
Chapter 8
Query Suggestion

Zhen Liao, Yang Song, and Dengyong Zhou

Abstract Query suggestion is one of the few fundamental problems in Web
search. It assists users to refine queries in order to satisfy their information needs.
Many query suggestion techniques have been proposed in the past decades. The
mainstream idea is to leverage query logs which contain the search behaviors of
users to generate useful query suggestions. In this chapter, we introduce several
log-based query suggestion techniques. These methods fall into four categories: (1)
query co-occurrence; (2) query-URL bipartite graph; (3) query transition graph; and
(4) short-term search context. We also briefly discuss other related work in this field
and point out several future directions.

8.1 Introduction

8.1.1 An Overview of Query Suggestion Approaches

How effectively users are able to retrieve information from the Web largely depends
on whether they can formulate input queries properly to express their information
needs. However, formulating effective queries is never meant to be an easy task. On
the one hand, given the same query, different search engines may return different
results. This means that it is unlikely to define a single standard to guide query
formulation across different search engines. On the other hand, queries are typically
expressed in just a few words [11, 20, 22], which potentially increases the difficulty
for search engines to understand query intents.
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Most commercial search engines, including Google,1 Yahoo!2, and Bing3 pro-
vide query suggestions on their search result pages to help user formulating queries.
A recent study [28] shows that query suggestions are particularly useful in the
following scenarios: (1) the original query is a rare query; (2) the original query
consists of only one word; (3) the suggested queries are unambiguous; and (4)
the suggested queries are generalizations or error corrections of the original query.
Based on the study in [15], around 30% of searches in commercial search engines
are generated from query suggestions.

Studies on query suggestions can be traced back to the early years of this
century [4, 20, 46]. Since then, many techniques [2, 3, 8, 10, 18, 21, 23, 26, 29–
32, 36, 40–42, 47] have been proposed to improve the quality of query suggestions.
Roughly speaking, query suggestions have the following major objectives [35]:
(1) when a user’s information need is not satisfied, the search results from the
suggestions should provide more relevant results or (2) when a user’s information
need is satisfied but the user wants to explore more, the suggestions can provide
useful guideline to obtain related information.

Search engine logs contain information on how users refine their queries as
well as how users click on suggested queries, which can help address both of the
aforementioned objectives. As a result, most query suggestion techniques leverage
search logs as a useful source of information.

Formally, given a query q , query suggestion aims at optimizing a scoring function
f (q, q ′) ∈ IR that can be used to rank suggestion candidates q ′. To include short-
term search context in query suggestion, the relevance function f (q, q ′) can also
be extended as f (q1,...,i , q

′), where q1,...,i = {q1, . . . , qi} (i ≥ 1) represents the
previous search sequence.

8.1.2 Examples of Query Suggestion Approaches

As we mentioned above, one of the most important and effective query suggestion
techniques leverages query logs [3, 8, 10, 18, 21, 29–32, 36, 40–42, 46]. Query logs
record user interactions with search engines. A typical query log entry contains
timestamp, query, clicked URL as well as other information (e.g., anonymous user
ID, search platform, etc.). In contrast, suggestion methods that do not use query
logs [5] often generate candidates from external data sources. Those approaches
do not consider the fact that the text used in formulating search queries is usually
quite different from text in external sources (e.g., typos, acronym, no grammar, etc.).
Thus, they are less effective in practice.

1http://www.google.com.
2http://www.yahoo.com.
3http://www.bing.com.

http://www.google.com
http://www.yahoo.com
http://www.bing.com
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From the perspective of modeling and organizing search logs, query suggestion
techniques can be categorized into four classes: (1) query co-occurrence; (2) query-
URL bipartite graph; (3) query transition graph; and (4) short-term search context
methods.

Query co-occurrence methods utilize the query co-occurrence information to
provide suggestions. Co-occurrence is often computed from search sessions [20] or
tasks [30], where the relevance functions range from simple raw counts to statistical
methods like log likelihood ratio (LLR) [25].

Query-URL bipartite graph methods leverage clicks on URLs. These methods
often represent queries and URLs into bipartite graphs with the edges indicating the
click information. Graph traversal methods like random walks are often employed
to estimate the similarities between queries. Examples include random walk with
restart [40, 44], forward and backward random walks [4, 10], hitting time [36], etc.

Query transition graphmethods model the query refinement process in the search
sequence by constructing query transition graphs where edges on the graph indicate
the reformulation relationships between queries. Examples in this category include
query flow graph (QFG) [7], term transition graph (TTG) [42], etc.

Short-term search context methods focus on leveraging immediate previous
queries as contextual information to model and disambiguate the current input
query. Typical methods in this category are based on decay factors [7, 20], query
clustering [8, 29], Markov models [9, 18, 31], etc.

Besides the classical query suggestion methods which mainly rely on a single
data source, other studies proposed to combine different data sources for generating
suggestion candidates through various strategies (e.g., machine learning for query
suggestion candidates ranking [38, 42], query suggestion diversification [34, 41],
query suggestions personalization [24], etc.). There are also approaches to build
better visualization [48] or user interface [27] for query suggestions.

8.1.3 Evaluation Metrics for Query Suggestion

The evaluation metrics for query suggestions can be categorized into offline (e.g.,
precision, recall) and online (e.g., click-through rate) approaches.

For offline evaluation, previous work often leverage a small number of case
studies [4, 46], while recent methods focus more on leveraging human asses-
sors [8, 29, 40, 42]. Examples of metrics in this category include Precision [8],
Mean Average Precision (MAP) [40], Normalized Discounted Cumulative Gain
(NDCG) [42], and Mean Reciprocal Rank (MRR) [1].

Formally, given a binary label r(i) ∈ {0, 1} indicating whether a suggestion
ranked at position-i is relevant (1) or not (0), precision at position K is defined
as:

Precision@K =
∑K

i=1 r(i)

K
. (8.1)
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Similarly, we can also define the recall at position K as:

Recall@K =
∑K

i=1 r(i)

M
, (8.2)

where M is the total number of relevant suggestions. Comparing to precision, recall
is rarely used since it is nearly impossible to get all relevant suggestions for a query.

Instead of computing recall, coverage is often used as an alternative [29]:

Coverage = # of testing queries with suggestions

# of testing queries
. (8.3)

MAP is defined as the mean of the average precision (AP) of all suggested
queries:

AP = 1

M
·
∑

i=1

Precision@i · r(i)
i

. (8.4)

NDCG at position K is defined based on DCG@K = ∑K
i=1

2r(i)−1
log2(i+1) :

NDCG@K = 1

ZK

K∑

i=1

DCG@K, (8.5)

where ZK is the normalized factor of DCG@K which corresponds to the ideal
ranking results.

MRR is defined as:

MRR = 1

Q

Q∑

q=1

1

rankq
, (8.6)

where Q is the number of testing queries in the evaluation dataset and rankq is the
rank of first relevant query in the suggestion list for a testing query q .

For online evaluation, click-through rate (CTR) is widely used, which is defined
as [38]:

CT R@K = # of clicks at top-K suggestions

# of impression with at least K suggestions
. (8.7)

Due to the difficulty of reproducing all methods on a standard evaluation dataset
for comparable results, in this chapter we do not emphasize on the evaluationmetrics
comparison among different methods. In addition, it is hard to compare different
query suggestion techniques while they are proposed in different scenarios (e.g., for
Web documents search, image search, or sponsored search) or optimizing different
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metrics (e.g., coverage, diversity, etc.). Therefore, we focus on the motivation
and mathematical formulation of these methods. For effectiveness comparison, we
provide illustrative examples to show the differences. Readers can refer to the
original publications if they are interested in the detailed comparison of metrics.

