines, etc.

External Flow: Flow over extended surfaces, flow past a tube bundle in a heat
exchanger, flow past vehicles, etc.

Steady flow: Velocity and temperature fields do not change with time.
Unsteady flow: Velocity and temperature fields change with time.

12.1.2 Fluid Properties and Their Variation

Thermo-physical properties of the fluid influence flow and the consequent heat trans-
fer. Details of flow and temperature fields are affected by the properties as well as
their variations with temperature and pressure of the flowing fluid. Hence, we shall
look at some of the important thermo-physical properties and their variations with
temperature and pressure in this section.
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Fig. 12.1 Viscosity of a
Newtonian fluid

(1) Fluid Viscosity
For a Newtonian fluid, the dynamic viscosity μ is defined through a linear relation
between the shear stress and the velocity gradient.

τ = μ
dv

dy
(12.1)

Here, τ = shear stress, μ =dynamic viscosity, v =velocity, y =coordinate normal
to v. The velocity field varies with y as shown in Fig. 12.1 when a viscous fluid flows
past a boundary. The fluid at lower velocity tends to decelerate the flow with a higher
velocity. The unit of dynamic viscosity μ is given by

[μ] = [τ ]
dv
dy

=
N
m2

m/s
m

= kg

m s
=
[
M

LT

]
(12.2)

In Eq.12.2, the brackets indicate that the unit of the quantity within the brackets
is being considered and not the magnitude. The last entry indicates the dimensions
as will be explained later on.

Newton’s law of viscosity resembles Hooke’s law in solid mechanics and Fourier
law of thermal conduction. For gases, μ increases with temperature. At 300K, air has
a dynamic viscosity of 18.46 × 10−6 kg/ms which increases to 42.4 × 10−5 kg/ms
when the temperature changes to 1000K. Dynamic viscosity of liquids decrease
with temperature. For saturated liquid water, the dynamic viscosity decreases from
8.67 × 10−4 kg/ms at 300K to 9.01 × 10−5 kg/ms at 573K.

(2) Kinematic Viscosity
This is defined as the ratio of dynamic viscosity of the fluid and its density ρ.
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Table 12.1 Variation of thermal conductivity with temperature

Air Water

T,K 300 2000 300 400 580

k,W/m ◦C 0.0267 0.1149 0.611 0.685 0.516

ν = μ

ρ
(12.3)

Itmay be verified that the unit of kinematic viscosity ism2/s. The readermay note that
the same unit also characterizes the thermal diffusivity encountered in conduction
heat transfer. Generally, the kinematic viscosity of gases increases with tempera-
ture. However, for liquids, the kinematic viscosity decreases with temperature. For
example, the kinematic viscosity of air increases from 15.89 × 10−6 m2/s at 300K
to 12.9 × 10−5 m2/s at 1000K. The kinematic viscosity of saturated water decreases
from 8.004 × 10−7 m2/s at 303K to 1.265 × 10−7 m2/s at 573K.

(3) Fluid Thermal Conductivity
Fourier law (already familiar to us from conduction heat transfer study) introduces
the conductivity of the fluid. The unit of thermal conductivity is either W/m ◦C or
W/mK. Thermal conductivity of gases increases with temperature while it may show
increasing as well as decreasing trends in the case of liquids. Examples are given in
Table12.1.

(4) Thermal Diffusivity of a Fluid
This is defined in the usual way as α = k

ρc where c is the specific heat capacity of

the fluid in J/kg ◦C or J/kgK. Thermal diffusivity has the units of m2/s.

(5) Prandtl Number
The ratio of kinematic viscosity to thermal diffusivity occurs very often in heat and
fluid flow problems and hence is given a specific name, the Prandtl number, Pr .1

Thus,

Pr = ν

α
= μ/ρ

k/ρc
= μc

k
(12.4)

It has no dimensions. The ranges of Pr values are given in Table12.2.

1Named in honor of Ludwig Prandtl, 1875–1953, a German engineer. He proposed the boundary
layer theory which is successful in explaining pressure drop and heat transfer in the flow of a viscous
heat conducting fluid and gave impetus for much development in Fluid Mechanics.
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Table 12.2 Ranges of Prandtl number of various fluids

Fluid Pr range Remarks

Liquid Metals-Hg, Na, K ,
etc.

0.001–0.05 Decrease with temperature

Gases-H2, He, Air, CO2, etc. 0.5–1 More or less independent of
temperature

Liquids—Water, Organic
liquids, etc.

5–30,000 Decrease with temperature

Table 12.3 Prandtl number of two common liquids

Saturated Water Unused engine oil

T,K 300 400 580 280 300 400

Pr 5.9 1.4 0.94 27,000 6600 154

Fig. 12.2 a Variation of properties of air with temperature b Variation of properties of saturated
liquid water with temperature

Table12.3 shows Prandtl number variation for two common liquids.

Since air and water are commonly used in heat transfer applications, their
property variations with temperature are shown in Fig. 12.2a, b on p.550.
While the properties are for air at 1 atm, the properties of water are for saturated
water at the indicated temperatures. Prandtl number of air varies very little with
temperature and hence is not included in Fig. 12.2a. However, Prandtl number
of water varies significantly with temperature and hence has been included in
Fig. 12.2b.
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12.2 Dimensional Analysis and Similarity

Non-dimensional parameters are useful in discussing the behavior of thermal sys-
tems. They naturally evolve while solving the governing differential equations, as
we have already seen in the case of conduction problems. We have already seen
how parameters such as the Biot and Fourier numbers evolve while solving conduc-
tion problems in one and two dimensions. We have introduced a non-dimensional
parameter, the Prandtl number in Sect. 12.1. Many more non-dimensional parame-
ters become appropriate in fluid flow and heat transfer problems. These are discussed
with the concept of similarity in mind. Similarity may be of two types:

1. Geometric similarity
2. Dynamic similarity

– involves motion, forces, temperatures, heat fluxes, etc.

These two concepts are elucidated below using examples from fluid flow and heat
transfer.

12.2.1 Dimensional Analysis of a Flow Problem

Thefirst examplewe consider is a flowproblem inwhich a viscous fluid flows steadily
through a straight tube of circular cross section. Two fluid flow situations are shown
in Fig. 12.3. At the left is a circular tube of diameter D1 carrying a fluid 1. At the
right is a circular tube of diameter D2 carrying a fluid 2. Geometric similarity would
require that both be circular tubes. If one tube is straight, the other also should be
straight. However, dynamic similarity requires that suitable non-dimensional param-
eters remain the same for the two cases.

The quantity of interest to us is the pressure drop between stations 1 and 2 or sta-
tions 1′ and 2′ . We first identify all the variables that enter the problem and also write
out the units of these variables, using the SI system of units and also the length, mass,
time system (refer to Table12.4). In this last method, [M]will represent mass dimen-
sion, [L] will represent length dimension, and [T ] will represent time dimension.
Buckingham π theorem (π theorem because each non-dimensional parameter was
represented by the symbol π) states that the number of non-dimensional parameters
that characterize the problem are (n − r)where “n” is the number of variables (= 6 in

Fig. 12.3 Pressure drop in a fluid flowing in a straight tube
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Table 12.4 Physical quantities and their dimensions

Physical quantity Unit/Dimension

�p: Pressure drop across L1 or L2
N
m2 = Pa = kg m/s2

m2 = kg
m s2

=
[

M
LT 2

]
ρ: Fluid density kg

m3 =
[
M
L3

]
μ: Fluid viscosity kg

m s = [ M
LT

]
V : Fluid velocity m

s = [ LT ]
L: Tube length m =

[
L
]

D: Tube diameter m =
[
L
]

the present case) and “r” is the number of primary dimensions involved (= 3; Mass,
Length, Time or [M], [L] and [T ]).2 Thus, we expect three non-dimensional param-
eters to characterize the problem. In order to obtain these parameters, we represent
�p as a function of all the other variables that occur in the problem. Thus,

�p = f (ρ,μ, V, L , D) (12.5)

It is possible as it happen many times that the functional relation is of the type

f (ρ,μ, V, L , D) = K
{
ρaμbvcLd De

}
(12.6)

where K is a numerical constant and a, b, c, d, e are numerical exponents. If indeed
this is valid, then the unit of �p must be the same as the unit of the quantity inside
the flower brackets in Eq.12.6. This may be written using units of various quantities
as

Units :
(

kg

m s2

)
=
(
kg

m3

)a ( kg

m s

)b (m
s

)c
(m)d (m)e

Dimensions:

[
M

LT 2

]1
=
[
M

L3

]a [ M

LT

]b [ L
T

]c
[L]d [L]e

(12.7)

Dimensional homogeneity requires that the left-hand side and right-hand side of
Expression12.7 have identical dimensional units. This will require the right choice
of all the exponentsa − e. Thismaybedoneby equating the exponent of eachprimary
dimension mass, length, and time on the two sides. These lead to the following three
equations:

(a) [M] :1 = a + b (b) [L] : −1 = −3a − b + c + d + e (c) [T] : −2 = −b − c

(12.8)
There are only 3 equations (number of equations is equal to the number of primary
dimensions) but 5 unknowns. Hence, we solve for any 3 of them in terms of the
other two. In this case, exponents b, d are chosen as the two that may be assigned

2Edgar Buckingham, 1867–1940, American physicist.
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arbitrary/suitable numerical values and exponents a, c, e are solved in terms of
them. From Eq.12.8(a) we have a = 1 − b. From Eq.12.8(c), we have c = 2 − b.
Substitute these in Eq.12.8(b) to get

e = 3a + b − c − d − 1 = 3(1 − b) + b − (2 − b) − d − 1 = −b − d

With these Eq.12.5 may be rewritten, using Eq.12.6 as

�p = Kρ1−bμbV 2−bLd D−b−d = K

(
μ

ρvD

)b ( L

D

)d
ρV 2 (12.9)

or, on rearrangement,

�p

ρV 2
= K

(
μ

ρvD

)b ( L

D

)d
or Eu = K Re−b

D

(
L

D

)d
(12.10)

Dimensional analysis cannot give the values of K , b, and d. They have to be deter-
mined from solution of appropriate equations that govern the fluid flow problem or
from experiments. Both these alternates are used in practice. These will be presented
later on.

We notice that Eq. 12.10 contains three non-dimensional parameters. They are
• Euler number Eu:

Eu = �p

ρV 2
(12.11)

Euler number is nothing but a non-dimensional pressure drop that uses
the “dynamic head” ρV 2

2 as the reference pressure drop. The factor 1
2 may

appropriately be absorbed in the coefficient K .
• Reynolds number ReD:

ReD = ρV D

μ
(12.12)

The subscript D is used to indicate that the Reynolds number is based on
diameter of tube as the characteristic “length scale” in the problem.

• Length to diameter ratio or the non-dimensional length L ′:

L ′ = L

D
(12.13)
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12.2.2 Notion of “Similarity”

Equation12.9 may be interpreted as follows using the concept of similarity. Apart
from the geometric similarity that was alluded to earlier, dynamic similarity requires
additional conditions to be satisfied. For example, if we compare the two cases shown
in Fig. 12.3with L1, D1 fluid 1 and L2, D2 fluid 2, the non-dimensional pressure drop

�p1
ρ1V 2

1

= �p2
ρ2V 2

2

or Eu1 = Eu2 (12.14)

if and only if

(a)
ρ1V1D1

μ1
= ρ2V2D2

μ2
or ReD1 = ReD2; (b)

L1

D1
= L2

D2
(12.15)

Alternately, we may state that dynamic similarity exists if and only if the Reynolds
numbers and length to diameter ratios are the same in the two cases.A typical example
shows the utility of this concept.

Example 12.1

Air at atmospheric pressure and at a temperature of 300K flows in a 2m long smooth
circular tube of 25mm inner diameter. The velocity is adjusted such that the Reynolds
number is 15,000. What is the velocity? What is the mass flow rate? The pressure
drop is measured to be 100Pa. If the fluid flowing in the tube is replaced by water at
300K what will be the mass flow rate and the corresponding pressure drop?

Solution:

Step 1 Since the concept of similarity applies to the cases, the following param-
eters are common to both cases.

Diameter of tube: D1 = D2 = 0.025 m
Length of tube: L1 = L2 = 2 m
Reynolds number: ReD1 = ReD2 = 15,000

Case (a) Fluid is air

Step 2 The air properties are taken from table of properties at T = 300K. All
quantities are shown with a subscript 1 to indicate that the fluid is air.

ρ1 = 1.1614 kg/m3; ν1 = 15.89 × 10−6 m2/s

Step 3 Using the given value of Reynolds number, air velocity in the tube is
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V1 = ReD1ν1

D1
= 15000 × 15.89 × 10−6

0.025
= 9.534 m/s

Step 4 The mass flow rate of air is then given by

ṁ = ρ1 · πD2
1

4
· V1 = 1.1614 × π × 0.0252

4
× 9.534 = 0.00545 kg/s

Step 5 It is given that the pressure drop has been measured with air as �p1 =
100Pa. Hence, the Euler number (the non-dimensional pressure drop)may
be calculated as

Eu1 = �p1
ρ1V 2

1

= 100

1.1614 × 9.5342
= 0.9473

Case (b) Fluid is water

Step 6 The properties of water are taken from tables of properties at 300K. All
quantities are shown with a subscript 2 to indicate that the fluid is water.

ρ2 = 995.7 kg/m3; ν2 = 8.004 × 10−7 m2/s

Step 7 Using the given value of Reynolds number, water velocity in the tube is

V2 = ReD2ν2

D2
= 15000 × 8.004 × 10−7

0.025
= 0.48 m/s

Step 8 The mass flow rate of water is then given by

ṁ = ρ2 · πD2
2

4
· V2 = 995.7 × π × 0.0252

4
× 0.48 = 0.235 kg/s

Step 9 The two cases satisfy dynamic similarity since the length to diameter ratio
and the Reynolds number are unchanged. Hence, the Euler number is the
same for the two cases. With this, we can calculate the pressure drop with
water as

�p2 = ρ2V
2
2 Eu2 = ρ2V

2
2 Eu1 = 995.7 × 0.482 × 0.9473 = 217.3 Pa
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12.2.3 Dimensional Analysis of Heat Transfer Problem

Consider fluid flow in a tube with heat addition to the fluid as shown in Fig. 12.4.
We shall think of some average temperature difference �Tref as a representative

temperature difference applicable to this problem. Then, we can define a suitable
mean heat transfer coefficient h based on a representative area Sref as h = Q

Sref�Tref
.

Variables entering the problem along with their dimensions are given in Table12.5.
The tube length drops out of consideration since our interest is on the mean heat

transfer coefficient defined for the entire length of the tube. There are thus r = 7
parameters that govern the problem. We use n = 4 in the M, L , T, θ—mass, length,
time, temperature—system. By Buckingham π theorem, there are n − r = 7 − 4 =
3 non-dimensional parameters that describe the problem. Let us assume that the
functional relation we seek is of form

h = KρaμbV ccdkeD f (12.16)

Hence, the dimensional equation may be written in the form

[
M

T 3θ

]1
=
[
M

L3

]a [ M

LT

]b [ L
T

]c [ L2

T 2θ

]d [
ML

T 3θ

]e
[L] f (12.17)

Dimensional homogeneity requires the following balances.

Fig. 12.4 Tube flow with heat addition

Table 12.5 Physical quantities and dimensions

Physical quantity Unit/Dimension

h: Heat transfer coefficient W
m2 K

= N m
s m2 K

= kg m2

s3 m2 K
= k

s3 K
=
[

M
T 3θ

]
where [θ] is the dimension of the fourth
primary quantity, temperature

ρ: Fluid density kg
m3 =

[
M
L3

]
μ: Fluid viscosity kg

m s = [ M
LT

]
V : Fluid velocity m

s = [ LT ]
c: Fluid specific heat J

kg K = N m
kg K = kg m m

s2 kg·K = m2

s2 K
=
[

L2

T 2θ

]
k: Fluid thermal conductivity W

m K = N m
s m K = kg m2

s3 m K
= kg m

s3 K
=
[
ML
T 3θ

]
D: Tube diameter m = [L]
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[M] balance: 1 = a + b + e or b = (1 − a − e) (12.18)

[L] balance: 0 = −3a − b + c + 2d + e + f or f = +3a + b − c − 2d − e
(12.19)

[T ] balance: − 3 = −b − c − 2d − 3e (12.20)

[θ] balance: − 1 = −d − e or d = 1 − e (12.21)

There are 6 unknowns and 4 equations (equal to the number of fundamental units).
We solve for four of the unknowns, b, c, d, f in terms of a and e. Using Eqs. 12.18
and 12.21 in Eq.12.19 gives

f = 3a + (1 − a − e) − c − 2(1 − e) − e = 2a − c − 1 (12.22)

From Eq.12.20, using Eq.12.21, we have

b = 3 − c − 2(1 − e) − 3e = 1 − c − e

Comparing this with Eq.12.18, we conclude that a = c. Using this in Eq.12.22, we
finally get

f = 3a + (1 − a − e) − a − 2(1 − e) − e = a − 1 (12.23)

Substituting all these back in Eq.12.16, we have

h = Kρaμ1−a−eV ac1−ekeDa−1 (12.24)

Grouping terms with the same exponent, Eq. 12.24 takes the form

h = K

(
ρV D

μ

)a ( k

μc

)1−e ( k

D

)
or

(
hD

k

)
= K

(
ρV D

μ

)a ( k

μc

)1−e

This may be recast in terms of non-dimensional groups as

NuD = K ReaD Pr
e−1 (12.25)

The above relation links the three non-dimensional parameters that are important in
the problem. Two of these, the Reynolds number ReD = V D

ν
and the Prandtl number

given by Pr = μc
k are already familiar to us. The third non-dimensional parameter

that appears here is the Nusselt number given by NuD = hD
k which is based again

on the tube diameter as the characteristic length.3 Note that the Nusselt number is

3Named after Ernst Kraft Wilhelm Nusselt, 1882–1957, a German engineer.
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similar to the Biot number that was defined in problems involving conduction with
convection at a boundary. However, the Biot number is based on the solid thermal
conductivity while the Nusselt number is based on the fluid thermal conductivity.
Similarity, in this case means that the Nusselt number is invariant if and only if
f (ReD1 , Pr1) = f (ReD2 , Pr2). Note that K , a, and e are not obtainable by dimen-
sional analysis alone. Either experiments or analysis will have to give these.

The Nusselt number may be given a physical interpretation. It is the ratio
of two heat fluxes, the convective heat flux in the moving medium to the
conductive heat transfer in the stationary fluid. We may easily verify this by
writing the Nusselt number as

NuD = hD

k
= (h�Tref)(

k�Tref
D

) = qc
qk

(12.26)

The numerator qc is a representative convective heat flux, and the denominator
qk is a representative conductive heat flux. Since NuD is invariably greater
than unity, convection enhances heat transfer to a value bigger than the repre-
sentative conductive flux.

Example 12.2

Consider the situation described in Example 12.1. It is estimated that the heat trans-
fer coefficient with air is 46W/m2 K. The Prandtl number of the fluid is expected
to affect the Nusselt number by a factor proportional to Pr0.36. What will be the
heat transfer coefficient when the fluid flowing in the tube is changed to water?

Solution:
The data specified in Example 12.1 is reproduced below for ready reference. These
are fluid independent.

ReD1 = ReD2 = 15,000, D1 = D2 = 0.025 m, L1 = L2 = 2 m

Nusselt number with air as the fluid :
The heat transfer coefficient with air as the fluid is given as h1 = 46W/m2 K.
From table of properties of air, we have, at 300K,
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k1 = 0.0267 W/m K, Pr1 = 0.71

The Nusselt number with air as the flowing medium is then calculated as

Nu1 = h1D1

k1
= 46 × 0.025

0.0267
= 43.07

Nusselt number with water as the fluid :
Since the Reynolds number and the length to diameter ratio are held fixed, theNusselt
number is affected only by the change in the Prandtl numberwhen the fluid is changed
from air to water. We have the following property values for water at 300K.

k2 = 0.611 W/m K, Pr2 = 5.9

Using similarity law given by Eq.12.25, we may identify the exponent e − 1 as 0.36.
Hence, the Nusselt number, Nu2 with water as the fluid follows the relation

Nu2
Nu1

=
(
Pr2
Pr1

)0.36
=
(

5.9

0.71

)0.36
= 2.143

Hence, the Nusselt number with water is

Nu2 = 43.07 × 2.143 = 92.31

Heat transfer coefficient with water as the fluid is then obtained as

h2 = Nu2k2
D2

= 92.31 × 0.611

0.025
= 2256 W/m2 K

There is thus a dramatic increase in the heat transfer coefficient when the fluid is
changed from air to water keeping all other things the same!

12.3 Internal Flow Fundamentals

Convection heat transfer involves an interaction between flow (velocity) and tem-
perature fields. Hence, it is not possible to discuss convection heat transfer without a
clear understanding of fundamentals of fluid flow. As mentioned earlier in Sect. 12.1
there are several ways of classifying a flow. Here our interest will be the steady flow
of a real (viscous and heat conducting) incompressible fluid. We attempt to under-
stand laminar flow. Subsequently, in a later chapter, the attention will be directed
toward internal as well as external turbulent flow. Special cases like compressible
flows will also be taken up later on in Chap. 17.
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12.3.1 Fundamentals of Steady Laminar Tube Flow

Consider steady laminar fluid flow in a straight tube of circular cross section. Exper-
iments indicate that Laminar flow prevails in the tube for ReD < 2300 based on the
mean velocity U and the tube diameter D. Assume that the fluid enters the tube at
z = 0 with a uniform velocity profile, i.e., the velocity is uniform across the tube
cross section. Thus, the velocity uz in the axial direction is equal to a constant given
uz(r, 0) = U = constant.

Figure12.5 shows the details of how the velocity profile changes from entry down
the length of the tube. Because of viscosity, the fluid velocity becomes zero at the
tube wall and the flow field varies with r and z as indicated. Boundary layer—non-
uniform velocity region near the boundary is referred to as boundary layer—develops
from the periphery of the tube such that the velocity profile is non-uniform in the
boundary layer and uniform in the core. Since the velocity is <U near the tube wall,
the velocity in the core region is>U , to guarantee that the volume flow rate (the flow
is incompressible) across the tube cross section is the same for all z. The boundary
layer occupies the entire tube cross section for z ≥ Ldev, where Ldev is referred to as
the entry length. Beyond z = Ldev, the velocity profile remains invariant with respect
to z. Thus, the velocity profile is a function of “r” only for z > Ldev. Experiments
and analysis indicate that the entry length depends on ReD and is given by

Ldev

D
= 0.05 ReD (12.27)

The flow beyond z = Ldev is referred to as fully developed flow. Analysis of
the flow in this region is fairly simple and will be done below by two methods.
First method derives the appropriate equation governing fully developed tube flow
starting from the first principles. The second method starts with the Navier Stokes
(NS) equations presented in AppendixH and obtains the governing equation by
simplifying them.

Fig. 12.5 Fluid flow in a straight tube
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12.3.2 Governing Equation Starting from First Principles

The fluid element in the form of a cylinder
Consider force balance on a cylindrical fluid element as shown in Fig. 12.6a. The
fluid element is located in the fully developed region, is of radius r and is of length�z
as shown in the figure. Under the fully developed condition, there is no change in the
velocity uz with z. Hence, the rate at which momentum enters the cylinder through
the left face of the cylindrical fluid element is the same as that leaving through the
right face. Hence, there is no net momentum change for the fluid across the element
length dz. Thus, the forces that are acting on the fluid element are as shown in
Fig. 12.6a. The forces are the pressure forces at the two end faces and the shear stress
on the curved cylindrical portion. All forces involved are along the z-direction. Force
balance requires the following:

πr2 p(z) + 2πr�z τ = πr2 p(z + �z) (12.28)

Note that the shear stress is shown pointing toward +z. The convention is that the
axial velocity uz is an increasing function with r . Using Taylor expansion, we have

p(z + �z = p(z) + dp

dz

∣∣∣∣
z

�z + O(�z2)

Inserting these in Eq.12.28, we get

πr2 p(z) + 2πr�zτ = πr2 p(z) + dp

dz

∣∣∣∣
z

�z

Fig. 12.6 Sketches to help in force balance from first principles a cylindrical fluid element b
cylindrical annular fluid element
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Assuming the fluid to be a Newtonian fluid, the shear stress is related to the deriva-
tive of velocity with respect to r as τ = μ duz

dr . On substituting this in the previous
equation and on simplification, taking limit as �z → 0, we get

duz

dr
= r

2μ

dp

dz
(12.29)

We note that the governing equation is a first-order differential equation. This equa-
tion is also obtained if we integrate Eq.12.32, once with respect to r !

Fluid element in the form of a thin cylindrical shell
Consider force balance on a cylindrical shell element of length�z and thickness�r .
The comments made while describing the cylindrical fluid element also apply in the
present case. Thus, the forces are the pressure forces at the two ends and the shear
stresses on the cylindrical portions. All forces involved are along the z-direction.
Force balance requires the following:

2πr�r p(z) + 2π�z (rτ )|r+�r = 2πr�r p(z + �z) + 2π�r�z (rτ )|r
(12.30)

Using Taylor expansion, we have

p(z + �z) = p(z) + dp

dz

∣∣∣∣
z

�z + O(�z2)

(rτ )|r+�r = (rτ )|r + d(rτ )

dr

∣∣∣∣
r

�r + O(�r2)

Inserting these in Eq.12.30, we get

2πr�r p(z) + 2π�z

[
(rτ )|r + d(rτ )

dr

∣∣∣∣
r

�r + O(�r2)

]
=

2πr�r

[
p(z) + dp

dz

∣∣∣∣
z

�z + O(�z2)

]
+ 2π�z (rτ )|r

On canceling common terms and the common multiplier �r�z, taking limit as
�r → 0 and �z → 0, we get

d(rτ )

dr
= r

dp

dz
(12.31)

With the Newtonian fluid assumption, the above equation becomes
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d

dr

(
r
duz

dr

)
= r

μ

dp

dz
(12.32)

We note that the governing equation is a second-order ordinary differential equation.

12.3.3 Governing Equation Starting with the NS Equations

Equations of motion of an incompressible fluid in steady
(

∂
∂t ≡ 0

)
laminar flow are

given by the Navier Stokes Equations. The present case involves axisymmetric flow
for which the appropriate equations are given by Eqs.H.31 and H.32 since we are
considering only the flow problem here. In the fully developed region the velocity
component ur ≡ 0, the velocity uz is a function of only r . With these, the equation
of continuity is identically satisfied. The r momentum equation (Eq.H.31) reduces
on taking ur ≡ 0 and ∂uz

∂z = 0 to

− ∂ p

∂r
= 0 (12.33)

thus showing that the pressure is a function of z alone. The z momentum equation
(Eq.H.32) then simplifies to

0 = −1

ρ

dp

dz
+ ν

1

r

d

dr

(
r
duz

dr

)

or, on rearrangement to
d

dr

(
r
duz

dr

)
= r

μ

dp

dz
(12.34)

Note that, for obvious reasons, all partial derivatives are now changed to total deriva-
tives. Equation12.34 is identical to Eq.12.32 derived from first principles.

12.3.4 Solution

The governing equation for fully developed flow requires two boundary conditions
or one boundary condition depending on whether we use the second-order equation
or the first-order equation. In the first case, the two boundary conditions are specified
as

Tube wall: uz = 0 at r = R; Tube axis: uz is finite at r = 0 (12.35)
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The first of these boundary condition corresponds to “no slip” at the tube wall. In the
second case, only the tube wall boundary condition needs to be imposed. The other
conditions are automatically satisfied.

We may integrate Eq.12.29 with respect to r , noting that dp
dz is independent of r ,

to get

uz(r) = 1

2μ

dp

dz

r2

2
+ A (12.36)

where A is a constant of integration. In general, A could have been a function of
z. However, it as well as dp

dz cannot be functions of z since the velocity profile is
invariant with respect to z. We apply the boundary condition at the tube wall. We
then have

0 = 1

2μ

dp

dz

R2

2
+ A (12.37)

Subtracting Eq.12.37 from 12.36 the constant of integration gets eliminated and
hence

uz(r) = r2

4μ

dp

dz
− R2

4μ

dp

dz
= − R2

4μ

dp

dz

[
1 −
( r
R

)2]
(12.38)

We notice that at r = 0, i.e., at the axis of the tube, uz has the maximum value
given by, say uz(r = 0) = umax. The maximum value is obtained by putting r = 0
in Eq.12.38 as

umax = − R2

4μ

dp

dz
(12.39)

This will be a positive quantity if the pressure decreases in the direction of flow!
Equation12.38 may be recast in the non-dimensional form

uz

umax
= 1 −

( r
R

)2
(12.40)

The relationship between velocity and radius is a parabolic relation and is referred
to as the Hagen–Poiseuille solution.4 The average velocityU is defined such that the
volume flow rate through the tube is V̇ = πR2U . Note that U is also the uniform
velocity at entry to the tube. To conserve mass flow across the tube this must also be
equal to the volume flow rate at any z. The volume flow rate in the fully developed
region may be obtained the fully developed velocity profile given by Eq.12.40.

4Gotthilf Heinrich Ludwig Hagen, 1797–1884, German physicist and hydraulic engineer and Jean
Léonard Marie Poiseuille, 1797–1869, French physicist and physiologist.
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V̇ =
R∫

0

uz(r)
Local velocity

2πrdr
Elemntal area

(12.41)

Using the parabolic velocity profile, taking r
R as ζ, the above expression becomes

V̇ = 2πR2umax

1∫
0

(
1 − ζ2

)
ζdζ = 2πR2umax

[
ζ2

2
− ζ4

4

]∣∣∣∣
1

0

= πR2umax

2
(12.42)

Equating the volume flow rate obtained above with V̇ = πR2U , we see that the mean
velocity is just half the maximum velocity, i.e.,

U = umax

2
(12.43)

The pressure gradient may now be obtained in terms of the mean velocity, using
Eq.12.39.

dp

dz
= −4μumax

R2
= −8μU

R2
(12.44)

The pressure gradient is a constant as already indicated. Hence, we may write it as
the ratio of pressure drop �p over a length L in the fully developed region. Thus,
we also have

dp

dz
= �p

L
= −8μU

R2
(12.45)

It is customary to define a Darcy friction factor f such that the pressure drop is given
by

�p = − f × L

D

Length to

diameter ratio

× ρU 2

2
Dynamic head

(12.46)

We notice then that− f L
2D is the Euler number that was obtained by the use of Buck-

ingham π theorem in Sect. 12.2. We also note that the present analysis provides the
undetermined exponents in the expression obtained by dimensional arguments. The
friction factor may be expressed as
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f = −
�p

ρU 2

L

2D

=
8μUL

R2ρU 2

L

2D

=
32μU

D2ρU 2

1

2D

= 64μ

ρUD
= 64

ReD
or f ReD = 64

(12.47)

using Eq.12.45 and by noting that R = D
2 . With these, we may write for the Euler

number the relation

Eu = 32

ReD

L

D
(12.48)

Comparing this with Eq.12.10, we identify the constant K as 32, exponent b as 1,
and exponent d as 1.

Example 12.3

Engine oil at 20 ◦C is made to flow in a tube of 12mm diameter. What is the maxi-
mummass flow rate if the Reynolds number is not to exceed 10?What is the pressure
drop in a length of 10m under this flow condition?

Solution:

Step 1 The density and kinematic viscosity of engine oil are taken from table of
properties.

ρ = 885.23 kg/m3, ν = 0.0009 m2/s

The tube diameter and length are given as L = 10 m, D = 12 mm =
0.012 m.The Reynolds number based on the diameter is taken as the lim-
iting value of ReD = 10 given in the problem.

Step 2 Velocity calculation:
The mean velocity corresponding to this Reynolds number is obtained as

U = ReD ν

D
= 10 × 0.0009

0.012
= 0.75 m/s

Step 3 The mass flow corresponding to this flow velocity is obtained as

ṁ = ρ
πD2

4
U = 885.23 × π × 0.0122

4
× 0.75 = 0.075 kg/s
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Step 4 Pressure drop calculation:
It is seen that the flow is laminar. The friction factor is calculated, using
Eq.12.47 as

f = 64

ReD
= 64

10
= 6.4

The flow development length is calculated based on Eq.12.27 as

Ldev = 0.058ReDD = 0.058 × 10 × 0.012 = 0.00696 m

The tube length of 10m is much much larger than the development length,
and hence, we make the assumption that the pressure drop is based on the
fully developed assumption throughout the length of the tube.

Step The pressure drop is calculated using Eq.12.46 as

�p = 6.4 × 10

0.012
× 885.23 × 0.752

2
= 1.328 × 106 Pa ≈ 13 atm

12.3.5 Fully Developed Flow in a Parallel Plate Channel

Governing equation
Consider steady laminar flow of a viscous incompressible fluid between two parallel
plates with a spacing of 2b, as an example of flow in Cartesian coordinates. The coor-
dinate axes are chosen such that the origin is at the center of the entry plane and the
x-axis is parallel to the two plates. The governing equation for fully developed flow
may be derived starting from first principles. Consider a fluid element of thickness
�y and length �x as shown (enlarged for clarity) in Fig. 12.7. Let the thickness of
the element in a direction perpendicular to the plane of the figure be one unit.

Fig. 12.7 Laminar fluid flow between two parallel plates
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The velocity u along the x-direction varies only with y while the pressure p varies
only with x . A force balance may be made on the element as follows.

τ (y + �y)�x + p(x)�y = τ (y)�x + p(x + �x)�y (12.49)

Using Taylor expansion, we have the following.

τ (y + �y) = τ (y) + dτ

dy
�y + O(�y2); p(x + �x) = p(x) + dp

dx
�x + O(�x2)

(12.50)
Substitute these in Eq.12.49 to get

dτ

dy
�y�x + O(�y2�x) = dp

dx
�x�y + O(�x2�y)

The common factor�y�x (this is nothing but the volume of the element) is removed
and in the limit �x → 0, �y → 0 we obtain

dτ

dy
− dp

dx
= 0 (12.51)

Using Newton’s law of viscosity, we then get

μ
d2u

dy2
− dp

dx
= 0 (12.52)

The same equation may be obtained by starting with the NS equations in cartesian
coordinates and by suitable simplification. This is left as an exercise to the reader.

Boundary conditions
Since the governing equation is a second-order equation, we need to specify two
boundary conditions. These are specified by the no slip conditions at the two bound-
aries, i.e.,

u = 0 at y = −b and y = b (12.53)

Alternately, we may specify the first kind of boundary condition at the top plate, i.e.,
u = 0 at y = b and symmetry condition at y = 0 as du

dy = 0.

Solution
Equation12.52 may be integrated twice with respect to y to get

(a)
du

dy
− 1

μ

dp

dx
y = A; (b) u − 1

μ

dp

dx

y2

2
= Ay + B (12.54)

where A and B are constants of integration to be determined by the use of the
boundary conditions. The symmetry condition at y = 0 requires that the constant A
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be set to zero. The constant B is then obtained by using the no slip at top (or bottom)
wall as

0 − 1

μ

dp

dx

b2

2
= B (12.55)

Substituting Eqs. 12.55 in 12.54(b), we get

u = − 1

μ

dp

dx

(
b2

2
− y2

2

)
(12.56)

The maximum velocity umax obviously occurs at y = 0 and is given by

umax = − 1

μ

dp

dx

b2

2
(12.57)

Mean velocity
Let us denote the mean velocity as U . It is defined such that the volume flow rate
V̇ = 2bU (per m length in a direction perpendicular to the plane of the figure) is
equal to that obtained with the actual velocity profile given by Eq.12.56. Thus, we
have

V̇ = 2bU = − 1

μ

dp

dx

b∫
−b

(
b2

2
− y2

2

)
dy = − 1

μ

dp

dx

(
b2y

2
− y3

6

)∣∣∣∣
b

−b

= − 1

μ

dp

dx
× 2

(
b3

2
− b3

6

)
= − 1

μ

dp

dx

2b3

3

(12.58)

The mean velocity is thus given by

U = − 1

μ

dp

dx

b2

3
(12.59)

Using Eqs. 12.57 and 12.59, we have the important relation

U = 2

3
umax (12.60)

Friction factor
The Darcy friction factor f is defined through the relation
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f = −
�p

ρU 2

L

2DH

(12.61)

where �p
L = dp

dx , DH is the hydraulic diameter given by Ac
Pw

where Ac is the flow area
and Pw is the wetted perimeter, i.e., the wall in contact with the fluid. In the case
of the channel, the area is given by 2b and the wetted perimeter is 2. Hence, the
hydraulic diameter is DH = 4×2×b

2 = 4b. Hence, the friction factor may be written
using Eq.12.59 as

f = (3U )(2DH )

ρU 2μb2
= 96UDH

ρU 2μD2
H

= 96

ReDH

or f × ReDH = 96 (12.62)

12.3.6 Concept of Fluid Resistance

Fluid resistance R f is introduced by treating the mass flow rate ṁ through the
tube/channel as a current and the pressure drop �p across the length L of the
tube/channel as the potential difference.

Resistance in tube flow
Based on Eq.12.45, the pressure drop is given by −�p = 8μUL

R2 . The mass flow rate
is obtained by using the definition of mean velocity as ṁ = ρπR2U . Fluid resistance
R f is then defined as

R f = −�p

ṁ
=

(
8μUL

R2

)

ρπR2U
= 8μL

πρR4
(12.63)

This expressionmay also bewritten based on the tube diameter D as the characteristic
length as

R f = 128μL

πρD4
(12.64)

We see that the fluid resistance is directly proportional to tube length and inversely
proportional to the fourth power of diameter of the tube.

Resistance in channel flow
Using Eq.12.59, the pressure drop is given by −�p = 3μUL

b2 . The mass flow rate is
obtained by using the definition of mean velocity as ṁ = 2ρbU . Thus, we have by
definition
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R f = −�p

ṁ
=

3μUL

b2

2ρbU
= 3μL

ρb4
(12.65)

The above expression may be recast, using the characteristic length DH = 4b, as

R f = 768μL

ρD4
H

(12.66)

We see that the fluid resistance is directly proportional to channel length and inversely
proportional to the fourth power of the hydraulic diameter.

Example 12.4 demonstrate the use of resistance concept in fluid flow distribution
in two tubes in parallel.

Example 12.4

A highly viscous oil flows under a head of 0.5m of water through two tubes that
are arranged in parallel. The first tube has a diameter of 3mm and the second has a
diameter of 4mm. Both tubes are 1m long. Determine the volume flow rates in the
two tubes. The viscosity of oil may be taken as 3 times the viscosity of water and the
relative density of oil is 0.8. Take water properties at 30 ◦C.

Solution:

Step 1 Water properties at 30 ◦C are taken from table of properties of water. They
are

ρw = 995.7 kg/m3, μw = 7.97 × 10−4 kg/m s

The flowing fluid is oil with the following properties:

Viscosity: μoil = 3 × μw = 3 × 7.97 × 10−4 = 2.39 × 10−3 kg/m s
Density: ρoil = 0.8 × ρw = 0.8 × 995.7 = 797 kg/m3

Step 2 The given data is written down as below

Tube 1: Diameter: D1 = 0.003 m Length: L1 = 1 m
Tube 2: Diameter: D2 = 0.004 m Length: L2 = 1 m

Step 3 Available pressure drop is given to be equal to a head ofwater of h = 0.5m.
The corresponding pressure drop is given by

�p = ρwgh = 995.7 × 9.81 × 0.5 = 4884 Pa

where we have used the standard value for the acceleration due to gravity
of g = 9.81m/s2. We shall assume that the flow through both tubes is
laminar. Of course we shall verify it later on.

Step 4 The flow resistance of the tubes may be obtained using Eq.12.64.
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Tube 1: R f 1 = 128×2.39×10−3×1
π×797×0.0034 = 1.510 × 106 Pa s/kg

Tube 2: R f 2 = 128×2.39×10−3×1
π×797×0.0044 = 4.777 × 105 Pa s/kg

Step 5 Using the definition of flow resistance, the mass flow rates in the two tubes
may be calculated now.

Tube 1: ṁ1 = �p
R f 1

= 4884
1.510×106 = 3.235 × 10−3 kg/s

Tube 2: ṁ2 = �p
R f 2

= 4884
4.777×105 = 1.022 × 10−2 kg/s

The corresponding oil velocities in the two cases are given by

Tube 1: U1 = ṁ1
ρoilA1

= 4ṁ1

ρoilπD2
1

= 4×3.235×10−3

797×π×0.0032 = 0.575 m/s

Tube 2: U2 = ṁ2
ρoilA2

= 4ṁ2

ρoilπD2
2

= 4×1.022×10−2

797×π×0.0042 = 1.021 m/s

Step 6 We now verify whether the flow is laminar in the two cases. This is done
by making sure that the larger of the two Reynolds numbers is less than
2300. The Reynolds number in the case of 4mm tube is the larger of the
two and is

ReD2 = ρoilU2D2

μoil
= 797 × 1.021 × 0.004

2.39 × 10−3
= 1361

The flow is indeed laminar and the use of laminar flow resistance formula
is justified.

Step 7 The volume flow rates are obtained now.

Tube 1: V̇1 = ṁ1
ρoil

= 3.235×10−3

797 = 4.06 × 10−6 m3/s

Tube 2: V̇2 = ṁ2
ρoil

= 1.022×10−2

797 = 12.83 × 10−6 m3/s

12.4 Laminar Heat Transfer in Tube Flow

Heat transfer to or from a fluid flowing in a tube is of great importance since this
configuration is very common in heat transfer devices such as heat exchangers. Even
though laminar flow is not very common, the analysis of laminar flow provides an
opportunity to learn about convection in internal flow using simplemathematics. Two
boundary conditions that are easily achieved in practice are the constant heat flux and
the constant wall temperature conditions. The former is obtained by electrical heating
of a highly conducting tube and the latter by having condensing or evaporating fluid
in contact with the outside of the tube wall.
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12.4.1 Bulk Mean Temperature

Recall from the discussion in Sect. 12.3.4 where the mean velocity for flow in a tube
was defined. The fluid flowing at the mean velocity transports a constant amount of
fluid per unit time along the tube. In a heat transfer application,wewould be interested
in determining the rate at which enthalpy is transported across any cross section of
the tube. This is easily done by introducing the so called bulk mean temperature
(also known as the mixing cup temperature). The rate at which enthalpy Ḣ(z) is
transported across any section of the tube is obtained by the following integral:

Ḣ(z) =
R∫

0

CpT (r, z)dṁ

where dṁ is the mass flow rate through an elemental area given by 2πrdr and
CpT (r, z) is the magnitude of the enthalpy of the fluid entering the elemental area.
The elemental mass flow rate itself is obtained as the product of density, area, and
the velocity as

dṁ = ρ × 2πrdr × uz(r, z)

Combining these we get

Ḣ(z) =
R∫

0

2ρπruz(r, z)CpT (r, z)dr (12.67)

We shall equate the rate of enthalpy crossing the tube section by introducing the
mean velocity introduced earlier and the bulk mean temperature TB(z) such that
Ḣ(z) = ṁCpTB(z) = (πR2ρU )CpTB(z). Note that this is the product of the mass
flow rate across the section and the mean value of enthalpy of the entering fluid.
Thus, we get for a constant property fluid

(
πR2ρU

) (
CpTB(z)

) =
R∫

0

2ρπruz(r, z)CpT (r, z)dr

or TB(z) = 2

πR2U

R∫
0

uz(r, z)T (r, z)dr

(12.68)

Note that the bulk mean temperature as defined above is valid at any z along the
flow and may, in fact, vary with z. However, U is independent of z because of mass
conservation, even though uz may be a function of r and z. In what follows we shall
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be interested in applying the above to the fully developed region where uz will be a
function of r alone.

12.4.2 Variation of the Bulk Mean Temperature

The bulk mean temperature varies with z, and this variation depends on the condition
applicable at the tube wall. In most practical applications the tube wall is thin, and
hence it is customary to neglect axial heat conduction in the tube wall, i.e., heat con-
duction along the z-direction. Hence, heat transfer across the tube wall is assumed
to be radial. This heat transfer may be subject to a very small temperature variation
across the tube wall if it is thin and made of a material with a high thermal conduc-
tivity. Hence, it is possible to make a simple analysis assuming that heat transfer to
the fluid or away from the fluid takes place radially and is specified at the fluid–solid
interface.

The analysis may be made using the control volume shown in Fig. 12.8. The
control volume is taken in the form of a short cylinder of length �z and of radius R,
equal to the inner radius of the tube.

Heat balance may be made for the control volume as follows:
[

Heat convected
across left boundary

]
+
[
Heat transfer entering

at tube wall

]
=
[

Heat convected
across right boundary

]

The heat transfer by convection entering through the left boundary is obtained by the
use of the bulk mean temperature as ρπR2UCpTB(z). The heat transfer by convec-
tion leaving through the right boundary may be written as ρπR2UCpTB(z + �z) =
ρπR2UCp

[
TB(z) + dTB

dz �z
]
.We havemade use of theTaylor expansion and retained

only the first-order term. The heat transfer entering at the tube wall is given by
2πRqw�z. Introducing these in the heat balance equation and simplifying, we get

dTB

dz
= 2qw

ρUCpR
(12.69)

Fig. 12.8 Control volume
for heat transfer analysis
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The above equation is general in that it applies to any variation of qw with z. In
the special case in which qw is constant, the bulk mean temperature increases (or
decreases if qw is negative, i.e., heat is lost from the fluid element to the tube wall)
linearly with z.

12.4.3 Tube Flow with Uniform Wall Heat Flux

Consider tube flowwith heat transfer as indicated in Fig. 12.9. The fluid enters with a
uniform temperature T0 as indicated. The wall is subjected to a constant heat flux qw.
There is a thermal entry length L ′

dev over which the temperature distribution develops
just as the flowdevelopmentwould take place over an entry length Ldev discussed ear-
lier. For laminar flow, the entry length is given by L ′

dev/D = 0.05ReDPr = 0.05Pe
where the Reynolds number Prandtl number product has been represented as Pe,
the Peclet number.5 For z > L ′

dev the temperature is fully developed, and for
qw = constant, both Tw and TB increase linearly at the same rate, keeping a con-
stant difference between the two. Here, TB is the bulk mean temperature of the fluid,
as defined earlier through Eq.12.68.

Fig. 12.9 Tube flow with constant heat flux at its surface

5Named after Jean Claude Eugène Péclet 1793–1857, a French physicist
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12.4.4 Fully Developed Temperature with Uniform Wall Heat
Flux

The idea of fully developed temperature profile is analogous to the fully developed
velocity profile considered earlier. We look for a suitably defined non-dimensional
temperature profile that is a function of r only, being thus independent of z. This is
in spite of the fact that the temperature of the fluid varies with both r and z. Consider
the non-dimensional temperature ratio given by

θ(r) = T (r, z) − Tw(z)

TB(z) − Tw(z)
(12.70)

where Tw(z) stands for the wall temperature and TB(z) is the bulk mean temperature
of the fluid. As indicated in Eq.12.70, θ is a function of only r and hence ∂θ

∂z ≡ 0.
This requires that

∂θ

∂z
=

∂T (r, z)

∂z
− dTw(z)

dz
TB(z) − Tw(z)

− T (r, z) − Tw(z)

[TB(z) − Tw(z)]2

(
dTB(z)

dz
− dTw(z)

dz

)
= 0

(12.71)
which may be rewritten, by removing the common factor TB(z) − Tw(z) in the
denominator, as

[TB(z) − Tw(z)]∂θ

∂z
=
[
∂T (r, z)

∂z
− dTw(z)

dz

]
− θ(r)

[
dTB(z)

dz
− dTw(z)

dz

]
= 0

(12.72)
In the present case of uniform tube wall flux, the above expression will hold only if

∂T (r, z)

∂z
= dTw(z)

dz
= dTB(z)

dz
(12.73)

This may be combined with Eq.12.69 to get

∂T (r, z)

∂z
= dTw(z)

dz
= dTB(z)

dz
= 2qw

ρUCpR
(12.74)

where the wall heat flux qw is a constant independent of z. Hence, the axial temper-
ature gradient ∂T (r,z)

∂z is a constant, and hence the second derivative of T (r, z) with
respect to z is zero. This means that the axial heat conduction does not change with
z and hence the axial diffusion term drops off.

Governing equation
The governing equation may be developed either from the energy equation in cylin-
drical coordinates (see AppendixH) or from first principles as is done here. Consider
energy balance over an annular element as shown in Fig. 12.10.
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Fig. 12.10 Annular control volume for developing the governing equation

Since conduction flux along the axis does not change with z, net convection
crossing the control volume in the axial direction is balanced by net conduction in
the radial direction. With this in mind, the fluxes crossing the control volume are as
shown in the figure. Energy balance may be spelt out in words as follows:
⎡
⎣ Conduction

leaving at
outer boundary

⎤
⎦−
⎡
⎣ Conduction
entering at inner

boundary

⎤
⎦ =

⎡
⎣ Convection
leaving across
right boundary

⎤
⎦−
⎡
⎣ Convection
entering across
left boundary

⎤
⎦

As usual we use Taylor expansion retaining first-order terms to write, after simplifi-
cation, the following governing equation.

k
∂

∂r

(
r
∂T

∂r

)
= ρuzCpr

∂T

∂z
(12.75)

We shall assume now that the velocity profile is given by the fully developed profile
(see Eq.12.40). We also use the variation of temperature along z given by Eqs. 12.69
and 12.74 to write the governing equation as

∂

∂r

(
r
∂T

∂r

)
= 4qwr

kR

[
1 −
( r
R

)2]
(12.76)

We may recast this equation in terms of the non-dimensional temperature θ(r) intro-
duced through Eq.12.70 as

d

dr

(
r
dθ

dr

)
= 4qwr

kR{TB(z) − Tw(z)}
[
1 −
{ r
R

}2]
(12.77)
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where the partial derivatives have become total derivatives since θ is independent of
z. Note also that TB(z) − Tw(z) in the denominator should be independent of z since
qw is independent of z. The ratio of wall heat flux to driving temperature difference
defines the convection heat transfer coefficient h which is a constant independent of
z. We define the Nusselt number NuH as the Nusselt number in the fully developed
region with constant flux boundary condition through the relation

NuH = qwD

k {Tw(z) − TB(z)} (12.78)

such that the governing equation may be recast as

d

dζ

(
ζ
dθ

dζ

)
= −2NuHζ(1 − ζ2) (12.79)

The accompanying boundary conditions are specified as

θ is finite at ζ = 0; and
qw

TB(z) − Tw(z)
− k

dθ

dr
= 0 at r = R (12.80)

in dimensional form. The boundary condition at tube wall is a statement of the fact
that the heat flux is continuous across the boundary. This may be rewritten in non-
dimensional form, using the Nusselt number defined above as

dθ

dζ
+ NuH

2
= 0 at ζ = 1 (12.81)

Solution
Equation12.76 is integrated once with respect to ζ to get

dθ

dζ
= −2NuH

(
ζ

2
− ζ3

4

)
+ C1

ζ

where C1 is a constant of integration. The boundary condition at ζ = 0 requires that
we choose C1 as 0. The resulting equation is integrated once more with respect to ζ
to get

θ = −2NuH

(
ζ2

4
− ζ4

16

)
+ C2 (12.82)

whereC2 is a second constant of integration. It is seen that the constant of integration,
in fact, represents the non-dimensional temperature θ0 at the axis of the tube, that is
not known as of now. Thus, we write Eq.12.82 as

θ − θ0 = φ(ζ)

Define

= −2NuH

(
ζ2

4
− ζ4

16

)
(12.83)



12.4 Laminar Heat Transfer in Tube Flow 579

The boundary condition at the tube wall is not available to us since it has been
implicitly used in deriving Eq.12.69 by overall energy balance. Consider the follow-
ing integral:

In =
R∫

0

uz(r)φ(r)rdr = R2

1∫
0

2U (1 − ζ2)φ(ζ)ζdζ

Using the non-dimensional temperature profile given by Eq.12.83, the above integral
is written as

In = −4UR2NuH

1∫
0

(1 − ζ2)

(
ζ2

4
− ζ4

16

)
ζdζ = −UR2NuH

∫ 1

0

[
ζ3 − 5ζ5

4
+ ζ7

4

]
dζ

= −UR2NuH

[
ζ4

4
− 5ζ6

24
+ ζ8

32

]∣∣∣∣
1

ζ=0
= −UR2NuH

(
7

96

)

(12.84)

Consider also the integral Id =
R∫
0
uz(r)rdr . We may easily obtain this integral as

Id = 2UR2

1∫
0

(ζ − ζ3)dζ = UR2

2
(12.85)

Finally, by division, we get
In
Id

= − 7

48
NuH (12.86)

We recognize this to represent θB − θ0. We may obtain from this the difference
θB − θw as

θB − θw = 1 = [θB − θ0] − [θw − θ0]

where the relation θB − θw = 1 follows from the definition of the non-dimensional
temperatures. The second term on the right-hand side is obtained by evaluating
Eq.12.83 at ζ = 1 as

θ − θ0 = −2NuH

(
1

4
− 1

16

)
= −3

8
NuH (12.87)

With these, we get

θB − θw = 1 = − 7

48
NuH + 3

8
NuH

or

NuH = 48

11
= 4.364 (12.88)
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Hence, the Nusselt number is a constant equal to 4.364 (the heat transfer coefficient
is also a constant) in fully developed tube flow with constant wall flux. Obviously,
the Nusselt number is not what is important when the wall heat flux is specified or
known. The above equation is useful in determining the difference between the wall
and bulk fluid temperature as

Tw(z) − TB(z) = 11

48

qwD

k
(12.89)

The non-dimensional temperature variation across the tube may now be represented
using Eqs. 12.83 and 12.87 as

θw − θ = (θw − θ0) − (θ − θ0) = −2NuH

(
ζ2

4
− ζ4

16

)
+ 3

8
NuH

Using the known value of NuH , the above becomes

θw − θ = 24

11

{
3

4
− ζ2 + ζ4

4

}
(12.90)

12.4.5 Tube Flow with Constant Wall Temperature

As mentioned earlier the constant wall temperature case is typical of what happens
when the outer wall of the tube is in contact with a fluid undergoing phase change,
such as in a condenser of a steam power plant. The tube side fluid (i.e., the fluid
that flows inside the tube) is usually water. The flow velocity and the tube diameter
are such that the flow in the tube is invariably turbulent. However, it is instructive to
look at the laminar flow case since fundamental ideas involved in heat transfer are the
same in the laminar case also. Schematic of tube flowwith constant wall temperature
is as shown in Fig. 12.11. The temperature field undergoes a development over an
entry length L ′

dev. The temperature in the core remains constant at T0 till z = L ′
dev.

Thereafter the thermal boundary layer fills the entire tube. The bulk temperature
varies as indicated graphically at the bottom of Fig. 12.11. Assuming that the fluid
in the tube is getting heated, TB will continually increase but the rate of heat transfer
continuously reduces since the driving temperature difference continuously decreases
with z. We shall see later that the temperature difference reduces exponentially with
z when the heat transfer coefficient is constant.
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Fig. 12.11 Tube flow with constant wall temperature

12.4.6 Fully Developed Tube Flow with Constant Wall
Temperature

Let us see what happens in the fully developed temperature region. We go back to
Eq.12.72 and notice that the fully developed condition holds only if

θ(r)
dTB

dz
= ∂T (r, z)

∂z
(12.91)

since dTw

dz = 0.
We shall look at this condition after deriving the appropriate equation that governs

the temperature field.

Governing equation
We derive the governing equation starting with the energy Eq.H.38 in cylindrical
coordinates given in AppendixH. Since the flow is steady ∂

∂t ≡ 0. The flow velocity
component along the axis of the tube alone is non-zero, and hence, the convective
term consists of only the term uz

∂T (r,z)
∂z . The diffusion terms (terms appearing in the

energy equation that account for conduction in the fluid) will involve both derivatives
with respect to r and z and the governing equation becomes

uz
∂T

∂z
= α
[1
r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2

]
(12.92)

On the right-hand side of Eq.12.92, we have the axial diffusion represented by the
second derivative of T with respect to z. In the case of tube flow with constant wall
heat flux this term dropped off since ∂T

∂z was a constant. In the present case, we shall
assume that this axial conduction term is negligibly small when compared to the
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radial conduction term represented by the derivative with respect to r . We justify
this assumption based on estimates for the derivatives. We may approximate the
derivatives by differences and hence

∂T

∂z
∼ TB,o − TB,i

L
and

∂2T

∂z2
∼ TB,o − TB,i

L2

where the inlet and outlet bulk temperatures are used to define the characteristic
temperature difference, and the length of tube to define the characteristic length.
However, for the derivatives in the r direction, we use the difference between the
mean of the bulk mean temperatures TB,mean = TB,o+TB,i

2 and wall temperature as the
characteristic temperature difference and tube radius R as the characteristic length
to write

1

r

∂

∂r

(
r
∂T

∂r

)
∼ TB,mean − Tw

R2

In applications, invariably the temperature difference of the fluid between the entry
and exit is smaller than that between the fluid and the wall. For example, the bulk
temperature difference may be 15 ◦C while the temperature difference between the
fluid and the wall may be 50 ◦C. Also the length of the tube L is normallymuch larger
than the radius R of the tube. For example, with a tube Reynolds number of 1000
fully developed conditions are obtained with L

D >
L ′
dev
D = 0.05 × 1000 × 5 = 250 or

L
R > 500 where the Prandtl number has been assumed to have a value of 5, typical of
water. With R = 0.005m, the corresponding L is about 2.5m. The axial and radial
diffusion terms are typically given by

Axial diffusion term:
TB,o − TB,i

L2
≈ 15

2.52
= 2.4 ◦C/m2

Radial diffusion term:
50

0.0052
= 2 × 106 ◦C/m2

It is thus clear that the axial diffusion term is much smaller than the radial diffusion
term, thus justifying the assumption suggested above. Hence, we approximate the
governing equation, neglecting axial conduction, as

uz
∂T

∂z
≈ α

1

r

∂

∂r

(
r
∂T

∂r

)
(12.93)

Further, we shall assume that uz is given by the fully developed velocity profile
specified by Eq.12.40. Additionally, making use of the fully developed temperature
condition Eq.12.91 and θ defined by Eq.12.70, we simplify the governing equation
to

α
1

r

∂

∂r

(
r
∂T

∂r

)
= 2U

[
1 −
( r
R

)2]
θ
dTB

dz
(12.94)
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By definition, the fully developed temperature profile is a function of r alone and
hence

∂T

∂r
= (TB − Tw)

Depends only
on z

dθ

dr

where Eq.12.70 has been made use of. Also the radial diffusion term takes the form

α
1

r

∂

∂r

(
r
∂T

∂r

)
= (TB − Tw)α

1

r

d

dr

(
r
dθ

dr

)

Thus, the governing equation takes the form of an ordinary differential equation
given by

1

r

d

dr

(
r
dθ

dr

)
= 2

U

α

[
1 −
( r
R

)2] dTB

dz
(TB − Tw)

θ (12.95)

We immediately see that

dTB

dz
(TB−Tw)

should be independent of z. This is, in fact, the real
import of the fully developed temperature profile. Using the relationship between
wall heat flux and the driving temperature difference given by Eq.12.69, we have

U

α

dTB

dz
(TB − Tw)

= − 2qw(z)

kR(Tw − TB)
= −NuT

R2
(12.96)

where NuT is the constant Nusselt number in the fully developed region in the
constant wall temperature case. Using the non-dimensional variable ζ = r

R , the gov-
erning equation takes the form

1

ζ

d

dζ

(
ζ
dθ

dζ

)
= d2θ

dζ2
+ 1

ζ

dθ

dζ
= −2NuT (1 − ζ2)θ (12.97)

This equation is to be solved with the boundary conditions given by

θ is finite at ζ = 0, and θ = 0 at ζ = 1 (12.98)

Solution
Since the governing equation is an ordinary differential equation with variable coef-
ficients, the solution may be obtained by using an infinite series to represent the
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temperature field.6 The solution that is finite at the origin will have only positive
powers of ζ in the series. Since the parameter NuH is not known, the solution will
involve this as a parameter. The boundary condition at the tube wall will determine
NuH as we shall soon see. Since the solution is axisymmetric, only even powers of ζ
will occur in the series solution. Hence, let the solution be represented by the series
given by

θ =
∞∑
n=0

C2nζ
2n (12.99)

On substitution in Eq.12.97, using term by term differentiation, collecting terms
containing same powers of ζ, we get the following:

ζ−2 : C0 × 0 Hence C0 �= 0

ζ0 : 4C2 + λ2C0

Hence C2 = −λ2

4
C0

· · ·
ζ2n : (2n)2C2n − λ2 (C2n−4 − C2n−2)

Hence C2n = − λ2

(2n)2
(C2n−4 − C2n−2) (12.100)

where, for convenience, λ2 stands for 2NuT . Hence, the solution may be written as

θ = C0

[
1 − λ2

4
ζ2 + λ2

16

(
1 + λ2

4

)
ζ4 − λ2

36

{
λ2

4
+ λ2

16

(
1 + λ2

4

)}
ζ6 − + · · ·

]

(12.101)
Note that both C0 and λ are unknown as of now. The non-dimensional temperature
has to vanish at the tube wall, and hence, the series given by Eq.12.101 should vanish
at ζ = 1. Luckily for us the series converges rapidly, and it is necessary to take only
10 terms. Since C0 is non-zero, the sum of terms within the braces have to vanish.
By trial, it may be verified that the sum vanishes for λ2 = 7.313588, and hence the
value of the Nusselt number is given by

NuT = λ2

2
= 7.313588

2
= 3.656794 ≈ 3.657 (12.102)

The value of the unknown constant C0 may be determined by using the heat flux
continuity condition at ζ = 1. This requires that (Eq.12.81 with NuH replaced by
NuT )

6M.S. Bhatti,“Fully developed temperature distribution in a circular tube with uniform wall tem-
perature”, Unpublished paper, Owens-Corning Fiberglass Corporation, Ohio, 1985 as cited by S.
Kakac and R.K. Shah,Handbook of Single Phase Convective Heat Transfer, JohnWiley, NY, 1987.
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Fig. 12.12 Fully developed
velocity and temperature
profiles

dθ

dζ

∣∣∣
ζ=1

= −NuT

2
= −3.656794

2
= −1.828397 (12.103)

The derivative required may be calculated by term by term differentiation of series
given by Eq.12.101 and inserting ζ = 1 to get

dθ

dζ
= C0 × (−1.01428) = −1.828397 or C0 = 1.802652 (12.104)

The fully developed temperature (constant wall heat flux and constant wall temper-
ature cases) and velocity profiles are shown in Fig. 12.12. While the velocity profile
is quadratic in ζ = r

R the temperature profile is a quartic in ζ, in the case of constant
heat flux case (identified as θH ) while it is given by an infinite series in the case of the
constant wall temperature case (identified as θT ). The maximum non-dimensional
temperature difference occurs between the wall and the fluid at the tube axis, in both
cases. The maximum velocity occurs along the tube axis.

Example 12.5

Ethylene glycol is flowing in a D = 6mm diameter thin-walled copper tube heated
electrically such that the wall heat flux is qw = 1000W/m2. At a certain section,
glycol has a bulk mean temperature of 70 ◦C. The volume flow rate of glycol has
been measured to be V̇ = 15ml/s. Determine the wall temperature at this location.
Also determine rate of change of the bulk temperature of glycol with axial distance.
Glycol properties may be taken as constant and are specified as below Den-
sity ρ = 1109kg/m3, Dynamic viscosity μ = 0.0144kg/ms, Thermal conductivity
k = 0.2814W/m ◦C, and Prandtl number Pr = 124.4.
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Solution:

Step 1 Flow area is calculated as

A = πD2

4
= π × 0.0062

4
= 2.82743 × 10−5 m2

Step 2 The mean velocity of glycol in the tube is then obtained as

U = V̇

A
= 15 × 10−6

2.82743 × 10−5
= 0.531 m/s

Step 3 The flow Reynolds number is determined as

ReD = ρUD

μ
= 1109 × 0.531 × 0.006

0.0144
= 245

Since the Reynolds number is less than 2300, the flow is laminar. The
results of preceding analysis of fully developed tube flow with constant
wall heat flux are used to get the desired results.

Step 4 The Nusselt number has the fully developed value of NuH = 48
11 = 4.364.

Using the definition of Nusselt number, the corresponding heat transfer
coefficient may be obtained as

h = NuHk

D
= 4.364 × 0.2814

0.006
= 204.65 W/m2 ◦C

Step 5 The driving temperature difference at any z in the fully developed region
is

Tw − TB = qw

h
= 1000

204.65
= 4.89 ◦C

Step 6 It is given that the bulk temperature at a certain location along the tube is
TB = 70 ◦C. Hence, the corresponding wall temperature is

Tw = 70 + 4.89 = 74.89 ◦C

Step 7 The specific heat of glycol may be obtained by making use of the thermo-
physical properties specified in the problem as

Cp = Pr · k
μ

= 124.4 × 0.2814

0.0144
= 2431 J/kg ◦C

Step 8 To determine the axial temperature gradient, we make use of Eq.12.74 to
get
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dTB

dz
= 2qw

ρUCpR
= 2 × 1000

1109 × 0.531 × 2431 × 0.003
= 0.47 ◦C/m

Example 12.6

Air is heated by passing it through a copper tube of 2.5 mm ID that is steam jacketed
with steam at 100 ◦C. The properties of air may be taken at a mean temperature of
40 ◦C. The steam side heat transfer coefficient is extremely large, and hence, the wall
of the tube may be assumed to be essentially at the steam temperature. At a certain
location along the tube, both flow and temperature are fully developed. Determine
the axial gradient of the bulk mean temperature at this location if the bulk mean
temperature is 60 ◦C when the mass flow of rate of air is 0.05 g/s.

Solution:
Air properties at 40 ◦C are

Density: ρ = 1.1169 kg/m3

Specific heat: Cp = 1005 J/kg◦C
Dynamic viscosity: μ = 1.91 × 10−5 kg/m s

Thermal conductivity: k = 0.0274 W/m◦C
Prandtl number: Pr = 0.699

Other data specified in the problem are

Tube diameter: D = 2.5 mm = 0.0025 m
Wall temperature: Tw = 100◦C

Bulk mean temperature: TB = 60◦C
Mass flow rate of air: ṁ = 0.05 g/s = 5 × 10−5 kg/s

Air velocity in the tube may be calculated as

U = ṁ

ρA
= 4ṁ

ρπD2
= 4 × 5 × 10−5

1.1169 × π × 0.00252
= 9.12 m/s

Tube Reynolds number is then given by

ReD = ρUD

μ
= 1.1169 × 9.12 × 0.0025

1.91 × 10−5
= 1340

Since the Reynolds number is less than 2300, the flow is laminar. Hence, we may use
the results of analysis presented previously to obtain the axial temperature gradient.
In particular, we make use of Eq.12.96 to get

dTB

dz
= −NuTα(TB − Tz)

UR2
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The thermal diffusivity α appearing in the above is obtained as

α = k

ρCp
= 0.0274

1.1169 × 1005
= 2.441 × 10−5 m2/s

Under the fully developed condition the Nusselt number NuT is equal to 3.657.
Hence, the axial gradient of the bulk mean temperature may be obtained as

dTB

dz
= −3.657 × 2.441 × 10−5(60 − 100)

9.12 × 0.001252
= 250.58 ◦C/m

12.5 Laminar Fully Developed Flow and Heat Transfer in
Non-circular Tubes and Ducts

12.5.1 Introduction

Tubes and ducts of non-circular cross section are used in many heat transfer appli-
cations. The concept of flow and temperature development applies equally to these
cases. TheReynolds andNusselt numbers are based on suitably defined characteristic
lengths. The characteristic length is also known as the hydraulic diameter in the case
of the flow problem and the energy diameter in the case of the heat transfer problem.
These two may or may not be the same, for a given duct or tube of non-circular cross
section.

Wehave earlier seen how the friction factor for a parallel plate channel is expressed
using the hydraulic diameter as the characteristic length scale. Figure12.13 shows
how the hydraulic diameter DH is defined, for the case of a duct or tube of any
cross section. For the flow problem, the hydraulic diameter uses the so-called wet-
ted perimeter Pw—the perimeter over which there is contact between the flowing

Fig. 12.13 Non-circular
duct nomenclature—the
hydraulic diameter
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fluid and the solid wall—where viscous shear is manifest. In the case of a tube of
circular diameter, the wetted perimeter is obviously the circumference of the circle
representing the cross section of the tube. The flow area is the cross-sectional area
Ac of the tube. In case of an annulus—the flow takes place in the region between an
inner and outer tube—the wetted perimeter is the sum of the circumferences of the
outer surface of the inner tube and the inner surface of the outer tube. The flow area
is the area of the annulus.

The hydraulic diameter DH is defined by the following relation:

DH = 4Ac

Pw

(12.105)

In the case of a circular cross-sectional tube, the hydraulic and actual diameter are
the same. In the case of an annulus with inner diameter Di and outer diameter Do,
we have

Pw = π (Di + Do) ; Ac = π
(
D2

o − D2
i

)
4

; DH =
4
π
(
D2

o − D2
i

)
4

π (Di + Do)
= (Do − Di )

12.5.2 Parallel Plate Channel with Asymmetric Heating

The fully developed flow in this geometry has been considered in Sect. 12.3.5. We
shall nowconsider the case of fully developed temperature problem.Detailed solution
is worked out for the case where the top wall is subject to uniform heat flux qw while
the bottom wall is adiabatic (refer Fig. 12.7). The energy equation may be written for
the present case starting from the cartesian form of equation given in AppendixH.
This is left as an exercise to the reader. The appropriate equation in non-dimensional
form is

d2θ

dζ2
= − 3

16
NuH (1 − ζ2) (12.106)

where the velocity field has been replaced using the fully developed profile given by

u

U
= 1 − ζ2

NuH in this case is defined as 4bqw

k(Tw−TB )
where Tw is the top (heated) wall temperature

and 4b is the hydraulic diameter. The boundary conditions are specified as

Top wall: θ|ζ=1 = 0

Bottom wall:
dθ

dζ

∣∣∣∣
ζ=−1

= 0 (12.107)
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Integrating the governing Eq.12.106 and applying the boundary conditions
Eq.12.107, we can easily show that the solution is

θ(ζ) = NuH

[
13

64
− ζ

8
− 3ζ2

32
+ ζ4

64

]
(12.108)

To determine the unknown Nusselt number, we use a procedure similar to that in
the case of fully developed temperature problem in the case of a circular tube with
constant wall heat flux considered in Sect. 12.4.4. We utilize the velocity and tem-
perature profiles to obtain the bulk-wall temperature difference and hence show that
NuH = 5.38459.

12.5.3 Parallel Plate Channel with Symmetric Heating

The case where both walls are subject to uniform heat flux is easily considered by
a few modifications to the above analysis. The governing equation is written by
modifying Eq.12.106 as

d2θ

dζ2
= −3

8
NuH (1 − ζ2) (12.109)

The boundary conditions are recast as

Top wall: θ|ζ=1 = 0

Bottom wall: θ|ζ=−1 = 0 (12.110)

Again the solution is obtained easily as

θ(ζ) = 3

16
NuH

[
5

6
− ζ2 + ζ4

6

]
(12.111)

By a similar procedure as in Sect. 12.4.4, the Nusselt number may be shown to be
NuH = 8.23529.

To highlight the differences in the asymmetric and symmetric heating cases, the
temperature profiles have been plotted in Fig. 12.14. The fully developed velocity
profile is also shown in the figure.

12.5.4 Fully Developed Flow in a Rectangular Duct

As an example of a non-circular section, we consider fully developed flow in a duct
of rectangular section of sides 2a and 2b parallel, respectively, to the x- and y-axes.
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Fig. 12.14 Temperature
profiles with asymmetric and
symmetric heating in the
case of parallel plate channel
a θ1—Asymmetric heating b
θ2—Symmetric heating

The origin is placed at the bottom left hand corner of the rectangle. Fluid velocity,
under the fully developed condition, is now a function of x and y, being independent
of z. The governing equation may be written down as,

∂2uz

∂x2
+ ∂2uz

∂y2
= 1

μ

dp

dz

representing balance between viscous and pressure forces. The velocity vanishes
along the four sides of the rectangle. We note that the right-hand side is a constant
being related to the pressure drop per unit length of the duct. Introduce the following
non-dimensional coordinates:

X = x

2a
, Y = y

2a
(12.112)

Introduce also a non-dimensional velocity given by

U = uz(x, y)

−4a2

μ

dp

dz

(12.113)

The governing equation takes the form

∂2U

∂X2
+ ∂2U

∂Y 2
= −1 (12.114)

The boundary conditions are now specified as



592 12 Laminar Convection in Internal Flow

Table 12.6 Fully developed velocity matrix in 1
4 section of a square duct

j → 0 1 2 3 4 5 6 7 8

i ↓ U (i, j)

0 0 0 0 0 0 0 0 0 0

1 0 0.00618 0.01041 0.01345 0.01567 0.01726 0.01834 0.01896 0.01916

2 0 0.01041 0.01809 0.02382 0.02807 0.03114 0.03323 0.03444 0.03484

3 0 0.01345 0.02382 0.03176 0.03774 0.04211 0.04508 0.04681 0.04738

4 0 0.01567 0.02807 0.03774 0.04512 0.05055 0.05427 0.05644 0.05716

5 0 0.01726 0.03114 0.04211 0.05055 0.05681 0.06111 0.06363 0.06446

6 0 0.01834 0.03323 0.04508 0.05427 0.06111 0.06584 0.06860 0.06951

7 0 0.01896 0.03444 0.04681 0.05644 0.06363 0.06860 0.07151 0.07247

8 0 0.01916 0.03484 0.04738 0.05716 0.06446 0.06951 0.07247 0.07345

Note X = 0.0625i, Y = 0.0625 j

U (X, 0) = 0, 0 ≤ X ≤ 1; U

(
X,

b

a

)
= 0, 0 ≤ X ≤ 1;

U (0,Y ) = 0, 0 ≤ Y ≤ b

a
; U (1,Y ) = 0, 0 ≤ Y ≤ b

a
(12.115)

The governing equation thus is the Poisson equation in two dimensions. This equation
is easily solved by finite differences using the methods discussed earlier, using equi-
spaced nodes along the two directions, with �X = �Y = 0.0625. As a particular
example, we consider the fully developed flow in a square duct for which b

a = 1.
The hydraulic diameter for this section is DH = 2a as may be easily verified. The
Poisson equation was solved by finite differences and the resultingU (X,Y ) is given
in Table12.6 as a matrix. Since the flow is symmetrical with respect to X = 0.5 and
Y = 0.5, only the velocities in 1

4 section of the square are presented in the table. By
numerical integration using Simpson rule (second-order accurate—as is the finite
difference method used in the solution of the Poisson equation), the mean velocity
may be obtained as

U =
1∫

X=0

1∫
Y=0

U (X,Y )dXdY = 0.03502

The maximum velocity occurs at the center of the section, i.e., X = Y = 0.5 and is
given by Umax = 0.07345. Thus, the ratio of mean to maximum velocity is given by

U

Umax
= 0.03502

0.07345
≈ 0.477

The actual mean velocity is then given by
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uz = −0.03502
4a2

μ

dp

dz
(12.116)

As before, we replace dp
dz by −�p

L and introduce friction factor f such that −�p
L =

f ρu2

2DH
. Introduce this in Eq.12.116 to get

uz = 0.03502
4a2

μ

f ρu2z
2DH

With 4a2 = D2
H , the above equation may be recast as

f = 2

0.03502

μ

ρuzDH
≈ 57

ReDH

(12.117)

12.5.5 Fully Developed Heat Transfer in a Rectangular
Duct: Uniform Wall Heat Flux Case

The corresponding heat transfer problem,with uniformwall heat flux,may beworked
out in a manner analogous to the flow problem. The governing equation may be
shown, following a method similar to that in the case of a circular tube, to be

∂2θ

∂X2
+ ∂2θ

∂Y 2
= uz(x, y)

uz
= U (X,Y )

U
(12.118)

where

θ = φ − φw

φB − φw

with φ = T(
8aqw

k

) (12.119)

where qw is the constant heat flux at the duct boundary. The subscript w represents
the wall, and subscript B refers to the bulk mean value. We see that the temperature
problem is also governed by Poisson equation but with the source term varying with
X,Y . Since θ vanishes along the four sides of the duct cross section, we have

θ(X, 0) = 0, 0 ≤ X ≤ 1; θ

(
X,

b

a

)
= 0, 0 ≤ X ≤ 1;

θ(0,Y ) = 0, 0 ≤ Y ≤ b

a
; θ(1,Y ) = 0, 0 ≤ Y ≤ b

a
(12.120)

The solution, in the specific case of a square duct, has been numerically obtained
and is given in matrix form in Table12.7.
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Table 12.7 Fully developed temperature matrix in 1
4 section of a square duct

j → 0 1 2 3 4 5 6 7 8

i ↓ φ(i, j)

0 0 0 0 0 0 0 0 0 0

1 0 0.00089 0.00289 0.00534 0.00779 0.00996 0.01164 0.01269 0.01305

2 0 0.00289 0.00973 0.01832 0.02708 0.03489 0.04098 0.04482 0.04614

3 0 0.00534 0.01832 0.03499 0.05221 0.06771 0.07982 0.08749 0.09013

4 0 0.00779 0.02708 0.05221 0.07846 0.10223 0.12095 0.13284 0.13692

5 0 0.00996 0.03489 0.06771 0.10223 0.13373 0.15858 0.17442 0.17986

6 0 0.01164 0.04098 0.07982 0.12095 0.15858 0.18841 0.20740 0.21392

7 0 0.01269 0.04482 0.08749 0.13284 0.17442 0.20740 0.22844 0.23567

8 0 0.01305 0.04614 0.09013 0.13692 0.17986 0.21392 0.23567 0.24316

Note X = 0.0625i, Y = 0.0625 j

Fig. 12.15 3D plot of
velocity in the square duct

It may easily be shown that the Nusselt number is related to the integral of the
product of U

U
and φ over the cross section of the duct represented in the form

φB =
1∫

X=0

1∫
Y=0

(
φ × U

U

)
dXdY (12.121)

The above integral is evaluated numerically and is equal to 0.069559. The Nusselt
number is then given by NuH = 1

4×0.069559 ≈ 3.6. Note that the characteristic length
used in the Nusselt number definition is the hydraulic diameter DH = 2a.

To complete this discussion, we present 3D plots of U (X.Y ) and φ(X,Y ) in
Figs. 12.15 and 12.16. Both figures indicate symmetry that was referred to earlier.
The temperature variations with respect to X for a given Y or with respect to Y
for a given X are close to being quadratic. The maximum velocity as well as the
temperature occurs at the center of the square duct.
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Fig. 12.16 3D plot of
temperature in the square
duct

12.5.6 Fully Developed Flow and Heat Transfer Results in
Several Important Geometries

Non-circular sections are many times used in applications like air handling systems,
power plants, etc. A non-circular duct may be treated in terms of an equivalent duct
of circular cross section with the diameter given by the hydraulic diameter DH .
Figure12.17 shows several cases that are important. Laminar friction coefficient—
Nusselt number results for all these cases, in the fully developed region, are shown in
Table12.8. The table also gives expressions for the appropriate hydraulic diameters.
The reader will recognize that a few of the results in the table have been worked out
in detail in previous sections.

Fig. 12.17 Ducts of different useful cross sections
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Table 12.8 Laminar fully developed relations for tubes of different cross sections

Case b
a DH NuH NuT f · ReDH

(a) — D 4.36 3.66 64

(b) 1 2a 3.61 2.98 57

2 8a
3 4.12 3.39 62.4

3 3a 4.79 3.96 68.8

4 16a
5 5.33 4.44 73.2

8 32a
9 6.49 5.6 82.8

(c) ∞ 4b 8.23 7.54 96

(d) – a√
3

3.11 2.47 53

(e) 0.9 1.893a 5.1 3.66 74.8

Case identifiers as in Fig. 12.17

12.6 Laminar Fully Developed Heat Transfer to Fluid
Flowing in an Annulus

Flow in an annulus is quite common in heat exchanger applications, such as in the
case of “tube in tube” heat exchanger.

In this case, the hot fluid may flow inside the inner tube of outer radius Ri while
the coolant flows in the annular region between the inner tube and an outer tube of
inner radius Ro as shown in Fig. 12.18. The outer tube is normally insulated on the
outside so that heat transfer takes place only across the inner tube wall.

12.6.1 Fully Developed Flow in an Annulus

The equation governing the problem is the same as Eq.12.34. However, the boundary
conditions are different and are given as

Inner boundary: r = Ri , uz = 0 Outer boundary: r = Ro, uz = 0 (12.122)

Fig. 12.18 Heat transfer in
an annulus
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Fig. 12.19 Fluid elements in an annulus for performing force and energy balances

The reader may derive the governing equation by making a force balance on a
differential element as shown inFig. 12.19c.Wemay integrate the governing equation
and apply the boundary conditions to get

uz(ζ) = − R2
0

4μ

dp

dz

⎡
⎢⎢⎣1 − ζ2 + 1 − a2

ln

(
1

a

) ln ζ

⎤
⎥⎥⎦ (12.123)

where ζ = r
R0

and a = Ri
R0
. The appearance of the logarithmic term is the main

difference between the flow in a circular tube and an annulus. Themaximum velocity
occurs at a location given by

duz

dζ
= 0 or −2ζ + 1 − a2

ln

(
1

a

) 1

ζ

Differentiating terms in square
bracket in Eq.12.123
with respect to ζ

= 0 or ζ =
√√√√√

1 − a2

2 ln

(
1

a

)

For example, when the radius ratio a = 0.5, the maximum velocity occurs at ζ =
0.73552 ≈ 0.736. Note that the inner boundary corresponds to ζ = 0.5 in this case.
Correspondingly the maximum velocity is given by

umax = − R2
0

4μ

dp

dz

⎡
⎢⎢⎣1 − 0.735522 + 1 − 0.52

ln

(
1

0.5

) ln 0.73552

⎤
⎥⎥⎦ = −0.12664

R2
0

4μ

dp

dz

The mean velocity may be obtained by using the usual definition by equating the
volume flow rates as
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U (R2
0 − R2

i ) = 2

R0∫
Ri

ruz(r)dr = − R2
0

4μ

dp

dz
R2
0

1∫
a

2ζ

⎡
⎢⎢⎣1 − ζ2 + 1 − a2

ln

(
1

a

) ln ζ

⎤
⎥⎥⎦ dζ

where we have used Eq.12.123 for the velocity. Performing the indicated integration,
after simplification, we get

U (1 − a2) = − R2
0

4μ

dp

dz

⎡
⎢⎢⎣12 − a4

2
− (1 − a2)2

2 ln

(
1

a

)
⎤
⎥⎥⎦ (12.124)

For the case with a = 0.5, we haveU = −0.08399 R2
0

4μ
dp
dz , and hence the ratio of mean

velocity to themaximumvelocity is equal to U
umax

= 0.08399
0.12664 = 0.66322.The important

thing to note is that the velocity profile may be represented in the non-dimensional
form as

uz

U
=

1 − ζ2 + 1 − a2

ln

(
1

a

) ln ζ

1

2
+ a2

2
− (1 − a2)

2 ln

(
1

a

)
(12.125)

An overall force balance may be made for the fluid contained in an element of length
�z of the annulus as shown in Fig. 12.19a. The net pressure force acting on the
element may be seen to be

Net Pressure Force = �p

�z
π(R2

0 − R2
i )�z (12.126)

This is in the negative z-direction. The net force due to viscous shear at the two
boundaries may be deduced as

[
Net viscous

force

]
=
[

Force at
outer boundary

]
−
[

Force at
inner boundary

]

or in terms of the derivatives of velocity as

Net Viscous Force = (2πRi�z)μ
duz

dr

∣∣∣∣
r=Ri

− (2πR0�z)μ
duz

dr

∣∣∣∣
r=R0

In terms of the non-dimensional velocity and radial coordinates, the above equation
may be recast as
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Net Viscous Force = (2πRi�z)μ
U

R0

d
(uz

U

)
dζ

∣∣∣∣∣∣∣
ζ=a

− (2πR0�z)μ
U

R0

d
(uz

U

)
dζ

∣∣∣∣∣∣∣
ζ=1

Note that the net viscous force is in the negative z-direction. The pressure gradient
term is negative as it should be. We may now use Eq.12.125 to obtain the derivatives
in the above equation as

d
(uz
U

)
dζ

∣∣∣∣∣∣∣
ζ=a

=

⎧⎪⎪⎨
⎪⎪⎩

−2a + 1 − a2

a ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

1

2

⎧⎪⎪⎨
⎪⎪⎩
1 + a2 − 1 − a2

ln

(
1

a

}
⎫⎪⎪⎬
⎪⎪⎭

;
d
(uz
U

)
dζ

∣∣∣∣∣∣∣
ζ=1

=

⎧⎪⎪⎨
⎪⎪⎩

−2 + 1 − a2

ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

1

2

⎧⎪⎪⎨
⎪⎪⎩
1 + a2 − 1 − a2

ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

(12.127)
Combining Eqs. 12.126 and 12.127, we may derive an expression for �p

�z that is the

same as �p
L where L is the length of the annulus in the fully developed region of the

flow. Again we introduce the familiar friction factor to represent the pressure drop
in terms of the dynamic pressure. The Reynolds number is represented in terms of
the hydraulic diameter DH = 2(R0 − Ri ) = 2R0(1 − a). The reader may supply the
intermediate steps to get the following expression:

f ReDH = 64(1 − a)2⎧⎪⎪⎨
⎪⎪⎩
1 + a2 − (1 − a2)

ln

(
1

a

)
⎫⎪⎪⎬
⎪⎪⎭

(12.128)

This is shown as a plot in Fig. 12.20 for various values of a. Note that the friction
factor Reynolds number product tends to 96 as a → 1. In this limit, the annulus
behaves as a parallel plate channel. As a → 0 the value tends to 64 that for a circular
tube.

12.6.2 Fully Developed Temperature in an Annulus

We consider now fully developed region with constant heat flux qw specified at
the inner boundary. Energy balance over a short length element of the annulus
(Fig. 12.19b) will indicate that the z derivative of the bulk fluid temperature follows
the relation
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Fig. 12.20 Variation of
f · Re with a for an annulus

dTB

dz
Tw − TB

= αNuH

U R2
0

a

(1 − a)2(1 + a)
(12.129)

where the Nusselt number is based on the hydraulic diameter and Tw is the inner
wall temperature. By performing energy balance over an elemental volume element
shown in Fig. 12.19d, it is possible to show that the non-dimensional temperature θ
is governed by the following equation.

1

ζ

d

dζ

(
ζ
dθ

dζ

)
= −NuH

a

(1 − a)2(1 + a)

uz

U
(12.130)

The boundary conditions are given by

θ = 0 at ζ = a; dθ

dζ
= 0 at ζ = 1 (12.131)

The velocity ratio is the fully developed value given by Eq.12.125. The governing
equation along with the boundary conditions may be integrated twice with respect
to ζ to get the following solution.

θ

K
= 1

4

[
1 − (1 − a2)

ln
(
1
a

)
]
ln

(
ζ

a

)
−
[
(ζ2 − a2)

4
− (ζ4 − a4)

16

+ (1 − a2)

4 ln
(
1
a

) {ζ2(ln ζ − 1) − a2(ln a − 1)
}]

(12.132)

where
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Fig. 12.21 Fully developed
velocity and temperature
profiles in an annulus

K = 2NuH × a

(1 − a)2(1 + a)
{
1 + a2 − (1−a2)

ln ( 1
a )

}
=g(a)

(12.133)

The Nusselt number is determined by requiring that the weighted mean value of θ
K

is 1
K , i.e.,

(
θ

K

)
= 1

K
=

1∫
a

θ
uz

U
ζdζ

1∫
a

uz

U
ζdζ

= f (a) (12.134)

The ratio of the integrals is written as f (a) to stress the point that it depends on
a. Note that K is also a function of a and contains the Nusselt number as a factor.
Hence the Nusselt number is obtained as

NuH = 1

f (a) · g(a)
(12.135)

As an example, we consider the specific case of an annulus with a = 0.5. The
velocity and temperature profiles, normalized suitably are shown in Fig. 12.21. The
friction factor is given by f = 95.25

ReDH
, and the Nusselt number turns out to be NuH =

6.18.
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12.7 Flow and Heat Transfer in Laminar Entry Region

Flow and heat transfer in the entry region, i.e., z < Ldev; z < L ′
dev is more compli-

cated to handle since the velocity and temperature fields are functions of axial as
well as radial coordinates, in the case of tube flow. In the case of non-circular ducts,
the situation is even more complicated because of the dependence of velocity and
temperature on three space dimensions. The problem may occur in the following
variants:

• Flow is fully developed but temperature is developing—the tube is provided with
an entry length over which there is no heat transfer, the flow is allowed to develop
fully.

• Flow and temperature are both developing simultaneously—flow development as
well as heat transfer start at the entry to the tube.

The former case is handled more easily than the latter. The entry region heat transfer
problem is referred to as the Graetz problem.7 Contrary to the constant Nusselt
number observed in the fully developed region, theNusselt number varieswith z in the
developing region. The governing equations are solved, under suitable assumptions,
by separation of variables, the solution being expressed in terms of eigenfunctions
and eigenvalues.

12.7.1 Heat Transfer in Entry Region of Fully Developed
Tube Flow

As an example, we consider the casewhere the flow is fully developed but the temper-
ature starts developing from z = 0. The governing equation is written down using the
energy equation given in AppendixH as Eq.H.33. The flow and temperature fields
are steady, and hence, the time derivative does not occur. The velocity component uz

alone is non-zero, and hence, the convective term is restricted to that involving the
axial derivative of temperature. Thus, we have

uz
∂T

∂z
= α

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2

]
(12.136)

Introduce now the following non-dimensional variables:

Non-dimensional axial co-ordinate: Z = z
R·ReD Pr

Non-dimensional radial co-ordinate: ζ = r
R

Non-dimensional velocity: u+ = uz
U = 2(1 − ζ2)

Non-dimensional temperature: θ = Tw−T
Tw−T0

7Named after Leo Graetz, 1856–1941, German physicist
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where T0 is the uniform temperature of the fluid at z = 0. It is customary to refer to
1
Z as the Graetz number Gz. Equation12.136 is then recast as

(1 − ζ2)
∂θ

∂Z
= 1

ζ

∂

∂ζ

(
ζ
∂θ

∂ζ

)
+ 1

(ReDPr)2
∂2θ

∂Z2
(12.137)

The second term on the right-hand side is small even for moderate values of ReDPr
and hence may be neglected in comparison with the axial derivatives. Hence, the
governing equation is simplified as

1

ζ

∂

∂ζ

(
ζ
∂θ

∂ζ

)
= (1 − ζ2)

∂θ

∂Z
(12.138)

The following initial and boundary conditions may be specified:

Entry: θ(ζ, 0) = 1 for 0 ≤ ζ ≤ 1

Boundary condition: θ(1, Z) = 0

Boundary condition: θ(0, Z) is finite (12.139)

Equation12.138 subject to conditions Eq.12.139 may be solved by using the separa-
tion of variables technique. The solution is sought in the form θ(ζ, Z) = f (ζ) · g(Z).
The governing equation then may be written as two equations given by

d2 f

dζ2
+ 1

ζ

d f

dζ
+ λ2(1 − ζ2) f = 0; dg

dZ
+ λ2g = 0 (12.140)

where −λ2 is the separation constant. It is clear that the solution shows an exponen-
tially decreasingdependenceon Z . Thedependenceon ζ is through a set of orthogonal
functions over the interval 0, 1. Details of the solution including the eigenvalues λ
are available from the literature.8 We present here graphically the variation of Nusselt
number in Fig. 12.22, for both the constant wall temperature and constant wall heat
flux cases. Asymptotically these tend, respectively, to 3.66 and 4.36.

