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Preface

The extracellular matrix (ECM) comprises proteins (the matrisome) and complex,
sulfated, polysaccharides, the glycosaminoglycans, which are covaIently attached to
core proteins to form hybrid molecules called proteoglycans. A non-sulfated gly-
cosaminoglycan, hyaluronan, forms proteoglycan aggregates of high molecular
weight mediated by its non-covalent interactions with link proteins. The matrisome
is a small proteome encoded by ~1000 genes in humans, but it is still underexplored
because of its specific features. A number of ECM proteins are multimeric,
multidomain, and deposited in the extracellular matrix as insoluble and cross-linked
supramolecular assemblies, which requires the adaptation of existing protocols and
tools and/or the development of new protocols and tools to collect and analyze ECM
-omic datasets. Furthermore, limited proteolysis of ECM proteins gives rise to
bioactive fragments called matricryptins or matrikines, which have biological activ-
ities of their own, different from those of their parent proteins. This book aims at
providing the readers with general and specific computational tools and resources to
visualize and analyze ECM datasets, and with examples of -omic approaches unique
to the ECM (e.g., glycosaminoglycomics and proteoglycanomics), and their use to
assess ECM remodeling (degradomics) in health and diseases.

The matrisome, which comprises ECM and ECM-affiliated proteins, has been
first defined in silico in human and model organisms (i.e., mice, Caenorhabditis
elegans, and Danio rerio; see Chap. 2 by Gebauer and Naba), and then experimen-
tally characterized by quantitative proteomics in a variety of healthy and diseased
tissues, such as fibrotic liver (see Chap. 3 by Dolin et al.) and tumors (see Chap. 7 by
Izzi et al.), and in biological processes (see Chap. 8 on ECM degradation by
Kalogeropoulos et al.). Experimental protocols to collect -omic data are detailed in
several chapters. The interpretation of these data requires the use of computational
approaches, and the major general and ECM-specific bioinformatic tools and data-
bases used to annotate ECM -omic data are listed by Naba and Ricard-Blum in the
first chapter. Specific omics have been developed in addition to proteomics to take
into account the other ECM components, namely proteoglycans (see Chap. 4 on
proteoglycanomics by Koch and Apte) and glycosaminoglycans (see Chap. 5 on
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glycosaminoglycomics by Sethi and Zaia). The ability of ECM proteins, proteogly-
cans, and glycosaminoglycans to form interaction networks within the ECM and
with the cell surface is addressed in Chaps. 6 (Ricard-Blum) and 9 (Koeleman et al.).
The integration of -omic data to build models of ECM-dependent signaling path-
ways is also illustrated (see Chap. 10 on integrative models for TGFβ signaling and
ECM by Théret et al.).

Villeurbanne, France Sylvie Ricard-Blum
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Chapter 1
The Extracellular Matrix Goes -Omics:
Resources and Tools

Alexandra Naba and Sylvie Ricard-Blum

Abstract The extracellular matrix (ECM) is the complex scaffold made of hundreds
of proteins that governs the organization of cells and tissues in all multicellular
organisms. It provides structural and mechanical properties to tissues. It also exerts
signaling roles, either directly by interacting with cell surface receptors, or by
interacting with growth factors and modulating their signaling activities, and by
doing so regulates a multitude of cellular functions including cell-matrix interac-
tions, cell proliferation, survival, and differentiation. The purpose of this introduc-
tory chapter is to present resources and tools developed to facilitate the identification
and analysis of ECM genes and proteins across different conditions using high-
throughput methodologies (i.e., genomics, transcriptomics, proteomics, and
interactomics). Databases focused on specific ECM genes and ECM-related diseases
including genetic diseases are highlighted in the second part of the chapter. The
accessibility and standardization of -omic data are a prerequisite for the FAIR
(Findability, Accessibility, Interoperability, and Reusability) guiding principles for
scientific data management.

1.1 Introduction

The extracellular matrix (ECM) is the complex scaffold made of hundreds of pro-
teins that governs the organization of cells and tissues in all multicellular organisms
(Mecham 2011; Hynes and Yamada 2012). The ECM plays structural roles by
conferring biomechanical properties to tissues and organs, controlling apico-basal
cell polarity, and by serving as a substrate for cell migration. The ECM also exerts
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signaling roles either directly by interacting with cell surface receptors including
integrins, discoidin-domain receptors and heparan sulfate proteoglycans such as
syndecans, or by interacting with growth factors and modulating their signaling
activities (Hynes 2009). The ECM is also a source of bioactive fragments called
matricryptins, which are released upon ECM remodeling and exert biological activ-
ities of their own (Parks and Mecham 2011; Ricard-Blum and Vallet 2019). Signals
from the ECM have been shown to regulate gene expression and control cell
proliferation, survival, cell mechanics, and differentiation (Rozario and DeSimone
2010). The pleiotropic roles of the ECM are at play in developmental processes such
as gastrulation and cell specification (DeSimone and Mecham 2013; Dzamba and
DeSimone 2018), physiological processes such as wound healing and aging
(Karamanos et al. 2019), and pathological processes such as fibrosis and cancer
(Brekken and Stupack 2017; Iozzo and Gubbiotti 2018; Zhou et al. 2018; Kai et al.
2019; Theocharis et al. 2019; Socovich and Naba 2019; Ricard-Blum and Miele
2019). Because of its supportive and instructive roles, the ECM is a central compo-
nent of tissue engineering approaches for regenerative medicine (Berardi 2018). It
also represents a source of biomarkers and potential novel therapeutic targets to
respectively diagnose and predict, or alleviate and perhaps cure human diseases.

High-throughput profiling and screening methods that have emerged over the past
two decades have radically transformed biomedical research. Such approaches rely
on the unbiased identification of differences in gene expression or genetic states
(genomics or transcriptomics) or protein abundance or protein states (proteomics)
across different conditions. Once experimental data are acquired, their analysis can
be divided in three major steps: (1) the definition of lists of genes or proteins of
interest based on statistical cut-offs, (2) the identification of networks or pathways
involving genes or proteins defined in (1), and (3) data visualization. Yet the true
power of high-throughput approaches can only fully be harnessed if powerful
computational tools and databases to comprehensively annotate the vast amount of
data generated are available. To that end, freely available general databases such as
UniProt (The UniProt Consortium 2019) or Gene Ontology (Attrill et al. 2019; The
Gene Ontology Consortium 2019), and pathway analysis platforms such as the
Database for Annotation, Visualization and Integrated Discovery (DAVID) (Jiao
et al. 2012), Gene Set Enrichment Analysis (GSEA) and its Molecular Signature
database (Subramanian et al. 2005, 2007; Liberzon et al. 2015), Cytoscape (Su et al.
2014), The Reactome Pathway Knowledgebase (Fabregat et al. 2018), or FunRich
(Pathan et al. 2015), have been developed and include useful information on ECM
genes and proteins (Table 1.1). However, these databases and tools rely on compu-
tational predictions and/or manual curation of experimental data from the literature.
Consequently, systems or pathways more broadly studied will be more robustly and
extensively annotated.

Having observed that ECM genes and proteins tended to be under-represented or
mis-annotated in databases (Naba et al. 2012b), we previously proposed to define the
“matrisome” as the compendium of genes encoding ECM and ECM-associated
proteins (Hynes and Naba 2012; Naba et al. 2012a). Our work has revealed that
4% of the human genome encodes the matrisome. For more information, our readers
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can find in Chap. 2 by Gebauer and Naba an overview of the computational
approaches we and others have developed to predict the matrisome of different
model organisms and illustrate their application for big data annotation. With this
new framework, it has become easier to identify ECM genes and proteins in -omic
datasets, and this has permitted ECM research to truly enter the -omics era (Naba
et al. 2016).

Table 1.1 Public databases for gene and protein annotations, enrichment analyses and pathway
identifications

Resources/Tools Description References

Gene and proteins annotations

Gene Ontology (GO) Resource
http://geneontology.org/

Annotations of biological process,
cellular component, and molecular
function of genes and gene products.

Attrill et al. (2019),
The Gene Ontology
Consortium (2019)

UniProtKB
https://www.uniprot.org/

The Universal Protein knowledgebase
provides detailed annotations
extracted from the literature by expert
curators.

The UniProt Consor-
tium (2019)

Bioinformatic tools to visualize and analyze omic data

Cytoscape and Apps
https://apps.cytoscape.org/
https://apps.cytoscape.org/
apps/all

An open source platform for visual-
izing complex networks and integrat-
ing these with any type of attribute
data. A lot of Apps are available.

Shannon et al. (2003),
Saito et al. (2012), Su
et al. (2014)

The Database for Annotation,
Visualization and Integrated
Discovery (DAVID)
https://david.ncifcrf.gov/

DAVID provides a comprehensive set
of functional annotation tools to
understand biological meaning
behind large list of genes

Huang et al. (2009),
Jiao et al. (2012)

EnrichmentMap
http://apps.cytoscape.org/apps/
enrichmentmap

Visualizes enrichments of pathways
as an enrichment map, a network
representing overlaps among enriched
pathways.

Merico et al. (2010)

Functional Enrichment analy-
sis tool (FunRich)
http://www.funrich.org/

Functional enrichment and interaction
network analysis of genes and
proteins

Pathan et al. (2015)

g:profiler
https://biit.cs.ut.ee/gprofiler/
gost

A web server for functional enrich-
ment analysis and conversions of
gene lists

Raudvere et al. (2019)

GSEA (gene set enrichment
Analysis)
https://www.gseamsigdb.org/

Suite of tools for the interpretation of
gene expression data, enrichment
analysis of gene lists

Subramanian et al.
(2005, 2007)

The Omics Discovery Index
(OmicsDI) http://www.
omicsdi.org

An open source platform that enables
access, discovery and dissemination
of omics datasets

Perez-Riverol et al.
(2017, 2019)

The Reactome Pathway
Knowledgebase
https://reactome.org/

A manually curated and peer-
reviewed pathway database. Visuali-
zation, interpretation and analysis of
pathway knowledge

Fabregat et al. (2018)
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The purpose of this introductory chapter is to present resources and tools devel-
oped to facilitate the identification and analysis of ECM genes and proteins using
high-throughput methodologies (Fig. 1.1). In the second part of the chapter, we
highlight databases focused on specific ECM genes and ECM-related diseases
including genetic diseases and fibroses. Last, we briefly discuss the importance of
the accessibility and standardization of -omic data, which is a prerequisite for the
FAIR (Findability, Accessibility, Interoperability, and Reusability) guiding princi-
ples for scientific data management (Wilkinson et al. 2016).

1.2 ECM Knowledge Databases

Table 1.2 provides a list of ECM-focused databases and resources that can further
assist the identification and annotation of ECM genes and proteins and their inte-
gration into interaction networks.

Fig. 1.1 Flow chart of the integrative multi-omic approach used to analyze the extracellular matrix
(ECM), including the matrisome (proteomics), glycosaminoglycans (GAG, GAGomics), ECM and
ECM-cell interactions (interactomics), ECM degradation (degradomics) and changes in the ECM
associated with diseases. The flow chart also presents the tools used to analyze ECM -omic datasets
(e.g. general and ECM-specific databases (DB)) in order to build integrative models of biological
processes
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1.2.1 The Matrisome Project and MatrisomeDB

In order to distribute freely the bioinformatic tools and workflows we devised, which
numerous groups have used to predict computationally the matrisomes of model
organisms, we built The Matrisome Project website (http://matrisome.org) (Naba
et al. 2016). The Matrisome Annotator application and the underlying open-access
R-script available via The Matrisome Project have been used to annotate
transcriptomic datasets which led to the identification ECM signatures of various
diseased states as illustrated in recent studies (Hiebert et al. 2018; Izzi et al. 2018,
2019; Bin Lim et al. 2019; Etich et al. 2019) and as further discussed in Chap. 2 of
this book by Gebauer and Naba.

ECM proteins have biochemical properties that distinguish them from intracel-
lular proteins, such as their relative insolubility due to cross-linking and high levels
of glycosylation. As a result, ECM proteins are largely under-represented in global
proteomic datasets. New mass-spectrometry-based approaches have been specifi-
cally designed to study the ECM protein composition of healthy and pathological
tissues. While it is beyond the scope of this chapter to detail these techniques, we
invite our readers to refer to recent reviews that discuss technical aspects of ECM
proteomic approaches (Randles et al. 2017; Lindsey et al. 2018; Raghunathan et al.
2019; Taha and Naba 2019). Over the past half-decade, proteomics has been applied
to profile the protein composition of dozens of healthy and pathological tissues.
During this same period, the scientific community has been increasingly supportive
of the public release of -omic datasets to increase reproducibility. We thus developed
MatrisomeDB (http://pepchem.org/matrisomedb), a searchable database compiling
ECM proteomic datasets (Shao et al. 2019) that can be interrogated for specific
proteins, protein signatures, tissues or diseases. It is our hope that this database will
facilitate, if not accelerate, discoveries of ECM proteins playing so far unsuspected
roles in pathophysiology.

Table 1.2 Databases for ECM gene/protein annotations and ECM interaction data

Database name
and web site URL References

Adhesome http://www.adhesome.org Winograd-Katz et al. (2014)

Gene Ontology
(GO) Resource
Extracellular
matrix

http://www.informatics.jax.org/vocab/
gene_ontology/GO:0031012

The Gene Ontology Consortium
(2019)

The Laminin
Database

http://www.lm.lncc.br Golbert et al. (2014)

The Matrisome
Project

http://matrisome.org Naba et al. (2016)

MatrisomeDB http://pepchem.org/matrisomedb Shao et al. (2019)

MatrixDB http://matrixdb.univ-lyon1.fr Chautard et al. (2009, 2011),
Launay et al. (2015), Clerc et al.
(2019)
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1.2.2 The Laminin Database

Laminins are the main glycoproteins of basement membranes (Aumailley 2013;
Hohenester and Yurchenco 2013), playing structural roles in the maintenance of
tissue organization and integrity as well as signaling roles inducing changes in gene
expression (Schéele et al. 2007). The laminin database (http://www.lm.lncc.br/) was
devised by De Vasconcelos and colleagues (Golbert et al. 2014) and provides a
comprehensive overview of this family of 16 isoforms in mammals, their receptors,
and interacting proteins (Domogatskaya et al. 2012).

1.2.3 MatrixDB, the ECM Interaction Database

MatrixDB (http://matrixdb.univ-lyon1.fr/), the extracellular matrix database, is a
member of the International Molecular Exchange (IMEx) consortium (Orchard
et al. 2012), and its interaction data are also available via the IntAct database
(Orchard et al. 2014). MatrixDB is focused on interactions between ECM proteins,
proteoglycans, and glycosaminoglycans (Chautard et al. 2009, 2011; Launay et al.
2015; Clerc et al. 2019). MatrixDB manually extracts interaction data from publi-
cations using IMEX curation rules and a controlled vocabulary, which are regularly
updated by the Molecular Interactions group of the Human Proteome Organization-
Proteomics Standards Initiative (HUPO-PSI), and provides interaction data in
MITAB format. This ensures consistency in data report and in data exchange
between the databases of the consortium. MatrixDB curates interactions established
by monomeric ECM proteins (e.g. isolated α chain from collagens, or elastin)
identified by UniProt accession numbers (The UniProt Consortium 2019), ECM
oligomeric proteins (e.g. native trimeric collagen or laminin molecules and the
dimeric integrin receptors) identified by Complex Portal accession numbers (Meldal
et al. 2019), and by bioactive fragments (i.e. matricryptins/matrikines) released upon
ECM remodeling, which have biological activities and interaction repertoires of their
own (Ricard-Blum and Vallet 2019), and are identified by the PRO feature of
UniProtKB. In addition to protein-protein interactions, MatrixDB also curates
protein-glycosaminoglycan interactions, which are of critical importance for ECM
assembly and functions. Identifiers of Chemical Entities of Biological Interest,
ChEBI, (Hastings et al. 2016) are used for glycosaminoglycans. The use of accession
numbers of other publicly available databases allows cross-referencing and interop-
erability between databases. MatrixDB offers to the users the possibility to build and
expand interaction networks using its graphical navigator, and to apply filters to
build sub-networks based on a list of biomolecules, an interaction detection method
and/or tissue expression level thanks to the integration of gene expression data
(Launay et al. 2015; Clerc et al. 2019). The recent update of MatrixDB query
interface allows users to build lists of proteins of interest by combining queries in
order to build interaction networks specific of a disease, a biological process, or a
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molecular function (Clerc et al. 2019). In its latest release, MatrixDB has integrated
experimental proteomics data from MatrisomeDB to further provide an in-vivo
context to interactions identified experimentally in vitro (Clerc et al. 2019) and
Chap. 6 of this book by Ricard-Blum. The integration of proteomic data collected
in various basement membranes into the comprehensive interaction network of
basement membranes has allowed us to define the core interactome common to all
the basement membranes studied, and the interactions, which are specific of each
basement membrane (Clerc et al. 2019).

The AVEXIS Receptor Network with Integrated Expression database (ARNIE;
https://www.sanger.ac.uk/resources/databases/arnie/) provides an extracellular pro-
tein interactome of zebrafish receptor and secreted proteins containing immunoglob-
ulin and leucine-rich repeats with spatiotemporal expression patterns for all genes in
order to identify signaling pathways playing a key role in zebrafish development
(Martin et al. 2010).

1.2.4 The Consensus Adhesome

Proper cell-ECM interaction is critical to initiate ECM-dependent signal- and
mechano-transduction leading to the modulation of gene expression and cellular
phenotypes. Deciphering the molecular mechanisms involved in cell-ECM interac-
tions is thus of utmost importance. The term “adhesome” was originally coined by
Hynes and colleagues to define the “complement of adhesion-related genes and
proteins” in echinoderms (Whittaker et al. 2006). Geiger and colleagues revisited the
definition of this term to refer more specifically to the ensemble of proteins compu-
tationally predicted to localized at, or to regulate, integrin adhesion complexes
(Zaidel-Bar et al. 2007). The adhesome website (http://www.adhesome.org/) pro-
vides a resource for exploring the components predicted to localize to focal adhesion
complexes (Winograd-Katz et al. 2014). Recent advanced in proteomic methods
have permitted the experimental characterization of the adhesomes of various
integrins and be compared with the predicted adhesome (Horton et al. 2015, 2016)
(see Chap. 9 of this book by Koeleman et al.).

1.3 Resources for the Study of ECM-Related Diseases

Mutations in ECM genes cause a broad spectrum of inherited diseases altering ECM
structure, organization and functions, and targeting primarily skin, the neuro-
muscular, skeletal, and cardio-vascular systems (Bateman et al. 2009; Lamandé
and Bateman 2019). ECM gene variations can be retrieved from general variant
databases listed in Table 1.3. For example, ClinVar compiles public archives of
reports on the relationships between human gene variations and phenotypes and
includes 430,000 unique variants (Landrum et al. 2014, 2020). The Online
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Mendelian Inheritance in Man (OMIM®), provides an online catalog of human
genes and genetic disorders, containing over 24,600 entries, and 6259 molecularized
phenotypes connected to 3961 genes (Amberger et al. 2019), and can be specifically
interrogated for matrisome genes. Similarly, the Leiden Open-source Variation

Table 1.3 General and ECM-specific gene variation databases and associated diseases

Databases and Resources Description References

General gene variation databases

ClinVar
https://www.ncbi.nlm.nih.gRelaov/
clinvar/

Relationships among human varia-
tions and phenotypes, with supporting
evidence.

Landrum et al.
(2014, 2020)

LOVD3 v.3.0 Leiden Open Variation
Database
https://www.lovd.nl/

Gene-centered collection and display
of DNA variants, including genes
coding for ECM proteins

Fokkema et al.
(2011)

Online Mendelian Inheritance in Man
(OMIM®)
https://www.omim.org/

Information on all known Mendelian
disorders and over 15,000 genes.
OMIM focuses on the relationship
between phenotype and genotype.

Amberger
et al. (2019)

Effect of sequence changes and mutations of genes on molecular interactions

The IMEx Consortium mutations data
set
https://www.ebi.ac.uk/intact/
resources/datasets#mutationDs

Effect of sequences changes on
experimental molecular interactions

IMEx Consor-
tium Curators
et al. (2019)

ECM gene-specific variants and disease databases

Alport Database
http://arup.utah.edu/database/
ALPORT/

A database of variants in the COL4A5
gene and their clinical significance.

Crockett et al.
(2010)

COL7A1 gene mutations database
http://www.col7a1-database.info/
new/

Mutations of the COL7A1 gene Wertheim-
Tysarowska
et al. (2012)

The International registry of dystro-
phic epidermolysis bullosa patients
and associated COL7A1 mutations
https://www.deb-central.org/

Mutations of the COL7A1 gene in
dystrophic epidermolysis bullosa
patients

van den Akker
et al. (2011)

Laminins and neuromuscular disor-
ders
http://www.lm.lncc.br

Golbert et al.
(2014)

Osteogenesis imperfecta & Ehlers-
Danlos syndrome variant database
https://www.le.ac.uk/genetics/
collagen/

Variants occurring in collagen I, III,
and V genes, and in other genes coding
for ECM proteins, and enzymes

Dalgleish
(1997, 1998)

A structurally-integrated database for
mutations of PLOD genes
http://fornerislab.unipv.it/SiMPLOD/

Mutations in the PLOD/LH
(Procollagen-Lysine 2-Oxoglutarate
5-Dioxygenase/Lysyl-Hydroxylase)
enzyme family (LH1/PLOD1,
LH2/PLOD2 and LH3/PLOD3)

Scietti et al.
(2019)

The UMD-FBN1 mutations database
http://www.umd.be/FBN1/

Mutations in fibrillin-1 (FBN1) gene
(Marfan syndrome and associated
disorders)

Collod-Béroud
et al. (2003)
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Database (LOVD) is a freely available web-based interface compiling DNA variants
compiled from various locus-specific databases (Fokkema et al. 2011). Gene-
specific databases (e.g. focused on genes coding for ECM proteins) have been
created with LOVD. The use of the databases maintained by the LOVD group is
recommended by the Human Variome Project (https://www.humanvariomeproject.
org/), an international non-governmental organisation working in collaboration with
UNESCO to ensure that all information on genetic variations in the human genome
and their effect on human health can be collected, curated, interpreted and shared
(Burn and Watson 2016). In addition, the IMEx Consortium has built a mutation
dataset generated from deep-curation, featuring 28,000 annotations describing the
effect of small sequence changes on physical protein interactions (IMEx Consortium
Curators et al. 2019). This data set of protein sequence changes or mutations and
their effect over interaction outcome can be queried to evaluate the impact of
sequence changes in ECM genes on ECM protein interactions.

Databases focused on ECMopathies, briefly described below, are also being
developed (Table 1.3).

Collagenopathies refer to congenital disorders resulting from mutations in colla-
gen genes that affect connective tissues (Jobling et al. 2014; Lamandé et al. 2017;
Lamandé and Bateman 2018). A database reports ECM gene variants, including
collagen genes, linked to osteogenesis imperfecta and Ehlers-Danlos syndromes
(Dalgleish 1997, 1998). These syndromes can be caused by mutations in the
human PLOD1, PLOD2, and PLOD3 genes (procollagen-lysine, 2-oxoglutarate
5-dioxygenases 1, 2 and 3), that catalyzes the hydroxylation of lysine residues, a
key post-translational modification of collagens. Their genetic variants are reported
in the Structurally-integrated database for Mutations of PLOD genes (SiMPLOD),
which allows the mapping of PLOD mutations on the experimentally determined
X-ray structure of human PLOD3, and on the computational homology models of
human PLOD1 and PLOD2 (Scietti et al. 2019),

The Alport database records 807 variants of COL4A5 gene associated with
X-linked Alport Syndrome, which primarily targets the kidney, and their clinical
significance (Crockett et al. 2010). The COL7A1 gene variants database provides
not only the possibility to search mutations but also a graphic view of mutations,
general information on the COL7A1 gene sequence, the COL7A1 gene in other
databases and other organisms, and bioinformatic tools to analyze mutations and
design primers (Wertheim-Tysarowska et al. 2012).

Diseases caused by laminin mutations affect various systems in which the
integrity of basement membranes is of paramount importance, including the mus-
cular, nervous, and renal systems (Schéele et al. 2007; Chew and Lennon 2018). The
laminin database presented above now integrates sections on the neuromuscular
disorders resulting from laminin mutations, and miRNA-laminin relationships to
account for the putative involvement of microRNAs in these disorders (Golbert et al.
2014). While many other diseases find their cause in ECM gene mutations, such as
COMPopathies due to mutations in the COMP gene coding for the Cartilage
Oligomeric Protein affecting the skeletal system (Posey et al. 2018) and Marfan
syndrome (Meester et al. 2017), over-production or degradation of the ECM has also
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been associated with the etiology of several diseases including fibroses, cardio-
vascular diseases, and cancers (Theocharis et al. 2019).

1.4 Conclusions and Perspectives

Expanding on this introductory chapter, our readers will find in this book examples
of experimental -omic approaches devised to study proteoglycanomes (see Chap. 4
by Koch and Apte), and glycosaminoglycans (see Chap. 5 by Sethi and Zaia),
biological processes such as ECM degradation (see Chap. 8 by Kalogeropoulos
et al.) and specific pathological processes such as hepatic fibrosis (see Chap. 3 by
Dolin et al.) and cancer (see Chap. 7 by Izzi et al.). Readers will also find examples
of how to build interaction networks within the ECM (see Chap. 6 by Ricard-Blum)
or at the interface between cell-ECM interactions (see Chap. 9 by Koeleman et al.)
and methods to further integrate -omic level data to build models of ECM-dependent
signaling pathways (see Chap. 10 by Théret et al.).

The generation of temporally and spatially-resolved data is now the next chal-
lenge of the -omic era, especially for ECM research (Bingham et al. 2020). The
multi-omic approach, combining different omics (e.g. genomics, transcriptomics,
proteomics, metabolomics and interactomics to name a few) is a pre-requisite to fully
understand complex biological systems (Zhang and Kuster 2019). Tools allowing
the integration of multi-omics data have started to emerge (Nagaraj et al. 2015;
Ruggles et al. 2017; Subramanian et al. 2020) and the recently developed Knowl-
edge Base Commons (https://kbcommons.org/) provides a universal framework for
multi-omics data integration and biological discoveries (Zeng et al. 2019). The
Omics Discovery Index (OmicsDI), that enables access, discovery and dissemina-
tion of 454,200 proteomics, genomics, metabolomics, transcriptomics, and
multiomic datasets from 16 public resources is another valuable tool for multi-
omic approaches (Perez-Riverol et al. 2017, 2019). An example of how powerful
such integration can be is illustrated in a recent study from Schlotter and collabora-
tors, where they correlated post-operative molecular imaging and pathology with
proteomics, transcriptomics, and multi-dimensional network analysis to build the
first integrated map of human calcific aortic valve disease (Schlotter et al. 2018).
This spatiotemporal multi-omics mapping led to the identification of the first molec-
ular regulatory networks in this disease, and showed that both structural ECM
proteins (e.g. fibronectin, vitronectin and PCPE-2) and ECM proteins secreted by
valvular interstitial cells (e.g. tenascin C and SPARC) contribute to the calcification
propensity of the fibrosa layer (Schlotter et al. 2018).

The few examples reviewed above show how powerful the -omic approach
coupled to data sharing is. With the decreased cost and increased availability of
genomics, transcriptomics, and proteomics as well as computational tools to mine
large datasets generated by these techniques, we can anticipate an increase in the
number of datasets, including some focused on the ECM, that will become available
to the scientific community. It is our hope that the community-built open-access and
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open-source resources similar to those presented in this chapter will lead to faster
biomedical breakthroughs.
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Chapter 2
The Matrisome of Model Organisms: From
In-Silico Prediction to Big-Data Annotation

Jan M. Gebauer and Alexandra Naba

Abstract The extracellular matrix (ECM) is the architect of multicellular organ-
isms. The use of various model organisms has helped decipher the mechanisms by
which the ECM provides both chemical and mechanical cues that regulate funda-
mental cellular processes conserved during evolution such as cell migration, inva-
sion, and differentiation.

High-throughput, or –omic, technologies has transfigured biomedical research. It
is thus imperative to have a systematic way to identify ECM genes and proteins in
large datasets. This requires having a comprehensive catalog of all the components
that constitute the ECM. Here, we will describe the key structural features of ECM
proteins (signal peptide, presence of protein domains, motifs, or repeats) that can be
used to devise computational approaches to predict ECM proteins. We will then
present fully automated machine-learning-based algorithms and approaches that
have combined protein-sequence analysis and knowledge-based curation to define
the matrisome of model organisms. Last, we provide examples of how the definition
of the matrisome has facilitated the identification of ECM genes and proteins in –

omic datasets and has advanced our understanding of the contribution of the ECM
pathophysiological processes such as embryonic development, tissue regeneration,
aging, and cancer.

2.1 Introduction

The extracellular matrix (ECM), a complex protein assembly, constitutes the archi-
tectural scaffold of all multicellular organisms. However, the collection of ECM
proteins has greatly expanded throughout evolution to support the emergence of

J. M. Gebauer
Institute of Biochemistry, University of Cologne, Cologne, Germany
e-mail: jan.gebauer@uni-koeln.de

A. Naba (*)
Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
e-mail: anaba@uic.edu

© Springer Nature Switzerland AG 2020
S. Ricard-Blum (ed.), Extracellular Matrix Omics, Biology of Extracellular Matrix 7,
https://doi.org/10.1007/978-3-030-58330-9_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58330-9_2&domain=pdf
mailto:jan.gebauer@uni-koeln.de
mailto:anaba@uic.edu
https://doi.org/10.1007/978-3-030-58330-9_2#DOI


complex levels of cellular organization, and the development of novel tissues and
specialized functions (Draper et al. 2019; Hynes 2012; Keeley and Mecham 2013;
Özbek et al. 2010). Molecularly, this complexification has arisen from multiple
mechanisms including exon shuffling, the apparition of novel protein domains,
and expansion within families of genes (Hynes 2012; Keeley and Mecham 2013).
Studying the ECM in various model organisms (mice, zebrafish, Drosophila,
C. elegans, etc.) has been instrumental to understanding some of the fundamental
mechanisms by which it controls evolutionarily conserved processes, such as cell
proliferation, migration, invasion, lineage specification, and differentiation (Adams
2018; Brown 2011; Rozario and DeSimone 2010). Studying the ECM in model
organisms has also shed light on its roles in cellular processes including wound
healing and tissue repair, aging (Birch 2018), angiogenesis (Neve et al. 2014),
fibrosis (Herrera et al. 2018), and cancer metastasis (Pickup et al. 2014).

The emergence of high-throughput screening technologies has transfigured bio-
medical research (see Chap. 1 of this book). It is thus imperative to have a systematic
way to identify and annotate ECM genes and proteins in large datasets, if we want to
be able to fully capture the extent of their involvement in pathophysiological
contexts. This requires having a comprehensive catalog of all the components that
constitute the ECM. In this chapter, we will discuss key structural features of ECM
proteins that can be used to devise computational approaches to predict ECM pro-
teins within proteomes. We will then present and discuss the limitations of fully
automated machine-learning-based algorithms that have attempted to predict ECM
proteins. Last, we will review approaches that have combined protein-sequence
analysis and knowledge-based curation to define the human matrisome and the
matrisomes of 6 model organisms: the mouse, the quail, zebrafish, Drosophila,
C. elegans, and planarian. We will further briefly illustrate how the definition of
these lists has greatly aided the identification of ECM genes and proteins in –omic
datasets and has advanced our understanding of the contribution of the ECM to
embryonic development and diseases.

2.2 Gene Ontology Annotations of ECM Proteins

The Gene Ontology (GO) database describes knowledge of proteins using “terms”
with respect to three aspects: the cellular components they are found in, or localiza-
tion; their molecular functions; and the biological processes they are involved in
(The Gene Ontology Consortium 2019). Every annotation is based on either com-
putational or phylogenetic evidences that may additionally be supported by exper-
imental evidence (for more details, we invite our readers to refer to the GO website:
http://geneontology.org). As of 2020, the database included more than 44,000
unique GO terms and provided annotations for over 1.3 million gene products or
proteoforms. These annotations are cross-referenced to all major gene and protein
databases. This colossal amount of data is instrumental for curating -omic datasets
and identifying groups of co-regulated genes and proteins that localize to the same
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compartment or play roles in the same cellular processes. Eventually, these annota-
tions should support the building of system-wide views of given cellular states or
physiological or pathological processes.

Query of the GO database for terms containing “extracellular matrix” retrieves
49 terms and an additional 137 terms are related to ECM biology. Some of these
terms are as broad as “extracellular matrix” (GO:0031012) which is associated with
over 2000 human gene products. Other terms remain vague, e.g. “positive regulation
of extracellular matrix organization” (GO:1903055), and are associated to a smaller
subset of human gene products (27, for GO:1903055, of which, some are encoding
ECM proteins but some of them encoding intracellular components). However, if
too broad, too granular, or too imprecise, such annotations can present limitations by
either creating noise or failing to fully capture the entirety of a process and thus falls
short in aiding with the extraction of relevant information in large datasets (Naba
et al. 2012a). There is thus a need for a comprehensively-annotated compendium of
ECM genes and proteins. To build it will require to take into account specific
features of these proteins, including characteristic sequences found in ECM proteins,
as well as their particular domain-based organization (see below).

2.3 Prototypical Organization of an ECM Protein

2.3.1 Protein Export and Signal-Peptide Prediction

As ECM proteins are a subset of secreted proteins, they share the same export
mechanisms. Predicting protein export is thus an important first step in the identifi-
cation of ECM proteins. Most secreted proteins are targeted to the extracellular space
by an N-terminal signal peptide which is recognised by the signal recognition
particle (SRP) during translation. Upon binding of the SRP, translation is halted
and stalled ribosomes are transferred to the endoplasmatic reticulum (ER) where
nascent protein chains are co-translationally secreted into the ER lumen. During or
after translation, signal peptides are cleaved from mature proteins by a membrane
standing protease. Many ECM proteins are post-translationally modified in the ER,
which is essential for proper folding and function, before being secreted via the
Golgi apparatus into the extracellular space (Viotti 2016). Signal peptide sequences
are very diverse and have next to no detectable homology. However, they can all be
described by a similar organisation consisting of three regions. The n-region is the
most N-terminal part of the sequence. It consists of approximately 1 to 5 amino acids
and is mostly positively charged. Next is the hydrophobic core (or h-region) which is
7 to 15 amino-acid long. This part of the peptide was shown to bind to the SRP in an
α-helical form by (Keenan et al. 1998) and is of utmost importance for recognition
by the SRP (Nilsson et al. 2015). Finally, the c-region often contains α-helix-
breaking amino acids (either proline or glycine) and the cleavage site is usually
surrounded by small uncharged amino acids (Martoglio and Dobberstein 1998).
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Predicting the presence of N-terminal signal peptides has been attempted for
nearly as long as the presence of such peptides was hypothesised (Blobel and
Sabatini 1971). For readers interested in the development of this field, we recom-
mend the excellent review by Nielsen and collaborators (Nielsen et al. 2019a), which
illustrates the tremendous progress bioinformatics has made in recent years. One of
the biggest challenges for all algorithms is the discrimination between proper signal
peptides and N-terminal transmembrane helices (often called membrane anchors),
since they both share a similar hydrophobic stretch of amino acids. Better algorithms
are continuously being developed and, for that reason, we would encourage users to
always use the newest algorithms available. At the time of writing of this chapter,
three algorithms have similarly good level of performances: SignalP 5.0
(Armenteros et al. 2019), DeepSig (Savojardo et al. 2018), and SigUNET
(Wu et al. 2019). All three use neural networks to predict signal peptides and take
special precautions not to detect N-terminal transmembrane domains. SignalP
(www.cbs.dtu.dk/services/SignalP/) and DeepSig (deepsig.biocomp.unibo.it) offer
easy to use webservices, while SigUNET’s source code is available via GitHub
(github.com/mbilab/SigUNet), making it only accessible to more advanced users. Of
note, while SignalP only reports the presence of signal peptides, DeepSig also
detects N-terminal transmembrane helices.

In addition to these specialized algorithms, pipelines that detect both signal
peptides and other protein features or cellular localizations are available. For our
purpose, TOPCONS (topcons.cbr.su.se) (Tsirigos et al. 2015) is an interesting
algorithm since it combines the results from many signal peptide predictors includ-
ing [Poly]Phobius (Käll et al. 2004, 2005), Philius (Reynolds et al. 2008), and SP
OCTOPUS (Viklund et al. 2008). Another tool is DeepLoc (www.cbs.dtu.dk/
services/DeepLoc), a neural network which predicts the cellular location of a protein
(Almagro Armenteros et al. 2017). Regardless of the algorithm used, we encourage
our readers to apply more than one algorithm (e.g. SignalP and DeepSig) and
compare the results obtained, as every prediction has a certain level of uncertainty.

In addition to the conventional protein secretion (CPS) characterised by the
presence of an N-terminal signal peptide, a smaller number of proteins undergo
secretion via unconventional pathways (Dimou and Nickel 2018). In comparison to
the prediction of the presence of signal peptides, the prediction of proteins under-
going unconventional secretion is more difficult, partly because the number of well-
characterized examples is limited. For an overview of predictors available before
2019, we invite our readers to refer to the recent re-evaluation by Nielsen and
collaborators, which concludes that most predictors perform only moderately well
(Nielsen et al. 2019b). Of note, a new predictor called OutCyte (www.outcyte.com)
was recently published and reported promising results (Zhao et al. 2019). Interest-
ingly, OutCyte also has a powerful module to predict signal peptides.

In addition to being secreted, most extracellular proteins are composed of mul-
tiple domains often present in repetition. As this modular domain-based organisation
is quite a unique feature of ECM proteins, we briefly present below what are protein
domains and how can they be computationally predicted.
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2.3.2 What Are Protein Domains and How Can We
Predict Them?

A domain is a consecutive stretch of amino acids that forms an individual folding
unit. Additionally, domains are defined by their three-dimensional structure and are
repeatedly used in different proteins. It is believed that all occurrences of a domain
originate from a common ancestral “proto-domain”. However, the sequence simi-
larity between different occurrences of a particular domain can be very low.

2.3.2.1 The Example of the von Willebrand Factor A Domain

The von Willebrand Factor A (VWA) domain is a domain widespread in ECM
proteins and structurally well defined (Gebauer et al. 2016; Springer 2006; Whittaker
and Hynes 2002). A valuable tool to explore protein domains is the CATH database
(cathdb.info) (Dawson et al. 2017). CATH compares all currently available crystal
structures deposited in the protein data bank (PDB, http://www.wwpdb.org/) (Burley
et al. 2019) and groups them based on structural similarity. VWA domains form the
CATH Superfamily 3.40.50.410 and is composed of an alignment of 215 unique 3D
structures. In the structural overlay the core domain, consisting of a central β-sheet
surrounded by α-helices, is very easily recognizable (Fig. 2.1a). VWA domains are
also present in intracellular proteins, but, with the VWA domain of collagen VI α3
(Col6a3-N5; PDB code 4IGI) and the VWA domain of the von Willebrand factor
(VWF; PDB code 4DMU), we can compare two important members of the ECM

Fig. 2.1 Alignment of crystallised von Willebrand A domains. (a) Alignment of 30 representative
structures for the CATH superfamily 3.40.50.410 as aligned by CATH (cath-superpose). Chains not
belonging to the core domain were removed. α-helices are shown in red, β-sheets in blue and loops
in transparent-grey. (b) Structural alignment of the Willebrand Factor type A domains of the von
Willebrand factor (4DMU) and Collagen VI α3 (4IGI). Col6 is shown in muted colours. Alignment
was generated using the “super” algorithm in PyMol

2 The Matrisome of Model Organisms: From In-Silico Prediction to Big-Data. . . 21

https://cathdb.info/
https://rcsb.org/
http://www.wwpdb.org/)
http://www.cathdb.info/version/latest/superfamily/3.40.50.410


(Fig. 2.1b). Although the overall 3D structure is nearly identical (root-mean-square
deviation of only ~1.3 Å), the total sequence identity is only 17%. Detecting such
weak homologies is nearly impossible by direct sequence comparison but can still be
done using a technique called profile hidden Markov models (HMM).

2.3.2.2 Profile Hidden Markov Models to Predict Domain Homology

Hidden Markov models (HMM) are sequence generators, which try to develop
models explaining observed sequences (Eddy 1998; Franzese and Iuliano 2019).
Computationally, the algorithm moves from left to right and emits a symbol—for the
present purpose, one of the 20 natural amino acids—at every position of a sequence.
Based on the multiple sequence alignment, the process knows the likelihood of
occurrence of a particular amino acid at every position (emission probability). This
process, by which every state stores the likelihood for emitting certain amino acids,
is called a “match” state. With this in place, a new sequence can be compared to the
built profile and the likelihood with which the new sequence could have been
generated by the model can be calculated. However, this profile would only explain
sequences, which have no insertion or deletions. To account for those, two new
states called “insertion” and “deletion” can be added. During the process, the
algorithm runs through a series of these states. For example, if the algorithm adopts
a “match” state, it emits an amino acid, however, after emission there is a fair chance
that the algorithm adopts a “delete” state for the next position and thereby skip the
next match state, resulting in a “missing” amino acid in the alignment.

The probability of switching from one state to another is also derived from the
multiple sequence alignment. As we can neither measure these states nor their
transition frequency, but only infer those from the output (i.e. the observed sequence
alignment) these states are called “hidden”. In structural terms, we would expect to
see higher probabilities for switching to insertion or deletion station in loop regions
of domains connecting secondary structure elements (e.g. the black/grey loop
structures in Fig. 2.1a, b).

These profiles can then be used to interrogate databases for other occurrences,
which can further be used to refine the profile again. By this method the Pfam
database (pfam.xfam.org) has identified over 17,929 different domains and grouped
them into families and clans (El-Gebali et al. 2019). A similar approach led to the
SMART database (smart.embl-heidelberg.de) (Letunic and Bork 2018). As these
two databases use different manually curated sequence alignments, the profiles and
predictions differ and may complement each other. A resource to search for both, as
well as other predictions, is the InterPro web service (www.ebi.ac.uk/interpro/)
(Mitchell et al. 2019). In addition to Pfam and SMART, it also includes PROSITE
(prosite.expasy.org), Panther (www.pantherdb.org) and output from other predic-
tors. For more details about protein domain prediction, our readers are directed to the
specialised review by Chen and collaborators (Chen et al. 2018).
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2.3.2.3 The Special Case of Repeats or Motifs

A special case of domain predictions are repeated motifs, which are very common in
ECM proteins. The two most common motifs are Leucine-rich repeats (LRR) and
collagen repeats. Both have relatively simple and strict necessities on their primary
sequences and are best described by sequence patterns which allow repetitions.
Collagens form a right-handed triple helix formed by three individual left-handed
poly-proline type II helices. Due to the helicity, every third amino acid is directed to
the centre of the triple-helix and due to space restrictions only glycine residues fit at
these positions. Thus, the recognition sequence can be described as a repetitive
pattern of (GXY)n, where n is usually greater than 10. Prolines are found to be
overrepresented at the X and Y positions since they are necessary for the induction of
the poly-proline type II helix formed by the individual chains. Detecting such simple
patterns in a vast amount of data is a common problem in many fields of informatics
and typically solved by the use of “regular expressions” (Aho 1990). For the
collagen repeat, a regular expression would look like this: /(G..){10,}/,
which would search for a GXYmotif, with more than 10 occurrences. The advantage
of this approach is that one can incorporate knowledge about the biochemistry of the
protein directly into the pattern. For example, in our work on cuticular collagens in
C. elegans (Teuscher et al. 2019), we used this possibility to group genes together
based on the similarities of their collagenous domains. The rationale behind this
decision was that trimers of collagen will more likely form between structurally
similar collagenous domains and not necessarily between more homologous
sequences. Cuticular collagens in C. elegans have collagenous domains of similar
length but differ in the positions and lengths of their imperfections (parts of the
sequence which do not adhere to the GXY patterns). For example, the C21a cluster
has a collagen domain starting with 8 triplets of GXY, then 3 random amino acids
followed by 12 triplets adjacent to a 2 amino acid spacer and finally a long stretch of
21 GXY triplets. This leads to a motif in pseudocode (G..){8}...(G..)
{12}..(G..){21} (the real regular expression is slightly more complex and
can be found at cecoldb.permalink.cc/clades/C21a/) which identified 4 additional
genes in the genome. Although the idea of using a simple pattern for prediction of
domains is not new (see for example ProSite patterns (Hulo et al. 2008)), the ease of
incorporating new biochemical knowledge in these patterns makes them useful to
the day.

As presented, algorithms are available to predict signal peptides and distantly
related protein domains, as well as to detect repetitive sequence. The question
remains, can we also automatically predict ECM proteins?
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2.3.3 Predicting ECM Proteins by Machine-Learning-Based
Approaches

Trials to automatically predict ECM protein date back to 2010 (Jung et al. 2010). The
idea behind these techniques is the notion that features in the primary pro-
tein sequence are responsible for the different sorting of proteins, for example to
the ECM, and these should be detectable by machine learning algorithms. It is
beyond the scope of this chapter to present the details of the different mechanisms
and techniques used in the field of machine learning, instead we recommend
specialised books and review articles (Husi 2019; Angermueller et al. 2016; Nielsen
et al. 2019a). However, to evaluate proposed ECM predictors, our readers should be
aware of the general procedures in machine learning, which can be divided into four
steps: (1) data preparation (2) feature extraction (3) model fitting and (4) scoring and
evaluation. A critical part of the machine learning process is the proper selection of
training data. For ECM proteins, a dataset should include both bona-fide ECM
proteins (positive set) and known non-ECM proteins (negative set). In brief, the
algorithm reduces the data to a couple of features which are believed to be indicative
of protein localisation (i.e. the ECM space) and then learns, based on the known
output, how to adjust its internal parameter (i.e. the model) to explain the correlation
between observed features and known outcomes (ECM protein vs. non-ECM pro-
tein). Finally, sequences that are not part of the training set are used to determine
how well the algorithm predicts sequences it has never seen before. The quality of a
machine learning algorithm is defined by (at least) two parameters: sensitivity and
specificity. The first determines to what percentage the predictor correctly identified
ECM proteins in the dataset in relation to the total amount of ECM proteins in the
dataset. For example, a sensitivity of 10% means that only every 10th ECM protein
fed to the algorithm is predicted correctly (true positive rate). Specificity is defined
by the percentage the algorithm incorrectly predicts to be ECM proteins. For
example, if there are 900 non-ECM proteins in a dataset and the algorithm predicted
90 of them to be ECM proteins (also in fact they are not, i.e. they are false positives),
the algorithm would be 90% specific (it mis-predicted 10%; algorithm false
negative rate).

