
Chapter 6
Query Rewriting

Hui Liu, Dawei Yin, and Jiliang Tang

Abstract It is well known that there is a lexical chasm between web documents and
user queries. As a result, even when the queries can fully capture users’ information
needs, the search engines could not retrieve relevant web documents to match
these queries. Query rewriting aims to bridge this gap by rewriting a given query
to alternative queries such that the mismatches can be reduced and the relevance
performance can be improved. Query rewriting has been extensively studied and
recent advances from deep learning have further fostered this research field. In this
chapter, we give an overview about the achievements that have been made on query
rewriting. In particular, we review representative algorithms with both shallow and
deep architectures.

6.1 Introduction

With the advance of technologies, information in the web has been increased
exponentially. It had become increasingly hard for online users to find information
they are interested in. Modern search engines have been proven to successfully
mitigate this information overload problem by retrieving relevant information from
massive web documents according to users’ information needs (or queries) [3].
However, it is well known that there exists a “lexical chasm” [26] between web
documents and user queries. The major reason is that web documents and user
queries are created by different sets of users and they may use different vocabularies
and distinct language styles. Consequently, even when the queries can perfectly
match users’ information needs, the search engines may be still unable to locate
relevant web documents. For example, users want to find price information about
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Tesla using a query “price tesla,” while such information is expressed as “how
much tesla” in web documents indexed by the search engines. Thus, it is demanding
that search engines should intelligently match information needs of their users by
understanding the intrinsic intent in queries.

Query rewriting (QRW), which targets to alter a given query to alternative queries
that can improve relevance performance by reducing the mismatches, is a critical
task in modern search engines and has attracted increasing attention in the last
decade [11, 20, 26]. Thus, we have witnessed a rapid development of the query
rewriting techniques. At the early stage, methods have been developed to find
terms related to these in a given query and then substitute terms in the original
queries with these related ones (or substitution-based methods). Then if we treat
queries as the source language and web documents as the target language, the query
rewriting problem can be naturally considered as a machine translation problem;
thus, machine translation techniques have been applied for QRW (or translation-
based methods) [26]. Recently, deep learning techniques have been widely applied
in information retrieval [21] and natural language processing [33]. There are very
recent works applying deep learning in query rewriting that achieve the state-of-the-
art performance [17]. Thus, in this survey, we will follow the used techniques to
review representative query rewriting methods and the structure of the survey is as
follows:

• In Sect. 6.2, we will review representative methods with traditional shallow
models including substitution-based methods and translation-based methods.

• In Sect. 6.3, we will review algorithms based on deep learning techniques such
as word embedding, seq2seq models, deep learning to rewrite frameworks, and
deep reinforcement learning.

• In Sect. 6.4, we will conclude the survey and discuss some promising directions
in query rewriting.

6.2 QRW with Shallow Models

In the section, we will review shallow query rewriting algorithms including
substitute-based and translation-based methods.

6.2.1 Substitution-Based Methods

Given the original query, substitution-based methods aim to generate rewritten
queries by replacing the query as a whole or by substituting constituent phrases [20].
There are two key steps for substitution-based methods: substitution generation
and candidate selection. The substitution generation step is to find substitutions
in the levels of queries, phrases, or terms for the original query. The substitution
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generation step can suggest many rewritten candidates for the original query. Thus
the candidate selection step is to select good candidates. Many possible resources
can be used to generate query or term substitutions. One type resource is static such
as WordNet [12] and Wikipedia [32]. However, these static resources generally do
not allow us to generate substitutions for new concepts. It is also challenging to
consider contextual information. Thus, resources based on users’ search feedback
have been widely adapted and we will introduce several representative methods in
the following.

In [20], user sessions from search query logs have been used for query rewriting.
These sessions have been reported to include 50% reformulations [19]. Query
reformulation is that a user reformulates a query to other related queries in a
query session by inserting, deleting, substituting, or rephrasing words of the original
query [2]. Query reformulation is very similar to the query rewriting task; thus, it is
natural to use user session reformulation data.