We notice that the Nusselt number is theoretically infinite at z = 0 and decreases
rapidly as z increases. It is also seen from the figure that the fully developed values
are obtained for 1

Gz = Z ≈ 0.1 or for z
R ≈ 0.1ReDPr . It is seen that the result for

the constant wall temperature case is always below that for the constant wall heat
flux case.

8J.R. Sellars, M. Tribus and J.S. Klein, Trans. ASME, Vol.78, pp. 441–448,1956.
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Fig. 12.22 Nusselt number
variation in entry region of a
tube

12.7.2 Mean Nusselt Number and Useful Correlations

By definition, the heat transfer coefficient is given by h(z) = qw

Tw−TB
. In general,

qw, TB , and Tw are all functions of z, and hence h is a function of z. The local
Nusselt number at any z is defined as NuD(z) = h(z)z

k . Hence, the Nusselt number
is simply a scaled local heat transfer coefficient. Consider, as an example, the case
of Tw = constant. In this case, in the developing region, the variation of qw with z
is different from the variation of Tw − TB with z. Hence, h and NuD vary with z.
As z → ∞, qw and Tw − TB vary alike with z and hence the Nusselt number tends
to a constant value (3.66 in this case). If the tube is of length L , we may define an
average Nusselt number as

NuD(L) = 1

L

L∫
0

NuD(z)dz

Using the non-dimensional z coordinate, the above may be recast as

NuD(L∗) = 1

L∗

L∗∫
0

NuD(Z)dZ (12.141)

where L∗ = L
R

1
ReD Pr

= 2L
D·ReD Pr . The mean Nusselt number variation with tube

length is shown in Fig. 12.23 for both the constant wall temperature and the con-
stant wall heat flux cases.

For the case of constant wall temperature, Hausen9 has given a formula for NuD

as a function of L∗.

9H. Hausen, Z. VDI Beih. Verfahrenstech., Vol. 4, pp. 91–98, 1943.
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Fig. 12.23 Mean Nusselt
number for short tubes

NuD = 3.66 +
0.1336
L∗

1 + 0.0635

(L∗)
2
3

(12.142)

This formula is for a fluid whose properties remain constant and hence is applica-
ble to problems in which the variation of fluid temperature is not large. The above
is valid for the case where the velocity profile has already developed and only the
temperature profile is developing.

For the combined entry length case, taking into account the variation of properties
with temperature, Sieder and Tate10 give the following relation.

NuD = 2.34(L∗)−
1
3

(
μ

μw

) 1
4

(12.143)

This is valid under the following conditions:

• All properties are evaluated at the mean bulk fluid temperature except μw which
is evaluated at the wall temperature.

• 0.48 ≤ Pr ≤ 16, 700; 0.0044 <
μ
μw

< 9.75.

10E.N. Seider and G.E. Tate, Ind. Eng. Chem., Vol.28, pp. 1429–1435, 1936.
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Example 12.7

Water at a mean temperature of 10 ◦C flows in a 3m long tube of 12mm diame-
ter. The Reynolds number based on the tube diameter is 500. The wall of the tube is
maintained at a constant temperature of 30 ◦C. What is the mean value of the heat
transfer coefficient? Use the correlation due to Hausen, if appropriate. Also, calculate
the pressure drop over the length of the tube.

Solution:
The water properties needed are taken from tables of properties of saturated water
at 10 ◦C.

Density of water: ρ = 999.2 kg/m3

Dynamic viscosity of water: μ = 0.00131 kg/m s
Thermal conductivity of water: k = 0.585 W/m◦C

Prandtl number of water: Pr = 9.4

The geometrical parameters specified in the problem are

Tube length: L = 3 m; Tube diameter: D = 12 mm or 0.012 m

TheReynolds number for the flow is given to be ReD = 500. The development length
for temperature (assuming that the flow is fully developed at z = 0) is estimated as

L ′
dev = (0.05ReD Pr)D = (0.05 × 500 × 9.4) × 0.012 = 2.82 m

The development length is comparable to the tube length. Hence, we make use of
the correlation due to Hausen. The tube length parameter L∗ is calculated as

L∗ = 2
L

D

1

ReDPr
= 2 × 3

0.012
× 1

500 × 9.4
= 0.1064

Hausen correlation Eq.12.142 gives

NuD = 3.66 +
0.1336
0.1064

1 + 0.0635

0.1064
2
3

= 4.64

The mean value of the heat transfer coefficient is then given by

h̄ = NuDk

D
= 4.64 × 0.585

0.012
= 226.2 W/m2 ◦C

Thus, it would be unwise to use the fully developed value for the heat transfer
coefficient!
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The pressure drop may be calculated assuming that the flow is fully developed
across tube length. The friction factor is given by

f = 64

ReD
= 64

500
= 0.128

The mean water velocity across the tube section is calculated from the Reynolds
number as

U = μReD
ρD

= 0.00131 × 500

999.2 × 0.012
= 0.055 m/s

The pressure drop over the length of the tube is then given by

�p = f LρU 2

2D
= 0.128 × 3 × 999.2 × 0.0552

2 × 0.012
= 48.4 Pa

Concluding Remarks

Study of convection heat transfer has been initiated in this chapter. Fundamental
ideas regarding laminar internal flow and heat transfer are covered here. Useful
results are presented for fully developed and developing flow and heat transfer.

12.8 Exercises

Ex 12.1: In the case of tube flow, the following 10 parameters have a role to
play:

Fluid density ρ, fluid specific heat Cp, fluid viscosity μ, fluid
thermal conductivity k, mean velocity of the fluid U , the mean
temperature of the fluid Tm , thewall temperature Tw, the total heat
transfer to the fluid over the tube length Qw, the tube diameter
D, and the tube length L .

By defining a suitable mean heat transfer coefficient show that the
number of parameters may be reduced to 8. Indicate what these
parameters are. Make use of mass [M], length [L], time [T ], and
temperature [θ] as the four primary dimensions and perform a dimen-
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sional analysis of the problem. Obtain the relevant non-dimensional
parameters that govern the problem.

Ex 12.2: The velocity distribution in laminar flow between two parallel planes
is expressed as u(y) = ay(s − y) where a is a constant, s is the
distance between the planes, and y is the coordinatemeasured normal
to the plane with y = 0 representing the bottom plane. Determine
the ratio of average velocity to the maximum velocity. Based on the
above velocity profile determine an expression for the friction factor.

Ex 12.3: (a) In a laminar pipe flow that is fully developed the axial velocity
distribution is parabolic. What is the rate at which momentum is
transferred across the tube at any section? Compare this with the
momentum carried across the tube by the fluid moving at the mean
velocity.
(b) The temperature profile in the above case varies linearly from
the tube wall to a maximum value at r = 0.5R (where R is the tube
radius) and then remains constant. What is the energy flux across the
tube, in each case?

Ex 12.4: A certain oil has a specific gravity of 0.862. It flows at a mass flow
rate of 0.2kg/s in a tube 1.2cm inner diameter. At a temperature of
370K the pressure drop in a length of 3m is 31kPa. Calculate: (a) the
dynamic viscosity and (b) the kinematic viscosity of the oil. Justify
your answer.

Ex 12.5: Consider laminar fully developed flow between two infinite parallel
planes with a gap of 2b. Obtain the velocity profile starting from first
principles. What is the friction factor? Does it agree with the value
indicated in Table12.8?
Obtain the Nusselt number for fully developed conditions, in the
same case, assuming that the walls are subject to a uniform heat flux.
Does it agree with the value indicated in Table12.8?

Hint: Energy balance over an elemental length of the fluid will
indicate that the wall temperature, local fluid temperature, and
the bulk mean temperature of the fluid all vary at a constant rate.
Use this information to arrive at the governing equation.

Ex 12.6: (a) Air at 30 ◦C is flowing in a circular tube of inner diameter 25mm.
It is known that the flow may be considered laminar if ReD < 2000.
What is the largest mass flow that the tube can support in laminar
flow?
(b) If the air temperature at entry to the tube is 30 ◦C and the wall of
the tube is maintained at a constant temperature of 90 ◦C what is the
average heat transfer coefficient, assuming the tube to be very long?
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(c) What is the outlet air temperature if the tube is 15m long?
(d) What is the pressure drop between the entry and the exit?

Ex 12.7: A liquid metal (has a very low Prandtl number and hence ν � α)
may be assumed to flow with a uniform velocity across a tube of
radius R since the velocity field undergoes very little change. This
model for liquid metal flow is referred to as a plug flow model. For
such a flow, with a specified constant wall heat flux, determine the
Nusselt number in the thermally fully developed condition. Compare
this with the value that is obtained for the case of a fluid using the
parabolic velocity distribution.

Ex 12.8: Table12.8 presents the laminar pressure drop and heat transfer results
for fully developed conditions in terms of the hydraulic diameter as
the appropriate characteristic length scale, for several cases. In each
case verify the expression for the hydraulic diameter given in the
table.

Ex 12.9: A duct is of rectangular cross section of height 2b = 0.04m and
width 2a = 0.02m. Air flows through this duct with a mean velocity
of 1.5m/s. The air enters at a bulk temperature of 30 ◦C and leaves
the duct at 70 ◦C. Determine the length of the duct required for this.
The wall of the duct is maintained at a constant temperature of 90 ◦C.

Ex 12.10: Table12.8 indicates that NuH > NuT . Justify this from physical
considerations.

Ex 12.11: A fluid flows with an average velocity of 1m/s in a circular tube of
0.05mdiameter. If the samefluidflows in a square duct of side 0.05m
and has the same Reynolds number, what is the average velocity of
the fluid in the square duct? Compare the volumeflow rates in the two
cases?Which of the two cases will involve a bigger pressure drop per
unit length, assuming that the flow is laminar and fully developed,
in both cases?

Ex 12.12: Air at atmospheric pressure and 30 ◦C flows at 3m/s through a 1cm
ID pipe. An electrical resistance heater surrounds 20cm length of
tube toward its discharge end and supplies a constant heat flux to
raise the temperature of air to 90 ◦C. What is the power input? What
is the mean value of the heat transfer coefficient? Based on the above
determine themean temperature difference between the tubewall and
the fluid.

Ex 12.13: Consider the fully developed temperature problemwith wall temper-
ature held fixed at a temperature different from the initial uniform
temperature of the fluid. Assume that the velocity profile is given
by the fully developed parabolic distribution. The resulting equa-
tion governing the non-dimensional temperature variation with r has
been derived in the text. Solve this equation numerically using the
finite difference method. Use ten uniformly spaced nodes between
the center of the tube and the periphery of the tube.Derive theNusselt
number from the solution.
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Ex 12.14: A copper tube of inner diameter 50mm and outer diameter 55mm
is 10m long. Hot water enters it at an average velocity of 0.9m/s
and a uniform temperature of 60 ◦C and loses heat to an ambient
surrounding the pipe at a temperature of 15 ◦C. The heat transfer
coefficient between the tube outer surface and the ambient may be
taken as constant equal to 7.5W/m2 ◦C.What is themean temperature
of the water as it exits the tube?
A60mmthick layer of insulationof thermal conductivity 0.6W/m ◦C
is installed on the outside of the tube. The heat transfer coefficient to
the ambient may be assumed to remain the same. What is the water
exit temperature in this case?

Ex 12.15: A fluid flows at constant temperature through an annulus of inner
diameter Di and outer diameter Do. Assume that the flow is laminar
and fully developed. Formulate the governing differential equation
for the problem. Specify appropriate boundary conditions. Obtain
the velocity distribution in the annulus. Where does the maximum
velocity occur? What is the magnitude of the maximum velocity in
terms of the mean velocity?
From the solution obtain an expression for the pressure gradient in
the annulus. Express the result in terms of a suitably defined friction
factor.

Ex 12.16: Consider the fully developed flow in the annulus as in Exercise 11.17.
Assume that the flow is fully developed, the inner surface of the annu-
lus is maintained at a constant temperature different from the fluid
entry temperature and the outer surface of the annulus is adiabatic.
Formulate the governing energy equation for the problem in the non-
dimensional form and specify the appropriate boundary conditions.
Solve the equation using the finite difference method.

Ex 12.17: A fluid forced through its interstices cools a porousmedium. The dif-
ferential equations governing the temperature of the porous medium,
Tm , and the temperature of the coolant, Tc are

km
d2Tm
dx2

= hi (Tm − Tc); GcCpc
dTc
dx

= hi (Tm − Tc)

In the above hi is an internal volumetric heat transfer coefficient, Gc

is themass flow of coolant per unit area,Cpc is the specific heat of the
coolant, and km is the thermal conductivity of the porous medium.
The coolant travels through the porous medium of thickness L . At
x = 0 the porous medium is at Tm0 and the coolant enters at Tc0.
Measurement shows that the coolant leaves at a temperature equal to
TcL . Obtain an expression for the temperature of the coolant at any
location x inside the porous medium.



Chapter 13
Laminar Convection in External Flow

Heat transfer from an object to a fluid flowing past it—external flow and heat
transfer—forms the topic of this chapter. The flow and heat transfer phenomena

are described by the use of boundary layer theory. Flows with and without externally
imposed axial pressure gradient are dealt with. Both exact and approximate methods are
described in detail.

13.1 Introduction

Flow over bodies and heat transfer therefrom are important in many engineering
applications such as heat exchangers, walls of buildings, external surfaces of ducts
and so on. Heat exchange may take place across a flat surface or across curved
surfaces such as tubes—either a single tube or a bundle of tubes such as in a heat
exchanger. For example, a tube in cross flow is idealized as a cylinder, the flow taking
place normal to the axis. Heat exchange may also be between a fluid flowing past a
bank of tubes that carry a second fluid inside the tubes. Figure13.1a–c depict these
situations.

In Fig. 13.1a, a fluid stream at a uniform velocity ofU in a direction parallel to the
x-axis (and hence parallel to the surface) and a uniform temperature of T∞ flows past
a flat plate held at a fixed temperature Tw that is different from T∞. Heat transfer will
take place between the wall and the fluid. As the fluid flows past the plate, it picks
up heat from the plate and carries it along in the x-direction. In contrast to the case
of internal flow where we could expect fully developed flow and temperature fields,
in the case of external flow the flow and temperature fields continue to develop in
the x- direction. In view of this, the heat transfer coefficient or the Nusselt number
continues to change with x . Also, as we shall see later the flowmay become turbulent
beyond some x value.
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Fig. 13.1 Schematic representation of typical external flows

Fig. 13.2 Boundary layer flow past a surface

Flow past a cylinder shown schematically in Fig. 13.1b is evenmore complex. The
flow may separate from the boundary, inducing a recirculating zone downstream,
near the backward portion of the cylinder. The heat transfer coefficient and hence
the Nusselt number varies with location measured by the angle downstream of the
stagnation point that occurs at the forward part of the cylinder.

Flow over a tube bank shown schematically in Fig. 13.1c shows more interesting
features. The flow past each of the cylinder that makes a row in the tube bundle
has a wake region where there is considerable recirculation. If the tube spacing in
a row is comparable to the recirculation zone behind a tube in the row there will
be considerable interaction between the flows past adjacent tubes. The heat transfer
coefficient will therefore depend on the tube pitch in a row. It will also depend on
the distance between successive rows, because of interaction of the wake flows in
a row and the tubes in the succeeding row. Further complications are due to the
change of flow regime from laminar to turbulent, the transition being dependent on
the Reynolds number. Flow past a flat plate is analyzed more easily than the other
two cases. Hence, we shall take recourse to theoretical and experimental studies to
complement each other.

13.2 Laminar Boundary Layer Flow Past a Surface

We consider flow of a viscous heat-conducting fluid adjacent to a surface shown
schematically in Fig. 13.2.

The surface may be at a uniform temperature Tw different from T∞. The flow
shows non-uniform velocity and temperature fields in a small layer near the surface
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as shown in the figure. This region of non-uniform velocity and temperature fields
is known as the boundary layer.1 The changes in the velocity and temperature of the
fluid are brought out, respectively, by fluid viscosity and fluid thermal conductivity.
The flow upstream of the surface is characterized by a velocity U∞ and uniform
temperature T∞. The velocity far away from the surface (for any x and y >> δ(x))
may be a function of x and specified as U (x). Correspondingly the temperature is
specified by the free stream value T∞. Since the boundary layer is very thin, the
curvature of the surface does not play a significant role and the boundary layer flow
is described by writing the governing equations using x defined as the coordinate
along the surface and y defined as the coordinate normal to the surface.

In the presence of viscosity and thermal conductivity, fluid velocity and tempera-
ture at y = 0 are the same for the fluid as well as the wall. Hence a boundary layer, or
a region of nonuniform velocity and temperature, forms adjacent to the plate surface,
as indicated schematically in Fig. 13.2. Since viscosity and thermal conductivity of
fluids encountered in engineering applications are small (see the values for air and
water, given in Chap.12), the effect of these is limited to regions of large gradients
(normal to the surface) close to thewall—and hence large shear stress and conduction
flux—at y = 0 and all x .

The boundary layer approximation assumes that the thickness of the boundary
layer δ(x) is very small compared to x (of course, this will be acceptable some
distance away from x = 0). The boundary layer is laminar for x < xc such that
Rexc < 5 × 105. Beyond x = xc, the boundary layer undergoes a transition to tur-
bulent flow. The turbulent part of the flow will be considered later on. Justification
for the boundary layer model in the laminar region of the flow will be given below,
based on an order of magnitude analysis.

13.2.1 Order of Magnitude Analysis and the Boundary Layer
Approximation

NS Equations in Two Dimensions

We consider the laminar flow of an incompressible, viscous, heat conducting fluid in
two dimensions, with constant thermo-physical properties. The velocity components
along the x- and y- directions are taken, respectively, as u and v. The governing equa-
tions are the Navier–Stokes equations given in AppendixH represented in Cartesian
coordinates by Eqs.H.1, H.6 and H.7. The equations, however, reduce to the follow-
ing equations, by putting w = 0 and by setting ∂

∂t ≡ 0.
Continuity equation:

∂u

∂x
+ ∂v

∂y
= 0 (13.1)

1Boundary Layer Theory was proposed by L.Prandtl (1904). English translation of German original
available as NACA-TM-452.
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x momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂ p

∂x
+ ν

[
∂2u

∂x2
+ ∂2u

∂y2

]
(13.2)

y momemntum equation:

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂ p

∂y
+ ν

[
∂2v

∂x2
+ ∂2v

∂y2

]
(13.3)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

[
∂2T

∂x2
+ ∂2T

∂y2

]
(13.4)

Identification of the Scales in the Problem

An order of magnitude analysis is possible once we identify the scales for
various quantities that appear in the governing equations given above.

• In case the surface is of finite length L , the surface length becomes a natural
length scale in the problem, for representing x .

• Since our interest is to understand the flow and temperature variationswithin
the boundary layer, the natural length scale along the y-direction is δ(L),
the thickness of the boundary layer at L . In Fig. 13.2, the dashed curve
represents the extent of the boundary layer normal to the surface at any x .

• The appropriate scale for u, the velocity along x is the free stream velocity
U∞.

• The temperature of the incoming fluid, T∞ may be used as suitable refer-
ence temperature. The temperature difference Tw − T∞ may be used as a
representative temperature difference.

• Since constant property assumption has been made, all the thermo-physical
properties may be taken as those in the free stream, i.e., the incoming fluid
or fluid far away from the surface. Thus, the required properties are ν =
ν(T∞) = ν∞, α = α(T∞) = α∞.

• The free stream pressure p∞ may be taken as ameasure of the fluid pressure.

The only scale that has not been identified is that with reference to the normal (in a
direction normal to the plate surface) velocity v. The appropriate scale is obtained
by a bit of analysis.
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For this purpose, we shall look at the continuity equation. The order of mag-
nitude of the two terms in Eq.13.1 are given by

∂u

∂x
∼

(
U∞
L

)
,

∂u

∂x
∼

(
V

δ(L)

)
(13.5)

where V is as yet unknown scale for v. The continuity equation requires that
the orders of magnitude of the two terms be the same. Otherwise the flow will
degenerate to a simple flow such as ideal parallel flow. Thus, we require that

(
U∞
L

)
=

(
V

δ(L)

)
or V ∼ U∞δ(L)

L
(13.6)

Order of Magnitude Analysis
The order of magnitude analysis consists in determining the relative magnitudes of
all the terms in all the equations that govern the problem and retaining terms of equal
importance while neglecting terms that are of lower importance. The procedure will
become clear when we look at, for example, the terms in the x momentum equation.

1. Inertia terms: u ∂u
∂x ∼ U∞ U∞

L = U 2∞
L ; v ∂u

∂y ∼ U∞δ(L)

L
U∞
δ(L)

= U 2∞
L . Thus both

inertia terms are of equal order.
2. Pressure gradient term: 1

ρ
∂ p
∂x ∼ 1

ρ∞
p∞
L .

3. Viscous terms: ν∞ ∂2u
∂x2 ∼ ν∞ U∞

L2 ; ν∞ ∂2u
∂y2 ∼ ν∞ U∞

δ(L)2
. The second viscous

term due to velocity variation normal to the surface is of larger order
of magnitude compared to the viscous term due to variation of velocity
parallel to the plate surface.

We use the magnitude of the inertia terms to normalize the other terms to write
the order of magnitude of the terms in the x momentum equation as

U 2∞
L

: U
2∞
L

: 1

ρ∞
p∞
L

: ν∞
U∞
L2

: ν∞
U∞

δ(L)2

1 : 1 : p∞
ρ∞U 2∞

: ν∞
U∞L

: ν∞
U∞L

[
L

δ(L)

]2

or
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1 : 1 : Eu : 1

ReL
: 1

ReL

[
L

δ(L)

]2

(13.7)

where we have replaced the quantity p∞
ρ∞U 2∞

by the familiar non-dimensional param-

eter, the Euler number and U∞L
ν∞ by the Reynolds number ReL based on plate length.

We recognize that the order of magnitude analysis is to be made assuming that the
Reynolds number is very large, but smaller than the critical value alluded to earlier.
Thus, when ReL >> 1, the viscous term due to the velocity change along x is small
and may be neglected. The other viscous term—due to velocity variation with y—
cannot be neglected since the viscous effects would then be completely absent, and
it will not be possible to satisfy the no slip condition at the surface. Hence, we retain
this term as being of order unity by requiring that

1

ReL

[
L

δ(L)

]2

∼ 1 or
δ(L)

L
∼ Re

− 1
2

L (13.8)

The x momentum equation may hence be approximated by retaining the dominant
terms as

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ∞
∂ p

∂x
+ ν∞

∂2u

∂y2
(13.9)

An order of magnitude analysis of the y momentum equationmay bemade following
similar steps as in the case of the x momentum equation. The resulting order of
magnitudes are

1 : 1 : p∞
ρ∞U 2

( L

δ(L)

)2 : ν∞
U∞L

: ν∞
U∞L

[ L

δ(L)

]2

or 1 : 1 : Eu · ReL : 1

ReL
: 1 (13.10)

where we have used the order of magnitude of δ(L) determined earlier by order of
magnitude analysis of the x momentum equation. We see that the pressure gradient
term is the dominant term in this equation, and hence, the y momentum equation
simplifies to

− 1

ρ∞
∂ p

∂y
= 0 (13.11)
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Thus, the fluid pressure is a function of x alone, and hence the pressure gradient
term in the x momentum Eq.13.9 may be replaced by dp

dx . More importantly, the
pressure does not vary within the boundary layer and hence the pressure at any x is
determined by the flow outside the boundary layer—in other words that determined
by the shape of the body.

A similar order of magnitude analysis is made for the energy equation also. Such
an analysis (the reader may do this) indicates that the diffusion term along x may be
neglected as compared to the other terms in the energy equation. Hence, the energy
equation may be written down as

u
∂T

∂x
+ v

∂T

∂y
= α∞

∂2T

∂y2
(13.12)

Note that the order of magnitude analysis for the energy equation may use a ther-
mal boundary layer thickness δT (L) instead of the hydrodynamic boundary layer
thickness δ(L). The thermal boundary layer thickness is also assumed to be small
compared to the plate length, noting that it depends on thermal diffusivity instead of
kinematic viscosity. Later this aspect will receive more attention.

As derived above the boundary layer equations (Eqs. 13.1, 13.9 and 13.12) are
validwithin the boundary layer that is of thickness of order of δ(L). For y > δ(L), the
variations of velocity and temperature are governed by inviscid, non-heat conducting
flow obtained by taking ν = 0 and α = 0 in the NS equations. Thus, the flow outside
the boundary layer corresponds to that of an ideal fluid. Momentum equations reduce
to Euler equations. Outside the boundary layer we may ignore the viscous terms
altogether, and Eq.13.9 is written as

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ∞
dp

dx
(13.13)

The flow outside the boundary layer is governed by u ≈ U and v ≈ 0. Hence, the
above equation shows that

U
dU

dx
= − 1

ρ∞
dp

dx
(13.14)

The boundary layer momentum equation may thus be recast as

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν∞

∂2u

∂y2
(13.15)
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Fig. 13.3 Boundary layer
flow past a flat plate

13.2.2 Laminar Boundary Layer over a Flat Plate: Velocity
Boundary Layer

Flow parallel to a flat plate is shown schematically in Fig. 13.3. The flow velocity
outside the boundary layer remains the same and equal to U∞ for all x . Hence, the
pressure remains the same throughout the flowfield. Equation13.15 further simplifies
as

u
∂u

∂x
+ v

∂u

∂y
= ν∞

∂2u

∂y2
(13.16)

Boundary Conditions

As far as the velocity boundary conditions are concerned, we should have

u = v = 0, y = 0, for 0 < x < L ; u = U∞ as y → ∞ for 0 < x < L
(13.17)

Boundary conditions at the wall assure that the velocity components are continuous
at the interface between the fluid and the solid. Far away outside the boundary layer
the velocity becomes uniform and equal to the free stream velocity. As far as the
temperature boundary conditions are concerned, we should have

T = Tw y = 0, for 0 < x < L ; T = T∞ as y → ∞ for 0 < x < L (13.18)

Boundary condition at the wall assures that temperature is continuous at the interface
between the fluid and the solid. Far away outside the boundary layer, the temperature
becomes uniform and equal to the free stream temperature.



13.2 Laminar Boundary Layer Flow Past a Surface 619

Wall Shear and Surface Heat Flux

The velocity components vanish at the plate surface. The shear stress at the wall may
be obtained by

τw(x) = τw,x

Alternately

= μ∞
∂u

∂y

∣∣∣∣
y=0

(13.19)

The heat flux at the wall is given by the conduction flux at the wall since the fluid is
at rest there. Thus, we have

qw(x) = qw,x

Alternately

= −k∞
∂T

∂y

∣∣∣∣
y=0

(13.20)

We may use the wall-free stream temperature difference as the driving potential to
define the heat transfer coefficient as

h(x) = hx

Alternately

= qw,x

Tw − T∞
= −

k∞
∂T

∂y

∣∣∣∣
y=0

[Tw − T∞] (13.21)

The local Nusselt number Nu(x) is based on the current location x as the character-
istic length. It is hence given by

Nu(x) = Nux

Alternately

= −
∂T

∂y

∣∣∣∣
y=0

[Tw − T∞] x (13.22)

Solution to the Flow Problem-Similarity Analysis

Boundary layer flow past a flat platemay easily be dealt with by the similaritymethod
that is familiar to us (see Chap.5, Sect. 5.2.1). Since the flow is two-dimensional, it
is possible to introduce a stream function ψ(x, y) such that

u(x, y) = ∂ψ(x, y)

∂y
; v(x, y) = −∂ψ(x, y)

∂x
(13.23)
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With this, the equation of continuity is identically satisfied. The advantage of intro-
ducing the stream function is that we will be dealing with a scalar function instead
of the two components of the velocity vector. Also, we need to consider only the
momentum Eq.13.16 now. We define a suitable composite variable such that the
stream function is governed by an ordinary differential equation. We shall consider
the following similarity variable to continue with the analysis:

η = y√
2ν∞x

U∞

(13.24)

The stream function is introduced as a product function given by

ψ(x, y) = ψ(x, η) = √
2ν∞xU∞ f (η) (13.25)

where f (η) is a function of the single composite variable η. The terms appearing in
the momentum boundary layer equation are then recast using the following:

∂

∂x
= ∂

∂x

∣∣∣∣
y

= ∂η

∂x

∣∣∣∣
y

d

dη
= y√

2ν∞
U∞

(
− x− 3

2

2

)
d

dη
= − η

2x

d

dη
(13.26)

∂

∂y
= ∂

∂y

∣∣∣∣
x

= ∂η

∂y

∣∣∣∣
x

d

dη
=

√
U∞
2ν∞x

d

dη
(13.27)

The above follow from the definitions of partial differentials and the chain rule of
partial differentiation. The reader may refer back to Chap.5 for any clarification.
The reader will also recognize that the present similarity variable is the same as that
used in the conduction problem with the variable t being replaced by the time like
variable x

U∞ . We use Expressions 13.25–13.27 to rewrite the terms in the momentum
equation as follows.

Velocity component u:

u = ∂ψ

∂y
= ∂

∂y

[√
2ν∞xU∞ f (η)

]
= √

2ν∞xU∞

√
U∞
2ν∞x

d f

dη
= U∞

d f

dη
(13.28)

Velocity component v:

v = −∂ψ

∂x
= − ∂

∂x

[√
2ν∞xU∞ f (η)

]
= − f (η)

√
2ν∞U∞

x− 1
2

2

−√
2ν∞xU∞

(−η

2x

)
d f

dη
=

√
ν∞U∞
2x

[
η
d f

dη
− f

] (13.29)
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Various derivatives of u:

(a)
∂u

∂x
= −ηU∞

2x

d2 f

dη2
; (b)

∂u

∂y
= U∞

√
U∞
2ν∞x

d2 f

dη2
;

(c)
∂2u

∂y2
= U∞

√
U∞
2ν∞x

√
U∞
2ν∞x

d3 f

dη3
= U 2∞

2ν∞x

d3 f

dη3

(13.30)

We now introduce all these in Eq.13.16 to get

U∞
d f

dη

[
−ηU∞

2x

d2 f

dη2

]
+

√
ν∞U∞
2x

[
η
d f

dη
− f

]
U∞

√
U∞
2ν∞x

d2 f

dη2
= ν∞U 2∞

2ν∞x

d3 f

dη3

On simplification, this equation reduces to

d3 f

dη3
+ f

d2 f

dη2
= 0 (13.31)

This is a third-order non-linear ordinary differential equation known as the Blasius
equation.2 We shall look now at the boundary conditions.

1. y = 0 for a fixed x corresponds to η = 0. The wall boundary conditions may then
be written, using Eqs. 13.28 and 13.29, respectively, as

d f

dη
= 0

i.e., u=0

; and f = 0
Hence v=0

at η = 0 (13.32)

2. y → ∞ for a fixed x corresponds to η → ∞. The condition u → U∞ translates
to the condition

d f

dη
→ 1 as η → ∞ (13.33)

We have thus succeeded in replacing the original partial differential equation along
with its boundary conditions by ordinary differential Eq.13.31 alongwith appropriate
boundary conditions given by Eqs. 13.32 and 13.33. The Blasius equation cannot be
solved by elementary methods. Numerical solution is obtained by using the Runge–
Kutta method to arrive at the solution. Since the Runge–Kutta method is an initial
value solver, the two point boundary value problem needs to be converted to an initial
value problem.

2H. Blasius (1908), English translation of original German available as NACA-TM-1256.
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One way of doing this is as follows:

• The domain of η is semi-infinite. Computationally η → ∞ may be inter-
preted as some large value of η = η∞. The boundary condition at η → ∞
is, in fact, applied at different assumed values of η∞, and the final choice is
that value that does not affect the results.

• Since the Runge–Kutta method is an initial value problem solver, we need
to solve the Blasius equation with all three initial values, i.e., f, d f

dη
and d2 f

dη2

specified at η = 0.
• Since d2 f

dη2 at η = 0 is not known, we have to use a method such as the Secant
method to arrive at the correct initial value of the second derivative, by an
iterative procedure.

An alternate method is possible using the following property of the Blasius equa-
tion. Consider the following transformation

f (η) = cF(Y ); Y = cη (13.34)

where c is a constant to be determined. We note that, under this transformation

d

dη
= c

d

dY

Hence, we have the following:

d3 f

dη3
= c4

d3F

dY 3
and

d2 f

dη2
= c3

d2F

dY 2

The Blasius equation is hence transformed to

d3F

dY 3
+ F

d2F

dY 2
= 0 (13.35)

It is of the same form as the original Blasius equation. The boundary condition at
the surface of the plate becomes

F = dF

dY
= 0 at Y = 0

The boundary condition far away from the plate surface becomes

dF

dY
= 1

c2
as Y → ∞
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The second derivative of the Blasius function at η = 0 becomes

d2 f

dη2

∣∣∣∣
η=0

= c3
d2F

dY 2

∣∣∣∣
Y=0

• Details regarding solution to the Blasius equation:
• The important point to note is that we may choose arbitrarily a value for d2F

dY 2

at Y = 0, say d2F
dY 2 = 1.

• Equation13.35 is solved with the initial conditions F = dF
dY = 0 and d2F

dY 2 =
1 at Y = 0 using fourth-order Runge–Kutta method. A fairly large value
such as Y = 6 is chosen to represent Y → ∞. A couple of trials will give
the proper value.

• We choose a fairly small step size such as �Y = 0.05. Calculation indi-
cates that the first derivative of F tends to 1.65519 at Y = 6. By the above
argument, this value represents 1

c2 . We require that the the first derivative d f
dη

be unity. Thus, the value of c is obtained as c = 1√
1.65519

= 0.777277. At
once we see that the initial value for the second derivative that is required

is d2 f
dη2

∣∣∣
η=0

= c3 d
2F

dY 2

∣∣∣
Y=0

= c3 = 0.7772773 = 0.4696.

• The results shown in Table13.1 on p. 624 were generated by treating the
Blasius problem as an initial value problem, taking the second derivative at
η = 0 to be known and given as d2 f

dη2 = 0.4696.

Noting that d f
dη

= u
U∞ , the results from the table may also be plotted to obtain

the velocity profile within the boundary layer as shown in Fig. 13.4. Measurements
of velocity profiles indicate very good agreement with the Blasius solution. The
boundary layer thickness δ(x) is defined such that u

U∞ = 0.99 at y = δ(x). The table
indicates that this happens at about η = 3.5. Using the definition of the similarity
variable, this may be written as

η = 3.5 = δ(x)

√
U∞
2ν∞x

= δ(x)

x

√
U∞x

2ν∞
or

δ(x)

x
= 3.5

√
2

Rex
≈ 5√

Rex
(13.36)

We use Eq.13.19 and 13.30 to calculate the shear stress at the wall as

τw,x = μ∞
∂u

∂y
= μ∞U∞

√
U∞
2ν∞x

d2 f

dη2

∣∣∣∣
η=0

= 0.469604μ∞U∞

√
U∞
2ν∞x

(13.37)
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Table 13.1 Solution to the Blasius equation

η d f
dη

d2 f
dη2

η d f
dη

d2 f
dη2

η d f
dη

d2 f
dη2

0 0 0.46960 1.7 0.72994 0.32195 3.4 0.98798 0.03054

0.1 0.04696 0.46957 1.8 0.76106 0.30045 3.5 0.99071 0.02442

0.2 0.09391 0.46931 1.9 0.79 0.27825 3.6 0.99289 0.01933

0.3 0.14081 0.46861 2 0.8167 0.25567 3.7 0.99461 0.01515

0.4 0.18761 0.46726 2.1 0.84113 0.23301 3.8 0.99595 0.01176

0.5 0.23423 0.46503 2.2 0.86331 0.21058 3.9 0.99698 9.04E-3

0.6 0.28058 0.46174 2.3 0.88327 0.18867 4 0.99778 6.87E-3

0.7 0.32654 0.45718 2.4 0.90107 0.16756 4.1 0.99837 5.18E-3

0.8 0.37197 0.45119 2.5 0.91681 0.14748 4.2 0.99882 3.86E-3

0.9 0.41672 0.44363 2.6 0.93061 0.12861 4.3 0.99916 2.85E-3

1 0.46064 0.43438 2.7 0.94258 0.11112 4.4 0.99940 2.08E-3

1.1 0.50354 0.42337 2.8 0.95288 0.09511 4.5 0.99958 1.51E-3

1.2 0.54525 0.41057 2.9 0.96166 0.08064 4.6 0.99971 1.08E-3

1.3 0.58559 0.39599 3 0.96906 0.06771 4.7 0.99980 7.67E-4

1.4 0.62439 0.37969 3.1 0.97525 0.05631 4.8 0.99986 5.39E-4

1.5 0.66148 0.36181 3.2 0.98037 0.04637 4.9 0.99991 3.75E-4

1.6 0.6967 0.34249 3.3 0.98457 0.03781 5 0.99996 4.57E-4

Fig. 13.4 Velocity profile in
the laminar boundary layer
over a flat plate

We define a friction coefficient C f,x by non-dimensionalizing τw(x) using the

dynamic pressure ρ∞U 2∞
2 to get
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C f,x =
0.46960μ∞U∞

√
U∞
2ν∞x

ρ∞U 2∞
2

= 0.66412√
Rex

(13.38)

Example 13.1

Consider the flow of air at T∞ = 300K past a flat plate that is L = 0.3m long.
The free stream velocity of air is known to be U∞ = 4.5m/s. What is the velocity
boundary layer thickness at the trailing edge of the flat plate?

Solution:

Step 1 The kinematic viscosity of air at 300K is taken from air tables as ν∞ =
15.69 × 10−6 m2/s.

Step 2 The Reynolds number based on plate length is calculated as

ReL = U∞L

ν∞
= 4.5 × 0.3

15.69 × 10−6
= 86,042

Since this value is less than Rec = 5 × 105, the critical Reynolds number,
the flow is laminar throughout.

Step 3 The boundary layer thickness at x = L is obtained, using Eq.13.36, as

δL = 5L√
ReL

= 5 × 0.3√
86042

= 0.0051m or just around 5 mm!

Remark: This example shows that all the viscous effects are confined to
a very narrow region adjacent to the plate surface. The boundary layer
approximation is very satisfactory.

Example 13.2

Consider again the data given in Example 13.1. What is the value of friction coef-
ficient at x = L? Determine also the shear stress at the wall at x = L . What is the
total shear force (drag) experienced by the plate, per unit width of plate in a direction
perpendicular to the flow direction?
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Solution:

Step 1 Apart from the data of Example 13.1, the air density is needed and is taken
from the table of properties as ρ∞ = 1.1769kg/m3.

Step 2 We make use of the results of the Blasius solution to solve the problem.
The friction coefficient at x = L is obtained by using Eq.13.38 as

C f,L = 0.66412√
ReL

= 0.66412√
86042

= 0.002264

Step 3 The shear stress at the wall at x = L is then given by

τw,L = C f (L)

(
ρ∞U 2∞

2

)
= 0.002264 ×

(
1.1769 × 4.52

2

)
= 0.027 Pa

Step 4 The total shear force (drag force) experienced by the plate is obtained by
integrating the shear stress distribution at the wall with respect to x from
x = 0 to x = 0.3m. Elemental shear force is given by dF = τw(x)dx =
C f,x

(
ρ∞U 2∞

2

)
dx = 0.66412√

Rex

(
ρ∞U 2∞

2

)
dx . But x = ν∞Rex

U∞ and hence dx =
ν∞dRex
U∞ . Thus,

dF = 0.66412√
Rex

(
ρ∞U 2∞

2

)
ν∞dRex
U∞

= 0.33206μ∞U∞
dRex√
Rex

This has to be integrated between Rex = 0 and Rex = ReL to obtain the
total drag force experienced by the plate. Thus, we have

F = 0.33206μ∞U∞

ReL∫
0

dRex√
Rex

= 0.33206μ∞U∞
Re

− 1
2 +1

x

− 1
2 + 1

∣∣∣∣∣∣
ReL

0

= 0.66412μ∞U∞
√
ReL

Thus, the total drag force experienced by the plate is

F = 0.66412 × 1.1769 × 15.69 × 10−6 × 4.5 × √
86042 = 0.0162 N/m
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Example 13.3

Consider water at 293K flowing parallel to a flat plate 0.3m long. What is the
maximum allowable velocity if the flow just turns critical at x = 0.3m? What is the
thickness of the velocity boundary layer at this location?What is the drag force expe-
rienced by the plate per unit width in a direction perpendicular to the flow direction?

Solution:
Water properties needed for the calculation are taken from table of properties of
water.

ρ∞ = 998.2 kg/m3, μ∞ = 9.93 × 10−4 kg/m s

The Reynolds number at x = L = 0.3m must be just critical, i.e., ReL = Rec =
5 × 105. The maximum allowable velocity is hence given by

U∞ = ReLμ∞
ρ∞L

= 5 × 105 × 9.93 × 10−4

998.2 × 0.3
= 1.658 m/s

From the Blasius solution, the boundary layer thickness at x = L = 0.3m is calcu-
lated as

δ(L) = 5L√
ReL

= 5 × 0.3√
5 × 105

= 0.00212 m ≈ 2 mm

Friction coefficient at x = L = 0.3m is given by

C f,L = 0.66412√
ReL

= 0.66412√
5 × 105

= 0.000939

Example 13.2 has shown that the drag force over the entire length of the plate may be
calculated based on amean friction coefficient that is just twice the friction coefficient
at L . Thus, as in Example 13.2, we have

F = 2C f,L
ρ∞U 2∞

2
L = 2 × 0.000939 × 998.2 × 1.6582

2
× 0.3 = 0.773 N/m

13.2.3 Laminar Thermal Boundary Layer over a Flat Plate

Since the constant property assumption has been made in formulating the problem,
the flow and temperature fields are not coupled. Hence the flow problem, as it has
been done above, is calculated first and used as an input in the boundary layer energy
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Eq.13.12. Let us define a non-dimensional temperature function as

θ = T − Tw

T∞ − Tw

(13.39)

and assume that this is a function of η only. With this assumption, we have

∂T

∂x
= (T∞ − Tw)

(
− η

2x

) dθ

dη
(13.40)

where we have made use of Eq.13.26.

∂T

∂y
= (T∞ − Tw)

√
U∞
2ν∞x

dθ

dη
(13.41)

where we have made use of Eq.13.27.

∂2 T

∂y2
= (T∞ − Tw)

U∞
2ν∞x

d2θ

dη2
(13.42)

where again we have made use of Eq.13.27. Substitute these along with expressions
for u and v given, respectively, by Eqs. 13.28 and 13.29 into Eq.13.12 to get

U∞
d f

dη
(T∞ − Tw)

(
− η

2x

) dθ

dη
+

√
ν∞U∞
2x

[
η
d f

dη
− f

]
(T∞ − Tw)

√
U∞
2ν∞x

dθ

dη

= α∞(T∞ − Tw)
U∞
2ν∞x

d2θ

dη2

This equation simplifies to

d2θ

dη2
+ Pr f

dθ

dη
= 0 (13.43)

where Pr is the Prandtl number given by Pr = α∞
ν∞ . The difference between the flow

problem and the temperature problem is that the former gives a universal solution
while the temperature field is dependent on a parameter, the Prandtl number. The
solution to the temperature field is thus fluid specific. Since the energy equation has
reduced to an ordinary differential equation, we infer that our assumption that the
non-dimensional temperature field is a function of only the similarity variable η is
valid. The boundary conditions are written down easily as
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θ = 0 at η = 0, θ → 1 as η = ∞ (13.44)

Solution to the Temperature Problem

Solution to Eq.13.43 is quite straightforward. Let dθ
dη

= Z(η). Then Eq.13.43
becomes

dZ

dη
+ Pr f Z = 0 (13.45)

This equation is in variable separable form, and hence, we have

dZ

Z
= −Pr f dη

Integrate this equation to get

ln Z = −
η∫

0

Pr f dη + A′ or Z = Ae
−

η∫
0
Pr f dη = dθ

dη
(13.46)

where A′ is a constant of integration and A = ln A′. Equation13.46may be integrated
with respect to η once to get

θ = A

η∫
0

e
−

η1∫
0
Pr f dη2

dη1 + B (13.47)

where B is a second integration constant. The constants A and B are determined by
using the boundary conditions. In order to satisfy the boundary condition at η = 0
given in Eq.13.44, it is necessary to have B = 0. The second boundary condition in
Eq.13.44 requires that

1 = A

∞∫
0

e
−

η1∫
0
Pr f dη2

dη1

Using this in Eq.13.47, we have the solution as
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Fig. 13.5 Boundary layer
temperature profiles for
various Prandtl numbers

θ(η) =

η∫
0
e
−

η1∫
0
Pr f dη2

dη1

∞∫
0
e
−

η1∫
0
Pr f dη2

dη1

(13.48)

The indicated integration may be performed numerically using the Blasius function
that is already available, for a fixed Prandtl number. Boundary layer temperature
profiles thus obtained are shown for various Prandtl numbers in Fig. 13.5. The thermal
boundary layer thickness is seen to be a function of the Prandtl number. When
Pr < 1, thermal boundary layer is thicker than the viscous boundary layer. When
Pr = 1, the two boundary layer thicknesses are equal. When Pr > 1, the thermal
boundary layer is thinner than the viscous boundary layer thickness.

Wall Heat Flux

From Eq.13.20, using the definition of non-dimensional temperature and the simi-
larity variable, the wall heat flux may be written down as

qw = − k∞
∂T

∂y

∣∣∣∣
y=0

= −k∞(T∞ − Tw)

√
U∞
2ν∞x

dθ

dη

∣∣∣∣
η=0

From this, the local heat transfer coefficient hx may be obtained as
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hx = qw

Tw − T∞
= k∞

√
U∞
2ν∞x

dθ

dη

∣∣∣∣
η=0

Hence, the local Nusselt number Nux is

Nux = hx x

k∞
= hx x

k∞
= k∞

√
U∞
2ν∞x

dθ

dη

∣∣∣∣
η=0

x

k∞
=

√
Rex
2

dθ

dη

∣∣∣∣
η=0

(13.49)

Nusselt Number Dependence on Prandtl Number

We have seen above that the Prandtl number plays an important role in that it deter-
mines the relative thicknesses of the velocity and temperature boundary layers. Since
the wall heat transfer is directly related to the temperature gradient at the wall, the
heat flux would mirror the effect of Prandtl number on the thermal boundary layer
thickness.

For large Prandtl number, i.e., Pr∞ 	 1, the thermal boundary layer is thinner
than the velocity boundary layer. In the limit Pr → ∞, thermal boundary layer is
very thin, and hence we may assume that f ′ = Cη or f (η) = C η2

2 where C is a
constant, inside the thermal boundary layer. Solution13.48 then indicates that the

ratio Nux√
Rex

varies as Pr
1
3∞.

For vanishingly small Prandtl number, i.e., Pr∞ 
 1, the thermal boundary layer
is thicker than the velocity boundary layer. In the limit, we may assume that the
velocity is equal to free stream velocity throughout the thermal boundary layer.

The solution given by Eq.13.48 indicates that the ratio Nux√
Rex

varies as Pr
1
2∞. The

solution is the same as the solution we encountered for a semi-infinite solid subject
to step change in surface temperature, with the proviso that the time variable there
is interpreted as the ratio x

U∞ .

Figure13.6 shows the results of variation of Nux√
Rex

with Prandtl number. The points
are calculated by the use of solution obtained above. The asymptotes shown corre-
spond to the following:

Pr∞ 
 1; Nux√
Rex

≈ 0.5
√
Pr∞ (13.50)



632 13 Laminar Convection in External Flow

Fig. 13.6 Influence of
Prandtl number on heat
transfer from a flat plate

Pr∞ 	 1; Nux√
Rex

≈ 0.332 Pr
1
3∞ (13.51)

For 0.6 ≤ Pr ≤ 50, the derivative of the non-dimensional temperature at η = 0
is very well approximated by the formula

dθ

dη

∣∣∣∣
η=0

≈ 0.469604Pr
1
3 (13.52)

Hence, the local Nusselt number is given by

Nux = 0.469604

√
Rex
2

Pr
1
3 = 0.33206 Re

1
2
x Pr

1
3 (13.53)

which is the asymptote shown in Fig. 13.6 as full line (valid for Pr > 0.6).

Average Wall Heat Flux

Equation13.53 gives the local Nusselt number, and the local heat transfer coefficient
may be obtained therefrom as

hx = Nuxk∞
x

= 0.33206Re
1
2
x Pr

1
3 k∞

x
= 0.33206

√
U∞
ν∞

Pr
1
3 k∞x− 1

2 (13.54)
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We may calculate an average heat transfer coefficient hL over a length L of the plate
by defining it as

hL =

L∫
0
hxdx

L
= 0.33206

L

√
U∞
ν∞

Pr
1
3 k∞

L∫
0

x− 1
2 dx (13.55)

This may be recast, after performing the indicated integration, in the form

NuL = hL L

k∞
≈ 0.664 Re

1
2
L Pr

1
3 (13.56)

Thus, the average Nusselt number over a length L of the plate is twice the local
Nusselt number at x = L .

Example 13.4

Consider flow of air atU∞ = 3m/s parallel to a flat plate that is of length L = 0.3m.
The plate is maintained at Tw = 400K while the incoming air is at T∞ = 300K and
at 1 atmosphere pressure. Determine the heat flux at the trailing edge of the plate.
Also determine the total heat transferred to air. Consider unit width of plate in a
direction normal to the direction of incoming stream.

Solution:

Step 1 Since the wall–free stream temperature difference is 100K the constant
property assumption may not be very good. In order to account for the
variation of properties, the suggested practice is to take the properties at
the so-called film temperature T f that is the arithmetic mean of the wall
and free stream temperatures, i.e., T f = Tw+T∞

2 = 400+300
2 = 350K. We

take the air properties at a pressure of 1 atmosphere and at a temperature
of 350K from table of properties.

Density: ρ f = 0.995 kg/m3

Kinematic viscosity: ν f = 20.82 × 10−6 m2/s
Thermal conductivity: k f = 0.030 W/m◦C

Prandtl number: Pr f = 0.7∗
∗Pr of air varies very little with temperature

Step 2 The Reynolds number at x = L = 0.3m is then calculated as

ReL = U∞L

ν f
= 3 × 0.3

20.82 × 10−6
= 43227.7
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Since the Reynolds number ReL is less than 5 × 105, the flow remains
laminar throughout.

Step 3 The Nusselt number at the trailing edge (i.e., at x = L) of the plate is then
calculated using Eq.13.53 as

NuL = 0.332 × 43227.7
1
2 × 0.7

1
3 = 61.29

The heat transfer coefficient at the trailing edge then is

hL = NuLk f

L
= 61.29 × 0.030

0.3
= 6.129 W/m2◦C

Step 4 The heat flux at the trailing edge is then obtained as

qw,L = hL(Tw − T∞) = 6.129 × (400 − 300) = 612.9 W/m2

Step 5 The average Nusselt number is twice the value of Nusselt number at the
trailing edge. Hence, the average heat transfer coefficient over the length
of the plate is twice the heat transfer coefficient determined above. Hence,

hL = 2hL = 2 × 6.129 = 12.26 W/m2◦C

The total heat transferred from the plate per unit width is then given by

Qw = hL(Tw − T∞)L = 12.26 × (400 − 300) × 0.3 = 367.8 W/m

Example 13.5

Water at T∞ = 15 ◦Cflows parallel to a flat plate of length L = 0.3m andW = 0.6m
widewith a velocity ofU∞ = 0.4m/s. The plate surface ismaintained at Tw = 95 ◦C.
Determine the heat loss from both sides of the plate to water.

Solution:

Step 1 Water properties are evaluated at the film temperature of

T f = Tw + T∞
2

= 95 + 15

2
= 55 ◦C

Step 2 Water properties at T f are taken from table of properties.
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Dynamic viscosity: μ f = 4.89 × 10−4 kg/m s
Density: ρ f = 984.3 kg/m3

Thermal conductivity: k f = 0.65 W/m◦C
Prandtl number: Pr f = 3.15

Hence, the kinematic viscosity is obtained as

ν f = μ f

ρ f
= 4.89 × 10−4

984.3
= 4.968 × 19−7 m2/s

Step 3 The Reynolds number based on the plate length is obtained as

ReL = U∞L

ν f
= 0.4 × 0.3

4.968 × 19−7
= 214546

Since ReL < 5 × 105 the flow is laminar throughout.
Step 4 The mean Nusselt number over the plate length is given by (using

Eq.13.56)

NuL = 0.664 × 214546
1
2 × 3.15

1
3 = 478.4

The average heat transfer coefficient over the plate length is then given by

hL = NuLk f

L
= 478.4 × 0.65

0.3
= 1036.5 W/m2◦C

Step 5 Since the plate loses heat from both sides, the heat transfer area is A =
2LW = 2 × 0.3 × 0.6 = 0.36m2. The total heat transferred from both
sides of the plate then is

Qw = AhL (Tw − T∞) = 0.36 × 1036.5 × (95 − 15) = 29851 W ≈ 30 kW

Special Case of LaminarBoundaryLayer Flowwith Pr = 1–ReynoldsAnalogy

Rearranging the Blasius Eq.13.31, we have

f = −d3 f

dη3
/
d2 f

dη2

The exponential term appearing in the solution to the boundary layer energy equation
(Eq.13.48) may be written as
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e− ∫
f Pr dη = exp

⎡
⎣−

∫ ⎧⎨
⎩Pr

d3 f
dη3

d2 f
dη2

⎫⎬
⎭ dη

⎤
⎦ = exp

[
−Pr ln

(
d2 f

dη2

)]
= −

[
d2 f

dη2

]Pr

Introducing this in Eq.13.48, we get an alternate expression for the boundary layer
temperature profile as

θ(η) =

η∫
0

[
d2 f

dη2

]Pr

dη

∞∫
0

[
d2 f

dη2

]Pr

dη

(13.57)

The above is valid for any Prandtl number. In the special case when Pr = 1, we have

η∫
0

[
d2 f

dη2

]Pr

dη =
η∫

0

d2 f

dη2
dη = d f

dη

∣∣∣∣
η

0

= d f

dη

∣∣∣∣
η

= u

U∞

and ∞∫
0

[
d2 f

dη2

]Pr

dη =
∞∫
0

d2 f

dη2
dη = d f

dη

∣∣∣∣
∞

0

= d f

dη

∣∣∣∣
η=∞

= 1

The temperature profile given by Eq.13.57 will then be recast as

θ(η) = T − Tw

T∞ − Tw

=

η∫
0

[
d2 f

dη2

]
dη

∞∫
0

[
d2 f

dη2

]
dη

= u

U∞
(13.58)

Thus, the temperature and velocity profiles (both of them suitably normalized) in the
boundary layer are identical. This is referred to as Reynolds analogy. FromEq.13.58,
we have by differentiation

∂T

∂y

∣∣∣∣
y=0

T∞ − Tw

=
∂u

∂y

∣∣∣∣
y=0

U∞
(13.59)

The partial derivatives are recast in terms ofwall quantities of interest to us as follows:
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∂T

∂y

∣∣∣∣
y=0

= − qw

k∞
and

∂u

∂y

∣∣∣∣
y=0

= τw,x

μ∞

Further, the first of thesemay be rewritten in terms of the local heat transfer coefficient
as

qw

k∞
= hx (Tw − T∞)

k∞

Introduce these in Eq.13.59 to get

hx

k∞
= τw,x

μ∞U∞

Since the Prandtl number is equal to one, we may write thermal conductivity as
k∞ = μ∞Cp. Also the wall shear stress may be written in terms of the friction factor

as τw,x = C f.x
ρ∞U 2∞

2 . With these, we have

hx

k∞
= hx

μ∞Cp
and

τw,x

μ∞U∞
= C f,xρ∞U∞

2μ∞

Hence, we obtain the important result

hx

ρ∞U∞Cp
= C f,x

2
or Stx = C f,x

2
(13.60)

We have introduced the local Stanton number Stx = hx
ρ∞U∞Cp

in the above.3 The
reader may note that the above equation would also hold for the mean values over
the plate length.

13.3 Boundary Layer Flow in the Presence of Stream-Wise
Pressure Variation

As an example of boundary flow with stream-wise pressure gradient, we consider
viscous flow past a wedge as shown schematically in Fig. 13.7.

The flow far away from the wedge is parallel flow with uniform velocity U∞, as
shown. The flow outside the boundary layer is characterized by inviscid flow with
typical streamline pattern shown in the figure. We place the origin 0 at the apex of
the wedge and lay the x-axis parallel to the wedge surface and the y-axis is normal

3It is to be noted that Stx maybe represented as Stx = Nux
Rex Pr

in terms of non-dimensional parameters
already familiar to the reader.
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Fig. 13.7 Flow past a wedge

to it. The included angle of the wedge is βπ where β is a constant for a particular
wedge.

13.3.1 Inviscid Flow Past the Wedge

The inviscid flow is governed by the Euler equation, and, in the present two-
dimensional case, the stream function satisfies the Laplace equation. We use the
complex potential to solve the problem without much effort. For this purpose con-
sider the flow past the top surface of the wedge, essentially half the wedge. The
external angle of the half wedge α is seen to be α = π − βπ

2 = π(2−β)

2 . Consider the
complex potential given by

w = cz
π
α (13.61)

where c is a constant. Represent the complex variable z in its polar form given by
z = reiθ. Substituting this in Eq.13.61, we get

w = c(reiθ)
π
α = cr

π
α ei

θπ
α (13.62)

Explicitly, we can write the complex potential as

w = cr
π
α

{
cos

(
θπ

α

)
+ i sin

(
θπ

α

)}
(13.63)

Consider the stream function ψ(r, θ) given by the imaginary part of w, i.e.,

ψ(r, θ) = sin

(
θπ

α

)
(13.64)

This vanishes for θ = 0 as well as for θ = α, i.e., along incoming direction passing
through the apex as well as on the surface of the wedge. Thus, this stream function
is the desired solution to the inviscid flow past the wedge. In order to obtain the
velocity, we note that

dw

dz
= ∂φ

∂x
+ i

∂ψ

∂x
= u − iv
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where u and v are the velocity components. This result is a consequence of the
Cauchy Reimann (CR) conditions. We thus notice that the magnitude of the velocity
is given by the magnitude of the derivative ofw with respect to z. Thus, in the present
case, we have ∣∣∣∣dw

dz

∣∣∣∣ = cπ

α
z(

π
α −1) = cπ

α
r(

π
α −1)

∣∣∣eiθ( π
α −1)

∣∣∣
Magnitude is 1

(13.65)

Any point on the surface of the wedge corresponds to θ = α and r = x . Hence, on
the wedge surface the velocity (which perforce is parallel to the wedge surface) is
given by

u = cπ

α
x

π
α −1 (13.66)

Using the definition of α, we have

π

α
− 1 = 2

2 − β
− 1 = β

2 − β
= m(say) (13.67)

With this the desired velocity outside, the boundary layer on the wedge is

U (x) = Kxm (13.68)

where K is a constant equal to cπ
α
. Note that this velocity goes to zero at x = 0, the

stagnation point.

General wedge flow solution represents typically the following special cases:
1. Whenβ = 1, the flow turns by angle βπ

2 = π
2 and the correspondingwedge

parameter is m = 1
2−1 = 1. The flow is known as stagnation point flow in

two dimensions.
2. When β = 0 the flow proceeds with no direction change and the flow

corresponds to flat plate flow considered earlier.
3. The flow is referred to as wedge flow for 0 ≤ β ≤ 2 or 0 ≤ m ≤ ∞. The

turning angle is between 0 and π.
4. For positive β, the derivative of pressure with respect to x is negative since

dp
dx = −ρ∞U dU

dx < 0. The flow is said to encounter a favorable pressure
gradient.

5. For negative β, the derivative of pressure with respect to x is positive since
dp
dx = −ρ∞U dU

dx > 0. The flow is said to encounter an adverse pressure
gradient.

The flow in the boundary layer is amenable to similarity analysis as shown below.
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13.3.2 Flow Within the Boundary Layer

Assume that the velocity within the boundary layer is given by an expression of form

u(x, y) = U (x)
d f

dη
(13.69)

where η = η(x, y) is as of now undetermined. It is required that d f
dη

→ 1 as η → ∞.
We also require that the as of now unknown function f (η) satisfies the conditions

f (η = 0) = d f
dη

∣∣∣
η=0

= 0. From Eq.13.69, we have

(a)
∂u

∂x
= dU

dx

d f

dη
+U (x)

d2 f

dη2

∂η

∂x
; (b)

∂u

∂y
= U (x)

d2 f

dη2

∂η

∂y
(13.70)

In case of wedge flow, we know that U (x) = Kxm . Let us consider the composite
variable η to be given by

η(x, y) = Cyxa (13.71)

where C and a are constants to be determined as a part of the analysis. Indicating,
for sake of convenience, differentiation with respect to η by ′, we have the following:

∂u

∂x
= mKxm−1 f ′ + Kxm f ′′ · aCyxa−1 = Kxm−1

[
m f ′ + aη f ′′]

or

u
∂u

∂x
= K 2 f ′x2m−1 [m f ′ + aη f ′′] (13.72)

Using the equation of continuity, we have

∂v

∂y
= −∂u

∂x
= −Kxm−1

[
m f ′ + aη f ′′]

Integrate this with respect to y to get

v = −Kxm−1

y∫
0

[
m f ′ + aη f ′′] dy = −Kxm−1

η∫
0

[
m f ′ + aη f ′′] dη

1

Cxa

= −K

C
xm−a−1

⎡
⎣m f + aη f ′ −

η∫
0

a f ′dη

⎤
⎦ = −K

C
xm−a−1

[
m f + aη f ′ − a f

]

= −K

C
xm−a−1

[
(m − a) f + aη f ′]
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We also have
∂u

∂y
= Kxm f ′′Cxa = KCxm+a f ′′

With these, we have

v
∂u

∂y
= −K

C
xm−a−1

[
(m − a) f + aη f ′] × KCxm+a f ′′

= −K 2x2m−1 f ′′ [(m − a) f + aη f ′] (13.73)

Expressions13.72 and 13.73 contribute to the LHS of boundary layer momentum
Eq.13.15.

We have, with the given functional form of the inviscid velocity U (x),

U
dU

dx
= Kxm × Kmxm−1 = K 2mx2m−1 (13.74)

Lastly, we have

ν∞
∂2u

∂y2
= ν∞KCxm+a f ′′′Cxa = ν∞KC2xm+2a f ′′′ (13.75)

Expressions13.74 and 13.75 contribute to the RHS of the boundary layer momentum
Eq.13.15. We notice that these four terms will have no explicit x dependence if

2m − 1 = m + 2a or a = m − 1

2
(13.76)

With the above, the factors containing x and its powers drop off in the boundary
layer momentum equation, which may be written as

K 2 f ′[m f ′ + m − 1

2
f ′′η] − K 2 f ′′

[(
m − m − 1

2

)
+ η f ′m − 1

2

]

= K 2m + ν∞C2 f ′′′

K

Further we shall choose ν∞ C2

K = m+1
2 (this is an arbitrary, but convenient choice), to

simplify the above equation to

f ′′′ + f f ′′ − 2m

m + 1

[
( f ′)2 − 1

] = 0

The constant appearing in the above equation may be recast using Eq.13.67 as
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2m

m + 1
=

2
β

2 − β
β

2 − β
+ 1

= β

Thus, the boundary layer momentum equation takes the final form of a non-linear
third-order ordinary differential equation

f ′′′ + f f ′′ − β
[
( f ′)2 − 1

] = 0 (13.77)

The similarity variable η is given by

η = Cyxa =
√

(m + 1)

2

K

ν∞
yx

(m−1)
2 = y

√
(m + 1)

2

Kxm

ν∞x
= y

√
(m + 1)

2

U (x)

ν∞x

(13.78)
Equation13.77 is known as the Falkner–Skan equation.4 This equation is subject to
the boundary conditions given by

f (0) = f ′(0) = 0; f ′ → 1 as η → ∞ (13.79)

The Falkner–Skan equation is hence a boundary value problem that can be solved
only numerically, for example, by the use of the “shooting” method. Alternately
the solution may be obtained numerically by the finite difference method, after a
transformation of the coordinates, as discussed by Asaithambi.5 What is required in
practice, in calculating the wall shear, is the second derivative of the function f at
η = 0. Table of values shown as inset in Fig. 13.8 gives the required data for typical
values of β. η∞ is the location of the “edge” of the boundary layer. Figure13.8 shows
the velocity profiles within the boundary layer for all cases in the table.

It is noticed from the figure and the data in the table that the velocity gradient
is very nearly zero for a wedge with β = −0.1988. The shear stress at the wall
vanishes and the condition represents incipient separation. This corresponds to flow
over a diverging corner with wedge angle of 11.4◦. It has been observed that multiple
solutions are observed forβ < −0.1988. For negative values ofβ the flowdecelerates
with x , pressure increases with x and the flow is subject to adverse pressure gradient.
The case β = 0 corresponds to flow past a flat plate. The solution shown is the same

4V. M. Falkner and S. W. Skan, “Some Approximate Solutions of the Boundary Layer Equations”
British ARC, R.& M. No. 1314, 1930.
5A. Asaithambi, “A finite difference method for the Falkner Skan Equation”, Applied Mathematics
and Computation, Vol. 92, pp. 135–141, 1998.
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Fig. 13.8 Boundary layer
velocity profiles for wedge
parameters shown in the
table at right

Fig. 13.9 Shear stress
distributions in the boundary
layer for wedge angles given
in Fig. 13.8

as the Blasius solution. For β > 0, the flow accelerates with x , pressure decreases
with x , and the flow is subject to a favorable pressure gradient.

The case β = 1 corresponds to flow normal to a plane. The flow is referred to as
the stagnation point flow in two dimensions. The value of wedge parameterm is also
equal to one. The velocity at the edge of the boundary layer varies asU (x) = Kx , and

the similarity variable is η = y
√

U (x)
2ν∞x = y

√
Kx

2ν∞x = y
√

K
2ν∞ which is just a scaled

y! The boundary layer is hence of constant thickness.
The viscous shear stress is proportional to the second derivative of the function

f with respect to η. The variation of the shear stress across the boundary layer is
indicated by making a plot of f ′′ versus η as shown in Fig. 13.9. Figure shows the
shear stress variation for all the wedge angles given in Fig. 13.8.
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13.3.3 Temperature Profiles in Falkner–Skan Flows

Consider now the boundary layer energy equation given by Eq.13.12. We shall
assume that the boundary layer temperature profile also exhibits similarity. Condi-
tions under which this is possible will, of course, be explored as we go through the
analysis. Let the temperature within the boundary layer be given by

T (x, y) = Tref + �T (x)θ(η) (13.80)

with �T (x) = Tw − Tref . Tw is the wall temperature, Tref is a suitable reference
temperature and θ is the similarity profile that we are seeking as a solution to the
energy equation. Making use of the similarity variable given by Eq.13.78, we write
down the terms that appear in the energy equation as under

u = U
d f

dη
= Kxm

d f

dη
; v = −

√
2ν∞K

m + 1
x

m−1
2

[
m + 1

2
f + m − 1

2
η
d f

dη

]
;

∂T

∂x
= θ

d�T

dx
+ �T

dθ

dη

m − 1

2

η

x
; ∂T

∂y
= �T

dθ

dη

√
K (m + 1)

2ν∞
x

m−1
2 ;

∂2 T

∂y2
= �T

d2θ

dη2

K (m + 1)

2ν∞
xm−1

Introducing these in the boundary layer energy equation, we have

Kxm
d f

dη

[
θ
d�T

dx
+ �T

dθ

dη

m − 1

2

η

x

]
−

√
2ν∞K

m + 1
x
m−1
2

[
m + 1

2
f + m − 1

2
η
d f

dη

]
×

×�T
dθ

dη

√
K (m + 1)

2ν∞
x
m−1
2 = α∞�T

d2θ

dη2
K (m + 1)

2ν∞
xm−1

This equation is recast after some simplification as

d f

dη

θx

�T

d�T

dx
− m + 1

2
f
dθ

dη
= m + 1

2Pr∞
d2θ

dη2
(13.81)

Similarity solution is possible only if x does not appear explicitly in Eq.13.81. Thus,
the condition that has to be satisfied is

x

�T

d�T

dx
= n, a constant (13.82)

The above may be integrated with respect to x to yield

�T = K1x
n (13.83)
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where K1 is a constant. With this, Eq.13.81 may be recast as

d2θ

dη2
+ Pr∞ f

dθ

dη
= 2nPr∞

m + 1
θ
d f

dη
(13.84)

It is evident that the θ depends on three parametersm, n, and Pr∞. The case n = 0
corresponds to constant �T which is of particular interest. In this case, the above
equation further simplifies to

d2θ

dη2
+ Pr∞ f

dθ

dη
= 0 (13.85)

From defining Eq.13.80, we have

θ = T − Tref
Tw − Tref

(13.86)

At η = 0, this has a value of 1. As η → ∞ the temperature may be taken as the free
stream temperature T∞ and therefore θ = T∞−Tref

Tw−Tref
. Hence, we may set Tref = T∞ to

have θ = 0 as η → ∞. Equation13.85 may be integrated by the method used in the
case of boundary layer over a flat plate (see developments leading to Eq.13.48) to
get

θ = 1 −

η∫
0

e
−

η1∫
0
Pr f dη2

dη1

∞∫
0

e
−

η1∫
0
Pr f dη2

dη1

(13.87)

The solution depends only on the two parameters m and Pr∞. Dependence on m (or
β) is through the dependence on f on m.

The special case of Pr∞ = 1 has been considered, with three values of β, viz.,
0.5, 0, and −0.10, to work out the temperature profile within the boundary layer
using the solution given by Eq.13.87. The results are shown plotted in Fig. 13.10. It
is observed that the thermal boundary layer thickness increases with decrease in β.
The Prandtl number dependence has already been discussed in the case of boundary
layer over a flat plate. Similar observations hold for wedge flows. As an example, we
show the temperature variation within the boundary layer for β = 1, stagnation point
flow in two dimensions. Results are shown in Fig. 13.11 for three Prandtl numbers.
The boundary layer thickness is larger for a smaller Prandtl number.
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Fig. 13.10 Temperature
distribution within the
boundary layer over a wedge
for Pr∞ = 1 and three
different values of β

Fig. 13.11 Temperature
distribution within the
boundary layer over a wedge
for β = 1 and three different
Prandtl numbers

Wall Heat Flux

The wall heat flux may be calculated by applying Fourier law at y = 0. Using the
temperature profile given by Eq.13.87, it is easily shown that the wall heat flux is

qw,x = −k
∂T

∂y

∣∣∣
y=0

= k∞

√
m + 1

2

U

ν∞x

Tw − T∞
∞∫
0

e
−

η1∫
0
Pr f dη2

dη1

Local Nusselt number may then be defined as
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Nux = qw

Tw − T∞
x

k∞
=

√
m+1
2

U
ν∞x

∞∫
0

e
−

η1∫
0
Pr f dη2

dη1

(13.88)

Introducing the local Reynolds number Rex = Ux
ν∞ , we may rewrite Eq.13.88 as

Nux√
Rex

=
√

m+1
2

∞∫
0

e
−

η1∫
0
Pr f dη2

dη1

(13.89)

If we substitute m = 0, i.e., β = 0 in the above, the local Nusselt number in the case
of flat plate flow is obtained. Representing f with β = 0 as f0 and f for any β as
fβ , the ratio of Nusselt numbers turns out to be

Nux,β

Nux,0
= √

m + 1 ·

∞∫
0
e
−

η1∫
0
Pr f0dη2

dη1

∞∫
0
e
−

η1∫
0
Pr fβdη2

dη1

(13.90)

Here, Nux,β represents the local Nusselt number for flow over thewedgewhile Nux,0

represents the local Nusselt number for flow over the flat plate, both for the same
local Reynolds number. It is observed that the ratio is greater than 1 for β > 0 and
less than 1 for β < 0, for a given Prandtl number. Figure13.12 shows the variation
of Nusselt number ratio with β for three representative Prandtl numbers. The trends
are opposite for positive and negative values of β when Prandtl number increases.

13.4 Integral Form of Boundary Layer Equations

The boundary layer equations may be represented in an alternate integral form by
integrating the boundary layer equations across the boundary layer, i.e., from the
wall to the edge of the boundary layer. The resulting integral equations are useful
in gaining physical understanding as well as in obtaining approximate solutions for
the boundary layer velocity and temperature fields. Such solutions are surprisingly
close to the exact solutions and hence this approach is useful, even from a practical
point of view.
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Fig. 13.12 Variation of
Nusselt number ratio with β
for three Prandtl numbers

13.4.1 Momentum and Energy Integral Equations

Integral Form of Boundary Layer Momentum Equation

Consider the boundary layer momentum equation given by Eq.13.15. We integrate
each term with respect to y from y = 0 to y = δ(x) to get

δ∫
0

u
∂u

∂x
dy +

δ∫
0

v
∂u

∂y
dy −

δ∫
0

U
dU

dx
dy = ν∞

δ∫
0

∂2u

∂y2
dy (13.91)

In the second term on the left-hand side of Eq. 13.91, wemaywrite v ∂u
∂y as

∂uv
∂y − u ∂v

∂y .

Using the equation of continuity (Eq. 13.1), the latter term may be recast as u ∂v
∂y =

−u ∂u
∂x . Hence, we have

v
∂u

∂y
= ∂uv

∂y
+ u

∂u

∂x

With this, the left-hand side of the integral of momentum equation becomes

LHS of Eq.13.19 =
δ∫

0

u
∂u

∂x
dy +

δ∫
0

[
∂uv

∂y
+ u

∂u

∂x

]
dy −

δ∫
0

U
dU

dx
dy

= 2

δ∫
0

u
∂u

∂x
dy + (uv)

∣∣∣∣
y=δ

0

− dU

dx

δ∫
0

Udy =
δ∫

0

∂u2

∂x
dy +Uvδ − dU

dx

δ∫
0

Udy

(13.92)
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where vδ stands for the y component of velocity at the edge of the boundary layer.
This velocity itself may be obtained by integrating the continuity equation across the
boundary layer to get

δ∫
0

∂u

∂x
dy +

δ∫
0

∂v

∂y
dy =

δ∫
0

∂u

∂x
dy + vδ = 0 or vδ = −

δ∫
0

∂u

∂x
dy

With this, we then have

Uvδ = −U

δ∫
0

∂u

∂x
dy = −

δ∫
0

∂uU

∂x
dy + dU

dx

δ∫
0

udy

Introducing these in Eq.13.92 and clubbing terms appropriately, we get

δ∫
0

∂u2

∂x
dy +Uvδ − dU

dx

δ∫
0

Udy =
δ∫

0

∂u2

∂x
dy −

δ∫
0

∂uU

∂x
dy

+dU

dx

δ∫
0

udy − dU

dx

δ∫
0

Udy =
δ∫

0

∂

∂x
{u(u −U )}dy + dU

dx

δ∫
0

(u −U )dy

(13.93)

We notice that the integrand in the first term (shown underlined) vanishes for y = 0
as well as for y ≥ δ. Hence, invoking Leibnitz rule6 the first integral may be replaced

by d
dx

δ∫
0
u(u −U )dy. Now, we may simplify the RHS of Eq.13.91 as

RHSofEq. 13.91 = ν∞

δ∫
0

∂2u

∂y2
dy = ν∞

∂u

∂y

∣∣∣∣
δ

0

= −ν∞
∂u

∂y

∣∣∣∣
0

= −τw,x

ρ∞
(13.94)

where it is assumed that the velocity gradient vanishes at the edge of the boundary
layer. The boundary layer momentum equation in its integral form is finally obtained
by combining all these as

6Leibnitz rule states that d
dx

b(x)∫
a(x)

f (x, y)dy =
b(x)∫
a(x)

∂ f
∂x dy + f (x, b(x)) dbdx − f (x, a(x)) dadx .
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Fig. 13.13 Boundary layer
velocity profile

d

dx

δ∫
0

u(u −U )dy + dU

dx

δ∫
0

(u −U )dy = −τw,x

ρ∞
(13.95)

The integral equation given by Eq.13.95 may be interpreted using two appropriate
length scales that will be discussed below.

Displacement Thickness

The first length scale is the displacement thickness. Consider the velocity distribution
within the boundary layer shown in Fig. 13.13, at some location x along the surface.

The actual mass flow rate across the station x is given by

ṁactual(x) =
∞∫

y=0

ρ∞udy =
δ∫

y=0

ρ∞udy +
∞∫

y=δ

ρ∞Udy

In the absence of viscous effects, the mass flow rate across station x would have been

ṁ ideal(x) =
∞∫

y=0

ρ∞Udy =
δ∫

y=0

ρ∞Udy +
∞∫

y=δ

ρ∞Udy

The change in mass flow rate due to viscous effects is thus given by
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�ṁ = ṁactual(x) − ṁ ideal(x) =
δ∫

y=0

ρ∞(u −U )dy (13.96)

This mass rate reduction may be visualized as a certain height of fluid layer δ1—
the displacement thickness—traveling with velocity U such that the area below the
velocity profile, indicated by horizontal lines, is equivalent to the area under the
rectangle lying below the line y = δ1 in the figure. Thus, we have

δ∫
y=0

ρ∞(u −U )dy = −ρ∞Uδ1 or δ1 = vy = 0δ
(
1 − u

U

)
dy

Further, the integral on the right may be written down as δ
1∫

η=0

(
1 − u

U

)
dη where

η = y
δ
and the velocity ratio u

U is represented as a function of η. Then the ratio
of displacement thickness to the boundary layer thickness at the same station x is
obtained as

δ1

δ
=

1∫
0

(
1 − u

U

)
dη (13.97)

Momentum Thickness

Now consider the rate at whichmomentum ṗ crosses the station at x . This is obtained
by integrating product of an elemental mass flow rate at y and the fluid velocity u as

ṗactual =
∞∫

y=0

ρ∞u2dy =
δ∫

y=0

ρ∞u2dy +
∞∫

y=δ

ρ∞U 2dy

Had there been no viscous effects, the rate at which momentum would cross section
x would be given by the actual mass flow rate U product, i.e.,

ṗideal =
∞∫

y=0

ρ∞uUdy =
δ∫

y=0

ρ∞uUdy +
∞∫

y=δ

ρ∞U 2dy

Again the deficit in the rate of momentum transfer across station x is obtained as
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� ṗ = ṗactual(x) − ṗideal(x) =
δ∫

y=0

ρ∞u(u −U )dy (13.98)

This momentum rate reduction may be visualized as a certain height of fluid layer
δ2—the momentum thickness7 such that

δ∫
y=0

ρ∞u(u −U )dy = −ρ∞U 2δ2 or δ2 =
δ∫

y=0

u

U

(
1 − u

U

)
dy

Further, the integral on the right may be written down as δ
1∫

η=0

u
U

(
1 − u

U

)
dη. Then,

the ratio of momentum thickness to the boundary layer thickness at the same station
x is obtained as

δ2

δ
=

1∫
0

u

U

(
1 − u

U

)
dη (13.99)

With these length scales, the momentum integral Eq. 13.95 may be recast in the form

d(U 2δ2)

dx
+ δ1U

dU

dx
= τw,x

ρ∞
(13.100)

Special Case of Flat Plate Flow

In the case of flat plate flow, the free stream velocity is independent of x and the
second term on the left-hand side of Eq.13.100 vanishes. Also the velocity U is
replaced by U∞ to get the momentum integral for flat plate flow as

d

dx

δ∫
0

u(u −U∞)dy = −τw,x

ρ∞
(13.101)

This may be rewritten as

7In fluid mechanics literature, the momentum thickness is represented by the symbol θ. This symbol
is avoided here since θ is reserved the temperature.
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dδ2

dx
= τw,x

ρ∞U 2∞
= C f,x

2
(13.102)

Integral Form of Boundary Layer Energy Equation

Consider now the boundary layer energy equation given by Eq.13.12. We integrate
this equation between the wall y = 0 and y = δT (x), the thermal boundary layer
thickness at a location x along the surface.

δT∫
0

u
∂T

∂x
dy +

δT∫
0

v
∂T

∂y
dy =

δT∫
0

α∞
∂2T

∂y2
dy (13.103)

The second term on the LHS of this equation may be rewritten as

δT∫
0

v
∂T

∂y
dy =

δT∫
0

∂vT

∂y
dy −

δT∫
0

T
∂v

∂y
dy =

δT∫
0

∂vT

∂y
dy +

δT∫
0

T
∂u

∂x
dy

where the last operation has made use of the equation of continuity. Further, we
perform the indicated integration to get

δT∫
0

∂vT

∂y
dy = (vT )|δT0 = vδT T∞ = −T∞

δT∫
0

∂u

∂x
dy

where vδT has been obtained by integrating the continuity equation across the thermal
boundary layer.

Introducing the above, the LHS of Eq.13.103 may be written as

LHS =
δT∫
0

u
∂T

∂x
dy +

δT∫
0

v
∂T

∂y
dy =

δT∫
0

u
∂T

∂x
dy +

δT∫
0

T
∂u

∂x
dy − T∞

δT∫
0

∂u

∂x
dy

=
δT∫
0

∂uT

∂x
dy − T∞

δT∫
0

∂u

∂x
dy =

δT∫
0

∂u(T − T∞)

∂x
dy = d

dx

δT∫
0

u(T − T∞)dy

(13.104)
where the very last step has made use of the Leibnitz rule. The indicated integration
is easily performed on the RHS of Eq.13.103 to get
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α∞

δT∫
0

∂2T

∂y2
dy = α∞

∂T

∂y

∣∣∣∣
δT

0

= − α∞
∂T

∂y

∣∣∣∣
0

= qw,x

ρ∞Cp∞
(13.105)

Combining the above two equations, we finally obtain the boundary layer energy
integral equation as

d

dx

δT∫
0

u(T − T∞)dy = qw,x

ρ∞Cp∞
(13.106)

13.4.2 Approximate Solution for Boundary Layer Flow Past
a Flat Plate Using a Polynomial Profile for Velocity

We have already used the integral method to obtain approximate solution in the case
of transient conduction in one dimension (see Sect. 5.2.2 of Chap.5). The procedure
employed here is similar to the one used there. The method of solution using the
integral method in the case of viscous boundary layer is known as the von Karman
Pohlhausen method.8

We shall assume that the velocity profile is given in the form of a polynomial of
form

u

U∞
= u = f

( y

δ

)
=

n∑
i=0

ai
( y

δ

)i = f (η) =
n∑

i=0

aiη
i (13.107)

where u = u
U∞ and η = y

δ
. There are (n + 1) constants ai that characterize the veloc-

ity profile in the boundary layer that need to be determined, apart from the thickness
of the boundary layer δ(x). As in the Goodman’s method, the last mentioned quan-
tity has to be obtained by using the momentum integral Eq. 13.101. The constants
are determined by using the available boundary conditions on velocity, and other
auxiliary conditions that are to be specified as will be done below.

Let us take, as an example, a quartic profile (fourth degree polynomial) for the
velocity with n = 4 in Eq.13.107. Since the velocity has to vanish at y = 0, or
correspondingly at η = 0, a0 = 0. At y = δ or η = 1, the velocity is equal to the free
stream velocity U∞ or u = 1. Hence, we get

8Th. von Karman and K. Pohlhausen published two independent papers in the same issue of the
Journal Z. Angew. Math. Mech. which form the basis for the method which is named after them.
They are 1. Th. von Karman, Über laminare und turbulente reiburg, Z. Angew. Math. Mech.,
Vol. 1, p. 233, 1921 and 2. K. Pohlhausen, Zur integration der differential gleichung der laminare
grenzschichten, Vol. 1, p. 252, 1921.
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a1 + a2 + a3 + a4 = 1 (13.108)

The available boundary conditions have been exhausted. Hence, it is necessary to
impose threemore auxiliary conditions so that all the coefficients are determined. The
first auxiliary condition is obtained by assuming that the boundary layer momentum
Eq.13.16 is satisfied at y = 0. This requires that ∂2u

∂y2 = 0 at y = 0 since u = v = 0

there. It also means that d2u
dη2 = 0 at η = 0. From Eq.13.107 with n = 4, we have

d2u

dη2
= 2a2 + 6a3η + 12a4η

2

Putting η = 0 this simply means that a2 = 0. Hence, Eq.13.108 takes the from

a1 + a3 + a4 = 1 (13.109)

The other two auxiliary conditions are imposed at y = δ or η = 1 by requiring that
the velocity profile merges smoothly with the free stream velocity there. Thus, we
require that the first and second derivative of u with respect to y (i.e., first and second
derivatives of u with respect to η) be zero at the edge of the boundary layer, i.e., at
η = 1. These conditions require that

(a) a1 + 3a3 + 4a4 = 0; (b) 6a3 + 12a4 = 0 (13.110)

From Eq.13.110(b), we have a3 = −2a4. Eliminate a1 from Eqs. 13.109 and 13.110
to get−2a3 − 3a4 = 1. This may be rewritten as−2a3 − 3a4 = −2(−2a4) − 3a4 =
a4 = 1. Thus, we have

a0 = 0; a1 = −3a3 − 4a4 = −3(−2a4) − 4a4 = 2a4 = 2;
a2 = 0; a3 = −2a4 = −2 and a4 = 1

(13.111)

Introduce all these in Eq.13.107 to get

u = 2η − 2η3 + η4 (13.112)

Having obtained all the coefficients defining the polynomial, it is now necessary to
obtain δ(x). We do this by using the momentum integral equation. The momentum
thickness is written down using Eq.13.99 as
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δ2 = δ

1∫
0

[
2η − 2η3 + η4

] [
1 − (

2η − 2η3 + η4
)]
dη

= δ

1∫
0

[
2η − 2η3 + η4 − 4η2 − 4η6 − η8 + 8η4 + 4η7 − 4η5

]
dη

= δ

[
η2 − 2

η4

4
+ η5

5
− 4

η3

3
− 4

η7

7
− η9

9
+ 8

η5

5
+ 4

η8

8
− 4

η6

6

]∣∣∣∣
1

0

= δ

[
1 − 2

4
+ 1

5
− 4

3
− 4

7
− 1

9
+ 8

5
+ 4

8
− 4

6

]
= 37

315
δ

The shear stress at the wall is given by

τw,x = μ∞
∂u

∂y

∣∣∣∣
y=0

= μ∞U∞
δ

d
(

u
U∞

)
dη

∣∣∣∣∣∣
η=0

Using the non-dimensional velocity profile given by Eq.13.112, we have

d
(

u
U∞

)
dη

∣∣∣∣∣∣
η=0

= [
2 − 6η2 + 4η3

]∣∣
η=0 = 2

Hence, we have
τw,x

ρ∞U 2∞
= 2μ∞

ρ∞U∞δ

Momentum integral Eq.13.102 will then take the form

37

315

dδ

dx
= 2ν∞

U∞δ
(13.113)

This is a first-order ordinary differential equation for the boundary layer thickness
δ(x). We supply an initial condition by assuming that the boundary layer thickness
is zero at x = 0.

Equation13.113 is integrated with respect to x to get

δ∫
0

δdδ = 2 × 315ν∞
37U∞

x∫
0

dx or
δ2

2
= 2 × 315ν∞x

37U∞

or δ = 2 ×
√
315

37

√
ν∞x

U∞
= 5.836

√
ν∞x

U∞

(13.114)
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The functional form of variation of boundary layer thickness, thus, is in agreement
with the similarity solution obtained earlier. The numerical coefficient is not the same
as that given by the Blasius profile, it being a consequence of the assumed velocity
profile within the boundary layer. We may calculate the friction coefficient as

2τw,x

ρ∞U 2∞
= 4μ∞

ρ∞U∞δ
= 4μ∞

ρ∞U∞ × 5.836
√

ν∞x
U∞

= 0.686√
Rex

(13.115)

This is in excess of the exact Blasius value (Eq.13.38) by about 3%!

Example 13.6

Consider laminar flow of a viscous fluid parallel to a flat plate. Obtain the friction
coefficient using the integral method and a cubic velocity profile inside the boundary
layer.

Solution:

Step 1 We make use of the notation in the text and seek the velocity profile as
u
U∞ = A + Bη + Cη2 + Dη3. For satisfying the no slip at the wall A is
set to zero. The requirement that the profile satisfy the governing equation
at the wall requires C to be taken as zero. Hence, the profile is chosen as
u
U = Bη + Dη3. Use smoothness condition at η = 1 to obtain B + 3D =
0 or B = −3D. Using the velocity condition at η = 1 we have B + D =
−3D + D = −2D = 1 or D = − 1

2 . We then have B = −3D = 3
2 . The

cubic profile for velocity is thus given by

u

U∞
= 3

2
η − 1

2
η3

Step 2 In order to obtain the boundary layer thickness based on the integral
method, we obtain δ2

δ
as the integral below (reader is encouraged to verify

this).

δ2

δ
=

1∫
0

(
3

2
η − 1

2
η3

)(
1 − 3

2
η + 1

2
η3

)
dη = 39

280

Step 3 From the cubic velocity profile, the shear stress at the wall is obtained as
τw(x) = 3μ∞

2δ .
Step 4 Using the results in the above two steps, we make use of the momentum

integral, integrate with respect to x and simplify to obtain the boundary
layer thickness as
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δ =
√
280

13

x√
Rex

= 4.641
x√
Rex

Step 5 The friction coefficient is then obtained as

C f,x = τw(x)

ρ∞U 2∞
= 3μ∞

2δ
= 3μ∞

24.641 x√
Rex

= 0.323√
Rex

Step 6 Comparing with the exact value due to Blasius, the above is in error by

Error = C f,x (Approximate) − C f,x (Exact)

C f,x (Exact)
× 100 = 0.323 − 0.332

0.332
× 100 = −2.64%

13.4.3 Approximate Solution for Boundary Layer
Temperature Profile for Flow Past a Flat Plate Using a
Polynomial Profile for Temperature

We have seen earlier that the velocity and temperature profiles, expressed in suitable
non-dimensional form, are the same for a fluid with Prandtl number equal to unity.
Hence, we expect to represent the temperature in the thermal boundary using a poly-
nomial similar to the one used in the case of the velocity boundary layer. However,
there are two possibilities. If the Prandtl number is greater than one, the velocity
boundary layer thickness is larger than the thermal boundary layer thickness. If the
Prandtl number is less than one, the velocity boundary layer thickness is smaller than
the thermal boundary layer thickness. As the more important case, we look at the
Pr > 1 case. We represent the ratio of these as

� = δT

δ
(13.116)

where δT is the thermal boundary layer thickness. Note that � < 1 in what follows.
We define the non-dimensional temperature θ as

θ = T − Tw

T∞ − Tw

(13.117)

Hence, the boundary conditions satisfied by the non-dimensional temperature are

T = Tw or θ = 0 at y = 0; T = T∞ or θ = 1 at y = δT (13.118)
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Thus, the boundary conditions are identical to those satisfied by u
U∞ .

