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Preface

The extracellular matrix (ECM) comprises proteins (the matrisome) and complex,
sulfated, polysaccharides, the glycosaminoglycans, which are covalently attached to
core proteins to form hybrid molecules called proteoglycans. A non-sulfated gly-
cosaminoglycan, hyaluronan, forms proteoglycan aggregates of high molecular
weight mediated by its non-covalent interactions with link proteins. The matrisome
is a small proteome encoded by ~1000 genes in humans, but it is still underexplored
because of its specific features. A number of ECM proteins are multimeric,
multidomain, and deposited in the extracellular matrix as insoluble and cross-linked
supramolecular assemblies, which requires the adaptation of existing protocols and
tools and/or the development of new protocols and tools to collect and analyze ECM
-omic datasets. Furthermore, limited proteolysis of ECM proteins gives rise to
bioactive fragments called matricryptins or matrikines, which have biological activ-
ities of their own, different from those of their parent proteins. This book aims at
providing the readers with general and specific computational tools and resources to
visualize and analyze ECM datasets, and with examples of -omic approaches unique
to the ECM (e.g., glycosaminoglycomics and proteoglycanomics), and their use to
assess ECM remodeling (degradomics) in health and diseases.

The matrisome, which comprises ECM and ECM-affiliated proteins, has been
first defined in silico in human and model organisms (i.e., mice, Caenorhabditis
elegans, and Danio rerio; see Chap. 2 by Gebauer and Naba), and then experimen-
tally characterized by quantitative proteomics in a variety of healthy and diseased
tissues, such as fibrotic liver (see Chap. 3 by Dolin et al.) and tumors (see Chap. 7 by
Izzi et al.), and in biological processes (see Chap. 8 on ECM degradation by
Kalogeropoulos et al.). Experimental protocols to collect -omic data are detailed in
several chapters. The interpretation of these data requires the use of computational
approaches, and the major general and ECM-specific bioinformatic tools and data-
bases used to annotate ECM -omic data are listed by Naba and Ricard-Blum in the
first chapter. Specific omics have been developed in addition to proteomics to take
into account the other ECM components, namely proteoglycans (see Chap. 4 on
proteoglycanomics by Koch and Apte) and glycosaminoglycans (see Chap. 5 on
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glycosaminoglycomics by Sethi and Zaia). The ability of ECM proteins, proteogly-
cans, and glycosaminoglycans to form interaction networks within the ECM and
with the cell surface is addressed in Chaps. 6 (Ricard-Blum) and 9 (Koeleman et al.).
The integration of -omic data to build models of ECM-dependent signaling path-
ways is also illustrated (see Chap. 10 on integrative models for TGFp signaling and
ECM by Théret et al.).

Villeurbanne, France Sylvie Ricard-Blum
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Chapter 1 ®)
The Extracellular Matrix Goes -Omics: Creck o
Resources and Tools

Alexandra Naba and Sylvie Ricard-Blum

Abstract The extracellular matrix (ECM) is the complex scaffold made of hundreds
of proteins that governs the organization of cells and tissues in all multicellular
organisms. It provides structural and mechanical properties to tissues. It also exerts
signaling roles, either directly by interacting with cell surface receptors, or by
interacting with growth factors and modulating their signaling activities, and by
doing so regulates a multitude of cellular functions including cell-matrix interac-
tions, cell proliferation, survival, and differentiation. The purpose of this introduc-
tory chapter is to present resources and tools developed to facilitate the identification
and analysis of ECM genes and proteins across different conditions using high-
throughput methodologies (i.e., genomics, transcriptomics, proteomics, and
interactomics). Databases focused on specific ECM genes and ECM-related diseases
including genetic diseases are highlighted in the second part of the chapter. The
accessibility and standardization of -omic data are a prerequisite for the FAIR
(Findability, Accessibility, Interoperability, and Reusability) guiding principles for
scientific data management.

1.1 Introduction

The extracellular matrix (ECM) is the complex scaffold made of hundreds of pro-
teins that governs the organization of cells and tissues in all multicellular organisms
(Mecham 2011; Hynes and Yamada 2012). The ECM plays structural roles by
conferring biomechanical properties to tissues and organs, controlling apico-basal
cell polarity, and by serving as a substrate for cell migration. The ECM also exerts
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signaling roles either directly by interacting with cell surface receptors including
integrins, discoidin-domain receptors and heparan sulfate proteoglycans such as
syndecans, or by interacting with growth factors and modulating their signaling
activities (Hynes 2009). The ECM is also a source of bioactive fragments called
matricryptins, which are released upon ECM remodeling and exert biological activ-
ities of their own (Parks and Mecham 2011; Ricard-Blum and Vallet 2019). Signals
from the ECM have been shown to regulate gene expression and control cell
proliferation, survival, cell mechanics, and differentiation (Rozario and DeSimone
2010). The pleiotropic roles of the ECM are at play in developmental processes such
as gastrulation and cell specification (DeSimone and Mecham 2013; Dzamba and
DeSimone 2018), physiological processes such as wound healing and aging
(Karamanos et al. 2019), and pathological processes such as fibrosis and cancer
(Brekken and Stupack 2017; Iozzo and Gubbiotti 2018; Zhou et al. 2018; Kai et al.
2019; Theocharis et al. 2019; Socovich and Naba 2019; Ricard-Blum and Miele
2019). Because of its supportive and instructive roles, the ECM is a central compo-
nent of tissue engineering approaches for regenerative medicine (Berardi 2018). It
also represents a source of biomarkers and potential novel therapeutic targets to
respectively diagnose and predict, or alleviate and perhaps cure human diseases.

High-throughput profiling and screening methods that have emerged over the past
two decades have radically transformed biomedical research. Such approaches rely
on the unbiased identification of differences in gene expression or genetic states
(genomics or transcriptomics) or protein abundance or protein states (proteomics)
across different conditions. Once experimental data are acquired, their analysis can
be divided in three major steps: (1) the definition of lists of genes or proteins of
interest based on statistical cut-offs, (2) the identification of networks or pathways
involving genes or proteins defined in (1), and (3) data visualization. Yet the true
power of high-throughput approaches can only fully be harnessed if powerful
computational tools and databases to comprehensively annotate the vast amount of
data generated are available. To that end, freely available general databases such as
UniProt (The UniProt Consortium 2019) or Gene Ontology (Attrill et al. 2019; The
Gene Ontology Consortium 2019), and pathway analysis platforms such as the
Database for Annotation, Visualization and Integrated Discovery (DAVID) (Jiao
et al. 2012), Gene Set Enrichment Analysis (GSEA) and its Molecular Signature
database (Subramanian et al. 2005, 2007; Liberzon et al. 2015), Cytoscape (Su et al.
2014), The Reactome Pathway Knowledgebase (Fabregat et al. 2018), or FunRich
(Pathan et al. 2015), have been developed and include useful information on ECM
genes and proteins (Table 1.1). However, these databases and tools rely on compu-
tational predictions and/or manual curation of experimental data from the literature.
Consequently, systems or pathways more broadly studied will be more robustly and
extensively annotated.

Having observed that ECM genes and proteins tended to be under-represented or
mis-annotated in databases (Naba et al. 2012b), we previously proposed to define the
“matrisome” as the compendium of genes encoding ECM and ECM-associated
proteins (Hynes and Naba 2012; Naba et al. 2012a). Our work has revealed that
4% of the human genome encodes the matrisome. For more information, our readers
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Table 1.1 Public databases for gene and protein annotations, enrichment analyses and pathway

identifications

Resources/Tools

Description

References

Gene and proteins annotations

Gene Ontology (GO) Resource
http://geneontology.org/

Annotations of biological process,
cellular component, and molecular
function of genes and gene products.

Attrill et al. (2019),
The Gene Ontology
Consortium (2019)

UniProtKB
https://www.uniprot.org/

The Universal Protein knowledgebase
provides detailed annotations
extracted from the literature by expert
curators.

The UniProt Consor-
tium (2019)

Bioinformatic tools to visualize and analyze omic data

Cytoscape and Apps
https://apps.cytoscape.org/
https://apps.cytoscape.org/
apps/all

An open source platform for visual-
izing complex networks and integrat-
ing these with any type of attribute
data. A lot of Apps are available.

Shannon et al. (2003),
Saito et al. (2012), Su
et al. (2014)

The Database for Annotation,
Visualization and Integrated
Discovery (DAVID)
https://david.ncifcrf.gov/

DAVID provides a comprehensive set
of functional annotation tools to
understand biological meaning
behind large list of genes

Huang et al. (2009),
Jiao et al. (2012)

EnrichmentMap
http://apps.cytoscape.org/apps/
enrichmentmap

Visualizes enrichments of pathways
as an enrichment map, a network
representing overlaps among enriched
pathways.

Merico et al. (2010)

Functional Enrichment analy-
sis tool (FunRich)
http://www.funrich.org/

Functional enrichment and interaction
network analysis of genes and
proteins

Pathan et al. (2015)

g:profiler
https://biit.cs.ut.ee/gprofiler/
gost

A web server for functional enrich-
ment analysis and conversions of
gene lists

Raudvere et al. (2019)

GSEA (gene set enrichment
Analysis)
https://www.gseamsigdb.org/

Suite of tools for the interpretation of
gene expression data, enrichment
analysis of gene lists

Subramanian et al.
(2005, 2007)

The Omics Discovery Index
(OmicsDI) http://www.
omicsdi.org

An open source platform that enables
access, discovery and dissemination
of omics datasets

Perez-Riverol et al.
(2017, 2019)

The Reactome Pathway
Knowledgebase
https://reactome.org/

A manually curated and peer-
reviewed pathway database. Visuali-
zation, interpretation and analysis of
pathway knowledge

Fabregat et al. (2018)

can find in Chap. 2 by Gebauer and Naba an overview of the computational
approaches we and others have developed to predict the matrisome of different
model organisms and illustrate their application for big data annotation. With this
new framework, it has become easier to identify ECM genes and proteins in -omic
datasets, and this has permitted ECM research to truly enter the -omics era (Naba

et al. 2016).
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Fig. 1.1 Flow chart of the integrative multi-omic approach used to analyze the extracellular matrix
(ECM), including the matrisome (proteomics), glycosaminoglycans (GAG, GAGomics), ECM and
ECM-cell interactions (interactomics), ECM degradation (degradomics) and changes in the ECM
associated with diseases. The flow chart also presents the tools used to analyze ECM -omic datasets
(e.g. general and ECM-specific databases (DB)) in order to build integrative models of biological
processes

The purpose of this introductory chapter is to present resources and tools devel-
oped to facilitate the identification and analysis of ECM genes and proteins using
high-throughput methodologies (Fig. 1.1). In the second part of the chapter, we
highlight databases focused on specific ECM genes and ECM-related diseases
including genetic diseases and fibroses. Last, we briefly discuss the importance of
the accessibility and standardization of -omic data, which is a prerequisite for the
FAIR (Findability, Accessibility, Interoperability, and Reusability) guiding princi-
ples for scientific data management (Wilkinson et al. 2016).

1.2 ECM Knowledge Databases

Table 1.2 provides a list of ECM-focused databases and resources that can further
assist the identification and annotation of ECM genes and proteins and their inte-
gration into interaction networks.
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Table 1.2 Databases for ECM gene/protein annotations and ECM interaction data

Database name

and web site URL References

Adhesome http://www.adhesome.org Winograd-Katz et al. (2014)

Gene Ontology http://www.informatics.jax.org/vocab/ | The Gene Ontology Consortium

(GO) Resource gene_ontology/G0O:0031012 (2019)

Extracellular

matrix

The Laminin http://www.Im.Incc.br Golbert et al. (2014)

Database

The Matrisome http://matrisome.org Naba et al. (2016)

Project

MatrisomeDB http://pepchem.org/matrisomedb Shao et al. (2019)

MatrixDB http://matrixdb.univ-lyonl.fr Chautard et al. (2009, 2011),
Launay et al. (2015), Clerc et al.
(2019)

1.2.1 The Matrisome Project and MatrisomeDB

In order to distribute freely the bioinformatic tools and workflows we devised, which
numerous groups have used to predict computationally the matrisomes of model
organisms, we built The Matrisome Project website (http:/matrisome.org) (Naba
et al. 2016). The Matrisome Annotator application and the underlying open-access
R-script available via The Matrisome Project have been used to annotate
transcriptomic datasets which led to the identification ECM signatures of various
diseased states as illustrated in recent studies (Hiebert et al. 2018; Izzi et al. 2018,
2019; Bin Lim et al. 2019; Etich et al. 2019) and as further discussed in Chap. 2 of
this book by Gebauer and Naba.

ECM proteins have biochemical properties that distinguish them from intracel-
lular proteins, such as their relative insolubility due to cross-linking and high levels
of glycosylation. As a result, ECM proteins are largely under-represented in global
proteomic datasets. New mass-spectrometry-based approaches have been specifi-
cally designed to study the ECM protein composition of healthy and pathological
tissues. While it is beyond the scope of this chapter to detail these techniques, we
invite our readers to refer to recent reviews that discuss technical aspects of ECM
proteomic approaches (Randles et al. 2017; Lindsey et al. 2018; Raghunathan et al.
2019; Taha and Naba 2019). Over the past half-decade, proteomics has been applied
to profile the protein composition of dozens of healthy and pathological tissues.
During this same period, the scientific community has been increasingly supportive
of the public release of -omic datasets to increase reproducibility. We thus developed
MatrisomeDB (http://pepchem.org/matrisomedb), a searchable database compiling
ECM proteomic datasets (Shao et al. 2019) that can be interrogated for specific
proteins, protein signatures, tissues or diseases. It is our hope that this database will
facilitate, if not accelerate, discoveries of ECM proteins playing so far unsuspected
roles in pathophysiology.
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1.2.2 The Laminin Database

Laminins are the main glycoproteins of basement membranes (Aumailley 2013;
Hohenester and Yurchenco 2013), playing structural roles in the maintenance of
tissue organization and integrity as well as signaling roles inducing changes in gene
expression (Schéele et al. 2007). The laminin database (http://www.lm.Incc.br/) was
devised by De Vasconcelos and colleagues (Golbert et al. 2014) and provides a
comprehensive overview of this family of 16 isoforms in mammals, their receptors,
and interacting proteins (Domogatskaya et al. 2012).

1.2.3 MatrixDB, the ECM Interaction Database

MatrixDB (http://matrixdb.univ-lyonl.fr/), the extracellular matrix database, is a
member of the International Molecular Exchange (IMEx) consortium (Orchard
et al. 2012), and its interaction data are also available via the IntAct database
(Orchard et al. 2014). MatrixDB is focused on interactions between ECM proteins,
proteoglycans, and glycosaminoglycans (Chautard et al. 2009, 2011; Launay et al.
2015; Clerc et al. 2019). MatrixDB manually extracts interaction data from publi-
cations using IMEX curation rules and a controlled vocabulary, which are regularly
updated by the Molecular Interactions group of the Human Proteome Organization-
Proteomics Standards Initiative (HUPO-PSI), and provides interaction data in
MITAB format. This ensures consistency in data report and in data exchange
between the databases of the consortium. MatrixDB curates interactions established
by monomeric ECM proteins (e.g. isolated o chain from collagens, or elastin)
identified by UniProt accession numbers (The UniProt Consortium 2019), ECM
oligomeric proteins (e.g. native trimeric collagen or laminin molecules and the
dimeric integrin receptors) identified by Complex Portal accession numbers (Meldal
et al. 2019), and by bioactive fragments (i.e. matricryptins/matrikines) released upon
ECM remodeling, which have biological activities and interaction repertoires of their
own (Ricard-Blum and Vallet 2019), and are identified by the PRO feature of
UniProtKB. In addition to protein-protein interactions, MatrixDB also curates
protein-glycosaminoglycan interactions, which are of critical importance for ECM
assembly and functions. Identifiers of Chemical Entities of Biological Interest,
ChEBI, (Hastings et al. 2016) are used for glycosaminoglycans. The use of accession
numbers of other publicly available databases allows cross-referencing and interop-
erability between databases. MatrixDB offers to the users the possibility to build and
expand interaction networks using its graphical navigator, and to apply filters to
build sub-networks based on a list of biomolecules, an interaction detection method
and/or tissue expression level thanks to the integration of gene expression data
(Launay et al. 2015; Clerc et al. 2019). The recent update of MatrixDB query
interface allows users to build lists of proteins of interest by combining queries in
order to build interaction networks specific of a disease, a biological process, or a
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molecular function (Clerc et al. 2019). In its latest release, MatrixDB has integrated
experimental proteomics data from MatrisomeDB to further provide an in-vivo
context to interactions identified experimentally in vitro (Clerc et al. 2019) and
Chap. 6 of this book by Ricard-Blum. The integration of proteomic data collected
in various basement membranes into the comprehensive interaction network of
basement membranes has allowed us to define the core interactome common to all
the basement membranes studied, and the interactions, which are specific of each
basement membrane (Clerc et al. 2019).

The AVEXIS Receptor Network with Integrated Expression database (ARNIE;
https://www.sanger.ac.uk/resources/databases/arnie/) provides an extracellular pro-
tein interactome of zebrafish receptor and secreted proteins containing immunoglob-
ulin and leucine-rich repeats with spatiotemporal expression patterns for all genes in
order to identify signaling pathways playing a key role in zebrafish development
(Martin et al. 2010).

1.2.4 The Consensus Adhesome

Proper cell-ECM interaction is critical to initiate ECM-dependent signal- and
mechano-transduction leading to the modulation of gene expression and cellular
phenotypes. Deciphering the molecular mechanisms involved in cell-ECM interac-
tions is thus of utmost importance. The term “adhesome” was originally coined by
Hynes and colleagues to define the “complement of adhesion-related genes and
proteins” in echinoderms (Whittaker et al. 2006). Geiger and colleagues revisited the
definition of this term to refer more specifically to the ensemble of proteins compu-
tationally predicted to localized at, or to regulate, integrin adhesion complexes
(Zaidel-Bar et al. 2007). The adhesome website (http://www.adhesome.org/) pro-
vides a resource for exploring the components predicted to localize to focal adhesion
complexes (Winograd-Katz et al. 2014). Recent advanced in proteomic methods
have permitted the experimental characterization of the adhesomes of various
integrins and be compared with the predicted adhesome (Horton et al. 2015, 2016)
(see Chap. 9 of this book by Koeleman et al.).

1.3 Resources for the Study of ECM-Related Diseases

Mutations in ECM genes cause a broad spectrum of inherited diseases altering ECM
structure, organization and functions, and targeting primarily skin, the neuro-
muscular, skeletal, and cardio-vascular systems (Bateman et al. 2009; Lamandé
and Bateman 2019). ECM gene variations can be retrieved from general variant
databases listed in Table 1.3. For example, ClinVar compiles public archives of
reports on the relationships between human gene variations and phenotypes and
includes 430,000 unique variants (Landrum et al. 2014, 2020). The Online
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Table 1.3 General and ECM-specific gene variation databases and associated diseases

Databases and Resources

Description

‘ References

General gene variation databases

ClinVar
https://www.ncbi.nlm.nih.gRelaov/
clinvar/

Relationships among human varia-
tions and phenotypes, with supporting
evidence.

Landrum et al.
(2014, 2020)

LOVD? v.3.0 Leiden Open Variation
Database
https://www.lovd.nl/

Gene-centered collection and display
of DNA variants, including genes
coding for ECM proteins

Fokkema et al.
2011)

Online Mendelian Inheritance in Man
(OMIM®)
https://www.omim.org/

Information on all known Mendelian
disorders and over 15,000 genes.
OMIM focuses on the relationship
between phenotype and genotype.

Amberger
et al. (2019)

Effect of sequence changes and mutations of genes on molecular interactions

The IMEx Consortium mutations data
set

https://www.ebi.ac.uk/intact/
resources/datasets#mutationDs

Effect of sequences changes on
experimental molecular interactions

IMEXx Consor-
tium Curators
et al. (2019)

ECM gene-specific variants and disease databases

Alport Database
http://arup.utah.edu/database/
ALPORT/

A database of variants in the COL4AS5
gene and their clinical significance.

Crockett et al.
(2010)

COL7A1 gene mutations database Mutations of the COL7AI gene Wertheim-
http://www.col7al-database.info/ Tysarowska
new/ et al. (2012)
The International registry of dystro- | Mutations of the COL7AI gene in van den Akker
phic epidermolysis bullosa patients dystrophic epidermolysis bullosa etal. (2011)

and associated COL7A 1 mutations
https://www.deb-central.org/

patients

Laminins and neuromuscular disor-

Golbert et al.

ders (2014)
http://www.Im.Incc.br
Osteogenesis imperfecta & Ehlers- Variants occurring in collagen I, 111, Dalgleish

Danlos syndrome variant database
https://www.le.ac.uk/genetics/
collagen/

and V genes, and in other genes coding
for ECM proteins, and enzymes

(1997, 1998)

A structurally-integrated database for
mutations of PLOD genes
http://fornerislab.unipv.it/SIMPLOD/

Mutations in the PLOD/LH
(Procollagen-Lysine 2-Oxoglutarate
5-Dioxygenase/Lysyl-Hydroxylase)
enzyme family (LH1/PLODI,
LH2/PLOD2 and LH3/PLOD3)

Scietti et al.
(2019)

The UMD-FBN1 mutations database
http://www.umd.be/FBN1/

Mutations in fibrillin-1 (FBNI) gene
(Marfan syndrome and associated
disorders)

Collod-Béroud
et al. (2003)

Mendelian Inheritance in Man (OMIM®), provides an online catalog of human
genes and genetic disorders, containing over 24,600 entries, and 6259 molecularized
phenotypes connected to 3961 genes (Amberger et al. 2019), and can be specifically
interrogated for matrisome genes. Similarly, the Leiden Open-source Variation


https://www.ncbi.nlm.nih.grelaov/clinvar/
https://www.ncbi.nlm.nih.grelaov/clinvar/
https://www.lovd.nl/
https://www.omim.org/
https://www.ebi.ac.uk/intact/resources/datasets#mutationDs
https://www.ebi.ac.uk/intact/resources/datasets#mutationDs
http://arup.utah.edu/database/ALPORT/
http://arup.utah.edu/database/ALPORT/
http://www.col7a1-database.info/new/
http://www.col7a1-database.info/new/
https://www.deb-central.org/
http://www.lm.lncc.br
https://www.le.ac.uk/genetics/collagen/
https://www.le.ac.uk/genetics/collagen/
http://fornerislab.unipv.it/SiMPLOD/
http://www.umd.be/FBN1/
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Database (LOVD) is a freely available web-based interface compiling DNA variants
compiled from various locus-specific databases (Fokkema et al. 2011). Gene-
specific databases (e.g. focused on genes coding for ECM proteins) have been
created with LOVD. The use of the databases maintained by the LOVD group is
recommended by the Human Variome Project (https://www.humanvariomeproject.
org/), an international non-governmental organisation working in collaboration with
UNESCO to ensure that all information on genetic variations in the human genome
and their effect on human health can be collected, curated, interpreted and shared
(Burn and Watson 2016). In addition, the IMEx Consortium has built a mutation
dataset generated from deep-curation, featuring 28,000 annotations describing the
effect of small sequence changes on physical protein interactions IMEx Consortium
Curators et al. 2019). This data set of protein sequence changes or mutations and
their effect over interaction outcome can be queried to evaluate the impact of
sequence changes in ECM genes on ECM protein interactions.

Databases focused on ECMopathies, briefly described below, are also being
developed (Table 1.3).