8.1.4 Notation Used in This Chapter

Table 8.1 lists notations with detailed meanings in this chapter.

8.1.5 Structure of This Chapter

In the rest of this chapter, we introduce several query suggestion techniques
in Sects. 8.2–8.5 which correspond to co-occurrence, query-URL bipartite graph,

Table 8.1 Notations used in this chapter

Meaning Notation

Query q, qi , qj

Search sequence with last query as qi q1,....,i

Query suggestion candidate q ′

URL u, uj , ux

Set of queries, URLs Q, U

Number of queries, URLs |Q| or Nq , |U | or Nu,

Count/frequency Cnt(·)
Frequency of query in sessions fi , fj

Query co-occurrence matrix C
Co-occurrence between qi and qj Cij

Query-URL click matrix B
Click frequency of qi on uj Bij

Query transition probability matrix A
Transition probability from qi to qj Aij

One-hot vector of query qi v0i
Final optimized suggestion results v∗, v∗

i , h
∗
i (with *)

Number of iterations t

Re-start probability for forward random walk α

Self-transition probability for backward random walk s

Terms in query w, wi

Search topic of a query T

Decay factor for short-term search context β

Hidden search state for a search sequence z, zi+1
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query transition graph, and short-term search context methods, respectively. After
that, we summarize other related suggestion techniques as well as evaluation studies
in Sect. 8.6. In Sect. 8.7 we conclude this chapter with discussions and future
directions.

8.2 Query Co-occurrence Methods

In this section, we introduce several widely used methods that compute the sim-
ilarity between queries by leveraging their co-occurrence information from search
logs. Given a sequence of queries {q1, . . . , qn}, traditional approaches [8, 18, 29, 39]
defined search sessions to segment search logs. Specifically, consecutive events are
segmented into different sessions if the time interval between them exceeds a certain
threshold (e.g., 30min). Within each session, different similarity functions can be
defined to find similar queries [25, 30, 33].

8.2.1 Similarity Functions

Let C denote a co-occurrence matrix where Cij indicates the co-occurrence count
between query qi and qj . Let fi = ∑

j Cij denote the total number of sessions that
contain query qi . Depending on the scenarios, C can be either symmetric [30] or
asymmetric [16, 18], where the symmetric way ignores the issuing order of queries,
while the asymmetric way considers the issuing order of queries. Specifically,
asymmetric C defines Cij = Cnt(qi → qj ) and qi → qj denotes qj occurring
after qi .

Below are some examples of co-occurrence methods proposed in [20]:

Jaccard(qi, qj ) = Cij

fi + fj − Cij

(8.8)

Dependence(qi, qj ) = Cij

min(fi , fj )
(8.9)

Cosine(qi, qj ) =
∑

k Cik · Cjk
√∑

k C
2
ik ·

√∑
k C

2
jk

. (8.10)

Both Jaccard and Dependence functions define the relative co-occurrence
between qi and qj , which tends to favor popular queries. The Cosine function
tries to address this bias by adding an L2 normalization on query frequencies.



8 Query Suggestion 177

From probabilistic perspective, we can define the probability of issuing qj after
qi as:

P(qj |qi) = Cij

fi

∝ Cij . (8.11)

Since the denominator fi is independent of qj , P(qj |qi) is in favor of popular
queries. To address this issue, we can leverage the pointwise mutual information
(PMI) and mutual information (MI) [23, 38]:

PMI(qi, qj ) = log
P(qi, qj )

P (qi) · P(qj )
∝ Cij

fi · fj

, (8.12)

MI(qi, qj ) = P(qi, qj ) · PMI(qi, qj ) + P(qi, qj ) · PMI(qi , qj )

+P(qi, qj ) · PMI(qi, qj ) + P(qi, qj ) · PMI(qi, qj ). (8.13)

Here qi denotes all queries in the search logs except qi , and P(qi, qj ) = Cij∑
ij Cij

.

Jones et al. [26] leveraged LLR [13] to measure the degree of correlation between
queries qi and qj . Their method makes the null hypothesis that H1 : P(qj |qi) =
P(qj |qi) and the alternative hypothesis that H2 : P(qj |qi) �= P(qj |qi). The LLR
function is defined as the log ratio of the likelihood between H1 and H2:

LLR(qi, qj ) = −2 · logλ = −2 · log L(H1)

L(H2)
, (8.14)

where a higher LLR score indicates a stronger correlation between qi and qj . Using
the notation above, LLR(qi, qj ) is defined as:

LLR(qi, qj ) = −2 · {Lh1(k1, n1) + Lh1(k2, n2) − Lh2(k1, n1) − Lh2(k2, n2)},
(8.15)

where Lh1(k, n) = log{k · log k1+k2
n1+n2

+ (n − k) · log(1 − k1+k2
n1+n2

)}, Lh2(k, n) =
log{k · log k

n
+ (n − k) · log(1 − k

n
)}, and k1 = Cij , k2 = Ci,j , n1 = ∑

j Cij , n2 =
∑

j Cij .
In [38], the authors have shown that MI and LLR are mathematically similar in

evaluating query correlations.

8.2.2 Extracting Tasks from Sessions

Using the co-occurrence information to define the query similarity function highly
relies on the segmentation of query sequences. As we described before, session has
been widely used to extract co-occurrence in existing work. However, time-based
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segmentation can possibly lose the inner correlation among queries that span longer
period of time than a single session. Therefore, a concept of task is proposed [25,
30, 33, 45] to address this issue. Below we introduce the approach in [30] to extract
tasks from sessions. In the common definition, task is defined as an atomic user
information need [25, 30, 33].

The motivation of task extraction can be illustrated from the example shown
in Table 8.2, which is a real user search session from search engine Bing. The
user began this session with query “facebook” and finished the session with several
attempts to search for lyrics of a song. From the table, we can see that one session
may contain multiple or interleaved tasks. The reasons behind that are: (1) web
search logs are ordered chronologically; (2) users often perform multiple tasks at
the same time. On the one hand, treating the entire session as an atomic unit may
not accurately capture the multi-tasking behavior. As shown in Table 8.2, query
“gmail log in” seems to have no correlationwith its adjacent queries. Besides, failing
in searching for lyrics of a song does not mean that the user did not find useful
information for query “facebook.” On the other hand, dividing sessions at query
level may lose information of reformulation by users. For example, in Table 8.2,
even if the user had no click on query “amazon”, he still managed to find relevant
information by reformulating “amazon” into “amazon kindle books” and made a
click. From the study of [30], about 30% of sessions contain multiple tasks and
about 5% of sessions contain interleaved tasks.