We now consider approximating the temperature profilewithin the thermal bound-
ary layer by a polynomial of fourth degree. As in the case of the velocity boundary
layer, this requires, apart from the two boundary conditions given by Eq.13.118,
auxiliary conditions.

The auxiliary conditions that may be used are two smoothness conditions at y =
δT and the condition that the boundary layer energy equation (Eq.13.12) is exactly
satisfied at y = 0. Since both velocity components are zero at the wall, the energy

equation is satisfied with ∂2θ
∂y2

∣∣∣
y=0

= 0. Further if we approximate the temperature

profile by a polynomial of fourth degree in terms of ζ = y
δT
, the profile is identical

to the velocity profile Eq.13.112 except that η there is replaced by ζ. Thus, the
appropriate temperature profile is

θ = 2ζ − 2ζ3 + ζ4 (13.119)

The energy integral Eq. 13.106 requires the evaluation of the integral given by

E =
δT∫
0

u(T − T∞)dy

Introducing θ defined through Eq.13.117, we have

T − T∞ = (T − Tw) − (T∞ − Tw) = (T∞ − Tw)

[
T − Tw

T∞ − Tw

− 1

]
= (T∞ − Tw)(θ − 1)

Then, we have

E = U∞(T∞ − Tw)δT

1∫
0

u

U∞
(θ − 1)dζ (13.120)

The upper limit of integration is limited to the thermal boundary layer thickness
since the integrand vanishes beyond it (θ = 1 for y > δT ). Note also that the velocity
profile should be expressed as a function of ζ in order to evaluate the integral. Since
the thermal boundary layer thickness is smaller than the velocity boundary layer
thickness, the velocity profile is written as

u

U∞
= 2�ζ − 2�3ζ3 + �4ζ4 (13.121)

which is obtained by substituting η = y
δ

= y
δT

δT
δ

= ζ� in Eq.13.112. Introducing
Eqs. 13.119 and 13.121 into the energy Eq.13.120, we have
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E

U∞(T∞ − Tw)δT
=

1∫
0

(2�ζ − 2�3ζ3 + �4ζ4)(2ζ − 2ζ3 + ζ4 − 1)dζ

The above integration may easily be performed to get

E

U∞(T∞ − Tw)δT
= −

[
2

15
� − 3

140
�3 + 1

180
�4

]
(13.122)

The heat flux at the wall may be calculated by using Fourier law as

qw,x = − k∞
∂T

∂y

∣∣∣∣
y=0

= − k∞
T∞ − Tw

δT

dθ

dζ

∣∣∣∣
ζ=0

= −2k∞
T∞ − Tw

δT
(13.123)

Noting that � < 1 we retain only the linear term in Eq.13.122 and write the energy
integral as

2

15
�δT

dδT

dx
= 2

k∞
ρ∞Cp∞

This equation may be rewritten using the already known velocity boundary layer
thickness δ as

2

15
�3δ

dδ

dx
= 2

k∞
ρ∞Cp∞

From Eq.13.114, we have δ dδ
dx = 630

37
ν∞
U∞ . We may thus obtain � as

� =
[

15 × 37

630 × Pr

] 1
3

= 0.959

Pr
1
3

(13.124)

It is left as an exercise to the reader, using Eqs. 13.114,13.123, and 13.124, to show
that the Nusselt number is given by

Nux = 0.357Re
1
2
x Pr

1
3 (13.125)

The integral solution thus shows that the Prandtl number dependence is through 1
3 rd

power.9 This is in agreement with the behavior shown by the exact solution also.
However, on comparison with the exact value given by Eq.13.53, the coefficient is
in error by around +8%.

9Note that the 1
3 rd power dependence is an approximate representation of the solution to the energy

boundary layer equation. In fact, if we take into account all the terms in the energy integral
Eq.13.122, we may solve for � for a given Pr by the Newton Raphson method. The resulting
relationship between � and Pr is well represented by the relation � ≈ 0.998

Pr0.35
.
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13.4.4 Integral Method Applied to Boundary Layer Flow
with Axial Pressure Gradient

Flow Problem

We consider now wedge flow by the application of integral method, using a suitable
velocity profile within the boundary layer. We have seen in Sect. 13.4.2 that the
velocity profile for flow past a flat plate is represented by a quartic equation given
by Eq.13.112. For flow over a wedge, we shall assume that the appropriate velocity
profile is a sum of two polynomials, the first one given by Eq.13.112 corresponding
to flowwith zero axial pressure gradient and the second one represented as v(η) such
that

u = [
2η − 2η3 + η4

] + A�v(η) (13.126)

where A is a numerical constant and � is a factor that will be chosen as the analysis
proceeds, by relating it to the axial pressure gradient. This velocity profile has to
satisfy the boundary and auxiliary conditions that are considered now. At η = 0
the velocity vanishes, and assuming that A �= 0 and � �= 0, v also should vanish at
η = 0. At the edge of the boundary layer, u = 1 and hence v = 0. We assume that
the boundary layer equation is satisfied by the velocity profile at the wedge surface.
Thus, we should satisfy

0 = U
dU

dx
+ ν∞

U

δ2
d2u

dη2

∣∣∣∣
η=0

= U
dU

dx
+ ν∞

U

δ2
A�

d2v

dη2

∣∣∣∣
η=0

(13.127)

The last step results from the observation that the flat plate profile gives zero second
derivative at η = 0. Consider now a possible candidate polynomial v = η(1 − η)3.
This vanishes at both η = 0 and η = 1. The second derivative of v with respect to η is
obtained as d2v

dη2 = −6(1 − η)2 + 6η(1 − η), and has a value of −6 at η = 0. Hence,
Eq.13.127 becomes

− δ2

ν∞
dU

dx
= −6A� (13.128)

We choose conveniently a value of A = 1
6 and� = δ2

ν∞
dU
dx to satisfy all the conditions

listed above. The required velocity profile is thus given by

u = [
2η − 2η3 + η4

] + �

6

[
η(1 − η)3

]
(13.129)

The parameter � is referred to as the shape parameter since it brings in the axial
pressure gradient that is dependent on the shape of the body.
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Specific Cases

Flat plate profile:
We know that � = 0 corresponds to flow past a flat plate. This case has been con-
sidered in detail earlier.

Separating profile:
A separating profile is obtained when du

dη
= 0 at η = 0. Using the profile given above,

we see that

du

dη

∣∣∣∣
η=0

=
[
2 − 6η2 + 4η3 + �

6

{
(1 − η)3 + 3η(1 − η)2

}]∣∣∣∣
η=0

= 2 + �

6
= 0

Hence, we obtain a value of � = −12 for a separating profile.

Stagnation point flow:
We know that the velocity outside the boundary layer follows the linear law
U (x) = Kx . The Falkner–Skan solution has indicated that the similarity variable
is simply a scaled y. Also, we have seen that the boundary layer thickness is con-
stant. Consequently the momentum and displacement thicknesses are also constant.
Let δ1

δ
= r1 and

δ2
δ

= r2, each being a constant dependent on the parameter �. We

also see that the parameter � = δ2

ν∞
dU
dx = K δ2

ν∞ must be a constant. Let this be �0. By
the use of expression 13.129 for the boundary layer velocity, we may easily show
that

(a) r1(�) = 3

10
+ �

120
; (b) r2(�) = 37

315
− �

945
− �2

9072
(13.130)

Now we look at the terms appearing in the momentum integral (Eq.13.100). With
U = Kx , we have

U
dU

dx
= Kx

d(Kx)

dx
= K 2x

Then, we have

δ1U
dU

dx
= K 2xr1δ

Also
d(U 2δ2)

dx
= d(Kx2δ2)

dx
= 2Kxδ2 = 2Kxr2δ

since δ2 is independent of x . The wall shear stress term is

τw,x

ρ∞
= ν∞U

δ

du

dη

∣∣∣∣
η=0

= Kxν∞
δ

(
2 + �

6

)
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Substituting these in the momentum integral and simplifying we get the algebraic
equation

2�r2(�) + �r1(�) = 2 + �

6
(13.131)

It is easily verified that �0 = 7.052 satisfies this algebraic equation. The boundary
layer thickness then works out to

δ0 =
√

�0ν∞
K

=
√
7.052ν∞

K
= 2.656

√
ν∞
K

(13.132)

The shear stress at the wall divided by density is given by

τw,x

ρ∞
= Kxν∞

δ

(
2 + �0

6

)
= Kxν∞

2.656
√

ν∞
K

(
2 + 7.052

6

)
= 1.1955

√
ν∞KKx

The local friction coefficient may then be obtained as

τw

1
2ρU

2
= 1.1955

√
ν∞KKx

1
2K

2x2
= 2.3911

x

√
ν∞
K

(13.133)

Based on theFalkner–Skan solutionwithβ = 1, picking the value of d2 f
d f 2 = 1.232589

from table in Fig. 13.8, the corresponding exact expression for the friction coefficient
has the numerical constant 2.3911 replaced by 2.4652. The approximate value is in
error with respect to the exact value by about −3%.

13.4.5 Thwaites’s Method

Flow Problem

It is possible to recast the integral method of solution in terms of profile independent
solution using Thwaite’s method.10 The method is based on available exact solutions
to the wedge problem for various wedge angles and deriving the exact values for the
displacement and momentum thicknesses based on the exact solutions. From these,
it is observed that the solutions can be represented in terms of universal functions
involving the parameter λ, (introduced in the next paragraph) which plays the role
of a shape parameter. Thwaites’s method is considered in detail now.

Introduce the quantity λ = δ22
ν∞

dU
dx . We see that this is related to � through the

relation λ = r22� . The momentum integral Eq.13.100 is written in the form

10N.Curle, The Laminar Boundary Layer Equations, Oxford at the Clarendon Press, 1962.
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τw,xδ2

μ∞U
= Uδ2

ν∞
dδ2

dx
+ λ

(
2 + δ1

δ2

)

or

l(λ) = Uδ2

ν∞
dδ2

dx
+ λ(H + 2)

where l(λ) = τw,x δ2
μ∞U and H(λ) = δ1

δ2
. The last equation may be rearranged as

U

ν∞
dδ22
dx

= 2[l − λ(H + 2)] = L(λ)

Thwaites observed that the right-hand side in the above equation is very nearly linear
and is well approximated by L(λ) = 0.45 − 6λ . This observation was based on all
the available exact solutions. Thus, we have the equation

U

ν∞
dδ22
dx

= 0.45 − 6
δ22
ν∞

dU

dx

This equation may be rearranged as

U

ν∞
dδ22
dx

+ 6
δ22
ν∞

dU

dx
= 0.45

On multiplication byU 5 the left-hand side becomes 1
ν∞

d(U 6δ22 )

dx . Hence, this equation
is analytically integrated to get

U 6δ22 = 0.45ν∞

x∫
0

U 5dx + A

where A is a constant of integration. The constant of integration may be taken as zero
since U is zero at x = 0 if the body is bluff and δ2 = 0 if the body has a sharp edge
at x = 0. Thus, the approximate solution according to Thwaites’s method reduces
the problem to a simple quadrature given by

δ22 = 0.45ν∞
U 6

x∫
0

U 5dx (13.134)

Once the momentum thickness is obtained from the above expression, the other
pertinent quantities are obtained as below.
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Table 13.2 Approximate expressions for H(λ) and l(λ)

(a) 0 ≤ λ ≤ 0.25

H(λ) = 2.61 − 3.75λ + 5.24λ2 l(λ) = 0.22 + 1.57λ − 1.8λ2

(b) −0.1 ≤ λ ≤ 0

H(λ) = 2.088 + 0.0731
λ+0.14 l(λ) = 0.22 + 1.402λ + 0.018λ

λ+0.107

The functions l(λ) and H(λ) are universal functions and are tabulated in the ref-
erence cited earlier. These are very well approximated by the following expressions:

From the definition of l(λ), we also obtain

C f = τw

1
2ρ∞U 2

= μ∞l(λ)
1
2ρ∞Uδ2

= 2ν∞l(λ)

Uδ2
(13.135)

Table13.3 presents the universal functions and compares them with the approximate
values obtained using expressions in Table13.2.

Example 13.7

Obtain the solution to the stagnation flow case using Thwaites’s method. Compare
the results with those obtained using the Pohlhausen method as well as the exact
solution.

Solution:

Step 1 The velocity at the edge of the boundary layer is given byU = Kx . Intro-
ducing this in Eq.13.134, we have

δ22 = 0.45ν∞
K 6x6

x∫
0

K 5x5dx = 0.45ν∞
6K

or δ2 =
√
0.45

6

√
ν∞
K

= 0.274

√
ν∞
K

Step 2 Using this and by the definition of λ, we have

λ = δ22
ν∞

dU

dx
= 0.45ν∞

6K

K

ν∞
= 0.075

Step 3 Corresponding to this λ, the function l(λ) is calculated as

l(λ) = 2.61 + 1.57 × 0.075 − 1.8 × 0.0752 = 0.328

Step 4 The skin friction coefficient is then given by
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Table 13.3 Universal functions for use with Thwaites’s method

λ l(λ) l(λ)† H(λ) H(λ)† L(λ) L(λ)‡

0.250 0.500 0.500 2.00 2.00 −1.000 −1.050

0.200 0.463 0.462 2.07 2.07 −0.702 3.750

0.140 0.404 0.405 2.18 2.19 −0.362 −0.390

0.120 0.382 0.382 2.23 2.24 −0.251 −0.270

0.100 0.359 0.359 2.28 2.29 −0.138 −0.150

0.080 0.333 0.334 2.34 2.34 −0.028 −0.030

0.064 0.313 0.313 2.39 2.39 0.064 0.066

0.048 0.291 0.291 2.44 2.44 0.156 0.162

0.032 0.268 0.268 2.49 2.50 0.249 0.258

0.016 0.244 0.245 2.55 2.55 0.342 0.354

0.000 0.22 0.22 2.61 2.61 0.440 0.450

−0.016 0.195 0.194 2.67 2.68 0.539 0.546

−0.032 0.168 0.167 2.75 2.76 0.64 0.642

−0.04 0.153 0.153 2.81 2.82 0.691 0.690

−0.048 0.138 0.138 2.87 2.88 0.744 0.738

−0.056 0.122 0.122 2.94 2.96 0.797 0.786

−0.060 0.113 0.113 2.99 3.00 0.825 0.81

−0.064 0.104 0.103 3.04 3.05 0.853 0.834

−0.068 0.095 0.093 3.09 3.10 0.882 0.858

−0.072 0.085 0.082 3.15 3.16 0.912 0.882

−0.076 0.072 0.069 3.22 3.23 0.937 0.906

−0.08 0.056 0.055 3.3 3.31 0.960 0.930

−0.084 0.038 0.036 3.39 3.39 0.982 0.954

−0.086 0.027 0.026 3.44 3.44 0.99 0.966

−0.088 0.015 0.013 3.49 3.49 0.996 0.978

−0.090 0 −0.001 3.55 3.55 0.999 0.990
†—Based on expressions in Table13.2, ‡—Thwaites

C f,x = 2ν∞l

K xδ2
= 2ν∞ × 0.328

Kx0.274
√

ν∞
K

= 2.3942

√
ν∞
K

· 1
x

Step 5 This may be compared with the exact value based on Falkner–Skan
solution of C f,x = 2.4652

√
ν∞
K · 1

x and the Pohlhausen value of C f,x =
2.3911

√
ν∞
K · 1

x . The approximate value obtained by Thwaite’s method is
very satisfactory.
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Temperature Problem

We now turn our attention to the thermal boundary layer problem in the presence of
an axial pressure gradient. Analogous to Thwaites’s method we develop a solution
method, starting with the energy equation in integral form given by Eq.13.106. We
shall introduce a thermal energy thickness δ1T such that the energy crossing station
x is given by

δT∫
0

u(T − T∞)dy = U (Tw − T∞)δ1T (13.136)

which may be rewritten in the form

δ1T =
δT∫
0

( u

U

)(
T − T∞
Tw − T∞

)
dy (13.137)

With this definition, the thermal boundary layer energy integral Eq.13.106 is written
as

d

dx
[(Tw − T∞)Uδ1T ] = qw,x

ρ∞Cp∞
(13.138)

We further introduce the following quantities:

(a) ζT (x) = δ21T
ν∞

U (b) �T (x) = δ21T
ν∞

dU

dx
(13.139)

To be general, we shall assume that both the wall heat flux and wall temperature vary
with x . Differentiate Eq.13.139(a) with respect to x to get

dζT

dx
= δ21T

ν∞
dU

dx
+ U

ν∞
dδ21T
dx

Using Eq.13.139(b), this becomes

dζT

dx
= �T (x) + 2

Uδ1T

ν∞
dδ1T

dx
(13.140)

Expanding the left-hand side of Eq.13.138, we have

d

dx
[(Tw − T∞)Uδ1T ] = U (Tw − T∞)

dδ1T

dx
+ δ1T (Tw − T∞)

dU

dx
+Uδ1T

dTw

dx

Multiply this by 2δ1T and use Eqs. 13.138 and 13.139 to get
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2U (Tw − T∞)δ1T
dδ1T

dx
+ 2ν∞(Tw − T∞)�T + 2ν∞ζT

dTw

dx
= 2qw,xδ1T

ρ∞Cp∞

Using Eq.13.140, the above equation is recast as

dζT

dx
= 2δ1T qw,x

μ∞Cp∞(Tw − T∞)
−

[
�T + 2ζT

dTw

dx

Tw − T∞

]

or
dζT

dx
= 2δ1T qw,x

μ∞Cp∞(Tw − T∞)
−

[
1 + 2U

dU
dx

dTw

dx

Tw − T∞

]
�T (13.141)

Approximating the right-hand side of Eq. 13.141 by a linear relation of the form

dζT

dx
= FT (�T ) = aT − bT�T (13.142)

and using ζT = 0 at x = 0, we get ζT (following the procedure that was used in
Thwaites’s method) as

ζT (x) = aT
UbT

x∫
0

UbT dx (13.143)

The two constants aT and bT depend on the Prandtl number of the fluid and on
the nature of the boundary condition specified at the surface. These constants are
determined by requiring that the solution be exact in the case of flow parallel to a flat
plate and the stagnation point flow in two dimensions.

Consider, as an example, the constant wall temperature case. Equation13.141
may be rearranged, after substituting dTw

dx = 0 as

2δ1T qw,x

μ∞Cp∞(Tw − T∞)
= dζT

dx
+ γT (13.144)

By definition of Prandtl number, we have

μ∞Cp∞ = k∞Pr∞

With this, the left hand term of Eq.13.144 may be written as

2δ1T qw,x

μ∞Cp∞(Tw − T∞)
= 2δ1T

qw,x

Pr∞k∞(Tw − T∞)
= 2δ1T

Pr∞
hx

k∞
= 2δ1T

Pr∞
Nux

x

We may also write γT as ζT
dU
dx
U . With these, Eq.13.144 may be recast as
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Nux = x

2δ1T

[
dζt

dx
+ ζT

dU
dx

U

]

This may further be simplified using Eq.13.142 and by substituting
√

ζT ν∞
U for δ1T

as

Nux = Pr∞x

2

√
U

ζT ν∞

[
aT + ζT (1 − bT )

dU
dx

U

]
(13.145)

Application to Wedge Problem

Consider the general wedge problem now. We know that the velocity U is given

by U = Kxm where m = β
2−β

. Hence, we also have
dU
dx
U = Kmxm−1

Kxm = m
x . Using

Eq.13.143, we get

ζT (x) = aT
(Kxm)bT

x∫
0

(Kxm)bT dx = aT x

(mbT + 1)

Substitute this in Eq.13.145 to get

Nux,β = Pr∞x

2

√
U (mbT + 1)

aT xν∞

[
aT + aT x

(mbT + 1)
(1 − bT )

m

x

]

= Pr∞
2

√
RexaT (mbT + 1)

[
1 + m(1 − bT )

(mbT + 1)

]
(13.146)

Flow Parallel to a Flat Plate

Consider now the case of flow parallel to a plate maintained at a uniform tempera-
ture with U (x) = U∞, a constant. This case corresponds to m = 0, and Eq.13.146
simplifies to

Nux,0 = Pr∞
2

√
RexaT

In order to determine aT , we require that the above agree with the heat transfer results
of the Blasius solution. For example, for Pr∞ = 1, we know that this should equal
0.332

√
Rex . Hence, we have

√
aT
2

= 0.332 or aT = (2 × 0.332)2 = 0.441 (13.147)
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Stagnation Point Flow

In order to determine bT , we consider stagnation point flow. In this case, we have
β = 1, m = 1 and hence Eq.13.146 becomes

Nux,1 = Pr∞
2

√
RexaT (bT + 1)

[
1 + (1 − bT )

(bT + 1)

]
= Pr∞

√
aT Rex

(1 + bT )

This may be recast in the form

Nux,β=1

Nux,β=0
= 2√

1 + bT
(13.148)

Using the Falkner–Skan solution, the above ratio has already been obtained and
shown in Fig. 13.12. We thus have for Pr∞ = 1

2√
1 + bT

= 1.71805 or bT =
[

2

1.718025

]2

− 1 or bT = 0.355 (13.149)

With these, it is possible to recast Eq.13.146 in the more useful form

Nux,β

Nux,0
= √

mbT + 1

[
1 + m(1 − bT )

(mbT + 1)

]
(13.150)

Schlichting 11 has tabulated the aT , bT values for various Prandtl numbers and for
both the constant wall temperature and constant wall heat flux cases. The values
derived above for specific cases agree with the tabulated values.

13.5 Cylinder in Cross Flow

13.5.1 Introduction

Heat transfer to a fluid flowing normal to the axis of a cylinder occurs in many
interesting applications such as heat exchangers, pin fins in a heat sink, thermometer
well in process temperature measurement, and so on. Flow normal to a cylinder
is mathematically more complex than the flow across a flat plate. The fluid flow
schematic is as shown in Fig. 13.1(b). The free stream approaches the cylinder with
the condition specified by p∞, ρ∞, T∞, andU∞. In the case of incompressible flow,
which we are considering, the density remains constant at ρ∞. For a fluid with
constant properties, these also represent the property values throughout the flow. In

11Table9.2, p. 224, H. Schlichting andK. Gersten, Boundary Layer Theory, 8th Ed., Springer, 2000.
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practice, however, it is usual to account for fluid property variations by taking the
thermo-physical properties at the film temperature T f taken equal to Tw+T∞

2 where
Tw is the constant temperature specified on the surface of the cylinder. Hence, we
shall use the subscript f to represent all the thermo-physical properties of the fluid.

Inviscid Flow Normal to a Cylinder

If the cylinder temperature is the same as the fluid free stream temperature, we need
to only look at the flow problem. Because of the body shape the pressure and velocity
both change with position. Based on inviscid flow theory, we may write the stream
function as (see AppendixC, Eq.C.22)

ψ(r, θ) = c sin θ

[
r − a2

r

]
(13.151)

where we have replaced v there with ψ to represent the stream function. Note that a
represents the radius of the cylinder or D

2 where D is the cylinder diameter. On the
surface of the cylinder, the velocity is tangential to the cylinder and hence is equal
to the component uθ. This is obtained as

uθ(a, θ) = ∂ψ

∂r

∣∣∣∣
r=a

= c sin θ

[
1 + a2

r2

]∣∣∣∣
r=a

= 2c sin θ (13.152)

This velocity vanishes at both θ = 0 and θ = π corresponding, respectively, to the
forward and backward stagnation points. The velocity becomes a maximum equal to
2c at θ = π

2 . Consider the radial velocity now. It is given by

ur (r, θ) = −1

r

∂ψ

∂θ
= −c cos θ

[
1 − a2

r2

]
→ −c as r → ∞ for θ = 0

Hence, we may set the constant c as U∞. With this, the velocity variation along the
surface of the cylinder becomes

uθ(a, θ) = 2U∞ sin θ (13.153)

Let us now look at the pressure distribution on the surface of the cylinder. For an
inviscid fluid, Bernoulli equation is valid which states that

p + 1

2
ρV 2 = p0 = constant

The constant p0 is referred to as the stagnation pressure since this is the pressure
at the stagnation point where the velocity is zero. V represents the magnitude of
the velocity vector. In the present case, at any θ and on the surface of the cylinder
V = uθ(a, θ) = 2U∞ sin θ. Hence, we have
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Fig. 13.14 Pressure distribution around a cylinder: potential and laminar flow cases

p + 1

2
ρ∞[4U 2

∞ sin2 θ] = p + 2ρ∞U 2
∞ sin2 θ = p0

Hence, a pressure coefficient (it is the same as the Euler number) may be defined as
Cp = p−p∞

1
2 ρ∞U 2∞

to get

Cp(θ) = (p0 − p∞) − 2ρ∞U 2∞ sin2 θ
1
2ρ∞U 2∞

Note that p0 − p∞ is equal to 1
2ρ∞U 2∞. Hence, we have

Cp(θ) = 1 − 4 sin2 θ (13.154)

The inviscid flow pressure distribution around the cylinder is shown in Fig. 13.14
as solid line. It is symmetric with respect to θ = ±π

2 . The pressure coefficient is 1 at
the forward and backward stagnation points. The pressure coefficient has a minimum
of −3 at θ = ±π

2 . The pressure distribution as measured is indicated by the dashed
line.12

13.5.2 Laminar Flow Normal to a Cylinder

Within the framework of the boundary layer theory, the inviscid solution presented
above represents the flow outside the thin boundary layer that forms adjacent to the
surface of the cylinder. The flow within the boundary layer may be represented by

12A. Thom, Proc. Roy. Soc. London, Series A, Vol. 141, pp. 651–659, No. 845, 1933.
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the boundary layer equations in two dimensions presented earlier. The coordinate x
will correspond to distance measured along the surface of the cylinder with x = 0
corresponding to the forward stagnation point. Thus, we have x = aθ = Dθ

2 . y is
measured along any radius, away from the surface of the cylinder that corresponds to
y = 0. Thus, y = r − a = r − D

2 . The boundary layer flow is subject to a pressure
gradient that is determined by the inviscid flow.

It is seen thatCp decreases away from the forward stagnation point up until θ = π
2 .

The pressure gradient is thus negative in this region. Beyond θ = π
2 the pressure

increases with θ and hence the pressure gradient is positive. Thus boundary layer
flow is subject to favorable and unfavorable pressure gradients as the flow proceeds
around the cylinder.

13.5.3 Laminar Boundary Layer Flow Past a Cylinder

We apply Thwaites’s method to analyze the laminar boundary layer in the case of a
cylinder in cross flow. Let the incoming flow far away from the cylinder be parallel
flow with a uniform velocity U∞. From the potential flow solution, it is known that
the velocity outside the boundary layer is given by U (x) = 2U∞ sin θ where θ = x

a
is the angle measured from the stagnation point. Using Eq.13.134 from Thwaites’s
method, we have

δ22
ν∞

= 0.45a

(2U∞ sin θ)6

θ∫
0

(2U∞ sin θ)5dθ = 0.45a

2U∞ sin6 θ

θ∫
0

sin5 θ dθ (13.155)

The integration indicated in Eq.13.155 may be analytically accomplished to write

I (θ) =
θ∫

0

sin5 θ dθ = (1 − cos θ) + (1 − cos5 θ)

5
− 2(1 − cos3 θ)

3
(13.156)

Noting that dU
dx = dU

dθ
dθ
dx = d(2U∞ sin θ)

dθ

d( x
a )

dx = 2U∞ cos θ
a , the shape parameter λmay be

obtained as

λ = δ22
ν∞

dU

dx
= 0.45 cos θ

sin6 θ
I (θ) (13.157)

The friction coefficient may now be obtained using Eq.13.135 as

C f,θ = 2ν∞l(λ)

Uδ2
= 2ν∞l(λ)

2U∞ sin θ
√

0.45aν∞ I (θ)
2U∞ sin6 θ

= 2√
ReD

√
1

0.45I (θ)
l(λ) sin2 θ

(13.158)
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Fig. 13.15 Variation of
shape parameter and friction
coefficient for boundary
layer flow past a cylinder

where ReD = U∞D
ν∞ = 2U∞a

ν∞ is theReynolds number based on the free streamvelocity
U∞ and the cylinder diameter D = 2a. It is convenient to base the friction coeffi-
cient on velocity head 1

2ρ∞U 2∞ instead of 1
2ρ∞U 2. This modification requires that

the expression given by Eq.13.158 be multiplied by (2 sin θ)2. Note that the shape
parameter λ as well as the friction coefficient C f,θ vary with the angle θ. The vari-
ation of these with θ is shown in Fig. 13.15. Close to θ = 104◦ the boundary layer
separates and the integral formulation is incapable of calculation beyond this point.

It is interesting to look at the variation of velocity within and outside the boundary
layer. The velocity tangential to the surface of the cylinder is designated as uθ(a, θ) as
before, and, in general the component of the velocity along θ is indicated as uθ(r, θ).
From the potential flow, this velocity is given by

uθ(r, θ) = U∞ sin θ

[
1 + a2

r2

]
(13.159)

This represents the velocity perpendicular to a radial line emanating from the center
of the cylinder. This velocity has a magnitude of 2U∞ sin θ at the surface of the
cylinder and decreases toU∞ sin θ as r → ∞. Now consider the state of affairs at an
angular position of 45◦ from the stagnation point. For this θ the θ velocity reduces
from a value of

√
2U∞ at the cylinder surface to U∞√

2
as r → ∞. Within the boundary

layer, the velocity has to vary between 0 on the cylinder surface to a value equal to√
2U∞ at the edge of the boundary layer. Based on the integral method (Thwaites’s

method), we may easily show that λ = 0.068 for θ = 45◦. The corresponding shape
parameter � is obtained as 5.9 and the boundary layer thickness δ

a = �√
ReD

. For

example, with ReD = 200 we have δ
a = 5.9√

200
= 0.172. Note that correspondingly

the boundary layer edge is located at rδ
a = a+δ

a = 1.172. The velocity profile within
the thin boundary layer follows the polynomial relation given by Eq.13.129 with
� = 5.9. This profile will start with u

U∞ = 0 at r = a or r
a = 1 and remains constant
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Fig. 13.16 Velocity
variation with radius at an
angular location of θ = 45◦
from the forward stagnation
point

at u
U∞ = √

2 as r
a → ∞. The velocity variation within the boundary layer is shown

by the short dashed curve in Fig. 13.16. The potential velocity is indicated by the
long dashed line in the same figure. The composite profile indicated by the full line
is the actual velocity profile, obtained by summing the boundary layer and potential
velocities and subtracting the common part given by u

U∞ = √
2. It is seen that the

composite velocity profile smoothly transitions from the boundary layer velocity
profile to the potential velocity variation outside the boundary layer.

Nowwe turn our attention to the thermal boundary layer. Consider, as an example,
flow past cylinder of a fluid with Pr∞ = 1. The constants aT and bT are, respectively,
0.441 and 0.355. We use Eq.13.143 to get

ζT (θ) = aT
(2U∞ sin θ)bT

θ∫
0

(2U∞ sin θ)bT a dθ or
ζT (θ)

a
= aT I (θ)

sinbT θ
(13.160)

whereI (θ) =
θ∫
0
sinbT θ dθ. This integral needs to be obtained numerically. The

derivative of the velocity dU
dx may be written as 1

a
dU
dθ

= 1
a 2U∞ cos θ. With this, we

have
1

U

dU

dx
= 1

a

cos θ

sin θ
= cot θ

a

The local Nusselt number Nux given by Eq.13.145 may be rephrased based on the
cylinder diameter as the appropriate length scale to define NuD,θ, the local Nusselt
number based on D. With x = aθ, D = 2a, it is easily seen that Eq.13.145 will
become (intermediate steps are left to the reader)
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Fig. 13.17 Variation of
Nusselt number with angle
from the stagnation point for
laminar boundary layer flow
past a cylinder

NuD,θ =
√
sin θ

ζT
a

[
aT + ζT

a
(1 − bt ) cot θ

]√
ReD (13.161)

A plot of the variation of local Nusselt number with angle is shown in Fig. 13.17.
The plot stops at the separation point. Beyond this point the integral method can not
be used.

13.5.4 Effect of Pressure Gradient on Boundary Layer Flow

Wehave seen based on the integral solution that the potential flowpressure vari-
ation affects the flow within the boundary layer. When the pressure decreases
with x , such as when the potential flow is accelerating, the potential flow is
said to impose a favorable pressure gradient on the boundary layer. Shear force
at the wall due to friction leads to an increase in the boundary layer thickness
as the flow develops along x . We also see that this has an effect of reducing
the wall shear with x and hence the derivative of x velocity with y. At a cer-
tain location, the velocity gradient actually becomes zero and flow separation
takes place, thereafter. Beyond the separation point the fluid separates with a
reversed flow region next to the boundary. The pressure variation departs from
the ideal or potential flow pressure variation. Pressure varies very little beyond
the separation point.

As an example, we look at the flow past a cylinder. The pressure variation
is symmetric with respect to θ = 90◦, in the case of potential flow, as shown
by the full line in Fig. 13.14. In case of laminar viscous flow past the cylinder,
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Fig. 13.18 Variation of
laminar boundary layer
velocity profiles with θ
according to the integral
method

the pressure variation departs from the potential flow value as shown by the
dotted line. The pressure coefficient decreases with θ and the flow separates
at around θ = 82◦ even before the flow reaches the minimum pressure point
at θ = 90◦. The pressure head is used up in supporting the acceleration of
the flow as well as in making up for the momentum loss due to wall shear.
Beyond the separation point the pressure does not recover and stays more or
less constant. The flow separates from the body since the pressure variation
is incapable of supporting the flow were it to follow the contour of the body.
The zero streamline separates from the body such that the pressure variation is
supportable by the potential flow. Close to the separation point the boundary
layer assumptions are actually violated and hence the flow cannot be computed
using the boundary layer equations.

In order to explain the above observations, we show the velocity profiles
computed by the integral method for flow past a cylinder in Fig. 13.18. The
flow past the cylinder is from left to right. Velocity profiles are shown at four
angular locations as indicated. The boundary layer thickness at each station is
indicated by the—o—indicated in each of the profiles.We see that the boundary
layer thickness increases with θ. The case shown corresponds to a flow with
ReD = 200. The flow separates at around θ = 105◦. This is an over-prediction
by about 30% as compared to the value of θ ≈ 82◦, observed experimentally.

The important point to notice is that the potential flow pressure distribution
that is symmetric is changed by the presence of viscosity to a distribution that
is not symmetric. This has the effect of imposing a drag on the cylinder which
is referred to as the form drag. The boundary layer also imposes a viscous drag
on the cylinder via the wall shear stress.
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Fig. 13.19 Forces on an
area element on the cylinder
in cross flow

13.5.5 Drag Force on a Cylinder in Cross Flow

From application point of viewwhat would be of interest is the total drag experienced
by a cylinder in cross flow. The drag force is made of two parts:

• Force experienced by the cylinder due to the variation of the fluid pressure along
its surface

• Drag force due to fluid friction

Figure13.19 shows an area element on the surface of the cylinder along with the
forces acting on it. The fluid pressure acts radially inwards and has a force component
p cos θ d A parallel to the direction of U∞. Integration with respect to θ gives the
total force acting on the cylinder due to fluid pressure.

Fp =
2π∫
0

p cos θ adθ = 2a

π∫
0

p cos θ dθ (13.162)

The second step follows from the fact that the flow is symmetric with respect to the
horizontal axis. It is customary to represent the drag force via a Drag coefficient
defined as

FD = CD
ρ∞U 2∞

2
A (13.163)

where A is the projected area facing the flow given by A = D × 1 = 2a assuming
unit length of cylinder. The form drag may then be characterized by a form drag
coefficient given by

CDp = Fp

ρ∞U 2∞
2

A

=

π∫
0
p cos θdθ

ρ∞U 2∞
2

The pressure may be written in terms of the pressure coefficient as p = p∞ +
Cp

ρ∞U 2∞
2 . The above equation may then be recast as
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Fig. 13.20 Schematic of
separating laminar flow past
a cylinder

CDp =
π∫

o

(
p∞ + Cp

ρ∞U 2∞
2

)

ρ∞U 2∞
2

cos θdθ =
π∫

0

Cp cos θdθ (13.164)

since the p∞ part integrates to zero. The pressure distribution over the cylinder may
be integrated to get the form drag.

If the flow is also symmetrical with respect to the vertical axis, as in the case of
potential flow the net pressure force is zero and hence there is no pressure or form
drag. In the limit of Reynolds number approaching zero, inertia forces are negligible
and the flow tends to be symmetric with respect to the vertical axis and the form
drag vanishes. The drag is then dominated by viscous drag or friction drag. In the
case of laminar boundary layer flow (as the Reynolds number increases), we have
seen that the flow separates at around θ = 82◦, and there is a recirculating flow at the
back of the cylinder where the pressure is low. The wake region is relatively wide as
indicated in Fig. 13.20. Hence, there is a net force acting against the cylinder giving
rise to form drag. The form drag dominates over the viscous drag.

The shear stress acts tangentially as shown and has a force component τw sin θ
parallel to the direction ofU∞. The total viscous drag force is obtained by integration
as

Ff = 2

π∫
0

τw sin θ adθ

Again this may be recast in the form of a Drag coefficient CDf given by

CDf =
2

π∫
0

τw sin θ adθ

ρ∞U 2∞
2

A

=

π∫
0

τw sin θ dθ

ρ∞U 2∞
2

Introducing now the friction coefficient C f = τw

ρ∞U 2∞
2

the above equation may be

recast as
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Table 13.4 Distribution of friction coefficient and Nusselt number on a cylinder in laminar flow

θ◦ θ rad C f,x
NuD
Re0.5D

θ◦ θ rad C f,x
NuD
Re0.5D

0 0 0 1.1403 55 0.9599 5.0593 0.9345

5 0.0873 0.0726 1.1393 60 1.0472 5.3536 0.8953

10 0.1745 0.2866 1.1344 65 1.1345 5.4977 0.8527

15 0.2618 0.6312 1.1259 70 1.2217 5.4755 0.8067

20 0.3491 1.0888 1.1139 75 1.3090 5.2766 0.7572

25 0.4363 1.6359 1.0983 80 1.3963 4.8963 0.7041

30 0.5236 2.2444 1.0795 85 1.4835 4.3343 0.6474

35 0.6109 2.8824 1.0573 90 1.5708 3.5926 0.5870

40 0.6981 3.5164 1.0317 95 1.6581 2.6696 0.5228

45 0.7854 4.1121 1.0027 100 1.7453 1.4791 0.4545

50 0.8727 4.6366 0.9703 103 1.7977 0.0915 0.4040

CDf =
π∫

0

C f sin θ dθ (13.165)

As an example consider the case considered earlier by the application of Thwaites’s
method. The x-component (this is the usual x-direction—not along the surface of
the cylinder) of the friction coefficient is shown tabulated in Table13.4 for various
angles measured from the forward stagnation point.

The point of separation is identified at θ = 103◦. Beyond the point of separation
experiments indicate that the shear stress is negligibly small and hence the integration
indicated in Eq.13.165 may be terminated at θs , the angle at separation point. The
indicated integration needs to be performed numerically and the resulting expression
for the frictional drag coefficient is

CDf = 5.626√
ReD

(13.166)

Example 13.8

Air flows normal to the axis of an infinitely long cylinder of diameter D = 1cm
with a velocity of U∞ = 0.5m/s. The pressure and temperature of air stream may
be taken, respectively, as p∞ = 1atm and T∞ = 20 ◦C. Determine the drag force
per unit length of the cylinder. If the cylinder is maintained at a temperature of
Tw = 40 ◦C how much heat per unit length will be lost from the cylinder?
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Solution:

Step 1 From the given data, air properties are taken at a temperature of T f =
Tw+T∞

2 = 40+20
2 = 30 ◦C.

ρ f = 1.1552 kg/m3; ν f = 16.115 × 10−6 m2/s; k f = 0.0266 W/m◦C; Pr f = 0.71

Step 2 The Reynolds number based on the cylinder diameter is then given by

ReD = U∞D

ν∞
= 0.5 × 0.01

16.115 × 10−6
= 310.3

Step 3 The Drag coefficient at this Reynolds number is CD = 1.3 as read from
Fig. 14.14. Hence, the drag force experienced by the cylinder per unit
length is

FD = (CD)

(
ρ f U

2∞
2

)
D = (1.3)

(
1.1552 × 0.52

2

)
× 0.01 = 0.002 N/m

Step 4 The heat transfer calculation is based on the observation that the Prandtl
number dependence of the Nusselt number appears through a factor Pr

1
3

such that the calculation presented earlier leads to an overall Nusselt num-
ber given by

NuD =
(
0.525Re

1
2
D + 0.001ReD

)
Pr

1
3
f

where the first term in the braces is the contribution up to the point of
separation and the second term due to heat transfer from the separated
region. The latter is based on experimental observations. Hence, we have

NuD =
(
0.525 × 310.3

1
2 + 0.001 × 310.3

)
0.71

1
3 = 9.525

Step 5 The average heat transfer coefficient is then calculated as

h = NuDk f

D
= 9.525 × 0.0266

0.01
= 25.34 W/m2◦C

Step 6 Heat transfer from unit length of the cylinder then is

Q = hD(Tw − T∞) = 25.34 × 0.01 × (40 − 20) = 5.07 W/m
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Concluding Remarks

Flow past a body and heat transfer from the body to the flowing fluid have been
dealt with in detail. Detailed description of boundary layer hypothesis and the
solutions obtained therefrom are discussed. Approximate integral method of
solution is also described in great detail. Flows with and without axial pressure
gradient are considered with flow past a cylinder being the most important case
where pressure changes over the surface.

13.6 Exercises

Ex 13.1: An electric air heater consists of a horizontal array of thin metal strips
each 10mm long in the direction of an air stream that is in parallel flow
over the top of the strips. Each strip is 0.2m wide and 25 strips are
arranged side by side forming a continuous and smooth surface over
which the air flows at 2m/s. During operation each strip is maintained
at 150 ◦C and the air is at 25 ◦C.

• What is the convection heat transfer rate from the first strip?
• What is the convection heat transfer rate from all of the strips?

Ex 13.2: (a) The velocity profile in a laminar boundary layer flow over a flat plate
is represented by a quadratic function given by u

U = Aη2 + Bη + C ,
where U is the free stream velocity, A, B, and C are constants, and
η = y

δ
where δ is the momentum boundary layer thickness. Obtain an

expression for the friction coefficient C f using the above profile and
the momentum integral. Compare this with the value obtained from the
Blasius solution.
(b) Make a plot showing the approximate velocity profile as well as the
Blasius profile and comment on it.

Ex 13.3: (a) The velocity profile in a laminar boundary layer flow over a flat plate
is represented by the relation u

U = A sin
( πη

2

)
,whereU is the free stream

velocity, A is a constant, and η = y
δ
where δ is themomentum boundary

layer thickness. Obtain an expression for the friction coefficient C f

using the above profile and the momentum integral. Compare this with
the value obtained from the Blasius solution.
(b) Make a plot showing the approximate velocity profile as well as the
Blasius profile and comment on it.

Ex 13.4: A thin metal plate of size 0.2 × 0.4m is held in water with ν =
10−6 m2/s and ρ = 1000kg/m3. The water velocity is 1m/s.What is the
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drag force acting on the plate? Which edge, the longer or the shorter,
should be aligned with the flow to get a lower drag force?

Ex 13.5: A thin flat plate of size 0.3 × 0.6m is maintained at a constant temper-
ature of 50 ◦C by removing the heat gained by it from an air stream
at 100 ◦C flowing parallel to its surface. In the first arrangement, the
longer side is aligned parallel to the air stream moving with such a
speed that Reynolds number based on its length is 1.5 × 105. What is
the rate at which heat is to be removed from the plate?
In a second arrangement, the same plate is placed in an air stream with
the shorter side aligned parallel to the air stream. The temperatures
of the stream and the plate are as given in the previous arrangement.
What is the air velocity in this case if the rate at which heat is removed
remains the same?

Ex 13.6: Evaluate the velocity and momentum boundary layer thicknesses at the
trailing edge in the following two cases:

• Air at 30 ◦C flows parallel to a flat plate with a free stream speed
of 10m/s and the plate length is such that the flow is just critical at
its trailing edge.

• Water at 30 ◦C flows parallel to the same flat plate such that the
flow is just critical at its trailing edge.

The plate temperature is the same and equal to 10 ◦C in both cases.

Ex 13.7: Air at a free stream temperature of 30 ◦C flows parallel to a thin flat
plate with a velocity of 2m/s. The plate that is 2.5m long is maintained
at a constant temperature of 80 ◦C. Determine the drag offered by the
plate and the total heat transfer from the plate to the air stream.

Ex 13.8: Solve the Blasius equation numerically using the 4th Runge–Kutta
method using the procedure suggested in the text.

Ex 13.9: Using the Blasius solution obtained in Exercise13.6 obtain the temper-
ature profile within the flat plate thermal boundary layer for one Prandtl
number less than 1 and a second Prandtl number more than 1.

Ex 13.10: An air stream flowing with a velocity of 2m/s encounters a wedge at an
angle of 30◦ to it. Obtain the boundary layer parameters at a distance
of 0.05m from the apex of the wedge using (a) Falkner–Skan solution
and (b) Thwaite’s method. Compare the two results.

Ex 13.11: Consider flow past a wedge of included angle of 75◦. What is the wedge
parameterm inthiscase?ObtainsolutiontotheFalkne–Skanequationfor
this valueofm numericallyusing the fourth-orderRunge–Kuttamethod.
Based on the numerical solution obtain all the boundary layer parame-
ters at a distance of 0.05m from the apex of the wedge. The fluid is air
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at atmospheric pressure and 30 ◦C and the free stream velocity is 5m/s.
The wedge surface is maintained at a uniform temperature of 60 ◦C.

Ex 13.12: Air at a free stream temperature of 30 ◦C flows normal to a cylinder of
0.2m diameter maintained at a temperature of 70 ◦C. The velocity in
the free stream is 10m/s. Using Thwaite’s method, determine the wall
shear stress and heat flux at θ = 45◦ from the forward stagnation point.



Chapter 14
Convection in Turbulent Flow

Study of heat transfer in turbulent flow is important because of the prevalence
of turbulent flow in most engineering applications. We deal with both internal and

external flow situations. Since rigorous analysis is of limited value in an elementary
treatment of the subject, we treat the topic using mostly empirical data from
experimental work done over the last 100 years or so. Useful correlations are presented
so that many important applications may be analyzed.

14.1 Introduction

Turbulent flow and heat transfer is more common in engineering applications than
laminar flow and heat transfer that has been the subject of the previous two chapters.
Analysis of turbulent flow is substantially more complex, as will become clear later
on, and hence our understanding of turbulent flows is largely through experimental
observations. In this chapter, we make an attempt to give a first level treatment of
a rather complex subject just so that the reader may be able to do some simple but
application-oriented problems in heat transfer.More advanced textsmay be consulted
by the interested reader.1 In view of this both internal and external turbulent flows
are considered in this chapter.

1H. Schlichting & K. Gersten, Boundary Layer Theory, 8th Edition, Springer 2000.
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Fig. 14.1 Schematic of
Reynolds experiment

Fig. 14.2 Velocity
fluctuations with respect to
time in steady turbulent flow

Experiments performed by Reynolds2 indicate that Reynolds number (after him)
affects the structure of flow. The experiment essentially consists in observing the
path of a dye introduced into a tube flow. When the Reynolds number based on the
pipe diameter is less than about 2300, the dye flows along in an orderly fashion with
very little lateral mixing. The state of affairs is as shown in Fig. 14.1a. As the fluid
velocity is increased and the Reynolds number is in the range 2300–10,000, the dye
starts showing some irregularity in its structure and the lateral mixing shows signs of
increase. If the flow velocity is increased further and the Reynolds number is greater
than 10,000 the dye injected into the flow rapidly diffuses (or, to put it more properly,
mixes) in the radial direction and the entire flow field becomes colored as indicated
in Fig. 14.1b. The flow is said to be fully turbulent.

In the case of turbulent flow, as opposed to laminar flow, there are unsteadyvelocity
and temperature fluctuations even when the flow is steady. The velocity, for example,
will have a steady component that may depend on the location, accompanied by a
fluctuating component. A typical velocity trace at a given location will appear as
shown in Fig. 14.2.

The velocity at a point in the flow, say u the x component, at any time t , may be
written as a sum of a mean value u and a fluctuating component u′. Similar is the
case with other velocity components, and also pressure and temperature at any point
in the flow field. If we average the signal over a large enough time interval, say �t ,
the fluctuations will average out to zero indicating that they are randomly distributed
in time. Thus, we have

2Osborne Reynolds, 1842–1912, British Fluid Dynamicist. The original experimental setup by
Reynolds is still at the University of Manchester where he spent his entire career.
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u = 1

�t

t+�t∫

t

udt = 1

�t

t+�t∫

t

(u + u′)dt; with
1

�t

t+�t∫

t

u′dt = u′ = 0

Thus, we may generalize and say that all fluctuating components have zero means.
However, quantities like u′2, u′v′, u′T ′, etc., have non-zero values. Such quantities
are expected to differentiate turbulent flows from laminar flows, since such terms
make their appearance when the governing momentum and energy equations are
time averaged. The process of averaging defined above is referred to as Reynolds

averaging.3 It is easy to visualize that ρ(u′2+v′2+w′2)
2 is nothing but the mean kinetic

energy per unit volume, due to fluctuations in the velocity components with respect
to time. The magnitude of the turbulent energy is related to the intensity of turbu-
lence. The origin or production of turbulent kinetic energy and the dissipation of this
provides the framework for describing turbulent flows. We shall see later on that the
quantity ρu′v′ relates to turbulent shear stress and v′T ′ relates to turbulent heat flux.

14.2 Time-Averaged Equations

In order to understand the intricacies involved in turbulent flows, and at the same
time to keep the discussion simple, we consider the turbulent boundary layer flow in
greater detail here. The starting point for the study is the boundary layer equations
given earlier as Eqs. 13.1, 13.15 and 13.12.4 In the case of turbulent flow, each
velocity component is replaced by the sum of the mean value along with the random
fluctuating component. For example, the time averaging of the inertia term u ∂u

∂x will
be written as

u
∂u

∂x
= (ū + u′)

∂(ū + u′)
∂x

= ū
∂ū

∂x
+ ū′ ∂ū

′

∂x
+ ū

∂ū′

∂x
+ ū′ ∂ū

∂x

The last two terms drop off because the time average of the fluctuating components
are zero. Hence, the above may be rewritten as

u
∂u

∂x
= ū

∂ū

∂x
+ ū′ ∂ū

′

∂x
= ū

∂ū

∂x
+ ∂ u′2

2

∂x
(14.1)

The second inertia term may also be time averaged, in an analogous manner to get

3Time-averaged governing equations are referred to as Reynolds Averaged Navier Stokes Equations
or RANS Equations.
4Even though we are considering the Cartesian form here, it is possible to do a similar analysis
using equations in the other two coordinate systems, viz., cylindrical and spherical coordinates.
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v
∂u

∂y
= v̄

∂ū

∂y
+ v′ ∂u

′

∂y

We may write the second term as

v′ ∂u
′

∂y
= ∂u′v′

∂y
− u′ ∂v′

∂y

The equation of continuity requires that

∂ū

∂x
+ ∂v̄

∂y
+ ∂ū′

∂x
+ ∂v̄′

∂y
= 0

Of course the mean velocity components should satisfy the continuity equation.
Hence, the first two terms add up to zero. Hence, we have

∂ū′

∂x
+ ∂v̄′

∂y
= 0 or

∂ū′

∂x
= −∂v̄′

∂y

Hence, we have

v
∂u

∂y
= v̄

∂ū

∂y
+ ∂u′v′

∂y
+ u′ ∂u

′

∂x
= v̄

∂ū

∂y
+ ∂u′v′

∂y
+ ∂ u′2

2

∂x
(14.2)

Similarly, we may write for the other terms in the momentum equation as

ν∞
∂2u

∂y2
= ν∞

∂2ū

∂y2
; − 1

ρ∞
dp

dx
= − 1

ρ∞
d p̄

dx
(14.3)

Combining expressions 14.1–14.3, we obtain the time-averagedmomentum equation
in the boundary layer as

ū
∂ū

∂x
+ v̄

∂ū

∂y
= − 1

ρ∞
d p̄

dx
+ ν∞

∂2ū

∂y2
− ∂u′2

∂x
− ∂u′v′

∂y
(14.4)

Time averaging has thus yielded two extra terms (last two terms on the RHS of
Eq.14.4) in the momentum equation. The first of these two terms is axial derivative
of the time average of u′2 while the latter is the normal derivative of the time average
of u′v′. The time-averaged u′2 and u′v′ are expected to be of the same order of
magnitude. However, if we invoke the boundary layer assumption the x derivative
should be much smaller than the y derivative, and hence we may ignore the term
containing the time-averaged u′2 in Eq.14.4. With this proviso, we approximate the
time-averaged momentum equation as
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ū
∂ū

∂x
+ v̄

∂ū

∂y
= − 1

ρ∞
d p̄

dx
+ ν∞

∂2ū

∂y2
− ∂u′v′

∂y
(14.5)

Similarly the energy Eq.13.12 may be written in the time-averaged form as

ū
∂T̄

∂x
+ v̄

∂T̄

∂y
= α∞

∂2T̄

∂y2
− ∂v′T ′

∂y
(14.6)

14.2.1 Turbulent Shear Stress and Turbulent Heat Flux

Comparison of Eqs. 14.5 and 14.6 with the laminar boundary layer equations shows
that additional termsmake their appearance in the turbulent time-averaged equations.
Note that the viscous term ν∞ ∂2 ū

∂y2 may be interpreted as 1
ρ∞

∂τlam
∂x where τlam is the

viscous shear stress . The last result follows fromNewton’s law of viscosity. We may
similarly interpret the term− ∂u′v′

∂y as 1
ρ∞

∂τturb
∂y , where τturb = −ρ∞u′v′ is the turbulent

shear stress (also known as the Reynolds stress).5 In view of this, we may write the
time-averaged momentum equation as

ū
∂ū

∂x
+ v̄

∂ū

∂y
= − 1

ρ∞
d p̄

dx
+ 1

ρ∞
∂(τlam + τturb)

∂y
(14.7)

In a similar fashion, we can interpret v′T ′ as being related to a turbulent heat flux
qturb arising from fluctuating velocity and fluctuating temperature. In fact, we would
like to write the right-hand side of the time-averaged energy equation as

α∞
∂2T̄

∂y2
− ∂v′T ′

∂y
= 1

ρ∞Cp∞
∂(qlam + qturb)

∂y
(14.8)

In order to make the above possible and also make the turbulent quantities appear
like the laminar quantities, two quantities, ε—the eddy viscosity and εH—the eddy
diffusivity are introduced. These are defined through the relations

5If we were to Reynolds average the Navier Stokes equations, we would obtain a turbulent stress
tensor represented as a 3 × 3 matrix.



690 14 Convection in Turbulent Flow

ε = −u′v′
∂ū

∂y

, εH = v′T ′

∂T̄

∂y

(14.9)

With these definitions, the turbulent shear stress and turbulent heat flux are given by

τturb = ρ∞ε
∂ū

∂y
; qturb = −ρ∞Cp∞εH

∂T̄

∂y
(14.10)

14.2.2 Turbulent Boundary Layer Equations

The turbulent boundary layer equations are finally written in the following form:

(a)
∂ū

∂x
+ ∂v̄

∂y
= 0(b) ū

∂ū

∂x
+ v̄

∂ū

∂y
= − 1

ρ∞
d p̄

dx
+ (ν∞ + ε)

∂2ū

∂y2

(c)ū
∂T̄

∂x
+ v̄

∂T̄

∂y
= (α∞ + εH )

∂2T̄

∂y2

(14.11)

It is to be noted that while ν∞ and α∞ are properties of the fluid while the corre-
sponding turbulent quantities ε and εH are not. These depend actually on the flow and
also on the location within the flow. The Reynolds averaged equations have thrown
up new quantities ε and εH which have to be determined or specified in order to com-
plete the formulation. This action constitutes what amounts to providing “closure”
to the formulation.

Turbulence far away from bounding walls is not inhibited by high viscous forces
and is of isotropic nature. Near wall turbulence is affected by proximity to walls
since viscous effects provide damping for the turbulent fluctuations. At once we see
that turbulent flow is affected differently in different regions of flow. Several models
are available for describing these as described below.

14.3 Turbulence Models

The goal of all turbulence models is to provide a means of describing the variation of
turbulent stresses and fluxes within the flow field. Models may be very simple using
algebraic expressions or very complex involving the solution of partial differential
equations. Generally, thesemodels require numerical solution of the governing equa-
tions and hence cannot be covered in the present book. All these models are based
on experimental observations made by various investigators over the past 100years
or so.
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Fig. 14.3 Mixing in
turbulent flow characterized
by the mixing length

Within the boundary layer, three regions may be distinguished according to the
relative magnitude of turbulent viscosity and turbulent diffusivity, in comparison,
respectively, with the fluid viscosity and the thermal diffusivity. To carry out the
analysis, we shall look at the simplest of models of turbulence, viz., Prandtl’s mixing
length theory.

14.3.1 Prandtl’s Mixing Length Theory

Any analysis of turbulent flow should be able to formulate the basic equations in
terms of the properties of the time-varying fluctuations in velocity and temperature.
In fact, ε and εH are only shortcut symbols for these and just do not, as yet, reflect any
physics. A method or model for obtaining these is necessary if Eqs. 14.11(a)–(c) are
to be of any use. Prandtl argued that the turbulent viscosity and diffusivity arise out
of large-scale motions due to turbulence just as molecular level fluctuations explain
the transport properties through the concept of mean free path.

We assume that the fluctuating components u′,v′, and T ′ retain their identity over
a length l called the mixing length. This is shown schematically in Fig. 14.3.

The fluctuation of the velocity components at y is assumed to be due to the
difference in the mean velocities at y + l and y − l from that prevailing at y. Thus,
the fluctuation in velocity u at y is given by

u′ ∝ l
∂ū

∂y
(14.12)

The fluctuations in v′ is also assumed to be of the same order of magnitude, and
hence the turbulent shear stress may be written as

τturb = ρ∞l2
[

∂ū

∂y

]2

(14.13)

In an analogous manner, we may write an expression for turbulent heat flux as
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qturb = −ρ∞l2H

[
∂T̄

∂y

]2

(14.14)

In Eq.14.14, the mixing length for temperature is taken as lH . Comparing these with
Eq.14.10, it is clear that the turbulent viscosity and diffusivity are given by

ε = l2
∂ū

∂y
, εH = l2H

∂T̄

∂y
(14.15)

Analogous to Pr = ν
α
, we may also define a turbulent Prandtl number given by

Prturb = ε

εH
=

l2
∂ū

∂y

l2H
∂T̄

∂y

(14.16)

Experimental data indicates that the turbulent Prandtl number is close to one.

14.3.2 Universal Velocity Distribution

Let us consider the mixing length concept in more detail. It is clear that very close
to a solid wall the mixing length has to be small and should actually be zero at the
wall. The simplest variation of the mixing length variation with y that satisfies this
requirement is a linear variation in the form l = Cy where C is a constant. Also if it
is assumed that the shear stress is constant at its value τw at the wall, we have, using
Eq.14.13

τw = ρ∞C2y2
[

∂ū

∂y

]2

(14.17)

Introducing the friction velocity v∗ =
√

τw

ρ∞ , this may be recast in the form

∂ū

∂y
= v∗

Cy
(14.18)

Equation14.18 may be integrated once to get

ū = v∗

C
ln y + C ′

2 = C ′
1 ln y + C ′

2 (14.19)

For convenience, we have set v∗
C = C ′

1. C
′
2 is a constant of integration. We introduce

a non-dimensional velocity u+ = ū
v∗ and non-dimensional y coordinate given by
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y+ = v∗ y
ν∞ (y+ - Reynolds number based on friction velocity) and adjust the constants

suitably to get

u+ = C1 ln y
+ + C2 (14.20)

The velocity profile thus shows the characteristic logarithmic form.Constants appear-
ing in Eq.14.20 need to be obtained from measurements.

We identify three flow regions adjacent to the surface as follows:

1. Laminar (or viscous) sub-layer in the range 0 ≤ y+ ≤ 5 where ε � ν∞
and εH � α∞

2. Buffer layer spanning 5 ≤ y+ ≤ 30 in which ε ≈ ν∞ and εH ≈ α∞
3. Fully turbulent region for y+ > 30 where ε 	 ν∞ and εH 	 α∞

Within the laminar sub-layer, velocity varies linearly with distance. Inside the
buffer layer, the constants in the logarithmic profile are chosen so as to show conti-
nuity at the interfaces with the laminar sub-layer and the fully turbulent regions. In
the turbulent region, the constants in the logarithmic velocity profile are adjusted to
be in agreement with experiments. Thus, we get the following logarithmic velocity
profile which is referred to as the “universal velocity profile”.

u+ = y+ u+ = 5 ln(y+) − 3.05 u+ = 2.5 ln(y+) + 5.5
(a) Laminar sub (b) Buffer layer (c) Fully turbulent

layer region
(14.21)

A plot of the “universal velocity profile” is shown in Fig. 14.4.

14.3.3 Velocity Profiles in Pipe Flow

The three-layer model presented above also describes the state of affairs in pipe flow.
Consider a pipe of diameter with the pipe Reynolds number greater than 10,000.
The flow is turbulent, and the region 0 ≤ y ≤ R from the pipe wall is divided in to
three zones as in the case of the turbulent boundary layer. The fully turbulent region
is referred to as the turbulent core. Since the Reynolds number is very large, the
flow inside the pipe has all the characteristics of boundary layer flow with significant
gradients near the wall. The flow development is very rapid, and becomes fully
developed within a few pipe diameters. The velocity profile given in Fig. 14.4 then
applies in this case also.
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Fig. 14.4 Universal velocity
profile for turbulent flow

Power law velocity profiles

Power law velocity profiles have also been used to represent fully developed velocity
profiles in pipe flow. Noting that y = R − r , the velocity profile is represented in the
form

ū

Umax
=

(
1 − r

R

) 1
n

(14.22)

where Umax is the centerline velocity. The exponent n varies with the pipe Reynolds
number, between about 6 at ReD = 2 × 104 and 10 at ReD = 3 × 106. Denoting
the mean velocity across the pipe cross section as U , the following expression may
easily be obtained.

U

Umax
= 1

R2

R∫

0

2
ū

Umax
rdr = 2n2

(n + 1)(2n + 1)
(14.23)

We compare the turbulent velocity profiles for n = 6 and n = 10 with the laminar
fully developed profile in Fig. 14.5. It is observed that the turbulent profiles are more
“full” with very steep gradients near the pipe wall and largely uniform velocity in the
core. In comparison, the laminar profile varies significantly across the full section of
the pipe. The mean velocities for the turbulent profiles, according to Eq.14.23 are
U

Umax
= 0.791 for n = 6, U

Umax
= 0.866 for n = 10 while it is U

Umax
= 0.5 for laminar

flow.Another interesting comparison is that between the universal logarithmic profile
and the power law profile. We consider, as an example, pipe flow with ReD = 104.
The shear stress at the wall of the pipe can be related to the axial pressure drop by
making a momentum balance over an elemental length of the pipe. Representing the
pressure drop using the friction factor concept, we can easily show that
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Fig. 14.5 Comparison of
power law turbulent profiles
with laminar velocity profile

τw

ρ
= f U 2

8
= v∗2

This may be recast as
v∗

U
=

√
f

8

If we assume that the distance measured away from the pipe surface toward the
centerline is y, we may write y+ as

y+ = yv∗

ν∞
=

√
f
8Uy

ν∞
=

√
f

8
Rey

For pipe Reynolds number of 104, the measured value of friction factor is 0.0309
(more about turbulent friction factor in the next section). With ReD = 10,000, the
relation between y+ and Rey may be written as

y+ =
√

f

8
Rey =

√
0.0309

8
Rey = 0.0621Rey

The maximum value of y+ corresponds to the pipe axis with y = R and hence

y+
max = 0.0621ReR = 0.0621

ReD
2

= 0.0621 × 5000 = 310.7

The data for the logarithmic profile may be generated for 0 ≤ y ≤ R using
Eqs. 14.21(a)–(c) and made in to a plot as shown in Fig. 14.6. For comparison, the
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Fig. 14.6 Comparison of
logarithmic velocity profile
with power law profile for
pipe flow with ReD = 104

power law profile with n = 6 is also calculated and shown in the same plot. It is seen
that the power law profile does not resolve the laminar sub-layer properly. However,
it agrees very closely with the logarithmic profile away from the pipe wall.

14.4 Pressure Drop and Heat Transfer in Turbulent Pipe
Flow

14.4.1 Pressure Drop in Turbulent Pipe Flow

Pipes/tubes/ducts are commonly employed in engineering applications. Depending
on the manufacturing process and the material used, pipes may be either “smooth” or
“rough”. This classification is based on the relative height of surface imperfections
or surface roughness elements in comparison with the laminar sub-layer thickness. If
the roughness ε is much smaller than the laminar sub-layer thickness, i.e., ε+ << 5
the pipe is classified as smooth. If the roughness is comparable to the laminar sub-
layer thickness the pipe is classified as rough. The surface is considered to be fully
rough if ε+ > 70. In the case of a fully rough surface, the friction at the wall becomes
independent of Reynolds number. The shear stress at the wall is attributed to pressure
drag because of the flow past roughness elements. A full discussion of these as also
the appropriate modifications to the logarithmic velocity profile are given in Kays
and Crawford.6 Roughness plays an important role in determining the frictional
pressure drop in turbulent flow and hence plays the role of a second parameter, apart

6W.M.Kays and M.E.Crawford, Convective Heat and Mass Transfer, McGraw Hill International
Edition, 1993.
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from Reynolds number. Roughness plays a minor role as far as laminar pipe flow is
concerned.

The wall shear stress and hence the axial pressure drop may be determined if
the Reynolds number dependence of the velocity gradient in the laminar sub-layer
is known. This information comes basically from experimental measurements. For
smooth pipes, the turbulent friction factor is well represented by the formulae due to
Blasius.

(a) f = 0.316

Re0.25D

for ReD < 2 × 104 : (b) f = 0.184

Re0.2D
for ReD > 2 × 104

(14.24)

Rough pipe data is obtained from experiments on artificially roughened pipes
with inner walls coated with sand particles of the desired size. The friction factor is
evaluated using Colebrook–White equation.7

1√
f

= 1.14 − 2 log

(
ε

D
+ 9.35

ReD
√

f

)
(14.25)

This correlation requires iterative solution for f since it is in the form of a tran-
scendental equation. However, it may be solved with just one iteration if the initial
guess f0 is taken as

f0 = 1

4

[
log

(
ε

D
+ 21.238

Re0.9D

)
− 0.5682

]−2

(14.26)

The friction factor data is also available in the form of a graph known as the Moody
chart8 or Moody diagram. The friction factor is plotted for smooth as well as rough
tubes as shown in Fig. 14.7.

Example 14.1

Air at a temperature of 20 ◦C flows through a 19mm ID tube of copper which may
be assumed to be smooth. The mass flow rate through the tube is 0.03kg/s. Is the
flow laminar or turbulent? Calculate the pressure loss across a meter length of tube
if the mean pressure is 2bar.

7Colebrook, C. F. and White, C. M., “Experiments with Fluid Friction in Roughened Pipes”, Pro-
ceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 161 (906):
367–381, 1937.
8L.F. Moody, Trans. ASME, Vol. 66, p. 671, 1944.
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Fig. 14.7 Moody chart for friction factor in smooth and rough tubes

Solution:
The properties of air are taken at p = 2 bar = 2 × 105 Pa, T = 20 ◦C = 290K.
Assuming air to behave as an ideal gas with R = 287J/kgK, we have

ρ = p

RT
= 2 × 105

287 × 290
= 2.791 kg/m3

From air tables (pressure equal to one atmosphere and temperature of 20 ◦C), we have
the dynamic viscosity of air as μ = 18.09 × 10−6 kg/ms. The kinematic viscosity of
air is then obtained as

ν = μ

ρ
= 18.09 × 10−6

2.791
= 6.482 × 10−6 m2/s

The diameter of the tube is given as D = 19 mm = 0.019 m. The mass flow of air
is specified as ṁ = 0.03kg/s. Hence, the air velocity may be calculated as

U = ṁ

ρπ D2

4

= 0.03

2.791 × π × 0.0192
4

= 37.91 m/s

The tube Reynolds number is then calculated as

ReD = UD

ν
= 37.91 × 0.019

6.482 × 10−6
= 111124

The flow is turbulent. Hence, the friction factor may be calculated using Eq.14.24(b)
as

f = 0.184

1111240.2
= 0.018
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The reader may verify that this value of friction factor agrees with that read off
Moody chart. The pressure drop over a meter length of tube is then calculated as

−�p

L
= f ρU 2

2D
= 0.018 × 2.791 × 37.912

2 × 0.019
= 1900 Pa/m

Example 14.2

Consider Example14.1 again but assuming that the tube has become rough with
build up of scale and is characterized by a roughness of ε = 0.05mm. Calculate the
pressure drop per meter length in this case if all other data remains the same.

Solution:
The friction factor alone changes in this case as compared to the previous exam-
ple. With ε = 0.05mm, we have ε

D = 0.05
19 = 0.0026. The friction factor calculation

is based on the Colebrook–White equation. The initial value is calculated using
Eq.14.26 as

f0 = 1

4

[
log

(
0.05

19
+ 21.238

1111240.9

)
− 0.5682

]−2

= 0.0267

Using this in Eq.14.25, we get a better value of friction factor given by

1√
f

= 1.14 − 2 log

(
0.05

19
+ 9.35

111124 × √
0.0267

)
= 6.1396

or

f = 1

6.13962
= 0.0265

The reader may note that this also agrees with Moody chart. The pressure drop per
meter of tube may hence be calculated as

−�p

L
= f ρU 2

2D
= 0.0265 × 2.791 × 37.912

2 × 0.019
= 2797 Pa/m

14.4.2 Heat Transfer in Turbulent Pipe Flow

Tubes or pipes are used in most heat exchangers to convey fluids as heat transfer
takes place either from or to the fluid flowing inside them. Since turbulent flow and
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temperature development takes place over a length of a few diameters close to the
entrance invariably, the fully developed heat transfer rates are required in applica-
tions. An analysis of fully developed temperature problem may be made by starting
from the Reynolds averages equations in cylindrical coordinates as applicable to the
fully developed region. The velocity profile in the fully developed region follows
the universal logarithmic profile as discussed earlier. Analogously one would expect
the temperature profile also to show a similar behavior with the turbulent diffusivity
showing three regions within the flow field. For details, the reader should refer to
advanced books on heat transfer. Here, we shall present some useful correlations.

A characteristic of turbulent pipe flow is that the developmental length is limited
to a few diameters. Dimensional arguments have shown that the Nusselt number
should be a function of Reynolds and Prandtl numbers. Fully developed turbulent
heat transfer correlation is given by the Dittus Boelter equation. 9

NuD = 0.023Re0.8D Prn (14.27)

where n = 0.4 for heating (i.e., Tw > TB) and n = 0.3 for cooling (i.e., Tw < TB).
The above correlation is valid within the following range of parameters:

ReD ≥ 104; 0.7 ≤ Pr ≤ 160; and
L

D
> 10

The Dittus Boelter equation is valid only in case property variations of the fluid is
not significant. In case property variations are important, the following correlation
due to Sieder and Tate10 is recommended:

NuD = 0.027Re0.8D Pr
1
3

(
μ

μw

)0.14

(14.28)

In the above all properties except μw are evaluated at the mean fluid temperature.
μw alone is evaluated at the wall temperature. The range of parameters for which
Eq.14.28 is valid is given below

ReD ≥ 104; 0.7 ≤ Pr ≤ 16700; and
L

D
> 10

9F.W.Dittus andL.M.K.Boelter, Univ. of Calif, Berkeley, Publications onEng., Vol. 2, pp. 443–461,
1930.
10Sieder, E.N. and Tate, G.E., Heat transfer and pressure drop of liquids in tubes, Ind. Eng. Chem.,
Vol. 28, p. 1429, 1936.
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14.4.3 Application of Average Heat Transfer Coefficient
Concept to a Practical Application

Consider a flow in a tube whose wall is maintained at a constant temperature Tw.
Energy balance for an elemental control volume shown in Fig. 14.8 gives

dQ = ṁCpdTB = h(x) · (2πRdx)(Tw − TB)

Rearranging this, we have

dTB

Tw − TB
= 2πR

ṁCp
h(x)dx (14.29)

Integrate this between x = 0 (entry) and x = L (exit) to get

ln

[
Tw − TB,0

Tw − TB,L

]
= 2πR

ṁCp

L∫

0

h(x)dx = 2πRh̄L

ṁCp
(14.30)

where themean heat transfer coefficient has been defined as h̄ = 1
L

∫ L
0 h(x)dx . Equa-

tion14.30 may be written in the alternate form

Tw − TB,L

Tw − TB,0
= e− h̄SL

ṁCp (14.31)

where SL = 2πRL = πDL is the total heat transfer area from pipe entry to exit.
Using the relation ṁ = ρU πD2

4 , we have

h̄SL
ṁCp

= h̄πDL

ρU × πD2

4
× Cp

= 4 × h̄

ρUCp
× L

D

Fig. 14.8 Energy balance
for a fluid element
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Defining the non-dimensional quantity h̄
ρUCp

as Stanton number11 St we get

Tw − TB,L

Tw − TB,0
= e−(4×St× L

D ) (14.32)

Stanton number is related to the non-dimensional parameters that we are already
familiar with as shown under

St = h̄

ρUCp
= h̄D

k
× k

μCp
× μ

ρUD
= NuD

ReDPr
(14.33)

Example 14.3

Water at 40 ◦C at a mass flow rate of 0.5kg/s enters a 2.5cm ID tube whose wall
is maintained at a uniform temperature of 90 ◦C. Calculate the tube length required
for heating the water to 60 ◦C. Also determine the pressure drop across the length of
pipe.

Solution:
Given data is written down

ṁ = 0.5 kg/s, D = 25 mm = 0.025 m, TB,0 = 40 ◦C, TB,L = 60 ◦C, Tw = 90 ◦C

Water properties are evaluated at Tm = TB,0+TB,L

2 = 40+60
2 = 50 ◦C. From table of

properties of water, we have

ν = 0.568 × 10−6 m2/s, k = 0.064 W/m ◦C, Pr = 3.68 and ρ = 990 kg/m3

Hence, the dynamic viscosity of water is μ = ρν = 990 × 0.568 × 10−6 = 5.623 ×
10−4 kg/m s.
The velocity of water in the tube may be calculated as

U = 4ṁ

πD2ρ
= 4 × 0.5

π × 0.025 × 990
= 1.029 m/s

The Reynolds number is then given by

11Named after Thomas Edward Stanton, 1865–1931, British engineer who studied under Osborne
Reynolds.
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ReD = UD

ν
= 1.029 × 0.025

0.568 × 10−6
= 45285

The flow is turbulent and hence we may use the Sieder and Tate correlation, taking
into account the variation of properties, to calculate the Nusselt number. From tables,
we read off the kinematic viscosity and density at wall temperature of 90 ◦C as

νw = 0.329 × 10−6 m2/s′ ρw = 967.4 kg/m3

Hence, the dynamic viscosity of water at the wall temperature is

μw = ρwνw = 967.4 × 0.329 × 10−6 = 3.183 × 10−4 kg/m s

Hence, we have
μ

μw

= 5.623 × 10−4

3.183 × 10−4
= 1.767

Clearly the constant property assumption would not be valid. The Sieder and Tate
correlation is appropriate. Hence, using Eq.14.28, we have

NuD = 0.027 × 452850.8 × 3.68
1
3 × 1.7670.14 = 239.5

The mean value of the heat transfer coefficient is then given by

h̄ = NuDk

D
= 239.5 × 0.640

0.025
= 6131.2 W/m2 ◦C

With the various temperatures that are specified, we may calculate the temperature
differences ratio as

Tw − TB,L

Tw − TB,0
= 90 − 60

90 − 40
= 30

50
= 0.6

The Stanton number may be calculated as

St = NuD

ReDPr
= 239.5

45285 × 3.68
= 0.001437

Hence, using Eq.14.32,
e−4·St · L

D = 0.6

or solving for pipe length

L = −0.025 × ln(0.6)

4 × 0.001437
= 2.22 m
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Pressure drop is calculated assuming that the tube is smooth. Equation14.24(b) is
appropriate and hence

f = 0.184

452850.2
= 0.0216

The pressure drop over the length of the tube is then given by

−�p = f · L

D
· ρU 2

2
= 0.0216 × 2.2

0.025
× 990 × 1.0292

2
= 1005.3 Pa

14.5 Turbulent Boundary Layer over a Flat Plate

14.5.1 Approximate Analysis of Turbulent Flow Parallel to a
Flat Plate

Turbulent velocity profile

Extensive measurements indicate that the local friction coefficient in turbulent flow
is well correlated by the relation

C f x = 0.045
[ν∞
Uδ

] 1
4

(14.34)

valid in the Reynolds number range 5 × 105 ≤ Rex ≤ 107. In Eq.14.34, δ is the
local turbulent boundary layer thickness. The velocity profile within the turbulent
boundary layer is very well represented by the

( 1
7

)
th power law

u

U∞
=

[ y
δ

] 1
7

(14.35)

This relation is obviously not adequate immediately adjacent to the wall since the
flow must be laminar there. In fact, the derivative of expression 14.35 at y = 0 is
indeterminate. In order to circumvent this problem what is done is to evaluate the
wall shear stress based on expression 14.34. We make use of the momentum integral
to solve for the local boundary layer thickness. The term on the right-hand side of
the momentum integral is

− τw,x

ρ∞
= −C f,x ×U 2

∞ = −0.045

2
U 2

∞

[
ν∞
U∞δ

] 1
4

(14.36)
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The left-side of the momentum integral requires the evaluation of δ2, the momentum
thickness. This may be obtained using the velocity profile given by Eq.14.35.

δ2

U 2∞δ
=

1∫

0

u

U∞

(
u

U∞
− 1

)
d

( y

δ

)

=
∫ 1

0
η

1
7 (η

1
7 − 1)dη =

[
η

9
7

9
7

− η
8
7

8
7

]∣∣∣∣∣
1

0

= − 7

72

(14.37)

The momentum integral equation (Equation13.100) may now be simplified to read

7

72

dδ

dx
= 0.045

2

[
ν∞
U∞δ

]
(14.38)

Integration of this equation yields

7

72
· δ

5
4

5
4

= 0.045

2

[
ν∞
U∞

] 1
4

x + A (14.39)

where A is a constant of integration. We assume that the turbulent boundary layer
thickness is zero at x = 0 and hence choose A = 0. The local boundary layer thick-
ness is thus given by

δ

x
= 0.371

Re
1
5
x

(14.40)

We thus see that the boundary layer thickness varies as x
4
5 or as x0.8. This variation is

more rapid than the x0.5 growth in the case of the laminar boundary layer. Substitute
expression 14.40 back in expression 14.34 to get

C f,x = 0.045

⎡
⎣ ν∞Re

1
5
x

0.371U∞x

⎤
⎦ = 0.0583Re

− 1
5

x (14.41)

In order to appreciate the changes that take place in the velocity profile when flow
changes from laminar to turbulent flow, we compare laminar and turbulent velocity
profiles assuming that the two have the same boundary layer thickness. Figure14.9
shows that the turbulent velocity profile is “more full” as compared to the laminar
velocity profile.
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Fig. 14.9 Comparison of
laminar and turbulent
velocity profiles

14.5.2 Heat Transfer in the Turbulent Boundary Layer over a
Flat Plate

The approximate analysis of the velocity boundary layer problem is usually followed
by an analysis based on “analogy”. Different analogies are discussed below. The
common refrain in these is that we link the velocity and temperature fields.

Modified Reynolds or Colburn analogy

The simplest of the analogies is themodifiedReynolds or theColburn analogy. This is
a modification of the Reynolds analogy that is strictly valid for a fluid with Pr∞ = 1.
Colburn analogy is based on experimental observations and consists in introducing
a Prandtl number term in the Reynolds analogy (Eq.13.60—laminar flow case) as

St · Pr 2
3∞ = C f,x

2
(14.42)

The friction factor in the case of turbulent boundary layer flow given by Eq.14.41 is

modified to C f,x = 0.0592Re
− 1

5
x to bring it closer to experimental observations and

substituted in the above equation to get

St · Pr 2
3∞ = Nux

Rex Pr∞
· Pr 2

3∞ = Nux

Rex Pr
1
3∞

= 0.0592

2
Re

− 1
5

x

This may be recast in the form

Nux = 0.0296Re0.8x Pr
1
3∞ (14.43)
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Fig. 14.10 Schematic of the
velocity and temperature
variations in the turbulent
boundary layer

This relation is valid in the Reynolds number range 5 × 105 < Rex < 107 and
within 15% for Reynolds number up to 108. The Prandtl number may vary between
0.6 and 60. Note that this expression is very similar to the Dittus Boelter equation
that was presented while discussing turbulent tube flow.

We shall discuss two more analogies in the context of heat transfer from a flat
plate to a fluid in turbulent flow. The first one, the Prandtl analogy recognizes the
existence of a laminar sub-layer and an outer turbulent layer. The second one, the
von Karman analogy recognizes the existence of three layers that includes also a
buffer layer in between the laminar sub-layer and the outer turbulent layer.

Prandtl analogy

We have earlier presented the universal velocity profile in Fig. 14.4. It is clear that
very close to the wall the velocity varies linearly and in amarkedly non-linear fashion
outside it, in what we may consider as the fully turbulent layer. We assume that the
thermal boundary layer will also show a conduction layer close to the wall and a
fully turbulent region outside it. The velocity and temperature profiles are expected
to look like those indicated in Fig. 14.10. In the turbulent boundary layer, the shear
stress and heat flux are given by

τ = ρ∞(ν∞ + ε)
∂u

∂y
; q = −ρ∞Cp∞(α∞ + εH )

∂T

∂y
(14.44)

where we have indicated the time averaged velocity and temperature without the
“bar”. In the turbulent part of the boundary layer, we assume that the eddy viscosity
and eddy diffusivity aremuch larger than, respectively, the fluid viscosity and thermal
diffusivity. Since ε and εH are basically due to similar phenomena, it is reasonable
to assume that the turbulent Prandtl number is unity. With these, we have

q

τ
= − Cp∞

Prturb

∂T

∂u
≈ −Cp∞

∂T

∂u
(14.45)

Assuming that the temperature and velocity vary “gently” in the turbulent region,
the derivative may be approximated as ∂T

∂u = T∞−Tj

U∞−u j
. Hence, we have in the turbulent

region
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q

τ
≈ −Cp∞

T∞ − Tj

U∞ − u j
(14.46)

In the laminar sub-layer, we assume that the turbulent quantities are small in com-
parison with respective fluid properties. Also the velocity and temperature profiles
are linear. In view of these, we have q = qw = −k∞ ∂T

∂y = −k∞
Tj−Tw

δl
is constant and

τ = τw = μ∞ ∂u
∂y = μ∞

u j−0
δl

is constant . Taking the ratio of these, we get

q

τ
= qw

τw

= −Cp∞
Pr∞

Tj − Tw

u j
(14.47)

We assume that the ratio of heat flux to shear stress in the laminar sub-layer is equal
to the value in the turbulent layer. From Eq.14.46, we have

Tj = qw

τw

U∞ − u j

Cp∞
+ T∞

From Eq.14.47, we have

Tj = qw

τw

u j Pr∞
Cp∞

+ Tw

Equating the above two expressions we get

qw

τw

[
U∞ − u j

Cp∞
− u j Pr∞

Cp∞

]
= Tw − T∞

Defining the heat transfer coefficient as h = qw

Tw−T∞ , and rearranging, the above equa-
tion becomes

h =
Cp∞τw

U∞

1 + u j

U∞ (Pr∞ − 1)
(14.48)

Within the laminar sub-layer, we know from our earlier treatment in Chap. 12 that

u+ = y+ and hence u+
j = y+

j = 5. Thus, u j = 5u∗ = 5
√

τw

ρ∞ . Also the shear stress

may be written in terms of the friction coefficient as τw = C f x
ρ∞U 2∞

2 . Thus, we have

u j

U∞
= 5

√
τw

ρ∞U 2∞
= 5

√
C f x

2

Equation14.48 may then be simplified to read
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Prandtl

analogy
: Stx =

C f x

2

1 + 5
√

C f x

2 (Pr∞ − 1)

(14.49)
Equation14.49 is a mathematical representation of Prandtl analogy.

von Karman analogy
In this case, the three-layer model is made use of. Skipping the details, the final result
is given as

von Karman

analogy
: Stx =

C f x

2

1 + 5
√

C f x

2

[
(Pr∞ − 1) + ln

(
1 + 5

6 (Pr∞ − 1)
)]

(14.50)

Example 14.4

Consider flow of air at atmospheric pressure and 300 K parallel to a flat plate 2m
long. The velocity of air far away from the plate is 10m/s. The plate surface is held at
a constant temperature of 400K. Determine the heat transfer coefficient at the trailing
edge of the plate using the formulae based on the various analogies presented in the
text. Comment on the results.

Solution:

Step 1 Given data is written down first.

Plate length: L = 2m
Plate temperature: Tw = 400K

Free stream velocity: U∞ = 10m/s
Free stream temperature: T∞ = 300K

Step 2 Air properties are taken from tables of properties at the film temperature
of T f = 400+300

2 = 350K.

Density: ρ f = 0.995kg/m3

Kinematic viscosity: ν f = 20.92 × 10−6 m2/s
Thermal conductivity: k f = 0.030W/mK

Prandtl number: Pr f = 0.7

Step 3 Then, the Reynolds number at the trailing edge of the plate is

ReL = U∞L

ν f
= 10 × 2

20.92 × 10−6
= 9.56 × 105
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The flow is turbulent since the Reynolds number is greater than the criti-
cal Reynolds number Rec = 5 × 105. The heat transfer coefficient at the
trailing edge of the plate is now estimated using the three analogies given
in the text.

Step 4 (a) Colburn analogy: The Nusselt number is obtained using Eq.14.43 as

Nux = 0.0296 × (9.56 × 105)0.8 × 0.7
1
3 = 1599.7

The heat transfer coefficient is then given by

hL = NuLk f

L
= 1599.7 × 0.030

2
= 24 W/m2K

Step 5 (b) Prandtl analogy: The friction factor at x = L is calculated using
Eq.14.41 with the constant modified to 0.0592, as mentioned in the text,
as

C f,L = 0.0592 × (9.56 × 105)−
1
5 = 0.003769

The Stanton number is then obtained using Eq.14.49 as

StL =
0.003769

2

1 + 5
√

0.003769
2 (0.7 − 1)

= 0.002016

Noting that StL = NuL
ReL Pr f

, we have

NuL = StL ReL Pr f = 0.002016 × 9.56 × 105 × 0.7 = 1349

The heat transfer coefficient is then given by

hL = NuLk f

L
= 1349 × 0.030

2
= 20.2 W/m2K

Step 6 (c) von Karman analogy: The friction factor calculated above may now
be used in Eq.14.50 to get the Stanton number as

StL =
0.003769

2

1 + 5
√

0.003769
2

[
(0.7 − 1) + ln

(
1 + 5

6 (0.7 − 1)
)] = 0.00216

NuL is then calculated as

NuL = StL ReL Pr f = 0.00216 × 9.56 × 105 × 0.7 = 1445.5

The heat transfer coefficient is then given by
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hL = NuLk f

L
= 1445.5 × 0.030

2
= 21.7 W/m2K

All three analogies give heat transfer coefficient values within a 9% band
around a mean value of 22W/m2K.

The boundary layer in Example14.4 is visualized as shown in Fig. 14.11. The bound-
ary layer is laminar up to the critical point indicated by the vertical line marked xc.
The boundary layer thickness follows the lower curve till this point. Beyond this
point the boundary layer thickness follows the upper curve that has been obtained by
assuming that it passes through the origin. Even though the figure makes it appear
as though the boundary layer thickness is discontinuous at the critical distance, in
reality, there is a small region around the critical point where the boundary layer
changes from being laminar to turbulent.

Similar statements may be made with reference to the local friction coefficient
as well as the local heat transfer coefficients (h alone is in SI units). Scale factors
have been used to fit all the curves within the graph. It is generally observed that
there is an increase in both friction and heat transfer after transition from laminar to
turbulent flow.

Fig. 14.11 δ, C f,x , and hx
variations with x in
Example14.4
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14.5.3 Calculation of Drag with Flow Being Partly Laminar
and Partly Turbulent

When flow takes place over a flat plate, it may be partly laminar and partly turbulent
as seen in Example14.4. In case there is a transition to turbulent flow, it takes place
at a location x = xc such that Rexc = 5 × 105. For our purpose, it is acceptable to
assume that the transition takes place abruptly at x = xc. We may use the laminar
friction coefficient from the leading edge up to xc and the turbulent friction coefficient
from x = xc to the trailing edge at x = L, not withstanding the fact that the friction
coefficient is discontinuous at x = xc. The total drag force is obtained by integrating
the shear stress at the wall with respect to x , by writing the integral as a sum of two
integrals, to allow for the laminar and turbulent parts.