Collagenopathies refer to congenital disorders resulting from mutations in colla-
gen genes that affect connective tissues (Jobling et al. 2014; Lamandé et al. 2017,
Lamandé and Bateman 2018). A database reports ECM gene variants, including
collagen genes, linked to osteogenesis imperfecta and Ehlers-Danlos syndromes
(Dalgleish 1997, 1998). These syndromes can be caused by mutations in the
human PLODI, PLOD2, and PLOD3 genes (procollagen-lysine, 2-oxoglutarate
5-dioxygenases 1, 2 and 3), that catalyzes the hydroxylation of lysine residues, a
key post-translational modification of collagens. Their genetic variants are reported
in the Structurally-integrated database for Mutations of PLOD genes (SiMPLOD),
which allows the mapping of PLOD mutations on the experimentally determined
X-ray structure of human PLOD?3, and on the computational homology models of
human PLOD1 and PLOD2 (Scietti et al. 2019),

The Alport database records 807 variants of COL4A5 gene associated with
X-linked Alport Syndrome, which primarily targets the kidney, and their clinical
significance (Crockett et al. 2010). The COL7A1 gene variants database provides
not only the possibility to search mutations but also a graphic view of mutations,
general information on the COL7A1 gene sequence, the COL7A1 gene in other
databases and other organisms, and bioinformatic tools to analyze mutations and
design primers (Wertheim-Tysarowska et al. 2012).

Diseases caused by laminin mutations affect various systems in which the
integrity of basement membranes is of paramount importance, including the mus-
cular, nervous, and renal systems (Schéele et al. 2007; Chew and Lennon 2018). The
laminin database presented above now integrates sections on the neuromuscular
disorders resulting from laminin mutations, and miRNA-laminin relationships to
account for the putative involvement of microRNAs in these disorders (Golbert et al.
2014). While many other diseases find their cause in ECM gene mutations, such as
COMPopathies due to mutations in the COMP gene coding for the Cartilage
Oligomeric Protein affecting the skeletal system (Posey et al. 2018) and Marfan
syndrome (Meester et al. 2017), over-production or degradation of the ECM has also


https://www.humanvariomeproject.org/
https://www.humanvariomeproject.org/
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been associated with the etiology of several diseases including fibroses, cardio-
vascular diseases, and cancers (Theocharis et al. 2019).

1.4 Conclusions and Perspectives

Expanding on this introductory chapter, our readers will find in this book examples
of experimental -omic approaches devised to study proteoglycanomes (see Chap. 4
by Koch and Apte), and glycosaminoglycans (see Chap. 5 by Sethi and Zaia),
biological processes such as ECM degradation (see Chap. 8 by Kalogeropoulos
et al.) and specific pathological processes such as hepatic fibrosis (see Chap. 3 by
Dolin et al.) and cancer (see Chap. 7 by Izzi et al.). Readers will also find examples
of how to build interaction networks within the ECM (see Chap. 6 by Ricard-Blum)
or at the interface between cell-ECM interactions (see Chap. 9 by Koeleman et al.)
and methods to further integrate -omic level data to build models of ECM-dependent
signaling pathways (see Chap. 10 by Théret et al.).

The generation of temporally and spatially-resolved data is now the next chal-
lenge of the -omic era, especially for ECM research (Bingham et al. 2020). The
multi-omic approach, combining different omics (e.g. genomics, transcriptomics,
proteomics, metabolomics and interactomics to name a few) is a pre-requisite to fully
understand complex biological systems (Zhang and Kuster 2019). Tools allowing
the integration of multi-omics data have started to emerge (Nagaraj et al. 2015;
Ruggles et al. 2017; Subramanian et al. 2020) and the recently developed Knowl-
edge Base Commons (https://kbcommons.org/) provides a universal framework for
multi-omics data integration and biological discoveries (Zeng et al. 2019). The
Omics Discovery Index (OmicsDI), that enables access, discovery and dissemina-
tion of 454,200 proteomics, genomics, metabolomics, transcriptomics, and
multiomic datasets from 16 public resources is another valuable tool for multi-
omic approaches (Perez-Riverol et al. 2017, 2019). An example of how powerful
such integration can be is illustrated in a recent study from Schlotter and collabora-
tors, where they correlated post-operative molecular imaging and pathology with
proteomics, transcriptomics, and multi-dimensional network analysis to build the
first integrated map of human calcific aortic valve disease (Schlotter et al. 2018).
This spatiotemporal multi-omics mapping led to the identification of the first molec-
ular regulatory networks in this disease, and showed that both structural ECM
proteins (e.g. fibronectin, vitronectin and PCPE-2) and ECM proteins secreted by
valvular interstitial cells (e.g. tenascin C and SPARC) contribute to the calcification
propensity of the fibrosa layer (Schlotter et al. 2018).

The few examples reviewed above show how powerful the -omic approach
coupled to data sharing is. With the decreased cost and increased availability of
genomics, transcriptomics, and proteomics as well as computational tools to mine
large datasets generated by these techniques, we can anticipate an increase in the
number of datasets, including some focused on the ECM, that will become available
to the scientific community. It is our hope that the community-built open-access and


https://kbcommons.org/

1 The Extracellular Matrix Goes -Omics: Resources and Tools 11

open-source resources similar to those presented in this chapter will lead to faster
biomedical breakthroughs.
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Chapter 2 ®)
The Matrisome of Model Organisms: From <z
In-Silico Prediction to Big-Data Annotation

Jan M. Gebauer and Alexandra Naba

Abstract The extracellular matrix (ECM) is the architect of multicellular organ-
isms. The use of various model organisms has helped decipher the mechanisms by
which the ECM provides both chemical and mechanical cues that regulate funda-
mental cellular processes conserved during evolution such as cell migration, inva-
sion, and differentiation.

High-throughput, or —omic, technologies has transfigured biomedical research. It
is thus imperative to have a systematic way to identify ECM genes and proteins in
large datasets. This requires having a comprehensive catalog of all the components
that constitute the ECM. Here, we will describe the key structural features of ECM
proteins (signal peptide, presence of protein domains, motifs, or repeats) that can be
used to devise computational approaches to predict ECM proteins. We will then
present fully automated machine-learning-based algorithms and approaches that
have combined protein-sequence analysis and knowledge-based curation to define
the matrisome of model organisms. Last, we provide examples of how the definition
of the matrisome has facilitated the identification of ECM genes and proteins in —
omic datasets and has advanced our understanding of the contribution of the ECM
pathophysiological processes such as embryonic development, tissue regeneration,
aging, and cancer.

2.1 Introduction

The extracellular matrix (ECM), a complex protein assembly, constitutes the archi-
tectural scaffold of all multicellular organisms. However, the collection of ECM
proteins has greatly expanded throughout evolution to support the emergence of
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complex levels of cellular organization, and the development of novel tissues and
specialized functions (Draper et al. 2019; Hynes 2012; Keeley and Mecham 2013;
Ozbek et al. 2010). Molecularly, this complexification has arisen from multiple
mechanisms including exon shuffling, the apparition of novel protein domains,
and expansion within families of genes (Hynes 2012; Keeley and Mecham 2013).
Studying the ECM in various model organisms (mice, zebrafish, Drosophila,
C. elegans, etc.) has been instrumental to understanding some of the fundamental
mechanisms by which it controls evolutionarily conserved processes, such as cell
proliferation, migration, invasion, lineage specification, and differentiation (Adams
2018; Brown 2011; Rozario and DeSimone 2010). Studying the ECM in model
organisms has also shed light on its roles in cellular processes including wound
healing and tissue repair, aging (Birch 2018), angiogenesis (Neve et al. 2014),
fibrosis (Herrera et al. 2018), and cancer metastasis (Pickup et al. 2014).

The emergence of high-throughput screening technologies has transfigured bio-
medical research (see Chap. 1 of this book). It is thus imperative to have a systematic
way to identify and annotate ECM genes and proteins in large datasets, if we want to
be able to fully capture the extent of their involvement in pathophysiological
contexts. This requires having a comprehensive catalog of all the components that
constitute the ECM. In this chapter, we will discuss key structural features of ECM
proteins that can be used to devise computational approaches to predict ECM pro-
teins within proteomes. We will then present and discuss the limitations of fully
automated machine-learning-based algorithms that have attempted to predict ECM
proteins. Last, we will review approaches that have combined protein-sequence
analysis and knowledge-based curation to define the human matrisome and the
matrisomes of 6 model organisms: the mouse, the quail, zebrafish, Drosophila,
C. elegans, and planarian. We will further briefly illustrate how the definition of
these lists has greatly aided the identification of ECM genes and proteins in —omic
datasets and has advanced our understanding of the contribution of the ECM to
embryonic development and diseases.

2.2 Gene Ontology Annotations of ECM Proteins

The Gene Ontology (GO) database describes knowledge of proteins using “terms”
with respect to three aspects: the cellular components they are found in, or localiza-
tion; their molecular functions; and the biological processes they are involved in
(The Gene Ontology Consortium 2019). Every annotation is based on either com-
putational or phylogenetic evidences that may additionally be supported by exper-
imental evidence (for more details, we invite our readers to refer to the GO website:
http://geneontology.org). As of 2020, the database included more than 44,000
unique GO terms and provided annotations for over 1.3 million gene products or
proteoforms. These annotations are cross-referenced to all major gene and protein
databases. This colossal amount of data is instrumental for curating -omic datasets
and identifying groups of co-regulated genes and proteins that localize to the same
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compartment or play roles in the same cellular processes. Eventually, these annota-
tions should support the building of system-wide views of given cellular states or
physiological or pathological processes.

Query of the GO database for terms containing “‘extracellular matrix” retrieves
49 terms and an additional 137 terms are related to ECM biology. Some of these
terms are as broad as “extracellular matrix” (GO:0031012) which is associated with
over 2000 human gene products. Other terms remain vague, e.g. “positive regulation
of extracellular matrix organization” (GO:1903055), and are associated to a smaller
subset of human gene products (27, for GO:1903055, of which, some are encoding
ECM proteins but some of them encoding intracellular components). However, if
too broad, too granular, or too imprecise, such annotations can present limitations by
either creating noise or failing to fully capture the entirety of a process and thus falls
short in aiding with the extraction of relevant information in large datasets (Naba
et al. 2012a). There is thus a need for a comprehensively-annotated compendium of
ECM genes and proteins. To build it will require to take into account specific
features of these proteins, including characteristic sequences found in ECM proteins,
as well as their particular domain-based organization (see below).

2.3 Prototypical Organization of an ECM Protein

2.3.1 Protein Export and Signal-Peptide Prediction

As ECM proteins are a subset of secreted proteins, they share the same export
mechanisms. Predicting protein export is thus an important first step in the identifi-
cation of ECM proteins. Most secreted proteins are targeted to the extracellular space
by an N-terminal signal peptide which is recognised by the signal recognition
particle (SRP) during translation. Upon binding of the SRP, translation is halted
and stalled ribosomes are transferred to the endoplasmatic reticulum (ER) where
nascent protein chains are co-translationally secreted into the ER lumen. During or
after translation, signal peptides are cleaved from mature proteins by a membrane
standing protease. Many ECM proteins are post-translationally modified in the ER,
which is essential for proper folding and function, before being secreted via the
Golgi apparatus into the extracellular space (Viotti 2016). Signal peptide sequences
are very diverse and have next to no detectable homology. However, they can all be
described by a similar organisation consisting of three regions. The n-region is the
most N-terminal part of the sequence. It consists of approximately 1 to 5 amino acids
and is mostly positively charged. Next is the hydrophobic core (or h-region) which is
7 to 15 amino-acid long. This part of the peptide was shown to bind to the SRP in an
a-helical form by (Keenan et al. 1998) and is of utmost importance for recognition
by the SRP (Nilsson et al. 2015). Finally, the c-region often contains o-helix-
breaking amino acids (either proline or glycine) and the cleavage site is usually
surrounded by small uncharged amino acids (Martoglio and Dobberstein 1998).
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Predicting the presence of N-terminal signal peptides has been attempted for
nearly as long as the presence of such peptides was hypothesised (Blobel and
Sabatini 1971). For readers interested in the development of this field, we recom-
mend the excellent review by Nielsen and collaborators (Nielsen et al. 2019a), which
illustrates the tremendous progress bioinformatics has made in recent years. One of
the biggest challenges for all algorithms is the discrimination between proper signal
peptides and N-terminal transmembrane helices (often called membrane anchors),
since they both share a similar hydrophobic stretch of amino acids. Better algorithms
are continuously being developed and, for that reason, we would encourage users to
always use the newest algorithms available. At the time of writing of this chapter,
three algorithms have similarly good level of performances: SignalP 5.0
(Armenteros et al. 2019), DeepSig (Savojardo et al. 2018), and SigUNET
(Wu et al. 2019). All three use neural networks to predict signal peptides and take
special precautions not to detect N-terminal transmembrane domains. SignalP
(www.cbs.dtu.dk/services/SignalP/) and DeepSig (deepsig.biocomp.unibo.it) offer
easy to use webservices, while SigUNET’s source code is available via GitHub
(github.com/mbilab/SigUNet), making it only accessible to more advanced users. Of
note, while SignalP only reports the presence of signal peptides, DeepSig also
detects N-terminal transmembrane helices.

In addition to these specialized algorithms, pipelines that detect both signal
peptides and other protein features or cellular localizations are available. For our
purpose, TOPCONS (topcons.cbr.su.se) (Tsirigos et al. 2015) is an interesting
algorithm since it combines the results from many signal peptide predictors includ-
ing [Poly]Phobius (Kill et al. 2004, 2005), Philius (Reynolds et al. 2008), and SP
OCTOPUS (Viklund et al. 2008). Another tool is DeepLoc (www.cbs.dtu.dk/
services/DeepLoc), a neural network which predicts the cellular location of a protein
(Almagro Armenteros et al. 2017). Regardless of the algorithm used, we encourage
our readers to apply more than one algorithm (e.g. SignalP and DeepSig) and
compare the results obtained, as every prediction has a certain level of uncertainty.

In addition to the conventional protein secretion (CPS) characterised by the
presence of an N-terminal signal peptide, a smaller number of proteins undergo
secretion via unconventional pathways (Dimou and Nickel 2018). In comparison to
the prediction of the presence of signal peptides, the prediction of proteins under-
going unconventional secretion is more difficult, partly because the number of well-
characterized examples is limited. For an overview of predictors available before
2019, we invite our readers to refer to the recent re-evaluation by Nielsen and
collaborators, which concludes that most predictors perform only moderately well
(Nielsen et al. 2019b). Of note, a new predictor called OutCyte (www.outcyte.com)
was recently published and reported promising results (Zhao et al. 2019). Interest-
ingly, OutCyte also has a powerful module to predict signal peptides.

In addition to being secreted, most extracellular proteins are composed of mul-
tiple domains often present in repetition. As this modular domain-based organisation
is quite a unique feature of ECM proteins, we briefly present below what are protein
domains and how can they be computationally predicted.
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2.3.2 What Are Protein Domains and How Can We
Predict Them?

A domain is a consecutive stretch of amino acids that forms an individual folding
unit. Additionally, domains are defined by their three-dimensional structure and are
repeatedly used in different proteins. It is believed that all occurrences of a domain
originate from a common ancestral “proto-domain”. However, the sequence simi-
larity between different occurrences of a particular domain can be very low.

2.3.2.1 The Example of the von Willebrand Factor A Domain

The von Willebrand Factor A (VWA) domain is a domain widespread in ECM
proteins and structurally well defined (Gebauer et al. 2016; Springer 2006; Whittaker
and Hynes 2002). A valuable tool to explore protein domains is the CATH database
(cathdb.info) (Dawson et al. 2017). CATH compares all currently available crystal
structures deposited in the protein data bank (PDB, http://www.wwpdb.org/) (Burley
et al. 2019) and groups them based on structural similarity. VWA domains form the
CATH Superfamily 3.40.50.410 and is composed of an alignment of 215 unique 3D
structures. In the structural overlay the core domain, consisting of a central $-sheet
surrounded by a-helices, is very easily recognizable (Fig. 2.1a). VWA domains are
also present in intracellular proteins, but, with the VWA domain of collagen VI a3
(Col6a3-N5; PDB code 4IGI) and the VWA domain of the von Willebrand factor
(VWF; PDB code 4DMU), we can compare two important members of the ECM

Fig. 2.1 Alignment of crystallised von Willebrand A domains. (a) Alignment of 30 representative
structures for the CATH superfamily 3.40.50.410 as aligned by CATH (cath-superpose). Chains not
belonging to the core domain were removed. a-helices are shown in red, -sheets in blue and loops
in transparent-grey. (b) Structural alignment of the Willebrand Factor type A domains of the von
Willebrand factor (4DMU) and Collagen VI a3 (41GI). Col6 is shown in muted colours. Alignment
was generated using the “super” algorithm in PyMol


https://cathdb.info/
https://rcsb.org/
http://www.wwpdb.org/)
http://www.cathdb.info/version/latest/superfamily/3.40.50.410

22 J. M. Gebauer and A. Naba

(Fig. 2.1b). Although the overall 3D structure is nearly identical (root-mean-square
deviation of only ~1.3 A), the total sequence identity is only 17%. Detecting such
weak homologies is nearly impossible by direct sequence comparison but can still be
done using a technique called profile hidden Markov models (HMM).

2.3.2.2 Profile Hidden Markov Models to Predict Domain Homology

Hidden Markov models (HMM) are sequence generators, which try to develop
models explaining observed sequences (Eddy 1998; Franzese and Iuliano 2019).
Computationally, the algorithm moves from left to right and emits a symbol—for the
present purpose, one of the 20 natural amino acids—at every position of a sequence.
Based on the multiple sequence alignment, the process knows the likelihood of
occurrence of a particular amino acid at every position (emission probability). This
process, by which every state stores the likelihood for emitting certain amino acids,
is called a “match” state. With this in place, a new sequence can be compared to the
built profile and the likelihood with which the new sequence could have been
generated by the model can be calculated. However, this profile would only explain
sequences, which have no insertion or deletions. To account for those, two new
states called “insertion” and “deletion” can be added. During the process, the
algorithm runs through a series of these states. For example, if the algorithm adopts
a “match” state, it emits an amino acid, however, after emission there is a fair chance
that the algorithm adopts a “delete” state for the next position and thereby skip the
next match state, resulting in a “missing” amino acid in the alignment.

The probability of switching from one state to another is also derived from the
multiple sequence alignment. As we can neither measure these states nor their
transition frequency, but only infer those from the output (i.e. the observed sequence
alignment) these states are called “hidden”. In structural terms, we would expect to
see higher probabilities for switching to insertion or deletion station in loop regions
of domains connecting secondary structure elements (e.g. the black/grey loop
structures in Fig. 2.1a, b).

These profiles can then be used to interrogate databases for other occurrences,
which can further be used to refine the profile again. By this method the Pfam
database (pfam.xfam.org) has identified over 17,929 different domains and grouped
them into families and clans (El-Gebali et al. 2019). A similar approach led to the
SMART database (smart.embl-heidelberg.de) (Letunic and Bork 2018). As these
two databases use different manually curated sequence alignments, the profiles and
predictions differ and may complement each other. A resource to search for both, as
well as other predictions, is the InterPro web service (www.ebi.ac.uk/interpro/)
(Mitchell et al. 2019). In addition to Pfam and SMART, it also includes PROSITE
(prosite.expasy.org), Panther (www.pantherdb.org) and output from other predic-
tors. For more details about protein domain prediction, our readers are directed to the
specialised review by Chen and collaborators (Chen et al. 2018).


https://pfam.xfam.org/
http://smart.embl-heidelberg.de/
http://www.ebi.ac.uk/interpro/)
https://prosite.expasy.org/
http://www.pantherdb.org/
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2.3.2.3 The Special Case of Repeats or Motifs

A special case of domain predictions are repeated motifs, which are very common in
ECM proteins. The two most common motifs are Leucine-rich repeats (LRR) and
collagen repeats. Both have relatively simple and strict necessities on their primary
sequences and are best described by sequence patterns which allow repetitions.
Collagens form a right-handed triple helix formed by three individual left-handed
poly-proline type II helices. Due to the helicity, every third amino acid is directed to
the centre of the triple-helix and due to space restrictions only glycine residues fit at
these positions. Thus, the recognition sequence can be described as a repetitive
pattern of (GXY),, where n is usually greater than 10. Prolines are found to be
overrepresented at the X and Y positions since they are necessary for the induction of
the poly-proline type II helix formed by the individual chains. Detecting such simple
patterns in a vast amount of data is a common problem in many fields of informatics
and typically solved by the use of “regular expressions” (Aho 1990). For the
collagen repeat, a regular expression would look like this: /(G..) {10, }/,
which would search for a GXY motif, with more than 10 occurrences. The advantage
of this approach is that one can incorporate knowledge about the biochemistry of the
protein directly into the pattern. For example, in our work on cuticular collagens in
C. elegans (Teuscher et al. 2019), we used this possibility to group genes together
based on the similarities of their collagenous domains. The rationale behind this
decision was that trimers of collagen will more likely form between structurally
similar collagenous domains and not necessarily between more homologous
sequences. Cuticular collagens in C. elegans have collagenous domains of similar
length but differ in the positions and lengths of their imperfections (parts of the
sequence which do not adhere to the GXY patterns). For example, the C21a cluster
has a collagen domain starting with 8 triplets of GXY, then 3 random amino acids
followed by 12 triplets adjacent to a 2 amino acid spacer and finally a long stretch of
21 GXY triplets. This leads to a motif in pseudocode (G..){8}...(G..)
{12}..(c..) {21} (the real regular expression is slightly more complex and
can be found at cecoldb.permalink.cc/clades/C21a/) which identified 4 additional
genes in the genome. Although the idea of using a simple pattern for prediction of
domains is not new (see for example ProSite patterns (Hulo et al. 2008)), the ease of
incorporating new biochemical knowledge in these patterns makes them useful to
the day.

As presented, algorithms are available to predict signal peptides and distantly
related protein domains, as well as to detect repetitive sequence. The question
remains, can we also automatically predict ECM proteins?


http://cecoldb.permalink.cc/clades/C21a/
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2.3.3 Predicting ECM Proteins by Machine-Learning-Based
Approaches

Trials to automatically predict ECM protein date back to 2010 (Jung et al. 2010). The
idea behind these techniques is the notion that features in the primary pro-
tein sequence are responsible for the different sorting of proteins, for example to
the ECM, and these should be detectable by machine learning algorithms. It is
beyond the scope of this chapter to present the details of the different mechanisms
and techniques used in the field of machine learning, instead we recommend
specialised books and review articles (Husi 2019; Angermueller et al. 2016; Nielsen
et al. 2019a). However, to evaluate proposed ECM predictors, our readers should be
aware of the general procedures in machine learning, which can be divided into four
steps: (1) data preparation (2) feature extraction (3) model fitting and (4) scoring and
evaluation. A critical part of the machine learning process is the proper selection of
training data. For ECM proteins, a dataset should include both bona-fide ECM
proteins (positive set) and known non-ECM proteins (negative set). In brief, the
algorithm reduces the data to a couple of features which are believed to be indicative
of protein localisation (i.e. the ECM space) and then learns, based on the known
output, how to adjust its internal parameter (i.e. the model) to explain the correlation
between observed features and known outcomes (ECM protein vs. non-ECM pro-
tein). Finally, sequences that are not part of the training set are used to determine
how well the algorithm predicts sequences it has never seen before. The quality of a
machine learning algorithm is defined by (at least) two parameters: sensitivity and
specificity. The first determines to what percentage the predictor correctly identified
ECM proteins in the dataset in relation to the total amount of ECM proteins in the
dataset. For example, a sensitivity of 10% means that only every 10th ECM protein
fed to the algorithm is predicted correctly (true positive rate). Specificity is defined
by the percentage the algorithm incorrectly predicts to be ECM proteins. For
example, if there are 900 non-ECM proteins in a dataset and the algorithm predicted
90 of them to be ECM proteins (also in fact they are not, i.e. they are false positives),
the algorithm would be 90% specific (it mis-predicted 10%; algorithm false
negative rate).

