
Chapter 7
Query Auto-Completion

Liangda Li, Hongbo Deng, and Yi Chang

Abstract Search assist plays an important role in modern search engines to reduce
users’ search efforts and satisfy their information needs. Query auto-completion
(QAC) is among one of the key search assist services, which help users type less
while submitting a query. The QAC engine generally offers a list of suggested
queries that start with a user’s input as a prefix, and the list of suggestions is changed
to match the updated input after the user types each keystroke. In this chapter, we
formally introduce the definition of the QAC problem and present state-of-the-art
QAC methods. More specifically, how the user’s search intent can be predicted by
exploring rich information, including temporal, contextual, personal, and underlying
various search behaviors. We also describe the popular datasets and metrics that are
utilized in evaluating the performance of QAC methods.

7.1 Problem Definition

Query auto-completion (QAC) has been widely used in modern search engines to
reduce users’ efforts to submit a query by predicting the users’ intended queries.
The QAC engine generally offers a list of suggested queries that start with a user’s
input as a prefix, and the list of suggestions is changed to match the updated input
after the user types each character. Suppose that a user is going to submit a query
q to the search engine, and the user types the prefix of the query q of length i as
q[1..i] sequentially. The QAC engine will return the corresponding suggestion list
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Fig. 7.1 Example of query auto-completion

after the user types each character until user clicks the suggestion q from the list
or presses return, ending the interaction with the QAC engine. Figure 7.1 shows an
example of the QAC service from the Yahoo search engine.

In the following, we give a formal introduction of the query auto-completion
(QAC) problem. Let p denote the prefix entered by a user u, and C(p) denote the
set of query completions that start with the prefix p, the output of a QAC method
is R(p), a ranking of a subset of queries from C(p). Provided that the actual search
intent of user u is query q , and a loss function L(q,R(p)) to measure how likely
user u will click query q from the selected order query set R(p). (Obviously, if
q /∈ R(p), there is no click chance.) The target of a QAC method is to optimize the
loss function L(q,R(p)) as:

R̂(p) = min
R(p)⊂C(p)

L(q,R(p)) (7.1)

Notice that R(p) is an ordered set, different R(p) can have the exact same set of
queries with different rankings.

Typical loss functions prefer the q to be ranked as top position as possible in the
ranking list R(p), since normally a user prefers his/her intent query to be ranked as
higher position as possible.
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7.2 Evaluation Metrics for QAC

To evaluate the effectiveness of QAC methods, two main categories of metrics have
been developed and explored: (1) metrics that focus on the quality of ranking and
(2) metrics that focus on how user’s effort in using QAC is saved.

7.2.1 Ranking Metrics

Since the output of a QAC method is a ranking of limited number of selected query
candidates given the current prefix to best satisfy user’s search intent, a good QAC
method is supposed to rank the query that better satisfies user’s intent in higher
positions. As for the search intent judgment, different strategies were used in the
literature:

• Using user’s final submitted query in a QAC session. For instance, if a user clicks
“facebook” among the queries in the suggestion list, “facebook” is regarded as
the query that satisfies the user’s real search intent. This is the most popular
evidence used for the relevance judgment.

• Using user’s submitted query’s frequency within the most recent time slot. Such
relevance judgment prefers query ranking suggestions that represent the search
trend of general users instead of the unique search intent of individual users.

• Using manual judgments for each suggestion [3]. The major drawbacks of this
strategy are that: (1) it requires a large amount of human resources for conducting
the judgment, while the size of the data is usually limited to thousands of
examples only; (2) the correctness of the judgment is usually not guaranteed,
which can result in strong noise to the model training considering the limited
data size of the editorial data.

• Using the quality of the search results retrieved by each suggested query [21].
Such relevance judgments benefit a search engine user who does not have a clear
search intent before starting a QAC session, by suggesting him/her the most
promising queries (with the best quality search results). However, the quality
of search results is out of the control of a QAC engine, and a suggestion with
better search results does not necessarily meet user’s real search intent. Such a
measurement tends to recommend user popular queries, thus fails to satisfy users
who are searching tail queries which have a limited number of high quality search
results, or the search engine itself performs poorly in indexing the high quality
search results for them.

With the search intent judgment, traditional ranking metrics in information
retrieval(IR) have been widely employed to measure the performance of QAC
methods. Below, we list some popularly used measures.

• Mean reciprocal rank (MRR): This is a statistical measure that evaluates
processes predicting a list of possible responses to a sample of queries. MRR
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is the most popular evaluation metric in measuring QAC performance [1, 19, 26],

MRR = 1

|Q|
∑

q∈Q

1

rankq
, (7.2)

where Q is the set of correct corresponds which, in our case, the query q a user
finally submitted, and rankq denotes the rank of the query q in the suggested
query list. This evaluation setup assumes that items placed towards the top of
a ranked list receive more attention and are therefore more useful to a search
engine user.

Since most existing QAC works conducted experiments on normal QAC logs,
which contained the query suggestion list under the last prefix of a QAC session
only, MRR is calculated as the average reciprocal rank (RR) score of the last
keystroke of each QAC session. Variations of MRR include:

– MRR@All: As introduced above, the normal MRR score only pays attention
to the ranking of query suggestions under the last keystroke of a QAC session.
However, in a real QAC scenario, a user is very likely to make the click at a
shorter keystroke if his/her intended query is already shown at a reasonable
position under that keystroke. Thus QAC methods that target to optimize the
normal MRR score may fail to improve the query suggestion ranking at shorter
keystrokes as well, while such an improvement can significantly save user’s
QAC action effort.

Recently, the availability of high-resolution QAC data enabled the mea-
surement of the quality of query suggestions at shorter keystrokes. A variation
of the normal MRR score is proposed, named MRR@All, to calculate the
average reciprocal rank (RR) score of all keystrokes, instead of the last
keystroke only. Compared with the normal MRR score, such a variation
prefers QAC methods that are able to infer user’s real search intent as early
as possible in a QAC session. To differentiate this variation from the normal
MRR score, the normal score is named MRR@Last in those QAC works.