A pair of successive queries issued by a single user on a single day is referred
as a candidate reformulation or a query pair. Then, they aggregate query pairs over
users. For phrase substitutions, the authors segment the whole query into phrases
using point-wise mutual information and find query pairs that differ by only one
segment. This pair of phrases is selected as a candidate phrase pair.

To identify highly related query pairs and phrase pairs, the work makes two
hypotheses to evaluate that the probability of term q2 is the same whether term
q1 is present or not.

H1 : P(q2|q1) = p = P(q2|¬q1) (6.1)

H2 : P(q2|q1) = p1 �= p2 = P(q2|¬q1) (6.2)

The log-likelihood ratio score based on the probabilities of the two hypotheses is
used to measure the dependence between two terms q1 and q2.

LLR = −2 log
L(H1)

L(H2)
(6.3)

The query pairs and phrase pairs with a high LLR score are identified as substi-
tutable pairs because of the statistically significant relevance.

The work extracts a list of features from the queries and uses human judgments
and machine learning to train a classifier for high quality query suggestions. Since
this method could precompute offline the whole-query substitutions and their scores
and the edit distance for phrase similarity evaluation, it only requires look-up
substitutions at run-time.

In [30], the authors work on mining search engine log data at the level of terms
rather than the level of queries. The user session information is leveraged for query
refinement. This method is based on an observation that terms with similar meaning
tend to co-occur with the same or similar terms in the queries. The associated terms
are discovered from search engine logs to substitute the previous terms or add
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new terms to the original query. The term associations are extracted based on the
context distribution. A contextual model was proposed by investigating the context
similarity of terms in historical queries from log data. Two terms in a pair with
similar contexts are used to substitute each other in new query generation. The
contextual model is defined based on the maximum likelihood estimation

PC(a|ω) = c(a, C(ω))
∑

i c(i, C(ω))
(6.4)

where C(ω) is the context of a word ω. This model evaluates the likelihood of a
word a to appear in the context of a given word ω. The Kullback–Leibler (KL)
divergence D(·||·) has been used in the language modeling approach to measure the
similarity between two contexts. In [30], the metric of the similarity between the
original word ω and the candidate word s is given based on the KL-divergence as
follows:

tC(s|ω) = exp(−D[PC(·|s)||P̃C(·|ω)])
∑

s exp(−D[PC(·|s)||P̃C(·|ω)]) (6.5)

where P̃C(·|ω) is the smoothed contextual model of ω using Dirichlet prior
smoothing approach. The position information is introduced in the contextual
models.

k∏

j=1,i−j>0

P̃Li−j (ωi−j |s) ×
k∏

j=1,i+j≤n

P̃Li+j (ωi+j |s) (6.6)

where k is the number of adjacent terms to be considered. The impact of a word far
away from the word in consideration is insignificant. Mutual information is used to
capture the relation between two terms over user sessions inside queries.

I (s, ω) =
∑

Xs,Xω∈{0,1}
P(Xs,Xω) log

P(Xs,Xω)

P (Xs)P (Xω)
(6.7)

where Xs and Xω are binary variables indicating the presence/absence of term s

and term ω in each user session. A normalized version of mutual information is
generalized to make the mutual information of different pairs of words comparable.
Then, all the candidate queries are sorted according to the probability given by
Eq. 6.6. The top ranked candidate queries are recommended.

In [1], queries are rewritten based on a historical click graph in sponsored search.
Given a query q , it first tries SimRank [18] to find similar queries to q . However,
the authors found the cases where SimRank could fail in weighted click graph. For
example, when two queries lead to clicks on two same ads rather than one ads,
their similarity value would be even lower as measured by SimRank. Based on
these observations, the authors develop two extended models based on SimRank to
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measure query similarities for query rewriting. SimRank++ makes similarity scores
to include evidence factor between nodes as well as weights of edges in the click
graph and finds high proximity nodes using the historical click data. The evidence
factor is defined as:

evidence(a, b) =
|E(a)∩E(b)|∑

i=1

1

2i
(6.8)

where E(a) and E(b) are the neighbors of node a and node b, respectively. The
range of the evidence factor is [0.5, 1]. As the common neighbors increase, the
evidence scores get closer to one. Let s(a, b) denote the similarity metric from
SimRank,

s(a, b) = C

|E(a)| · |E(b)|
∑

i∈E(a)

