
Chapter 3
Query Segmentation and Tagging

Xuanhui Wang

Abstract Query tagging is an important step for query understanding. It applies
traditional natural language processing techniques on query strings. Specific chal-
lenges are raised due to the shortness of query strings. In this chapter, we describe
techniques proposed in the existing literature on how to achieve meaningful query
tagging in the following areas: query segmentation, query syntactic tagging, and
query semantic tagging.

3.1 Introduction

Query tagging is an important step for query understanding. It is a process that
works with query strings more closely based on Natural Language Processing (NLP)
techniques [19]. Traditionally, NLP techniques are developed for documents with
well-formed sentences and can be used for Information Retrieval (IR). For example,
phases in documents can be identified and used in document index [37]. Thus, it
is important to segment queries to match phrases in documents to boost retrieval
accuracy. Furthermore, Part-Of-Speech (POS) tags and linguistic structures carry
meaningful information to match queries and documents. They are also important
for search engines to improve result relevance. However, the keyword-based queries
are usually short and lack of sentence structures. It raises challenges to apply NLP
on queries directly. In this chapter, we describe techniques proposed in the existing
literature on how to overcome these challenges to achieve meaningful query tagging
in the following areas: query segmentation, query syntactic tagging, and query
semantic tagging.
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3.2 Query Segmentation

Search engines usually provide a search box as the user interface and a few keywords
can be used to search web pages to satisfy users’ information needs. Due to
the simplicity for users to formulate search queries, such a user interface gains
popularity and becomes a standard for search engines. However, queries formulated
in this interface are generally not complete natural language sentences, but consist
of a bunch of keywords. Thus it becomes harder to apply NLP techniques directly
on queries. For example, a sentence like “Where can I find Pizza Hut in New York”
is likely tagged well by NLP tools than a query “pizza hut new york.”

Query segmentation is one of the first steps towards query understanding. It does
not involve heavy NLP processes such as Part-Of-Speech (POS) tagging or Named
Entity Recognition (NER). Its goal is to split a query string into a few segments.
The basic bag-of-words (BOW) model can be thought as segmenting queries based
on individual words. Such an approach is simple but can be less meaningful. For
Chinese language, most of the individual words have little meaning by themselves
and the meaning of a sentence is carried by a sequence of words. However, there
are no natural boundaries such as spaces in Chinese language and segmentation is
a necessary step for Chinese documents and queries [24, 28]. For English language,
spaces are presented inside sentences and individual words obtained in the BOW
model are more meaningful compared with Chinese language. However, the BOW
model can still be less effective because the meaning of a phrase can be totally
different from its individual words. For example, knowing that “new york ” is a city
name and treating them as a whole is better than treating them as two individual
words “new” and “york.”

An advanced operator provided by many search engines is the double quotation.
A user can enclose several words together by double quotation to mandate that they
appear together as an inseparable sequence in retrieved documents. Such an operator
is usually used by skilled users and may not be known widely. It also requires
additional efforts from end users. For example, when users search for unfamiliar
topics, they may not know where to put the double quotation. A search engine that
can automatically split a query into meaningful segments is highly likely to improve
its overall user satisfaction.

To improve retrieval accuracy and search engine utility, it is necessary to go
beyond the BOW model. At a minimum, it is beneficial to know whether some
words comprise an entity like an organization name, which makes it possible to
enforce word proximity and ordering constraints on document matching, among
other things. In this section, we discuss different query segmentation techniques.
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3.2.1 Problem Formulation

The problem of query segmentation is to find boundaries to segment queries into
a list of semantic blocks. In general, given a query of n words, x1 . . . xn, query
segmentation is to find boundaries of these n words, [x1 . . . xs1][xs1+1 . . . xs2] . . .

[. . . xn], with each segment as a well-defined “concept.” For example, given query
“new york times subscription,” a good segmentation is “[new york times] [subscrip-
tion],” but not “[new york] [times subscription]” because “times subscription” is less
meaningful.

For an n-word query, there are n−1 possible places for boundaries and thus a total
of 2n−1 possible segmentations. The goal of query segmentation is to find the most
meaningful segmentations, e.g., “[new york times] [subscription]” in the example
above. In many cases, there are several possible segmentations for a query that
are equally meaningful due to ambiguity. For example, the “two man power saw”
example used in [4] can have four different interpretations from Google returned
documents and these lead to the following valid segmentations: “[two man power
saw],” “[two man] [power saw],” [two] [man] [power saw], and “[two] [man power]
[saw].” Thus the problem of query segmentation is usually formulated to find a few
good ones.

Due to short length of queries, external resources are commonly used in query
segmentation, including web corpora [26, 30], query logs [22], click-through
data [18], Wikipedia titles [13, 30], etc. The methods proposed in this area can
be classified as heuristic-based, supervised learning, and unsupervised learning
approaches. In the following, we use “segment” to represent a semantic segmented
block and “segmentation” to represent a valid split of a query with non-overlapping
segments.

3.2.2 Heuristic-Based Approaches

Heuristic-based approaches are based on statistics obtained from external resources.
They do not rely on any sophisticated learning and have the following two types:
one type is to decide whether to put a boundary between two adjacent words and the
other is to quantify the connectedness of a segment and break queries by maximizing
the overall connectedness.

3.2.2.1 Pointwise Mutual Information

Given an n-word query, the most direct way for query segmentation is to decide
whether a boundary should be put at the n−1 places. The Pointwise Mutual Informa-
tion (PMI) approach is to make this decision locally based on the surrounding words.
For example, given a query “free computer wallpaper downloads,” we would like to
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decide whether to put a break between “free” and “computer,” between “computer”
and “wallpaper,” etc. More formally, we would like to decide a break at the place
between word xi and xi+1 for 1 ≤ i < n. Intuitively, if two words always appear
together in a corpus, it is better to not put a break but keep them in a single segment.