To extract tasks from sessions, Liao et al. [30] proposed the following approach.
First, the similarity between queries is learnt from a binary classifier; Second,
queries within a session are grouped into tasks using a clustering algorithm. This
approach is motivated by [25, 33], where Jones and Klinkner [25] proposed to
classify queries into tasks using a binary classification approach, and Lucchese et

Table 8.2 An example of session in web search logs from [30]

Time Event type Detailed entry information User ID Session ID Task ID

09:03:26 AM Query Facebook U1 S1 T1

09:03:39 AM Click www.facebook.com U1 S1 T1

09:06:34 AM Query Amazon U1 S1 T2

09:07:48 AM Query faecbook.com U1 S1 T1

09:08:02 AM Click facebook.com/login.php U1 S1 T1

09:10:23 AM Query Amazon kindle U1 S1 T2

09:10:31 AM Click kindle.amazon.com U1 S1 T2

09:13:13 AM Query Gmail log in U1 S1 T3

09:13:19 AM Click mail.google.com/mail U1 S1 T3

09:15:39 AM Query Amazon kindle books U1 S1 T2

09:15:47 AM Click amazon.com/Kindle-eBooks?b=. . . . . . U1 S1 T2

09:17:51 AM Query i’m picking up stones U1 S1 T4

09:18:54 AM Query i’m picking up stones lyrics U1 S1 T4

09:19:28 AM Query pickin’ up stones lyrics U1 S1 T4

www.facebook.com
faecbook.com
facebook.com
login.php
kindle.amazon.com
mail.google.com/mail
amazon.com/Kindle-eBooks?b=
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Table 8.3 Basic statistics of
browse and search logs
reported in [30]

Statistics Browse logs Search logs

Avg. # of queries in sessions 5.81 2.54

Avg. # of queries in tasks 2.06 1.60

Avg. # of tasks in sessions 2.82 1.58

% of single-task sessions 53.29 70.72

% of multi-task sessions 46.71 29.28

% of interleaved task sessions 15.25 4.78

% of single-query tasks 48.75 71.86

% of multi-query tasks 51.24 28.13

Table 8.4 Query refinement
pattern within tasks from
browse and search logs
in [30]

Reformulation patterns Browse logs Search logs

% of identical 66.37 50.45

% of shorter 12.48 16.77

% of longer 21.45 32.76

al. [33] proposed to cluster queries into tasks based on empirically designed distance
functions.

Specifically, a similarity function between queries sim(q, q ′) can be learnt
through features from submitting time, textual similarity (e.g., edit distance, word
similarity), result set (e.g., similarity between search engine result pages (SERPs) of
q and q ′), etc. Next, a graph can be constructed with queries as nodes and sim(q, q ′)
as the weight of an edge. With the constructed graph, graph cutting methods can be
used to group queries into tasks. In [30], the authors applied an SVM classifier
to learn sim(q, q ′) and proposed a heuristic based query task clustering (QTC)
algorithm to group queries into tasks.

Table 8.3 shows the statistics regarding query distribution as in tasks and sessions
reported in [30]. From the table we can observe that multi-tasking behavior is
quite common in users’ searches. For consecutive queries within a task, Table 8.4
presents their length distribution from the previous query to its next query. More
than half adjacent query pairs are identical, where about 90% of identical pairs are
from refreshing search result pages or clicking the back button, and about 10% of
identical patterns are from pagination. Besides, we can see that longer reformulation
pattern occurs twice more often than shorter reformulation pattern. These statistics
indicate that it is more effective to recommend longer and more specific queries than
queries that are more general and have fewer words.

8.2.3 Method Analysis and Comparison

To better understand the difference between co-occurrence and LLR methods, a
few examples are shown in Table 8.5. As we can see, using purely frequency-based
method (e.g., Jaccard in Eq. (8.8) and P(qj |qi) in Eq. (8.11)), those most popular
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Table 8.5 Suggestions of
session-based models

Methods

Test cases Session co-occur Session LLR

Amazon Facebook eBay

eBay Walmart

Google Target

Youtube Best buy

Yahoo Barnes and nobel

Cell phone Facebook Cheap cell phones

Verizon wireless Phone

Sprint All cell phone companies

Verizon Verizon cell phones

Google Sprint

queries like “facebook” and “google” are always recommended. As a comparison,
LLR addresses the bias systematically.

Table 8.6 presents several queries from high, medium, and low frequency
categories with their suggestions. From suggestions generated by different methods,
we have the following observations. (1) Session-based models often generate related
queries in a broad range such as providing “verizon” as a suggestion to query
“att.” (2) For low-frequency queries, task-based and session-based methods generate
nearly same suggestions. (3) Task-based methods often generate more specific
queries for further narrowing down user information need, which are different from
session-based approach. As a result, suggestions provided by task-based methods
can be treated as complementary to results from session-based approaches.

8.2.4 Summary

In this section, we described co-occurrence based query suggestion methods. Simple
co-occurrence based approaches have a frequency bias towards popular queries.
We saw that methods like MI or LLR can help address the issue systematically.
In general, the quality of query suggestions based on LLR tends to be better than
other co-occurrence based approaches.

The essential point of co-occurrence based method is to define query similarity
based on co-occurrence. Most existing works are session-based, where sessions are
segmented based on the timestamp between consecutive queries. Due to the nature
of multi-tasking searching behavior by search engine users, extracting tasks from
session is useful to generate related queries from the same search task. As illustrated
in Table 8.6, task-based methods tend to be complementary to session-based
methods. Feild and Allan [14] also studied the task-aware query recommendation
problem and show that queries from the same search task are useful as context for
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Table 8.6 Example of query suggestions provided by different methods [30]. Superscripts h, m,
l are notations for high, medium, and low frequency queries

Methods

Test case Session LLR Task LLR

Amazonh eBay Amazon books

Walmart Amazon kindle

Target Amazon electronics

Best buy Amazon music

Barnes and nobel Amazon DVD movies

ATTh AT&T my account AT&T my account

Verizon ATT wireless

Sprint AT&T email

Tmobile AT&T bill pay

ATT wireless AT&T customer service

Exchangem Military exchange Military exchange

Exchange rate Exchange rates

Easyfreexbox360 Navy exchange

Tennis Microsoft exchange

Aafes Base exchange

Harry Trumanm Winston Churchill Harry Truman quotes

Robert Byrd Bess Truman

Nelson Mandela Harry Truman facts

Neil Armstrong Harry S Truman

Teddy Roosevelt

“Popular Irish baby names”l Top Irish baby names Unique Irish baby names

Unique Irish baby names Irish baby names

Irish baby boy names Irish baby boy names

Irish baby names Top Irish baby names

“Traditional Irish Top 100 baby names

baby names”

query suggestion. There is also task extraction across multi-sessions [45], which can
be used to generate cross session query suggestions.

The co-occurrence based approaches usually work well for high and medium
frequency queries and perform poorly in low-frequency queries. To help generating
good suggestion for low-frequency queries, graph-based approaches are preferred.
The idea of graph-based methods is to construct a graph with nodes as queries and
edges as similarities between queries and leverage the entire graph to help finding
relevant queries. Sections 8.3 and 8.4 describe graph-based methods using query-
URL bipartite graph and query transition graph, respectively.
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8.3 Query-URL Bipartite Graph Methods

Although the click information on SERP URLs are often noisy, aggregating clicks
from a large number of users tends to reflect the relevance between queries and
URLs. Such rich query-URL relevance information can be used for generating high
quality query suggestions. As an example, the co-occurrence based method may
fail to generate suggestion for a tail (typo) query “faecboek.” If we can leverage
the top clicked URLs on the SERP of the query, it is likely to generate relevant
suggestions. In practice, such approach can help address the issues on tail queries
that lack enough co-occurrence information.

Typically, query-URL bipartite graph-based methods use clicks from queries
on URLs as signals. They usually work as follows. First, a probabilistic matrix is
constructed using click counts. Next, a starting node (i.e., a test query) is chosen.
Third, a randomwalk (RW) is performed on the graph using the probabilistic matrix.
Forth, final suggestion is generated using RW results.