Since 2013, most publications reporting the development of algorithms to predict
ECM proteins are using a training dataset generate by Kandaswamy and collabora-
tors (Kandaswamy et al. 2013). This dataset contains 445 proteins identified as ECM
proteins and 4187 secreted non-ECM proteins from multiple species. Different
combinations of feature extraction processes were tested including amino acid
composition ([split] amino acid composition, pseudo amino acid composition,
dipeptide composition, etc.), structural information such as the presence of
secondary structure elements (Zhang et al. 2014), or domain predictions using
above-mentioned databases (Jung et al. 2010). Using EcmPred, Kandaswamy and
collaborators reported the identification of over 2000 ECM proteins in the ECM
proteome (nearly twice the number of proteins defined as part of the matrisome, see
below) (Kandaswamy et al. 2013). In a 2012 study, Rejimoan and collaborators
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employed position-specific scoring matrices and suggested that they have identified
12 novel ECM protein candidates (CLDN4, DPCRI1, Efempl, IGHGI1, IGHM,
IGKV4-1, LAT2, LMBR1, MANSCI, NIPA1, NOTCH3, TNC) (Jose et al. 2012).
Of these, 2, Efempl and TNC, are known ECM proteins while no structural or
experimental evidence support the fact that the 10 others would be ECM proteins.
The latest predictors published in 2017 (Guan et al. 2017) and 2018 (Kabir et al.
2018) claim to achieve sensitivity/specificity rates of 85.0%/86.5% and 82.3%/
90.7%, respectively. However, the fact that the two algorithms, as well as the web
interfaces of iECMP (Yang et al. 2015) and PECM (Zhang et al. 2014), are not
publicly available makes it difficult to evaluate their performances. Additionally,
inspection of the training dataset revealed that nearly 10% (50) sequences are Wnt
proteins and approximately 10% are metalloproteases (26 MMPs and 22 ADAMs),
mostly due to inclusion of the same protein from different species. Consequently,
5 out of 17 domains identified by Yang et al (Yang et al. 2015) to be indicative for
ECM proteins were peptidase domains. As we will discuss below, this is in stark
contrast to the ratio in the manually curated human matrisome (Naba et al. 2016),
where ADAMSs and MMPs constitute 6% of all sequences and Wnt proteins only
1.7%. This bias is likely to lead to over-training of the algorithms towards proteases
and Wnt signalling proteins and to diminish the ability of these algorithms to detect
other ECM proteins belonging to other families.

2.4 Combining Structural Features and Prior Knowledge
to Define the Matrisome of Organisms

Despite significant advances in machine-learning-based processing to predict vari-
ous protein features, purely computational approaches fail to satisfactorily predict
the complete collection of proteins composing the ECM. This is partly due to the fact
that proteins composing the ECM are very diverse structurally (see below). Yet,
having such lists is instrumental to properly and comprehensively identify and
classifty ECM genes and proteins from datasets generated using high throughput
approaches. To define, what is now called, the “matrisome”, we devised a compu-
tational pipeline combining several sequence analysis predictors discussed above
and manual curation based on prior knowledge (Fig. 2.2). The term matrisome was
coined in reference to the term “basement membrane matrisome” originally pro-
posed by George Martin and colleagues to describe protein complexes that includes
type IV collagen, laminins, heparan sulphate proteoglycan and nidogens and that,
upon assembly, form basement membranes (Martin et al. 1984). In 2011, we
proposed to expand the list of proteins grouped under that term to collectively
describe the ensemble of genes encoding proteins that are forming the structure of
the ECM, as well as proteins present in the extracellular space and that have the
ability to interact with and/or remodel ECM proteins (Naba et al. 2012b).
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2.4.1 Defining the Human and Murine Matrisomes

To define the human and mouse matrisome, we first identify key structural features
of ECM proteins, including the presence of a signal peptide (see Sect. 2.3.1) and the
presence of at least one of 51 characteristic protein domains commonly found in
ECM proteins (see Sect. 2.3.2 and Table 2.1) (Adams and Engel 2007; Hohenester
and Engel 2002; Whittaker and Hynes 2002; Whittaker et al. 2006). Screening of the
human proteome for proteins displaying these features retrieves a very long list of
proteins. Many of them were known ECM proteins, some were proteins for which no
localization information were available, and many were clearly not ECM proteins.
Indeed, the structural features used for the screen are also shared by other proteins,
including transmembrane receptors and proteins involved in cell-cell adhesions. We
thus then defined a set of features rarely found in ECM proteins, such as the presence
of kinase or phosphatase catalytic domains, or 7-transmembrane domains found in
G-protein-coupled receptors, and used these to eliminate non-ECM components
(Naba et al. 2012b). Last, we conducted extensive literature search and database
cross-referencing and curated the list to include all known ECM proteins in addition
to putative novel ECM proteins (Fig. 2.2). Since this approach focused on identify-
ing proteins considered to be “structural” components of the ECM, we termed this
collection the “core matrisome” and further classified proteins of this collection into
three categories: collagens, glycoproteins and proteoglycans (Hynes and Naba 2012;
Naba et al. 2012b). While all 44 collagen genes of the human genome could be
predicted by the presence of one single InterPro domain termed “Collagen triple
helix repeat” (IPRO08160; see Table 2.1), this domain also retrieved 32 other pro-
teins in UniProt (release 2019_11). Manual examination of these led to their
classification as ECM glycoproteins, if there was significant evidence for the protein
to contribute to the structure of the ECM (Emidl, Emilin-1), as being associated to
the matrisome (e.g. ficolins or collectins, see below), or excluded if they also
presented a feature not expected to be found in ECM proteins (as for the transmem-
brane Macrophage receptor MARCO, or Scavenger receptors). Interestingly,
although the vast majority of proteins identified with this approach were known
ECM proteins, a few do not have a role yet, and can thus be considered “novel” ECM
proteins.

ECM homeostasis is under the control of proteins, including enzymes, not
traditionally considered to be part of the ECM. Similarly, the ECM is a reservoir
for growth factors, also not traditionally considered as components of the ECM
(Hynes 2009). However, these proteins and others are integral to ECM functions. To
fully capture the complexity of the ECM, we reiterated the sequence-analysis-based
pipeline using new sets of domains and knowledge-based curation to define a second
collection of proteins, those that could associate with core ECM components (Naba
et al. 2012b). We first defined ECM-affiliated proteins as proteins either structurally
or functionally affiliated with core ECM components (e.g. galectins, mucins, sur-
factant proteins). We also defined a group termed ECM regulators which includes
ECM-remodeling enzymes such as proteases and cross-linking enzymes as well as
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Table 2.1 Protein domains commonly found in structural ECM proteins and used to predict the

core matrisome

InterPro
accession Example of core matrisome proteins

InterPro domain name number containing said domain (Gene symbol)

Agrin NtA IPR004850 | Agrin (AGRN)

Amelin IPR0O07798 | Ameloblastin (AMBN)

Amelogenin IPR004116 | Amelogenin, X isoform (AMELX),
Amelogenin, Y isoform (AMELY)

Anaphylatoxin/fibulin IPR000020 | Fibulins (FBLN1, FBLN2)

Bone sialoprotein II I[PR0O08412 | Bone sialoprotein 2 (IBSP)

C-type lectin IPR001304 | C-type lectin domain family 18 member A
(CLEC18A)

Collagen triple helix repeat IPRO08160 | All 44 collagens

CUB IPR000859 | Procollagen C-endopeptidase enhancer
2 (PCOLCE2)

Cysteine-rich flanking region, IPR0O00483 | Peroxidasin-like protein (PXDNL)

C-terminal

Dentin matrix 1 IPR009889 | Dentin matrix acidic phosphoprotein
1 (DMP1)

EGF-like calcium-binding IPRO0O1881 Fibrillins (Fbn1-6), Perlecan (HSPG2)

EGF-like, laminin IPR002049 Laminins, Agrin (AGRN), Multiple epidermal
growth factor-like domains protein
6 (MEGF6)

EMI IPRO11489 | Multimerin-1 (MMRN1), Periostin (POSTN),
Transforming growth factor-beta-induced
protein ig-h3 (TGFBI)

Endoglin/CD105 antigen IPRO01507 | Alpha-tectorin (TECTA)

FAS1_domain IPRO00782 | Periostin (POSTN), Transforming growth
factor-beta-induced protein ig-h3 (TGFBI)

Fibrillar collagen, C-terminal IPR0O00885 | Collagen alpha-1(I) chain (COL1A1), Colla-
gen alpha-1(II) chain (COL2A1), Collagen
alpha-

1(III) chain (COL3A1), Collagen alpha-2(V)
chain (COL5A2)

Fibrinogen, alpha/beta/gamma IPR002181 | Fibrinogens (FGA, FGB, FGG), Tenascins

chain, C-terminal globular (TNC, TNN, TNR, TNXB)

Fibronectin, type I TPR0O00083 Fibronectin (FN1)

Fibronectin, type II IPR0O00562 | Fibronectin (FN1)

Fibronectin, type III IPR0O03961 Fibronectin (FN1), Tenascins (TNC, TNN,
TNR, TNXB)

Follistatin-like, N-terminal IPR0O03645 | Agrin (AGRN), Osteonectin (SPARC)

G2 nidogen and fibulin G2F IPR0O06605 | Nidogen-1 (NID1), Nidogen-2 (NID2),
Hemicentin-1 (HMCN1), Hemicentin-2
(HMCN2)

Gamma-carboxyglutamic acid- | IPR000294 | Matrix Gla Protein (MGP), Osteocalcin

rich (GLA) (BGLAP)

Hemopexin/matrixin IPR0O00585 Hemopexin (HPX), Vitronectin (VTN)

(continued)
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Table 2.1 (continued)

InterPro
accession Example of core matrisome proteins

InterPro domain name number containing said domain (Gene symbol)

Insulin-like growth factor- IPR0O00867 | Insulin-like growth factor-binding proteins

binding protein, IGFBP (IGFBP1-7), CCN proteins (CCN1-6)

Laminin G IPR0O01791 Laminin alpha chains (LAMA1, LAMA2,
LAMA3, LAMA4, LAMAS), Agrin (AGRN)

Laminin I IPR009254 Laminin alpha chains (LAMA1, LAMA2,
LAMA3, LAMA4, LAMAS)

Laminin, N-terminal IPR0O08211 All laminins

LCCL IPR004043 | Cochlin (COCH), Vitrin (VIT)

Leucine-rich repeat, cysteine- IPRO00372 | Prolargin (PRELP), Lumican (LUM)

rich flanking region, N-terminal

Leucine-rich repeat, typical IPR0O03591 | Peroxidasin-like protein (PXDNL)

subtype

Link IPR0O00538 | Neurocan core protein (NCAN), Hyaluronan
and proteoglycan link protein 1 (HAPLN1),
Versican core protein (VCAN), Aggrecan core
protein (ACAN)

Micro-fibrillar-associated IPR0O09730 | Microfibrillar-associated protein 1 (MFAPI)

1, C-terminal

Microfibril-associated IPRO08673 | Microfibrillar-associated proteins 2 and

glycoprotein 5 (MFAP2, MFAPS)

Nidogen, extracellular region IPR0O03886 | Alpha-tectorin (TECTA), Nidogen-1 (NID1),
Sushi, nidogen and EGF-like domain-
containing protein 1 (SNED1)

Osteopontin IPR002038 | Osteopontin (SPP1)

Osteoregulin IPR009837 | Matrix extracellular phosphoglycoprotein
(MEPE)

Reeler region TPR002861 Reelin (RELN)

SEA IPR0O00082 | Agrin (AGRN), Perlecan (HSPG2)

Serglycin IPR0O07455 | Serglycin (SRGN)

Small leucine-rich proteoglycan, | IPR016352 | Asporin (ASPN), Biglycan (BGN), Decorin

class 1, decorin/asporin/ (DCN)

byglycan

Somatomedin B IPRO0O1212 | Vitronectin (VTN)

Sushi/SCR/CCP IPR0O00436 | Neurocan core protein (NCAN), Sushi repeat-
containing protein SRPX2 (SRPX2)

TB domain TIPRO17878 Fibrillins (Fbn1-2), Latent-transforming
growth factor beta-binding proteins (LTBP1-
4

Thrombospondin, C-terminal IPR008859 Thrombospondins (THBS1, THBS2, THBS3,
THBS4, COMP)

Thrombospondin, type 1 repeat | IPR000884 | Thrombospoindins, SCO-spondin (SSPO),
Papilin (PAPLN)

Thyroglobulin type-1 IPRO00716 | Insulin-like growth factor-binding proteins,

Nidogen-1 (NID1)

(continued)
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Table 2.1 (continued)

InterPro

accession Example of core matrisome proteins
InterPro domain name number containing said domain (Gene symbol)
Tropoelastin IPR003979 | Elastin (ELN)

von Willebrand factor, type A TPR002035 Collagen VI (COL6A1, COL6A2, COL6A3,
COL6AS, COL6A6), von Willebrand Factor

(VWF)
von Willebrand factor, type C IPRO01007 | Peroxidasin-like protein (PXDNL),
Domain SCO-spondin (SSPO), von Willebrand factor

C domain-containing protein 2-like
(VWC2L), Alpha-tectorin (TECTA)
von Willebrand factor, type D IPR0O01846 | SCO-spondin (SSPO), Alpha-tectorin
(TECTA), von Willebrand factor (VWF)

their regulators (e.g. matrix metalloproteinases and tissue inhibitors of
metalloproteinases or cathepsins and cystatins); last, based on the increasing recog-
nition that ECM proteins can modulate growth factor signaling, we also included
secreted factors (e.g. growth factors, cytokines, morphogens). Overall, this compu-
tational pipeline identified 1027 human matrisome genes and 1110 murine
matrisome genes (Naba et al. 2012b), representing approximately 5% of these
genomes (Tables 2.2 and 2.3). The complete list of the human and murine matrisome
genes can be accessed at http://matrisome.org (Naba et al. 2016).

The matrisome lists defined can be used to study the evolution of ECM genes (see
below). They can also be used to annotate genomic, transcriptomic, and proteomic
datasets and uncover novel or unsuspected roles for the ECM in pathophysiological
processes such as cancer (Izzi et al. 2019; Pearce et al. 2018; Socovich and Naba
2019; Taha and Naba 2019; Tian et al. 2020; Yuzhalin et al. 2018) and fibrosis
(Arteel and Naba 2020; Bingham et al. 2020; Dolin and Arteel 2020; Massey et al.
2017; Ricard-Blum and Miele 2020; Yu et al. 2018; Zhou et al. 2018), and eventu-
ally lead to the discovery of ECM biomarkers of predictive or prognostic values for
patients (Izzi et al. 2019; Yuzhalin et al. 2018).

Thanks to the rapid development of sequencing technologies in the past decades,
the genomes of a large number of model organisms used for biomedical research are
now available through interfaces such as the Genome Research Consortium (https://
www.ncbi.nlm.nih.gov/grc) or the Alliance of Genome Resources (https://www.
alliancegenome.org/) (Agapite et al. 2020). Experimental proteomic data or in-silico
predictions have also permitted to draft the proteomes of several of these model
organisms, which are accessible via protein databases such as UniProt (https://www.
uniprot.org/) (The UniProt Consortium 2019). It is thus now feasible to predict the
matrisomes of other model organisms, using a pipeline similar to the one developed
for the human and murine matrisomes.


http://matrisome.org/
https://www.ncbi.nlm.nih.gov/grc)
https://www.ncbi.nlm.nih.gov/grc)
https://www.alliancegenome.org/)
https://www.alliancegenome.org/)
https://www.uniprot.org/)
https://www.uniprot.org/)
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2.4.2 The Zebrafish Matrisome

The zebrafish (Danio rerio) is a model organism broadly used in many areas of
biomedical research, from developmental biology to the study of tissue regeneration
and cancer metastasis (Meyers 2018; Parichy 2015). It is also an instrumental model
system to help decipher the role of the ECM in these processes (Jessen 2015).The
Zebrafish Information Network (ZFIN, https://zfin.org) (Ruzicka et al. 2019) pro-
vides an array of resources to the community, from genomic information to expres-
sion data and tools. In order to predict the zebrafish matrisome, we employed a
sequence-orthology-based approach to retrieve all orthologs of human and murine
matrisome genes present in the zebrafish genome (Nauroy et al. 2018). We identified
1002 matrisome genes in the zebrafish genome (about 4.4% of the whole genome,
Table 2.2), 333 genes encoding core matrisome proteins and 669 genes encoding
matrisome-associated proteins (Table 2.3). We showed that 68.8% of human
matrisome genes (710 genes) have at least one ortholog in the zebrafish. We further
evaluated the consequences of the teleost-specific whole-genome duplication on the
matrisome and found that 44.4% of the matrisome genes have a “one-to-one”
relationship between human and zebrafish, 22.3% had a “one-to-two” relationship
between human and zebrafish, and 2.1% had a “one-to-many” relationship between
human and zebrafish (Nauroy et al. 2018). This last number is to contrast the 15.2%
of genes estimated to exist as multiple paralogs in zebrafish at the whole-genome
level (Howe et al. 2013), suggesting that matrisome genes are differentially
subjected to evolutionary pressure (Nauroy et al. 2018).

2.4.3 The Quail Matrisome

The quail (Coturnix japonica) is a model organism that has being extensively used to
study developmental processes such as the behavior and differentiation of neural
crest cells, through chick-quail graft experiments pioneered by Nicole Le Douarin
(Ainsworth et al. 2010; Ribatti 2019), and has helped uncover the roles of several
ECM proteins in embryonic development (Loganathan et al. 2016; Spence and Poole
1994; Zamir et al. 2008). Through sequence analysis, Huss and colleagues sought to
identify quail orthologs of human matrisome genes (Huss et al. 2019) and predicted
that 706 genes (or 4.4% of the quail genome) encoded matrisome proteins
(Table 2.2) that can further be classified into 238 core matrisome genes and
468 matrisome-associated genes (Table 2.3). Overall, this study demonstrated that
the orthology is greater for core matrisome genes than for matrisome-associated
genes (Table 2.3). For example, 40 of the 44 human collagens have orthologs in the
quail genome, with only COL5A3, COL6AS, COL11A2, COL26A1 missing
(Table 2.3). With the quail matrisome defined and available to annotate big data,
Huss and colleagues performed single-cell RNASeq (scRNASeq) to profile the
expression of genes of primordial germ cells. These cells participate in
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13

Core Matrisome

FBN3 ADAM10 MDK
Stage HH6 FN1 ANXA2 NGLY1
IGFBP4 CRLF3 0GFOD1
LAMA1 EGLN1 PDGFA
LAMB1 GPC1 PDGFC
LAMC1 GPCa SEMASB
RSPO3 HTRAL TNFSF10
SPOCK3 LMAN1 LOC107319025
LoxL1 LOC107318756

Stage HH12

Fig. 2.3 Matrisome genes expressed by avian primordial germ cells at three stages of embryonic
development (Huss et al. Front. Cell Dev. Biol., 2019)

gonadogenesis and were profiled at 3 stages of quail embryo development, HH3,
HH6 and HH12 (Huss et al. 2019). The study showed that primordial germ cells
express a defined set of 26 matrisome and matrisome-associated genes throughout
these 3 stages of development, but also identified stage-specific sets of matrisome
genes (Fig. 2.3) (Huss et al. 2019).

2.4.4 The Drosophila Matrisome

Because of the conservation of protein domains during evolution, an orthology-
based approach can also be applied to predict the matrisome of invertebrates. The
fruit fly (Drosophila melanogaster) is a model organism broadly used to understand
the fundamental mechanisms underlying ECM assembly and functions, cell-ECM
interactions, and ECM-dependent cell polarization and morphogenesis (Brown
2011; Diaz-de-la-Loza et al. 2018; Ramos-Lewis and Page-McCaw 2019). It is
also used to study human diseases (Cheng et al. 2018; Jennings 2011; Markow
2015). Similar to ZFIN, FlyBase (https://flybase.org) (Thurmond et al. 2019) pro-
vides resources to the scientific community on this model organism including
genomic and orthology data for all Drosophila genes. To predict the Drosophila
matrisome, we used a pipeline similar to the one we used to predict the zebrafish
matrisome (see above), and first retrieved from FlyBase all orthologs of mammalian
matrisome genes (Davis et al. 2019). In addition to ECM genes orthologous to
mammalian genes, fruit flies similar to other arthropods, have additional specialized
ECM proteins including the chitin-based cuticle (forming their exoskeleton) and the
ECMs that line the lumens of the trachea, salivary glands and midgut; the eggshell;
and the salivary glue (Davis et al. 2019). Since these do not have orthologs in
mammals, we devised a de-novo discovery pipeline based on the presence of
characteristic protein domains, as initially done to predict the human and murine
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matrisomes (Davis et al. 2019). Altogether, we predicted that the Drosophila
matrisome comprises 641 genes (Table 2.2), further classified into 34 core
matrisome genes, 279 matrisome-associated genes, and 328 genes encoding proteins
forming apical matrices (Table 2.3) (Davis et al. 2019). We also proposed a
systematic classification based on sequence analysis and the presence of protein
domains of the genes encoding proteins forming apical ECMs (Davis et al. 2019).

2.4.5 The C. elegans Matrisome

The nematode Caenorhabditis elegans is also broadly used to advance our under-
standing of biological and pathological processes (Frézal and Félix 2015; Kaletta
and Hengartner 2006; Meneely et al. 2019).

WormBase (https://wormbase.org) (Harris et al. 2020) serves as the reference
database for scientists working with this model organism. On the model of what we
presented for the Drosophila matrisome, we undertook an approach combining
ortholog identification using WormBase and de-novo characterization using
protein-sequence features to predict the C. elegans matrisome. We identified
719 matrisome genes (Table 2.2), including 226 core matrisome genes,
481 matrisome-associated genes, and 12 genes encoding cuticlins, a family of pro-
teins participating in the formation of the C. elegans cuticle (Table 2.3) (Teuscher
et al. 2019). A unique characteristic of the matrisome of this model organism is the
remarkable number, 185, of genes encoding collagen-domain-containing proteins.
We further proposed to classify these genes into 4 groups based on sequence
analysis. Group 1 comprises the vertebrate-like collagens emb-9 and lez-2, orthologs
of the mammalian collagen IV, cle-1, orthologous to mammalian collagens XV and
XVIII and col-99, orthologous to membrane-associated collagens with interrupted
triple-helices (MACITs, collagen types XIII, XXIII, and XXV). Group 2 comprises
4 genes encoding collagen-domain-containing proteins orthologs to mammalian
gliomedins and collectins. Group 3 comprises the 4 non-cuticular collagens with
no clear orthology to mammalian collagens. Finally, group 4 includes the 173 cutic-
ular collagens. We further proposed to sub-divide the cuticular collagens into
5 clusters based on their protein-domain organization, including the length of their
collagenous domains (i.e. number of GXY repeats; see 3.2.3), the positions of
interruptions, type of cysteine knot flanking the GXY repeats, and their prediction
of being transmembrane or secreted (Teuscher et al. 2019).