– Weighted mean reciprocal rank (wMRR): The normal MRR score assigns an
equal weight to the last keystroke of each QAC session. However, one thing
that is worth attention is that the effort of typing a specific prefix can also
be different. For instance, if the user input is the letter “z,” since there is
only limited number of words that start with “z,” the number of candidates
to suggesting and ranking is also limited, which makes it a relatively easier
task for a QAC model than the letter with larger number of candidates, such
as “d.” Thus, a weighted version of MRR, named weighted mean reciprocal
rank (wMRR) [1] is proposed to each prefix based on the number of query
suggestions available.

• Success Rate at top K (SR@K): This metric calculates the average ratio of the
query that satisfied user’s search intent can be found within the top K positions
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of the predicted query suggestion list. It is widely used for tasks that have only
one ground truth among all candidates[10].

The major difference between ranking metrics in web document ranking and
QAC problems is that, the judgment of the query that satisfies user’s real search
intent is relatively easier than the relevance judgment of web documents given the
search query. A user’s search intent in one QAC session is most likely the query
that he/she finally submitted, while the relevance of web documents can hardly be
determined by a user’s click or dwell time on them. In learning to ranking tasks,
editorial judgments of query-document relevance are very critical in measuring
the performance, while QAC metrics rarely rely on the editorial effort. Such an
advantage enables the collection of a large-scale golden evaluation dataset for the
QAC tasks.

7.2.2 User Assist Metrics

Since the intuition of QAC is to assist search engine users’ query formulation and
save their interaction efforts, a good QAC method is supposed to reduce the cost
of users’ interaction with the search engine. Below we list some popularly used
measures.

• Minimum Keystroke Length (MKS) [9]: It measures the number of actions a user
has to take to submit a target query. This metric can be understood as a simulation
of a search engine user’s behavior during a QAC session. The user action taken
into consideration includes both the letter typing and Down Arrow key pressing
to reach the position of the target query. For instance, for the target query of a user
that is located at the i-th position at the j -th keystroke, the number of actions will
be calculated as i+j . Among all the potential positions in which the target query
appears, the minimal number of actions needed will be counted as the value of
MKS.

A variation of the MKS metric is penalized Minimum Keystroke Length
(PMKS), which considers an additional action, user’s view of each suggestion
for correctness. A penalty value of 0.1 is added for showing each suggestion, i.e.,
the latter keystroke a target query locates at, the larger penalty value is added.
Such a variation can be view as an encouragement of users to make selections at
shorter keystrokes.

• e-Saved and p-Saved [15]: p-Saved is proposed to compute the expected QAC
usage as:

pSaved(q) =
|q|∑

i=1

∑

j

I (Sij )P (Sij = 1) =
|q|∑

i=1

∑

j

P (Sij = 1) (7.3)
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where P(Sij = 1) measures the probability that a user ends the current QAC
session at the j -th position under the i-th keystroke. And I (Sij ) = 1 when
user actually used the corresponding query suggestion (at the j -th position under
the i-th keystroke). This metric can be understood as the probability that a user
actually uses the QAC engine rather than typing the target query on his/her own.

Conversely, e-Saved is proposed to measure the amount of effort saved in
terms of keystrokes as:

eSaved(q) =
|q|∑

i=1

(1 − i

|q|)
∑

j

P (Sij = 1) (7.4)

This metric is actually calculating the expected ratio of characters a user can
skip inputting until his/her query is submitted. It prefers the improvements in the
query suggestions for longer queries in particular, since a user usually prefers the
effort saving benefit from a QAC engine when submitting long queries than the
benefit when submitting short queries.

7.3 QAC Logs

Most of the research works on QAC built models based on the normal search query
log. Traditionally, the search query log only includes the user ID, the timestamp, the
submitted query and its associated search results. While the content of submitted
queries in the log lays the foundation of search intent prediction for in general
during the QAC process, other information like the timestamp, the submitted query
and its associated search results provid more precise evidence for the search intent
prediction given a certain user under a certain scenario. Typical public query log
that is widely used in existing QAC works includes: the AOL dataset [24], the MSN
dataset [8], and the SogouQ dataset.1

Those normal search query logs do not contain the sequential keystrokes
(prefixes) users typed in the search box, as well as their corresponding QAC
suggestions. In order to better analyze and understand real users’ behaviors, a
high-resolution QAC log is introduced and analyzed in [19], which records users’
interactions with a QAC engine at each keystroke and associated system respond
in an entire QAC process. For each submitted query, there is only one record
in a traditional search query log. However, in the high-resolution QAC log, each
submitted query is associated with a QAC session, which is defined to begin with
the first keystroke a user typed in the search box towards the final submitted query.
The recorded information in each QAC session includes each keystroke a user has

1http://www.sogou.com/labs/dl/q.html.

http://www.sogou.com/labs/dl/q.html
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Fig. 7.2 High-resolution QAC log

entered, the timestamp of a keystroke, the corresponding top 10 suggested queries
to a prefix, the anonymous user ID, and the final clicked query.

Formally, a QAC session contains S keystrokes and each keystroke has a
suggested query list of length D as shown in Fig. 7.2.2 A QAC session ends at
the keystroke where the user clicks a query in the suggested query list, or when the
prefix at that keystroke is exactly the query the user enters into the search engine.
Among the S × D slots in each QAC session, where each slot qij is indexed by the
i-th position at the j -th keystroke, a user clicks at most one of them, although the
user’s intended query may appear in many slots.

7.4 QAC Methods

The basic idea to solve the QAC problem is taking the general interest and all
users in a search engine and recommend users the most popular queries in search
history. A normal query auto-completion engine usually makes an assumption that
what a user searched in history is most likely to imply his/her current search intent
and maintain a list of all candidate queries with their frequencies. However, such
prediction only works under very limited scenario and fails to consider the variations
across different users, time slots, etc. In the following, we discuss how different
types of information are utilized by existing QAC works. Those information can be
generally categorized into: temporal information, contextual information, personal
information, user’s interaction in QAC, and user’s interaction besides QAC.