Let B denote the matrix derived from the query-URL click-through bipartite
graph, where

Bij = Cnt(qi, uj ). (8.16)

Here Cnt(qi, uj ) represents the click count of query qi on URL uj . An alterna-
tive method using inverse query frequency (IQF) to initialize Bij was proposed by
Deng et al. [12]:

Bij = Cnt(qi, uj ) · IQF(uj ), (8.17)

where IQF(uj ) = log |Q|
n(uj )

and n(uj ) is the number of distinct queries clicking
on uj . It is suggested in [12] to apply the IQF to re-weight click counts, which
decreases the weight of frequently clicked URLs and increases the weight of less
frequent but more relevant URLs.

By normalizing the rows of B, we can get the transition probability from query

qi into url uj using P(uj |qi) = Bij∑
k Bik

. Similarly, we can derive the transition

probability from url uj to query qi using P(qi |uj ) = Bij∑
k Bkj

. Based on these

probabilities, we can derive the transition probability from query qi to qj as:

Pu(qj |qi) =
∑

u

P (qj |u) · P(u|qi). (8.18)
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8.3.1 Forward and Backward Random Walks

Let matrix A represent the transition matrix derived from the Query-URL click
graph, where Aij = Pu(qj |qi). The forward random walk with restart approach
(RWR) is formulated as [30, 40]:

vt+1
i = (1 − α) · (vt )T · A + α · v0i , (8.19)

where α is the restarting probability. v0i is the initialized one-hot vector for query at
index-i. t is the number of iteration.

If we set p to be 0, the process of iteration can be viewed as a Markov
chain through the probabilistic matrix A. According the Markov chain theory [37],
if a Markov chain is irreducible and aperiodic, there exists a unique stationary
distribution π . Additionally, in this case Ak converges to a rank-onematrix in which
each row is the stationary distribution π , that is:

lim
k→∞Ak = 1 · π , (8.20)

which produces vector π , where π i can be interpreted as the popularity of query qi .
Compared to forward propagation defined in Eq. (8.19), Craswell et al. [10]

proposed a back propagation method, which leverages a back propagation matrix
Ab defined as:

Ab
ij =

{
(1 − s) · Aij , if i �= j

s, if i = j.
(8.21)

Here s is a self-transition probability to keep the propagation stay on the current
query.

Based on the matrix Ab, the backward RW is computed by multiplying Ab with
vi (t), which is formulated as:

vt+1
i = norm(Ab · vt

i ). (8.22)

Here norm(·) denotes the normalization to make
∑

k vi[k] = 1.The basic idea
of backward propagation is that given a query qi at time t , we aim at finding the
probability of starting from qj at step 0 by using P0|t (qj |qi) = [(Ab)t · Z−1]ij .
Here Z is a diagonal matrix and Zjj = ∑

i [(Ab)t ]ij is used for a row normalization
purpose. To set up the parameters of s and t , from the experiment results shown
in [10], a self-transition s=0.9 with step t=101 can result in a good performance in
the application of image retrieval.

Equations (8.19) and (8.22) look similar but are different in nature. For example,
let v2(0)=[0, 1]T denote the starting vector and A = Ab denote the transition matrix
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between q1 and q2,

A = Ab =
[
0.7 0.3
0.6 0.4

]

. (8.23)

Then one step backward propagation gets A · v2(0)=[0.3, 0.4]T , and one step
forward propagation gets v2(0)T · A=[0.6, 0.4]T .

8.3.2 Hitting Time Approach

Both forward and backward propagations need to tune the parameters (e.g., restart
probability α or self-transition probability s). Mei et al. [36] proposed a parameter-
free method using hitting time. The hitting time hi[qj ] is defined as the expectation
of arriving at qj while starting at qi . To compute the hitting time, Mei et al. [36]
proposed an iterative process:

ht+1
i =

∑

j �=s

P u(qj |qi) · ht
j + 1, (8.24)

where s denotes the index of a test query and hi(0)=0. Here Pu(qj |qi) is the
same as in Eq. (8.18). After certain steps of iterations, the final ht+1

i is used for
the suggestion. Note that hitting time represents the expected arriving steps from
a suggested query to the test query; therefore, a smaller value indicates a higher
relevance. The iteration can stop with a given maximum number of step (e.g., 1000),
or when the difference of ht+1

i − ht
i becomes insignificant (e.g., less than 10−3).

8.3.3 Combining Click and Skip Graphs

It has been shown that click graph can benefit popular queries which have enough
user click feedbacks. However, using only click graph tends to ignore the relevant
information presented on SERP which causes potential issues particularly for tail
queries. For rare queries with very few clicks, click graph is unable to capture
the underlying relationship among queries. Comparing with click graph, a skip
graph which contains information of (query, skipped URL) pairs can enrich the
information for tail queries with fewer clicks. Here a URL is skipped if it was
viewed by the user without being clicked. For instance, if a user only clicked the
3rd-ranked URL after issuing the query, the 1st and 2nd ranked URLs are skipped.

Figure 8.1 presents an example which shows the motivation of the combination
of click and skip graphs approach. The left figure (a) shows the click graph for
three queries and five URLs that returned as top SERP results. Ideally, audi parts
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audi

q1

u1

u2

u3

u4

u5q3

q2

q3

q2

audipartstore.com

audiusa.com

audirepair.autorepairlocal.com

NWaAudidealers.com

en.wikipedia.org/wiki/Audi

Queries Urls

q1

u1

u2

u3

u4

u5audi

audi parts

(a) (b)

audipartstore.com

audiusa.com

audirepair.autorepairlocal.com

NWaAudidealers.com

en.wikipedia.org/wiki/Audi

UrlsQueries

audi bodywork

audi parts

audi bodywork

Fig. 8.1 An illustrative example of query-URL click graph (a) and skip graph (b). Query audi
parts and audi bodywork are not correlated if only performs random walk on the click graph, but
will be highly correlation if random walk is performed on the skip graph. More details on the text

should be a good suggested query for audi bodywork (and vice versa). However,
after performing a random walk on the click graph, only the query audi can be
suggested to audi parts because there is no commonly clicked URLs between audi
parts and audi bodywork so that their correlation is zero. However, if we leverage
the top-skipped URLs for audi parts and audi bodywork as shown in Fig. 8.1b, it
can be clearly observed that both queries skipped their top-returned two URLs:
NwaAudidealers.com and en.wikipedia.org/wiki/Audi. As a result, a random walk
on the skip graph assigns a high correlation score to these two queries.

To show that skip graph contains rich information for tail queries, Fig. 8.2 shows
user session statistics from a dataset with 40 million unique queries. The figure
compares the query frequency (x-axis) against the number of clicked and skipped
URLs (y-axis). It can be observed that when the query frequency is low, more URLs
are skipped than clicked during the same user session. However, with the increase
of query popularity, the click patterns become more stable. Generally, users tend to
click more often on top-returned results for popular queries. While for rare queries,
click distribution is more random.

For the quality of skipped URLs for rare queries, Song et al. [40] selected 6000
queries which have been issued less than 20 times within a week. They asked human
raters to judge the relevance of clicked and skipped URLs on a 1–5 scale (5 means
the best). Figure 8.3 demonstrates the comparative ratings. Overall, skipped URLs
indicate slightly less relevance than clicked URLs. On average, clicked URLs have
a rating of 3.78, while skipped URLs have 3.65. This observation further supports
our claim that skipped URLs should be leveraged for rare queries in the context of
relevance measurement.