Since 2013, most publications reporting the development of algorithms to predict
ECM proteins are using a training dataset generate by Kandaswamy and collabora-
tors (Kandaswamy et al. 2013). This dataset contains 445 proteins identified as ECM
proteins and 4187 secreted non-ECM proteins from multiple species. Different
combinations of feature extraction processes were tested including amino acid
composition ([split] amino acid composition, pseudo amino acid composition,
dipeptide composition, etc.), structural information such as the presence of
secondary structure elements (Zhang et al. 2014), or domain predictions using
above-mentioned databases (Jung et al. 2010). Using EcmPred, Kandaswamy and
collaborators reported the identification of over 2000 ECM proteins in the ECM
proteome (nearly twice the number of proteins defined as part of the matrisome, see
below) (Kandaswamy et al. 2013). In a 2012 study, Rejimoan and collaborators
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employed position-specific scoring matrices and suggested that they have identified
12 novel ECM protein candidates (CLDN4, DPCR1, Efemp1, IGHG1, IGHM,
IGKV4-1, LAT2, LMBR1, MANSC1, NIPA1, NOTCH3, TNC) (Jose et al. 2012).
Of these, 2, Efemp1 and TNC, are known ECM proteins while no structural or
experimental evidence support the fact that the 10 others would be ECM proteins.
The latest predictors published in 2017 (Guan et al. 2017) and 2018 (Kabir et al.
2018) claim to achieve sensitivity/specificity rates of 85.0%/86.5% and 82.3%/
90.7%, respectively. However, the fact that the two algorithms, as well as the web
interfaces of iECMP (Yang et al. 2015) and PECM (Zhang et al. 2014), are not
publicly available makes it difficult to evaluate their performances. Additionally,
inspection of the training dataset revealed that nearly 10% (50) sequences are Wnt
proteins and approximately 10% are metalloproteases (26 MMPs and 22 ADAMs),
mostly due to inclusion of the same protein from different species. Consequently,
5 out of 17 domains identified by Yang et al (Yang et al. 2015) to be indicative for
ECM proteins were peptidase domains. As we will discuss below, this is in stark
contrast to the ratio in the manually curated human matrisome (Naba et al. 2016),
where ADAMs and MMPs constitute 6% of all sequences and Wnt proteins only
1.7%. This bias is likely to lead to over-training of the algorithms towards proteases
and Wnt signalling proteins and to diminish the ability of these algorithms to detect
other ECM proteins belonging to other families.

2.4 Combining Structural Features and Prior Knowledge
to Define the Matrisome of Organisms

Despite significant advances in machine-learning-based processing to predict vari-
ous protein features, purely computational approaches fail to satisfactorily predict
the complete collection of proteins composing the ECM. This is partly due to the fact
that proteins composing the ECM are very diverse structurally (see below). Yet,
having such lists is instrumental to properly and comprehensively identify and
classify ECM genes and proteins from datasets generated using high throughput
approaches. To define, what is now called, the “matrisome”, we devised a compu-
tational pipeline combining several sequence analysis predictors discussed above
and manual curation based on prior knowledge (Fig. 2.2). The term matrisome was
coined in reference to the term “basement membrane matrisome” originally pro-
posed by George Martin and colleagues to describe protein complexes that includes
type IV collagen, laminins, heparan sulphate proteoglycan and nidogens and that,
upon assembly, form basement membranes (Martin et al. 1984). In 2011, we
proposed to expand the list of proteins grouped under that term to collectively
describe the ensemble of genes encoding proteins that are forming the structure of
the ECM, as well as proteins present in the extracellular space and that have the
ability to interact with and/or remodel ECM proteins (Naba et al. 2012b).
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2.4.1 Defining the Human and Murine Matrisomes

To define the human and mouse matrisome, we first identify key structural features
of ECM proteins, including the presence of a signal peptide (see Sect. 2.3.1) and the
presence of at least one of 51 characteristic protein domains commonly found in
ECM proteins (see Sect. 2.3.2 and Table 2.1) (Adams and Engel 2007; Hohenester
and Engel 2002; Whittaker and Hynes 2002; Whittaker et al. 2006). Screening of the
human proteome for proteins displaying these features retrieves a very long list of
proteins. Many of them were known ECM proteins, some were proteins for which no
localization information were available, and many were clearly not ECM proteins.
Indeed, the structural features used for the screen are also shared by other proteins,
including transmembrane receptors and proteins involved in cell-cell adhesions. We
thus then defined a set of features rarely found in ECM proteins, such as the presence
of kinase or phosphatase catalytic domains, or 7-transmembrane domains found in
G-protein-coupled receptors, and used these to eliminate non-ECM components
(Naba et al. 2012b). Last, we conducted extensive literature search and database
cross-referencing and curated the list to include all known ECM proteins in addition
to putative novel ECM proteins (Fig. 2.2). Since this approach focused on identify-
ing proteins considered to be “structural” components of the ECM, we termed this
collection the “core matrisome” and further classified proteins of this collection into
three categories: collagens, glycoproteins and proteoglycans (Hynes and Naba 2012;
Naba et al. 2012b). While all 44 collagen genes of the human genome could be
predicted by the presence of one single InterPro domain termed “Collagen triple
helix repeat” (IPR008160; see Table 2.1), this domain also retrieved 32 other pro-
teins in UniProt (release 2019_11). Manual examination of these led to their
classification as ECM glycoproteins, if there was significant evidence for the protein
to contribute to the structure of the ECM (Emid1, Emilin-1), as being associated to
the matrisome (e.g. ficolins or collectins, see below), or excluded if they also
presented a feature not expected to be found in ECM proteins (as for the transmem-
brane Macrophage receptor MARCO, or Scavenger receptors). Interestingly,
although the vast majority of proteins identified with this approach were known
ECM proteins, a few do not have a role yet, and can thus be considered “novel” ECM
proteins.

ECM homeostasis is under the control of proteins, including enzymes, not
traditionally considered to be part of the ECM. Similarly, the ECM is a reservoir
for growth factors, also not traditionally considered as components of the ECM
(Hynes 2009). However, these proteins and others are integral to ECM functions. To
fully capture the complexity of the ECM, we reiterated the sequence-analysis-based
pipeline using new sets of domains and knowledge-based curation to define a second
collection of proteins, those that could associate with core ECM components (Naba
et al. 2012b). We first defined ECM-affiliated proteins as proteins either structurally
or functionally affiliated with core ECM components (e.g. galectins, mucins, sur-
factant proteins). We also defined a group termed ECM regulators which includes
ECM-remodeling enzymes such as proteases and cross-linking enzymes as well as
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Table 2.1 Protein domains commonly found in structural ECM proteins and used to predict the
core matrisome

InterPro domain name

InterPro
accession
number

Example of core matrisome proteins
containing said domain (Gene symbol)

Agrin NtA IPR004850 Agrin (AGRN)

Amelin IPR007798 Ameloblastin (AMBN)

Amelogenin IPR004116 Amelogenin, X isoform (AMELX),
Amelogenin, Y isoform (AMELY)

Anaphylatoxin/fibulin IPR000020 Fibulins (FBLN1, FBLN2)

Bone sialoprotein II IPR008412 Bone sialoprotein 2 (IBSP)

C-type lectin IPR001304 C-type lectin domain family 18 member A
(CLEC18A)

Collagen triple helix repeat IPR008160 All 44 collagens

CUB IPR000859 Procollagen C-endopeptidase enhancer
2 (PCOLCE2)

Cysteine-rich flanking region,
C-terminal

IPR000483 Peroxidasin-like protein (PXDNL)

Dentin matrix 1 IPR009889 Dentin matrix acidic phosphoprotein
1 (DMP1)

EGF-like calcium-binding IPR001881 Fibrillins (Fbn1-6), Perlecan (HSPG2)

EGF-like, laminin IPR002049 Laminins, Agrin (AGRN), Multiple epidermal
growth factor-like domains protein
6 (MEGF6)

EMI IPR011489 Multimerin-1 (MMRN1), Periostin (POSTN),
Transforming growth factor-beta-induced
protein ig-h3 (TGFBI)

Endoglin/CD105 antigen IPR001507 Alpha-tectorin (TECTA)

FAS1_domain IPR000782 Periostin (POSTN), Transforming growth
factor-beta-induced protein ig-h3 (TGFBI)

Fibrillar collagen, C-terminal IPR000885 Collagen alpha-1(I) chain (COL1A1), Colla-
gen alpha-1(II) chain (COL2A1), Collagen
alpha-
1(III) chain (COL3A1), Collagen alpha-2(V)
chain (COL5A2)

Fibrinogen, alpha/beta/gamma
chain, C-terminal globular

IPR002181 Fibrinogens (FGA, FGB, FGG), Tenascins
(TNC, TNN, TNR, TNXB)

Fibronectin, type I IPR000083 Fibronectin (FN1)

Fibronectin, type II IPR000562 Fibronectin (FN1)

Fibronectin, type III IPR003961 Fibronectin (FN1), Tenascins (TNC, TNN,
TNR, TNXB)

Follistatin-like, N-terminal IPR003645 Agrin (AGRN), Osteonectin (SPARC)

G2 nidogen and fibulin G2F IPR006605 Nidogen-1 (NID1), Nidogen-2 (NID2),
Hemicentin-1 (HMCN1), Hemicentin-2
(HMCN2)

Gamma-carboxyglutamic acid-
rich (GLA)

IPR000294 Matrix Gla Protein (MGP), Osteocalcin
(BGLAP)

Hemopexin/matrixin IPR000585 Hemopexin (HPX), Vitronectin (VTN)

(continued)
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Table 2.1 (continued)

InterPro domain name

InterPro
accession
number

Example of core matrisome proteins
containing said domain (Gene symbol)

Insulin-like growth factor-
binding protein, IGFBP

IPR000867 Insulin-like growth factor-binding proteins
(IGFBP1-7), CCN proteins (CCN1-6)

Laminin G IPR001791 Laminin alpha chains (LAMA1, LAMA2,
LAMA3, LAMA4, LAMA5), Agrin (AGRN)

Laminin I IPR009254 Laminin alpha chains (LAMA1, LAMA2,
LAMA3, LAMA4, LAMA5)

Laminin, N-terminal IPR008211 All laminins

LCCL IPR004043 Cochlin (COCH), Vitrin (VIT)

Leucine-rich repeat, cysteine-
rich flanking region, N-terminal

IPR000372 Prolargin (PRELP), Lumican (LUM)

Leucine-rich repeat, typical
subtype

IPR003591 Peroxidasin-like protein (PXDNL)

Link IPR000538 Neurocan core protein (NCAN), Hyaluronan
and proteoglycan link protein 1 (HAPLN1),
Versican core protein (VCAN), Aggrecan core
protein (ACAN)

Micro-fibrillar-associated
1, C-terminal

IPR009730 Microfibrillar-associated protein 1 (MFAP1)

Microfibril-associated
glycoprotein

IPR008673 Microfibrillar-associated proteins 2 and
5 (MFAP2, MFAP5)

Nidogen, extracellular region IPR003886 Alpha-tectorin (TECTA), Nidogen-1 (NID1),
Sushi, nidogen and EGF-like domain-
containing protein 1 (SNED1)

Osteopontin IPR002038 Osteopontin (SPP1)

Osteoregulin IPR009837 Matrix extracellular phosphoglycoprotein
(MEPE)

Reeler region IPR002861 Reelin (RELN)

SEA IPR000082 Agrin (AGRN), Perlecan (HSPG2)

Serglycin IPR007455 Serglycin (SRGN)

Small leucine-rich proteoglycan,
class I, decorin/asporin/
byglycan

IPR016352 Asporin (ASPN), Biglycan (BGN), Decorin
(DCN)

Somatomedin B IPR001212 Vitronectin (VTN)

Sushi/SCR/CCP IPR000436 Neurocan core protein (NCAN), Sushi repeat-
containing protein SRPX2 (SRPX2)

TB domain IPR017878 Fibrillins (Fbn1-2), Latent-transforming
growth factor beta-binding proteins (LTBP1-
4)

Thrombospondin, C-terminal IPR008859 Thrombospondins (THBS1, THBS2, THBS3,
THBS4, COMP)

Thrombospondin, type 1 repeat IPR000884 Thrombospoindins, SCO-spondin (SSPO),
Papilin (PAPLN)

Thyroglobulin type-1 IPR000716 Insulin-like growth factor-binding proteins,
Nidogen-1 (NID1)

(continued)
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their regulators (e.g. matrix metalloproteinases and tissue inhibitors of
metalloproteinases or cathepsins and cystatins); last, based on the increasing recog-
nition that ECM proteins can modulate growth factor signaling, we also included
secreted factors (e.g. growth factors, cytokines, morphogens). Overall, this compu-
tational pipeline identified 1027 human matrisome genes and 1110 murine
matrisome genes (Naba et al. 2012b), representing approximately 5% of these
genomes (Tables 2.2 and 2.3). The complete list of the human and murine matrisome
genes can be accessed at http://matrisome.org (Naba et al. 2016).

The matrisome lists defined can be used to study the evolution of ECM genes (see
below). They can also be used to annotate genomic, transcriptomic, and proteomic
datasets and uncover novel or unsuspected roles for the ECM in pathophysiological
processes such as cancer (Izzi et al. 2019; Pearce et al. 2018; Socovich and Naba
2019; Taha and Naba 2019; Tian et al. 2020; Yuzhalin et al. 2018) and fibrosis
(Arteel and Naba 2020; Bingham et al. 2020; Dolin and Arteel 2020; Massey et al.
2017; Ricard-Blum and Miele 2020; Yu et al. 2018; Zhou et al. 2018), and eventu-
ally lead to the discovery of ECM biomarkers of predictive or prognostic values for
patients (Izzi et al. 2019; Yuzhalin et al. 2018).

Thanks to the rapid development of sequencing technologies in the past decades,
the genomes of a large number of model organisms used for biomedical research are
now available through interfaces such as the Genome Research Consortium (https://
www.ncbi.nlm.nih.gov/grc) or the Alliance of Genome Resources (https://www.
alliancegenome.org/) (Agapite et al. 2020). Experimental proteomic data or in-silico
predictions have also permitted to draft the proteomes of several of these model
organisms, which are accessible via protein databases such as UniProt (https://www.
uniprot.org/) (The UniProt Consortium 2019). It is thus now feasible to predict the
matrisomes of other model organisms, using a pipeline similar to the one developed
for the human and murine matrisomes.

Table 2.1 (continued)

InterPro domain name

InterPro
accession
number

Example of core matrisome proteins
containing said domain (Gene symbol)

Tropoelastin IPR003979 Elastin (ELN)

von Willebrand factor, type A IPR002035 Collagen VI (COL6A1, COL6A2, COL6A3,
COL6A5, COL6A6), von Willebrand Factor
(VWF)

von Willebrand factor, type C
Domain

IPR001007 Peroxidasin-like protein (PXDNL),
SCO-spondin (SSPO), von Willebrand factor
C domain-containing protein 2-like
(VWC2L), Alpha-tectorin (TECTA)

von Willebrand factor, type D IPR001846 SCO-spondin (SSPO), Alpha-tectorin
(TECTA), von Willebrand factor (VWF)
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2.4.2 The Zebrafish Matrisome

The zebrafish (Danio rerio) is a model organism broadly used in many areas of
biomedical research, from developmental biology to the study of tissue regeneration
and cancer metastasis (Meyers 2018; Parichy 2015). It is also an instrumental model
system to help decipher the role of the ECM in these processes (Jessen 2015).The
Zebrafish Information Network (ZFIN, https://zfin.org) (Ruzicka et al. 2019) pro-
vides an array of resources to the community, from genomic information to expres-
sion data and tools. In order to predict the zebrafish matrisome, we employed a
sequence-orthology-based approach to retrieve all orthologs of human and murine
matrisome genes present in the zebrafish genome (Nauroy et al. 2018). We identified
1002 matrisome genes in the zebrafish genome (about 4.4% of the whole genome,
Table 2.2), 333 genes encoding core matrisome proteins and 669 genes encoding
matrisome-associated proteins (Table 2.3). We showed that 68.8% of human
matrisome genes (710 genes) have at least one ortholog in the zebrafish. We further
evaluated the consequences of the teleost-specific whole-genome duplication on the
matrisome and found that 44.4% of the matrisome genes have a “one-to-one”
relationship between human and zebrafish, 22.3% had a “one-to-two” relationship
between human and zebrafish, and 2.1% had a “one-to-many” relationship between
human and zebrafish (Nauroy et al. 2018). This last number is to contrast the 15.2%
of genes estimated to exist as multiple paralogs in zebrafish at the whole-genome
level (Howe et al. 2013), suggesting that matrisome genes are differentially
subjected to evolutionary pressure (Nauroy et al. 2018).

2.4.3 The Quail Matrisome

The quail (Coturnix japonica) is a model organism that has being extensively used to
study developmental processes such as the behavior and differentiation of neural
crest cells, through chick-quail graft experiments pioneered by Nicole Le Douarin
(Ainsworth et al. 2010; Ribatti 2019), and has helped uncover the roles of several
ECM proteins in embryonic development (Loganathan et al. 2016; Spence and Poole
1994; Zamir et al. 2008). Through sequence analysis, Huss and colleagues sought to
identify quail orthologs of human matrisome genes (Huss et al. 2019) and predicted
that 706 genes (or 4.4% of the quail genome) encoded matrisome proteins
(Table 2.2) that can further be classified into 238 core matrisome genes and
468 matrisome-associated genes (Table 2.3). Overall, this study demonstrated that
the orthology is greater for core matrisome genes than for matrisome-associated
genes (Table 2.3). For example, 40 of the 44 human collagens have orthologs in the
quail genome, with only COL5A3, COL6A5, COL11A2, COL26A1 missing
(Table 2.3). With the quail matrisome defined and available to annotate big data,
Huss and colleagues performed single-cell RNASeq (scRNASeq) to profile the
expression of genes of primordial germ cells. These cells participate in
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gonadogenesis and were profiled at 3 stages of quail embryo development, HH3,
HH6 and HH12 (Huss et al. 2019). The study showed that primordial germ cells
express a defined set of 26 matrisome and matrisome-associated genes throughout
these 3 stages of development, but also identified stage-specific sets of matrisome
genes (Fig. 2.3) (Huss et al. 2019).

2.4.4 The Drosophila Matrisome

Because of the conservation of protein domains during evolution, an orthology-
based approach can also be applied to predict the matrisome of invertebrates. The
fruit fly (Drosophila melanogaster) is a model organism broadly used to understand
the fundamental mechanisms underlying ECM assembly and functions, cell-ECM
interactions, and ECM-dependent cell polarization and morphogenesis (Brown
2011; Diaz-de-la-Loza et al. 2018; Ramos-Lewis and Page-McCaw 2019). It is
also used to study human diseases (Cheng et al. 2018; Jennings 2011; Markow
2015). Similar to ZFIN, FlyBase (https://flybase.org) (Thurmond et al. 2019) pro-
vides resources to the scientific community on this model organism including
genomic and orthology data for all Drosophila genes. To predict the Drosophila
matrisome, we used a pipeline similar to the one we used to predict the zebrafish
matrisome (see above), and first retrieved from FlyBase all orthologs of mammalian
matrisome genes (Davis et al. 2019). In addition to ECM genes orthologous to
mammalian genes, fruit flies similar to other arthropods, have additional specialized
ECM proteins including the chitin-based cuticle (forming their exoskeleton) and the
ECMs that line the lumens of the trachea, salivary glands and midgut; the eggshell;
and the salivary glue (Davis et al. 2019). Since these do not have orthologs in
mammals, we devised a de-novo discovery pipeline based on the presence of
characteristic protein domains, as initially done to predict the human and murine

Stage HH3

13

Stage HH6 19

33

3

26

7

8

Stage HH12

Core Matrisome Matrisome-Associated

FBN3 ADAM10 MDK
FN1 ANXA2 NGLY1

IGFBP4 CRLF3 OGFOD1
LAMA1 EGLN1 PDGFA
LAMB1 GPC1 PDGFC
LAMC1 GPC4 SEMA5B
RSPO3 HTRA1 TNFSF10

SPOCK3 LMAN1 LOC107319025
LOXL1 LOC107318756

Fig. 2.3 Matrisome genes expressed by avian primordial germ cells at three stages of embryonic
development (Huss et al. Front. Cell Dev. Biol., 2019)
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matrisomes (Davis et al. 2019). Altogether, we predicted that the Drosophila
matrisome comprises 641 genes (Table 2.2), further classified into 34 core
matrisome genes, 279 matrisome-associated genes, and 328 genes encoding proteins
forming apical matrices (Table 2.3) (Davis et al. 2019). We also proposed a
systematic classification based on sequence analysis and the presence of protein
domains of the genes encoding proteins forming apical ECMs (Davis et al. 2019).

2.4.5 The C. elegans Matrisome

The nematode Caenorhabditis elegans is also broadly used to advance our under-
standing of biological and pathological processes (Frézal and Félix 2015; Kaletta
and Hengartner 2006; Meneely et al. 2019).

WormBase (https://wormbase.org) (Harris et al. 2020) serves as the reference
database for scientists working with this model organism. On the model of what we
presented for the Drosophila matrisome, we undertook an approach combining
ortholog identification using WormBase and de-novo characterization using
protein-sequence features to predict the C. elegans matrisome. We identified
719 matrisome genes (Table 2.2), including 226 core matrisome genes,
481 matrisome-associated genes, and 12 genes encoding cuticlins, a family of pro-
teins participating in the formation of the C. elegans cuticle (Table 2.3) (Teuscher
et al. 2019). A unique characteristic of the matrisome of this model organism is the
remarkable number, 185, of genes encoding collagen-domain-containing proteins.
We further proposed to classify these genes into 4 groups based on sequence
analysis. Group 1 comprises the vertebrate-like collagens emb-9 and let-2, orthologs
of the mammalian collagen IV, cle-1, orthologous to mammalian collagens XV and
XVIII and col-99, orthologous to membrane-associated collagens with interrupted
triple-helices (MACITs, collagen types XIII, XXIII, and XXV). Group 2 comprises
4 genes encoding collagen-domain-containing proteins orthologs to mammalian
gliomedins and collectins. Group 3 comprises the 4 non-cuticular collagens with
no clear orthology to mammalian collagens. Finally, group 4 includes the 173 cutic-
ular collagens. We further proposed to sub-divide the cuticular collagens into
5 clusters based on their protein-domain organization, including the length of their
collagenous domains (i.e. number of GXY repeats; see 3.2.3), the positions of
interruptions, type of cysteine knot flanking the GXY repeats, and their prediction
of being transmembrane or secreted (Teuscher et al. 2019).

Interestingly, the prediction of the matrisome of Drosophila and C. elegans has
revealed that a similar structure, the cuticle, exerting a similar protective function, is
formed by different classes of proteins in different organisms, the C. elegans cuticle
is mostly collagenous whereas in Drosophila it is composed of chitin-domain-
containing proteins.

As briefly illustrated for the other matrisomes, the list of computationally-
predicted C. elegans matrisome genes can further aid annotations of large datasets
and identification of processes that are regulated in part by the ECM. In a recent
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study, Ewald re-analyzed a previously published transcriptomic dataset aimed at
characterizing changes in gene expression during C. elegans aging (Budovskaya
et al. 2008) and showed that out of the 1200+ age-regulated genes, 150 were
matrisome genes. Of them, 146 of which saw their level of expression decrease
with aging (including 92 collagens) whereas only 4 saw their level of expression
increase with aging (Ewald 2019).

2.4.6 The Planarian Matrisome

Planarians (Schmidtea mediterranea) are flatworms extensively studied for their
high regenerative potential. Research using this model organisms has shed light on
the molecular mechanisms underlying among other processes, stem cell biology,
tissue regeneration and repair, and more recently pharmacology and toxicology
(Elliott and Alvarado 2018; Gentile et al. 2011; Pagán 2017; Reddien 2018; Sánchez
Alvarado 2015). Undertaking the same de-novo prediction approach based on
sequence analysis and the presence of ECM-specific domains we used to predict
the human matrisome, Cote and colleagues identified with high confidence the
planarian matrisome as a collection of 256 genes, further divided into 117 core
matrisome genes (including planarian orthologs to major structural ECM compo-
nents, collagens, fibronectin, laminins, fibulins, etc.) and 139 matrisome-associated
genes, including orthologs of ECM-affiliated proteins mucins and glypicans and of
ECM regulators including ADAMTS andMMPs (see Tables 2.2 and 2.3) (Cote et al.
2019). A previous study from the Reddien lab had shown that muscle cells could
provide positional instructions for the regeneration of any region of the planarian’s
body (Witchley et al. 2013). Since ECM proteins are capable of signaling this type of
information to cells, Cote and colleagues sought to determine whether muscle cells
contributed to the production of the ECM in planarian. Using the newly developed
planarian matrisome to annotate previously published scRNASeq data from the
planarian transcriptome atlas (Fincher et al. 2018), Cote and colleagues demon-
strated that the main source of ECM proteins were indeed muscle cells. In particular,
they showed that muscle cells expressed all 19 collagen genes indicating that it is
muscle cells, and no other mesenchymal cell types, that act as a connective tissue in
planarians (Cote et al. 2019).

2.5 Conclusion and Future Directions

Despite advances in machine learning, predicting ECM proteins remains challeng-
ing. As discussed in this chapter, the matrisome per se is not a homogenous group of
proteins and is likely to have several different evolutionary origins. It is thus
conceivable that its functional and structural diversity, will make it difficult or
potentially impossible to be predicted, at once, with a single machine learning
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algorithm. Yet, for the past decade, our knowledge of the matrisomes of various
model organisms has vastly expanded. We thus propose that novel machine-
learning-based approaches could be trained using, as positive dataset, one or several
of the manually curated matrisomes already defined (e.g. human and mouse). This
proposal has recently been implemented independently by Liu et al. to develop the
ECMPride algorithm (Liu et al. 2020). The algorithm was trained on the human
matrisome list as the positive dataset and additionally used extracted sequence
features as well as the ECM domain list we compiled (Naba et al. 2012b) as
predictive features. This resulted in the prediction of 779 so-called “new” ECM
proteins. However, examination of the list of proteins revealed the presence of
proteins that are clearly not components of the ECM, for example transmembrane
receptors (e.g. LDLR) or proteins belonging the blood coagulation cascade
(e.g. THBD). The overestimation of the number of ECM proteins might be caused
by the exclusive usage of intracellular proteins as the negative training dataset.
Inclusion of transmembrane receptors sharing common sequence features with
ECM proteins as well as extracellular proteins not belonging to the ECM might
help train the algorithm to better differentiate between the secretome and the
matrisome. Furthermore, we suggest that annotated matrisomes from other species
not used in the training set (e.g. C. elegans), might serve as good free test datasets
and should be used to evaluate the power of the algorithm. In particular, it would be
very interesting to determine how well future predictors will identify those proteins
in the test dataset that do not have clear homologues in the training set (e.g. cuticular
collagens). If found to be highly sensitive and specific, the algorithm could then be
further used to predict the matrisome of evolutionarily distant organisms that have
seen emerged ECM innovations (Draper et al. 2019; Hynes 2012; Özbek et al. 2010;
Shoemark et al. 2019).

Accurate and comprehensive big data annotation is only the first step toward
discovering ECM genes and proteins involved in pathophysiological processes.
Collectively, we should work toward understanding the underlying cellular and
molecular mechanisms these genes and proteins control with the ultimate goal of
advancing fundamental scientific knowledge and improving patient diagnosis and
treatment. We propose that this will be greatly facilitated by the systematic dissem-
ination and sharing of –omic datasets and by efforts aimed at enhancing accessibility
of such datasets to non-specialists. To this end, we launched MatrisomeDB, a
database collating mass-spectrometry-based proteomics data characterizing the
ECM of normal and diseased tissues as well as on the ECM produced by cells in
culture (Shao et al. 2020). Along the same line, Dr. Ricard-Blum and collaborators
have developed MatrixDB, an inventory of curated ECM protein-protein and
protein-glycsoaminoglycan interaction networks (Clerc et al. 2019). With the
democratization of –omic technologies, it is our hope that such endeavors will
expand and integrate with each other, to eventually provide a system-wide view of
the ECM, fully representative of its complexity.
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Chapter 3
Detecting Changes to the Extracellular
Matrix in Liver Diseases

Christine E. Dolin, Toshifumi Sato, Michael L. Merchant, and
Gavin E. Arteel

Abstract Liver disease, regardless of etiology, shares a similar natural history of
disease progress and is common worldwide. This spectrum of diseases progresses
from simple steatosis (fat accumulation), to inflammation, and eventually to fibrosis
and cirrhosis. Hepatic fibrosis is primarily characterized by robust accumulation of
collagen ECM that leads to organ dysfunction and decompensation. The role of the
ECM in early stages of chronic liver disease is less well-understood, but recent
studies have demonstrated that a number of changes in the hepatic ECM in early-
stage liver disease may also contribute to disease progression. The purpose of this
review is to summarize the established and proposed changes to the hepatic extra-
cellular matrix (ECM) that may contribute to inflammation during earlier stages of
disease development, and to discuss potential mechanisms by which these changes
may mediate the progression of the disease.
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3.1 The Extracellular Matrix (ECM) of the Liver

The ECM is best viewed as a dynamic compartment that encompasses a diverse
range of components that work bi-directionally with surrounding tissue to regulate
cell and tissue homeostasis. Although the classic meaning of the ECM referred to
only proteins directly involved in generating the ECM structure, such as collagens,
proteoglycans and glycoproteins, the definition of the ECM is now broader, and
includes all components associated with this compartment, including ECM affiliated
proteins (e.g., collagen-related proteins), ECM regulator/modifier proteins (e.g.,
lysyl oxidases and proteases) and secreted factors that bind to the ECM (e.g.,
TGFβ and other cytokines) (Naba et al. 2016; Arteel and Naba 2020). This updated
definition has been coined the ‘matrisome’ (Naba et al. 2012). Although the canon-
ical function of the ECM is structural, it is also a key storage unit for signaling
molecules (e.g., growth factors and cytokines), as well as serving as a sensing
mechanism for outside-in signaling and vice-versa (Hynes 2009).

In most tissues, there are two distinct structural ECM components: the interstitial
matrix and the basement membrane (Martinez-Hernandez and Amenta 1993). Inter-
stitial matrix proteins (e.g., fibronectins, elastin, and fibrillar collagens) form net-
works that provide support to the overall superstructure that shapes and encapsulates
the organ (Friedman 2010; Arteel and Naba 2020). In most tissues, the basement
membrane is a thin, electron-dense sheet of ECM that is the foundation for epithelial
and endothelial cells (Arteel and Naba 2020). Similar to the interstitial matrix, the
basement membrane comprises many structural ECM proteins that facilitate struc-
ture and growth of the cells. The basement membrane in most tissues is a true barrier
between the epithelial/endothelial cells and the adjacent parenchymal cells. In
contrast, the basement layer in the liver is fenestrated and much loosely organized
(Friedman 2010) (Fig. 3.1). Although it possesses similar ECM as more clearly-
defined basement membranes [e.g., collagen type IV and laminin (Griffiths et al.
1991)], this region acts more as a structural filter that facilitates bidirectional
exchange of proteins and xenobiotics between the sinusoidal blood and hepatocytes
(Arteel and Naba 2020). Although it is clear that liver does not have a basal lamina,
whether or not the ECM found in the space of Disse should be considered a basement
membrane is a subject of a histological, rather than functional, debate (Martinez-
Hernandez and Amenta 1993; Arteel and Naba 2020).

3.2 Balance and Imbalance of ECM Turnover in the Liver

As mentioned above, the ECM is a dynamic compartment that responds to stress and
changes. Under normal conditions, these responses assist in maintaining organ
homeostasis and help mediate responses to injury/stress. Subcutaneous wound
healing is a canonical illustration of functional changes ECM in response to damage;
the tightly regulated deposition and remodeling of the ECM not only mediates
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wound closure, but also recovery and healing (Sun et al. 2014). However, failure
when these responses are dysregulated, the changes to the ECM can be maladaptive
(Bonnans et al. 2014). For example, ‘aging’ of the ECM (i.e., increased crosslinking)
is hypothesized to contribute to dysfunction in several organ systems, including the
liver (Harvey et al. 2016; Sessions and Engler 2016; Sacca et al. 2016; Phillip et al.
2015; Arteel and Naba 2020). The key levels of ECM regulation, both adaptive or
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Fig. 3.1 Transitional remodeling of the hepatic ECM. Acute injury quantitatively and qualitatively
changes the local ECM. This transitional/provisional ECM plays a key role in mediating the early
inflammatory response at the site of injury. These changes often resolve if the insult is removed, and
is also hypothesized to facilitate resolution and recovery from that injury. In contrast, when the
insult is chronic (e.g., chronic liver diseases), these transitional changes to the ECMmay progress to
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Kø Kupffer cell; PAI-1 plasminogen activator inhibitor-1
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maladaptive, include de novo synthesis, post-translational modifications and
degradation.

3.2.1 De Novo Synthesis

Almost all hepatocellular cells play a role in generating the basal ECM found in the
normal liver; for example, parenchymal and a nonparenchymal (e.g., cholangiocytes
and hepatic sinusoidal endothelial cells) all produce components of the fibrillar ECM
(Martinez-Hernandez and Amenta 1995). Although Kupffer cells do not generate
fibrillar matrix proteins under basal conditions, they do produce several factors that
are associated with the ECM, such as cytokines (see below). It is not clear if hepatic
stellate cells (HSC) produce any ECM proteins under basal conditions. However,
once HSCs activate and transdifferentiate into a myofibroblast-like phenotype, they
are responsible for a large portion of the collagenous ECM generated during fibrosis
(Friedman 2010) (Fig. 3.1). Other myofibroblast-like cells also contribute to colla-
gen production (e.g., fibrocytes and periportal fibroblasts) during fibrogenesis
(Cassiman et al. 2002; Zeisberg et al. 2007; Robertson et al. 2007; Omenetti et al.
2008). The spectrum and amount of ECM proteins generated by these various cell
types change in response to damage and dyshomeostasis. The contribution of
extrahepatic sources to the hepatic ECM via de novo synthesis is unclear, but
these compartments clearly contribute to ECM via other mechanisms of homeostasis
(Arteel and Naba 2020).

3.2.2 Maturation of ECM Through Post-Translational
Modifications

Post-translational modifications of ECM proteins regulate the formation of oligo-
meric fibers that comprise mature ECM. For example, prolyl 4-hydroxylase modifies
proline amino acids on collagen monomers to facilitate the formation of collagen
fibers and helices (Kagan 2000); lysyl oxidases and transglutaminases also play key
roles in ECM cross-linking (Liu et al. 2016; Tatsukawa et al. 2016). These post-
translational modifications are critical to stabilize and the ECM and protect them
from degradation; however, these enzymatic modifications may play key roles in
excessive ECM accumulation during fibrogenesis and ECM ‘aging’ (Liu et al.
2016). Furthermore, although it is now understood that fibrosis is potentially revers-
ible (Poynard et al. 2002), highly crosslinked ECM appears to persist in recovered
livers (Issa et al. 2004; Schuppan et al. 2018). The ECM is also post-translationally
modified by nonezymatic mechanisms; for example, diabetic ‘aging’ of ECM is
thought to be mediated via adduction of ECM proteins with advanced glycation
endproducts (AGEs) (Huijberts et al. 2008).
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3.2.3 ECM Degradation

The regulated degradation of ECM proteins by specific proteases is a key factor in
maintaining appropriate levels of turnover. Protein families that degrade ECM
include serine proteases (e.g., thrombin, cathepsins and plasmin) and
metalloproteinases [e.g., MMPs, ADAMs and ADAMTS (Duarte et al. 2015;
Edwards et al. 2008; Dubail and Apte 2015; Brix et al. 2015; Beier and Arteel
2012)]. The activity of these proteases are also kept in check by protease inhibitors.
For example, MMPs are regulated by tissue inhibitors of metalloproteinases
(TIMPs); the elevation of TIMP activity has been shown to partially contribute to
excess collagen accumulation during fibrogenesis (Kisseleva and Brenner 2006).
MMP-12 activity is similarly regulated by its inhibitor Timp-1, which in toto
controls elastin turnover in response to liver injury and/or during fibrogenesis
(Pellicoro et al. 2012). Likewise, plasminogen activator inhibitors (e.g., PAI-1)
inhibit the activity of the plasminogen activators (uPA/tPA); elevation of PAI-1
levels are sufficient to cause accumulation of fibrin ECM during hepatic injury, even
in the absence of increase fibrin ECM deposition [e.g., by thrombin activation (Beier
and Arteel 2012)]. Several ECM proteins exist in soluble precursors; their cleavage
and activation by proteases can also thereby regulate the deposition of hepatic ECM.
The regulation of the deposition insoluble fibrin by the coagulation cascade serves as
a canonical example of this point (Beier and Arteel 2012).

3.3 Critical Role of Inflammation in Chronic Liver Disease

The liver is strategically located between the intestinal tract and the rest of the body,
which makes it an important physical and biochemical filter between the portal and
systemic blood supply. However, in the process of serving as this barrier, the liver is
often damaged (Preziosi and Monga 2017; Luedde et al. 2014). To counter this
constant exposure to potential hepatotoxicants, the liver has tremendous capacity to
regenerate (Preziosi and Monga 2017; Michalopoulos and DeFrances 2005). This
ability is unique compared to other solid organs that are far less capable to regenerate
when damaged. Liver regeneration involves a highly orchestrated response to
facilitate the regenerative process. Perturbation of this complex regenerative
response can impair normal tissue recovery after injury or damage (Forbes and
Newsome 2016). In the context of repeated injury, if recovery from each event is
incomplete, damage can accumulate, which leads to the chronicity of liver disease
(Michalopoulos and DeFrances 2005) (Fig. 3.1).

Chronic liver diseases are driven by numerous primary (e.g., diet, alcohol abuse
and viral infection) and risk modifying (e.g., genetic variation and environmental
exposures, etc.) factors (Kirpich et al. 2015; Lieber et al. 1965; Ganesan et al. 2018;
Hajarizadeh et al. 2013; Morrison and Kowdley 2000). Despite divergent underlying
factors, chronic liver diseases all share a well-known pathological spectrum, ranging
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initially from simple steatosis (fat accumulation), to inflammation and necrosis
(steatohepatitis), to fibrosis and cirrhosis (Altamirano and Bataller 2011; Schwartz
and Reinus 2012; Poole et al. 2017; Seth et al. 2011). Although the progression of
liver disease is well-understood, there is no FDA-approved therapy to halt or reverse
this process in humans (Singh et al. 2017). Fibrosis can reverse with successful
removal of the primary cause (Fig. 3.1), with the caveat that it is more difficult to
reverse severe fibrosis/cirrhosis (Iredale et al. 1998). Indeed, cirrhosis is often
considered an end-stage liver disease that will eventually kill the patient, absent a
liver transplant. Even in the case of HCV, where removal of the primary causative
factor (viral infection) is now nearly 100%, reportedly 30–60% of cirrhotic livers do
not recover histologically (Vispo et al. 2009; Grgurevic et al. 2017). Moreover, the
clinically-relevant sequelae of severe/decompensated cirrhosis (e.g., portal hyper-
tension) do not appear to reverse after successful removal of the HCV infection
(Libanio and Marinho 2017). Moreover, maintenance of compensated cirrhosis (i.e.,
“stable cirrhotics”) greatly increases the risk of development of hepatocellular
carcinoma (HCC). These limitations of therapy for chronic liver diseases translate
to over 2 million people dying from complications of cirrhosis and related diseases
(e.g., HCC) each year (Byass 2014).

Given the above concerns with treating fibrosis/cirrhosis, there is a great need to
improve identification of at-risk individuals and prevention of liver diseases pro-
gression during earlier phases, especially inflammation. Upregulation of inflamma-
tion is a key step delineating between benign liver (i.e., steatosis) and progressive
liver diseases. The inflammatory response during chronic liver diseases involves
both the innate and adaptive immune responses (Hensley and Deng 2018; Li et al.
2018). In contrast to acute liver injury, inflammation during chronic liver disease is
relatively low-grade, in which innate immune cells are activated, and the adaptive
immune response is dysregulated (Wree and Marra 2016; Gao et al. 2019; Dong
et al. 2019; Pellicoro et al. 2014; Robinson et al. 2016). When this injury over-
whelms the ability of the liver to repair/recover from said damage, the chronicity of
liver diseases ensues.

3.4 The Role of the Extracellular Matrix in Liver
Diseases-More than Fibrosis and Collagen

The study of the role of the extracellular matrix in liver disease has focused
predominantly on fibrosis. This is not necessarily a surprise, given that chronic
liver disease often does not manifest symptoms until very late in disease progression
(Sweet et al. 2017), and that clinical presentation is often only during sequelae
associated with end-stage liver disease (see above). Moreover, fibrosis is an overt
pathological change that can be observed even macroscopically in the liver. How-
ever, the ECM is a dynamic compartment that changes in response to stress well
before fibrosis. This concept, as well as the nature and impact of these changes, is
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well-understood in some fields (e.g., subcutaneous wound healing), but has been
somewhat lagging in the liver field (Sun et al. 2014).

Work by this group and others have shown that acute liver injury also causes
dramatic changes to the hepatic ECM (Poole et al. 2017) (Fig. 3.1). Indeed, the acute
phase response in the liver involves several ECM proteins, such as fibrin,
osteopontin, and fibronectin (Beier et al. 2009; Gillis and Nagy 1997; Thiele et al.
2005). These acute, subhistologic changes to the ECM/matrisome appear to be
transitional and resolve after resolution of acute injury (Massey et al. 2017; Poole
and Arteel 2016) (Fig. 3.1). In contrast, the ECM associated with chronic injury is
collagenous scarring, which does not resolve as readily. This pattern of ECM
changes during acute (transitional and temporary) and chronic (scarring and more
permanent) injury is in-line qualitatively with subcutaneous wound healing (Sun
et al. 2014) (Fig. 3.1). These differences also parallel the changes observed during
early-stage and progressive liver disease. In recent years, the quality and frequency
of early referrals, as well as improved detection methods, have increased the rate of
detection of early-stage asymptomatic liver diseases (Srivastava et al. 2019). This
improvement facilitates the opportunity for mechanism-based therapies to halt
disease progression during earlier (i.e., prefibrotic) phases of the disease progression
(Arteel and Naba 2020).

Research on the hepatic ECM changes during liver disease has primarily focused
on the regulation and deposition of collagen. Given that the accumulation of
collagen is robust during fibrosis and cirrhosis, and that it is easy to detect histo-
chemically, this focus is not necessarily surprising. However, there is a myriad of
ECM proteins that qualitatively and quantitative change during fibrogenesis
(Gressner et al. 2007; Gressner and Bachem 1990), and their role(s) in disease
progression is not understood well. Moreover, the expanded definition of the ECM
to encompass non-fibrillar proteins found in that microenvironmental niche (i.e.,
matrisome) has not been explored in detail in the context of liver disease (Naba et al.
2016; Arteel and Naba 2020). Taken together, hepatic fibrogenesis is far more
complicated than simply collagen accumulation.

3.5 The Hepatic Matrisome and the Control
of Inflammation

As mentioned above, inflammation is a gateway pathology to progressive liver
disease. Given that inflammatory injury is much more reversible than fibrotic
changes, this pathologic stage is a key target that being explored for new therapies
and diagnoses. In this context, the hepatic matrisome represents a potential thera-
peutic target or detect liver disease.
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3.5.1 Maintenance of Structure

The ECM plays a key direct role in maintaining the overall architecture of the liver,
partially through definition of organ boundaries and zones (Federman et al. 2002)
(Fig. 3.2). Furthermore, the ECM also indirectly characterizes liver morphology
(Julich et al. 2015); during branching morphogenesis of the liver, the matrisome and
the glycocalyx on the cell surface coordinate to regulate growth factor-hepatic cell
interactions, which drives phenotype of the eventual mature organ (Patel et al. 2017;
Rozario and DeSimone 2010). The variation of the ECM within the hepatic lobule is
proposed to help define intralobular zones (McClelland et al. 2008; Lee-Montiel
et al. 2017). The structure of the ECM defines properties that regulate inflammation.
For example, although the basement membrane usually physically impedes inflam-
matory cell transmigration, the changes in this ECM in response to injury orchestrate
homing of inflammatory to the site of injury (Wang et al. 2006).

Invasive cells can also secrete matrix metalloproteinases that degrade ECM, and
thereby mediate their extravasation during liver injury [see below (Hamada et al.
2008)]. This degradation also exposes self-antigens (e.g., basement membrane
collagens) that is a feed-forward signal for inflammatory cell recruitment (Mak
et al. 2016). Moreover, even in situations in which ECM is accumulating, there is
an overall increase ECM turnover (Roderfeld 2018). The enhanced rate of ECM
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Fig. 3.2 Contributions of the hepatic matrisome/ECM to inflammation. The ECM plays a myriad
of roles that directly and indirectly regulate inflammation and injury in the liver. These roles can be
generally categorized as functions related to structure, infiltration, storage, presentation and
signaling
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turnover/degradation can release ECM peptide fragments act as chemotractants to
inflammatory (Song et al. 1993; Santambrogio and Rammensee 2019) (Fig. 3.1).

The structure of the ECM also contributes to the regulation of inflammation
indirectly via altering the integrity and/or elasticity to the liver. Remodeling of the
hepatic ECM in response to injury can alter the overall structure of the ECM, which
can translate to changes in elasticity (Klaas et al. 2016), and inflammation directly
increases ECM stiffness in organs (Wu and Birukov 2019; Karki and Birukova
2018; Mammoto et al. 2013; Hsu et al. 2016). Even acute liver injury alters ECM
structural components and impacts organ elasticity (Klaas et al. 2016). Indeed,
although liver stiffness is most often associated with fibrogenic changes to the
liver, inflammation also impacts assessments of liver stiffness (e.g., transient
elastography); these changes are often viewed as ‘false positive’ signals during
these measurements (Coco et al. 2007; Grgurevic et al. 2017). However, it is likely
that the increase in liver stiffness measurements caused by inflammation is at least in
part, a true signal (Dolin and Arteel 2020). Emerging technologies, such as three-
dimensional magnetic resonance elastography (3D-MRE) and magnetic resonance
imaging proton density fat fraction (MRI-PDFF), are being developed to facilitate
noninvasive differentiation between inflammation and fibrosis (Allen et al. 2018).

3.5.2 Facilitation of Infiltration

Hepatic inflammation after injury (i.e., “sterile” inflammation) involves innate
immune cells (e.g., natural killer cells, natural killer T cells, dendritic cells, neutro-
phils, eosinophils and monocytes) that are recruited to the liver (Oliveira et al. 2018;
Karlmark et al. 2009). These immune cells bind to several ECM proteins through
several types of receptors, including integrins and surface glycoproteins (e.g., CD54,
CD44 and CD26) that are arrayed on the recruited cells (Shimizu and Shaw 1991)
(Fig. 3.2). These interactions have important implications in liver disease and their
modulation can be employed as a therapeutic strategy; for example, inhibition of
T-cell binding to fibronectin is considered to be, at least in part, responsible for the
anti-inflammatory effect of the drug, pentoxifylline (Shirin et al. 1998).