By definition, we have

τw,Lam(x) = C f,Lam(x)
ρ∞U 2∞

2
= 0.664Re

− 1
2

x
ρ∞U 2∞

2

in the laminar part and

τw,Turb(x) = 0.0592Re
− 1

5
x

ρ∞U 2∞
2

in the turbulent part. The total friction force per unit width of the plate may be
obtained by integration as

F = τwL =
∫ L

0
τw(x)dx =

∫ xc

0
τw,Lam(x)dx +

∫ L

xc

τw,Turb(x)dx

where τ̄w is the mean shear stress at the wall over the entire length of the plate. We
may rewrite the above by introducing the friction coefficient as

F = τwL = C f L
ρ∞U 2∞

2
=

[∫ xc

0
C f,Lam(x)dx +

∫ L

xc

C f,Turb(x)dx

]
ρ∞U 2∞

2

where C f represents the mean friction coefficient over the length of the plate. We
thus have

C f = 1

L

⎡
⎣

xc∫

0

0.664Re
− 1

2
x dx +

L∫

xc

0.0592Re
− 1

5
x dx

⎤
⎦

Wemay rewrite the above, after multiplying both the numerator and the denominator
by U∞

ν∞ as
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C f = 1

ReL

⎡
⎢⎣

Rexc∫

0

0.664Re
− 1

2
x d Rex +

ReL∫

Rexc

0.0592Re
− 1

5
x d Rex

⎤
⎥⎦

The indicated integration may be performed easily and the resulting expression for
the mean friction coefficient is

C f = 1

ReL

⎡
⎢⎣0.664

Re
1
2
x

1
2

∣∣∣∣∣∣
Rexc

0

+ 0.0592
Re

4
5
x

4
5

∣∣∣∣∣∣
ReL

Rexc

⎤
⎥⎦

= 1

ReL

[
1.328Re

1
2
xc + 0.074Re

4
5
L − 0.074Re

4
5
xc

]

Substituting Rexc = 5 × 105, we get

C f = 0.074

Re0.2L

− 1743

ReL
(14.51)

Calculation of heat transfer with flow being partly laminar and partly turbulent

We look at the calculation of the average heat transfer coefficient for flow past a
flat plate wherein the flow is partly laminar and partly turbulent. Assuming that the
transition takes place abruptly at x = xc, as in the above, the average heat transfer
coefficient may be defined as

h = 1

L

⎡
⎣

xc∫

0

hLam(x)dx +
L∫

xc

hTurb(x)dx

⎤
⎦

To keep the algebra simple, we shall make use of Colburn analogy to treat heat
transfer in turbulent flow. The heat transfer coefficients appearing on the right-hand
side of the above equation are given by Eq.13.53 (based on the solution to the Blasius
equation) and Eq.14.43 (based on Colburn analogy). Using these expressions, the
heat transfer coefficients in the laminar and turbulent regions of flow are written
down as
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hLam(x) = Nuxk

x
= U∞k

ν∞
Nux

Rex

= U∞k

ν∞
× 0.332Re

1
2
x Pr

1
3∞

Rex
= U∞k

ν∞
× 0.332Re

− 1
2

x Pr
1
3∞

hTurb(x) = U∞k

ν∞
× 0.0296Re

4
5
x Pr

1
3∞

Rex
= U∞k

ν∞
× 0.0296Re

− 1
5

x Pr
1
3∞

Substitute these in the equation defining themeanheat transfer coefficient to represent
the mean Nusselt number as

Nu = hL

k∞
= Pr

1
3∞

⎡
⎢⎣0.332

Rexc∫

0

dRex

Re
1
2
x

+ 0.0296

ReL∫

Rexc

d Rex

Re
1
5
x

⎤
⎥⎦ (14.52)

Performing the indicated integration, using Rexc = 5 × 105, we arrive at the follow-
ing expression for the average Nusselt number:

Nu = [
0.037Re0.8L − 871.3

]
Pr

1
3∞ (14.53)

Example 14.5

Consider air at a free stream temperature of 10 ◦C and free stream velocity of 15m/s
flowing parallel to a flat plate 1.5m long and held at a temperature of 90 ◦C. Cal-
culate the heat transfer from one side to the air stream. Also what is the drag force
experienced by the plate? Consider unit width of the plate.

Solution:
Step 1 Given data is written down as

U∞ = 15 m/s, T∞ = 10 ◦C, Tw = 90 ◦C, L = 1.5 m

Step 2 Air properties are based on the film temperature of T f = 10+90
2 = 50 ◦C.

They are

Density: ρ f = 1.088kg/m3

Kinematic viscosity: ν f = 18.65 × 10−6 m2/s
Thermal conductivity: k f = 0.0281W/mK

Prandtl number: Pr f = 0.703

Step 3 Reynolds number based on plate length L is
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ReL = U∞L

ν f
= 15 × 1.5

18.65 × 10−6
= 1.2 × 106

Since the Reynolds number based on plate length is greater than the critical
Reynolds number, the flow is partly laminar and partly turbulent.

Step 4 We use Eq.14.53 to calculate the mean Nusselt number.

Nu = [
0.037 × (1.2 × 106)0.8 − 871.3

]
0.703

1
3 = 1627

The average heat transfer coefficient is then obtained as

h = Nuk f

L
= 1627 × 0.0281

1.5
= 30.5 W/m2K

Step 5 Heat transferred from one side of the plate is then given by

Q = hL(Tw − T∞) = 30.5 × 1.5(90 − 10) = 3658 W/m

Step 6 The drag force experienced by the plate is calculated based on the mean
friction coefficient given by expression 14.51.

C f = 0.074

(1.2 × 106)0.2
− 1743

1.2 × 106
= 0.00305

The mean shear stress at the wall is given by

τw = C f
ρ f U 2∞

2
= 0.00305 × 1.088 × 152

2
= 0.373 Pa

The drag force experienced by the plate is then given by

F = τwL = 0.373 × 1.5 = 0.560 N/m

14.6 Cylinder in Cross Flow

In Chap.13, we have considered in detail laminar flow past a cylinder. Here our
concern will be with turbulent flow past a cylinder. Since the analysis of turbulent
flow is fairly complex, we shall present some physical features of turbulent flow and
present correlations that will be of use in solving problems.
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Fig. 14.12 Change of flow pattern close to transition to turbulent flow of a fluid flowing normal to
a cylinder a laminar flow b turbulent flow

Fig. 14.13 Pressure distribution around a cylinder in cross flow: comparison of potential and
turbulent flow pressure distributions

Consider the differences in flow pattern when laminar flow across a cylinder
changes to turbulent flowat about ReD = 4 × 105 as shown in Fig. 14.12. The separa-
tion point that occurs around θ = 82◦ in laminar flowmoves downstream to θ = 120◦
when the flow becomes turbulent. There is thus a smaller wake with low pressure and
hence the form drag reduces as the flow becomes turbulent. The pressure distribution
under turbulent conditions based on measured data is shown in Fig. 14.13. The CD

values shown in Fig. 14.12 clearly show this effect. There is an abrupt reduction in
the CD value at ReD = 4 × 105 from 0.6 to 0.25. These facts are also clear from the
CD versus ReD curve shown in Fig. 14.14.

We have already seen that the flow and temperature fields show analogous vari-
ations. Thus, we expect the heat transfer coefficient to vary with angle θ in a way
that mirrors the variation in the flow pattern. In applications it is seldom that we are
interested in the local Nusselt number. It is the mean Nusselt number that is impor-
tant to us. The Reynolds number and the Nusselt number are usually based on the
cylinder diameter. The mean Nusselt number is correlated by an equation of form



14.6 Cylinder in Cross Flow 717

Fig. 14.14 Variation of drag coefficient with Reynolds number for flow across a smooth cylinder

Table 14.1 Constants in the Zhukauskas correlation

ReD range C m

1–40 0.75 0.4

40−103 0.51 0.5

103−2 × 105 0.26 0.6

2 × 105−106 0.076 0.7

NuD = CRemDPr
n

(
Pr∞
Prw

) 1
4

(14.54)

Recently, based on experimental data, Zhukauskas12 has given the set of C , m, n
values that are to be used in Eq.14.54 and the range of validity of these. Table14.1
gives the values of the constants along with the ranges of applicability.

The above correlation is valid for 0.7 ≤ Pr ≤ 500, 1 ≤ ReD ≤ 106. n is specified
as 0.37 for Pr ≤ 10 and as 0.36 for Pr > 10. All properties are calculated at the
mean temperature, Tw+T∞

2 . Pr∞ and Prw are evaluated at free stream temperature
T∞ and wall temperature Tw, respectively.

Example 14.6

Air at a temperature of T∞ = 370K is flowing normal to a cylinder at an aver-
age velocity of U = 10m/s. The cylinder made of aluminum has a diameter of
D = 5mm and is L = 7.5cm long. The base of the cylinder is maintained at a

12A. Zhukauskas, in Advances in Heat Transfer, J.P. Hartnett and T.F. Irvine Jr (Eds.), Vol. 8, pp.
93–160, Academic Press N.Y.
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temperature of Tb = 310K.What is the heat gain by the cylinder if insulated tip con-
dition is assumed? What is the temperature of the insulated tip? Treat the cylinder
as a one-dimensional fin.

Solution:

Step 1 Assume that the properties of air are calculated at the mean of the cylinder
base temperature and the ambient air temperature. This is acceptable since
air properties are not very sensitive to temperature and the average temper-
ature of the fin may not be too far from its base temperature. The required
mean temperature is Tm = Tb+T∞

2 = 310+370
2 = 340K. Air properties are

taken from table of properties at this temperature:

Density: ρm = 1.0382kg/m3

Kinematic viscosity: νm = 19.55 × 10−6 m2/s
Thermal conductivity: km = 0.0293W/m◦C

Prandtl number: Prm = 0.7

Thermal conductivity of aluminum, the cylinder material is taken as kAl =
207W/m◦C.

Step 2 Reynolds number based on the cylinder diameter is calculated as

ReD = UD

νm
= 10 × 0.005

19.55 × 10−6
= 2558

Step 3 Zhukauskas correlation is used now to calculate the convective heat trans-
fer coefficient. For the Reynolds number range that brackets the above
value, Table14.1 gives C = 0.26, m = 0.6, and n = 0.37. Even though
the cylinder length is finite, we assume that the flow is largely two-
dimensional since L

D = 0.075
0.005 = 15 is large. Hence, we have

NuD = 0.26 × 25580.6 × 0.70.37 = 25.3

The average heat transfer coefficient then is

h = NuDkm
D

= 25.3 × 0.0293

0.005
= 148 W/m2 ◦C

Step 4 The non-dimensional fin parameter is calculated now as

μ = L

√
4h

kAl D
= 0.075

√
4 × 148

207 × 0.005
= 1.793

Step 5 The fin efficiency is calculated as



14.6 Cylinder in Cross Flow 719

η = tanh μ

μ
= tanh 1.793

1.793
= 0.528

Step 6 The heat gain by the cylinder is then calculated as

Q = πDLh(T∞ − Tb)η = π × 0.005 × 0.075 × 148(370 − 310) × 0.528

= 5.52 W

Step 7 The non-dimensional tip temperature is given by

θL = 1

cosh μ
= 1

cosh 1.793
= 0.324

But the non-dimensional tip temperature is θL = TL−T∞
Tb−T∞ . Hence, we have

TL = T∞ + θL(Tb − T∞) = 370 + (310 − −370) × 0.324 = 350.6 K

14.6.1 Heat Transfer for Flow Normal to a Tube Bank

Most heat exchangers have more than one cylinder arranged such that the flow of
one fluid takes place past them while a second fluid flows through them. In cross
flow heat exchangers (see Chap.15), the flow is normal to the tube bank and hence
practical formulae for calculation of heat transfer on the outside surfaces of a tube
bank are required. These are based on experimental data and are of the general form

NuD = CRemDPr
0.36

(
Pr∞
Prw

) 1
4

(14.55)

where tube diameter is used as the characteristic length scale. The other symbols have
their usual meanings. The factor containing the ratio of Prandtl numbers accounts
for variation of thermo-physical properties of the fluid. The relation given above
depends on the range of parameters as well as the arrangement of tubes in the bank.
Two possible arrangements of tubes in a bank are (a) Aligned or in line arrangement
and (b) Staggered arrangement, as shown in Fig. 14.15.

The bank of tubes are described by the transverse pitch ST , the longitudinal pitch
SL , and the diagonal pitch SD , as appropriate. The heat transfer is affected by the
flow through the free space available between the tubes. A downstream row of tubes
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Fig. 14.15 Two different arrangements of tubes in a tube bank

Table 14.2 Constants for use with correlating Eq.14.55

Aligned Staggered

ReD range C m C m

10 − 102 0.8 0.4 0.9 0.4

102 − 103 Use single tube formula

103 − 2 × 105 ST
SL

< 0.7 ST
SL

< 2

Do not use 0.35 0.6
ST
SL

> 0.7 ST
SL

> 2

0.27 0.63 0.4 0.6

2 × 105 − 106 0.021 0.84 0.022 0.84

will be affected by the flow in the wake of the tubes in the upstream row and these
effects depend on the various geometric parameters mentioned above. The constants
in the correlation Eq.14.55 are chosen from the values indicated in Table14.2. The
correlation given above is valid under the following conditions:

10 ≤ ReD ≤ 106, 0.7 ≤ Pr ≤ 500 (14.56)

Example 14.7

Air at free stream temperature of T∞ = 90 ◦C flows past a bank of tubes at a free
stream velocity of U = 3m/s. The tubes in the bank are of diameter D = 0.018m
each and arranged in a staggered arrangement with ST = 2D, SL = 2D. Determine
the mean heat transfer coefficient if the tubes are maintained at a mean temperature
of Tw = 30 ◦C. What happens if the tubes are aligned with the same transverse and
longitudinal pitches?

Solution:

Step 1 Since properties of air are not very sensitive to temperature, the factor
involving the ratio of Prandtl numbers may be taken as unity. The fluid
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properties, as usual, are evaluated at the mean temperature given by Tm =
T∞+Tw

2 = 90+30
2 = 60 ◦C.

Density: ρm = 1.0496kg/m3

Kinematic viscosity: νm = 19.08 × 10−6 m2/s
Thermal conductivity: km = 0.029 W/m◦C

Prandtl number: Prm = 0.7

Step 2 The Reynolds number may be determined as

ReD = UD

νm
= 3 × 0.018

19.08 × 10−6
= 2830

Staggered tube arrangement
Step 3 The ratio of transverse to longitudinal pitch is given by

ST
SL

= 2D

2D
= 1

The constants in theNusselt number correlation are chosen fromTable14.2
as C = 0.35, m = 0.6. The Nusselt number is obtained using Eq.14.55
as

NuD = 0.35 × 28300.6 × 0.70.36 = 36.3

Step 4 The mean heat transfer coefficient may then be obtained as

h̄ = NuDkm
D

= 36.3 × 0.029

0.018
= 58.4 W/m2 ◦C

Aligned tube arrangement
Step 5 The constants in theNusselt number correlation are chosen fromTable14.2

as C = 0.27, m = 0.63. The Nusselt number is obtained using Eq.14.55
as

NuD = 0.27 × 28300.63 × 0.70.36 = 35.5

Step 6 The mean heat transfer coefficient may then be obtained as

h̄ = NuDkm
D

= 35.5 × 0.029

0.018
= 57.2 W/m2 ◦C
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Example 14.8

Water at free stream temperature of T∞ = 60 ◦C flows past a bank of tubes at a free
stream velocity of U = 0.5m/s. The tubes in the bank are of diameter D = 0.018m
each and arranged in a staggered arrangement with ST = 2D, SL = 2D. Determine
the mean heat transfer coefficient if the tubes are maintained at a mean temperature
of Tw = 20 ◦C.

Solution:

Step 1 The fluid properties, as usual, are evaluated at the mean temperature given
by Tm = T∞+Tw

2 = 60+20
2 = 40 ◦C.

Density: ρm = 992.3kg/m3

Kinematic viscosity: νm = 6.564 × 10−7 m2/s
Thermal conductivity: km = 0.630W/m◦C

Prandtl number: Prm = 4.32

The Prandtl numbers at the wall and free stream temperatures are

Pr∞ = 2.967, Prw = 6.957

Step 2 The Reynolds number may be determined as

ReD = UD

νm
= 0.5 × 0.018

6.564 × 10−7
= 13711

The ratio of transverse to longitudinal pitch is given by

ST
SL

= 2D

2D
= 1

Step 3 The constants in theNusselt number correlation are chosen fromTable14.2
as C = 0.35, m = 0.6. The Nusselt number is obtained using Eq.14.55
as

NuD = 0.35 × 137110.6 × 4.320.36
(
2.967

6.957

)0.25

= 145.4

Step 4 The mean heat transfer coefficient may then be obtained as

h̄ = NuDkm
D

= 145.4 × 0.630

0.018
= 5089 W/m2 ◦C
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Concluding Remarks

Even though this chapter has been short because turbulent flow and heat transfer analysis is

complex and beyond the scope of the present book, a working knowledge is made available

to the reader. Most of the results have been based on empirical experimental knowledge. The

material in this chapter should be treated as a preparation for the reader to explore more

advanced treatment in books that deal specifically with turbulent flow and heat transfer.

14.7 Exercises

Ex 14.1: A fluid of kinematic viscosity equal to 1.5 × 10−6 m2/s flows with an
average velocity of 10m/s in a square duct of 0.08 × 0.08mcross section.
What is theReynolds number based on the hydraulic diameter? Is the flow
laminar or turbulent? What is the Nusselt if the flow is fully developed
and the Prandtl number is 0.7?

Ex 14.2: A 2m long pipe carries high pressure water at an inlet pressure of 2bars.
The diameter of the pipe is 18mm and the mass flow rate is 1kg/s. What
is the pressure drop due to friction between the inlet and the outlet? If
there are 1000 such tubes in parallel in the facility, what is the pumping
power required?

Ex 14.3: Water flows with a mean velocity of 1.7m/s in a boiler tube of inner
diameter of 0.018m. The tube is 2.5m long and the wall of the tube is at
a mean temperature of 90 ◦C. What is the pressure drop over the length
of the pipe? How much heat will be gained by water as it flows through
the tube length? Take into account the variation of water properties with
temperature, in the usual way.

Ex 14.4: A tube carries a flow of a certain fluid at a temperature of 20 ◦C. Due
to malfunction in the cooling system, the fluid temperature increases
abruptly to 43 ◦C. The density ρ and viscosity μ of the fluid are temper-
ature dependent and are given by

μ = μ20{1 − 0.0005(T − 20)} and ρ = ρ20{1 + 0.015(T − 20)}

where the quantities are all based on SI units, T is in ◦C, and the subscript
20 stands for the value of the property at 20 ◦C. The control system
that controls the pump, however, maintains the flow velocity constant.
Determine the fractional change in the pumping power. It is known that
the flow remains turbulent throughout.

Ex 14.5: Saturated steam at 2 atm condenses over a tube carrying cold water. The
heat transfer coefficient for condensing steam is so large that the outside
wall of the tubemay be assumed to be at the saturation temperature of the
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condensing steam. The cold water enters at 35 ◦C and a mean velocity of
1.7m/s. The tube is made of an alloy of thermal conductivity 125W/mK,
has an ID of 18mm and an OD of 21mm. The tube is 2.08m long. What
is the exit temperature of water?

Ex 14.6: Hot air at atmospheric pressure and 350K enters a bare duct of square
cross section 15 × 15cm that passes through a 2.5m long room. The
volume flow rate of air is 0.1m3/s. The duct wall is observed to be more
or less at a constant temperature of 330K.Determine the exit temperature
of the air and also the pressure drop between entry and exit.

Ex 14.7: Water at a temperature of 30 ◦Cflowswith free stream velocity of 2.5m/s
parallel to a flat plate maintained at a uniform temperature of 70 ◦C. The
plate is 2m long and 1mwide. Determine the total drag force on one side
of the plate. Also determine the total heat loss from the plate. Determine
also the thickness of the boundary layer as the flow leaves the plate.

Ex 14.8: A flat fin of 6061 Aluminum of thermal conductivity 180W/mK and
density 2760kg/m3 is attached to a base structure at 124 ◦C. It is exposed
on both sides to cool air stream at 30 ◦C flowing with a speed of 5m/s.
The width of the fin (parallel to the direction of flow) is 0.25m. What is
the maximum heat that may be dissipated if the mass of the fin is to be
limited to 0.1kg? What is the heat loss per unit mass? Calculate a mean
heat transfer coefficient modeling the flow of air as flow past a flat plate.

Ex 14.9: A gas of kinematic viscosity 10−6 m2/s flows parallel to a flat plate with a
velocity of 10m/s. The plate is 0.75m long.Determine the locationwhere
the boundary layer becomes turbulent. Also determine the thickness of
the boundary layer at (a) a location 0.2m from the leading edge and (b)
at the trailing edge of the plate.

Ex 14.10: Air flows with a velocity of 5m/s through a duct of 0.8m diameter, in
an air handling system. The duct is effectively 15m long. Determine the
pressure drop across the duct length. Assume that air enters the duct at a
temperature of 70 ◦C and leaves the duct at a mean temperature of 50 ◦C.

Ex 14.11: Turbulent boundary layersmaybe analyzedusing an approximatemethod
proposed by Head.13 Heat transfer in turbulent boundary layers may be
analyzed using an approximatemethodproposed by Jander.14 Study these
two papers and apply these to turbulent flow across a cylinder.

Ex 14.12: A cylindrical pin of 12mm diameter and 100mm length is maintained at
a constant temperature of 70 ◦C. The pin is placed with its axis normal
to a stream of 15 ◦C air moving with a velocity of 5m/s. What is the heat
loss from the pin to air. The two ends of the pin are perfectly insulated.

Ex 14.13: It is desired to protect a long cylindrical bolt of steel of 25mmdiameter by
a 15mm thick layer of mineral insulation that has a thermal conductivity
of 1.5W/m◦C. The outer surface of the insulation is exposed to 300 ◦C air
flowing at a velocity of 2.5m/s normal to the axis of the bolt. How much

13M.R. Head, A.R.C. Technical Report R. & M. No. 3152, 1960.
14B. Schulz-Jander, Acta Mechanica, Vol. 21, pp. 301–312, 1975.
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heat is to be removed from a unit length of the bolt if the temperature
along its axis is not to exceed 80 ◦C? What is the temperature of the
surface of insulation that is in contact with air? What is the temperature
at the interface between the steel bolt and the insulation layer? Assume
that there is no contact resistance at the interface between the bolt and
the insulation layer.

Ex 14.14: A cylindrical 150mm long pin fin is made of an alloy with a thermal
conductivity of 126W/m◦C. The diameter of the pin is 8mm. The base
of the pin is maintained at a constant temperature of 80 ◦C while the pin
is exposed to 30 ◦C air stream moving with a velocity of 5 m/s normal
to its axis. Determine the temperature of the pin fin tip as well as the heat
loss from its surface. The air properties may be taken at the average of
the base temperature and the air temperature.

Ex 14.15: A bank of tubes is arranged in an in line arrangement. There are ten rows
in the bank. The tubes have anODof 25mm. The transverse pitch is twice
the tube diameter. The longitudinal pitch is 1.25 times the transverse
pitch. Air at a free stream temperature of 300 ◦C flows across the tube
bank with a velocity of 2m/s. The tubes may be assumed to be at an
average temperature of 150 ◦C.What is themean heat transfer coefficient
for heat transfer between air and the tubes?

Ex 14.16: Rework Exercise14.15 if the tube bank is arranged in the staggered form
with longitudinal and transverse pitches remaining the same. All other
conditions also remain the same.



Chapter 15
Heat Exchangers

The heat transfer principles and methods learnt in the previous chapters
find application here in the analysis of heat exchangers. The LMTD and ε − NTU

approaches are described in detail in this chapter. Different types of heat exchangers
used in engineering applications are described and analyzed.

15.1 Introduction

The study of “Heat Transfer” is basically undertaken with the idea that an engineer
will be able to analyze or design heat transfer equipments. Also he will be able to
apply the basic ideas learnt in this subject to design thermal protection systems in
space applications, design insulating systems for ovens, boilers, engines, turbines
and so on. At least during the preliminary stages he may idealize components by
studying or analyzing them in isolation, using the methods that have been presented
in this book, before putting them together. In order to carry this activity forward, he
may have to equip himself with the study of design of thermal systems, a field that
is covered in specialized books.

Heat transfer between two fluids separated across a boundary is very common
in thermal engineering. Typical applications include thermal power plants, chemical
process equipments, food processing equipments, air conditioning equipments, and
so on. We may classify heat exchangers in many different ways. Firstly, they may
be classified according to the nature of fluids involved. The fluids may be in a single
phase, liquid, or gas (vapor). Examples are
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• Liquid to liquid: Oil cooler with oil as the hot liquid being cooled by liquid
water

• Gas to liquid: Economizer in a steam power plant where heat exchange is
between hot flue gases and boiler feed water

• Gas to gas: Air pre-heater in a steam power plant where flue gases heat up
combustion air

One of the fluids undergoing heat exchange may be going through a change of
phase:

• Boiler:water evaporates onbeingheatedbygases generatedbya combustion
process or by electric heaters

• Condenser: Steam or a vapor of an organic fluid (in refrigeration applica-
tions) condenses over a surface cooled by coolant such as water

• Distillation process: Potable water is obtained from brackish water by dis-
tillation that involves evaporation followed by condensation

Heat exchangers may also be classified according to the direction of flow of the
two fluids, within the heat transfer equipment. In the counter-current heat exchanger,
the two fluids flow in opposite directions. In the co-current or parallel flow heat
exchanger, the two fluids flow parallel to each other entering together at one end and
exiting together at the other end. Figure 15.1a, b show the schematic of these two
types of heat exchangers.

The nomenclature for heat exchangers is also indicated in the figures. Subscript h
and c stand for the hot fluid and cold fluid, respectively. The subscript i and o indicate
the inlet and outlet, respectively. The mass flow rate (ṁ) specific heat (Cp) product
for each of the fluid streams occurs in the analysis and is indicated by Cc = ṁcCpc

and Ch = ṁhCph . Temperature variation in the two types of heat exchangers are
schematically shown in Fig. 15.2a, b.

We assume that all the heat that leaves the hot fluid reaches the cold fluid. This
is possible if the heat exchanger is perfectly insulated from the ambient. In the co-

Th,i Th,0

Tc,o

Tc,i

(a) Counterflow Heat Excanager

Th,i Th,o

Tc,i

Tc,o

(a) Cocurrent Heat Excanager

Fig. 15.1 Schematic of basic heat exchanger types
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T

x

Th,i

Th,oTc,o

Tc,i

dQ

Th

Tc

(a) Counterflow Heat Exchanger

T

x

Th,i

Th,o

Tc,i

Tc,i
dQ

Th

Tc

(b) Cocurrent Heat Exchanger

Fig. 15.2 Hot and cold fluid temperature variations in the two types of heat exchangers shown in
Fig. 15.1

current heat exchanger, the driving temperature difference continuously decreases
fromend to end. In the case of counter-current heat exchanger, it variesmuch less from
end to end. Later, we shall see that this has an important bearing on the performance
of these heat exchangers.

15.2 Analysis of Heat Exchangers

15.2.1 Thermodynamic Analysis of a Co-Current Heat
Exchanger

Heat exchanger basics are introduced here by analyzing a co-current heat exchanger
shown in Fig. 15.1b. The two fluids enter at the left, proceed parallel to each other,
and exit at the right. In the illustration, the hot fluid flows through the tube and the
cold fluid through the annulus. With the mass flow rate specified in kg/s and specific
heat specified in J/kgK, the mass flow rate specific heat product will have the unit of
W/K or W/◦C. The smaller of Ch and Cc will be represented as Cmin , and the larger
of the twowill be represented asCmax . The ratio

Cmin
Cmax

is represented by the symbol R.
A heat exchanger is said to be balanced if Ch = Cc and hence R = 1. Figure 15.2b
shows the variation of temperature of the two fluids as they move in and out of the
heat exchanger. Assume that there is no heat loss and that heat exchange takes place
only between the hot and cold fluids. The following should then hold:

[
Rate of heat gained
by the cold stream

]
=

[
Rate of heat lost
by the hot stream

]

or
Cc(Tc,o − Tc,i ) = Ch(Th,i − Th,o)

We may rearrange this as
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Th,i − Th,o

Tc,o − Tc,i
= Cc

Ch
(15.1)

We notice from the figure that the temperature difference between the hot and cold
streams given by �T (x) = Th(x) − Tc(x) is a function of x . In the case of the co-
current heat exchanger, this difference continuously decreases with x . The most we
can expect from the co-current heat exchanger is that the two streams exit at the same
temperature, i.e., Th,o = Tc,o = To say. Inserting this in Eq. 15.1, we may write it as

Th,i − To
To − Tc,i

= Cc

Ch

which may be solved for To to get

To = ChTh,i + CcTc,i
Ch + Cc

(15.2)

Thus, the common exit temperature for the two fluids is a weightedmean, the weights
being the C ′s for the respective fluid streams. The maximum possible heat exchange
between the two fluids then is given by either one of the following two expressions:

Qmax = Cc(To − Tc,i ) or Qmax = Ch(Th,i − To)

Using Eq. 15.2 in the first of the above, we get

Qmax = Cc

[
ChTh,i + CcTc,i

Ch + Cc
− Tc,i

]
= Cc(ChTh,i + CcTc,i − ChTc,i − CcTc,i )

Ch + Cc

= CcCh(Th,i − Tc,i )

Ch + Cc
= Th,i − Tc,i[

1

Ch
+ 1

Cc

] (15.3)

The biggest heat exchange between the two fluids (how or whether it is possible is
unimportant) is termed the absolutemaximumheat transfer Qmax,abs . This takes place
if the fluid having the lower C heats up through the largest temperature difference,
i.e., Th,i − Tc,i . Thus,

Qmax,abs = Cmin(Th,i − Tc,i )

Effectiveness ε of the heat exchanger is defined as the ratio of actual heat exchange
to the absolute maximum heat exchange. Thus,



15.2 Analysis of Heat Exchangers 731

ε = Cc(Tc,o − Tc,i )

Cmin(Th,i − Tc,i )
or ε = Ch(Th,i − Th,o)

Cmin(Th,i − Tc,i )
(15.4)

The actual maximum heat transfer for a heat exchanger with co-current flow is
limited to the value given by Eq. 15.3. Hence, the maximum effectiveness possible
for a co-current heat exchanger is

εmax = 1

Cmin(Th,i − Tc,i )
· Th,i − Tc,i[

1

Ch
+ 1

Cc

] = 1

Cmin
· 1[

1

Ch
+ 1

Cc

] (15.5)

If Cmin = Ch then Cmax = Cc and

1

Cmin
· 1

1
Ch

+ 1
Cc

= 1

Cmin
· 1

1
Cmin

+ 1
Cmax

= 1

1 + Cmin
Cmax

= 1

1 + R

If Cmax = Ch then Cmin = Cc and

1

Cmin
· 1

1
Ch

+ 1
Cc

= 1

Cmin
· 1

1
Cmax

+ 1
Cmin

= 1
Cmin
Cmax

+ 1
= 1

1 + R

Thus, irrespective of which fluid has the smaller heat capacitymass flow rate product,
the maximum effectiveness of a co-current heat exchanger is

ε = 1

1 + R
(15.6)

15.2.2 Thermal Analysis of a Co-Current Heat Exchanger

The thermal analysis of a co-current heat exchanger requires a knowledge of the
heat transfer rate between the two streams and hence the variation of the temperature
of the two streams with x . Figure 15.3 helps in the analysis. Let U (x) be the local
overall heat transfer coefficient between the two fluid streams. For the control volume
shown in the figure, the following relations may be written. Heat transfer across the
boundary between the fluids is

dQ = U (Th − Tc)dS (15.7)

Heat given up by the hot and cold fluids in crossing the control volume are, respec-
tively, given by
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Fig. 15.3 Analysis of a
co-current heat exchanger

x 0

Entry

x L

Exit

dxx

Hot fluid
Cold fluid

Cold fluid

Heat transfer area
dA Pdx

P is perimeter

dQ = −ChdTh and dQ = CcdTc

The negative sign in the case of hot fluid is to make dQ positive. From the two
expressions, we have

dTh = −dQ

Ch
, dTc = dQ

Cc

Hence, we get

dTh − dTc = −dQ

[
1

Ch
+ 1

Cc

]
(15.8)

Note that dTh − dTc may be written as d(Th − Tc) = d(�T ) where �T = Th − Tc.
Thus, Eq. 15.8 may be rewritten as

dQ = − d(�T )[
1

Ch
+ 1

Cc

] (15.9)

Comparing Eqs. 15.9 with 15.7, we conclude that

− d(�T )[
1

Ch
+ 1

Cc

] = U (Th − Tc)dS = U�TdS or − d(�T )

�T
= U

[
1

Ch
+ 1

Cc

]
dS = UCdS

(15.10)

where C =
[

1
Ch

+ 1
Cc

]
. Integrate this between x = 0 and x = L to get

�TL∫
�T0

d(�T )

�T
= −C

SL∫
0

UdS (15.11)

∫ SL
0 UdSmay bewritten asUSL whereU is themean overall heat transfer coefficient
based on the total heat transfer area SL . Then, the integration indicated in Eq. 15.11
is performed to get
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ln

[
�TL
�T0

]
= −CUSL

which may be rearranged as

C =
ln

[
�T0
�TL

]
USL

(15.12)

Integration between x = 0 and x = L of Eq. 15.9 gives

Q = �T0 − �TL
C

(15.13)

Eliminating C between Eqs. 15.12 and 15.13, we finally have

Q = Ū SL
�T0 − �TL

ln

[
�T0
�TL

] = Ū SL
�T0 − �TL

�T
(15.14)

The mean temperature difference �T is referred to as the log mean temperature
difference or the LMT D. In fact, the above is valid for both the co-current as well as
a counter-current heat exchanger. This may be verified by running through the above
analysis, using the temperature variation for the two streams shown in Fig. 15.2a.
For these two cases, we note the following:

• Co-current heat exchanger:

�T0 = Th,i − Tc,i , �TL = Th,o − Tc,o

• Counter-current heat exchanger:

�T0 = Th,i − Tc,o, �TL = Th,o − Tc,i

The LMT D is itself obtained as indicated in Eq. 15.14 in both cases.

15.2.3 Overall Heat Transfer Coefficient

In the thermal analysis presented in the previous section, we have introduced the
overall heat transfer coefficient between the two fluids flowing on two sides of a
common heat transfer surface. In a typical tube in tube heat exchanger (either the co-
current or the counter-current), the overall heat transfer coefficient may be defined
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ri
hi

ho
ro

k

Fig. 15.4 Heat transfer across a tube wall

Table 15.1 A simple longtable example

Situation U in W/m2 ◦C Fluid R f in m2 ◦C/W

Steam condenser: 1000–5000 Sea water (>50 ◦C): 0.0002

Feed water heater: 1000–8000 Sea water (<50 ◦C): 0.0001

Water to water heat
exchanger:

800–2000 Boiler feed (>50 ◦C): 0.0002

Water to oil heat
exchanger

100–350 Fuel oil: 0.001

Finned tube heat
exchanger: Water in
tube, air across tubes:

30–55 Steam: 0.0001

Industrial air: 0.0004

using Fig. 15.4. In this figure, hi and ho are the inside and outside heat transfer
coefficients. The overall resistance to heat transfer includes the conduction resistance
of the tube as well as any scale (due to corrosion after usage) that may have been
formed over the heat transfer surface. The overall heat transfer coefficient without
fouling is then defined through the relation

1

Uiri
= 1

Uoro
= 1

hiri
+ 1

k
ln

(
ro
ri

)
+ 1

horo
(15.15)

where Ui and Uo are the overall heat transfer coefficients based, respectively, on the
inner and the outer areas. In case the fouling resistance is to be included the following
relation is used:

1

Uiri
= 1

Uoro
= 1

hiri
+ 1

k
ln

(
ro
ri

)
+ 1

horo
+ R f (15.16)
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Tc,i 27 C Tc,0 38 C

Th,i 66 C

Th,o 54 C

Hot fluid: Oil; Cold fluid: Sea water

Fig. 15.5 Oil cooler for marine application of Example 15.1

where R f is the fouling resistance. Typical overall heat transfer coefficient values
and fouling resistance values are given in Table 15.1.

Example 15.1

Seawater is used to cool oil in a marine application. The various temperatures are
specified in Fig. 15.5. It has been ascertained that the total heat transferred in this oil
cooler is 190 kW. The overall heat transfer coefficient has also been determined to
be 740W/m2 ◦C. Determine the heat transfer area in this heat exchanger.

Solution:

Step 1 Given data is written down using nomenclature shown in Fig. 15.5:

Hot fluid inlet temperature: Th,i = 66 ◦C
Hot fluid outlet temperature: Th,o = 54 ◦C
Cold fluid inlet temperature: Tc,i = 2 ◦C

Cold fluid outlet temperature: Tc,o = 38 ◦C
Total heat exchange: Q = 190 kW = 190, 000 W

Overall heat transfer coefficient: U = 740 W/m2 ◦C

Step 2 Since all the temperatures are specified, it is possible to calculate the
LMT D. We have �T0 = Th,i − Tc,i = 66 − 27 = 39 ◦C and �TL =
Th,o − Tc,o
= 54 − 38 = 16 ◦C. The LMT D is calculated as

LMT D = �T0 − �TL

ln

[
�T0
�TL

] = 39 − 16

ln

(
39

16

) = 25.8 ◦C

Step 3 The heat exchanger area is then readily calculated as

SL = Q

U × LMT D
= 190, 000

740 × 25.8
= 9.946m2
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15.2.4 Alternate Approach—ε − NTU Relationship for a
Co-Current Heat Exchanger

A heat exchanger may be analyzed by an alternate approach using the relation
between the effectiveness ε (defined in an earlier section) and a size parameter called
the Number of Transfer Units or NTU . This approach is particularly useful when
LMT D cannot be calculated based on the given data. NTU is a non-dimensional
parameter defined as

NTU = USL
Cmin

(15.17)

The heat exchanger effectiveness, in general, is a function of NTU , the heat capacity
ratio R, and the configuration of the heat exchanger.

Consider again a co-current heat exchanger. Equation 15.12 may be written in the
alternate form

�TL
�T0

= e−CUSL (15.18)

C may be written as

C = 1

Cc
+ 1

Ch
= 1 + R

Cmin

as can be verified very easily. Then, Eq. 15.18 becomes

�TL
�T0

= e
[
−USL · 1+R

Cmin

]
= e−NTU (1+R)

With �T0 = Th,i − Tc,i and �Tl = Th,o − Tc,o, the above may be solved for the exit
temperature of the cold stream as

Tc,o = Th,o − (Th,i − Tc,i )e
−NTU (1+R) (15.19)

Assume any one of the streams to have the smaller ṁCp product, sayCmin = Ch and
hence R = Ch

Cc
. The actual heat transfer may be written as

Qact = Ch(Th,i − Th,o)

The maximum possible heat exchange is of course given by

Qmax = Ch(Th,i − Tc,i )

Hence, the effectiveness of this heat exchanger may be written as
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ε = Qact

Qmax
= Th,i − Th,o

Th,i − Tc,i

For the entire heat exchanger, we also have, from Eq. 15.1, for the present case

Th,i − Th,o

Tc,o − Tc,i
= Cc

Ch
= 1

R

From this, we obtain the outlet temperature of the cold stream as

Tc,o = Tc,i + R(Th,i − Th,o) (15.20)

Equating the two expressions for Tc,o given by Eqs. 15.19 and 15.20, we get

Tc,i + R(Th,i − Th,o) = Th,o − (Th,i − Tc,i )e
−NTU (1+R)

or Th,o(1 + R) = Tc,i + RTh,i + (Th,i − Tc,i )e
−NTU (1+R)

or (Th,i − Th,o)(1 + R) = (Th,i − Tc,i )(1 − e−NTU (1+R))

Rearrangement of this expression is possible in the form

ε = Th,i − Th,o

Th,i − Tc,i
= 1 − e−NTU (1+R)

1 + R
(15.21)

Thus, the effectiveness of a co-current heat exchanger depends on the two non-
dimensional parameters NTU and R. For a fixed value of R, the effectiveness
asymptotically tends to 1

1+R as NTU → ∞. It may be recalled that this was the
thermodynamic limit derived in Sect. 15.2.1 and given by Eq. 15.6.

ε − NTU Plot

Equation 15.21 can be used to prepare plot of ε as a function of NTU with R
treated as a parameter. Such a plot is shown in Fig. 15.6. The unique relationship that
exists between the effectiveness and the number of transfer units may be utilized as a
method for analyzing heat exchangers. This is demonstrated by solving the problem
solved earlier by the LMT D approach in Example 15.1 by the use of the ε − NTU
method.

Example 15.2

Solve the oil cooler example in Example 15.1 by the ε − NTU method. Use the
same data as given there.
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Fig. 15.6 ε − NTU Plot for
a co-current heat exchanger

Solution:
Since the heat duty Q is specified along with the temperatures of both the fluids
at entry and exit, it is possible to evaluate R for this heat exchanger. Since the hot
oil temperature drop is larger than the temperature increase of seawater Cmin = Ch .
Using the condition for overall energy balance, we have

R = Ch

Cc
= �Tc

�Th
= 38 − 27

66 − 54
= 11

12
= 0.917

We may also calculate Ch as

Ch = Cmin = Q

�Th
= 190, 000

66 − 54
= 15833.3W/◦C

By definition, the effectiveness is given by

ε = Th,i − Th,o

Th,i − Tc,i
= 66 − 54

66 − 27
= 12

39
= 0.308

We use expression 15.21 to calculate the NTU for this heat exchanger.

NTU = − ln [1 − ε(1 + R)]
1 + R

= − ln [1 − 0.308(1 + 0.917)]
1 + 0.917

= 0.465

Alternately Fig. 15.6 may be used to read off the required NTU with the known
values of ε and R. Interpolation is called for and the NTU is obtained to a worse
approximation as compared to the use of the analytical expression used above. But,
by definition, NTU = USL

Ch
and hence we have
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SL = NTU · Ch

U
= 0.465 × 15833.3

740
= 9.946m2

This is in perfect agreement with the result of Example 15.1.

15.2.5 Counter-Current Heat Exchanger

The derivations of the ε − NTU relationship given for a co-current heat exchanger
abovemay be easily repeated for a counter-current heat exchanger. The result of such
an analysis would yield the following relationship:

ε = 1 − e−NTU (1−R)

1 − R e−NTU (1−R)
(15.22)

In this case also the effectiveness is a function of NTU and R. A plot of effectiveness
as a function of NTU , for various values of R, is shown in Fig. 15.7. In the case of a
counter-current heat exchanger, for any value of R, the effectiveness asymptotically
tends to unity as NTU → ∞.

Example 15.3

Rework Example 15.1 assuming that the heat exchanger is a counter-current heat
exchanger. Use (a) LMT D approach and (b) ε − NTU approach to solve the prob-
lem.

Fig. 15.7 ε − NTU Plot for
a counter-current heat
exchanger
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Th,i 66 C, Th,o 54 C, Tc,i 38 C, Tc,o 27 C

Tc,o 38 C Tc,i 27 C

Th,i 66 C

Th,o 54 C

Fig. 15.8 Heat exchanger of Example 15.1 rearranged in the Counter-current arrangement

Solution:
A sketch of oil cooler of Example 15.1, modified for counter-current arrangement,
is shown in Fig. 15.8.

(a) LMT D—approach:
Referring to Fig. 15.8, we have

Th,i = 66 ◦C, Th,o = 54 ◦C, Tc,i = 38 ◦C, Tc,o = 27 ◦C

Hence, the terminal temperature differences are

�T0 = Th,i − Tc,o = 66 − 38 = 28 ◦C and �TL = Th,o − Tc,i = 54 − 27 = 27 ◦C

The LMT D is then calculated as

LMT D = 28 − 27

ln
(
28
27

) = 27.5 ◦C

The required heat transfer area may then be calculated as

SL = 190, 000

740 × 27.5
= 9.338m2

(b) ε − NTU—approach:
The calculations of Cmin , R, and ε are the same as in Example 15.2. Hence, we have

Cmin = Ch = 15833.3W/◦C, R = 0.917, ε = 0.308

The NTU is to be calculated using Eq. 15.22. We may solve for NTU in terms of
ε and R as
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Fig. 15.9 Nomenclature for
heat exchanger of Example
15.4

IDp ODpIDa 1 2

NTU = −
ln

(
1 − ε

1 − Rε

)

1 − R
= −

ln

(
1 − 0.308

1 − 0.917 × 0.308

)

1 − 0.917
= 0.437

With this value of NTU the area of the heat exchanger is given by

SL = NTU Ch

U
= 0.437 × 15833.3

740
= 9.352m2

The two ways of calculating the area required agree closely with each other. The
counter-current heat exchanger requires smaller amount of heat transfer area as com-
pared to the co-current arrangement.

The examples given above considered caseswhere the overall heat transfer coefficient
was specified. In practice, however, the flow parameters are usually specified and the
heat exchanger analysis has to proceed from there. The next example demonstrates
how such an analysis is made.

Example 15.4

Water at 90 ◦C at a mass flow rate of 2250 kg/hr is to be used to heat ethylene
glycol. Ethylene glycol is available at 30 ◦C with a mass flow rate of 5500 kg/hr. A
double pipe heat exchanger consisting of a 34.93mm OD - 32.79mm I D standard
typeM copper tubing inside of a 53.98mm OD - 50.42mm I D typeM copper tub-
ing is to be used. The heat exchanger is 10m long. It is constructed by using“hair
pin” type construction with four 2.5m sections. Determine the outlet temperature
of both fluids using a parallel flow arrangement. What is the total heat transferred
between water and ethylene glycol? Ignore the effect of the bends.

Solution:
Since outlet temperatures of the two fluids are not known, and since the pipe temper-
ature also is not known, we calculate the fluid properties at the average temperature
of Th,i+Tc,i

2 = 90+30
2 = 60 ◦C. If necessary the calculations may be revised later via
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an iterative process. Also we assume that ethylene glycol flows in the annulus while
water flows in the tube. The nomenclature is explained in Fig. 15.9 and the geometric
parameters are specified therein. Specified temperatures and flow rates are

Th,i = 90 ◦C, Tc,i = 30 ◦C, ṁh = 2250 kg/hr, ṁc = 5500 kg/hr

where the “hot” fluid is water (subscript h) while the “cold” fluid is ethylene glycol
(subscript c). Properties of water and ethylene glycol are

Density: ρh = 985 kg/m3 ρc = 1087 kg/m3

Kinematic viscosity: νh = 4.78 × 10−7 m2/s νc = 4.75 × 10−6 m2/s
Thermal conductivity: kh = 0.651 W/m◦C kc = 0.260 W/m◦C

Specific heat: Cph = 4185 J/kg◦C Cpc = 2562 J/kg◦C
Prandtl number: Prh = 3.02 Prc = 51

Annulus side calculations:
Flow area on the annuls side is given by

Aa = π

4
(I D2

a − OD2
p) = π

4
(50.422 − 34.932) = 1038.4mm2

Velocity of ethylene glycol is obtained as

Vc = ṁc

ρc Aa
=

5500
3600

1087 × 1038.4 × 10−6
= 1.354m/s

Heat transfer to the fluid flowing in the annulus takes place only on the pipe side.
The energy diameter is different from the hydraulic diameter and is given by

Da,E = 4 × Flow Area

Heated Perimeter
= 4Aa

πODp
= 4 × 1038.4

π × 34.93
= 37.85mm

In order to calculate the Nusselt number from the outside surface of pipe, the flow is
like the flow in a shell of a shell and tube heat exchanger without any baffles. Shell
side heat transfer data is correlated by the relation

NuD = 0.0184D0.6
a,E Re

0.6
D Pr0.33 (15.23)

as proposed by Donohue.1 Note that the Reynolds and Nusselt numbers are based
on the pipe diameter D or ODp in the current context and Da,E is in mm. In the
paper, the constant is different from that shown in Eq. 15.23 because Da,E was to be
specified in inches.
Reynolds number for the ethylene glycol is

1D. A. Donohue, “Heat transfer and pressure drop in heat exchangers”, Industrial and Engineering
Chemistry, Vol. 41, No. 11, pp. 2499–2511, 1949.
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ReD = Vc ODP

νc
= 1.354 × 34.93 × 10−3

4.75 × 10−6
= 9956.9

The Nusselt number is obtained by using Eq. 15.23 as

NuD = 0.0184 × 37.850.69956.90.6510.33 = 149.3

Hence, the heat transfer coefficient on the annulus side is

hc = NuDkc
ODp

= 149.3 × 0.260

34.93 × 10−3
= 1111.3W/m2 ◦C

Pipe side calculations:
The flow area is

Ap = π

4
I D2

p = π

4
× 32.792 = 844.45mm2

Velocity of water is then given by

Vh = ṁh

ρh Ap
=

2250
3600

985 × 844.45 × 10−6
= 0.751m/s

Energy diameter is the same as the hydraulic diameter that is also the same as the
inner diameter of the pipe. Hence, the water side Reynolds number is

Reh = VH · I Dp

νh
= 0.751 × 32.79 × 10−3

4.78 × 10−7
= 51517.3

The flow is certainly turbulent. The fluid is getting cooled and hence n = 0.3 in the
Dittus–Boelter equation. The Nusselt number is given by

Nuh = 0.023Re0.8h Pr0.3h = 0.023 × 51517.30.8 × 3.020.3 = 188.49

Hence, the water side heat transfer coefficient is

hh = Nuh · kh
I Dp

= 188.49 × 0.651

32.79 × 10−3
= 3742.2W/m2 ◦C

Tube material is copper with a thermal conductivity of

kCu = 401W/m◦C

Pipe wall conduction resistance Rp may be calculated as
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Rp = 1

kCu
ln

ODp

I Dp
= 1

401
ln

34.93

32.79
= 1.577 × 10−4 m◦C/W

Hence, the overall heat transfer coefficient is obtained using Eq. 15.15 as

2

Uh · I Dp
= 2

Uc · ODp
= 2

hh · I Dp
+ Rp + 2

hc · ODp

= 2

3742.2 × 32.79 × 10−3 + 1.577 × 10−4 + 2

1111.3 × 34.93 × 10−3

= 0.0679m◦C/W

We shall base the thermal analysis that follows on the outside area of the inner tube.
Hence, the overall heat transfer coefficient is given by

Uc = 2

0.0679 × 34.93 × 10−3
= 842.3W/m2 ◦C

Analysis of the heat exchanger:
Mass flow rate specific heat products for the two fluids are now calculated.

Ch = ṁhCph = 2250

3600
× 4184 = 2615W/◦C

and

Cc = ṁcCpc = 5500

3600
× 2562 = 3914.2W/◦C

Hence, Cmin = Ch = 2615W/◦C and Cmax = Cc = 3914.2W/◦C. The heat capac-
ity ratio is then given by

R = Cmin

Cmax
= Ch

Cc
= 2615

3914.2
= 0.668

Heat exchange area is calculated as

SL = π · ODp · L = π × 34.93 × 10−3 × 10 = 1.097m2

The NTU is then calculated as

NTU = UcSL
Cmin

= 842.3 × 1.097

2615
= 0.353

For the co-current heat exchanger, the effectiveness may then be calculated using
Eq. 15.21 as
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ε = 1 − e−NTU (1+R)

1 + R
= 1 − e−0.353(1+0.668)

1 + 0.668
= 0.229

Thus, the total heat exchange between water and ethylene glycol is

Qact = εCmin(Th,i − Tc,i ) = 0.229 × 2615(90 − 30) = 35877W

Outlet temperatures of the two fluids, then are

Th,o = Th,i − Qact

Ch
= 90 − 35877

2615
= 76.3 ◦C

and

Tc,o = Tc,i + Qact

Cc
= 30 + 35877

3914.2
= 39.2 ◦C

15.3 Other Types of Heat Exchangers

In practice, it is not always convenient to use either the co-current or the counter-
current heat exchanger. In order that standard length tubes are made use of the length
of the heat exchanger may be limited to certain lengths only. The designer has no
option but to use other types of heat exchangers that will be considered below. There
are three types, which are useful in catering to different needs:

1. Multi-pass heat exchanger
2. Shell and tube heat exchanger
3. Cross flow heat exchanger

(1) Multi-pass heat exchanger
The schematic of a multi-pass heat exchanger is shown in Fig. 15.10. The cold fluid
flows through the shell (the tubes are held within the outer enclosure which is called
the shell) while the hot fluid flows through the tubes.

Fig. 15.10 Example of a
multi-pass heat exchanger

Tc,i
Tc,o

Th,i

Th,o

Tube pass 1

Tube pass 2
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Fig. 15.11 Schematic of a shell and tube heat exchanger with 1—shell and 1—tube Pass

In this example, there are two tube passes. In fact, several parallel tubes may be
arranged in each pass. The cold stream will divide through these parallel tubes and
join again at exit and mix into a single stream. In the above illustration, tube-pass 1
experiences a counter-current heat exchange and tube-pass 2 experiences a co-current
heat exchange. Thus, the performance of this heat exchanger will be between that of
a counter-current and a co-current heat exchanger.

(2) Shell and tube heat exchanger
A schematic of a shell and tube heat exchanger is shown in Fig. 15.11. On the
tube side, the fluid traverses through parallel tubes arranged between two mixing
chambers (usually referred to as headers or boxes). The shell side fluid is made to
follow a tortuous path by the placement of suitable baffles along the length of the heat
exchanger, as shown in the figure. The flow cannot be considered either co-current
flow or cross flow, but is a combination of the two. Since mixing takes place outside,
the hot stream is unmixed while the cold stream may be considered to be mixed.
Variants of the multi-pass heat exchanger are obtained by combining several two-
tube pass heat exchangers. An example is shown in Fig. 15.12 where two two-tube
pass heat exchangers are connected in series. In the illustration, in all there are four
tube passes and two shells. Baffles are employed to guide the second fluid through
a tortuous path for proper contact between the fluid and the outside surfaces of the
tubes.

(3) Cross flow heat exchanger
This is an example wherein one of the streams is mixed (the tube side fluid) and the
other stream is unmixed (the duct side fluid). An example of such a heat exchanger
is an economizer with water on the tube side and the flue gases on the duct side.
Another example is an automobile radiator where the coolant (water or a mixture
of water and ethylene glycol) flows through the tubes and air is blown across the
tubes by a fan running off the engine. Fins are provided on the air side to improve
heat exchange since air side heat transfer coefficients are usually small. Figure 15.13
shows the scheme of things. The schematic shows the tubes arranged in an in-line
arrangement. It is also possible to have the tubes arranged in a staggered manner.
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Fig. 15.12 Schematic of a
heat exchanger with 4—tube
passes and 2—shell passes

Fluid 1
Fluid 2

Fluid 1
Fluid 2

Fig. 15.13 Schematic of a
cross flow heat exchanger
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Mixed fluid flows in tubes -
perpendicular to plane of figure

In the cross flow heat exchanger, the two fluid paths are normal to each other. The
heat transfer on the air side may be obtained by using the heat transfer correlations
appropriate to flow past a tube bank.

Cross flow heat exchangers may also involve heat exchange between two unmixed
streams such as in plate heat exchangers. Plate heat exchangers involve the flow of
two fluid streams in the passages between a stack of corrugated plates and the two
streams may flow in co-current, counter-current, or cross flow modes. Plate heat
exchangers are classified as compact heat exchangers.

15.3.1 Analysis of Shell and Tube Heat Exchanger

Analysis of shell and tube heat exchangers makes use of the LMT D approach
followed by the use of correction factors to account for the fact that these do not
conform either to co-current or counter-current type. In fact, the flow on the shell
side is very complex and the suggested method of analysis at best approximate.
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Fig. 15.14 Correction factor for a shell and tube heat exchanger with 1 shell pass and 2 or more
tube passes

The LMT D approach requires that all the terminal temperatures be known. It is
assumed that the cold fluid is flowing through the tubes (see Fig. 15.10). LMT D is
calculated as if the heat exchanger is of the counter-current type. Thus, we have

LMT D = (Th,i − Tc,o) − (Th,o − Tc,i )

ln

(
Th,i − Tc,o
Th,o − Tc,i

) (15.24)

All temperatures are as given in Fig. 15.10. The total heat transferred is calculated
as

Q = U × S × LMT D × F (15.25)

where F is a correction factor.2 The other symbols are familiar to us. The subscript
on S has been dropped for convenience. The correction factor depends on two ratios
defined as below

(a) P1 = Tc,o − Tc,i
Th,o − Tc,i

, (b) P2 = Th,i − Th,o

Tc,o − Tc,i
= Cc

Ch
(15.26)

The correction factor is shown plotted as a family of F vs P1 curves for different P2
values in Fig. 15.14.

2More details may be obtained from R.A. Bowman, A.C. Mueller and W.M. Nagle, Trans. ASME,
Vol., pp. 283–294, May 1940.
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Example 15.5

A shell and tube oil to water heat exchanger has tubes of internal diameter 12mm
and length 2m in a single shell. Cold water (Cpc = 4180 J/kg◦C) enters the tubes
at 33 ◦C with a flow rate of 5 kg/s and leaves at 55 ◦C. Oil (Cph = 2150 J/kg◦C )
flows through the shell and is cooled from 120 ◦C to 75 ◦C. The overall heat transfer
coefficient is Ui = 885W/m2 ◦C based on the internal area of the tubes. Determine
the number of tubes required in this heat exchanger.

Solution:
All temperatures are specified in this problem. Hence, the LMT D-correction factor
approach is used to solve the problem. The given data is listed first:

Hot fluid inlet temperature: Th,i = 125 ◦C
Hot fluid outlet temperature: Th,o = 75 ◦C
Specific heat of the hot fluid: Cpc = 2150 J/kg◦C
Cold fluid inlet temperature: Tc,i = 33 ◦C

Cold fluid outlet temperature: Tc,o = 55 ◦C
Specific heat of the cold fluid: Cpc = 4180 J/kg◦C
Mass flow rate of cold fluid: ṁc = 5 kg/s

Total heat exchange: Q = 190 kW = 190, 000 W
Overall heat transfer coefficient: Ui = 885 W/m2 ◦C

Geometric data:
Dpi = 12mm = 0.012m, L = 2m

The total heat transferred in the heat exchanger is calculated as

Q = ṁcCpc(Tc,o − Tc,i ) = 5 × 4180(55 − 33) = 4.598 × 105 W

The terminal temperature differences assuming counter-current operation are

�T0 = Th,i − Tc,o = 120 − 55 = 65 ◦C
�TL = Th,o − Tc,i = 75 − 33 = 42 ◦C

The LMTD based on counter-current assumption is

LMT D = 65 − 42

ln

(
65

42

) = 52.67 ◦C

The parameters P1 and P2 are now calculated:

P1 = 55 − 33

120 − 33
= 0.253, P2 = 120 − 75

55 − 33
= 2.045
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From Fig. 15.14, the correction factor is read off as F = 0.94. Based on the total
heat transferred, the area required may be calculated as

S = Q

Ui × LMT D × F
= 4.598 × 105

885 × 52.67 × 0.94
= 10.494m2

Heat transfer area per tube is obtained as (based on tube ID)

Api = πDpi L = π × 0.12 × 2 = 0.0754m2

The number of tubes N required is then calculated as

N = Total area required

Area per tube
= 10.494

0.0754
= 139.2

The number may be rounded to nearest whole number N = 140.

It is also possible to use the NTU—ε method for the analysis of shell and tube
heat exchangers. For details the reader should consult specialized books on heat
exchangers.

15.3.2 Analysis of a Cross Flow Heat Exchanger by the
ε − NTU Approach

Consider a cross flow heat exchanger in which one stream is unmixed and the other
stream ismixed, as shownby the schematic sketch in Fig. 15.15. Typically an automo-
bile radiator belongs to this type of a heat exchanger. The tubes carry the automobile
coolant, usually a mixture of water and ethylene glycol and air is blown across the
outside of the tubes, normal to the tubes.

The flow inside the tubes is characterized by a bulk temperature that varies along
the tube length, the flow being said to bemixed. The stream enters the heat exchanger
(x = 0) at temperature Tm,i and exits the heat exchanger (x = L) at Tm,o. Air that is
blown across the tubes is at a uniform temperature Tu,i before contacting the tubes.
The air passes across the tubes and emanates as a stream with outlet temperature
Tu,o(x) which is a function of x . The air stream is said to be unmixed. The analysis
of such a heat exchanger is accomplished by looking at the simple case of a single
tube shown by a square duct across which air flows, as shown in Fig. 15.16. Assume
that the heat exchanger duct is of uniform section, and hence, the heat transfer area
varies linearly with x such that the heat transfer area of the element of length dx
shown in the figure is

dS = SL
L
dx
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Fig. 15.15 Cross flow heat
exchanger with hot stream
mixed (subscript m) and the
cold stream unmixed
(subscript u)

x 0 x L

Tm,i Tm,o

Tu,i

Tu,o(x)

Fig. 15.16 A single duct in
cross flow: simple cross flow
heat exchanger. Subscript
m—mixed fluid, Subscript
u—unmixed fluid

Tm,i(x 0)

Tm,o(x L)

Tu,o(x)Tu,i

x 0

x x+ x

x L

As far as this element is concerned the mixed stream is at a uniform temperature of
Tm,x and the heat transfer takes place from an unmixed stream of mass flow

dṁu = ṁu

L
dx

Again we have assumed that the mass flux of the unmixed fluid varies linearly with
x . The effectiveness of the elemental heat exchanger εe is given by taking R = 0 (for
the elemental heat exchanger flow outside is elemental flow of unmixed fluid while
it is the full flow for the mixed fluid) for a co-current heat exchanger (Eq. 15.21) and
hence

εe = 1 − e−NTUe

where NTUe is the NTU for this element. Obviously, the NTUe is given by

NTUe = UdS

dṁuCpu
= U SL

L
ṁu
L Cpu

= USL
ṁuCpu

= USL
Cu

where Ū is the overall heat transfer coefficient. Hence, the effectiveness of the ele-
mental heat exchanger is

εe = 1 − e− Ū SL
Cu (15.27)
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We note that the effectiveness of the elemental heat exchanger is independent of the
location of the element along the length of the duct. The heat transfer from the mixed
fluid in the duct to unmixed fluid flowing across it may hence be written down as

dQ = εe × dṁu × Cpu(Tu,i − Tm,x ) = ṁudx

L
× Cpuεe(Tu,i − Tm,x )

= Cuεe(Tu,i − Tm,x )
dx

L
(15.28)

We note that this must also equal the net heat carried across the element by the mixed
fluid given by

dQ = ṁuCpmdTm = CmdTm (15.29)

Equate these two expressions to get

dTm
Tu,i − Tm

= Cu

Cm
εe
dx

L

This may be integrated between x = 0 and x = L to get

− ln

[
Tu,i − Tm,o

Tu,i − Tm,i

]
= Cu

Cm
εe (15.30)

The temperature ratio occurring on the left-hand side of Eq. 15.30 may be written as

Tu,i − Tm,o

Tu,i − Tm,i
= (Tu,i − Tm,i ) + (Tm,i − Tm,o)

Tu,i − Tm,i
= 1 + Tm,i − Tm,o

Tu,i − Tm,i
(15.31)

Case (a): Cm < Cu

In this case, the maximum possible heat transfer is Cm(Tu,i − Tm,i ) and the actual
heat transfer isCm(Tm,i − Tm,o). Hence, the temperature difference ratio in Eq. 15.31
is nothing but the effectiveness of the cross flow heat exchanger ε. Also Cu

Cm
= 1

R and

NTU = USL
Cm

. Hence, we get from Eqs. 15.30 and 15.31 the following:

ε = 1 − e− 1
R (1−e−R·NTU ) (15.32)

Case (b): Cm > Cu

In this case, we define the mean temperature of the unmixed fluid at exit as Tu,o such
that the actual heat transfer may be written by energy balance as

Cu(Tu,o − Tu,i ) = Cm(Tm,i − Tm,o)

or
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Fig. 15.17 ε − NTU plots
for cross flow heat
exchangers

Tm,i − Tm,o

Tu,i − Tm,i
= Cu

Cm

Tu,o − Tu,i

Tm,i − Tm,o
= Rε

Hence, we get from Eqs. 15.30 and 15.31 the following relation:

ε = 1

R

[
1 − e−R(1−e−NTU )

]
(15.33)

In the ε − NTU approach, a plot of the heat exchanger effectiveness as a function
of NTU with R as a parameter, shown in Fig. 15.17 for both cases (a) and (b)
considered above is made use of. The plain curves correspond to the case (a) wherein
the mixed fluid has the smaller mass flow rate specific product. The curves with
symbols correspond to case (b) wherein the unmixed fluid has the smaller mass flow
rate specific heat product. In the extreme cases of R = 0 and R = 1, the two curves
merge and are shown by curves without symbols.

Example 15.6

The data pertaining to an air-cooled radiator is shown in Fig. 15.18. Determine
the required heat exchange area. Use the ε − NTU approach. Overall heat transfer
coefficient is specified to be 80W/m2 ◦C.

Solution:
Important data for the problem is specified in the figure. We shall assume a specific
heat value of Cpc = 1006 J/kg◦C for air, the cold fluid. The hot fluid (water) has
a mean temperature of Tm = Th,i+Th,o

2 = 95+55
2 = 75 ◦C. Specific heat of water is

taken as Cph = 4193 J/kg◦C at this temperature. The air outlet temperature may be
obtained by energy balance for the radiator as
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Fig. 15.18 Schematic of the
radiator in Example 15.6

Water (mixed)
Th,i 95 C, ṁh 0.05 kg/s

Th,o 55 C

Air (unmixed)
Tc,i 15 C

ṁc 0.25 kg/s

ṁcCpc(Tc,o − Tc,i ) = ṁhCph(Th,i − Th,o)

We may solve for the average air exit temperature as

Tc,o = Tc,i + ṁhCph(Th,i − Th,o)

ṁcCpc
= 15 + 0.05 × 4193(95 − 55)

0.25 × 1006
= 48.35 ◦C

We also have Ch = Cm = 0.05 × 4193 = 209.65W/◦C and Cc = Cu = 0.25 ×
1006 = 251.5W/◦C. Hence, Cmin = Cm = 209.65W/◦C and Cmax = Cu =
251.5W/◦C. The heat capacity ratio may then be calculated as

R = Cmin

Cmax
= Cm

Cu
= 209.65

251.5
= 0.834

With all the terminal temperatures being known, the effectiveness of the radiator may
be calculated as

ε = Th,i − Th,o

Th,i − Tc,i
= 95 − 55

95 − 15
= 0.5

Referring to Fig. 15.17, we get the value of NTU = 1. Note that this case is repre-
sented by case (a) and hence is represented by plain curves in the figure. Alternately,
we may solve analytical expression 15.33 for NTU in terms of R and ε and get

NTU = − 1

R
ln [1 + R ln (1 − ε)] = − 1

0.834
ln (1 + 0.834 ln 0.5) = 1.035

Using the definition of NTU , the heat exchange area may be calculated as

S = Cmin × NTU

U
= 209.65 × 1.035

80
= 2.71m2
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15.3.3 Analysis of a Cross Flow Heat Exchanger by LMT D
Correction Factor Approach

The heat transferred in a cross flow heat exchanger may be obtained by treating it as
a counter-current heat exchanger and applying a correction factor F such that

Q = USL × LMT D × F (15.34)

where the LMT D is given by the counter-flow heat exchanger value

LMT D = (Tm,i − Tu,o) − (Tm,o − Tu,i )

ln

[
Tm,i − Tu,o

Tm,o − Tu,i

] (15.35)

Energy balance for the entire heat exchanger yields the following useful relation

Q = Cu(Tu,i − Tu,o) = Cm(Tm,o − Tm,i ) (15.36)

where Q is the rate of heat transfer between the two fluids. The numerator Nr of Eq.
15.35 may be rewritten as

Nr = (Tm,i − Tu,o) − (Tm,o − Tu,i ) = (Tm,i − Tm,o) − (Tu,o − Tu,i )

= (Tm,i − Tm,i ) − Cm

Cu
(Tm,i − Tm,o) =

(
1 − Cm

Cu

)
Q

Cm

The denominator Dr of Eq. 15.35 may be rewritten as

Dr = Tm,i − Tu,o

Tm,o − Tu,i
=

(Tm,i − Tu,i ) − Cm

Cu
(Tm,i − Tm,o)

(Tm,i − Tu,i ) − (Tm,i − Tm,o)
=

(
1 − Cm

Cu

�Tm
�Tmax

)
(
1 − �Tm

�Tmax

)

where �Tm is the change in mixed fluid temperature as it passes through the heat
exchanger and �Tmax is the maximum temperature difference in the heat exchanger.
With this the expression for LMT D may be rewritten as

LMT D =

(
1 − Cm

Cu

)
Q

Cm

ln

⎡
⎢⎣

1−
Cm

Cu

�Tm
�Tmax

1−
�Tm

�Tmax

⎤
⎥⎦

(15.37)

h We substitute LMT D given by Eq. 15.37 in Eq. 15.34 to get
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Q = USL ×

(
1 − Cm

Cu

)
Q

Cm

ln

⎡
⎢⎣

1−
Cm

Cu

�Tm
�Tmax

1−
�Tm

�Tmax

⎤
⎥⎦

· F

Canceling Q on the two sides and noting that USL
Cm

is NTUm based on the heat capacity
of the mixed fluid, the above equation may be rearranged to get the correction factor
as

Fcf =
ln

[
1− Cm

Cu
�Tm

�Tmax

1− �Tm
�Tmax

]

NTUm

(
1 − Cm

Cu

) (15.38)

Equation 15.38 may be written in the alternate form

F =

ln

⎡
⎢⎣

1−
�Tu

�Tmax

1−
Cu

Cm

�Tu
�Tmax

⎤
⎥⎦

NTUm

(
1 − Cm

Cu

) (15.39)

where the temperature ratio has been written in terms of the temperature change of
the unmixed fluid. Equation 15.27may now bemanipulated to get NTUm as follows.

NTUm = NTUu
Cu

Cm
= −Cu

Cm
ln(1 − εe)

However, Eq. 15.30 may rearranged as

εe = −Cm

Cu
ln

[
1 − Tm,o − Tm,i

Tu,i − Tm,i

]
= −Cm

Cu
ln

[
1 − �Tm

�Tmax

]

With this, the mixed fluid NTU is rewritten as

NTUm = −Cu

Cm
ln

(
1 + Cm

Cu
ln

[
1 − �Tm

�Tmax

])
(15.40)

Again Eq. 15.40 may also be written in the alternate form

NTUm = −Cu

Cm
ln

(
1 + Cm

Cu
ln

[
1 − Cu

Cm

�Tu
�Tmax

])
(15.41)
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Fig. 15.19 LMT D
correction factor for a cross
flow heat exchanger

Equation 15.38 or 15.39 along with Eq. 15.40 or15.41 may be used to calculate the
LMT D correction factor for a cross flow heat exchanger. Heat capacity ratio Cm

Cu

and the temperature difference ratio �Tm
�Tmax

or �Tu
�Tmax

have parametric influence on the
correction factor F . Figure 15.19 shows the variation of correction factor for a useful
range of parameter values.

Example 15.7

Redo Example 15.6 using the LMT D-correction factor method.

Solution:
Given data is written down using the notation followed in Sect. 15.3.3.

ṁu = 0.25 kg/s Cpu = 1006 J/kg◦C
ṁm = 0.05 kg/s Cpm = 4193 J/kg◦C

Tu,i = 15 ◦C
Tm,i = 95 ◦C Tm,o = 55 ◦C

The heat capacity ratio is now calculated as

Cu

Cm
= ṁuCpu

ṁmCpm
= 0.25 × 1006

0.05 × 4193
= 1.2

By energy balance, we calculate the exit temperature of the unmixed fluid (air) as

Tu,o = Tu,i + Cm

Cu
(Tm,i − Tm,o) = 15 + 95 − 55

1.2
= 48.33 ◦C

The LMT D on the basis of counter-current flow is obtained as
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LMT D = (95 − 48.33) − (55 − 15)

ln

[
95 − 48.33

55 − 15

] = 43.25 ◦C

The temperature ratio parameter is calculated as

�Tu
�Tmax

= 48.33 − 15

95 − 15
= 0.4166

Based on Eq. 15.41, we have

NTUm = −1.2 ln

(
1 + 1

1.2
ln [1 − 1.2 × 0.4166]

)
= 1.0338

The LMT D correction factor F may now be calculated using Eq. 15.39 as

F =
ln

[
1 − 0.4166

1 − 1.2 × 0.4166

]

1.0388(1 − 1.2)
= 0.8944

The heat transfer area required may now be obtained using Eq. 15.34 as

SL = Q

U · LMT D · Ff c
= 0.05 × 4193(95 − 55)

80 × 43.25 × 0.8944
= 2.71m2

This answer agrees with that obtained in Example 15.6.

15.3.4 General Remarks on Heat Exchangers

Before we conclude the chapter, we give some useful information regarding
the heat exchanger types that have been considered in the earlier sections. We
have looked at the method of analysis, starting from first principles, in the
case of co-current and counter-current heat exchangers. However, in the case
of shell and tube exchangers recipes for analyzing them have been given. The
analysis is complicated by the fact that the shell side fluid in a shell and tube
heat exchanger follows a tortuous path and the heat transfer coefficient may
be difficult to determine. The problems we considered were with a prescribed
heat transfer coefficient.
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Two ways of obtaining heat transfer coefficient would be by the numeri-
cal solution of governing equations using commercial numerical codes or by
experiments. Many research papers have appeared in recent times that use
full scale numerical simulations of heat exchangers. However, the designer
depends, to a large extent on experimentally obtained correlations, at least for
preliminary design of heat exchangers. For example, we have referred earlier
to the shell side heat transfer correlation given by Donohue. He has also given
correlations applicable to shells with baffles of different types. The original
paper may be referred to for useful correlations. Information regarding the
dependence of ε on R and NTU have been given previously in the form of
suitable plots. Analytical expressions have also been given for some of the
cases. A useful analytical expression is provided below for a shell and tube
heat exchanger:
Shell and tube heat exchanger: 1 shell pass and even number of tube passes

ε = 2

1 + R + X
√
1 + R2

with X = 1 + e−NTU
√
1+R2

1 − e−NTU
√
1+R2

There are several other types of heat exchange equipment that have not been
covered in this elementary treatment of the subject. For example, fixed beds of
granularmaterials such as pebble beds are used as energy storage devices. They
get heated or “charged” by passing hot gases through them for a certain length
of time. Subsequently, cold gasesmay be passed through the bed to “discharge”
the heat to the cold gases. The pebble bed heat exchanger is essentially a
device that operates in the transient mode. The operation is cyclic in nature
with alternate charge and discharge cycles. In order to improve the energy
density, it is also possible to use phase change materials for storage of energy.
These have important applications in the utilization of solar energy. See, for
example, the book by S.P. Sukhatme and J.K. Nayak, Solar Energy: Principles
of Thermal Collection and Storage, 3rd Edition, Tata McGraw Hill, 2008. We
have also not covered compact heat exchangers that find application in areas
such as aviation. The reader may refer to advanced books for these topics.

Concluding Remarks

This chapter has dealt with the analysis of heat exchangers that are encountered in many
engineering applications. Principles involved in their operation and the specific methods of
analysis have been discussed in detail. Both the LMT D as well as ε − NTU methods have
been presented. Useful formulae and charts have also been provide in this chapter.
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15.4 Exercises

Ex 15.1 For a counter-current heat exchanger, the effectiveness is given by Eq.
15.22. When R → 1, ε must be calculated by using L’Hospital rule
since the above is of form 0

0 . Obtain, by such a procedure, the appro-
priate value of ε as a function of NTU when R → 1.

Ex 15.2 A double pipe heat exchanger is to be used to cool water from 22 ◦C to
6◦C , using brine entering at−2 ◦C and leaving at 3 ◦C. The overall heat
transfer coefficient has been estimated at 500W/m2 ◦C. Calculate the
heat transfer area for a design heat load of 10 kW for both co-current
and counter flow arrangements. Also determine the effectiveness of the
heat exchanger in these cases, by two different ways.

Ex 15.3 Steam at 100 ◦C condenses over a horizontal tube subject to a heat
transfer coefficient of 3500W/m2 ◦C. Cooling water enters the tube at
50 ◦C and leaves at 70 ◦C. The inner diameter of the tube is 18mm,
the tube wall thickness is 2mm, and the tube material has a thermal
conductivity of 45W/m◦C. Determine the tube length required if the
water flow rate is given as 0.2 kg/s.

Ex 15.4 Air at atmospheric pressure and 30 ◦C flows at 3m/s through a 10mm
ID pipe. An electrical resistance heater surrounds 30 cm length of tube
toward its discharge end and supplies a constant heat flux to raise the
temperature of air to 90 ◦C. What is the power input? What is the mean
value of the heat transfer coefficient? Based on the above determine the
mean temperature difference between the tube wall and the fluid.

Ex 15.5 Hot chemical products with specific heat of 2500 J/kg◦C, inlet temper-
ature 600 ◦C at a flow rate of 30 kg/s are used to heat cold chemical
products with specific heat of 4200 J/kg◦C at 100 ◦C and a flow rate of
30 kg/s in a parallel flow arrangement. The total heat transfer area is
50m2 and the overall heat transfer coefficient is 1500W/m2 ◦C. Cal-
culate the outlet temperatures of the hot and cold products.

Ex 15.6 A counter-flow heat exchanger is to heat air to 500 ◦C with the exhaust
gas from a turbine. Air enters the exchanger at 300 ◦C and at amass flow
rate of 4 kg/s while the exhaust gas enters at a temperature of 650 ◦C
with a mass flow rate of 4 kg/s. The overall heat transfer coefficient is
1500W/m2 ◦C. The specific heat for both fluids can be taken as equal
and as 1100 J/kg◦C. Calculate the heat transfer area and the outlet
temperature of the hot gas.

Ex 15.7 A refrigerator coil has a tube of 3mm ID and 4mmODwith radial fins
of outer radius 10mm and thickness 0.2mm attached to the outside
with a spacing of 2mm. Other pertinent data are:

• Temperature of fluid flowing inside the tube: 60 ◦C
• Heat transfer coefficient on the tube side: 270W/m2 ◦C
• Temperature of the fluid on the outside of the tube: 30 ◦C
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• Heat transfer coefficient on the outside: 24W/m2 ◦C
• Tube and fin material thermal conductivity: 380W/m◦C

Determine the heat transfer per meter length of the coil.

Ex 15.8 A double pipe heat exchanger is used to condense steam at 6894 Pa.
Water at an average temperature of 10 ◦C flows at 3.05m/s through the
inner pipe of copper (2.54 cm ID, 3.05 cm OD). Steam at its saturation
temperature flows in the annulus formed between the outer surface of
the copper tube and an outer pipe of 5.08 cm ID. The average heat trans-
fer coefficient on the steam side is 5680W/m2 ◦C. The outer surface
of the copper tube has a scale formed on it whose thermal resistance is
1.76 × 10−4 m2 ◦C/W.

• Determine the overall heat transfer coefficient between steam and
water based on the outer area of the inner copper tube

• Evaluate the temperature of the inner surface of the pipe
• Estimate the tube length required for condensing 0.45 kg/min of
steam

Ex 15.9 A cross flow air to water heat exchanger with an effectiveness of
0.65 is used to heat water (Cpc = 4180 J/kg◦C) with hot air (Cph =
1010 J/kg◦C). Water enters the heat exchanger at 20 ◦C at 4 kg/s while
air enters at 100 ◦Cat 9 kg/s. If the overall heat transfer coefficient based
on the waterside is 260W/m2 ◦C, determine the heat transfer area on
the waterside. Assume that both fluids are unmixed. Use suitable chart
(refer to a book on heat exchangers) to solve this problem.

Ex 15.10 In a solar assisted air conditioning system 0.5 kg/s of ambient air at
270K is to be preheated by the same amount of air leaving the sys-
tem at 295K. If a countercurrent heat exchanger has a heat trans-
fer area of 30m2, and the overall heat transfer coefficient is esti-
mated to be 25W/m2 ◦C, determine the outlet temperature of the pre-
heated air. Assume that the specific heat of air remains constant at
Cph = 1000 J/kg◦C.

Ex 15.11 A long tube ofwall thickness 3mm ismade of amaterial of thermal con-
ductivity equal to 15W/m◦C. The tube has an ID of 23mm. It carries
a fluid flowing at a mean velocity of 3m/s having the following prop-
erties: Density = 1000 kg/m3, specific heat = 4180 J/kg◦C, dynamic
viscosity = 0.00108 kg/m · s, Prandtl number = 7.5, and thermal con-
ductivity = 0.598W/m◦C. The outside surface of the tube is subjected
to heat transfer to a condensing fluid with a known heat transfer coeffi-
cient of 14000W/m2 ◦C. Determine the overall heat transfer coefficient
based on the inside area of the tube. If the tube side fluid enters at 30 ◦C
and the temperature of the condensing fluid remains constant at 86 ◦C,
determine the length of the tube required to heat the tube side fluid to
42 ◦C.
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Ex 15.12 A co-current heat exchanger involves heat transfer from water to water.
The cold water flows on the tube side at 0.8 kg/s while the hot water
flows through the annulus at 1 kg/s. Hot water enters at 70 ◦C and
leaves at 54 ◦C. The cold water enters the tube at 25 ◦C. The overall
heat transfer coefficient between the two fluids has been ascertained to
be 1800W/m2 ◦C. Determine the required heat transfer area.

Ex 15.13 Water flows with a velocity of 5m/s in a tube of 19mm ID. The water
enters the tube at 30 ◦C and leaves at 45 ◦C. The tube wall is main-
tained at a constant temperature of 85 ◦C. Using the LMT D concept,
the estimated value of the heat transfer coefficient based on a suitable
correlation, obtain the length of the tube.

Ex 15.14 Hot air at atmospheric pressure and 350K enters a bare duct of square
cross section 15 × 15 cm that passes through a room 8m long at a
volume flow rate of 0.1m3/s. The duct wall is observed to be more or
less at a constant temperature of 330K. Determine the exit temperature
of air and also the pressure drop between duct entry and exit.

Ex 15.15 Water at 90 ◦C and a mass flow rate of 2250 kg/h is to be used to
heat ethylene glycol. Ethylene glycol is available at 30 ◦C with a
mass flow rate of 550 kg/h. A double pipe heat exchanger consist-
ing of a 34.93mm OD (32.79mm ID) standard copper tubing inside
of a 53.98mm OD (50.42mm ID) copper tubing is to be used. The
exchanger is 10m. It is constructed by using “hair pin” type construc-
tion with four 2.5m sections. Determine the outlet temperature of both
fluids using a counter flow arrangement. Ignore the effect of tube bends.

Ex 15.16 In a certain heat exchanger, condensing steam at 100 ◦C is used to heat
oil from 30 ◦C to 45 ◦C. The mass flow of oil is given to be 0.2 kg/s
and the specific heat of oil is constant at 1200 J/kgK. Design the heat
exchanger as a shell and tube type heat exchanger. Assume that tubes
are to be restricted to a length of 1m. Note that many design variants
are possible.

Ex 15.17 A test is conducted to determine the overall heat transfer coefficient
in a shell and tube oil to water heat exchanger that has 96 tubes of
internal diameter 12mm and length 2m in a single shell. Cold water
(Cpc = 4180 J/kg◦C) enters the tubes at 20 ◦C with a mass flow rate of
5 kg/s and leaves at 55 ◦C. Oil (Cph = 2150 J/kg◦C) flows through the
shell and is cooled from 120 ◦C to 75 ◦C. Determine the overall heat
transfer coefficientUi of this heat exchanger based on the inner surface
area of the tubes.



Chapter 16
Natural Convection

Natural or free convection heat transfer occurs due to flow generated because of
density differences in the medium, in the presence of an external force field, such

as gravity. It may also be due to a force field generated by rotation that gives rise to the
centrifugal force field. Because natural convection takes place in the absence of an
external agency, such as a pump or blower, that generates the flow, heat transfer is free in
that there is no expenditure of mechanical energy. Examples of natural convection are
many and are important in applications such as cooling of electronic equipment for
terrestrial use. Natural convection also is important in buildings, equipments such as
chimney and cooling towers that make use of natural draft due to temperature
differences.

16.1 Introduction

Free or natural convection is the mode of heat transfer that takes place from a surface
to a fluid, in the presence of a temperature difference between the surface and the
fluid, but in the absence of any externally imposed flow. Even when the fluid can
be considered as incompressible, density differences in the presence of temperature
differences create a flow due to the effect of buoyancy. Of course, it is essential
that an external force field like gravity be there for this to happen. It is customary to
assume that the acceleration due to gravity is directed downwards. A typical example
of buoyancy induced flow is the natural draft induced by a chimney as shown in Fig.
16.1. The draft induced because of the temperature difference between warm indoor
and cold outdoor air operates over the height H of the chimney. If it is assumed that
the warm air does not lose heat as it moves in the chimney the pressure difference
induced due to buoyancy is given by
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Fig. 16.1 Example of
buoyancy induced flow:
natural draft in a chimney

H

Warm air

Cold outdoor
air

Warm indoor
air

�p = (ρo − ρi )gH (16.1)

where subscripts o and i stand for outdoor and indoor, respectively. If we assume that
the pressure drop due to entrance, friction, and exit of the chimney is K ρi V 2

2 where
K is a suitable constant, the velocity V in the chimney is given by

V =
√
2(ρo − ρi )gH

Kρi
(16.2)

If the inner diameter of the chimney is D the draft Q is given by

Q = πD2

4

√
2(ρo − ρi )gH

Kρi
(16.3)

A heated tube closed at the bottom, but open at the top, will support flow in the
form of a movement of cold ambient air down the middle of the tube and upward
movement of warm air close to the tubewall, as shown in Fig. 16.2. Free convection is
due to buoyant forces that are normally neglected or negligible in the case of forced
convection problems. Many examples of free convection flow are encountered in
practice. A few of them are schematically indicated in Fig. 16.3a–d.

In the case of the vertical isothermal plate (Tw > T∞) shown in Fig. 16.3a the
fluid close to the plate is hotter and hence lighter than the fluid far away which is
lighter and heavier. Hence the fluid near the plate experiences an upward force due
to buoyancy. The flow near the plate is then upwards. In case (Tw < T∞) as shown in
Fig. 16.3b the flow direction is reversed as indicated. The flow near the plate is then
downwards.
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Fig. 16.3 Examples of natural convection flows

The case of a horizontal fluid layer between two large walls is shown in Fig. 16.3c.
When the lower wall is cooler than the upper wall, the layer is stable and no natural
convection flow is observed. The fluid layer indicates temperature stratification and
the heat transfer is by conduction alone. However, when the lower wall is at a tem-
perature higher than that of the upper wall, as shown in Fig. 16.3d, a complex natural
convection flow pattern is set up. There is heat transfer augmentation due to natural
convection as compared to pure conduction in the stable configuration.

A two-dimensional cavity formed by two vertical isothermal walls and two hor-
izontal adiabatic walls is shown in Fig. 16.3e. The heated fluid moves upward near
the hot wall, turns around at the adiabatic wall, and subsequently moves downward
near the cold wall. A circulatory flow is thus set up. Heat is removed by the upward
moving fluid near the hot wall and is transferred to the cold wall as the fluid moves
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down near it. Again there is an augmentation of heat transfer in comparison with the
pure conduction case.

The last example shown in Fig. 16.3f corresponds to natural convection from an
isothermal cylinder. The cold fluid moves in to displace the heated fluid near the
surface of the cylinder upward due to density differences. A well-defined plume
rises from the top of the cylinder, as shown.

Since all these cases are not amenable to analytical treatment, a detailed analysis
is presented only for the case of the laminar natural convection from an isothermal
vertical plate. Other cases are treated by presenting appropriate correlations, based
on either full numerical treatment or based on experiments.

Example 16.1

An indoor fireplace is heated by gas and the hot gases move out through a 20m
tall chimney. Hot gases are essentially at a constant temperature of 180 ◦C. Ambi-
ent outdoor air is at a temperature of 20 ◦C. If the inner diameter of the chimney is
203.2mm estimate the flow rate of gases through the chimney inm3/h. Assume, for
simplicity, that the molecular weight of gas is the same as that of air. Pressure may
be taken as 1 atm

Solution:

Step 1 The given data is written down, using the notation introduced in the text.

To = 273 + 20 = 293K, Ti = 273 + 180 = 453K, p = 101300 Pa H = 20m

Under the assumption that the molecular weight of indoor and outdoor
air are the same, the gas constant may be taken as R = 287 J/kgK. The
densities of indoor and outdoor air are then obtained as

ρi = 101300

287 × 453
= 0.779 kg/m3 and ρo = 101300

287 × 293
= 1.205 kg/m3

Pressure developed due to buoyancy is then given by

�p = (ρo − ρi )gH = (1.205 − 0.779) × 9.81 × 20 = 83.5 Pa (16.4)

Step 2 In order to calculate the velocity of air in the chimney, we need to know the
value of loss coefficient K . This comprises of 3 parts. First one is due to
entry loss where the hot air enters the chimney. Assuming that the entry is
flush or square edged contraction (no data specified and we take the worst
case) the loss coefficient is Ki = 0.5. The second one is the exit loss that
is characterized by Ke = 1. The third one is due to friction in the chimney.
This depends on the Reynolds number and is based on the friction factor
calculated by the use of an appropriate relation for tube flow. Since the
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Reynolds number is based on as yet unknown velocity we need to use an
iterative scheme for the solution.
We start the solution by altogether ignoring the pressure drop due to fluid
friction and use an initial K value of K (1) = Ki + Ke = 1 + 0.5 = 1.5 to
obtain the first guess for the fluid velocity V (1) as

V (1) =
√

2�p

K (1)ρi
=

√
2 × 83.5

1.5 × 0.779
= 11.95m/s

Step 3 With the first guess for velocity available we estimate the contribution of
fluid friction to the pressure drop now. The Reynolds number is calculated,
based on inner diameter of chimney of I D = 203.2mm = 0.2032m and
the kinematic viscosity of air at temperature of Ti = 180 ◦C given by νi =
3.28 × 10−5 m2/s. Thus we have

Re(1)
I D = V (1) I D

νi
= 11.95 × 0.2032

3.28 × 10−5
= 74135.3

Friction factor is then calculated as (using Equation 14.24(b))

f (1) = 0.184[
Re(1)

I D

]0.25 = 0.184

74135.30.25
= 0.0112

Then K (1)
f is calculated as

K (1)
f = 4 f (1)H

I D
= 4 × 0.0112 × 20

0.2032
= 4.390

Step 4 We may now update the overall K as K (2) = Ki + K (1)
f + Ke = 0.5 +

4.39 + 1 = 5.89. We may revise the velocity calculation and continue the
iteration till convergence. The results are tabulated below.

Iteration K V Change
number m/s �V, m/s

1 1.5 11.952
2 5.89 6.032 −5.921
3 6.71 5.652 −0.380
4 6.79 5.616 −0.036
5 6.80 5.612 −0.003

Step 5 The converged value for the average velocity of flow through the chimney
is taken as V = 5.612m/s. With this velocity, the draft may be calculated
as
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Q = 3600 × π I D2V

4
= 3600 × π × 0.20322 × 5.612

4
= 655.23m3/h

In Example 16.1, we have assumed that the gas flowing through the chimney is
isothermal. This may be justified by looking at the heat loss from the gas to the
chimney as it flows upwards. Since the flow velocity is substantial we may use
a suitable correlation—forced convection correlation—such as the Dittus–Boelter
equation to calculate the heat transfer coefficient. Temperature variation of the gas
as it moves up may be obtained by treating the chimney as a heat exchanger. We
demonstrate this by the following example.