Following the same notation as used previously, we define the query-to-query
click transition matrix A+ using Eq. (8.16) or (8.17). Similarly, we can also define
a query-to-query skip transition matrix A− by replacing the click count as the skip
count. Hence, we can conduct the random walk on both click graph with A+ and
skip graph with A− using Eq. (8.19) and generate the final suggestion vectors v+

i

and v−
i for each graph. After that, we can combine both vector for final suggestions

as:

ṽ∗
i = α′ · v+

i + (1 − α′) · v−
i . (8.25)
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Fig. 8.2 Number of URLs clicked vs. number of URLs skipped in the same user sessions from 1
week search log. There are more URLs skipped than clicked for queries with lower frequencies

Together with restarting probability α, this approach has two parameters: α and
α′. Cross validation can be used to tune the parameters to achieve the best results on
held-out datasets.

We can construct a matrixQ∗ = [v∗
1, . . . ., v

∗|Q|] as query similarity matrix where
|Q| is the total number of queries. A similar approach (e.g., compute URL transition
probability P(uj |ui) = ∑

q P (uj |q) · P(q|ui) and conduct random walk on URL
nodes) can be performed to get a URL similarity matrixU∗ = [v∗

1, . . . ., v
∗|U |], where|U | is the total number of URLs. Due to the difficulty of obtaining ground-truth for

Q∗ and U∗, Song et al. [40] proposed to tune the parameters by minimizing the
difference between URL correlation matrix U and U∗ and apply same parameters
for query suggestion.
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Fig. 8.3 Human judger ratings [40] in terms of relevance for clicked and skipped URLs in query
logs. Break down accordingly to query frequency. Clicked URLs and skipped URLs have almost
the same ratings for rare queries (queries with frequency less than 20)

8.3.4 Method Analysis and Comparison

To illustrate the differences among query-URL graph approaches, we show a few
examples from [40]. The compared methods are defined as follows:

• RW-F The basic random walk on click graph using Eq. (8.19).
• RW-B The random walk approach with backward propagation using Eq. (8.22).
• RW-P Random walk based on pseudo relevance feedback where top-10 URLs

of the testing queries are used to conduct random walk propagation on the click
graph instead of the clicked URLs.

• RW-C This is to combine the random walk of click and skip graph using
Eq. (8.25).

Table 8.7 illustrates the results with a few queries. From the table we can observe
some interesting results: (1) RW-F and RW-B provide slightly different results. RW-
F is more likely to suggest popular queries than RW-B since the propagation assigns
larger probabilities to queries with more clicks. For example, for the query “nfl
teams with 5 super bowl wins,” RW-F recommends “super bowl champions” as
the top suggestion and RW-B suggests “super bowl champs” on the 4th position.
(2) RW-P has better suggestion quality than RW-F and RW-B, especially for tail and
ambiguous queries. For example, for query “single ladies” the relevant query “single
ladies by beyonce” is recommended as top candidate by RW-P. For tail queries with
less clicks, non-clicked URLs on SERP becomes important for query suggestions.
Therefore, RW-P performs better on tail queries than RW-F and RW-B. (3) RW-C
works better than RW-P with more labeled relevant queries. The reason is that RW-
P treats both clicked and skipped URLs equally, while RW-C utilizes the click and
skip counts.
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8.3.5 Summary and Discussion

In this section we introduced several well-known query suggestion approaches using
query-URL bipartite graph, namely forward random walk with restart, backward
random walk, hitting time, and combining click and skip graphs. Existing study
in [40] showed that random walk tends to get into data sparsity issue for tail queries
with few clicks. Utilizing search result information (e.g., skipped URLs) can help
improving both coverage and quality. Basically, the more relevant URLs we can
obtain for a given query, the better suggestion results we are able to provide.

8.4 Query Transition Graph Methods

In this section, we introduce the query transition graph methods. Particularly, QFG
and TTG approaches are described.

8.4.1 Query Flow Graph (QFG)

One typical approach to model the query refinement process is the QFG proposed
by Boldi et al. [7]. The idea of QFG is to consider the whole search sequence as a
flow of queries and model it in a probabilistic way.

Specifically, a transition probability between query qi to qj is defined as:

P s(qj |qi) = Cnt(qi → qj )

Cnt (qi)
, (8.26)

which leverages the adjacent information between queries in the search sequence.
Let matrix A denote the transition on the whole graph with Aij = P s(qj |qi). One
can use either session or task described in Sect. 8.2 to organize the query sequence.
The authors in [7] defined query chains to help identifying queries for the same
information need, which is very similar to task defined in Sect. 8.2.2.

Second, similar to RWR in Eq. (8.19), an iteration process on QFG is defined as:

vt+1
i = α · (vt )T · A + (1 − α)v0i . (8.27)

Here α is restart probability of query node to itself.
The QFG approach was generalized as the query template flow graph (QTFG)

in [43], where the phrases in a query were generalized by WordNet hierarchy. For
example, “chocolate cookie recipe” can be generalized as “<food> cookie recipe.”

For a test query q and a suggesting candidate q ′, suppose they can be generalized
into templates x and x ′, respectively. A template-based similarity between q and q ′
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can be defined as:

f (q, q ′) = (1 − τ ) · P(q ′|q) + τ ·
∑

x,x ′
P(q|x ′) · P(x ′|x) · P(x|q), (8.28)

where τ is a parameter to combine query transition probability on QFG and the
query transition probability on QTFG. One can define different types of template
generalization for a query. In [43] the authors proposed to utilize the WordNet
hierarchy to generalize each possible phrase in query as a template and compute
all transition probabilities using the query co-occurrences in sessions. For example,
following the definition in [43]: τ is set as 0.5, the term P(q ′|q) is the v∗

q [q ′] from
Eq. (8.27) above, P(q|x ′) is set as 1 if q can be generalized as x ′ and 0 otherwise,
P(x|q) is defined based on the WordNet hierarch distance of q to x. The term
P(x ′|x) is defined as transition probability between all queries q to q ′ falling into
template x and x ′, respectively.

8.4.2 Term Transition Graph (TTG)

Based on the observations that most of the time only the last term of the query is
modified when users refine their queries for the same search tasks, Song et al. [42]
proposed a TFG approach for query suggestion. Three types of actions, namely
Modification,Expansion, andDeletionwere proposed for a query refinement, where
some examples are shown in Table 8.8.

Given a word vocabulary W = {ε,w1, . . . wn} where ε is used to denote the
empty string, three cases of user query refinements are formulated as [42]:

• Modification: user modifies the last term of the query, e.g., “single ladies song”
→ “single ladies lyrics.” Denote as: {w1, . . . , wm} → {w1, . . . , w

′
m}.

• Expansion: user adds one term to the end of the query, e.g., “sports illustrated”
→ “sports illustrated 2010.” Denote as: {w1, . . . , wm} → {w1, . . . , wm,wm+1}.