PMI is an information-theoretic measure [4, 8] on term associations. Given any
two objects u and v, their PMI is defined as:

PMI(u, v) = log
Pr(u, v)

P r(u) · Pr(v)
, (3.1)

where Pr(u, v) is the probability of observing u and v appearing together, Pr(u)

and Pr(v) are the probability of observing u and v in the given corpus, respectively.
Let us assume that we have a web corpus that has been tokenized into word

sequences. We can count the raw frequency denoted as #(xi, xi+1), #(xi), and
#(xi+1) from the corpus. Let N denote the total number of words in this corpus.
Then we have

Pr(xi, xi+1) = #(xi, xi+1)

N

Pr(xi) = #(xi)

N

Pr(xi+1) = #(xi+1)

N
.

(3.2)

PMI between two adjacent words can be used for query segmentation by setting
a threshold κ . Apparently, how to choose the parameter κ needs some validation
data. For example, Jones et al. [14] used a threshold κ = log 8 on Yahoo! search
logs. They reported that the PMI method was quite effective in their experiments.

3.2.2.2 Connexity

The above PMI method only concerns about two adjacent words. It can also be used
in n-gram level to measure the connectedness of a segment. Risvik et al. [26] defined
a measure called connexity based on the following properties for a segment s:

• s is significantly frequent in all resources.
• s has a “good” mutual information.

In their approach, a segment is essentially an n-gram where 2 ≤ n ≤ 4. We denote
it by s = xi . . . xj and its connexity is defined as

connexity(s) =
{

frequency(s) · PMI(xi . . . xj−1, xi+1 . . . xj ) if |s| ≥ 2

frequency(s) otherwise ,

(3.3)
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Table 3.1 Query segmentations and their connexity scores for an example query. Segmentations
are sorted by the aggregated connexity scores that are computed as summation over all segment
scores, as shown by scores in parentheses. The single word segments contribute 0 to the aggregated
scores

Connexity Query: msdn library visual studio

34,259 [msdn library] (5110) [visual studio] (29149)

29,149 msdn (47658) library (209682) [visual studio] (29149)

5110 [msdn library] (5110) visual (23873) studio (53622)

41 [msdn library visual studio] (41)

7 msdn (47658) [library visual studio] (7)

0 msdn (47658) library (209682) visual (23873) studio (53622)

where the mutual information is on the longest but complete subsequences and can
be computed similarly as for words in Eqs. (3.1) and (3.2).

Based on query logs and web corpora, the connexity of an arbitrary segment s

can be computed. The number of possible s becomes exponentially large as n goes
larger. In practice, n is capped to a number such as 4 in [26]. Segments with higher
connexity are more likely to be coherent concepts. To make the number of segments
manageable, thresholds were used on frequency as a pre-processing and thresholds
on connexity as post-processing filtering in [26].

The connexity was computed from web corpora offline and stored as a lookup
table used for query segmentation. On a high level, the non-overlapping segments
can be identified as segmentation candidates to be scored. An example used by
Risvik et al. [26] is shown in Table 3.1. The aggregated scores are computed
as the summation of the connexity scores over all segments that have at least 2
words. While a brute force way is to enumerate all possible segmentations, the top
segmentations can be found based on a dynamic programming approach similar to
the one presented in Sect. 3.2.4.1.

3.2.2.3 Naive Segmentation

The connexity measures how coherent a segment is. Another method proposed by
Hagen et al. [13] is based on simple statistics of segment frequency and length
only. They call this method “Naive Segmentation.” The score of a segment s in this
method is defined as

Score(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |s| = 1

|s||s| · frequency(s) if frequency(s) > 0 for |s| ≥ 2

−1 if frequency(s) = 0 for |s| ≥ 2.

(3.4)
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A valid segmentation S contains a list of segments that completely cover q without
any overlapping. The score of a segmentation is defined as

Score(S) =
{

−1 if ∃s ∈ S, Score(s) < 0∑
s∈S,|s|≥2 Score(s) else .

(3.5)

A single word segment has a 0 score and this is implicit in Eq. (3.5). Such
a method is purely hand-crafted but was shown to be effective in [13]. The
exponential component on the segment length boosts scores of longer segments. It
is justified empirically by the connection with the power-law distribution of n-gram
frequencies for n-grams that are longer than bigrams. Conversely, the exponential
component still favors bigrams compared with the empirical bigram frequency and
directly using empirical frequencies for all n-grams dropped by the segmentation
accuracy significantly. Favoring bigrams was also observed in the human-generated
segmentations [13]. In addition, they further extended this method to leverage
Wikipedia titles in the following way:

weight (s) =
{

|s| + maxs ′∈s,|s ′|=2 frequency(s′) if s is a title in Wikipedia

frequency(s) otherwise.
(3.6)

And the weight is used to compute the Score(S) for segmentations as follows:

Score(S) =
{

−1 if ∃s ∈ S,weight (s) = 0, |s| ≥ 2∑
s∈S,|s|≥2 |s| · weight (s) else .

(3.7)

Since the Score(S) is a summation of its components, the top segmentations can
also be found through a dynamic programming similar to the one in Sect. 3.2.4.1.