Example 16.2

Consider the chimney in Example 16.1. The chimney is made of a double wall
construction with a t = 50.8mm thick Super Wool 607 Plus in the annular space.
Thermal conductivity of the insulation is known to be kInsul = 0.05W/m◦C. Assume
that the chimney experiences a mild wind of 2m/s normal to its axis.

Solution:
This example will show howwemake use of thematerial already covered in previous
chapters to model a fairly complex problem. We make use of the overall resistance
concept in treating heat transfer radially across the chimney, assuming very little
heat transfer to take place along the axis. Heat transfer on the outside surface of the
chimney is modeled as that due to flow normal to the axis of a cylinder, using the
Zhukaskas correlation. Resistance due to the insulation is considered as conduction
through an annulus. The stainless sheetmetal used inmaking the doublewall chimney
is very thin and may be assumed to offer zero conduction resistance. Air properties
required in the analysis are tabulated below.

T, K ρ, kg/m3 ν, m2/s k, W/m◦C Pr
293 1.205 1.52 × 10−5 0.0258 0.704
453 0.779 3.28 × 10−5 0.0376 0.686

Step 1 We calculate all the resistances now.
(a) Conduction resistance due to the insulation is given by

RInsul = 1

2πkInsul
ln

(
I D + 2t

I D

)

= 1

2 × π × 0.05
ln

(
203.2 + 2 × 50.8

203.2

)
= 1.2906m◦C/W

(b) Reynolds number for flow in the chimney is given, based on air prop-
erties at 453K, by
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ReI D = 5.612 × 0.2032

3.28 × 10−5
= 34812.5

Based on Dittus–Boelter equation the corresponding Nusselt number is
given by

NuI D = 0.023Re0.8I D Pr
0.37 = 0.023 × 34812.50.8 × 0.6860.37 = 88.3

Corresponding to the above the inside heat transfer coefficient hi is given
by

hi = NuI Dki
I D

= 88.8 × 0.0376

0.2032
= 16.34W/m2 ◦C

Film resistance on the inside is then given by

Ri = 1

π I Dhi
= 1

π × 0.2032 × 16.34
= 0.0959m◦C/W

(c) Consider the cross flow across the chimney on the outside due to the
prevailing wind. The wind velocity is specified as U = 2m/s. Air prop-
erties are taken at 293K. Reynolds number based on OD is then given
by

ReOD = 2 × 0.3048

1.52 × 10−5
= 39994.3

The appropriate constants in theZhukaskas correlation areC = 0.26, m =
0.6 and n = 0.37. The Nusselt number is then given by

NuOD = 0.26 × 39994.30.6 × 0.7040.37 = 131.8

Then the external heat transfer coefficient is

ho = NuODko
OD

= 131.8 × 0.0258

0.3048
= 11.15W/m2 ◦C

Hence the outside film resistance is given by

Ro = 1

πODho
= 1

π × 0.3048 × 11.15
= 0.0936m◦C/W

Hence the overall resistance is given by

ROverall = Ri + RInsul + Ro = 0.0959 + 1.2906 + 0.0936 = 1.4801m◦C/W

Step 2 We model the cooling of the gas as it moves up the chimney as a heat
exchanger tube with constant wall temperature that corresponds to the
outdoor air temperature. The analysis is akin to that presented in section
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14.4.3. 2πRh̄ in that analysis will correspond to 1
ROverall

of the present case.
Taking I D as the basis, wemay calculate themean heat transfer coefficient
as

h̄ = 1

π I DROverall
= 1

π × 0.2032 × 1.4801
= 1.0583W/m2 ◦C

The mass flow rate of the flue gas is ṁ = ρi Q = 0.7942 × 0.182 =
0.1445 kg/s. We assume its specific heat to be Cp = 1005 J/kgK. With
the heat transfer area being given by SH = π I D H = π × 0.2032 × 20 =
12.767m2, we then have

h̄SH
ṁCp

= 1.4801 × 12.767

0.1445 × 1005
= 0.0930

The temperature difference between the gas leaving the chimney and the
ambient is then obtained as

�TH = (180 − 20)e−0.0930 = 145.8 ◦C

Hence the exit temperature of the gases from the chimney is

TH = 20 + 145.8 = 165.8 ◦C

Thus the temperature drops by about 14 ◦C from entry to exit. Example
16.1 may be reworked by taking the temperature of the gases as the mean
at entry and exit and rework all the numbers.

16.2 Laminar Natural Convection from a Vertical
Isothermal Plate

A new non-dimensional parameter called the Grashof number1 makes its appear-
ance in natural convection flows. Consider, for example, natural convection from an
object of characteristic length L with a surface to the ambient temperature difference

1Named after Franz Grashof 1826–1893, a German engineer.
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of Tw − T∞ = �T . Let the gravitational acceleration be g, and oriented vertically
downwards. Let the fluid be characterized by an isobaric coefficient of volume expan-
sion of β, kinematic viscosity ν. The Grashof number Gr , as it will become clear
later on, turns out to be given by

Gr = gβ�T L3

ν2
(16.5)

The flow is basically by conduction for low values of Grashof number. For Gr >

1000 or so, natural convection sets in because the buoyant forces are able to overcome
viscous forces. For large values of Gr the flow exhibits boundary layer behavior, in
that, significant velocities occur in a thin layer near the heated boundary. The flow
remains laminar till the Grashof number crosses a critical value that is geometry
specific. For example, in the case of natural convection from a vertical isothermal
plate, the critical value is Grc ≈ 109.

Laminar natural convection from a vertical isothermal plate is amenable to ana-
lytical solution—either exact as given by Ostrach2—or approximate by the integral
method. The latter solution is presented here in detail and reference ismade toOstrach
solution, for comparison purposes, later on.

16.2.1 Isothermal Vertical Plate—Integral Solution

Governing Equations
Refer again to Fig. 16.3a. Assume that the Grashof number is large enough for the
boundary layer type of flow to exist. The velocities are then significant onlywithin the
boundary layer close to the surface. The density differences are usually small under
the assumption that temperature differences are small. Based on this, wemay assume
the fluid to be basically incompressible excepting for the buoyancy term (body force
termwherein the density variation is taken into account). This approximation is called
the Boussinesq approximation.3 The boundary layer equations are written down in
the usual way (two-dimensional flow, x and y are measured as shown in Fig. 16.3a.

2S. Ostrach, NACA Report 1111, 1953.
3Joseph Valentin Boussinesq, 1842–1929, a French mathematician and physicist suggested this
approximation.



772 16 Natural Convection

• Continuity:
∂u

∂x
+ ∂v

∂y
= 0 (16.6)

• x - momentum:

ρ

[
u

∂u

∂x
+ v

∂u

∂y

]
= −ρg − dp

dx
+ μ

∂2u

∂y2
(16.7)

The extra term ‘−ρg’ is because of body force.

• Energy:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(16.8)

All properties including density are assumed constant except ρ in the body force
term. As we approach the ambient, ρ → ρ∞ and u → 0. Hence, Eq.16.7, as y → ∞
becomes

0 = −ρ∞g − dp

dx
or − dp

dx
= ρ∞g

Introduce this in Eq.16.7 to get

ρ

[
u

∂u

∂x
+ v

∂u

∂y

]
= (ρ∞ − ρ)g + μ

∂2u

∂y2
(16.9)

The pressure gradient outside the boundary layer has thus been written in terms of
the body force there. The pressure variation is very mild in the case of natural con-
vection flows since the velocities generated by density differences are small. Hence,
it is reasonable to assume that density variations are due only to temperature varia-
tions. Hence, we obtain density variations using the isobaric coefficient of volumetric
expansion of the fluid given by

β = − 1

ρ

(
∂ρ

∂T

)
p

With the small temperature difference approximation i.e. Tw − T∞ � Tw+T∞
2 , to a

good approximation, we have

∂ρ

∂T
≈ ρ − ρ∞

T − T∞
Hence, we have
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βρ ≈ βρ∞ = ρ∞ − ρ

T − T∞
or ρ∞ − ρ = −βρ∞(T∞ − T ) (16.10)

Introduce this in Eq.16.7, assume that ρ = ρ∞ excepting as far as the body force
term is concerned, to get

u
∂u

∂x
+ v

∂u

∂y
= gβ(T − T∞) + ν

∂2u

∂y2
(16.11)

For an ideal gas, (air may be considered to be an ideal gas, for engineering purposes)

p = ρRT

Since p is constant, we have

dp = 0 = RTdρ + RρdT or
1

ρ

(
∂ρ

∂T

)
p

= − 1

T
≈ 1

T∞

where the last step is possible because of the small temperature difference approxi-
mation. Note also that the temperature should be specified in K because the above
is based on thermodynamic relations. With this, Eq. 16.11 finally becomes

u
∂u

∂x
+ v

∂u

∂y
= gβ

(
T

T∞
− 1

)
+ ν

∂2u

∂y2
(16.12)

Boundary Conditions
At the surface of the plate, no slip conditions apply.

y = 0 and 0 ≤ x ≤ L , u = v = 0, T = Tw (16.13)

Far away from the plate, we have the ambient fluid at rest.

y → ∞ and 0 ≤ x ≤ L , u = v = 0, T = T∞ (16.14)

Integral Equation
An approximate solution to the equations presented above are possible by the integral
method. The method is essentially similar to the one used in the case of forced
convection parallel to an isothermal flat plate. The appearance of buoyancy term
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and hence the coupling between the flow and energy equations is a feature that is
peculiar to natural convection flows. This simply means that momentum and energy
equations have to be solved simultaneously even though fluid properties have been
assumed to be constant. In view of this, we derive the momentum integral equation
and the energy integral equation, starting from the boundary layer Eqs. 16.6, 16.8,
and 16.12 subject to the boundary conditions 16.13 and 16.14. In this method, we
integrate the boundary layer equations between y = 0 and y = δ, the boundary layer
thickness. From momentum equation we than have

δ∫
0

u
∂u

∂x
dy +

δ∫
0

v
∂u

∂y
dy = gβ

δ∫
0

(
T

T∞
− 1

)
dy + ν

δ∫
0

∂2u

∂y2
dy (16.15)

Integrate the second term on the left-hand side of Eq.16.15 by parts to get the
following:

δ∫
0

v
∂u

∂y
dy = vu

∣∣∣δ
0{

Vanishes at
both limits

}
−

δ∫
0

u
∂v

∂y{ = − ∂u
∂x

by continuity

}
dy =

δ∫
0

u
∂u

∂x
dy

Thus, the left-hand side of Eq.16.15 becomes

δ∫
0

u
∂u

∂x
dy +

δ∫
0

v
∂u

∂y
dy = 2

δ∫
0

u
∂u

∂x
dy =

δ∫
0

∂u2

∂x
dy = d

dx

δ∫
0

u2dy

The second term on right-hand side of Eq.16.15 can be written as

ν

δ∫
0

∂2u

∂y2
dy = ν

(
∂u

∂y

) ∣∣∣∣
δ

0

= −ν
∂u

∂y

∣∣∣∣
0

= −τw,x

ρ

where τw,x is the shear stress at the wall. Thus, the momentum integral equation is
written down as

d

dx

δ∫
0

u2dy − gβ

δ∫
0

(
T

T∞
− 1

)
dy = −τw,x

ρ
(16.16)

Integrate Eq.16.8 with respect to y between y = 0 and y = δ to get
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δ∫
0

u
∂T

∂x
dy +

δ∫
0

v
∂T

∂y
dy = α

δ∫
0

∂2T

∂y2
dy (16.17)

Integrate by parts the second term on the left-hand side of Eq.16.17 to get

δ∫
0

v
∂T

∂y
dy = (vT )

∣∣∣δ
0
−

δ∫
0

T
∂v

∂y
dy = vδT∞ +

δ∫
0

T
∂u

∂x
dy

where vδ is the normal velocity of the fluid at the edge of the boundary layer.We have
made use of the continuity equation in the above. The two terms on the left-hand
side of Eq.16.17 may then be combined to get

δ∫
0

u
∂T

∂x
dy +

δ∫
0

v
∂T

∂y
dy =

δ∫
0

u
∂T

∂x
dy +

δ∫
0

T
∂u

∂x
dy + vδT∞ = d

dx

δ∫
0

uTdy + vδT∞

In order to get the normal velocity at the edge of the boundary layer, we integrate
the continuity Eq.16.6 to get

δ∫
0

∂u

∂x
dy +

δ∫
0

∂v

∂y
dy =

δ∫
0

∂u

∂x
dy − vδ = 0 or vδ =

δ∫
0

∂u

∂x
dy

Thus, we have

δ∫
0

u
∂T

∂x
dy +

δ∫
0

v
∂T

∂y
dy =

δ∫
0

∂u

∂x
dy − T∞

δ∫
0

∂u

∂x
dy = d

dx

δ∫
0

u(T − T∞)dy

The right-hand side term in Eq.16.17 may be written as

α

δ∫
0

∂2T

∂y2
= α

(
∂T

∂y

) ∣∣∣∣
δ

0

= qw,x

ρ∞C

where qw,x = −k ∂T
∂y

∣∣∣∣
y=0

is the wall heat flux. With all of these, the energy integral

Eq.16.17 becomes
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d

dx

δ∫
0

u(T − T∞)dy = qw,x

ρ∞C
(16.18)

Solution
In the integral equation approach, we assume that the velocity profile inside the
boundary layer is as indicated in Fig. 16.4 and is a function of η = y

δ
, where δ, the

boundary layer thickness is a function of x .
As shown in the figure, u vanishes at x = 0, as well as at x = δ. Instead of using

the original boundary layer equations, (partial differential Eqs. 16.6,16.7, and 16.8)
we make use of the integral Eqs. 16.16 and 16.18 to obtain an approximate solution.
Assume a velocity scale U (to be determined as part of the analysis) such that u

U is
a third degree polynomial in η. U is as yet an unknown function of x.

u

U
= a + bη + cη2 + dη3

Since u vanishes at y = 0, we choose a = 0. Since u also vanishes at y = δ or η = 1,
we have

b + c + d = 0

We shall use the smoothness condition ∂u
∂y = 0 at η = 1 to get

b + 2c + 3d = 0

The above two conditions may be satisfied by b = d and c = −2d. Constant d may
be arbitrarily chosen as 1 since the scale factor U may be adjusted suitably. Thus,
the velocity profile is taken as

u

U
= η − 2η2 + η3 = η(1 − η)2 (16.19)

The above profile has a zero slope at η = 1
3 . Thus, the velocity profile has the appear-

ance of the profile indicated schematically in Fig. 16.4.
We assume that the non-dimensional temperature θ = T−T∞

Tw−T∞ is a second degree
polynomial in η satisfying the condition T = Tw at y = 0, i.e., θ = 1 at η = 0,
T = T∞ at y = δ, i.e., θ = 0 atη = 1. In addition it satisfies the smoothness condition
dθ
dη

= 0 at η = 1. The reader may verify that the required temperature profile is given
by

θ = (1 − η)2 (16.20)

In the above, we have assumed that δ is the same for the momentum boundary layer,
as well as the thermal boundary layer. This is a consequence of the fact that the
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Fig. 16.4 Boundary layer
velocity and temperature
profiles
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edge
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edge

Temperature
profile

xx, u
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momentum and energy equations are coupled. Temperature appears in Eq.16.12 and
u and v in Eq.16.8, and hence the two boundary layers are related, irrespective of the
value of the Prandtl number. This is quite different from the forced convection case
where momentum and thermal boundary layer thicknesses are distinct and depend
on the Prandtl number.

Using the assumed velocity and temperature profile, we calculate the individual
terms in the momentum and thermal integral equations.

δ∫
0

u2dy =U2δ

1∫
0

( u

U

)2
dη = U2δ

∫ 1

0
[η(1 − η)2]2dη

=U2δ

∫ 1

0
[η2(1 − 4η + 6η2 − 4η3 + η4)]dη = U2δ

[
η3

3
− 4η4

4
+ 6η5

5
− 4η6

6
+ η7

7

] ∣∣∣∣
1

0

=U2δ

[
1

3
− 1 + 6

5
− 2

3
+ 1

7

]
= U2δ

105

We also have

δ∫
0

(T − T∞)dy = (Tw − T∞)δ

1∫
0

θdη = (Tw − T∞)δ

1∫
0

(1 − η)2dη

= −(Tw − T∞)δ
(1 − η)3

3

∣∣∣∣
1

0

= (Tw − T∞)δ

3

The wall shear stress may be calculated using the velocity profile as

τw,x

ρ∞
= ν

∂u

∂y

∣∣∣∣
y=0

= νU

δ

d

dη

( u

U

)∣∣∣∣
η=0

= νU

δ
[(1 − η)2 − 2η(1 − η)]|η=0 = νU

δ

Turning our attention to the terms occurring in the energy integral, we have the
following:

∫ δ

0
u(T − T∞)dy = Uδ(Tw − T∞)

∫ 1

0

u

U
θdη = Uδ(Tw − T∞)

∫ 1

0
η(1 − η)2(1 − η)2dη

= Uδ(Tw − T∞)

∫ 1

0
η(1 − η)4dη = Uδ(Tw − T∞)

[
−η · (1 − η)5

5

∣∣∣∣
1

0

+
∫ 1

0

(1 − η)5

5
dη

]
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= −Uδ(Tw − T∞)
(1 − η)6

30

∣∣∣∣
1

0

= Uδ(Tw − T∞)

30

We also have

qw,x

ρ∞Cp
= −α

(Tw − T∞)

δ

dθ

dη

∣∣∣∣
η=0

= −α
(Tw − T∞)

δ

d(1 − η)2

dη

∣∣∣∣
η=0

= 2α(Tw − T∞)

δ

The momentum integral 16.16 then becomes an ordinary differential equation given
by

d

dx

(
U 2δ

105

)
− gβ(Tw − T∞)

3
δ = −νU

δ
(16.21)

Also, the energy integral 16.18 becomes an ordinary differential equation given by

d

dx

(
Uδ

30

)
= 2α

δ
(16.22)

The two coupled ordinary differential equations have to be solved to get the velocity
scale U , as well as the boundary layer thickness δ. We expect these two to be of the
form

(a) U = Axm and (b) δ = Bxn (16.23)

where A, B, n, and m are to be so chosen that the integral equations are identically
satisfied. These in Eq.16.21 lead to

d

dx

(
A2Bx2m+n

105

)
− gβ(Tw − T∞)

3
Bxn = −νA

B
xm−n

or
A2B(2m + n)

105
x2m+n−1 − gβ(Tw − T∞)

3
Bxn = −νA

B
xm−n (16.24)

Eq.16.22 takes the form

d

dx

ABxm+n

30
= 2α

B
x−n or

(
AB(m + n)

30

)
xm+n−1 = 2α

B
x−n (16.25)

We require that the x dependence on both sides of the above two equations match.
Thus, from Eq.16.24, we have
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2m + n − 1 = n = m − n

From Eq.16.25, we also should have

m + n − 1 = −n

We at once see that these conditions are mutually compatible, and hence we have

m + 2n = 1 and 2m = 1

The required exponents m and n are

m = 1

2
and n = 1

4
(16.26)

With these we are ready to look at the coefficients A and B. From Eq.16.25, we
have, with the above values of m and n

AB

30

(
1

2
+ 1

4

)
= AB

40
= 2α

B

or solving for A in terms of B, A = 80 α
B2 . From Eq.16.24, we have

A2B(2 × 1
2 + 1

4 )

105
− gβ(Tw − T∞)

3
B = −νA

B

or
A2B

84
− gβ(Tw − T∞)

3
B = −νA

B

This may be rewritten using A in terms of B obtained above to get

802α2

84B3
− gβ(Tw − T∞)

3
B = −80να

B3

Noting that Pr = ν
α
, we may write the above as

1

B4

(
802

84
α2 + 80να

)
= α2

B4

(
802

84
+ 80Pr

)
= gβ(Tw − T∞)

3

This may be solved for A to get

B = 3.93

[
Pr + 0.952

gβ(Tw − T∞)

] 1
4 √

α (16.27)

Coefficient A is then obtained as
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A = 80
α

B2
= 5.17

[
gβ(Tw − T∞)

Pr + 0.952

] 1
2

(16.28)

We define a local Grashof numberGrx with x as the characteristic length, i.e., replace
L in Eq.16.5 by x . Then we may write for δ as

δ = 3.93

[
Pr + 0.952

gβ(Tw − T∞)

] 1
4 √

αx
1
4 = 3.93

[
α2(Pr + 0.952)

gβ(Tw − T∞)

] 1
4 x

x
3
4

= 3.93

[
ν2(Pr + 0.952)

gβPr2(Tw − T∞)

] 1
4

· x

x
3
4

= 3.93

[
(Pr + 0.952)

Pr2

] 1
4
[

ν2

gβ(Tw − T∞)x3

] 1
4

· x

= 3.93

[
Pr + 0.952

Pr2

] 1
4 · x

Gr
1
4
x

(16.29)

The velocity scale within the boundary layer is given by

U = Axm = 5.17

[
gβ(Tw − T∞)

Pr + 0.952

] 1
2

· x 1
2 (16.30)

The maximum velocity within the boundary layer occurs at η = 1
3 as may easily be

verified. Hence, the maximum velocity is given by

umax = U · 1
3

(
1 − 1

3

)2

= 4

27
U = 0.766

√
gβ(Tw − T∞)

Pr + 0.952
x (16.31)

Wall Heat Flux and the Nusselt Number
The quantity of interest to us is the heat transfer from the plate. The local wall heat
flux is given by

qw,x = 2k(Tw − T∞)

δ
= 2k(Tw − T∞)

3.93

[
Pr + 0.952

Pr2

] 1
4

· x

Gr
1
4
x

This may be expressed in terms of local Nusselt number as

Nux = qw

k(Tw − T∞)
· x = 0.509

[
Pr2

Pr + 0.952

] 1
4

Gr
1
4
x (16.32)

Sometimes another non-dimensional parameter, Rayleigh number Ra,4 the product
of Grashof and Prandtl numbers is used in the heat transfer literature. The above

4After John William Strutt, 3rd Baron Rayleigh 1842–1919, British Physicist.
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equation may hence be written in the alternate form

Nux = 0.509

[
Pr

Pr + 0.952

] 1
4

Ra
1
4
x (16.33)

Average Nusselt Number
In applications, we would like to define an average heat transfer coefficient based on
height L of the plate as

NuL = QwL L

k(Tw − T∞)

where QwL is the total heat transfer from the plate. We may write QwL as

QwL = 1

L

L∫
0

qwdx == 1

L

L∫
0

2k(Tw − T∞)

3.93

[
Pr + 0.952

Pr2

] 1
4

· x

Gr
1
4
x

dx

Hence, the average Nusselt number may be written as

NuL = QwL L

k(Tw − T∞)
=

L∫
0

2

3.93

[
Pr + 0.952

Pr2

] 1
4

· x

Gr
1
4
x

dx = K

L∫
0

x− 1
4 dx

where K stands for all the other terms excepting that containing x . The indicated
integration may be performed to get

∫ L

0
x− 1

4 dx =
[

x− 1
4 +1

− 1
4 + 1

]∣∣∣∣∣
L

0

= 4

3
L

3
4

Whenwe introduce this back in the expression for the averageNusselt number, we get

NuL = 4

3
NuL = 4

3
· 0.509

[
Pr

Pr + 0.952

] 1
4

Ra
1
4
L = 0.677

[
Pr

Pr + 0.952

] 1
4

Ra
1
4
L

(16.34)
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Example 16.3

Heating element of a water heater is idealized as a 0.1 × 0.1m square vertical plate.
The plate temperature is 27 ◦C while the water temperature is 15 ◦C. Determine the
amount of heat transferred using the results of the integral method. Properties are to
be taken at the mean of plate and ambient temperatures.

Solution:
The given data, in the notation used in the above section is written down first.

Heater plate temperature: Tw = 27 ◦C
Ambient water temperature: T∞ = 15 ◦C

Plate height: L = 0.1m
Plate width: W = 0.1m

Mean temperature for calculating water propertis is

Ta = Tw + T∞
2

= 27 + 15

2
= 21 ◦C

Temperature difference for calculating the Grashof/Rayleigh number is

�T = Tw − T∞ = 27 − 15 = 12 ◦C

Properties of water at 21 ◦C are taken from from table of properties

ka = 0.597W/m◦C, Pra = 7.0,
gβa

ν2
a

= 2.035 × 109 (SI units)

The Rayleigh number based on plate height is calculated as

RaL = gβa

ν2
a

× L3 × �T × Pra = 2.035 × 109 × 0.13 × 12 × 7 = 1.71 × 108

Flow is laminar since the Rayleigh number is less than 109. Eq.16.34 based on the
integral solution gives

NuL = 0.677

[
7

7 + 0.952

] 1
4

(1.71 × 108)
1
4 = 75

The average heat transfer coefficient may then be calculated as

hL = NuLka
L

= 75 × 0.597

0.1
= 447.8W/m2 ◦C
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Assuming that heat transfer takes place from both sides of the plate, the total heat
transfer is given by

QL = 2LWhL�T = 2 × 0.1 × 0.1 × 447.8 × 12 = 107.5W

16.2.2 Exact Solution of Ostrach

We have seen above how an approximate solution is obtained by the integral method.
The fact that the boundary layer velocity and temperature profiles could be chosen as
given polynomial functions of η indicates that the solution should be possible by the
method of similarity. The reader may compare the situation that prevailed in the case
of transient conduction in one dimension, as well as the velocity and temperature
boundary layers in laminar forced convection. Since the method of similarity, is by
now, familiar to the reader, we give a short summary of the solution, leaving out the
details to the original research report of Ostrach cited earlier.

Taking a hint from the integral solution, it is clear that the similarity variable
for this problem should go as y

x
1
4
. In fact, Ostrach has shown that the appropriate

similarity variable is given by

η = y

x

Gr
1
4
x

4
(16.35)

Correspondingly the velocity scales with
√
x (see Eq.16.30). Ostrach found the

velocity scale to be

U = 2ν
√

α

x
Gr

1
2
x (16.36)

Ostrach introduced a functions F(η) such that the velocity is given by

u = 2ν
√

α

x
Gr

1
2
x
dF

dη
(16.37)

The non-dimensional temperature was defined as usual as

θ(η) = T − T∞
Tw − T∞

(16.38)

The similarity analysis then reduces the problem to the solution of the following two
non-linear coupled ordinary differential equations.
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Fig. 16.5 Boundary layer
velocity profiles: Ostrach
solution

Fig. 16.6 Boundary layer
temperature profiles: Ostrach
solution

d3F

dη3
+ 3F

d2F

dη2
− 2

(
dF

dη

)2

+ θ = 0 (16.39)

d2θ

dη2
+ 3Pr F

dθ

dη
= 0 (16.40)

The boundary conditions are specified as below

(a) η = 0, F = dF

dη
= 0, andθ = 1, (b) η → ∞,

dF

dη
→ 0 and θ → 1

(16.41)
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Table 16.1 Table of C(Pr), Exact, Curve fit and Approximate

Pr C C C

Exact∗ Curve fit Approximate

0.01 0.2421 0.2393 0.2156

0.72 0.5165 0.5137 0.5476

0.733 0.5176 0.5147 0.5490

1 0.5347 0.5318 0.5720

2 0.5680 0.5654 0.6137

10 0.6200 0.6186 0.6616

100 0.6532 0.6523 0.6754

1000 0.6649 0.6635 0.6768
∗From S. Ostrach, NACA 1111, 1953

These equations may be solved numerically by the use of the Runge–Kutta method.
Since the two equations are coupled, the numerical scheme, in essence, is equivalent
to solving five first order equations. The natural convection boundary velocity profile
is shown in Fig. 16.5 and temperature profiles in Fig. 16.6, for three representative
Pr values. The case with Pr = 0.1 applies to the case of a liquid metal. The case
with Pr = 0.733 is applicable to gases like air. The case Pr = 10 is applicable to
a liquid such as water. We observe that the thickness of both velocity and temper-
ature boundary layers increase with decrease in Pr . This is quite unlike the forced
convection case, where Pr does not influence the velocity profile. Average Nusselt
number over length L of the plate is obtained from Ostrach solution as

NuL = C(Pr)Ra
1
4
L (16.42)

The coefficientC(Pr) depends on the Prandtl number. Recall that the integralmethod
also yields an equation which resembles the above, with the coefficient explicitly
appearing as a closed form function of the Prandtl number (Eq.16.34). In Table16.1
on page 785, we compare the values of coefficient C(Pr) for a range of Prandtl
numbers obtained by the exact solution of Ostrach, obtained by a curve fit to the
exact values and obtained by the approximate integral solution. The curve fit follows
the relation

C(Pr) =
[

0.4Pr

1 + 2
√
Pr + 2Pr

] 1
4

(16.43)

Even though the integral approximate method follows the trend of the exact solution,
the largest error with respect to the exact is as much as 11% at Pr = 0.01.
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Example 16.4

A flat surface of height 0.2m at a uniform temperature of 65 ◦C is placed in still air at
27 ◦C. Calculate the maximum velocity within the natural convection boundary layer
based on the Ostrach solution. Compare this with that estimated using the integral
solution.

Solution:
Maximum velocity based on Ostrach solution:
The Ostrach solution labeled Pr = 0.733 is used for the purpose of evaluating the
desired maximum velocity at L = 0.2m.

Step 1 The air properties are evaluated at the ambient temperature of T∞ =
27 ◦C = 300K.

β = 1

T∞
= 1

300
= 0.00333K−1, ν = 15.89 × 10−6 m2/s

Step 2 The wall temperature is Tw = 65 ◦C and hence the temperature difference
is

�T = Tw − T∞ = 65 − 27 = 38 ◦C

The maximum velocity in the boundary layer will occur as the flow leaves
at the top of the plate. Hence, we calculate the Grashof number based on
plate length as

GrL = gβ�T L3

ν2
= 9.81 × 0.000333 × 38 × 0.23

(15.89 × 10−6)2
= 3.937 × 107

Step 3 We make use of Fig. 16.5 to evaluate the maximum velocity. We note that
for Pr = 0.733 (typical value for air), the maximum velocity occurs at
η = 0.95. The maximum value itself is read off the graph as

umax,L
2ν
L

√
GrL

= 0.28

or umax,L = 0.28 × 2 × 15.89 × 10−6

0.2

√
3.937 × 107 = 0.279m/s

Maximum velocity based on integral solution:

Step 4 The cubic velocity profile is given by Eq.16.19 as u
U = η(1 − η)2, where

η = y
δ
. The maximum velocity occurs when

d

dη

( u

U

)
= (1 − η)2 − 2η(1 − η) = 0
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This happens when η = 1
3 . Thus the maximum velocity within the bound-

ary layer is

umax,L = UL
1

3

(
1 − 1

3

)2

= 4

27
UL

where UL is the velocity scale evaluated at x = L .
Step 5 Using Eq.16.30, we have

UL = 5.17

[
9.81 × 0.000333 × 38

0.733 + 0.952

] 1
2

× 0.2
1
2 = 1.986m/s

Step 6 Thus, the maximum velocity according to the integral solution is

umax,L = 4

27
× 1.986 = 0.294m/s

The exact and the integral solution estimates are remarkably close to each
other.

16.2.3 Comparison with Experimental Results

Local heat transfer coefficient, and hence the local Nusselt number in Natural con-
vection from a heated isothermal vertical plate (in this case an aluminum plate losing
heat to ambient air) may be measured easily by optical methods. A differential inter-
ferometer responds to the refractive index gradient set up by the density variations
within the natural convection flow field. Typically, an interferogram appears as the
fringe pattern shown in the left half of Fig. 16.7a.5 The “bending” of the fringes
near the plate is indicative of the temperature gradients present there. In the infinite
fringe spacing arrangement of the differential interferometer, we get a contrast pat-
tern that shows constant temperature gradient lines. This is shown in the right half of
Fig. 16.7a. Clearly, one sees the developing boundary layer along the height of the
plate.

The interferogram has been analyzed quantitatively to obtain the local Nusselt
number variation along the plate height. The experimental data is compared with
the distributions given by both the exact results due to Ostrach and that given by the
integral method. All three are in excellent agreement with each other as shown by
Fig. 16.7b.

5The interferogram was recorded using a digital camera by S. Prasanna in our laboratory.
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Fig. 16.7 a Interferograms with natural convection from a heated isothermal vertical plate—left
half fringe pattern, right half—contrast pattern; b Local Nusselt number variation along a heated
isothermal vertical plate

16.3 Turbulent Natural Convection from a Vertical
Isothermal Plate

As mentioned earlier, the natural convection flow becomes turbulent when the
Rayleigh number is greater than 109. From an engineering point of view, exper-
imental data presented in the form of correlations, provide all that is needed by
the designer. However, from a point of view of understanding the physical aspects,
numerical solution of governing equations incorporating suitable turbulence models
may be necessary. Sometimes approximate methods such as the integral methodmay
also be useful. Even though the integral equations derived in the case of laminar natu-
ral convection and that for turbulent natural convection are the same, shear stress and
heat transfer at the wall require attention in the case of turbulent natural convection.
These may not be obtained by the usual process of taking derivatives of velocity and
temperature as in the case of laminar flow.

16.3.1 Approximate Integral Analysis

Analysis of turbulent free convection boundary layer over a flat plate has been pre-
sented byEckert and Jackson6 based on the integral approach.Wegive a brief descrip-
tion of the arguments used by them to analyze the problem. We have seen that the
main difference between laminar and turbulent flow is the variation of velocity and
temperature in the near wall region. While in laminar flow, the variation is over
the entire laminar boundary layer thickness, in the case of turbulent flow it shows

6E. R. G. Eckert and T. W. Jackson, NACA Report 1015, 1951.
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Fig. 16.8 Velocity and
temperature profiles in the
natural convection boundary
layer

regions within the turbulent boundary layer where the variations are non-uniform. It
was argued that right next to the wall, the behavior of the velocity and temperatures
must be steep, showing the characteristic 1

7 thpower law. The velocity and temperature
profiles are hence taken as

(a)
u

U
= η

1
7 (1 − η)4

Velocity

; (b) θ = 1 − η
1
7

Temperature

(16.44)

where η is the ratio of distance normal to the plate to the turbulent natural convec-
tion boundary layer thickness. The velocity and temperature profiles given above are
shown plotted in Fig. 16.8. Both the velocity and temperature profiles indeed show
a very steep near wall behavior followed by a gentler variation outside. Beyond the
boundary layer thickness, both functions vanish. These profiles match with exper-
imentally measured profiles. The shear stress at the wall is based on the relation
suggested by von Karman.7

τw,x = 0.0225ρ∞U 2
( ν

Uδ

) 1
4

(16.45)

Using arguments based on the modified Reynolds analogy, the wall heat flux is taken
as

qw,x = 0.0225gρ∞Cp(Tw − T∞)
( ν

Uδ

) 1
4
Pr− 2

3 (16.46)

The various integrals required in the integral Eqs. 16.16 and 16.18 are obtained by
the use of the assumed velocity and temperature profiles, to finally get the following
two coupled ordinary differential equations.

7von Karman, NACA TM 1092, 1946.
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0.0523
d(U 2δ)

dx
= 0.125gβ(Tw − T∞)δ − 0.0225U 2

( ν

Uδ

) 1
4

(16.47)

0.0366
d(Uδ)

dx
= 0.0225U

( ν

Uδ

) 1
4
Pr− 2

3 (16.48)

From this point on, the procedure is the same as that pursued in the laminar case.
Velocity scale U and boundary layer thickness δ are sought in the form given by

Eq.16.23. The final results alone are given here

(a) U = 1.185
ν

x

[
Grx

1 + 0.494Pr
2
3

] 1
2

, (b) δ = 0.565
x

Pr
8
15

[
1 + 0.494Pr

2
3

Grx

] 1
10

(16.49)
The average Nusselt number is obtained, using a procedure similar to that used in
the laminar case, as

NuL = 0.0246

[
GrL

1 + 0.494Pr
2
3

] 2
5

Pr
7
15 (16.50)

Eckert and Jackson have compared the above with available experimental results
which indicate a close agreement between them.

16.3.2 Useful Nusselt Number Correlations

For engineering calculations, it is convenient to use correlations for the average Nus-
selt number based on the height of the plate. In the case of laminar flow, the Ostrach
solution indeed provides an appropriate relation for determining the average Nusselt
number. The 1

4 thpower dependence of average Nusselt number on the Rayleigh num-
ber is indicated by that solution. McAdams8 has analyzed data for free convection
from isothermal vertical plates over a wide range of Rayleigh numbers from 1−1011.
The data is based on experiments conducted by various researchers over a period of
several decades. For the present purpose, we shall present a useful correlation cov-
ering a range that is encountered often. The laminar region extends up to a Rayleigh
number of 3.5 × 107. The available data is correlated as

NuL = 0.55Ra
1
4
L (16.51)

8W. H. McAdams, Heat Transmission, 3rd Edition, McGraw Hill, NY 1954.
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valid in the range 104 < RaL < 3.5 × 107. For RaL > 3.5 × 107, the free convec-
tive boundary layer becomes turbulent. The available data is correlated as

NuL = 0.13Ra
1
3
L (16.52)

valid in the range 3.5 × 107 < RaL < 1012. More recently, Churchill and Chu9 have
proposed two correlations, the first one specific to laminar natural convection, while
the second is valid for both laminar and turbulent cases. The first correlation valid
for laminar case (RaL < 109) is

NuL = 0.68 + 0.670Ra
1
4
L[

1 +
(
0.492

Pr

) 9
16

] 4
9

(16.53)

The second correlation is valid for RaL < 1012 and is given by

NuL =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
0.825 + 0.387Ra

1
6
L[

1 +
(
0.492

Pr

) 9
16

] 8
27

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

2

(16.54)

Example 16.5

A metal wall 3mm thick made of steel with a thermal conductivity of 45W/m◦C
is covered with a 10 cm layer of an insulating material of thermal conductivity
0.1W/m◦C. The temperature of the inner surface of steel wall is measured to be
60 ◦C. The ambient is atmospheric air at 27 ◦C. The wall is 0.4m wide and 1.5m
tall. Determine the heat transfer across the composite wall. Refer to Fig. 16.9 for
pictorial representation of the problem.

9S. W. Churchill and H. H. S. Chu, Int. J Heat Mass Transfer Vol. 18, pp. 13231329, 1975.
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Fig. 16.9 Heat transfer
through a composite wall:
Example 16.5

InsulationSteel

Ti = 60 C To ?
Q ?

T 27 C

Solution:

Figure16.9 shows that there are two things that are not known viz. the temper-
ature T0 of the outer surface of the insulation and the heat transfer Q through
the composite wall. An iterative solution is required. We expect a small tem-
perature difference T0 − T∞ since the insulating layer is fairly thick and it
has a very low thermal conductivity. Hence, the air properties are taken at the
ambient temperature of T∞ = 27 ◦C.

Step 1 Air properties at 27 ◦C are

ν = 15.89 × 10−6 m2/s, k = 0.0263;W/m◦C, Pr = 0.707

Other data specified in the problem are listed below.

Temperature of inner surface of steel: Ti = 60 ◦C
Thermal conductivity of steel: ks = 45W/m◦C

Thickness of steel: ts = 3mm = 0.003m
Thermal conductivity of insulation: ki = 0.1W/m◦C

Thickness of insulation: ti = 10 cm = 0.1m

Step 2 The length scale for free convection from the outer surface of the insulation
layer is the same as the height of the wall, i.e., H = 1.5m. The width of
the wall is W = 0.4m, and hence the heat transfer area is A = HW =
1.5 × 0.4 = 0.6m2.
The isobaric expansion coefficient is

β = 1

T∞
= 1

273 + 27
= 0.0033K−1

Temperature T0 is unknown. We start by assuming a suitable value for this
and iterate to home in on the correct value.

Step 3 Let us start with T0 = T∞ + 10 = 27 + 10 = 37 ◦C. The temperature on
the absolute scale is T0 = 273 + 37 = 310K. The Rayleigh number is
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calculated as

RaH = gβ(T0 − T∞)H 3

ν2
× Pr

= 9.81 × 0.00033(310 − 300) × 1.53

(15.89 × 10−6)2
× 0.707 = 3.09 × 109

The regime is hence turbulent. According to McAdams recommended
formula 16.52

NuH = 0.13(3.091 × 109)
1
3 = 189.3

The average heat transfer coefficient over the height of the plate is then
obtained as

h̄ = NuHk

H
= 189.3 × 0.0263

1.5
= 3.32W/m2 ◦C

Step 4 Convective heat transfer from the outer surface of the insulation is calcu-
lated as

Qc = h̄ A(T0 − T∞) = 3.32 × 0.6 × 10 = 19.92W

Conductive heat transfer through the composite wall is

Qk = A
Ti − T0
ts
ks

+ ti
ki

= 0.6
60 − 37

0.003
45 + 0.1

0.1

= 13.79W

Since Qc > Qk , it is clear that T0 should be smaller than the value assumed
above. We may reduce it to a lower value and repeat the calculation.

Step 5 Insteadwe have systematically varied T0 between 30 and 37 ◦C and plotted
the conductive heat transfer across the composite wall against the convec-
tive heat transfer from the exposed surface of the insulation (Fig. 16.10). It
is seen that the two curves crosswhen T0 = 35.1 ◦Cand Qc = Qk = 15W.
These are the desired answers.



794 16 Natural Convection

Fig. 16.10 Variation of
conductive and convective
heat transfers with T0 in
Example 16.5

16.4 Natural Convection from Other Geometries

In this section, we consider other commonly encountered geometric configurations.
Most of the information available are based on experimental investigations carried out
by researchers over the past 100 years or so. Analytical or numerical investigations
have been made in recent times with the advent of the digital computer. These have
led to a better understanding of the natural convection phenomena. However, useful
correlations based on experiments are still the best bet for analysis.

16.4.1 Correlation for Horizontal Plates

Plates of interest in applications may have different shapes. The usual one is a rect-
angle. Sometimes we may be interested in a circular plate. If the plate is hot and
faces upwards the layer above the plate is unstable and free convective motion is set
up. For very large plates, end effects are unimportant and a cellular flow pattern is
set up while for small plates, the flow is reminiscent of a chimney type flow. The
cold fluid moves in from the sides to replace the hot fluid moving up. In the case of a
circular plate the chimney flow is axi-symmetric while it is three-dimensional in the
case of a rectangular plate. Similar situation prevails in the case of a cold plate facing
downward. The cold fluid adjacent to the plate moves downwards and is replaced by
the hot fluid moving in from the sides.

Fig. 16.11 shows schematically some of the situations. The Rayleigh number and
the Nusselt number are based on a characteristic length Lch , defined specifically for
each configuration.

For a hot plate facing down or for a cold plate facing up, McAdams recommends
the following correlations:

NuLch = 0.27Ra
1
4
Lch

(16.55)
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Fig. 16.11 Schematic of
natural convection from
horizontal plates

T

Tw T
Large plate

T

Tw T
Small plate

W

L

Rectangular plate Circular plate

D

valid in the range 3 × 105 < RaLch < 1010. In the above, Lch = W+L
2 for a rectan-

gle and Lch = D for a circle. However Al-Arabi and El-Riedy10 recommend the
following correlations:

NuLch = 0.7Ra
1
4
Lch

(16.56)

in the range 2 × 105 < RaLch < 4 × 107 and

NuLch = 0.155Ra
1
3
Lch

(16.57)

when RaLch > 4 × 107. These authors define the smaller of L or W as the charac-
teristic length for a rectangle. However D remains the characteristic length for a
circular plate.

Example 16.6

Consider a horizontal circular plate of diameter D = 0.2m losing heat by natu-
ral convection to surrounding ambient air at T∞ = 20 ◦C. The plate is maintained at
a temperature of Tw = 60 ◦C. Compare the heat loss from this plate with a square
plate of the same area, all other data remaining the same.

Solution: Case (a): Circular plate
We use the thermo-physical properties of air at the mean temperature of Tm =
Tw+T∞

2 = 60+20
2 = 40 ◦C.

Kinematic viscosity: νm = 17.07 × 10−6 m2/s
Thermal conductivity: km = 0.0274W/m◦C

Prandtl number: Prm = 0.699
Isobaric expansion coefficient: βm = 1

Tm
= 1

273+40 = 0.0032K−1

The Rayleigh number may now be calculated with Lch = D = 0.2m.

10M. AL-Arabi and El-Riedy, Int. J Heat and Mass Transfer, Vol. 19, pp. 1399–1404, 1976.
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RaD = gβm(Tw − T∞)D3

ν2
m

Prm

= 9.81 × 0.0032(60 − 20)0.23

(17.07 × 10−6)2
0.699 = 2.41 × 107

Using Eq.16.55, we than have

NuD = 0.27Ra
1
4
D = 0.27 × (2.41 × 107)

1
4 = 18.92

Correspondingly the mean heat transfer coefficient is

h = NuDkm
D

= 18.92 × 0.0274

0.2
= 2.59W/m2 ◦C

Heat loss from the plate to the ambient air is

Q = h
πD2

4
(Tw − T∞) = 2.59 × π × 0.22

4
(60 − 20) = 3.26W

Case (b): Square plate of equal area

The only change in this case is that the characteristic dimension changes from D to
W+L
2 = a where a is the side of the square plate. Since the square plate has the same

area as that of the circular plate, we have

a =
√

πD2

4
=

√
π × 0.22

4
= 0.177m

The Rayleigh number in this case is

Raa = gβm(Tw − T∞)a3

ν2
Prm

= 9.81 × 0.0032(60 − 20)0.1773

(17.07 × 10−6)2
0.699 = 1.67 × 107

Using Eq.16.55, we than have

Nua = 0.27Ra
1
4
a = 0.27 × (1.67 × 107)

1
4 = 17.26

Correspondingly the mean heat transfer coefficient is

h = Nuakm
a

= 17.26 × 0.0274

0.177
= 2.672W/m2 ◦C

Heat loss from the plate to the ambient air is
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Q = ha2(Tw − T∞) = 2.672 × 0.1772(60 − 20) = 3.35W

The square plate loses marginally more heat than the circular plate.

16.4.2 Correlation for Vertical Cylinders

If the Grashof number is large enough such that the boundary layer assumptions are
valid, the boundary layer thickness is much smaller than the diameter of the cylinder.
Curvature of the parent surface then does not affect heat transfer and the correlations
given earlier for a vertical plate are valid for vertical cylinders also. Eqs. 16.51 and
16.52 hold in the case of vertical cylinders as long as

D

L
≥ 35

Gr4L
(16.58)

where D is the cylinder diameter and L is the cylinder height.

16.4.3 Correlation for Horizontal Cylinders

Free convection from a heated horizontal cylinder is important in many applications
like cartridge heaters used for heating water. The isotherm pattern and the velocity
profile are as indicated schematically in Fig. 16.12. Ambient fluid moves around the
cylinder, gets heated as it moves, with the boundary layer thickeningwith θ , the angle
measured as indicated in the figure. Near the top of the cylinder, there is hardly any
heat transfer from the cylinder to the fluid that goes up in the form of a hot plume.

Fig. 16.12 Natural
convection around a heated
vertical cylinder



798 16 Natural Convection

Fig. 16.13 Local Nusselt
number for natural
convection from an
isothermal horizontal
cylinder in air

We base the Nusselt number on the cylinder diameter D as the characteristic length.
Nusselt number depends on angle θ , being largest at the bottom of the cylinder cor-
responding to θ = 0 and decreasing monotonically with an increase in θ . The typical
variation of local Nusselt number NuD(θ) is as indicated in Fig. 16.13 for laminar
natural convection in air. The Rayleigh number can range from a very low value
of order 1 and a high value of 1012 depending on the application. The low range is
encountered in heatedwires and the high range in practical applications like cartridge
heaters used in industrial heat transfer equipment, domestic hot water system, and so
on. McAdams has given a summary of available data and has given recommended
formulae to be used in calculations of the average Nusselt number based on the cylin-
der diameter as the characteristic dimension. The appropriate formulae for laminar
and turbulent ranges are given below.

Laminar range

NuD = 0.53Ra
1
4
D, 104 < RaD < 109 (16.59)

Turbulent range

NuD = 0.13Ra
1
3
D, 109 < RaD < 1012 (16.60)

Example 16.7

Consider a horizontal thin-walled metal pipe 5 cm OD surrounded by a 5 cm layer
of insulation of thermal conductivity 0.1W/m◦C. The pipe outer surface is known
to be at a temperature of 350K. The ambient medium is still air at 300K. Estimate
the heat loss from a meter length of pipe (Fig. 16.14).
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Fig. 16.14 Nomenclature used in Example 16.7

Solution:

As inExample 16.5, both the outer surface temperature of the insulation and the
heat transferred across the insulation layer are unknown. An iterative method
is required to solve the problem. To start the iteration, we assume a value of
T2 = 315K. We use the correlation recommended by McAdams for obtaining
the convective heat transfer coefficient.

Most of the data is shown in the figure itself. Air properties are taken at the ambient
temperature of 300K.

Kinematic viscosity: ν = 15.89 × 10−6 m2/s
Thermal conductivity: k = 0.0263W/m◦C
Prandtl number: Pr = 0.7
Isobaric expansion coefficient: β = 1

300 = 0.0033K−1

Both the Rayleigh number and the Nusselt number are based on D2 = 2r2 =
2 × 0.075 = 0.15m. The Rayleigh number is then calculated as

RaD2 = 9.81 × 0.0033(315 − 300)0.153

(15.89 × 10−6)2
0.7 = 4.59 × 106

Flow is laminar and we use Eq.16.59 to get the average Nusselt number as

NuD2 = 0.53 × (4.59 × 106)
1
4 = 24.53

The convective heat transfer coefficient is then given by

h = NuD2k

D2
= 24.53 × 0.0263

0.15
= 4.3W/m2 ◦C
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Using resistance concept, we may calculate a better value of T2 as

T2 =
T1 + T∞

hr2
ki

ln

(
r2
r1

)

1 + hr2
ki

ln

(
r2
r1

) =
350 + 300

4.3 × 0.075

0.1
ln

(
0.075

0.025

)

1 + 4.3 × 0.075

0.1
ln

(
0.075

0.025

) = 311K

We may run through the calculation with this value to get the following:

RaD2 = 3.366 × 106, NuD2 = 22.7, h̄ = 3.98W.m2 ◦C

A better value for T2 is then obtained as T2 = 311.7K, at which point we stop the
iteration. The corresponding heat loss per meter of pipe is given by

Q = πD2h̄(T2 − T∞) = π × 0.15 × 3.98(311.7 − 300) = 21.9W

Example 16.8

A cylinder of diameter D = 0.1m, length L = 0.15m is maintained at a uniform
temperature of Tw = 60 ◦C in still air at T∞ = 20 ◦C. The two flat ends of the cylin-
der are perfectly insulated. Compare the heat loss from the cylinder if its axis is (a)
horizontal and (b) vertical.

Solution:
We base the thermo-physical properties of air at Tm = Tw+T∞

2 = 60+20
2 = 40 ◦C =

273 + 40 = 313K.

Kinematic viscosity: νm = 17.07 × 10−6 m2/s
Thermal conductivity: km = 0.0274W/m◦C
Prandtl number: Prm = 0.699
Isobaric expansion coefficient: βm = 1

313 = 0.0032K−1

Case (a) Cylinder axis vertical

The characteristic dimension in this case is Lch = L = 0.15m. We have for the
cylinder D

L = 0.1
0.15 = 0.667. The Rayleigh number is

RaL = 9.81 × 0.0032(60 − 20)0.153

(17.07 × 10−6)2
0.699 = 1.017 × 107

The Grashof number is given by GrL = RaL
Prm

= 1.017×107

0.699 = 1.454 × 107. We then
have
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35

Gr
1
4
L

= 35

(1.454 × 107)
1
4

= 0.567 < 0.667

Hence, the correlation for a vertical plate may be made use of. The flow is laminar
and we make use of Eq.16.51 to get

NuL = 0.55 × (1.017 × 107)
1
4 = 31.06

The average heat transfer coefficient is given by

h = 31.06 × 0.0274

0.15
= 5.67W/m2 ◦C

The heat loss from the cylinder is then given by

Qvert = hπDL(Tw − T∞) = 5.67 × π × 0.1 × 0.15 × 40 = 10.7W

Case (b) Cylinder axis horizontal

The characteristic dimension in this case is Lch = D = 0.1m. The Rayleigh number
is

RaD = 9.81 × 0.0032(60 − 20)0.13

(17.07 × 10−6)2
0.699 = 3.013 × 106

The flow is laminar and we make use of Eq.16.59 to get

NuL = 0.53 × (3.013 × 106)
1
4 = 22.08

The average heat transfer coefficient is given by

h = 22.08 × 0.0274

0.1
= 6.05W/m2 ◦C

The heat loss from the cylinder is then given by

Qhor = hπDL(Tw − T∞) = 6.05 × π × 0.1 × 0.15 × 40 = 11.4W

The cylinder with its axis horizontal loses marginally more heat than when the
cylinder axis is vertical.
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Fig. 16.15 Benard cells in
horizontal fluid layers

Plan view of
convection cells

Typical flow lines
within a cell

16.5 Heat Transfer Across Fluid Layers

Afluid layer is described by its thickness, orientationwith respect to a chosen plane—
usually the horizontal plane and the temperature difference across its thickness.
Horizontal layers are involved while heating a fluid layer from below. All natural
bodies ofwater belong to this category.Avertical layer is typical of fluid layer trapped
within layered walls or double glazed windows. The air layer is used as a means of
preventing/reducing heat transfer through the walls or windows. These are employed
in energy efficient buildings. In cold countries, the heating cost comes down when
such a construction is used. In the tropics, the air conditioning cost is reduced by
their use. An inclined layer is typically encountered in solar collector applications.
The intention here is to collect solar energy efficiently and prevent heat loss from the
collector plate back to the background. More about this will be presented later on.

16.5.1 Horizontal Fluid Layers

The layer thickness s and the temperature difference (T1 − T2) across it characterize
a horizontal layer. In the absence of convection, heat transfer is by pure conduction
and the Nusselt number defined as Nus = hs

k is equal to unity. This holds as long
as Grs < 1700. For Grs > 1700, free convection develops in the form of ordered
cellular pattern, first observed by Benard11, and hence referred to as Benard cells.
In each hexagonal cell, the fluid rises in the middle and flows down at the periphery
as shown in Fig. 16.15. The ordered cellular pattern changes into a disordered cell
structure when the flow is turbulent. Transition to turbulence takes place at Grs =
4 × 105. Jakob 12 has given the following correlations for a horizontal air layer:

11Henri Benard, 1874–1939, French physicist.
12M. Jakob, Heat Transfer, Vol. 1, 1st Edition, Wiley 1949, Vol. 2, 1st Edition, Wiley 1957.



16.5 Heat Transfer Across Fluid Layers 803

Nus = 0.195Gr
1
4
s valid for 104 < Grs < 4 × 105 (16.61)

Nus = 0.068Gr
1
3
s valid for Grs > 4 × 105 (16.62)

Recently, Graaf and Held13 have proposed the following correlations.

(a) Nus = 1 forGrs < 2000

(b) Nus = 0507Gr0.4s for 2000 < Grs < 5 × 104

(c) Nus = 3.8 for 5 × 104 < Grs < 2 × 105

(d) Nus = 0.426Gr0.37s forGrs > 2 × 105 (16.63)

It is interesting to consider the variation of heat transfer across a horizontal air
layer with the layer thickness. For this purpose, we take the case of an air layer that
is at a mean temperature of Tm = 13.5 ◦C = 286.5K with a temperature difference
across the layer of T1 − T2 = 17 ◦C. We systematically vary the layer thickness
and calculate the heat transfer coefficient and thence the layer thermal resistance
using the correlations given by Graaf and Held. Depending on the Grashof number,
appropriate relation among those given by Eqs. 16.63a–d is made use of. The result
is shown as a plot in Fig. 16.16. We observe a “global” maximum in the resistance
of Rmax = 0.424m2 ◦C at s = 0.045m. The “minimum” heat transfer corresponds
to this maximum thermal resistance, and hence the heat transfer across air layer per
unit area is

Q = T1 − T2
Rmax

= 17

0.424
= 40.1W/m2

16.5.2 Vertical Fluid Layers

A vertical fluid layer enclosed between a vertical hot and a vertical cold wall with
the top and bottom walls adiabatic is referred to as side heated cavity. Figure16.17
shows what happens in the various regimes of flow. In the conduction regime, the
flow is very weak and does not affect heat transfer significantly. The heat transfer is

13J. G. A. de Graaf and E. F. M. Held, Appl. Sci. Res(A), Vol. 3, p. 393–409, 1953.
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Fig. 16.16 Variation of
thermal resistance of air
layer with its thickness

due to fluid thermal conduction alone. When the Rayleigh number based on width of
the cavity and the temperature difference Th − Tc is increased, the flow goes through
a phase called asymptotic flow. The velocity and the thermal boundary layers (if
they may be called so) occupy the entire width s of the layer. In the boundary layer
regime, there are clearly discernible thin flow and thermal boundary layers close to
the vertical walls. The heated fluid near the left hot wall rises up, turns to the right at
the top, and then looses heat to the right cold wall and descends. It then takes a turn
to the left and reaches the bottom of the hot wall to start the process again. The flow
develops into a well-defined circulatory flow pattern in the form of a giant loop. As
indicated, the flow becomes turbulent for Ras > 107. Heat transfer between the hot
and cold wall is a function of the Grashof number based on Th − Tc, the fluid Prandtl
number Pr and the aspect ratio H

s , i.e.

Nus = f

[
Grs, Pr,

H

s

]

Several useful correlations are available in the literature and are given below. Numer-
ical study of Berkovsky and Polevikov 14 leads to the equation

Nus = 0.22

(
H

s

)− 1
4
[

Ras Pr

Pr + 0.2

]0.28

(16.64)

which is valid for the following range of parameters:

Ras < 1010, Pr < 10 and 2 <
H

s
< 10

14B.M. Berkovsky andV.K. Polevikov, In: D. B. Spalding andN.Afghan, (Eds.) Turbulent Buoyant
Flow and Convection, Volume 2, Hemisphere, Washington, pp. 443–445, 1977.
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Fig. 16.17 Natural convection in vertical fluid layers.∗ Laminar: 3 × 104 < Ras < 106, Transition:
106 < Ras < 107, Turbulent: Ras > 107

They propose a separate correlation for aspect ratio between 1 and 2 as

Nus = 0.18

[
Ras Pr

Pr + 0.2

]0.29

(16.65)

which is valid for the following range of parameters:

Ras Pr

Pr + 0.2
> 103, 10−3 < Pr < 105 and 1 <

H

s
< 2

For tall cavities, ElShirbiny et al. 15 propose that we choose the largest of the follow-
ing:

Nus = 0.06Ra
1
3
s or Nus =

⎡
⎢⎢⎢⎣1 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.104Ra0.293s

1 +
(
6310

Ras

)1.36

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

3⎤⎥⎥⎥⎦

1
3

or Nus = 0.242

⎡
⎢⎢⎣ Ras(

H

s

)
⎤
⎥⎥⎦
0.272

(16.66)

15S. M. ElShirbiny, G. D. Raithby and K. G. T. Hollands, ASME J. Heat Transfer, Vol. 104, pp.
96–102, 1982.
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These equations are valid for the following range of parameters:

102 < Ras < 107, 5 <
H

s
< 110

Thus, Eqs. 16.66 are valid over a very large aspect ratio range, typical of many
building heat transfer applications.

Based on laminar calculations, Balaji16 has proposed the following correlations
with air as the fluid medium:

Square cavity: Aspect ratio = 1, i.e., H = s

Nus = 0.13Gr0.305s for 750 < Grs < 5 × 105 (16.67)

Tall cavity: Aspect ratio > 1, i.e., H > s

Nus = 0.215Ra0.265s

(
H

s

)−0.215

for 750 < Grs < 5 × 105, 1 <
H

s
< 45

(16.68)

Example 16.9

A vertical double wall 2.5m high 1m wide has an air gap 2.5 cm thick. The internal
wall faces spanning the air gap are at 305K and 295K, respectively. Determine the
heat loss across the air gap.

Solution:

We make use of ElShirbiny et al. correlation to solve this problem. The given data,
in the usual notation is

s = 2.5 cm = 0.025m, H = 2.5m, Th = 305K, Tc = 295K

The aspect ratio of the vertical enclosure is

H

s
= 2.5

0.025
= 100

Mean temperature of trapped air is Tm = Th+Tc
2 = 305+205

2 = 300K. Air properties
at 300K are

16C. Balaji, Ph.D. Thesis, IIT Madras 1994.
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Fig. 16.18 Natural
convection in inclined air
layer L

s

Th

Tc

νm = 15.89×10−6 m2/s, Prm = 0.7, km = 0.0263W/m◦C,

βm = 1

300
= 0.0033K−1

The Rayleigh number is calculated as

Ras = 9.81 × 0.0033(305 − 295)0.0253

(15.89 × 10−6)2
× 0.7 = 14165

We have to find the biggest of the three alternate expressions given by Eq.16.66

(a) Nus = 0.0605 × 14165
1
3 = 1.464

(b) Nus ==
⎡
⎣1 +

{
0.104 × 141650.293

1 + (
6310
14165

)1
.36

}3
⎤
⎦

1
3

= 1.461

(c) Nus = 0.242

[
14165

100

]0.272

= 0.931

Choosing the biggest of these, we have Nus = 1.464. Hence, the heat transfer coef-
ficient is

h = 1.464 × 0.0263

0.025
= 1.54

The heat transfer across the air layer is

Q = hHW (Th − Tc) = 1.54 × 2.5 × 1(305 − 295) = 38.5W
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16.5.3 Inclined Air Layers

These are typical of solar energy applications. A flat plate collector with a cover
glass, positioned at an angle to the ground is an example. Figure16.18 explains the
nomenclature. The glass cover has several roles to play in this application. Firstly,
it allows the solar energy to pass through with very little attenuation. Secondly, it
blocks the infrared energy emitted by the collector plate from escaping back to the
ambient. Thirdly, it encloses a shallow layer of air, and hence reduces the convective
heat transfer across the gap between the collector plate and the glass cover. A very
useful correlation for evaluating the heat transfer across the inclined air layer has
been proposed by Hollands et al.17 Introducing the notation

ψ = 1708

Ras cos θ

the correlation is given by

Nus = 1 + 1.44(1 − ψ)

0 if negative

[1 − ψ sin1.6(1.8θ)] +
[
0.664

ψ
1
3

− 1

]

0 if negative

(16.69)

The correlation is valid under the following conditions:

L

s
> 10, 15◦ < θ < 75◦, and 0 < Ras < 105

Example 16.10

A flat plate solar collector L = 2m long and W = 1m wide is inclined at θ = 13◦
to the horizontal. The cover plate is separated from the absorber plate by an air gap
of s = 2.5 cm. The average temperature of the cover plate is Tc = 305K, while the
collector is at Th = 330K. Estimate the convective heat loss assuming air to be at
1atm. Compare this with the solar energy input to the system at S = 800W/m2.

Solution:
Air properties are taken at the mean air temperature of Tm = Th+Tc

2 = 330+305
2 =

317.5K and pressure of 1atm.

Kinematic viscosity: νm = 17.46 × 10−6 m2/s
Thermal conductivity: km = 0.0276W/m◦C
Prandtl number: Prm = 0.704
Isobaric expansion coefficient: βm = 1

317.5 = 0.0032K−1

The Rayleigh number based on air layer thickness is calculated.

17K. G. T. Hollands, T.E. Unny, G.D. Raithby and L. Konicek, ASME J. Heat Transfer, Vol. 98, pp.
189–193, 1976.
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Ras = 9.81 × 0.0032(330 − 305)0.0253

(17.46 × 10−6)2
× 0.704 = 27872

The factor ψ used in Hollands et al. correlation is then given by

ψ = 1708

17872 × cos 13
= 0.0629

Using the correlating equation n16.69, we have

Nus = 1 + 1.44(1 − 0.0629)[1 − ψ sin1.6(1.8θ)] +
[

0.664

0.0629
1
3

− 1

]
= 3.00

The convective heat transfer coefficient is then calculated as

h = 3 × 0.0276

0.025
= 3.312W/m2 ◦C

The heat loss through the air layer is then given by

Qloss = hLW (Th − Tc) = 3.312 × 2 × 1(330 − 305) = 165.6W

Incident solar energy intercepted by the collector area is given by

QSolar = LWS = 2 × 1 × 800 = 1600W

The loss as a percentage of the incident solar flux is then given by

Qloss × 100

QSolar
= 165.6 × 100

1600
= 10.35%

Concluding Remarks

We have rounded off the treatment of convection heat transfer by discussing natural or free
convection in this chapter. Fundamental ideas behind natural convection have been discussed
and appropriate parameters that describe natural convection have been introduced. After con-
sidering flow over an isothermal vertical plate that is amenable to analytical treatment, many
interesting cases of engineering interest have been considered. Appropriate heat transfer cor-
relations have been presented so as to facilitate simple calculations in interesting applications
such as in solar collectors, hollow walls, double glazed windows.
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16.6 Exercises

Ex 16.1 Perform a dimensional analysis of a problem involving natural convec-
tion from an object of characteristic dimension L . Write down a list of
all the important quantities that govern the problem. How many non-
dimensional parameters do you expect? Obtain all of them and discuss
the physical significance of each.

Ex 16.2 A thin flat plate of height L is oriented vertically and is losing heat to
an ambient by natural convection. The surface of the plate is subject to
a constant heat flux. Where along the height would you expect the tem-
perature to peak? Using dimensional arguments obtain an expression
for the characteristic temperature governing the problem.

Ex 16.3 An isothermal 0.2m long flat plate is placed vertically in an ambient
medium. Its surface is maintained at a uniform temperature of 80 ◦C
when the ambient fluid is at 30 ◦C. How much heat is dissipated from
the plate if (a) the fluid is dry air, (b) the fluid is water? In each case
what is the thickness of the boundary layer at the top edge of the plate?
What is the maximum velocity in each case?

Ex 16.4 An isothermal flat plate is placed vertically in different media having
Prandtl number of 1, 5, 10, and 100. In each case, the temperature levels
are adjusted such that the Grashof number remains fixed at a value of
106. Compare the Nusselt number, boundary layer thickness, and the
maximum velocity at x = 0.1m in these cases.

Ex 16.5 An isothermal vertical flat plate is 0.3m tall and is placed in air. The
temperature of the surface is 120 ◦C, while the ambient air temperature
is 20 ◦C. The plate surface has an emissivity of 0.85. Determine the
heat loss by natural convection and radiation from a unit width of the
plate. What, as a percentage of the total, is the contribution of radiation
to the total heat loss? Is it reasonable to neglect radiation?

Ex 16.6 An aluminum plate is 0.005m thick and 3.5m tall. It is initially at a
uniform temperature of 120 ◦C and is allowed to cool in ambient air at
30 ◦C. A researcher claims that the cooldown process may be modeled
as that of a first order systemby lumping the plate as a system at uniform
temperature at any instant of time. What would be your assessment of
the situation? Give proper reasons for your assessment.

Ex 16.7 The interior wall of a building is 5m wide and 3.5m tall. The wall
temperature is uniform at 47 ◦C, when the room air is at a temperature
of 21 ◦C. Heat transfer from the wall to room air may be assumed to be
by natural convection and radiation. The emissivity of the wall surface
has been estimated to be 0.22. Determine the convection heat loss,
radiation heat loss, and the total heat loss from the wall. Is it acceptable
to linearize radiation in this application? Make a comparison between
the average convection heat transfer coefficient with the radiation heat
transfer coefficient.
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Ex 16.8 Two large plates are placed vertically forming a channel. Both the plates
are isothermal and at a common temperature equal to 70 ◦C. The height
of each plate is 2m and the ambient fluid is room air at 30 ◦C.Determine
the spacing between the walls that will make the two natural convection
boundary layers just meet half way between the walls.

Ex 16.9 An isothermal vertical plate is 0.2m tall and 0.15m wide. It is main-
tained at a constant temperature of 85 ◦C in ambient air at 25 ◦C. Exper-
imental data shows that the total heat loss from the plate is 32% more
than that due to natural convection alone. What is the emissivity of the
plate surface assuming it to be gray and diffuse?

Ex 16.10 A metal wall 3mm thick made of steel with a thermal conductivity
of 45W/mK is covered with a 10 cm layer of an insulating material
of thermal conductivity 0.1W/mK. The inner surface of steel wall is
known to be at 60 ◦C. The ambient air is at 27 ◦C. The wall is 0.4m
wide and 1.5m tall. Determine the heat transfer across the composite
wall. Model heat transfer from the exposed insulation surface as that
from a vertical isothermal wall losing heat by natural convection.

Ex 16.11 Water is maintained at a temperature of 45 ◦C by electric heaters placed
horizontally inside a rectangular tank which is 1.5m wide, 1.5m deep
and 2.5m high. The outside of the tank is insulated with a 10 cm thick
layer of insulation having a thermal conductivity of 0.05W/m◦C. Outer
surface of the insulation is coated with a special paint that has an emis-
sivity of 0.2. The ambient temperature is 20 ◦C. What is the average
power that needs to be dissipated by the heaters?
Make any assumption you feel are reasonable. Mention them with jus-
tification.

Ex 16.12 An electrical conductor of copper has a diameter of 0.003m and is very
long. Its surface is covered with a 0.001m thick layer of an electri-
cal insulator of thermal conductivity 2W/m◦C. How much heat a unit
length of the wire may dissipate if the copper temperature should not
exceed 85 ◦C? It is proposed by a consultant that the current carrying
capacity may be improved by replacing the insulator by a 0.0018m
thick layer of a material of thermal conductivity equal to 3.2W/m◦C.
Is the claim reasonable? The ambient fluid is air at 35 ◦C.

Ex 16.13 In a process application a copper tube of 18mm inner diameter and
of wall thickness 1.2mm is made use of. The tube is insulated on the
outside by a 25mm thick insulation layer of thermal conductivity equal
to 0.1W/m◦C. The process fluid is high-pressure steam at a temperature
of 160 ◦C. Determine the heat loss from a meter length of the pipe if
the ambient air is at 40 ◦C.

Ex 16.14 A cartridge heater 100mm long and 25mm diameter is immersed in
water at 30 ◦C. What is the maximum heat that may be dissipated if
the water at atmospheric pressure should not boil at the surface of
the heater? What is the corresponding average heat flux based on the
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total surface area of the heater? How would the answers depend on the
orientation of the heater?

Ex 16.15 A side heated vertical square cavity 150 × 150mm has the two vertical
walls maintained at Th = 75 ◦C and Tc = 25 ◦C. The fluid contained in
the cavity is dry air. (a). Determine the heat transfer across the cavity
per unit length of the cavity. (b). What will be heat transfer across the
cavity if the fluid is changed to water and all other things aremaintained
as in part (a).

Ex 16.16 A central thin vertical partition is introduced between the vertical walls
of a square cavity 200 × 200mm. It is found that the partition may be
treated as an isothermal surface with the temperature at some value in
between Th = 90 ◦C and Tc = 30 ◦C. The fluid within the cavity is dry
air at atmospheric pressure. Compare the heat transfer across the cavity
with and without the central partition. What is the temperature of the
partition?
(Hint: Heat transfer remains the same across the two cavities formed
by placing the central partition)

Ex 16.17 The vertical air layer formed between two walls may be treated as a
side heated cavity with a height of 0.6m and width of 0.05m. The two
surfaces are at 20 ◦C and −5 ◦C, respectively. What is the heat transfer
per unit surface area of the cavity wall? A consultant suggests that the
spacing be increased to 0.07m such that the heat transfer across the
cavity is reduced. Would you agree with the consultant? Explain.

Ex 16.18 In Exercise 16.6 what would be the radiation heat transfer across the
cavity if each wall may be treated as a diffuse gray surface with an
emissivity of 0.65? Assume that the other two adiabatic walls of the
cavity are effectively at 50 ◦C. Is the radiation heat transfer significant
in comparison with the convection heat transfer?

Ex 16.19 A horizontal air layer is formed between two large plates placed 5mm
apart. The fluid trapped between the plates is air at atmospheric pres-
sure. The bottom plate is at 90 ◦C while the top plate is losing heat to
an ambient at 25 ◦C by convection with a heat transfer coefficient of
11.5W/m2 ◦C. Determine the heat transfer across the horizontal layer
per unit area and also the temperature of the top plate.

Ex 16.20 A horizontal air layer formed between two large plates spaced 15mm
apart is divided into two layers of equal thickness by placing a very thin
plate in between the two plates. The bottom plate is at 90 ◦C , while
the top plate is at 30 ◦C. Determine the heat transfer across the air layer
in the presence of the partition and compare this with that without the
partition.
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Ex 16.21 A 5mm layer of air at atmospheric pressure is formed between two
large plates maintained at 90 ◦C and 30 ◦C, respectively. It is desired
to determine the heat transfer per unit area across the air layer in three
different arrangements: (a) air layer is horizontal, (b) air layer is vertical,
and (c) the air layer is inclined at an angle of 45◦. In case (a) and case
(c) the hotter surface is below the colder surface.



Chapter 17
Special Topics in Heat Transfer

Basic heat transfer processes viz. conduction, radiation, and convection have
been dealt with in the previous chapters. We have dealt with the topics in sufficient

detail so as to build a strong base that may now be used to discuss several special topics
that are more advanced and labeled as “Special topics in heat transfer”. These consist of
representative problems that involve interaction between different modes of heat
transfer, heat transfer in space applications, phase change—melting, boiling and
condensation, mixed convection, heat transfer in particle beds and porous media, and
heat transfer in high speed flows.

17.1 Introduction

Till now we have considered topics that may be termed elementary in that each heat
transfer process was considered in isolation. It is seldom that heat transfer problems
occur that way. In practice, there is an interplay of different heat transfer processes
andwe refer to them as conjugate problems. The present chapter considers the typical
problems of this genre.

We have considered heat transfer involving a single phase—solid, liquid or gas
(vapor). In some problems, there may be a change of phase such as in solidification
and melting or condensation and boiling. These are more complex to model and we
make an attempt to give a brief introductory treatment of such problems.

In all the previous chapters, we have avoided considering problems that involve
variation of properties of the fluid that takes part in the heat transfer process. Such a
treatment is adequate when the temperature range is small or the fluid involved has
very mild variation of properties with temperature. However, such an assumption
breaks down when we consider high speed flows where the fluid velocity is com-
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parable to the speed of sound in that medium. A typical example involving laminar
high speed flow parallel to a flat plate is considered.

The reader should treat this chapter as an introduction to special topics in heat
transfer. Each topic considered here has received individual attention and the relevant
literature is the best way of going beyond the discussions given in the present book.

17.2 Multi-mode Problem Involving Radiation

We have come across a multi-mode problem involving conduction and convection
earlier while studying heat transfer in extended surfaces and transients in a lumped
system. In many applications, we encounter heat transfer by surface radiation in the
presence of other modes of heat transfer such as conduction and convection. We
discuss some of these in this section.

17.2.1 Transient Cooling of a Lumped System

Consider a thin shell of a high thermal conductivity material that is losing heat by
radiation to an ambient at a specified temperature. Let the characteristic length be
Lch. Let the surface have a gray emissivity of ε. Conductive flux within the shell is
given by

qk = k�T

Lch

where �T is a temperature difference within the shell. Radiant flux at the surface is
given by

qr = εσ(T 4 − T 4
∞)

where T is the temperature of the shell at its surface and T∞ is the ambient temper-
ature. These two fluxes are essentially the same, and hence the �T set up within the
shell is given by

�T = εσ(T 4 − T 4∞)Lch

k

We may divide the above by T − T∞ to get

�T

T − T∞
= εσ(T + T∞)(T 2 + T 2∞)Lch

k

Lumping is appropriate if the above temperature ratio is very small. Consider a
typical case of an aluminum shell k = 200 W/m◦C with the surface coated with a
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thin film/layer of high emissivity (ε ≈ 0.85) paint. Let the characteristic length be
0.003 m and T = 350 K and T∞ = 300 K. The temperature ratio will then be

�T

T − T∞
= 0.85 × 5.67 × 10−8(350 + 300)(3502 + 3002)0.003

200
≈ 10−4

In fact, we may refer to this ratio as the radiation Biot number Bir . Hence, it is
appropriate to treat the transient cooling by lumping the solid if Bir � 1.We consider
the transient behavior of a lumped system in the form of a thin shell losing heat by
radiation from its surface. The governing differential equation is easily derived as

ρVC
dT

dt
= −εσS(T 4 − T 4

∞)

where the symbols have the usual meanings. If we set θ = T
T∞ , the above equation is

transformed to

dθ

dt
= −εσST 3∞

ρVC
(θ4 − 1) = −θ4 − 1

τ
(17.1)

where τ = ρVC
εσST 3∞

is a characteristic time, analogous to the first order time constant
we encountered in the case of a lumped system losing heat by convection. Even
though Eq. 17.1 is non-linear, it is in variable separable form and hence

dθ

θ4 − 1
= −dt

τ

The above is integrated to get

t = τ

θ∫

θ0

dθ

θ4 − 1

where θ = θ0 at t = 0. The integral appearing in the above equation may be obtained
in closed form. The integrand may be written as

1

θ4 − 1
= 1

4

(
1

θ − 1
− 1

θ + 1

)
− 1

2(1 + θ2)

Term by term integration gives the solution as



818 17 Special Topics in Heat Transfer

t = τ

[
1

4
ln

{
(θ0 − 1)(θ + 1)

(θ0 + 1)(θ − 1)

}
− 1

2

(
tan−1 θ0 − tan−1 θ

)]
(17.2)

Note that the solution is not a simple exponential as in the earlier linear case. The
solution is worked out by specifying θ and calculating the corresponding t. While
plotting we consider θ as the output and t as the input!

Example 17.1

Consider a copper shell of thickness δ = 0.5mm initially at T0 = 333K. It is exposed
to an ambient at T∞ = 300 K. The shell has a gray surface emissivity of ε = 0.85.
Plot the temperature as a function of time for the non-linear radiation cooling case
and compare it with the linear cooling case.

Solution:
Copper shell thermo-physical properties are taken as

Density: ρ = 8700 kg/m3, Specific heat: C = 394 J/kg◦C

The volume to surface area ratio for the shell is just the thickness of the shell. The
characteristic time may now be calculated as

τ = ρC

σεT 3∞

V

S
= 8700 × 394

5.67 × 10−8 × 0.85 × 3003
× 0.5 × 10−3 = 1318 s

We make use of Eq. 17.2 to derive the time-temperature data that is shown plotted in
Fig. 17.1. It is seen that the system cools down to 303 K in approximately 700 s. The
graph also shows what will be the response of a first order systemwith linear cooling,
with a time constant of τ = 1318 s. It is seen that the system is at approximately
320 K at t = 700 s in the linear cooling case.

17.2.2 Radiation Error in Thermometry

Measurement of temperature of a flowing gas by a sensormay be idealized as a spher-
ical sensor whose temperature is indicated by the electrical output of the embedded
thermocouple as indicated in Fig. 17.2.

If the thermocouple lead wires are very thin we may ignore the heat conducted
away from the sensor through the leadwires. If the sensor is exposed to a background,
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Fig. 17.1 Radiative cooling of a first order system compared with the linear cooling case

Fig. 17.2 Radiation error in
thermometry

there will be radiation heat transfer from the sensor to the background. The tempera-
ture indicated by the thermocouple is then due to a balance between heat transferred
to the sensor by gas convection and that lost by radiation to the background. Thus,
this problem is a conjugate problem involving convection and radiation.

Let the temperature indicated by the thermocouple be Tt . If we assume that the
sensor is very small compared to the size of the duct, the radiation heat loss from
the sensor per unit area is given by εσ

(
T 4
t − T 4

s

)
, where ε is the emissivity of the

sensor surface and Ts is the temperature of surfaces visible to the thermocouple. The
heat gained by the sensor per unit area is h

(
T f − Tt

)
, where h is the convective heat

transfer coefficient between the gas and the sensor. Under thermal equilibrium, we
should have

h
(
T f − Tt

) = εσ
(
T 4
t − T 4

s

)

Since the temperature of the thermocouple and the background are measured, and
hence known, the gas temperature may be estimated as

T f = Tt + εσ

h

(
T 4
t − T 4

s

)
(17.3)
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The second term on the right hand side of Eq. 17.3 represents the correction due
to radiation. Since the heat transfer coefficient depends on the gas temperature, the
calculation may require an iterative solution!

Example 17.2

A large duct carries a high temperature stream of air at a velocity of U = 6 m/s.
The duct wall temperature is measured to be Ts = 700 K. A thermocouple probe
of surface emissivity ε = 0.5 is placed in the flow. If conduction through the lead
wires are negligible, what is the temperature of the gas stream if the thermocouple
reads Tt = 800 K? The thermocouple probe is in the form of a sphere of D = 10 mm
diameter.

Solution:
We start the calculation using the sensor temperature itself for evaluating the air
properties. Air properties are hence taken from tables at 800 K:

Kinematic viscosity: ν = 81.2 × 10−6 m2/s
Thermal conductivity: k = 0.0559 W/m◦C

Prandtl number: Pr = 0.7

The Reynolds number based on sensor diameter is

ReD = UD

ν
= 6 × 0.01

81.2 × 10−6
= 738.9

We make use of the Whitaker correlation1 for evaluating the mean convective heat
transfer coefficient. Accordingly, we have

NuD = 2 +
(
0.4Re

1
2
D + 0.06Re

2
3
D

)
Pr0.4

= 2 +
(
0.4 × 738.9

1
2 + 0.06 × 738.9

2
3

)
0.70.4 = 15.68

The heat transfer coefficient is then calculated as

h = NuDk

D
= 15.68 × 0.0559

0.01
= 87.65 W/m2◦C

The radiation correction is now calculated using Eq. 17.3 as

�Trad = εσ

h
(T 4

t − T 4
s ) = 0.5 × 5.67 × 10−8

87.65
(8004 − 700s4) = 54.82 K

The air temperature is thus estimated as

1S. Whitaker, AIChE J., Vol. 18, pp. 361–371,1972.
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T f = Tt + �Trad = 800 + 54.82 = 854.82 K

A better value may be estimated by using the film temperature for evaluating the air
properties. We may take the film temperature as

Tm = T f + Tt
2

= 854.82 + 800

2
= 827.6 K

The revised air properties are

Kinematic viscosity: ν = 86.3 × 10−6 m2/s
Thermal conductivity: k = 0.063 W/m◦C

Prandtl number: Pr = 0.7

The revised values of all the other quantities are as follows:

ReD = 695.7 and h = 96.2 W/m2◦C
�Trad = 50 K and T f = 850 K

The new value is approximately 5 K below the previous value. We may stop the
calculation here! The estimated air temperature is thus given by T f = 850 K.

17.2.3 Duct Type Space Radiator

As a second typical example of the problem that involves interaction between con-
vection and radiation, we present the analysis of a typical duct type space radiator,
shown schematically in Fig. 17.3. The analysis method closely follows that used in
Chap. 14 on heat exchangers. The hot fluid enters the duct at high temperature T f 1

and exits it at a lower temperature T f 2 after losing heat to space by radiation via the

Fig. 17.3 A duct type radiator showing the fluid and wall temperature variations along its length
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walls of the duct. In most applications, we may ignore the conductive resistance of
the wall. The outside surfaces of the duct lose heat to space by radiation. The duct
may receive radiation on both the exposed faces.We assume that the duct surfaces are
selective surfaces. Hence, let αA, εA and αB, εB be, respectively, the absorptivity-
emissivity combinations of the two exposed surfaces of the duct. Let the irradiation
on the two sides of the duct beGA andGB , as shown in the figure. The relation below
represents the radiation absorbed by the duct per unit area

[
Radiation absorbed
by duct per unit area

]
= αAGA + αBGB = 2αG (say)

Similarly, total emission from the two sides of the duct per unit area may be written
as [

Radiation emitted
by duct per unit area

]
= εAσT

4
w + εBσT 4

w = 2εσT 4
w (say)

where Tw is the duct wall temperature assumed to be the same on both sides of the
duct. Hence, we may write for the net heat loss from elemental area of the duct of
length dz as

dq = 2
[
εσT 4

w − αG
]
Ldz (17.4)

Let the mass flow of the fluid through the duct be ṁ, the specific heat be constant
at Cp. Let the duct side convection heat transfer coefficient be h. The fluid to wall
temperature difference is because of the film resistance on the fluid side. Consider
a slice of the duct of length dz as shown in the figure. On the fluid side, the heat
transfer to the duct walls is

dq = (h) (2Ldz)

Area
element

[
T f (z) − Tw(z)

]
(17.5)

The heat loss from the fluid as it crosses the duct element is

dq = −ṁCpdT f (17.6)

Essentially, we have written three different forms of the same quantity, the heat
transferred from the slice of the duct to space. From Eqs. 17.4 and 17.6, we may
write

dT f = −2[εσT 4
w − αG]
ṁCp

Ldz (17.7)

From Eqs. 17.4 and 17.5, we also have

T f − Tw = εσT 4
w − αG

h



17.2 Multi-mode Problem Involving Radiation 823

which may be differentiated to get

dT f − dTw =
[
4εσT 3

w

h

]
dTw

This my be rearranged as

dT f =
[
4εσT 3

w

h
+ 1

]
dTw (17.8)

Equating the two expressions (17.7) and (17.8), we obtain a relation between the
wall temperature and the position along the duct as

dz = − ṁCp

L

[
4εσT 3

w

h
+ 1

]

2
[
εσT 4

w − αG
]dTw (17.9)

Let the wall temperatures at entry and exit be Tw1 and Tw2. These temperatures are
determined as follows. Equating 17.4 and 17.5, applying the resulting equation at
the entry and exit, we have

(a) εσT 4
w1 − αG = h

(
T f 1 − Tw1

)
(b) εσT 4

w2 − αG = h
(
T f 2 − Tw2

)
(17.10)

These non-linear algebraic equations provide relations between the respective wall
andfluid temperatures at entry and exit. Introducenow the followingnon-dimensional
variables and parameters:

θw = Tw

Tw1
, θw2 = Tw2

Tw1
, N = αG

εσT 4
w1

The parameter N is known as the environmental parameter. More about this param-
eter later. Equation 17.9 may then be rewritten as

dz = ṁCp

2Lh
· 4θ3wdθw(

N − θ4w
) + ṁCp

2εσT 3
w1L

· dθw(
N − θ4w

) (17.11)

This equationmay be integrated from z = 0 to any z = H by using the inlet condition
θw = 1 at z = 0 and θw = θw2 at z = H to get

H = ṁCp

2Lh

θw2∫

1

4θ3wdθw(
N − θ4w

)

ψ f

+ ṁCp

2εσT 3
w1L

θw2∫

1

dθw(
N − θ4w

)

ψr

(17.12)
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We define the film resistance number ψ f to be given by the first integral appearing
on the right-hand side of Eq. 17.12. Also, we define the radiation number ψr to be
given by the second integral on the right-hand side of Eq. 17.12. Using this notation,
we may rewrite expression for the length of the heat exchanger as

H = ṁCp

2Lh
ψ f + ṁCp

2εσT 3
w1L

ψr (17.13)

Both the integrals may be integrated to obtain closed form relations presented below

ψ f = ln

[
1 − N

θ4w2 − N

]
(17.14)

ψr = 1

4N
3
4

ln

⎡
⎣
(
N

1
4 − 1

) (
N

1
4 + θw2

)
(
N

1
4 + 1

) (
N

1
4 − θw2

)
⎤
⎦ + 1

2N
3
4

[
tan−1

(
θw2

N
1
4

)
− tan−1

(
1

N
1
4

)]

(17.15)
The reader will recall that integral similar to the latter that has occurred earlier in the
problem of a lumped system transient cooling by radiation.

The environmental parameter N plays an important role in the amount of heat
transfer that can take place between the radiator and the background or the envi-
ronment. If N > 1, there is a net radiation gain by the duct and for N < 1 there
is a net radiation loss from the duct. Hence, for a cooling application, it is seen
that 0 ≤ N ≤ 1 and also θw2 > N

1
4 . When there is no irradiation, the environmental

parameter is zero. For a useful range of N , keeping cooling application in mind, and
a meaningful range of θw2 the radiation number and the film resistance number vary
as shown in Figs. 17.4 and 17.5.

Fig. 17.4 Variation of
radiation number for a
cooling duct
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Fig. 17.5 Variation of film
resistance number for a
cooling duct

Example 17.3

A space radiator is in the form of a duct of 1 × 0.005 m cross section. Water flowing
in the duct at the rate of 0.1 kg/s cools from an inlet temperature of 55 ◦C to an outlet
temperature of 35 ◦C. The average power absorbed by the duct from the background
is 200 W/m2 from both the sides. The average emissivity of the two sides of the duct
is 0.85. What is the length of the radiator?

Solution:
We make use of the notation used in the discussion just preceding this example. We
have

L = 1 m, t = 0.005 m, T f 1 = 55◦C = 328 K, T f 2 = 35◦C = 308 K,
2αG = 200 W/m2,ε = 0.85, ṁ = 0.1 kg/s

We shall evaluate the water properties at its mean temperature given by

Tm = T f 1 + T f 2

2
= 55 + 35

2
= 45 ◦C

From table of properties of water, we then have:

Density: ρm = 990.2 kg/m3

Specific heat: Cpm = 4176 J/kg◦C
Kinematic viscosity: νm = 6.11 × 10−7 m2/s

Thermal conductivity: km = 0.640 W/m◦C
Prandtl number: Prm = 3.9

The hydraulic and energy diameters for the duct are identical and given by
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DH = DE = 4Lt

2(L + t)
= 2 × 1 × 0.005

1 + 0.005
= 0.00995 ≈ 0.01 m

The Reynolds number is then calculated as

ReDH = UDH

ν
= ṁ

ρLt

DH

ν
= 0.1

990.2 × 1 × 0.005
× 0.01

6.11 × 10−7
= 330.6

The flow is laminar. We shall assume that the heat exchanger is long enough that the
flow and temperature fields are fully developed. From Chap. 12, the Nusselt number
for a rectangular duct of large aspect ratio (it is L

t = 1
0.005 = 200 in the present case)

is given as NuDE = 7.541. Note that this Nusselt number is based on constant wall
temperature case. In the present application, the wall temperature is certainly not
a constant. However, the Nusselt number with constant wall temperature is smaller
than the constant heat flux case, and hence the choice to be on the conservative side.
The mean convective heat transfer coefficient is then given by

h = NuDE k

DE
= 7.541 × 0.640

0.01
= 482.6 W/m2 ◦C

The wall temperatures at entry and exit are now calculated based on Eq. 17.10. We
have

αG

h
= 200

482.6
= 0.4144 and

εσ

h
= 0.85 × 5.67 × 10−8

482.6
= 9.987 × 10−11

The relation between T f 1 and Tw1 (using Eq. 17.10) is then given by

T f 1 + 0.4144 = 328.4144 = 9.987 × 10−11T 4
w1 + Tw1

The duct wall temperature at entry is hence given by Tw1 = 327.3 K (solving the
above non-linear equation). Similarly, we may obtain the duct wall temperature at
exit as Tw2 = 307.6K (the readermay verify this). The parameters needed to evaluate
the heat exchanger length are calculated now.
We have

θw2 = Tw2

Tw1
= 307.6

327.3
= 0.9398

N = αG

εσT 4
w

= 200

0.85 × 5.67 × 10−8 × 327.34
= 0.3616

The film resistance number is then calculated using expression (17.14) as

ψ f = ln

[
1 − 0.3616

0.93984 − 0.3616

]
= 0.4228
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The radiation number is calculated using expression (17.14) as

ψr = 1

4 × 0.3616
3
4

ln

[
(0.3616

1
4 − 1)(0.3616

1
4 + 0.9398)

(0.3616
1
4 + 1)(0.3616

1
4 − 0.9398)

]
+

1

2 × 0.3616
3
4

[
tan−1

(
0.9398

0.3616
1
4

)
− tan−1

(
1

0.3616
1
4

)]
= 0.1158

Film resistance number and radiation number may also be read off the graphs shown
in Figs. 17.4 and 17.5. The heat exchanger length is then given by expression (17.13)
as

H = 0.1 × 4176

2 × 1 × 482.6
× 0.4228 + 0.1 × 4176

2 × 0.85 × 5.67 × 10−8 × 327.33 × 1
× 0.1158

= 0.18 + 14.31 = 14.49 m

Since the heat exchanger is very long compared to the hydraulic diameter, the fully
developed assumption is valid. Also, since the temperature change along the length
is very gradual, axial conduction through the walls of the duct are negligible. The
second assumption has been tacitly assumed in the formulation. The justification has
come now.