Interestingly, the prediction of the matrisome of Drosophila and C. elegans has
revealed that a similar structure, the cuticle, exerting a similar protective function, is
formed by different classes of proteins in different organisms, the C. elegans cuticle
is mostly collagenous whereas in Drosophila it is composed of chitin-domain-
containing proteins.

As briefly illustrated for the other matrisomes, the list of computationally-
predicted C. elegans matrisome genes can further aid annotations of large datasets
and identification of processes that are regulated in part by the ECM. In a recent
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study, Ewald re-analyzed a previously published transcriptomic dataset aimed at
characterizing changes in gene expression during C. elegans aging (Budovskaya
et al. 2008) and showed that out of the 1200+ age-regulated genes, 150 were
matrisome genes. Of them, 146 of which saw their level of expression decrease
with aging (including 92 collagens) whereas only 4 saw their level of expression
increase with aging (Ewald 2019).

2.4.6 The Planarian Matrisome

Planarians (Schmidtea mediterranea) are flatworms extensively studied for their
high regenerative potential. Research using this model organisms has shed light on
the molecular mechanisms underlying among other processes, stem cell biology,
tissue regeneration and repair, and more recently pharmacology and toxicology
(Elliott and Alvarado 2018; Gentile et al. 2011; Pagan 2017; Reddien 2018; Sanchez
Alvarado 2015). Undertaking the same de-novo prediction approach based on
sequence analysis and the presence of ECM-specific domains we used to predict
the human matrisome, Cote and colleagues identified with high confidence the
planarian matrisome as a collection of 256 genes, further divided into 117 core
matrisome genes (including planarian orthologs to major structural ECM compo-
nents, collagens, fibronectin, laminins, fibulins, etc.) and 139 matrisome-associated
genes, including orthologs of ECM-affiliated proteins mucins and glypicans and of
ECM regulators including ADAMTS and MMPs (see Tables 2.2 and 2.3) (Cote et al.
2019). A previous study from the Reddien lab had shown that muscle cells could
provide positional instructions for the regeneration of any region of the planarian’s
body (Witchley et al. 2013). Since ECM proteins are capable of signaling this type of
information to cells, Cote and colleagues sought to determine whether muscle cells
contributed to the production of the ECM in planarian. Using the newly developed
planarian matrisome to annotate previously published scRNASeq data from the
planarian transcriptome atlas (Fincher et al. 2018), Cote and colleagues demon-
strated that the main source of ECM proteins were indeed muscle cells. In particular,
they showed that muscle cells expressed all 19 collagen genes indicating that it is
muscle cells, and no other mesenchymal cell types, that act as a connective tissue in
planarians (Cote et al. 2019).

2.5 Conclusion and Future Directions

Despite advances in machine learning, predicting ECM proteins remains challeng-
ing. As discussed in this chapter, the matrisome per se is not a homogenous group of
proteins and is likely to have several different evolutionary origins. It is thus
conceivable that its functional and structural diversity, will make it difficult or
potentially impossible to be predicted, at once, with a single machine learning
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algorithm. Yet, for the past decade, our knowledge of the matrisomes of various
model organisms has vastly expanded. We thus propose that novel machine-
learning-based approaches could be trained using, as positive dataset, one or several
of the manually curated matrisomes already defined (e.g. human and mouse). This
proposal has recently been implemented independently by Liu et al. to develop the
ECMPride algorithm (Liu et al. 2020). The algorithm was trained on the human
matrisome list as the positive dataset and additionally used extracted sequence
features as well as the ECM domain list we compiled (Naba et al. 2012b) as
predictive features. This resulted in the prediction of 779 so-called “new” ECM
proteins. However, examination of the list of proteins revealed the presence of
proteins that are clearly not components of the ECM, for example transmembrane
receptors (e.g. LDLR) or proteins belonging the blood coagulation cascade
(e.g. THBD). The overestimation of the number of ECM proteins might be caused
by the exclusive usage of intracellular proteins as the negative training dataset.
Inclusion of transmembrane receptors sharing common sequence features with
ECM proteins as well as extracellular proteins not belonging to the ECM might
help train the algorithm to better differentiate between the secretome and the
matrisome. Furthermore, we suggest that annotated matrisomes from other species
not used in the training set (e.g. C. elegans), might serve as good free test datasets
and should be used to evaluate the power of the algorithm. In particular, it would be
very interesting to determine how well future predictors will identify those proteins
in the test dataset that do not have clear homologues in the training set (e.g. cuticular
collagens). If found to be highly sensitive and specific, the algorithm could then be
further used to predict the matrisome of evolutionarily distant organisms that have
seen emerged ECM innovations (Draper et al. 2019; Hynes 2012; Ozbek et al. 2010;
Shoemark et al. 2019).

Accurate and comprehensive big data annotation is only the first step toward
discovering ECM genes and proteins involved in pathophysiological processes.
Collectively, we should work toward understanding the underlying cellular and
molecular mechanisms these genes and proteins control with the ultimate goal of
advancing fundamental scientific knowledge and improving patient diagnosis and
treatment. We propose that this will be greatly facilitated by the systematic dissem-
ination and sharing of —omic datasets and by efforts aimed at enhancing accessibility
of such datasets to non-specialists. To this end, we launched MatrisomeDB, a
database collating mass-spectrometry-based proteomics data characterizing the
ECM of normal and diseased tissues as well as on the ECM produced by cells in
culture (Shao et al. 2020). Along the same line, Dr. Ricard-Blum and collaborators
have developed MatrixDB, an inventory of curated ECM protein-protein and
protein-glycsoaminoglycan interaction networks (Clerc et al. 2019). With the
democratization of —omic technologies, it is our hope that such endeavors will
expand and integrate with each other, to eventually provide a system-wide view of
the ECM, fully representative of its complexity.
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Chapter 3 )
Detecting Changes to the Extracellular e
Matrix in Liver Diseases

Christine E. Dolin, Toshifumi Sato, Michael L. Merchant, and
Gavin E. Arteel

Abstract Liver disease, regardless of etiology, shares a similar natural history of
disease progress and is common worldwide. This spectrum of diseases progresses
from simple steatosis (fat accumulation), to inflammation, and eventually to fibrosis
and cirrhosis. Hepatic fibrosis is primarily characterized by robust accumulation of
collagen ECM that leads to organ dysfunction and decompensation. The role of the
ECM in early stages of chronic liver disease is less well-understood, but recent
studies have demonstrated that a number of changes in the hepatic ECM in early-
stage liver disease may also contribute to disease progression. The purpose of this
review is to summarize the established and proposed changes to the hepatic extra-
cellular matrix (ECM) that may contribute to inflammation during earlier stages of
disease development, and to discuss potential mechanisms by which these changes
may mediate the progression of the disease.
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3.1 The Extracellular Matrix (ECM) of the Liver

The ECM is best viewed as a dynamic compartment that encompasses a diverse
range of components that work bi-directionally with surrounding tissue to regulate
cell and tissue homeostasis. Although the classic meaning of the ECM referred to
only proteins directly involved in generating the ECM structure, such as collagens,
proteoglycans and glycoproteins, the definition of the ECM is now broader, and
includes all components associated with this compartment, including ECM affiliated
proteins (e.g., collagen-related proteins), ECM regulator/modifier proteins (e.g.,
lysyl oxidases and proteases) and secreted factors that bind to the ECM (e.g.,
TGFp and other cytokines) (Naba et al. 2016; Arteel and Naba 2020). This updated
definition has been coined the ‘matrisome’ (Naba et al. 2012). Although the canon-
ical function of the ECM is structural, it is also a key storage unit for signaling
molecules (e.g., growth factors and cytokines), as well as serving as a sensing
mechanism for outside-in signaling and vice-versa (Hynes 2009).

In most tissues, there are two distinct structural ECM components: the interstitial
matrix and the basement membrane (Martinez-Hernandez and Amenta 1993). Inter-
stitial matrix proteins (e.g., fibronectins, elastin, and fibrillar collagens) form net-
works that provide support to the overall superstructure that shapes and encapsulates
the organ (Friedman 2010; Arteel and Naba 2020). In most tissues, the basement
membrane is a thin, electron-dense sheet of ECM that is the foundation for epithelial
and endothelial cells (Arteel and Naba 2020). Similar to the interstitial matrix, the
basement membrane comprises many structural ECM proteins that facilitate struc-
ture and growth of the cells. The basement membrane in most tissues is a true barrier
between the epithelial/endothelial cells and the adjacent parenchymal cells. In
contrast, the basement layer in the liver is fenestrated and much loosely organized
(Friedman 2010) (Fig. 3.1). Although it possesses similar ECM as more clearly-
defined basement membranes [e.g., collagen type IV and laminin (Griffiths et al.
1991)], this region acts more as a structural filter that facilitates bidirectional
exchange of proteins and xenobiotics between the sinusoidal blood and hepatocytes
(Arteel and Naba 2020). Although it is clear that liver does not have a basal lamina,
whether or not the ECM found in the space of Disse should be considered a basement
membrane is a subject of a histological, rather than functional, debate (Martinez-
Hernandez and Amenta 1993; Arteel and Naba 2020).

3.2 Balance and Imbalance of ECM Turnover in the Liver

As mentioned above, the ECM is a dynamic compartment that responds to stress and
changes. Under normal conditions, these responses assist in maintaining organ
homeostasis and help mediate responses to injury/stress. Subcutaneous wound
healing is a canonical illustration of functional changes ECM in response to damage;
the tightly regulated deposition and remodeling of the ECM not only mediates



3 Detecting Changes to the Extracellular Matrix in Liver Diseases 45

Hepatocytes

Space of Disse

Degradome
*New biomarkers
*New mechanisms

4 complement
4 coagulation
f PAI-1 expression

ECM f ECM expression
| degradation W& |Transitiona| Matrix

1ECM proteins

Acute Injury

1Hemostasis
$injury

1 HSC activation
$nimp Chronic Injury

‘ MMP activity

; 4 Collagen ECM
....
‘ Liver function

T = = HCC risk
'.RNMWXN»&{’;:& t

Fig. 3.1 Transitional remodeling of the hepatic ECM. Acute injury quantitatively and qualitatively
changes the local ECM. This transitional/provisional ECM plays a key role in mediating the early
inflammatory response at the site of injury. These changes often resolve if the insult is removed, and
is also hypothesized to facilitate resolution and recovery from that injury. In contrast, when the
insult is chronic (e.g., chronic liver diseases), these transitional changes to the ECM may progress to
a collagenous/fibrotic ECM. Although this injury can also resolve, it does so less readily. The
increase in turnover of the ECM both during injury and resolution release degraded proteins into the
blood that may serve as extrahepatic signals, as a well as be a potential source of biomarkers
(“degradome”). Abbreviations: LSEC liver sinusoidal endothelial cells; HSC hepatic stellate cell;
K¢ Kupffer cell; PAI-1 plasminogen activator inhibitor-1

wound closure, but also recovery and healing (Sun et al. 2014). However, failure
when these responses are dysregulated, the changes to the ECM can be maladaptive
(Bonnans et al. 2014). For example, ‘aging’ of the ECM (i.e., increased crosslinking)
is hypothesized to contribute to dysfunction in several organ systems, including the
liver (Harvey et al. 2016; Sessions and Engler 2016; Sacca et al. 2016; Phillip et al.
2015; Arteel and Naba 2020). The key levels of ECM regulation, both adaptive or
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maladaptive, include de novo synthesis, post-translational modifications and
degradation.

3.2.1 De Novo Synthesis

Almost all hepatocellular cells play a role in generating the basal ECM found in the
normal liver; for example, parenchymal and a nonparenchymal (e.g., cholangiocytes
and hepatic sinusoidal endothelial cells) all produce components of the fibrillar ECM
(Martinez-Hernandez and Amenta 1995). Although Kupffer cells do not generate
fibrillar matrix proteins under basal conditions, they do produce several factors that
are associated with the ECM, such as cytokines (see below). It is not clear if hepatic
stellate cells (HSC) produce any ECM proteins under basal conditions. However,
once HSCs activate and transdifferentiate into a myofibroblast-like phenotype, they
are responsible for a large portion of the collagenous ECM generated during fibrosis
(Friedman 2010) (Fig. 3.1). Other myofibroblast-like cells also contribute to colla-
gen production (e.g., fibrocytes and periportal fibroblasts) during fibrogenesis
(Cassiman et al. 2002; Zeisberg et al. 2007; Robertson et al. 2007; Omenetti et al.
2008). The spectrum and amount of ECM proteins generated by these various cell
types change in response to damage and dyshomeostasis. The contribution of
extrahepatic sources to the hepatic ECM via de novo synthesis is unclear, but
these compartments clearly contribute to ECM via other mechanisms of homeostasis
(Arteel and Naba 2020).

3.2.2 Maturation of ECM Through Post-Translational
Modifications

Post-translational modifications of ECM proteins regulate the formation of oligo-
meric fibers that comprise mature ECM. For example, prolyl 4-hydroxylase modifies
proline amino acids on collagen monomers to facilitate the formation of collagen
fibers and helices (Kagan 2000); lysyl oxidases and transglutaminases also play key
roles in ECM cross-linking (Liu et al. 2016; Tatsukawa et al. 2016). These post-
translational modifications are critical to stabilize and the ECM and protect them
from degradation; however, these enzymatic modifications may play key roles in
excessive ECM accumulation during fibrogenesis and ECM ‘aging’ (Liu et al.
2016). Furthermore, although it is now understood that fibrosis is potentially revers-
ible (Poynard et al. 2002), highly crosslinked ECM appears to persist in recovered
livers (Issa et al. 2004; Schuppan et al. 2018). The ECM is also post-translationally
modified by nonezymatic mechanisms; for example, diabetic ‘aging’ of ECM is
thought to be mediated via adduction of ECM proteins with advanced glycation
endproducts (AGEs) (Huijberts et al. 2008).
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3.2.3 ECM Degradation

The regulated degradation of ECM proteins by specific proteases is a key factor in
maintaining appropriate levels of turnover. Protein families that degrade ECM
include serine proteases (e.g., thrombin, cathepsins and plasmin) and
metalloproteinases [e.g., MMPs, ADAMs and ADAMTS (Duarte et al. 2015;
Edwards et al. 2008; Dubail and Apte 2015; Brix et al. 2015; Beier and Arteel
2012)]. The activity of these proteases are also kept in check by protease inhibitors.
For example, MMPs are regulated by tissue inhibitors of metalloproteinases
(TIMPs); the elevation of TIMP activity has been shown to partially contribute to
excess collagen accumulation during fibrogenesis (Kisseleva and Brenner 2006).
MMP-12 activity is similarly regulated by its inhibitor Timp-1, which in toto
controls elastin turnover in response to liver injury and/or during fibrogenesis
(Pellicoro et al. 2012). Likewise, plasminogen activator inhibitors (e.g., PAI-1)
inhibit the activity of the plasminogen activators (uUPA/tPA); elevation of PAI-1
levels are sufficient to cause accumulation of fibrin ECM during hepatic injury, even
in the absence of increase fibrin ECM deposition [e.g., by thrombin activation (Beier
and Arteel 2012)]. Several ECM proteins exist in soluble precursors; their cleavage
and activation by proteases can also thereby regulate the deposition of hepatic ECM.
The regulation of the deposition insoluble fibrin by the coagulation cascade serves as
a canonical example of this point (Beier and Arteel 2012).

3.3 Critical Role of Inflammation in Chronic Liver Disease

The liver is strategically located between the intestinal tract and the rest of the body,
which makes it an important physical and biochemical filter between the portal and
systemic blood supply. However, in the process of serving as this barrier, the liver is
often damaged (Preziosi and Monga 2017; Luedde et al. 2014). To counter this
constant exposure to potential hepatotoxicants, the liver has tremendous capacity to
regenerate (Preziosi and Monga 2017; Michalopoulos and DeFrances 2005). This
ability is unique compared to other solid organs that are far less capable to regenerate
when damaged. Liver regeneration involves a highly orchestrated response to
facilitate the regenerative process. Perturbation of this complex regenerative
response can impair normal tissue recovery after injury or damage (Forbes and
Newsome 2016). In the context of repeated injury, if recovery from each event is
incomplete, damage can accumulate, which leads to the chronicity of liver disease
(Michalopoulos and DeFrances 2005) (Fig. 3.1).

Chronic liver diseases are driven by numerous primary (e.g., diet, alcohol abuse
and viral infection) and risk modifying (e.g., genetic variation and environmental
exposures, etc.) factors (Kirpich et al. 2015; Lieber et al. 1965; Ganesan et al. 2018;
Hajarizadeh et al. 2013; Morrison and Kowdley 2000). Despite divergent underlying
factors, chronic liver diseases all share a well-known pathological spectrum, ranging
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initially from simple steatosis (fat accumulation), to inflammation and necrosis
(steatohepatitis), to fibrosis and cirrhosis (Altamirano and Bataller 2011; Schwartz
and Reinus 2012; Poole et al. 2017; Seth et al. 2011). Although the progression of
liver disease is well-understood, there is no FDA-approved therapy to halt or reverse
this process in humans (Singh et al. 2017). Fibrosis can reverse with successful
removal of the primary cause (Fig. 3.1), with the caveat that it is more difficult to
reverse severe fibrosis/cirrhosis (Iredale et al. 1998). Indeed, cirrhosis is often
considered an end-stage liver disease that will eventually kill the patient, absent a
liver transplant. Even in the case of HCV, where removal of the primary causative
factor (viral infection) is now nearly 100%, reportedly 30-60% of cirrhotic livers do
not recover histologically (Vispo et al. 2009; Grgurevic et al. 2017). Moreover, the
clinically-relevant sequelae of severe/decompensated cirrhosis (e.g., portal hyper-
tension) do not appear to reverse after successful removal of the HCV infection
(Libanio and Marinho 2017). Moreover, maintenance of compensated cirrhosis (i.e.,
“stable cirrhotics”) greatly increases the risk of development of hepatocellular
carcinoma (HCC). These limitations of therapy for chronic liver diseases translate
to over 2 million people dying from complications of cirrhosis and related diseases
(e.g., HCC) each year (Byass 2014).

Given the above concerns with treating fibrosis/cirrhosis, there is a great need to
improve identification of at-risk individuals and prevention of liver diseases pro-
gression during earlier phases, especially inflammation. Upregulation of inflamma-
tion is a key step delineating between benign liver (i.e., steatosis) and progressive
liver diseases. The inflammatory response during chronic liver diseases involves
both the innate and adaptive immune responses (Hensley and Deng 2018; Li et al.
2018). In contrast to acute liver injury, inflammation during chronic liver disease is
relatively low-grade, in which innate immune cells are activated, and the adaptive
immune response is dysregulated (Wree and Marra 2016; Gao et al. 2019; Dong
et al. 2019; Pellicoro et al. 2014; Robinson et al. 2016). When this injury over-
whelms the ability of the liver to repair/recover from said damage, the chronicity of
liver diseases ensues.

3.4 The Role of the Extracellular Matrix in Liver
Diseases-More than Fibrosis and Collagen

The study of the role of the extracellular matrix in liver disease has focused
predominantly on fibrosis. This is not necessarily a surprise, given that chronic
liver disease often does not manifest symptoms until very late in disease progression
(Sweet et al. 2017), and that clinical presentation is often only during sequelae
associated with end-stage liver disease (see above). Moreover, fibrosis is an overt
pathological change that can be observed even macroscopically in the liver. How-
ever, the ECM is a dynamic compartment that changes in response to stress well
before fibrosis. This concept, as well as the nature and impact of these changes, is
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well-understood in some fields (e.g., subcutaneous wound healing), but has been
somewhat lagging in the liver field (Sun et al. 2014).

Work by this group and others have shown that acute liver injury also causes
dramatic changes to the hepatic ECM (Poole et al. 2017) (Fig. 3.1). Indeed, the acute
phase response in the liver involves several ECM proteins, such as fibrin,
osteopontin, and fibronectin (Beier et al. 2009; Gillis and Nagy 1997; Thiele et al.
2005). These acute, subhistologic changes to the ECM/matrisome appear to be
transitional and resolve after resolution of acute injury (Massey et al. 2017; Poole
and Arteel 2016) (Fig. 3.1). In contrast, the ECM associated with chronic injury is
collagenous scarring, which does not resolve as readily. This pattern of ECM
changes during acute (transitional and temporary) and chronic (scarring and more
permanent) injury is in-line qualitatively with subcutaneous wound healing (Sun
et al. 2014) (Fig. 3.1). These differences also parallel the changes observed during
early-stage and progressive liver disease. In recent years, the quality and frequency
of early referrals, as well as improved detection methods, have increased the rate of
detection of early-stage asymptomatic liver diseases (Srivastava et al. 2019). This
improvement facilitates the opportunity for mechanism-based therapies to halt
disease progression during earlier (i.e., prefibrotic) phases of the disease progression
(Arteel and Naba 2020).

Research on the hepatic ECM changes during liver disease has primarily focused
on the regulation and deposition of collagen. Given that the accumulation of
collagen is robust during fibrosis and cirrhosis, and that it is easy to detect histo-
chemically, this focus is not necessarily surprising. However, there is a myriad of
ECM proteins that qualitatively and quantitative change during fibrogenesis
(Gressner et al. 2007; Gressner and Bachem 1990), and their role(s) in disease
progression is not understood well. Moreover, the expanded definition of the ECM
to encompass non-fibrillar proteins found in that microenvironmental niche (i.e.,
matrisome) has not been explored in detail in the context of liver disease (Naba et al.
2016; Arteel and Naba 2020). Taken together, hepatic fibrogenesis is far more
complicated than simply collagen accumulation.

3.5 The Hepatic Matrisome and the Control
of Inflammation

As mentioned above, inflammation is a gateway pathology to progressive liver
disease. Given that inflammatory injury is much more reversible than fibrotic
changes, this pathologic stage is a key target that being explored for new therapies
and diagnoses. In this context, the hepatic matrisome represents a potential thera-
peutic target or detect liver disease.
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3.5.1 Maintenance of Structure

The ECM plays a key direct role in maintaining the overall architecture of the liver,
partially through definition of organ boundaries and zones (Federman et al. 2002)
(Fig. 3.2). Furthermore, the ECM also indirectly characterizes liver morphology
(Julich et al. 2015); during branching morphogenesis of the liver, the matrisome and
the glycocalyx on the cell surface coordinate to regulate growth factor-hepatic cell
interactions, which drives phenotype of the eventual mature organ (Patel et al. 2017;
Rozario and DeSimone 2010). The variation of the ECM within the hepatic lobule is
proposed to help define intralobular zones (McClelland et al. 2008; Lee-Montiel
et al. 2017). The structure of the ECM defines properties that regulate inflammation.
For example, although the basement membrane usually physically impedes inflam-
matory cell transmigration, the changes in this ECM in response to injury orchestrate
homing of inflammatory to the site of injury (Wang et al. 2006).