Table 8.8 Three types of
user refinement examples

Type User activity Pattern

Modification 1. q:{single ladies song} song→lyrics

2. q:{single ladies lyrics}

3. URL click

Expansion 1. q:{sports illustrated} ε →2010

2. q:{sports illustrated 2010}

3. URL click

Deletion 1. q:{eBay auction} auction → ε

2. q:{eBay}

3. URL click
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• Deletion: user removes the last term of the query, e.g., “eBay auction”→ “eBay.”
Denote as: {w1, . . . , wm−1, wm} → {w1, . . . , wm−1, ε}.
Here the original query q = {w1, . . . , wm} and the refined query can be noted as

q ′.
A nature way to estimate the probability for Modification and Deletion can be

formulated as:

Pmodify(q
′|q) = P(w1, . . . , wm−1, w

′
m|w1, . . . , wm), (8.29)

where w′
m can be the empty string ε or other words in W .

Similarly, Expansion can be formulated as:

Pexpan(q
′|q) = P(w1, . . . , wm,wm+1|w1, . . . , wm). (8.30)

However, this simple approach tends to fall back into the co-occurrence (or
adjacency) based approach, where most frequent queries followed q are selected
as suggestions. Hence it has issue to provide good quality suggestions for low-
frequency queries. To address the issue, Song et al. [42] introduced a topic based
method to generalize the words.

With topic T , theModification and Deletion can be formulated as:

Pmodify(q
′|q) =

∑

T

P (wm → w′
m|T ) · P(T |w1, . . . ., wm), (8.31)

while Expansion can be formulated as:

Pexpan(q
′|q) =

∑

T

P (wm+1|T ) · P(T |w1, . . . , wm). (8.32)

Here P(wm → w′
m|T ) = P(w′

m|wm, T ) is the term transition probability under
topic T , and P(wm+1|T ) can be viewed as a popularity of wm+1 under topic T . The
term P(T |w1, . . . , wm) is the probability of topic T for the given query. Note that
Eq. (8.31) can be applied to any q ′ which has one word modified from q .

The topic T can be a predefined taxonomy (e.g., ODP as used in [42]), or
an automatically learned topic distribution through approaches like LDA [6],
pLSI [19], etc. Since the probability of P(wm → w′

m|T ) and P(wm+1|T ) is not
on the same magnitude, in [42] the authors proposed to multiply a P(wm) on
Pmodify(q

′|q) to make the final score comparable, based on the assumption that
P(wm+1|T ) ≈ P(wm+1|wm, T ) · P(wm).

Therefore, the final suggestion model can be formulated as:

Pf inal(q
′|q) =

{
Pmodify(q

′|q) · P(wm), using Eq. (8.31)

Pexpan(q
′|q), using Eq. (8.32) .

(8.33)
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Table 8.9 Examples of query suggestions reported from [7, 42] (Q: test query, S: suggestion)

Query flow graph Term transition graph

Q Music Evening dress Battlefield bad
company 2

Dante’s inferno xbox
360

S Music Evening dress Battlefield bad
company 1

Dente’s inferno xbox
260 wiki

Yahoo music Formal evening dress Battlefield bad
company 2
Ringtones

Dante’s inferno ps3

Music video Red evening dress Battlefield bad
company 2 slots

Dante’s inferno xbox
360 cheats

Music download Myevening dress Battlefield bad
company 2 realms

Dante’s inferno xbox
360 walkthrough

Free music Prom 008 dress Battlefield bad
company 2 games

Dante’s inferno

8.4.3 Analysis of Query Transition Methods

Table 8.9 shows query suggestions by QFG and TTG, respectively. From the table,
we can observe that: (1) Suggestions from QFG for frequent queries are usually
more specialized, which is in accordance to the query reformulation pattern statistics
in Table 8.4. (2) TFG can provide relevant suggestions for long queries which are
more likely tail queries. This is in accordance with the QTFG approach [43] which
leverages term/phrase information in queries.

8.4.4 Summary

In this section, we introduced methods using query transition graph information.
Both QFG and TTF approaches are introduced with a few examples to show their
effectiveness. Query transition graph may have issue for low-frequency queries
with less follow-up queries. To address the problem, we can either generalize the
query into template or utilize the term transition information extracted from query
refinements.

8.5 Short-Term Search Context Methods

In this section, we introduce the short-term search context methods. Short-term
search context usually refers to queries and clicks issued shortly before the current
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one. One straightforwardway of getting context-aware suggestions is to leverage the
search history sequence q1,...,i = {q1, . . . , qi} and predict the next query qi+1 based
on the frequency of (q1,...,i,i+1) in search logs. However, such approach suffers from
the data sparsity problem due to the exponential growth of space of query sequences.
Next, we introduce different types of methods to ease the data sparsity problem.

8.5.1 Decay Factor Based Approaches

Huang et al. [20] proposed a cosine based context-aware method, which is formu-
lated as:

f (q1,...,i , q
′) =

i∑

k=1

βi−k · Cosine(qk, q
′). (8.34)

Here β ∈ [0, 1] is a decay factor to control the quality of suggestion.
Following [7, 36], we can initialize vectors vk(0) = βi−k for k = 1, . . . , i and

conduct random walks. To assign higher weights to more recent queries, βi−k is
used as a decay factor. Specifically, we can formulate the suggestion method as:

v∗
context =

i∑

k=1

v∗
k, and vt+1

k = (1 − α) · (vt
k)

T · A + α · v0k, (8.35)

where v∗
k is the final result of vt+1

k and A is the query transition probability matrix.

8.5.2 Sequence Mining Approaches

Next, we introduce sequence mining approaches: concept mining [8, 29], mixture
variable Markov Model [18], and variable length Hidden Markov Model [8, 31].

Cao et al. [8, 29] proposed to mine the concept sequence instead of query
sequence for suggestion. The idea is straightforward, i.e., instead of matching query
sequence q1, q2, . . . , qi with search history for query suggestions, we can first
map each query into a concept (e.g., a cluster of queries) and utilize the concept
sequence c1, c2, . . . , ci for query suggestions. The suggestion method based on
concept sequence proposed in [8, 29] can be formulated as:

f (q1,...,i , q
′) = Cnt(Back_Off(c1,...,i ), c′). (8.36)

Here c1,...i represents the concept sequence for q1,....,i , and c′ is the concept of q ′.
Back_Off(·) is a function to get the longest pattern (ca,...,i , c

′) (1 < a <= i) which
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exists in the model. For example, if we have an input concept sequence (c1, c2, c3)

but our model mined from search logs can provide suggestion for (c2), (c3), and
(c2, c3), the Back_Off function returns longest found sequence (c2, c3) and ignores
(c1, c2, c3) since it is not found in the model.

Similarly, He et al. [18] proposed a mixture Variable Markov Model (MVMM)
to model the search sequence for query suggestions. Using MVMM, the query
suggestion of a given query sequence q1,...i can be formulated as:

f (q1,...,i , q
′) =

i∑

k=1

w(qk,...i , q
′) · Cnt(qk,...,i , q

′), (8.37)

where w(qk,...,i , q
′) is the weight for the sequence. The weight function is dynam-

ically changing for different query sequences. If we set all w(·) to be 1, the
model falls back as a combination of suggestions from different length matching
of query sequences. In [18], the optimal weight parameters are learnt to maximize
the generalization probability for next queries in the search logs. An alternative way
of learning the weight is to build two separate datasets, where the first one is to
estimate the frequency of search sequences, and the second one is used to optimize
the weights of the sequences for better generalization ability.