17.2.4 Uniform Area Fin Losing Heat by Convection and
Radiation

Consider an extended surface in the form of a flat plate of uniform cross section as
shown in Fig. 17.6.

Let us consider a unit width in a direction perpendicular to the plane of the paper.
Consider a slice 2t × �x × 1 of the fin as shown. We account for all energy fluxes
entering or leaving the control volume as under.

Fig. 17.6 Uniform area fin
losing heat by convection
and radiation
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Cond. In: Qk,in = −2tk dT
dx

∣∣
x Cond. Out: Qk,out = − 2tk dT

dx

∣∣
x+�x

Rad. In: Qr,in = (αAGA + αBGB)�x Rad. Out: Qr,out = (εA + εB)σT 4�x
Conv. Out: Qc,out = 2h(T − T∞)�x

Under steady conditions that are assumed to prevail, energy balance requires that

Qk,in + Qr,in = Qk,out + Qr,out + Qc,out

or
(
Qk,out − Qk,in

) + (
Qr,out − Qr,in

) + Qc,out = 0

We use Fourier law for conduction flux, use Taylor expansion and retain only first
order terms to get

Qk,out − Qk,in = −2tk
d2T

dx2
�x

Define αAGA + αBGB = 2αG and εA + εB = 2ε as done earlier in the case of the
duct type radiator. Then we have

Qr,out − Qr,in = 2
[
εσT 4 − αG

]
�x

With these the energy balance equation becomes, after minor simplification,

d2T

dx2
− h

kt
(T − T∞) −

(
εσT 4 − αG

)
kt

= 0 (17.16)

The accompanying boundary conditions are given by

T = Tb at x = 0,
dT

dx
= 0 at x = L

Insulated tip

(17.17)

Equation in non-dimensional form
We introduce the following non-dimensional variables and parameters:
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Non-dimensional temperature: θ = T
Tb

Non-dimensional distance: ξ = x
L

Absorbed irradiation-emissive power ratio: αG
εσT 4

b
=
(
Tre f
Tb

)4

Non-dimensional ambient temperature: θ∞ = T∞
Tb

In the above, the reference temperature is defined as Tref = (
αG
εσ

) 1
4 . Then

d2θ

dξ2
−
(
hL2

kt

)
(θ − 1) −

(
εσT 3

b L
2

kt

) (
θ4 − θ4ref

) = 0

Further, let p2 = hL2

kt and NRC = εσT 3
b L

2

kt . Then, the governing equation becomes

d2θ

dξ2
− p2(θ − 1) − NRC

(
θ4 − θ4ref

) = 0 (17.18)

with the boundary conditions

θ = θb = 1 at ξ = 0, and
dθ

dξ
= 0 at ξ = 1 (17.19)

The boundary condition at the tip is based on the assumption of negligible heat loss,
both by convection and radiation, from the narrow strip that represents the tip.

Since the present problem involves all three modes of heat transfer, three non-
dimensional parameters appear in the formulation. The first one is p2 = hL2

kt =
m2L2, where m =

√
h
kt is the familiar fin parameter appearing in conducting-

convecting fins. The second one is the radiation-conduction interaction param-
eter NRC , which may be written as

NRC = εσT 3
b L

2

kt
= εσT 4

b

k Tb
L

Term (i)

· L

t
Term (i i)

(17.20)



830 17 Special Topics in Heat Transfer

We recognize Term (i) as the ratio of a representative radiant heat flux to a
representative conductive heat flux. We recognize Term (i i) to be a geometric
parameter, the slenderness ratio. In fact p2 may be interpreted in a like manner
as

p2 = hL2

kt
= h(Tb − T∞)

k (Tb−T∞)

L

Term (i)

· L

t
Term (i i)

(17.21)

We recognize Term (i) as the ratio of a representative convective heat flux to a
representative conductive heat flux. We recognize Term (i i) to be a geometric
parameter, the slenderness ratio.

A third parameter that makes its appearance is θref =
(

αG
εσT 4

b

) 1
4
, in the pres-

sure of incident radiation. This parameter is hence referred to as the environ-
mental parameter. Note that radiation will heat the fin if θref > 1 and cool the
fin if θref < 1. In most applications, we shall be interested only in the latter
case.

Special Cases

Special Case 1: Radiating-conducting fin in the absence of convection

The governing Eq. 17.18 reduces on putting p2 = 0 to

d2θ

dξ2
− NRC

(
θ4 − θ4ref

) = 0 (17.22)

with the boundary conditions remaining the same as Eq. 17.19. Equation 17.22 may
be integrated once with respect to ξ after multiplying through by 2dθ

dξ to get

(
dθ

dξ

)2

− 2NRC

(
θ5

5
− θ4refθ

)
= C

where C is a constant of integration. Let θ = θt (as yet unknown) at ξ = 1. The
vanishing of the derivative at ξ = 1 then requires that

−2NRC

(
θ5t
5

− θ4refθt

)
= C

We eliminate C from these two expressions to get

(
dθ

dξ

)2

= 2NRC

[
θ5 − θ5t

5
− θ4ref (θ − θt )

]
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Fig. 17.7 Temperature
profiles in a conducting and
radiating fin

Taking square root, we then have

dθ

dξ
= −

√
2NRC

5

(
θ5 − θ5t

) − 2NRCθ4ref (θ − θt ) (17.23)

For a cooling fin, which is being considered here, it is appropriate to choose the
negative sign on the right-hand side and θb > θt > θref . θt is not known as of now.
Equation 17.23 will have to be solved numerically. We assume a value for θt and
solve the first order equation starting with θ = 1 at ξ = 0, using, for example, the
fourth order Runge–Kutta method. A new value of θt is obtained from the numerical
solution and is used to solve the equation afresh. This procedure is stopped when θt
converges to a specific value.

Figure 17.7 shows the temperature profiles for typical cases with Tb = 373 K ,
k = 207 W/m◦C, ε = 0.8, α = 0.6, t = 0.0005 m and L = 0.15 m. The value of
radiation-conduction parameter turns out to be NRC = 0.512. Three irradiation val-
ues as indicated in the figure legend are considered. These correspond, respectively,
to environmental parameter values of 0, 0.608, and 0.723.

Radiating fin efficiency
The maximum possible heat transfer qmax takes place when the entire fin is at the
base temperature and the environmental parameter is zero.

qmax = 2εσT 4
b L

However, the actual heat transferred is given by

qact = − 2tk
dT

dx

∣∣∣∣
x=0

= − 2ktTb
L

dθ

dξ

∣∣∣∣
ξ=0

The radiating fin efficiency is defined as ηR = qact
qmax

. Thus, we have
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ηR =
− ktTb

L

dθ

dξ

∣∣∣∣
ξ=0

εσT 4
b L

Using Eq. 17.23, we can obtain dθ
dξ

∣∣∣
ξ=0

by taking θ = 1. Also, we introduce the

parameter NRC defined earlier to get the fin efficiency as

ηR = 1√
NRC

√
2

5

(
1 − θ5t

) − 2θ4ref (1 − θt ) (17.24)

In case θref = 0 (no incident radiation and hence environmental parameter is zero),
the above simplifies to

ηR = 1√
NRC

√
2

5

(
1 − θ5t

)
(17.25)

In case the fin is very long, i.e., L → ∞, θt → θref and expression (17.24) becomes

ηR = 1√
NRC

√
2

5

(
1 − θ5ref

) − 2θ4ref (1 − θref) (17.26)

Further, in case there is no irradiation, i.e., θref = 0, this simplifies further to

ηR =
√

2

5NRC
(17.27)

For L → 0 or NRC → 0, the actualmaximumheat loss is limited to 2(εσT 4
b − αG)L ,

and hence

ηR → 2(εσT 4
b − αG)L

2LεσT 4
B

= 1 − θ4re f (17.28)

Thus, in general, ηR is a function of radiation-conduction parameter or the profile
number NRC and the environmental parameter θref . ηR is normally plotted as a func-
tion of NRC for different θref . Figure 17.8 shows the performance of a radiating fin
in the absence of external radiation, i.e., for θref = 0.

Optimum Radiating Fin
It may also be shown that a fin of optimum configuration (fin of minimum mass)
satisfies the condition2

∂ηR

∂NRC
= −1

3
× ηR

NRC
(17.29)

2D. B. Mackay, C. P. Bacha, Space Radiator Analysis and Design, ASD TR 61-30 Pt. I, Space and
Information Systems Division, North American Aviation, INC, October 1961.
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Fig. 17.8 Efficiency of a
radiating fin in the absence
of irradiation

Table 17.1 Radiating fin of ‘theoretical profile’

θ4ref NRC ηR θ4ref NRC ηR

0.900 0.382 0.069 0.400 0.630 0.363

0.800 0.446 0.131 0.300 0.670 0.412

0.700 0.496 0.191 0.200 0.712 0.459

0.600 0.542 0.250 0.100 0.753 0.511

0.500 0.583 0.305 0.000 0.801 0.554

The partial derivative is indicated to point out that the environmental parameter is to
be held fixed. A fin that satisfies condition (17.29) is said to be a fin of ‘theoretical
profile’. The ηR, NRC combination for a fin of theoretical profile depends on the
environmental parameter θre f . Table 17.1 gives the data in the form useful for design
of such fins.

Example 17.4

An electrical system in space has to dissipate 1 kW to its environment from a white
painted aluminum fin. The appropriate data is

Base structure temperature: Tb = 550 K
Width of fin structure: W = 1.5 m

Emissivity of fin surfaces: εA = εB = 0.95
Absorptivity of fin surfaces: αA = αB = 0.18

Heat is lost from both surfaces. One face views the moon at a surface temperature
of TM = 374 K while the other surface faces the sun. The solar constant may be
taken as 1396 W/m2. Determine the proportions of a minimum mass fin for this
application. Compare this with the case where the fin does not receive any irradiation
on either side.
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Solution:

Step 1 Since themoon is at a low temperature, we assume εB = αB = 0.95.Since
the sun is at a high temperature, we assume εA = 0.95, αA = 0.18. Thus,
ε = εA+εB

2 = 0.95+0.95
2 = 0.95. The radiation absorbed on the two sides of

the fin may be calculated as3

GA = 1396 W/m2 GB = σT 4
M = 5.67 × 10−8 × 3744 = 1109.4 W/m2

αG = αAGA + αBGB

2
= 0.18 × 1396 + 0.95 × 1109.4

2
= 652.6 W/m2

Environmental parameter is then obtained as

θ4ref = αG

εσT 4
b

= 652.6

0.95 × 5.67 × 10−8 × 5504
= 0.132

Step 2 Profile number and fin efficiency for theminimummass profile are interpo-
lated from Table 17.1 as NRC = 0.739, ηR = 0.494 for an environmental
parameter of 0.132.

Step 3 The heat to be transferred by the fin is Qnet = 1 kW = 1000 rmW = Qact.
Using the definition of ηR , we have,

ηR = Qact

Qmax
= Qact

2LWεσT 4
b

or

L = Qact

2ηRWεσT 4
b

= 1000

2 × 0.494 × 1.5 × 0.95 × 5.67 × 10−8 × 5504
= 0.137 m

By the definition of NRC as given in Eq. 17.20, we then have

t = εσT 3
b L

2

kNRC
= 0.95 × 5.67 × 10−8 × 5503 × 0.1372

230 × 0.739
= 9.89 × 10−4 m

The fin thickness is double this value and is 2t = 2 × 9.89 × 10−4 =
1.98 mm.

Step 4 With no irradiation on either side,G = 0. In this case the optimum propor-
tioned fin is given by NRC = 0.801 and ηR = 0.554 as given in Table 17.1
with the environmental parameter equal to zero. L and t are then given by

3In the analysis we have ignored the contribution of solar radiation reflected from the moon surface
to the irradiation on the moon facing side
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L = 1000

2 × 0.554 × 1.5 × 0.95 × 5.67 × 10−8 × 5504
= 0.122 m

and

t = 0.95 × 5.67 × 10−8 × 5503 × 0.1222

230 × 0.801
= 7.24 × 10−4 m

The fin thickness is thus equal to 2t = 2 × 7.24 × 10−4 m = 1.45 mm.
Step 5 The fin masses are in the ratio of the volumes, and hence we have

Fin mass with irradiation

Fin mass without irradiation
= 2 × 0.137 × 1.98

2 × 0.122 × 1.45
= 1.53

Thus, the fin in the former case is some 53% heavier than that in the latter
case.

17.2.5 Radiating-Conducting-Convecting Fin With
Linearized Radiation

In some applications where temperature differences are small, it is possible to lin-
earize radiation as indicated in Chap. 1. An example of this is found in the estimation
of thermometric error in a thermometer well used primarily to measure the tempera-
ture of a fluid flowing in a duct. A thermometer well is normally used to avoid direct
contact between a temperature sensor and the flowing fluid. Typically, an installation
using a thermometer well is as shown schematically in Fig. 17.9. The thermometer
well consists of an annular cylinder introduced perpendicular to the axis of a pipe

Fig. 17.9 Schematic of a
thermometer well
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carrying the fluid as indicated. The well material has a thermal conductivity k and has
an emissivity of ε on its outside surface. A sensor is attached to the closed bottom of
the well. Lead wires of small diameter take the electrical signal from the sensor to a
voltmeter. The depth of the well L is referred to as the depth of immersion. The pipe
wall temperature is assumed to be less than the fluid temperature, the temperature
difference being such as to justify linear radiation assumption. It is seen that the
sensor actually indicates the temperature Tt at the bottom of the well.

Let us assume that T f > Tt > Tw. If the well is made of thin walled cylinder such
that L 	 d0 we may treat it as a uniform area fin that receives heat from the flowing
fluid via convection, as in a cylinder in cross flow, and loses heat by radiation to the
pipe wall. We assume that the flowing fluid is radiatively non-participating. The heat
loss by radiation from an element of fin along its length is given by

qR = εσ(T 4 − T 4
w) ≈ hR(T − Tw)

where hR = 4εσT 3
w is the radiation heat transfer coefficient. Let the convective heat

transfer coefficient for heat transfer from the fluid to the well be h. Either Eq. 17.18
may be manipulated to write the governing equation or it may derived from first prin-
ciples by making energy balance for an elemental length of the well. The derivation
is left as an exercise to the reader. The following equation should result

d2T

dx2
+ 4hd0

k
(
d20 − d2i

) (T f − T ) − 4hrd0
k
(
d20 − d2i

) (T − Tw) = 0 (17.30)

We define a reference temperature given by

Tref = hT f + hRTw

T f + Tw

(17.31)

Note that this is the equilibrium temperature attained by the surface in the absence
of fin conduction. Letting θ = T − Tref Eq. 17.30 may be recast as

d2θ

dx2
− 4 (h + hR) d0

k
(
d20 − d2i

) θ = 0 (17.32)

This equation is identical to the fin equation for a uniform area conducting-convecting
fin but with the convective heat transfer coefficient replaced by the sum of the con-
vective and radiation heat transfer coefficients and the ambient temperature replaced
by the reference temperature. The boundary conditions may be written down, by the
usual assumption of insulated tip, as
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x = 0, θ = (Tw − Tref ); x = L ,
dθ

dx
= 0 (17.33)

The solution to Eq. 17.33 is straightforward and thus we have the sensor temperature
given by

Tt − Tref
Tw − Tref

= 1

cosh μ
(17.34)

where μ =
√

4(h+hR)d0
k(d20−d2i )

L is the non-dimensional fin parameter.

Example 17.5

Air at a temperature of T f = 373 K is flowing in a tube of diameter D = 10 cm at an
average velocity ofU = 0.5 m/s. The tubewalls are at a temperature of Tw = 353 K.
A thermometerwell of outer diameterd0 = 4 mm andwall thickness t = 1 mmmade
of iron is immersed to a depth of L = 5 cm, perpendicular to the axis. The iron tube
is dirty because of usage and has a surface emissivity of ε = 0.85. What will be
the temperature indicated by a thermocouple that is attached to the bottom of the
thermometer well? What is the consequence of ignoring radiation?

Solution:

Step 1 The inner diameter of well is calculated, using the data specified in the
problem as, di = d0 − 2t = 4 − 2 × 1 = 2 mm.

Step 2 The air properties are taken at the air temperature without loss in accuracy.
Thus

Kinematic viscosity of air: ν = 23.02 × 10−6 m2/s
Thermal conductivity of air: k f = 0.0313 W/m◦C

Prandtl number of air: Pr = 0.7

The thermal conductivity of the well material is k = 45 W/m◦C.

Step 3 Calculation of convective heat transfer coefficient:
The Reynolds number based on the outside diameter of the thermometer
well is

Red0 = Ud0
ν

= 0.5 × 0.004

23.02 × 10−6
= 86.9

Zhukaskas correlation is used now. For the range that brackets the above
Reynolds number the constants in the Zhukaskas correlation are
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C = 0.51, m = 0.5 and n = 0.37

The Nusselt number based on the outside diameter of the thermometer
well is then given by

Nud0 = CRemd0 Pr
n = 0.51 × 86.90.5 × 0.70.37 = 4.17

Hence, the convective heat transfer coefficient between the air and the well
is

h = Nud0k f

d0
= 4.17 × 0.0313

0.004
= 32.6 W/m2 ◦C

Step 4 Radiation heat transfer coefficient:
Linearized radiation is used since the fluid and wall temperatures are close
to each other. The radiation heat transfer coefficient is given by

hR = 4εσT 3
w = 4 × 0.85 × 5.67 × 10−8 × 3533 = 8.48 W/m2 ◦C

Step 5 Reference temperature:
The reference temperature is given by (after Eq. 17.31)

Tref = 32.6 × 373 + 8.48 × 353

32.6 + 8.48
= 368.9 K

Step 6 Well treated as a fin:
The non-dimensional fin parameter is calculated as

μ =
√

4(32.6 + 8.48)0.004

45
(
0.0042 − 0.0022

) × 0.05 = 1.744

The non-dimensional well bottom temperature is given by Eq. 17.34 as

θt = 1

cosh μ
= 1

cosh(1.744)
= 0.339

Hence, the well bottom temperature is

Tt = Tref + θt (Tw − Tref) = 368.9 + 0.339(353 − 368.9) = 363.5 K

This is the temperature indicated by the thermocouple. Hence, the ther-
mometer error is δT = 363.5 − 373 = −9.5 K.

Step 7 If radiation is ignored, the reference temperature is the air temperature
equal to Tref = 373 K. The non-dimensional fin parameter is given by
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μ =
√

4 × 32.6 × 0.004

45(0.0042 − 0.0022)
× 0.05 = 1.553

Non-dimensional thermocouple indicated temperature is

θt = 1

cosh μ
= 1

cosh(1.553)
= 0.405

Hence, the thermocouple indicates a temperature of Tt = Tref + θt (Tw −
Tref) = 373 + 0.405(353 − 373) = 364.9 K. The thermometer error is
δT = 364.9 − 373 = −8.1 K.

Step 8 In view of the above, radiation introduces an additional −1.4 K error in
the measured temperature.
It is to be noted, in either case, that the thermometer well design needs to
be improved to reduce the error.

17.3 Heat Transfer During Melting or Solidification

Transient conduction in a medium that undergoes phase change has important appli-
cations in material processing such as casting of metals, frost propagation in wet
soils, in ice making, and so on. In recent times it has also been used in heat sinks for
electronic cooling applications. Heat is absorbed or released during the phase change
process in a region close to the phase change boundary. The rate of melting or freez-
ing is, in fact, controlled by the rate at which the heat is brought in or removed from
this region. These problems are inherently non-linear and pose a challenge since the
position of the phase change front has to be determined as a part of the solution.
The phase change front is also referred to as a moving boundary. We shall consider
two simple cases referred to as Stefan and Neumann problems that involve melting
or solidification in a semi-infinite medium. Subsequently, we shall look into phase
change in a finite domain.

17.3.1 Stefan Problem

Consider the melting of a semi-infinite medium made of a pure substance initially at
the phase change temperature Tm that is subject to a constant temperature T0 > Tm
applied at its surface for t > 0.The state of affairs at time t is as indicated inFig. 17.10.
The governing differential equation for the region that has undergone melting is the
familiar heat equation in one dimension given by
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Fig. 17.10 Stefan problem
for melting in semi-infinite
space

∂T

∂t
= α f

∂2T

∂x2
(17.35)

applicable for 0 ≤ x ≤ s(t) and t > 0. The thermal diffusivity α f pertains to the
liquid phase since heat propagation for change of phase at the phase change front is
through the liquid phase. The temperature is uniform at the phase change temperature
in the solid phase. The initial condition (IC) and boundary conditions (BC) that
accompany Eq. 17.35 are

IC: T (x > 0, 0) = Tm BCs: T (x = 0, t > 0) = T0, T (s, t > 0) = Tm

Another condition that is specified pertains to the rate at which the phase change
front advances in to the solid. The rate at which the phase change front moves is such
that the heat brought in through the liquid phase is able to supply the latent heat that
is required to melt the solid. Thus, we have

⎡
⎣Rate heat conducted

in to the
phase change front

⎤
⎦ =

⎡
⎣Rate at which energy

is used in
melting the solid

⎤
⎦

This in equation form is

− k f
∂T

∂x

∣∣∣∣
x=s(t)

= ρshs f
ds

dt
(17.36)

In the above, the thermal conductivity k f is that of the liquid, the density ρs is that
of the solid, and hs f is the latent heat of melting in J/kg.

The Stefan problem can be solved analytically since a general solution to the heat
equation is known to be given by

T (x, t) = A + B erf

[
x

2
√

α f t

]
(17.37)

Obviously, A = T0 such that the boundary condition at the front surface is satisfied.
In order for the boundary condition at the phase change front to be satisfied, B must
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be chosen as

B = Tm − T0

erf

[
s

2
√

α f t

] (17.38)

We still have to determine s(t) using the condition at the phase change front. The tem-
perature gradient at the phase change front is obtained by differentiating expression
(17.38) with respect to x and then putting x = s(t). Recalling that the error function
is given by erf η = 2√

π

∫ η

0 e−η2
dη, the indicated differentiation may be performed to

get

∂T

∂x

∣∣∣∣
x=s

= −B × 2√
π

× e
−

s2

4α f t × 1

2
√

α f t
(17.39)

Using expressions (17.38) and (17.39), the condition at the moving boundary (17.36)
may be simplified to read

ρshs f
ds

dt
= k f

2
√

α f t
e
−

s2

4α f t (Tm − T0)

erf

[
s

2
√

α f t

] (17.40)

Fortunately, the above is satisfied for s = m
√
t where m is a constant that depends

only on the properties of the medium that is undergoing change of phase. If we
substitute this in Eq. 17.40, time drops off! Thus, m is a solution of the algebraic
equation given by

ρshs f
m

2
= k f

2
√

α f
e
−
m2

4α f
(Tm − T0)

erf

[
m

2
√

α f

] (17.41)

The position of the moving boundary is thus obtained. Further, we introduce the
following non-dimensional quantities:

(1) θ = T − Tm
T0 − Tm

Non-dimensional temperature

(2) η = x

2
√

α f t

Similarity variable

(3) μ = m

2
√

α f

Non-dimensional phase change front

(4) Ste = Cpf (T0 − Tm)

hs f
Stefan number

(17.42)



842 17 Special Topics in Heat Transfer

Table 17.2 Variation with Stefan number of the phase change front

μ Ste μ Ste μ Ste

0.01 0.0002 0.14 0.0397 0.6 0.9205

0.02 0.0008 0.16 0.0521 0.7 1.3727

0.03 0.0018 0.18 0.0662 0.8 1.9956

0.04 0.0032 0.2 0.0822 0.9 2.8576

0.05 0.00501 0.22 0.1 1 4.0602

0.06 0.00722 0.24 0.1197 1.2 8.1721

0.07 0.00983 0.26 0.1415 1.4 16.776

0.08 0.0129 0.28 0.1653 1.6 35.8174

0.09 0.0163 0.3 0.1912 1.8 80.5745

0.1 0.0201 0.4 0.3564 2 192.64

0.12 0.0291 0.5 0.5923

Stefan number introduced above is a non-dimensional parameter that appears in
phase change problems. Expression (17.41) may then be recast as

Ste = √
πμeμ2

erf μ (17.43)

The temperature profile within the liquid region then satisfies the equation

θ = 1 − erf η

erf μ
(17.44)

TheeasiestwayofsolvingEq.17.43is toobtain thevalueofStefannumberforachosen
value ofμ. Table 17.2 shows the data obtained by the abovemethod for a typical range
of Stefan numbers. Stefan number is the ratio of sensible heat to latent heat. It is easily
seen, on physical grounds, that the smaller the Stefan number, larger the latent heat in
comparison with sensible heat and the slower is the process of melting.

Energy Utilization Rate in Melting
The rate at which energy is used in melting (per unit frontal area) is simply given by

qm = ρshs f
ds

dt

With s = μ
√
2α f t , we get

qm = ρshs f μ
√
2α f

1

2
√
t

= ρs
Cp f (T0 − Tm)

Ste
μ
√

α f
1√
t
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the last part resulting from the definition of Stefan number. From the definition of
the thermal diffusivity, we also have ρ f Cp f = k f

α f
. Hence, we may rewrite the above

expression as

qm =
(

ρs

ρ f

)( μ

Ste

)(k f (T0 − Tm)√
2α f t

)
(17.45)

Thus, the rate at which energy is consumed towards melting reduces inversely as the
square root of time.

Problem of solidification in a semi-infinite region may be treated by a similar
method. The property values will have to be appropriately changed to make the
analysis valid. The reader is encouraged to figure out what the changes are!

17.3.2 Neumann Problem

The Neumann problem deals with the melting of a pure substance occupying the half
space and initially at a temperature below the melting temperature. The surface of
the solid is brought instantaneously to a temperature above the melting point and is
held fixed at that value thereafter. The temperature variation will now be as shown
in Fig. 17.11. The main difference between the Stefan problem and the Neumann
problem is the prevalence of temperature variations in both liquid and solid phases.
Also, at the phase change front, the heat conducted from the liquid side is shared
between the heat consumed in melting and the heat conducted in to the solid phase.
The properties of both the phases play a role in the problem. The governing equations
may be written down for the two phases as given below.

Liquid phase:
∂T

∂t
= α f

∂2T

∂x2
; 0 < x < s(t), t > 0 (17.46)

Fig. 17.11 Neumann
problem for melting in
semi-infinite space
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Solid phase:
∂T

∂t
= αs

∂2T

∂x2
; s(t) < x < ∞, t > 0 (17.47)

Interface condition: − k f
∂T

∂x

∣∣∣∣
x=s(t)

= −ks
∂T

∂x

∣∣∣∣
x=s(t)

+ ρshs f
ds

dt
(17.48)

The boundary conditions are:

T (0, t > 0) = T0, T (s, t > 0) = Tm, T (x → ∞, t > 0) = Ti (17.49)

Initial condition specifies the entire medium to be at T = Ti at t = 0. The solution
method is similar to the one used in the solution of the Stefan problem. We use
solution of the form (17.37) for both the regions, taking care to use the appropriate
material properties in the two phases. Four constants and the interface position as
a function of time are to be determined by the application of the above conditions.
The interface position is again taken to follow the form s = m

√
t used in the Stefan

problem. Apart from the Stefan number that has already been introduced earlier, the
following two new parameters enter this problem:

φ = Tm − Ti
T0 − Tm

, � =
√
k f ρ f Cp f

ksρsCps
(17.50)

The steps leading to the interface position are similar to those in the case of the Stefan
problem and will, therefore, be not repeated here. The final expression is obtained as

Ste

μ
√

π

⎡
⎢⎢⎢⎣

1

eμ2erf μ
− φ e

−μ2

(α f

αs

)

� erfc

(
μ

√
α f

αs

)

⎤
⎥⎥⎥⎦ = 1 (17.51)

We note thatφ = 0 corresponds to the Stefan problem and expression (17.51) reduces
to expression (17.43) for this case.

We note that the Neumann problem is more general than the Stefan problem.
The parameter φ is referred to as the sub-cooling parameter. If this parameter is
equal to zero, there is no sub-cooling and the medium is initially at the phase change
temperature. If this parameter is equal to unity the initial temperature is as far below
the phase change temperature as the surface temperature is above it. If the parameter
is greater than one, the initial temperature is below the phase change temperature
by a larger amount than the surface temperature is above it. It is quite clear that the
more the sub-cooling more the energy required to bring the medium to the phase
change temperature, and hence lower the melting rate. The thermal diffusivity ratio
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Fig. 17.12 Comparison of
cases with and without
sub-cooling

also plays an important role since the relative rates at which heat will diffuse in the
liquid and solid phases depend on it. The physical parameter � also determines the
melting rate, being a composite parameter that involves the conductivity, the density
and the specific heat ratios for the two phases.

In order to appreciate the differences between theStefan solution and theNeumann
solution, we show in Fig. 17.12 the variation of μ with Ste. The Neumann solution
shown is for φ = 1, α f

αs
= 1 and � = 1.

Example 17.6

A very large block of ice is initially at a temperature of Ti = −5 ◦C throughout.
At t = 0 the surface of the ice block is brought to T0 = 5 ◦C and held fixed at that
temperature thereafter. Determine the time needed for a 2 cm layer of ice to melt.

Solution:
Properties of ice and water are taken from tables of properties and listed below: (We
follow the notation used in the text in what follows)

Ice properties:
Density of ice: ρs = 916.8 kg/m3

Specific heat of ice: Cps = 4873 J/kg K
Thermal conductivity of ice: ks = 2.24 W/m K
Thermal diffusivity of ice: αs = 5.01 × 10−7 m2/s
Latent heat of melting ice: hs f = 3.336 × 105 J/kg
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Water properties:
Density of water: ρs = 1000 kg/m3

Specific heat of water: Cpf = 4206 J/kg K
Thermal conductivity of water: k f = 0.568 W/m K

Thermal diffusivity of ice: α f = 51.535 × 10−6 m2/s

Various temperatures in our usual notation are

Ti = −5 ◦C, Tm = 0 ◦C, T0 = 5 ◦C

We shall calculate all the parameters needed in the Neumann solution.

φ = T0−Tm
Tm−Ti

= 5−0
0−(−5) = 1 � =

√
0.568×1000×4206
2.24×916.8×4873 = 0.4886

αr = α f
αs

= 1.535×10−6

5.01×10−7 = 3.0639 Ste = Cpf (T0−Tm )

hs f
= 4206(5−0)

3.336×105
= 0.063

We now calculate the value of μ using the Neumann solution given by Eq. 17.51.
A trial and error solution is required and the correct value of μ = 0.1358 is obtained.

The depth of melt is given as s = 2 cm or s = 0.02 m. Using the definition of μ,
we then have the time to melt 2 cm layer of ice as

t = s2

4α f μ2
= 0.022

4 × 1.535 × 10−6 × 0.13582
= 3532.6 s ≈ 59 min

17.3.3 Phase Change in a Finite Domain

Consider a flat slab of a phase change material (PCM) of thickness initially in the
solid phase at its melting temperature. We would like to know the time it takes to
melt the material by supplying heat symmetrically from the two sides, as shown in
Fig. 17.13.

Since the PCM is given to be at its phase change temperature the problem is
treatable as aStefanproblem.The time atwhich s = δ

2 iswhen themelting is complete
and the amount of heat stored in the PCM in this time is the energy storage of the
PCM. Let the time required for the above to be satisfied be tc. From the Stefan

Fig. 17.13 Melting in a
finite region
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solution, we then have δ
2 = 2μ

√
α f tc where μ satisfies Eq. 17.43. Thus, we have the

charging time given by

tc = δ2

16α f μ2
(17.52)

The total energy stored may be calculated as

Ec = −2

tc∫

0

k f
∂T

∂x

∣∣∣
x=0

dt (17.53)

Using Eq. 17.44, and the definition of θ presented in Eq. 17.42, we may obtain the
derivative in the integrand of Eq. 17.53 as

∂T

∂x

∣∣∣∣
x=0

= − (T0 − Tm)

erf μ

d erf ξ

dξ

∣∣∣∣
ξ=0

= − (T0 − Tm)

erf μ

1√
πα f t

Substitute this in Eq. 17.53, perform the indicated integration to get

Ec = (T0 − Tm)

erf μ
· k f√

πα f
· 4√tc

Use expression (17.52) to recast the above as

Ec = (T0 − Tm)

erf μ
· k f

α f
· δ

μ
√

π

Noting that k f

α f
= ρ f Cp f , the above may be written in the non-dimensional form

Ec

ρ f Cp f (T0 − Tm)
= 1√

π
· δ

μ erf μ
(17.54)

Example 17.7

A 2 cm thick slab of ice is at 0 ◦C throughout. At t = 0 both surfaces of the ice
slab are suddenly raised to a temperature of 10 ◦C and kept at that value thereafter.
Determine the time taken for complete melting of the slab and the energy that has
entered the slab in this time.
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Solution:
We follow the notation used in the text. The properties of ice and water are taken as
below

Ice properties:
Density of ice: ρs = 916.8 kg/m3

Latent heat of melting ice: hs f = 3.336 × 105 J/kg

Water properties:
Density of water: ρs = 1000 kg/m3

Specific heat of water: Cpf = 4206 J/kg K
Thermal diffusivity of ice: α f = 51.535 × 10−6 m2/s

The ice slab thickness is given to be δ = 2 cm = 0.02 m. Superheat parameter
is zero in this case since Ti = Tm = 0 ◦C. The Stefan solution is appropriate. The
Stefan number is calculated as

Ste = Cpf (T0 − Tm)

hs f
= 4206(10 − 0)

3.336 × 105
= 0.126

Linear interpolation using the values in Table 17.2 gives

μ = 0.24 + (0.126 − 0.1197)

(0.1415 − 0.1197)
(0.26 − 0.24) = 0.246

The charge time is then obtained using Eq. 17.52 as

tc = 0.022

16 × 1.535 × 10−6 × 0.2462
= 269.1 s

The energy that has entered the ice slab in this time is given by Eq. 17.54 as

Ec = ρ f Cp f (T0 − Tm )√
π

· δ

μ erf μ
= 1000 × 4206 × (10 − 0)√

π
× 0.02

0.246 × erf 0.246

= 7.148 × 106 J/m2

17.4 Heat Transfer During Condensation

Heat transfer in condensers involve phase change wherein a vapor turns in to a
liquid. Pure substances have a phase change temperature that is fixed once the pres-
sure is fixed. For example, condensers used in power plants operate at a pressure of
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Fig. 17.14 Laminar film condensation over an isothermal vertical surface

∼ 0.1 bar with the corresponding saturation temperature around 55 ◦C. Condensa-
tion will take place over a surface if it is at a temperature lower than the saturation
temperature of the substance. Since there is a large change in density during conden-
sation, the condensate is much heavier and flows or drains away from the surface, in
the presence of gravity.

Drop wise condensation takes place if the condensate does not wet the surface.
The droplets then run off the surface due to gravitational forces. Heat transfer rates are
high since heat transfer takes place directly with the surface over which condensation
takes place.

However, condensation may take place with a condensate film forming on the sur-
face, when the condensate wets the surface. Since heat released during condensation
has to pass through the film the heat transfer rates are generally lower in the case of
film condensation. Film condensation over a vertical surface may be analyzed in a
simple way, using the analysis due to Nusselt,4 as presented below.

17.4.1 Film Condensation Over An Isothermal Vertical
Surface

Condensation is assumed to take place over an isothermal vertical surfacemaintained
at a temperature Tw < Ts , where Ts is the temperature of the vapor that is assumed
to be saturated and at rest. A film of condensate of thickness δ(x) forms over the
surface, as shown in Fig. 17.14. The flow within the film is assumed to be laminar.
Evidently, the film thickness increases with x to account for the condensate that has
formed over the length 0 − x to flow down.

Consider a fluid element of size dx × dy within the condensate film, located at
some distance x from the top edge, as shown in Fig. 17.15. The dimension of this
element may be taken as 1 unit in a direction perpendicular to the plane of the figure.

4W. Nusselt, Zeitschrift des Verieins deutscher Ingenieure, Vol. 60, No. 27 and 28, pp. 541–546
and pp. 569–575, 1916.
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Fig. 17.15 Force balance
over a fluid element inside
the condensate film

Force balance over the element leads to (as usual, we use Taylor expansion and
retain only first order changes)

∂τ

∂y
= −ρ f g

where ρ f is the density of condensate.We assume that the density of vapor is negligi-
ble in comparison with the density of the liquid. The inertia forces are assumed to be
negligible since the velocities involved are very small. The force balance given above
is similar to what was observed in the case of fully developed flow in a pipe where
viscous forces were balanced by pressure forces. Assuming constant properties, we
also have, by Newton’s law of viscosity the relation

τ = μ f
∂u

∂y

where μ f is the dynamic viscosity of the condensate. From the above two equations,
we get

μ f
∂2u

∂y2
= −ρ f g (17.55)

The boundary condition on the velocity is obviously the no slip condition at the wall
at y = 0. At the edge of the condensate layer, the velocity gradient is zero if we
assume that negligible shear is exerted by the vapor. Thus, the boundary conditions
are taken as

(a) u = 0 at y = 0 for all x, (b)
∂u

∂y
= 0 at y = δ for all x (17.56)

Equation 17.55 may be integrated twice with respect to y to get a quadratic velocity
profile given by

u = A + By − ρ f g

2μ f
y2 (17.57)

where A and B are integration constants (these are actually functions of x), to be
determined. Wall boundary condition requires that we choose A = 0. At the surface
of the condensate, we have, using boundary condition (17.56)(b)
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∂u

∂y

∣∣∣∣
y=δ

= B − ρ f gδ

μ f
= 0 or B = ρ f gδ

μ f

The velocity profile will then read as

u = ρ f gδ2

μ f

(
y

δ
− 1

2

{ y
δ

}2) = ρ f gδ2

μ f

(
η − η2

2

)
(17.58)

where η = y
δ
. We may obtain the mean velocity by equating the mass flow rate per

unit width ṁ = ρ f
∫ δ

0 u(y)dy to ρ f Uδ where U is the mean velocity. We substitute
the velocity profile given by Eq. 17.58, perform the indicated integration to get

U = ρ f gδ2

μ f

1∫

0

(
η − η2

2

)
dη = ρ f gδ2

3μ f
(17.59)

Thus, the condensate mass flow rate at x is given by

ṁ = ρ2f g

3μ f
δ3 (17.60)

The rate at which the condensate mass flow changes with x is given by

dṁ

dx
= ρ2f g

μ f
δ2

dδ

dx

The change in the mass flow rate of the condensate is due to the amount of conden-
sation that takes place in an interval dx around x . Assume that the latent heat for
conversion from vapor to liquid is h f g . Then the amount of heat released must be

dQ

dx
= h f g

dṁ

dx
= h f g

ρ2f g

μ f
δ2

dδ

dx
(17.61)

We assume that heat transfer across the condensate film is purely by conduction and
the temperature variation across the condensate film is linear. Hence, we have

dQ

dx
= qk = k f

(Ts − Tw)

δ
(17.62)

Equating the above two expressions, we get the following first order ordinary differ-
ential equation for δ.

δ3dδ = k f (Ts − Tw)μ f

ρ2f gh f g
dx
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On integration with respect to x and taking δ = 0 at x = 0, we get

δ =
[
4k f μ f (Ts − Tw)x

ρ2f gh f g

] 1
4

(17.63)

Based on Eq. 17.62, we may define a local heat transfer coefficient as

hx = qk
(Ts − Tw)

= k f

δ
=
[

k3f ρ
2
f gh f g

4μ f (Ts − Tw)x

] 1
4

(17.64)

We may define a mean heat transfer coefficient over length L of the surface in the
usual way.

hL = 1

L

L∫

0

hxdx

Using Eq. 17.64, we then have

hL = 4

3
hL = 4

3

[
k3f ρ

2
f gh f g

4μ f (Ts − Tw)L

] 1
4

= 0.943

[
k3f ρ

2
f gh f g

μ f (Ts − Tw)L

] 1
4

(17.65)

Example 17.8

Steam at a saturation temperature of Ts = 50 ◦C is condensing over a vertical surface
at Tw = 40 ◦C. The length of the surface is L = 0.3 m. Laminar film condensation
takes place over the entire length of the surface. Determine the film thickness at
x = L . What is the mean heat transfer coefficient over the length of the surface?
Determine the rate at which steam condenses per unit width of the surface. Take
acceleration due to gravity of g = 9.81 m/s2. What is the maximum velocity of the
condensate?

Solution:
The required properties are taken either from steam tables or table of properties of
water.

Steam properties
Saturation pressure: ps = 0.083 bar absolute

Enthalpy of vaporization: h f g = 2.382 × 106 J/kg
Density of vapor: ρg = 0.083 kg/m3
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Properties of water
Density of water: ρ f = 988 kg/m3

Thermal conductivity: k f = 0.643 W/m◦C
Dynamic viscosity: μ f = 0.000544 kg/m s

The film thickness at x = L = 0.3 m is obtained using Eq. 17.63 as

δL =
[
4 × 0.643 × 0.000544(50 − 40) × 0.3

9882 × 9.81 × 2.382 × 106

] 1
4

= 0.00012 m

The mean heat transfer coefficient over the length of the surface may be determined
using Eq. 17.65 as

hL = 0.943

[
0.6433 × 9882 × 9.81 × 2.382 × 106

0.000544(50 − 40) × 0.3

] 1
4

= 7360.9 W/m2 ◦C

Rate of heat transfer over the length of surface (per unit width basis) is

QL = h̄L(Ts − Tw)L = 7360.9 × (50 − 40) × 0.3 = 22082.7 W/m

The rate at which steam condenses is

ṁ = QL

h f g
= 22082.7

2.382 × 106
= 0.0093 kg/s m

The maximum velocity of the condensate occurs at x = L , y = δL . From Eq. 17.58,
by putting x = L and η = 1 the maximum velocity is obtained as

u = ρ f gδ2L
2μ f

= 998 × 9.81 × 0.000122

2 × 0.000544
= 0.13 m/s

Non-dimensional Form of Equations

Equating the heat transferred to the heat released by the condensing vapor, over
length L , we have

ṁh f g = hL(Ts − Tw)L

where ṁ is the mass of steam condensed over length L . This may be rearranged as

(Ts − Tw) = ṁh f g

hL L
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Introduce this in Eq. 17.65 to get

hL = 0.943

[
k3f ρ

2
f ghL

μ f ṁ

] 1
4

This may be rearranged as

hL

k f

(
μ2

f

ρ2f g

) 1
3

Lch

= 0.943
4
3

[μ f

ṁ

] 1
3 = 0.925

[
ṁ

μ f

]− 1
3

Re− 1
3

(17.66)

The quantity
(

μ2
f

ρ2f g

) 1
3
provides a characteristic length scale Lch in the problem.Hence,

the left-hand side of Eq. 17.66 may be interpreted as a Nusselt number NuLch based
on this characteristic length scale. The quantity ṁ

μ f
may be interpreted as a Reynolds

number Re based on condensate mass flow rate per unit width. Thus, we may write
the equation above in the alternate non-dimensional form

NuLch = 0.925Re− 1
3 (17.67)

The flow within the condensate film becomes turbulent if the Reynolds number is
more than a critical value Rec given by

Rec = 256Pr−0.47 (17.68)

where the Prandtl number lies between 1 and 10. There is an enhancement of heat
transfer as compared to the laminar film case, with the Nusselt number being depen-
dent on Re and Pr . For more details, the reader should refer to the appropriate
literature.5

5K. Stephan, Heat Transfer in Condensation and Boiling, (Translated by C. V. Green), Springer
Verlag, 1992.
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17.4.2 Film Condensation Inside and Outside Tubes

Condensation outside vertical and horizontal tubes are of practical importance. In
heat exchange equipment such as condensers it is usual to arrange condensation to
take place over a bank of tubes arranged in such a manner that steam flow takes
place through the spaces between the tubes. As long as the film thickness is small
compared to the diameter of the tube, i.e., δ � D (see Example 17.8), the analysis
given for film condensation over a vertical surface is also valid for condensation over
inside or outside of vertical tubes, schematically shown in Fig. 17.16a, b.

In the case of horizontal tubes, the condensate film forms as shown schematically
in Fig. 17.16c. The condensate formed over the tube runs off vertically due to gravity.
One may imagine what will happen if a second tube were to be present below the one
shown in the figure. The bottom tube will be inundated by the condensate running
off the top tube, and hence we expect the second tube to be less efficient as compared
to the top tube.

Nusselt also analyzed condensation over a horizontal tube and has shown that the
heat transfer coefficient is given by

hh = 0.728

[
ρ2f gh f gk3f

μ f (Ts − Tw)D

]
(17.69)

which may also be written in the alternate form

hh
k f

(
μ2

f

ρ2f g

) 1
3

= 0.959

(
ṁ

μ f

)− 1
3

(17.70)

where ṁ is the rate of condensation over a unit length of tube.

Fig. 17.16 Film condensation over tubes
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When n tubes are present one above the other, the average heat transfer coefficient
hh,n for n tubes is given, according to Kern,6 by

hh,n = hhn
− 1

6 (17.71)

where hh is the average heat transfer coefficient for a single horizontal tube given by
Eq. 17.69.

Example 17.9

Steam at atmospheric pressure condenses over a horizontal tube of D = 18 mm
maintained at a temperature of Tw = 90 ◦C over a length of L = 2 m. Determine
the rate of condensation based on Nusselt analysis.

Solution:
The required properties are taken either from steam tables or table of properties of
water.

Properties of steam
Saturation pressure: ps = 1.014 bar absolute

Enthalpy of vaporization: h f g = 2.256 × 106 J/kg
Properties of water

Density of water: ρ f = 958.1 kg/m3

Thermal conductivity of water: k f = 0.680 W/m◦C
Dynamic viscosity of water: μ f = 0.000279 kg/m s

Geometric parameters specified are

Diameter of tube: D = 18 mm = 0.018 m
Tube length: L = 2 m

The temperatures are specified as

Saturation temperature of steam: Ts = 100 ◦C
Tube wall temperature: Tw = 90 ◦C

The average heat transfer coefficient is calculated using Eq. 17.69 as

hh = 0.728

[
958.12 × 9.81 × 2.256 × 106 × 0.6803

0.000279 × (100 − 90) × 0.018

]
= 13749.9 W/m2 ◦C

Heat transfer area is calculated as

A = πDL = π × 0.018 × 2 = 0.1131 m2

6D. Q. Kern, AIChE Journal, Vol. 4, No. 2, pp. 157–160, 1958.
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The total heat transfer at the tube wall is calculated as

Qw = hh A(Ts − Tw) = 13749.9 × 0.1131 × (100 − 90) = 15550.8 W

This should equal the heat released by condensing steam. Hence, the condensate
mass flow rate is

ṁ = Qw

h f g
= 15550.8

2.256 × 106
= 0.00689 kg/s = 24.8 kg/h

17.4.3 Condensation in the Presence of Flowing Vapor

In most engineering applications the vapor will pass through the heat transfer equip-
ment with a non-zero flow velocity. When the vapor flows downward over a surface
over which condensation is taking place, it induces flow of the condensate in the
downward direction because of shear force at the interface. In view of this, one
expects the condensation rate to improve with respect to that considered previously
with stagnant vapor.

Laminar Film Condensation
When the condensate velocity is small, laminar film condensation takes place and the
Nusselt analysis may easily be extended to take account of shear at the interface. The
velocity profile in the condensate is parabolic and is given by Eq. 17.57. The wall
boundary condition remains unchanged while the boundary condition at the surface
of the condensate film is changed to

μ f
∂u

∂y

∣∣∣∣
y=δ

= τδ (17.72)

where τδ is the shear stress imposed on the condensate film due to vapor flow. On
the vapor side we have a balance between pressure drop and viscous shear such that

dp

dx

πD2

4
= τδπD or

dp

dx

D

4
= τδ

where D is the tube diameter and condensation is assumed to take place on the
inside surface. The condensate film thickness is assumed to be negligibly small in
comparison with the tube diameter. In terms of the friction factor, we also have

dp

dx
= f

ρgU 2
g

2D
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where Ug is the mean velocity of vapor. From these two equations, we have

τδ = f
ρgU 2

g

8
(17.73)

The velocity profile in the condensate layer is obtained by using the second boundary
condition given by Eq. 17.72 as

u = ρ f gδ2

μ f

(
η − η2

2

)
+ τδ y

μ f
(17.74)

The mean velocity of condensate may now be obtained as

U =
1∫

0

[
ρ f gδ2

μ f

(
η − η2

2

)
+ τδδ

μ f
η

]
dη = ρ f gδ2

3μ f
+ τδδ

2μ f
(17.75)

Wemay follow the steps leading to the results for condensation with stationary vapor
to get the following results in this case with flowing vapor:

δ4 + 4

3

τδδ
3

ρ f g
= 4k f μ f (Ts − Tw)x

ρ2f gh f g
(17.76)

Once δ is obtained by solving the above equation, the heat transfer is calculated as
qk = k f (Ts−Tw)

δ
.

Example 17.10

Saturated steam at 1 atmosphere pressure passes through a smooth copper tube of
inside diameter D = 18 mm with a mean velocity ofUg = 20 m/s. The copper tube
is maintained at a temperature of Tw = 90 ◦C. The tube length is L = 0.5 m. What
is the condensate mass flow rate at x = L if film condensation takes place at the
tube surface. Take in to account the shear exerted by the flow on the condensate film.
Express the results in suitable non-dimensional form. What will be your answers in
case the vapor is stationary.
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Solution:

Step 1 The required properties are taken either from steam tables or table of
properties of water. From steam tables we have

Properties of steam
Saturation tempe: Ts = 100 ◦C

Enthalpy of vaporization: h f g = 2.257 × 106 J/kg
Density of vapor: ρg = 0.5982 kg/m3

Viscosity of steam: μg = 1.2 × 10−5 kg/m s
Properties of water

Density of water: ρ f = 958.1 kg/m3

Thermal conductivity of water: k f = 0.680 W/m◦C
Dynamic viscosity of water: μ f = 0.000279 kg/m s

Prandtl number of water: Pr f = 1.73

Step 2 With steam velocity of Ug = 20 m/s the Reynolds number of steam may
be calculated as

Reg = ρgDUg

μg
= 0.5982 × 0.018 × 20

1.2 × 10−5
= 17946

The steam flow is turbulent.
Step 3 The friction factor is calculated based on Eq. 14.24(a) as

f = 0.316 × 17946−0.25 = 0.0273

The shear stress imposed by steam flow on the condensate may then be
obtained as

τδ = f ρgU 2
g

8
= 0.0273 × 0.5982 × 202

8
= 0.817 Pa

Step 4 With x = L = 0.5 m the equation for δ given by Eq. 17.76 takes the form

δ4L + 0.0001118δ3L = 3.7632 × 10−16

This equation is easily solved to get δL = 9.59 × 10−5 m.
Step 5 The mean flow velocity of the condensate is calculated using Eq. 17.75 as

Ul = 958.1 × 9.81 × (9.59 × 10−5)2

3 × 2.79 × 10−4
+ 0.817 × 9.59 × 10−5

2 × 2.79 × 10−4
= 0.2437 m/s

The condensate mass flow rate at x = L may then be calculated as
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ṁL = ρ f πDδLUl = 958.1 × π × 0.018 × 9.59 × 10−5 × 0.2427 = 0.00127 kg/s

Condensate Reynolds number is obtained as

Rel = ṁL

πDμ f
= 0.00127

π × 0.018 × 2.79 × 10−4
= 80.5

Since the condensate Reynolds number is less than 256 × 1.73−0.47 =
197.9, the condensate flow is laminar. Hence, the use of the quantities
derived earlier are appropriate.

Step 6 Heat removed at the wall between x = 0 and x = L is then given by

QL = ṁLh f g = 0.00127 × 2.257 × 106 = 2866.4 W

The mean heat transfer coefficient between x = 0 and x = L is then
obtained as

hL = QL

πDL(Ts − Tw)
= 2866.4

π × 0.018 × 0.5(100 − 90)
= 10137.8 W/m2 ◦C

Step 7 Now we shall introduce the appropriate non-dimensional variables to rep-
resent the results. Characteristic length is given by

Lch =
(

μ2
f

gρ2f

) 1
3

=
(

(2.79 × 10−4)2

9.81 × 958.12

) 1
3

= 2.0523 × 10−5 m

The average Nusselt number is then calculated as

NuL = h̄L Lch

k f
= 10137.8 × 2.0523 × 10−5

0.68
= 0.306

Non-dimensional shear stress is given by

τ ∗
δ = τδ

ρ f Lchg
= 0.817

958.1 × 2.0523 × 10−5 × 9.81
= 4.24

Thus, the results are depicted as

Rel = 80.5, τ ∗
δ = 4.24, NuL = 0.306

Step 8 The reader may calculate the results when the vapor is stationary to get

Rel = 61.6, τ ∗
δ = 0, NuL = 0.234
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Step 9 Thus, heat transfer is improved by a factor of 0.306
0.234 = 1.31 or some 31%

when the vapor is flowing as compared to the stationary vapor case.

Turbulent Film Condensation
When the film Reynolds number is more than the critical value, the flow within the
condensate film becomes turbulent. The temperature profile within the film becomes
non-linear showing the effect of turbulent fluctuations. The analysis is more complex
than in the case of laminar film condensation. Turbulent quantities and their variation
across the condensate layer are required to perform the analysis. Leaving out details,
we present below a few useful formulae.

In a vertical tube, the condensate film becomes turbulent when the condensate
Reynolds number exceeds the critical value. The condensate flow is partly laminar
and partly turbulent over the tube height. In the turbulent part of the condensate flow,
the results are well correlated by the following relation:

NuLch = 0.065(Pr f τ
∗
δ )

1
2 (17.77)

over the following range of parameters:

2 ≤ Pr f ≤ 3, and 5 ≤ τ ∗
δ ≤ 50 (17.78)

The shear stress is calculated based on relations presented earlier. The vapor flow
reduces from entry to exit because of condensation. This may be taken into account
by basing the mean shear stress on an effective mass flux given by

ṁv =
√
ṁ2

vi + ṁvi ṁve + ṁ2
ve

3
(17.79)

where ṁvi and ṁve are the mass fluxes (i.e., mass flow rate divided by the tube area),
respectively, at tube entry and tube exit.

A correlation for local Nusselt number in the form

NuLch = AReal Pr
b
f (1 + Bτ ∗ c

δ ) (17.80)

has been proposed. The values of the various constants appearing in Eq. 17.80 are
given in Table 17.3. The correlation is valid for non-metallic fluids with Pr f ≥ 0.1.
The local Nusselt number for laminar and turbulent flows can be obtained by taking
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Table 17.3 Constants in Eq. 17.80

τ∗
δ A B a b c

0 8.663 × 10−3 0 0.382 0.569 0

0 ≤ τ∗
δ ≤ 5 8.663 × 10−3 0.145 0.382 0.569 0.541

5 ≤ τ∗
δ ≤ 10 2.700 × 10−2 0.407 0.207 0.500 0.420

10 ≤ τ∗
δ ≤ 40 4.294 × 10−2 0.647 0.096 0.458 0.473

NuLch =
[
(1.15NuLch,lam )4 + Nu4Lch,turb

] 1
4

(17.81)

where NuLch,lam is the Nusselt number in laminar condensate flow and NuLch,turb is the
Nusselt number in turbulent condensate flow.

Condensation Over Horizontal Tubes
In many engineering applications, condensation over horizontal cylinders are impor-
tant. Different flow regimes are possible depending on the the vapor velocity. Many a
time finned surfaces are used to augment condensation heat transfer over horizontal
tubes. These are beyond the scope of the present discussion. The reader may refer to
the appropriate literature for more details regarding these aspects.

17.5 Heat Transfer During Boiling

Change of phase of a liquid to vapor is used in many engineering applications such
as in steam power plants, refrigeration systems, and many others. When a liquid
is adjacent to a surface at a temperature Tw greater than the saturation temperature
Ts , boiling may be expected to take place if the temperature difference (Tw − Ts) is
sufficiently large. Boiling may take place by “pool boiling” in a liquid that is taken
in a vessel or it may take place in a tube by “flow boiling” in which case the liquid
flows within the tube with a specified mass flow rate. The latter is important in most
practical applications.

17.5.1 Pool Boiling

Pool boiling experiment is usually conducted by heating a thin tungsten wire com-
pletely surrounded by a liquid. The power dissipatedmay be controlled by controlling
the current passing through the wire. Heat transfer from the wire to the liquid is deter-
mined by the temperature difference between the wire and the surrounding liquid.
When this temperature difference is small heat transfer is by natural convection and
there is no change of phase. This corresponds to region I in Fig. 17.17. Note that the
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Fig. 17.17 Pool boiling curve with heat flux control

boiling curve uses log− log representation of the data. A straight line on this curve
will correspond to a power dependence of heat flux on the temperature difference. As
the heat flux is increased, the temperature difference between the wire and the liquid
also increases. Boiling requires the wire temperature to be larger than the saturation
temperature of the surrounding liquid at its pressure. The temperature difference
(Tw − Ts) represents wall superheat. Boiling starts at the point of incipient boiling
or IB indicated in the figure. Boiling appears in the form of bubbles of vapor forming
on the surface, leaving the surface because of buoyancy forces andmoving away from
the surface. Formation of vapor bubble is referred to as nucleation and is dependent
on the nature of the surface and surface tension of the fluid. The vapor bubble swells
in size such that the pressure difference across the bubble balances the forces due to
surface tension. Note that the pressure outside the bubble is the saturation pressure,
while the pressure inside the vapor bubble is determined by vapor temperature, and
hence the wall superheat. The rate at which the bubbles are formed and move away
from the surface increases with the surface heat flux, and hence the temperature dif-
ference. Heat transfer rates are very high and vary along the line shown in region II.
The maximum heat flux that can be sustained is called the critical heat flux (CHF)
and is indicated by the peak at the end of region II. The corresponding point is also
indicated as point of departure from nucleate boiling or DNB. When the heat flux
and hence the temperature difference is increased beyond the critical value, a film
of vapor forms on the surface and the boiling curve shifts along the horizontal line
from the critical value and moves on to the film boiling line shown as region IV. The
dashed line indicated in the figure is inaccessible. If the heat flux is increased further,
the temperature difference increases and eventually the wire will melt. The boiling
curve was first presented by Nukiyama in 1934.7

If we now start cooling thewire by reducing the input power, film boiling proceeds
till it reaches the bottommost point in region IV denoted by minimum film boiling
point or MFB. On cooling further, it then reduces to the bottom of the region II along
the horizontal line, again not going through the inaccessible part of the curve shown
by the dashed line.

7S. Nukiyama, “Film boiling water on thin wires”, Soc. Mech. Engg., Japan 37, 1934
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Fig. 17.18 Pool boiling curve with temperature control

The four regimes of heat transfer occur under the following conditions:

• (I) Natural convection for Tw < TI B

• (II) Nucleate boiling for TI B < Tw < TDNB

• (III) Transition boiling for TDNB < TW < TMFB

• (IV) Film boiling for TMFB < Tw

As opposed to the above, the entire boiling curve is accessible when the tem-
perature of the heater is controlled rather than the heat flux. Temperature control is
possible by the use of change of phase within a tube immersed in a liquid. On the
tube side wemay use condensing steamwhose temperature may be varied by varying
the pressure. The pool boiling curve appears as shown in Fig. 17.18.

Incipient boiling requires that the vapor is formed with the pressure within the
bubble large enough to support the diameter of the vapor bubble. Surface tension
of saturated water provides the required force to support the bubble. The superheat
required depends on the bubble radius rb and is given by

�T = (Tw − Ts) = 2σTs
rbh f gρg

(17.82)

where σ is the surface tension of saturated water. For example, if we assume that
the vapor bubble diameter is Db = 5 × 10−6 m, water is the liquid at 1 atmosphere
pressure, surface tension σ = 0.059 N/m, the superheat required is calculated as

�T = 2 × 0.059 × 373

5 × 10−6 × 2.2565 × 106 × 0.5981
= 6.5 K

where the saturated steam properties are taken from steam tables. Experimentally
observed values are in good agreement with this value.
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17.5.2 Some Useful Relations in Pool Boiling

Critical Heat Flux
In this section, we present a few relations that are useful in describing pool boiling
heat transfer. The critical heat flux8 qcr is given by the relation

qcr = 0.18ρgh f g

[
σg(ρ f − ρg)

ρ2g

] 1
4

≈ 0.18ρgh f g

[
σgρ f

ρ2g

] 1
4

(17.83)

where all the symbols have the usual meanings. This relation assumes that the vapor
density is negligibly small compared to the liquid density, an approximation that
is often made in condensation and boiling heat transfer studies. The constant 0.18
appearing in Eq. 17.83 depends on the shape of the surface and varies from about
0.12–0.2. The value of constant is determined by the dimensionless parameter

L ′ = L

[
g(ρ f − ρg)

σ

] 1
2

≈ L
[gρ f

σ

] 1
2

(17.84)

where L is the length of side for a square plate and is radius R for a circular plate.
For L ′ ≥ 2.7, Lienhard and Dhir9 propose the relation

qcr = 0.149ρ
1
2
g h f g

[
σg(ρ f − ρg)

] 1
4 (17.85)

For horizontal cylinders, Sun and Lienhard10 give the relation

qcr = f (L ′)
πρ

1
2
g h f g

24

[
σg(ρ f − ρg)

] 1
4 (17.86)

with
f (L ′) = 0.89 + 2.27e−3.44

√
L ′

(17.87)

where L is taken as the radius of the cylinder.

Heat Transfer Correlation in Nucleate Boiling
Rohsenow11 gives the following relationship between superheat and heat flux qnb in
nucleate boiling:

8N. Zuber, AEC Report, AECV-4439, 1959.
9J. H. Lienhard and V. K. Dhir, ASME J. Heat Transfer, Vol. 95, pp. 152–158, 1973.
10K. H. Sun and J. H. Lienhard, Int. J Heat and Mass Transfer, Vol. 13, pp. 1425–1429, 1970.
11W. M. Rohsenow, ASME J. Heat Transfer, Vol. 74, pp. 969–976, 1952.
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�T = Ch f g

Cpf

[(
qnb

μ f h f g

)(
σ

g(ρ f − ρg)

) 1
2

]0.33

Prm+1
f (17.88)

where constant C depends on the fluid surface combination and m = 0.7 for fluids
other than water andm = 0 for water. For example, for water boiling over a polished
copper surface, the value of constant C is 0.0128. Note that the above relation may
be recast in the alternate non-dimensional form

Nunb = 1

C
Re1−n Pr−m

f (17.89)

where

Nunb = hnb
k f

[
σ

g(ρ f − ρg)

] 1
2

, Re = qnb
μ f h f g

[
σ

g(ρ f − ρg)

] 1
2 ρ f

μ f
(17.90)

and where hnb is the heat transfer coefficient in nucleate boiling region.

Minimum Heat Flux in Film Boiling
The minimum heat flux that occurs at MFB is given by the relation

qMFB = qcr

2
√

ρ f +ρg

ρg

(17.91)

Heat Transfer in Film Boiling
For large horizontal plates, heat transfer coefficient in stable film boiling regime is
given by

h f = 0.425

[
k3gρg(ρ f − ρg)ghe

μg�T
( Lc
2π

)
] 1

4

(17.92)

where Lc = 2π
√

σ
g(ρ f −ρg)

and he = h f g + 0.4Cpg�T which takes into account the

enthalpy of steam due to superheat (Cpg is the specific heat of superheated steam).
However, for horizontal tubes of diameter D, the heat transfer coefficient in film
boiling is given by the relation12

12L. A. Bromley, Chem. Engr. Progress, Vol. 46, pp. 221–227, 1950.
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h f =
(
0.59 + 0.069

Lc

D

)[
k3gρg(ρ f − ρg)gh′

e

μg�T Lc

] 1
4

(17.93)

but where
h′
e = h f g + 0.34Cpg�T

In the film boiling regime, radiation is also important and hence the total heat transfer
coefficient is given by h f t = h f + 3

4hr where hr is the radiation heat transfer coeffi-
cient calculated by assuming the liquid to be a black surface at saturation temperature
that surrounds the tube.

Example 17.11

Calculate the salient features in the boiling curve when water at a pressure of 1
atmosphere absolute boils over a polished copper surface. Make use of the various
correlations presented above.

Solution:

Step 1 Properties of saturated water and saturated steam at Ts = 100 ◦C are

Saturated water at Ts = 100 ◦C
Density: ρ f = 958.4 kg/m3

Thermal conductivity: k f = 0.680 W/m◦C
Dynamic viscosity: μ f = 2.79 × 10−4 kg/m s

Specific heat: Cpf = 4216 J/kg◦C
Prandtl number: Pr f = 1.73
Surface tension: σ = 0.059 N/m
Saturated steam at Ts = 100 ◦C

Density: ρg = 0.5981 kg/m3

Thermal conductivity: kg = 0.0248 W/m◦C
Latent heat of vaporization: h f g = 2.257 × 106 J/kg

Specific heat: Cpg = 2020 J/kg◦C
Dynamic viscosity: μg = 1.2 × 10−5 kg/m s

Step 2 The critical heat flux is calculated using Eq. 17.83 as

qcr = 0.18 × 0.5981 × 2.257 × 106
[
0.059 × 9.81(958.4 − 0.5981)

0.59812

] 1
4

= 1.524 × 106 W/m2

Step 3 Using Rohsenow correlation (17.88) we calculate the wall superheat
parameter under DNB as
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�TDNB = 0.0182 × 2.257 × 106

4216

(
1.524 × 106

2.79 × 10−4 × 2.257 × 106

)0.33

×
(

0.059

9.81(958.4 − 0.5981)

)0.165

× 1.73 = 17.66 ◦C

where the constant C has been chosen as 0.0182 for water boiling over
polished copper.

Step 4 Assuming that nucleate boiling initiates when �T = 6.5 K, the corre-
sponding heat flux is given by

qI B = qcr

(
�TI B

�TDNB

) 1
0.33

= 1.524 × 106
(

6.5

�17.66

) 1
0.33

= 73722 W/m2

Step 5 The minimum heat flux under film boiling condition is calculated based
on Eq. 17.91

qMFB = 1.524 × 106

2
√

958.4+0.5981
0.5981

= 19029.8 W/m2

We shall assume that the heat transfer coefficient in film boiling is given
by Eq. 17.92. The heat flux is then given by qMFB = h f �TMFB . We may
then solve for �TMFB as

�TMFB =
( qMFB

0.425

) 4
3

(
k3gρg(ρ f −ρg)ghe

μg
Lc
2π

) 1
3

To begin with let us assume that he = h0e ≈ h f g = 2.257 × 106 J/kg. The
characteristic length Lc is given by

Lc = 2π

√
0.059

9.81(958.4 − 0.5981)
= 0.1157 m

Then we get

�T 0
MFB =

( 19029.8
0.425

) 4
3

⎛
⎜⎝0.02483 × 0.5981(958.4 − 0.5981) × 9.81 × 2.257 × 106

1.2 × 10−5 × 0.1157

2π

⎞
⎟⎠

1
3

= 166.3

We shall now correct the result by correcting he as
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h1e = h f g + 0.4Cpg�T = 2.257 × 106 + 0.4 × 2020 × 166.3 = 2.3913 × 106

The corrected value of superheat is then obtained as

�T 1
MFB = �T 0

MFB(
h1e
h0e

)0.33 = �166.3(
2.391×106
2.257×106

)0.33 = 163.1 ◦C

Step 6 We may also calculate the film boiling heat flux with another superheat
value of �T = 500 ◦C. Then we have

h1e = 2.257 × 106 + 0.4 × 2020 × 500 = 2.661 × 106

The corresponding heat flux is then obtained using Eq. 17.92 as

q f = 0.425 × 500
3
4

⎡
⎢⎢⎣0.02483 · 0.5981(958.4 − 0.5981) · 9.81 · 2.661 × 106

1.2 × 10−5

(
0.1157

2π

)
⎤
⎥⎥⎦

1
4

= 45296.3 W/m2

The calculationsmade in this example are used tomake a plot of the boiling
curve as shown in Fig. 17.19. We join the points by straight lines on the
log-log plot as shown in the figure. Experimental boiling curves indicate
fair agreement with the values calculated here.

Fig. 17.19 Synthetic pool
boiling curve for boiling of
water at 1 atmosphere
absolute as calculated in
Example 17.11
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17.5.3 Flow Boiling

Inmost engineering applications, phase change takes place as the fluidmoves through
a tube. For example, in boiler tubes, the flow takes place vertically upwards, with
the liquid entering the tube at the bottom and the steam being taken off from the top.
The flowmay be set up by natural circulation due to the lower density of liquid vapor
mixture as compared to liquid alone. In general, one may expect the heat transfer
rates to be larger than that in the case of boiling in a stationary liquid.

The flow, as it progresses along the tube, undergoes several regime changes, both
hydrodynamic as well as thermal. For some distance from the entry the flow is single
phase (liquid). This is due to the fact that there is a pressure drop as the fluid (mixture
of liquid and vapor) moves through the tube and the local saturation pressure and
hence the saturation temperature is more than that at the exit pressure. Subsequently,
boiling is initiated at the surface and bubbles of vapor are formed and the flow
is termed as bubbly flow. In the slug flow region, the entire section may be filled
alternately by pockets of vapor and liquid. Subsequently, the flow becomes what is
termed as annular flow wherein a film of liquid exists adjacent to the tube wall and
vapor elsewhere. As the flow proceeds further and the quality has increased to a value
greater than about 0.6 we have two phase flow with the liquid dispersed as bubbles
in an ambiance of vapor.

Correspondingly, several regimes of heat transfer may be identified. Near the tube
entry, heat transfer is by single phase convection. Subsequently, there is a region
of sub-cooled boiling followed by saturated nucleate boiling. In the annular flow
region, heat transfer is by convection through liquid film adjacent to the tube wall.
Subsequently, we have a liquid deficient region where heat transfer is to a mixture
of vapor and liquid droplets. Finally, we have single phase heat transfer to the vapor.
Superheating of the vapor may take place in this region.

17.5.4 Heat Transfer Correlation in Flow Boiling

Flow boiling heat transfer is very complex and hence our intention here is only to
point out the methodology adopted in flow boiling heat transfer. Models are based
on fundamental ideas of convection heat transfer coupled with the basics of boiling
phenomena. We present here only one correlation due to Chen.13

The Chen model calculates the heat transfer coefficient in two phase flow htp as
a sum of two contributions, the first due to boiling given by h f z and the second h f

due to convection. A boiling suppression factor S and a two phase multiplier F are
introduced such that

htp = Sh f z + Fh f (17.94)

13J. C. Chen, Ind. Eng. Chem. and Proc. Des. Dev., Vol. 5, pp. 322–329, 1963.
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The boiling heat transfer is based on the work of Foster and Zuber14 and is given by

h f z = 0.00122

[
k0.79f C0.45

p f ρ0.49f

σ0.5μ0.29
f h0.24f g ρ0.24g

]
�T 0.24�p0.75 (17.95)

where �T = Tw − Ts , �p = pw − ps where the subscript w stands for the condi-
tions at the wall and subscript s indicates the local saturation value. The convective
heat transfer coefficient is based on the Dittus–Boelter equation and is given by

h f = 0.023Re0.8f Pr0.4f
k f

D
(17.96)

where the Reynolds number is defined as

Re f = ṁ(1 − x)D

μ f
(17.97)

where x is the local vapor quality. The two phase multiplier F involves theMartinelli
parameter Xtt that is given by15

Xtt =
(
1 − x

x

)0.9 ( ρg

ρ f

)0.5 (μ f

μg

)0.1

(17.98)

The factor F itself is given by

F =
(

1

Xtt
+ 0.213

)0.736

(17.99)

However F is set to unity if 1
Xtt

≤ 0.1. The boiling suppression parameter is given
by

S = 1

1 + 2.53 × 10−6Re1.17tp
(17.100)

where the two phase Reynolds number Retp is related to the liquid phase Reynolds
number through the relation

Retp = F1.25Re f (17.101)

14H. K. Foster and N. Zuber, Dynamics of vapor bubbles and boiling heat transfer, A.1.Ch.E. J1,
Vol. 1, pp. 531–535, 1955
15Lockhart, R. W., Martinelli, R. C.; Chem. Eng. Prog., Vol. 45, pp. 39–48, 1949
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17.6 Mixed Convection

Forced and natural convection processes have been covered individually in the earlier
chapters. There are many occasions when these two modes of heat transfer occur
simultaneously. For example, when a stream of fluid is forced to flow parallel to a
hot surface with a modest velocity, depending on the orientation of the surface, it
is possible that density differences will induce flow that is not small compared to
the forced flow velocity. In such a case, both forced and natural convection occur
simultaneously and the flow regime is said to be a mixed flow regime. In this section,
wewill look at some elementary caseswhere the analysis is simple and followupwith
cases where correlations based on numerical or experimental studies are presented.

17.6.1 Laminar Mixed Convection For Flow Over A Vertical
Isothermal Flat Plate

Consider flow past a vertical isothermal flat plate maintained at a temperature Tw

different from the temperature of the free-stream fluid T∞ as shown in Fig. 17.20.
Incoming flow is a parallel stream with an upward uniform velocity of u∞. Direction
of g is downwards as indicated in the figure.

Because of the imposed upward velocity, flow exhibits a forced convection bound-
ary layer adjacent to the plate.Normally, forced convectionwill be the dominantmode
of heat transfer. However, when Tw is different from T∞ buoyancy forces are also
active and hence natural convection may become important if the temperature differ-
ence is large enough to induce a sizable body force on the fluid adjacent to the plate
surface. If the body force is in the upward direction (Tw > T∞), natural convection
will augment convection and the process is identified as aiding mixed convection.
If the body force is in the downward direction (Tw < T∞), natural convection will
diminish convection and the process is identified as opposing mixed convection.

Fig. 17.20 Mixed convection for flow past a vertical isothermal flat plate
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Consider steady laminar mixed convection in two dimensions, i.e., all dependent
variables depend on x and y only. Under the boundary layer approximation, the
Navier–Stokes equations may be simplified as was done in earlier chapters dealing
with forced convection boundary layer flow past a flat plate, as well as natural con-
vection boundary layer flow past an isothermal vertical plate. In the present case, the
x momentum equation alone is different since the body force term is to be included.
Hence, the governing equations may be written as under.

∂u

∂x
+ ∂v

∂y
= 0

Continuity

; u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞)

x momentum

; u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2

Energy

(17.102)
Introduce the following non-dimensional variables and parameters:

X = X

L
, Y = y

L
, U = u

u∞
, V = v

u∞
, θ = T − T∞

Tw − T∞
,

ReL = u∞L

ν
, GrL = gβ

(Tw − T∞) L3

ν2

(17.103)

Invoking the boundary layer assumption the inertia terms in the x momentum equa-

tion are both of order u2∞
L . Dividing throughout by this factor, it is easily shown that

the viscous term is given by 1
ReL

∂U
∂Y 2 and the buoyancy term is given by GrL

Re2L
θ. Hence

the x momentum equation in non-dimensional form is given by

U
∂U

∂x
+ V

∂U

∂Y
= 1

ReL

∂2U

∂Y 2
+ GrL

Re2L
θ (17.104)

Non-dimensional energy equation may be shown to reduce to

U
∂θ

∂x
+ V

∂θ

∂Y
= 1

ReL Pr

∂2θ

∂Y 2
(17.105)

Noting that the derivative of velocity scales as
√
ReL and the second derivative of

velocity scales as ReL within the boundary layer, the strength of natural convection
vis a vis the forced convection is given by the magnitude of GrL

Re2L
or RiL , the Richard-
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son number16 since 0 ≤ θ ≤ 1. Hence, it is customary to refer to the Richardson
number also as the mixed convection parameter.

Three regimes are possible depending on the magnitude of Ri . As Ri → 0 forced
convection dominates and contribution of natural convection is very small. When
Ri → ∞ natural convection dominates and the contribution of forced convection to
heat transfer is not significant. However, when Ri ∼ 1 both modes of heat transfer
are of equal importance and the regime is one of mixed convection.

As far as the boundary conditions are concerned, the no slip velocity condition
applies on the plate surface. The velocity and temperature outside the boundary layer
remain constant at u∞ and T∞, respectively. Thus, we have

U = V = 0, θ = 1, at Y = 0, U → 1, θ → 0 as Y → ∞ for 0 ≤ X ≤ 1
(17.106)

Solution of these equations is not presented here. Either perturbation solutions for
small and large Ri or full numerical solution are possible. However, we present
experimental results available in the heat transfer literature.

Velocity and Temperature Profiles in Mixed Convection Flow Over a Vertical
Isothermal Flat Plate
Blasius solution represents the forced convection velocity profile, in the absence
of buoyancy. In the absence of forced convection, Ostrach solution represents the
velocity profile that is due only to buoyancy. In the case of assisting or aiding mixed
convection, the velocity profile is due both to forced flow and buoyancy. Because
the governing equations are non-linear, the mixed convection velocity profile is due
to complex interaction between the two modes of convection. In the case of aiding
flow, we expect the velocity within a part of the boundary layer to be more than
that corresponding to forced convection velocity profile. It is indeed so as brought
out by Fig. 17.21, where the velocity within the boundary layer is larger than the
free-stream velocity. The fluid under consideration is air with a Prandtl number of
0.7. Mixed convection data is based on measured values.

The temperature variation in the boundary layer is again affected by the inter-
play between natural and forced convection. The temperature gradient at the wall is
more for mixed convection as compared to that due to forced convection alone (see
Fig. 17.21). In other words, both wall shear stress and wall heat flux are more for
aiding mixed convection as compared to pure forced convection. Mixed convection
velocity and temperature profiles are based on measurements by Ramachandran et
al.17 These are also in good agreement with those computed by Gururaja Rao using
the full Navier–Stokes equations instead of the boundary layer equations.18

16Named after Lewis Fry Richardson 1881–1953, an English mathematician, physicist, meteorol-
ogist. He is known for the “Richardson extrapolation” used in numerical mathematics.
17Ramachandran, N., Armaly, B. F. and Chen, T. S.Measurements and predictions of laminar mixed
convection flow adjacent to a vertical surface, ASME Journal of Heat Transfer, Vol. 13, pp. 299–301,
1985
18C. Gururaja Rao, “Conjugate mixed convection with surface radiation from vertical plates and
channels”, Ph.D. Thesis, IIT Madras, May 2001
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Fig. 17.21 Mixed
convection velocity and
temperature profiles at the
trailing edge of plate for
RiL = 0.1884

Fig. 17.22 Nusselt number
variation with Richardson
number with air as fluid
(Pr = 0.7)

Heat Transfer Correlations
From the point of view of applications, it is convenient to have useful correlations
for total heat transfer from the plate by mixed convection using non-dimensional
parameters. Based on a numerical study, Gururaja Rao has recommended the fol-
lowing relation for the mean Nusselt number NuL over plate length.

NuL = 1.32Pr0.315Ri−0.141
L Gr0.23L (17.107)

This relation is valid for 0.1 ≤ Pr ≤ 100 and 0.1 ≤ RiL ≤ 100 with the proviso
that the Reynolds and Grashof numbers be so as to assure laminar flow. The above
heat transfer correlation has been shown as a plot in Fig. 17.22 for Pr = 0.7 cor-
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responding to air as the fluid. Experimental corroboration also exists for the above
correlation.19

Example 17.12

Air at a temperature of T∞ = 25 ◦C flows up a vertical flat plate with a velocity
of u∞ = 0.5 m/s. The plate is L = 0.15 m long and is maintained at a temperature
of Tw = 55 ◦C. What is the total heat transfer from one side of the plate? Compare
this with that due to (a) forced convection alone and (b) natural convection alone.

Solution:

Step 1 Air properties are taken at the mean of wall and free-stream tempera-
tures, i.e., at Tm = Tw+T∞

2 = 55+25
2 = 40 ◦C. We thus have the following

air properties:

Kinematic viscosity: ν = 17.07 × 10−6 m2/s
Thermal conductivity: k = 0.0274 W/m◦C

Prandtl number: Pr = 0.7

Isobaric expansion coefficient of air is taken as β = 1
T∞ = 1

273+25 =
0.00336 K−1.

Step 2 The Reynolds, Grashof number and Richardson numbers are now calcu-
lated.

ReL = u∞L

ν
= 0.5 × 0.15

17.07 × 10−6
= 4393.7

GrL = gβ(Tw − T∞)L3

ν2
= 9.81 × 0.00336(55 − 25)0.153

(17.07 × 10−6)2
= 1.144 × 107

Both Reynolds and Grashof numbers fall in the laminar range. The
Richardson number is then given by

RiL = GrL
Re2L

= 1.144 × 10−7

4393.72
= 0.593

Step 3 Using Eq. 17.107we calculate the averagemixed convectionNusselt num-
ber as

NuL = 1.32 × 0.70.315 × 0.593−0.141 × (1.144 × 107)0.23 = 53.38

19G. Venugopal, “Parameter estimation with steady and transient heat transfer experiments”, Ph.D.
Thesis, IIT Madras, December 2008
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The mean heat transfer coefficient from the plate to air is then given by

hL = NuLk

L
= 53.38 × 0.0274

0.15
= 9.75 W/m2 ◦C

Step 4 Heat transfer from one side of the plate is calculated based on a unit width
of plate. Area of plate is then numerically the same as the length of the
plate. Heat transfer from the plate to air is given by

Q = hL L(Tw − T∞) = 9.75 × 0.15 × (55 − 25) = 43.88 W

Step 5 If heat transfer were to be by forced convection alone, the average Nusselt
number is based on the Blasius solution (Eq. 13.54). We have

NuL = 0.664Re
1
2
L Pr

1
3 = 0.664 × 4393.7

1
2 0.7

1
3 = 39.06

The mean heat transfer coefficient from the plate to air is then given by

hL = NuLk

L
= 39.06 × 0.0274

0.15
= 7.14 W/m2 ◦C

Step 6 Heat transfer from one side of the plate is calculated as

Q = hL L(Tw − T∞) = 7.14 × 0.15 × (55 − 25) = 32.11 W

Step 7 Comment: Mixed convection augments heat loss by 43.88 − 32.11 =
11.77 W or as a percentage by 11.77×100

32.11 = 36.65%.
Step 8 Heat transfer by natural convection alone may be computed using the

Ostrach solution. Using the curve fit, C (Eq. 16.43) is given by

C =
(

0.4Pr

1 + 2
√
Pr + 2Pr

) 1
4

=
(

0.4 × 0.7

1 + 2
√
0.7 + 2 × 0.7

) 1
4

= 0.512

Mean Nusselt number is then given by

NuL = C Ra
1
4
L = C(GrL Pr)

1
4 = 0.512 × (1.144 × 107 × 0.7)

1
4 = 27.22

The mean heat transfer coefficient from the plate to air is then given by

hL = NuLk

L
= 27.22 × 0.0274

0.15
= 4.97 W/m2 ◦C

Step 9 Heat transfer from one side of the plate is calculated as
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Q = hL L(Tw − T∞) = 4.97 × 0.15 × (55 − 25) = 22.38 W

Step 10 Comment: Mixed convection augments heat loss by 43.88 − 22.38 =
21.50 W or as a percentage by 21.50×100

22.38 = 96.08%.
Step 11 General comment: If the heat loss by forced convection and natural con-

vection are added together we get a total heat loss from plate to air of
32.11 + 22.38 = 54.49 W. This is more than the heat loss by mixed con-
vection and hence the mixed convection heat transfer rate is less than the
algebraic sum of forced and natural convection heat transfers occurring
in isolation. Essentially, there is an interaction between the two modes of
heat transfer.

17.6.2 Laminar Mixed Convection in a Parallel Plate
Channel

Mixed convection in a vertical channel exhibits some interesting features. For short
channels, the twowalls act as independent walls over which velocity and temperature
boundary layers develop independently as shown in Fig. 17.23. This figure also
introduces the nomenclature appropriate to the problem.

In a short channel the two boundary layers do not merge and the problem may be
treated using the analysis presented above for mixed convection from a vertical flat
plate. Once the two boundary layers meet, the flow tends to become fully developed
as x → ∞. In the fully developed limit, the problem is relatively easy since analytical
solution is possible to the governing equations.

Fig. 17.23 Mixed convection in a short channel with To = Tm = T1+T2
2
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In case T1 = T2 = Tw and To < Tw, the channel induces flow similar to that in
a chimney that was considered in Chap. 16. In case there is no imposed pressure
gradient, chimney type flow may be analyzed using appropriate correlations.

In view of these, we consider the fully developed case in what follows.

17.6.3 Laminar Mixed Convection in a Vertical Parallel Plate
Channel: Fully Developed Solution

In order to understand laminarmixed convection,we look at a simple case of a parallel
plate channelwith the two channelwalls at different temperatures, both different from
the temperature of the fluid as it enters the channel, as shown in Fig. 17.24. The flow
and temperature fields are two-dimensional in that both are functions only of x and y.
The governing equations are the Navier–Stokes equations in two dimensions and for
steady flow all time derivatives are set to zero. Under the Boussinesq approximation
natural convection is accounted for by adding buoyancy term in the x momentum
equation (see Chap. 16).

Temperature Profile in Fully Developed Mixed Convection
Fluid enters the channel with a uniform velocity of uo. Assuming that the channel is
very long (in principle as x → ∞) the flow becomes fully developed, i.e., ∂u

∂x = 0.
Hence, from continuity equation ∂v

∂y = 0 and hence v is independent of y. Since it
has to vanish at the two channel walls, it has to be zero for all y. With fully developed
temperature, we should have ∂T

∂x = 0. Temperature is a function of y alone. Energy
equation will then reduce to

Fig. 17.24 Mixed convection in a parallel plate channel—geometry and nomenclature
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d2T

dy2
= 0; with T (y = −b) = T1, T (y = b) = T2 (17.108)

This represents simply the conduction equation in one dimension and hence the
temperature variation is linear and is given by T (y) = c1 + c2y where c1 and c2 are
constants. Using the boundary conditions we may show that

c1 = T1 + T2
2

= Tm, c2 = T2 − T1
2b

Hence, the temperature variation of the fluid is given by

T (y) = Tm + T2 − T1
2

y

b
or θ(Y ) = Y (17.109)

Note that −1 ≤ Y ≤ 1 and −1 ≤ θ ≤ 1.

Velocity Profile in Fully Developed Mixed Convection
Now consider the x momentum equation. Under fully developed condition the inertia
terms drop off. There is a balance between viscous friction and the combination of
imposed pressure drop (forced convection) and body force due to buoyancy (natural
convection). It is easily seen that the x momentum equation reduces to

0 = gβ(T − To) − 1

ρ

dp

dx
+ ν

d2u

dy2
(17.110)

where the body force is due to density difference between local density and density
corresponding to the entry temperature To. Note that

dp
dx is a constant under the fully

developed assumption. Since the above equation is linear, velocity due to mixed con-
vection is an algebraic sum of that due to forced convection and natural convection.
Equation 17.110 may be recast in the non-dimensional form as

d2U

dY 2
+ Grb

Reb
(θ + θo) = dP

dX
(17.111)

where θo = Tm−To
T2−Tm

. Introducing Eq. 17.109 and integrating twice, we get

U + Grb
Reb

[
Y 3

6
+ θo

Y 2

2

]
= dP

dX

Y 2

2
+ c3Y + c4

where c3 and c4 are constants of integration. Imposing zero velocity conditions at
Y = ±1, the constants of integration may be obtained as

c3 = Grb
6Reb

and c4 = −1

2

[
dP

dX
− Grb

Reb
θo

]
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With these, the velocity profile may be written as

U = Grb
6Reb

(
Y − Y 3

) −
[
dP

dX
− Grb

Reb
θo

](
1 − Y 2

2

)

Noting that the total flow across the channel, by definition, is
∫ Y=1
Y=−1U (Y )dY = 2

it is easily seen that dP
dX − Grb

Reb
θo = −3. With this, the velocity profile takes its final

form

U = Grb
6Reb

(
Y − Y 3

) + 3(1 − Y 2)

2
(17.112)

It is observed that the first term on the right-hand side determines the importance of
natural convection as compared to forced convection. The parameter Grb

Reb
is a measure

of relative importance of natural convection with respect to forced convection, and
hence is termed the mixed convection parameter. It is a normal practice to represent
the ratio Grb

Re2b
as Richardson number Rib, and hence the mixed convection parameter

in the present case is Grb
Reb

= Grb
Re2b

× Reb = Rib × Reb.
We may now interpret the second term on the right-hand side of Eq. 17.112 as

representing the forced convection component of the velocity profile. It is a parabolic
profile that is familiar to us fromChap. 12. The first term on the right-hand side is that
due to natural convection and does not contribute to net flow across the channel. It is
anti-symmetric with respect to mid-plane, and hence carries as much fluid upwards
as it does downwards.