Invasive cells can also secrete matrix metalloproteinases that degrade ECM, and
thereby mediate their extravasation during liver injury [see below (Hamada et al.
2008)]. This degradation also exposes self-antigens (e.g., basement membrane
collagens) that is a feed-forward signal for inflammatory cell recruitment (Mak
et al. 2016). Moreover, even in situations in which ECM is accumulating, there is
an overall increase ECM turnover (Roderfeld 2018). The enhanced rate of ECM
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Fig. 3.2 Contributions of the hepatic matrisome/ECM to inflammation. The ECM plays a myriad
of roles that directly and indirectly regulate inflammation and injury in the liver. These roles can be

generally categorized as functions related to structure, infiltration, storage, presentation and
signaling
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turnover/degradation can release ECM peptide fragments act as chemotractants to
inflammatory (Song et al. 1993; Santambrogio and Rammensee 2019) (Fig. 3.1).
The structure of the ECM also contributes to the regulation of inflammation
indirectly via altering the integrity and/or elasticity to the liver. Remodeling of the
hepatic ECM in response to injury can alter the overall structure of the ECM, which
can translate to changes in elasticity (Klaas et al. 2016), and inflammation directly
increases ECM stiffness in organs (Wu and Birukov 2019; Karki and Birukova
2018; Mammoto et al. 2013; Hsu et al. 2016). Even acute liver injury alters ECM
structural components and impacts organ elasticity (Klaas et al. 2016). Indeed,
although liver stiffness is most often associated with fibrogenic changes to the
liver, inflammation also impacts assessments of liver stiffness (e.g., transient
elastography); these changes are often viewed as ‘false positive’ signals during
these measurements (Coco et al. 2007; Grgurevic et al. 2017). However, it is likely
that the increase in liver stiffness measurements caused by inflammation is at least in
part, a true signal (Dolin and Arteel 2020). Emerging technologies, such as three-
dimensional magnetic resonance elastography (3D-MRE) and magnetic resonance
imaging proton density fat fraction (MRI-PDFF), are being developed to facilitate
noninvasive differentiation between inflammation and fibrosis (Allen et al. 2018).

3.5.2 Facilitation of Infiltration

Hepatic inflammation after injury (i.e., “sterile” inflammation) involves innate
immune cells (e.g., natural killer cells, natural killer T cells, dendritic cells, neutro-
phils, eosinophils and monocytes) that are recruited to the liver (Oliveira et al. 2018;
Karlmark et al. 2009). These immune cells bind to several ECM proteins through
several types of receptors, including integrins and surface glycoproteins (e.g., CD54,
CD44 and CD26) that are arrayed on the recruited cells (Shimizu and Shaw 1991)
(Fig. 3.2). These interactions have important implications in liver disease and their
modulation can be employed as a therapeutic strategy; for example, inhibition of
T-cell binding to fibronectin is considered to be, at least in part, responsible for the
anti-inflammatory effect of the drug, pentoxifylline (Shirin et al. 1998).
Interactions between leukocytes and the ECM play key roles in the adhesion,
transmigration and phenotype of infiltrating leukocytes (Ley et al. 2007). ECM
receptors on the surface of leukocytes direct their migration through interaction
with the ECM (Shimizu and Shaw 1991). The regulation of expression and location
of these receptors is critical for the rapid phenotypic change between adhesive and
nonadhesive states of immune cells required during inflammation (Shimizu and
Shaw 1991). Selectins (CD62) and other receptors mediate initial leukocyte capture
and rolling in the microvasculature (Lee and Kubes 2008; Ley et al. 2007; Wong
et al. 1997; Fox-Robichaud and Kubes 2000). Leukocyte adhesion is predominantly
dependent on the interaction between p;- and p,-integrins and the ECM (Lee and
Kubes 2008), as well as CD44 and vascular adhesion protein-1 (Lee and Kubes
2008). The interaction between the ECM and cell infiltration is not unidirectional,
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but rather dynamic, in that as leukocytes respond to cues from the ECM, they in turn
release matrix-degrading proteases (Woodfin et al. 2010) that alter the extracellular
composition and allow for easier extravasation.

Chemokines also play an important role in the activation step of leukocyte
adhesion by interacting with the ECM (Ley et al. 2007; Proudfoot et al. 2003).
The release of these chemokines via direct or indirect (e.g., ECM proteolysis) creates
a haptotactic gradient that is critical for immune cell chemotraction (Monneau et al.
2016). Almost all hepatic cells secrete chemokines under basal conditions and in
response to injury (Oliveira et al. 2018). Chemokines are retained in the matrisome
via binding to the glycosaminoglycan (GAG)/heparin sulfate components found in
the space of Disse (Monneau et al. 2016; Heydtmann et al. 2005). ECM proteins
themselves may also possess chemotactic functions. For example, osteopontin is
chemotactic to natural killer T cells, neutrophils, and macrophages (Ramaiah and
Rittling 2008), while fibronectin activates macrophage and directs monocyte and
neutrophil translocation (Godfrey 1990).

3.5.3 Management of Storage, Presentation and Sensing

The ECM also is a reservoir for signaling molecules, such as growth factors,
cytokines and chemokines, that maintain homeostasis and respond to
dyshomeostasis (Fig. 3.2). The ECM stores these proteins, which predominantly
bind to glycosaminoglycans (GAG), which shield them from targeted degradation
(Lipowsky 2018). Injury activates proteases (e.g., MMPs and ADAM) that cleave
these linkages, thereby rapidly releasing these mediators (Karsdal et al. 2015;
Sorokin 2010; Vempati et al. 2014; Lipowsky 2018). The localized release of
these mediators also contributes to the above-mentioned haptotactic gradient that
directs inflammatory cells to the origin of the injury (Monneau et al. 2016; Vempati
et al. 2014; Wasmuth et al. 2010). Indeed, the initial release acute phase proteins in
response to injury/dyshomeostasis is via proteolysis of stored precursors rather than
by de novo synthesis. The interactions between these factors and the ECM also serve
to present or restrict access of ligands to receptors, to modulate the spatial distribu-
tion of growth factors or to create chemotactic gradients (Rozario and DeSimone
2010; Dolin and Arteel 2020).

The ECM behaves dynamically as a signaling moiety that mediates both outside-
in and inside-out signaling between the cell and the environment. As a family, the
integrins play key roles in mediating these interactions. Integrins transfer informa-
tion from the ECM to the cell, allowing rapid and dynamic responses to changes in
the extracellular environment (Humphries et al. 2006). Integrins play a myriad of
roles within the body, including proliferation/angiogenesis, maintenance of differ-
entiation, as well as inflammation and apoptosis (Hodivala-Dilke et al. 2003; Zhou
et al. 2009). Altered/dysregulated integrin signaling is hypothesized to be involved
in all stages of the progression of chronic liver diseases (Patsenker and Stickel 2011).
There are also several non-integrin receptors involved in signaling between the ECM
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and the cell. For example, CD44, a type I transmembrane glycoprotein has been
demonstrated to be involved in liver disease and inflammation via interacting with its
canonical ligand, hyaluronic acid (HA) (Seth et al. 2014; Patouraux et al. 2017).
Interactions between this ECM glycosaminoglycan and CD44 are known to facilitate
migration of leukocytes to inflamed tissue, as well as the progression of inflamma-
tory injury (McDonald and Kubes 2015). Interestingly, CD44 has also been impli-
cated in the resolution of injury by facilitating the migration of hematopoietic stem
cells to the injured liver (Crosby et al. 2009).

The interaction between cells and the surrounding ECM can also impact down-
stream signaling cascades that mediate both injurious and restorative signals (Dolin
and Arteel 2020). This control can be at mediated via altering receptor affinity, or
changes to downstream signaling cascades. Under basal conditions, receptors for
these mediators are generally dispersed on the plasma membrane in lipid/lipopro-
tein-rich regions (i.e., lipid rafts); the relatively close proximity of receptor mono-
mers facilitates ligand binding, receptor dimerization and subsequent downstream
signaling (Simons and Toomre 2000). It has been recently suggested that ECM
proteins contribute to this 2-dimensional organization on the plasma membrane
(Sadeghi and Vink 2015). Signal integration between integrins and extracellular
signaling factors also varies with interactions with the ECM stratum. This influence
of ECM on signaling has best been described for cellular responses to growth
factors, and is categorized as concomitant signaling, collaborative activation, direct
activation, amplification and negative regulation (Ivaska and Heino 2011; Schnittert
et al. 2018). Chronic inflammation impairs growth factor signaling, in part by
altering the make-up of the ECM surrounding the cell (Ozaki et al. 2011). Moreover,
ECM interactions qualitatively and quantitatively influence the response of TLR and
TNFa signaling (Gay and Gangloff 2007).

In addition to directly and indirectly influencing signaling transduction cascades,
integrin/ECM complexes form linkages to B-actin, and other components of the
cytoskeleton (Harburger and Calderwood 2009; Iwamoto and Calderwood 2015).
These complexes facilitate the clustering of integrins into focal adhesions, which
further influences normal responses to development, growth and maintenance sig-
nals (Lorenz et al. 2018; Harburger and Calderwood 2009; Iwamoto and
Calderwood 2015). Loss of control of this process is a key step to permit unregulated
clonal expansion of mutated cells during carcinogenesis [i.e., anchorage independent
growth (Hamidi and Ivaska 2018; Reddig and Juliano 2005)]. This vertical integra-
tion of ECM with the cytoskeleton via integrins is also a key component of
mechanosensing, and likely is responsible, at least in part, for the impact of ECM
rigidity on the inflammatory response [see above; (Lorenz et al. 2018)].

Inflammation and ECM remodeling likely perpetuate a positive “vicious cycle”
(Sorokin 2010). The ECM modulates and regulates immune cell chemotaxis, trans-
migration and differentiation. These activated immune cells alter the ECM compo-
sition by triggering both de novo ECM deposition, as well as proteolytic
degradation. Cleaved ECM produced by this increase in ECM turnover can be
proinflammatory in their own right, and serve as alarmins to distal targets. Although
these processes can be adaptive and beneficial in wound healing and recover,



54 C. E. Dolin et al.

aberrant ECM accumulation/alteration and overproduction of ECM degradation
products can perpetuate a maladaptive inflammatory response, such as is observed
during chronic hepatic inflammation (Schuster et al. 2018). Thus, the ECM not only
plays a key role in mediating inflammation, but also in the resolution of inflamma-
tion [i.e., catabasis (Widgerow 2012; Franitza et al. 2000; Canedo-Dorantes and
Canedo-Ayala 2019)].

3.6 ECM Remodeling and the “Degradome”

The ECM is a dynamic compartment subject to constant protein turnover. This
turnover can undergo more dramatic, rapid changes (i.e. remodeling) during inflam-
mation and disease (Fig. 3.1). One important means of regulation of ECM turnover is
via activation of ECM proteases (e.g. MMPs; see above). All hepatic cells release
different types of proteases and protease inhibitors in response to normal/abnormal
conditions (Benyon and Arthur 2001; Calabro et al. 2014; Zang et al. 2015;
Ramachandran et al. 2012). This altered turnover not only impacts the makeup of
the ECM/matrisome, but also the changes the pattern of degraded ECM peptides
found in biological fluids [e.g., blood (Sand et al. 2016)]. The activities of these
changes have the potential to be experimental imputed through use of algorithms
such as Proteasix (http://www.proteasix.org/) that relies of compiled protease and
peptidase databases (Merops database, https://www.ebi.ac.uk/merops/) for substrate
specificity to impute endo- and exopeptide activity contributing to observed peptide
amino- and carboxy-termini. The potential of these protease degradation products
(i.e. the ‘degradome’) to serve as indices of various diseases is becoming increas-
ingly understood (Fig. 3.1). For example, the rate of ECM turnover of anchored
ECM into soluble ECM have been demonstrated to strongly influence tumor growth
and morphology (Nargis et al. 2018). Understanding the role of the ECM degradome
in disease is facilitated by modern mass spectrometry methods that allow widespread
characterization of the degradome (i.e. peptidomics or ‘degradomics’) (Randles and
Lennon 2015). Even if degradation products do not play a critical role in disease
mechanisms, they may be useful surrogate biomarkers.

3.7 Proteomic Analysis of the Hepatic Matrisome

3.7.1 Overview

Formation and stabilization of the extracellular matrix (ECM) proteome is guided by
protein-protein specific interactions and stabilized by the presence of protein post-
translational modifications including glycosylation or intra- and inter-molecular
protein cross-linking. Collectively these interactions yield a structurally stabilized
three-dimensional (3D) matrix that significantly contributes to both the mechanical
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and biologic properties of tissues. These stabilizing features while biological bene-
ficial contribute to the limitations to the proteomic experiment: low solubility, high
prevalence of structural proteins such as collagens, the apparent spatial stochasticism
of low abundance proteins, post-translational modifications and truncations, and
protein-protein cross-linking. The current advances in the field of extracellular
matrix proteomics has developed from approaches to improve segmenting the core
versus associated matrix proteins as well approaches to enhance protein identifica-
tion and quantification (Naba et al. 2012; Hynes and Naba 2012).

The effective isolation of the ECM from cellular and non-matrisomal extracellu-
lar proteomes is a critical component for comparative proteomic studies. Whole
tissue studies traditionally have relied on biochemical methods such as differential
extraction (Massey et al. 2017) while physical methods such as laser capture
dissection methods allow for spatially resolved isolation of histologically specific
tissue compartments (Hobeika et al. 2017). Differential ECM extraction from whole
tissue has been based on methods adopted from regenerative medicine that required
purified ECM as molecular scaffolds to support artificial organ growth (Gilbert et al.
2006; Sullivan et al. 2012; Willemse et al. 2020; Verstegen et al. 2017). Classically
these methods have heavily utilized neutral ionic (phosphate buffered sodium
dodecyl sulfate) or ammonical non-ionic (ammonium hydroxide buffered triton
X-100) detergent-based decellularization buffers to solubilize and extract all cellular
proteins. Several groups including ours have adapted and improved these chemical
methods based on differential solubilization approaches to sequentially isolate the
structural and associated ECM proteomes (Massey et al. 2017; Didangelos et al.
2011; de Castro Bras et al. 2013). Following sample decellularization, the insoluble
fraction is extracted with salts, acids or chaotropes (guanidine hydrochloride) and
then enzymatically deglycosylated prior to proteomic analyses. These steps yields
fractions used to understand the disease associated pathobiology resolved into
soluble, ECM-associated, and an insoluble ECM proteomic components.

Proteomics has been used to address two fundamental questions in ECM biology:
(a) what proteins are present and (b) what are the relative abundances within the
ECM. A thorough discussion of proteomic methods is beyond the scope of this
review but are available elsewhere (Ankney et al. 2018; Cox and Mann 2011;
Rauniyar and Yates 2014). The majority of all published ECM proteomic studies
defining the matrisome (Naba et al. 2012) have utilized sequential extraction,
proteolytic digestion, and one-dimensional low pH, reversed phase liquid
chromatography-mass spectrometry analysis using a LTQ-Orbitrap hybrid mass
analyzer (Shao et al. 2020). These studies have approached the proteomics with a
label-free approach with a data dependent acquisition method based on rank ordered
lists of peptide signal intensity to select ions for fragmentation. The peptide relative
quantification based on high resolution mass spectrometry data is derived from peak
signal intensity or a peptide extracted area under the curve. The deduced amino acid
sequence of the peptide was based on spectrum matching to theoretical or empiri-
cally established spectra.
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3.7.2 3-Step ECM Extraction (Fig. 3.3)

Sequential extraction of the hepatic ECM was modified from the protocol described
by de Castro Bras et al. for heart tissue (de Castro Bras et al. 2013). The original
description of this technique was first published in detail in a Dissertation (Massey
2014).

Sample Preparation and Wash Snap frozen liver tissue (75-100 mg) was imme-
diately added to ice-cold phosphate-buffered saline (pH 7.4) wash buffer containing
commercially available protease and phosphatase inhibitors (Sigma Aldrich) and
25 mM EDTA to inhibit proteinase and metalloproteinase activity, respectively.
While immersed in wash buffer, liver tissue was diced into small fragments using a
scalpel. The diced sample was washed 5 times to remove contaminants. Between
washes, samples were pelleted by centrifugation (12,000 x g, 5 min), and wash buffer
was decanted.

NaCl Extraction Diced samples were incubated in 10 volumes of 0.5 M NaCl
buffer, containing 10 mM Tris HCI (pH 7.5), proteinase/phosphatase inhibitors, and
25 mM EDTA. The samples were mildly mixed on a plate shaker (800 rpm)
overnight at room temperature. The following day, the remaining tissue pieces

Tissue

NaCl Buffer

Pellet Supernatant —— NaCl Extract

Loosely bound/new
SDS Buffer

matrix
Pellet Supernatant — SDS Extract

Cellular
GnHCI Buffer

components
Pellet Supernatant ——— GnHCI Extract
Tightly bound
l matrices

Final pellet Insoluble
fraction

Fig. 3.3 Sequential extraction of the hepatic ECM. By using increasingly rigorous extraction
solutions, the matrisome can be separated into components based on their solubility, which is
inversely proportional to the level of crosslinking and ‘age’
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were pelleted by centrifugation (10,000 g for 10 min). The pellet was used for the
SDS extraction (see below). The supernatant was collected and desalted using
ZebaSpin columns (Pierce) according to manufacturer’s instructions. To precipitate
proteins, desalted supernatant was incubated with 5x supernatant volume of 100%
acetone overnight at —20 °C, centrifuged (16,000 x g, 45 min), and dried in a rotary
evaporator. Proteins were resuspended in deglycosylation buffer.

SDS Extraction The pellet from the NaCl extraction was subsequently incubated in
10 volumes (based on original weight) of 1% SDS solution, containing proteinase/
phosphatase inhibitors and 25 mM EDTA. The samples were mildly mixed on a
plate shaker (800 rpm) overnight at room temperature. The following day, the
remaining tissue pieces were pelleted by centrifugation at 10,000x g for 10 min.
The pellet was used for the GnHCI extraction (see below). The supernatant was
collected and desalted using ZebaSpin columns (Pierce) according to manufacturer’s
instructions. To precipitate proteins, desalted supernatant was incubated with 5x
supernatant volume of 100% acetone overnight at —20 °C, centrifuged (16,000x g,
45 min), and dried in a rotary evaporator. Proteins were resuspended in
deglycosylation buffer.

Guanidine HCI Extraction The pellet from the SDS extraction was incubated with
5 volumes (based on original weight) of a denaturing guanidine buffer containing
4 M guanidine HCI (pH 5.8), 50 mM sodium acetate, 25 mM EDTA, and proteinase/
phosphatase inhibitors. The samples were vigorously mixed on a plate shaker at
1200 rpm for 48 h at room temperature; vigorous shaking is necessary at this step to
aid in the mechanical disruption of ECM components. The remaining insoluble
components were pelleted by centrifugation at 10,000 x g for 10 min. This insoluble
pellet was retained and solubilized as described below. To precipitate proteins, the
supernatant was mixed with 6x supernatant volume of 100% ice cold ethanol
overnight at 20 °C, centrifuged (16,000x g, 45 min), and washed with 90% ethanol.
Pellets were dried in a rotary evaporator and resuspended in deglycosylation buffer.

Deglycosylation and Solubilization The supernatants from each extraction were
dried in a rotary evaporator and resuspended in deglycosylation buffer containing
150 mM NaCl, 50 mM sodium acetate, 10 mM EDTA, and proteinase/phosphatase
inhibitors. Resuspended samples were desalted using ZebaSpin columns (Pierce)
according to manufacturer’s instructions. The desalted extracts were then mixed
with 5 volumes of 100% acetone and stored at —20 °C overnight to precipitate
proteins. The precipitated proteins were pelleted by centrifugation at 16,000x g for
45 min. Acetone was evaporated by vacuum drying in a rotary evaporator for 1 h.
Dried protein pellets were resuspended in 500 pL deglycosylation buffer containing
150 mM NaCl, 50 mM sodium acetate, pH 6.8, 10 mM EDTA, and proteinase/
phosphatase inhibitors that contained chondroitinase ABC (P. vulgaris; 0.025 U/
sample), endo-beta-galactosidase (B. fragilis; 0.01 U/sample) and heparitinase 11
(F. heparinum; 0.025 U/sample). Samples were incubated overnight at 37 °C. 20 pL
DMSO was added to the insoluble fraction (pellet from guanidine HCI extraction) to
aide in solubilization. Protein concentrations were estimated by absorbance at
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280 nm using bovine serum albumin (BSA) in deglycosylation buffer for reference
standards.

3.7.3 Sample Cleanup and Preparation for Liquid
Chromatography and Mass Spectrometry

Liver ECM extracts in deglycosylation buffer were pooled by experimental group
and subsequently analyzed by the University of Louisville Proteomics Biomarkers
Discovery Core (PBDC). At the PBDC, samples in deglycosylation buffer were
thawed to room temperature and clarified by centrifugation at 5000x g for 5 min at
4 °C. 50 pL (25 pg) of each sample were reduced by adding 5.55 pL of 1 M DTT and
incubating at 60 °C for 30 min. 144.45 pL. of 8 M urea in 0.1 M Tris-HCI, pH 8.5,
was added to each sample. Each reduced and diluted sample was digested with a
modified Filter-Aided Sample Preparation (FASP) method developed by Jacek
R. Wisniewski et al. (2009). Recovered material was dried in a rotary evaporator
and redissolved in 200 pL of 2% (v/v) acetonitrile (ACN)/0.4% formic acid (FA).
The samples were then trap-cleaned with a C18 PROTO™ 300 A Ultra MicroSpin
Column (The Nest Group, Southborough, MA). The sample eluates were stored at
—80 °C for 30 min, dried in a rotary evaporator, and stored at —80 °C. Before liquid
chromatography, dried samples were warmed to room temperature and dissolved in
2% (viv) ACN/0.1% FA to a final concentration of 0.25 pg/pL. 16 pL (4 pg) of
sample was injected into the Orbitrap Elite.

3.7.4 Liquid Chromatography and Tandem Mass
Spectrometry

At the PBDC, liver digest samples were separated on a Dionex Acclaim PepMap
100 75 pm x 2 cm nanoViper (C18, 3 pm, 100 A) trap and Dionex Acclaim PepMap
RSLC 50 pM x 15 cm nanoViper (C18, 2 pm, 100 A) separating columns. An
EASY n-LC (Thermo, Waltham, MA) UHPLC system was used with buffer A = 2%
(v/v) acetonitrile/0.1% (v/v) formic acid and buffer B = 80% (v/v) acetonitrile/0.1%
(v/v) formic acid as mobile phases. Following injection of the sample onto the trap,
separation was accomplished with a 140 min linear gradient from 0% B to 50% B,
followed by a 30 min linear gradient from 50% B to 95% B, and lastly a 10 min wash
with 95% B. A 40 mm stainless steel emitter (Thermo, Waltham, MA; P/N ES542)
was coupled to the outlet of the separating column. A Nanospray Flex source
(Thermo, Waltham, MA) was used to position the end of the emitter near the ion
transfer capillary of the mass spectrometer. The ion transfer capillary temperature of
the mass spectrometer was set at 225 °C, and the spray voltage was set at 1.6 kV.
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An Orbitrap Elite—ETD mass spectrometer (Thermo) was used to collect data
from the LC eluate. An Nth Order Double Play with ETD Decision Tree method was
created in Xcalibur v2.2. Scan event one of the method obtained an FTMS MS1 scan
for the range 300-2000 m/z. Scan event two obtained ITMS MS2 scans on up to ten
peaks that had a minimum signal threshold of 10,000 counts from scan event one. A
decision tree was used to determine whether collision induced dissociation (CID) or
electron transfer dissociation (ETD) activation was used. An ETD scan was triggered
if any of the following held: an ion had charge state 3 and m/z less than 650, an ion
had charge state 4 and m/z less than 900, an ion had charge state 5 and m/z less than
950, or an ion had charge state greater than 5; a CID scan was triggered in all other
cases. The lock mass option was enabled (0% lock mass abundance) using the
371.101236 m/z polysiloxane peak as an internal calibrant.