2In real-world search engines, D = 4 4 for Baidu and Google, D = 8 for Bing, D = 10 for Yahoo.
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7.4.1 Time-Sensitive QAC

Temporal information plays an important role in QAC, since search engine user’s
interest changes from time to time. Significant temporal factors that can result in
user’s search intent change include:

• User’s own interest change along the daily time. Both “star wars” and “star trek”
are famous movie/drama series started from many years ago. A user can be very
devoted to “star trek” last year and divert his/her attention to “star wars” this year.
Since both queries are high-frequency queries existed in the query log for many
years, it is hard to decide which query should be ranked in a higher position under
the prefix “star.” QAC methods need to learn such knowledge from user’s most
recent query log and provide the appropriate recommendation.

• Periodic events that users participate in regularly. Search engine users can have
some periodic interest in certain types of queries (like travel, shopping) that are
closely related to seasonal events, such as weekend, yearend, holiday, anniver-
sary, etc. Those queries are usually very different from user’s submitted queries
in regular days and unable to be predicted from user’s recent history. Under this
scenario, QAC methods need to utilize user’s history at the same/similar seasonal
events occurred previously to make the prediction.

• Breaking news that catch up users’ attention. User’s search intent may also
follow the breaking news that happen from time to time. Queries related to those
breaking news are likely never recorded in the query log before. QAC methods
need to detect the trending queries in the most recent time period and promote
those queries in query suggestion lists.

Most popular completion (MPC) is proposed by [1] to rank candidate queries
based on their frequencies in the historical query log. This method is a quite
straightforward utilization of some basic temporal features and can be regarded as
an approximate maximum likelihood estimator as:

MPC = argmaxq∈C(p)ω(q), where ω(q) = f (q)∑
qi∈Q f (qi)

(7.5)

where C(p) denotes the set of query completions that start with the prefix p, and
f (q) denotes the frequency of query q in the query log Q.

The main drawback of MPC is that it assumed user’s interest is stable within the
range of the collected historical query logs. However, as pointed out in previous
paragraphs, user’s interest changes from time to time and can be influenced by
various types of temporal signals. Thus it makes us difficult to find a certain time
window which can be used to predict user’s current search intent.

Based on MPC, Shokouhi and Radinsky [27] proposed a time-sensitive QAC
ranking model (TS), which replaced the real frequency of candidate queries utilized
in MPC with forecasted scores computed by time-series modeling of historical
query logs. The score of each candidate at time t is calculated based on its predicted
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frequency through time-series models that designed to detect the trending queries.
This time-sensitive QAC ranking model is formalized as:

TS(p, t) = argmaxq∈C(p)ω(q|t), where ω(q|t) = f̂t (q)
∑

qi∈Q f̂t (qi)
(7.6)

where p is the input prefix, C(p) denotes the set of query completions that start
with the prefix p, and f̂t (q) denotes the estimated frequency of query q at time t in
the query log Q.

In practice, TS utilized the single exponential smoothing method [11] to predict
the frequency of query q at time t based on the real frequency at the last time slot
t − 1, and a smoothed frequency at the time slot t − 2.

f̂t = f̄t−1 = λ ∗ ft + (1 − λ) ∗ ȳt−2 (7.7)

where ft−1 and f̄t−1 denote the real observed and smoothed values for the query
frequency at time slot t − 1, f̂t is the estimated frequency of the query at the current
time slot t , and λ is a trade-off parameter in the range of [0, 1]. Notice that the
smoothed value f̄t−1 at the last time slot t − 1 is used as the predicted value f̂t at
the current time slot t .

Although this single exponential smoothing can produce reasonable forecasts
for stationary time-series, it is proved to perform poorly in capturing the trending
queries. Double exponential smoothing methods [11] are proposed to address this
issue by extending the previous model with a trend variable involved.

f̂t = f̄t−1 + Ft−1 (7.8)

f̄t−1 = λ1 ∗ ft−1 + (1 − λ1) ∗ (f̄t−2 + Ft−2) (7.9)

Ft−1 = λ2 ∗ (f̄t−1 − f̄t−2) + (1 − λ2) ∗ Ft−2 (7.10)

Here, parameter Ft−1 models the linear trend of time-series at time t − 1, ft and
f̄t represent the real and smoothed frequency at time t . λ1 and λ2 are smoothing
parameters.

In addition to the double exponential smoothing, triple exponential smoothing (or
HoltWinters smoothing) [11] goes one step further to model the periodical queries
as:

f̂t = (f̄t−1 + Ft−1) ∗ St−T (7.11)

ȳt−1 = λ1 ∗ (ft−1 − St−1−T ) + (1 − λ1) ∗ (f̄t−2 + Ft−2) (7.12)

Ft−1 = λ2 ∗ (f̄t−1 − f̄t−2) + (1 − λ2) ∗ Ft−2 (7.13)

St−1 = λ3 ∗ (ft−1 − f̄t−1) + (1 − λ3) ∗ St−1−T (7.14)

λ1 + λ2 + λ3 = 1 (7.15)



154 L. Li et al.

where λ1, λ2, and λ3 are free smoothing parameters in [0, 1], St−1 captures the
periodicity of query at time t − 1, and T denotes the length of periodic cycle.

Another solution based on time-series analysis is a time-sensitive QAC method
proposed by Cai et al. [7], which attempted to detect both cyclically and instantly
frequent queries. This method estimated the current query frequency as a linear
combination of its periodicity score and trending score. It not only inherited the
merits of time-series analysis for long-term observations of query popularity, but
also considered recent variations in query frequency. In specific, it predicted the
frequency of a query q at time slot t through:

f̂t (q, λ) = λ ∗ f̂t (q)trend + (1 − λ) ∗ f̂t (q)peri (7.16)

where f̂t (q)trend tries to capture the trending of query q , and f̂t (q)peri tries to
capture the periodicity of query q . This method sets λ = 1 for aperiodic queries and
0 ≤ λ < 1 for periodic queries.