∑

j∈E(b)

s(i, j) (6.9)

where the x and y are the two ads. The enhanced similarity scores including the
evidence are designed as follows:

sevidence(a, b) = evidence(a, b) · s(a, b) (6.10)

To support the weighted click graph, the authors make the extension to include the
impact of weights as

sweighted(a, b) = evidence(a, b) · C
∑

i∈E(a)

∑

j∈E(b)

W(a, i)W(b, j)sweighted (i, j)

(6.11)

where W(a, i) and W(b, j) are functions of the weight set and its variance. The
basic concept for SimRank and SimRank++ is that two objects are similar if they
reference the same objects. The authors’ work in [1] makes SimRank similarity
scores more intuitive for the area of sponsored search and the two enhanced versions
yield better query rewriting results.

In [15], a unified and discriminative model is proposed based on conditional
random field (CRF) for query refinements on the morphological level. The pro-
posed CRF-QR model involves different refinement tasks simultaneously, including
spelling error correction, word merging, word splitting, and phrase segmentation.
The authors designed two variants of the CRF-QR model, a basic model for single
refinement task and an extended model for multiple refinement tasks. Let x =
x1x2 . . . xn and y = y1y2 . . . yn denote a sequence of query words and sequence of
refined query words, respectively. Let o denote a sequence of refinement operations.
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Here n is the length of the sequence. The basic CRF-QR model is obtained as
follows:

Pr(y, o|x) = 1

Z(x)

n∏

i=1

φ(yi−1, yi)φ(yi, oi, x) (6.12)

where φ(yi−1, yi) is the potential function showing the adjacent y’s mutual
dependence, and φ(yi, oi, x) is the potential function showing the dependence of yi

on the operation oi and the input query x. Z is the normalizing factor. The individual
o’s are independent from each other to simplify the model, because the dependency
existing between o’s has been captured by the dependency between y’s. The space
of the refined query y is as extremely large as the space of the original query x

before introducing o into the model. An operation o can be insertion, deletion, and
substitution of letters in a word or transposition. Because the space of operation o is
very limited, the mapping from x’s to y’s under operation o is not completely free.
o works as a constraint in the CRF-QR model to reduce the space of y for given
x. When multiple refinement tasks are needed, the extended CRF-QR model uses
multiple sequences of operations −→

oi = oi,1oi,2, . . . , oi,mi and the corresponding
sequences of intermediate results in −→

zi = zi,1zi,2, . . . , zi,mi .

Pr(y,−→o ,
−→z |x) = 1

Z(x)

n∏

i=1

(φ(yi−1, yi)

mi∏

ji=1

φ(zi,ji , oi,ji , zi,ji−1)) (6.13)

The prediction of the most likely refined query y∗ satisfies

y∗o∗ = arg max
y,o

Pr(y, o|x) (6.14)

The extended CRF-QF model can perform different query refinement tasks or
operations simultaneously. Because the tasks are interdependent sometimes, the
accuracy of tasks can be enhanced.

In [4], to solve the query rewriting problem, the authors leverage the query
log data and follow the common procedure to generate some candidate queries
first before using a scoring method to rank the quality of the candidate queries.
Query term substitution is applied as the major approach for candidate query
generation. Social tagging data is utilized as a helpful resource for extracting
candidate substitution term. A graphical model taking into account the semantic
consistency is designed for query scoring. The authors exploit the latent topic space
of a graph model to assess the candidate query quality.

In addition to query reformulation and click graph data, anchor texts are used for
the query rewriting problem in [8] that are often associated with links to documents.
Since they are selected manually to describe the associated web documents, they
provide very relevant information to these documents. It is demonstrated that anchor



6 Query Rewriting 135

texts usually offer more accurate description of their associated documents than the
web documents themselves [6].