3.7.5 Informatics

The hepatic ECM mass spectrometry data were analyzed at the University of
Louisville PBDC using Proteome Discoverer v1.4.0.288. The database used in
Mascot v2.4 and SequestHT searches was the 6/2/2015 version of the UniprotKB
Mus musculus reference proteome canonical and isoform sequences. +57 on C
(Carbamidomethylation) was selected as a fixed modification, and +1 on N
(Asn- > Asp) and +16 on MP (Oxidation) were selected as variable modifications.
A maximum of two missed cleavages were allowed. A Target Decoy PSM Validator
node was included in the Proteome Discoverer workflow in order to estimate the
false discovery rate (FDR).

The Proteome Discoverer analysis workflow allows for extraction of MS2 scan
data from the Xcalibur RAW file, separate searches of CID and ETD MS2 scans in
Mascot and Sequest, and collection of the results into a single file (.msf extension).
The resulting.msf files from Proteome Discoverer were loaded into Scaffold Q + S
v4.3.2. Scaffold was used to calculate the FDR using the Peptide and Protein
Prophet algorithms. Protein identification probability of the sequences was set to
>95% on the software. The results were annotated with mouse gene ontology
(GO) information from the Gene Ontology Annotations Database.

3.8 Summary and Conclusions

In conclusion, the ECM should not be viewed as simply a structural element of the
liver, but rather as a microenvironmental niche that dynamically responds to changes
in homeostasis. Although it is well understood in some areas that the ECM changes
during hepatic injury, most work to date in the liver has focused on changes to the
ECM during collagenic fibrosis. Although it is clear that fibrosis is highly relevant to
clinical liver disease, it is best viewed as an end-stage of disease pathogenesis, and is
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arguably the least sensitive to external interventions (Mehal and Schuppan 2015).
Recent improvements in detecting earlier stages of liver diseases enhance the
viability of blunting/reversing disease progression well before fibrosis. Inflammation
is a key stage of progression that could be targeted therapeutically in this context.
Changes in the ECM/matrisome during inflammation are key to regulate and mediate
the inflammatory response. However, there are critical gaps in our knowledge on the
role of changes to the hepatic ECM in chronic inflammation. There is an opportunity
to cross-fertilize our understanding from other fields in which the ECM and inflam-
mation are more well described (Hyldig et al. 2017; Lumelsky et al. 2018; Rousselle
et al. 2018; Dolin and Arteel 2020). These other fields may provide new therapies
that can be repurposed for chronic liver diseases (Pritchard and McCracken 2015).

References

Allen AM, Shah VH, Therneau TM, Venkatesh SK, Mounajjed T, Larson JJ, Mara KC, Schulte PJ,
Kellogg TA, Kendrick ML, McKenzie TJ, Greiner SM, Li J, Glaser KJ, Wells ML, Chen J,
Ehman RL, Yin M (2018) The role of three-dimensional magnetic resonance elastography in the
diagnosis of nonalcoholic steatohepatitis in obese patients undergoing bariatric surgery.
Hepatology. https://doi.org/10.1002/hep.30483

Altamirano J, Bataller R (2011) Alcoholic liver disease: pathogenesis and new targets for therapy.
Nat Rev Gastroenterol Hepatol 8(9):491-501. https://doi.org/10.1038/nrgastro.2011.134

Ankney JA, Muneer A, Chen X (2018) Relative and absolute quantitation in mass spectrometry-
based proteomics. Annu Rev Anal Chem (Palo Alto, Calif) 11(1):49-77. https://doi.org/10.
1146/annurev-anchem-061516-045357

Arteel GE, Naba A (2020) The liver matrisome, looking beyond collagens. JHEP Rep. https://doi.
org/10.1016/j.jhepr.2020.100115

Beier JI, Arteel GE (2012) Alcoholic liver disease and the potential role of plasminogen activator
inhibitor-1 and fibrin metabolism. Exp Biol Med (Maywood) 237(1):1-9. https://doi.org/10.
1258/ebm.2011.011255

Beier JI, Luyendyk JP, Guo L, von Montfort C, Staunton DE, Arteel GE (2009) Fibrin accumula-
tion plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by
ethanol in mice. Hepatology 49(5):1545—1553. https://doi.org/10.1002/hep.22847

Benyon RC, Arthur MJ (2001) Extracellular matrix degradation and the role of hepatic stellate cells.
Semin Liver Dis 21(3):373-384. https://doi.org/10.1055/s-2001-17552

Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and
disease. Nat Rev Mol Cell Biol 15(12):786-801. https://doi.org/10.1038/nrm3904

Brix K, Mclnnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH (2015) Proteolysis
mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges.
Protoplasma 252(3):755-774. https://doi.org/10.1007/s00709-014-0730-0

Byass P (2014) The global burden of liver disease: a challenge for methods and for public health.
BMC Med 12:159. https://doi.org/10.1186/s12916-014-0159-5

Calabro SR, Maczurek AE, Morgan AJ, Tu T, Wen VW, Yee C, Mridha A, Lee M, d’Avigdor W,
Locarnini SA, McCaughan GW, Warner FJ, McLennan SV, Shackel NA (2014) Hepatocyte
produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS One 9
(7):90571. https://doi.org/10.1371/journal.pone.0090571

Canedo-Dorantes L, Canedo-Ayala M (2019) Skin acute wound healing: a comprehensive review.
Int J Inflamm 2019:3706315. https://doi.org/10.1155/2019/3706315


https://doi.org/10.1002/hep.30483
https://doi.org/10.1038/nrgastro.2011.134
https://doi.org/10.1146/annurev-anchem-061516-045357
https://doi.org/10.1146/annurev-anchem-061516-045357
https://doi.org/10.1016/j.jhepr.2020.100115
https://doi.org/10.1016/j.jhepr.2020.100115
https://doi.org/10.1258/ebm.2011.011255
https://doi.org/10.1258/ebm.2011.011255
https://doi.org/10.1002/hep.22847
https://doi.org/10.1055/s-2001-17552
https://doi.org/10.1038/nrm3904
https://doi.org/10.1007/s00709-014-0730-0
https://doi.org/10.1186/s12916-014-0159-5
https://doi.org/10.1371/journal.pone.0090571
https://doi.org/10.1155/2019/3706315

3 Detecting Changes to the Extracellular Matrix in Liver Diseases 61

Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T (2002) Hepatic stellate cell/
myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 36(2):200-209.
https://doi.org/10.1016/s0168-8278(01)00260-4

Coco B, Oliveri F, Maina AM, Ciccorossi P, Sacco R, Colombatto P, Bonino F, Brunetto MR
(2007) Transient elastography: a new surrogate marker of liver fibrosis influenced by major
changes of transaminases. J Viral Hepat 14(5):360-369. https://doi.org/10.1111/j.1365-2893.
2006.00811.x

Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology.
Annu Rev Biochem 80:273-299. https://doi.org/10.1146/annurev-biochem-061308-093216

Crosby HA, Lalor PF, Ross E, Newsome PN, Adams DH (2009) Adhesion of human
haematopoietic (CD34(+)) stem cells to. Human liver compartments is integrin and CD44
dependent and modulated by CXCR3 and CXCR4. J Hepatol 51(4):734-749. https://doi.org/
10.1016/j.jhep.2009.06.021

de Castro Bras LE, Ramirez TA, DeLeon-Pennell KY, Chiao YA, Ma Y, Dai Q, Halade GV,
Hakala K, Weintraub ST, Lindsey ML (2013) Texas 3-step decellularization protocol: looking
at the cardiac extracellular matrix. J Proteome 86:43-52. https://doi.org/10.1016/j.jprot.2013.
05.004

Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, Jahangiri M, Mayr M (2011) Extracellular
matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics
approach. MCP 10(8):M111 008128. https://doi.org/10.1074/mcp.M111.008128

Dolin CE, Arteel GE (2020) The matrisome, inflammation and liver disease. Semin Liver Dis
40:180-188. https://doi.org/10.1055/5-0039-3402516

Dong X, Liu J, Xu Y, Cao H (2019) Role of macrophages in experimental liver injury and repair in
mice. Exp Ther Med 17(5):3835-3847. https://doi.org/10.3892/etm.2019.7450

Duarte S, Baber J, Fujii T, Coito AJ (2015) Matrix metalloproteinases in liver injury, repair and
fibrosis. Matrix Biol 44-46:147-156. https://doi.org/10.1016/j.matbio.2015.01.004

Dubail J, Apte SS (2015) Insights on ADAMTS proteases and ADAMTS-like proteins from
mammalian genetics. Matrix Biol 44-46:24-37. https://doi.org/10.1016/j.matbio.2015.03.001

Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Asp Med
29(5):258-289. https://doi.org/10.1016/j.mam.2008.08.001

Federman S, Miller LM, Sagi I (2002) Following matrix metalloproteinases activity near the cell
boundary by infrared micro-spectroscopy. Matrix Biol 21(7):567-577

Forbes SJ, Newsome PN (2016) Liver regeneration - mechanisms and models to clinical applica-
tion. Nat Rev Gastroenterol Hepatol 13(8):473-485. https://doi.org/10.1038/nrgastro.2016.97

Fox-Robichaud A, Kubes P (2000) Molecular mechanisms of tumor necrosis factor alpha-
stimulated leukocyte recruitment into the murine hepatic circulation. Hepatology 31
(5):1123-1127. https://doi.org/10.1053/he.2000.6961

Franitza S, Hershkoviz R, Kam N, Lichtenstein N, Vaday GG, Alon R, Lider O (2000) TNF-alpha
associated with extracellular matrix fibronectin provides a stop signal for chemotactically
migrating T cells. J Immunol 165(5):2738-2747. https://doi.org/10.4049/jimmunol.165.5.2738

Friedman SL (2010) Extracellular Matrix. In: Dufour JF, Clavien PA (eds) Signaling pathways in
liver diseases. Springer, Berlin, pp 93—104. https://doi.org/10.1007/978-3-642-00150-5_6

Ganesan M, Poluektova LY, Kharbanda KK, Osna NA (2018) Liver as a target of human
immunodeficiency virus infection. World J Gastroenterol 24(42):4728-4737. https://doi.org/
10.3748/wjg.v24.142.4728

Gao B, Ahmad MF, Nagy LE, Tsukamoto H (2019) Inflammatory pathways in alcoholic
steatohepatitis. J Hepatol 70(2):249-259. https://doi.org/10.1016/j.jhep.2018.10.023

Gay NJ, Gangloff M (2007) Structure and function of toll receptors and their ligands. Annu Rev
Biochem 76:141-165. https://doi.org/10.1146/annurev.biochem.76.060305.151318

Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27
(19):3675-3683. https://doi.org/10.1016/j.biomaterials.2006.02.014

Gillis SE, Nagy LE (1997) Deposition of cellular fibronectin increases before stellate cell activation
in rat liver during ethanol feeding. Alcohol Clin Exp Res 21(5):857-861


https://doi.org/10.1016/s0168-8278(01)00260-4
https://doi.org/10.1111/j.1365-2893.2006.00811.x
https://doi.org/10.1111/j.1365-2893.2006.00811.x
https://doi.org/10.1146/annurev-biochem-061308-093216
https://doi.org/10.1016/j.jhep.2009.06.021
https://doi.org/10.1016/j.jhep.2009.06.021
https://doi.org/10.1016/j.jprot.2013.05.004
https://doi.org/10.1016/j.jprot.2013.05.004
https://doi.org/10.1074/mcp.M111.008128
https://doi.org/10.1055/s-0039-3402516
https://doi.org/10.3892/etm.2019.7450
https://doi.org/10.1016/j.matbio.2015.01.004
https://doi.org/10.1016/j.matbio.2015.03.001
https://doi.org/10.1016/j.mam.2008.08.001
https://doi.org/10.1038/nrgastro.2016.97
https://doi.org/10.1053/he.2000.6961
https://doi.org/10.4049/jimmunol.165.5.2738
https://doi.org/10.1007/978-3-642-00150-5_6
https://doi.org/10.3748/wjg.v24.i42.4728
https://doi.org/10.3748/wjg.v24.i42.4728
https://doi.org/10.1016/j.jhep.2018.10.023
https://doi.org/10.1146/annurev.biochem.76.060305.151318
https://doi.org/10.1016/j.biomaterials.2006.02.014

62 C. E. Dolin et al.

Godfrey HP (1990) T cell fibronectin: an unexpected inflammatory lymphokine. Lymphokine Res 9
(3):435-447

Gressner AM, Bachem MG (1990) Cellular sources of noncollagenous matrix proteins: role of
fat-storing cells in fibrogenesis. Semin Liver Dis 10(1):30—46. https://doi.org/10.1055/s-2008-
1040455

Gressner OA, Weiskirchen R, Gressner AM (2007) Evolving concepts of liver fibrogenesis provide
new diagnostic and therapeutic options. Comp Hepatol 6:7. https://doi.org/10.1186/1476-5926-
6-7

Grgurevic I, Bozin T, Madir A (2017) Hepatitis C is now curable, but what happens with cirrhosis
and portal hypertension afterwards? Clin Exp Hepatol 3(4):181-186. https://doi.org/10.5114/
ceh.2017.71491

Griffiths MR, Keir S, Burt AD (1991) Basement membrane proteins in the space of Disse: a
reappraisal. J Clin Pathol 44(8):646-648. https://doi.org/10.1136/jcp.44.8.646

Hajarizadeh B, Grebely J, Dore GJ (2013) Epidemiology and natural history of HCV infection. Nat
Rev Gastroenterol Hepatol 10(9):553-562. https://doi.org/10.1038/nrgastro.2013.107

Hamada T, Fondevila C, Busuttil RW, Coito AJ (2008) Metalloproteinase-9 deficiency protects
against hepatic ischemia/reperfusion injury. Hepatology 47(1):186—198. https://doi.org/10.
1002/hep.21922

Hamidi H, Ivaska J (2018) Every step of the way: integrins in cancer progression and metastasis.
Nat Rev Cancer 18(9):533-548. https://doi.org/10.1038/s41568-018-0038-z

Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(Pt 2):159-163.
https://doi.org/10.1242/jcs.018093

Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM (2016) Vascular fibrosis in aging and
hypertension: molecular mechanisms and clinical implications. Can J Cardiol 32(5):659-668.
https://doi.org/10.1016/j.cjca.2016.02.070

Hensley MK, Deng JC (2018) Acute on chronic liver failure and immune dysfunction: a mimic of
sepsis. Semin Respir Crit Care Med 39(5):588-597. https://doi.org/10.1055/s-0038-1672201

Heydtmann M, Lalor PF, Eksteen JA, Hubscher SG, Briskin M, Adams DH (2005) CXC chemo-
kine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to
cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 174
(2):1055-1062. https://doi.org/10.4049/jimmunol.174.2.1055

Hobeika L, Barati MT, Caster DJ, McLeish KR, Merchant ML (2017) Characterization of glomer-
ular extracellular matrix by proteomic analysis of laser-captured microdissected glomeruli.
Kidney Int 91(2):501-511. https://doi.org/10.1016/j.kint.2016.09.044

Hodivala-Dilke KM, Reynolds AR, Reynolds LE (2003) Integrins in angiogenesis: multitalented
molecules in a balancing act. Cell Tissue Res 314(1):131-144. https://doi.org/10.1007/s00441-
003-0774-5

Hsu JJ, Lim J, Tintut Y, Demer LL (2016) Cell-matrix mechanics and pattern formation in
inflammatory cardiovascular calcification. Heart 102(21):1710-1715. https://doi.org/10.1136/
heartjnl-2016-309667

Huijberts MS, Schaper NC, Schalkwijk CG (2008) Advanced glycation end products and diabetic
foot disease. Diabetes Metab Res Rev 24(Suppl 1):S19-S24. https://doi.org/10.1002/dmrr.861

Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119
(19):3901-3903. https://doi.org/10.1242/jcs.03098

Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T (2017) Implications of extracellular matrix
production by adipose tissue-derived stem cells for development of wound healing therapies.
Int J Mol Sci 18(6). https://doi.org/10.3390/ijms 18061167

Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216-1219

Hynes RO, Naba A (2012) Overview of the matrisome—an inventory of extracellular matrix
constituents and functions. Cold Spring Harb Perspect Biol 4(1):a004903. https://doi.org/10.
1101/cshperspect.a004903

Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ
(1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis


https://doi.org/10.1055/s-2008-1040455
https://doi.org/10.1055/s-2008-1040455
https://doi.org/10.1186/1476-5926-6-7
https://doi.org/10.1186/1476-5926-6-7
https://doi.org/10.5114/ceh.2017.71491
https://doi.org/10.5114/ceh.2017.71491
https://doi.org/10.1136/jcp.44.8.646
https://doi.org/10.1038/nrgastro.2013.107
https://doi.org/10.1002/hep.21922
https://doi.org/10.1002/hep.21922
https://doi.org/10.1038/s41568-018-0038-z
https://doi.org/10.1242/jcs.018093
https://doi.org/10.1016/j.cjca.2016.02.070
https://doi.org/10.1055/s-0038-1672201
https://doi.org/10.4049/jimmunol.174.2.1055
https://doi.org/10.1016/j.kint.2016.09.044
https://doi.org/10.1007/s00441-003-0774-5
https://doi.org/10.1007/s00441-003-0774-5
https://doi.org/10.1136/heartjnl-2016-309667
https://doi.org/10.1136/heartjnl-2016-309667
https://doi.org/10.1002/dmrr.861
https://doi.org/10.1242/jcs.03098
https://doi.org/10.3390/ijms18061167
https://doi.org/10.1101/cshperspect.a004903
https://doi.org/10.1101/cshperspect.a004903

3 Detecting Changes to the Extracellular Matrix in Liver Diseases 63

and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102(3):538-549.
https://doi.org/10.1172/jcil018

Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD, Sands E,
Suliman I, Trim N, Knorr A, Arthur MJ, Benyon RC, Iredale JP (2004) Spontaneous recovery
from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-
linking. Gastroenterology 126(7):1795-1808. https://doi.org/10.1053/j.gastro.2004.03.009

Ivaska J, Heino J (2011) Cooperation between integrins and growth factor receptors in signaling and
endocytosis. Annu Rev Cell Dev Biol 27:291-320. https://doi.org/10.1146/annurev-cellbio-
092910-154017

Iwamoto DV, Calderwood DA (2015) Regulation of integrin-mediated adhesions. Curr Opin Cell
Biol 36:41-47. https://doi.org/10.1016/j.ceb.2015.06.009

Julich D, Cobb G, Melo AM, McMillen P, Lawton AK, Mochrie SG, Rhoades E, Holley SA (2015)
Cross-scale integrin regulation organizes ECM and tissue topology. Dev Cell 34(1):33-44.
https://doi.org/10.1016/j.devcel.2015.05.005

Kagan HM (2000) Intra- and extracellular enzymes of collagen biosynthesis as biological and
chemical targets in the control of fibrosis. Acta Trop 77(1):147-152

Karki P, Birukova AA (2018) Substrate stiffness-dependent exacerbation of endothelial permeabil-
ity and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover
conference series). Pulm Circ 8(2). https://doi.org/10.1177/2045894018773044

Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M,
Luedde T, Trautwein C, Tacke F (2009) Hepatic recruitment of the inflammatory Grl+
monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50(1):261-274.
https://doi.org/10.1002/hep.22950

Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JM, Hansen NU,
Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D (2015)
Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J
Physiol Gastrointest Liver Physiol 308(10):G807-G830. https://doi.org/10.1152/ajpgi.00447.
2014

Kirpich IA, Marsano LS, McClain CJ (2015) Gut-liver axis, nutrition, and non-alcoholic fatty liver
disease. Clin Biochem 48(13-14):923-930. https://doi.org/10.1016/j.clinbiochem.2015.06.023

Kisseleva T, Brenner DA (2006) Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol
Hepatol 21(Suppl 3):S84-S87. https://doi.org/10.1111/j.1440-1746.2006.04584.x

Klaas M, Kangur T, Viil J, Maemets-Allas K, Minajeva A, Vadi K, Antsov M, Lapidus N,
Jarvekulg M, Jaks V (2016) The alterations in the extracellular matrix composition guide the
repair of damaged liver tissue. Sci Rep 6:27398. https://doi.org/10.1038/srep27398

Lee WY, Kubes P (2008) Leukocyte adhesion in the liver: distinct adhesion paradigm from other
organs. J Hepatol 48(3):504-512. https://doi.org/10.1016/j.jhep.2007.12.005

Lee-Montiel FT, George SM, Gough AH, Sharma AD, Wu J, DeBiasio R, Vernetti LA, Taylor DL
(2017) Control of oxygen tension recapitulates zone-specific functions in human liver
microphysiology systems. Exp Biol Med (Maywood) 242(16):1617-1632. https://doi.org/10.
1177/1535370217703978

Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the
leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678-689. https://doi.org/10.1038/
nri2156

Li B, Selmi C, Tang R, Gershwin ME, Ma X (2018) The microbiome and autoimmunity: a
paradigm from the gut-liver axis. Cell Mol Immunol 15(6):595-609. https://doi.org/10.1038/
cmi.2018.7

Libanio D, Marinho RT (2017) Impact of hepatitis C oral therapy in portal hypertension. World J
Gastroenterol 23(26):4669-4674. https://doi.org/10.3748/wjg.v23.i126.4669

Lieber CS, Jones DP, Decarli LM (1965) Effects of prolonged ethanol intake: production of fatty
liver despite adequate diets. J Clin Invest 44:1009-1021. https://doi.org/10.1172/JC1105200

Lipowsky HH (2018) Role of the glycocalyx as a barrier to leukocyte-endothelium adhesion. Adv
Exp Med Biol 1097:51-68. https://doi.org/10.1007/978-3-319-96445-4_3


https://doi.org/10.1172/jci1018
https://doi.org/10.1053/j.gastro.2004.03.009
https://doi.org/10.1146/annurev-cellbio-092910-154017
https://doi.org/10.1146/annurev-cellbio-092910-154017
https://doi.org/10.1016/j.ceb.2015.06.009
https://doi.org/10.1016/j.devcel.2015.05.005
https://doi.org/10.1177/2045894018773044
https://doi.org/10.1002/hep.22950
https://doi.org/10.1152/ajpgi.00447.2014
https://doi.org/10.1152/ajpgi.00447.2014
https://doi.org/10.1016/j.clinbiochem.2015.06.023
https://doi.org/10.1111/j.1440-1746.2006.04584.x
https://doi.org/10.1038/srep27398
https://doi.org/10.1016/j.jhep.2007.12.005
https://doi.org/10.1177/1535370217703978
https://doi.org/10.1177/1535370217703978
https://doi.org/10.1038/nri2156
https://doi.org/10.1038/nri2156
https://doi.org/10.1038/cmi.2018.7
https://doi.org/10.1038/cmi.2018.7
https://doi.org/10.3748/wjg.v23.i26.4669
https://doi.org/10.1172/JCI105200
https://doi.org/10.1007/978-3-319-96445-4_3

64 C. E. Dolin et al.

Liu SB, Ikenaga N, Peng ZW, Sverdlov DY, Greenstein A, Smith V, Schuppan D, Popov Y (2016)
Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and
limits spontaneous fibrosis reversal in mice. FASEB J 30(4):1599-1609. https://doi.org/10.
1096/£j.14-268425