The term f̂t (q)trend is formulated as a linear combination of the trending queries
during the most recent N days:

f̂t (q)trend =
N∑

i=1

ωi ∗ f̂t (q, i)trend (7.17)

Here ωi is a time decay weight while constrained by the condition that
∑

i ωi = 1.
The trending prediction for each day i is calculated based on the first order

derivative of the frequency of query q within time slot t:

f̂t (q, i)trend = ft−1−TD(i)(q) +
∫ t

t−1−TD(i)

∂C(q, t)

∂t
dt (7.18)

Here ft−TD(i)(q) is actual the frequency of query q at day i, while C(q, t) denotes
the frequency of query q within time slot t .

The term f̂t (q)peri is formulated as the smoothing term that averages the query
frequency of the most recent M preceding time slots tp = t −1∗Tq, . . . , t −M ∗Tq

in the query log as:

f̂t (q)peri = 1

M

M∑

m=1

ft−m∗Tq (q) (7.19)

Here Tq is the length of periodic cycle of query q .
The temporal information recorded in the QAC log is not limited to be utilized in

the query frequency estimation. Recent works [17] also made use of this information
to reveal the relationship between user’s click behaviors in QAC logs, such as
the click position. Different search engine users can have different preferences in
the positions to click during the QAC process. For instance, some users prefer to
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make clicks at lower positions under shorter prefixes, while others prefer higher
positions under longer prefixes. For the same user, such kind of preference may also
change with respect to time. Thus in learning a user’s preference of click position,
it is reasonable to assign higher weights to the recent historical click positions. To
quantify the degree of the influence between click events from the temporal aspect,
this method employed the following formula:

κ(tl − t) (7.20)

where t is the timestamp when a user makes the current click, tl is the timestamp
when the l-th historical click event occurs, and κ(tl − t) represents a time decay
effect.

7.4.2 Context-Sensitive QAC

Context-sensitive QAC methods take the context which a search engine user has
input into consideration in user search intent prediction. Different from the normal
query frequency based QAC methods, which predict the probability that whether a
candidate queries will be issued by a user based on the exact same query recorded
in historical query logs, context-aware QAC methods make the prediction based on
the submission of other queries that share a certain relationship with the predicted
candidate query. Such relationship can be:

• With similar content. Queries that shared similar content are very likely to reflect
the same or similar user search intent. Thus besides the original query, other
queries with similar content can provide additional evidence in the search intent
prediction. For instance, “star wars” and “star wars the old republic” can both tell
a user’s interest in the movie/drama “star wars,” and the frequency of both queries
can be very high. Such kind of information is especially useful in predicting
user’s search intent under short keystrokes, such as “st” in this case, since the
frequency of the single query “star wars” is not able to represent user’s real
relative degree of interest in this movie/drama, when compared with other queries
which also started with “st” but do not have so many high-frequency queries with
similar content.

• Belong to the same category. Such information can be helpful in revealing a
user’s interest when little information is given, for instance, only one keystroke
is entered. One typical example is that, if most queries submitted by a user are
shopping queries, it is very likely that he/she will click “amazon” rather than
“aol” under the keystroke ‘a’.

• Co-occurred frequently in the query log. If two consecutive queries “hollywood”
and “beverly hills” are issued by the same user, then the previous query “hol-
lywood” can also be viewed as the context of query “beverly hills.” Generally,
two consecutive queries issued many times by different users are more likely
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to have a strong correlation between each other. It makes more sense to take
into account the explicit temporal information of query sequences exhibited by
many different users in the whole-query logs. The basic intuition is that if two
consecutive or temporally close queries are issued many times by the same user
or many other users, it is more likely that these two queries are semantically
related to each other. Those queries are very likely to form a search task, which
target to accomplish a single search intent goal (travel in western los angeles
in the previous example). Thus the co-occurrence of those queries can happen
frequently in the future across different users that conduct the same search task.

The NearestCompletion method [1] utilized users’ recent queries as the context
of the user input. This method did a good job in predicting user’s search intent when
matching the context of the user.

NearestCompletion described a context-sensitive extension of the Maximum
Likelihood Estimator, which tried to predict the candidate query q that started with
prefix x whose presentation vector vq has the highest cosine similarity to the search
context representation vC :

NearestCompletion(p,C) = argmaxq∈C(p)

< vq, vC >

‖vq‖ · ‖vC‖ . (7.21)

Here C(p) is the set of candidate queries starting with prefix p.
The context representations in NearestCompletion are based on the query

representations. Given vq1, . . . , vqt as the corresponding vectors of context C =
q1, . . . , qt . The context vector vC is formulated as a linear combination of the
query vectors vC = ∑t

i=1 ωivqi , with weights ω1, . . . , ωt ≥ 0. Those weights
described the degree of the influence from the historical query as context to the
current search intent of a user. They are required to be time decayed, since the
more recent submitted queries are more likely to be relevant to the current query.
Popular weight functions that satisfy this condition include: recent-query-only (wt

= 1 and wi = 0 for all i < t), linear decay (wi = 1/(t − i + 1)), logarithmic decay
(wi = 1/(1 + log(t − i + 1))), and exponential decay (wi = 1/et−i).

Notice that using the output of NearestCompletion alone for a QAC task is
not working well for when a new user joins or a user’s current search intent is
not relevant to the context collected for the user. In practice, this work used a
linear combination of the score from the NearestCompletion function and the MPC
function introduced above as the final score for the query candidates ranking in
QAC.

Cai et al. [7] utilized two different types of context for search intent prediction.
One is the set of queries in the current search session, denoted as Qs , the other is
the set of historical queries issued by user u, denoted as Qu. This method calculated
the scores of the candidates qc ∈ S(p) through a linear combination of similarity
scores Score(Qs, qc) and Score(Qu, qc) as follows:

Pscore(qc) = ω ∗ Score(Qs, qc) + (1 − ω) ∗ Score(Qu, qc) (7.22)
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here ω weights the above two components.
To compute the similarity scores, this method used n-gram to represent each

query, thus enabling the proposed similarity score to capture syntactic reformula-
tions. Moreover, to overcome the problem that the query vocabulary is too sparse
to capture semantic relationships, it treated a user’s preceding queries Qs in the
current session and Qu in the historical log as context to personalize QAC where
the similarity is measured at the character level.