Interactions between leukocytes and the ECM play key roles in the adhesion,
transmigration and phenotype of infiltrating leukocytes (Ley et al. 2007). ECM
receptors on the surface of leukocytes direct their migration through interaction
with the ECM (Shimizu and Shaw 1991). The regulation of expression and location
of these receptors is critical for the rapid phenotypic change between adhesive and
nonadhesive states of immune cells required during inflammation (Shimizu and
Shaw 1991). Selectins (CD62) and other receptors mediate initial leukocyte capture
and rolling in the microvasculature (Lee and Kubes 2008; Ley et al. 2007; Wong
et al. 1997; Fox-Robichaud and Kubes 2000). Leukocyte adhesion is predominantly
dependent on the interaction between β1- and β2-integrins and the ECM (Lee and
Kubes 2008), as well as CD44 and vascular adhesion protein-1 (Lee and Kubes
2008). The interaction between the ECM and cell infiltration is not unidirectional,
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but rather dynamic, in that as leukocytes respond to cues from the ECM, they in turn
release matrix-degrading proteases (Woodfin et al. 2010) that alter the extracellular
composition and allow for easier extravasation.

Chemokines also play an important role in the activation step of leukocyte
adhesion by interacting with the ECM (Ley et al. 2007; Proudfoot et al. 2003).
The release of these chemokines via direct or indirect (e.g., ECM proteolysis) creates
a haptotactic gradient that is critical for immune cell chemotraction (Monneau et al.
2016). Almost all hepatic cells secrete chemokines under basal conditions and in
response to injury (Oliveira et al. 2018). Chemokines are retained in the matrisome
via binding to the glycosaminoglycan (GAG)/heparin sulfate components found in
the space of Disse (Monneau et al. 2016; Heydtmann et al. 2005). ECM proteins
themselves may also possess chemotactic functions. For example, osteopontin is
chemotactic to natural killer T cells, neutrophils, and macrophages (Ramaiah and
Rittling 2008), while fibronectin activates macrophage and directs monocyte and
neutrophil translocation (Godfrey 1990).

3.5.3 Management of Storage, Presentation and Sensing

The ECM also is a reservoir for signaling molecules, such as growth factors,
cytokines and chemokines, that maintain homeostasis and respond to
dyshomeostasis (Fig. 3.2). The ECM stores these proteins, which predominantly
bind to glycosaminoglycans (GAG), which shield them from targeted degradation
(Lipowsky 2018). Injury activates proteases (e.g., MMPs and ADAM) that cleave
these linkages, thereby rapidly releasing these mediators (Karsdal et al. 2015;
Sorokin 2010; Vempati et al. 2014; Lipowsky 2018). The localized release of
these mediators also contributes to the above-mentioned haptotactic gradient that
directs inflammatory cells to the origin of the injury (Monneau et al. 2016; Vempati
et al. 2014; Wasmuth et al. 2010). Indeed, the initial release acute phase proteins in
response to injury/dyshomeostasis is via proteolysis of stored precursors rather than
by de novo synthesis. The interactions between these factors and the ECM also serve
to present or restrict access of ligands to receptors, to modulate the spatial distribu-
tion of growth factors or to create chemotactic gradients (Rozario and DeSimone
2010; Dolin and Arteel 2020).

The ECM behaves dynamically as a signaling moiety that mediates both outside-
in and inside-out signaling between the cell and the environment. As a family, the
integrins play key roles in mediating these interactions. Integrins transfer informa-
tion from the ECM to the cell, allowing rapid and dynamic responses to changes in
the extracellular environment (Humphries et al. 2006). Integrins play a myriad of
roles within the body, including proliferation/angiogenesis, maintenance of differ-
entiation, as well as inflammation and apoptosis (Hodivala-Dilke et al. 2003; Zhou
et al. 2009). Altered/dysregulated integrin signaling is hypothesized to be involved
in all stages of the progression of chronic liver diseases (Patsenker and Stickel 2011).
There are also several non-integrin receptors involved in signaling between the ECM
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and the cell. For example, CD44, a type I transmembrane glycoprotein has been
demonstrated to be involved in liver disease and inflammation via interacting with its
canonical ligand, hyaluronic acid (HA) (Seth et al. 2014; Patouraux et al. 2017).
Interactions between this ECM glycosaminoglycan and CD44 are known to facilitate
migration of leukocytes to inflamed tissue, as well as the progression of inflamma-
tory injury (McDonald and Kubes 2015). Interestingly, CD44 has also been impli-
cated in the resolution of injury by facilitating the migration of hematopoietic stem
cells to the injured liver (Crosby et al. 2009).

The interaction between cells and the surrounding ECM can also impact down-
stream signaling cascades that mediate both injurious and restorative signals (Dolin
and Arteel 2020). This control can be at mediated via altering receptor affinity, or
changes to downstream signaling cascades. Under basal conditions, receptors for
these mediators are generally dispersed on the plasma membrane in lipid/lipopro-
tein-rich regions (i.e., lipid rafts); the relatively close proximity of receptor mono-
mers facilitates ligand binding, receptor dimerization and subsequent downstream
signaling (Simons and Toomre 2000). It has been recently suggested that ECM
proteins contribute to this 2-dimensional organization on the plasma membrane
(Sadeghi and Vink 2015). Signal integration between integrins and extracellular
signaling factors also varies with interactions with the ECM stratum. This influence
of ECM on signaling has best been described for cellular responses to growth
factors, and is categorized as concomitant signaling, collaborative activation, direct
activation, amplification and negative regulation (Ivaska and Heino 2011; Schnittert
et al. 2018). Chronic inflammation impairs growth factor signaling, in part by
altering the make-up of the ECM surrounding the cell (Ozaki et al. 2011). Moreover,
ECM interactions qualitatively and quantitatively influence the response of TLR and
TNFα signaling (Gay and Gangloff 2007).

In addition to directly and indirectly influencing signaling transduction cascades,
integrin/ECM complexes form linkages to B-actin, and other components of the
cytoskeleton (Harburger and Calderwood 2009; Iwamoto and Calderwood 2015).
These complexes facilitate the clustering of integrins into focal adhesions, which
further influences normal responses to development, growth and maintenance sig-
nals (Lorenz et al. 2018; Harburger and Calderwood 2009; Iwamoto and
Calderwood 2015). Loss of control of this process is a key step to permit unregulated
clonal expansion of mutated cells during carcinogenesis [i.e., anchorage independent
growth (Hamidi and Ivaska 2018; Reddig and Juliano 2005)]. This vertical integra-
tion of ECM with the cytoskeleton via integrins is also a key component of
mechanosensing, and likely is responsible, at least in part, for the impact of ECM
rigidity on the inflammatory response [see above; (Lorenz et al. 2018)].

Inflammation and ECM remodeling likely perpetuate a positive “vicious cycle”
(Sorokin 2010). The ECM modulates and regulates immune cell chemotaxis, trans-
migration and differentiation. These activated immune cells alter the ECM compo-
sition by triggering both de novo ECM deposition, as well as proteolytic
degradation. Cleaved ECM produced by this increase in ECM turnover can be
proinflammatory in their own right, and serve as alarmins to distal targets. Although
these processes can be adaptive and beneficial in wound healing and recover,
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aberrant ECM accumulation/alteration and overproduction of ECM degradation
products can perpetuate a maladaptive inflammatory response, such as is observed
during chronic hepatic inflammation (Schuster et al. 2018). Thus, the ECM not only
plays a key role in mediating inflammation, but also in the resolution of inflamma-
tion [i.e., catabasis (Widgerow 2012; Franitza et al. 2000; Canedo-Dorantes and
Canedo-Ayala 2019)].

3.6 ECM Remodeling and the “Degradome”

The ECM is a dynamic compartment subject to constant protein turnover. This
turnover can undergo more dramatic, rapid changes (i.e. remodeling) during inflam-
mation and disease (Fig. 3.1). One important means of regulation of ECM turnover is
via activation of ECM proteases (e.g. MMPs; see above). All hepatic cells release
different types of proteases and protease inhibitors in response to normal/abnormal
conditions (Benyon and Arthur 2001; Calabro et al. 2014; Zang et al. 2015;
Ramachandran et al. 2012). This altered turnover not only impacts the makeup of
the ECM/matrisome, but also the changes the pattern of degraded ECM peptides
found in biological fluids [e.g., blood (Sand et al. 2016)]. The activities of these
changes have the potential to be experimental imputed through use of algorithms
such as Proteasix (http://www.proteasix.org/) that relies of compiled protease and
peptidase databases (Merops database, https://www.ebi.ac.uk/merops/) for substrate
specificity to impute endo- and exopeptide activity contributing to observed peptide
amino- and carboxy-termini. The potential of these protease degradation products
(i.e. the ‘degradome’) to serve as indices of various diseases is becoming increas-
ingly understood (Fig. 3.1). For example, the rate of ECM turnover of anchored
ECM into soluble ECM have been demonstrated to strongly influence tumor growth
and morphology (Nargis et al. 2018). Understanding the role of the ECM degradome
in disease is facilitated by modern mass spectrometry methods that allow widespread
characterization of the degradome (i.e. peptidomics or ‘degradomics’) (Randles and
Lennon 2015). Even if degradation products do not play a critical role in disease
mechanisms, they may be useful surrogate biomarkers.

3.7 Proteomic Analysis of the Hepatic Matrisome

3.7.1 Overview

Formation and stabilization of the extracellular matrix (ECM) proteome is guided by
protein-protein specific interactions and stabilized by the presence of protein post-
translational modifications including glycosylation or intra- and inter-molecular
protein cross-linking. Collectively these interactions yield a structurally stabilized
three-dimensional (3D) matrix that significantly contributes to both the mechanical
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and biologic properties of tissues. These stabilizing features while biological bene-
ficial contribute to the limitations to the proteomic experiment: low solubility, high
prevalence of structural proteins such as collagens, the apparent spatial stochasticism
of low abundance proteins, post-translational modifications and truncations, and
protein-protein cross-linking. The current advances in the field of extracellular
matrix proteomics has developed from approaches to improve segmenting the core
versus associated matrix proteins as well approaches to enhance protein identifica-
tion and quantification (Naba et al. 2012; Hynes and Naba 2012).

The effective isolation of the ECM from cellular and non-matrisomal extracellu-
lar proteomes is a critical component for comparative proteomic studies. Whole
tissue studies traditionally have relied on biochemical methods such as differential
extraction (Massey et al. 2017) while physical methods such as laser capture
dissection methods allow for spatially resolved isolation of histologically specific
tissue compartments (Hobeika et al. 2017). Differential ECM extraction from whole
tissue has been based on methods adopted from regenerative medicine that required
purified ECM as molecular scaffolds to support artificial organ growth (Gilbert et al.
2006; Sullivan et al. 2012; Willemse et al. 2020; Verstegen et al. 2017). Classically
these methods have heavily utilized neutral ionic (phosphate buffered sodium
dodecyl sulfate) or ammonical non-ionic (ammonium hydroxide buffered triton
X-100) detergent-based decellularization buffers to solubilize and extract all cellular
proteins. Several groups including ours have adapted and improved these chemical
methods based on differential solubilization approaches to sequentially isolate the
structural and associated ECM proteomes (Massey et al. 2017; Didangelos et al.
2011; de Castro Bras et al. 2013). Following sample decellularization, the insoluble
fraction is extracted with salts, acids or chaotropes (guanidine hydrochloride) and
then enzymatically deglycosylated prior to proteomic analyses. These steps yields
fractions used to understand the disease associated pathobiology resolved into
soluble, ECM-associated, and an insoluble ECM proteomic components.

Proteomics has been used to address two fundamental questions in ECM biology:
(a) what proteins are present and (b) what are the relative abundances within the
ECM. A thorough discussion of proteomic methods is beyond the scope of this
review but are available elsewhere (Ankney et al. 2018; Cox and Mann 2011;
Rauniyar and Yates 2014). The majority of all published ECM proteomic studies
defining the matrisome (Naba et al. 2012) have utilized sequential extraction,
proteolytic digestion, and one-dimensional low pH, reversed phase liquid
chromatography-mass spectrometry analysis using a LTQ-Orbitrap hybrid mass
analyzer (Shao et al. 2020). These studies have approached the proteomics with a
label-free approach with a data dependent acquisition method based on rank ordered
lists of peptide signal intensity to select ions for fragmentation. The peptide relative
quantification based on high resolution mass spectrometry data is derived from peak
signal intensity or a peptide extracted area under the curve. The deduced amino acid
sequence of the peptide was based on spectrum matching to theoretical or empiri-
cally established spectra.
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3.7.2 3-Step ECM Extraction (Fig. 3.3)

Sequential extraction of the hepatic ECM was modified from the protocol described
by de Castro Bras et al. for heart tissue (de Castro Bras et al. 2013). The original
description of this technique was first published in detail in a Dissertation (Massey
2014).

Sample Preparation and Wash Snap frozen liver tissue (75–100 mg) was imme-
diately added to ice-cold phosphate-buffered saline (pH 7.4) wash buffer containing
commercially available protease and phosphatase inhibitors (Sigma Aldrich) and
25 mM EDTA to inhibit proteinase and metalloproteinase activity, respectively.
While immersed in wash buffer, liver tissue was diced into small fragments using a
scalpel. The diced sample was washed 5 times to remove contaminants. Between
washes, samples were pelleted by centrifugation (12,000�g, 5 min), and wash buffer
was decanted.

NaCl Extraction Diced samples were incubated in 10 volumes of 0.5 M NaCl
buffer, containing 10 mM Tris HCl (pH 7.5), proteinase/phosphatase inhibitors, and
25 mM EDTA. The samples were mildly mixed on a plate shaker (800 rpm)
overnight at room temperature. The following day, the remaining tissue pieces
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Pellet Supernatant

SDS Buffer

Pellet Supernatant

GnHCl Buffer

Pellet Supernatant

Final pellet

NaCl Extract
Loosely bound/new 

matrix
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Tightly bound 
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frac�on

’ega‘
dnagnikni lssorC

Fig. 3.3 Sequential extraction of the hepatic ECM. By using increasingly rigorous extraction
solutions, the matrisome can be separated into components based on their solubility, which is
inversely proportional to the level of crosslinking and ‘age’

56 C. E. Dolin et al.



were pelleted by centrifugation (10,000�g for 10 min). The pellet was used for the
SDS extraction (see below). The supernatant was collected and desalted using
ZebaSpin columns (Pierce) according to manufacturer’s instructions. To precipitate
proteins, desalted supernatant was incubated with 5� supernatant volume of 100%
acetone overnight at �20 �C, centrifuged (16,000�g, 45 min), and dried in a rotary
evaporator. Proteins were resuspended in deglycosylation buffer.

SDS Extraction The pellet from the NaCl extraction was subsequently incubated in
10 volumes (based on original weight) of 1% SDS solution, containing proteinase/
phosphatase inhibitors and 25 mM EDTA. The samples were mildly mixed on a
plate shaker (800 rpm) overnight at room temperature. The following day, the
remaining tissue pieces were pelleted by centrifugation at 10,000�g for 10 min.
The pellet was used for the GnHCl extraction (see below). The supernatant was
collected and desalted using ZebaSpin columns (Pierce) according to manufacturer’s
instructions. To precipitate proteins, desalted supernatant was incubated with 5�
supernatant volume of 100% acetone overnight at �20 �C, centrifuged (16,000�g,
45 min), and dried in a rotary evaporator. Proteins were resuspended in
deglycosylation buffer.

Guanidine HCl Extraction The pellet from the SDS extraction was incubated with
5 volumes (based on original weight) of a denaturing guanidine buffer containing
4 M guanidine HCl (pH 5.8), 50 mM sodium acetate, 25 mM EDTA, and proteinase/
phosphatase inhibitors. The samples were vigorously mixed on a plate shaker at
1200 rpm for 48 h at room temperature; vigorous shaking is necessary at this step to
aid in the mechanical disruption of ECM components. The remaining insoluble
components were pelleted by centrifugation at 10,000�g for 10 min. This insoluble
pellet was retained and solubilized as described below. To precipitate proteins, the
supernatant was mixed with 6� supernatant volume of 100% ice cold ethanol
overnight at 20 �C, centrifuged (16,000�g, 45 min), and washed with 90% ethanol.
Pellets were dried in a rotary evaporator and resuspended in deglycosylation buffer.

Deglycosylation and Solubilization The supernatants from each extraction were
dried in a rotary evaporator and resuspended in deglycosylation buffer containing
150 mM NaCl, 50 mM sodium acetate, 10 mM EDTA, and proteinase/phosphatase
inhibitors. Resuspended samples were desalted using ZebaSpin columns (Pierce)
according to manufacturer’s instructions. The desalted extracts were then mixed
with 5 volumes of 100% acetone and stored at �20 �C overnight to precipitate
proteins. The precipitated proteins were pelleted by centrifugation at 16,000�g for
45 min. Acetone was evaporated by vacuum drying in a rotary evaporator for 1 h.
Dried protein pellets were resuspended in 500 μL deglycosylation buffer containing
150 mM NaCl, 50 mM sodium acetate, pH 6.8, 10 mM EDTA, and proteinase/
phosphatase inhibitors that contained chondroitinase ABC (P. vulgaris; 0.025 U/
sample), endo-beta-galactosidase (B. fragilis; 0.01 U/sample) and heparitinase II
(F. heparinum; 0.025 U/sample). Samples were incubated overnight at 37 �C. 20 μL
DMSO was added to the insoluble fraction (pellet from guanidine HCl extraction) to
aide in solubilization. Protein concentrations were estimated by absorbance at
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280 nm using bovine serum albumin (BSA) in deglycosylation buffer for reference
standards.

3.7.3 Sample Cleanup and Preparation for Liquid
Chromatography and Mass Spectrometry

Liver ECM extracts in deglycosylation buffer were pooled by experimental group
and subsequently analyzed by the University of Louisville Proteomics Biomarkers
Discovery Core (PBDC). At the PBDC, samples in deglycosylation buffer were
thawed to room temperature and clarified by centrifugation at 5000�g for 5 min at
4 �C. 50 μL (25 μg) of each sample were reduced by adding 5.55 μL of 1 M DTT and
incubating at 60 �C for 30 min. 144.45 μL of 8 M urea in 0.1 M Tris-HCl, pH 8.5,
was added to each sample. Each reduced and diluted sample was digested with a
modified Filter-Aided Sample Preparation (FASP) method developed by Jacek
R. Wisniewski et al. (2009). Recovered material was dried in a rotary evaporator
and redissolved in 200 μL of 2% (v/v) acetonitrile (ACN)/0.4% formic acid (FA).
The samples were then trap-cleaned with a C18 PROTO™ 300 Å Ultra MicroSpin
Column (The Nest Group, Southborough, MA). The sample eluates were stored at
�80 �C for 30 min, dried in a rotary evaporator, and stored at �80 �C. Before liquid
chromatography, dried samples were warmed to room temperature and dissolved in
2% (v/v) ACN/0.1% FA to a final concentration of 0.25 μg/μL. 16 μL (4 μg) of
sample was injected into the Orbitrap Elite.

3.7.4 Liquid Chromatography and Tandem Mass
Spectrometry

At the PBDC, liver digest samples were separated on a Dionex Acclaim PepMap
100 75 μm� 2 cm nanoViper (C18, 3 μm, 100 Å) trap and Dionex Acclaim PepMap
RSLC 50 μM � 15 cm nanoViper (C18, 2 μm, 100 Å) separating columns. An
EASY n-LC (Thermo, Waltham, MA) UHPLC system was used with buffer A¼ 2%
(v/v) acetonitrile/0.1% (v/v) formic acid and buffer B ¼ 80% (v/v) acetonitrile/0.1%
(v/v) formic acid as mobile phases. Following injection of the sample onto the trap,
separation was accomplished with a 140 min linear gradient from 0% B to 50% B,
followed by a 30 min linear gradient from 50% B to 95% B, and lastly a 10 min wash
with 95% B. A 40 mm stainless steel emitter (Thermo, Waltham, MA; P/N ES542)
was coupled to the outlet of the separating column. A Nanospray Flex source
(Thermo, Waltham, MA) was used to position the end of the emitter near the ion
transfer capillary of the mass spectrometer. The ion transfer capillary temperature of
the mass spectrometer was set at 225 �C, and the spray voltage was set at 1.6 kV.
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An Orbitrap Elite—ETD mass spectrometer (Thermo) was used to collect data
from the LC eluate. An Nth Order Double Play with ETD Decision Tree method was
created in Xcalibur v2.2. Scan event one of the method obtained an FTMSMS1 scan
for the range 300–2000 m/z. Scan event two obtained ITMS MS2 scans on up to ten
peaks that had a minimum signal threshold of 10,000 counts from scan event one. A
decision tree was used to determine whether collision induced dissociation (CID) or
electron transfer dissociation (ETD) activation was used. An ETD scan was triggered
if any of the following held: an ion had charge state 3 and m/z less than 650, an ion
had charge state 4 and m/z less than 900, an ion had charge state 5 and m/z less than
950, or an ion had charge state greater than 5; a CID scan was triggered in all other
cases. The lock mass option was enabled (0% lock mass abundance) using the
371.101236 m/z polysiloxane peak as an internal calibrant.

3.7.5 Informatics

The hepatic ECM mass spectrometry data were analyzed at the University of
Louisville PBDC using Proteome Discoverer v1.4.0.288. The database used in
Mascot v2.4 and SequestHT searches was the 6/2/2015 version of the UniprotKB
Mus musculus reference proteome canonical and isoform sequences. +57 on C
(Carbamidomethylation) was selected as a fixed modification, and +1 on N
(Asn- > Asp) and +16 on MP (Oxidation) were selected as variable modifications.
A maximum of two missed cleavages were allowed. A Target Decoy PSM Validator
node was included in the Proteome Discoverer workflow in order to estimate the
false discovery rate (FDR).

The Proteome Discoverer analysis workflow allows for extraction of MS2 scan
data from the Xcalibur RAW file, separate searches of CID and ETD MS2 scans in
Mascot and Sequest, and collection of the results into a single file (.msf extension).
The resulting.msf files from Proteome Discoverer were loaded into Scaffold Q + S
v4.3.2. Scaffold was used to calculate the FDR using the Peptide and Protein
Prophet algorithms. Protein identification probability of the sequences was set to
>95% on the software. The results were annotated with mouse gene ontology
(GO) information from the Gene Ontology Annotations Database.

3.8 Summary and Conclusions

In conclusion, the ECM should not be viewed as simply a structural element of the
liver, but rather as a microenvironmental niche that dynamically responds to changes
in homeostasis. Although it is well understood in some areas that the ECM changes
during hepatic injury, most work to date in the liver has focused on changes to the
ECM during collagenic fibrosis. Although it is clear that fibrosis is highly relevant to
clinical liver disease, it is best viewed as an end-stage of disease pathogenesis, and is
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arguably the least sensitive to external interventions (Mehal and Schuppan 2015).
Recent improvements in detecting earlier stages of liver diseases enhance the
viability of blunting/reversing disease progression well before fibrosis. Inflammation
is a key stage of progression that could be targeted therapeutically in this context.
Changes in the ECM/matrisome during inflammation are key to regulate and mediate
the inflammatory response. However, there are critical gaps in our knowledge on the
role of changes to the hepatic ECM in chronic inflammation. There is an opportunity
to cross-fertilize our understanding from other fields in which the ECM and inflam-
mation are more well described (Hyldig et al. 2017; Lumelsky et al. 2018; Rousselle
et al. 2018; Dolin and Arteel 2020). These other fields may provide new therapies
that can be repurposed for chronic liver diseases (Pritchard and McCracken 2015).
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Chapter 4
Characterization of Proteoglycanomes
by Mass Spectrometry

Christopher D. Koch and Suneel S. Apte

Abstract As composites of a core protein and several chemically distinct types of
glycosaminoglycan (GAG) chains, proteoglycans are diverse molecules that occupy
a unique niche in biology. They have varied and essential roles as structural and
regulatory molecules in numerous physiological processes and disease pathology. In
regard to cellular context, some link the interior of the cell to the extracellular matrix
(ECM) as transmembrane or membrane-anchored molecules with a major role in cell
adhesion and signal transduction. Others reside in pericellular matrix, where they
influence crucial aspects of cell behavior, and several reside in interstitial ECM as
components of structural macromolecular networks. Because of their unique com-
position, they can be challenging to identify and characterize using conventional
biochemical or antibody-based methods. In contrast, the GAG component, despite
its immense chemical diversity, typically carries a strong net negative charge which
can be exploited to advantage for affinity-isolation and enrichment of proteoglycans
from any biological system in a core protein-, GAG-, tissue-, and species-agnostic
manner by anion exchange chromatography. This method, when coupled with high
resolution liquid-chromatography tandem mass spectrometry (LC-MS/MS) can be
used to define the proteoglycanome of any cell type, tissue or organism. A
proteoglycanomics strategy can be further refined by inclusion of additional orthog-
onal affinity steps or fractionation for greater specificity and to deliver proteoglycans
with distinct specified characteristics. Moreover, elimination of the GAG chain
chemically and/or obliteration of the core protein enables glycomics characterization
of GAG structure. Enzymatic digestion of GAGs on tryptic peptides allows mapping
of glycopeptides, which has been used for identification of novel proteoglycans and
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to precisely define sites of GAG attachment. Recent application of
proteoglycanomics to human aorta and human aortic aneurysms demonstrated its
potential to identify tissue and disease proteoglycanomes and the detailed method
that was used is provided here for application to other tissues or biological systems.

4.1 Introduction

Proteoglycans (PGs) are composite molecules in whom glycosaminoglycan (GAG)
chains are covalently attached to a polypeptide backbone referred to as a proteogly-
can core protein (Iozzo and Schaefer 2015). The attachment typically occurs to Ser
residues adjacent to a Gly residue and usually within an acidic sequence context,
although keratan sulfate attachment can occur not only to Ser, but also to Thr and
Asn through distinct linkages (Brinkmann et al. 1997; Funderburgh 2002). Pro-
teoglycans are integral components of the extracellular matrix (ECM) of most
tissues, and some, such as syndecans and glypicans, are specialized and important
transmembrane and membrane-anchored cell-surface components, respectively
(Filmus and Capurro 2014; Mitsou et al. 2017; Gondelaud and Ricard-Blum
2019). Hyaluronan-binding aggregating chondroitin sulfate proteoglycans
(CSPGs) such as aggrecan are quantitatively abundant in structural tissues such as
cartilage and intervertebral disc, where they provide unique biophysical properties
(Hascall and Heinegard 1974; Heinegard and Saxne 2011). Specifically, the ability
of the aggregates to hold large amounts of water and thus exert an internal tissue
swelling pressure, as well as electrostatic charge repulsion between the aggregates
makes them indispensable for compression load-bearing in these tissues
(Buschmann and Grodzinsky 1995). Aggregating proteoglycans in pericellular
ECM of mesenchymal cells have the potential to control focal adhesion formation,
cell shape and genetic programs (Mead et al. 2018). In the brain, a diverse group of
aggregating PGs (aggrecan, versican, brevican, neurocan) (Zimmermann and Dours-
Zimmermann 2008) are prominent components of the limited amount of ECM that is
present, and their swelling pressure may ensure mechanical buffering within the
cranium; furthermore, perineuronal nets of a subset of neurons have PGs as a major
component, where they are thought to insulate the soma (cell body) of the neuron
against rewiring of established neuronal circuits (Fawcett et al. 2019). Aggrecan, for
example, is critical in this regard (Rowlands et al. 2018). In the view of the Nobel
laureate Roger Tsien, holes in perineuronal nets, which are formed on conclusion of
the juvenile critical period and mark the closure of neuronal plasticity, could be the
seat of long-term memory (Tsien 2013). Major roles in developmental and cancer
cell signaling by heparan sulfate proteoglycans (HSPGs) are attributed to the binding
of growth factors and morphogens to the highly sulfated GAG chains (Bandari et al.
2015; Ortmann et al. 2015; Sarrazin et al. 2011; van Wijk and van Kuppevelt 2014;
Yu and Woessner Jr. 2000). Similar roles are reprised during inflammation with
respect to cytokines (Gondelaud and Ricard-Blum 2019; Bartlett et al. 2007). In
addition, some PGs or their fragments can act as damage-associated molecular
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patterns to stoke inflammation (Nastase et al. 2018). In many tissues such as tendons,
skeletal muscle, lungs, cornea and blood vessels, proteoglycans are quantitatively
minor components but serve crucial roles such as compression load-bearing, regu-
lation of collagen fibril assembly and sequestration of growth factors (Ezura et al.
2000; Robinson et al. 2017; Zhang et al. 2006). One reason why proteoglycan steady
state levels may be low in many cells and matrices is that they are among the most
dynamic components of ECM and thus turned over quite rapidly, particularly in cell-
proximate ECM.

Proteoglycan core proteins can be very large, e.g., perlecan, aggrecan and
versican, or quite small, e.g., the leucine-rich proteoglycans. PG sub-groups are
usually defined by a combination of size and other unique properties such as the
chemical nature of their GAG chains, i.e., whether they are chemically defined
chondroitin sulfate (CS), heparan sulfate (HS) or keratan sulfate (KS). Dermatan
sulfate (DS) sometimes termed CS-B, is chemically similar to CS but contains
iduronate (Thelin et al. 2013). This classification of PGs is imperfect, since different
types of GAG can be present on the same core protein, e.g., aggrecan typically
contains KS chains, yet the CS chains dominate and it is usually considered a CSPG.
Moreover, some proteoglycan core proteins are not constitutively modified, and
these could be regarded as “part-time” proteoglycans. However, for the purpose of
this chapter, any molecule that carries a covalently attached GAG chain, if only in a
small proportion of the core protein, is operationally defined as a proteoglycan.

Most GAGs are sulfated and thus share the useful property of having a net
negative charge, enabling their isolation using anion exchange chromatography
(AEC). This characteristic of PGs is also the basis of their detection in tissue sections
using basic dyes such as alcian blue and safranin O or toluidine blue metachromasia
of highly negatively charged GAGs such as heparin (Scott 1985). Their staining
intensity is also a useful guide, albeit neither absolute nor specific, to GAG abun-
dance. Tissue identification of individual GAGs and PG gene products is typically
done using specific antibodies to the GAG chain or core protein. The former has the
advantage over anti-core protein antibodies of being species-agnostic.
Immunostaining and western blot can be used to detect the core proteins but relies
on antibodies with high specificity. Additionally, the GAG-dense environment in
which a core protein epitope may reside may mask antibody reactivity in tissue
sections, requiring an intimate understanding of the molecules in order to properly
design epitope retrieval strategies. However, the use of core protein and GAG
antibodies as a targeted approach to examine the entire proteoglycan landscape of
a tissue is neither practical nor efficient.

An untargeted approach, such as shotgun mass spectrometry would allow simul-
taneous detection of many proteoglycans within a complex cell or tissue extract
while circumventing the need for quality antibodies and epitope retrieval protocols.
Analysis of proteins by mass spectrometry is, however, limited by the caveat that
high abundance proteins are preferentially detected during data-dependent analysis
of mass spectra, and low abundance or highly modified components like proteogly-
cans may go undetected. A solution is to divide the sample into multiple fractions,
using one or preferably, two orthogonal fractionation methods (Ly and Wasinger
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2011). However, analysis of multiple fractions increases the instrument run time and
requires analysis of data from multiple MS runs. An alternative to routine fraction-
ation for reduction of sample complexity is enriching for the desired components, or
excluding undesired ones (Ly and Wasinger 2011). We capitalized on the net
negative charge of the GAGs to isolate and identify PG core proteins by mass
spectrometry from the aorta (Cikach et al. 2018), the largest artery in the body,
which contains a large repertoire of ECM molecules sandwiched in the space
between elastic lamellae and arrays of smooth muscle cells.

Our approach utilized a well-characterized technique for proteoglycan enrich-
ment from aortic tissue, i.e., isolation by AEC prior to analysis by LC-MS/MS
(Cikach et al. 2018). AEC elution conditions can be adjusted to maximize proteo-
glycan yields and successful elution of proteoglycans can be evaluated using a
variety of biochemical techniques such as fluorophore-assisted carbohydrate elec-
trophoresis (providing precise delineation of the GAG type), safranin O staining
(non-specific, but provides quantifiable staining intensity and indicates abundance of
the GAGs in the eluted fractions) and western blot with a specific core protein or
GAG antibody (Cikach et al. 2018). Combinations of these orthogonal methods can
be used to determine exactly which PGs and GAGs were enriched, and LC-MS/MS
can be subsequently used for unbiased identification of PGs extracted from essen-
tially any tissue. Here, we describe the approach that was used to determine the
proteoglycanome of the human aorta (Cikach et al. 2018). The proteoglycan isola-
tion and quantitation methods are similar to those previously described by Carrino
and colleagues (Carrino et al. 1991, 1994).

4.2 Extraction of Proteoglycans from Tissue

1. Snap freeze tissue in liquid nitrogen immediately after collection and store at
�80 �C until use.

2. Finely dice tissue with a scalpel or surgical scissors in a clean petridish on ice.
Weigh diced tissue and add 1 mL ice-cold proteoglycan extraction buffer per
100 mg tissue. The extraction buffer is: 4 M guanidine hydrochloride, 2% 3-[(3-
cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS], 50 mM
sodium acetate, adjusted to pH 6.0 with HCl or NaOH. 1 tablet of complete
Mini EDTA-free Protease Inhibitor (Roche) is added per 6–10 mL.

3. Homogenize tissue in the extraction buffer with a mechanical homogenizer such
as an Ultra-Turrax T2 or T10 homogenizer (IKAWorks Inc.), taking care to keep
the sample on ice as homogenization will quickly warm the sample.

4. Rotate homogenized tissue end-over-end at 4 �C for a minimum of 16 h.
5. Clarify the homogenate by centrifugation for 15 min at 20,000�g.
6. Retain the supernatant as it contains both cellular and many extracellular matrix

proteins including proteoglycans. Highly crosslinked proteins, including many
collagens and elastic fibers, will remain in the sample pellet unless extracted by
additional steps.
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The extraction process would be similar for a cell culture monolayer, with the
difference that after the medium is aspirated, the cells should be washed several
times with serum-free medium prior to addition of the extraction buffer. This
minimizes ion suppression from abundant serum proteins such albumin during
LC-MS/MS.

4.3 Proteoglycan Isolation by Anion Exchange
Chromatography

1. Buffer exchange: While guanidine hydrochloride allows for efficient extraction of
proteoglycans and proteins from tissue, it is not compatible with AEC due to the
presence of chloride as a counterion. Therefore, buffer exchange to another
chaotropic agent such as urea must precede the AEC step. This can be accom-
plished by a number of methods including dialysis and centrifugal filtration; we
use gel filtration, which is an efficient, rapid and economical method using
columns that are inexpensive and easy to prepare.

a. Prepare columns by cutting the tops off 5 mL, 10 mL or 25 mL plastic
serologic pipettes and lightly pack the tips with glass wool. Connect a stopcock
to the bottom of the pipette for volume control, such as a length of surgical
tubing with removable clamp. Swell Sephadex G-50 fine resin in G50 buffer at
a ratio of 20–25 mL/g of resin for at least 24 h. G50 buffer is 8 M urea, 0.5%
CHAPS, 50 mM sodium acetate, 150 mMNaCl adjusted to pH 7.0 with HCl or
NaOH. Heating on a hot plate-stirrer aids urea dissolution.

b. Load swollen Sephadex G-50 fine resin into the column (Table 4.1) and pack
by gravity flow, adding G-50 buffer as needed. Once the column is packed,
allow the G50 buffer to almost completely enter the column, i.e., leaving a
meniscus to prevent the resin from drying.

c. Taking care not to disturb the resin bed, add the appropriate sample volume
(see Table 4.1) to the column and allow it to enter the resin by gravity. Close
the stopcock when the last of the sample has just entered the resin.

Table 4.1 Volumes for buffer exchange using Sephadex G50 fine. The sample volume dictates the
size of column(s) required. Buffer exchange can be accomplished with larger sample volumes
through the use of sample aliquots and multiple columns. The pre-V0 volume will not contain any
proteins and is obtained immediately upon the sample fully entering the resin. Proteins will elute
immediately following the pre-V0 volume and are expected to be fully contained in the
corresponding V0 volume, although volumes for specific applications may vary and should be
determined experimentally

Pipette/column size (mL) Sephadex G50 fine (mL) Sample (mL) Pre-V0 (mL) V0 (mL)

5 4 1 0.25 1.5

10 8 2 0.5 3

25 24 6 1.5 9

4 Characterization of Proteoglycanomes by Mass Spectrometry 73



d. Carefully add G50 buffer to the column and resume gravity flow. Immediately
start collecting the eluate as pre-V0. This eluate will be G50 buffer without
proteins and can be discarded. The volume is specifically adjusted for the
column sizes and sample volumes referenced in Table 4.1.

e. Starting immediately after the pre-V0 volume, collect the appropriate V0

volume. This fraction will deliver the proteoglycans and proteins in the
AEC-compatible G50 buffer.

f. Columns can be reused for subsequent samples after washing with 2–4 column
volumes of G50 buffer; however single use may be more economical given the
volume of G50 buffer that may be required for this.

2. Anion Exchange Chromatography

a. Swell diethylaminoethyl (DEAE)-Sephacel with G50 buffer. Pack 4 mL swol-
len DEAE resin by gravity flow of G50 buffer into a glass column fitted with a
stopcock as described above. Once the column is packed, allow the G50 buffer
to almost completely enter the column taking care not to let the resin dry. Add
the sample to the column without disturbing the resin bed and allow it to enter
the resin by gravity flow. Collect the flow-through and retain for future
analysis or discard. Wash the column with five column volumes (20 mL) of
wash buffer (8 M urea, 0.5% CHAPS, 50 mM sodium acetate, 250 mM NaCl,
pH 7.0). This fraction will contain weakly anionic proteins. It can be collected
and retained for future analysis but is usually discarded.

b. Add elution buffer (same as wash buffer above, but with 0.5–1 M NaCl) to the
column and collect 2 mL fractions. Most proteoglycans will elute with 0.5 M
NaCl (Fig. 4.1), however proteoglycans containing high anion charge densi-
ties such as versican and aggrecan may elute best at higher concentrations (up
to 1 M) of NaCl. In our experience, 1 M NaCl is sufficient to elute all
proteoglycans with the highest concentrations eluting in fractions 1–3 (6 mL
total eluate volume).

3. Quantitation of isolated proteoglycans. The isolated fractions first undergo buffer
exchange by dialysis to 20 mM HEPES, 150 mM NaCl, pH 7.2, following which
a safranin O staining and spectrophotometry method (Carrino et al. 1991) is
applied to quantify proteoglycan content of the fractions. For total protein, sample
absorbance at 280 nM is used. A representative safranin O-based quantitation
profile of fractions is shown in Fig. 4.2.

a. Prepare 0.45 μm nitrocellulose by soaking in water for at least 1 min and
mount it into a dot blot apparatus.

b. Pipette 25 μL (1 part) of each DEAE eluate fraction (isolated proteoglycans)
into 250 μL (10 parts) 0.02% safranin O into each well. Mix briefly by
pipetting and allow the mixture to stand for 1 min. Apply a vacuum to the
dot blot apparatus to collect the precipitate onto the nitrocellulose.

c. Wash each well three times with 200 μL water, drawing water through the
nitrocellulose under vacuum. Wells with significant precipitation (high pro-
teoglycan/glycosaminoglycan content) may require higher vacuum pressure
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and a longer time to empty fully. To prevent bleeding of precipitate into
adjacent wells, dry the nitrocellulose in the dot blot apparatus for a minimum
of 1 h.

d. Remove the nitrocellulose from the dot blot apparatus and allow it to dry
completely at room temperature. Cut or punch out the precipitate spots from
the membrane and place each in a 1.5 mL microcentrifuge tube. Add 1 mL
10% cetylpyridinium chloride (CPC) to each tube and vortex vigorously.
Incubate the tubes at 37 �C for 10 min, vortex vigorously, and incubate at
37 �C for an additional 10 min. Vortex vigorously after incubation and transfer
a portion of the CPC solution from each tube into a 96 well plate or cuvette for
absorbance measurement at 536 nm.

i. Fluorophore-assisted carbohydrate analysis, if available, is a specialized
technique that can be used to identify and quantify hyaluronan and GAGs
(Calabro et al. 2001; Midura et al. 2018).

ii. Western blot/ELISA using antibodies against specific GAGs and core
proteins, or the GAG stubs left behind after enzymatic release can be
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Fig. 4.1 AEC elution profile of aortic GAGs. Aortic proteoglycans were eluted from a 4 mL
DEAE-Sephacel column with G50 buffer containing increasing concentrations of NaCl. Ten 1 mL
fractions were collected for each elution condition. Each elution was preceded by a 10 mL wash
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280 nm) and safranin O dot blot, respectively. Most proteoglycans eluted with 500 mM NaCl,
however the large proteoglycans versican and aggrecan may require 1 M NaCl for complete elution
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used for identifying specific components. Enzymatic removal of GAGs
from proteoglycans with the appropriate lyase is typically required to
ensure full mobility in polyacrylamide gels and may be essential for proper
epitope recognition by some antibodies.

4.4 Analysis of Isolated Proteoglycans by Mass
Spectrometry

1. Sample preparation for mass spectrometry

a. Lyophilize 20 μg total protein in a SpeedVac evaporator.
b. Reconstitute the dried protein in 50 μL 6 M urea, 100 mM Tris, pH 7.0.
c. Reduce cysteine bonds by adding 2.5 μL 200 mM dithiothreitol (prepared

fresh) and incubate at room temperature for 15 min.
d. Alkylate the proteins by adding 10 μL 200 mM iodoacetamide (prepared

fresh) and incubate at room temperature for 20 min, protecting from light.
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e. Quench the excess iodoacetamide by adding 10 μL 200 mM dithriothreitol and
incubate at room temperature for 15 min.

f. Reduce the urea concentration to approximately 1.2 M by diluting the sample
with 160 μL water.

g. Adjust the pH to >8.0 with 100 mM ammonium bicarbonate. This will likely
take 20–30 μL of ammonium bicarbonate; verify the correct pH by blotting a
1–2 μL sample on litmus paper.

h. Add trypsin at an enzyme:protein ratio of 1:20. Incubate at room temperature
for 24 h or at 37 �C for 8–16 h.

i. Desalt the trypsinized peptides using a C18 column such as a Pierce C18 spin
column (ThermoFisher Scientific) following the manufacturer’s instructions.

j. Fully lyophilize the C18 eluate in a SpeedVac evaporator.
k. Reconstitute the peptides in 30 μL 1% acetic acid.

Note: This protocol leads to injection of approximately 1 μg of total peptides in
5 μL on the liquid chromatography column. The starting amount of total
protein (step a) and the final reconstitution volume (step k) can be adjusted
to increase or decrease the final injection concentration.

2. Mass spectrometry
Tryptic peptides can be identified using a number of modern mass spectrom-

etry instruments. We used an LTQ-Orbitrap Elite hybrid mass spectrometer
(Thermo Fisher Scientific) for its high resolution and sensitivity.

a. Separate peptides with an in-line liquid chromatography system, e.g., Dionex
Ultimate 3000 nanoflow ultrahigh pressure liquid chromatography (UHPLC)
system using a 75 μm � 15 cm, 3 μm particle size, Acclaim PepMap 100 C18
column (Thermo Fisher Scientific) at a flow rate of 0.3 μL/min.

b. Elute peptides over 2 h using buffers A (0.1% formic acid in water) and B
(0.1% formic acid in acetonitrile) with the following LC conditions:

Time (min) Buffer B (%)

0–5 2

5–110 Linear gradient: 2–40

110–115 Linear gradient: 40–80

115–120 80

c. The UHPLC column is coupled to a nanospray source through a PicoTip emitter
(FS360-20-15-N-20-C15, New Objective).

d. Collect spectra using a full-ion scan at a resolution of 60,000 over the mass/
charge range 300–2000. MS2 scans using collision-induced dissociation (CID)
can be performed on the 20 most abundant precursor ions from MS1 scans using
the data-dependent mode with dynamic exclusion.
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3. Bioinformatics—The precise bioinformatics approach used will vary according
to the facility or user preference. The following approach was used with data from
the LTQ-Orbitrap Elite hybrid mass spectrometer

a. MS2 spectra were matched to the UniProtKB/Swiss-Prot human database
using ProteomeDiscoverer (Thermo Scientific).

b. The percolator function was utilized to select only matches with a Q value <
0.01 (<1% false discovery rate [FDR]).

c. The mass tolerance was 10 ppm for precursor ions and 0.8 Da for MS2.
d. Only fully tryptic peptides were considered with a maximum of three missed

tryptic cleavage sites.
e. Carbamidomethylation of cysteine was set as a fixed modification and oxida-

tion of methionine was set as a variable modification.
Notes:

i. Additional modifications (i.e. phosphorylation) can be included, which may
increase peptide identification and improve core protein coverage.

ii. Tryptic peptides containing GAG attachment sites will not be recognized
unless the GAGs are enzymatically removed prior to analysis and the appro-
priate modifications are sought during spectral analysis (Noborn et al. 2015,
2016).

This detailed method provides a workhorse approach for isolating proteoglycans
and can serve as the foundation for a proteomics study of core proteins, glycopeptide
analysis or glycomics analysis. In all these applications, it ensures reduction of
sample complexity and brings the PGs to the forefront. Using this approach to define
the proteoglycanome of the ascending thoracic aorta, we identified 20 distinct
proteoglycan core proteins (Cikach et al. 2018).

Pursuing a similar rationale, Talusan and colleagues used ion exchange chroma-
tography isolation of proteoglycans coupled to proteomics analysis by gel-LC-MS/
MS, in which the fractions obtained by urea extraction and High Q support strong
AEC were electrophoresed on gels prior to tryptic digestion of the gel slices and
mass spectrometry (Talusan et al. 2005). They found a strong correlation between
proteoglycan abundance and species in an atherosclerosis-prone artery (internal
carotid) and an atherosclerosis-resistant artery (internal thoracic) (Talusan et al.
2005). Vijayagopal et al. (1996) isolated LDL binding proteoglycans from athero-
sclerotic human arteries using a combination of orthogonal chromatographies. First,
dissociative extraction and ion-exchange chromatography, similar to that described
above, were used to isolate proteoglycans. Next proteoglycans were sub-fractionated
on an LDL affinity column and proteoglycan fractions with high-affinity binding to
LDL were analyzed for GAG species. The extracts from atheromatous plaques
contained a high proportion of chondroitin and heparan sulfate proteoglycans,
whereas normal aorta contained more diverse GAG species. Although core proteins
were not evaluated, the data suggested enrichment of a small subset of proteoglycan
species in atheromas, among which the CSPGs versican and biglycan have been
shown to both bind LDL and be present in plaques (Didangelos et al. 2012; Wight
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and Merrilees 2004). The CSPG aggrecan, typically a component of cartilage, was
also reported in atheromatous plaques and stented coronary arteries (Talusan et al.
2005; Suna et al. 2018).

Mass spectrometry (MS) is used extensively for analysis of glycans, including
GAGs. These applications digest the core protein to completion to preserve the
GAGs and rely heavily on sophisticated bioinformatics approaches. This is because
MS identifies molecules by mass and cannot readily distinguish between isomeric
structures, e.g., glucose, mannose or galactose, although fragmentation of the glycan
by different methods, coupled with other analytic techniques can help resolve its
structure (Rojas-Macias et al. 2019). Profiling of glycans by MS requires dedicated
isolation, derivatization and characterization techniques as well as high-resolution
MS instruments (Rojas-Macias et al. 2019).