3.2.2.4 Summary

There are two types of heuristic-based approaches. The PMI method is to measure
how easy it is to insert a break between two adjacent words and is of the first type.
This can be done efficiently. Along the same line, Zhang et al. [38] proposed the
eigenspace similarity as a similar measure as PMI and the method belongs to the first
type as well. The connexity and naive segmentation methods belong to the second
type. In this type, a score that measures coherence of a segment is defined based
on a few factors such as segment frequency, length, mutual information between the
longest but complete subsequences, and the appearance of the segment in Wikipedia
titles. Segment scores are then used to define scores for segmentations that can
be used to select the top segmentations. There are a few additional methods that
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belong to the second type. For example, Mishra et al. [22] proposed a way to define
segment scores to identify the so-called Multi-Word Expression (MWE) and then
score segmentations similarly.

3.2.3 Supervised Learning Approaches

Query segmentation based on supervised learning approaches was introduced
by Bergsma and Wang [4]. In the supervised learning setting, segmentation is
formulated as a function that takes a query q as input and outputs a segmentation y:

S : q → y, (3.8)

where y is a n−1 dimensional vector with binary values and yi = 1 means that there
is break between word xi and xi+1. Such a setting has a similar flavor as the PMI
approach. The difference is that supervised learning approaches learn segmentation
function S from training data, while the PMI approach is based on hand-crafted
heuristics.

The training data for supervised learning consists of a collection of pairs {(q, y)}.
A set of features �(q, y) can be defined for each training instance. The score of a
segmentation y is

Score(q, y; w) = w · �(q, y). (3.9)

The training is thus to find the best w∗ on the training data so that for q ,

Score(q, y; w∗) ≥ Score(q, z; w∗),∀z 
= y. (3.10)

Such a w∗ is usually not existent and slack variables can be used in the Support
Vector Machine (SVM) setting. After the parameter w∗ is learnt, the segmentation
function gives the output for an input q:

ŷ = arg max
y

Score(q, y; w∗). (3.11)

The above formulation can be solved by structured classifiers [32] where all
the n − 1 decisions are jointly made. However, in reality, a simpler classification
framework, where each binary decision was made for each position i for 1 ≤
i < n based on its context, was shown to be not only efficient, but also effective.
Specifically, at each position i, the following context was considered:

{. . . , xL2, xL1, xL0, xR0, xR1 , xR2, . . .}, (3.12)
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where Li and Ri are the indexes on the left and right side of the position i,
respectively. Based on the context, a set of features were defined in [4]:

• Decision-boundary features. The set of features in this category concern about
xL0 and xR0 from indicator functions such as is_f ree (e.g., 1 is fired for this
feature if xL0 is word “free” and 0 otherwise.), to POS tags (e.g., DT JJ is fired as
a feature when POS of xL0 is DT and POS of xR0 is JJ.). In additional, the PMI
between (xL0, xR0 ) in Eq. (3.1) or its raw counts in Eq. (3.2) were also used as
features.

• Context features. This set of features concern about n-grams in the context.
For xL1 and xR1 , they collected token-level features using indicator functions,
POS tags on bigram [xL1xL0] and [xR0xR1], counts on trigram [xL1xL0xR0] and
[xL0xR0xR1]. If context tokens were not available at this position, a feature was
fired to indicate this. Furthermore, if tokens xL2 and xR2 were available, token-
level, bigram, trigram, and fourgram counts from web or a query database were
also included.

• Dependency features. A feature in this category is motivated by the work in noun
phrase parsing to capture whether xL0 is more likely to modify a later token such
as xR1 . For an example of “female bus driver,” we might not wish to segment
“female bus” because “female” has a much stronger association with “driver”
than with “bus.” Thus as features, the pairwise counts between xL0 and xR1 and
then xL1 and xR0 were included. Features from longer range dependencies did
not improve performance in their evaluation.

3.2.3.1 Summary

There are other supervised learning methods. Kale et al. [15] formulated query
segmentation as the same classification problem as above. However, they did
not use hand-crafted features. Rather, they directly use the low-dimensional word
embedding vectors that were pre-trained from query logs. Yu et al. [36] proposed a
query segmentation method based on Conditional Random Fields (CRF).

The advantage of supervised learning approaches lies in that they can incorporate
any information as features and then learn a function to combine them. For example,
the raw counts used in the PMI approach can be used as features. Their combination
formula is automatically determined from training data, while the formula is pre-
defined in the heuristic-based approach. Supervised learning approaches give better
segmentation accuracy; however, the prerequisite is training data that is usually
manually segmented by human annotators.
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3.2.4 Unsupervised Learning Approaches

Unsupervised learning approaches do not rely on human annotated training data and
are more sophisticated than the heuristic-based approaches. A representative work
of this line is by Tan and Peng [30]. In their work, a generative model was proposed
for query segmentation in which a query is generated by repeatedly sampling well-
formed segments (called “concepts”) in a probabilistic manner.

Formally, let P(s) be the probability of a segment s and S be a segmentation for
a query. The likelihood of S is

P(S) = P(s1)P (s2|s1) . . . . (3.13)

Under the Independent and Identically Distributed (IID) assumption for all s, we
have a unigram-like model

P(S) =
∏
i

P (si) (3.14)

since P(si |s1, . . .) = P(si ). Assume that we know P(s) for any segment s, P(S)

can be used to select the top segmentations for a query. Given a query, we can
enumerate all different segmentations and score them. However, this is not feasible
for longer queries given that there are 2n−1 segmentations for an n-word query. An
efficient dynamic programming is presented in the following section.