Jiang et al. [13] studied user’s reformulation behaviors in QAC based on the
context information. Three types of context based features are designed to describe
the reformulation behaviors of search engine users by capturing how users modify
their preceding queries in a query session, including:

• Term-level features: for instance, term keeping—|S(qt−1) ∩ S(qt )|, which
describes the number of shared terms by the query issued at time slot t and
the previous query at time slot t − 1.

• Query-level features: for instance, average cosine similarity—
1

t−1

∑t−1
i=1 simcos(qi, qt ), which calculates the content similarity between the

queries issued at time slot t and all previous historical queries issued within the
same query session.

• Session-level features: for instance, ratio of effective terms |Ceff(qt )|/|S(qt )|,
which is the ratio of the number of clicks on the search results of query qt divided
by the number of terms in query qt .

Such contextual features that capture user’s reformulation behaviors are proved to
be an effective additional signal to the regular context features introduced above.

Li et al. [17] designed a set of contextual features that describe the relationship
between the content of a historical query q ′ and the current suggested query q , to
quantify the degree of the influence between click events from the context aspect.
These features count the number of appearances of a certain pattern involving
both the historical query q ′ and the current suggestion q in a certain time range
formulated as:

x(p)(t,�t) = #{p ∈ [t − �t, t)} (7.23)

where p represents a certain defined pattern, [t − �t, t) is the time interval from
some ancient timestamp to the current timestamp. Table 7.1 shows several patterns
adopted in this work, which is inspired by the features proposed in [25].

As shown in Table 7.1, those contextual features generally originate from the co-
occurrence of two queries in the query sequence submitted by search engine users
and reflect pairwise relationship. A feature vector xq ′,q(t) is formed for each query-
pair (q ′, q) at any given timestamp t as

xq ′,q(t) = {x(p)(t,�t)|p ∈ Pq ′,q ,�t > 0} (7.24)

where Pq ′,q refers to the set of patterns involving the pair of queries {q ′, q}. Thus for
each timestamp t , a unique set of feature vectors {xq ′,q(t)} imply how a historical
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Table 7.1 Patterns in constructing contextual features

Pattern p Description

q ′ → q Query q is submitted just after the submission of query q ′

q ←→ q ′ Query q and q ′ are submitted in adjacent

q ′ (v)−→ q Query q is submitted after the submission of query q ′, and v queries have
been submitted in between

q
(v)←→ q ′ v queries are submitted between the submission of query q and q ′

click event (on query q ′) influences the current click event (on query q) from the
contextual aspect.

7.4.3 Personalized QAC

Another type of useful signal in QAC is the user’s personal information. Unlike
the context information that can vary with respect to time, personal information
described user’s inherit characteristics that are mainly to differentiate one user from
other users, or a group of users from other groups. Such personal information
generally includes:

• bcookie. In query logs, bcookie is unusually used as the identifier of a single
search engine user, although in real-world scenario one actual user can have
multiple bcookies (such as owning multiple computers), and a bcookie can
be shared by multiple users (family members shared computers or public
computers). Learning distinct models based on the query log under different
bcookies can increase the accuracy in user’s search intent prediction, since the
interest and search habit of users can be very different from each other. The major
drawback of bcookie based model is that the number of QAC sessions completed
by a single user is very limited. Obviously, it will fail when facing new bcookies.
Moreover, for most normal search engine users who regularly submit tens of
queries per day, the available QAC sessions for model learning are very limited.
Thus, more general categorical personal information is also important, which
can jointly utilize the query logs of users within the same category to benefit the
model learning.

• gender. The gender of a search engine user can be a strong signal in predicting
his/her interest. A male user is more likely to submit sports queries than shopping
queries, and vice versa for a female user.

• age. The age of a search engine user is another strong signal. Teenagers usually
prefer gaming, while older individuals care more about health.

• location. The location information is very useful in query suggestion, since a
large percentage of queries submitted by search engine users are with local intent.
For instance, under the prefix “amc,” a user lived in sunnyvale is more likely to
search for “amc cupertino” instead of “amc san Francisco.” Notice that location
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is not a typical type of personal information, since a user can move across cites,
states, or even countries, especially for users who spend a great amount of time
in traveling. However, for regular search engine users, their locations are usually
stable.

In the Personalized QAC model proposed in [26], a number of demographic
features are utilized, including users’ age, gender, and zip-code information from
their Microsoft Live profiles. This method divides users into five groups based on
age: {<20, 21−30, 31−40, 41−50,>50}. For each user, the model made use of the
frequency of query candidates that submitted by all other users fall into the same age
groups as a feature. Similar features are also generated based on gender and zip-code
information. Notice that the zip-codes are also collapsed into 10 regions according to
the corresponding first digits, so as to reduce sparsity. Those demographic features
are incorporated into a supervised learning framework for personalized ranking of
query auto-completion.

Cai et al. [6] also conducted experiments to test the effectiveness of the
demographic features in learning to rank algorithms such as Burges et al. [5], results
showed that demographic features such as location are more effective than others in
the QAC task. The SQA algorithm proposed in [20] studied how to utilize location
information to solve the QAC task based on a native index structure combined with
a spatial index. This method utilized the longitude/latitude information to describe
a certain location and ranked candidate suggestions q given a certain prefix p based
on the ranking score function as:

RankScore(q, p) = α ∗ Dis(qloc, ploc)

DisMax
+ (1 − α) ∗ RelScore(q, p) (7.25)

where α ∈ (0, 1) is a parameter that balances the spatial proximity and the normal
relevancy between the candidate suggestion q and prefix p. Dis(qloc, ploc) is the
Euclidean distance between qloc, the location descriptor of query q , and ploc, the
location when user typing the prefix p. DisMax is the potential max distance value
used for normalization. RelScore(q, p) is the normal relevance score for the query-
prefix pair (q, p) calculated based on regular QAC features.