A more generic extension of the search context modeling is proposed in [9, 31],
namely the variable length Hidden Markov Model (vlHMM), where each hidden
state in the model represents a hidden concept for each query. Using vlHMM, the
query suggestion function can be formulated as:

f (q1,...,i , q
′) = P(q ′|zi+1) · P(zi+1|q1,....,i ), (8.38)

where zi+1 is the predicted hidden state at time i + 1, P(q ′|zi+1) is the probability
of generating q ′ from state zi+1, and P(zi+1|q1,....,i ) is the probability of generating
the next search state zi+1 given the sequence q1,....,i . Similar to optimizing hidden
Markov models, the parameters of P(zi+1|q1,...,i ) and P(q ′|zi+1) are learned to
maximize the probability of predicting the next query. By initializing the state
of concept using clustering methods [8, 29], the EM (Expectation–Maximization)
learning process can be greatly accelerated to converge within 10 iterations, which
makes this approach scalable to large-scale datasets.

8.5.2.1 Concept Mining Using Clustering Algorithm

Concept mining has been shown to be useful for query suggestion, which is capable
of alleviating the data sparsity problem by grouping queries into concepts. In this
section, we introduce a fast clustering algorithm, namely Query Stream Clustering
(QSC) for concept mining proposed in [8, 29].

Generally, the process of the QSC algorithm can be summarized into the
following steps. First, each query q is represented as a feature vector using its
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clicked URLs. Second, q is compared to existing clusters to find a closest match,
where the distance between q and a cluster is given by their URL feature vectors.
Finally, if the diameter of a cluster after adding q is smaller than a predefined
threshold, q is added into the cluster. Otherwise, a new cluster with only q is created.

Due to the fact that the average number of clicked URLs of a query is small, QSC
algorithm can be very efficient in practice since it scans the dataset only once. For
each query q , the number of clusters to be accessed is at most number of queries
shared at least one clicked URL with q . Therefore, the computation cost for each
query is near constant, which leads to the complexity of the whole algorithm to be
O(|Q|), where |Q| is the number of queries in the dataset.

The QSC algorithm is memory-intensive since it needs to hold all data structure
in the memory to conduct fast clustering. Therefore, once the data becomes large
and cannot be stored on a single machine, the algorithm fails. To address such
limitation, Liao et al. [29] proposed two extensions of QSC: (1) for datasets with
small size, an efficient iterative clustering method is proposed and (2) for large
datasets, a distributed master–slave framework is proposed for clustering. Interested
readers can find more details in [29].

8.5.3 Method Analysis and Comparison

We presented experiment results from [29] to illustrate the difference of query
suggestion methods, where the input is a query sequence q1,...,i = q1, . . . , qi :

• Adjacency. It ranks queries by their frequencies immediately following the last
query qi in the training sessions and output top queries as suggestions.

• N-Gram. It ranks queries by their frequencies of immediately following the
entire query sequence in training sessions and output top queries as suggestions.

• Cosine. It ranks queries by their cosine similarities with every query in the
sequence q1,...,i as in Eq. (8.34).

• CACB. Short for context-aware concept-based method which uses the concept
sequence to provide suggestions as formulated in Eq. (8.36).

Table 8.10 shows a few queries with suggestions from above methods. We can
find that N-Gram method fails when the input query sequence is not frequently
occurring in the search logs (e.g., providing no suggestion for query sequence“www.
chevrolet.com ⇒ www.gmc.com”). Similarly, the results from Adjacency indi-
cates that the method ignores the context information (e.g., suggesting repeated
query “www.chevrolet.com” for query sequence“www.chevrolet.com⇒www.gmc.
com”). Conversely, CACB provides better suggestions and avoids the duplications
by other methods (e.g., “msnnews” provided by Cosine to query “msn news”).

Table 8.11 shows a few ambiguous queries with or without context information,
where the suggestions are provided by CACB. We can see that utilizing the context
can help disambiguate the query intent and yield more relevant suggestions.

www.chevrolet.com
www.chevrolet.com
www.gmc.com
www.chevrolet.com
www.chevrolet.com
www.gmc.com
www.gmc.com
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Table 8.10 Examples of query suggestions provided by different methods [29]

Methods

Test case Adjacency N-Gram Cosine CACB

www.at&t.com AT&T AT&T ATT wireless ATT wireless

www.att.com www.att.com Cingular Cingular

Cingular Cingular ATT net Bellsouth

www.cingular.com www.cingular.com Bellsouth Verizon

ATT net ATT net AT&T Tilt phone

msn news CNN news CNN news CNN news CNN news

Fox news Fox news msnnews Fox news

CNN CNN MSNBC news ABC news

msn msn KSL news CBS news

Yahoo news BBC news

www.chevrolet.com www.chevy.com <null> www.chevy.com Ford

⇒ www.gmc.com www.chevrolet.com www.dodge.com Toyota

www.dodge.com www.pontiac.com Dodge

www.pontiac.com Pontiac

Circuit city Circuit city Walmart Walmart Radio shack

⇒ best buy Walmart Target Staples Walmart

Target Sears Office depot Target

Best buy stores Office depot Dell Sears

Sears Amazon Staples

8.5.4 Summary

In this section we introduced query suggestion methods based on short-term
search context. We have shown that utilizing queries in the short-term search
context can effectively improve query suggestion. Directly mining frequent query
sequences from search logs suffered from the data sparsity problem, and decay
factor and sequencemining based approach can alleviate this issue. A general way to
address the data sparsity problem is to group queries into concepts using clustering
approaches [8, 29], which can provide suggestions with both good precision and
high coverage.

8.6 Other Query Suggestion Related Work

In this section, we briefly discuss other related work of query suggestion that are
relevant but did not cover in this chapter.

Some early studies of query suggestion proposed to group queries into clusters
and provide queries within same cluster as suggestions. Some examples are:

www.at&t.com
www.att.com
www.att.com
www.cingular.com
www.cingular.com
www.chevrolet.com
www.chevy.com
www.chevy.com
www.gmc.com
www.chevrolet.com
www.dodge.com
www.dodge.com
www.pontiac.com
www.pontiac.com
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Table 8.11 Examples of query suggestions for ambiguous or multi-intent queries when context
information is available and absent [29]

No context available Context available

Comcast eBay ⇒ Comcast Cable ⇒ Comcast

Myspace Myspace Verizon

eBay AOL AT&T

AOL Comcast email login Dish network

Comcast email login Craiglist Quest

Craigslit T-mobile

MQ Games ⇒ MQ Websphere ⇒ MQ

Games Dragonfable MQ client

Dragonfable Adventure quest MQ document

Miniclip Runescape MQ training

Runescape Miniclip

Adventure quest Tribal wars

Webster Online dictionary ⇒ Webster Citibank ⇒ Webster

Dictionary Encarta Bank of America

Encarta Thesaurus American Express

Thesaurus Free dictionary Peoples Bank

Free dictionary Oxford dictionary Citizens

Bank of America Spanish dictionary Chase

CTC Tenax ⇒ CTC Child tax ⇒ CTC

Central Texas College Transcript Central Texas College Transcript Child tax benefit

Child tax benefit GoArmyEd Tax rebate

Tarleton State University Tarleton State University Working tax credit

GoArmyEd University of Maryland Tax credits

Tax rebate Temple college IRS

• Agglomerative Beeferman and Berfer [4] proposed an agglomerative clustering
method to iteratively group queries and URLs into clusters.

• DBScan Wen et al. [46] used DBScan clustering algorithm to cluster queries
based on both textual and click information.

• K-means Yates et al. [3] proposed to cluster queries using K-means algorithm
and compute query similarity using the click-through information.