Whereas glycomics methods obliterate the core protein structure,
glycoproteomics methods preserve the glycan-peptide linkage and can identify
peptides to which glycans are attached, but these methods have limited ability to
provide structural detail of the GAG. As an example of a glycoproteomics strategy,
Noborn and colleagues have developed approaches to characterize HS and CS
linkage regions, attachment sites, and identify novel proteoglycans (Noborn et al.
2015, 2016, 2018; Gomez Toledo et al. 2015). As in the method we describe here,
their approach first requires isolation and enrichment of glycopeptides after trypsin
digestion, using strong AEC. For identification of CS-attachment sites, for example,
CS chains were depolymerized with chondroitinase ABC, leaving a residual
hexameric structure composed of the linkage region and a GlcA-GalNAc disaccha-
ride dehydrated on the terminal GlcA residue attached to the tryptic peptide. LC-MS/
MS was then used to define the mass of the peptide with the residual hexasaccharide
(Noborn et al. 2015).

4.5 Conclusions and Future Perspectives

In summary, we have briefly reviewed the immense biological significance of pro-
teoglycans that justifies the need for specialized -omics approaches to obtain com-
plete characterization, but it is obvious that this is a complex endeavor requiring
multidisciplinary combinations of specialized techniques, instruments and skills.
Regardless of whether the final goal is a proteoglycanome, glycoproteome or
glycome, the strategy will employ some measure of enrichment of proteoglycans
as an initial step. One can thus imagine several potential applications of the basic
approaches we have outlined here. An important application is to identify the
complete repertoire of “part-time” proteoglycans, since GAG-attachment contributes
substantially to the functional diversity of the genome. Akin to our delineation of the
aortic proteoglycanome, it is possible to use the approach to identify the
proteoglycanome of any tissue or organ in development, health and disease. For
example, taken together with isolation of specific organ structures such as renal
glomeruli, or neural ganglia, proteoglycanomes of specific structures in organs can
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also be achieved. The emerging explosion of single cell RNA sequence data for
many tissues and organs, both adult and at many stages of embryonic development,
will further allow a very refined determination of the proteoglycan repertoire.
Another application that has been explored to only a limited extent is to define
how proteoglycanomes differ in various diseases. This would be most informative if
a quantitative analysis could be applied. One such approach would be to digest
extracts of normal and disease tissue with trypsin, label the tryptic peptides with
isobaric tags, and then combine the samples for glycopeptide enrichment steps prior
to LC-MS/MS. In this way, variables introduced by preparation of each sample
separately are eliminated, and moreover, the combined enriched glycopeptide pool
can be analyzed in the same mass spectrometry run, avoiding run-to-run variation as
well. The improved sensitivity of modern instruments and informatics tools that can
combine glycopeptide analysis in multi-omics strategies, e.g., with single cell RNA
sequencing, will likely make this approach important in understanding many dis-
eases in the future.
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Chapter 5
Historical Overview of Integrated
GAG-omics and Proteomics

Manveen K. Sethi and Joseph Zaia

Abstract The ECM is a complex molecular network that surrounds all cells and
consists of proteins, glycoproteins, hyaluronan, glycosaminoglycans (GAGs), and
proteoglycans (PGs). GAGs and PGs play vital roles in ECM-related processes such
as cell migration, proliferation, adhesion, and differentiation. Among the omics
technologies, including genomics, transcriptomics, and proteomics, glycomics is
the least mature. Over the past two decades, with efforts from glycoscientists around
world, and the advent of new glyco-techonologies, databases, tools, and methods,
much progress has been made. Now, the focus is to integrate proteomics and
glycomics domains in a new platform to analyze and characterize biomolecule
classes and define their structural and functional roles. Towards this end, we have
developed approaches that integrate analysis of GAGs and proteins towards an end
goal of elucidating pathophysiological mechanisms to inform development of dis-
ease therapies and regenerative medicine. In this chapter, we provide a historical
overview of our groups’methods for glycomics, glycoproteomics, and proteomics of
key ECM constituents, i.e., GAGs and PGs, as reported over the past decade.

Abbreviations

CE Capillary electrophoresis
CS Chondroitin sulfate
DS Dermatan Sulfate
ECM Extracellular matrix
GAGs Glycosaminoglycans
GalNAc N-acetylgalactosamine
GlcA Glucuronic acid
GlcNAc N-acetylglucosamine
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HA Hyaluronic acid
HEP Heparin
HILIC Hydrophilic interaction chromatography
HS Heparan sulfate
IdoA Iduronic acid
IMS Imaging mass spectrometry
IPRP Ion-pair reversed-phase chromatography
KS Keratan sulfate
LC Liquid chromatography
LIF Laser-induced fluorescence
MALDI Matrix-assisted laser desorption/ionization
MS Mass spectrometry
MS/MS Tandem mass spectrometry
MWCO Molecular weight cut-off filters
PGs Proteoglycans
PNNs Perineuronal nets
PTMs Post-translational modifications
SEC Size exclusion chromatography
TOF Time-of-flight

5.1 Introduction

Glycosylation is required for all life forms and abundant, with over 50% of mam-
malian proteins being glycosylated (Apweiler et al. 1999). In comparison to other
major biomolecules such as proteins and DNA, the biological roles of carbohydrates
remain poorly understood. Carbohydrates, being complex and remarkably diverse in
nature, are arduous to synthesize, characterize, and analyze. However, over the past
decade, with the advent of new technologies, experimental techniques, and instru-
mentation, analysis of glycans and glycoproteins, also formally known as
‘glycomics’ and ‘glycoproteomics’, respectively, has gained momentum.

Proteoglycans (PGs) and glycosaminoglycans (GAGs) are ubiquitous compo-
nents of the ECM and play essential roles in all areas of physiology, including cell
signaling, cell adhesion, and cell functions (Afratis et al. 2012). PGs are composed of
core proteins to which GAG chains are attached. GAGs are linear polysaccharides
consisting of repeating disaccharide units of hexosamine (N-acetylglucosamine or
N-acetylgalactosamine), and hexuronic acid (glucuronic acid or iduronic acid) that
are covalently attached. GAGs can be divided into categories based on the repeated
disaccharide unit, i.e., heparan sulfate (HS), chondroitin sulfate (CS), dermatan
sulfate (DS), keratan sulfate (KS) and hyaluronic acid (or hyaluronan)
(HA) (Table 5.1) (Sethi and Zaia 2017). They are heterogeneous concerning chain
length and subsequent modifications, including sulfation, acetylation, and uronic
acid epimerization of disaccharide units. GAG structure is spatially and temporally
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regulated and plays specific and distinct functional roles during development and
disease onset (Iozzo and Schaefer 2015). Unlike other GAGs, HA does not contain
sulfate and is not bound to a core protein; rather it exists as a molecular backbone for
extracellular matrix complexes consisting of glycoproteins, proteoglycans, collagens
and other interacting molecules.

The ECM is a complex molecular network that surrounds all cells, occupying
approximately a 20% volume fraction of the adult brain (Sykova and Nicholson
2008). Its main components include hyaluronan, proteoglycans, glycoproteins, and a
variety of posttranslational remodeling proteases, such as matrix metalloproteinases
(MMPs), which cleave ECM molecules, allowing for highly dynamic functional
adaptations (Muir et al. 2002; Rivera et al. 2010). Organized forms of ECM, namely
perineuronal nets (PNNs), composed of hyaluronan, proteoglycans, glycoproteins,
and collagen, surround the synapse and interact with cell surface receptors. In
pathologies, including cancers, cardiovascular diseases, fibrosis,
neurodevelopmental and neuropsychiatric diseases, ECM structure and function
becomes dysregulated. Thus, characterizing the ECM structure is central to the
understanding of physiology and pathophysiology in many diseases (Raghunathan
et al. 2019a). The matrisome is defined as the supramolecular complexes, consisting
of proteoglycans, glycoproteins, collagens, and hyaluronan, that form the functional
units of the ECM (Martin et al. 1984), including the associated molecules.
According to the matrisome project, the core matrisome consists of 195 glycopro-
teins, 44 collagens, and 35 proteoglycans (Shao et al. 2019).

Large scale proteomics studies have quantified, and cataloged expression patterns
of various ECM and associated proteins (Byron et al. 2013; Chang et al. 2016;
Goddard et al. 2016; Hill et al. 2015; Lindsey et al. 2016; Naba et al. 2012, 2015,
2017), but have not defined the glycosylation patterns of these proteins. It is essential
to profile the glycosylation of the matrisome molecules to understand its structural,
functional, and biological role in critical molecular mechanisms necessary to under-
stand biomolecular deregulation related to a disease or condition.

Our group has developed methods for performing GAG glycomics, proteomics,
glycoproteomics in both separate and integrated forms employing multiple experi-
mental techniques such as in solution and on slide tissue digestion followed by liquid
chromatography based-tandem mass spectrometry (LC-MS/MS). In this chapter, we
provide a historical overview of these methods for glycomics, glycoproteomics, and
proteomics of key ECM constituents, i.e., GAGs and PGs, as reported over the past

Table 5.1 Type of glycos-
aminoglycan (GAG), and its
repeating disaccharide unit

Type of GAG Disaccharide unit

Hyaluronan (HA) GlcNAc and GlcA

Chondroitin sulfate (CS) GalNAc and GlcA

Dermatan sulfate (DS) GalNAc and GlcA/IdoA

Heparin sulfate (HS) GlcNAc and GlcA/IdoA

Keratan sulfate (KS) GlcNAc and Gal

GlcNAc N-acetylglucosamine, GalNAc N-acetylgalactosamine,
GlcA glucuronic acid, IdoA iduronic acid, Gal galactose
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decade (Bielik and Zaia 2010, 2011; Bowman and Zaia 2010; Gill et al. 2013;
Hitchcock et al. 2008a, b; Huang et al. 2011; Khatri et al. 2014, 2016; Klein et al.
2018; Leymarie et al. 2012; Raghunathan et al. 2019b; Shao et al. 2013a, b; Shi et al.
2012; Staples et al. 2009, 2010; Turiak et al. 2014). We describe the experimental
approaches and their optimization to achieve higher coverage and better quality data.

5.2 Glycosaminoglycan Analysis/GAG-omics

5.2.1 Overview of GAGs

The GAG classes include unsulfated hyaluronan (HA), and sulfated heparin/heparin
sulfate (HS), chondroitin/dermatan sulfate (CS/DS), and keratan sulfate
(KS) (Fig. 5.1a–d). HS and CS are unbranched polymers composed of ~20–200
repeating disaccharide units; N-acetylgalactosamine (GalNAc) or
N-acetylglucosamine (GlcNAc) and uronic acid, e.g., glucuronate (GlcA) or
iduronate (IdoA) attached to serine or threonine residue of core protein through a
characteristic tetrasaccharide linker (Kjellen and Lindahl 1991). In contrast, HA is
not covalently attached to a core protein and is not sulfated, but consists of repeating
disaccharide units of GlcA and GlcNAc attached via alternating β1,3- and β1,4-
glycosidic linkage (Sethi and Zaia 2017). KS is composed of repeating disaccharide
units of Gal, and GlcNAc via alternating β1,4 and β1,3-glycosidic linkage. The KS
GAG chain may be attached to the core protein in three ways: KSI, where the GAG
is a sulfated lactosamine chain attached to an N-glycan, KSII where the sulfated
lactosamine chains are attached to O-linked glycans on serine/threonine residues,
and KSIII which the GAG chains are attached to the core protein through mannose-
Ser linkage (Funderburgh 2000). Identified over 100 years ago, GAGs are found in
mast cell granules, cell surfaces, basement membrane, and extracellular matrix
(ECM) (Zaia 2008). The sulfated GAGs consist of repeating disaccharide units
that become modified biosynthetically via a series of enzymatic events, including
deacetylation, sulfation, and epimerization. Figure 5.1e shows CS and HS biosyn-
thesis. These spatial and temporal variations in GAG structure give rise to context-
specific interactions with protein partners, growth factors, receptors, ligands respon-
sible for critical biological processes such as cell signaling, adhesion, and interaction
in normal and pathological conditions. These modifications are also responsible for
the heterogeneous, anionic, and complex nature of GAGs that make GAG analyti-
cally challenging to study (Zaia 2005).

5.2.2 Analytical Challenges of GAG Analysis

Routinely, a GAG oligosaccharide is subjected to a series of chemical and enzymatic
degradation steps and analyzed using chromatographic, electrophoretic, or mass
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spectrometric methods (Conrad 1997; Turnbull et al. 1999; Venkataraman et al.
1999; Zaia 2009). Mass spectrometry serves as an essential tool for structural
analysis of GAGs with high sensitivity and versatility. Over the years, several
MS-based methods for GAG-glycomics or GAG-omics have been reported, includ-
ing matrix-assisted laser desorption ionization (MALDI)-MS, size exclusion chro-
matography (SEC)-MS, and ion-pair reversed-phase chromatography (IPRP)-MS,
and HILIC-MS (Henriksen et al. 2004; Hitchcock et al. 2008b; Laremore and
Linhardt 2007; Liu et al. 2019; Shao et al. 2013b; Venkataraman et al. 1999;
Wang et al. 2012). Success in MS analysis of GAGs depends largely on the
extraction and workup methods used. In particular, it is important to remove salts,
contaminants, nucleic acids, or lipids that could interfere with further analysis (Zaia
2009). Other analytical challenges include problems with recovery of GAGs from
liquid chromatography (LC) system as charged glycans may stick to the titanium
containing metallic loops, filters or transfer lines. In addition, it is necessary to use
mass spectrometer fragile ion tuning parameters to minimize the extent to which
sulfated ions dissociate during desolvation and ion transfer prior to mass analysis
(Staples and Zaia 2011). We and others have developed effective analytical tech-
niques to overcome these challenges (Bodet et al. 2017; Henriksen et al. 2004;
Hitchcock et al. 2008a; Laremore and Linhardt 2007; Liu et al. 2019; Shao et al.
2013a; Solakyildirim 2019; Staples et al. 2009, 2010; Wang et al. 2012).

5.2.3 GAG LC-MS/MS Analysis Using SEC
and Amide-HILIC

In 2006, we demonstrated successful LC-MS/MS platform with a compatible
extraction method for quantifying CS GAGs using a size exclusion column (SEC)
with on-line MS detection (Hitchcock et al. 2006). Despite its robustness and
reliability, SEC is a low-resolution technique. Thus, in 2008 we implemented
LC-MS/MS platforms utilizing amide-hydrophilic interaction chromatography
(HILIC) instead of SEC for analyzing CS GAGs from connective tissues. We
were able to profile the GAG chain non-reducing end, the linker region, and
Δ-unsaturated interior oligosaccharide domains of the CS chains. The GAGs were
extracted from the core protein using sequential β-elimination, C-18 cleanup to
remove hydrophobic molecules, and finally, anion exchange spin columns to remove
cationic molecules. The eluted anionic GAG mixture was then partially
depolymerized with chondroitinase enzymes, and further differentially stable
isotope-labeled by reductive amination using 2-anthranilic acid—d0 and d4, and
subjected to amide-HILIC on-line LC-MS/MS analysis (Hitchcock et al. 2008b).
One limiting factor of using amide-HILIC LC-MS/MS was the stability of the spray
interface as conventional silica sprayers clogged in negative mode, and thus,
required time consuming and extensive optimization. This problem was solved by
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using a non-silica sprayer such as provided by the Agilent Chip Cube and the Advion
NanoMate robot.

5.2.4 GAG CE-LIF Analysis

We then ventured into capillary electrophoresis (CE) coupled with laser-induced
fluorescence (LIF) for GAG disaccharide compositional analysis, an essential step
towards understanding the GAG structure-function relationship. We first reported a
method that utilized capillary electrophoresis (CE) with laser-induced fluorescence
(LIF) to analyze GAG disaccharides in the biological samples. This method made
several improvements to existing methods including, optimization of reductive
amination conditions, an increase in sensitivity by using cellulose cleanup for
derivatization, and optimization of separation for reproducibility and robustness
(Hitchcock et al. 2008a). CE has various benefits over other analytical methods,
including high resolving power and separation efficiency for disaccharide structural
isomers differing in sulfation position, economical (use of less buffer and sample),
faster, automated and reproducible analysis, but has not been widely used mainly
because of disaccharides recovery issues after derivatization workup. Our method
eliminated noise background and improved quantification of biological samples by
100-fold, and thus, enabled disaccharide quantification of HS and CS GAGs from
biologically relevant PGs and intact tissue samples. This method was not, however,
compatible with on-line MS detection.

5.2.5 GAG HILIC-CHIP-MS Based Analysis

In order to improve the chromatographic resolution of the LC-MS method for
GAGs, we utilized a novel chip-based amide-HILILC system for negative ion
LC-MS/MS of partially depolymerized heparin/HS, and CS/DS GAGs. The chip-
based trapping cartridges assisted in the removal of contaminating proteins, lipids,
nucleic acids, and acidic non-GAG carbohydrates by focusing the analyte in the MS
while allowing contaminants to flow through with minimum interaction with the
stationary phase. We were able to achieve robust positioning of the spray needle and
the analysis of GAGs isolated from complex biological and chemical samples
(Staples et al. 2009). In this work, we noted that there was a physical limitation for
analysis of highly sulfated (polar) GAG oligosaccharides such as HS dp10s that start
to elute when the source voltage is not able to maintain the electrospray.

To overcome this problem, we optimized the novel amide-HILIC HPLC CHIP
platform with an introduction of makeup flow (MUF) (Staples et al. 2010). The MUF
chips allowed electrospray in high aqueous conditions during negative-ion mode
LC-MS, thus, eliminating the need to raise spray voltages as aqueous content
increased. We used this chip for analysis of highly modified GAG domains involved
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in various biological processes. We were able to analyze dp10-dp14 HS and dp14-18
heparin oligosaccharides, which was not possible with a standard amide-HILIC
HPLC chips (Staples et al. 2010). The HILIC-Chip based platform was a unique
platform for analysis of GAGs but the ions observed were low in charge, resulting in
undesirable sulfate loss from precursor ion during collision-induced dissociation
(CID). To overcome sulfate losses, we used metal cation adducts to stabilize sulfate
groups or nonvolatile polar compounds such as sulfolane to supercharge proteins
could be added. Thus, we utilized microfluidic novel pulsed makeup flow (MUF)
HPLC-chips that enabled controlled application of additives during a given chro-
matographic window and thus, reduced the nonvolatile additive build up in the ion
source. Using these chips, the tandem-MS of these supercharged precursor ions
showed significant decrease in sulfate loss (Huang et al. 2011). We further worked to
improve tandem mass spectrometry of GAGs by reducing sulfate loss and generating
better product ion profiles (Bielik and Zaia 2011; Leymarie et al. 2012; Shi et al.
2012).

5.2.6 Tetraplex Stable Isotope-Coded Based Quantitative
GAG Glycomics

We demonstrated an effective method for tetraplex stable isotope-labeled reductive
amination tags for quantitative glycomics of chondroitin sulfate proteoglycans
(CSPGs), pharmaceutical heparins, and N-glycans from glycoproteins subjected to
an online LC-MS platform as well as tandem mass spectrometry which was used or
comparison of isomeric glycan fine structures from various samples. This method
provided not only a precise compositional profiling of GAGs but also fine structural
compositions together with multiplexing benefits for high-throughput (Bowman and
Zaia 2010).

5.2.7 GAG Disaccharide Analysis Using HILIC LC-MS

Using a single LC-MS platform to generate complete disaccharide profiles for GAG,
we utilized HILIC-MS for quantification of both enzyme-derived and nitrous acid
depolymerization products for structural analysis of HS and CS/DS GAGs (Gill et al.
2013). HILIC is one of the most widely used separation tools for glycans. It offers
several advantages such as shorter sample preparation time, ultrafast analysis due to
low column backpressure and improved MS sensitivity. HILIC with online ESI-MS
has been used widely for the analysis of released glycans (Luo et al. 2009; Mauko
et al. 2011; Ruhaak et al. 2008; Zauner et al. 2011), glycopeptides (Calvano et al.
2008; Wohlgemuth et al. 2009; Zauner et al. 2010), GAG oligosaccharides (Huang
et al. 2011; Kailemia et al. 2014; Staples et al. 2010). For GAG disaccharide
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analysis the challenge with HILIC is to find mobile phase conditions that achieve
efficient retention of disaccharides containing a range of 0–4 sulfate groups. Gener-
ally speaking, chromatographic resolution is best for 2.1 and 1.0 mm internal
diameter columns. It is typically necessary to use a tandem MS step to differentiate
isomeric disaccharides that co-elute using HILIC (Gill et al. 2013).

5.3 On-Slide Tissue Digestion Coupled with LC-MS/MS
for Integrated Glycomics and Proteomics

We innovated a novel on slide digestion platform in our lab that utilized serial
enzyme digestions from surfaces of fresh frozen or fixed tissue sections
(Raghunathan et al. 2019b; Shao et al. 2013a; Turiak et al. 2014). To understand
the biological roles played by GAGs and PGs expression during pathogenesis, it is
crucial to detect and profile GAGs and proteins at the histological scale to minimize
cell heterogeneity and potentially inform diagnosis and prognosis. This method
provided a readout of HA, CS, HS GAG quantities, domain structures, and
non-reducing end structures as well as N-glycans, and proteins using a simple
workflow of application of enzyme and extraction of biomolecules with minimal
need for workup (Fig. 5.2). The method was able to quantify different biomolecules
and perform integrated omics for tissue volumes of 10 nL or greater, corresponding
to a 1 μL droplet of enzyme solution applied to a 1 mm diameter target on a 10 μm
thick tissue slide. Using this method allowed the staining of parallel sections or
immunohistochemistry to guide the selection of the target area on an unstained tissue
section. This method provides a targeted approach to analyze a specific tissue area,
for example, tumor vs. non-tumor, myelin vs. non-myelin, etc., and uncover detailed
structural profiles and establish a functional relationship to understand the disease or
normal pathology.

Compared to in solution digestion (Ji et al. 2015; Wisniewski 2016), on slide
digestion is more economical in terms of time required per sample. On slide
digestion also requires less post-digestion cleanup prior to the LC-MS step. The
LC step results in higher dynamic range of detection for GAGs and proteins than can
be achieved using MALDI imaging mass spectrometry (IMS) (Raghunathan et al.
2019b; Shao et al. 2013a; Turiak et al. 2014). By contrast, MALDI-IMS has the
advantage of higher tissue spatial resolution than the on slide digestion method
(Drake et al. 2017, 2018a).

In 2013, we reported this method for comparative glycomics profiling of HS
disaccharides from human astrocytoma, and glioblastoma tissues (Shao et al. 2013a).
Later, in 2014, we modified the technique to include various compound classes
GAGs, N-glycans, and proteins/peptides using the bovine cortex and mouse brain
tissue sections (Turiak et al. 2014). The data from a small 1.5 mm diameter tissue
spot was consistent with previously published bulk mouse, liver, and brain tissue
demonstrating the power of our method. More recently, we reduced the number of
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processing steps by digesting HS disaccharides, and N-glycans together
(Raghunathan et al. 2019b).

We have applied this state-of-the-art platform to understand various brain pathol-
ogies, including glioblastoma (Shao et al. 2013a), aging (Raghunathan et al. 2018),
schizophrenia (unpublished), and Parkinson’s disease (unpublished), and have
uncovered several dysregulated GAGs, ECM related proteins and pathways.

5.4 In Solution Tissue Digestion for Integrated Proteomics
and Glycomics

In the past, we have performed in solution tissue digestions to characterize GAGs
and proteins but not in a sequential and/or an integrated omics manner (Jacobsen
et al. 2019; Shao et al. 2013b). Recently, we developed a streamlined serial in
solution protocol to analyze GAGs and proteins from the brain or other tissues
(Fig. 5.3) (manuscript submitted). Compared to our on-slide digestion protocol that
provides a selection of target area on a tissue slides (Raghunathan et al. 2018, 2019b;
Shao et al. 2013a; Turiak et al. 2014) and MALDI-imaging method for glycans that
offers higher spatial resolution (Drake et al. 2017, 2018a, b), this method can be
applied to free-floating or frozen tissues and provides a high depth of coverage. This
platform is more rapid (time-effective) and efficient (single-pot) than the currently
used parallel approach, i.e., a multi-pot simultaneous enzyme application method
(Chen et al. 2017; Shao et al. 2013b; Turnbull et al. 2010). The removal of GAGs
also facilitates protein identification of the remaining deglycosylated PGs with
higher peptide-coverage using conventional-proteomics (Klein et al. 2018), com-
pared to current studies achieving only low PG-coverage (Donovan et al. 2012;
Hondius et al. 2016). The protocol follows a filter-aided sample preparation (FASP)
type (Wiśniewski et al. 2009) serial in-solution digestion using molecular weight
cut-off (MWCO) membrane filters as a reactor to digest glycosaminoglycan (GAG)
classes, including HA, CS, and HS, and collect it as a flow-through, and finally
collect proteins to perform trypsin digestion to generate peptides from tissue or cell
lysates. We have applied this workflow to mouse brain tissue, and human healthy
and Alzheimer’s brain tissue.

5.5 Deep Sequencing of Proteoglycans

The peptide sequence coverage for large and highly complex PGs containing a high
degree of glycosylation arising from GAGs, N-glycans, and mucin O-glycans are
poorly-annotated by conventional MS analysis. Thus, little is known about the role
of site-specific glycosylation of PGs in normal and disease pathologies. We devel-
oped a workflow (Fig. 5.4) to improve sequence coverage and identification of
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glycosylated peptides in biologically relevant proteoglycans (PGs), including small
leucine-rich proteoglycan (SLRP) decorin and three hyalectan proteoglycans:
neurocan, brevican, and aggrecan necessary to understand their role in pathophys-
iology (Klein et al. 2018). Using the workflow, we were able to identify linker-
glycosite (created by removal of GAGs that leaves a linker tetrasaccharide plus one
disaccharide to the protein/peptide), and 3 N-glycosylation sites for decorin, densely
glycosylated mucin like region in the extended domain for neurocan and brevican,
and 50 linker-glycosites and mucin-type O-glycosites in the extended region and
N-glycosites in the globular domains for Aggrecan, many of which were not
previously identified or reported.

5.6 Conclusions

Over the past decade, glycoscientists around the world have created a vast pool of
knowledge, glyco-databases, and glyco-technologies to characterize and analyse
glycans, to define their structural composition, and relate their biological functions.
Mass spectrometry has played a major role in determining the structural composi-
tions of various biomolecules, and multiple disciplines viz. genomics,
transcriptomics, proteomics, glycomics, and glycoproteomics have been integrated
omics to address biologically relevant questions for the understanding of the biolog-
ical system. Towards this end, we have developed various platforms for integrated
omics approach and gain insights into development, disease, therapy, and regener-
ative medicine.

At this time, there are effective analytical methods for the combined analysis of
GAGs and proteins from tissue samples. These methods employ digestion steps prior
to electrospray mass spectral analysis. The first system developed employed
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Spin
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Spin
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ChondroitinaseABC

Digestion

Digestion of CS
chains

Fig. 5.4 Schematic representation of the workflow for enrichment of proteoglycan linker-peptides
taken from Klein et al. (2018)
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SEC-MS, a system that is extremely robust but of limited sensitivity. The use of
HILIC-MS allows effective profiling of GAG oligosaccharide mixtures and is the
preferred method for disaccharide analysis. That HILIC-MS can be reduced in scale
allows it to be used for detection of GAGs released using on slide digestion. We have
analyzed tissue cohorts of several dozen samples using this approach. In order to
improve the depth and sensitivity of PG coverage, we optimized in solution enrich-
ment and digestion protocols. Looking ahead, there is no barrier to quantitative
profiling of GAGs and proteins from tissue. Analytical throughput would be
improved by application of robotic automation. The use of robotics may also reduce
the volume of tissue required for analysis.
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Chapter 6
Extracellular Matrix Networks: From
Connections to Functions

Sylvie Ricard-Blum

Abstract The extracellular matrix (ECM) forms of a three dimensional interaction
network mostly comprised of proteins, collagens being the most abundant ones
(Ricard-Blum, Cold Spring Harb Perspect Biol 3:a004978, 2011), glycosaminogly-
cans (GAGs) and proteoglycans (PGs) (Iozzo and Schaefer, Matrix Biol 42:11–55,
2015; Karamanos et al., Chem Rev 118:9152–9232, 2018). We review here the
major methods used to identify and characterize ECM protein, glycosaminoglycan,
and proteoglycan interactions with a focus on high-throughput methods able to
identify a number of interactions simultaneously such as yeast two hybrid assays,
ECM protein and GAG arrays, and affinity purification coupled to mass spectrom-
etry (MS). The use of large experimental interaction datasets publicly available, and
of interaction databases to retrieve interaction data required to build interaction
networks is discussed. The interest of the data generated from the functional and
structural analyses of interactomes to decipher molecular mechanisms of biological
processes, to design further functional experiments, and to select ECM proteins or
GAGs and/or their biomolecular interactions as therapeutic targets is illustrated by
several examples. The ultimate goal of these studies is to build three-dimensional
ECM networks, integrating the 3D structure of individual ECM molecules and their
complexes.

6.1 Introduction

The extracellular matrix (ECM) forms of a three dimensional interaction network
mostly comprised of proteins, glycosaminoglycans (GAGs) and proteoglycans
(PGs). ECM proteins (e.g. collagens, laminins, fibronectin, elastin) and associated
proteins, which comprise the matrisome (Chap. 2), self-organize in association with
proteoglycans (Iozzo and Schaefer 2015; Theocharis et al. 2019) to form
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supramolecular assemblies, which are molecular alloys (Bruckner 2010). In addition
to the interactions they establish to promote ECM assembly, ECM proteins and
proteoglycans exert their biological activities in a concerted and regulated manner by
binding to a variety of partners. These dynamic interactions influence each other
in vivo and form networks, which are rewired depending on the physiopathological
context, and orchestrate the functions of the ECM. The first step to decipher the
molecular mechanisms of ECM assembly, homeostasis and changes induced by
diseases (Bonnans et al. 2014; Theocharis et al. 2019), to identify new therapeutic
targets and to design new therapies is to make an inventory of the biomolecular
interactions connecting the ECM constituents (Fig. 6.1), and then to add on this
scaffold the information required to build subnetworks specific of a tissue, a molec-
ular function, a biological process or a disease (Fig. 6.2). This process, often referred
to as contextualization, can be carried out by integrating experimental data related to
ECM proteins or proteoglycans such as genomic, transcriptomic and quantitative
proteomic data collected in healthy or diseased tissues. Keywords from the

Fig. 6.1 Sources of experimental interaction data used to build an interaction network visualized
with two Cytoscape layouts (Shannon et al. 2003) (https://cytoscape.org/). The large datasets are
BioPlex (Huttlin et al. 2015, 2017, 2020) (https://bioplex.hms.harvard.edu/), and HuRI (a reference
map of the human binary protein interactome, (Luck et al. 2020). Interactions can also be retrieved
from databases such as MatrixDB, an ECM database (http://matrixdb.univ-lyon1.fr/), the
adhesome, a focal adhesion network (www.adhesome.org), and those from the International
Molecular Exchange (IMEx) consortium (https://www.imexconsortium.org/) described in this
chapter and in the first chapter
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UniProtKB database (UniProt Consortium 2019), and annotations from Gene Ontol-
ogy (The Gene Ontology Consortium 2017) (Chap. 1) can also be integrated in the
networks to provide information on the cell/tissue locations, molecular functions and
the biological processes ECM proteins and proteoglycans are involved in. The
parameters governing interactions (kinetics, affinity and binding sites) can also be
added to discriminate transient from stable interactions, rank the interactions within
the networks and identify those competing for the same binding site(s) on an
extracellular protein or a proteoglycan (Fig. 6.2).

We review here the major methods used to identify and characterize ECM
protein, glycosaminoglycan, and proteoglycan interactions with a focus on high-
throughput methods able to identify a number of interactions simultaneously such as
yeast two hybrid assays, ECM protein and GAG arrays, and affinity purification
coupled to mass spectrometry (MS). We also discuss the use of large experimental
interaction datasets publicly available, and of interaction databases to retrieve
interaction data required to build interaction networks. Text-mining based compu-
tational approaches to extract protein-protein interactions from biomedical literature
(Papanikolaou et al. 2015; Yu et al. 2018) and the prediction of protein-protein
interactions (Kotlyar et al. 2017) are both beyond the scope of this chapter. This
review also provides selected examples of interaction networks of individual ECM
protein, glycosaminoglycan or proteoglycans, ECM families (e.g. syndecans), and of

Fig. 6.2 Contextualization of interaction networks: integration of gene/protein annotations and
-omic data to build specific interaction networks (e.g. tissue-specific or disease-specific interaction
networks), of kinetics and affinity to rank interaction in networks, and of binding sites to discrim-
inate competitive interactions from those occurring simultaneously
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ECM networks contextualized by integrating expression or proteomic data, which
are specific of a particular biological process or disease. We illustrate the usefulness
of these networks and how the data generated from their functional and structural
analyses can be used to decipher molecular mechanisms of biological processes such
as ECM proteostasis (Doan et al. 2019) and diseases (Bonnans et al. 2014;
Theocharis et al. 2019), to design further functional experiments, and to select
ECM proteins or GAGs and/or their biomolecular interactions as therapeutic targets.
The perspectives offered by the collection of interaction data at large scale, and by
the building of interactomes are discussed in the conclusion, together with the
ultimate goal to build three-dimensional ECM networks, integrating 3D structure
of individual ECM molecules and their complexes, which will be the first step
towards 3D models of the extracellular matrix.

6.2 Experimental Identification of ECM Protein
and Proteoglycan Interactions

Experimental methods for interactome mapping together with computational
methods to predict and map interaction networks have been recently reviewed
(Snider et al. 2015). To draw relevant conclusions from the analysis of an interaction
network it is important to get an extensive coverage of the interactions, and thus to
use high-throughput methods to identify biomolecular interactions. The human
ECM proteome, defined as the matrisome (Naba et al. 2016) is small (about 1100
proteins) but its specific features make the identification of ECM interactions with
certain high throughput methods challenging. Indeed, the major proteins of the ECM
are multimers. The 28 collagen types and the laminin isoforms are trimeric, fibro-
nectin is a dimer, the matricellular proteins thrombospondins and tenascins are
multimeric, and several ECM receptors (e.g. discoidin-domain receptors) or
coreceptors (syndecans) are able to dimerize. Furthermore, ECM proteins and pro-
teoglycans undergo proteolytic cleavages leading to the release in vivo of bioactive
protein fragments called matricryptins or matrikines (Monboisse et al. 2014; Ricard-
Blum and Vallet 2016a, 2019), which are biological regulators and potential drugs
and exert their activities by interacting with several receptors (Ricard-Blum and
Vallet 2016b). Gene-centric methods such as two-hybrid approaches are thus not
appropriate to identify interactions established by multimeric proteins, ECM bioac-
tive fragments which have interaction repertoires of their own, and glycosamino-
glycans (GAG) chains, which are either covalently attached to the protein cores of
proteoglycans (heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate and
keratan sulfate) or associate in a non-covalent manner to proteoglycans and link
proteins to form proteoglycan aggregates (hyaluronan).

Most ECM interactions have been identified in small- or medium-scale studies,
and large-scale approaches to screen binary ECM protein or GAG pairs are still
underused. A high-throughput screening procedure called AVEXIS (avidity-based
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extracellular interaction screen) has been developed to identify weak extracellular
receptor-ligand interactions (t(1/2) � 0.1 s), and used to investigate signaling
pathways in early vertebrate (zebrafish) development mediated by the immunoglob-
ulin superfamily and leucine-rich repeat families (Bushell et al. 2008). This method
has been extended to other domain families and more secreted proteins, leading to a
large screen including 16,544 potential interactions in zebrafish, resulting in the
identification of 96 novel interactions and of the first extracellular ligands for
15 proteins (Martin et al. 2010). AVEXIS has also been used to identify extracellular
host-pathogen interactions (Martinez-Martin 2017). It should be noted that this
approach is not appropriate to compare the strength of the interactions because it
is based on the artificial pentamerization of the prey by a peptide from the cartilage
oligomeric matrix protein (Kerr and Wright 2012), which also prevents the use of
this assay to explore the interactions established by multimeric ECM proteins.

6.2.1 Yeast Two-Hybrid Assays

This method has allowed the identification of the binding partners of ECM domains
such as the NC1 domain of collagen VII, a globular domain of the laminin β3 chain
(Aho and Uitto 1998), the N- and C-terminal domains of collagen VI chains (Kuo
et al. 1997), the N-propeptide of the procollagen α1chain of collagen V (12 partners)
(Symoens et al. 2011), and of ECM proteins such as thrombospondin-1 (Aho and
Uitto 1998), microfibril-associated glycoprotein-2 (Nehring et al. 2005), the extra-
cellular matrix protein-1 (ECM-1) (Fujimoto et al. 2006), and tuftelin, an enamel
matrix protein (Paine et al. 1998). Interacting sequences can also be identified by this
approach as shown for thrombopondin-1 (Aho and Uitto 1998) or ECM-1 (Fujimoto
et al. 2006). Among the interaction detected via two-hybrid assays, some have been
selected for functional characterization. The interactions between lysyl oxidase
(LOX) and a disintegrin and metalloproteinase with thrombospondin motifs
(ADAMTS) families have been first reported in a yeast two-hybrid screen performed
with prolysyl oxidase as a bait and a human placenta library (Aviram et al. 2019).
Laminins and fibronectin have been also identified as putative binding partners of
human lysyl oxidase by a yeast two-hybrid assay (Kraft-Sheleg et al. 2016).

6.2.2 ECM Protein, Peptide and Glycosaminoglycan Arrays

We have designed ECM protein and glycosaminoglycan arrays to identify their
binding partners by spotting them onto a gold affinity chip. They are physically
adsorbed on the gold surface, and their potential protein partners are recirculated on
the chip surface for 20–30 min for proteins and proteoglycans (Faye et al. 2009;
Salza et al. 2014; Vallet et al. 2018) up to 120 min for intact parasites (Fatoux-
Ardore et al. 2014), and probed by surface plasmon resonance imaging. This
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approach allowed us to detect new partners of endostatin, a matricryptin of collagen
XVIII (Faye et al. 2009), recombinant collagen V homotrimer pro[α1(V)]3 (Bonod-
Bidaud et al. 2012), procollagen C-proteinase enhancer-1 (PCPE-1) (Salza et al.
2014), the propeptide of prolysyl oxidase (Vallet et al. 2018), and to investigate the
interactions of the ECM with the amyloid Aβ42 peptide, Aβ42 oligomers and fibrils
(Salza et al. 2017), and parasite using intact, living, Leishmania parasites (Fatoux-
Ardore et al. 2014). ECM proteins, GAGs and controls are spotted in triplicates and
about 130 biomolecule pairs can be screened in parallel (Faye et al. 2009). The
spotting of individual domains of ECM components on the arrays has been used to
identify those encompassing binding sites (Bonod-Bidaud et al. 2012; Salza et al.
2014).

Libraries of 56 and 57 triple-helical peptides spanning the length of the triple
helix of collagens II and III helices have been synthesized to set up solid-phase
binding assays (Farndale 2019). These Collagen Toolkits allow to locate sites where
collagen receptors and ECM components bind to collagens II and III. The use of
Collagen II toolkit has shown that the binding of 30 proteins to 170 sites on collagen
II is not random, but displays a periodicity of approximately 28 nm, and that a single
site close to the collagenase-cleavage site interacts with 20 proteins (Farndale 2019).

Arrays of natural or synthetic GAGs, reviewed in (Karamanos et al. 2018) have
been developed to identify GAG-binding proteins. They include neoglycolipid
technology-based microarrays (Li and Feizi 2018), allyl amine coated microplates,
which have been used to characterize the binding of tumor necrosis factor-inducible
gene 6 protein, complement factor H, fibrillin-1, and versican to GAGs (Marson
et al. 2009), and plastic microarray with GAG trapped by their reducing end, used to
characterize GAG interactions with growth factors and anti-glycosaminoglycan
antibodies (Takada et al. 2013). Poly-L-lysine-coated slides have been used to
capture GAGs and make GAG arrays for the rapid detection of GAG-protein
interactions (Rogers and Hsieh-Wilson 2012).

Commercially available protein arrays comprising 8268 human proteins
(Protoarray version 4, Invitrogen) have been used to identify binding partners of
keratan sulfate (KS), chondroitin sulfate A (CSA), and hyaluronan (HA) (Conrad
et al. 2010). The binding of biotinylated GAGs to spotted proteins has been detected
by streptavidin conjugated to a fluorophore. 217 KS-binding proteins, including
75 kinases, 24 CSA-binding proteins and 6 HA-binding proteins have been identi-
fied by this method (Conrad et al. 2010). Novel GAG-binding proteins have been
identified using E. coli proteome chips made of 4300 E. coli proteins leading to the
identification of 185 heparin-, 62 HS-, 98 chondroitin sulfate B (CSB)—and
101 chondroitin sulfate C (CSC)-interacting proteins, and of YcbS as a novel
bacterial virulence factor (Hsiao et al. 2016).
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6.2.3 Affinity Purification: Mass Spectrometry (AP-MS)

147 heparin/heparan sulfate-binding proteins from rat liver plasma membranes have
been captured by affinity chromatography on a heparin column, and identified by
shot-gun mass spectrometry (Ori et al. 2011). Interactions promoting elastic fiber
supramolecular assembly and those mediating its integration in the ECM were
investigated by affinity capture and mass spectrometry (Cain et al. 2009). The
bait-prey complexes were purified by affinity chromatography from conditioned
serum-free media and solubilized ECM via the tag added to the bait proteins and
112 prey proteins interacting with seven baits including MAGP-1, fibulin-5, lysyl
oxidase, fibrillin-1 and collagen VIII were identified by MS/MS (Cain et al. 2009).

Mass spectrometry-based proteomics has been also used to define the intracellular
interactome of collagen I (Doan et al. 2019). This approach is based on the inducible
expression of collagen α1 and α2 chains bearing different tags in HT-1080 human
cells, followed by covalent cross-linking by dithiobis(succinimidyl propionate) to
stabilize transient interactions, cell lysis, co-immunoprecipitation with anti-tag anti-
bodies and quantitative MS proteomics using iTRAQ (Isobaric Tagging Reagents
for Quantitative Proteomic Analysis) or tandem-mass tags (Doan et al. 2019). This
approach, which could be used to build the intracellular interactomes of other
collagen types, allowed the identification of about 30 new partners of collagen I
(Doan et al. 2019).

AP-MS is not an appropriate method to identify binding partners of native ECM
proteins when they are oligomeric. Furthermore, the interactions detected using this
approach may be direct or indirect (i.e. involving a bridging molecule), which should
be indicated in the interaction maps as it has been done for the interactomes of elastic
fibers (Shin and Yanagisawa 2019), syndecans 1 and 4 (Roper et al. 2012) and the
four human syndecans (Gondelaud and Ricard-Blum 2019).

6.2.4 Interaction Databases and Large Interaction Datasets

Interaction data issued from manual curation of the literature, publicly available
interaction databases and/or large interaction datasets can be added to interaction
networks to increase their coverage. The Biological General Repository for Interac-
tion Datasets (BioGRID) contains protein, genetic, and chemical interactions, and
records for >700,000 post-translational modification sites (Oughtred et al. 2019). A
number of ECM networks includes data from BioGRID (Rivera et al. 2011; Zhan
et al. 2017; Izzi et al. 2019). The Search Tool for the Retrieval of Interacting Genes
(STRING) database includes physical, functional interactions, experimental and
predicted interactions (Szklarczyk et al. 2017). STRING data have been integrated
into protein-protein interaction networks of the proteoglycan serglycin (Korpetinou
et al. 2014), heparin/heparan sulfate-binding proteins (Meneghetti et al. 2015), ECM
proteins involved in models of systemic inflammation (Bhan et al. 2019), and
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chondroitin sulfate effects on cartilage ECM proteins (Calamia et al. 2012). They
have also been used to build and analyze the network of adhesome and degradome
proteins in cancer (Rizwan et al. 2015), the ECM interaction network in colorectal
cancer (Qi and Ding 2018), lysyl oxidase-like 2 (LOXL2), actin, cytoplasmic
1 (ACTB) and actin, cytoplasmic 2 (ACTG1) interactome in esophageal squamous
cell carcinoma (Zhan et al. 2017), and the protein-protein interaction network of
genes differentially expressed in tumor cells during the angiogenic response (Yang
et al. 2019). BioGRID and STRING databases have also been used to build the
mammalian interactome of lysyl oxidase including 70 partners and 210 protein-
protein interactions (Okkelman et al. 2014).

MatrixDB, the interaction database we have developed (Chautard et al. 2009a,
2011; Launay et al. 2015; Clerc et al. 2019) (Chap. 1) is focused on the extracellular
matrix, and takes into account its specific features for the manual curation process,
namely the oligomeric nature of a number of ECM proteins, the existence of ECM
bioactive fragments (matricryptins/matrikines) released upon ECM remodeling, and
the presence of glycosaminoglycans. MatrixDB is one of the very few databases, if
not the only one, to report glycosaminoglycan-protein interactions (Clerc et al.
2019). MatrixDB is a member of the International Molecular Exchange consortium
(IMEX, https://www.imexconsortium.org/), which provides a non-redundant set of
physical molecular interaction data from a broad taxonomic range of organisms
through manual curation of the literature (Orchard et al. 2012). MatrixDB data have
been used to build interactomes of fibrillar collagens I, II and III (An et al. 2016; An
and Brodsky 2016), procollagen C-proteinase enhancer-1 (PCPE-1) (Salza et al.
2014), the propeptide of lysyl oxidase (Vallet et al. 2018), GAGs (Vallet et al. 2017;
Vallet et al. 2020), heparin/heparan sulfate (Ori et al. 2011; Karamanos et al. 2018),
decorin (Gubbiotti et al. 2016), 30 proteoglycans (Peysselon et al. 2012), glomerular
ECM (Lennon et al. 2014), and other basement membranes (Clerc et al. 2019). In
addition, large, publicly available, interaction datasets can be queried to retrieve
interactions involving ECM proteins. We used the BioPlex 2.0 dataset generated by
affinity purification-mass spectrometry (AP-MS) and comprising more than 56,000
candidate interactions (Huttlin et al. 2017) to identify further binding partners of the
four human syndecans (Gondelaud and Ricard-Blum 2019). A new BioPlex dataset
collected from human embryonic kidney 293 T cells, BioPlex 3.0, comprises
118,162 interactions among 14,586 proteins (Huttlin et al. 2020). Biomolecular
interactions being context-dependent, the AP-MS approach has been used to profile
interactions in a human colon cancer cell line, HCT116, resulting in a network
comprising 71,000 interactions among 10,531 proteins (Huttlin et al. 2020) (https://
bioplex.hms.harvard.edu/). Other large interaction datasets include the reference
map of the human binary protein interactome (HuRI) comprised of ~53,000 protein–
protein interactions (Luck et al. 2020).