3.2.4.1 Dynamic Programming for Top Segmentations

In practice, segmentation enumeration is infeasible except for short queries. How-
ever, the IID assumption of the unigram model makes it possible to use dynamic
programming to compute the top k segmentations [30]. The algorithm is summa-
rized in Algorithm 1. In this algorithm, for any i, the best k segmentations for
partial query x1 . . . xi are stored in B[i]. B[n] stores the best k segmentations for
the n-word query and is constructed by comparing the options when the last break
in the query is placed at different positions of [1..n − 1], together with the default
segmentation that treats the whole query as the single segment. The complexity of
this algorithm is O(n · k · m · log(k · m)), where n is the query length, m is the
maximum allowed segment length, and k is the number of best segmentations to
keep. It is clear that m ≤ n. Also, m is implicit in the algorithm and is related to
the variable j . To be more accurate, j should range in [i − m, i − 1] in Algorithm 1
because a segment longer than m has P(s) = 0.

Such a dynamic programming is generic and can be easily adapted to the
connexity and naive segmentation methods in Sect. 3.2.2 by changing the computed
scores that are stored in B[i].
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Algorithm 1 Find top segmentations
Input: query x1...xn , segment probability distribution P (s).
Output: top k segmentations for query.
1: Let B[i] be the top k segmentations for the partial query x1...xi .
2: For b ∈ B[i],
3: b.segs: list of segments for the partial query.
4: b.prob: likelihood of segs for the partial query.
5: for all i ∈ [1..n] do
6: Let s = x1...xi

7: if P (s) > 0 then
8: Let new.segs = {s}, new.prob = P (s)

9: B[i] = {new}
10: end if
11: for all j ∈ [1..i − 1] do
12: for all b ∈ B[j ] do
13: Let s = xj ..xi

14: if P (s) > 0 then
15: Let new.segs = b.segs ∪ {s}, new.prob = b.prob × P (s)

16: B[i] = B[i] ∪ {new}
17: end if
18: end for
19: end for
20: Sort b ∈ B[i] by b.prob and truncate B[i] to size k

21: end for
22: return B[n]

3.2.4.2 Parameter Estimation

The main question is how to estimate P(s). This can be done based on some of
the heuristic-based approaches in Sect. 3.2.2 or just raw frequencies of n-grams.
Though raw frequencies for longer n-grams (e.g., n > 5) are very sparse and hard
to compute, Tan and Peng [30] proposed a way to estimate lower bounds of raw
frequencies for any n-gram and that can be used to estimate P(s). However, as
noted in [13], the lower bound can become loose and regress to 0. This effectively
excludes too long n-grams from being segments. In general, only n-grams up to a
cap (e.g., 5) are considered as potential segments.

One drawback of using raw frequency is that such a method may favor partial
segmentation. For example, the frequency for n-gram “york times” is larger
than or equal to the frequency of “new york times.” Thus P(york times) ≥
P(new york times). However, “york times” is unlikely to appear alone;
P(york times) should be very small.

Tan and Peng [30] proposed an expectation–maximization (EM) algorithm for
the parameter estimation. The EM algorithm is an iterative procedure that starts
with a random guess of parameters and refines them in each iteration. The E-step
can be thought as automatically segmenting the texts in a probabilistic manner using
the current set of estimated parameter values. Then in the M-step, a new set of
parameter values are calculated to maximize the complete likelihood of the data
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which is augmented with segmentation information. The two steps alternate until a
termination condition is reached.

The EM algorithm can be applied to any collection of texts to give an estimation
of P(s). This is infeasible to the web corpus. In [30], a query-dependent pseudo
corpus was constructed for every query by counting all the matched n-grams of the
query in a corpus:

D = {(x, c(x))|x ∈ q}. (3.15)

D is enhanced with a dummy n-gram z with count c(z) = N − ∑
i c(xi)|xi |, where

N is the corpus length. Note the difference between n-grams and segments in this
context.

Given D, EM uses the minimum description length principle to find the optimal
parameters P(s). We use a shorthand θ to represent all parameters. Given the current
parameter θ , the description length of an n-gram x is − log P(x|θ) and

P(x|θ) =
∑
Sx

P (Sx |θ), (3.16)

where Sx varies over all possible segmentations of x. All Sx ’s are the hidden
variables in the EM algorithm. The description length of D is

− log P(D|θ) = −
∑
x∈q

c(x) · log P(x|θ) − c(z) log(1 −
∑
x∈q

P (x|θ)). (3.17)

EM algorithm is to find the optimal θ̂ :

θ̂ = arg min(− log P(D|θ)) = arg max log P(D|θ) = arg max P(D|θ). (3.18)

The concrete EM algorithm used to find a local optimal θ is the variant Baum–
Welch algorithm from [9]. In the E-step, it uses a dynamic programming called the
forward–backward algorithm that can efficiently compute the probability of forming
a segment [xi, . . . xj ] between the i-th and j -th positions in an n-gram x, denoted as
P([xi, . . . xj ]|x). Concretely, let the forward probability αi(x) be the probability of
generating any complete segmentation such that the first i words are x1 . . . xi . Then
α0(x) = 1 and

αi(x) =
i−1∑
j=0

αj (x)P (s = [xj+1 . . . xi]). (3.19)

Similarly, let the backward probability βi(x) be the probability of generating
any complete segmentation such that the last i words are xn−i+1 . . . xn. Then
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βn(x) = 1 and

βi(x) =
n∑

j=i+1

βj (x)P (s = [xi . . . xj−1]). (3.20)

Notice that P(x|θ) = αn(x) = β0(x) and

P([xi, . . . xj ]|x) = αi−1(x)P (s = [xi . . . xj ])βj+1(x)