As pointed out by [8, 29], the aforementioned clustering algorithms have high
time complexity (e.g.,O(N2

q ) for Nq queries). Therefore, the QSC algorithm [8, 29]
was proposed as an alternative to efficiently generate the clusters in O(Nq) time.

Different from traditional work which utilize query-URL click-through infor-
mation to compute query similarities, some recent work [5, 15, 26] proposed to
model query as bag-of-words or phrases and generate suggestions by considering
the phrase similarity.

• Phrase substitution method Jones et al. [26] proposed to segment queries into
phrases using pointwise mutual information and find related phrase substitution
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through Log Likelihood Ratio (LLR). To rank suggestion candidates, they further
applied a machine learning framework to classify whether a suggestion is more
generic, specific, or irrelevant based on textual and LLR features.

• SERP-based method Feuer et al. [15] proposed a generalization/specification
approach for suggesting phrases from the top ranked search results. They pro-
posed to generate query suggestions using proximal sub-phrases and unordered
super phrase based on the phrase frequency in top search documents.

• External corpus based method Bhatia et al. [5] proposed to mine a phrase set
from documents in external corpus (e.g., news article dataset used in TREC).
Their approach splits an input query q into the completed phrase Qc and typing
phrase Qt and finds a suggesting candidate pi which can both optimize the
probability of P(Qc|pi) and P(pi |Qt). Here P(Qc|pi) is estimated by the
probability of document containing phrase Qc while pi presents, and P(pi |Qt)

is computed using normalized frequency of pi containing a complete word c

starting with Qt .

Besides improving the quality and coverage of suggestions, the diversity of the
suggestion results was studied in [24, 34, 41].

• Diversifying Suggestion Ma et al. [34] proposed a hitting time based iterative
algorithm to add diversified suggestion candidates one by one. To generate all
suggestions, they conducted the following steps: (1) given a test query q , get a
top-1 query suggestion q ′ and add it into a set HS; (2) perform a hitting time
algorithm to get next query q ′, add q ′ to HS; (3) repeat step 2 until obtaining
enough suggestion results. The essential idea in [34] is that in step (2), the hitting
time approach computes the hitting time of q starting from q ′ without visiting any
nodes in HS. Therefore, all nodes already in HS are skipped for a diversification
purpose.

• Diversifying Search Results Song et al. [41] proposed a machine learning
framework to systematically optimize the relevance and diversity for query
suggestion. The proposed learning framework utilized result set features to
compute the similarity between queries. Note that diversification in [41] is to
provide different SERP comparing with testing query q , where diversity in [34]
is to diversify the queries in the suggestion results.

• Diversifying and Personalization Jiang et al. [24] proposed to address the
diversity and personalization problem together through combining multiple
bipartite graphs (e.g., query-URL graph, query-session graph, query-term graph)
for query representation and diversification and utilizing offline user profile
for personalization. Their diversification algorithm is similar to method in [34]
described above. After getting all suggestions, they personalized the results by
computing a similarity between suggesting queries and user profiles.

Several studies are proposed to improve the user interface for better utility and
experience [27, 48]:

• Text+ Images Zha et al. [48] proposed a suggestion UI where a picture along
with the suggesting query is presented to users in the scenario of image search.
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Such UI design is integrated into the commercial search engine nowadays where
some suggestions show both textual and image information.

• Structured UI Kato et al. [27] studied structured suggestion style with special-
ization and parallel movements where suggesting queries are grouped as clusters
with text labels. Based on the success rate on predefined search tasks, the new UI
with grouping and tags outperforms the traditional UI with a plain list of results.

Machine learning approaches were applied to query suggestion to better combine
different features. Jain et al. [21] proposed to synthesize query suggestion based
on a CRF model to drop less important terms and combine click-through and
session information to get good suggestions within a learning framework. Similarly,
Ozerterm et al. [38] proposed to learn the suggestion function through both lexicon
and result set features using Gradient Boosting Decision Tree (GBDT) method.
They validated the importance of aboutness feature which measures the similarity
between SERP of a suggesting query and the test query, which is accordance with
findings in [41].

To evaluate the suggestion quality, several metrics were proposed in [1, 8, 27]:

• Human Label This is the most common evaluation strategy [8, 29–31, 40–42].
Given a test query q with a suggesting q ′, the annotator is presented with both
queries with some necessary information (e.g., the search context of the query,
the search results of q and q ′) to label whether q ′ is relevant or not.

• Task Accomplishment Kato et al. [27] proposed to evaluate the effectiveness of
different query suggestion UI by the success rate of predefined search tasks.

• SERP Annotation Ma et al. [35] proposed to annotate the relevance of the
suggestion by considering the result set information of whether a suggestion q ′
provides a better results or not comparing with testing query q .

• User Behavior Prediction He et al. [18] utilized search logs for automatic
evaluation of their query suggestion methods. Part of users’ search sequences
were given to query suggestion methods to predict the next submitted queries.
Albakour et al. [1] used daily search logs to measure the suggestion results in a
similar manner. They leveraged MRR (Mean Reciprocal Rank) as the evaluation
metric.

It has been shown that query suggestion techniques are useful for other appli-
cations as well. For example, Jones et al. [26] applied query suggestion techniques
(e.g., LLR) for sponsored search and illustrated improvement of sponsored sug-
gestion. Hasan et al. [17] proposed to leverage query suggestion techniques for
e-commerce websites (e.g., eBay) and evaluate the effectiveness (e.g., CTR) for
product search.
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8.7 Discussions and Future Directions

In this chapter, we summarized several types of query suggestion methods: (1) Co-
occurrence; (2) Query-URL bipartite graph; (3) Query transition graph; and (4)
Short-term search context.

Co-occurrence methods [16, 20, 26, 30] use co-occurrence of query pairs in
sessions or tasks. This type of method is usually straight-forward to understand
and compute. One problem of such approach is that it usually can provide good
suggestions for high-frequency queries and may not be able to provide suggestion
to tail queries with few or no co-occurred queries.

Query-URL bipartite graph methods [10, 36, 40] use clicked URLs of a query
to find similar queries. This type of method usually conducts random walk on the
click graph to propagate the similarities. For tail queries with less or no clicks, one
can leverage the post-web information (e.g., skipped URLs on the SERP [40]) to
enrich the pseudo relevant URLs of a query. If the search engine performs bad on a
query, it is hard to provide good query suggestions by using the click or post-web
information.

Query transition graph methods [7, 42, 43] use the query refinement informa-
tion in search logs to find next possible queries in the search process. This type of
method usually constructs a query transition graph and performs random walk on
the graph starting from testing queries. For tail query with less or no refinement
information, one can leverage the query string information to generate the query
as template [43] or construct term-level transition graph [42]. At the meantime,
one needs to carefully design the approach for generalizing queries as templates or
constructing term-level transition graph to achieve a good relevance.

Short-term search context methods [8, 18, 20, 29, 31] use search sequence
information (e.g., queries within current session) to improve the relevance of
suggestions. Sequence mining approaches [8, 18, 29] are usually applied to predict
next possible queries given current search sequence. To address the data sparsity
problem of search sequence, clustering algorithms are proposed in [8, 29] to group
similar queries as clusters and mine cluster level search sequences.

Moving forward, tail queries with few click information or irrelevant search
results need to draw more attention for better suggestion algorithms. Although
graph and SERP based approaches are able to help certain types of tail queries,
the coverage remains as a critical issue for most of the existing works.
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