Ingenuity Pathway Analysis (IPA) includes a knowledgebase and provides tools
to analyze omic data (https://www.qiagenbio informatics.com/products/ingenuity-
pathway-analysis). IPA has been used to study the molecular network of elastic fiber
formation (Shin and Yanagisawa 2019), the network of the 15 ECM proteins, which
are differentially abundant in collagen IX knock-out and wild-type cartilage with a
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focus on the network of the collagens involved (Brachvogel et al. 2013), the
remodelling of cellular microenvironment due to loss of collagen VII (Küttner
et al. 2013), and the ECM network in breast cancer (Angel et al. 2019), and cancer
progression (Reuter et al. 2009). IPA has also been used to investigate ECM
remodeling and matrikine signals downstream of Cx43/matrix metalloproteinase-3
(MMP-3)/osteopontin in glioblastoma multiforme (Aftab et al. 2019), and gene
interaction networks during the embryo-to-hatchling transition in chicken (Cogburn
et al. 2018).

6.3 Extracellular Matrix Interaction Networks

Interaction networks can be built from a list of proteins of interest generated by the
users or from experimental data, namely proteins expressed by over-expressed
and/or down-regulated genes in development (Martin et al. 2010), or in diseases
such as recessive dystrophic epidermolyis bullosa (Küttner et al. 2013) and fibrosis
(Ricard-Blum andMiele 2019). The networks provide insights into the structural and
functional cross-talk between proteins and glycosaminoglycans/proteoglycans
within the ECM, between the ECM and the cell surface in the pericellular matrix.
Signaling pathways involved in zebrafish development have been identified by
constructing an extracellular interactome containing 92 proteins and 188 extracellu-
lar interactions between receptors belonging to the immunoglobulin and leucine-rich
repeat protein families (Martin et al. 2010). The connectivity of this network follows
a power law, and the secreted proteins are twice more connected than membrane
receptors

The interaction networks can be visualized as 1D or 2D maps, where molecules
are visualized by symbols of different color and shapes corresponding to specific
features (e.g. their location, their molecular function, the biological process they are
involved in, the diseases they are associated with, their up-or down regulation in a
pathological situation such as cancer (Reuter et al. 2009), their relative abundance
measured by quantitative MS (Küttner et al. 2013) or phosphorylation status as
shown for the fibronectin-induced phospho-adhesome (Robertson et al. 2015). The
interactions can be visualized with various types of lines as shown in few examples
below. Lines of different thickness and/or color have been used to reflect the
confidence of interaction data (Bhan et al. 2019), the interaction strength (i.e. the
affinity of the interactions) (Peysselon and Ricard-Blum 2014; Thomson et al. 2019),
which can be used to rank interactions within the network. Affinity values have been
integrated in the interaction network of a bioactive fragment of collagen XVIII
(endostatin) with its partners located at the surface of endothelial cells where it
regulates angiogenesis, and in the secondary network comprised of endostatin
partners and heparin/heparan sulfate (Peysselon and Ricard-Blum 2014). The values
of equilibrium dissociation constants have also been added in the interaction network
of fibrillin-1 and tropoelastin with their partners (Thomson et al. 2019). Colored or
dotted lines may discriminate direct and indirect interactions (Angel et al. 2019;
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Gondelaud and Ricard-Blum 2019), experimentally determined interactions and
those retrieved from curated databases (Manninen and Varjosalo 2017), experimen-
tally supported and predicted interactions (Paladin et al. 2015) or the techniques used
to identify the interactions (Thomson et al. 2019). The links between proteins may
also represent a functional link as in the human protease web where they represent
cleavages (Fortelny et al. 2014). For a comprehensive overview of the computational
methods to map and visualize interactomes, the basics of protein interaction network
mapping and the major interactome resources the readers are referred to a recent
review (Snider et al. 2015).

Further information, referred to as data integration, can be added to interaction
networks to perform global analyses by interconnecting molecular information
layers of a cell or a tissue i.e. molecular and functional networks based on genomics,
transcriptomics, proteomics, metabolomics, and phenotypes. The methods for inte-
gration of biological data are detailed in a recent review (Gligorijević and Pržulj
2015). Expression data collected by whole zebrafish embryo in situ hybridization at
five stages of embryonic development for 164 genes have been integrated in the
extracellular protein interaction network to switch from a static interaction network
to dynamic tissue- and stage-specific subnetworks (Martin et al. 2010). They are
publicly and freely available via the on-line database called ARNIE (AVEXIS
Receptor Network with Integrated Expression, www.sanger.ac.uk/arnie). Expres-
sion data can also be collected by manual curation of the literature to build protein-
protein interaction networks specific of a tissue or a cell type as done for the
interaction network of matricryptins with their receptors located at the surface of
endothelial and tumor cells (Ricard-Blum and Vallet 2016b). This network high-
lights the complex cross-talks occurring between matricryptins, some of them being
able to interact, and between matricryptins and their receptors. Indeed, a matricryptin
may bind to several receptors belonging to different families (e.g. tyrosine kinase
receptors and integrins), and a receptor may be activated by several matricryptins
(Ricard-Blum and Vallet 2016b).

The combination of omic data and their integrated analysis are a powerful
approach to decipher the molecular mechanisms of physiopathological processes.
The study of Cx43 secretome and interactome has shown the existence of synergistic
networks and mechanisms for glioma migration and MMP-3 activation (Aftab et al.
2019), and in fibrosis (Ricard-Blum and Miele 2019). The interplay between the
degradome and the adhesome has been investigated in breast cancer metastasis by
building the interaction network of major cell adhesion and degradome proteins
differentially expressed in metastatic versus non-metastatic breast cancer cell lines,
with a focus on matrix metalloproteinases (MMPs), integrins and E-cadherin
(Rizwan et al. 2015).
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6.3.1 Interaction Networks of Individual ECM Components

The interactions of several ECM proteins and proteoglycans such as
thrombospondin-1 (Resovi et al. 2014) and the small leucine-rich proteoglycan
decorin (Gubbiotti et al. 2016) have been reviewed to provide the readers with an
updated list of their partners. The distribution of the ~30 partners of human collagen
III on its triple helix has led to the identification of a cell interaction domain, a
fibrillogenesis and enzyme cleavage domain, three major ligand-binding regions,
and hemostasis domains (Parkin et al. 2017). Known and predicted ligand-binding
sites have been mapped onto the collagen IV heterotrimers (α1α1α2, α3α4α5, and
α5α5α6), leading to the definition of functional (angiogenesis and haemostasis), and
disease (autoimmunity, infection, glycation, tumor growth and inhibition) domains
(Parkin et al. 2011).

Building and analyzing the interaction network of a single ECM protein, proteo-
glycan, matricryptin or glycosaminoglycan also give new insights on its molecular
functions and biological roles. The study of the interactome of the tissue inhibitor of
metalloproteinase-1 (TIMP-1) has highlighted its interrelated functions as a protease
inhibitor and signaling molecule associated with its two-domain structure (Grünwald
et al. 2019). The domain composition of the partners of a protein may be used to
design binding assays in order to identify additional binding partners, functions or
biological process the protein is involved in. For example, a first series of experi-
ments has identified partners of the ECM protein procollagen C-proteinase enhancer-
1 containing an epidermal growth factor (EGF) domain (Salza et al. 2014). This
prompted us to screen other EGF-containing proteins for their ability to interact with
PCPE-1, which allowed us to identify further partners of this protein (Salza et al.
2014). Computational analysis of Gene Ontology (GO) terms annotating the partners
of a protein may provide clues on its function. The analysis of GO terms associated
with PCPE-1 partners showed their involvement in tumor growth, neurodegenera-
tive diseases and angiogenesis. Then we analyzed the effect of two biological
fragments of PCPE-1 (the netrin and the CUB1-CUB2 domains) on angiogenesis
in vitro, and demonstrated that the CUB1-CUB2 domain inhibits the formation of
tubes/angiogenesis in vitro (Salza et al. 2014). Domains mediating interactions may
be visualized in interaction maps to highlight their roles as done for the PDZ domain
in the interactomes of syndecans 1 and 4 where it mediates interactions with
intracellular partners of syndecans (Roper et al. 2012). The presence of EGF in the
interactome of the propeptide of lysyl oxidase suggests that the propeptide might
regulate EGF-mediated signaling, and its binding to two cross-linking enzymes,
transglutaminase-2 and LOXL2, might affect ECM cross-linking and/or the activi-
ties of these enzymes (Vallet et al. 2018).

The first draft of the interactome of endostatin, an anti-angiogenic, anti-tumoral
and anti-fibrotic matricryptin of collagen XVIII comprised glycosaminoglycans,
matricellular proteins (thrombospondin-1 and SPARC), collagens (I, IV, and VI),
transglutaminase-2, and the Aβ42 amyloid peptide, which forms amyloid fibrils in
patients with Alzheimer’s disease (AD) (Faye et al. 2009). This last interaction led us
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to explore the role of endostatin in Alzheimer’s disease. We demonstrated the
presence of endostatin in the cerebrospinal fluid of patients with Alzheimer’s disease
and other dementia, and reported that the calculation of its ratio relative to well-
established AD markers improves the diagnosis of behavioral frontotemporal
dementia and the discrimination of patients with Alzheimer’s disease from those
with other dementia (Salza et al. 2015).

The search for binding partners of a protein might be restricted to a specific
compartment. The intracellular partners of collagen I have been identified in HT
1080 human cells to understand the molecular mechanisms of its intracellular
folding, processing, assembly, and quality control leading to the building the
collagen I proteostasis network comprising 48 proteins, and the discovery of appar-
ent aspartyl hydroxylation as a post-translational modification of the N-propeptide of
collagen I (DiChiara et al. 2016).

The interactomes of several glycosaminoglycans have been drafted. The interac-
tion network of heparin/heparan sulfate comprises 435 proteins identified experi-
mentally and by literature curation (Ori et al. 2011), and the interactome of keratan
sulphate 217 proteins including 75 kinases, numerous cytoskeletal and nerve func-
tion proteins, and several membrane or secreted proteins (Conrad et al. 2010).
Fifteen partners of the keratan sulfate proteoglycan mimecan/osteoglycin have
been identified too (Conrad et al. 2010). In addition, several protein-protein inter-
action networks of heparin/heparan sulfate-binding proteins have built, including
those of anti-thrombin and fibroblast growth factor-1 (Meneghetti et al. 2015), and of
the 435 heparin-binding proteins identified by (Ori et al. 2011).

6.3.2 Interactomes of ECM Protein, Glycosaminoglycan or
Proteoglycan Families

The interaction network of the major fibrillar collagens types (I, II and III) has been
built and their partners divided into several categories, namely matrix proteins,
receptors, enzymes/chaperones, and GAG/proteoglycans (An et al. 2016).

A tentative interaction network of five out of six mammalian GAGs, chondroitin
sulfate, dermatan sulfate, heparan sulfate, heparin and hyaluronan, has been created
using MatrixDB interaction data (Vallet et al. 2017). A number of proteins interact
with several GAGs, connecting their interactomes. Heparin has the highest number
of specific partners, whereas all DS-binding proteins are able to also interact with
other GAGs (Vallet et al. 2017, Vallet et al. 2020). We have recently built the first
comprehensive draft of the GAG interactome comprised of 832 biomolecules
(827 proteins and 5 GAGs) and 932 protein-GAG interactions (Vallet et al.
2020) and involved in ECM organization, signal transduction, hemostasis and
development (Vallet et al. 2020). However, there might be a bias in the number of
proteins specifically assayed for their GAG-binding properties, and in the most
studied GAGs, which are by far heparin and heparan sulfate. This emphasizes the
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need to design glycosaminoglycome- and proteome-wide assays to increase
interactome coverage allowing to draw firm conclusions from interactome analyses.

The interaction network of 30 proteoglycans, comprised of 209 molecules and
557 interactions, has been built to investigate the role of intrinsic disorder (Peysselon
et al. 2012). Several proteoglycans connected to more than 10 partners, mostly
hyalectans (e.g. aggrecan, versican, and brevican), are enriched (�30%) in intrinsic
disorder (Peysselon et al. 2012). The literature-curated interactomes of syndecans
1 and 4 partially overlap with the ones of integrins with which they cooperate to
promote cell adhesion (Roper et al. 2012). The first global interaction network of the
four syndecans comprising 351 partners (131, 103, 84 and 33 for syndecans 1, 2,
4 and 3) has been completed (Gondelaud and Ricard-Blum 2019). Beside the
expected role of the syndecan network in signal transduction and cell communica-
tion, the functional analysis of the syndecan interactome has shown that about 40%
of the partners of syndecans 1 and 4 are associated with exosomes, which play a role
in cancer development (Gondelaud and Ricard-Blum 2019). The consensus
syndecan interactome (i.e. the partners shared by the four syndecans), corresponding
to their canonical functions, includes 14 proteins, 12 of them being intracellular or
membrane proteins, namely protein kinases, proteins involved in signaling, actin
cytoskeleton organization and microtubule formation (Gondelaud and Ricard-Blum
2019).

6.3.3 Networks of ECM Supramolecular Assemblies
and Basement Membranes

Some networks take into account the oligomeric structure of native ECM proteins
but the next step will be to look for interactions established by the ECM supramo-
lecular assemblies such as collagen fibrils, beaded filaments, anchoring fibrils or
hexagonal networks (Ricard-Blum 2011) and elastic fibers (Kozel and Mecham
2019).

Collagen I has more than 100 partners. A 2-dimensional map of the partner-
binding sites and disease-associated mutations of human collagen I fibril D-period
has been drafted in 2002. It has shown the existence of hot spots for partner
interactions and the location of most of the binding sites in its C-terminal half.
Mutations associated with genetic diseases showed non-random distribution patterns
within the fibril (Di Lullo et al. 2002). The distribution of functional sites and
mutations suggests that the collagen fibril is organized into two domains, the cell
interaction domain and the matrix interaction domain mediating collagen cross-
linking, proteoglycan interactions, and tissue mineralization. Functional sites have
been superimposed from the 2D fibril map onto a 3D X-ray structure of the collagen
microfibril by molecular modeling revealing the existence of domains in the native
fibril (Sweeney et al. 2008; Orgel et al. 2011). Binding site accessibility have been
analyzed to determine how the partners of fibrils access their buried recognition
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motifs. The internal dynamics of collagen fibrils might regulate their interactions
with their partners (Hoop et al. 2017).

Interactions between major constituents of elastic fibers (fibrillin-1, MAGP-1,
fibulin-5, and lysyl oxidase) have been identified together with secondary interacting
networks with fibronectin and heparan sulfate-associated molecules, which contrib-
ute to the formation of microfibrils (Cain et al. 2009). The interactomes of fibrillin-1
and tropoelastin are connected (Thomson et al. 2019). The interaction network
among core elastogenic genes/gene products, namely elastin, fibrillin-1, fibulin-4,
fibulin-5 and LTBP4, and an extended interaction network among elastic fiber-
associated genes/gene products comprised of 40 direct interactions with additional
indirect interactions have been built (Shin and Yanagisawa 2019).

Basement membranes are thin ECM sheets mostly comprised of collagen IV and
laminins supramolecular assemblies. Jürgen Engel wrote in 2007 an article entitled
“Vision for novel biophysical elucidations of extracellular matrix networks” (Engel
2007). He concluded his review with a dream about two papers published in 2017.
One of his dreams was the building of a schematic representation “for a specific
region of a basement membrane in tissue at atomic resolution together with the
dynamics of the various interactions, showing a concerted action of several compo-
nents”. Part of his dream becomes true thanks to the proteomic analysis of the
glomerular extracellular matrix, which identified 144 structural and regulatory
ECM proteins, and the building of the glomerular ECM interactome using several
data sources (Lennon et al. 2014). The glomerular ECM interactome contains a core
of highly connected structural components formed by basement membrane proteins
and structural ECM proteins. They are involved in more interactions than
ECM-associated proteins as shown by the distribution of the number of interactions
per protein in the interactome (Lennon et al. 2014). We have built a global human
basement membrane interactome using interaction data stored in MatrixDB data-
base, and its advanced search tool (Clerc et al. 2019). Quantitative proteomic data
generated from various basement membranes by Naba et al. (Naba et al. 2016) has
been integrated to get interactomes specific of a basement membrane (e.g. human
glomerular, retinal vascular, and lens capsule basement membranes). This allowed
us to define a consensus interactome of basement membranes including proteins and
interactions common to all the basement membranes studied, and to identify those,
which are restricted to a given basement membrane (Clerc et al. 2019). The above
examples illustrate the interest of combining omic data, namely proteomics and
interactomics in this study.

6.3.4 Networks Associated with ECM Degradation
and ECM-Cell Interactions

ECM undergoes remodeling in health and diseases (Bonnans et al. 2014) thanks to
an interconnected network of proteases and their inhibitors, the protease degradome
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(Kappelhoff et al. 2017). Several proteases act on the same substrate(s), and pro-
teases interact with each other and may regulate each other forming the protease
web, which comprises 340 proteins and 1264 interactions in human (Overall and
Kleifeld 2006; Fortelny et al. 2014) and Chap. 7.

ECM-cell interaction networks or adhesomes have been extensively character-
ized as summarized below, and detailed in Chap. 9. The binding of integrins to ECM
proteins triggers intracellular signaling pathways that regulate cell functions via the
formation of integrin adhesion complexes. These large, dynamic, multiprotein
complexes referred to as the integrin adhesome link the ECM to the cytoskeleton
(Zaidel-Bar et al. 2007; Winograd-Katz et al. 2014; Horton et al. 2016b; Manninen
and Varjosalo 2017). The current version of the network includes 150 components
and 64 interactions but the integration of 82 associated components increases the
number of interactions 6542 interactions (the adhesome: a focal adhesion network,
www.adhesome.org).

Proteomic analysis of integrin adhesomes from different cell types enabled the
building of a meta-adhesome of 2412 proteins (Horton et al. 2016b). A consensus
integrin adhesome of 60 proteins, comprising the core cell adhesion machinery, and
four axes have been defined, namely integrin-linked protein kinase (ILK)—Partic-
ularly interesting new Cys-His protein 1 (PINCH)—kindlin, focal adhesion kinase
(FAK)—paxillin, talin—vinculin and α-actinin—zyxin—vasodilator-stimulated
phosphoprotein (VASP) (Horton et al. 2015, 2016b). Knockdown of consensus
components core components FAK, ILK, TLN1 and ZYX showed enlarged focal
adhesions in MCF7 breast cancer cells (Fokkelman et al. 2016). ECM, integrins and
their associated adhesion complexes regulate the mechanosignalling pathways. The
role of the consensus adhesome in mechanotransduction, which affects cell differ-
entiation and proliferation has been explored (Horton et al. 2016a)). The
phosphoadhesome induced by fibronectin has been characterized by MS-based
proteomic and phosphoproteomic analysis of adhesion complexes (Robertson et al.
2015, 2017). The desmo-adhesome (desmosome network) of keratinocytes, com-
prised of 59 proteins (30 intrinsic and 29 accessory components) and 128 direct
interactions, is robust against random perturbations but susceptible to targeted
attacks (Cirillo and Prime 2009). The desmosome components targeted in human
disease, and the integration in this network of non-desmosomal regulatory proteins
provide new insights in desmosomal diseases and associated pathways (Celentano
et al. 2017). Integrin adhesion complexes have been extensively characterized but
other receptors such as discoidin-domain receptors 1 and 2 (Leitinger and Saltel
2018), and syndecans (Couchman et al. 2015) contribute to cell adhesion and cell-
ECM interactions. Proteomic analyses of the adhesion complexes associated with
these receptors are needed to get a comprehensive overview of global cell
adhesomes.
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6.3.5 ECM Interaction Networks Associated
with Physiological and Pathological Processes

Building and analysis of interaction networks are useful to decipher the molecular
mechanisms of diseases as recently reviewed for fibrosis (Ricard-Blum and Miele
2019), to identify therapeutic targets and/or o design therapeutic molecules. The
integrin interactome has been successfully targeted to control immune diseases
whereas this approach failed in cancer (Vicente-Manzanares and Sánchez-Madrid
2018).

6.3.5.1 Development and Aging

Protein-protein interaction networks involving ECM components have been created
and analyzed for physiological processes such as development in chicken (Cogburn
et al. 2018) and aging (Chautard et al. 2010). The investigation of chicken develop-
ment by transcriptional profiling of liver during the embryo-to-hatchling transition
period has led to the identification interactions of blood clotting factors and von
Willebrand factor with several collagen genes coding for the α1 chains of
collagens I, III and XVIII, fibulin 1–2, SPARC, laminin subunits β1 and β3 and
lysyl oxidase (Cogburn et al. 2018).

We have shown that “response to wounding” and “tissue regeneration” are
overrepresented biological processes in the ECM network associated with aging,
and that calcium and protein binding are overrepresented molecular functions in the
aging ECM network. Furthermore, heparin is one the two most connected ECM
component in this network (Chautard et al. 2010). Given that intrinsically disordered
proteins are associated with age-related diseases, and that the extracellular proteome
is significantly enriched in disorder compared to the entire human proteome
(Peysselon et al. 2011), the role of disorder in ECM aging warrants further investi-
gation (Peysselon and Ricard-Blum 2011).

6.3.5.2 Cancer and Angiogenesis

The cancer matrisome has been characterized in different tumor types and microen-
vironmental niches, leading to the identification of protein signatures discriminating
tumors from healthy tissues, different tumor stages, and primary from secondary
tumors (Socovich and Naba 2019). The pan-cancer analysis of the expression and
regulation of 820 matrisome genes across 32 tumor types in more than 10,000
patients has identified 919 transcriptional modules differentially governing the
matrisome components and 40 master regulators governing the matrisome of each
cancer studied (Izzi et al. 2019).

An ECM interaction network of the physical, enzymatic, and transcriptional
interactions connecting 282 biomolecules involved in cancer progression has been
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identified. Its topology predicts that tumor development depends on specific
ECM-interacting network hubs such as β1 integrin, and it is disrupted by the
blockade of β1integrin, which reduces tumorigenesis (Reuter et al. 2009). An
esophageal squamous cell carcinoma (ESCC)-specific protein-protein interactome
involving LOXL2 and the actin-related proteins, actin β and actin γ1, has been
generated. It comprises 362 proteins (the 3 above proteins, 14 core proteins, and
345 common proteins) and 2580 protein-protein interactions (Zhan et al. 2017). A
three-gene signature, including LOXL2, cadherin-1 and fibronectin, has been shown
to predict a poor clinical outcome in ESCC patients (Zhan et al. 2017).

The interaction network of 38 proteins identified by LC–MS/MS after collage-
nase 3 digestion of breast cancer tissue includes 34 ECM proteins, 13 of which are
collagens (Angel et al. 2019). These proteins are strongly associated with breast
cancer progression. FAS (tumor necrosis factor receptor superfamily member 6),
AHR (aryl hydrocarbon receptor), Brd4 (bromodomain-containing protein 4),
SPDEF (SAM pointed domain-containing Ets transcription factor), IGFBP2
(insulin-like growth factor-binding protein 2), TP53 (cellular tumor antigen p53),
COLQ (collagen Q or acetylcholinesterase collagenic tail peptide), and TGFB1
(transforming growth factor β-1 proprotein) as among the main potential regulators
of this network (Angel et al. 2019). Protein-protein interaction network of differen-
tially expressed genes in the ECM has been constructed to investigate changes
occurring in signaling molecules during the metastasis of colorectal cancer. Fibro-
nectin and MMP-2 are the most connected proteins of this network (18 partners), the
key regulatory pathway for extracellular signal transmission was Fibronectin !
Secreted Protein Acidic Rich in Cysteine! COL1A1!MMP-2, and the key ECM
complex is comprised of vascular endothelial growth factor A and C-C motif
chemokine 7/C-C chemokine receptor type 3 (Qi and Ding 2018).

Increased angiogenesis is a hallmark of cancer and of a number of other diseases.
Heparin and heparan sulfate interactions with proteins regulating angiogenesis have
been compiled to create the “angiogenesis glycomic interactome” comprised of
canonical (9), non-canonical growth factors and other regulators (23), proangiogenic
receptors (6), angiogenesis inhibitors (14) and effectors (4) (Chiodelli et al. 2015).
This is a useful resource to design new therapeutic strategies aiming at angiogenesis
regulation and vascular homeostasis. Syndecans 1, 2 and 4, MMP-9, CD44, and
versican are at the center of the interaction network of three angiogenesis-associated
protein families, namely collagen IV, CXC chemokines and thrombospondin-1-
containing proteins (Rivera et al. 2011).

6.3.5.3 Alzheimer’s Disease

We have built experimentally the interaction network of ECM proteins and GAGs
with the amyloid-β42 peptide (Aβ42) under various molecular and supramolecular
forms (i.e. monomeric peptide, oligomers, fibrils and fibrillary aggregates) to iden-
tify the molecular functions, biological processes, and pathways targeted by the
Aβ42 peptide in the ECM. We have shown that the multimerization state of this
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peptide governs its interactions with the ECM. Aβ42 oligomers, but not the mono-
meric peptide, bind to cell surface receptors. Aβ42 fibrils, but not oligomers interact
with GAGs, proteoglycans, enzymes, and growth factors, whereas Aβ42 fibrillar
aggregates bind to further membrane proteins (syndecan-4, TEM-8, and discoidin-
domain receptor-2) (Salza et al. 2017).

6.3.5.4 Host ECM-Pathogen Interactions

Several high-throughput methods have been used to study so-called extracellular
protein interactions between viruses or bacteria and their hosts, but the extracellular
proteins included in these studies are i membrane-tethered proteins and secreted
molecules but not ECM proteins (Martinez-Martin 2017). However, in addition to
cell surface-associated ECM receptors, host ECM is also targeted by a number of
pathogens. A single ECM protein, fibronectin, interacts with numerous pathogens
including bacteria such as Staphylococcus aureus, streptococci, enterococci,
mycobacteria, E. coli, and Salmonella enterica (Vaca et al. 2019). The characteri-
zation of host ECM-pathogen interaction repertoires is a prerequisite to understand
the molecular mechanisms of infection, and to design new therapeutic strategies to
prevent or block it.

The interactions of parasites of the host ECM have been investigated at a large
scale for 24 strains and six species of Leishmania using protein and glycosamino-
glycan arrays probed by surface plasmon resonance imaging (Fatoux-Ardore et al.
2014). About 70 ECM proteins, GAGs, growth factors, and cell surface receptors
have been spotted onto Gold affinity chips, and reacted with living parasites as
described in paragraph 2.2. We have identified 23 new protein and 4 new GAG
partners of procyclic promastigotes and 18 partners (15 proteins, 3 GAGs) of three
species of stationary-phase promastigotes. The diversity of Leishmania-ECM inter-
actions reflects the dynamic and complex host-parasite interplay, which depends
mostly on the species and strains of the parasite. Numerous Leishmania strains
interacts with tropoelastin and angiogenesis regulators, including antiangiogenic
factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and
tumor-endothelial marker-8). Heparin and heparan sulfate bind to most Leishmania
strains tested, and 6-O-sulfate groups play a crucial role in these interactions
(Fatoux-Ardore et al. 2014).

A number of pathogens bind to GAGs (Aquino and Park 2016). Systematic
protein interactome analysis of glycosaminoglycans revealed YcbS as a novel
bacterial virulence factor A systematic study on microbial proteome-mammalian
GAG interactions has been carried out with E. coli proteome chips to probe it
interactions with 4 GAGs (HP, HS, CSB, and CSC). 185 heparin-, 62 HS-,
98 CSB-, and 101 CSC-interacting proteins have been identified using this approach,
and their analyses has demonstrated the functions of HP- and HS-specific binding
proteins in glycine, serine, and threonine metabolism (Hsiao et al. 2016).

Host cell heparan sulfate contribute to the attachment and invasion of
Trypanosoma cruzi amastigote, which causes Chagas disease (Bambino-Medeiros
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et al. 2011). The interaction of Trypanosoma cruzi with the host ECM is the first step
of infection before the parasite invades cells in different tissues. An ECM-focused
interactome of early Trypanosoma cruzi infection has been drafted using
thrombospondin-1, and galectin-3, which are up-regulated by infective
trypomastigotes, laminin γ1, which is upregulated by the parasite trans-sialidase
gp83, and ERK1/2 as seed nodes. The interaction network of the laminin γ1 chain is
connected to thrombospondin-1 through plasminogen, the α1 chain of collagen VII
and MMP-2, suggesting that this network could ease parasite motility (Cardenas
et al. 2010). This ECM-centered interactome is regulated by gp83, which also
regulates trypanosome usage of the ECM during early infection to enhance cellular
infection (Nde et al. 2012). This network, containing 104 protein coding genes
connected by 218 biological interactions, has been useful to determine the molecular
mechanisms of T. cruzi infection, and to identify new therapeutic approaches to treat
Chagas disease (Cardenas et al. 2010).

6.3.5.5 Heritable Diseases

Numerous mutations in the genes coding for ECM proteins are associated with
heritable diseases such as osteogenesis imperfecta, Ehlers Danlos syndromes
(EDS) and epidermolysis bullosa. Regions rich in lethal mutations leading to
osteogenesis imperfecta align with binding sites for integrins and proteoglycans in
the helical domain of collagen I (Marini et al. 2007), highlighting the interest to
include mutations and their effect on interactions in interactomes to predict how they
will be rewired in genetic diseases. Collagen V mutations are associated with EDS,
and the interactome of its α1 chain has been used to study genotype-phenotype
correlations in classic Ehlers-Danlos syndrome (Paladin et al. 2015).

Collagen VII loss occurs in patients with recessive dystrophic epidermolysis
bullosa (RDEB). The effect of its loss has been investigated in proteins secreted
by fibroblasts from healthy subjects and RDEB patients leading to the identification
of 214 proteins significantly altered in the ECM of all RDEB samples. The analysis
of the corresponding interaction network made of 64 proteins shows a decrease in
basement membrane proteins (laminin α4, β1, β2 and γ1 chains, collagen IV and
several integrins) and an increase in collagens III, V and VI, and MMPs although
MMP-14 protease activity is reduced in RDEB cells (Küttner et al. 2013).

6.4 Concluding Remarks and Perspectives

A number of ECM networks published so far contain only interactions between
protein/proteoglycan(s) or GAG(s) of interest but do not include the connections
between the partners, which is a prerequisite to study the architecture and topology
of networks and to draw meaningful conclusions from their analysis. Furthermore,
networks specific of a biomolecule, a biological process or a disease should be
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analyzed in the context of the complete ECM interactome to determine how this
molecule, biological process or disease is connected to, and affects, the ECM
architecture and function. This emphasize the need to build a complete ECM
interactome covering the whole matrisome. Two drafts of the ECM interaction
network have been built (Chautard et al. 2009b; Cromar et al. 2012) but their
coverage of both the matrisome and its interactions should be increased. To further
explore the connections between the ECM, the cell surface and the intracellular
compartment it would be also interesting to map the ECM interactome to the most
comprehensive experimental map of the human interactome available today, namely
the Bioplex 3.0 interactome comprised of 120,000 interactions among nearly 15,000
proteins (Huttlin et al. 2020) (https://bioplex.hms.harvard.edu/), and to the reference
map of the human binary protein interactome (Luck et al. 2020).

Another challenge will be to switch from 1D or 2D ECM interaction maps to 3D
networks by integrating structural data of individual ECM biomolecules and/or their
complexes in the ECM interactome, and disordered regions of ECM proteins, which
should provide the network with structural flexibility and interaction rewiring. The
building of 3D models of tissue-specific ECM using mesoscopic rigid body model-
ling (Wong et al. 2018) will be very useful to reach this goal by giving the possibility
to map the ECM interactome onto a structural scaffold, and to take into account the
strength of ECM interactions, the physical constraints imposed to the ECM by its
covalent cross-linking, and the dynamics of conformational changes of ECM com-
ponents upon binding to their partners, which are increaseimortant in intrinsically
disordered regions. The integration in these models of the ECM cross-linkome
mediated by the lysyl oxidase family, transgutaminase-2 and peroxidasin (Vallet
and Ricard-Blum 2019) will be challenging inasmuch as elastin cross-linking is a
stochastic process (Hedtke et al. 2019). A 3D model will be useful to provide the
ECM interactome with spatial organization. Another perspective is to integrate in the
ECM network splicing isoforms, which might have different interaction repertoires,
and mutations, which could decrease or increase the interactions, and rewire the
ECM interactome. Mutations of interest will be retrieved from the IMEx consortium
mutations data set (IMEx Consortium Curators et al. 2019), and from ECM-specific
variant databases (Chap. 1).

A last challenge will be to fully integrate GAGs in the ECM interactomes by
adding protein-GAG interactions to protein-protein interactions, the identification of
which is favored by the use of gene-centric methods, and to collect quantitative data
on GAGs at large scale (glycosaminoglycanomics) (Ricard-Blum and Lisacek
2017), which should be possible thanks to recent developments in GAG analysis
in tissues or biological fluids (Chap. 5), and to integrate them in in-silico ECM
networks to better reflect the in vivo ECM networks.
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Chapter 7
Integration of Matrisome Omics: Towards
System Biology of the Tumor Matrisome

Valerio Izzi, Jarkko Koivunen, Pekka Rappu, Jyrki Heino, and
Taina Pihlajaniemi

Abstract The tumor matrisome, the collection of structural and functional extra-
cellular matrix (ECM) proteins found in tumors together with ECM-associated
proteins, growth factors, cytokines and chemokines is an extremely dynamic entity
whose composition and regulation depends on both local, cell-specific processes and
overarching pan-cancer microenvironmental landscapes. A deeper knowledge and
understanding of the tumor matrisome would grant us novel diagnostic, prognostic
and therapeutic possibilities but to reach that point there is a pressing need to
combine fine-grained molecular studies with system biology approaches to build a
complete map of what actually happens in the tumor microenvironment. In this
chapter, we will review the most salient findings on the tumor matrisome at the
transcriptomics, regulomics and proteomics level and show how the use of big data
enables the identification of biological features and characteristics that cross differ-
ent tumors and the discovery of novel molecular mechanisms connecting the differ-
ent omics level. Also, we will provide a simple walkthrough to jumpstart matrisome
data analysis for complete beginners in a bid to ignite more research in this
fascinating field.
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7.1 Introduction

Tumorigenesis is a complex and dynamic process and, at all stages (initiation,
progression and metastasis), neoplastic cells are physically and chemically embed-
ded in a rich milieu of immune and stromal cells, growth factors, enzymes, signaling
molecules and the structural and functional proteins constituting the extracellular
matrix (ECM) (Henke et al. 2020; Hinshaw and Shevde 2019; Walker et al. 2018;
Wang et al. 2017). Supported by a large amount of biochemical and functional data
about the interaction between the non-cellular elements of the tumor microenviron-
ment (TME) and the fundamental delineative work of Naba et al. in 2012,
researchers have now learned to rethink the ECM and the other extracellular proteins
and growth factors as an ensemble, the “matrisome”, that is intimately linked to
cancer progression (Jinka et al. 2012; Malandrino et al. 2018; Naba et al. 2012;
Poltavets et al. 2018; Socovich and Naba 2019).

The advent of sequencing technologies and their rapid spread through laborato-
ries worldwide has irrevocably changed the world of cancer research ([Editorial]
2020). The unprecedented possibilities offered by large, harmonized patient cohorts
analyzed by several “omics” approaches (genomics, epigenomics, transcriptomics,
proteomics, etc.), such as those offered by The Cancer Genome Atlas (TCGA) (Gao
et al. 2019), have opened up to fundamental discoveries in all the most crucial
aspects of cancer, including driver and passenger mutations, cellular signaling
pathways, stemness and differentiation instances, and the mechanisms that regulate
entire “layers” of the TME (Bailey et al. 2018; Huang et al. 2018; Malta et al. 2018;
Sanchez-Vega et al. 2018; Thorsson et al. 2018).

Similar efforts have also been surfacing in respect to the matrisome, whose
in-depth characterization has, however, verged more on the biochemical properties
of the proteins identified, their functions and their eventual interactions rather than
on the systematic classification of which matrisome elements characterize a given
TME and what regulatory systems decree the presence or the absence of that specific
element.

In this chapter, we will review the most salient findings on the tumor matrisome at
the transcriptomics, regulomics and proteomics level and show how:

1. The use of big data enables the identification of biological features and charac-
teristics that cross different tumors and are foundation stones of neoplastic
diseases, and

2. These seemingly disconnected “levels” of information can be integrated together
to discover novel ties among them.

Also, as we surmise that one of the barriers to the evaluation of the matrisome at a
more systematic level is represented by the need for specific bioinformatics and
coding abilities, we will provide a simple walkthrough that will enable even the most
unexperienced users to jumpstart their investigations without the need for profes-
sional help (though you should definitely contact a bioinformatician at some point!).
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7.2 Transcriptomics of the Tumor Matrisome

7.2.1 Integrative Expression Profiling and “Classical” Gene
Signature Studies

In respect to the sizeable number of publications investigating the matrisome at the
proteomics level, the transcriptional landscape of the tumor matrisome has not yet
been investigated to the same depth and this difference becomes even more evident
when one considers studies focusing on Pan-Cancer analyses.

The “Pan-Cancer” mode of analysis is particularly relevant to this chapter and
needs a bit of elaboration before proceeding. Fortunately, the seminal works by, e.g.,
(Hoadley et al. 2014, 2018; Nawy 2018) are a perfect example. Thanks to them, we
now know that tumors apparently different at the histopathological level are never-
theless quite similar, as they are shaped by common cellular and genetic processes
which originate from similar, if not the same, cell of origin. Such a result can only be
obtained by comparing multiple tumor types at once, eventually incorporating tens
of clinical and biological subtypes, and enables the observation of recurrent
“themes” that transverse entire cohorts of tumors and that might be hidden under
other, more prominent transcriptional features if the observer’s perspective is not
wide enough to capture them. In a typical Pan-Cancer analysis, furthermore, the
investigational approach is bottom-up (or, to be more precise, unsupervised) and the
observer begins with a database as large as possible, subjecting none or minimal
filters on the types and quantities of “features” (may they be genes, pathways,
processes, etc.) to be studied. This lets the most salient elements connecting different
tumors “emerge” from the context and guarantees them some sort of “priority” over
the rest of the transcriptomic background.

Integrative Analysis
The purpose of integrative Pan-Cancer analyses is to identify similarities and
differences between different tumor types across some fundamental genetic or
cellular process. The discovery is generally driven by the intersection of
different “omics” or the deep “excavation” of such data (see also Fig. 7.1).

In tumor matrisome field, most of the available data target one or few, related
neoplasms. These studies are, of course, invaluable for the determination of which
matrisome genes are characteristic of a given tumor type/subtype, yet they fall short
in bringing Pan-Cancer similarities to light, and so questions like “does the tran-
scriptional architecture of matrisome in different tumor types differ?” or “are there
similarities in the matrisome of different tumors?” remain largely unanswered.
Furthermore, there are surprisingly few studies devoted to understanding and clas-
sifying the tumor matrisome transcriptome and its dynamics and many interesting
findings are buried under other results in articles with different aims, making it all the
more difficult to provide a comprehensive and coherent view of this field of research.
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Finally, it should be added that the incredible diversity in functions, abundance and
cellular origin of matrisome components is a divisive factor for reviewing and
condensing knowledge since many times, for example, cytokines and growth factors
will be cited in manuscripts according to their functions and independently of ECM
genes eventually found among the same results. All this said, there are still excellent
examples of integrated tumor matrisome transcriptomics to be found.

One such is the recent work of Lim et al. (2017), in which a large database was
built by the integration of single pancreatic, ovarian, renal, gastric, prostate, liver,
bladder, melanoma, colorectal lung and breast cancer datasets and used to unravel
connections between matrisome gene expression and clinical, cytopathological and
immune features of cancer. The authors deployed a strongly supervised approach, as
they decided a priori which matrisome genes to analyze and what type of analyses
and comparisons to perform to substantiate their hypothesis. More specifically, not
the whole span of the matrisome (that enlists 1028 entries corresponding to 1026
genes according to the Molecular Signatures Database, www.gsea-msigdb.org/gsea/
msigdb/) was analyzed, but rather a restricted set of 29 genes that constitute a
signature called Tumor Matrisome Index (TMI) previously validated in early-stage
non-small cell lung cancer (NSCLC) (Lim et al. 2017, 2018) and mostly comprised
of non-core matrisome genes. TMI was checked recursively for its ability to tell apart
tumor samples from healthy donors and, upon confirmation of such discriminative
power, investigated in uni- and multi-variable survival models and for association

Fig. 7.1 Integrative approaches to study the tumor matrisome make use of samples and data from
cells, tissues and entire cohorts of patients. Analyses can focus on a single “level” (genomics,
transcriptomics and proteomics) to identify groups of features (signatures, represented as bubbles of
different size and importance) shared across the level. Different levels can be also integrated
“vertically” and used to identify multidimensional signatures of, e.g., tissue and cell identity,
disease state and response/resistance to therapy. Figure courtesy of Monica Bassignana (www.
monicabassignana.com)
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with tumor stages, cytological findings and immunotherapeutic targets such as
programmed death protein PD-1. What remains unanswered in this study, such as
the existence of other similar matrisome signatures or the eventual similarities and
differences between the neoplasms, is still keenly investigable by researchers thanks
to the egregious work made by the authors in sharing the code needed to regenerate
the database (and available at doi.org/10.6084/m9.figshare.7878086).

Another example of integrated cancer matrisome transcriptomics profiling is the
work by Yuzhalin et al. who, by comparing tumor samples from esophagus,
intestine, stomach, lung, breast and ovary with respective normal samples, identified
a set of 9 core matrisome genes largely overexpressed in neoplasms (Yuzhalin et al.
2018a, b). Further on, the authors confirm the expression of these genes at the protein
level in matching cases and demonstrate the association of this signature with patient
survival in all tumor types and its association with cellular processes such as
epithelial-mesenchymal transition (EMT), hypoxia, etc. in colorectal cancers. In
respect to the work of Lim et al. mentioned above, this latter manuscript deploys a
more unsupervised approach to data analysis, looking at all core matrisome genes
expressed in a given cancer, selecting for those highly overexpressed in respect to
healthy tissues and then comparing results to identify genes with a similar behavior.
Still, how these tumor types have been selected remains unclear and one is left to
wonder whether by adding other neoplasms, this signature would have shown some
form of tissue specificity or whether other signatures would have emerged. Impor-
tantly, the work of Yuzhalin et al. shows the ease of use of modern data browsers
(such as Oncomine in this case, www.oncomine.org) to access big data from omics
study and build a knowledge base that can be confidently tested in downstream
applications.

A different take on the problem of identifying matrisome signatures is brought
forward by Chakravarthy et al. (2018), who recently curated an analysis in which
tumor vs. healthy tissues for 15 different neoplasms were compared for gene
expression and the results intersected with the parent term for ECM in gene ontology
(“extracellular matrix”—GO: 0031032), thus identifying a set of 58 matrisome
genes as cancer-associated and showing that this signature associates with
transforming growth factor b (TGF-b), the presence of fibroblasts within the TME
and the outcome of immunotherapy.

Matrisome gene sets can also be derived by “fishing” in the transcriptome using a
“bait” with some biological meaning. This intriguing approach has been lately
presented by Peeney et al. (2019), who explored the association of tissue inhibitor
of metalloproteinase-2 (TIMP-2) with breast and lung neoplastic cancer and found
that the expression of TIMP-2 could be used to identify genes that strongly correlate
with it and potentially modulate its expression and function. Unsurprisingly, most of
these genes are matrisome genes, both core ECM and ECM-associated ones, with the
remaining part covering TGF-b and EMT pathways. A very similar strategy has been
successfully applied by Jia et al. (2016) who used collagen XI gene (COL11A1) as a
bait for identifying transcriptionally co-regulated genes in cancer-associated fibro-
blasts (CAFs), yielding a large signature of 195 genes supposedly marking these
cells and largely composed of matrisome genes. Interestingly, as noted in a comment
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to this work by Anastassiou D. (2017), this signature might actually be a mixture of
specific and nonspecific signals, as it crosses with the 64-gene “invasiveness signa-
ture” that the authors have reported (Kim et al. 2010) and supplements it with other
gene sets, such as a 10-gene signature of ovarian cancers (Cheon et al. 2014), whose
specificity to CAFs is also unsure. Despite the controversy, it is important to notice
that also both the 64-gene signature by Kim et al. and the 10-gene signature by
Cheon et al. are almost entirely made of matrisome genes (core structural ECM
proteins—such as collagens—for a good part, too!), evidencing how crucial the
correct classification of the tumor matrisome is for understating the processes and
mechanisms of TME.

Recently, we have performed the largest cancer matrisome analysis of this kind so
far, by comparing gene expression patterns across more than 10,000 patients and
32 tumor types and inferring the transcriptional architecture (transcription factors
and master regulators) governing the tumor matrisome as well as the therapeutic
possibilities offered by this fine-mapping strategy (Izzi et al. 2019). In this work we
used a completely unsupervised approach, not performing any pre-selection of
matrisome genes on biological or computational grounds nor selecting for tumor
types a priori, and we identified a clear organ-of-origin mechanism that is respon-
sible for similarities between tumors from the same anatomical location. Such
mechanism is loosely pyramidal, with master regulators (cancer drivers and the
cellular and supracellular processes they supervise) shared across tumors from
similar origins connecting to an overarching sparse network of transcription factors
(highly tissue- and cell-specific) which control the expression of similar matrisome
genes. To our knowledge this is the first and, till now, the only study of this type in
the field, and provides the only “regulatory map” of the tumor matrisome so far.
Furthermore, it is interesting to notice how it crosses with other studies reported
above. E.g., comparing signatures from different tumors, we find agreement with the
same conclusions as Lim and Yuzhalin, we confirm the expected role of TGF-b
signaling and hypoxia in instructing matrisome expression patterns, and identify
tumor-specific and Pan-Cancer regulatory networks which can be pharmacologically
targeted and impinge on patient survival.

The analyses presented above, albeit with their different aims and approaches, are
tied together by the vision of tumor matrisome as an ensemble of elements whose
activity and regulation goes beyond a single type of cancer and is explainable based
on biological factors that the different tumors share. This vision is, of course,
innovative and is getting momentum now that big data from large omics experiments
are becoming increasingly available. Still, integrative Pan-Cancer studies of the
tumor matrisome are in their infancy as compared with classical gene expression
profiling studies (one tumor type, eventually stratified by clinical and/or biological
subtypes), whose count outnumbers integrative studies by far. An extensive (or even
barely appropriate!) discussion on these more “classical” studies identifying
matrisome expression and regulation in cancer would be largely outside the page
constraints of this chapter, so we will only briefly touch on the subject, leaving it to
the interested readers to search in-depth the relevant literature (maybe by trying, at
first, data mining approaches to PubMed such as inputting the string “extracellular
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matrix AND cancer gene expression” in PubVenn—pubvenn.appspot.com—or in
PubTator Central (PTC)—www.ncbi.nlm.nih.gov/research/pubtator).