7.4.4 User Interactions in QAC

Rich user interactions can be observed along with each keystroke until a user clicks a
suggestion or types the entire query manually. It becomes increasingly important to
analyze and understand users’ interactions with the QAC engine, so as to improve
its performance. Figure 7.3 presents the general process that a search engine user
interacts with the QAC engine in a QAC session.
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Fig. 7.3 How a search engine user interacts with the QAC engine in a QAC session

In the following, we list several typical user behaviors that can facilitate the
understanding of the QAC process:

• Click behavior. User’s click behavior is one of the key signals in understanding
user’s search intent, since the target of a QAC method is to increase user’s click
chance during a QAC session (as early as possible). There are mainly two types
of information in user’s click behaviors:

– Position bias. One important type of click information is the click bias on
vertical positions in QAC. Using the same set of QAC sessions, we have
computed the distribution of clicks according to their positions in the final
suggestion list and the final prefix length. Similar to the findings in the
traditional click models, most of the clicks concentrate on top positions. Such
vertical positional bias suggests that the relevance estimation of queries should
be boosted if they are clicked on lower ranks. Compared to user’s QAC
behavior on PC, their clicks on mobile distribute more evenly within positions
from 1 to 3. In addition, most of the clicks are located in long prefix, the click
probability at short prefix length (1 and 2) is very low, suggesting that users
tend to skip the suggested queries at the beginning.

– Click choice. The click choice of a user can provide rich information in
predicting user’s search intent. The query candidates that have been suggested
by the QAC engine but not clicked by a user during a QAC session have a
small chance to meet user’s search intent. A user is unlikely to look for the
query “facebook” if he/she does not select it under prefix “f,” since “facebook”
is the top query suggestion.
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• Skipping and viewing behavior. Search engine users frequently skip several
intermediate lists of candidates even though these lists contain their final
submitted queries. A plausible explanation for the skipping behavior is that the
user did not examine it due to some reasons, such as fast typing speed, too
deep to look up the query, etc. The inference of whether a user has skipped to
view a certain keystroke or a certain suggested query under that keystroke can
be very helpful in predicting user’s real search intent, since a query that a user
does not click may also satisfy his/her intent if he/she skips that query or the
corresponding keystroke due to the reasons mentioned as above.

• Typing behavior. Typing speed is an important signal that characterizes a search
engine user. A user with fast typing speed is probably an expert user who has
rich experience in using search engines, usually has a clear search intent, and is
aware of what exact query to enter before starting a QAC session. Thus an expert
user is less likely to use the assist from the QAC engine than a new search engine
user.

Jiang et al. [13] employed user’s click behaviors to model user’s refor-
mulation habit. This work designed session-level features based on both the
timestamps of user’s clicks in QAC. It calculated the average time duration
between clicks as 1

T −1

∑T −1
i=1 (ti+1 − ti ), and the trends of time duration as

(tT − tT −1)/
1

T −2

∑T −2
i=1 (ti+1 − ti), where ti is the timestamp of the click that

occurs in the i-th QAC session.
Li et al. [17] explored to learn the position bias in a user’s click preference based

on the positional information of historical QAC sessions from the same user. This
work quantified the degree of the influence between the click events from the special
slot aspect using the following formula:

κ(|pl − p|) (7.26)

where p is the slot where a user makes the current click, and pl is the slot where
the user makes the l-th historical click event, i.e., the click occurs at the l-th QAC
session, and κ(|pl − p|) represents a decay effect from the slot discrepancy. Notice
that p = (i, j) is a vector of length 2, its entries i and j denote the position and the
keystroke, respectively.

TDCM [19] tried to utilize user’s skipping behaviors and clicking position bias
information to understand user’s click choice during the QAC process. It defined a
basic assumption for each type of user behaviors separately as below:

• SKIPPING BIAS ASSUMPTION: A query will not receive a click if the user did
not stop and examine the suggested list of queries, regardless of the relevance of
the query. This assumption explains why there are no clicks to intermediate prefix
even though a relevant query is ranked at the top of the list, and all of the clicks
are concentrated on the final prefix.

• VERTICAL POSITION BIAS ASSUMPTION: A query on higher rank tends to
attract more clicks regardless of its relevance to the prefix.



162 L. Li et al.

Based on the above assumptions, TDCM proposed a Two-Dimensional Click
Model to explain the observed clicks. This click model consists of a horizontal
model (H Model) that explains the skipping behavior, a vertical model (D Model)
that depicts the vertical examination behavior, and a relevance model (R Model) that
measures the intrinsic relevance between the prefix and a suggested query.

In specific, TDCM formulated the probability of observing a click C in a session
as:

P(C) =
∑

H,D

P(C,H,D) (7.27)

where H = {H1, . . . , Hn}, D = {D1, . . . ,Dn} is a set of hidden variables,
respectively. Here, Hi denotes whether the user stops to examine the column i,
and Di denotes the depth of examination at column i. C = {C1, . . . , Cn} is the
click observation matrix in which only one click is observed: Cn,J = 1, n is the
number of columns in the QAC session. This model followed the Cascade Model
assumption as:

P(Cn,J = 1) = P(C1 = 0, . . . , Cn1 = 0, Cn,J = 1, Cn,j = 0, j �= J ) (7.28)

as well as the set of conditional probabilities as:

P(Cij = 1|Hi = 0) = 0 (7.29)

P(Cij = 1|Hi = 1,Di < j) = 0 (7.30)

P(Cij = 0|Hi,Di) = 1 − P(Cij = 1|Hi,Di) (7.31)

P(Di > d|qd : Cn,d = 1) = 0 (7.32)

Among the above conditional probabilities, Eqs. (7.30) and (7.32) modeled the
SKIPPING BIAS ASSUMPTION, and Eqs. (7.31) and (7.32) modeled the VER-
TICAL POSITION BIAS ASSUMPTION. Equation (7.32) stated that if a relevant
query is ranked in depth d , the examination depth at the i-th column must not exceed
d .

In the H model, TDCM attempted to capture user’s skipping behavior via the
following features: TypingSpeed: an expert user is less likely to use QAC than a
slow user. CurrPosition: a user tends to examine the queries at the end of typing.
IsWordBoundary: a user is more likely to look up queries at word boundaries.
NbSuggQueries: it is more likely to be examined if the list of queries is short.
ContentSim: a user may be more likely to examine the list if all queries are coherent
in content. QueryIntent: a user tends to skip the list more when searching for
navigational queries. Also, in the D model, TDCM utilized the positions a query
candidate is ranked to measure the pure vertical position bias.