P (x|θ)
. (3.21)

Then the M-step can reestimate

P(s) ∝
∑
x∈D

c(x)

|x|∑
i=0

|x|∑
j=i

P ([xi . . . xj ]|x)I{s = [xi . . . xj ]}, (3.22)

where I is an indicator function. The forward–backward algorithm is more efficient
than directly estimating P(Sx |x) for all Sx and x, given that only αi(x) and βi(x)

are needed to be computed.
The EM algorithm can be extended to handle Maximum A Posteriori (MAP)

estimation with a prior P(θ). Then the learning is to find

θ̂ = arg max P(D|θ)P (θ) = arg max(log P(D|θ) + log P(θ)), (3.23)

where

log P(θ) = γ
∑

s:P(s|θ)>0

log P(s|θ) (3.24)

and γ is a hyper-parameter to the model. Techniques like lexicon deletion proposed
in [9] are used in [30] when the objective can be increased if a segment s is deleted
from the parameters P(s).

3.2.4.3 External Sources

The main problem of a purely unsupervised approach is that it only tries to optimize
the statistical aspects of the concepts; there is no linguistic consideration involved to
guarantee that the output concepts are well-formed. For example, the query “history
of the web search engine” favors the “[history of the] [web search engine].” This is
because “history of the” is a relatively frequent pattern in the corpus. To address this
issue, external resources like Wikipedia titles and anchor texts/aliases were used as
well-formed concepts to address the problem in the previous example.
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In [30], the above EM algorithm is extended to incorporate Wikipedia as a
regularization term

λ
∑

s∈Wikipedia

count (s) log P(s), (3.25)

where the summation is over all the Wikipedia titles or anchors and count (s) is the
count of s in titles or anchors. Technically, such a variant belongs to semi-supervised
learning.

3.2.4.4 Summary

Unsupervised learning approaches have a unique advantage that no labeled data is
needed. Existing approaches mainly use EM as their main algorithms. For example,
Peng et al. [24] used it on Chinese language segmentation. Li et al. [18] leveraged
clicked documents to bias the estimation of query segmentation towards bigrams
appeared in clicked documents. These demonstrated the flexibility of unsupervised
learning approaches in different applications and the ability to incorporate different
external resources.

3.2.5 Applications

Query segmentation can be used to improve retrieval accuracy in the n-gram model
or term-dependency model [21]. In particular, Bendersky et al. [2] compared using
simple n-grams or query segmentation in the term-dependency model and found that
query segmentation can reduce the number of term-dependency relations. It in turn
reduced the query latency while still maintaining the retrieval effectiveness.

Query segmentation provides phrases that can be used as units in IR models. Wu
et al. [34] combined the BOW model and query phrase model together to derive
ranking features. A learning-to-rank model was trained based on the enlarged set of
features. Such a model was shown to be able to improve relevance ranking.

It should be noted that most of the above methods assume flat segmentations for
queries. More advanced nested segmentation was proposed to segment queries into
tree structures [27], where a hierarchical segmentation was built up by recursively
merging smaller segments to bigger ones for a query. Such a tree structure was used
to define a proximity factor in document scoring. We direct interested readers to [27]
for more details.
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3.3 Query Syntactic Tagging

Syntactic analysis is usually conducted over complete sentences in NLP. Its goal
is to understand a sentence’s grammatical constituents, POS of words, and their
syntactic relations. The task of query syntactic tagging is to apply NLP techniques
to search queries and is depicted by the examples in Fig. 3.1 that was used by Sun
et al. [29]. In this figure, we have 3 queries, the POS tags of each word in the
queries and the syntactic relations among words (e.g., head-modifier relations in
noun phrases). Specifically, for query “cover iphone 6 plus,” the relation tells us that
the head token is “cover,” indicating its intent is to shop for iphone covers, instead
of iphones; for query “distance earth moon,” the head is “distance,” indicating its
intent is to find the distance between the earth and the moon; for query “faucet
adapter female,” the intent is to find a female faucet adapter. Such knowledge is
crucial for search engines to show relevant pages because correctly identifying the
head of the queries (e.g., covers instead of iphones) in the examples can boost pages
with matched topics [29].

Syntactic analysis of search queries is important for a variety of tasks such
as better query refinement and improved query-document matching [1]. However,
search queries are different from well-formed sentences in the following aspects.
First, search queries are short and have only keywords. Second, capitalization is in
general missing. Third, word order in a query is fairly free. All these are important
sentence characteristics that syntactic parsing relies on. Thus significant challenges
arise when applying syntactic parsing NLP techniques on search queries. In this
section, we review how different methods proposed in the literature overcome these
challenges for query syntactic tagging.

Fig. 3.1 Examples of query
syntactic tagging used by Sun
et al. [29]. For each query
example, the POS tag for
each word is shown below the
word. The syntactic relation
is denoted by arrows that
point from heads to modifiers.
Search queries are not
well-formed, compared with
natural language sentences
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3.3.1 Syntactic Structures for Search Queries

Barr et al. [1] sampled a few thousand queries from the Yahoo! search engine logs in
August 2006 and asked human annotators to label POS tags of these queries. They
compute the statistics of the tags and the results are shown in Table 3.2. As shown in
this table, they are very different from the Brown or Penn tag sets given that many
standard POS tags are extremely sparse in web search queries. For example, there
are about 90 tags in the Brown tag set, but there are only 19 unique classes for Web
search queries. There are 35 types of verbs and 15 types of determiners in the Brown
tag set, but there is only a single label of verbs that accounts for 2.35% of the tags
and a single determiner that accounts for 0.7% in the web queries. Furthermore,
the most common tag in Table 3.2 is proper-noun, which constitutes 40% of all
query terms, and proper nouns and nouns together constitute 71% of query terms.
By contrast, in the Brown corpus, the most common tag is noun and it constitutes
about 13% of terms.