6.2.2 Translation-Based Methods

If we consider user queries as the source language and web documents as the target
language, one natural way for query rewriting is to translate a source language of
user queries into a target language of web documents [26, 27].

In [27], statistical machine translation (SMT) models have been adopted for
query rewriting. The alignment template approach in [25] is adopted as SMT for
query rewriting. It contains a translation model and a language model. It aims to
seek the English string ê as a translation of a foreign string f :

ê = arg max
e

p(e|f ) = arg max
e

p(f |e)p(e) (6.15)

where p(f |e) is the translation model and P(e) is the language model. ê is
further formulated as a combination of a set of feature functions hm(e, f ) with the
corresponding weight λm as:

ê = arg max
e

M∑

m=1

λmhm(e, f ) (6.16)

The translation model used in query rewriting is according to the sequence of
alignment models [24]. A hidden variable is introduced to capture the relation
between translation and alignment models for source string f = f J

1 and target
string e = eI

1. The hidden variable is used to denote an alignment mapping from
source position j to target position aj :

P(f J
1 |eI

1) =
∑

aJ
1

P(f J
1 , aJ

1 |eI
1) (6.17)

To align source words to the empty word, aJ
1 includes null-word alignments aj = 0.

In the query rewriting, we adopt an n-gram language model which gives a string wL
1

of words with the following probability:

P(wL
1 ) =

L∏

i=1

P(wi |wi−1
1 ) ≈

L∏

i=1

P(wi |wi−1
i−n+1) (6.18)

A corpus of user queries is utilized to estimate the n-gram probabilities. A
variety of smoothing techniques are used to mitigate the data sparse problems [5].
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Once the SMT system is trained, to translate unseen queries, a standard dynamic-
programming beam-search decoder is used [25].

In detail, pairs of user queries and snippets of clicked results are used as the
parallel corpus and then a machine translation model is trained on the corpus. Once
the model is trained, query rewriting is similar to the decoding process in machine
translation. During decoding, a large n-gram language model is trained on queries. It
is shown that the proposed method achieves improved query rewriting performance
compared to methods based on term correlations.

The SMT system in [27] is used as a black box and it is hard to verify
the contributions of its components. Thus, lexicon models have been utilized
in [11]. There are two phases for the proposed framework: candidate generation
and candidate ranking. In the phase of candidate generation, the original query is
tokenized as a term sequence. For each non-stop word, a lexicon model is used
to generate its translated words according to the word translation probabilities. In
the candidate ranking phase, a ranking algorithm based on Markov random field
(MRF) is used to rank all candidates. In this work, three lexicon models have
been studied. The first lexicon model is the word model from IBM model 1 [7]
which learns the translation probability between single words. The word model does
not incorporate contextual information. Thus, the second lexicon model is a triplet
model that uses triplets to incorporate word dependencies [16]. The third model is a
bilingual topic model (BLTM) [10]. The intuition behind BLTM is through a query
and its relevant documents can use different language styles or vocabularies, they
should share similar topic distributions. The lexicon models are trained on pairs of
queries and titles of clicked web documents. It is shown that the word model can
generate rich candidates, and the triplet and topic models can select good expansion
words effectively.

In [10], this paper provides a quantitative analysis of the language discrepancy
issue and explores the use of clickthrough data to bridge documents and queries. We
assume that a query is parallel to the titles of documents clicked on for that query.
Two translation models are trained and integrated into retrieval models: A word-
based translation model that learns the translation probability between single words
and a phrase-based translation model that learns the translation probability between
multi-term phrases. Experiments are carried out on a real-world dataset. The
results show that the retrieval systems that use the translation models outperform
significantly the systems that do not.