We may now look at the effect of natural convection on the mixed convection
profile. For this, it is instructive to look at the velocity gradient at Y = −1, i.e., at the
colder of the two channel walls. Differentiating Eq. 17.112 with respect to Y once
and letting Y = −1, we get

dU

dY

∣∣∣∣
Y=−1

= −1

3

Grb
Reb

+ 3

We note that the gradient is positive if Grb
Reb

< 9 and negative otherwise. Hence, the

velocity becomes negative (downward flow) close to the left wall for Grb
Reb

> 9. Thus,
the effect of natural convection is a reduction in the velocity and possibly flow
reversal when its effect is significant. This is clearly brought out by the velocity
profiles shown in Figure 17.25 for various values of Grb

Reb
both below and above the

critical value given above.
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Fig. 17.25 Fully developed
mixed convection velocity
profiles in a channel

Example 17.13

A very tall vertical channel consists of two parallel plates maintained at temperatures
of T1 = 25 ◦C and T2 = 55 ◦C. The channel spacing is equal to 2b = 2.5 cm. Air
at To = 40 ◦C enters the channel with a uniform vertical velocity of uo = 0.5 m/s.
Would you expect flow reversal in this case because of natural convection? What
is the axial pressure gradient in this mixed convection flow? What is the maximum
velocity in this case? Consider the fully developed part of the flow far downstream
of the entry.

Solution:

Step 1 Air properties are taken at the mean temperature Tm = T1+T2
2 = 25+55

2 =
40 ◦C.

Density: ρm = 1.1169 kg/m3

Dynamic viscosity: μm = 19.1 × 10−6 kg/m s
Kinematic viscosity: νm = 17.1 × 10−6 m2/s

Thermal conductivity: km = 0.0274 W/m◦C
Prandtl number: Pr = 0.699

Isobaric coefficient of expansion: βo = 1
To

= 1
273+40 = 3.19 × 10−3 K−1

In addition, we take g = 9.81 m/s2, semi-channel spacing b = 1.25 cm =
0.0125 m.

Step 2 Calculate the appropriate non-dimensional parameters:
The Reynolds number is calculated as

Reb = uob

νm
= 0.5 × 0.0125

17.1 × 10−6
= 366.14
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We note that the flow is laminar. The Grashof number is calculated as

Grb = gβm(T2 − T1)b3

ν2
m

= 9.81 × 3.19 × 10−3(55 − 25) × 0.01253

(17.1 × 10−6)2
= 6302.44

Mixed convection parameter is then given by Grb
Reb

= 6302.44
366.14 = 17.2. Since

the mixed convection parameter is greater than the critical value of 9, flow
reversal is expected in the channel.

Step 3 Non-dimensional entry air temperature is calculated as θo = Tm−To
T2−Tm

=
40−40
55−40 = 0. Hence, the non-dimensional pressure drop is given by dP

dX =
−3 + Grb

Reb
θo = −3. Converting this to dimensional variables, we get

dp

dx
= μmuo

b2
dP

dX
= 19.1 × 10−6 × 0.5

0.01252
(−3) = −0.183 Pa/m

Step 4 The maximum velocity occurs when the slope is zero. Differentiating
Eq. 17.112 with respect to Y , we get dU

dY = Grb
6Reb

(
1 − 3Y 2

) − 3Y . Setting
it to 0, we get a quadratic in Y which may be solved to get

Y = −3Reb
Grb

±
√(

3Reb
Grb

)2

+ 1

3

The root that is required for locating the maximum velocity is obtained by
taking the plus sign for the second term. We then have

Y = − 3

17.2
±
√(

3

17.2

)2

+ 1

3
= 0.429

The maximum non-dimensional velocity is then given by the use of
Eq. 17.112.

Umax = U (y = 0.429) = 17.2

6

(
0.429 − 0.4293

) + 1.4
(
1 − 0.4292

) = 2.228

The maximum velocity is then given by umax = Umaxuo = 2.228 × 0.5 =
1.114 m/s.
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17.7 Heat Transfer in a Particle Bed

A fluid forced through a bed of stationary particles passes along the interstices
between the particles along tortuous paths. Hence, the fluid has a long residence
time as compared to a fluid that passes through an empty channel. Invariably, this
leads to an increase in the heat transfer rate between the fluid and the particles or
the fluid and the bounding walls. For a given bed height, the surface area of the bed
particles that is exposed to the fluid also is very high and this is yet another reason
for the increase in heat transfer between the bed particles and the fluid. If the bed is
used as an inert medium that creates disturbance in the flow, heat transfer between
the wall of the container and the flowing fluid also goes up as compared to an empty
container.

A fixed bed of particles is arranged as shown in Fig. 17.26. The bed of particles
is supported by a distributor plate (simply a plate with holes that do not allow the
particles to fall through) placed at the bottom of a containment vessel. Height of the
bed is H and the particles have a mean diameter of Dp (assuming they are spherical).
In case the particles are not spherical, we define an equivalent diameter through the
relation

Dh =
√

Sp

π
(17.113)

where Sp is the surface area of the particle. For a spherical particle, the equivalent
diameter is also the actual diameter of the particle.

In practice, the particles are added slowly into the container and shaken so that the
particles settle down in a near close packed arrangement. In between the particles,
interconnected voids exist. These allow a fluid to pass through, along a tortuous path,
from entry below the bed to exit at top of bed. The situation when the particles are

Fig. 17.26 Flow through a fixed bed of particles
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close packed is as shown in Fig. 17.26a or b. The packing of particles will normally
be random as shown in Fig. 17.26c and the void fraction (defined below) is a strong
function of the packing.

In case the cross section area of the containment vessel is A, the voids occupy a
volume εAH , where ε is called the void fraction. For a close packed bed, one can
estimate theoretically the void fraction. However, in most applications it is necessary
to measure the void fraction by a suitable technique. If the volume flow rate of the
fluid through the bed is V̇ , the superficial velocity Us is defined as

Us = V̇

A
(17.114)

Since the area available for flow is only that due to the voids, the actual velocity
through the void space is higher, on an average, than the superficial velocity.

Void fraction for a close packed bed of spherical particles:
In the cubic close packed arrangement shown in Fig. 17.26a, we can identify
a unit cell in the form of a cube of side Dp. All the particles touch one another
and there is exactly one particle per unit cell (eight octants of a sphere at the
eight corners of the cube). Thus, the solid volume in a unit cell is the same as

the volume of a particle, i.e., Vp. In terms of Dp we have Vp = πD3
p

6 . Volume

of the unit cell is D3
p. The void volume is then given by D3

p − πD3
p

6 . Divide
this by D3

p to get the void fraction for close packed spherical particles as
ε = 1 − π

6 = 0.476.
In the case of face centered cubic shown in Fig. 17.26b, the void fraction

may be shown to be equal to 0.260—the smallest possible value. It is also the
same for Hexagonal close packed arrangement (not shown in the figure). For
the random packing shown in Fig. 17.26c, the void fraction is close to 0.360.

17.7.1 Flow Characteristics of a Particle Bed

When a fluid passes through the bed, we expect the pressure to drop in the direction
of flow. Since the fluid flows past the particles as it passes through the bed, pres-
sure drop is due to fluid friction because of the viscosity of the fluid and also due
to form drag (inertia effects) induced because of pressure distribution around the
particles. Fully theoretical calculations are difficult and hence we take recourse to
experimental correlations to calculate the appropriate friction factor for flow through
a bed. Reynolds number is defined based on the particle diameter and the superficial
velocity.
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Rep = UsDp

ν
(17.115)

where ν is the kinematic viscosity of the fluid. The friction factor is defined through
the relation

f = �p

ρU 2
s

Dp

H
(17.116)

Viscous contribution to the friction factor is proportional to the velocity while that
due to inertial effects is proportional to the square of the velocity. Based on empirical
evidence, Ergun20 has proposed the following expression for the friction factor.

Ergun equation : f = (1 − ε)

ε3

[
1.75 + 150(1 − ε)

Rep

]
(17.117)

When Rep << 1 the viscous term dominates and the friction factor is approximated
by the second term in the Ergun equation which is known as the Kozeny–Carman
equation. Thus,

Kozeny–Carman equation : f = (1 − ε)2

ε3
150

Rep
(17.118)

For Rep >> 1 the inertial effects dominate and the friction factor is approximated
by the first term in the Ergun equation known as the Blake–Plummer equation. Thus

Blake–Plummer equation : f = 1.75(1 − ε)

ε3
(17.119)

Ergun equation and the two limiting forms are expected to be valid for small diameter
particles with Dp < 25 mm. Ergun equation and the asymptotic forms are shown
plotted in Fig. 17.27 for a typical porous medium with ε = 0.4.

Example 17.14

Apebble bed consists of uniform size spherical bed particles of diameter Dp = 2 cm.
The void fraction has been experimentally determined to be ε = 0.36. Air at a tem-
perature of Ta = 40 ◦C is blown through the bed at the rate of ṁ = 0.5 kg/m2s.
Determine the pressure drop per unit bed height. Discuss the contributions due to
viscous and inertial effects.

20S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog., Vol. 48, pp. 89–94, 1952
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Fig. 17.27 Ergun equation
and the asymptotic forms

Solution:
Air properties at 40 ◦C are given below

ρ = 1.117 kg/m3; Cp = 1005 J/kg◦C;
k = 0.0274 W/m◦C; ν = 1.71 × 10−5 m2/s

Other data specified in the problem are:

Dp = 2 cm = 0.02 m; ṁ = 0.5 kg/m2s; ε = 0.36

Using the mass flux specified, the superficial velocity is calculated as

Us = ṁ

ρ
= 0.5

1.117
= 0.448 m/s

Reynolds number based on particle diameter of Dp = 2 cm = 0.02 m is given by

Rep = UsDp

ν
= 0.448 × 0.02

1.71 × 10−5
= 523.5

Contribution of viscous term to friction factor is given by Eq. 17.118 as

fv = (1 − 0.362)

0.363
× 150

523.5
= 2.515

Contribution of inertial term to friction factor is given by Eq. 17.119 as
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fi = 1.75(1 − 0.36)

0.363
= 24.005

It is seen that the inertial contribution is dominant in this case. The friction factor
using Ergun equation will then be f = fi + fv = 2.515 + 24.005 = 26.520. Based
on the definition of friction factor (Eq. 17.116), we have

�p

H
= − f ρU 2

s

Dp
= −26.520 × 1.117 × 0.4482

0.02
= −296.79 Pa/m

17.7.2 Heat Transfer Characteristics of a Particle Bed

Two types of heat transfer situations occur with respect to the operation of a particle
bed. The first one involves heat transfer between the bed particles and the fluid
flowing through the bed. In this case, the bed particles are at a different temperature
compared to the fluid and the wall of the bed may be adiabatic. This is typical of
heat storage application, where the bed particles store heat to be transferred to the
fluid. The second involves heat transfer from the bed wall to the fluid in the presence
of bed particles. In this case, the wall will be at a temperature different from that of
the bed and the fluid. Bed particles simply have the role of augmenting heat transfer
between the wall and the fluid.

Heat Transfer From Bed to Fluid
Just as the pressure drop incorporates viscous and inertial effects, heat transfer also
involves two terms in the heat transfer correlation. Whitaker21 has proposed the
following correlation based on experiments with different types of bed material.

Nup = h pDp

k
=
(
1 − ε

ε

)(
0.5Re

1
2
m + 0.2Re

2
3
m

)
Pr

1
3 (17.120)

where h p is the heat transfer coefficient for heat transfer from bed material to the
gas and Rem = Rep

(1−ε)
is a modified Reynolds number. Properties of the flowing gas

may be taken at a suitable mean temperature. The above correlation is valid for
20 ≤ Rem ≤ 104 and for gases with 0.34 ≤ Pr ≤ 0.78.

21S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single
cylinders, single spheres and for flow in packed beds and tube bundles, AIChE J., vol. 18, pp.
361–371, 1972
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Volumetric Heat Transfer Coefficient
The heat transfer coefficient may also be expressed, alternately, as volumetric heat
transfer coefficient hv with units of W/m3 ◦C. By definition, we then have, heat
transfer per unit volume of bed qv equals the product of hv and temperature difference
�T between the bed particles and the fluid. Thus, we have,

qv = hv�T = h pSvV�T

where Sv is the surface area of bed particles per unit volume of bed and V is the
bed volume. It is easily seen that Sv = 6(1−ε)

Dp
, and hence the volumetric heat transfer

coefficient is given by

hv = 6(1 − ε)h p

Dp
(17.121)

Combining Eqs. 17.120 and 17.121, we get the following relation for the volumetric
heat transfer coefficient.

hv = 6(1 − ε)2k

εD2
p

(
0.5Re

1
2
m + 0.2Re

2
3
m

)
Pr

1
3 (17.122)

Other correlations have also been proposed for the volumetric heat transfer coeffi-
cient in the literature. For example, Lof and Hawley22 have proposed the following
correlation:

hv = 650

(
G

Dp

)0.7

(17.123)

where G is the mass velocity of gas in kg/s m2, Dp is the particle diameter in m and
hv is in W/m3 ◦C.

Example 17.15

Consider a bed consisting of particles of diameter Dp = 0.02 m which has been
heated to a uniform temperature of Tb = 80 ◦C. Air at a temperature of Ti = 15 ◦C is
blown through the bed with a mass velocity of G = 0.5 kg/s m2. Immediately after-
wards, it is seen that the air exiting the bed is at Te = 65 ◦C. Estimate the bed height
using the correlations proposed by (a) Whitaker and (b) Lof and Hawley. Porosity
of the bed is known to be ε = 0.5.

22G. O. G. Lof and R. W. Hawley, Unsteady state heat transfer between air and loose solids, Ind.
Engg. Chem., vol. 40, pp. 1061–1070, 1948
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Solution:

Step 1 Air properties are taken at the mean temperature of Tm = Ti+To
2 = 15+65

2 =
40 ◦C.

Density of air: ρ = 1.117 kg/m3

Specific heat of air: Cp = 1005 J/kg◦C
Kinematic viscosity of air: ν = 17.1 × 10−6 m2/s

Thermal conductivity of air: k = 0.0274 W/m◦C
Prandtl number of air: Pr = 0.699

Step 2 Superficial velocity of air is calculated as (based on unit bed cross section
area) Us = G

ρ
= 0.5

1.092 = 0.448 m/s. Hence, the modified Reynolds num-
ber is given by

Rem = UsDp

ν(1 − ε)
= 0.448 × 0.02

17.1 × 10−6(1 − 0.5)
= 1047.1

The volumetric heat transfer coefficient may then be calculated based on
Whitaker correlation (17.122) hv(a) as

hv(a) = 6(1 − 0.5)2 × 0.0274

0.5 × 0.022

(
0.5 × 1047.1

1
2 + 0.2 × 1047.1

2
3

)
0.0.699

1
3

= 6711.9 W/m3 ◦C

Alternately, the volumetric heat transfer coefficient may be calculated
based on Lof and Hawley correlation (17.123) hv(b) as

hv(b) = 650

(
0.5

0.02

)0.7

= 6186.9 W/m3 ◦C

Step 3 Modeling heat transfer between bed and air23: Consider a bed of height
H and unit cross section area as shown in Fig. 17.28. The axis of the bed
is vertical and oriented parallel to the z axis. Consider a bed element of
thickness �z as shown. Heat balance requires that heat gained by air as it
moves up through the element be equal to the heat lost by the bed particles.
Thus

GCpT (z + �z) − GCpT (z) = hv(Tb − T )�z

23Analysis is similar to that of a tubular heat exchanger subject to constant wall temperature
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Fig. 17.28 Heat balance for
a bed element

Using Taylor expansion and retaining two terms and in the limit �z → 0,
the above simplifies to

GCp
dT

dz
= hv(Tb − T )

This equation is in variable separable form and is easily integrated once
with respect to z to get − ln(Tb − T ) = hv z

GCp
+ C where C is a constant

of integration. Using T = Ti at z = 0 we have − ln(Tb − Ti ) = C . Hence
the air temperature at any z is given by

ln

(
Tb − Ti
Tb − T

)
= hvz

GCp

We are given that T = Te at z = H .Hence, we have

H = GCp

hv

ln

(
Tb − Ti
Tb − Te

)

Step 4 Based on above analysis the bed height may be calculated.

Whitaker correlation: H(a) = 0.5 × 1005

6711.9
ln

(
80 − 15

80 − 65

)
= 0.110 m

Lof and Hawley correlation: H(b) = 0.5 × 1005

6186.88
ln

(
80 − 15

80 − 65

)
= 0.119 m

From a design point of view the bigger answer may be chosen.

Heat Transfer From Bed Wall to Fluid
A packed bed may be used to improve heat transfer between the wall of the bed and a
fluid that is forced through the bed. Based on previous studies, Beek24 has proposed

24J. Beek, Design of packed catalytic reactors, Adv. Chem. Eng., vol. 3, pp. 203–271, 1962
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two correlations for heat transfer between the bed wall and the fluid. The first one is
suitable for packing in the form of cylinders and is given by

hcDp

k
= 2.58Re

1
3
p Pr

1
3 + 0.094Re0.8p Pr0.4 (17.124)

The second correlation is useful for particles like spheres and is given by

hcDp

k
= 0.203Re

1
3
p Pr

1
3 + 0.220Re0.8p Pr0.4 (17.125)

hc is the convective heat transfer coefficient between the bed wall and the fluid. Both
correlations are useful when 40 ≤ Rep ≤ 2000.

Performance Parameter:
Example 17.16 has shown that a pebble bed heat exchanger improves transfer of heat
between the wall of the bed and the fluid passing through the bed. We define Colburn
j factor as j = Stc Pr

2
3 . Since heat transfer is proportional to hc we define a heat

transfer parameter J = j Rep. Noting that Stc = Nuc
Rep Pr

, we see that J is proportional
to Nuc and hence the heat transfer.

Heat transfer enhancement with a fixed bed requires higher pressure drop and
hence the pumping power. Pumping power P is proportional to the product of friction
factor and the cube of velocity, i.e., f U 3

s - product of drag force which is proportional
to square of velocity and mass flow rate that is proportional to velocity. We may
replaceUs by Rep, and hence the pumpingpower factor is proportional to F = f Re3p.

Performance of the bed as a heat transfer enhancement device is evaluated by
taking the ratio of J to F

1
3 , i.e., by taking the ratio of heat transfer to pumping power.

Note that the ratio will not involve explicitly the Reynolds number. The larger the
ratio better is the heat exchange device.

Example 17.16

Air at Ti = 25 ◦C enters a bed of diameter Db = 0.05 m with a mass flux of
G = 2 kg/m2s. Two types of bed particles are under consideration viz. (1) Spherical
particles of diameter Dp = 0.003 m, void fraction equal to ε = 0.4 and (2) Cylindri-
cal particles of diameter Dcyl equal to length Lcyl of 0.002 m, void fraction equal to
ε = 0.45. The bed heights are to be chosen such that the exiting air is at Te = 55 ◦C
when the bed wall is steam jacketed and maintained at Tw = 100 ◦C. Evaluate the
two options and decide the better one.
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Solution:
Air properties at a mean temperature of Tm = Ti+Te

2 = 25+55
2 = 40 ◦C are read off

air tables

ρ = 1.117 kg/m3, μ = 1.91 × 10−5 kg/m s,Cp = 1005 J/kg K,

k = 0.0274 W/m K, Pr = 0.699

Case 1: Bed with spherical particles:
Mass flux through the bed is given as G = 2 kg/m2s. The superficial air velocity is
then given by

Us = G

ρ
= 2

1.117
= 1.791 m/s

The Reynolds number based on particle diameter is then given by

Rep = ρUsDp

μ
= 1.117 × 1.791 × ×0.003

1.91 × 10−5
= 314.63

Use Eq. 17.125 to obtain the wall to gas heat transfer coefficient as

hc =
(
0.203Re

1
3
p Pr

1
3 + 0.220Re0.8p Pr0.4

) k

Dp
=
(
0.203 × 314.63

1
3 × 0.699

1
3

+0.220 × 314.630.8 × 0.6990.4
) 0.0263
0.003

= 182.1 W/m2 ◦C

The Stanton number Stb is then calculated as

Stb = hc
ρUsCp

= 182.1

1.117 × 1.791 × 1005
= 0.0906

With all the temperatures specified, the LMTD is calculated as

LMT D = (Tw − Ti ) − (Tw − Te)

ln (Tw−Ti )
(Tw−Te)

= (100 − 25) − (100 − 55)

ln
(
100−25
100−55

) = 58.7 ◦C

Total heat transferred to air is calculated as

Q = GAbCp(Te − Ti ) = 2 × π × 0.052

4
× 1005 × (55 − 25) = 118.4 W

Noting that Q = hc(πDbH)LMT D, we solve for bed height H as

H = Q

hcπDbLMT D
= 118.4

182.1 × 0.05 × 58.7
= 0.0705 m
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Performance parameters are now calculated. The friction factor is calculated using
Ergun equation as

f = 1 − ε

ε3

(
1.75 + 150

1 − ε

Rep

)
= 1 − 0.4

0.43

(
1.75 + 150

1 − 0.4

314.63

)
= 19.09

Colburn j factor is calculated as

j = Stb Pr
2
3 = 0.0906 × 0.699

2
3 = 0.0714

Performance parameter of the fixed bed heat exahnger is calculated as

J

F
1
3

= j

f
1
3

= 0.0714

19.09
1
3

= 0.0267

Case 2: Bed with cylindrical particles:
Since the particles are not spherical, we make use of equivalent diameter for the

particles given by Dh =
√

As
π
, where As is the particle surface area given by As =

πDcylLcyl + 2
πD2

cyl

4 . With Dcyl = Lcyl = 0.002 m, we have As = 1.5πD2
cyl = 1.5 ×

π × 0.0022 = 1.885 × 10−5 m2. Hence, the equivalent diameter is given by Dh =√
1.885×10−5

π
= 0.00245 m. The rest of the calculations follow the same procedure as

was usedwith the spherical particale case except that Eq. 17.124 is used for obtaining
the heat transfer coefficient. Leaving the details to the reader, the results are tabulated
below

Results for cylindrical bed particles
Us : 1.791 m/s Reh : 256.9
Nuc: 21.45 hc: 239.98 W/m2 ◦C
H : 0.0535 m St : 0.1194
j : 0.094 f : 12.5

j/ f
1
3 : 0.0405

Comparisons: Bed with cylindrical particles is more compact since it requires a
smaller bed height. It is also the better of the two since the heat transfer performance
parameter is larger of the two values. Hence, it is recommended that the bed with
cylindrical particles be chosen for the application.

Porous media approach:
Flow through a bed of particles may also be approached by treating the bed
as a porous medium. A porous medium or matrix is a homogeneous medium
with interconnected pores through which a fluid may flow. Such a medium
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is characterized by permeability - κ and form coefficient - C such that the
pressure drop is given by the equation

−�p

H
= μUs

κ
+ C√

κ
ρU 2

s (17.126)

This way of describing the pressure drop is known as the Hazen-Dupuit-Darcy
model or as the Forchheimer extended Darcy model. The above is no different
from the Ergun model since the first Darcy term that is proportional to velocity
accounts for viscous effects while the second Forchheimer term accounts for
inertia effects. κ and C are obtained by curve fit to pressure drop data. κ is
known as the permeability of the porous medium and has units of m2. C is a
non-dimensional constant.

When the Reynolds number is very small, the viscous term dominates and
the velocity and pressure gradient are related by a relation of form

dp

dx
= −μU

κ
or U = −κ

μ

dp

dx
(17.127)

In this limit, the flow is said to be Darcy flow. Velocity is directly proportional
to pressure gradient and the equations of motion become very simple. When
the Forchheimer term becomes comparable to the Darcy term the flow is said
to be non Darcy flow.

In recent times, metal foams have been used in heat transfer applications. These
foams consist of an interconnected metal foam with interconnected voids or pores as
shown photographically in Fig. 17.29. The foam represented in the figure is made of
aluminum and has 10 pores per inch and has a porosity (the same as void fraction)
of 0.95, and hence is referred to as high porosity metal foam. The measured pressure
drop characteristics shown in Fig. 17.30 is very well represented by a quadratic in
Us with the permeability being given by κ = 2.48 × 10−7 m2 and the form drag
coefficient given by C = 0.473. The flowing medium is air at atmospheric pressure
and 30 ◦C.

Metallic foams may be used for augmenting heat transfer between the heated
channel walls and the air or fluid that passes through it. There are two effects that
come into play. The metal foam is highly conducting, and hence the heat from the
wall spreads easily into it and is taken away by the fluid—akin to attaching fins to
the wall. This effect can be improved by having a good contact between the wall and
the foam by brazing it to the wall. The second effect is because of large residence
time of the fluid as it flows through the pores and also because of highly disturbed
flow within the pores. Compared to an empty channel heat transfer increases many
fold.
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Fig. 17.29 Photograph of
aluminum foam with 10
pores per inch

Fig. 17.30 Pressure drop
data in a channel filled with
aluminum foam

Fig. 17.31 Air flow through
a asymmetrically heated
metal foam filled channel

Heat Transfer in a Metal Foam Filled Channel
As an example, consider heat transfer from the upper wall of a metal foam filled
horizontal channel to air flowing through the pores of the metal foam as shown in
Fig. 17.31.25

The characteristic length scale in the problem is taken as the foam thickness H .
Properties of air are based on the inlet temperature Ti . Apart from the usual non-

25Seo Young Kim, Byung HaKang, Jin-HoKim, Forced convection from aluminum foammaterials
in an asymmetrically heated channel, International Journal of Heat and Mass Transfer, vol. 44, pp.
1451–1454, 2001.
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dimensional parameters, we introduce an additional non-dimensional parameter—
the Darcy number Da - defined as Da = κ

H 2 . Experiments performed by Kim et al.
on aluminum metal foams of fixed porosity but different pores per inch led to the
following correlation.

NuH = 0.0159
Re0.428H Pr

1
3

Da0.787
(17.128)

This correlation is valid in the range 1000 ≤ ReH ≤ 3000. It is to be noted that the
foam thickness H was constant at 9 mm, length was constant at L = 188 mm and
the channel width was constant at W = 90 mm in all the experiments.

Recently, Kamath26 has presented an experimental study of heat transfer from
an asymmetrically heated foam filled vertical channel to air passing through it.
Experiments were done with different foam thicknesses H = 10 − 30 mm but with
L = 150 mm andW = 250 mm. The foammaterial was either aluminum or copper.
He has specified the following heat transfer correlation.

NuH = 9.353λ0.0385

(
L

H

)−0.887

Re0.446H (17.129)

In the above λ = ( ks
k

)(1−ε)
with ks the thermal conductivity of the solid constituent

of the metal foam. Equation 17.129 is valid for the following range of parameters.

1000 ≤ ReH ≤ 7300; 2.5 <
L

H
< 7.5; 1.55 < λ < 3.85 (17.130)

Example 17.17

Aluminum foam of porosity equal to 0.92 but with three different pores per inch (PPI)
are to be compared in situation that was used in the experiment of Kim et al. The
permeabilities of three foams of PPI equal to 10, 20, and 40 are, respectively, given by
1.04 × 10−7, 0.76 × 10−7 and 0.51 × 10−7 m2. The channel dimensions are those
given earlier while discussing the correlation proposed by Kim et al. Air enters the
foam filled channel with a velocity of 2 m/s and a temperature of Ti = 25 ◦C. What
will be the exit temperature of air if the upper wall is maintained at 65 ◦C with the
three different foams?

26P. M. Kamath, Experimental studies on thermal performance of metal foams in a vertical channel,
Ph.D. Thesis, IIT Madras, 2012.
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Solution:

Step 1 Air properties are taken at air entry temperature viz. Ti = 25 ◦C.

Density of air: ρ = 1.165 kg/m3

Specific heat capacity of air: Cp = 1007 J/kg K
Thermal conductivity of air: k = 0.026 W/m K
Kinematic viscosity of air: ν = 1.61 × 10−5 m2/s

Prandtl number of air: Pr = 0.713

Step 2 Other data common to all three cases of foam are H = 0.009 m; L =
0.188 m and W = 0.09 m. Area from which heat transfer takes place is
also common and given by A = LW = 0.188 × 0.09 = 0.01692 m2. The
Reynolds number is calculated as ReH = Us H

ν
= 2×0.009

1.61×10−5 = 1120.1 and
this remains the same in all the three cases. Detailed calculations are shown
for the case of Aluminum foam with 10 PPI.

Step 3 With the specified permeability for this foam, the Darcy number is cal-
culated as Da = κ

H 2 = 1.04×10−7

0.0092 = 1.284 × 10−3. Using Eq. 17.128, the
Nusselt number is calculated as

NuH = 0.0159
×1120.10.4280.713

1
3(

1.284 × 10−3
)0.787 = 54.09

Step 4 The Stanton number is calculated as

St = NuH

ReH Pr
= 54.09

1120.1 × 0.713
= 0.0677

We may easily show that the NTU = St L
H , and hence we have NTU =

0.0677×0.188
0.009 = 1.415. Effectiveness may be shown to be Tw−Te

Tw−Ti
= e−NTU ,

and hence the air exit temperature is given by

Te = Tw − (Tw − Ti )e
−NTU = 65 − (65 − 25)e−1.415 = 55.3 ◦C

Step 5 Calculations may be performed similarly for the other two foams also. The
reader may verify the following:

PPI NuH NTU Te ◦C
10 PPI: 54.09 1.415 55.3
20 PPI: 69.23 1.810 58.5
40 PPI: 94.76 2.479 61.6
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17.8 Heat Transfer in High Speed Flows

When a gas flows at a speed greater than about 1
3
rd the speed of sound in the gas, the

incompressible flow assumption breaks down. Density variations cannot be ignored.
In case the flow takes place in the vicinity of a solid surface, viscous effects dom-
inate in the boundary layer close to the surface. The velocity gradients within the
boundary layer may be such as to give rise to significant heating of the gas by viscous
dissipation. The heating of the gas is due to irreversible conversion of kinetic energy
to internal energy. The temperature variations may be so large that the gas properties
like the viscosity and thermal conductivity may vary significantly within the bound-
ary layer. We will look at these effects in what follows under suitable simplifying
assumptions.

17.8.1 Compressible Boundary Layer Flow Parallel to a Flat
Plate

Constant Wall Temperature Case
Consider the steady laminar flow of a gas (like air) parallel to a flat plate maintained
at a uniform temperature of Tw �= T∞. LetU, T∞, ρ∞,μ∞, k∞ characterize the con-
ditions in the free stream. The symbols have the usual meaning. We assume the gas
to follow the ideal gas relation p = ρRT , have a constant specific heatCp. However,
the gas is viscous and thermally conducting with the viscosity and thermal conduc-
tivity varying linearly with temperature. In addition, we shall assume that the Prandtl
number is unity. Later we shall look at what happens when the Prandtl number is not
equal to unity.

The boundary layer equations for laminar flow of such a gas may be written down
as follows:

• Continuity equation
∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (17.131)

• Momentum equation

ρ

{
u

∂u

∂x
+ v

∂u

∂y

}
= ∂

∂y

(
μ

∂u

∂y

)
(17.132)

• Energy equation

ρCp

{
u

∂T

∂x
+ v

∂T

∂y

}
= ∂

∂y

(
k
∂T

∂y

)
+ μ

(
∂u

∂y

)2

(17.133)
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These equations differ from those that were used in the incompressible formu-
lation by the appearance of density, viscosity, and thermal conductivity within the
differential sign. This has the effect of coupling themomentum and energy equations.
Another difference lies in the fact that the viscous dissipation makes its appearance

through the source term μ
(

∂u
∂y

)2
in the energy equation. It is akin to the heat gener-

ation term in the heat equation. A fourth equation is required now in the form of an
equation of state that has been introduced already in the previous paragraph.We have
made the tacit assumption that the pressure is uniform and is at p∞, the free-stream
value.

The boundary conditions remain the same as those that have been presented earlier
in the case of incompressible flow past a flat plate. The no slip condition is satisfied
at y = 0.

u = v = 0 and T = Tw at y = 0 for all x (17.134)

The values tend to the free-stream values when y → ∞. Thus

u = U, T = T∞ as y → ∞ for all x (17.135)

Transformations

A stream function ψ(x, y) is defined such that the continuity Eq. 17.131 is automat-
ically satisfied. This is easily accomplished by the following:

ρu = ∂ψ

∂y
; ρv = −∂ψ

∂x
(17.136)

Linear relationship between viscosity and thermal conductivity with temperature is
taken in the form

μ

μ∞
= k

k∞
= T

T∞
= ρ∞

ρ
(17.137)

The last part follows from the ideal gas equation under the constant pressure assump-
tion. The following non-dimensional scheme is used:

x ′ = ρ∞Ux

μ∞
; y′ = ρ∞Uy

μ∞
; T ′ = T

T∞
; η(x ′, y′) = 1√

x ′

y′∫

0

ρ

ρ∞
dy′ (17.138)

It is noted that x ′ and y′ are Reynolds numbers based on x and y, respectively,
the properties being those in the free stream. Similarity variable η defined above
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is appropriate for the compressible boundary layer case. It may be shown, by a
procedure similar to that presented in Chap. 13 that the momentum equation will
reduce to the Blasius equation, if, in addition, we define the Blasius function as

f (η) = ψ(x ′, y′)√
ρ∞Uμ∞x ′ (17.139)

The Blasius equation, in the present case, is given by

2
d3 f

dη3
+ f

d2 f

dη2
= 0 (17.140)

with the boundary conditions

f (η = 0) = d f

dη

∣∣∣
η=0

= 0,
d f

dη

∣∣∣
η→∞

= 1 (17.141)

The solution to the Blasius equation presented earlier in Chap. 13 is valid in the
present case also, but with a change in the definition of η. Note that there is an extra
factor 2 in the Blasius equation given above as compared to the equation presented
in the incompressible case. Now we turn our attention to the energy equation. It may
easily be shown to reduce to the following equation:

d2T ′

dη2
+ f

2

dT ′

dη
= −Ec

[
d2 f

dη2

]2
(17.142)

The accompanying boundary conditions are

T ′(η = 0) = T ′
w, T ′(η → ∞) = 1 (17.143)

where T ′
w = Tw

T∞ is the ratio of wall temperature to free-stream temperature. The

Prandtl number has been assumed to be unity and the quantity Ec = U 2

CpT∞ is a non-
dimensional parameter referred to as the Eckert number. Let us seek the solution to
Eq. 17.142 in the form

T ′ = A + B
d f

dη
+ C

(
d f

dη

)2

(17.144)
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where the constants A, B, and C are to be determined by requiring the above to
satisfy Eq. 17.142 and the boundary conditions (17.143). Differentiating expression
(17.144) with respect to the similarity variable, we have

dT ′

dη
= B

d2 f

dη2
+ 2C

d f

dη

d2 f

dη2

d2T ′

dη2
= B

d3 f

dη3
+ 2C

(
d2 f

dη2

)2

+ 2C
d f

dη

d3 f

dη3

Noting that the Blasius function f (η) satisfies Eq. 17.140, substituting the above in
Eq. 17.142, we get

B
d3 f

dη3
+ 2C

(
d2 f

dη2

)2

+ 2C
d f

dη

d3 f

dη3
+ f

2

{
B
d2 f

dη2
+ 2C

d f

dη

d2 f

dη2

}
= −Ec

[
d2 f

dη2

]2

or

B
d3 f

dη3
+ 2C

(
d2 f

dη2

)2

+ 2C
d f

dη

d3 f

dη3
−
(
B + 2C

d f

dη

)
d3 f

dη3
= −Ec

[
d2 f

dη2

]2

After cancelation of terms, this simplifies to C = − Ec
2 . Since d f

dη
= 0 at η = 0, the

wall boundary condition requires that A = T ′
w. Since

d f
dη

→ 1 as η → ∞ the free-
stream boundary condition requires that A + B + C = 1. Thus, we get B = 1 +
Ec
2 − T ′

w. With these, the solution to the energy equation is written down as

T ′ = T ′
w +

[
1 + Ec

2
− T ′

w

]
d f

dη
− Ec

2

[
d f

dη

]2
(17.145)

Adiabatic wall case
This case is interesting, aswe shall see later. The governing equation is 17.142 subject
to the boundary conditions

dT ′

dη

∣∣∣
η=0

= 0, T ′(η → ∞) = 1 (17.146)

The solution again starts with Eq. 17.144 and uses the above procedure (the reader
should work out the details) to get

T ′ = 1 + Ec

2
− Ec

2

[
d f

dη

]2
(17.147)
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Fig. 17.32 Temperature
variation in the boundary
layer for two cases a
Constant temperature wall
(cooled wall) with
Tw = 0.2T∞, b Adiabatic
wall. Ec = 5 in both cases

It is seen that the adiabatic wall temperature is given by

T ′(η = 0) = T ′
aw = 1 + Ec

2
(17.148)

Figure 17.32 shows the variation of non-dimensional temperature inside the
boundary layer for both wall temperature specified and the adiabatic wall cases.

Wall Heat Flux
In the case of isothermal plate, the wall heat flux is obtained by evaluating the
conduction heat flux at the wall. By definition, we have

qw,x = −
(
k
∂T

∂y

)∣∣∣∣
y=0

= −T∞k∞ × kw

k∞
× ρ∞U

μ∞
∂η

∂y′

∣∣∣∣
y′=0

× dT ′

dη

∣∣∣∣
η=0

By the definition of the similarity variable given in (17.138), we have

∂η

∂y′

∣∣∣∣
y′=0

= 1√
x ′

ρw

ρ∞
=
√

μ∞
ρ∞Ux

T∞
Tw

From Equation 17.145, we have

dT ′

dη

∣∣∣∣
η=0

=
[
1 + Ec

2
− T ′

w

]
d2 f

dη2

∣∣∣∣
η=0

=
[
1 + Ec

2
− T ′

w

]
× 0.332

With all these and on simplification the wall heat flux is obtained as

qw,x = −0.332k∞T∞

√
ρ∞U

μ∞x

[
1 + Ec

2
− T ′

w

]
(17.149)
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Noting that 1 + Ec
2 is equal to the non-dimensional adiabatic wall temperature,

expression (17.149) may be rewritten as

qw,x = −0.332k∞T∞

√
ρ∞U

μ∞x

[
T ′
aw − T ′

w

]
(17.150)

The negative sign indicates that heat transfer takes place to the wall if the adiabatic
wall temperature is greater than the wall temperature, irrespective of whether the
wall temperature is smaller or greater than the free-stream temperature. We define
a heat transfer coefficient as h = − qw

Taw−Tw
. Also, since the Prandtl number is equal

to unity, we have Pr = 1 or Cpμ

k = Cpμ∞
k∞ = 1 or k∞ = Cpμ∞. Expression (17.150)

may then be rephrased as

qw,x = −h(Taw − Tw) = 0.332Cpμ∞

√
ρ∞U

μ∞x

= 0.332ρ∞UCp

√
μ∞

ρ∞Ux
= 0.332

ρ∞UCp

x ′

where we have additionally made use of Taw = T∞T ′
aw and Tw = T∞T ′

w. Introducing
the familiar Stanton number(note that it is a function of x ′), we then get

St = h

ρ∞UCp
= 0.332√

x ′ (17.151)

The above expression is identical to the incompressible case but with the local
Reynolds number x ′ based on the free-stream properties and the heat transfer coef-
ficient based on the difference between the adiabatic wall temperature and the wall
temperature.

Reference Temperature Method

The above treatment is elegant but has made the assumption that the Prandtl number
is equal to unity. In the case of gases like air, the Prandtl number is close to, but not
equal to unity. In order to take this into account, we have to modify the previous
treatment. The adiabatic wall temperature is not equal to the value given earlier by
Eq. 17.148. A correction is applied in the form of a recovery factor r defined such
that

Taw,Pr �=1 = T∞ + r
U 2

2Cp∞
(17.152)

For engineering purpose, the recovery factor is well approximated, in laminar flow
by
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r = √
Pr , 0.6 ≤ Pr ≤ 15 (17.153)

In order to take care of the variation of gas properties within the boundary layer, a
reference temperature T ∗ defined by the relation given below is made use of.

T ∗

T∞
= 1 + 0.032M2

∞ + 0.58

[
Tw

T∞
− 1

]
(17.154)

In the above expression M∞ is the free-stream Mach number defined as the ratio of
the free-stream velocityU to the speed of sound under free-stream conditions a∞. If
the ratio of specific heats γ is assumed to be constant, the Mach number is given by

M∞ = U

a∞
= U√

γRT∞
(17.155)

where R is the gas constant. The following relation replaces Equation 17.151 for
heat transfer.

St = 0.332

x ′∗( 1
2 )Pr∗( 2

3 )
(17.156)

In the above, the Prandtl and the Reynolds numbers (indicated with ∗) are evaluated
using the gas properties at the reference temperature.

Example 17.18

Air flows past a flat plate at a free-stream Mach number of M∞ = 0.8. The air
pressure and temperature in the free-stream are p∞ = 1 atm. and T∞ = 350 K,
respectively. The plate is maintained at a temperature of Tw = 300 K. Determine the
heat flux on the plate at a location x = 0.02 m downstream of the leading edge. Use
the reference temperature method. What will happen if compressibility effects and
viscous dissipation are ignored?

Solution:
(Note that all temperatures are in Kelvin in this class of problems)

Step 1 The air properties at the free-stream condition are:

Density: ρ∞ = 0.995 kg/m3

Kinematic viscosity: ν∞ = 20.92 × 10−6 m2/s
Specific heat: Cp∞ = 1009 K/kg K

Thermal conductivity: k∞ = 0.030 W/m K

The Prandtl number of air may be taken as a constant at Pr = 0.7.
Step 2 The speed of sound in air at the ambient temperature is based on γ = 1.4

and R = 287 J/kg K.
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a∞ = √
1.4 × 287 × 350 = 375 m/s

The free-stream air velocity is then obtained as

U = M∞a∞ = 0.8 × 375 = 300 m/s

Step 3 The recovery factor (based on Eq. 17.153) is given by

r = √
Pr = √

0.7 = 0.837

assuming the flow to be laminar. The adiabatic wall temperature is then
given by

Taw = T∞ + r
U 2

2Cp∞
= 350 + 0.837

3002

2 × 1009
= 387.3 K

The reference temperature is given by (using Eq. 17.154)

T ∗

T∞
= 1 + 0.032 × 0.82 + 0.58

[
300

350
− 1

]
= 0.938

or T ∗ = 0.938 × 350 = 328.2 K

Step 4 The air properties of interest at the reference temperature are:

Density: ρ∗ = 1.068 kg/m3

Dynamic viscosity: μ∗ = 19.75 × 10−6 kg/m s

Step 5 We now calculate the Reynolds number using the properties at the refer-
ence temperature.

x ′∗ = ρ∗Ux

μ∗ = 1.068 × 300 × 0.02

19.75 × 10−6
= 3.245 × 105

The flow is laminar. The Stanton number is then given by (Eq. 17.156)

St = 0.332√
(3.245 × 105)0.7

2
3

= 7.39 × 10−4
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Step 6 The heat transfer coefficient is then given by

h = −Stρ∞UCp∞ = −7.39 × 10−4 × 0.995 × 300 × 1009 = −222.67 W/m2K

Step 7 The local wall heat flux is then given by

qw,x=0.02 m = h(Taw − Tw) = −222.67(387.5 − 300) = −19483.6 W/m2

Heat transfer is from air to wall.
Step 8 This may be compared with the incompressible boundary layer solution

ignoringviscous dissipation.All the properties are basedon the free-stream
temperature. The various quantities of interest are (the reader may verify
these):

Local Reynolds number: Rex = 2.867 × 105

Stanton number: St = 7.864 × 10−4

Heat transfer coefficient: h = 236.9 W/m2K
Local wall heat flux: qw,x=0.02 m = −11840 W/m2

There is thus a dramatic difference when compressibility effects are taken
in to account, as they should be!

17.9 Current Topics of Interest in Heat Transfer

For themost part, the present bookhas dealtwith conduction—radiation—convection
as conventional text books do. Only in the present chapter, we have dealt with a few
special topics in heat transfer. Even though some special topics have been considered
in enough detail to motivate the reader, it has not been possible to be exhaustive in
the coverage of special topics. With changes in technology, new topics keep adding
to the list of special topics in heat transfer. In this section, we highlight some of the
emerging areas and refer the reader to either more advanced books or the current
heat transfer literature.
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Typically, heat transfer journals nowadays partition the contents as shown below:

1 Biological heat and mass transfer
2 Combustion and reactive flows
3 Conduction
4 Convection in microtubes and microchannels
5 Efficient cooling technology development
6 Electronic and photonic cooling
7 Experimental techniques for measuring thermal properties
8 Heat and mass transfer
9 Heat and mass transfer in manufacturing and processing
10 Heat and mass transfer in porous media
11 Heat and mass transfer in thermal and energy systems
12 Heat exchanger fundamentals
13 Heat transfer applications
14 Heat transfer enhancement
15 Heat transfer in manufacturing
16 High efficiency heat pipes
17 Jets, wakes, and impingement cooling
18 Melting and Solidification
19 Microscale and nanoscale heat transfer
20 Multiple-phase flow, boiling and condensation
21 Natural and Mixed Convection
22 New methods of measuring and/or correlating transport-property data
23 Natural, forced and mixed convection
24 Phase change heat transfer, melting, solidification and energy storage
25 Radiation
Entries in bold font are new areas

New areas that find place in recent heat transfer literature are interdisciplinary in
nature andmay involve other branches of science such as physics,chemistry, biology,
and material science. In recent times, we see many more examples of cooperative
research involving scientists and engineers with background in thermal and other
science areas that are involved in the special topics. Recently, much attention is
focused on safety of nuclear reactors and thermal hydraulics applicable to reactors
is an important area of study. Decay heat removal, loss of coolant analysis, effi-
cient cooling using liquid metals are some of the special heat transfer areas that are
important in such applications. Heat transfer in space applications in propulsion,
cooling of surfaces subject to extreme heat fluxes such as during reentry are some
special areas with tremendous technological importance. Study of energy transfer
in the earth’s atmosphere plays an important role in the understanding of weather.
Radiation transfer in the atmosphere plays an important role and is a subject of con-
siderable interest. Absorption and emission by gases in the atmosphere, scattering of
radiation by aerosols are important in this, and hence have become areas of detailed
study. Radiation heat transfer in the atmosphere also is important because of its appli-
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cation in remote sensing of the atmosphere, land, and sea surface using satellites that
are capable of interrogating in various wavelength regions of the electromagnetic
spectrum.

Concluding Remarks

We have come to the end of the book! After discussing some special topics, the book has

ended with a list of areas that are currently receiving attention of researchers in heat transfer.

When everyone thought that there was nothing new to study in heat transfer, areas opened up

because of developments in other areas such as electronic devices, faster computers, concern

about the atmosphere, space exploration, nuclear reactor design, Micro-Electro-Mechanical

Systems or MEMS, and so on. Study of heat transfer will continue to be relevant.

17.10 Exercises

17.1 Water at a mean temperature of 80 ◦C flows with a velocity of 0.15 m/s
inside a thin walled horizontal tube of 25 mm ID. At the outer surface
of the tube, heat is transferred by natural convection to atmospheric air
at 15 ◦C. Determine:
(a) Tube wall temperature, (b) Overall heat transfer coefficient, and (c)
Heat loss per meter length of tube.

17.2 Redo Exercise 17.1 with the ambient air blowing normal to the tube
axis with a velocity of 5 m/s. All other data is as given there.

17.3 A temperature measurement system uses a copper tube of 1 mm wall
thickness and outer diameter of 6 mm. Thermocouple is attached to
the wall of the tube. Thermocouple lead wires are such that conduction
through them is negligible. The system is exposed to still air at 65 ◦C.
The copper tube is tarnished due to use and has a surface emissivity of
0.65. Determine the temperature indicated by the thermocouple if the
copper tube interacts by radiation with a background at 25 ◦C.

17.4 A thermometer has a spherical shape and is of 3 mm diameter. It is
exposed to a moving fluid stream via a heat transfer coefficient of
15 W/m2K. The thermometer also communicates radiatively to a back-
ground at 300 K. If the thermometer indicates a temperature of 333 K
what is the fluid temperature? Consider two cases: (a) Emissivity of
thermometer surface is 0.18 and (b) Emissivity of thermometer sur-
face is 0.85. How will your answer change in the latter case if the heat
transfer coefficient is changed to 45 W/m2K?

17.5 A thermocouple is attached to the bottom of a cylidrical well that is
exposed to an air stream at a temperature of Ta = 95 ◦C moving with
a speed of V = 2 m/s normal to its axis. The cylinder is attached to a
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duct wall which is at Tw = 80 ◦C. The well is made of a material of
thermal conductivity kw = 15 W/m K, inner diameter di = 4 mm and
outer diameter do = 5 mm. Assume that the cylinder outer surface has
a gray emissivity of ε = 0.18.

• What is the reference temperature?
• What is the minimum value for the thermometer error?
• Determine the minimum length of immersion such that the thermo-
metric error is limited to 1 ◦C.

17.6 A first order system has the following specifications:

• It is a spherical shell of copper with wall thickness 1 mm and OD
6 mm

• Fluid is still air at 30 ◦C
• Initial shell temperature is 80 ◦C

How long should one wait for the cylinder to cool to 50 ◦C. Assume
that the Nusselt number is governed by the correlation NuD = 2 +
0.43Ra0.25D where the symbols have the usual meanings. The heat
transfer coefficient may be calculated at a mean cylinder temperature
of 65 ◦C.

17.7 A first order system consists of a stainless steel shell of wall thickness
0.5mmand outside diameter 12.5mmwhich is initially at a temperature
of 60 ◦C. The ambient fluid is atmospheric air at 10◦C . Convection heat
transfer between the shell and ambient air is known to be 12 W/m2 ◦C.
The surface also loses heat by radiation with the surface emissivity
of 0.85 to the ambient at the same temperature as ambient air. Obtain
numerically the solution to this problem by the Runge–Kutta method.
Determine the time at which the shell temperature is 15 ◦C.

17.8 List all the quantities that are required to describe heat transfer from
a radiating-conducting fin. Identify the number of non-dimensional
parameters that are expected based on dimensional arguments. Obtain
all these non-dimensional parameters. Discuss the physical significance
of each of these.

17.9 A radiating fin is in the form of a flat plate made of a special alloy
having a thermal conductivity of 230 W/m K. The exposed surfaces
of the fin are specially treated to achieve an emissivity of 0.8 and an
absorptivity of 0.1. The fin base is held at a temperature of 127 ◦C. The
fin is irradiated on both sides with an irradiation of 155 W/m2. Obtain
the thickness length combination for the fin that is in accord with the
theoretical profile. Determine the net heat dissipated by the fin if it has
a width of 0.45 m.

17.10 A radiating fin is in the form of a plate of uniform thickness 0.0035 m
that is 0.12 m long. The plate material has a thermal conductivity of
100 W/m K. The plate surfaces have εI R = 0.99 and αS = 0.12. The



17.10 Exercises 911

fin base is attached to a base structure at 76 ◦C. Determine the heat
loss from the fin if the plate is 0.5 m wide. Consider two cases (a) No
irradiation and (b) Irradiation of G = 400 W/m2.

17.11 In service the plate surface in Exercise 17.10 deteriorates such that the
absorptivity increases to 0.22. Rework the exercise for this condition.
Also, determine the proportions of a minimum mass profile using the
same amount of material as in Exercise 17.10 with the width remaining
the same.

17.12 A tubular radiator consists of the required length of a thin walled tube of
0.025m diameter. The outside surface has been chemically treated such
that ε = 0.8 and α = 0.16. The outside surface of the tube is subject
to a uniform irradiation of 250 W/m2. Water flows through the tube at
a mass flow rate of 0.1 kg/s, entering at 85 ◦C and leaving at 45 ◦C.
Determine the tube length.
Hint: The analysis presented in the text needs to be reworked for a duct
of circular cross section.

17.13 In order to reduce the tube lengthand the pumping power (observe the
answer in Exercise 17.10) fins may be attached to the tubes. Mackay27

presents analysis of such finned radiators for space applications. Study
the book andmake a detailed note on how thismay be used in the design
of finned space radiators.

17.14 Air flows past a flat plate at a free-stream Mach number of 2.5. The
pressure and temperature of free-stream air are 1000 Pa and 1000 K.
What is the adiabatic wall temperature? If the plate is maintained at a
temperature of 450 K determine the heat flux on the plate at a location
0.015 m downstreamof the leading edge.Use the reference temperature
method to solve the problem.

17.15 Identify all the parameters that are needed in describing the process of
solidification. Form as many non-dimensional parameters as you can,
using these. Compare these with the non-dimensional parameters used
in the text.

17.16 It is clear from the analysis presented in the text that the ratios of solid
to liquid properties affect the process of melting or solidification. Using
Eq. 17.51 and the defining expressions (17.50) as guides, discuss how
the properties affect melting or freezing times. Take ice water system
as an example.

17.17 A very long channel of 10 cm spacing contains ice at 0 ◦C. The ice is
allowed to melt by subjecting the top wall of the channel to a constant
temperature of 5 ◦C starting at t = 0. The bottom wall of the channel
is perfectly insulated. How long does it take to just melt the ice? What
is the energy consumed per unit area in this process?

17.18 Ventilation system for a building consists of an underground heat
exchanger through which outdoor air is drawn and cooled as shown

27D. B. Mackay, Design of Space Power Plants, Prentice Hall, 1963.
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Fig. 17.33 Natural draft
ventilation system

in Fig. 17.33. The air then passes into a room that is ventilated by a
chimney wall that essentially consists of a double wall with the inner
blackwall that absorbs all the solar radiation that falls on it after passing
through a front glass sheet that is transparent to solar flux. Ventilation
is provided by natural draft induced by the chimney wall. Refer to cur-
rent literature and try to analyze the problem. The goal is to design the
chimney wall proportions for a desirable level of air flow through the
room.

17.19 Consider a pebble bed heat storage unit. Initially, the entire bed is at
80 ◦C. The bed consists of spherical pebbles of 1 cm diameter. The
length of the bed is 0.1 m. Air enters the bed at 15◦C with a mass
velocity of 0.5 kg/m2s. The bed material properties may be taken as
ρ = 2800 kg/m3, Cpm = 900 J/kgK. Determine the state of affairs at
the end of 5 minutes if the void fraction of the bed is 0.5. (This prob-
lem requires the solution and tables provided in S. P. Sukhatme, Solar
Energy—Principles of Thermal Collection and Storage, Tata McGraw-
Hill, 1984)

17.20 It is desired to heat air at atmospheric pressure from 100◦C to 300 ◦C
in a packed bed. The bed is contained in a 10 cm I D pipe filled with
random arrangement of solid cylinders 5 mm diameter and 5 mm long.
The flow rate of air is 6 kg/hr and the inside surface of the pipe is held
at 400 ◦C. Determine the required bed height.

17.21 Saturated steam at 104 Pa and at rest condenses over a vertical tube of
diameter equal to 0.025 m. Determine the distance from the top where
the condensate film becomes turbulent.

17.22 Stephan (reference has already been cited in this chapter) has presented
the details of how turbulent film condensation may be analyzed. Study
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this material and make a short report. Consider both stationary and
moving vapor cases.

17.23 Saturated steam at 0.2 bar absolute condenses outside of a tube of
2.5 cm diameter maintained at a uniform temperature 20 ◦C below
the saturation temperature of water. Calculate the average heat transfer
coefficient when the tube is horizontal, as well as when it is vertical.
The length of the tube is 0.3 m. Condensing steam may be assumed to
be at rest.

17.24 A polished copper cylinder of 6 mm diameter is at 300 ◦C and is
immersed in a pool of water at 90 ◦C. Film boiling of water is expected
to take place at the surface of the cylinder. Determine the heat transfer
rate immediately after the cylinder is immersed in water.

17.25 In a certain steam condenser steam at 10 kPa is condensed from dry
steam to saturated liquid. The cooling water at 1000 kg/hr enters at
a temperature of 30 ◦C and leaves at 37.5 ◦C. The water side flow
takes place through tubes of ID 18 mm and 4 m length each. Determine
the steam side heat transfer coefficient. Determine the water side heat
transfer coefficient. The tube has an OD of 19 mm and is made of
copper. What is the overall heat transfer coefficient based on tube ID?

17.26 Water in a pool boils over a very large horizontal plate in nucleate
boiling mode. Water is at its saturation temperature at a pressure of
2 bar absolute while the plate is maintained at a temperature 25 ◦C
above the saturation temperature. Determine the heat flux. What is the
critical heat flux in this case?



Appendix A
Note on Bessel Functions

A.1 Background

Second-order ordinary differential equations with variable coefficients occur fre-
quently in engineering applications. These equations naturally occur when we deal
with problems with variable areas such as when we deal with conduction in cylindri-
cal or spherical coordinate systems. These equations also occur in one-dimensional
conduction when the area varies with x . The standard form of the Bessel equation is

d2y

dx2
+ 1

x

dy

dx
+
(
1 − ν2

x2

)
y = 0 (A.1)

The Bessel equation thus involves a single parameter ν. This equation cannot be
solved by elementary methods. The solution proceeds by expressing the solution as
a power series.1 Since Eq. A.1 is of second order, we ought to have two independent
solutions. Both of these must come out of the power series solution.

A.1.1 Bessel Equation with Non-integer ν

Let us look for a solution, to begin with, for non-integer value of ν in the form

y(x) =
∞∑
n=0

anx
n+m (A.2)

1The solutionmethod is referred to as theFrobeniusmethodnamedafter FerdinandGeorgFrobenius,
1849–1917, German mathematician.
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where m has to be determined as a part of the solution process. Assuming that the
power series is convergent for any x , we may differentiate the power series term by
term to obtain

dy

dx
=

∞∑
n=0

an(n + m)xn+m−1;d
2y

dx2
=

∞∑
n=0

an(n + m)(n + m − 1)xn+m−2;

ν2

x2
y = ν2

∞∑
n=0

anx
n+m−2

(A.3)

Substitute Eq. A.3 in Eq. A.1, group terms appropriately to get

∞∑
n=0

an[(n + m)(n + m − 1) + (n + m) − ν2]xn+m−2 +
∞∑
n=0

anx
n+m = 0 (A.4)

Since Eq. A.4 should hold for any x , the coefficient of each power of x must vanish.
Hence, for example, for x0 term, assuming that a0 �= 0, we should have

m(m − 1) + m − ν2 = m2 − ν2 = 0 or m = ±ν

However, then the coefficient x term is

(m + 1)m + (m + 1) − ν2 = (m + 1)2 − ν2 �= 0 for m = ±ν

This simply means that we have to choose a1 = 0. Now we look at the coefficient of
xn in Eq. A.4 given by

[(n + m)(n + m − 1) + (n + m) − ν2]an + an−2

and set it to zero. The resulting relationship may be written as

an = − an−2

(n + m)2 − ν2
(A.5)

Case 1: m = ν

Relation given in (A.5) leads to the recurrence relation

an = − an−2

(n + ν)2 − ν2
= − an−2

n(n + 2ν)
(A.6)

Equation A.6 holds for n ≥ 2. Repeated use of the recurrence relation will show that
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a1 = 0; a3 = − a1
3(3 + 2ν)

= 0; a5 = − a3
5(5 + 2ν)

= 0

and, in general a2r−1 = 0 for r = 1, 2, . . .
(A.7)

and

a2 = − a0
2(2 + 2ν)

= − a0
22(2 + ν)

; a4 = − a2
4(4 + 2ν)

= a0
242!(1 + ν)(2 + ν)

and,

ingeneral a2r = (−1)r
a0

22r (1 + ν)(2+) · · · (r + ν)
for r = 0, 1, 2, . . .

(A.8)
It is customary to choose a0 as

a0 = C1

2νν�(ν)
(A.9)

where C1 is an arbitrary constant and �(ν) is itself a special function.

A.1.2 Gamma Function: A Short Digression

Gamma function is also referred to as the generalized factorial function and is defined
by the following:

�(ν) =
∞∫

0

xν−1e−xdx (A.10)

which, on integration by parts, and for n > 1, leads to the recurrence relation

�(ν + 1) = (ν)�(ν) (A.11)

In fact, the Gamma function is defined by Eq. A.10 when the integral exists and by
Eq. A.11 otherwise. We easily see that

�(1) =
∞∫
0
x1−1e−xdx =

∞∫
0
e−xdx = 1;�(2) = 1�(1) = 1;

�(3) = 2�(2) = 2 × 1 × �(1) = 2!; and, in general
�(p + 1) = p! where p is an integer

The above makes it clear as to why the Gamma function is also referred to as the
generalized factorial function. Gamma function may be defined for negative values
of ν by the use of the recurrence relation rewritten as

�(ν) = �(ν + 1)

ν
(A.12)
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For example, we then have

�(−0.5) = �(0.5)

−0.5
; �(−1.5) = �(−0.5)

1.5
= �(0.5)

1.5 × 0.5
etc.

It is also seen that the values of �(ν) for any value of ν may be determined, using
the �(ν) in the interval 1 < ν < 2 by the use of the recurrence relation. This is the
reason why the Gamma function is tabulated for ν in this interval. Equation A.12
indicates that

�(0) = lim
ν→0

�(ν + 1)

ν
→ ±∞

The ± sign depends on the direction from which we approach the origin. Use of the
recurrence relation then indicates that

�(ν) → ±∞

for −ν where ν is an integer.

A.1.3 Bessel Function of the First Kind

Now we get back to the solution to the Bessel equation. Using the properties of the
Gamma function and the definition of a0 given by Eq. A.9, Eq. A.8 may be recast as

a2r = (−1)r
C1

22r+νr !�(ν + r + 1)
(A.13)

One solution to the Bessel equation is hence given by

y1 = C1

∞∑
0

(−1)r
C1

22r+νr !�(ν + r + 1)
xν+2r = C1 Jν(x) (A.14)

where Jν(x) is the Bessel function of order ν and the first kind.
Case 2: m = −ν

To obtain the second solution, all we have to do is to replace ν by −ν and get

y2 = C2

∞∑
0

(−1)r
C1

22r−νr !�(−ν + r + 1)
x−ν+2r = C1 J−ν(x) (A.15)

where J−ν(x) is the Bessel function of order −ν and the first kind. The above step
is alright as long as ν is not an integer. In case ν is an integer, J−ν(x) can be easily
shown to be the same as (−1)ν Jν(x). Hence, in case ν is an integer, we need to obtain
the second solution by an alternate method.
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A.2 Bessel Equation When ν is an Integer: Bessel Function
of the Second Kind

We make use of the method of variation of parameters to obtain the solution to the
Bessel equation when ν is an integer. Represent the solution to the Bessel equa-
tion (A.1) as y = u(x)Jν(x). We then have

dy

dx
= u

dJν

dx
+ Jν

du

dx
; d2y

dx2
= u

d2 Jν

dx2
+ 2

dJν

dx

du

dx
+ Jν

d2u

dx2

Substitute these in Eq. A.1, group terms to get

Jν

d2u

dx2
+ 2

dJν

dx

du

dx
+ Jν

x

du

dx
+ u

[
d2 Jν

dx2
+ 1

x

dJν

dx
−
(
1 − ν2

x2

)
Jν

]
= 0 (A.16)

The terms in square brackets vanish since Jν is a solution to the Bessel equation. The
other terms may be rearranged in the variable separable form

d2u

dx2
du

dx

= −
⎡
⎢⎣2

dJν

dx
Jν

+ 1

x

⎤
⎥⎦ (A.17)

This is integrated with respect to x to get

du

dx
= C2

x J 2
ν

(A.18)

where C2 is a constant of integration. A second integration with respect to x will
then give

u = C1 + C2

x∫

0

dx

x J 2
ν

(A.19)

where C1 is a second constant of integration. Finally, the solution is obtained as

y = u Jν = C1 Jν + C2 Jν

x∫

0

dx

x J 2
ν

(A.20)

Thus, we see that both solutions to the Bessel equation have resulted from the use of
the method of variation of parameters. The desired second solution is given by
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Table A.1 Zeros of J0(x) and J1(x)

Zeros of J0(x) Zeros of J1(x)

2.4048 0

5.5201 3.8317

8.6537 7.0156

11.7915 10.1735

14.9309 13.3237

Yν(x) = Jν

x∫

0

dx

x J 2
ν

(A.21)

is called the Bessel function of order ν and the second kind. As an example, it may
be shown that the Bessel function of order zero and second kind is given by

Y0(x) = 2

π

[
J0(x){ln(x) + ln 2 − γ } −

( x
2

)4
(2!)2

(
1 + 1

2

)
+
( x
2

)6
(3!)2

(
1 + 1

2
+ 1

3

)
− · · · + · · ·

]

(A.22)
where

γ = lim
n→∞ 1 + 1

2
+ 1

3
+ · · · + 1

n
− ln(n) ≈ 0.577216 . . .

is known as the Euler constant. We make an important observation that Y0(x) → ∞
as x → 0 and Y0(x) → 0 as x → ∞. Both functions J0(x) and Y0(x) are oscillatory
in nature.

Table A.1 gives the first few zeros of J0(x) and J1(x). The interval between
successive zeros asymptotically approaches π .

Oscillatory behavior, as well as the locations of zeros of J0(x) and Y0(x), are
brought out from Fig. A.1.

A.3 Asymptotic Behavior of Bessel Functions

It is interesting to look at what happens to Bessel functions when x → ∞. For this
purpose, introduce the transformation y = u(x)√

x
in Eq. A.1. We have

dy

dx
= 1√

x

du

dx
− u

2x3/2

d2y

dx2
= 1√

x

d2u

dx2
− 1

x3/2
du

dx
+ 3u

4x5/2
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Fig. A.1 Plot of Bessel
functions of order zero, first,
and second kind

Introduce these in Eq. A.1 and simplify to get

d2u

dx2
−
(
1 − ν2 − 1

4

x2

)
u = 0 (A.23)

It is seen from Eq. A.23 that when x �
√∣∣ν2 − 1

4

∣∣, the Bessel equation reduces to
the equation

d2u

dx2
+ u = 0 (A.24)

Also, when ν = ± 1
2 the above is valid for all x! Eq. A.24 has the simple solution

u = C1 sin x + C2 cos x or y = C1
sin x√

x
+ C2

cos x√
x

(A.25)

where C1 and C2 are constants of integration. Since the circular functions are peri-
odic with a period of π the Bessel functions are also periodic with the period tending
asymptotically toπ . The Bessel functions exhibit a damping due to

√
x in the denom-

inator.
Using Eq. A.14, with ν = 1

2 , J 1
2
(x) may be obtained as

J 1
2
(x) =

∞∑
0

(−1)r

22r+ 1
2 r !�( 12 + r + 1)

x
1
2 +2r (A.26)

The leading term is given by √
x√

21
2�

1
2

=
√
2x

π
(A.27)



922 Appendix A: Note on Bessel Functions

The first term in the series thus contains
√
x and hence J 1

2
(x) → 0 as x → 0. Hence,

we identify J 1
2
(x) as

J 1
2
(x) =

√
2

πx
sin x (A.28)

Using Eq. A.15, with ν = − 1
2 , J− 1

2
(x) may be obtained as

J− 1
2
(x) =

∞∑
0

(−1)r

22r− 1
2 r !�(− 1

2 + r + 1)
x− 1

2 +2r (A.29)

which, of course, has a singularity at the origin. Hence, we identify J 1
2
(x) as

J− 1
2
(x) =

√
2

πx
cos x (A.30)

We are now able to generalize these observations and note that the Bessel functions

of order ±ν asymptotically behave as under for x �
√

|ν2 − 1
4 |:

Jν(x) ≈
√

2

πx
cos

(
x − π

4
− ν

π

2

)
; J−ν(x) ≈

√
2

πx
cos

(
x − π

4
+ ν

π

2

)

(A.31)

A.4 Orthogonal Property of Bessel Functions

Bessel functions display an interesting orthogonality property in the interval (0, 1).
Consider the Bessel functions Jn(ax) and Jn(bx), where a and b are two different
roots of Jn . Then we can show that the following holds:

∫ 1

0
x Jn(ax)Jn(bx)dx = 0 (A.32)

However, when a = b, we have

∫ 1

0
x J 2

n (ax)dx = J 2
n+1

2
(A.33)

This property of Bessel functions is useful in arriving at series expansion, known as
Fourier Bessel series, of a function f (x) in the interval (0, 1) as
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∞∑
n=0

Cn Jn(anx) =
{
f (x) when it is continuous
f (x−)+ f (x+)

2 at discontinuous points

}
(A.34)

where the weights Cn are given by

Cn = 2

J 2
n+1(an)

∫ 1

0
x f (x)Jn(anx)dx (A.35)

A.5 Modified Bessel Functions

The reason we have presented a note on Bessel functions in this Appendix is because
of the connection they have with steady conduction in a variable area fin. Consider,
for example, the case of a trapezoidal fin for which the governing equation has been
derived in Chap. 4 and presented as Eq. 4.36. Even though the first two terms are
the same as those in the Bessel equation, the third term is different, in that it is
negative. This difference has crucial implications as far as the nature of the solution
is concerned. The fin temperature variation is monotonic, while the solution to the
Bessel equation has been seen to be oscillatory.We desire to obtain the solution to the
fin problem by finding a suitable transformation that will transform it to the Bessel
equation.

Make use of the transformation

z = 2i p
√
x (A.36)

where z is a complex number! We may then easily show that

dz = 2i p
1

2
√
x
dx or

d

dx
= −2p2

z

d

dz
(A.37)

and

d2

dx2
= d

dx

(
d

dx

)
= −2p2

z

d

dz

(
−2p2

z

d

dz

)
= 4p4

z2

(
d2

dz2
− d

dz

)
(A.38)

Introduce these in Eq. 4.36 to get the equation

d2θ

dz2
+ 1

z

dθ

dz
+ z = 0 (A.39)

The fin equation has thus ended up in the form of Bessel equation with ν = 0. The
solution to Eq. A.39 may at once be written down as

θ = C1 J0(z) + C2Y0(z) = C1 J0(2i p
√
x) + C2Y0(2i p

√
x) (A.40)
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Fig. A.2 Plot of Modified
Bessel functions of order
zero, first, and second kind

Thus, the solution to the fin equation is obtained by expressing the solution as Bessel
functions of order 0, of first and second kind, respectively, and for an imaginary
argument! Since the temperature in the fin is a real function, the solution above must
give a real function. Indeed it is so, and we, therefore, introduce modified Bessel
functions of first and second kind, given by

I0(x) = J0(i x) and K0(x) = Y0(i x) (A.41)

We may easily show the following, starting from the power series representation of
J0 and Y0 given earlier.

I0(x) =
∞∑
0

(
x
2

)2r

r !�(r + 1)
=

∞∑
0

(
x
2

)2r

r !2 (A.42)

and

K0(x) = −I0(x) ln(
x

2
) +

∞∑
0

(
x
2

)2r

r !2 φ(r) (A.43)

where φ(r) = 1 + 1
2 + 1

3 + · · · + 1
r with φ(0) = 0. In general, we also have

Jν(i x) = iν Iν(x) (A.44)

Monotonic behavior of I0(x) and K0(x) is apparent from Fig. A.2 that shows a plot
of Modified Bessel functions of order zero, first and second kind. Also, K0(x) has
a singularity at the origin. As in the case of the Bessel functions, we may study the
asymptotic behavior of modified Bessel functions also. It may be shown, in a manner
analogous to that made earlier, that
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I 1
2
(x) =

√
2

πx
sinh x; K 1

2
(x) =

√
2

πx
cosh x (A.45)

for all x . It may also be shown that Iν(x) ∼ ex√
x
and Kν(x) ∼ e−x√

x
for x → ∞.

A.6 General Form of Equation Solvable in Terms of Bessel
Functions

A large number of important cases, that lead to solution in terms of Bessel functions,
are represented by a general equation of the form

x2
d2y

dx2
+ (1 − 2α)x

dy

dx
+ [β2γ 2x2γ + α2 − m2γ 2]y = 0 (A.46)

where α, β, γ and m are parameters. The solution to Eq. A.46 is given by

y = C1x
α Jm(βxγ ) + C2x

α J−m(βxγ ), m not an integer (A.47)

and
y = C1x

α Jm(βxγ ) + C2x
αYm(βxγ ), m an integer (A.48)

We shall demonstrate the usefulness of the above by two examples.

Example 1

Obtain the solution for temperature in a radial fin of uniform thickness using the
general form of equation given by Eq. A.46.

Solution:
The equation governing the temperature variation in a radial fin of uniform thickness
is given by (Eq. 4.52 in Chap. 4)

d2y

dx2
+ 1

x

dy

dx
− p2y = 0

where p =
√

h
kt represents the fin parameter appropriate to this case. We have y in

place of θ and x in place of r to avoid confusion. This equation may be recast, after
multiplying through by x2, as
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x2
d2y

dx2
+ x

dy

dx
− p2x2y = 0 (A.49)

We compare term by term Eq. A.49 with Eq. A.46 to arrive at the following:

1 − 2α = 1 or α = 0; β2γ 2x2γ = −p2x2

or γ = 1 and β2 = −p2 or β = ±i p;m =0

Since the Bessel index is zero, the solution is written after (A.48) as

y = C1x
0 J0(i px) + C2Y0(i px) or y = C1 I0(px) + C2K0(px)

Example 2

Express the solution of
d2y

dx2
+ a2x2y = 0 (A.50)

in terms of Bessel functions.

Solution:
The given equation is in non-standard form, and hence is converted to standard form
by a suitable transformation. Let y = x2Y . Then, we have

dy

dx
= x2

dY

dx
+ 2xY and

d2y

dx2
= x2

d2Y

dx2
+ 4x

dY

dx
+ 2Y

The given differential equation (A.50) then reduces to the required standard form

x2
d2Y

dx2
+ 4x

dY

dx
+ [a2x4 + 2]Y = 0 (A.51)

Compare Eq. (A.51) with (A.46)to get the following:

1 − α = 4 or α = −3

2
; 2γ = 4 or γ = 2

β2γ 2 = a2 or β = a

2
; α2 − m2γ 2 = 2 or m = 1

4

Since the Bessel index is not an integer, we make use of Eq. A.47 to write

Y (x) = C1x
− 3

2 J 1
4

(a
2
x− 3

2

)
+ C2x

− 3
2 J− 1

4

(a
2
x− 3

2

)
(A.52)
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or
y(x) = C1

√
x J 1

4

(a
2
x− 3

2

)
+ C2

√
x J− 1

4

(a
2
x− 3

2

)
(A.53)

A.7 Some Useful Results

Some interesting but useful results are given in this section, without proof.

Useful recurrence relation
Starting from the defining equations, we may easily show that the following recur-
rence relations are followed by Bessel functions:

(a) Jν+1(x) + Jν−1(x) = 2ν
x Jν(x)

(b) Yν+1(x) + Yν−1(x) = 2ν
x Yν(x)

(c) Iν+1(x) − Iν−1(x) = − 2ν
x Iν(x)

(d) Kν+1(x) − Kν−1(x) = 2ν
x Kν(x) (A.54)

This means that, if we have available to us tables of J0 and J1, then J2, J3, etc., may
be calculated by the repeated use of the recurrence relation given by Eq. A.54(a)
and so on. Derivative of the Bessel function may be evaluated by term by term
differentiation. We can show, by this process that

(a)
dJ0(x)

dx
= −J1(x); (b)

dY0(x)

dx
= −Y1(x);

(c)
dI0(x)

dx
= I1(x); (d)

dK0(x)

dx
= −K1(x)

(A.55)

We may also show the following general result, by the same procedure:

(a)
1

xν+1

d(xν+1 Jν+1(x))

dx
= Jν(x); (b)

1

xν+1

d(xν+1Yν+1(x))

dx
= Yν(x);

(c)
1

xν+1

d(xν+1 Iν+1(x))

dx
= Iν(x); (d)

1

xν+1

d(xν+1Kν+1(x))

dx
= −Kν(x)

(A.56)
We consider the radial fin as an example to demonstrate the use of some of the
formulae given above.
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Example 3

Consider a radial fin of uniform thickness subject to insulated tip condition. Write
down the complete solution to the problem. Also, obtain an expression for heat
transfer at the base.

Solution:
We have seen in Example A.1 that the solution to the radial fin problem is given by

θ = C1 I0(pr) + C2K0(pr) (A.57)

where we have reverted to the notation used in Chap. 4. The boundary conditions are
specified as

θ = θb at r = r1 (A.58)

and
dθ

dr
= 0 at r = r2 (A.59)

Base boundary condition (A.58) requires that

C1 I0(pr1) + C2K0(pr1) = θb (A.60)

Tip boundary condition (A.59) requires that

dθ

dr

∣∣∣
r=r2

= C1 pI1(pr2) − C2 pK1(pr2) = 0 (A.61)

where the required derivatives follow from Eq. A.55. From Eq. A.61, we have C2 =
C1

I1(pr2)
K1(pr2)

. Substitute this in Eq. A.60 to get

C1 = θb
K1(pr2)

I0(pr1)K1(pr2) + I1(pr2)K0(pr1)

This also yields, on back substitution

C2 = θb
I1(pr2)

I0(pr1)K1(pr2) + I1(pr2)K0(pr1)

These lead to the fin temperature profile given by

θ

θb
= K1(pr2)I0(pr) + I1(pr2)K0(pr)

I0(pr1)K1(pr2) + I1(pr2)K0(pr1)
(A.62)

The heat transfer at the base is given by
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Qb = −2πr1k
dθ

dr

∣∣∣
r=r1

= −2πpkθb
K1(pr2)I1(pr1) − I1(pr2)K1(pr1)

I0(pr1)K1(pr2) + I1(pr2)K0(pr1)
(A.63)

where again the required derivatives follow from Eq. A.55.

A.8 Tables of Bessel Functions and Modified Bessel
Functions

We round off this Appendix by presenting a short table of Bessel andmodified Bessel
functions that will be useful in solving heat transfer problems. In practice, the reader
will find it useful to use a spreadsheet program such as Microsoft EXCEL or Linux
based LibreOffice Calc which have built in functions that may easily be used directly
in calculations (Tables A.2 and A.3).

Table A.2 Table of Bessel functions

x J0(x) Y0(x) J1(x) Y1(x)

0.0 1 −∞ 0 −∞
0.1 0.997502 −1.534239 0.049938 −6.458951

0.2 0.990025 −1.081105 0.099501 −3.323825

0.3 0.977626 −0.807274 0.148319 −2.293105

0.4 0.960398 −0.606025 0.196027 −1.780872

0.5 0.938470 −0.444519 0.242268 −1.471472

0.6 0.912005 −0.308510 0.286701 −1.260391

0.7 0.881201 −0.190665 0.328996 −1.103250

0.8 0.846287 −0.086802 0.368842 −0.978144

0.9 0.807524 0.005628 0.405950 −0.873127

1.0 0.765198 0.088257 0.440051 −0.781213

1.5 0.511828 0.382449 0.557937 −0.412309

2.0 0.223891 0.510376 0.576725 −0.107032

2.5 −0.048384 0.498070 0.497094 0.145918

3.0 −0.260052 0.376850 0.339059 0.324674

3.5 −0.380128 0.189022 0.137378 0.410188

4.0 −0.397150 −0.016941 −0.066043 0.397926

4.5 −0.320543 −0.194705 −0.231060 0.300997

5.0 −0.177597 −0.308518 −0.327579 0.147863

5.5 −0.006844 −0.339481 −0.341438 −0.023758

6.0 0.150645 −0.288195 −0.276684 −0.175010

6.5 0.260095 −0.173242 −0.153841 −0.274091

(continued)
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Table A.2 (continued)

x J0(x) Y0(x) J1(x) Y1(x)

7.0 0.300079 −0.025950 −0.004683 −0.302667

7.5 0.266340 0.117313 0.135248 −0.259129

8.0 0.171651 0.223521 0.234636 −0.158060

8.5 0.041939 0.270205 0.273122 −0.026169

9.0 −0.090334 0.249937 0.245312 0.104315

9.5 −0.193929 0.171211 0.161264 0.203180

10.0 −0.245936 0.055671 0.043473 0.249015

Table A.3 Table of modified Bessel functions

x I0(x) K0(x) I1(x) K1(x)

0.0 1 ∞ 0 ∞
0.1 1.002502 2.427069 0.050063 9.853845

0.2 1.010025 1.752704 0.100501 4.775973

0.3 1.022627 1.372460 0.151694 3.055992

0.4 1.040402 1.114529 0.204027 2.184354

0.5 1.063483 0.924419 0.257894 1.656441

0.6 1.092045 0.777522 0.313704 1.302835

0.7 1.126303 0.660520 0.371880 1.050284

0.8 1.166515 0.565347 0.432865 0.861782

0.9 1.212985 0.486730 0.497126 0.716534

1.0 1.266066 0.421024 0.565159 0.601907

1.5 1.646723 0.213806 0.981666 0.277388

2.0 2.279585 0.113894 1.590637 0.139866

2.5 3.289839 0.062348 2.516716 0.073891

3.0 4.880793 0.034740 3.953370 0.040156

3.5 7.378203 0.019599 6.205835 0.022239

4.0 11.301922 0.011160 9.759465 0.012483

4.5 17.481172 0.006400 15.389223 0.007078

5.0 27.239872 0.003691 24.335642 0.004045

5.5 42.694645 0.002139 38.588165 0.002326

6.0 67.234407 0.001244 61.341937 0.001344

6.5 106.293 0.000726 97.735011 0.000780

7.0 168.594 0.000425 156.039 0.000454

7.5 268.161 0.000249 249.584 0.000265

(continued)
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Table A.3 (continued)

x I0(x) K0(x) I1(x) K1(x)

8.0 427.564 0.000146 399.873 0.000155

8.5 683.162 0.000086 641.620 0.000091

9.0 1093.588 0.000051 1030.915 0.000054

9.5 1753.481 0.000030 1658.453 0.000032

10.0 2815.717 0.000018 2670.988 0.000019



Appendix B
Note on Legendre Functions

B.1 Background

Second-order ordinary differential equations with variable coefficients occur fre-
quently in engineering applications as indicated in Appendix A. Legendre polyno-
mials make their appearance when we deal with the Laplace equation in spherical
coordinates. The Legendre equation is of form

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0 (B.1)

where n is a parameter.

B.1.1 Special Simple Case of Legendre Equation

We shall build up the solution to the Legendre equation by considering first a special
case, corresponding to n = 0. Equation B.1will then take the variable separable form
given by

d2y

dx2
dy

dx

= 2x

(1 − x2)
(B.2)

This equation may be integrated once to get

ln

(
dy

dx

)
= − ln(1 − x2) + ln(A2) (B.3)
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where A2 is a constant of integration. The above equation may be rewritten in the
form

dy

dx
= A2

1 − x2
= A2

2

[
1

1 + x
+ 1

1 − x

]

A second integration leads immediately to the solution

y = A2

2
ln

[
1 + x

1 − x

]
+ A1 (B.4)

where A1 is a second constant of integration. Thus, the general solution to the Leg-
endre equation with n = 0 may be written down as

y = A1P0(x) + A2Q0(x)

where P0(x) = 1 and Q0(x) = 1
2 ln
[
1+x
1−x

]
(B.5)

In Eq. B.5 above, P0(x) is the Legendre function of degree 0 and the first kind while
Q0(x) is the Legendre function of degree 0 and the second kind. We notice that
Q0(x) is singular at the origin.

B.1.2 Legendre Equation with n ≥ 1

We make use of the method of series in this case. Let the solution be given by

y =
∞∑

m=0

Cmx
m (B.6)

Term by term differentiation of the above series yields

dy

dx
=

∞∑
m=0

Cmmxm−1; d2y

dx2
=

∞∑
m=0

Cmm(m − 1)xm−2

Substitute these in Eq. B.1 to get, after minor simplification

∞∑
m=0

Cmx
m[−m(m + 1) + n(n + 1)] +

∞∑
m=0

Cmx
m−2m(m − 1) = 0 (B.7)

Equate coefficients of terms containing x0 to zero and get

C0n(n + 1) + C2(2 × 1) = 0 or C2 = −n(n + 1)

2
C0
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Thus, C2 is related to C0 which is taken as a non-zero constant. Equate coefficient
of x1 to zero in Eq. B.6 and get

C1[n(n + 1) − 2] + C3(3 × 2) = 0 or C3 = − (n − 1)(n + 2)

3! C1

Thus, C3 is related to C1 which again may be taken as a non-zero constant. We
may generalize the above and mention that all even coefficients (i.e., C0, C2, C4 . . .)
are related and yield a series with even powers of x . Similarly, all odd coefficients,
i.e., C1, C3, C5 . . .) are related and yield a series with odd powers of x . These two
series must, therefore, form two independent solutions to the Legendre equation. The
required relations between the coefficients of the two series may be represented by
the following recurrence relation:

Cs+2 = − (n − s)(n + s + 1)

(s + 2)(s + 1)
Cs (B.8)

Let us represent the two solutions as y1(x) and y2(x). The two series are given by
the following relations:

y1(x) = 1 +
∞∑
s=1

(−1)s
[(n − 2s + 2) · · · (n − 2)][(n + 1) · · · (n + 2s − 1)]

2n! x2s

y2(x) = x +
∞∑
s=1

(−1)s
[(n − 2s + 1) · · · (n − 1)][(n + 2) · · · (n + 2s)]

2n! x2s+1

(B.9)
When n is an even integer, y1(x) reduces to a polynomial of degree n with only
even powers of x and the series y2(x) diverges. When n is an odd integer, y2(x)
reduces to a polynomial of degree n with only odd powers of x and the series y1(x)
diverges. These polynomials are known as Legendre polynomials and represented
by the symbol Pn(x). Thus, we have

Pn(x) = C y1(x) if n is an even integer

= C y2(x) if n is an odd integer
(B.10)

where C is chosen such that Pn(1) = 1. A few of these polynomials are given below

P0(x) = 1 P1(x) = x

P2(x) = 1
2 (3x

2 − 1) P3(x) = 1
2 (5x

3 − 3x)

P4(x) = 1
8 (35x

4 − 30x2 + 3) P5(x) = 1
8 (63x

5 − 70x3 + 15x)



936 Appendix B: Note on Legendre Functions

P n
(x

)
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Fig. B.1 Legendre polynomials

B.1.3 Legendre Function of Second Kind

We have already come across the Legendre function of degree n and second kind in
the case corresponding to n = 0. In fact, the function Q0 was given by the second of
Eq. B.5. Without proof, we give the following:

Q1(x) = Q0(x)P1(x) − 1; Q2(x) = Q0(x)P2(x) − 3

2
x; Q3(x) = Q0(x)P3(x) − 5

2
x2 + 2

3
(B.11)

In general, we have

Qn(x) = Q0(x)Pn(x) − (2n − 1)

1 · n Pn−1(x) − (2n − 5)

3 · (n − 1)
Pn−3(x) − · · · (B.12)

The Legendre functions of second kind are not pursued further. We show plots of
a few Legendre polynomials in Fig. B.1. It is clear that Pn(x) are regular at both
x = 1 and x = −1. We also show plots of a few Legendre functions of second kind
in Fig. B.2. Clearly, these functions diverge at x = 1 and x = −1.

B.1.4 Some Useful Relations Involving Legendre
Polynomials

In applications, it is useful to have relations among Legendre polynomials that help
in calculations. Legendre polynomial for negative values of x are related to Pn(x)
according to the relation Pn(−x) = (−1)n Pn(x) as may be verified. A useful recur-
rence relation is given by
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Fig. B.2 Legendre functions of second kind

(n + 1)Pn+1(x) + nPn−1(x) = (2n + 1)x Pn(x) (B.13)

Rodrigues’ formula generates the Legendre polynomial and is given by

Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n (B.14)

The first derivatives follow a recurrence formula given by

P ′
n+1(x) − P ′

n−1(x) = (2n + 1)Pn(x) (B.15)

where ′ represents d
dx .

B.1.5 Orthogonality property and Fourier Legendre series

Most importantly the Legendre polynomials have the following orthogonality prop-
erty over the interval (−1,+1).

1∫

−1

Pn(x)Pm(x)dx = 0 if m �= n;
1∫

−1

Pn(x)Pm(x)dx = 2

2n + 1
if m = n

(B.16)
The orthogonality property is very useful in that we may represent any piecewise
continuous function f (x) in the interval (−1, +1) in terms of Legendre polynomials
as Fourier Legendre series given by
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∞∑
n=0

Cn Pn(x) =
{
f (x) when it is continuous
f (x−)+ f (x+)

2 at discontinuous points

}
(B.17)

where the weights Cn are given by

Cn = 2n + 1

2

+1∫

−1

f (x)Pn(x)dx (B.18)



Appendix C
Basics of Complex Variables

C.1 Introduction

Two-dimensional steady conduction problems in cartesian, as well as cylindrical
coordinates, may be solved easily by the use of complex variables technique. The
complex variables technique is useful as a versatile tool for the solution of Laplace
equation.We develop the basic ideas here for use in the text at appropriate places.We
make use of an important property of a differentiable function of a complex variable,
for arriving at the solution to the Laplace equation.

C.1.1 Definitions

A complex number z is an ordered pair (x, y) defined as below

z = x + iy (C.1)

x is referred to as the real part and y the imaginary part of the complex number.
i = √−1 is referred to as pure imaginary number. The magnitude of the complex

number z is given by |z| = √x2 + y2. The angle θ is given by θ = tan−1
(

y
x

)
. A

complex number may also be represented in cylindrical coordinates as

z = reiθ (C.2)

with x = r cos θ , y = r sin θ and r = |z|. Figure C.1a shows the geometric repre-
sentation of a complex number. It is represented as a point in the (x, y) plane where
the horizontal axis is referred to as the real axis and the vertical axis is referred to as
the imaginary axis. The angle made by the line joining the point P with the origin
and the real axis is the angle θ . The length of the line joining P and the origin is the

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
S. P. Venkateshan, Heat Transfer,
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Fig. C.1 a Representation of a complex number b Neighborhood of z and path 
z

magnitude of the complex number r or |z|.
A function w = f (z) is written as a complex number given by

w = f (z) = u(x, y) + iv(x, y) (C.3)

where u(x, y) and v(x, y)2 are real functions of x and y, referred to, respectively,
as the real part and the complex part of w. The function w = f (z) plots as a point
in the so-called w plane where the abscissa represents the real part and the ordinate
represents the imaginary part of the function.