Zhang et al. [32] studied how user’s click behavior can be utilized as the implicit
negative feedback during user-QAC interactions. The key challenge is that this kind
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of implicit negative feedback can be strong or weak, and its strength cannot be
directly observed. It utilized additional information such as dwell time and position
to capture the confidence in using an unclicked suggestion as implicit negative
feedback in search intent prediction.

If a user dwells on a suggestion list for a longer time, the user may have more time
to carefully examine the suggested queries. Conversely, if a user dwells for a shorter
time, the suggested queries will more likely be ignored; thus, even if these queries
are unselected, whether the user favors them or not is unknown. Since different
users may have different typing speeds, the inference of implicit negative feedback
strength by dwell time should be personalized. This method represented implicit
negative feedback from the user u to the query q at the k-th keystroke during the
c-th QAC session in the QAC log by a feature vector x(k)(u, q, c). The features
utilized include: DwellT-M, the maximum dwell time when query q is suggested;
DwellT, total dwell time where query q is suggested; WordBound, the number
of the keystrokes at word boundaries when query q is suggested; SpaceChar, the
number of the keystrokes at space characters when query q is suggested; OtherChar,
the number of the keystrokes at non-alphanum char when query q is suggested;
IsPrevQuery, 1 if query q is the immediately previous query; 0 otherwise; and
Pos@i, the number of the keystrokes when query q is at position i(i = 1, 2, . . . , 10)

of a suggestion list.
Then a generalized additive model, named AdaQAC, is proposed to predict the

preference p(k)(u, q, c) for a query q of a user u at a keystroke k in the c-th QAC
session:

p(k)(u, q, c) = r(k)(u, q, c) + φ(u)x(k)(u, q, c) (7.33)

Here, the preference model p(k)(u, q, c) is able to reflect a user u’s preference for
a query q after the implicit negative feedback x(k)(u, q, c) is expressed to q before
the k-th keystroke in the c-th QAC session. With the associated feature weights
φ(u) personalized for u, φ(u)x(k)(u, q, c) encodes the strength of implicit negative
feedback to q from u with personalization.

In addition to the above introduced QAC methods which modeled user’s
interaction at each keystroke independently, RBCM [16] made a further step to study
the relationship between users’ behaviors at different keystrokes, which includes:

1. State transitions between skipping and viewing. The study on high-resolution
query log data revealed that a user may choose to either view or skip the
suggestion list at each keystroke in a QAC session. Besides the above introduced
factors that influence users’ decisions on skipping or viewing, such as typing
speed and whether the end of current prefix is at word boundary. This work
believed that such decisions should also be influenced by their decisions on
skipping or viewing at the previous keystroke. For instance, imagining a user
u has 5 sequential skipping moves in one QAC session and 2 sequential skipping
moves in another QAC session, the chance becomes higher for the same user
to stop and view the suggestion list at the current keystroke after 5 sequential
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skipping moves. Conversely, if the same user has already viewed too many
keystrokes continuously but found no intended query, it becomes more likely
that he/she may skip the next one;

2. Users’ real preference of suggestions. This work claimed that, for each
keystroke, the associated users’ real preference is hard to be detected from the
current suggested query list alone. The rankings of suggested query lists of latter
keystrokes together with users’ final click choices should also be utilized to
re-rank the suggested queries in the list of the current keystroke. Intuitively, a
clicked query, i.e., the user’s intended query, should get a higher rank not only at
the keystroke he/she makes the click, but also at previous keystrokes where this
query appears, despite that it is not clicked at that time;

3. User-specific cost between position clicking and typing. Some users prefer
typing than viewing and clicking, while others do not. Consequently, users’ click
choices are not only affected by their intent, but also by the position where
the intended query is shown and their preference of clicking that position over
typing the remaining keystrokes. For instance, a user that prefers clicking will
probably click an intended query the first time it is shown to him/her, despite that
it may be shown in a low position; while another user focuses on typing his/her
intended query despite that the query already appears in the suggestion list, until
it is ranked at the top position, or even worse, he/she will type the entire query
manually without any intent to click the suggestions.

7.4.5 User Interactions Besides QAC

Besides the information recorded in the QAC log, user’s behavior on other types of
search logs can also be very useful in predicting user’s search intent. One typical
example is user’s click log, which recorded user’s click behavior on the returned
web results after submitting a query.

Figure 7.4 shows a toy example of QAC and click logs that align in the timeline.
We can observe that the QAC session of a query is followed by the click session of
that query, and that click session is followed by another QAC session of the next
query. Such sequential behaviors indicate the promising opportunity of exploring
appropriate relationship between QAC and click logs. Although the user’s behaviors
on QAC and click logs are of different types, they imply the same underlying
relationship between the user and his/her issued query, such as whether the issued
query satisfies the user’s intent, and how familiar the user is with the issued query or
the domain that query belongs to. For instance, if a user is familiar with the issued
query in QAC log, he/she may type the query very fast. Then in click log, if the
SERP page provides many relevant results, the user may take a long time to click
and check some relevant results in more details; however, if the SERP page does not
provide relevant results, the user may reformulate a new query shortly which will
start a new QAC session similar to previous query.
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Moreover, user’s search behaviors on one type of log can be used as the
contextual data for the other type of log across different query sessions, since users
generally behave consistently in adjacent time slots. For instance, according to the
click log, if a user’s behaviors indicate he is very familiar with the current query,
then similar behaviors will be likely observed in the QAC session of the next query;
if the issued query is under the same topic, the user will probably type the following
query fast as well.