In [9], the authors follow [27] to consider the query rewriting problem as a
machine translation problem and use pairs of queries and titles of clicked documents
to train a machine translation model with the word model. Similar to [27], it shows
that SMT based system outperforms systems based on term correlation. However,
the word model considers isolated words while ignoring completely the context.
It is observed that (1) consecutive words often form a phrase and (2) neighboring
words can offer helpful contextual information. Thus, they introduce the constrained
groups of term as concepts and propose concept-based translation models for query
rewriting.
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6.3 QRW with Deep Models

Deep learning techniques have powered a number of applications from various
domains such as computer vision, speech recognition, and natural language process-
ing. Recently, deep learning techniques have been adopted in the query rewriting
task and in this section, we will review representative deep learning based query
rewriting algorithms.

6.3.1 Word Embedding for QRW

In [14], the authors propose three models for query rewriting of sponsored search
based on context and content-aware word embedding. The first model, context2vec,
considers a query as a single word in a sentence and each query session as a sen-
tence. Similar queries of similar context are supposed to have similar embeddings.
The skip-gram model is used in this model for query representation learning by
maximizing the objective function,

L =
∑

s∈S

∑

qm∈s

∑

−b≤i≤b,i �=0

logP(qm+i |qm) (6.19)

where S is the set of all search sessions, b is the window size of neighboring queries
for the context, and P is the probability of observing a neighboring query qm+i given
the query qm. The second model, content2vec, considers a query as a paragraph for
word prediction without the session information. The word vectors are used to train
the model for context words prediction within the query only by maximizing the
objective function

L =
∑

s∈S

(
∑

qm∈s

logP(qm|ωm1 : ωmTm)

+
∑

wmt∈qm

logP(ωmt |ωm,t−c : ωm,t+c, qm)) (6.20)

where c is the length of the context for words in the query. The vector representation
for query qm is qm = (ωm1, ωm2, . . . ωmTm). A query’s context should include both
the content of the query and queries of the same session. The third model, context-
content2vec, is a two-layer model combining the first two models and considering
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both the search session context and the query context.

L =
∑

s∈S

∑

qm∈s

(
∑

−b≤i≤b,i �=0

logP(qm+i |qm) + αm logP(qm|ωm1 : ωmTm)

+
∑

ωmt∈qm

logP(ωmt |ωm,t−c : ωm,t+c, qm)) (6.21)

The models are trained on Yahoo search data including 12 billion search sessions.

6.3.2 Seq2Seq for QRW

As a neural sequence model, recurrent neural network (RNN) obtains the best
performance on numerous important sequential learning tasks. The long short-
term memory (LSTM), one of the most popular RNN variants, can capture long
range temporal dependencies and mitigate the vanishing gradient problem. In the
work [17], the authors adopt the sequence-to-sequence LSTM model to build a two-
stage query rewriting frameworks [29].

In the first stage, the model training stage, the input sequence xJ
1 = x1, · · · , xJ is

the original query and the target output sequence yJ
1 = y1, · · · , yJ is the rewritten

queries. For the LSTM variant in the Seq2Seq model, the gates and cells are
implemented by the following composite functions [13]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ij = σ(Wxixj + Whihj−1 + bi)

fj = σ(Wxf xj + Whf hj−1 + Wcf cj−1 + bf

cj = fj cj−1 + ij tanh(Wxcxj + Whchj−1 + bc)

oj = σ(Wxoxj + Whohj−1 + Wcocj + bo)

hj = oj tanh(cj )

(6.22)

where hJ
1 = h1, · · · , hJ is the hidden vector sequence, W·,· terms are the weight

matrices, and b· terms are the bias vectors.
The sequence-to-sequence LSTM aims to estimate the conditional probability

p(y1, · · · , yI |x1, · · · , xJ ), where x1, · · · , xJ is an input sequence and y1, · · · , yI is
its corresponding output sequence. The LSTM computes this conditional probability
by first obtaining the fixed dimensional representation v of the input sequence
x1, · · · , xJ given by the last hidden state of the LSTM and then computing the
probability of y1, · · · , yI with a standard LSTM–LM formulation whose initial
hidden state is set as the representation v of x1, · · · , xJ :

p(y1, · · · , yI |x1, · · · , xJ ) =
I∏

i=1

p(yi |v, y1, · · · , yi−1) (6.23)
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where p(yi |v, y1, · · · , yi−1) is represented with a softmax over all the words in the
vocabulary. It learns a large deep LSTM on large-scale query and rewrites query
pairs. It is trained by maximizing the log probability of a correct rewrite query r =
rt1, rt2, · · · , rtn,< EOQ > given the query q = qt1, qt2, · · · , qtm,< EOQ >,
where “< EOQ >” is a special end-of-query symbol. Thus the training objective
is