A most typical example of this type of studies is provided by the pioneering
works of Bergamaschi et al. (2008) and Triulzi et al. (2013), which demonstrate the
possibility of stratifying breast cancer patients according to matrisome gene expres-
sion and placing one of the four groups identified, the “ECM3” group, at the highest
risk of disease progression and, hence, marking it with poor survival likeliness.
Interestingly, the “ECM3” group is entirely made of Grade-III breast carcinomas
(high-grade dedifferentiated cancer), suggesting specialization of the tumor ECM
concurrent with neoplastic progression (a hypothesis also supported by our recent
study presented above). On the same note, Bao et al. (2019) as well as Helleman
et al. (2008) and Jansen et al. (2004) demonstrated a clear association between the
expression of matrisome or matrisome/receptors signatures and breast cancer patient
stratification for survival and other clinical endpoints, strongly supporting the idea
that precise matrisome regulation is a crucial element along the oncogenic develop-
ment processes of the breast. Adding to this, Brechbuhl et al. (2020) recently showed
that a subset of CD146 (Mucin 18)-negative CAFs are crucial to the pro-metastatic
behavior of human breast cancer cells xenoimplanted in mice as their secretome
includes various collagens and laminins as well as fibronectin 1 (FN1) and tenascin
C (TNC), all necessary to cell motility as well as the enzymatic machinery of the
lysyl oxidases needed to crosslink collagens and stiffen the ECM, a hallmark of
increased invasiveness (Najafi et al. 2019).

Similar findings have been reported for ovary tumors (e.g., Cheon et al. 2014;
Finkernagel et al. 2016; Pearce et al. 2018a, b; Zhang et al. 2013), all demonstrating
the roles of different matrisome and ECM signatures in driving tumor
metastatization, resistance to therapy and progression, and pointed to their clinical
usefulness in predicting patient trajectories and, hence, devise more accurate treat-
ment schemes.

Comparably, several reports exist about the importance of matrisome signatures
or even single matrisome components, both at the gene expression and the protein
level (also including a few circulating ECM proteins), for the growth, metastatization
and chemoresistance of the neoplasms of the lung (Andriani et al. 2018; Frezzetti
et al. 2019; Lim et al. 2018), colon and liver (Naba et al. 2014b, 2017a, b), pancreas
(Naba et al. 2017a, b; Tian et al. 2019), prostate (Pang et al. 2019; Peixoto et al.
2019; Penet et al. 2017), brain (Ciasca et al. 2016; Simão et al. 2018; Sood et al.
2019) and even leukemias, lymphomas and myelomas (Brandt et al. 2013; Cerchietti
et al. 2019; Foroushani et al. 2017; Glavey et al. 2017; Izzi et al. 2017a, b, c;
Kobayashi et al. 2020).

As mentioned before, this list is far from exhaustive and only serves the purpose
of priming readers to the vast field of matrisome signatures in cancer, as opposite to
integrative Pan-Cancer studies that still are minority. Rather than dragging on with
the list of available tumor matrisome studies, we prefer to provide an example of
simple integrative analysis workflow that readers can execute completely online,
without any programming skill nor sophisticated instrumentation and that will
hopefully stimulate more investigations in this direction.
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7.2.2 Walkthrough: A Guided Example of Pan-Cancer
Integrative Analysis of the Tumor Matrisome Using
CBioPortal

The diffusion of omics techniques and the consequent exponential accumulation of
big data has spurred an unprecedented need for data analysts and bioinformaticians
in biomedical sciences. Typically, integrative Pan-Cancer analyses require coding
skills, data management abilities and a solid foundation in statistics, but investigators
with no programming knowledge can also approach these analyses leveraging on
trusted, free portals optimized for a “click-and-forget” experience. A colossus in this
field is CBioPortal, a freely available one-stop portal for cancer omics analyses
(Cerami et al. 2012) hosted by the Center for Molecular Oncology at Memorial
Sloan Kettering Cancer Center and maintained by an international consortium. We
will here make use of the wonderful set of features and analytical power offered by
CBioPortal to build a simple integrative analysis and show that, with minimal effort
and the help of Excel spreadsheets, any researcher can explore big data. It is
important to notice, however, that any responsive database or web-based resource
comes with a compromise between ease of access and freedom in terms of analytical
possibilities, and long sessions of code writing and data wrangling in various
programming languages remain an unavoidable step in any in-depth analysis. A
short list of useful resources is provided in Table 7.1.

• Log in at https://www.cbioportal.org/. At this stage, if you haven’t already, is
important to create an account that will allow you to perform some of the analyses
in this walkthrough. To this aim, click the Login button at top-right corner of the
page and follow the instructions.

• The CBioPortal homepage (version 3.3.2, database version 2.12.4 at the moment
of writing) has three tabs on top (Query, Quick Search (Beta!) and Download) to
choose the mode of analysis. Below these tabs you will find the study selector,
with a by-organ box on the left and a detailed by-study view in the center. On the
right you will find the news box with social media integration and some general
details on the amount of studies available.

• In Query mode, CBioPortal has a convenient TCGA PanCancer Atlas Studies
button in the upper frame of the central box. Clicking it will select 32 studies and
10,967 samples. Also, different studies that compose the Pan-Cancer atlas can be
manually selected by ticking their respective boxes.

• After selecting at least one cancer type (or all the Pan-Cancer studies in our
example!), the two buttons on the bottom (Query By Gene and Explore Selected
Studies) become active, enabling to either scan selected studies by a list of genes
of interest or to access an agglomerated view of all data in selected studies, which
can be used to launch group-level analyses.

• Click Explore Selected Studies and a new page with demographics and general
clinical and genetic findings will open. One of the (many) tables within is the
Genomic Profile Sample counts box, where you can further subset data based on
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the available type of information. In this case, focusing on transcriptomics, we
want to tick the mRNA Expression, RSEM (Batch normalized from Illumina
HiSeq_RNASeqV2) box to exclude samples without gene expression data.

• Click the button Select Samples that appears at the bottom of the box and the data
will be filtered accordingly

• Now move to the box Cancer Studies and select, e.g.,
brca_tcga_pan_can_atlas_2018. This will restrict our analysis to breast cancer
samples within the PanCancer Atlas dataset.

• Now, moving to the box Cancer Type Detailed, you will notice that only the
subtypes of breast cancer samples are available. We will use these to make groups
to compare. Let’s for example select Breast Invasive Ductal Carcinoma by ticking
its box. We can now click the Groups button in the upper right corner and Create a

Table 7.1 Programming languages and resources for integrative analyses of tumor matrisome
transcriptomics

Type of
resource Use

Web-
based

Restricted
access Website

R Programming
language

Analysis# No No http://www.r-pro
ject.org/

Python Programming
language

Analysis# No No http://www.
python.org/

CBioPortal Portal Analysis and
data download§

Yes No http://www.
cbioportal.org/

Xena Portal Analysis and
data download§

Yes No http://
xenabrowser.net/

Oncomine Portal Analysisa Yes Yes http://www.
oncomine.org/

Gepia 2 Portal Analysisa Yes No http://gepia2.can
cer-pku.cn/

Genetic data
common
(GDC)

Portal Data download
and minimal
analysis

Yes No/Yes
(depending on
data type)

http://portal.gdc.
cancer.gov/

Cosmic Portal Analysis and
data download§

Yes No http://cancer.
sanger.ac.uk/
cosmic

CanEvolve Portal Analysisa Yes No http://www.
canevolve.org/

KM plotter Portal Analysisa Yes No http://kmplot.
com/

PROGgene
V2

Portal Analysisa Yes No http://genomics.
jefferson.edu/
proggene/

aWe refer here to the possibility of performing data analysis and downloading results, different from
the complete analytical solutions (and freedom) offered by programming languages (#) and also
different from the possibility to download entire slices of data together with analysis results etc.
offered by other tools (§)
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new group from selected samples. The name automatically suggested is the same
as the subtype, but you can change it. Conclude by clicking Create.

• Head back to the box Cancer Type Detailed, deselect the previous breast cancer
subtype and choose Breast Invasive Lobular Carcinoma instead. Repeat the group
creation step above to have a second group. Now that you have at least two
groups within the same study you can run comparisons!

• From the Groups button select the two groups we have just created and press
Compare. You will land into a comparison page with various result tabs. You can
glance at, or even study, them all but for this walkthrough we will focus on the
last tab, mRNA, that returns the association between a gene and one the cancer
subtypes selected, if any. To simplify, let’s tick the selector Significant only that
is on the upper frame of the result table.

• In the right corner of the upper frame there is a Download TSV button, marked by
a cloud icon with a downward arrow. Click it and store your results in your
preferred folder.

• Now we need to read these data in Excel. Open a blank spreadsheet and, from the
top ribbon, choose Data and, on the left, the From Text/CSV button (alternatively,
from the File menu, choose the Open function). A window to locate your file will
open, but your file (being in. TSV format) won’t appear unless you choose All
Files (its default is Text Files) from the file format selector in the bottom right
corner. Choose the cell where your imported file will begin, and you are set.

• Now we can ask “which of these differentially-regulated genes are actually
matrisome genes?”. To this aim, we will open a new browser window and
point to The Matrisome Project (http://matrisome.org/). The list we need is
included in the Excel file “Human Matrisome (Updated August 2014)” which
you can access by clicking its icon (the filename is matrisome_hs_masterlist).

• Clicking the Excel icon will download the list of matrisome genes with its
categories. Open the file when downloaded.

• To filter the CBioPortal results by the matrisome genes we need small additional
modifications of both the files. Excel, in fact, needs perfect matching between
names of the table range you want to filter, of the selection criteria you want to
apply and of the destination where you want to put the results. To enable this, you
will need to:

• Modify the header of the first column of the results from Gene to Gene Symbol
(as in the matrisome list file),

• Get back at the results, select the whole table (Ctrl + A on Windows), click Data
from the upper ribbon and from the Filter section choose Advanced.

• Set as follows:

– Action: Filter the list, in-place
– List range: leave as it is (the whole table should be selected)
– Criteria range: click the upper arrow button, move to the matrisome file you

downloaded earlier and select all the entries in the Gene Symbol column plus
the header. There are some deprecated entries at the bottom of this list. You
might want to avoid selecting them at this step!
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• Press Enter and click OK. From more than 9000 entries your list has now reduced
to 411 matrisome genes. You can sort them by their association with a given
tumor subtype by the last column of the results.

• Select only the genes that have highest expression in Breast Invasive Ductal
Carcinoma and you will have a 85-gene signature. You could copy the selected
gene symbols back into the CBioPortal and launch a real Pan-Cancer analysis as
follows:

– Browse back to the first CBioPortal page (not the same where differential
expression results are)

– Remove the cancer subtype filter from the upper left side of the page
– At the upper right corner, just below your sign-in box, click the search box

“Click gene symbols below or enter here” and paste your 85 genes
– Click Query and observe the results. You might, eventually, filter them again

by tumor types and subtypes and study them down to individual genes in
individual tumors. Also, you could study these genes in single tumors by
going back to the Query By Gene mode, or study them in other fantastic
resources such as the Xena Browser (http://xenabrowser.net/) or GEPIA2
(http://gepia2.cancer-pku.cn/#index).

7.2.3 From Transcriptomics to Regulomics

The enormous analytical power offered by the integrative analysis of tumor
transcriptomes finds a natural application in the evaluation of what lies upstream
and downstream of genes and how these elements connect to the transcriptome.
Oversimplifying, we could say that cis- and trans-acting mutations, single-
nucleotide variations and copy-number alterations, but also epigenetic regulators,
micro- and long non-coding RNAs (miRNAs and lncRNAs, respectively), transcrip-
tion factors and their own regulators are all examples of upstream regulators of the
transcriptomics layer, while the whole apparatus for protein translation, post-
translational modification and inter and intracellular trafficking being downstream
of it (Bansal et al. 2019; Bradner et al. 2017; Casamassimi and Ciccodicola 2019;
Ghedira 2018; Lavanya et al. 2019; Lelli et al. 2012; Nath et al. 2015; Qin et al.
2015; Tak et al. 2019).

If a paucity of integrative studies can be observed for the tumor matrisome
transcriptome, it should not be surprising to find virtually no studies on matrisome
regulomics at the transcriptional layer. In fact, while much is known at the proteo-
mics/interactomics level downstream of tumor matrisome genes (see Sect. 7.3), what
lies upstream is still largely a black hole, with an astonishing lack of targeted studies
and only scattered information to be drawn by studies dedicated to the investigation
of other genomics/transcriptomics elements.
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To date, our attempt at classifying the transcriptional architecture of the tumor
matrisome (Izzi et al. 2019) remains the most in-depth characterization of upstream
regulomics. Moreover, we have recently tried to expand this survey to a more
general concept linking the regulatory architecture of tumor matrisome to that of
stem cells and suggesting several potential regulators that the two cell states might
share, at least for specific collagens (Izzi et al. 2020). Notably, we and others seem to
have come to the same conclusion on different matrisome elements too (Izzi et al.
2017a, b, c; Praktiknjo et al. 2020; Zhu et al. 2017), strengthening the bond between
stemness and tumorigenesis in matrisome regulomics. Recent findings from posi-
tional and single-cell transcriptomics analyses, however, suggest an even more
complex scenario where different areas of the same tumor and their surround-
ings—as well as different circulating tumor cells shed from primary neoplastic
sites—express different matrisome genes (Bartoschek et al. 2018; Lim et al. 2019;
Sathe et al. 2020; Ting et al. 2014), strongly advocating for a greater local hetero-
geneity than currently imagined and, hence, for a plethora of regulatory
mechanisms!

Though extremely sparse, a literature on upstream regulomics mechanisms of the
tumor matrisome exists: for example, a role for specific miRNAs, such as hsa-miR-
767-5p, hsa-miR-487b-5p, hsa-miR-217, hsa-miR-1-3p and hsa-miR-133b, in reg-
ulating matrisome expression in metastatic colorectal carcinoma has been demon-
strated and the same mechanism seems to also hold true for fibroblasts in pulmonary
fibrosis and for healthy and diseased tendons (Ju et al. 2019; Mullenbrock et al.
2018; Thankam et al. 2016). Similarly, the possible effect of lncRNAs, eventually
also differentially methylated, in affecting matrisome expression has been suggested
for breast cancer (Heilmann et al. 2017; Li et al. 2018; Tomaru and Hayashizaki
2006), again in line with findings from ageing and non-neoplastic diseases (Mullin
et al. 2017; Yang et al. 2016).

Methylation is, of course, another crucial regulator of gene transcription (Sieg-
fried and Simon 2010). Surprisingly, reports about matrisome methylation, espe-
cially in cancer, are extremely fragmentary and scant: for example, in hepatocellular
carcinoma, dermatopontin (DPT) has been reported to be downregulated by
hypermethylation (Fu et al. 2014) and various ECM genes are targeted by methyl-
ation in colorectal cancer (Dong et al. 2019), similar to what has been reported for
CAFs´ matrisome as well as for ageing (Li et al. 2017; Santi et al. 2018; Zhang et al.
2017).

Additionally, one should consider the potentially enormous role of matrisome
mutations and single nucleotide variants (SNVs) in cancer, another topic that is
surprisingly neglected and for which a clear definition of the effects is still far to
come. Even more, one could consider how all these possible elements of regulation
impact on the tumor matrisome: to date, one overarching study has tried to connect
these layers together to explain gene expression across the whole transcriptome
(Sharma et al. 2018). Rather surprisingly, ECM genes were frequently found among
the top 5% of those whose expression cannot be explained by a combination of
transcription factors, mutations, CNAs and methylation. The authors concluded that
two factors might provide an explanation to the expression of these genes: (1) at least
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for some ECM genes, somatic mutations within �10 kb to +1 kb of the TSS
(Transcription Start Site, hereby loosely indicating the promoter region) might
explain gene variations, though a variable fraction of gene expression remains
unexplained, and (2) redundancies in cell pathways might mix up regulatory alter-
ations, creating complex combinatorial patterns that eventually paint the tumor
matrisome landscape at a finer scale.

Particularly this latter explanation closes in very well with the inter- and intra-
tumoral heterogeneity of transcription factors and upstream regulatory mechanisms
and shows the crucial importance of efforts to catalogue such factors to understand
how the tumor matrisome gets shaped. And finally, for those investigators who
would like to have more of a hands-on priming experience on this exciting field, we
suggest pointing your browsers towards the Cancer Regulome portal (http://www.
cancerregulome.org/).

7.3 Analysis of Cancer Matrisome at the Protein Level:
Towards the Matrisome “Integrome”

7.3.1 Mass Spectrometry and Proteomics are Powerful Tools
to Unveil Protein Composition in Tissue Samples

During the past few years, proteomics has become the method of choice to analyze
the matrisome at the protein level. In general, the most used proteomic analysis
strategy is the so-called discovery or shotgun proteomics which uses bottom-up
mass spectrometry, where the proteins are first denatured and digested to peptides by
a proteolytic enzyme or a chemical cleavage reagent before being submitted to mass
spectrometry (Aebersold and Mann 2003). The most used enzyme is trypsin that cuts
the protein after lysine or arginine except when proline immediately follows the
cutting site. LysC is often used together with trypsin to complement digestion since
it cuts between lysine and any other amino acid, including proline. In addition,
unlike trypsin, LysC is active in high concentrations of urea, which is often used as a
denaturing agent (Glatter et al. 2012). The digested peptides are then separated by
reverse-phase HPLC chromatography and submitted inline to a tandem mass spec-
trometer (LC-MS/MS), where the peptide ions are first scanned (MS1), then
fragmented, and the fragments are scanned (MS2). To identify the proteins, the
MS2 spectra are computationally compared to theoretical spectra of peptides
obtained by in silico digestion of proteins in a database (Aebersold and Mann 2003).

Beside identification of proteins in the sample, relative quantitation of proteins
between samples is often desired, and this can be achieved in settings with or without
labeling. SILAC labeling (Ong and Mann 2006) uses amino acids labeled by stable
isotopes that are fed to cultured cells or even to whole animals (Krüger et al. 2008)
before sample preparation. After labeling, the samples are mixed and submitted to
LC-MS/MS. Quantitation is done from MS1 data by comparing the intensities of
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different isotopic versions of the same peptide and, with SILAC, it is possible to
differentially label up to four samples simultaneously. Another common labeling
method uses isobaric tags such as iTRAQ or TMT that are attached to the extracted
proteins or digested peptides before mass spectrometry (Ross et al. 2004; Thompson
et al. 2003). After labeling, the samples are mixed and run by LC-MS/MS; during the
MS1 phase the isobaric labels behave identically but, after fragmentation, the label
releases a reporter ion with a specific m/z value for each sample. The intensities of
different reporter ions in MS2 spectrum, thus, reflect differences between samples.
The most recent commercially available iTRAQ and TMT reagents can be used to
label up to eight and sixteen samples, respectively.

As for the label-free quantitation, there are two main approaches here, too:
spectral counting and extracted ion chromatogram (XIC) based quantitation. In
spectral counting the number of MS2 spectra matching to a certain protein are
counted. In XIC based quantitation the ion intensity (usually the chromatographic
peak area) of a peptide ion with a given m/z value and elution time is measured
(Wang et al. 2008). To compare between different samples, the samples are run
sequentially in the same conditions. The sequential runs are then aligned by elution
time and m/z value and the ion intensities are compared, and identification from one
sample can also be transferred to other samples (Cox et al. 2014). The advantage of
XIC-based quantitation with transferred identification is that it can be, in theory,
multiplexed to any number of samples.

There are many software tools for quantitation of data. Many of them are
commercial, but there are also software such as MaxQuant (Tyanova et al. 2016)
and OpenMS (Röst et al. 2016) which are free of charge and can be used for
analyzing data from both label-based and label-free experiments.

Studies focused on the matrisome require, furthermore, special methods in
sample preparation: to detect as many ECM proteins as possible, in fact, they need
to be enriched somehow. The insoluble nature of ECM proteins requires harsh
enrichment methods and, for example, decellularization by sodium dodecyl sulphate
or other detergent or chaotropic salts have been used for enrichment of ECM in
tissue samples—see (Taha and Naba 2019) for review; the outcomes and features of
different enrichment strategies have also been systematically compared (Krasny
et al. 2016). For cell cultures, also more subtle decellularization methods such as
freeze-thaw cycling or trypsinization have been used (Baroncelli et al. 2018; Lee
et al. 2019; Mao et al. 2019). Cultured cells can also be removed by hypotonic
treatment. For example, we have successfully applied hypotonic lysis for enrichment
of extracellular matrix from various 2D and 3D cell cultures of fibroblasts and cancer
cells or their co-cultures (Ojalill et al. 2018a, b, c, 2020; Siljamäki et al. 2020). Since
enrichment does not, however, remove all cellular proteins the detected proteins
need to be filtered for ECM proteins and the usual matrisome lists (Naba et al. 2016)
available at http://matrisome.org/ have greatly facilitated filtering the detected pro-
teins for ECM proteins both in our and other studies.

Tissue-derived ECM components can be difficult to dissolve completely in
commonly used denaturing agent such as urea or guanidine hydrochloride. How-
ever, digestion and subsequent proteomic analysis of a urea soluble fraction of

144 V. Izzi et al.

http://matrisome.org/


incompletely dissolved matrix gives very similar results compared to those obtained
from digestion of insoluble fraction. In addition, the majority of proteins in an
insoluble fraction seems to consist of highly abundant collagen I, III and VI, and
their depletion in the soluble fraction can in fact increase the number and diversity of
ECM proteins detected (Naba et al. 2017a, b). Thus, at least in quantitative exper-
iments, analyzing the soluble fraction seems to be preferable and, in fact, differential
solubility has also been exploited to fractionate ECM proteins (Schiller et al. 2015).

On top of all these difficulties, many ECM proteins are glycosylated, and many
prolines and lysines of collagens are hydroxylated. Glycosylation of ECM proteins
can decrease solubility and susceptibility to enzymatic digestion. Therefore, many
studies have routinely included deglycosylation by PNGaseF treatment before or
during enzymatic digestion of ECM proteins—see (Taha and Naba 2019) for
review—though it should be kept in mind that PNGaseF causes deamidation of
asparagine to aspartate when the N-linked glycosylation is removed. To optimize the
coverage of ECM proteins, then, these modifications should be included to the
possible amino acid modifications in the search parameters of the identification
software.

In addition to hydroxylation and glycosylation, it has also been shown that
extracellular proteins can be phosphorylated (Yalak and Vogel 2012) and
citrullinated (Sipilä et al. 2017). These modifications may have a significant impact
in cancer and other diseases (Yalak and Vogel 2012; Yuzhalin et al. 2018a, b) but,
till now, not a large majority of studies on the tumor matrisome have provided these
information to the wider audience and it is therefore becoming increasingly impor-
tant to specifically analyze these modifications in the context of the extracellular
matrix.

7.3.2 Proteomics Data Repositories and Portals

Today it is usually mandatory to submit the raw mass spectrometry data along with
their metadata to a public repository such as those under the ProteomeXchange
consortium (Deutsch et al. 2017) when publishing a study involving proteomics.
This has opened the possibility to reanalyze already-published data using different
strategies, for example searching for PTMs not addressed in the original publication.
To browse repositories within the ProteomeXchange consortium one can, for exam-
ple, resort to ProteomeCentral (http://proteomecentral.proteomexchange.org). The
Clinical Proteomic Tumor Analysis Consortium (CPTAC) has also made, and
continues to make, its data publicly available (Edwards et al. 2015) and this is a
great opportunity to complement TCGA data at the genomics, epigenomics and
transcriptomics level since the proteomics data available from TCGA are impor-
tantly limited (and the bravest of readers might even want to try investigating the
genes from our guided walkthrough in this portal!).

However, analysis of raw (or anyway primary) data is complex and can be
especially challenging for researchers not familiar with mass spectrometry. Thus,
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there is a pressing need for easily accessible tools that can be used to mine and
analyze publicly available data. A great example of this kind of tools is the
MatrisomeDB (http://matrisomedb.pepchem.org/) developed by the Naba group,
that tries to address this need in the matrisome field (Shao et al. 2020). The database
has been constructed by analyzing the raw data of 17 studies where decellularization
has been used to enrich ECM before mass spectrometry, and the analysis has been
conducted using equivalent parameters for all studies (taking different labeling
strategies etc. into account), allowing multiple different PTMs (e.g. hydroxylation,
deamidation, phosphorylation, citrullination) and applying mass-tolerant database
search (Chick et al. 2015). The database is expandable, and the authors welcome
contributions.

7.3.3 Proteomics Reveal the Basic Components of the Tumor
Matrisome

Several published studies have proven the principle that mass spectrometry and
proteomics are essential methods to unveil novel features in the composition of ECM
in tumor stroma. These tools have been widely used to analyze patient-derived tissue
samples (Glavey et al. 2017; Gocheva et al. 2017; Naba et al. 2014b), mouse tumors
(Barrett et al. 2018), xenografts (Naba et al. 2014a; Tian et al. 2019) as well as
in vitro experimental models such as spheroids (Ojalill et al. 2018a, b, c; Siljamäki
et al. 2020) and targeted approaches (Tomko et al. 2018).

The analysis of ECM in tumor stroma by mass spectrometry has also revealed
some basic facts of matrisome production and accumulation in cancer that challenge
common views of both typical ECM sources and primary/metastatic tumors. For
example, we now know that despite mesenchymal, fibroblast-like cells are the main
source of ECM proteins, also carcinoma cells themselves seem to importantly
contribute to the process (Naba et al. 2012, 2014a; Tian et al. 2019). Moreover,
the proteins released by cancer cells may further regulate the progression of the
disease (Tian et al. 2019). Also, interestingly, the matrisome landscape of liver
metastases from colorectal cancer has been shown to more closely resemble the
matrisome of primary colorectal tumors, rather than the liver matrisome (Naba et al.
2014b), and this observation also stresses the importance of cancer cells in the
regulation of ECM accumulation in tumors.

The proteomics-based analyses of human tumors have often aimed at the identi-
fication of novel biomarkers that could be used for prognostication, for the selection
of therapies with the highest chance to achieve results or for the identification of
novel drug targets. No universal markers of cancer matrisome have been found so
far, possibly owing to the redundancy of ECM proteins in tumors already discussed
in Paragraph 2.3, but published papers contain several interesting observations that
have spurred further studies and findings from proteomics and have led to a more
organic understanding of the role of specific matrisome proteins in cancer (Tian et al.
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2020). Much alike transcriptomics, several specific expression patterns of ECM
proteins have been published for different cancers, with the potential to be useful
in the prediction of cancer progression. Still, even though mass spectrometric
analysis of cancer matrisome is an important method to analyze human tumors,
significantly larger patient numbers should be analyzed before specific ECM signa-
tures could be introduced in clinical practice.

In addition, the development of novel tools in proteomics provides exciting new
opportunities for more detailed analysis of cancer matrisome and for the understand-
ing of yet unappreciated elements within. For example, proteolytical processing of
ECM components generates biologically active polypeptides—usually referred to as
matricryptins—whose eventual roles and importance in tumors are, for the largest
part, completely unknown. The best known of them is endostatin, an angiogenesis
regulator derived from collagen XVIII (Brassart-Pasco et al. 2020). Recognition of
the active proteolytic processes as well as the resulting bioactive degradation
products would create new opportunities for prediction of tumor behavior (Rogers
and Overall 2013; Zhang et al. 2019). Mass spectrometry is also an optimal method
to identify posttranslational modifications (PTMs) in ECM proteins, like collagens
(Merl-Pham et al. 2019). for example, the hypoxia-induced expression of lysyl
oxidase and the consequently increased hydroxylation of lysine residues in collagens
may promote the formation of bone metastasis in breast cancer (Cox et al. 2015). The
biological effects of most PTMs, such as citrullination and phosphorylation, in the
tumor matrisome are potentially very interesting but, as we already stated, mostly
unknown.

The mass spectrometric analysis of tumor tissues has provided valuable informa-
tion about the composition of ECM in cancer and, recently, complementary prote-
omics approaches in controlled in vitro microenvironments have been used to dissect
the diverse contributions of different cell types to the cancer matrisome. Cell culture
models obviously lack e.g. blood vessels and inflammatory cells and it would be
therefore important to know how similar or different the ECM composition of a
given tumor or tissue (or even a single cell type) is when produced in vitro or
in/ex vivo. In our own studies we have tried to answer this question by comparing
the ECM extracted from human prostate tumors to the ECM produced in vitro by
isolated prostate cancer-derived fibroblasts or by the same fibroblasts co-cultured
together with prostate cancer cells in spheroids (Ojalill et al. 2018a, b, c). What we
observed was a sharp contrast in between the “core matrisome” (basically, the
structural ECM proteins) and the ECM-associated ones. The basic structural proteins
in the ECM are, in fact, very much the same in all the setups. When isolated
fibroblasts are cultured in monolayers in the presence of ascorbic acid they produce
collagen I and many other proteins associated to collagen fibrils and loose connec-
tive tissue; these same components could be found in spheroids as well as in ex vivo
tumor stroma (Ojalill et al. 2018a, b, c). However, major differences can be observed
in ECM-associated proteins for which we could recognize several gene products that
modify the ECM in cell cultures, suggesting that the classical cell culture conditions
activate ECM renewal whereas, in tissues, the ECM is more stationary. Despite the
fact there were differences between fibroblast monolayers and spheroids,
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furthermore, we could not conclude that ECM in spheroids would better mimic
tissue ECM than the one from monolayers. Notably, many plasma-derived proteins
can also associate to the ECM and these were abundant in tissue sample but naturally
not present in serum-free cell cultures (Ojalill et al. 2018a, b, c). Cell cultures can,
furthermore, be a favorable setup for studying reciprocal cell-to-cell interactions or
to dissect the differential contributions of subtle cell types to the tumor matrisome.
For example, we have recently analyzed spheroid cultures of skin fibroblasts
together with transformed keratinocytes harboring activating RAS mutation and
evidenced how the different cell types seem to regulate each other’s ECM produc-
tion, with a particularly important effect on the accumulation of basement membrane
proteins, such as laminins (Siljamäki et al. 2020). Another recently published report
indicates that subtypes within broadly defined CAFs may exhibit significant differ-
ences in the production of ECM components (Brechbuhl et al. 2020). Fibroblasts
that are CD146–, in fact, seem to promote the metastatization of human breast cancer
cells when compared to CD146+ fibroblasts. Quantitative and qualitative proteomic
analyses showed that CD146+ fibroblasts produced, to the vantage of cancer cells,
an environment rich in basement membrane proteins, while CD146– fibroblasts
exhibited increases in fibronectin, lysyl oxidase, and tenascin C.

7.3.4 Connecting Proteomics to Other Research Methods
in Tumor Matrisome

Individual ECM components may play an important role in the progression of
cancer. However, the general organization of the ECM and especially its stiffness
have been shown to be even more important (Levental et al. 2009). While ECM
composition is also a regulator of its own organization, proteomics methods alone
are insufficient to give a complete picture of the tumor matrisome. Therefore, the
mass spectrometric analysis of the matrisome has also been connected to other
methods such as RNA sequencing and microscopy. These approaches have resulted
in a more complete image of the complex relationship between ECM composition
and organization (Carpino et al. 2019; Mayorca-Guiliani et al. 2017) and helped to
develop novel methods in prognostication (Pearce et al. 2018a, b).

In situ decellularization of tissues (ISDoT) is a method that allows both high-
resolution imaging and proteomic analysis of native extracellular matrix (Mayorca-
Guiliani et al. 2017). In this method the tissue sample, or even a whole mouse organ,
is decellularized in a way that leaves the native ECM architecture intact. In the
original publication, the authors then analyzed the three-dimensional decellularized
tissues using high-resolution fluorescence, second harmonic imaging, and quantita-
tive proteomics. In a mouse model, they followed primary tumor development and
progression to metastasis and concluded that cancer-driven ECM remodeling is
organ-specific (Mayorca-Guiliani et al. 2017). Combination of histology and mass
spectrometry to analyze ECM in the intrahepatic cholangiocarcinoma has also
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unveiled the interesting association of collagen III alpha1 chain (COL3A1) expres-
sion with high levels of collagen fibers and low abundance of reticular and elastic
fibers, suggesting that these biochemical and organizational ECM clues may con-
tribute to the stiffness of the matrix and the promotion of cell migration (Carpino
et al. 2019). To an even finer level of detail, Pearce et al. (2018a, b) have studied
human metastatic microenvironment using biopsies of high-grade serous ovarian
cancer metastases. Using a single sample they were able to combine RNA sequenc-
ing, matrisome proteomics, cytokine and chemokine levels, cellularity, ECM orga-
nization and biomechanical properties, and the multivariate integration of the
different components allowed to recognize profiles that predicted both the extent
of disease and the corresponding tissue stiffness (Pearce et al. 2018a, b).

These recent papers have clearly shown the benefits of the concomitant use of
distinct methods. It is tempting to predict that, in the future, similar approaches will
be used to analyze many different cancer types in parallel as well as larger numbers
of patients. These studies may produce a more precise picture of the relationship of
ECM composition and organization. Furthermore, we can also expect novel and
accurate signatures of matrisome proteins that could be valuable tools in clinical
practice.

7.4 Future Perspectives

The composition and functions of the tumor matrisome is diverse and heterogenous,
with both predicted local niches of specialization depending on different cell types
and functional cell states as well as observed global “themes” and processes that
cross (and associate) different tumors together. Mapping the incredible complexity
of this system is a challenge that spans all the layers of omics data and impinges on
cell and tissue research, metabolic and systemic connections all the way up to entire
organisms and species.

The extraction of biochemical, functional and organizational clues from each
level of information and the findings that tie these elements together into a common
space that reveals the molecular, cellular and supracellular dimensions of the tumor
matrisome is propelling us into a new era of research, one in which we will hopefully
be able to grasp the global structure of this system and exploit this knowledge to
devise new, effective antineoplastic therapies and prognostic/diagnostic methods.
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Chapter 8
Proteomic and Degradomic Analysis
of Body Fluids: Applications, Challenges
and Considerations

Konstantinos Kalogeropoulos, Louise Bundgaard, and
Ulrich auf dem Keller

Abstract Body fluids are rich sources for proteins originating from organs, tissues,
and circulation. They are considered to reflect the state of those tissues and organs
and to contain a vast pool of candidate biomarkers for a wide range of conditions.
Thus, body fluids are regarded as highly attractive specimens for detecting disease
disposition, to monitor markers of progression or to assess the efficacy of treatments.
They provide several advantages for screening and clinical testing, such as low cost,
minimum to low invasiveness and simple sample collection. However, body fluids
are immensely complex mixtures, with most of them containing thousands of pro-
teins and peptides. Therefore, sensitive and accurate high-throughput methods are
required for deconvolution of body fluid proteome composition and differential
protein abundances. Due to rapid developments in the field of mass spectrometry
(MS), MS-based proteomics is deemed to be the most suitable methodology for
systematic analysis of body fluid proteomes. In this chapter, we discuss different
body fluids and their characteristics, advancements in MS and workflows suitable for
body fluid analysis as well as sample preparation and applications in the field of
body fluid proteomics and degradomics.

8.1 Body Fluids

Body fluids can be classified as systemic or proximal. Systemic fluids are fluids that
represent the overall physiological state of an organism, since they are circulating the
whole or most parts of the body. Proximal fluids provide a more specific picture of a
tissue, because they are the products of a healthy or diseased organ (Paulo et al.
2011). Body fluids like urine encompass both categories. The direct advantage of
analysis of a proximal fluid is the increased chance of detecting specific biomarkers
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and downstream products of a disease, while systemic fluids can provide information
about the general health state of an organism. Although blood is a systemic fluid with
tightly regulated homeostatic mechanisms, it can be a highly valuable sample in
cases where proximal fluids cannot be obtained or early diagnosis of a pathological
state is the goal (Capelo-Martínez 2019).

8.1.1 Blood

Blood is arguably the most readily accessible biofluid and contains proteins that are
shed, leaked or secreted from a multitude of tissues (Ahn and Simpson 2007; Zhao
et al. 2018). Plasma is the portion of the blood where the coagulation cascade and
clotting mechanisms have been inhibited with anticoagulants. Serum is the blood
fraction that is collected after clotting, thereby being free of clotting proteins as well
as cells and platelets trapped in the fibrin network (Capelo-Martínez 2019). The
proteome composition of plasma and serum has been found to be substantially
different (Sapan and Lundblad 2006).

Plasma and serum represent a rich protein source, with numerous of their
constituents routinely monitored and quantified in clinical practice. Protein concen-
tration ranges between 60 and 80 mg/ml in specimens from healthy individuals,
whereby albumins and globulins account for a large portion of the total protein
content. Overall, there is a huge difference in the amounts of individual protein
species, which are present in concentrations spanning a range of over ten orders of
magnitude (Geyer et al. 2017). About 90% of the total protein amount is represented
by the 12–14 most abundant proteins, although it is believed that serum contains up
to 10,000 proteins (Kessel et al. 2018). This poses an immense challenge with
respect to detection and quantification of lowly abundant proteins in serum that
often have high potential to serve as the most indicative biomarkers. Most body
fluids exhibit the same problem, and enrichment strategies that partially ameliorate
this issue are addressed below. As expected, MS-based proteomics has been exten-
sively applied to investigate plasma proteome composition. The Human Plasma
Proteome Project (HPPP) illustrates an effort to document the full protein content
of human plasma (Schwenk et al. 2017). Serum proteomics have also been used to
examine changes in protein levels in a range of diseases, such as nonalcoholic fatty
liver (Younossi et al. 2005) and liver fibrosis (Gressner et al. 2009), rheumatoid
arthritis (Park et al. 2015) and cancer (Peng et al. 2018). Several studies and reviews
on MS-based proteomics biomarker discovery are available in the literature (Geyer
et al. 2016, 2017; Huang et al. 2017), as well as protocols for sample preparation and
guidelines for specific analysis workflows (Greco et al. 2017; Lan et al. 2018;
Moulder et al. 2018). Peptidomics studies have also been performed for biomarker
discovery in serum under normal (Arapidi et al. 2018) and disease conditions (Fan
et al. 2012; Yang et al. 2012, 2018; Widlak et al. 2016; Shraibman et al. 2019).
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8.1.2 Urine

Urine is another major biofluid that has been thoroughly investigated by MS-based
proteomics and can be collected in large volumes in a non-invasive manner (Csősz
et al. 2017). Other advantages include minimum cost, the possibility of easy
continuous sampling in time-resolved studies and a relatively lower proteome
complexity than serum. Urine is a result of blood filtration and contains proteins
and peptides that have not been reabsorbed by the organism in this filtration and
clearance process (Krochmal et al. 2018). Despite showing a lower protein concen-
tration than serum, it is a body fluid of great interest, especially in the field of
biomarker discovery, as it collects components from blood, kidneys and bladder and
it has the potential to indicate the natural or pathological conditions of multiple
organs (Capelo-Martínez 2019). Urine protein concentration is in the range of
20–100 μg/ml, consisting of mostly low molecular weight proteins (Edwards
2008). As in serum/plasma, albumin is the prevalent protein present in urine.
Albumin is followed in abundance by microglobulins and uromodulin, and protein
concentration again spans several orders of magnitude (Capelo-Martínez 2019).
Urine exhibits high thermodynamic stability, presumably due to its incubation in
the bladder, lowering the endogenous proteolytic activity and its low molecular
weight protein content (Rai et al. 2005; Tammen et al. 2005). As examples, the
urinary proteome or peptidome has been investigated for prostate cancer and rheu-
matoid arthritis biomarkers (Kang et al. 2014; Jedinak et al. 2018), acute coronary
syndromes and kidney diseases (Htun et al. 2017; Sirolli et al. 2019).

8.1.3 Cerebrospinal Fluid

Cerebrospinal fluid (CSF) is an additional body fluid that has attracted attention in
proteomics studies. However, invasive methods are required to obtain CSF and the
medical condition of the patient has to be taken into consideration before sampling,
CSF can be used to detect changes in protein expression in neurological and other
disorders and diseases. CSF is a biofluid present in the ventricular system of the
central nervous system as well as the surroundings of the spinal cord and brain. CSF
is excreted by cells of the choroid plexus and ependymal cells, mediating molecule
exchange with blood plasma and brain tissue (Maurer 2008). CSF is fully renewed
3–4 times per day and its composition depends on the sampling location. CSF
protein concentration is comparatively low at 0.3–0.7 mg/ml, albeit still suffering
from the issue of a few major proteins overshadowing the rest, a characteristic of
most biofluids (Davidsson et al. 2002; Hu et al. 2006). CSF proteomics has been
employed for the study of spinal cord injury (Streijger et al. 2017), depressive
disorder (Al Shweiki et al. 2017), meningitis (Gómez-Baena et al. 2017) and
multiple sclerosis (Kroksveen et al. 2015), other than the characterization of the
physiological protein composition (Zhang et al. 2005; Barkovits et al. 2018).
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8.1.4 Synovial Fluid

Another biofluid of interest is synovial fluid (SF) whose analysis in disease condi-
tions can illuminate pathological states of the joint structure (Driban et al. 2010;
Sohn et al. 2012; Kiapour et al. 2019). SF is encapsulated by the joint cavity of the
synovial joint. The inner layer of the joint capsule which encircles the joint accom-
modates a membrane of fibroblast-like cells that produce the viscous SF. SF medi-
ates cell interactions, facilitates molecule transport and lubricates the articular
cartilage (Mahendran et al. 2017). Since the synovial membrane has semi-permeable
properties, passive diffusion of plasma proteins through the membrane is a natural
phenomenon. Excreted proteins from cells in the joint apparatus are also present,
making SF a dynamic fluid influenced by a plethora of different factors. Normal
human SF protein concentration is in the range of 19–28 mg/ml and increases in
pathological states. Also in this body fluid, albumins (approximately 12 mg/ml) and
globulins (at 1–3 mg/ml) account for a large portion of the protein content (Hui et al.
2012). Protein size plays an important factor in relative abundances in SF, as it is
directly associated with the protein’s ability to penetrate the permeable membrane.
Hence, large plasma proteins are found at low concentrations in normal SF. On the
contrary, pathological SF resembles serum with respect to protein abundance.
Synovial fluid proteomic studies are mostly associated with pathologies related to
arthritis (Bhattacharjee et al. 2016; Mahendran et al. 2017; Vicenti et al. 2018).

8.1.5 Salivary and Tear Fluid

Salivary fluid and its proteome content has also been investigated, since it as well
presents the advantages of non-invasiveness and availability for biomarker discov-
ery (Aqrawi et al. 2017). Saliva is a fluid secreted from the salivary glands and the
gingival crevice (Humphrey andWilliamson 2001). It contains thousands of proteins
(Schulz et al. 2013), of which α-amylase, mucin, cystatins, proline-rich proteins and
globulins are most prominent (Hu et al. 2005; Guo et al. 2006; Denny et al. 2008).
Saliva is mostly made of water (99%), electrolytes, urea and proteins. Saliva protein
concentration is highly variable, but it naturally ranges from 0.7 to 2.4 mg/ml (Lin
and Chang 1989; Shaila et al. 2013). Proteomics studies have identified more than a
thousand proteins in salivary fluids (https://salivaryproteome.nidcr.nih.gov/). Sali-
vary proteomics or peptidomics have been employed to study differential protein
abundance and potential biomarkers in jaw osteonecrosis (Thumbigere-Math et al.
2015), oral lesions (de Jong et al. 2010), periodontitis (Trindade et al. 2015), oral
cancer (Gallo et al. 2016; Stuani et al. 2017), as well as systemic conditions such as
autoimmune diseases (Ohyama et al. 2015) and diabetes mellitus (Caseiro et al.
2013). The protein content of extracellular vesicles in human saliva in relation to
lung cancer has also been investigated (Sun et al. 2018).
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Tear is another highly examined body fluid, which can be collected
non-invasively. It consists of proteins, lipids and other molecules produced in the
lacrimal glands, whereby its normal protein concentration is 5–7 mg/ml (Fullard and
Snyder 1990). Tear fluid contains more than 1500 proteins, of which the most
prominent ones have been associated with pathogen defense (Zhou et al. 2012).
Changes in protein expression levels can reflect inflammatory states in
eye-associated or systemic diseases (Li et al. 2008; Le Guezennec et al. 2015).
Tear proteomics has also been utilized for the assessment of several ocular-related
conditions (Tomosugi et al. 2005; Zhou et al. 2009a,b; Aluru et al. 2012; Leonardi
et al. 2014).

8.1.6 Seminal Fluid and Sweat

Semen is a biofluid material, which can be exploited not only in basic research, but
also in forensic studies (Merkley et al. 2019). The acellular fraction of semen, or the
seminal fluid, accounts for 95% of semen volume (Jodar et al. 2017). More than
6000 proteins have been identified with high confidence in semen proteomic studies
investigating the spermatozoal proteome (Amaral et al. 2013). In this, proteins
partaking in DNA packaging, RNA metabolism and transport as well as other
metabolic processes for energy generation were overrepresented (Amaral et al.
2013; Oliva et al. 2015). In seminal fluid, a little more than 2000 non-redundant
proteins have been identified (Gilany et al. 2015), with semenogelins accounting for
80% of the total protein content (Drabovich et al. 2014). About 10% of seminal fluid
proteins are encapsulated in extracellular vesicles present in seminal fluid, namely
the epididymosomes and the prostasomes whose prominent components are
enzymes with GTPase activity and proteins related to phospholipid binding (Jodar
et al. 2017). A recent study analyzed the exosomal proteome content in seminal fluid
(Yang et al. 2017), complementing results that have been summarized in several
review articles on semen proteomics (Gilany et al. 2015; Jodar et al. 2017; Druart
and de Graaf 2018).

Sweat, as an excreted fluid, is also important in indicating the physiological state
of an organism, and it has been studied with proteomic methods. Similar to salivary
fluid, sweat is highly diluted, and the proteins in sweat contribute to defensive
mechanisms against pathogens and tissue regeneration following injury (Schittek
et al. 2001). Identified proteins are in the range of high hundreds, whereby most
abundant proteins include dermicin, clusterin and albumin (Yu et al. 2017). Sweat
proteomics studies have explored its role in defense and skin immunity (Csősz et al.
2015; Wu and Liu 2018) as well as sweat protein composition in general (Yu et al.
2017; Na et al. 2019).
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8.1.7 Wound Exudate

An additional body fluid that has gained considerable momentum for biomarker
discovery and proteomic analysis is wound exudate (Mannello et al. 2014). Wound
fluid, which can be classified as proximal fluid, enables investigating the state of the
local wound tissue and can serve as an indicator of the wound healing trajectory
(Kalkhof et al. 2014; Lindley et al. 2016). Proteins present in wound fluid play an
important role in modulating responses to injury and regulating the wound micro-
environment (Cavassan et al. 2019). The underlying biological mechanisms of
chronic inflammation and non-progressive wounds are still poorly understood.
Therefore, wound exudates present an excellent biological matrix for biomarker
discovery in chronic, non-healing wounds. Protein concentration depends on sam-
pling method and wound type. Abundant proteins in wound fluids largely overlap
with highly abundant serum proteins, of which albumin is the main component. As a
result of matrix remodeling and tissue repair and regeneration, extracellular matrix
proteins are also overrepresented in these specimens. Fluid from wounds contains
inflammatory mediators such as chemokines and growth factors, which are required
to orchestrate the distinct phases of the wound healing process. Wound exudate
proteins have been found to span at least six orders of magnitude in concentration
(Sabino et al. 2015).