Lorenz L, Axnick J, Buschmann T, Henning C, Urner S, Fang S, Nurmi H, Eichhorst N,
Holtmeier R, Bodis K, Hwang JH, Mussig K, Eberhard D, Stypmann J, Kuss O, Roden M,
Alitalo K, Haussinger D, Lammert E (2018) Mechanosensing by betal integrin induces
angiocrine signals for liver growth and survival. Nature 562(7725):128—132. https://doi.org/
10.1038/s41586-018-0522-3

Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease:
mechanisms and clinical relevance. Gastroenterology 147(4):765-783. https://doi.org/10.1053/
j-gastro.2014.07.018

Lumelsky N, O’Hayre M, Chander P, Shum L, Somerman MJ (2018) Autotherapies: enhancing
endogenous healing and regeneration. Trends Mol Med 24(11):919-930. https://doi.org/10.
1016/j.molmed.2018.08.004

Mak KM, Png CY, Lee DJ (2016) Type V collagen in health, disease, and fibrosis. Anat Rec
(Hoboken) 299(5):613-629. https://doi.org/10.1002/ar.23330

Mammoto A, Mammoto T, Kanapathipillai M, Wing Yung C, Jiang E, Jiang A, Lofgren K, Gee EP,
Ingber DE (2013) Control of lung vascular permeability and endotoxin-induced pulmonary
oedema by changes in extracellular matrix mechanics. Nat Commun 4:1759. https://doi.org/10.
1038/ncomms2774

Martinez-Hernandez A, Amenta PS (1993) The hepatic extracellular matrix. I. Components and
distribution in normal liver. Virchows Arch A Pathol Anat Histopathol 423(1):1-11

Martinez-Hernandez A, Amenta PS (1995) The extracellular matrix in hepatic regeneration.
FASEB J 9(14):1401-1410. https://doi.org/10.1096/fasebj.9.14.7589981

Massey VL (2014) Extracellular matrix proteins and the liver-lung axis in disease. Electronic theses
and dissertations. Paper 1752. https://doi.org/10.18297/etd/1752

Massey VL, Dolin CE, Poole LG, Hudson SV, Siow DL, Brock GN, Merchant ML, Wilkey DW,
Arteel GE (2017) The hepatic “matrisome” responds dynamically to injury: characterization of
transitional changes to the extracellular matrix in mice. Hepatology 65(3):969-982. https://doi.
org/10.1002/hep.28918

McClelland R, Wauthier E, Uronis J, Reid L (2008) Gradients in the liver’s extracellular matrix
chemistry from periportal to pericentral zones: influence on human hepatic progenitors. Tissue
Eng A 14(1):59-70. https://doi.org/10.1089/ten.a.2007.0058

McDonald B, Kubes P (2015) Interactions between CD44 and Hyaluronan in leukocyte trafficking.
Front Immunol 6:68

Mehal WZ, Schuppan D (2015) Antifibrotic therapies in the liver. Semin Liver Dis 35(2):184—198.
https://doi.org/10.1055/5-0035-1550055

Michalopoulos GK, DeFrances M (2005) Liver regeneration. Adv Biochem Eng Biotechnol
93:101-134

Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H (2016) The sweet spot: how GAGs help
chemokines guide migrating cells. J Leukoc Biol 99(6):935-953. https://doi.org/10.1189/jlb.
3MR0915-440R

Morrison ED, Kowdley KV (2000) Genetic liver disease in adults. Early recognition of the three
most common causes. Postgrad Med 107(2):147-152. https://doi.org/10.3810/pgm.2000.02.
872

Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO (2012) The matrisome: in silico
definition and in vivo characterization by proteomics of normal and tumor extracellular matri-
ces. Mol Cell Proteomics 11(4). https://doi.org/10.1074/mcp.M111.014647

Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix:
tools and insights for the “omics” era. Matrix Biol 49:10-24. https://doi.org/10.1016/j.matbio.
2015.06.003


https://doi.org/10.1096/fj.14-268425
https://doi.org/10.1096/fj.14-268425
https://doi.org/10.1038/s41586-018-0522-3
https://doi.org/10.1038/s41586-018-0522-3
https://doi.org/10.1053/j.gastro.2014.07.018
https://doi.org/10.1053/j.gastro.2014.07.018
https://doi.org/10.1016/j.molmed.2018.08.004
https://doi.org/10.1016/j.molmed.2018.08.004
https://doi.org/10.1002/ar.23330
https://doi.org/10.1038/ncomms2774
https://doi.org/10.1038/ncomms2774
https://doi.org/10.1096/fasebj.9.14.7589981
https://doi.org/10.18297/etd/1752
https://doi.org/10.1002/hep.28918
https://doi.org/10.1002/hep.28918
https://doi.org/10.1089/ten.a.2007.0058
https://doi.org/10.1055/s-0035-1550055
https://doi.org/10.1189/jlb.3MR0915-440R
https://doi.org/10.1189/jlb.3MR0915-440R
https://doi.org/10.3810/pgm.2000.02.872
https://doi.org/10.3810/pgm.2000.02.872
https://doi.org/10.1074/mcp.M111.014647
https://doi.org/10.1016/j.matbio.2015.06.003
https://doi.org/10.1016/j.matbio.2015.06.003

3 Detecting Changes to the Extracellular Matrix in Liver Diseases 65

Nargis NN, Aldredge RC, Guy RD (2018) The influence of soluble fragments of extracellular
matrix (ECM) on tumor growth and morphology. Math Biosci 296:1-16. https://doi.org/10.
1016/j.mbs.2017.11.014

Oliveira THC, Marques PE, Proost P, Teixeira MMM (2018) Neutrophils: a cornerstone of liver
ischemia and reperfusion injury. Lab Investig 98(1):51-62. https://doi.org/10.1038/labinvest.
2017.90

Omenetti A, Porrello A, Jung Y, Yang L, Popov Y, Choi SS, Witek RP, Alpini G, Venter J,
Vandongen HM, Syn WK, Baroni GS, Benedetti A, Schuppan D, Diehl AM (2008) Hedgehog
signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and
humans. J Clin Invest 118(10):3331-3342. https://doi.org/10.1172/JCI35875

Ozaki I, Hamajima H, Matsuhashi S, Mizuta T (2011) Regulation of TGF-betal-induced
pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins
in the liver. Front Physiol 2:78. https://doi.org/10.3389/fphys.2011.00078

Patel VN, Pineda DL, Hoffman MP (2017) The function of heparan sulfate during branching
morphogenesis. Matrix Biol 57-58:311-323. https://doi.org/10.1016/j.matbio.2016.09.004

Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck AS,
Bertola A, Saint-Paul MC, Iannelli A, Gugenheim J, Anty R, Tran A, Bailly-Maitre B, Gual P
(2017) CDA44 is a key player in non-alcoholic steatohepatitis. J Hepatol 67(2):328-338. https://
doi.org/10.1016/j.jhep.2017.03.003

Patsenker E, Stickel F (2011) Role of integrins in fibrosing liver diseases. Am J Physiol Gastrointest
Liver Physiol 301(3):G425-G434. https://doi.org/10.1152/ajpgi.00050.2011

Pellicoro A, Aucott RL, Ramachandran P, Robson AJ, Fallowfield JA, Snowdon VK, Hartland SN,
Vernon M, Duffield JS, Benyon RC, Forbes SJ, Iredale JP (2012) Elastin accumulation is
regulated at the level of degradation by macrophage metalloelastase (MMP-12) during exper-
imental liver fibrosis. Hepatology 55(6):1965—1975. https://doi.org/10.1002/hep.25567

Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune
regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181-194. https://doi.org/
10.1038/nri3623

Phillip JM, Aifuwa I, Walston J, Wirtz D (2015) The mechanobiology of aging. Annu Rev Biomed
Eng 17:113-141. https://doi.org/10.1146/annurev-bioeng-071114-040829

Poole LG, Arteel GE (2016) Transitional remodeling of the hepatic extracellular matrix in alcohol-
induced liver injury. Biomed Res Int 2016:3162670. https://doi.org/10.1155/2016/3162670

Poole LG, Dolin CE, Arteel GE (2017) Organ-organ crosstalk and alcoholic liver disease. Biomol
Ther 7(3). https://doi.org/10.3390/biom7030062

Poynard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z, Ling MH, Albrecht J
(2002) Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with
chronic hepatitis C. Gastroenterology 122(5):1303-1313. https://doi.org/10.1053/gast.2002.
33023

Preziosi ME, Monga SP (2017) Update on the mechanisms of liver regeneration. Semin Liver Dis
37(2):141-151. https://doi.org/10.1055/s-0037-1601351

Pritchard MT, McCracken JM (2015) Identifying novel targets for treatment of liver fibrosis: what
can we learn from injured tissues which heal without a scar? Curr Drug Targets 16
(12):1332-1346

Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, Borlat F, Wells TN,
Kosco-Vilbois MH (2003) Glycosaminoglycan binding and oligomerization are essential for the
in vivo activity of certain chemokines. Proc Natl Acad Sci USA 100(4):1885-1890. https://doi.
org/10.1073/pnas.0334864100

Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, Hartland SN, Snowdon
VK, Cappon A, Gordon-Walker TT, Williams MJ, Dunbar DR, Manning JR, van Rooijen N,
Fallowfield JA, Forbes SJ, Iredale JP (2012) Differential Ly-6C expression identifies the
recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis.
Proc Natl Acad Sci USA 109(46):E3186-E3195. https://doi.org/10.1073/pnas.1119964109


https://doi.org/10.1016/j.mbs.2017.11.014
https://doi.org/10.1016/j.mbs.2017.11.014
https://doi.org/10.1038/labinvest.2017.90
https://doi.org/10.1038/labinvest.2017.90
https://doi.org/10.1172/JCI35875
https://doi.org/10.3389/fphys.2011.00078
https://doi.org/10.1016/j.matbio.2016.09.004
https://doi.org/10.1016/j.jhep.2017.03.003
https://doi.org/10.1016/j.jhep.2017.03.003
https://doi.org/10.1152/ajpgi.00050.2011
https://doi.org/10.1002/hep.25567
https://doi.org/10.1038/nri3623
https://doi.org/10.1038/nri3623
https://doi.org/10.1146/annurev-bioeng-071114-040829
https://doi.org/10.1155/2016/3162670
https://doi.org/10.3390/biom7030062
https://doi.org/10.1053/gast.2002.33023
https://doi.org/10.1053/gast.2002.33023
https://doi.org/10.1055/s-0037-1601351
https://doi.org/10.1073/pnas.0334864100
https://doi.org/10.1073/pnas.0334864100
https://doi.org/10.1073/pnas.1119964109

66 C. E. Dolin et al.

Ramaiah SK, Rittling S (2008) Pathophysiological role of osteopontin in hepatic inflammation,
toxicity, and cancer. Toxicol Sci 103(1):4—13. https://doi.org/10.1093/toxsci/kfm246

Randles M, Lennon R (2015) Applying proteomics to investigate extracellular matrix in health and
disease. Curr Top Membr 76:171-196. https://doi.org/10.1016/bs.ctm.2015.06.001

Rauniyar N, Yates JR (2014) Isobaric labeling-based relative quantification in shotgun proteomics.
J Proteome Res 13(12):5293-53009. https://doi.org/10.1021/pr500880b

Reddig PJ, Juliano RL (2005) Clinging to life: cell to matrix adhesion and cell survival. Cancer
Metastasis Rev 24(3):425-439. https://doi.org/10.1007/s10555-005-5134-3

Robertson H, Kirby JA, Yip WW, Jones DE, Burt AD (2007) Biliary epithelial-mesenchymal
transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 45
(4):977-981. https://doi.org/10.1002/hep.21624

Robinson MW, Harmon C, O'Farrelly C (2016) Liver immunology and its role in inflammation and
homeostasis. Cell Mol Immunol 13(3):267-276. https://doi.org/10.1038/cmi.2016.3

Roderfeld M (2018) Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol
68-69:452-462. https://doi.org/10.1016/j.matbio.2017.11.011

Rousselle P, Braye F, Dayan G (2018) Re-epithelialization of adult skin wounds: cellular mecha-
nisms and therapeutic strategies. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2018.06.
019

Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a
dynamic view. Dev Biol 341(1):126-140. https://doi.org/10.1016/j.ydbio.2009.10.026

Sacca SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE, Izzotti A (2016) From DNA
damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res
Rev 29:26-41. https://doi.org/10.1016/j.arr.2016.05.012

Sadeghi S, Vink RL (2015) Membrane sorting via the extracellular matrix. Biochim Biophys Acta
1848(2):527-531. https://doi.org/10.1016/j.bbamem.2014.10.035

Sand JM, Leeming DJ, Byrjalsen I, Bihlet AR, Lange P, Tal-Singer R, Miller BE, Karsdal MA,
Vestbo J (2016) High levels of biomarkers of collagen remodeling are associated with increased
mortality in COPD - results from the ECLIPSE study. Respir Res 17(1):125. https://doi.org/10.
1186/5s12931-016-0440-6

Santambrogio L, Rammensee HG (2019) Contribution of the plasma and lymph degradome and
peptidome to the MHC ligandome. Immunogenetics 71(3):203-216. https://doi.org/10.1007/
s00251-018-1093-z

Schnittert J, Bansal R, Storm G, Prakash J (2018) Integrins in wound healing, fibrosis and tumor
stroma: high potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev
129:37-53. https://doi.org/10.1016/j.addr.2018.01.020

Schuppan D, Ashfag-Khan M, Yang AT, Kim YO (2018) Liver fibrosis: direct antifibrotic agents
and targeted therapies. Matrix Biol 68-69:435-451. https://doi.org/10.1016/j.matbio.2018.04.
006

Schuster S, Cabrera D, Arrese M, Feldstein AE (2018) Triggering and resolution of inflammation in
NASH. Nat Rev Gastroenterol Hepatol 15(6):349-364. https://doi.org/10.1038/s41575-018-
0009-6

Schwartz JM, Reinus JF (2012) Prevalence and natural history of alcoholic liver disease. Clin Liver
Dis 16(4):659-666. https://doi.org/10.1016/j.c1d.2012.08.001

Sessions AO, Engler AJ (2016) Mechanical regulation of cardiac aging in model systems. Circ Res
118(10):1553-1562. https://doi.org/10.1161/CIRCRESAHA.116.307472

Seth D, Haber PS, Syn WK, Diehl AM, Day CP (2011) Pathogenesis of alcohol-induced liver
disease: classical concepts and recent advances. J Gastroenterol Hepatol 26(7):1089-1105.
https://doi.org/10.1111/j.1440-1746.2011.06756.x

Seth D, Duly A, Kuo PC, McCaughan GW, Haber PS (2014) Osteopontin is an important mediator
of alcoholic liver disease via hepatic stellate cell activation. World J Gastroenterol 20
(36):13088-13104. https://doi.org/10.3748/wjg.v20.i36.13088

Shao X, Taha IN, Clauser KR, Gao YT, Naba A (2020) MatrisomeDB: the ECM-protein knowl-
edge database. Nucleic Acids Res 48(D1):D1136-D1144. https://doi.org/10.1093/nar/gkz849


https://doi.org/10.1093/toxsci/kfm246
https://doi.org/10.1016/bs.ctm.2015.06.001
https://doi.org/10.1021/pr500880b
https://doi.org/10.1007/s10555-005-5134-3
https://doi.org/10.1002/hep.21624
https://doi.org/10.1038/cmi.2016.3
https://doi.org/10.1016/j.matbio.2017.11.011
https://doi.org/10.1016/j.addr.2018.06.019
https://doi.org/10.1016/j.addr.2018.06.019
https://doi.org/10.1016/j.ydbio.2009.10.026
https://doi.org/10.1016/j.arr.2016.05.012
https://doi.org/10.1016/j.bbamem.2014.10.035
https://doi.org/10.1186/s12931-016-0440-6
https://doi.org/10.1186/s12931-016-0440-6
https://doi.org/10.1007/s00251-018-1093-z
https://doi.org/10.1007/s00251-018-1093-z
https://doi.org/10.1016/j.addr.2018.01.020
https://doi.org/10.1016/j.matbio.2018.04.006
https://doi.org/10.1016/j.matbio.2018.04.006
https://doi.org/10.1038/s41575-018-0009-6
https://doi.org/10.1038/s41575-018-0009-6
https://doi.org/10.1016/j.cld.2012.08.001
https://doi.org/10.1161/CIRCRESAHA.116.307472
https://doi.org/10.1111/j.1440-1746.2011.06756.x
https://doi.org/10.3748/wjg.v20.i36.13088
https://doi.org/10.1093/nar/gkz849

3 Detecting Changes to the Extracellular Matrix in Liver Diseases 67

Shimizu Y, Shaw S (1991) Lymphocyte interactions with extracellular matrix. FASEB J 5
(9):2292-2299. https://doi.org/10.1096/faseb;j.5.9.1860621

Shirin H, Bruck R, Aeed H, Frenkel D, Kenet G, Zaidel L, Avni Y, Halpern Z, Hershkoviz R (1998)
Pentoxifylline prevents concanavalin A-induced hepatitis by reducing tumor necrosis factor
alpha levels and inhibiting adhesion of T lymphocytes to extracellular matrix. J Hepatol 29
(1):60-67. https://doi.org/10.1016/s0168-8278(98)80179-7

Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31-39.
https://doi.org/10.1038/35036052

Singh S, Osna NA, Kharbanda KK (2017) Treatment options for alcoholic and non-alcoholic fatty
liver disease: a review. World J Gastroenterol 23(36):6549-6570. https://doi.org/10.3748/wjg.
v23.i36.6549

Song KS, Kim HS, Park KE, Kwon OH (1993) The fibrinogen degradation products (FgDP) levels
in liver disease. Yonsei Med J 34(3):234-238. https://doi.org/10.3349/ym;j.1993.34.3.234

Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10
(10):712-723. https://doi.org/10.1038/nri2852

Srivastava A, Jong S, Gola A, Gailer R, Morgan S, Sennett K, Tanwar S, Pizzo E, O'Beirne J,
Tsochatzis E, Parkes J, Rosenberg W (2019) Cost-comparison analysis of FIB-4, ELF and
fibroscan in community pathways for non-alcoholic fatty liver disease. BMC Gastroenterol 19
(1):122. https://doi.org/10.1186/512876-019-1039-4

Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ
(2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-
throughput system. Biomaterials 33(31):7756-7764. https://doi.org/10.1016/j.biomaterials.
2012.07.023

Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous
wounds. Science 346(6212):941-945. https://doi.org/10.1126/science.1253836

Sweet PH, Khoo T, Nguyen S (2017) Nonalcoholic fatty liver disease. Prim Care 44(4):599-607.
https://doi.org/10.1016/j.pop.2017.07.003

Tatsukawa H, Furutani Y, Hitomi K, Kojima S (2016) Transglutaminase 2 has opposing roles in the
regulation of cellular functions as well as cell growth and death. Cell Death Dis 7(6):e2244.
https://doi.org/10.1038/cddis.2016.150

Thiele GM, Duryee MJ, Freeman TL, Sorrell MF, Willis MS, Tuma DJ, Klassen LW (2005) Rat
sinusoidal liver endothelial cells (SECs) produce pro-fibrotic factors in response to adducts
formed from the metabolites of ethanol. Biochem Pharmacol 70(11):1593-1600. https://doi.org/
10.1016/j.bcp.2005.08.014

Vempati P, Popel AS, Mac Gabhann F (2014) Extracellular regulation of VEGF: isoforms,
proteolysis, and vascular patterning. Cytokine Growth Factor Rev 25(1):1-19. https://doi.org/
10.1016/j.cytogfr.2013.11.002

Verstegen MMA, Willemse J, van den Hoek S, Kremers GJ, Luider TM, van Huizen NA,
Willemssen F, Metselaar HJ, JNM 1J, van der Laan LJW, de Jonge J (2017) Decellularization
of whole human liver grafts using controlled perfusion for transplantable organ bioscaffolds.
Stem Cells Dev 26(18):1304—-1315. https://doi.org/10.1089/scd.2017.0095

Vispo E, Barreiro P, Del Valle J, Maida I, de Ledinghen V, Quereda C, Moreno A, Macias J,
Castera L, Pineda JA, Soriano V (2009) Overestimation of liver fibrosis staging using transient
elastography in patients with chronic hepatitis C and significant liver inflammation. Antivir Ther
14(2):187-193

Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, Sorokin L,
Nourshargh S (2006) Venular basement membranes contain specific matrix protein low expres-
sion regions that act as exit points for emigrating neutrophils. J Exp Med 203(6):1519-1532.
https://doi.org/10.1084/jem.20051210

Wasmuth HE, Tacke F, Trautwein C (2010) Chemokines in liver inflammation and fibrosis. Semin
Liver Dis 30(3):215-225. https://doi.org/10.1055/s-0030-1255351

Widgerow AD (2012) Cellular resolution of inflammation—catabasis. Wound Repair Regen 20
(1):2-7. https://doi.org/10.1111/j.1524-475X.2011.00754.x


https://doi.org/10.1096/fasebj.5.9.1860621
https://doi.org/10.1016/s0168-8278(98)80179-7
https://doi.org/10.1038/35036052
https://doi.org/10.3748/wjg.v23.i36.6549
https://doi.org/10.3748/wjg.v23.i36.6549
https://doi.org/10.3349/ymj.1993.34.3.234
https://doi.org/10.1038/nri2852
https://doi.org/10.1186/s12876-019-1039-4
https://doi.org/10.1016/j.biomaterials.2012.07.023
https://doi.org/10.1016/j.biomaterials.2012.07.023
https://doi.org/10.1126/science.1253836
https://doi.org/10.1016/j.pop.2017.07.003
https://doi.org/10.1038/cddis.2016.150
https://doi.org/10.1016/j.bcp.2005.08.014
https://doi.org/10.1016/j.bcp.2005.08.014
https://doi.org/10.1016/j.cytogfr.2013.11.002
https://doi.org/10.1016/j.cytogfr.2013.11.002
https://doi.org/10.1089/scd.2017.0095
https://doi.org/10.1084/jem.20051210
https://doi.org/10.1055/s-0030-1255351
https://doi.org/10.1111/j.1524-475X.2011.00754.x

68 C. E. Dolin et al.

Willemse J, Verstegen MMA, Vermeulen A, Schurink 1J, Roest HP, van der Laan LJIW, de Jonge J
(2020) Fast, robust and effective decellularization of whole human livers using mild detergents
and pressure controlled perfusion. Mater Sci Eng C Mater Biol Appl 108:110200. https://doi.
org/10.1016/j.msec.2019.110200

Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fraction-
ation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8
(12):5674-5678. https://doi.org/10.1021/pr900748n

Wong J, Johnston B, Lee SS, Bullard DC, Smith CW, Beaudet AL, Kubes P (1997) A minimal role
for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin
Invest 99(11):2782-2790. https://doi.org/10.1172/JC1119468

Woodfin A, Voisin MB, Nourshargh S (2010) Recent developments and complexities in neutrophil
transmigration. Curr Opin Hematol 17(1):9-17. https://doi.org/10.1097/MOH.
0b013e3283333930

Wree A, Marra F (2016) The inflammasome in liver disease. J Hepatol 65(5):1055-1056. https:/
doi.org/10.1016/j.jhep.2016.07.002

Wu D, Birukov K (2019) Endothelial cell mechano-metabolomic coupling to disease states in the
lung microvasculature. Front Bioeng Biotechnol 7:172. https://doi.org/10.3389/fbioe.2019.
00172