1

|D|
∑

(q, r) ∈ D log p(r|q) (6.24)

where D is the training dataset and p(r|q) is calculated according to Eq. (6.23).
Once training is complete, original queries are fed to the model and rewrite
candidates are produced by finding the most likely rewrites according to the LSTM.

In the second stage, the prediction stage, a beam-search method is used to output
the most probable sequences. It searches for the most likely query rewrites using a
simple left-to-right beam-search decoder instead of an exact decoder. It maintains
a small number B of partial rewrites, where partial rewrites are prefixes of some
query rewrite candidates. At each time-step, it extends each partial rewrite in the
beam with every possible word in the vocabulary. It discards all but the B most
likely rewrites according to the model’s log probability.

In [28], a novel method is proposed to translate a natural language query into a
keyword query relevant to the natural language query, which can be applicable to
legacy web search engines for retrieving better search results. Since legacy search
engines are optimized for short keyword queries, a natural language query submitted
directly to legacy search engines will highly likely lead to search results of low
relevance. The proposed method introduces a RNN encoder–decoder architecture.
To translate the input natural language query x = {x1, · · · , xn} into a keyword query
y = {y1, · · · , ym}, the RNN encoder–decoder models the conditional probability
p(y|x) to complete the translation process. The encoder reads x sequentially
to generate the hidden state. The decoder generates one keyword at a time by
decomposing the probability of the keyword query y into conditional probabilities,

p(y) =
m∏

i=1

p(yi |y1, · · · , yi−1, x) (6.25)

The prediction of the current keyword is based on the input x and the previ-
ously generated keywords. An attention mechanism is adopted to avoid biased
representation caused by weakly relevant words in long natural language queries.
The attention-based RNN encoder–decoder model is trained by maximizing the
conditional log-likelihood as

L(θ) = 1

N

N∑

j=1

m∑

i=1

log p(yi = y
(j)
i |y(j)

1 , · · · , y
(j)

i−1, x
(j)) (6.26)
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where y
(j)

i is the i-th keyword of the j -th training instance in the training set. Since
the training only needs pairs of a natural language query and its keyword query, the
training is independent on the choice of the search engine and the proposed model
can adapt legacy web search engines to natural language queries.

6.3.3 Learning to Rewrite Methods

In [17], a learning to rewrite framework is proposed that contains candidate
generation and candidate ranking. The query rewriting problem aims to find the
query rewrites of a given query for the purpose of improving the relevance of
the information retrieval system. The proposed framework formulates the query
rewriting problem as an optimization problem of finding a scoring function F(q, r)

which assigns a score for any pair of query q and its rewrite candidate r . The
framework assumes that G = {g1, g2, . . . , gM } is a set of M candidate generators.
Candidate generators could be any existing query rewriting techniques. In the
candidate generating phase, we use candidate generators in G to generate a set of
rewrite candidates for a given query q as R = {r1, · · · , rn}, where n is the number
of generated rewrite candidates. Each pair of query q and its rewrite candidate ri ,
i.e., (q, ri), is scored by the function F(q, ri). The rewrite candidates from R are
then ranked based on the scores {F(q, r1), F (q, r2), . . . , F (q, rn)} in the candidate
ranking phase. A key step of the learning to rewrite problem is how to obtain the
scoring function F .