Barr et al. [1] also showed examples of different ways of capitalization used in
web search queries and reported that capitalization in queries was inconsistent. On a
sample of 290, 122 queries, only 16.8% contained some capitalization, while 3.9%
of them are all capitalized. Though capitalization is an important clue to identify
proper nouns in NLP, it becomes noisy to use when tagging queries.

Table 3.2 Tags used for
labeling POS of words in web
search queries from [1]. The
counts are for the number of
tokens appearing in the
sampled queries

POS tag Example Count Percentage

Proper-noun texas 3384 40.2%

Noun pictures 2601 30.9%

Adjective big 599 7.1%

URI ebay.com 495 5.9%

Preposition in 310 3.7%

Unknown y 208 2.5%

Verb get 198 2.4%

Other conference06-07 174 2.1%

Comma , 72 0.9%

Gerund running 69 0.8%

Number 473 67 0.8%

Conjunction and 65 0.8%

Determiner the 56 0.7%

Pronoun she 53 0.6%

Adverb quickly 28 0.3%

Possessive ?s 19 0.2%

Symbol ( 18 0.2%

Sentence-ender ? 5 0.1%

Not n?t 2 0.0%
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3.3.2 Supervised Learning Approaches

In NLP, POS taggers for complete sentences are trained in a supervised manner
based on a set of labeled data. The trained taggers for a language can be generally
applied to any texts in that language. For example, the Brill Tagger [7] and the
Stanford Tagger [31] are freely available and can be used to tagger English texts.
Barr et al. [1] took these taggers off the shelf and applied them on their human
annotated queries. They found that the accuracy from these standard taggers was
well below a simple baseline that tags a query term based on the most frequent POS
tag obtained from their own labeled queries. Their findings highlighted the need to
train a specific POS tagger for web queries.

Based on the queries with labeled POS tags, the most basic supervised learning
approach is called the Most Common Tag in [1]. In this method, a mapping between
a word and a tag is constructed. The tag for a word is the most common tag counted
from the labeled query data. In the prediction phase, the POS tags for a query are
just a simple lookup from the mapping for each individual words. Though fairly
simple, this method was shown to be better than the standard taggers [1].

Barr et al. [1] also proposed to train a Brill Tagger using the labeled query
data, instead of the standard Treebank data. They found that the trained tagger
outperformed the Most Common Tag one, showing the promise of more advanced
supervised learning approaches. Due to the difference between queries and sen-
tences, some commonly useful features are not available for queries. A promising
direction for supervised learning approaches is to craft those missing features to
improve the tagging accuracy. For example, capitalization information is noisy in
query data. Barr et al. [1] proposed an automatic query term capitalization method
based on their capitalization statistics in search results. They found that this can
boost the Brill tagger significantly given that proper nouns are the most frequent in
web queries and capitalization is an indicative feature to tag proper nouns.

3.3.3 Transfer Learning Approaches

Supervised learning approaches need labeled data. Given the vast amount of search
queries, creating a labeled data set with sufficient coverage and diversity is challeng-
ing. However, tagging well-formed sentences is well-studied. This motivates many
tagging methods based on the transfer learning principle. The common strategy in
the existing approaches is to leverage top retrieved results or clicked ones to help
query tagging. We review them in this section.
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3.3.3.1 Simple Transfer Methods

Bendersky et al. [3] proposed a pseudo-relevance feedback approach to tag queries.
In this approach, a pre-trained tagger is used to tag both query terms and sentences
from top retrieved documents. For each term, there are two multinomial distributions
over POS tags: one based on the tagging results of the given query and the other
based on the POS tag counts from the top retrieved documents. The two distributions
are interpolated to give the final distribution of POS tags for each individual query
term.

Keyaki et al. [16] used a similar methodology to the one used by Bendersky et
al. [3], but proposed to precompute the tags for web documents offline. This can
reduce the heavy computation needed in the pseudo-relevance feedback approach
used in [3]. Specifically, the proposed method has the following two steps:

Offline. Given a web corpus, morphological analysis is conducted on every
sentence in the corpus based on standard NLP methods. The POS tag
of each term in a sentence is obtained. The output of this step is a
large collection of sentences with POS tags on all terms. This is a pre-
computing step and conducted offline.

Online. When a query is issued, sentences (with POS tag for each term) that
contain two or more query terms are retrieved from the sentence col-
lection created during offline computation. Then appropriate POS tags
of query terms are obtained based on the POS tags of terms appearing
in the retrieved sentences. With regard to a single term query, the most
frequently appearing POS tag in the web corpus is tagged to the query
term.

It can be seen that this method is designed to work with the following two properties:
(1) capitalization information in query is not used and (2) word order in queries does
not matter. In fact, they relied on the sentences in the web corpus to provide a high
accuracy tagging. The shortcoming of this method is on the online retrieval part
given that sentences are used as retrieval units for queries. The retrieval accuracy
could be lower due to the short length of sentences and this can affect the query
tagging accuracy in turn.