8.1.8 Other Body Fluids and Exosomes

Several other types of body fluids such as amniotic fluid and gingival crevicular fluid
are available and have been investigated in proteomic studies (Cho et al. 2007;
Khurshid et al. 2017; Zhao et al. 2018). Special attention has also to be given to
extracellular vesicles (EVs) that are present in basically all body fluids. EVs are a
largely unexplored pool of protein transport media that could possess significant
relevance for biological questions. Most of the discussed body fluids contain EVs
secreted from adjacent or distant cells, and their proteomic content and its changes
over time or in different conditions may be of use in biomarker discovery (De Toro
et al. 2015; Sódar et al. 2017). Membrane proteins in EVs are involved in cell
interactions, adhesion, signaling and ion transport as well as in immune responses
(Gutiérrez-Vázquez et al. 2013; Mulcahy et al. 2014; Turturici et al. 2014).
Exosomes have been studied in several biofluids, including plasma (Caby et al.
2005), urine (Nilsson et al. 2009), saliva (Ogawa et al. 2011; Sun et al. 2018) and
semen (Utleg et al. 2003; Thimon et al. 2008). The diversity of the proteomes
discovered in EVs is partly associated with differences in isolation methods
(Yáñez-Mó et al. 2015). Almost 35,000 proteoforms have been annotated in EVs
and numerous potential markers for different conditions have been identified and
validated (Csősz et al. 2017).
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8.2 Mass Spectrometry-Based Proteomics

Mass spectrometry (MS)-based technologies have rapidly evolved over the past two
decades. For instance, the invention and commercialization of the Orbitrap mass
analyzer in MS instruments in 2005 has significantly advanced the field (Eliuk and
Makarov 2015). Along with the gradual, steady improvement of MS-Time-of-Flight
(ToF) instrumentation, the two technologies have become the gold standard in
MS-based experimentation. Further developments in software and data analysis
tools as wells as enhancements in instrument speed and sensitivity have made
MS-based proteomics the preferred method for interrogation of complex biological
samples including body fluids.

Numerous MS-based proteomics workflows have been established, but the
method of choice mostly depends on the specific biological question or diagnostic
need. In most proteomic analyses of body fluids, a bottom-up methodology is
applied, consisting of the following steps: sample preparation, digestion with an
endoproteinase for generation of peptides, inline-liquid chromatography
(LC) separation and tandem MS analysis. Additional steps are frequently added to
this generic workflow, such as a second offline-LC step, desalting, ultrafiltration and
protein precipitation. Major differences in workflows depend on, whether a discov-
ery approach will be taken, or if specific analytes are to be monitored and quantified
(Schubert et al. 2017).

8.2.1 Discovery Proteomics

Discovery experiments aim at fully deconvoluting the proteomic content of a sample
by identifying as many proteins as possible in a wide range of concentrations. These
approaches do not require any prior knowledge of the sample composition and can
be employed for protein identification and analysis of post-translational modifica-
tions. Discovery proteomics workflows can be further subdivided into data-
dependent acquisition (DDA) and data-independent acquisition (DIA) methods. In
DDA mode, peptides are analyzed at the peptide precursor level (MS1) in predefined
packets depending on the instrument cycle time. The most abundant precursor
peptides of each packet are selected and fragmented into fragment ions. At the
second level of tandem MS, the fragment ions are measured and matched to their
precursors. The measurements are then compared to theoretical fragmentation pat-
terns and mass to charge ratios from sequence databases and mapped to the proteins
of origin with help of software tools (Meyer 2019). This methodology enables
accurate and sensitive identification of thousands of proteins from a single sample
in a single experiment. DIA methods differ from DDA by fragmentation of all
precursors assigned to distinct windows of mass to charge ratios, which results in
a much more complicated data scheme and makes the identification of peptides from
mass spectra computationally more challenging. However, a clear advantage of DIA
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methods is the unbiased, non-stochastic and universal data acquisition, providing a
close to complete overview of the protein constituents in any biological sample
(Barkovits et al. 2018). The most popular DIA method, sequential windowed
acquisition of all theoretical fragment ion mass spectra (SWATH), has been exten-
sively used in the field of body fluid proteomics and biomarker discovery (Vaswani
et al. 2015; Krisp and Molloy 2017; Anjo et al. 2017; Lewandowska et al. 2017; Liao
et al. 2017; Miyauchi et al. 2018; Ludwig et al. 2018).

Both DDA and DIA can be applied to gain qualitative or quantitative information
(Schubert et al. 2017). Qualitative analyses aim at identifying as many proteins as
possible and thereby obtaining the most comprehensive overview of the sample
proteome. Typically, these discovery proteomic techniques include supplementary
enrichment and/or fractionation steps in an attempt to increase the proteome cover-
age of the identification procedure. Quantitative proteomics adds an additional
dimension by attempting to determine abundances of as many proteins as possible
with maximum accuracy. Quantification can be relative by comparing different
conditions and/or to control samples or absolute in terms of protein concentration
in a sample. Multiple workflows for relative quantification of proteins have been
integrated into the general bottom-up proteomics approach and are regularly applied
in the analysis of body fluids.

Label-free quantification does not require any additional sample modification and
can be performed at the data analysis step. The simplest approach is based on the
assumption that the abundance of a protein is related to the number of spectra
generated from its peptides and thus determines relative protein quantities by
spectral counting. However, this method suffers from the stochastic aspect of mass
spectrometric detection in DDA experiments, assay variation and difficulty of
quantification at the protein level (Arike and Peil 2014). As a consequence, spectral
counting has been shown to be accurate in detecting large changes in protein levels
but far less precise for detecting subtle and less significant differences (Liu et al.
2004). This can be overcome by comparing LC-MS peak areas of peptide precursors
in MS1 ion current-based quantitative proteomics, a powerful approach for analyz-
ing samples from large cohorts in flexible experimental designs (Wang et al. 2019).
A widely applied implementation of this approach is the MaxLFQ algorithm (Cox
et al. 2014), which has also been extensively used e.g. in quantitative plasma
proteome profiling (Geyer et al. 2016). DIA workflows inherently use label-free
quantification but mostly at the MS2 rather than the MS1 level (Pappireddi et al.
2019) with advantages in minimizing the number of missing values and a high
quantitation accuracy (Muntel et al. 2019). This has also been extensively exploited
in assessing relative protein abundances in body fluid proteomes (Liu et al. 2013,
2015).

In contrast to label-free approaches, label-based relative quantitative proteomics
workflows require modifications to the proteome by incorporation of stable isotopes.
This can be achieved by metabolic incorporation or chemical labeling. Metabolic
incorporation has been implemented with stable isotopic labeling with amino acids
in cell culture (SILAC), where natural amino acids in the growth medium are
replaced by amino acids with stable isotopes. Cells grown in this culture medium
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incorporate the labeled amino acids, allowing to distinguish their proteins from
non-labeled control cultures in downstream MS analyses (Kani 2017; Hoedt et al.
2019). SILAC is a consistent, cost-effective and undemanding metabolic labeling
method that has been used in a multitude of MS studies (Chen et al. 2015; Wang
et al. 2018; Deng et al. 2019). Since SILAC would require incorporation of isoto-
pically labeled amino acids at the organism level, its application is limited in body
fluid proteomics. However, SILAC-encoded proteomes can be used as internal
standards and have been applied for quantitative comparison of proteins in tissues
and blood samples (Zhao et al. 2013; Dittmar and Selbach 2015).

As an alternative to amino acid labeling, chemical labeling utilizes isotopically-
encoded chemical tags that are mostly attached to the highly reactive primary amines
at lysine side chains and peptide N-termini (Chahrour et al. 2015). Prominent
examples are the isotope coded affinity tag (ICAT), isobaric tag for relative and
absolute quantitation (iTRAQ) and tandem mass tag (TMT) labels, which are
frequently employed to quantitatively compare multiple samples in a single run
(Liang et al. 2012; Ren et al. 2017; Moulder et al. 2018; Rao et al. 2019). Recent
advancements in the TMT technology allow multiplexed analyses of up to 16 sam-
ples in the same MS experiment, significantly reducing measurement time and
increasing sample throughput (Thompson et al. 2019). As a consequence,
TMT-based quantitative proteomics has advantages in the analysis of samples
from larger patient cohorts (Zecha et al. 2019).

8.2.2 Targeted Proteomics

With the rapid progress in identifying comprehensive proteomes by discovery
proteomics, targeted approaches have received increasing attention to specifically
monitor protein targets such as biomarker candidates. Targeted methods are by
nature quantitative and are used when a set of proteins of interest has been defined
and needs to be accurately and reproducibly quantified with high sensitivity in many
samples. A typical scenario is the identification of biomarker proteins by discovery
proteomic analysis of body fluids from a defined group of patients, which are then
validated by targeted monitoring in a separate and larger cohort (Altelaar et al.
2013). In this type of MS-based proteomic analyses target proteins or peptides are
the focus of the experiment (Sethi et al. 2015). Precursor ions are selectively
monitored by the instrument, after specific properties of the precursors such as
mass to charge ratios and LC retention times have been predetermined.

Multiple targeted methods exist, but they share the principle of monitoring a
specific ion and its subsequent fragmentation products over time. Selected reaction
monitoring (SRM) needs triple quadrupole mass spectrometers and is a method that
monitors the precursor ion of interest in the first stage of tandem MS and a single
specific ion product of a precursor fragmentation reaction in the second MS stage
termed a transition. The chromatographic peak of the transition can be used for
quantification through numerical integration. Relative quantification of peptides is
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performed by comparing chromatographic elution areas recorded for the same
transition in samples obtained under different conditions. Multiple reaction moni-
toring (MRM) is a surrogate method, with the difference of monitoring multiple ion
transitions, rendering the analysis and quantification more robust and reliable.
Lastly, parallel reaction monitoring (PRM) follows all transitions of a precursor
without selection and thus can be performed on the same instruments used for
discovery proteomics, such as Orbitrap and ToF analyzers. Thereby, the speed,
resolution and sensitivity of current mass spectrometers allow monitoring hundreds
of transitions with high precision in a single run. This number can be further
increased by spiking in isotopically-labeled internal standard peptides (IS-PRM) to
significantly reduce the required measurement time per transition (Gallien et al.
2015). Internal standards also aid in relative quantification and if their concentration
is exactly known as for absolute quantitation (AQUA) peptides, they can be used for
absolute quantification of peptides and proteins of interest. Concomitantly, reference
peptides significantly increase specificity and sensitivity of detection and therefore
panels have been developed in particular for the analysis of body fluids (Rice et al.
2019). Targeted methods have been improved over the years, evolving to the method
of choice for sensitive, high-precision and high-throughput detection and quantifi-
cation of target peptides, rendering them especially suitable for biomarker studies
(Castro-Gamero et al. 2014). As an example, DIA approaches follow the same
principle as PRM but without precursor selection and have the potential to soon
enable targeted analysis of complete proteomes.

8.3 Sample Preparation

8.3.1 Sample Handling

Many sample treatments have been developed for MS workflows to improve sample
purity, number of protein identifications and quantification accuracy. The following
sections give an overview of sample preparation protocols and discuss general
considerations related to sample handling. Several articles are readily available and
should be consulted for a more comprehensive insight into state-of-the-art sample
treatments in body fluid proteomics (Paulo et al. 2011; Hulmes et al. 2004; Kuljanin
et al. 2017; Geyer et al. 2019).

As a first measure, it is highly advised to inhibit innate enzymatic activity after
sample collection and preprocessing (Hulmes et al. 2004; Rai et al. 2005). Particu-
larly in body fluid samples, endogenous enzymes could still be active, and any
activity would alter the proteome, losing its ability to reflect the state of a tissue or
organism at time of sampling. Frequently used are protease inhibitors to impair
non-physiological protease activities after sample extraction and anticoagulants to
inhibit the coagulation cascade in plasma samples. Depending on the specific sample
and the biological process in focus, this is extended to phosphatase inhibitors and
additional substances interfering with protein-modifying enzymes. With respect to
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sample handling and preparation for MS analysis, technical procedures are mostly
focused on sample purification and clean-up. For accurate and sensitive analysis of
proteome content using MS, samples have to be free of contaminants and biological
molecules other than proteins and peptides.

8.3.2 Dynamic Range Reduction

A particular challenge in body fluid proteomics is the enormous dynamic range in
protein concentration, spanning up to 12 orders of magnitude, i.e. a ratio of about
one copy of a low-abundance protein to one trillion copies of a highly abundant
protein (Corthals et al. 2000). In serum, the top 22 most abundant proteins represent
99% of the total protein content, while the remaining 1% comprises thousands of
different, lowly abundant proteins. As a result, peptides from the highly abundant
proteins tend to overshadow and suppress detection of low-abundance peptides,
substantially decreasing protein coverage in MS experiments. Even with the rapid
advancements in the field, contemporary mass spectrometers do not match the
concentration range of body fluids such as plasma or urine. Moreover, the complex-
ity at the sample level is further increased, if lipids, salts and other metabolites are
taken into account and results in a loss of information for lowly abundant proteins,
which are frequently the subject of investigation. This dynamic range issue poses a
major challenge when sensitivity and reproducibility is a requirement and is the
major limiting factor in MS-based proteomics of body fluids. Biomarkers for
diseases and pathological conditions are frequently in the lower protein concentra-
tion range, making accurate and consistent identification and quantification partic-
ularly difficult. To address this problem, MS workflows, especially those optimized
for body fluid analysis, include various sample fractionation or enrichment tech-
niques to reduce the dynamic range. This can be achieved either by depletion of
high-abundance proteins or by dynamic range compression.

8.3.2.1 Depletion of High-Abundance Proteins

Depletion of high-abundance proteins and the resulting relative increase in
low-abundance biomarker candidates is a primary focus in MS-based analysis of
body fluids and multiple techniques have been developed (Pisanu et al. 2018). One
of the most prevalent depletion methods is column-based immunodepletion, where
highly abundant proteins such as albumin and immunoglobulins are captured,
thereby lowering their concentration in the sample of interest. General depletion of
albumin and IgG proteins can be achieved by dye methods (e.g. Cibacron) and
protein A/G based columns, respectively. Monoclonal and polyclonal antibodies or
peptide ligand-based columns can be used to remove specific proteins. For instance,
there are numerous immunoaffinity commercial kits available for depletion of the
most prominent proteins in plasma. Examples include ProteoPrep® (Sigma-Aldrich)
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for depletion of albumin and IgG proteins, Seppro® IgY14 (Sigma-Aldrich) for
depletion of the 12 most abundant plasma proteins, ProteoPrep 20 (Sigma-Aldrich)
for the depletion of the 20 most abundant plasma proteins, Aurum Affi-Gel Blue
Mini Columns and Kit (Bio-Rad) for albumin depletion, Pierce™ Top
(ThermoFisher Scientific) for depletion of the 12 most abundant plasma proteins,
and MARC (Agilent), which are available in multiple configurations. The effective-
ness of immunodepletion methods is undisputable. However, apparent disadvan-
tages are the potential loss of low molecular weight proteins that are bound to highly
abundant carrier proteins like albumin and the unspecific binding of lowly abundant
proteins to the column’s affinity ligand.

8.3.2.2 Dynamic Range Compression

An alternative approach to reduce the dynamic range that has attracted attention for
its sensitivity and effectiveness is dynamic range compression commercialized as
ProteoMinerTM (Bio-Rad). ProteoMinerTM can be more accurately defined as an
equalization rather than a depletion method. This technique uses a combinatorial
hexapeptide-bead library bound to a chromatographic column that compresses the
dynamic range of proteins in plasma samples. The library has a limited but equal
binding capacity for each protein, which implies that highly abundant proteins will
quickly reach saturation levels, while low-abundance proteins will fully bind to the
beads. As the unbound fraction of the sample is washed away, this technique enables
concurrent enrichment of the underrepresented, low-concentration proteins and
depletion of the highly abundant protein components (Fonslow et al. 2011; Li
et al. 2017; Moggridge et al. 2019). Since no proteins are completely depleted
from the sample, ligands and other proteins bound to highly abundant carriers will
still be represented in the eluted sample. Importantly, relative quantitation of
low-abundance biomarker candidates is not impaired, because concentrations of
these proteins are generally far below saturation level.

8.4 N-Terminal Enrichment and Degradomics

A growing body of research is devoted to proteolytic events, resulting from enzy-
matic activity of proteases in a biological system. Proteolysis is a very common post-
translational modification, which plays a role in a myriad of biological pathways and
processes, such as apoptosis and differentiation (Verhamme et al. 2019; Bond 2019).
Body fluids are strongly affected by this activity, since around half of all proteases
are secreted and exert their activity in the extracellular space. Typical examples of
protease activities in body fluids are the coagulation cascade and the complement
activation system. Proteases are also involved in disease and altered levels of
proteolytic activity can indicate or cause a pathological state. Degradomics is the
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field of research investigating cleavage events in complex samples or systems
(Savickas and auf dem Keller 2017; Grozdanić et al. 2019).

Proteolytic cleavage can result in complete degradation or limited processing of a
protein substrate. Degraded, unstable proteins are removed from the system and
changes in their abundances are indicative for a degradative proteolytic process.
However, discovery and analysis of limited proteolytic events by MS-based prote-
omics requires identification of newly generated protein products. Therefore, newly
formed protein N-termini and C-termini are ideal indicators of limited proteolysis
(Eckhard et al. 2016). Still, despite high proteolytic activities in body fluids, terminal
peptides represent a small portion of the overall peptide content. Since bottom-up
proteomics workflows include proteome digestion using trypsin or another suitable
endoproteinase, internal protein peptides heavily outnumber terminal peptides in
MS-based proteomics experiments, making their detection very difficult. Therefore,
several enrichment strategies have been developed to overcome this issue. Because
primary amines are more reactive than carboxyl groups, N-terminal enrichment
strategies are more prevalent in degradomic studies. Positive enrichment methods
selectively enrich for protein termini, while negative enrichment methods aim at
depleting internal protein peptides.

8.4.1 Positive Enrichment

Positive enrichment strategies selectively label N-terminal α-amines with chemical
affinity tags at the protein level. After digestion, tagged N-terminal peptides can be
enriched by affinity purification. Timmer et al. implemented a positive enrichment
strategy based on selective guanidation of lysine side chain ε-amines, subsequent
protein N-terminal labeling with an amine-reactive biotin tag and streptavidin
affinity enrichment of N-terminal peptides after tryptic digest (Timmer et al.
2007). Another positive selection method is based on the enzyme subtiligase, an
engineered variant of the protease subtilisin. Subtiligase is able to catalyze the
ligation reaction between proteins or peptides. In this method, a biotin-conjugated
peptide is ligated selectively to free N-terminal protein α-amines. After digestion, the
biotinylated N-termini are affinity purified using streptavidin columns. Finally, the
terminal peptides are released by cleavage using tobacco etch virus protease with
very distinct specificity for a sequence present in the biotin-labeled peptide tag
(Yoshihara et al. 2008). Using this strategy, Wildes et al. recorded the first
N-terminome of human blood (Wildes and Wells 2010) and Wiita et al. monitored
circulating peptides released from tumors (Wiita et al. 2014). Positive selection
methods have proven to produce simplified proteomes for degradomic studies.
However, the accurate discrimination between ε- and α-amines is quite difficult,
and positively enriched samples do not include natural N-terminal post-translational
modifications such as acetylation and cyclization.

8 Proteomic and Degradomic Analysis of Body Fluids: Applications, Challenges and. . . 169



8.4.2 Negative Enrichment

Several negative enrichment workflows for protein termini from complex biological
samples have been developed and extensively described in the recent literature (Luo
et al. 2019; Savickas et al. 2020). Here, we will summarize the principles of the two
methods that have been most widely applied in the field of degradomics and body
fluid analysis.

8.4.2.1 Combined Fractional Diagonal Chromatography

Combined fractional diagonal chromatography (COFRADIC) is a negative enrich-
ment method that employs two chromatographic techniques for purification of
terminal peptides (Staes et al. 2011, 2017). At first, the primary amines are acety-
lated, the sample is digested, and treated for removal of N-terminal pyroglutamates.
Secondly, strong cation exchange chromatography is used for N- and C-terminal
peptide enrichment. The more positive tryptic peptides bind to the resin at low pH
conditions, leaving the terminal peptides available for collection in the flow-through.
The purified peptides are treated with 2,4,6-trinitrobenzenosulfonic acid (TNBS),
which increases the hydrophobic properties of C-terminal and internal peptides.
Finally, N-termini are recovered by a series of reverse phase liquid chromatography
steps. Among many other applications, COFRADIC has been used to discover novel
plasma biomarkers for heart failure (Mebazaa et al. 2012).

8.4.2.2 Terminal Amine Isotopic Labeling of Substrates

Terminal amine isotopic labeling of substrates (TAILS) is another method for
negative selection of N-termini, which can be multiplexed with the use of
TMT/iTRAQ labels (Kleifeld and Doucet 2010; Kleifeld et al. 2011). In this
technique, all primary amines are blocked by amine-reactive chemical tags. Follow-
ing digestion, the peptides are incubated with a high-molecular weight (>100 kDa)
aldehyde-derivatized polymer (HPG-ALD), which specifically binds the free pri-
mary amines of the internal protein peptides. The polymer bound peptides and the
N-terminal peptides are separated by ultrafiltration, keeping the polymer in the
retentate and leaving the filtrate enriched with the protein N-termini. Labeling of
N-termini with TMT/iTRAQ enables highly multiplexed relative quantification of
N-termini and identification of protease cleavage events, which makes TAILS a
powerful technique for studying proteolytic landscapes in complex biological matri-
ces. In body fluid degradomics, TAILS has been for example used to characterize
proteolysis in human platelets (Prudova et al. 2014) and wound exudates from pigs
and patients (Sabino et al. 2015, 2018; Sabino and Hermes 2017).
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8.5 Conclusions

Body fluids are important specimens for biomarker discovery, and we have just
started to exploit their potential in diagnostics and treatment of disease. While being
readily accessible for sampling, their proteomes are highly complex, posing many
challenges to their comprehensive analysis. Rapid advancements in MS-based
proteomics have helped to overcome many of these issues by development of
powerful workflows to reliably assess even low-abundance biomarker candidates
with high quantitative accuracy (Table 8.1). This is enabled by combining state-of-
the-art instrumentation with advanced sample preparation and approaches to specif-
ically enrich for peptides resulting from post-translational modifications. In partic-
ular, proteolysis generates terminal peptides in body fluids that by applying
customized degradomics workflows open up an even richer sample space to be
explored for devising novel strategies for diagnostics and therapeutic intervention in
personalized medicine.

Table 8.1 Overview of original research studies using MS-based proteomics and advanced sample
preparation for proteome analysis of body fluids

Body
fluid Methods Sample preparation Reference

Plasma/
serum

Discovery, DDA, iTRAQ Depletion, fractionation Tremlett et al.
(2015)

Discovery, DDA, label-free Depletion, fractionation Zheng et al.
(2009)

Discovery, DDA, TMT Depletion, fractionation Zhou et al.
(2020)

Discovery, DDA, TMT Depletion, fractionation Mavreli et al.
(2020)

Discovery, DDA, DIA Precipitation Lin et al. (2020)

Discovery, DDA, label-free Depletion, 2D PAGE
separation

Snipsøyr et al.
(2020)

Targeted, MRM Fractionation Kim et al. (2014)

Targeted, MRM Depletion Zhao et al.
(2014)

Targeted, MRM Depletion Pan et al. (2012)

Targeted, PRM Depletion Kim et al. (2015)

Discovery, DDA Fractionation, COFRADIC Mebazaa et al.
(2012)

Urine Discovery, DDA, label-free Depletion, SDS-PAGE
separation

Kang et al.
(2014)

Discovery, DDA, label-free Ultracentrifugation Htun et al.
(2017)

Discovery, DDA, label-free,
Targeted (PRM)

Ultracentrifugation Di Meo et al.
(2019)

Discovery, DIA, DDA, label-
free

Ultracentrifugation,
fractionation

Jung et al. (2020)

(continued)
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Table 8.1 (continued)

Body
fluid Methods Sample preparation Reference

CSF Discovery, DDA, label-free Fractionation, 2DE separation Davidsson et al.
(2002)

Discovery, DDA, label-free Gómez-Baena
et al. (2017)

Discovery, DIA and DDA,
label-free

GE separation Barkovits et al.
(2018)

Discovery, DDA, ICAT Precipitation Zhang et al.
(2005)

Targeted, PRM Streijger et al.
(2017)

SF Discovery, DDA, label-free,
targeted (MRM)

Depletion, fractionation Liao et al. (2004)

Discovery, DDA, label free Depletion, SDS-PAGE separa-
tion, fractionation

Bhattacharjee
et al. (2016)

Saliva Discovery, DDA, label free Size exclusion, precipitation Aqrawi et al.
(2017)

Discovery, DDA, label free Capillary isoelectric focusing Guo et al. (2006)

Discovery, DDA, iTRAQ Fractionation de Jong et al.
(2010)

Discovery, DDA, iTRAQ Fractionation Caseiro et al.
(2013)

Discovery, DDA, label-free Depletion, ultracentrifugation Sun et al. (2018)

Targeted (MRM) Depletion Chi et al. (2020)

Tear Discovery, DDA, label-free Fractionation Zhou et al.
(2012)

Discovery, DDA, iTRAQ Fractionation Zhou et al.
(2009a)

Semen Discovery, DDA, label-free Depletion, ultracentrifugation Yang et al.
(2017)

Discovery, DDA, label-free Milardi et al.
(2012)

Discovery, DDA, label-free Fractionation Kagedan et al.
(2012)

Sweat Discovery, DDA, label-free Ultracentrifugation,
fractionation

Yu et al. (2017)

Discovery, DDA, label free,
Targeted (MRM)

Precipitation Csősz et al.
(2015)

Wound
exudate

Discovery, DDA, label free SDS-PAGE separation Kalkhof et al.
(2014)

Discovery, DDA, iTRAQ,
Targeted (PRM)

Compression, fractionation,
TAILS

Sabino et al.
(2015, 2018)
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Chapter 9
Regulation of Cell-Matrix Adhesion
Networks: Insights from Proteomics

Emma S. Koeleman, Alexander Loftus, Athanasia D. Yiapanas, and
Adam Byron

Abstract Cell adhesion to the extracellular matrix regulates many fundamental
aspects of cellular behaviour, including cell survival, proliferation, differentiation,
and migration. Cell-matrix interactions are mediated by integrin-associated adhesion
complexes, multiprotein complexes of intracellular scaffolding and signalling pro-
teins that link the cytoskeleton to the extracellular milieu. These linkages enable cells
to sense and respond to the biochemical and biomechanical properties of the
microenvironment. Advances in proteomic methodologies have enabled the charac-
terisation of adhesion complex composition, interactions, and dynamics, which has
led to new insights into the physical and functional properties of cell-matrix adhe-
sion networks. These approaches have broadened our understanding of the mole-
cules that regulate cell adhesion to the extracellular matrix.

9.1 Introduction

Multicellular existence is dependent on interactions between cells and the extracel-
lular matrix (ECM) in which they reside. Cell adhesion to the ECM regulates many
central aspects of cellular behaviour, such as cell survival, proliferation, differenti-
ation, and migration (Doyle and Yamada 2016; Geiger and Yamada 2011; Moreno-
Layseca and Streuli 2014). Cells interact with the ECM using transmembrane
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adhesion receptors, primarily integrins (Humphries et al. 2006; Kechagia et al. 2019;
Michael and Parsons 2020). Upon binding their extracellular ligand, integrins cluster
on the cell surface and orchestrate the recruitment of intracellular scaffolding and
signalling molecules to sites of cell-matrix contact (Byron et al. 2010; Green and
Brown 2019; Wehrle-Haller 2012). These sites, the best characterised of which are
focal adhesions, contain multimeric integrin-associated adhesion protein complexes,
which mature in response to mechanical cues and link the cytoskeleton and the ECM
(Humphries et al. 2015; Jansen et al. 2017; Sun et al. 2016a). Through these cell-
matrix adhesion complexes, cells can sense and respond to biochemical and mechan-
ical signals in the extracellular microenvironment, which are key physiological
processes. Indeed, many diseases, including cancer, involve either dysregulation of
cellular responses to ECM signals or alterations in the mechanical properties of the
ECM itself (Cooper and Giancotti 2019; Hamidi and Ivaska 2018; Winograd-Katz
et al. 2014).

The components of adhesion complexes form networks of direct and indirect
protein associations, which are fundamental to the control of cellular behaviour in
the context of the extracellular microenvironment (Byron and Frame 2016;
Devreotes and Horwitz 2015; Horton et al. 2016a). Herein, we discuss how such
cell-matrix adhesion networks enable cells to respond to extracellular cues through
focal adhesion assembly and downstream signalling. In particular, we focus on how
proteomic approaches have enabled the characterisation of adhesion complex com-
position and spatiotemporal dynamics and how these studies have contributed to our
overall understanding of cell-matrix adhesion.

9.2 Regulation of Cell-Matrix Adhesions

The interactions of cells with the ECM is mediated by adhesion protein complexes
that associate with integrin receptors at the plasma membrane. The assembly and
turnover of cell-matrix adhesion complexes are tightly regulated, governed in part by
physical and functional connections between adhesion proteins. The large number of
proteins that can be recruited to sites of cell adhesion, collectively termed the
adhesome (Zaidel-Bar et al. 2007a), are involved in a broad range of signalling
pathways, which emphasises the numerous cellular processes in which cell-matrix
adhesions play key roles, including cell polarity and migration, cytoskeletal organi-
sation, and regulation of the cell cycle. In this section, the structure, function, and
regulation of integrin-associated adhesion complexes are detailed.

9.2.1 Bidirectional Integrin Signalling

The integrin family of transmembrane adhesion receptors comprises 18 α integrin
and 8 β integrin subunits, which can assemble into 24 distinct heterodimeric integrin
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receptors (Humphries et al. 2006; Hynes 2002). These receptors can be divided into
four classes based on the possible combinations of integrin receptor and extracellular
ligand: RGD-binding integrins, which recognise ligands containing an arginine-
glycine-aspartate tripeptide motif; LDV-binding integrins, which recognise ligands
containing a sequence related to the acidic leucine-aspartate-valine motif; αA
domain-containing integrins, which bind collagens and laminins; and non-αA
domain-containing laminin-binding integrins (Humphries et al. 2006). The cell-
and tissue-specific pattern of integrin expression defines with which ECMmolecules
a cell can interact, which, in turn, determines the ability of the cell to sense and
respond to specific extracellular microenvironments (Fig. 9.1a).

Structurally, integrins are composed of an extracellular “head” domain, at which
α and β integrin subunits interface near the ligand-binding domain, long extracellular
“thigh” and “calf” domains, a single-pass transmembrane domain, and a short
cytoplasmic tail (except for the β4 integrin tail, which is longer) that mediates
intracellular protein interactions. The mechanism of integrin activation is mediated
by changes in tertiary and quaternary structure, whereby a bent, inactive integrin
conformation unfolds stepwise to an extended open conformation, permitting a rapid
increase in affinity for adhesive ligands (Askari et al. 2009; Campbell and
Humphries 2011; Shattil et al. 2010). However, the structure-function relationships
of integrins remain incompletely understood. Indeed, there may be additional path-
ways for activation of certain integrins, as some integrin heterodimers do not unfold
stepwise, instead assuming a constitutively extended conformation (Miyazaki et al.
2018; Wang et al. 2017, 2019).

Receptor activation is tightly regulated by binding to extracellular ligands
(outside-in signalling) and intracellular ligands (inside-out signalling), and this
enables integrins to signal bidirectionally across the plasma membrane (Ginsberg
et al. 2005; Hynes 2002). Outside-in signalling, which is initiated by ligand-bound
integrin clustering on the cell surface, triggers integrin heterodimer- and ligand-
specific recruitment of adhesion proteins and activation of downstream signalling
through, for example, focal adhesion kinase (FAK)–Src, phosphatidylinositol
3-kinase–Akt (also known as protein kinase B), and Ras–mitogen-activated protein
kinase pathways. Inside-out signalling regulates binding of the adaptor proteins talin
and kindlin to β integrin cytoplasmic tails, thereby inducing conformational changes
in integrins that modulate receptor affinity for extracellular ligands (Calderwood
et al. 2013; Sun et al. 2019). It is likely that both of these modes of integrin signalling
work in dynamic equilibrium to coordinate integrin function, enabling sensing of
and response to the microenvironment.

In addition to protein interactions that serve to activate integrins, a number of
adhesion proteins have been found to interfere, directly or indirectly, with inside-out
integrin activation. The integrin cytoplasmic domain-associated protein 1 (ICAP-1;
also known as ITGB1BP1) specifically interacts with the β1 integrin cytoplasmic tail
to negatively regulate its function (Bouvard et al. 2003; Degani et al. 2002).
SHARPIN negatively regulates integrin activity by binding the α integrin subunit
and interfering with the recruitment of talin and kindlin to β integrin cytoplasmic
tails (Rantala et al. 2011). The actin-binding protein filamin-A forms a ternary
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complex with αIIbβ3 integrin, which restrains the integrin in a resting state by
stabilising a molecular clasp between the α and β integrin cytoplasmic tails (Liu
et al. 2015). The actin regulatory SHANK family proteins inhibit integrin activity by
sequestering the integrin activator Rap1 to limit G-protein signalling at the plasma
membrane (Lilja et al. 2017). The guanosine triphosphatase (GTPase)-activating
protein ARAP3, activated by outside-in signalling, functions in a negative feedback
loop, inducing negative inside-out signalling to locally inactivate integrins
(McCormick et al. 2019). Integrin inactivators are crucial to balance and reset the
activation of integrins and therefore strongly influence how cells can interact with
the ECM (Bouvard et al. 2013). Inactive and active conformation states of integrins
can be monitored experimentally using anti-integrin monoclonal antibodies that
detect conformation-dependent epitopes, and many of these antibodies serve as
useful tools to regulate integrin conformation and, as a consequence, function
(Byron et al. 2009). Both inactivation and constitutive activation of integrins
using, for example, monoclonal antibodies can impair cell motility (Huttenlocher
et al. 1996), highlighting that maintenance of the dynamic equilibrium between
integrin activation states is vital for effective cell movement.

9.2.2 Adhesion Complex Assembly

The dynamic nature of adhesion complex formation, together with the remarkable
plasticity displayed by cell-matrix adhesions, reflect the necessity for the cell to
respond rapidly to changes in the extracellular microenvironment by regulating
cytoskeletal dynamics and cell motility, for example (Vicente-Manzanares and
Horwitz 2011; Wolfenson et al. 2013). While the mechanism by which integrin-
based adhesions first form is unclear, small, nascent cell-matrix adhesions emerge at
the periphery of plasma membrane protrusions following integrin activation and
clustering and the recruitment of integrin-associated proteins (Fig. 9.1b). These
nascent adhesions either disassemble within approximately 1 minute or mature
into larger focal adhesions with longer lifetimes of several minutes. Focal adhesion
maturation requires linkage to the actomyosin cytoskeleton (Vicente-Manzanares
et al. 2009). Pulling forces generated by active myosin II can change the conforma-
tion of several adhesion proteins, such as talin (Dedden et al. 2019; Goult et al.
2013), vinculin (Cohen et al. 2005, 2006), and FAK (Cooper et al. 2003; Lietha et al.
2007), leading to their activation via disruption of autoinhibitory interactions, which
can reveal cryptic binding sites for other adhesion proteins (Khan and Goult 2019).
The formation of focal adhesions at the leading edge of adherent cells thus enables
attachment to the ECM and stabilisation of plasma membrane protrusions,
establishing cell polarity that spatially and temporally organises adhesion signalling
and facilitates cell migration (Ridley et al. 2003).

The precise spatial associations of adhesion proteins during the assembly of
adhesion complexes remain incompletely defined. Studies have used fluorescence
microscopy techniques to investigate the sequential recruitment of fluorescently
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tagged adhesion proteins to nascent adhesion complexes (Bachir et al. 2014; Zaidel-
Bar et al. 2003). Results from these studies suggested a model of hierarchical
recruitment of adhesion proteins to ligand-bound integrin, consisting of several
successive molecular events (Sun et al. 2014; Zaidel-Bar et al. 2004) (Fig. 9.1b).
In addition, several adhesion proteins, including talin and vinculin, appear to
associate in pre-complexes prior to accreting in integrin-associated adhesion com-
plexes (Atherton et al. 2020; Bachir et al. 2014; Hoffmann et al. 2014). There is still
much to be learned about where and when most adhesion proteins interact during
adhesion complex assembly. To complement microscopy-based studies, proteomic
approaches can reveal quantitative insights into the compositional dynamics of
adhesion complexes during their lifetime (Fig. 9.1c) (see Sect. 9.3).

9.2.3 Focal Adhesion Architecture

The ability of cells to respond to the biophysical properties of the ECM is vital for
many cellular processes, including cell adhesion. The linkage between the ECM and
the actin cytoskeleton is mediated by mechanosensitive adhesion proteins, which
collectively act as a tuneable molecular clutch to transduce mechanical forces across
the plasma membrane (Case and Waterman 2015; Sun et al. 2016a). The maturation
of cell-matrix adhesions in response to mechanical tension has several important
consequences. Enhanced actin polymerisation directly influences the localisation
and function of mechanosensitive transcription regulators, such as myocardin-
related transcription factor A and Yes-associated protein (Kechagia et al. 2019). In
addition, the formation of stress fibres—contractile actomyosin structures—creates a
biomechanical connection between the ECM and the nucleus, via integrins and the
linker of nucleoskeleton and cytoskeleton complex (Kirby and Lammerding 2018).
Through this mechanosensitive connection, mechanical tension can influence vari-
ous nuclear processes, such as chromatin organisation and gene expression, to
regulate an adaptive response to changes in the extracellular environment.

Elegant super-resolution microscopy approaches have shown that focal adhesion
proteins are organised into a conserved three-dimensional (3D) nanoscale arrange-
ment. Interferometric analysis of fluorescently tagged adhesion proteins determined
that focal adhesions appear to have a multilayered structure, stratified along the axis
perpendicular to the plasma membrane (Kanchanawong et al. 2010). An integrin
signalling layer within ~30 nm of the plasma membrane contains the adhesion
proteins paxillin and FAK, which colocalise with integrin cytoplasmic tails. Actin
and the actin-associated proteins α-actinin, vasodilator-stimulated phosphoprotein
(VASP), and zyxin localise in an actin regulatory layer more than 50 nm above the
plasma membrane. The head domain of the large adaptor protein talin, which binds β
integrin cytoplasmic tails, localises in the integrin signalling layer, while its tail
domain, which binds actin, localises near the actin regulatory layer. Vinculin resides
in an intermediate force transduction layer that spans the region between the integrin
signalling and actin regulatory layers (Kanchanawong et al. 2010), but it is initially
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recruited proximal to the plasma membrane and then redistributed distally (perpen-
dicular to the plasma membrane) as the focal adhesion matures (Case et al. 2015).
Although more difficult to label multiple components of cell-matrix adhesions, cryo-
electron tomographic analysis, which enables reconstruction of 3D density maps at
subnanometre resolution, revealed the existence of focal adhesion substructures
(Patla et al. 2010). These appeared as ring-shaped particles, 20–30 nm in diameter,
in the proximity of aligned actin bundles. Intriguingly, the ring-shaped particles were
responsive to changes in contractility, suggesting potentially important roles in
mechanotransduction (Patla et al. 2010). Together, these high-resolution imaging
studies provide clues to the relationships between adhesion complex architecture and
the mechanosensitive functions of cell-matrix adhesions at the molecular level
(Byron 2011; Morton and Parsons 2011). However, the systems-level organisation
of the networks of adhesion complex components and their interactions has yet to be
experimentally defined.

9.2.4 Role of ECM in Cell-Matrix Signalling

The ECM is a complex mixture of fibrous proteins (e.g. collagens, elastin), pro-
teoglycans (e.g. perlecan, hyaluronan), and glycoproteins (e.g. laminins, fibronec-
tin). These molecules are organised into multimolecular assemblies, along with
soluble growth factors, which are sequestered by components of the ECM. Through
its supramolecular structural organisation and interactions with adhesion receptors,
the ECM generates vital biophysical and biochemical cues that control cell behav-
iour. The tissue-specific composition of the networks of ECM molecules tunes the
elasticity, viscosity, and tensile strength of the ECM, which confers unique bio-
chemical and topographical features that enable and control cell-matrix adhesion and
the functioning of the tissue (Mouw et al. 2014).

Remodelling of ECM, while central to many physiological processes, such as
wound healing and angiogenesis, is also associated with pathological processes,
such as fibrosis and cancer cell invasion. Indeed, a feature of tumourigenesis is
desmoplasia, characterised by altered ECM organisation and increased ECM depo-
sition (Pickup et al. 2014). In addition to serving as a signature of metastatic
potential (Naba et al. 2012, 2014), cancer-associated ECM actively influences
tumour behaviour by enhancing focal adhesion signalling (Levental et al. 2009).
Consequently, it is important to understand how the structure of the ECM, and its
regulation and remodelling, influence and are influenced by adhesion signalling
networks in health and disease.

The identification and quantification of the components of ECMs represent
important steps in understanding how tissue-specific cell-matrix adhesion is regu-
lated. A database of over 1000 ECM and ECM-associated components, termed the
matrisome, has been defined by in-silico and manually curated cataloguing (Naba
et al. 2012, 2016). Advances in the isolation and proteomic analysis of the ECM
have enabled detailed characterisation of ECM composition in various tissues
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(Byron et al. 2013; Taha and Naba 2019). For example, in the case of the basement
membrane, proteomic studies have enabled the quantification of ECM subproteomes
in 39 distinct tissue types, revealing a notable molecular heterogeneity among
different basement membranes (Randles et al. 2017). Multiple proteomic analyses
of ECM, representing multiple normal and diseased tissue types, have been curated
in the MatrisomeDB database (Naba et al. 2016; Shao et al. 2020). In combination
with MatrixDB, an interactive database that reports and visualises interactions
between ECM components (Clerc et al. 2019), these tools serve as valuable
resources for the interrogation of ECM proteomic datasets and will aid in the future
contextualisation of cell-matrix adhesion data.

9.3 Proteomic Analysis of Cell-Matrix Adhesion

Although microscopy-based studies have revealed key insights into candidate adhe-
sion proteins and focal adhesion architecture, advances in mass spectrometry-based
proteomics enable appreciation of the scale and complexity of the sets of proteins
recruited to focal adhesions. The latest literature-curated database of adhesome
components, which is derived largely from microscopy-based studies using multiple
cell types, catalogues 232 adhesion proteins (Winograd-Katz et al. 2014); an inte-
grated database of adhesion complex proteomes, termed a meta-adhesome, now
contains over 2400 proteins (Horton et al. 2015). This marked upward shift in
adhesome scale indicates the potential for non-candidate-driven “omics” approaches
to characterise more fully the molecules mediating cell adhesion. In this section,
proteomic studies that have advanced our understanding of cell-matrix adhesion are
discussed.

9.3.1 Isolation of Adhesion Complexes

Integrin-associated adhesion complexes exist as labile multiprotein complexes that
link the ECM, via the plasma membrane, to the cytoskeleton. Consequently, adhe-
sion complex purification by conventional biochemical isolation approaches, such as
immunoprecipitation, has been confounded by technical limitations. The develop-
ment of several biochemical methods for the isolation of adhesion complexes has
enabled their characterisation by mass spectrometry-based proteomics (Byron 2018;
Byron et al. 2011; Geiger and Zaidel-Bar 2012; Jones et al. 2015; Kuo et al. 2012; Li
Mow Chee and Byron 2021; Manninen and Varjosalo 2017; Robertson et al. 2017).
Initial mass spectrometric analyses of adhesion complex composition using these
isolation methods identified substantially more proteins than had previously been
associated with focal adhesions, revealing the surprising complexity of adhesion
networks (Humphries et al. 2009; Kuo et al. 2011; Schiller et al. 2011). These
datasets provided valuable resources, serving as starting points for further research
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to improve understanding of cell-matrix adhesion (Byron et al. 2011; Danen 2009;
Gallegos et al. 2011; Schiller and Fässler 2013).

There are three main approaches for the biochemical isolation of adhesion
complex-associated proteins. The first approach uses an extracellular integrin ligand
(or activating anti-integrin antibody) immobilised on magnetic microbeads, adapted
from previous bead-based methods designed to mimic cell-matrix adhesion
(Miyamoto et al. 1995; Plopper and Ingber 1993). Adhesion complex formation is
induced by binding of the ligand-conjugated beads to cells in suspension, and
adhesion complexes are then stabilised using a membrane-permeable, cleavable
crosslinker and purified using a combination of carefully optimised sonication and
nonionic detergent extraction (Fig. 9.2a). This ligand affinity purification method
enables gentle and rapid isolation of labile integrin-associated adhesion complexes
(Bass et al. 2011; Byron et al. 2012a, 2015; Humphries et al. 2009), and it can be
modified to capture different stages of adhesion complex assembly (Horton et al.
2015).

The second approach allows cells to spread on a defined ECM substrate to induce
formation of cell-matrix adhesions. These sites can be stabilised using a crosslinker,
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Fig. 9.2 Workflows for the isolation and proteomic analysis of adhesion protein complexes. (a)
Bead-mediated isolation of integrin-associated adhesion complexes. Cells are incubated with
ligand-coated microbeads in suspension to induce adhesion complex formation. (b) 2D substrate-
mediated isolation of adhesion complexes. Cells are allowed to adhere to ligand-coated dishes to
induce adhesion complex maturation. (c) Proximity-dependent biotinylation-mediated enrichment
of adhesion proteins. The adhesion protein of interest is tagged with, for example, BirA to enable
proximity labelling by BioID
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if necessary, after which plasma membranes are burst or solubilised using a hypo-
tonic lysis buffer or a detergent-containing lysis buffer, respectively, and hydrody-
namic force (e.g. high-shear flow washing) is applied to remove cell bodies
(Fig. 9.2b). This set of related cell spreading-based methods enables isolation of
cell-matrix adhesions from adherent cells in culture (Ajeian et al. 2016; Atkinson
et al. 2018; Horton et al. 2015; Kuo et al. 2011; Lock et al. 2018, Ng et al. 2014;
Robertson et al. 2015; Schiller et al. 2011, 2013).

The third approach uses a proximity-dependent biotinylation technique, such as
BioID (Roux et al. 2018). This strategy provides an alternative to ligand affinity
purification of adhesion complexes, instead labelling and enriching for proteins that
associate in the vicinity of the tagged adhesion protein of interest (Fig. 9.2c). Most
BioID protocols require a biotin labelling period of many hours, so will necessarily
capture protein associations that occur during that extended timeframe, whereas
more efficient proximity labelling methods, such as TurboID (Branon et al. 2018),
offer the opportunity for higher temporal resolution. In addition to capturing strong
protein-protein interactions, this approach permits the identification of weak and
transient protein associations that are a feature of labile adhesion protein complexes
(Chastney et al. 2020; Dong et al. 2016; Hennigan et al. 2019; Myllymäki et al.
2019; Rahikainen et al. 2019; Van Itallie et al. 2014).