Let F = {f : (q, r) 	→ f (q, r) ∈ R} be the functional space of the scoring
functions for any pair of query and rewrite candidate and Q = {q1, · · · , qm} be a set
of m queries. We use Ri = {ri,1, · · · , ri,ni } to denote the set of rewrite candidates
of query qi generated by G, where ni is the number of rewrite candidates for qi .
For each query qi , we further assume that Ii is the learning target that encodes the
observed information about the quality of rewrite candidates in Ri . Note that the
forms of Ii are problem-dependent that could be the label for each pair (q, ri) or the
preferences among Ri for qi . With the aforementioned notations and definitions, the
problem of searching in F for a scoring function F(q, r) is formally stated as the
following minimization problem:

F = arg min
f ∈F

m∑

i=1

L(f, qi,Ri , Ii ) (6.27)

The exact forms of the loss function L(f, qi,Ri , Ii ) depend on the learning target
Ii and three types of loss functions are introduced including point-wise, pair-wise,
and list-wise loss. Generating the learning target Ii is challenging especially for a
large set of queries and their corresponding rewrite candidates. One straightforward
way is to use human labeling. However, it is not practical, if not impossible, to
achieve this for a web-scale query rewriting the application. First, it is very time and
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effort consuming to label millions of query rewriting pairs. Second, the relevance
performance depends on many components of a search engine such as relevance
ranking algorithms, thus it is extremely difficult for human editors to compare the
quality of rewrite candidates. Third, for a commercial search engine, its components
are typically evolved rapidly and in order to adapt to these changes, human labels
are consistently and continuously needed. Therefore it is desirable for an automatic
approach to generate the learning target. In this work, we specifically focus on
boosting the relevance performance via query rewriting, thus the learning target
should indicate the quality of the rewrite candidates from the perspective of search
relevance. Intuitively a better rewrite candidate could attract more clicks to its
retrieved documents. In other words, the number of clicks on the returned document
from a rewrite candidate could be a good indicator about its quality in terms of
relevance. These intuitions pave us a way to develop an automatic approach to
generate learning target based on the query-document click graph that is extracted
from search logs.

In [31], a co-training framework is proposed for query rewriting and semantic
matching based on the learning to rewrite framework in [17]. It first builds a huge
unlabeled dataset from search logs, on which the two tasks can be considered as
two different views of the relevance problem. Then it iteratively co-trains them
via labeled data generated from this unlabeled set to boost their performance
simultaneously. A series of offline and online experiments have been conducted on a
real-world e-commerce search engine, and the results demonstrate that the proposed
method improves relevance significantly.

6.3.4 Deep Reinforcement Learning for QRW

In [22], the authors propose a query rewriting system by maximizing the number of
relevant documents returned based on a neural network trained with reinforcement
learning. The original query and each candidate term ti from either the original
query q0 or from documents retrieved using q0 are converted to a vector represen-
tation by using a CNN or a RNN. Then the probability of selecting each candidate
term is computed. The search engine is treated as a black box that an agent learns to
use to retrieve terms to maximize the retrieval performance. Thus, an agent can be
trained to use a search engine for a specific task. An extended model is introduced to
sequentially generate reformulated queries to produce more concise queries based
on RNN or LSTM. Rather than being queried for each newly added term, the search
engine is queried with multiple new terms at each retrieval step for faster query
reformulation.

In [23], methods are investigated to efficiently learn diverse strategies in rein-
forcement learning for query rewriting. In the proposed framework an agent consists
of multiple specialized sub-agents and a meta-agent that learns to aggregate the
answers from sub-agents to produce a final answer. Sub-agents are trained on
disjoint partitions of the training data, while the meta-agent is trained on the
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full training set. The proposed method makes learning faster, because it is highly
parallelizable and has better generalization performance than strong baselines, such
as an ensemble of agents trained on the full data.

6.4 Conclusion

Query rewriting is a key task in modern search engines and has attracted increasing
attention in the last decade. The recent achievements of deep learning have further
advanced this research topic. In this chapter, we roughly divided existing query
rewriting algorithms according to the architectures they adopted to shallow and deep
query writing. For shallow query rewriting, we discuss representative algorithms
for substitution-based and translation-based methods. For deep query rewriting, we
detail key algorithms for methods based on word embedding, Seq2Seq, learning to
rewrite and deep reinforcement learning.
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