3.3.3.2 Learning Methods

Ganchev et al. [11] employed a more complete transfer learning method based on
search logs. Search logs consist of both queries and “relevant” search results that
are either retrieved by a search engine or clicked by end users. The training data in
the “source” domain was human annotated sentences. A supervised POS tagger was
trained based on the “source” training data and applied to the search result snippets.
The POS tags on these snippets were then transferred to queries. In this process, the
tag of a query term was the most frequent tag of the term in the tagged snippets. This
simple transfer process produced a set of noisy labeled queries. Then a new query
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tagger was trained based on the combination of the “source” training data and the
noisy labeled query data. The pre-trained tagger can be used by itself to tag input
queries. Ganchev et al. [11] compared using clicked documents and the top retrieved
results and found that both methods performed similarly.

Sun et al. [29] proposed to transfer both POS tags and dependency parsing
results from clicked sentences to queries. A click sentence is a well-formed sentence
that (1) contains all query tokens and (2) appears in the top clicked documents of
the query. For each sentence, both POS tags of individual terms and dependency
between terms were constructed. While it is simple to transfer POS tags from
sentences to queries similarly as previous methods, it is challenging to transfer the
dependency relations because not all words in a sentence appear in queries. Sun
et al. [29] proposed heuristics to handle the following cases and an uninformative
“dep” relation was also introduced:

• Directly connected (46%)
• Connected via function words (24%)
• Connected via modifiers (24%)
• Connected via a head noun (4%)
• Connected via a verb (2%)

Sun et al. [29] also proposed methods to infer a unique dependency tree for a query
and refine dependency labels for the placeholder “dep.” All these resulted in a query
treebank without additional manual labeling. A syntactic parser was then trained
from the web query treebank data and shown to be more accurate than standard
parsers.

3.3.4 Summary

For query syntactic tagging, the majority of existing approaches transfer information
from sentences in search results or snippets to search queries. POS tags of queries
and documents can also be used to define matching features to improve ranking
accuracy [1]. In contrast to the POS tagging, dependency parsing is not fully
exploited for web search. Recent work by Tsur et al. [33] and Pinter et al. [25]
focused identifying queries with question intents and their syntactic parsing. A
query treebank is created and can be used to further study query syntactic tagging.

3.4 Query Semantic Tagging

The problem of query semantic tagging is to assign labels, from a set of pre-defined
semantic ones, at word level. Such labels are usually domain-specific. An example
from [20] of query semantic tagging is in the following where the labels are in
parentheses and all the labels are in the product domain.
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cheap (SortOrder) garmin (Brand) steetpilot (Model) c340 (Model) gps
(Type)

Semantic labels can be used to provide users with more relevant search results.
For example, many specialized search engines build their indexes directly from
a relational database where structured information or labels are available in the
documents (e.g., Brand = “garmin”). Query semantic labels can thus be used
to match documents more accurately. In this section, we discuss named entity
recognition on a coarse level and grammar-based approaches in a fine-grained
domain-specific level.

3.4.1 Named Entity Recognition

As shown in [12], about 71% of search queries contain named entities. Given their
high percentage, identifying named entities, as known as Named Entity Recognition
(NER), becomes an important task for web search. For named entities, the classes of
labels include “Game,” “ Movie,” “Book,” “Music,” etc. Given a query, the tasks of
NER are to identify which words in the query represent named entities and classify
them into different classes.

For NER tasks, Guo et al. [12] found that only 1% of the named entity queries
contain more than 1 entity and the majority of named entity queries contain exactly
a single one. Thus a named entity query can be thought as containing two parts:
entities and contexts. For example “harry porter walkthrough” contains entity “harry
porter” and context “walkthrough” and the context indicates “harry porter” should
be labeled as “Game.” Without this context, the query “harry porter” can also be a
“Book” or “Movie.” This shows that the classes for named entities can be ambiguous
and its context in the query helps disambiguate them.

Traditional NER is mainly performed on natural language texts [6] and a
supervised learning approach based on hand-crafted features is exploited (e.g.,
whether the word is capitalized or whether “Mr.” or “Ms.” is before the word).
These features can be extracted and utilized in the NER tasks for natural language
texts. However, directly applying them on queries would not perform well, because
queries are very short and are not necessarily in standard forms. In the current
literature, weakly supervised methods are proposed for NER on queries.

3.4.1.1 Template-Based Approach

A template-based approach was proposed by Paşca [23] that aimed to extract named
entities from search logs based on a small set of seeds. This method does not need
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hand-crafted extraction patterns nor domain-specific knowledge. An example of the
procedure is displayed in Fig. 3.2. The procedure starts with a set of seed instances
in a category (“Drug” in the example) and proceeds with the following steps:

Step 1 Identify query templates that match the seed instances. For each seed
instance, all queries containing this instance are located. The prefix and
suffix of each matched query become one template and templates from all
matched queries of all the seed instances become a collection of templates.

Step 2 Identify candidate instances. Based on the collection of templates from
Step 1, this step is to match the template against all queries in the
search logs. The non-template parts of the matched queries become the
candidates. The assumption of this step is that instances belonging to the
target category should share the templates.

Step 3 Internal representation of the candidate instances. For each candidate, each
template matched in Step 2 becomes a dimension in the template vector
used as the internal representation. All templates form a signature vector
for the candidate.

Step 4 Similarly, internal representation of the seed instances is created. These
vectors are aggregated together as the reference vector for the target
category.

Step 5 All the candidate instances are then ranked by the similarity between its
signature vector and the reference vector for the category.

All the steps for the category “Drug” are shown in Fig. 3.2. The seed instances
are {phentermine, viagra, vicodin, vioxx, xanax} and the output of the method is an
enlarged set of list {viagra, phentermine, ambien, adderall, vicodin, hydrocodone,
xanax, vioxx, oxycontin, cialis, valium, lexapro, ritalin, zoloft, percocet, . . . }.