Li et al. [18] studied and designed various QAC and click features in quantita-
tively capturing user behaviors on QAC and click logs, Among features of QAC
behaviors, “Type Speed Standard Deviation” is designed to reflect the stability
of a user’s typing speed. A user who examines his/her intended queries from the
suggestion list from time to time may hardly maintain a stable typing speed, even if
the user has good typing skills. On the contrary, a user who plans to type the entire
query without clicking a suggestion may illustrate a stable typing speed. “Typing
Completion” is designed to show whether a user prefers typing than clicking
suggestions. Among the features of click behaviors, “Search Time” is defined to be
how fast a user can find his/her intended web documents after submitting a query.
Notice that users’ behaviors on different types of logs are not independent. On the
QAC log, an experienced user usually spends less time to complete a QAC session
than an unexperienced user, i.e., has a small “Time Duration.” While on the click
log, he/she is very likely to make his/her first click after only a short while, i.e., a
small feature value for “Search Time.” A user who tends to trust the results of search
engines may miss the QAC behavior feature “Typing Completion” and own a higher
value of the click behavior feature “Click Number.” Thus the above designed QAC
and click behavior features are somehow related.

To detect user behavior patterns from logs, this work proposed a graphical
model based on latent Dirichlet allocation (LDA) [4], which has been proven
to be effective in topic discovery by clustering words that co-occur in the same
document into topics. It treats each user’s query sequence as a document, and
clustered user behaviors that co-occur frequently in the same query sequence into
topics, since each user maintains certain behavior patterns in query submission, and
different groups of users prefer different behavior patterns. The model assumed K

behavior patterns lie in the given query sequences, and each user m is associated
with a randomly drawn vector πm, where πm,k denotes the probability that the
user behavior in a query session of user m belongs to behavior pattern k. For
the n-th query in the query sequence of user m, a K-dimensional binary vector
Ym,n = [ym,n,1, . . . , ym,n,K ]T is used to denote the pattern membership of the user
behavior in that query session.

To model the influence of the context on user’s choice of the behavior pattern
in the current query session, the proposed model assumed user’s preference of
behavior patterns depends on the context, rather than the user alone. That is to
say, a “document” in the LDA model does not contain the user behaviors in all
query sessions of a user, but only the behaviors in those query sessions that the user
conducts under the same status, for instance, in the same mood, or sharing the same
topic.
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7.5 Historical Notes

Query auto-completion (QAC) has been attracting people’s attention for quite a long
time. The main objective of QAC is to predict users’ intended queries and assist
them to formulate a query while typing. The most popular QAC algorithm is to
suggest completions according to their past popularity. Generally, a popularity score
is assigned to each query based on the frequency of the query in the query log from
where the query database was built. This simple QAC algorithm is called Most
Popular Completion (MPC), which can be regarded as an approximate maximum
likelihood estimator [1].

Several QAC methods [1, 26, 27, 31] were proposed to extend MPC from various
aspects. Bar-Yossef and Kraus [1] introduced the context-sensitive QAC method by
treating users’ recent queries as context and taking into account the similarity of
QAC candidates with this context for ranking. But there is no consensus of how
to optimally train the relevance model. Shokouhi [26] employed a learning-based
strategy to incorporate several global and personal features into the QAC model.
However, these methods only exploit the final submitted query or simulate the
prefixes of the clicked query, which do not investigate the users’ interactions with
the QAC engine.

In addition to the above models, there are several studies addressing different
aspects of QAC. For example, [27, 31] focused on the time-sensitive aspect of QAC.
Other methods studied the space efficiency of index for QAC [2, 12]. Duan and
Hsu [9] addressed the problem of suggesting query completions when the prefix
is misspelled. Kharitonov et al. [15] proposed two new metrics for offline QAC
evaluation and [14] investigated user reformation behavior for QAC.

The QAC is a complex process where a user goes through a series of interactions
with the QAC engine before clicking on a suggestion. Smith et al. [28] presented
an exploratory study of QAC usage during complete search sessions based on the
lab study of tens of search engine users, the result implicated the effectiveness
of the knowledge from prior queries within the same search session in improving
the suggestions over successive queries in query auto-completion. As can be seen
from the related work, little attention has been paid to understand the interactions
with the QAC engine. Until recently, Li et al. [19] created a two-dimensional
click model to combine users’ behaviors with the existing learning-based QAC
models. This study assumed users’ behaviors at different keystrokes, even for
the consecutive two keystrokes, are independent in order to simplify the model
estimation, which results in information loss. In advance, Li et al. [16] attempted
to directly model and leverage the relationship between users’ behaviors, so as to
improve the performance of QAC. Furthermore, users’ behaviors besides the QAC
process, such as the behaviors in click logs, have also be explored in benefiting the
QAC task in [18].

In recent years, more and more special scenarios under the QAC problem have
been explored. Wang et al. [30] formulated the QAC task as a ranked Multi-Armed
Bandits (MAB) problem to timely and adaptively suggest queries and expected
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to reflect time-sensitive changes in an online fashion. Vargas et al. [29] claimed
that the traditional whole-query completion mechanism is not the optimal solution
for mobile search scenarios. Inspired by predictive keyboards that suggests to the
user one term at a time, they proposed the idea of term-by-term QAC. Liu et al.
[22] investigated into the promotion campaign issue in QAC engines, where some
malicious users provided a new malicious advertising service by attacking the search
engines through using manipulated contents to replace legitimate auto-completion
candidate suggestions, so as to promote their customers’ products in QAC. Modern
techniques have also been utilized in solving the QAC problem. Recurrent neural
network (RNN) models have been employed to address the QAC task in [23], in
order to improve the quality of suggested queries when facing previously unseen
text.

7.6 Summary

Last, we briefly summarize the main content introduced in this chapter and discuss
potential future research directions.

In this chapter, we have presented the main contributions in the field of query
auto-completion in information retrieval. In specific, in Sect. 7.1, we gave a general
introduction of query auto-completion and provided a formal definition of the QAC
problem. In Sect. 7.2, we introduced existing metrics utilized in measuring the
QAC performance, including both ranking quality and assist efficiency. In Sect. 7.3,
different types of QAC logs utilized in existing QAC works are studied. In Sect. 7.4,
we have introduced the most prominent QAC approaches in the literature, and how
the usage of different types of information can benefit the prediction of user intent.
Those information includes temporal, contextual, personal information, and user’s
interaction inside and outside the QAC process.
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