C.1.2 Conditions for the Existence of Derivative of w

Cartesian coordinates
Let us explore the conditions under which w has a derivative at point P . For this
purpose, consider the neighborhood of a point z. From calculus, we know that the
derivative, if it exists, is obtained by a limiting process of approaching the point P
from its neighborhood, and defining the derivative as

d f

dz
= lim


z→0

f (z + 
z) − f (z)


z
(C.4)

In the present case, the path may be along any radial line, starting from a point on the
circle with radius |
z| centered at P . The derivative, if it exists, will have to be the
same irrespective of the direction along which the limit is taken. Hence, we choose
two such paths, the first, path 1 with dx = 0, dy → 0 and the second, path 2 with

2It is fairly common to represent w as φ(x, y) + iψ(x, y) where φ(x, y) is referred to as the
potential function and ψ(x, y) is referred to as the stream function.
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dx → 0, dy = 0, and see what happens.
Path 1
Along this path, we have, 
z = 0 + i
y and hence

d f

dz
= lim


x=0,
y→0

[u(x, y + 
y) − u(x, y)] + i[v(x, y + 
y) − v(x, y)]
0 + i
y

= 1

i

∂u

∂y
+ ∂v

∂y
= −i

∂u

∂y
+ ∂v

∂y

(C.5)

Path 2
Along this path, we have, 
z = 
x + i0 and hence

d f

dz
= lim


x→0,
y=0

[u(x + 
x, y) − u(x, y)] + i[v(x + 
x, y) − v(x, y)]

x + i0

= ∂u

∂x
+ i

∂v

∂x
(C.6)

If the function f (z) has a derivative at point z, then the two expressions given by
Eqs. C.5 and C.6 must be identical. This requires that the real part and imaginary
part be identical, and hence we get the relations

(a)
∂u

∂x
= ∂v

∂y
, (b)

∂u

∂y
= −∂v

∂x
(C.7)

These relations are known as Cauchy-Riemann conditions. Let us assume that u and
v are twice differentiable. We take the x derivative of Eq. C.7(a) and y derivative of
Eq. C.7(b) to get

∂2u

∂x2
= ∂2v

∂y∂x
; ∂2u

∂y2
= − ∂2v

∂x∂y

Add these two equations to get

∂2u

∂x2
+ ∂2u

∂y2
= ∂2v

∂y∂x
− ∂2v

∂x∂y
= 0 (C.8)

since the cross derivative is immune to the order of differentiation. Thus, u(x, y)
satisfies the Laplace equation. Similarly, one may show that v(x, y) is also a solution
of the Laplace equation. Thus, we have the important property that the real part
and imaginary part of a function of complex variable are solutions to the Laplace
equation, if the complex function has a derivative at the point z.
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Cylindrical coordinates
Cauchy–Riemann conditions in cylindrical coordinates may be shown, by a proce-
dure similar to that followed above, to be given by

(a)
∂u

∂r
= 1

r

∂v

∂θ
(b)

∂v

∂r
= −1

r

∂u

∂θ
(C.9)

where w = u(r, θ) + iv(r, θ). Both u(r, θ) and v(r, θ) satisfy Laplace equation in
cylindrical coordinates given by Eq. 5.144, where T may stand either for u or v.

C.1.3 Complex Potential

A function of a complex variable that has a derivative is referred to as an analytic or
regular function of a complex variable. Such a function is also referred to as a complex
potential with its real part representing a potential function and the complex part (or
the imaginary part) representing a stream or flux function. These terms actually
originate from ideal fluid flow theory. As seen earlier, both the potential, as well as
the stream function satisfy the Laplace equation.

Consider now the curves represented by u(x, y) = constant. On such a curve, we
have du = 0 or

du = ∂u

∂x
dx + ∂u

∂y
dy = 0 or

dy

dx

∣∣∣∣
u

= −ux

uy
(C.10)

where the subscript u means that it is held constant, and subscript x and y represent
partial derivatives. Similarly, on curves with v(x, y) = constant, we have

dv = ∂v

∂x
dx + ∂v

∂y
dy = 0 or

dy

dx

∣∣∣∣
v

= −vx

vy
(C.11)

Using the Cauchy–Riemann conditions (Eq. C.7) Eq. C.11 may be rewritten as

dy

dx

∣∣∣∣
v

= uy

ux
(C.12)

Now consider a possible point of intersection between these two curves. The deriva-
tives given by Eqs. C.10 and C.12 represent the slopes of the tangents to these curves,
at the point of intersection. We see that the product of the two slopes is −1 showing
that the two curves intersect orthogonally. At once the connection with heat conduc-
tion becomes apparent. Isotherms and flux lines are known to be orthogonal. Also, the
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Fig. C.2 Transformation w = f (z) represented in z and w planes

temperature is a solution to the Laplace equation. Hence, temperature function may
be identified with the potential function and the heat flux function may be identified
with the stream function (or vice versa).

Consider a complex potential w. It may be plotted in the z plane by showing
constant u curves and constant v curves as shown in Fig. C.2a. These show up, in the
w plane, as lines parallel to the two axes, as shown in Fig. C.2b. The points ABCD
form a rectangle when two sets of constant u and constant v lines intersect. In the
z plane the intersection points define A′B ′C ′D′, a curvilinear rectangle, as shown.
The angles at each of the corners are maintained at 90◦ in both planes. In fact, we
may look upon the function w = f (z) as a transformation that transforms or maps a
curvilinear rectangle in the z plane to a rectangle in the w plane.

Even though the transformation that has been indicated in the figure is one to one,
it may also be one to many. This is determined by the nature of the complex potential.

C.2 Examples of Complex Potentials

We consider a few examples of complex potentials that will be of use in heat transfer
studies and ideal fluid flow. By definition, these will be solutions to the Laplace
equation and hence solutions to steady conduction in two dimensions, in the absence
of heat generation.

C.2.1 Complex Potential w = z

The first example is a simple one given by w = z = x + iy. We at once see that
u(x, y) = x and v(x, y) = y. Constant u lines and constant v lines form rectangular



944 Appendix C: Basics of Complex Variables

Fig. C.3 Complex potential
w = Ln(z)

grids in both z andw planes. If we identify the real part with the temperature function,
isotherms are vertical lines in the z plane. Hence, the flux lines must be horizontal
lines in the z plane. The solution represented by this complex potential is the solution
to one-dimensional heat conduction in a slab. It also represents the parallel flow of
an ideal fluid.

C.2.2 Complex Potential w = Ln(z)

Consider the complex potential given by

w = Ln(z) (C.13)

The symbol Ln means that we consider the principal value of the function Ln(z) that
is defined in the interval 0 ≤ θ ≤ 2π . Using cylindrical coordinates, we have

w = Ln(z) = Ln(reiθ ) = ln(r) + iθ (C.14)

We may set u(r, θ) = ln r and v(r, θ) = θ . Constant u lines are concentric circles
with center at the origin, while constant v lines are radial lines passing through
the origin. The complex potential represents a line source placed at the origin. The
solution represents one-dimensional radial conduction in an annulus. The function
w = Ln(z) also is an elementary solution to the Laplace equation in cylindrical
coordinates. The isotherms and flux lines appear as shown in Fig. C.3. Alternately,
we may consider u(r, θ) = θ and v(r, θ) = ln r . The isotherms will now be radial
lines passing through the origin while the heat flux lines will be concentric circles
centered at the origin. Figure C.3 represents this case also if we interchange u and v

in the figure.
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Fig. C.4 Constant u and v

lines in the z plane for the
complex potential w = z2

C.2.3 Complex Potential w = ez

This complex potential may be written in expanded form as

w = ez = ex+iy = exeiy = ex [cos(y) + i sin(y)] (C.15)

Thus, we have
u(x, y) = ex cos(y); v(x, y) = ex sin(y) (C.16)

It is easily seen that w = ez translates to z = Ln(w) and hence the state of affairs
may be visualized by interchanging the z and w planes! This aspect is left to the
reader’s imagination.

Complex Potential w = z2

The complex potential w = z2 is an analytic function since the derivative exists
and is given by dw

dz = 2z. The complex potential may be written in expanded form as

w = z2 = (x + iy)2 = (x2 − y2) + i2xy (C.17)

Thus, u(x, y) = x2 − y2 and v(x, y) = 2xy. The constant u lines in the w plane
map on to rectangular hyperbolas given by x2 − y2 = conatant in the z plane, which
are asymptotic to the lines x = ±y. The constant v lines in the w plane map on to
rectangular hyperbolas given by xy = conatant in the z plane, which are asymptotic
to the x and y axes. As illustration, we show a few of these in Fig. C.4. It is clear from
the figure that the constant u and v lines are orthogonal at points of intersection of the
two sets of curves. In ideal fluid flow, this complex potential represents stagnation
point flow. It is interesting to look at the transformation by expressing it in cylindrical
coordinates. We have

w = z2 = (reiθ )2 = r2ei2θ (C.18)
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The magnitude of w is thus equal to the square of the magnitude of z. The angle is
doubled due to the transformation. Thus, the v axis (or the imaginary axis) in the w

plane corresponds to the line y = x in the z plane and lying in the first quadrant. The
negative real axis in the w plane indeed corresponds to the positive y axis in the z
plane.

C.3 Superposition of Complex Potentials

Since the Laplace equation is linear, elementary solutions represented by complex
potentials may be added to arrive at any number of new solutions. A couple of
examples will be considered below.

C.3.1 Combination of Complex Potentials Considered in
Sects. C.2.1 and C.2.2

Consider the two elementary complex potentials given earlier, viz. w = z and w =
Ln(z). Let the combination complex potential be given by

w = −az + bLn(z) (C.19)

where a and b are real constants. The real and complex parts of the complex potential
are given by

(a) u(r, θ) = −ar cos(θ) + b ln(r), (b) v(r, θ) = −ar sin(θ) + bθ (C.20)

Let us explore the nature of this complex potential. Let us see what would be the
curve in the z plane that corresponds to v = 0. Consider a point on the real axis such
that θ = 0, i.e., any point on the x axis (real axis in the z plane). Indeed, v(r, θ) = 0.
This is one possibility. v(r, θ) is also zero if r = b

a = x . Let us see what happens if

θ = ±π
2 . We then have r = y and y = ±

b

(
π

2

)

a . It is also easily seen that for other
values of θ , we have y = bθ

a .
It may be shown easily that the v = 0 curve divides the z plane in to two regions

with v = + outside and v = − inside as shown in Fig. C.5. In ideal fluid flow the
curve is referred to as the Rankine half body. As x → −∞ the y coordinate on the
half body tends to ±π . The flow is visualized as flow past a Rankine half body. The
flow is uniform far away from the half body.
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Fig. C.5 Zero v line for the
complex potential
w = −az + bLn(z) with
a = b = 1
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C.3.2 Flow Past a Cylinder

A second example that we shall consider is the combination of a parallel flow with a
dipole (considered in detail in Chap. 5) situated at the origin. The complex potential
is given by

w = c z
Parallel flow

+ ca2

z
Dipole

, c �= 0 (C.21)

We use the representation of z in cylindrical coordinates to write the stream function
as (imaginary part of the complex potential)

v(r, θ) = c sin(θ)
[
r − a2

r

]
(C.22)

The potential function is then identified with the real part of the complex potential
and is given by

u(r, θ) = c cos(θ)
[
r + a2

r

]
(C.23)

The zero streamline consists of either sin(θ) = 0, i.e., θ = 0 or r = a. Theflow is thus
past a cylinder of radius a centered at the origin. The flow is from left to right and the
velocity of the fluid parallel to the real axis is c, far away from the origin. Streamline
pattern (broken lines, v=constant) looks like that shown in Fig. C.6. The potential
lines (solid lines, u=constnat) form an orthogonal net along with the streamlines.

We also notice that the streamlines are lines parallel to the real axis far away
from the cylinder. In the vicinity of the cylinder, the streamlines bend as shown. The
indicated pattern also is a possible solution to a heat transfer problem. Imagine half
space (y > 0) to have a semi-circular cut centered at the origin. If the boundary of the
semi-circle and the straight segments along the real axis are maintained at a uniform
temperature, the streamlines correspond to the isotherms. The potential lines then
correspond to heat flux lines.
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Fig. C.6 Flow past a cylinder. Broken lines are streamlines while solid lines are potential lines

C.3.3 General Comments

Some general comments may now be made. By now, it should be clear to the
reader that the constant u and v lines (actually curves) represent an orthogonal
net representing either a problem in steady conduction in two dimensions or
ideal fluid flow in two dimensions (in a plane). In case we identify v as the
stream function, the fluid flow is along constant v lines and there is no flow
normal to them. Any streamline may hence represent a solid surface and be
assigned arbitrarily a value for the stream function (note that the velocity
normal to any solid surface must be zero). In practice, it is customary to take
the zero streamline as the surface of the body over which a flow takes place.
For example, in the case of the Rankine half body, it is, in fact, the shape
of a surface past which ideal fluid flows. The complex potential w = −az
represents parallel flow with a constant velocity −a, i.e., from right to left.
The potential w = Ln(z) represents source flow from a source located at the
origin. The two flows combine to define flow past the Rankine half body.

Similarly, any adiabatic surface may be visualized to provide zero flow of
heat perpendicular to it, and hence identifiedwith a flux line. Hence, the stream
function in fluid flow is analogous to heat flux function in steady conduction.
The potential function must, therefore, correspond to the temperature function
in the case of conduction. In the case of fluid flow, it is simply referred to as
the potential function.



Appendix D
Heisler Charts

D.1 One Term Approximation of the Slab Transient

Three charts are made for the slab transient problem. They are:
1. Plot of mid-plane temperature as a function of Fourier number, with Biot

number as a parameter (Fig. D.1). Plot is based on Eq. 6.11 with ξ = 0.
2. Correction factor as a function of Biot number with off mid plane location

within the slab, as a parameter (Fig. D.2). Plot is based on Eq. 6.11 with
ξ �= 0.

3. Heat loss fraction as a function of Fourier number with Biot number as a
parameter (Fig. D.3). Plot is based on Eq. 6.13.

D.2 One Term Approximation of the Cylinder Transient

Again three charts are made for the cylinder transient problem. They are:
1. Plot of axial temperature as a function of Fourier number,withBiot number

as a parameter (Fig. D.4). Plot is based on Eq. 6.19 with r = 0, retaining
only the first term.

2. Correction factor as a function of Biot number with off center location
within the cylinder, as a parameter (Fig. D.5). Plot is based on Eq. 6.19
with r �= 0.

3. Heat loss fraction as a function of Fourier number, with Biot number as a
parameter (Fig. D.6). Plot is based on Eq. 6.26.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
S. P. Venkateshan, Heat Transfer,
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Fourier number, Fox = t/Lx
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Fig. D.1 Slab mid plane temperature variation with time
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Fourier number, Fox =  t/Lx
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Fig. D.3 Heat loss fraction in the slab transient

D.3 One Term Approximation of the Sphere Transient

Again three charts are made for the cylinder transient problem. They are:
1. Plot of center temperature as a function of Fourier number, with Biot

number as a parameter (Fig. D.7). Plot is based on Eq. 6.33 with r = 0,
retaining only the first term.

2. Correction factor as a function of Biot number with off center location
within the sphere, as a parameter (Fig. D.8). Plot is based on Eq. 6.33 with
r �= 0.

3. Heat loss fraction as a function of Fourier number, with Biot number as a
parameter (Fig. D.9). Plot is based on Eq. 6.39.
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Fourier number, For =  t/R2
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Fig. D.4 Axial temperature variation with time in cylinder transient
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Fourier number, For = t/R2
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Fig. D.6 Heat loss fraction in the cylinder transient
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Reciprocal Biot number, 1/Bir

0.01 0.1 1 10 100

Po
si

tio
n 

co
rr

ec
tio

n 
fa

ct
or

0.0

0.2

0.4

0.6

0.8

1.0 r/R = 0.1
0.2
0.3

0.4

0.9

0.5

0.6

0.7

0.8

1

Fig. D.8 Correction factor for non central location within the sphere

Fourier number, For =  t/R2

0.1 1 10 100

H
ea

t l
os

s f
ra

ct
io

n,
 Q

r( t)
/ Q

r0

0.0

0.2

0.4

0.6

0.8

1.0

Bir = hR/k
   = 0.01

0.020.04

0.06

0.08

0.1
0.20.40.6

0.8
1

24
6
8

10

100

Fig. D.9 Heat loss fraction in the sphere transient



Appendix E
Numerical Solution of Algebraic and Differential
Equations

E.1 Introduction

Many heat transfer and fluid flow problems are modeled by either ordinary or partial
differential equations. These equations may not be amenable to analytical solution
leading to closed form solutions. In such cases, numerical solution is the only alter-
native. The finite difference or finite volume or finite element method is used to solve
the equations after suitably discretizing the computational domain. The governing
equations subject to initial and boundary conditions reduce to either ordinary dif-
ferential equations or a set of algebraic equations. We discuss in brief, some of the
more commonly used numerical methods, in solving such equations.

E.2 Solution of Algebraic Equations

E.2.1 Solution of a Single Algebraic Equation

A useful numerical method of solution of s single algebraic equation is the Newton–
Raphsonmethod. Consider the problem of obtaining a root of the equation f (x) = 0.
A graph of the function may be made to roughly get the location(s) of the root(s).
Accurate determination of the root(s) assumes that we are close to a root and a guess
value xg is available. In the vicinity of the root, we may use Taylor expansion to get

f (xb) = f (xg) + d f

dx

∣∣∣∣
xg

(xb − xg) + O(xb − xg)
2 (E.1)

xb is assumed to be a better estimate for the root, and hence we set f (xb) = 0 and
ignore the square term. Then, we get the relation

© The Editor(s) (if applicable) and The Author(s), under exclusive license
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xb = xg − f (xg
f ′(xg)

(E.2)

where ′ indicates differentiation with respect to x . Equation E.2 provides an iteration
scheme wherein the x value is updated by its repeated use till successive estimates
differ by a predetermined tolerance.

E.2.2 Solution of Several Algebraic Equations

The Newton–Raphson method is easily extended to a set of algebraic equations. We
start with a guess set x1g, x2g, · · · xngfor obtaining the solution of a set of equations
of the form

f1(x1, x2, · · · xn) = 0
f2(x1, x2, · · · xn) = 0
· · · · · · · · · · · · · · · · · · · · ·
fn(x1, x2, · · · xn) = 0

(E.3)

Following a procedure similar to the one that lead to Eq. E.2, we obtain the following
set of equations for iteration:

f1g + ∂ f1
∂x1


x1 + ∂ f1
∂x2


x2 + · · · + ∂ f1
∂xn


xn = 0

f1g + ∂ f1
∂x1


x1 + ∂ f1
∂x2


x2 + · · · + ∂ f1
∂xn


xn = 0

f2g + ∂ f2
∂x1


x1 + ∂ f2
∂x2


x2 + · · · + ∂ f2
∂xn


xn = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fng + ∂ fn

∂x1

x1 + ∂ fn

∂x2

x2 + · · · + ∂ fn

∂xn

xn = 0

(E.4)

where 
xi = xib − xig for i = 1, 2, . . . , n represents the change in the guess value
during an iteration and fig stands for fi (x1g, x2g, · · · xng). All the partial derivatives
are calculated at x1g, x2g, · · · xng . We thus see that a set of linear algebraic equations
have to be solved for each iteration step. The above equations may be written in the
alternate matrix form
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⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

· · · · · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · · · · ∂ f2
∂xn· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
∂ fn
∂x1

∂ fn
∂x2

· · · · · · ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎦

Jacobian matrix

⎡
⎢⎢⎢⎢⎣


x1

x2
· · ·
· · ·

xn

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

− f1g
−x2g
· · ·
· · ·

− fng

⎤
⎥⎥⎥⎥⎦

(E.5)

These equations may be solved easily using Kramer’s rule if n is not too large, say
≤ 5. For larger n, one may use point by point iterative schemes such as the Gauss or
Gauss-Seidel iteration schemes.

E.2.3 Solution of Equations Involving Sparse
Matrix—TDMA

Wehave seen that the ordinary differential equations reduce to a set of linear equations
when the derivatives are represented by their finite difference analogs. The resulting
matrix equation is of form AX = B, where A is an n × n square matrix and X and
B are n × 1 column vectors. X represents the solution vector while B is referred to
as the forcing vector. The case of interest to us here is when the A is tridiagonal in
nature. Tridiagonal matrix algorithm or Thomas algorithm3 is useful in solving such
equations. The matrix A (diagonal dominant matrix)4 is normally represented as

⎡
⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0
c2 a2 b2 · · · 0

· · · . . .
. . .

. . . · · ·
· · · · · · cn−1 an−1 bn−1

0 0 · · · cn an

⎤
⎥⎥⎥⎥⎥⎦

(E.6)

The reader should note that only the non-zero elements of the tridiagonal matrix
comprising of 3n elements ai , bi , ci , 1 ≤ i ≤ n and n elements di , 1 ≤ i ≤ n need
be stored in the computer memory. It is seen that elementary row operations will be
able to transform the matrix A to upper triangular form, i.e., all the elements below
the main diagonal will become zero. This operation will leave the zero elements
above the diagonal unchanged. For example, multiplication of elements in the second
row by a1

c2
and subtracting the elements in the first row will make element 2, 1 zero.

Similarly, all the elements below themain diagonalmay bemade to be zero. The same
elementary row operations are to be performed on the matrix B or as is usual, these

3Thomas, L. H., Watson Sc Comput. Lab. Rept., Columbia University, New York, 1949.
4Diagonal dominance requires |ai | > |bi | + |ci | for every i
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row operations are performed on an augmented n × n + 1matrix obtained by adding
the elements of B to A as the last column. This process will give an upper triangular
matrix with the main diagonal and the upper diagonal alone having non-zero terms.
The resulting bi-diagonal matrix may be used to obtain the nodal temperatures by
going back from the last equation in what is known as back substitution. This process
is easy to perform for small n like 3 or 4. However, when n is large, it is easier to use
a simple algorithm to achieve the same result. The algorithm that does this is called
the TDMA.

The starting point for developing theTDMA is to note that any one of the equations
in the set of equations that is being considered is of form

ai Xi = bi Xi+1 + ci Xi−1 + di (E.7)

The algorithm should eventually make it possible to back substitute by a recurrence
relation of form

Xi−1 = Pi−1Xi + Qi−1 (E.8)

where Pi , Qi contain the matrix elements ai , bi and ci . We substitute Eq. E.8 in
Eq. E.7 to get ai Xi = bi Xi+1 + ci (Pi−1Xi + Qi−1) + di which on simplification
yields

Xi = bi
ai − ci Pi−1

Xi+1 + di + ci Qi−1

ai − ci Pi−1
(E.9)

which has a form identical with Eq. E.8! Comparing these two equations, we get the
following recurrence relations for the P’s and Q’s:

(a) Pi = bi
ai − ci Pi−1

(b) Qi = di + ci Qi−1

ai − ci Pi−1
(E.10)

Since c1 = 0, we have P1 = b1
a1

and Q1 = d1
a1
. With P1 and Q1 thus calculated, the

recurrence relations are used to calculate all the P’s and Q’s. We notice also that
since bn = 0, Pn = 0. Hence, Eq. E.8 indicates that Xn = Qn . Back substitutionmay
be then continued using (E.8). Thus, the TDMA leads to a simple procedure using
recurrence relations that may be programmed easily on a computer.



Appendix E: Numerical Solution of Algebraic and Differential Equations 959

E.2.4 Point by Point Iteration Methods

When the coefficient matrix is not sparse, it is necessary to use a point by point
iteration method such as the Gauss or the Gauss-Seidel iteration methods. The set of
equations to be solved are rearranged such that the i th equation is in the form

Xi =
∑n

j=1 ai j X j

aii
, i �= j (E.11)

In the Gauss iteration method, we start the iterations with a guess set Xig , substitute
these on the right hand side of Eq. E.11 and obtain better values Xib. If |Xib − Xig| ≤
ε,where ε is a user defined small number,we stop the iteration.Otherwise the iteration
is continued by replacing Xig with Xib.

In theGauss-Seidel scheme, the values that have already been updated (i.e., for j <

i) will be used on the right hand side, without waiting to complete one pass through
all the i ′s.

Example E.1

Solve by Gauss and Gauss-Seidel iteration the following two simultaneous equa-
tions:

4T1 − T2 = 90, −T1 + 4T2 = 330

Compare the numerical solutions with the exact solution and also study the conver-
gence trends of the two iteration schemes.

Solution:
Let T old

i , T new
i for i = 1, 2 represent the values of the variables before and after an

iteration.
(i) Gauss iteration:
The iteration scheme follows from Eq. E.11 and is written down as

(a) T new
1 = 90 + T old

2

4
(b) T new

2 = 330 + T old
1

4
(E.12)

We start with a guess set T old
1 = 22.5, T old

2 = 82.5. With these, the iteration count is
set to 1, and the iteration scheme given by Eq. E.12(a)–(b) is used repeatedly. The
following table gives the results of this scheme (Table E.1). We note that the values
have converged to T1 = 46 and T2 = 94 to two significant digits after decimals, at
the end of seven iterations. In fact, the reader may verify that these represent the
exact solution to the two equations.
(ii) Gauss-Seidel iteration:
The iteration scheme following from Eq. E.11 is modified as
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Fig. E.1 Convergence of
Gauss and Gauss-Seidel
schemes in Example E.1
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(E.13)

We start with a guess set T old
1 = 22.5, T old

2 = 82.5.With these, the iteration count
is set to 1, and the iteration scheme given by Eq. E.13(a)–(b) is used repeatedly.
The following table gives the results of this scheme. We note that the values have
converged to T1 = 46 and T2 = 94 to two significant digits after decimals, at the end
of four iterations. It is noted that the Gauss-Seidel scheme converges faster than the
Gauss iteration scheme. The convergence history for the two schemes are given in
Fig. E.1. The change in T1 as a percentage of its previous value is shown for both
the schemes. Gauss iteration shows a staircase type of convergence while the Gauss-
Seidel shows a monotonic convergence (Table E.2).

Table E.1 Gauss iteration for Example E.1

Iteration
count

1 2 3 4 5 6 7 8

T1 22.5 43.13 44.53 45.82 45.91 45.99 45.99 46.00

T2 82.5 88.13 93.28 93.63 93.96 93.98 94.00 94.00

Table E.2 Gauss-Seidel iteration for Example E.1

Iteration count 1 2 3 4 5

T1 22.5 43.13 45.82 45.99 46.00

T2 82.5 93.28 93.96 94.00 94.00
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E.2.5 Iteration With Over or Under Relaxation

The point by point iteration scheme may be modified by using a suitable relaxation
parameter. Sometimes it may be possible to hasten convergence by using over relax-
ation. Sometimes under relaxation may be used to avoid unpleasant oscillations or
divergence in the solution. Let us assume that the two values T old

i and T new
i have

been calculated by point by point iteration such as the Gauss scheme. A relaxation
parameter is introduced through the equation

T new
i,rel = T old

i + ω(T new
i − T old

i ) (E.14)

where the updated valuewith relaxation is represented by T new
i,rel andω is the relaxation

parameter. It is noted that ω = 1 in the Gauss and Gauss-Seidel methods. Relaxation
parameter ω < 1 represents underrelaxation and ω > 1 represents overrelaxation.

E.3 Solution of Ordinary Differential Equations (ODE)

Ordinary differential equations are often encountered while modeling heat transfer
problems (many examples may be found in the present book). It is best to use close
form analytical solution when possible. Sometimes it is necessary to solve ODEs by
numerical methods. Those methods that are commonly used are summarized here.

ODEs of first order are always initial value problems and the methods are intro-
duced with these in view. Second and higher order ODEs may either be initial or
boundary value problems. In the latter case, they pose a challenge which will be
addressed in due course. Non-linear ODEs are harder still and need an iterative
scheme coupled with one of the numerical methods that will be considered here.

E.3.1 First Order ODE

Simple low order schemes
A general first order ODE is given by

dy

dx
= f (x, y) with y(x0) = y0 (E.15)

The simplest method is the first order accurate Euler method. The domain of interest
is the region to the right of x0, i.e., x > x0. This region is covered by taking steps of
size 
x = h, and the points that arise are referred to as nodes and are numbered by
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the subscript i = 1, 2, . . .. Let us assume that we have arrived at the point xn by the
repeated use of a numerical algorithm and the value of the dependent variable at this
point is yn . We shall look at the step n → n + 1. In the Euler method, the following
scheme is used:

yn+1 = yn + f (xn, yn)h (E.16)

The readerwould recognize that this relation is based onTaylor expansion that retains
only the first order term. Improvement of the Euler scheme may be made by using
the modified Euler or the Heun method that is second order accurate. In this method,
the Euler scheme gives an estimate of yn+1 which is represented as y∗

n+1, referred to
as the predictor. This value is corrected by calculating the slope at xn+1, y∗

n+1 and
replacing the slope by the mean slope at xn and xn+1.

Thus, we have the Heun scheme given by

Predictor: y∗
n+1 = yn + f (xn, yn)h

Corrector: yn+1 = yn + f (xn, yn) + f (xn+1, y∗
n+1)

2
h (E.17)

4th Runge Kutta Method (RKM)
A popular single step multi-stage scheme is the 4th Runge–Kutta scheme. In this
scheme, the function f is calculated at intermediate points within the step apart from
those at the two end points xn and xn+1. Without proof, we give the algorithm below

k1 = h f (xn, yn); k2 = h f (xn + h
2 , yn + k1

2 );
k3 = h f (xn + h

2 , yn + k2
2 ); k4 = h f (xn + h, yn + k3)

yn+1 = yn + k1+2k2+2k3+k4
6

(E.18)

The scheme calculates the k ′s which are referred to as auxiliary quantities. In
the present case, the step xn to xn+1 is covered by two half steps. Four auxiliary
quantities are calculated to complete a step. The method is self starting (Euler and
Heun methods are also self starting) since we can start the calculation from the initial
value and continue the calculation for any number of steps.
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Adam Moulton predictor corrector method
This is a 4th order accurate multistep method that uses four nodal values of f . The
method is based on analytical integration of an interpolating polynomial. Since more
than one nodal value is required to extend the solution by one step, the method is
non self starting. In practice, RKM is used to get the first four nodal values and the
Adam–Moulton scheme is used to continue the solution from there on. The predictor
is based on the solution available at xn, xn−1, xn−2, and xn−3.

y∗
n+1 = yn + h

24
[55 fn − 59 fn−1 + 37 fn−2 − 9 fn−3] (E.19)

where fn indicates the function value evaluated at xn, yn and so on. The corrector is
based on the solution available at xn+1, xn, xn−1 and xn−2.

yn+1 = yn + h

24
[9 f ∗

n+1 + 19 fn − 5 fn−1 + fn−2] (E.20)

One clear advantage of Adam–Moulton as compared to RKM is that the function
values needed are already available and hence needs fewer calculations as compared
to the RKM.

Example E.2

A thermal system is governed by the equation dθ
dt + 1.5(θ4 − 0.5) = 0, where θ

is a suitably defined non-dimensional temperature and t is non-dimensional time.
Solve this equation up to t = 1 by taking a time step of t = 0.2. Use the fourth order
RK method and assume that θ = 1 at t = 0.

Solution:
We identify the function f in our usual notation as−1.5(θ4 − 0.5). The calculations
are done using a spreadsheet and the result of the calculation is shown in Table E.3.
Even though the calculations have been based on at least 8 significant digits, the k
values in the table have been rounded to six digits and the θ values to four digits.
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Table E.3 RK table for Example E.2

t k1 k2 k3 k4 θ

0 −0.15 −0.069628 −0.110354 −0.037927 1

0.2 −0.054538 −0.031069 −0.040906 −0.020121 0.9087

0.4 −0.023654 −0.014425 −0.017981 −0.009772 0.8722

0.6 −0.010978 −0.006888 −0.008402 −0.004749 0.8559

0.8 −0.005249 −0.003337 −0.004032 −0.002319 0.8482

1 −0.002546 −0.001628 −0.001958 −0.001135 0.8444

E.4 Higher Order ODE

As an example of a higher order ODE, we consider a second-order ODE of form

d2y

dx2
= f

(
x, y,

dy

dx

)
(E.21)

This equation requires two conditions, either two initial conditions or two boundary
conditions, to be specified. In the former case, the function and first derivative are
specified at an initial point x0 as

y = y0 and
dy

dx
= y′

0 at x = x0 (E.22)

In the latter case, the boundary conditions—one each—is specified at x = a and
x = b. The boundary conditions may be of three types: (1) First kind:—Function is
specified (2)Second kind:—Derivative is specified and (3) Third kind:—A relation
between the function and the derivative is specified Both the numerical solution
methods described above are essentially initial value solvers. Hence we first consider
initial value problem.
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E.4.1 Second-Order ODE: Initial Value Problem

The second-order ODE may be written as two first order ODEs as indicated below

dz

dx
= f (x, y, z), with

dy

dx
= z(x, y)

Definition of z(x,y)

(E.23)

The initial conditions E.22 become

y = y0 at x = x0, and z = y′
0 at x = x0 (E.24)

The two first order ODEs given by E.23 are solved by the 4th order RKM by intro-
ducing auxiliary quantities ki , i = 1 − 4 and li , i = 1 − 4. Then we have

k1 = h f (xn, yn, zn), l1 = hzn

k2 = h f (xn + h
2 , yn + l1

2 , zn + k1
2 ), l2 = h(zn + k1

2 )

k3 = h f (xn + h
2 , yn + l2

2 , zn + k2
2 ), l3 = h(zn + k2

2 )

k4 = h f (xn + h, yn + l3, zn + k3), l4 = h(zn + k3)

zn+1 = yn + k1+2k2+2k3+k4
6 , yn+1 = yn + l1+2l2+2l3+l4

6

(E.25)

The algorithm given above may be used till we reach the desired upper value of
x .

E.4.2 Second-Order ODE: Boundary Value Problem

The method that is commonly used is called the“shooting method”. If the given
second-order ODE is linear, we use two solutions, obtained by solving the ODE
with assumed initial values, solved as initial value problems. For example, if both
boundary conditions are of first kind, we solve the ODE by assuming two different
initial slopes, say z(1)

a and z(2)
a , but with the specified y = ya (say) at at x = a. The

two solutions will give two different values y(1)
b and y(2)

b at x = b. Since the ODE
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is linear, a linear combination of the two solutions also is a solution to the original
ODE. Hence, we require that a linear combination of the two values y(1)

b and y(2)
b be

combined to satisfy the boundary condition at x = b

yb = αy(1)
b + (1 − α)y(2)

b (E.26)

where α is a constant. We may solve for α to get

α = yb − y(2)
b

y(1)
b − y(2)

b

(E.27)

The required solution is then given by y = αy(1) + (1 − α)y(2). Other kinds of bound-
ary conditions may be treated in a similar fashion.

Example E.3

Solve the fin equation d2θ
dξ 2 − 3θ = 0 with the boundary conditions θ = 1 at ξ = 0

and dθ
dξ = 0 at ξ = 1 by the shooting method. Use fourth order RKM.

Solution:
The given ordinary differential equation is equivalent to two first order ordinary
differential equations

(a)
dz

dξ
= −3θ, (b)

dθ

dξ
= z

We solve these equations twice as initial value problems by choosing z(1)
0 = −1

and z(2)
0 = −2, with h = 
ξ = 0.1. These two solutions yield, respectively, z(1)

1 =
1.82716 and z(2)

1 = −1.08739. In order to satisfy the second kind boundary condition
at ξ = 1, we choose α as

α = zb − z(2)
1

z(1)
1 − z(2)

1

= 0 − (−1.08739)

1.82716 − (−1.08739)
= 0.37309

The solution is now obtained as θ = αθ(1) + (1 − α)θ(2). The results are shown in
Table E.4.

The shooting method is also graphically shown in Fig. E.2.
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Table E.4 Table for Example E.3

ξ θ(1) z(1) θ (2) z(2) θ z θ(Exact)

0 1 −1 1 −2 1 −1.6269 1.0000

0.1 0.9145 −0.7135 0.8140 −1.7286 0.8515 −1.3499 0.8515

0.2 0.8566 −0.4485 0.6526 −1.5091 0.7287 −1.1134 0.7287

0.3 0.8244 −0.1970 0.5107 −1.3351 0.6277 −0.9105 0.6277

0.4 0.8170 0.0486 0.3842 −1.2012 0.5457 −0.7349 0.5457

0.5 0.8341 0.2956 0.2693 −1.1034 0.4800 −0.5814 0.4800

0.6 0.8764 0.5516 0.1624 −1.0388 0.4288 −0.4455 0.4288

0.7 0.9450 0.8241 0.0605 −1.0055 0.3905 −0.3229 0.3905

0.8 1.0420 1.1214 −0.0397 −1.0024 0.3639 −0.2100 0.3639

0.9 1.1704 1.4524 −0.1410 −1.0294 0.3483 −0.1034 0.3483

1 1.3340 1.8272 −0.2466 −1.0874 0.3431 0.0000 0.3431

Fig. E.2 Trial solutions and
final solution by the
“shooting method” in
Example E.3
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Appendix F
Exponential Integrals

F.1 Introduction

Exponential integrals are special functions that occur in problems involving radiation
in participating media. These are defined through integrals over polar angle θ or
more commonly in terms of μ = cos θ . Exponential integral of order n (where n is
an integer) is defined as

En(t) =
1∫

0

μn−2e− t
μ dμ (F.1)

where t may take on any value between 0 and ∞. Differentiation of Eq. F.1 with
respect to t shows that

dEn

dt
=

1∫

0

μn−2 · −1

μ
e− t

μ dμ = −
1∫

0

μn−3e− t
μ dμ = −En−1(t) (F.2)

At t = 0 we have

En(0) =
1∫

0

μn−2dμ = μn−1

n − 1

∣∣∣∣
1

0

= 1

n − 1
(F.3)

We also notice that En(t) → 0 as t → ∞. Using Eq. F.2, on integration with respect
to t , we get

En(t) = −
t∫

0

En−1(t) + A

© The Editor(s) (if applicable) and The Author(s), under exclusive license
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where A the integration constant is obtained as A = En(0). Using Eq. F.3, we then
have

En(t) = En(0) −
t∫

0

En−1(t) = 1

n − 1
−

t∫

0

En−1(t) (F.4)

The exponential integral may be represented in an alternate form by the use of the
transformation s = 1

μ
. We then have dμ = − ds

s2 , and hence

En(t) = −
1∫

∞

e−st

sn−2

ds

s2
=

∞∫

1

e−st

s
ds (F.5)

F.2 Useful Ways of Calculating Exponential Integrals

Exponential integrals may be evaluated by actual numerical integration with effi-
cient routines or may be obtained by using series representations. Expanding the
integrand in Eq. F.1 as a power series, integration term by term leads to the following
representation of Exponential integral of order 1.

E1(t) = −γ − ln(t) +
∞∑
i=1

(−1)i−1t i

i !i (F.6)

where γ is known as the Euler constant and has a numerical value of 0.577216 . . ..
Immediately it is apparent that we may use Eq. F.4 to generate Exponential integrals
of higher order, by term by term integration. For example, E2(t) is given by

E2(t) = 1 + t (γ + ln(t) − 1) +
∞∑
i=1

(−1)i t i+1

(i + 1)!i (F.7)

These series rapidly converge and are useful in the evaluation of the Exponential
integrals. Values of Exponential integrals have been generated using the series given
above and presented in Table F.1. These are also shown plotted in Figure F.1.

F.2.1 Approximation of E3(t):

The Exponential integral of order 3 is well approximated by an exponential function
of form

E3(t) = 1

2
e−1.8t (F.8)
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Table F.1 Table of Exponential integrals

t E1(t) E2(t) E3(t) t E1(t) E2(t) E3(t)

0 ∞ 1 0.5000 0.8 0.310596 0.200852 0.1443

0.01 4.037929 0.949671 0.4903 0.85 0.284019 0.185999 0.1347

0.02 3.354707 0.913105 0.4810 0.9 0.260184 0.172404 0.1257

0.03 2.959118 0.881672 0.4720 0.95 0.238737 0.15994 0.1174

0.04 2.681263 0.853539 0.4633 1 0.219384 0.148496 0.1097

0.05 2.467898 0.827835 0.4549 1.2 0.158408 0.111104 0.0839

0.06 2.295307 0.804046 0.4468 1.4 0.116219 0.08389 0.0646

0.07 2.150838 0.781835 0.4388 1.6 0.086308 0.063803 0.0499

0.08 2.026941 0.760961 0.4311 1.8 0.064713 0.048815 0.0387

0.09 1.918744 0.741244 0.4236 2 0.0489 0.037534 0.0301

0.1 1.822924 0.722545 0.4163 2.2 0.037191 0.028983 0.0235

0.15 1.464461 0.641039 0.3823 2.4 0.02844 0.022461 0.0184

0.2 1.22265 0.574201 0.3519 2.6 0.02185 0.017463 0.0144

0.25 1.044282 0.51773 0.3247 2.8 0.016855 0.013615 0.0113

0.3 0.905676 0.469115 0.3000 3 0.013048 0.010642 0.0089

0.35 0.794215 0.426713 0.2777 3.2 0.010133 0.008337 0.0070

0.4 0.70238 0.389368 0.2573 3.4 0.007896 0.006544 0.0056

0.45 0.625331 0.356229 0.2387 3.6 0.00616 0.005146 0.0044

0.5 0.559773 0.326644 0.2216 3.8 0.00482 0.004054 0.0035

0.55 0.503364 0.3001 0.2059 4 0.003779 0.0031982 0.0028

0.6 0.454379 0.276184 0.1916 4.2 0.002968 0.0025268 0.0022

0.65 0.411517 0.25456 0.1783 4.4 0.002336 0.0019988 0.0017

0.7 0.373769 0.234947 0.1661 4.6 0.001841 0.001583 0.0014

0.75 0.34034 0.217111 0.1548 4.8 0.001453 0.001255 0.0011

0.8 0.310596 0.200852 0.1443 5 0.001148 0.000997 0.0009

Fig. F.1 The first three
exponential integrals
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Fig. F.2 E3(t) and its
approximations
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For t → 0 the linear approximation E3(t) = 1
2 − t is valid. Figure F.2 shows a plot of

E3(t) and also the two approximations mentioned above. The exponential approxi-
mation seems to be a good approximation for all t . However the linear approximation
is good only for t < 0.15 or so.



Appendix G
Angle Factors and Mean Beam Lengths

G.1 Angle Factors

Enclosures encountered in engineering applications generally involve surfaces ori-
ented in three-dimensional space such that the angle factor determination is more
complex than the simple analysis that involved only lengths of sides (based on angle
factor algebra), as in the case of two-dimensional enclosures. A catalog of angle
factors and the vast literature available on these has been made by Howell.5

Common geometries involved in engineering practice involve rectangles and cir-
cles. For example, rectangular parallelepiped enclosure or a rectangular box enclo-
sure is a common geometry in engineering practice. Ovens and furnaces are usually
of this geometry and our interest is in such an enclosure that is assumed to be evacu-
ated (or contains a radiatively neutral gas). The surfaces of the enclosure are assumed
to be perfectly diffuse. Radiation heat transfer among the surfaces is governed by
the angle factors that have been introduced in Chap. 10. Two configurations that are
relevant to the rectangular box case are:

• Two parallel rectangles of equal size
• Two rectangles that are placed perpendicular to each other and share a common
edge

Enclosures involving planar surfaces in the form of circles are met with in the
case of cylindrical or conical enclosures. The angle factor that is relevant for this
type of enclosure is that between two coaxial circular disks.

We shall look at these cases in what follows.

5Catalog is accessible at http://www.me.utexas.edu/~howell/index.html.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
S. P. Venkateshan, Heat Transfer,
https://doi.org/10.1007/978-3-030-58338-5

973

http://www.me.utexas.edu/~howell/index.html
https://doi.org/10.1007/978-3-030-58338-5


974 Appendix G: Angle Factors and Mean Beam Lengths

G.1.1 Angle Factors Between Rectangles

Definition of the Geometry
Consider the enclosure as shown in Fig. G.1. The enclosure is a rectangular paral-
lelepiped of width a, depth b, and height c. The non-dimensional ratios shown in
the figure are used in the both angle factor and mean beam length calculations (to be
discussed later on).

Some general remarks may be made now. Since the opposite sides are parallel
rectangles of equal size (there are three such cases) the angle factor between, say
the bottom and top, is the same as that between the top and the bottom. However,
adjacent sides may not have equal areas and hence there are two angle factor pairs
that may or may not be equal.

G.1.2 Angle Factor Between Equal and Parallel Rectangles

The angle factor between opposite sides of the parallelepiped pertains to two equal
rectangles of size a × b with spacing c (or two equal rectangles of size a × c with
spacing b or two equal rectangles of size b × c with spacing a). Each rectangle has
area ab and the spacing between the rectangles is c. The angle factor is evaluated
by performing the integration of the angle factor defining Eq. 10.10. It is possible to
obtain the results in closed analytical form and is available from Howell’s catalog.
The expression is given by

Fig. G.1 Rectangular parallelepiped enclosure
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Fig. G.2 Angle factor between parallel rectangles of equal size

F12 = 2

πXY

{
ln

√
(1 + X2)(1 + Y 2)

1 + X2 + Y 2
+ X

√
1 + Y 2 tan−1

[
X√

1 + Y 2

]

+ Y
√
1 + X2 tan−1

[
Y√

1 + X2

]
− X tan−1 X − Y tan−1 Y

}
(G.1)

where the nomenclature used is in accordancewith Fig.G.1. The angle factor between
two parallel rectangles of equal size F12 (either bottom surface is 1 and top surface is
2 or vice versa) depends on two ratios X = a

c and Y = b
c . The closed form solution

given above is used to generate the angle factor data shown plotted in Fig. G.2. F12

is plotted for 0.1 ≤ X ≤ 10 as a family of curves for the indicated values of Y .
The data is also given in Tables G.1 and G.2 for more accurate work, where

interpolation may be used to get the desired angle factors for arbitrary values of X
and Y .

G.1.3 Angle Factor Between Perpendicular Rectangles

Similarly, the angle factors between perpendicular rectangles that share a common
edge are evaluated using the closed form solution (adjacent sides in Fig. G.1). Sur-
faces are identified as in Fig. G.1 and hence the common edge shared between the
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two rectangles is the side of length b. The angle factor is dependent on Z = a
b and

the ratio Y ′ = c
b = 1

Y and is given by the expression

F12 = 1

πY ′

{
Y ′ tan−1 1

Y ′ + Z tan−1 1

Z
−
√
Z2 + Y ′2 tan−1

[
1√

Y ′2 + Z2

]

+ 1

4
ln

[
(1 + Y ′2)(1 + Z2)

1 + Y ′2 + Z2

]
+ Y ′2

4
ln

[
Y ′2(1 + Y ′2 + Z2)

(1 + Y ′2)(Y ′2 + Z2)

]

+ Z2

4
ln

[
Z2(1 + Y ′2 + Z2)

(1 + Z2)(Y ′2 + Z2)

]}
(G.2)

The angle factor data is shown plotted in Fig. G.3 for 0.1 ≤ 1
Y ≤ 10 as a family

of curves for the indicated values of Z .
The data is also given in Tables G.3 and G.4 for more accurate work, where

interpolation may be used to get the desired angle factors for arbitrary values of Z
and Y ′.

Fig. G.3 Angle factor between perpendicular rectangles sharing a common edge
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G.1.4 Angle Factor Between Coaxial Disks

The nomenclature for two coaxial disks is shown in Fig. G.4a. The angle factor F12

between the bottom disk 1 and top disk 2 depends on the two ratios R1 = r1
L and

R2 = r2
L . The angle factor is obtained in the closed form as

F12 = 1

2

⎧⎨
⎩X −

√
X2 − 4

(
R2

R1

)2
⎫⎬
⎭ where X = 1 + 1 + R2

2

R2
1

(G.3)

Based on the closed form solution, data is generated for a range of these two param-
eters and the results are shown in Fig. G.4b. The data is also given in Table G.5 for
more accurate work, where interpolation may be used to get the desired angle factors
for arbitrary values of R1 and R2.

Fig. G.4 a Parallel coaxial disk geometry b Angle factor between parallel coaxial disks
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G.2 Mean Beam Lengths in a Parallelepiped Enclosure

The parallelepiped enclosure geometry is commonly used in ovens and furnaces,
that may contain radiatively participating gases. Hence a knowledge of mean beam
lengths for surface to surface, surface to gas in this geometry are important. The
defining formulae for these are given in Chap. 11. The integrals have been obtained as
closed form expressions byDunkle6 in the case of rectangles that form either opposite
or adjacent sides of a rectangular parallelepiped, corresponding to the optically thin
case. He has also presented tables and graphs that may be made use of. We describe
here the methodology and give tables in a readily usable form. The entries have been
calculated using the closed form expressions given by Dunkle.

G.2.1 Mean Beam Length Between Equal and Parallel
Rectangles

The geometry for this case follows the notation used in Fig. G.1. The area of any one
of the rectangles is given by A = ab.The volume of the parallelepiped is given by
V = abc. We shall represent the angle factors and mean beam lengths with subscript
par . Thus the angle factor F12 = F21 = Fpar may be obtained by using Fig. G.2 or
by using Tables G.1 and G.2. The mean beam length rpar is represented in the form
of a non-dimensional ratio given by

Z par = Fpar Arpar
V

(G.4)

Using the expressions for area and volume given earlier, we may rewrite this as

Z par = Fparabrpar
abc

= Fparrpar
c

(G.5)

Thus, the mean beam length information may be recast in the alternate non-
dimensional form

rpar
c

= Z par

Fpar
(G.6)

The closed form expression for Z par is given by

6R. V.Dunkle, ASME Journal of Heat Transfer, Vol. 86, pp.75–80, 1964.
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Fig. G.5 Non-dimensional mean beam length for parallel equal rectangles

Z par = 4

π

{
tan−1

[
XY√

1 + X2 + Y 2

]
+

1

X
ln

[
Y + √

1 + X2 + Y 2

√
1 + X2(Y + √
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]
+ 1

Y
ln

[
X + √

1 + X2 + Y 2

√
1 + Y 2(X + √

1 + X2)

]

+ 1

XY
(
√
1 + X2 +

√
1 + Y 2 − 1 −

√
1 + X2 + Y 2)

}
(G.7)

Evaluating the required angle factors using Eq. G.1 and using Eq. G.7 for evalu-
ating Z par the non-dimensional ratio rpar

c may be calculated for the desired values of
X and Y . The data thus generated has been shown plotted in Fig. G.5.

The generated data is also given in Tables G.6 and G.7 for ease in interpolation
for arbitrary X and Y values.

G.2.2 Mean Beam Length Between Perpendicular
Rectangles Sharing a Common Edge

As indicated earlier, the non-dimensional geometric parameters that are appropriate
to this geometry are Z and Y ′ = 1

Y . The two rectangles are, in general, of different
areas, and hence the angle factors, as well as the mean beam lengths, depend on
the direction of radiant interaction. We define a non-dimensional mean beam length
given by the relation
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Z per = F12A1r12
abc

(G.8)

where (1) and (2) are surface identifiers as shown in Fig. G.1. Z per is obtained in
closed form as

Z per = 1

π

{
Y ′

Z
ln

[ (
1 + √

1 + Y ′2)√Y ′2 + Z2

Y ′(1 + √
1 + Y ′2 + Z2)

]
+ Z

Y ′ ln
[ (

1 + √
1 + Z2

)√
Y ′2 + Z2

Z(1 + √
1 + Y ′2 + Z2)

]

+ 1

3Y ′Z

[
(1 + Y ′2)1.5 + (1 + Z2)1.5 + (Y ′2 + Z2)1.5 − (1 + Y ′2 + Z2)1.5

]

+ Z

Y ′
[√

1 + Y ′2 + Z2 −
√
Y ′2 + Z2 −

√
1 + Z2

]
+ 2

3

[Y ′2

Z
+ Z2

Y ′ − 1

2Y ′Z

]}
(G.9)

Data generated with the help of the above expression is shown in Tables G.8 and
G.9 for ready reference, as well as in a form suitable for interpolation.



Appendix H
Basic Equations of Convection Heat Transfer

H.1 Introduction

Equations of motion for a viscous heat conducting fluid are required while dealing
with problems that involve convection heat transfer. The governing equations go by
the name of Navier–Stokes equations7 (or NS equations) and are derived from first
principles, by making mass, momentum and energy balance over a suitably chosen
control volume. In the case of Cartesian coordinates, the control volume is in the
shape of a rectangular parallelepiped, similar to what was used in deriving the heat
equation in Chap. 5. The control volumes in the case of cylindrical and spherical
coordinates are similar to those that were made use of in Chap. 5. The procedure of
deriving the partial differential equations is similar to that used in deriving the heat
equation. For the rigorous derivation of the NS equations, the reader may refer to a
book such as that by Kays and Crawford.8

We shall look at the case of a Newtonian fluid that is incompressible and has
constant thermo-physical properties. The last assumption makes the energy equation
to decouple from the momentum equations and this is a major advantage while
looking for solutions.

H.1.1 NS Equations in Cartesian Coordinates

The flowing fluid has three velocity components u, v, w—these are the components
of �u—parallel, respectively, to the three directions x, y, z, i.e.,�u = uî + v ĵ + wk̂

7After Claude Louis Marie Henri Navier, 1785–1836, French engineer and Sir George Gabriel
Stokes, 1819–1903, British mathematician and physicist
8W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, McGraw Hill International
Edition, 1993.
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https://doi.org/10.1007/978-3-030-58338-5

991
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where î, ĵ, k̂ are unit vectors along the three directions. The equation of continuity
expresses the fact that the mass (in an incompressible fluid the volume) of a fluid
element remains constant as it migrates within the flow domain. The equation of
conservation of mass or the equation of continuity is given by

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 or ∇ · �u = 0 (H.1)

Let the pressure at any point in the fluid be p(x, y, z). The forces acting on a fluid
element are due to changes in pressure across its faces and the shear stresses acting on
the faces due to fluid viscosity. These forces result in accelerating the fluid element.
The acceleration of the fluid element consists of two parts. The first one is that due to
change in velocity at a point with respect to time, if the flow is unsteady. The second
one is due to the change in the velocity as the fluid element migrates from one point
to another in the flow domain. The total acceleration is the sum of these two and is
given in the vector form by

�a = ∂ �u
∂t

+ �u · ∇ �u (H.2)

Note that the acceleration is per unit volume of the fluid. For example, along the x
direction the component of acceleration ax is given by

ax = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(H.3)

The acceleration given by Eq. H.2 is represented as the total or material derivative
such that

�a = D�u
Dt

(H.4)

with D
Dt = ∂

∂t + �u · ∇. These terms also appear naturally whenwe perform amomen-
tum balance on a fluid element. The equation of conservation ofmomentum iswritten
down in the vector form as

D�u
Dt

= − 1

ρ
∇ p + ν∇2 �u (H.5)

In scalar form the above equation may be written down as three momentum con-
servation equations referred to as x momentum, y momentum, and z momentum
equations. These are given below
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(a)
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)

(b)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
(H.6)

(c)
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)

The last equation to be considered is the energy equation which is a scalar equa-
tion. We shall assume that the fluid has a constant specific heat c. Also, we shall
assume that there is negligible dissipation of kinetic energy to heat because of vis-
cosity. Recall the heat equation that was written down for a stationary medium. All
we have to do it tomodify the heat equation by adding flux terms due to themovement
of the fluid medium. Analogous to momentum the moving fluid transports energy
and the required term is c�u · ∇T . With this addition the heat equation is written, in
the scalar form as

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= α

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(H.7)

The NS equations are non-linear because of the inertia terms (�u · ∇ �u) in the momen-
tum equations.With the constant property assumption the momentum equations may
be solved before solving the energy equation which is only a linear equation.

H.1.2 Ideal Fluid Flow

Ideal fluid is a fluid that has no viscosity or thermal conductivity. On taking ν = 0,
the NS equations reduce to the Euler equations given by

D�u
Dt

= − 1

ρ
∇ p (H.8)

These equations would be of no particular interest were it not for the fact that a fluid
behaves as an ideal fluid far away from a solid boundary. This fact is exploited in the
boundary layer theory that will be discussed in the text in some detail.
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For simplicity, we direct our attention to steady flow in two dimensions, confined
to the x − y plane. The Euler equations may be written down, in the scalar form as
a set of two equations given by

(a) u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
(b) u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
(H.9)

The equation of continuity reduces to

∂u

∂x
+ ∂v

∂y
= 0 (H.10)

A stream function ψ(x, y) defined such that

u = ∂ψ

∂y
, and v = −∂ψ

∂x
(H.11)

satisfies the equation of continuity exactly. Now consider the two momentum equa-
tions. Differentiating Eq. H.9(a) with respect to y, we get

∂u

∂y

∂u

∂x
Term 1

+u
∂2u

∂x∂y
+ ∂v

∂y

∂u

∂y
Term 3

+v
∂2u

∂y2
= − 1

ρ

∂2 p

∂x∂y

Invoking continuity, i.e., ∂v
∂y = − ∂u

∂x , Terms and 1 and 3 in the above equation cancel
each other. Hence, the above equation reduces to

u
∂2u

∂x∂y
+ v

∂2u

∂y2
= − 1

ρ

∂2 p

∂x∂y
(H.12)

Differentaitng Eq. H.9(b) with respect to x , we get

∂u

∂x

∂v

∂x
Term 1

+u
∂2v

∂x2
+ ∂v

∂x

∂v

∂y
Term 3

+v
∂2v

∂x∂y
= − 1

ρ

∂2 p

∂y∂x

Equation of continuity is invoked again to cancel terms 1 and 3 to get

u
∂2v

∂x2
+ v

∂2v

∂x∂y
= − 1

ρ

∂2 p

∂y∂x
(H.13)

Subtract Eq. H.13 from Eq. H.12 to get (after minor manipulation)
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u
∂

∂x

(
∂u

∂y
− ∂v

∂x

)
+ v

∂

∂y

(
∂u

∂y
− ∂v

∂x

)
= 0

We introduce the notation ω = ∂u
∂y − ∂v

∂x to write the above equation as

u
∂ω

∂x
+ v

∂ω

∂y
= 0 (H.14)

ω is known as the vorticity. In two-dimensional flow, this represents the rotation of
a fluid element. Equation H.14 states simply that vorticity is transported with the
fluid without any generation or annihilation. This is a consequence of the fluid being
non-viscous or inviscid.

Writing the velocities in terms of stream function using Eq. H.11, the above
equation simplifies to

u

(
∂2ψ

∂y2
+ ∂2ψ

∂x2

)
+ v

(
∂2ψ

∂y2
+ ∂2ψ

∂x2

)
= 0 (H.15)

Since there is no restriction on the magnitudes of u and v, the above equation holds
only if the stream function satisfies the Laplace equation given by9

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0 (H.16)

We may also define a potential function φ(x, y) such that the velocity components
are given by

u = ∂φ

∂x
and v = ∂φ

∂y
(H.17)

The vorticity is then given by

∂u

∂y
− ∂v

∂x
= ∂2φ

∂y∂x
− ∂2φ

∂x∂y
≡ 0

Thus, the flow is rotation free or irrotational. Using the equation of continuity, we
also have

9Note in general that ∂2ψ

∂x2
+ ∂2ψ

∂y2
= ω since the stream function may be defined even when the flow

is that of a viscous fluid.
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∂u

∂x
+ ∂v

∂y
= ∂2φ

∂x2
+ ∂φ

∂y2
= 0 (H.18)

Thus, the potential function also satisfies the Laplace equation.
Since the stream and potential functions satisfy individually the Laplace equation„

we may consider these as the real and imaginary parts of a complex potential. The
complex potential method that is given in Appendix C may also be used for treating
potential flows. Actually, typical ideal fluid flow examples have been given there.

H.2 NS Equations in Cylindrical and Spherical
Coordinates

If we write the NS equations in the vector form, they are valid representations in
all the three coordinate systems. The NS equations are presented (starting page 996
ending with page 999) in scalar forms for easy reference.

H.2.1 NS Equations in Cylindrical Coordinates

The velocity components are represented as ur , uθ , uz , respectively, along the
three coordinate directions r, θ, z. The NS equations are given below
• Equation of continuity:

1

r

∂(rur )

∂r
+ 1

r

∂(uθ )

∂θ
+ ∂uz

∂z
= 0 (H.19)

• r momentum equation:

∂ur
∂t

+ ur
∂ur
∂r

+ uθ

r

∂ur
∂θ

− u2θ
r

+ uz
∂ur
∂z

= − 1

ρ

∂p

∂r
+

ν

[
∂

∂r

(
1

r

∂(rur )

∂r

)
+ 1

r2
∂2ur
∂θ2

− 2

r2
∂uθ

∂θ
= ∂2uz

∂z2

] (H.20)
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• θ momentum equation:

∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uruθ

r
+ uz

∂uθ

∂z
= − 1

ρ

1

r

∂p

∂θ
+

ν

[
∂

∂r

(
1

r

∂(ruθ )

∂r

)
+ 1

r2
∂2uθ

∂θ2
+ 2

r2
∂ur
∂θ

= ∂2uθ

∂z2

]

(H.21)
• z momentum equation:

∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z
= − 1

ρ

∂p

∂z
+

ν

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+ 1

r2
∂2uz

∂θ2
+∂2uz

∂z2

] (H.22)

• Energy equation:

∂T

∂t
+ ur

∂T

∂r
+ uθ

r

∂T

∂θ
+ uz

∂T

∂z
= α

[1
r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2
∂2T

∂θ2
+ ∂2T

∂z2

]

(H.23)

Inviscid flow in polar coordinates
Steady inviscid flow in a plane may be considered either using cartesian system of
coordinates or the polar coordinates (r, θ ). The equations in cylindrical coordinates
reduce to simple form when we put uz ≡ 0 and ∂

∂z ≡ 0 in Eq. H.19 through H.22.

• Equation of continuity:

∂(rur )

∂r
+ ∂(uθ )

∂θ
= 0 (H.24)

• r momentum equation:

ur
∂ur
∂r

+ uθ

r

∂ur
∂θ

− u2θ
r

= − 1

ρ

∂p

∂r
(H.25)

• θ momentum equation:

ur
∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uruθ

r
= − 1

ρ

1

r

∂p

∂θ
(H.26)

We see that a stream function ψ(r, θ) may be defined as follows:
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ur = 1

r

∂ψ

∂θ
, uθ = ∂ψ

∂r
(H.27)

We then see that the equation of continuity is identically satisfied. As in the
case of cartesian system, ψ(r, θ) also satisfies the Laplace equation, but in
polar form given by

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r

∂2ψ

∂θ2
= 0 (H.28)

The flow is again irrotational and it is possible to define a potential functionφ(r, θ)

such that
�u = ∇φ

where we use the gradient operator in polar form. We thus have the following:

ur = ∂φ

∂r
, uθ = 1

r

∂φ

∂θ
(H.29)

Then the potential φ also satisfies Laplace equation in polar coordinates given in
Eq. H.28.

NS equations for axisymmetric flow
A case that is of much importance in convection heat transfer is axisymmetric flow
in cylindrical coordinates. For example, flow inside a circular tube is of this type.
The velocity is a function of only r, z and the appropriate equations are obtained by
setting uθ ≡ 0 and ∂

∂θ
≡ 0 in Eqs. H.19 through H.23. Of course, Eq. H.21 drops off

completely. The appropriate equations for axisymmetric flow are given below

• Equation of continuity:

1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0 (H.30)

• r momentum equation:

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

= − 1

ρ

∂p

∂r
+ ν
[ ∂

∂r

(1
r

∂(rur )

∂r

)
+ ∂2uz

∂z2

]
(H.31)

• z momentum equation:

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= − 1

ρ

∂p

∂z
+ ν
[1
r

∂

∂r

(
r
∂uz

∂r

)
+ ∂2uz

∂z2

]
(H.32)
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• Energy equation:

∂T

∂t
+ ur

∂T

∂r
+ uz

∂T

∂z
= α

[1
r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2

]
(H.33)

H.2.2 NS Equations in Spherical Coordinates

The velocity components are represented as ur , uθ , uφ , respectively, along the three
coordinate directions r, θ, φ. The NS equations are given below

• Equation of continuity:

1

r2
∂(r2ur )

∂r
+ 1

r sin θ

∂(uθ sin θ)

∂θ
+ 1

r sin θ

∂uφ

∂φ
= 0 (H.34)

• r momentum equation:

∂ur
∂t

+ ur
∂ur
∂r

+ uθ

r

∂ur
∂θ

+ uφ

r sin θ

∂ur
∂φ

− u2θ + u2φ
r

= − 1

ρ

∂p

∂r

+ν
[ 1
r2

∂2(r2ur )

∂r2
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ur
∂θ

)
+ 1

r2 sin2 θ

∂2ur
∂φ2

]
(H.35)

• θ momentum equation:

∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uφ

r sin θ

∂uθ

∂φ
+ ur uθ

r
−

u2φ cot θ

r
= − 1

ρ

1

r

∂p

∂θ

+ν
[ 1

r2
∂

∂r

(
r2

∂uθ

∂r

)
+ 1

r2 sin2 θ

∂2uθ

∂φ2 + 2

r2
∂ur
∂θ

− 2 cos θ

r2 sin2 θ

∂uφ

∂φ

]
(H.36)

• φ momentum equation:

∂uφ

∂t
+ ur

∂uφ

∂r
+ uθ

r

∂uφ

∂θ
+ uφ

r sin θ

∂uφ

∂φ
+ uruφ

r
+ uθuφ cot θ

r
=

− 1

ρ

1

r sin θ

∂p

∂φ
+ ν
[ 1
r2

∂

∂r

(
r2

∂uφ

∂r

)
+ 1

r2

( 1

sin θ

∂

∂θ
(uφ sin θ)

)
+

1

r2 sin2 θ

∂2uφ

∂φ2
+ 2

r2 sin θ

∂ur
∂φ

+ 2 cos θ

r2 sin2 θ

∂uθ

∂φ

]
(H.37)
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• Energy equation:

∂T

∂t
+ ur

∂T

∂r
+ uθ

r

∂T

∂θ
+ uφ

r sin θ
=

α
[ 1
r2

∂

∂r

(
r2

∂T

∂r

)
+ 1

r2 sin2 θ

∂

∂θ

( sin θ

r

∂T

∂θ

)
+ 1

r sin θ

∂

∂φ

( 1

r sin θ

∂T

∂φ

)]

(H.38)
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Useful Tables

See Tables I.1, I.2, I.3, I.4, I.5 and I.6

Table I.1 Physical constants

Atmospheric pressure 101.325 kPa

Avogadro number, N 6.022 × 1023 molecules
mole

Velocity of light in vacuum, c0 3 × 108 m
s

Planck constant, h 6.62 × 10−34 J s

Stefan-Boltzmann constant, σ 5.67 × 10−8 W
m2K 4

Boltzmann constant, k 1.39 × 10−23 J
K

First radiation constant, C1 3.74 × 10−16 W m2

Second radiation constant, C2 14387.7 μm K

Standard acceleration due to
gravity, g

9.807 m
s2
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Table I.2 Units of physical quantities

Quantity Dimension Name Symbol Unit

Acceleration LT−2 a m
s2

Area L2 A or S m2

Density ML−3 ρ
kg
m3

Dynamic
viscosity

ML−1T−1 μ
kg
m s

Energy ML2T−2 Joule E kg m2

s2
or J

Enthalpy ML2T−2 h kg m2

s2
or J

Force MLT−2 Newton F kg m
s2

or N

Frequency T−1 Hertz f 1
s or Hz

Gas constant L2T−2θ−1 Rg
J

kg K or J
kg ◦C

Heat Flux MT−3 q J
s m2 or W

m2

Heat transfer
coefficient

MT−3θ−1 h W
m2◦C

Kinematic
viscosity

L2T−1 ν m2

s

Momentum MLT−1 p kg m
s or N s

Power ML2T−3 Watt P W

Pressure or stress ML−1T−2 Pascal p or P Pa or N
m2

Ratio of specific
heats

non-dimensional γ No unit

Resistance, fluid
due to viscosity

L−1T−1 R 1
m s

Resistance,
thermal

M−1T 3θ R
◦C m2

W

Specific heat L2T−2θ−1 c J
kg K or J

kg ◦C
Thermal
conductivity

MLT−3θ−1 k W
m◦C

Thermal
diffusivity

L2T−1 α m2

s

Velocity LT−1 V m
s

Velocity, sonic LT−1 a m
s

Wavelength L λ m or μm

Wavenumber L−1 cm−1

Work ML2T−2 Joule W kg m2

s2
or J
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Table I.3 Important dimensionless groups

Biot number Bi = hL
k Nusselt number Nu = hL

k

Colburn j factor j = St × Pr
2
3 Peclet number Pe = Re × Pr

Euler number Eu = p
ρU2 Prandtl number Pr = μCp

k

Eckert number Ec = U2

CpT
Radiation conduction NRC = εσT 3L2

kt

interaction parameter

Fourier number Fo = αt
2 Reynolds number Re = ρUL

μ

Graetz number Gz = ReD Pr
2 × x

D Richardson number Gr
Re2

Grashof number Gr = gβ
T L3

ν2
Stanton number St = h

ρUCp

Mach number M = U
a Stefan number Ste = Cpf (T0−Tm )

hs f

Table I.4 Thermal properties of metallic solids�

Metal ρ C k α × 105

kg/m3 J/kg◦C W/m◦C m2/s

Aluminum 2702 903 237 9.71

Alumel 8574 464 29.2 0.734

Brass 8470 377 116 3.63

Bronze 8830 377 52 1.36

Cast Iron (4% C) 7272 420 51 1.67

Chromel 8730 448 17.3 0.493

Copper 8900 385 21.7 6.33

Constantan 8900 390 22.7 0.654

Duralumin 8933 385 401 11.7

Gold 19300 129 317 12.7

Iron 7870 447 80.3 2.28

Nickel 8900 444 90.7 2.3

Platinum 21450 133 71.6 2.51

Silver 10500 235 429 17.4

Stainless Steel
304

7900 477 14.9 0.395

Tin 7310 227 66.6 4.03

Titanium 4500 522 21.9 0.932

Tungsten 19300 132 174 6.83
�Tabulated values are at room temperature and representative



1004 Appendix I: Useful Tables

Table I.5 Thermal properties of non-metallic solids�

Non-metallic ρ C k α × 107

solid kg/m3 J/kg◦C W/m◦C m2/s

Alumina (Al2O3) 3970 765 36 11.9

Asbestos cement
board

1900 1000 0.58 3.05

Asbestos cement
roofing

1900 1000 0.27 1.42

Asphalt 2110 920 0.74 3.81

Bakelite 1270 1590 0.233 1.15

Balsa wood 140 0.055

Cellular
polyurethane

24 1590 0.025 6.55

Cement plaster 1860 840 0.72 4.61

Clay 2080 921 1.73 9.03

Common brick 1920 835 0.72 4.49

Concrete 2240 900 1.9 9.42

Concrete blocks 2100 920 1.1 5.69

Crown glass 2500 1.22

CVD diamond 1000-1800

Diamond 3500 509 2300 12910

Felt 330 0.05

Fiberglass 16 0.046

Fired clay brick 1920 790 0.9 5.93

Granite 2630 775 2.79 13.7

Ice at 0◦C 917 2093 2.21 11.5

Magnesia 184 0.05

Mylar 0.197

Oak 704 0.17

Paper 930 1300 0.13 1.08

Paperboard,
laminated

480 1380 0.072 1.09

Particle board,
high density

1000 1300 0.17 1.31

Particle board, low
density

590 1300 0.102 1.33

Plywood 540 1210 0.12 1.84

Polyurethane foam 32 0.025

Polyvinyl chloride
(PVC)

1380 1170 0.15 0.929

Pyrex 2170 716 1.06 6.82

Sand 1520 921 0.317 2.26

Window glass 2800 0.7

Wool felt 320 0.045
�Tabulated values are at room temperature and representative
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Table I.6 Properties of dry air at atmospheric pressure

T ◦C ρ Cp μ × 106 ν × 106 k × 103 α × 106 Pr

kg/m3 kJ/kg◦C kg/m · s m2/s W/m◦C m2/s

0 1.2811 1.004 17.09 13.34 24.2 18.8 0.709

20 1.1934 1.004 18.09 15.16 25.8 21.5 0.704

40 1.1169 1.005 19.07 17.07 27.4 24.4 0.699

60 1.0496 1.007 20.02 19.08 29 27.4 0.696

80 0.9899 1.008 20.95 21.16 30.5 30.5 0.693

100 0.9367 1.011 21.85 23.33 32 33.8 0.691

120 0.8889 1.013 22.74 25.58 33.4 37.1 0.689

140 0.8457 1.016 23.59 27.9 34.9 40.6 0.688

160 0.8065 1.019 24.43 30.29 36.3 44.1 0.687

180 0.7708 1.023 25.25 32.76 37.6 47.7 0.686

200 0.7381 1.026 26.04 35.29 38.9 51.4 0.686

240 0.6803 1.034 27.58 40.54 41.5 59 0.687

280 0.631 1.043 29.05 46.04 43.9 66.8 0.689

320 0.5883 1.051 30.45 51.76 46.3 74.8 0.692

360 0.551 1.06 31.8 57.71 48.5 83 0.695

400 0.5181 1.069 33.09 63.87 50.6 91 0.699

440 0.489 1.078 34.34 70.23 52.7 100 0.703

480 0.4629 1.087 35.55 76.8 54.7 109 0.707

520 0.4395 1.096 36.73 83.58 56.7 118 0.71

560 0.4183 1.105 37.88 90.56 58.6 127 0.714

600 0.3991 1.114 39.01 97.75 60.6 136 0.717

Table I.7 Thermal properties of saturated water
T ◦C ρ Cp μ × 106 ν × 107 k α × 106 Pr

kg/m3 kJ/kg◦C kg/m · s m2/s W/m◦C m2/s

0 999.8 4.217 1752.5 17.53 0.569 1.35 12.988

10 999.7 4.193 1299.2 13 0.586 1.398 9.296

20 998.3 4.182 1001.5 10.03 0.602 1.442 6.957

30 995.7 4.179 797 8.004 0.617 1.483 5.398

40 992.3 4.179 651.3 6.564 0.63 1.519 4.32

50 988 4.181 544 5.506 0.643 1.557 3.537

60 983.2 4.185 463 4.709 0.653 1.587 2.967

70 977.7 4.19 400.5 4.096 0.662 1.616 2.535

80 971.6 4.197 351 3.613 0.669 1.641 2.202

90 965.2 4.205 311.3 3.225 0.675 1.663 1.939

(continued)
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Table I.7 (continued)
T ◦C ρ Cp μ × 106 ν × 107 k α × 106 Pr

kg/m3 kJ/kg◦C kg/m · s m2/s W/m◦C m2/s

100 958.1 4.216 279 2.912 0.68 1.683 1.73

110 950.7 4.229 252.2 2.653 0.683 1.699 1.562

120 942.9 4.245 230 2.439 0.685 1.711 1.425

130 934.6 4.263 211 2.258 0.687 1.724 1.309

140 925.8 4.285 195 2.106 0.687 1.732 1.216

150 916.8 4.31 181 1.974 0.686 1.736 1.137

160 907.3 4.339 169 1.863 0.684 1.737 1.072

170 897.3 4.371 158.5 1.766 0.681 1.736 1.017

180 886.9 4.408 149.3 1.683 0.676 1.729 0.974

200 864.7 4.497 133.8 1.547 0.664 1.708 0.906

220 840.3 4.614 121.5 1.446 0.648 1.671 0.865

240 813.6 4.77 111.4 1.369 0.629 1.621 0.845

260 783.9 4.985 103 1.314 0.604 1.546 0.85

280 750.5 5.3 96.1 1.28 0.573 1.441 0.889

300 712.2 5.77 90.1 1.265 0.54 1.314 0.963

320 666.9 6.59 83 1.245 0.503 1.145 1.087

340 610.1 8.27 74.8 1.226 0.46 0.912 1.345

360 528.3 14.99 64.4 1.219 0.401 0.506 2.407

Table I.8 Thermal properties of SAE-20 engine oil
T ◦C ρ Cp μ × 106 ν × 106 k × 103 α × 107 Pr

kg/m3 kJ/kg◦C kg/m · s m2/s W/m◦C m2/s

0 902.9 1.726 77.8 861.71 134.5 0.863 9984.9

10 896.2 1.762 33.599 374.9 134.3 0.85 4409.4

20 889.6 1.798 16.396 184.31 134 0.838 2199.3

30 882.9 1.834 8.878 100.55 133.8 0.826 1216.8

40 876.3 1.87 5.247 59.88 133.6 0.815 734.5

50 869.6 1.906 3.335 38.35 133.4 0.805 476.7

60 863 1.942 2.251 26.08 133.1 0.794 328.3

70 856.3 1.978 1.594 18.62 132.9 0.785 237.3

80 849.7 2.014 1.174 13.82 132.7 0.775 178.2

90 843 2.05 0.892 10.58 132.5 0.767 138

100 836.4 2.086 0.694 8.3 132.2 0.758 109.5

110 829.7 2.122 0.551 6.65 132 0.75 88.6

120 823.1 2.158 0.446 5.42 131.8 0.742 73

130 816.4 2.194 0.366 4.49 131.6 0.735 61.1

140 809.8 2.23 0.306 3.78 131.3 0.727 52

150 803.1 2.266 0.261 3.25 131.1 0.721 45.1

160 796.5 2.302 0.227 2.85 130.9 0.714 40

170 789.8 2.338 0.204 2.58 130.7 0.708 36.5
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Table I.9 Thermal properties of ethylene glycol

T ◦C ρ Cp μ × 102 ν × 106 k × 103 α × 107 Pr

kg/m3 kJ/kg◦C kg/m · s m2/s W/m◦C m2/s

0 1129 2.28 5.89 52.2 304.3 1.18 441.6

10 1123 2.33 3.51 31.24 296.6 1.13 275.5

20 1116 2.38 2.2 19.68 289 1.09 180.8

30 1109 2.429 1.44 13 281.4 1.04 124.4

40 1102 2.479 0.988 8.97 273.8 1 89.4

50 1094 2.529 0.704 6.44 266.3 0.962 66.9

60 1087 2.578 0.521 4.79 258.7 0.923 51.9

70 1079 2.628 0.397 3.68 251.2 0.886 41.6

80 1071 2.677 0.312 2.91 243.6 0.849 34.3

90 1064 2.727 0.251 2.36 236.1 0.814 29

100 1056 2.777 0.206 1.95 228.6 0.78 25

110 1048 2.826 0.172 1.64 221.1 0.747 22

120 1040 2.876 0.146 1.4 213.7 0.714 19.6

130 1032 2.925 0.125 1.21 206.2 0.683 17.7

140 1024 2.975 0.107 1.04 198.7 0.652 16

150 1017 3.025 0.092 0.91 191.2 0.622 14.6

160 1009 3.075 0.079 0.79 183.8 0.592 13.3

170 1002 3.125 0.068 0.68 176.3 0.563 12

Table I.10 Thermal properties of ice

T ◦C Cp k ρ α × 106

J/kg · K W/m◦C kg/m3 m2/s

0 2040 2.24 917 1.2

−10 1997 2.32 916 1.27

−20 1946 2.43 914 1.37

−30 1886 2.55 913 1.48

−40 1817 2.66 911 1.61

hs f = 333.6 kJ/kgat T = 0 ◦C

Table I.11 Emissivities of surfaces at room temperature

Surface Emissivity Surface Emissivity

Aluminum (anodized) 0.77 Glass 0.92

Aluminum (oxidized) 0.11 Gold 0.02

Aluminum (polished) 0.05 Iron oxide 0.56

Aluminum (roughened
with emery)

0.17 Paper 0.93

(continued)
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Table I.11 (continued)

Surface Emissivity Surface Emissivity

Aluminum foil 0.03 Plaster 0.98

Aluminized Mylar 0.03 Porcelain (glazed) 0.92

Anodized black
coating

0.88 Silver-pure, polished 0.020–0.032

Asbestos board 0.94 Steel-galvanized (old) 0.88

Brass (dull) 0.22 Steel-galvanized (new) 0.23

Brass (polished) 0.03 Steel-oxidized 0.79

Brick (dark) 0.9 Steel-polished 0.07

Concrete 0.85 Tile 0.97

Copper (oxidized) 0.87 Tungsten (polished) 0.03

Copper (polished) 0.04 Water 0.95

Fire-clay 0.75

Table I.12 Emissivity variation with temperature for various surfaces

Temperature ◦C
Material surface 25 100 200 500 600 1200

Aluminum (heavily oxidized) 0.2 0.31

Aluminum (oxidized) 0.11 0.19

Aluminum (un-oxidized) 0.02 0.03 0.06

Aluminum (commercial sheet) 0.09

Aluminum (highly polished sheet) 0.04 0.06

Aluminum (highly polished) 0.09

Aluminum (roughly polished) 0.18

Brass (polished) 0.03 0.03

Carborundum 0.92

Cast iron (heavily oxidized) 0.95 0.95

Cast iron (oxidized) 0.64 0.78

Cast iron (un-oxidized) 0.21

Fire brick 0.75–
0.80

Iron (oxidized) 0.74 0.84 0.89

Iron (un-oxidized) 0.05

Mild steel (polished) 0.1

Refractory (magnesite) 0.75

Silica (glazed) 0.88

(continued)
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Table I.12 (continued)

Temperature ◦C
Silica(unglazed) 0.8

Silver (polished) 0.01 0.02 0.03 0.03

Steel (oxidized) 0.8

Steel (polished sheet) 0.07 0.1 0.14

Steel (un-oxidized) 0.08



Index

A
Absorption coefficient, 476
Adam Moulton method, 963
ADI scheme, 309
After Hagen-Poiseuille solution, 564
Analogy

Colburn, 706
modified Reynolds, 789
Prandtl, 707
Reynolds, 635
von Karman, 709

Angle factor, 407, 408, 973
Axial pressure gradient, 660

B
Band model, 364, 499
Beer’s law, 478
Berkovsky and Polevikov equation, 804
Bessel equation, 207
Bessel function, 915

Modified and second kind, 126
Modified of first kind, 117

Bidirectional reflectance, 399
Biot number, 35, 44, 65, 98

elemental, 276
Black body, 9
Blake–Plummer equation, 886
Blasius equation, 621
Boundary condition

first kind, 25
second kind, 34
third kind, 29

Boundary layer, 560, 612
thermal, 627

turbulent, 704
velocity, 618

Boussinesq approximation, 771
Brewster angle, 383
Broadening

collision, 496
Doppler, 497
natural, 496

Buckingham π theorem, 551
Bulk mean temperature, 573

C
Cauchy-Riemann conditions, 941
Cavity radiator, 436
Central difference approximation, 255
Characteristic length scale, 66
Churchill and Chu correlation, 791
Closure, 690
Colburn j factor, 892
Common bands, 450
Complementary error function, 161
Complex index of refraction, 388
Complex potential, 190, 943

superposition, 946
Conduction

multidimensional, 151
shape factor, 194
steady

cylinder, 206
one dimension, 19
sphere, 212
two dimensions, 183

transient
cylinder, 227
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1012 Index

finite cylinder, 245
finite slab, 176
multi-dimensional, 219
one dimension, 66
rectangular bar, 236
rectangular block, 242
semi-infinite solid, 158
slab, 220
sphere, 229

Conjugate problem, 44, 815
Continuum, 3
Controller, 81
Convection

forced, 547
free or natural, 547
natural or free, 763

Convergence criterion, 259
Crank–Nicolson scheme (CN), 291
Critical angle, 383
Critical heat flux, 865
Critical radius ratio, 43
Cylinder in cross flow, 670

D
Darcy flow, 895
Darcy number, 897
Decomposition rule, 410
Depth of penetration, 162
Detailed balancing, 427
Diffuse, 375, 453
Diffusion, 4
Diffusivity

eddy, 689
Dimensional analysis, 551
Dipole, 947
Direct exchange area, 527
Discrete ordinate method, 517
Dittus Boelter equation, 700
Drop wise condensation, 849

E
Eckert number, 901
Eigenvalue, 178
Electrical analogy, 31
ElShirbiny et al. correlation, 805
Emission coefficient, 476
Emissive power

spectral, 344
total, 345

Environmental parameter, 823
Equation of transfer, 476

Equilibrium temperature, 368
Equivalent emissivity, 437
Ergun equation, 886
Error function, 161
Euler equations, 993
Euler method, 961
Euler number, 553, 565
Exchange area, 409
Exchange factor, 454
Explicit formulation, 287
Exponential integral, 490, 969
Extended surfaces, 6, 97

F
Falkner Skan equation, 642
Field, 7
Film boiling, 866
Film condensation, 849

laminar, 857
turbulent, 861

Film resistance number ψ f , 824
Fin array

effectiveness, 137
overall surface efficiency, 136

Fin efficiency, 106
Finite difference method, 253
Fin parameter, 102, 258
Fins, 6, 97

conical spine, 121
longitudinal, 98
radial, 113, 124
trapezoidal, 115
triangular, 117
uniform area, 100
variable area, 113

First order system, 67
First order system response

periodic input, 73
ramp input, 78
steady state, 70, 75, 80
step input, 70
transient, 70, 75

Flow
entry length, 560
external, 547, 611
fully developed, 560
internal, 547, 559
laminar, 547
steady, 547
turbulent, 547, 685
unsteady, 547

Flow boiling, 862, 870



Index 1013

Fluid
compressible, 546
incompressible, 546
inviscid, 546
resistance, 570

Fluid layers, 802
Flux line, 7
Forchheimer extended Darcy model, 895
Form drag, 716, 885
Fourier Bessel series, 922
Fourier law, 9
Fourier Legendre series, 937
Fourier number, 180

elemental, 288
Fourier series, 74, 178
Fredholm integral equation, 462, 513
Freezing, 839
Fresnel relations, 382
Friction coefficient, 704
Friction factor

Darcy, 565
Friction velocity, 692
Frobenius method, 915

G
Gamma function, 917
Gauss iteration, 514, 959
Gauss-Seidel iteration, 959
Graaf and Held correlations, 803
Graetz number, 603
Graetz problem, 602
Grashof number, 770
Gray, 360
Grid sensitivity analysis, 261

H
Hausen formula, 604
Hazen-Dupuit-Darcy model, 895
Heat equation, 19, 156
Heat exchanger, 727

capacity ratio R, 736
co-current, 728
counter current, 728
cross flow, 746
effectiveness, 730
multi-pass, 745
number of transfer units NTU , 736
shell and tube, 746

Heat flux, 8
Heat generation, 24
Heat generation parameter, 26

Heat loss fraction, 225, 229, 232, 239
Heat transfer

boiling, 862
condensation, 848
conduction, 2
convection, 2, 11
entry length, 575
entry region, 602
fully developed, 576
laminar, 572
radiation, 2, 9
turbulent, 685

Heat transfer coefficient, 13
overall, 733
radiation, 10, 836

Heisler charts, 235
Hemispherical absorptivity, 362
Hemispherical emissivity, 361
Hemispherical radiosity, 362
Hemispherical reflectivity, 361
Heun method, 962
High speed flow, 547, 899
Hollands et al. correlation, 808
Hottel’s crossed string method, 414
Hydraulic diameter, 589

I
Implicit formulation, 290
Integral equation

energy, 647
momentum, 647

Integral method, 771
Goodman, 173

Irradiation, 361
Irrotational flow, 995
Isobaric coefficient of volume expansion,

771
Isotherm, 7
Iteration scheme

Gauss, 259
Gauss-Seidel, 260

J
Jacobian matrix, 957
Jakob correlations, 802
Joule heating, 47

K
Karman Pohlhausen method, 654
Kirchhoff’s law, 362
Knudsen number, 4



1014 Index

Kozeny - Carman equation, 886

L
Laminar, 12
Laplace equation, 156

elementary solution, 190
Laplacian, 155
Law of conservation of energy, 19
Leckner model, 500
Legendre equation, 213
Legendre polynomials, 933
Local thermodynamic equilibrium or LTE, 3
Log mean temperature difference or LMTD,

733
Lumped system, 66

M
Mach number, 547
McAdams correlation, 790
Mean beam length, 491, 973
Mean free path, 3
Melting, 839
Metal foams, 895
Micro Electro Mechanical Systems

(MEMS), 4
Mixed, 750
Mixed convection, 872
Mixing length, 691
Modified Bessel function, 923
Modified Reynolds number, 888
Moody chart, 697

N
Navier–Stokes equations, 560, 991
Neumann problem, 843
Newton’s law of cooling, 13
Newton–Raphson method, 955
Newton-Raphson, 223
Non-gray, 360, 450
No slip, 564
Nucleate boiling, 865
Nusselt analysis, 849
Nusselt number, 557

O
One-term approximation, 180, 225
Optically thin, 491, 515, 983
Optical thickness, 490
Optimum fin, 128
Order of magnitude analysis, 613

Ostrach solution, 771, 783

P
Parallel flow, 947
Participating medium, 475
Particle bed, 884
Performance parameter, 892
Periodic heating, 169
Permeability, 895
Planck distribution, 343
Poisson equation, 156, 592, 593
Polarization, 378
Pool boiling, 862
Porosity, 889
Porous media, 894
Potential function, 995
Prandtl number, 549
Prandtl’s mixing length theory, 691

R
Radiation

black body, 335
electrical analogy, 444
electrical network, 445
electromagnetic, 324
energy density, 329
fraction function, 349
pressure, 331
space resistance, 444
spectral heat flux, 330
spectral or monochromatic intensity, 327
surface resistance, 445
thermal, 323
total quantities, 333

Radiation Biot number, 817
Radiation error, 818
Radiation number ψr , 824
Radiosity irradiation method, 428
Rayleigh-Jeans approximation, 348
Rayleigh number, 780
Reciprocity, 409
Recovery factor r , 904
Refractive index, 324
Relaxation, 961
Resistance

conduction, 31
contact, 32
film, 31
overall, 31

Reynolds average, 687
Reynolds number, 553
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Richardson number, 874
Rohsenow correlation, 865
Rule of corresponding corners, 420
Runge–Kutta method, 257, 785, 962

S
Second order accurate, 255, 266, 270
Second order system, 85
Seider and Tate relation, 605
Selective surface, 369
Separation, 642
Separation of variables, 177
Separation point, 716
Set point, 81
Shape parameter, 663
Shooting method, 257, 965
Similarity, 158, 554

dynamic, 551, 554
geometric, 551

Similarity analysis, 619
Similarity variable, 159, 167
Snell’s law, 380
Sn method, 519
Specular, 375, 453
Spines, 115
Stability condition, 289
Stagnation point flow, 662
Stanton number, 637, 702, 904
Stefan-Boltzmann constant, 10, 346
Stefan number, 842
Stefan problem, 839
Stream function, 994
Sum rule, 409
Superficial velocity, 885
Superposition, 192

T
Theoretical profile, 833
Thermal conductivity, 9
Thermal diffusivity, 157, 549
Thermodynamic analysis, 729
Thickness

displacement, 650
momentum, 651

thermal boundary layer, 617
velocity boundary layer, 613

Thwaite’s method, 663
Time constant, 67
Total internal reflection, 383
Total or material derivative, 992
Transition, 12
Transmittance, 478
Transmittivity, 491
TridiagonalMatrixAlgorithm (TDMA), 263
Tridiagonal Matrix Algorithm or TDMA,

957
Tube bank, 719
Turbulent, 12
Turbulent heat flux, 689
Turbulent shear stress, 689

U
Universal temperature profile, 21
Universal velocity profile, 693
Unmixed, 750

V
Viscosity

dynamic, 548
eddy, 689
kinematic, 549

Viscous dissipation, 899
Void fraction, 885
Volumetric heat transfer coefficient, 889
Vorticity, 995

W
Wave equation, 339
Wein’s approximation, 348
Wein’s displacement law, 347
WSGG model, 501

Z
Zhukauskas correlation, 717
Zone method, 526
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