As seen in the data flow, this method only needs a very small number of seed
instances and is thus weakly supervised. Paşca [23] used tens of target categories
and tens of seed entities in each target category. The method, though simple, is
shown to be effective in discovering more named entities in target categories.

3.4.1.2 Weakly Supervised Learning Approach

The approach in [23] is based on heuristics. Inspired by it, Guo et al. [12] formulate
a topic model based learning approach in a more principled manner. It follows the
same staring points as [23] where a set of seed instances of each target class is
provided. We thus call such an approach weakly supervised learning approach.

In this approach, a query having one named entity is represented as a triple
(e, t, c), where e denotes named entity, t denotes context of e, and c denote class of
e. Note that t can be empty (i.e., no context). Then the goal of NER here becomes
to find the triple (e, t, c) for a given query q, which has the largest joint probability
Pr(e, t, c). The joint probability is factorized:

Pr(e, t, c) = Pr(e)P r(c|e)P r(t|e, c) = Pr(e)P r(c|e)P r(t|c). (3.26)
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Fig. 3.2 Data flow overview of the template-based approach for named entity recognition in [23]

It is assumed that context only depends on class, but not on any specific named
entity. This is similar to [23] where the reference vector of a target category only
depends on templates.

In search logs, only query strings are available: contexts and name entities are not
explicitly labeled, nor classes of entities. Guo et al. [12] took a weakly supervised
approach where a set of named entities are collected and labeled as seeds.

S = {(e, c)} (3.27)

Starting from the seed S, a list of training instances {(e, t)} are obtained as follows:
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Step 1 For each e ∈ S, collect all queries that contain e from search logs. All the
queries obtained thus have entities and contexts separated and form a data
set D1 = {(e, t)}.

Step 2 Estimate Pr(c|e) and Pr(t|c) based on S and D1 using the Weakly
Supervised LDA (WS-LDA) model described below.

Step 3 For each t ∈ D1, collect all queries that contain t from search logs and
form D2 = {(e, t)} for all t .

Step 4 With Pr(t|c) fixed, estimate Pr(c|e) based on WS-LDA for all {e : e /∈
S}. Pr(e) is also estimated as proportional to the empirical frequency of e

in D2.

The proposed WS-LDA model is based on the traditional LDA model [5]. Given
a data set of D = {(e, t)}, we can treat e as the “document” and t as the “words” in
LDA model. Class c becomes the hidden variable and then

Pr(e, t) = Pr(e)
∑

c

P r(c|e)P r(t|c) (3.28)

Such a formulation is easy to be mapped to the LDA framework and the parameter
Pr(c|e) and Pr(t|c) can be estimated by fitting the model to the data D.

The WS-LDA model leverages the seed S data set as weakly supervised signals
to serve two purposes: (1) the set of classes are pre-defined in WS-LDA; (2) the
estimated Pr(c|e) should be close to S. The latter is achieved by introducing a
regularization term in the LDA objective function to be maximized:

∑
(e,c)∈S

P r(c|e). (3.29)

In this way, Pr(c|e) and Pr(t|c) estimated from WS-LDA optimize the fitness on
the search logs and stay closely to the seed labels in S as well.

The WS-LDA model also provides a natural way to give prediction for an input
query. For an input query q , it can enumerate all possible segmentations of (e, t) of
q and label q with class c based on the parameters estimated from WS-LDA:

(e, t, c)∗ = arg max
(e,t,c)

P r(q, e, t, c) = arg max
(e,t,c):(e,t)=q

P r(e, t, c). (3.30)

The WS-LDA approach was further extended to incorporated search
sessions [10] in which the adjacent queries in a search session were used to improve
the class label prediction for the named entities. Furthermore, building a taxonomy
of named entities search intents based on unsupervised learning approaches such as
hierarchical clustering was proposed by Yin and Shah [35].
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3.4.2 Fine-Grained Tagging

Fine-grained query semantic tagging has a strong NLP flavor than the methods for
NER above. For example, Manshadi and Li [20] defined a context-free grammar
for queries in the “product” domain. The design choice of being context-free is to
accommodate the loose order property of words in queries. Based on the grammar,
a parse tree was constructed for an input query and the nodes in the parse tree (e.g.,
Brand or Model) were the semantic tags for the queries. Standard tagging methods
such as Conditional Random Fields (CRF) [17] have a strong assumption on the
order of the input sentences and is thus less effective for query tagging. Manshadi
and Li [20] compared their grammar-based approach with CRF models and found
that their methods performed better. This demonstrates the unique challenges of
query semantic tagging and special design choices such as context-free grammar
are critical for this task.

3.5 Conclusions

In this chapter, we reviewed the existing literature on query tagging. We classified
them into query segmentation, query syntactic tagging, and query semantic tagging.
We reviewed a few representative methods for each category and discussed their
pros and cons. This chapter is just a starting point for the work in query tagging. It
is by no means exhaustive in the research area. Our hope is to give an introduction
to this exciting but challenging areas and an overview of the existing work. There
are a few future directions for query tagging. (1) There is still considerable room
to improve the accuracy of each query tagging task. For example, more and more
user interaction data is accumulated over time for search engines. How to explore
this huge amount of data as external resources to boost each tagging task is worth
studying. (2) The recent development of deep learning techniques has advanced the
NLP techniques. How to leverage the newly developed NLP techniques on query
tagging is also an interesting direction. (3) Query tagging can benefit other IR tasks
such as query suggestion. It looks promising to study how to leverage query tagging
on these related tasks.
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