9.3.2 Proteomic Characterisation of Adhesion Complexes

The isolation of subcellular fractions enriched for adhesion complexes permits the
unbiased characterisation of their composition using global analytical approaches
such as mass spectrometry. Techniques for mass spectrometric quantification
include label-based methods, such as metabolic labelling (Kani 2017) or chemical
isobaric labelling (Gritsenko et al. 2016; Núñez et al. 2017; Zhang and Elias 2017),
and label-free methods (Arike and Peil 2014; Helm and Baginsky 2018; Moulder
et al. 2016). Label-free quantification, in particular, is broadly applicable to most cell
systems and is straightforward to implement, so is commonly used for the analysis of
adhesion complex proteomes.

Quantitative proteomic analysis has been used to interrogate the composition of
adhesion complexes under various experimental conditions, including those induced
by ligand engagement of different integrin heterodimers. Affinity purification of
adhesion complexes induced by the integrin ligands fibronectin and vascular cell
adhesion molecule 1 (VCAM-1) were enriched for α5β1 and α4β1 integrins, respec-
tively (Humphries et al. 2009). Proteomic analysis identified overlapping (core) and
receptor-specific subnetworks of adhesion proteins, with a more expansive network
induced by fibronectin than by VCAM-1, perhaps reflecting the requirement for
greater robustness in fibronectin-based adhesions as compared to less extensive
VCAM-1-based interactions involved in, for example, motile behaviour of leuko-
cytes at sites of inflammation (Byron et al. 2011; Humphries et al. 2009). Proteomic
analysis of adhesion complexes isolated from cells expressing chimeric α4β1
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integrins, in which the cytoplasmic tail of α4 integrin was replaced with that of α5
integrin, enabled the examination of α integrin subunit-dependent adhesion protein
recruitment, all triggered by the same engagement of VCAM-1 with the α4 integrin
extracellular domain (Byron et al. 2012a). Isolation of fibronectin-induced adhesion
complexes from pan-integrin-null fibroblasts that were reconstituted with β1, αV, or
β1 and αV integrins enabled assessment of the specificity of adhesion complex
composition of these integrin classes (Schiller et al. 2013). Proteomic analysis
implicated specific and synergistic roles for β1 integrins (through a RhoA–ROCK–
myosin II pathway) and αV integrins (through a GEF-H1–RhoA–mDia1 pathway),
with the two integrin classes cooperating to sense the rigidity of the ECM (Schiller
and Fässler 2013; Schiller et al. 2013).

Myosin II-mediated tension regulates recruitment of adhesion proteins such as
vinculin and FAK to nascent adhesions to reinforce the linkage of the cytoskeleton to
the ECM (Pasapera et al. 2010). To gain insights into focal adhesion maturation,
proteomic analyses of adhesion complexes isolated from cells treated with a myosin
II inhibitor revealed systems-level changes in the integrin adhesome upon tension
release and focal adhesion turnover (Horton et al. 2015; Kuo et al. 2011; Schiller
et al. 2011). Recruitment of β-PIX (also known as ARHGEF7), a Rac1 and Cdc42
guanine nucleotide exchange factor, to disassembling adhesion complexes was
identified upon myosin II inhibition with blebbistatin, suggesting a negative regula-
tory role in focal adhesion maturation (Kuo et al. 2011). β-PIX silencing impaired
adhesion complex disassembly and promoted the formation of medium-to-large
focal adhesions in migrating cells (Hiroyasu et al. 2017; Kuo et al. 2011). In contrast,
the recruitment to adhesion complexes of proteins containing LIN-11, Isl1, and
MEC-3 (LIM) domains, such as lipoma-preferred partner, paxillin, PINCH, and
zyxin, was impaired in the presence of blebbistatin (Horton et al. 2015; Schiller
et al. 2011). Some of these LIM domain-containing proteins are also recruited to
stress fibres in response to cell stretching (Kim-Kaneyama et al. 2005; Yoshigi et al.
2005), with a growing body of evidence implicating LIM domain-containing pro-
teins in mediating mechanotransduction events (Smith et al. 2014).

A key advance in the understanding of the molecular complexity and diversity of
focal adhesions was attained from the integration of multiple fibronectin-based cell-
matrix adhesion subproteomes from different cell types, resulting in the develop-
ment of a meta-adhesome in silico (Horton et al. 2016a). Analysis and refinement of
the 2412-protein meta-adhesome enabled the construction of a consensus adhesome,
which defines a core subset of 60 frequently identified adhesion proteins (Horton
et al. 2015). Based on known protein interactions and functions, the consensus
adhesome was organised into four distinct axes, centred around integrin-linked
kinase (ILK)–PINCH–kindlin, FAK–paxillin, talin–vinculin, and α-actinin–zyxin–
VASP protein subnetworks. Moreover, this study moved beyond the analysis of
steady-state adhesion complexes to assess the dynamics of adhesome assembly and
turnover (Fig. 9.3a). In time-course experiments that (1) allowed cells to engage with
fibronectin to promote adhesion complex assembly or (2) treated cells with
nocodazole to trigger adhesion complex disassembly upon nocodazole removal,
time-resolved adhesion complexes were isolated. While this approach—as for all
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current approaches for the biochemical isolation of integrin-associated adhesion
complexes—yields a heterogeneous population of adhesion complex structures,
proteomic analysis of these pools of complexes nonetheless enabled the temporal
profiling of compositional snapshots of consensus adhesome components (Byron
2018; Horton et al. 2015). This analysis revealed distinct dynamics of adhesion
protein recruitment, with many core adhesion proteins quantified in higher abun-
dance at more advanced stages of adhesion complex assembly (Horton et al. 2015).
In addition to providing a comprehensive resource describing focal adhesion com-
position, which can be used as a framework for further interrogation of adhesion-
associated proteins and integration with other datasets, these findings underscore the
utility of quantitative proteomic approaches in characterising temporally resolved
adhesion complex composition.

9.3.3 Proximal Adhesion Protein Associations

Proximity biotinylation approaches, such as BioID, provide an alternative approach
for the labelling and enrichment of proteins that associate in the vicinity of a tagged
adhesion protein of interest. This is achieved by fusing a mutated biotin ligase,
BirA*, to the adhesion protein of interest to promiscuously biotinylate proximal
untagged proteins. Biotin-labelled proteins are then affinity purified from a cell
lysate and analysed by quantitative mass spectrometry. While proximity
biotinylation does not distinguish between direct binding, indirect interaction, or
vicinal association, it does permit the identification of weak and transient protein
associations, which is particularly relevant for labile integrin-associated adhesion
complexes. Furthermore, as the biotin ligase activity of BirA* is spatially
constrained by the localisation of its fusion protein, this approach can identify
proteins within 15 nm of the adhesion protein of interest (Kim et al. 2014), which,
although providing neither temporal resolution nor the subcellular spatial informa-
tion afforded by subcellular fractionation or light microscopy, offers intermolecular
spatial resolution comparable to that of super-resolution microscopy
(Kanchanawong et al. 2010).

Proximal interactomes of several adhesion proteins have been determined using
BioID. Proximity labelling identified distinct subsets of proteins closely associated
with paxillin and kindlin-2, including those that were specifically related to the
additional function of kindlin-2 at cell-cell junctions (Dong et al. 2016). Further-
more, overlapping proteins proximal to both paxillin and kindlin-2 were identified,
such as Kank2, which also binds directly to talin and was identified in a talin BioID
dataset (Dong et al. 2016; Rahikainen et al. 2019; Sun et al. 2016b). Kank2 was also
associated with BirA-tagged Merlin, an ezrin-radixin-moesin family protein that was
identified in the paxillin and kindlin-2 BioID datasets (Dong et al. 2016; Hennigan
et al. 2019). Indeed, several adhesome proteins, including α-actinin, talin, and
vinculin, were identified as proximal to Merlin, in addition to an enrichment of
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cell-cell adhesion proteins, suggesting roles for Merlin in cell junctional complexes
(Hennigan et al. 2019).

BirA tagging of the N- and C-termini (extracellular and cytoplasmic portions,
respectively) of β4 integrin was used to interrogate proteins associated with this
hemidesmosomal integrin (Myllymäki et al. 2019). In addition to the β4 integrin
heterodimeric partner α6 integrin, BirA fusion to the β4 integrin cytoplasmic tail
enabled mass spectrometric identification of cell-cell junction scaffold proteins, such
as AHNAK and utrophin, but revealed limited overlap with the consensus
adhesome, in keeping with the role of α6β4 integrin as a core component of
hemidesmosomes, which are structurally distinct from focal adhesions. However,
the extracellularly tagged β4 integrin was not efficiently expressed on the cell
surface, possibly as its folding or ability to heterodimerise with α6 integrin were
impaired (Myllymäki et al. 2019), emphasising the importance of considering the
potential structural or steric effects of relatively large protein tags on adhesion
proteins, many of which are allosterically regulated.

Recently, a multiplexed BioID approach, analysing the proximal relationships of
16 adhesion proteins, has been taken to begin to define a proximity-dependent
adhesome (Chastney et al. 2020). The selected adhesion protein baits of interest,
including ILK, PINCH, kindlin-2, FAK, paxillin, vinculin, and zyxin, spanned all
four axes of the consensus adhesome (Horton et al. 2015), capturing proximal
interactions across the breadth of the adhesome. Bioinformatic analysis of the
proteomic datasets identified five clusters of bait adhesion proteins, which were
enriched for associated proteins with roles in cell-matrix adhesion but also had
functional distinctions (Chastney et al. 2020). The clusters of bait proteins broadly
represented the four axes of the consensus adhesome (Horton et al. 2015), providing
further evidence of putative functional modules in adhesome networks. Furthermore,
the proximal protein associations that contributed to these clusters correlated well
with the stratified layers of focal adhesion organisation reported by super-resolution
microscopy (Kanchanawong et al. 2010), supporting the hypothesis that different
nanoscale zones of focal adhesions have distinct roles in cell-matrix adhesion.
Indeed, mapping of bait-dependent biotinylation sites on the large adaptor protein
talin revealed that adhesion protein baits preferentially bound to either its N- or
C-terminus (Chastney et al. 2020), reinforcing the model of focal adhesion archi-
tecture in which talin participates in interactions across multiple layers of the focal
adhesion substructure (Kanchanawong et al. 2010). Thus, by extending beyond the
repertoires of individual adhesion protein-proximal interactomes to large-scale inter-
rogation of spatially defined adhesion protein associations, new insights into
adhesome network interactions and focal adhesion architecture can be inferred.

9.3.4 Phosphoproteomic Analysis of Adhesion Signalling

Focal adhesions are characterised by enriched zones of tyrosine phosphorylation
(Ballestrem et al. 2006; Iyer et al. 2005; Kirchner et al. 2003), and protein
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phosphorylation plays a central role in the spatiotemporal regulation of adhesion
signalling (Lopez-Sanchez et al. 2015; Pasapera et al. 2015; Qu et al. 2014; Wu et al.
2015; Zaidel-Bar et al. 2007b). For example, following cell-matrix contact, the
tyrosine kinase FAK is recruited, via paxillin and talin, to nascent adhesions.
There, upon membrane-induced release of autoinhibition, FAK dimers trans-
autophosphorylate residue tyrosine-397 (Acebrón et al. 2020). Src, another tyrosine
kinase, then binds the phosphorylated tyrosine-397 of FAK and phosphorylates the
activation loop of the FAK kinase domain to induce FAK catalytic activation (Lietha
et al. 2007). Src then autophosphorylates residue tyrosine-416, thereby enhancing its
own kinase activity, and proceeds to phosphorylate proximal adhesion proteins to
initiate multiple downstream signalling pathways.

Proteomic analysis of adhesion complexes isolated in the presence or absence of
FAK and Src inhibitors revealed that adhesive signalling through FAK and Src
appears to be uncoupled from focal adhesion composition and maturation,
suggesting that a proportion of phosphotyrosine signalling by focal adhesions is
independent of their molecular composition (Horton et al. 2016b). While FAK and
Src are central tyrosine kinases in adhesion signalling, 95 protein kinases (approx-
imately 18% of the human kinome) have been identified in adhesome databases in
total (Schoenherr et al. 2018), suggesting the occurrence of diverse phosphoprotein
signalling events at cell-matrix adhesions.

Understanding how kinase signalling contributes to adhesion complex dynamics
is complicated by a number of challenges in analysing endogenous protein phos-
phorylation, including the low abundance of phosphoproteins, the transient nature
and low stoichiometry of protein phosphorylation, and the hydrophilicity of resultant
phosphopeptides (following proteolytic digestion of phosphoproteins). Together,
these can limit the sensitivity of mass spectrometric analyses (Steen et al. 2006).
To overcome these challenges, selective phosphopeptide (or phosphoprotein)
enrichment is important to permit increased coverage of the phosphoproteome
(Leitner 2016); without it, very few phosphorylation events are detected in isolated
adhesion complexes (Robertson et al. 2017).

To understand the range of phosphorylation events in adhesion proteins, titanium
dioxide beads were used to enrich for phosphopeptides from proteolytically digested
adhesion complex isolations, and approximately half of adhesion proteins identified
by mass spectrometry were found to be phosphorylated (Robertson et al. 2015).
These data also showed that phosphorylation events in adhesion complexes can arise
from adhesion-induced phosphorylation of resident adhesion complex proteins or
from recruitment of constitutively phosphorylated proteins to adhesion complexes
(Robertson et al. 2015). Kinase prediction analysis of the phospho-adhesome iden-
tified Cdk1 as a likely kinase involved in the phosphorylation of adhesion proteins.
Indeed, inhibition of Cdk1 resulted in loss of paxillin-containing focal adhesions and
partial depolymerisation of the actin cytoskeleton, demonstrating the role of Cdk1 in
the formation of cell-matrix adhesions (Robertson et al. 2015). Further study has
implicated Cdk1 in the regulation of cell adhesion during the cell cycle, allowing
adherent cells to enter mitosis through the disassembly of adhesion complexes via
Cdk1 inhibition (Jones et al. 2018). Phosphoproteomics has thus revealed novel
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indications of the pathways through which cell adhesion proteins are linked to other
cellular processes, such as the cell cycle. Further analysis of the range of post-
translational modifications that influence adhesion protein function could provide
tremendous insights into cell-matrix adhesion signalling.

9.4 Perspectives and Future Directions

The identification and quantification of many proteins by mass spectrometric anal-
ysis of integrin-associated adhesion complexes results in high-dimensional datasets
that can be challenging to interpret, especially when testing multiple experimental
conditions in parallel. Using databases of reported and predicted protein interactions,
interaction network analysis has been used extensively to add biological context to
adhesion complex proteomes. Experimentally defined adhesomes can be mapped
and visualised as graphs of proteins (represented by nodes of the graph) and
partitioned into subnetworks or communities of associated proteins, driven by
algorithms that compute clusters of proteins based on their protein-protein connec-
tions (represented by edges that connect nodes) (Li Mow Chee and Byron 2021).
Networks derived from the meta-adhesome and consensus adhesome can provide
more coherent representations of potential associations between adhesion complex
components and thus serve as useful base graphs—starting points from which to
threshold and probe mapped adhesion complex proteomic data (Fig. 9.3b). As the
size, complexity, and resolution of characterised adhesome networks continue to
increase, examination of the underlying network structure and prediction of novel
biological outcomes from complex adhesome network architecture will benefit from
machine learning approaches to extract new functional properties of cell-matrix
adhesion networks.

Current biochemical and proteomic approaches for the analysis of integrin-
associated adhesion complexes are limited to compositional snapshots of heteroge-
neous adhesion complex structures from a cell population. In the future, techniques
such as imaging mass spectrometry may permit the analysis of specific cell-matrix
adhesion sites to refine our understanding of native adhesion complex composition.
In addition, while cell-matrix adhesions have been observed in cells migrating in a
3D ECM (Kubow and Horwitz 2011), ex vivo (van Geemen et al. 2014), and in vivo
(Gunawan et al. 2019), adhesome characterisation has thus far been limited to cells
cultured on 2D substrates. Technologies such as proximity labelling, which can be
applied in vivo (Branon et al. 2018), may be able to overcome this challenge.

Many of the proteins in the literature-curated adhesome or the consensus
adhesome have well-documented roles at cell-matrix adhesions. Under certain
experimental conditions, however, some adhesion proteins have been described to
localise and function at sites other than focal adhesions. Noncanonical roles for
adhesion proteins are emerging as important ancillary (or sometimes primary)
functions for adhesion proteins. For example, using a proteomic approach, regulator
of chromosome condensation 2 (RCC2; also known as TD-60) was found to reside
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in specific integrin ligand-induced adhesion complexes, enabling it to control direc-
tional cell migration via restriction of Rac1 and Arf6 GTPase activity (Byron et al.
2012a; Humphries et al. 2009). Yet the canonical role of RCC2 is as a component of
the mitotic machinery, from where it regulates prometaphase-to-metaphase progres-
sion (Mollinari et al. 2003). Indeed, recent evidence indicates that unconventional
adhesion complexes, with distinct protein composition from canonical cell-matrix
adhesions, mediate cell attachment during mitosis (Dix et al. 2018; Jones et al. 2018;
Lock et al. 2018). This example is from a growing body of evidence that suggests
that many proteins associated with cell adhesion possess multifunctionality, espe-
cially in the context of specific subcellular locations (Byron and Frame 2016; Byron
et al. 2012b; Hervy et al. 2006; Kleinschmidt and Schlaepfer 2017), potentially
acting as moonlighting proteins that influence multiple physiological processes
(Byron et al. 2012b; Jeffery 2019).

Several adhesion proteins, such as FAK, paxillin, TRIP6, and zyxin, have been
reported to translocate to the nucleus (Byron and Frame 2016; Hervy et al. 2006;
Kleinschmidt and Schlaepfer 2017; Wang and Gilmore 2003). Conditions associated
with cellular stress, such as oxidative stress or oncogenic stress, appear to promote
nuclear shuttling of a number of adhesion proteins. For example, FAK, which can
localise to and function in the nucleus (Canel et al. 2017; Golubovskaya et al. 2005;
Lim et al. 2008, 2012; Serrels et al. 2015, 2017), accumulates in the nucleus of
squamous cell carcinoma cells, but it is not detectable in the nucleus of normal
counterpart keratinocytes (Serrels et al. 2015). In the nucleus, FAK scaffolds
transcription regulators to modulate cytokine expression, which influences tumour
immune evasion and tumour growth (Serrels et al. 2015, 2017). Shuttling of adhe-
sion proteins between cell-matrix adhesions and the nucleus could provide a mech-
anism for transcriptional response to, and feedback with, the extracellular
microenvironment. For many adhesome components, however, their functions in
the nucleus and at other subcellular locales, and how these relate to their functions at
cell-matrix adhesions, are poorly recognised. Understanding the spatiotemporal
regulation of these noncanonical adhesion protein processes remains an area of
intense scrutiny.

Summary
Our understanding of the molecules that mediate cell adhesion to the ECM has
been advanced by the development of proteomic methodologies for the quan-
tification of integrin-associated adhesion complexes. Within the framework of
hypothesis-driven research, such approaches provide valuable opportunities
for the comprehensive characterisation of cell-matrix adhesion networks and
for the interrogation of adhesion signalling pathways. In addition, these
unbiased analyses offer the prospect of discovering new cellular roles for
adhesion proteins and systems-level modelling of cell adhesion.
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Chapter 10
Integrative Models for TGF-β Signaling
and Extracellular Matrix

Nathalie Théret, Jérôme Feret, Arran Hodgkinson, Pierre Boutillier,
Pierre Vignet, and Ovidiu Radulescu

Abstract The extracellular matrix (ECM) is the most important regulator of cell-
cell communication within tissues. ECM is a complex structure, made up of a wide
variety of molecules including proteins, proteglycans and glycoaminoglycans. It
contributes to cell signaling through the action of both its constituents and their
proteolytic cleaved fragments called matricryptins. In addition, ECM acts as a
“reservoir” of growth factors and cytokines and regulates their bioavailability at
the cell surface. By controlling cell signaling inputs, ECM plays a key role in
regulating cell phenotype (differentiation, proliferation, migration, etc.).

In this context, signaling networks associated with the polypeptide transforming
growth factor TGF-β are unique since their activation are controlled by ECM and
TGF-β is a major regulator of ECM remodeling in return.

10.1 TGF-β and Extracellular Matrix, a Win-Win
Relationship

TGF-β is a prototype of a large family of growth factors that play an essential role in
essential biological processes, such as tissue morphogenesis and homeostasis, but
also in numerous diseases such as fibrosis and cancer (Tian et al. 2011). Initially
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identified as a promoter of fibroblast growth and transformer of cell phenotype,
TGF-β has been rapidly designed as a bifunctional regulator of cellular growth
(Roberts et al. 1985) depending on the environmental context. Beside its role in cell
proliferation, TGF-β is implicated in numerous biological functions including cell
differentiation, migration, chemotaxis and ECM production and remodeling.

TGF-β is synthesized as an inactive homodimeric large precursor molecule
consisting of a self-inhibiting propeptide, the latency-associated protein (LAP), in
addition to the covalently linked active form of TGF-β. Pro-TGF-β is then intracel-
lularly cleaved by furin-type enzymes to generate mature TGF-β, which remains
non-covalently associated with LAP as the small latent complex (SLC) and the LAP
dimer is covalently bound by a latent TGF-β-binding protein (LTBPs) to form the
large latent complex (LLC). LLCs are sequestered in the extracellular matrix
(ECM) that forms complex molecular networks (Hynes and Naba, Cold Spring
Harb Perspect Biol 4(1):a004903, 2012; Ricard-Blum and Vallet, Matrix Biol
75:170–189, 2019) where LTBP interacts with several components, including fibro-
nectin and fibrilin. The activation process of TGF-β requires dissociation of TGF-β
from the ECM-bound LLC and implicates protease—and/or non protease—depen-
dent mechanisms, which differ according to the cell microenvironment (Lodyga and
Hinz 2019; Robertson and Rifkin 2016) (see Fig. 10.1). Mechanisms of activation
mainly include mechanical interactions (Hinz 2015) involving integrins such as
αvβ6 and αvβ8 integrins (Brown and Marshall 2019), chemical interaction involving
proteases, such as matrix metalloproteases MMP-2 and MMP-9, and
thrombospondin-1 (Murphy-Ullrich and Suto 2018) and physical stress such as
heat or reactive oxidative species (Annes et al. 2003). Together, all molecules
involved in the dynamic storage and destocking of TGF-β form a protein network
in which the role of each one in TGF-β signaling is obviously part of the sum.

When activated, TGF-β binds to specific receptors to induce a variety of signaling
pathways depending on the cell and the micro environmental context. TGF-β
receptors are trans membrane serine/threonine kinases, that include type I
(TGFBR1) and type II (TGFBR2) receptors. The canonical pathway involves a
Smad-dependent cascade which induces nuclear signaling to regulate transcription
of target genes. Receptor regulated Smads (or R-Smads) are transcription factors
initially anchored to the cell membrane by SARA proteins. Following their phos-
phorylation by TGFBR1, Smads are detached and shuttled to the nucleus, where
they activate gene transcription. Numerous Smad-binding partners and transcrip-
tional coactivators and cosrepressors for Smads have been reported as leading to a
wide variety of TGF-β-dependent transcriptional signatures (Feng and Derynck
2005). Additionally, cross talk between the TGF-β/Smad pathway and other signal-
ing pathways such as Wnt and Hyppo (Luo 2017; Piersma et al. 2015) complicates
the Smad-dependent signature. Otherwise, TGF-β induces non-Smad pathways
through binding to TGFBR2, leading to activation of mitogen-activated protein
kinase (MAPK), Rho-like GTPase signaling pathways and phosphatidylinositol-3-
kinase/AKT pathways (Zhang 2017). Because all of these pathways are also acti-
vated by many other extracellular factors and matrix components, the expression of
TGF-β-target genes is highly modulated by the cell environment.
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Together the TGF-β-related signal behaves as a system with numerous compet-
itive pathways and regulatory loops, allowing a fine tuning of cell response to
various conditions. Understanding how ECM and TGF-β work together to maintain
tissue homeostasis, and how alteration of this equilibrium is affected in various
pathologies, requires integrative and modeling approaches. Such models aim to
predict cell responses to a “TGF-β dependent signal” and, ultimately, identify
putative targets suitable for future therapy.

10.2 Modeling Approaches for TGF-β Signaling

Numerous models have been developed to describe the behaviour of the canonical
Smad-pathway (Clarke et al. 2006b; Zi et al. 2012). These models, using chemical
reaction networks (CRN) and ordinary differential equations (ODEs) focused on

Active TGFB1

TGFBR

GARP or LRRC33

ProteaseNon smad
pathways

Integrin
Gene transcription

Extracellular
matrix remodeling

LTBP
 Latent TGFB1

Smad
pathway

Fig. 10.1 Schematic representation of TGF-β activation and signaling (adapted from (Lodyga and
Hinz 2019)). Latent form of TGF-β is sequestered within ECM as a large latent complex associated
with LTBP that binds to ECM. Release of the active peptide of TGF-β from this large latent
complex involves mechanical and non-mechanical mechanisms depending or not upon protease
activities. Integrins or other cell surface receptors such as GARP and LRRC33 bind latent-TGF-β.
Strength constraints between cytoskeleton-linked integrins and LTBP-linked ECM induce release
of active TGF-β peptide. Protease activities are involved in activation of latent-TGF-β bound to cell
surface receptors and contribute to release of TGF-β during extracellular matrix remodeling. Active
TGF-β signals through TGF-β receptors (TGFBR) and activation of smad- and non smad-dependent
pathways leading to the transcriptional regulation of TGF-β target genes. Most of them are genes
coding for ECM compounds and proteases that contribute to ECM remodeling and regulation of
TGF-β signal in return
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Smad phosphorylation (Clarke et al. 2006b); receptor trafficking (Vilar et al. 2006b);
Smad nucleocytoplasmic shuttling (Melke et al. 2006b, Schmierer et al. 2008a); and
Smad oligodimerization (Nakabayashi and Sasaki 2009a) that allow an understand-
ing of the dynamics and flexibility of the Smad-dependent pathway.

Importantly, models for receptor trafficking that control the transient or perma-
nent TGF-β-dependent response, enriched the behaviours of TGF-β dependent
phenotypes (Vilar et al. 2006b) and integrative models have now coupled receptor
trafficking to Smad pathways (Chung et al. 2009; Zi et al. 2011a; Wegner et al. 2012,
Nicklas and Saiz 2013; Shankaran and Wiley 2008). The general picture is that the
interaction between various Smad channels is a major determinant in shaping the
distinct responses to single and multiple ligand stimulation for different cell types
(Nicklas and Saiz 2013). The amount of Smad shuttled to the nucleus seems, for
most of these models, to depend in a graded, linear manner on the concentration of
ligands, while remaining able to be temporally modulated in a transient or oscillatory
manner (Cellière et al. 2011). The Smad pathway is also able to encode the speed of
variation of the input signal into the shape, transient or permanent (Vilar et al.
2006a), or the amplitude (Sorre et al. 2014) of the output signal, with possible
important consequences for morphogen readout and patterning in developmental
biology (Sorre et al. 2014). Parametric sensitivity analysis of these models empha-
sized the importance of various processes for the Smad response (Clarke et al.
2006b). Recently, we have developed an alternative analysis method, based on
tropical geometry, that extends steady state calculation to calculation of metastable
(long live transient) states (Samal et al. 2016). This method detected two classes of
metastable states with antagonistic low and high TGFR1 and TGFR2 values,
suggesting that important signal processing leading to flexible response is already
performed at the level of the receptor system. These states were given phenotypic
interpretations. Using this approach, analysis of proteomic data from NCI-60 cancer
cell lines associated non-aggressive and agressive lines to low and high expression
TGFBR2 states, respectively (Samal et al. 2016).

Taking advantages of such ODE-based models, we have developed our own
models to study the role of the tumor biomarker ADAM12 (Gruel et al. 2009) and
the tumor suppressor TIF1γ (Andrieux et al. 2012), thereby demonstrating that small
numerical differential models may be useful tools to investigate the role of new
regulatory components of the canonical TGF-β signaling pathway. Some of these
models are available on the BioModels database (Malik-Sheriff et al. 2019), see
Table 10.1. Although most of these models did not integrate the events that take
place within the extracellular space and only consider cell surface receptors and free
ligands as inputs, a few models include ECM variables providing crude descriptions
of the coupling interactions between ECM and TGF-β signaling.

Combinatorial explosion of variables and parameters prevents the use of ODE
approaches to integrate all TGF-β dependent pathways including Smad, non Smad-
dependent pathways and cross-talk with other pathways. To overcome this limita-
tion, we previously developed a discrete formalism for a large-scale model for
TGF-β dependent signaling (Andrieux et al. 2014). In this formalism molecular
species and complexes are represented as boolean variables placed in the nodes of a
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network and connected by “guarded transitions”, i.e. monomolecular transforma-
tions taking place if logical conditions on regulators and events defining the order of
firing are satisfied. Due to the events, both synchronous and asynchronous network
dynamics can be simulated. In this case, a trajectory of the network represents a
sequence of such transitions. Based on this formalism, we generated a TGF-β
network composed of more than 9000 nodes extracted from the Pathway Interaction
Database (now available at https://www.pathwaycommons.org), including ECM
biochemical interactions, and that allowed us to explore 15934 trajectories involving
145 TGF-β-target genes (Andrieux et al. 2014). A guarded transition-based model,

Table 10.1 Models of TGF-β signaling

Refs. Pubmed/Biomodels Id # vars Method ECM

Andrieux et al. (2012) 22,461,896 21 ODE No

Andrieux et al. (2014) 24,618,419 9000 BAN Yes

Ascolani and Liò (2014) 24,586,338 13 DDE No

Cellière et al. (2011) 22,051,045/BIOMD0000000600 18 ODE No

Chung et al. (2009) 19,254,534 17 ODE No

Clarke et al. (2006a) 17,186,703/BIOMD0000000112 10 ODE No

Khatibi et al. (2017) 28,407,804 11 DDE No

Li et al. (2017) 29,322,934 14 ODE Yes

Lucarelli et al. (2018) 29,248,373 13 ODE No

Melke et al. (2006a) 17,012,329 17 ODE No

Musters and van Riel (2004) 17,270,884 5 PL Yes

Nakabayashi and Sasaki (2009b) 19,358,856 7 ODE No

Nicklas and Saiz (2013) 23,804,438 38 ODE No

Proctor and Gartland (2016) 27,379,013/BIOMD0000000612 37 ODE No

Schmierer et al. (2008b) 18,443,295/BIOMD0000000173 26 ODE No

Shankaran and Wiley (2008) 18,780,891 �15 ODE No

Steinway et al. (2014) 25,189,528 65 BAN No

Steinway et al. (2015) 28,725,463 69 BAN No

Strasen et al. (2018) 29,371,237 26 ODE No

Tortolina et al. (2015) 25,671,297/
MODEL1601250000

460 ODE No

Venkatraman et al. (2012) 23,009,856/BIOMD0000000447 13 ODE Yes

Vilar et al. (2006a) 16,446,785/BIOMD0000000101 6 ODE No

Vilar and Saiz (2011) 22,098,729 12 ODE No

Vizán et al. (2013) 24,327,760/BIOMD0000000499 26 ODE No

Wang et al. (2014) 24,901,250 27 ODE No

Warsinske et al. (2015) 26,384,829 10 ODE Yes

Wegner et al. (2012) 22,284,904/BIOMD0000000410 53 ODE No

Zhang et al. (2018) 29,872,541 7 ODE No

Zi and Klipp (2007) 17,895,977/BIOMD0000000163 16 ODE No

Zi et al. (2011b) 21,613,981/BIOMD0000000342 21 ODE No

ODE ordinary differential equations, DDE delay differential equations, BAN Boolean automaton
networks, PL hybrid, piecewise linear ODEs
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however, is not appropriate to describe the dynamics of extracellular networks that
regulate TGF-β activation. A discrete dynamic modeling approach was also used to
model TGF-β-driven epithelial-mesenchymal transition in hepatocellular carcinoma
(Steinway et al. 2014, 2015). The authors focused on the dynamics of cross-talks
between TGF-β signaling and other signaling pathways but did not integrate extra-
cellular matrix regulation. To take into account the complexity of extracellular
matrix dynamics regulating TGF-β signaling, we develop new approaches that are
described in the two next parts. The first one uses the rule based formalism Kappa
(Danos and Laneve 2004) that allows us to describe the extracellular interaction
networks. The second uses mesoscopic PDEs over time, space and structure dimen-
sion to integrate multi-scale and multi-physical parameters.

10.3 Kappa, a Formalism Adapted to Model the Biological
Component Networks of the Extracellular Matrix

Modeling the ECM can hardly be done by traditional techniques, because it involves
the formation of large compounds of proteins. We use the Kappa modeling envi-
ronment (Boutillier et al. 2018b) to summarize the knowledge that is available in the
literature about the molecular interactions surrounding the activation of TGF-β in
the ECM.

Complex systems of interaction between molecules are difficult to model for
several reasons. Firstly, due to many potential bindings between proteins and
numerous potential post-translational changes of conformation, there exists a large
(if not infinite, in the case of polymers) number of different kinds of molecular
complexes. It is often even impossible to enumerate them. Secondly, the dynamics
of these systems is usually triggered by concentration- and time-scale separation;
competition against shared-resources; complex causality chains; and nonlinear feed-
back loops. As a consequence, taking a biochemical approach, which consists in
summarising reactions between molecules as generic, local patterns of interactions,
seems to be the only viable alternative for modeling these systems and understanding
how the dynamics of their populations of molecules may emerge from individual
interactions at the microscopic level.

Kappa (Danos and Laneve 2004) is a site-graph rewriting formalism, that is freely
inspired by reaction schema encountered in organic chemistry. The main idea is to
describe each instance of protein as a node in a graph. Each kind of protein has some
interaction sites which can bind pair-wise. The interactions between molecules are
formalised by the means of rewrite rules. The rules either stand for interactions that
are detailed in the literature or for some fictitious interactions that exist to make
assumptions about the information that is missing or to roughly simplify some parts
that we do not want to detail too much. The use of rules eases frequent updates of the
models, which enables the modeler to test numerous scenarios or to modify the
environment of the model. A set of rules can be interpreted as a dynamical system
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which de-scribes the evolution of a soup of molecules. There are several choices:
when the number of different kinds of molecular complexes is not too great, the set
of rules may be translated into ODEs (Camporesi et al. 2017). Each set of rules also
induces a continuous time Markov chain the execution traces of which can be
sampled by simulation (Danos et al. 2007b). Thanks to the use of specific data-
structures (Danos et al. 2007b; Boutillier et al. 2017), the computation cost of such
simulation does not depend on the number of kinds of molecular complexes, which
may even be infinite.

Kappa ecosystem (Boutillier et al. 2018b) offers several tools to assist the
modeler during her task. Static analysis (Danos et al. 2008; Feret and Lý 2018;
Boutillier et al. 2018a) may be used to curate models. Canonical and secondary
pathways may be extracted thanks to causality analysis (Danos et al. 2007a, 2012).
Formal methods can also be used to identify the key elements in information
propagation. The result is a model reduction which never loses any information
about the quantities that are observed in the model (Feret et al. 2009; Danos et al.
2010; Camporesi et al. 2013).

We wrote a model for the influence of the ECM on TGF-β signal, including
numerous extracellular interactions that are documented in the literature, and some
fictitious rules to stub gene activity and its interaction with TGF-β. The model is
made of around 300 interaction rules which are freely available on the web (Théret
et al. 2020b). Each rule is parameterised by a kinetic rate. Some of the rates are
deduced from precise information about the concentration of proteins at stationary
distribution and their half-time periods. Some others are chosen approximately, in
order to best model what is known about the time scales of each interaction. Our
model comprises around 30 kinds of proteins. The potential bonds between these
proteins are summarised in Fig. 10.2, which provides a convenient snapshot of the
model, while not detailing every rule. Selected portions of the models are depicted
and explained intuitively in (Théret et al. 2020a).

Our goal, when designing this model, is three-fold. Firstly, the interaction rules
are written to organize what is known in the literature and to let us make some
assumptions about what is not known. It is a way to make knowledge about the
models and its different variants navigable. Secondly, the different semantics of
Kappa allow the execution of the rules. This makes knowledge executable. The last,
longer term objective, is to understand how the macroscopic behaviour may emerge
from the interactions between the individual instances of proteins. In the end, the
semantics of Kappa make it possible to better approach the dynamics of the multiple
molecular interactions that contribute to the activation of TGF-β. Using parameters
specific to the pathological context, this model can allow us to identify the key
events that regulate this activation and consequently potential therapeutic targets.
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10.4 Mesoscale and Multi-Scale Tissue Models Integrating
TGF-β Signaling and its Interaction with the ECM

The coupling of TGF-β with the ECM is a multi-scale and multi-physical problem. It
involves chemical kinetics of intracellular signaling and of ECM bio-chemical
processes, but also more complex physico-chemical processes such as polymerisa-
tion and viscoelastic dynamics of collagen and fibrin fibres of the ECM, as well as
population dynamics of various cell types.

Fig. 10.2 Contact map of the Kappa model for TGF-β activation: Projection of model describing
the molecule interaction networks. Proteins and glycosaminoglycans are represented by turquoise
nodes, binding sites are represented by red nodes (if the sequence involved is not known, the site is
designated by a letter, x, y, z etc.). The lines between the sites illustrate potential links involving
these binding sites. ITGA-x-B-y Integrin alpha-x Beta-y, LAP-TGFB1 latent TGFB1, THBS1
Thrombospondin, HS Heparan Sulfate, FBN1 Fibrillin 1, FN1 Fibronectin, FBLN Fibulin,
THSD4 ADAMTSL-6, MFAP2 Microfibril Associated Protein 2, LTBP1 Latent Transforming
Growth Factor Beta Binding Protein 1, MMP Matrix Metalloprotease, TIMP Tissue inhibitor of
MMP, COL1 Type 1 collagen, DCN Decorin
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A simple, but rather limited, solution to modelling such a complex situation is
model merging. Models representing several levels of organisation can be merged
together to cope with the coupling between scales. Merging, however, is not
straightforward even when models of different levels are of the same type (PDEs,
ODEs or Markov processes). For instance, it is relatively easy to couple ODEmodels
of intracellular pathways with models of the same type of the extracellular matrix, by
using the standard technique of compartments (Venkatraman et al. 2012; Li et al.
2017). It is much more difficult to couple single cell dynamics with the population
dynamics because the variables of these models cannot be simply juxtaposed with
different spatial locations.

Single scale, ODE population dynamics models were used to study the role of
TGF-β in immunotherapy and wound healing (Waugh and Sherratt 2006; Wilson
and Levy 2012; Hu et al. 2019; Arciero et al. 2004; Bianchi et al. 2015). In these
models the ECM variables are implicit in the cell-cell interactions but do not follow
dynamical equations. These simplifications are extreme and could lead to inaccurate
conclusions for processes depending critically on the dynamical structuring of the
ECM, such as in wound repair for instance.

Hybrid approaches combining discrete cell positions with continuous description
of collagen matrix and other ECM components have been used to study the role of
the TGF-β/ECM interactions in wound repair (Dallon et al. 2001; Wang et al. 2019;
Cumming et al. 2009). In these models, fibroblasts and immune cell motility and
proliferation are affected by TGF-β, and cells interact one with another or with the
collagen chemically or by direct, physical contact. A similar model was used to
couple TGF-β signaling with the micro-environment in a preliminary study of
tumor-stroma interactions (Morshed et al. 2018). Furthermore, there is a need for
models including mechanical stresses known to be generated in ECM by cell traction
and vessel growth.

Agent-based modeling enabling cells to have individual behaviours including
division and motility has been used for models of epidermis in the context of wound
healing (Wang et al. 2009; Stern et al. 2012; Sun et al. 2009; Adra et al. 2010).
However, this solution is computationally expensive and has limitations in terms of
biochemical details that can be used to model or parameterise the cell behaviour; its
interaction with the micro- environment; or the number of cells and, moreover, is
entirely based on numerical simulation.

Continuous modelling using partial differential equations (PDEs) can be justified
by coarse graining (homogenisation) when the spatial scale of interest is much larger
than the cell size and the typical dimensions of fibers. This modelling can take into
account spatially inhomogeneous densities of various cell types and ligands, as well
as collagen fibers and other ECM constituents. Directed, un-directed, and chemically
mediated cell mobility are taken into account in Keller-Segel PDE systems or in
similar systems used in oncology and likewise in the context of chondrogenesis or
fibrosis (Bitsouni et al. 2017; Kim and Othmer 2013; Friedman and Hao 2017; Chen
et al. 2018). Although quite flexible, easy to simulate in 2D and 3D, and sometimes
leading to analytic results, these models consider intracellular dynamics as instanta-
neous and do not handle mechanical interaction.
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While informative, all these studies integrated the extracellular world as a very
simplified input that did not capture the extracellular dynamics of TGF-β life in its
full complexity. For instance, the kinetics of production and degradation of TGF-β
including its latent form bound to ECM and its active soluble form was considered in
the study of TGF-β interaction with chondrocyte and mesenchymal stem cells (Chen
et al. 2018). The underlying biochemical networks that regulate such dynamics,
however, remained unexplored. Importantly, the ECM is a complex molecular
network combining proteins, proteolglycans and glycoaminoglycans that is con-
stantly remodeled through modification of components’ synthesis and their degra-
dation by proteases. This specific tissue microenvironment is disrupted in
pathological processes and directly affects the TGF-β-mediated signal by modifying
its storage and release.

Because of slow intracellular dynamics, differences occur not only between cells
of different types and genotypes but also between clonal cells. Non-genetic sources
of variability are particularly important in the development of resistance to drug
treatment of tumors or, more generally, in the adaptation of cell populations to
stresses. We have recently introduced a new approach to cope with this variability
while remaining in a continuous frame-work that is convenient for simulation and
analysis. This approach uses mesoscopic PDEs over temporal, spatial, and structural
dimensions (Hodgkinson et al. 2018, 2019). Mesoscale models are obtained from the
Liouville continuity equation. For illustration, let us consider that there are n types of
cells. In this model cells are distinguished by two types of variables, a discrete one
representing the type i2{1,. . ., n} and a continuous one y2Rm representing the
internal state (the vector of concentrations of m biochemical species). Then c ¼
(c1,. . ., ... ,cn) represents a vector of cell distributions satisfying the equation

∂cðx, y, tÞ
∂t

¼ �∇xFxðc, x, y, tÞ �∇yFyðc, x, y, tÞ þ Sðc, x, y, tÞ, ð10:1Þ

where x is the spatial position; y is the cell’s internal state (structure variable); Fx is
the spatial flux; Fy is the structural flux; and S is the source term. If the cell’s internal
state follows ODEs dy/dt ¼ Φ( y), then the structural flux is advective Fy ¼ cΦ. The
spatial flux function contains terms related to cell motility; undirected (diffusion) or
directed (chemotaxis, haptotaxis). The source term integrates cell proliferation, death
and transformation from one cell type to another.

The mesoscale formalism can also integrate mechanical stresses by addition of
constitutive equations coupled to cell densities and biochemistry. Biochemistry has
been coupled to stress by using microscopic Brownian dynamics of ECM
remodeling (Malandrino et al. 2019) or Kramer’s formula for chemical reaction
rates with a free energy dependent on pulling force of actin filaments (Cockerill et al.
2015). Another option would be to incorporate slower structural changes in ECM
fibre density or mechanical stress into a temporally, spatially, and structurally
distributed ECM population, possessing its own dynamical PDE. Existing models
are oversimplified and incomplete and there is strong need for a general continuous
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mechanical theory relating structure, deformation, cell population dynamics and
biochemistry in the ECM.

10.5 Conclusion

Modelling TGF-β signaling integrating extracellular activation processes and intra-
cellular pathways raises several open challenges.

An important challenge is to simulate processes that occur at highly separated
time-scales as well as the spatial organization of ECM interactions. Deriving a model
that would scale up to the size of these systems, and to the long periods which have
to be simulated to observe the phenomena of interest, requires precise abstractions of
populations of cells. These abstractions consist in changing the grain of description
of the behaviours of these cells and can be formalised in many ways thanks to
mathematical tools such as closure operators, Galois connections, ideals, changes of
variables (Cousot and Cousot 1977). Yet, it is important to keep the information that
mainly drives the dynamics of the whole system. Indeed the diversity of behav-
iours—even among identical cells—may constitute an important part of the signal
that is computed by the interactions between the proteins and that which controls the
behaviour of the system at the macroscopic level. In our opinion, neither
non-deterministic approximations nor homogeneous abstractions would likely
offer satisfying solutions to solve this issue. Non-deterministic systems are systems
in which, at each moment of the execution, the immediate future has to be chosen
among the elements of a set of potential behaviours, but where the choice of element
is not specified, as opposed to deterministic systems for which there always exists a
unique potential future; reactive systems for which the choice of the next event is
triggered by an interaction with an external environment; and stochastic systems for
which a distribution of probabilities defines the likelihood of each potential imme-
diate future behaviour. Non-deterministic abstractions flatly over-approximate all
the potential behaviours of each cell without providing any information about their
probability distribution. They can hardly be used in composite models, since many
potential behaviours would have to be considered for each cell, and, thus, it would
require the consideration of too many cases across the population of cells. Homo-
geneous abstractions consist in abstracting away the diversity of behaviours of the
population of cells, and to replace them with several copies of a unique system,
which behaves in the same way. Abstractions with too great a homogeneity would
keep only most probable behaviours for the cells, whilst ignoring others. As a
consequence, such a system would not faithfully model the diversity of behaviours
among the population of cells, which may be a key ingredient in explaining the
overall behaviour of the composite model. Stochastic models keep enough informa-
tion about the distribution of the different behaviours within a population of cell.
Moreover, they can be easily integrated within a multi-scale model. Nevertheless,
they come with an important combinatorial cost and can hardly be simplified.
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Mesoscale PDE models represent a promising direction for modeling the ECM.
They are well suited for implementing middle-out modelling strategies, in which
several levels of organisation are treated together, but with just enough details to
render the essence of the overall organisation. Mesoscale models can be built from
scratch, but can also include already available models, or parts of them, after model
reduction. The model reduction procedure, based on time-scale separation and
singular perturbations, averaging or homogeneization, is not yet well established
and is the subject of active research (Radulescu et al. 2012). Although deterministic,
these models can render the stochastic behaviour of “microscopic” variables, respon-
sible, among other factors, for the heterogeneity of cellular decision. In this
approach, stochastic simulations are replaced by calculation of probability distribu-
tions of microscopic variables, that follow PDEs in mesoscopic descriptions. In spite
of recent progress, the important question of the coupling between mechanical stress,
biochemistry and cell behaviour has been treated only superficially. The ECM is a
complex medium, including insoluble fibers-forming molecules (collagen, fibronec-
tin, elastin) and soluble molecules such as proteoglycans and glycoaminoglycans
which constitute a hydrated gel, of relatively high viscosity, and confer elastic
properties to the ECM and glycoproteins characterized by their adhesive properties
(laminin, fibronectin, tenascin, etc.). The viscoelastic properties of this medium, in
particular its capacity to transmit mechanical cues that further influence cellular
processes, such as differentiation, proliferation, survival and migration, could be
instrumental for tissue remodelling. Constitutive equations, eventually inspired from
the physics of polymers and gels (Larson 2013; Prost et al. 2015), should be able to
provide the continuous mechanics theoretical framework needed for relating stress,
strain, signaling and cell decisions in tissue models.
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