Zang S, Wang L, Ma X, Zhu G, Zhuang Z, Xun Y, Zhao F, Yang W, LiuJ,Luo Y, Liu Y, Ye D, Shi
J (2015) Neutrophils play a crucial role in the early stage of nonalcoholic steatohepatitis via
neutrophil Elastase in mice. Cell Biochem Biophys 73(2):479-487. https://doi.org/10.1007/
$12013-015-0682-9

Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007) Fibroblasts
derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem
282(32):23337-23347. https://doi.org/10.1074/jbc.M700194200

Zhou HF, Chan HW, Wickline SA, Lanza GM, Pham CT (2009) Alphavbeta3-targeted nanotherapy
suppresses inflammatory arthritis in mice. FASEB J 23(9):2978-2985. https://doi.org/10.1096/
1j.09-129874


https://doi.org/10.1016/j.msec.2019.110200
https://doi.org/10.1016/j.msec.2019.110200
https://doi.org/10.1021/pr900748n
https://doi.org/10.1172/JCI119468
https://doi.org/10.1097/MOH.0b013e3283333930
https://doi.org/10.1097/MOH.0b013e3283333930
https://doi.org/10.1016/j.jhep.2016.07.002
https://doi.org/10.1016/j.jhep.2016.07.002
https://doi.org/10.3389/fbioe.2019.00172
https://doi.org/10.3389/fbioe.2019.00172
https://doi.org/10.1007/s12013-015-0682-9
https://doi.org/10.1007/s12013-015-0682-9
https://doi.org/10.1074/jbc.M700194200
https://doi.org/10.1096/fj.09-129874
https://doi.org/10.1096/fj.09-129874

Chapter 4 )
Characterization of Proteoglycanomes s
by Mass Spectrometry

Christopher D. Koch and Suneel S. Apte

Abstract As composites of a core protein and several chemically distinct types of
glycosaminoglycan (GAG) chains, proteoglycans are diverse molecules that occupy
a unique niche in biology. They have varied and essential roles as structural and
regulatory molecules in numerous physiological processes and disease pathology. In
regard to cellular context, some link the interior of the cell to the extracellular matrix
(ECM) as transmembrane or membrane-anchored molecules with a major role in cell
adhesion and signal transduction. Others reside in pericellular matrix, where they
influence crucial aspects of cell behavior, and several reside in interstitial ECM as
components of structural macromolecular networks. Because of their unique com-
position, they can be challenging to identify and characterize using conventional
biochemical or antibody-based methods. In contrast, the GAG component, despite
its immense chemical diversity, typically carries a strong net negative charge which
can be exploited to advantage for affinity-isolation and enrichment of proteoglycans
from any biological system in a core protein-, GAG-, tissue-, and species-agnostic
manner by anion exchange chromatography. This method, when coupled with high
resolution liquid-chromatography tandem mass spectrometry (LC-MS/MS) can be
used to define the proteoglycanome of any cell type, tissue or organism. A
proteoglycanomics strategy can be further refined by inclusion of additional orthog-
onal affinity steps or fractionation for greater specificity and to deliver proteoglycans
with distinct specified characteristics. Moreover, elimination of the GAG chain
chemically and/or obliteration of the core protein enables glycomics characterization
of GAG structure. Enzymatic digestion of GAGs on tryptic peptides allows mapping
of glycopeptides, which has been used for identification of novel proteoglycans and
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to precisely define sites of GAG attachment. Recent application of
proteoglycanomics to human aorta and human aortic aneurysms demonstrated its
potential to identify tissue and disease proteoglycanomes and the detailed method
that was used is provided here for application to other tissues or biological systems.

4.1 Introduction

Proteoglycans (PGs) are composite molecules in whom glycosaminoglycan (GAG)
chains are covalently attached to a polypeptide backbone referred to as a proteogly-
can core protein (Iozzo and Schaefer 2015). The attachment typically occurs to Ser
residues adjacent to a Gly residue and usually within an acidic sequence context,
although keratan sulfate attachment can occur not only to Ser, but also to Thr and
Asn through distinct linkages (Brinkmann et al. 1997; Funderburgh 2002). Pro-
teoglycans are integral components of the extracellular matrix (ECM) of most
tissues, and some, such as syndecans and glypicans, are specialized and important
transmembrane and membrane-anchored cell-surface components, respectively
(Filmus and Capurro 2014; Mitsou et al. 2017; Gondelaud and Ricard-Blum
2019). Hyaluronan-binding aggregating chondroitin sulfate proteoglycans
(CSPGs) such as aggrecan are quantitatively abundant in structural tissues such as
cartilage and intervertebral disc, where they provide unique biophysical properties
(Hascall and Heinegard 1974; Heinegard and Saxne 2011). Specifically, the ability
of the aggregates to hold large amounts of water and thus exert an internal tissue
swelling pressure, as well as electrostatic charge repulsion between the aggregates
makes them indispensable for compression load-bearing in these tissues
(Buschmann and Grodzinsky 1995). Aggregating proteoglycans in pericellular
ECM of mesenchymal cells have the potential to control focal adhesion formation,
cell shape and genetic programs (Mead et al. 2018). In the brain, a diverse group of
aggregating PGs (aggrecan, versican, brevican, neurocan) (Zimmermann and Dours-
Zimmermann 2008) are prominent components of the limited amount of ECM that is
present, and their swelling pressure may ensure mechanical buffering within the
cranium; furthermore, perineuronal nets of a subset of neurons have PGs as a major
component, where they are thought to insulate the soma (cell body) of the neuron
against rewiring of established neuronal circuits (Fawcett et al. 2019). Aggrecan, for
example, is critical in this regard (Rowlands et al. 2018). In the view of the Nobel
laureate Roger Tsien, holes in perineuronal nets, which are formed on conclusion of
the juvenile critical period and mark the closure of neuronal plasticity, could be the
seat of long-term memory (Tsien 2013). Major roles in developmental and cancer
cell signaling by heparan sulfate proteoglycans (HSPGs) are attributed to the binding
of growth factors and morphogens to the highly sulfated GAG chains (Bandari et al.
2015; Ortmann et al. 2015; Sarrazin et al. 2011; van Wijk and van Kuppevelt 2014;
Yu and Woessner Jr. 2000). Similar roles are reprised during inflammation with
respect to cytokines (Gondelaud and Ricard-Blum 2019; Bartlett et al. 2007). In
addition, some PGs or their fragments can act as damage-associated molecular
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patterns to stoke inflammation (Nastase et al. 2018). In many tissues such as tendons,
skeletal muscle, lungs, cornea and blood vessels, proteoglycans are quantitatively
minor components but serve crucial roles such as compression load-bearing, regu-
lation of collagen fibril assembly and sequestration of growth factors (Ezura et al.
2000; Robinson et al. 2017; Zhang et al. 2006). One reason why proteoglycan steady
state levels may be low in many cells and matrices is that they are among the most
dynamic components of ECM and thus turned over quite rapidly, particularly in cell-
proximate ECM.

Proteoglycan core proteins can be very large, e.g., perlecan, aggrecan and
versican, or quite small, e.g., the leucine-rich proteoglycans. PG sub-groups are
usually defined by a combination of size and other unique properties such as the
chemical nature of their GAG chains, i.e., whether they are chemically defined
chondroitin sulfate (CS), heparan sulfate (HS) or keratan sulfate (KS). Dermatan
sulfate (DS) sometimes termed CS-B, is chemically similar to CS but contains
iduronate (Thelin et al. 2013). This classification of PGs is imperfect, since different
types of GAG can be present on the same core protein, e.g., aggrecan typically
contains KS chains, yet the CS chains dominate and it is usually considered a CSPG.
Moreover, some proteoglycan core proteins are not constitutively modified, and
these could be regarded as “part-time” proteoglycans. However, for the purpose of
this chapter, any molecule that carries a covalently attached GAG chain, if only in a
small proportion of the core protein, is operationally defined as a proteoglycan.

Most GAGs are sulfated and thus share the useful property of having a net
negative charge, enabling their isolation using anion exchange chromatography
(AEQC). This characteristic of PGs is also the basis of their detection in tissue sections
using basic dyes such as alcian blue and safranin O or toluidine blue metachromasia
of highly negatively charged GAGs such as heparin (Scott 1985). Their staining
intensity is also a useful guide, albeit neither absolute nor specific, to GAG abun-
dance. Tissue identification of individual GAGs and PG gene products is typically
done using specific antibodies to the GAG chain or core protein. The former has the
advantage over anti-core protein antibodies of being species-agnostic.
Immunostaining and western blot can be used to detect the core proteins but relies
on antibodies with high specificity. Additionally, the GAG-dense environment in
which a core protein epitope may reside may mask antibody reactivity in tissue
sections, requiring an intimate understanding of the molecules in order to properly
design epitope retrieval strategies. However, the use of core protein and GAG
antibodies as a targeted approach to examine the entire proteoglycan landscape of
a tissue is neither practical nor efficient.

An untargeted approach, such as shotgun mass spectrometry would allow simul-
taneous detection of many proteoglycans within a complex cell or tissue extract
while circumventing the need for quality antibodies and epitope retrieval protocols.
Analysis of proteins by mass spectrometry is, however, limited by the caveat that
high abundance proteins are preferentially detected during data-dependent analysis
of mass spectra, and low abundance or highly modified components like proteogly-
cans may go undetected. A solution is to divide the sample into multiple fractions,
using one or preferably, two orthogonal fractionation methods (Ly and Wasinger
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2011). However, analysis of multiple fractions increases the instrument run time and
requires analysis of data from multiple MS runs. An alternative to routine fraction-
ation for reduction of sample complexity is enriching for the desired components, or
excluding undesired ones (Ly and Wasinger 2011). We capitalized on the net
negative charge of the GAGs to isolate and identify PG core proteins by mass
spectrometry from the aorta (Cikach et al. 2018), the largest artery in the body,
which contains a large repertoire of ECM molecules sandwiched in the space
between elastic lamellae and arrays of smooth muscle cells.

Our approach utilized a well-characterized technique for proteoglycan enrich-
ment from aortic tissue, i.e., isolation by AEC prior to analysis by LC-MS/MS
(Cikach et al. 2018). AEC elution conditions can be adjusted to maximize proteo-
glycan yields and successful elution of proteoglycans can be evaluated using a
variety of biochemical techniques such as fluorophore-assisted carbohydrate elec-
trophoresis (providing precise delineation of the GAG type), safranin O staining
(non-specific, but provides quantifiable staining intensity and indicates abundance of
the GAGs in the eluted fractions) and western blot with a specific core protein or
GAG antibody (Cikach et al. 2018). Combinations of these orthogonal methods can
be used to determine exactly which PGs and GAGs were enriched, and LC-MS/MS
can be subsequently used for unbiased identification of PGs extracted from essen-
tially any tissue. Here, we describe the approach that was used to determine the
proteoglycanome of the human aorta (Cikach et al. 2018). The proteoglycan isola-
tion and quantitation methods are similar to those previously described by Carrino
and colleagues (Carrino et al. 1991, 1994).

4.2 Extraction of Proteoglycans from Tissue

1. Snap freeze tissue in liquid nitrogen immediately after collection and store at
—80 °C until use.

2. Finely dice tissue with a scalpel or surgical scissors in a clean petridish on ice.
Weigh diced tissue and add 1 mL ice-cold proteoglycan extraction buffer per
100 mg tissue. The extraction buffer is: 4 M guanidine hydrochloride, 2% 3-[(3-
cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS], 50 mM
sodium acetate, adjusted to pH 6.0 with HCl or NaOH. 1 tablet of complete
Mini EDTA-free Protease Inhibitor (Roche) is added per 6—10 mL.

3. Homogenize tissue in the extraction buffer with a mechanical homogenizer such
as an Ultra-Turrax T2 or T10 homogenizer (IKA Works Inc.), taking care to keep
the sample on ice as homogenization will quickly warm the sample.

4. Rotate homogenized tissue end-over-end at 4 °C for a minimum of 16 h.

. Clarify the homogenate by centrifugation for 15 min at 20,000 x g.

6. Retain the supernatant as it contains both cellular and many extracellular matrix
proteins including proteoglycans. Highly crosslinked proteins, including many
collagens and elastic fibers, will remain in the sample pellet unless extracted by
additional steps.

W
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The extraction process would be similar for a cell culture monolayer, with the
difference that after the medium is aspirated, the cells should be washed several
times with serum-free medium prior to addition of the extraction buffer. This
minimizes ion suppression from abundant serum proteins such albumin during
LC-MS/MS.

4.3 Proteoglycan Isolation by Anion Exchange
Chromatography

1. Buffer exchange: While guanidine hydrochloride allows for efficient extraction of
proteoglycans and proteins from tissue, it is not compatible with AEC due to the
presence of chloride as a counterion. Therefore, buffer exchange to another
chaotropic agent such as urea must precede the AEC step. This can be accom-
plished by a number of methods including dialysis and centrifugal filtration; we
use gel filtration, which is an efficient, rapid and economical method using
columns that are inexpensive and easy to prepare.

a. Prepare columns by cutting the tops off 5 mL, 10 mL or 25 mL plastic
serologic pipettes and lightly pack the tips with glass wool. Connect a stopcock
to the bottom of the pipette for volume control, such as a length of surgical
tubing with removable clamp. Swell Sephadex G-50 fine resin in G50 buffer at
a ratio of 20-25 mL/g of resin for at least 24 h. G50 buffer is 8 M urea, 0.5%
CHAPS, 50 mM sodium acetate, 150 mM NaCl adjusted to pH 7.0 with HCI or
NaOH. Heating on a hot plate-stirrer aids urea dissolution.

b. Load swollen Sephadex G-50 fine resin into the column (Table 4.1) and pack
by gravity flow, adding G-50 buffer as needed. Once the column is packed,
allow the G50 buffer to almost completely enter the column, i.e., leaving a
meniscus to prevent the resin from drying.

c. Taking care not to disturb the resin bed, add the appropriate sample volume
(see Table 4.1) to the column and allow it to enter the resin by gravity. Close
the stopcock when the last of the sample has just entered the resin.

Table 4.1 Volumes for buffer exchange using Sephadex G50 fine. The sample volume dictates the
size of column(s) required. Buffer exchange can be accomplished with larger sample volumes
through the use of sample aliquots and multiple columns. The pre-V, volume will not contain any
proteins and is obtained immediately upon the sample fully entering the resin. Proteins will elute
immediately following the pre-V, volume and are expected to be fully contained in the
corresponding V(, volume, although volumes for specific applications may vary and should be
determined experimentally

Pipette/column size (mL) | Sephadex G50 fine (mL) | Sample (mL) | Pre-V,(mL) |V, (mL)
5 4 1 0.25 1.5

10 8 2 0.5 3

25 24 6 1.5 9
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. Carefully add G50 buffer to the column and resume gravity flow. Immediately

start collecting the eluate as pre-V,. This eluate will be G50 buffer without
proteins and can be discarded. The volume is specifically adjusted for the
column sizes and sample volumes referenced in Table 4.1.

. Starting immediately after the pre-V, volume, collect the appropriate V,

volume. This fraction will deliver the proteoglycans and proteins in the
AEC-compatible G50 buffer.

. Columns can be reused for subsequent samples after washing with 2—4 column

volumes of G50 buffer; however single use may be more economical given the
volume of G50 buffer that may be required for this.

. Anion Exchange Chromatography

a.

Swell diethylaminoethyl (DEAE)-Sephacel with G50 buffer. Pack 4 mL swol-
len DEAE resin by gravity flow of G50 buffer into a glass column fitted with a
stopcock as described above. Once the column is packed, allow the G50 buffer
to almost completely enter the column taking care not to let the resin dry. Add
the sample to the column without disturbing the resin bed and allow it to enter
the resin by gravity flow. Collect the flow-through and retain for future
analysis or discard. Wash the column with five column volumes (20 mL) of
wash buffer (8 M urea, 0.5% CHAPS, 50 mM sodium acetate, 250 mM NaCl,
pH 7.0). This fraction will contain weakly anionic proteins. It can be collected
and retained for future analysis but is usually discarded.

. Add elution buffer (same as wash buffer above, but with 0.5-1 M NaCl) to the

column and collect 2 mL fractions. Most proteoglycans will elute with 0.5 M
NaCl (Fig. 4.1), however proteoglycans containing high anion charge densi-
ties such as versican and aggrecan may elute best at higher concentrations (up
to 1 M) of NaCl. In our experience, 1 M NaCl is sufficient to elute all
proteoglycans with the highest concentrations eluting in fractions 1-3 (6 mL
total eluate volume).

. Quantitation of isolated proteoglycans. The isolated fractions first undergo buffer

exchange by dialysis to 20 mM HEPES, 150 mM NaCl, pH 7.2, following which
a safranin O staining and spectrophotometry method (Carrino et al. 1991) is
applied to quantify proteoglycan content of the fractions. For total protein, sample
absorbance at 280 nM is used. A representative safranin O-based quantitation
profile of fractions is shown in Fig. 4.2.

a.

b.

Prepare 0.45 pm nitrocellulose by soaking in water for at least 1 min and
mount it into a dot blot apparatus.

Pipette 25 pL (1 part) of each DEAE eluate fraction (isolated proteoglycans)
into 250 pL (10 parts) 0.02% safranin O into each well. Mix briefly by
pipetting and allow the mixture to stand for 1 min. Apply a vacuum to the
dot blot apparatus to collect the precipitate onto the nitrocellulose.

. Wash each well three times with 200 pL water, drawing water through the

nitrocellulose under vacuum. Wells with significant precipitation (high pro-
teoglycan/glycosaminoglycan content) may require higher vacuum pressure
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Fig. 4.1 AEC elution profile of aortic GAGs. Aortic proteoglycans were eluted from a 4 mL
DEAE-Sephacel column with G50 buffer containing increasing concentrations of NaCl. Ten 1 mL
fractions were collected for each elution condition. Each elution was preceded by a 10 mL wash
with G50 buffer containing 150 mM NaCl. A final elution was performed with 4 M GuHCl to
ensure no proteoglycans remained on the column after the 2 M NaCl elution. Total protein and
relative GAG concentration were determined for each fraction using a NanoDrop (absorbance at
280 nm) and safranin O dot blot, respectively. Most proteoglycans eluted with 500 mM NaCl,
however the large proteoglycans versican and aggrecan may require 1 M NaCl for complete elution

and a longer time to empty fully. To prevent bleeding of precipitate into
adjacent wells, dry the nitrocellulose in the dot blot apparatus for a minimum
of 1 h.

d. Remove the nitrocellulose from the dot blot apparatus and allow it to dry
completely at room temperature. Cut or punch out the precipitate spots from
the membrane and place each in a 1.5 mL microcentrifuge tube. Add 1 mL
10% cetylpyridinium chloride (CPC) to each tube and vortex vigorously.
Incubate the tubes at 37 °C for 10 min, vortex vigorously, and incubate at
37 °C for an additional 10 min. Vortex vigorously after incubation and transfer
a portion of the CPC solution from each tube into a 96 well plate or cuvette for
absorbance measurement at 536 nm.

i. Fluorophore-assisted carbohydrate analysis, if available, is a specialized
technique that can be used to identify and quantify hyaluronan and GAGs
(Calabro et al. 2001; Midura et al. 2018).

ii. Western blot/ELISA using antibodies against specific GAGs and core
proteins, or the GAG stubs left behind after enzymatic release can be
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Fig. 4.2 Quantitation of aortic glycosaminoglycans isolated using AEC. GAG concentration, as a
surrogate marker for proteoglycans, was determined for each sample using the safranin O dot blot
assay. 2 mL fractions were collected from a column containing 4 mL DEAE-Sephacel. Represen-
tative data from a single sample is shown. “Raw extract” refers to the initial sample in proteoglycan
extraction buffer, and “Extract in G50” refers to the same sample after buffer exchange

used for identifying specific components. Enzymatic removal of GAGs
from proteoglycans with the appropriate lyase is typically required to
ensure full mobility in polyacrylamide gels and may be essential for proper
epitope recognition by some antibodies.

4.4 Analysis of Isolated Proteoglycans by Mass
Spectrometry

1. Sample preparation for mass spectrometry

a. Lyophilize 20 pg total protein in a SpeedVac evaporator.

. Reconstitute the dried protein in 50 pL 6 M urea, 100 mM Tris, pH 7.0.

c. Reduce cysteine bonds by adding 2.5 pL 200 mM dithiothreitol (prepared
fresh) and incubate at room temperature for 15 min.

d. Alkylate the proteins by adding 10 pL 200 mM iodoacetamide (prepared
fresh) and incubate at room temperature for 20 min, protecting from light.

o
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e. Quench the excess iodoacetamide by adding 10 pL. 200 mM dithriothreitol and
incubate at room temperature for 15 min.

f. Reduce the urea concentration to approximately 1.2 M by diluting the sample
with 160 pL water.

g. Adjust the pH to >8.0 with 100 mM ammonium bicarbonate. This will likely
take 20-30 pL of ammonium bicarbonate; verify the correct pH by blotting a
1-2 pL sample on litmus paper.

h. Add trypsin at an enzyme:protein ratio of 1:20. Incubate at room temperature
for 24 h or at 37 °C for 8-16 h.

i. Desalt the trypsinized peptides using a C18 column such as a Pierce C18 spin

column (ThermoFisher Scientific) following the manufacturer’s instructions.

j. Fully lyophilize the C18 eluate in a SpeedVac evaporator.

k. Reconstitute the peptides in 30 pL 1% acetic acid.

Note: This protocol leads to injection of approximately 1 pg of total peptides in
5 pL on the liquid chromatography column. The starting amount of total
protein (step a) and the final reconstitution volume (step k) can be adjusted
to increase or decrease the final injection concentration.

2. Mass spectrometry
Tryptic peptides can be identified using a number of modern mass spectrom-
etry instruments. We used an LTQ-Orbitrap Elite hybrid mass spectrometer
(Thermo Fisher Scientific) for its high resolution and sensitivity.

a. Separate peptides with an in-line liquid chromatography system, e.g., Dionex
Ultimate 3000 nanoflow ultrahigh pressure liquid chromatography (UHPLC)
system using a 75 pm x 15 cm, 3 pm particle size, Acclaim PepMap 100 C18
column (Thermo Fisher Scientific) at a flow rate of 0.3 pL/min.

b. Elute peptides over 2 h using buffers A (0.1% formic acid in water) and B
(0.1% formic acid in acetonitrile) with the following LC conditions:

Time (min) Buffer B (%)

0-5 2

5-110 Linear gradient: 2-40
110-115 Linear gradient: 40-80
115-120 80

¢. The UHPLC column is coupled to a nanospray source through a PicoTip emitter
(FS360-20-15-N-20-C15, New Objective).

d. Collect spectra using a full-ion scan at a resolution of 60,000 over the mass/
charge range 300-2000. MS? scans using collision-induced dissociation (CID)
can be performed on the 20 most abundant precursor ions from MS' scans using
the data-dependent mode with dynamic exclusion.
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3. Bioinformatics—The precise bioinformatics approach used will vary according
to the facility or user preference. The following approach was used with data from
the LTQ-Orbitrap Elite hybrid mass spectrometer

a. MS? spectra were matched to the UniProtKB/Swiss-Prot human database
using ProteomeDiscoverer (Thermo Scientific).

b. The percolator function was utilized to select only matches with a Q value <
0.01 (<1% false discovery rate [FDR]).

c. The mass tolerance was 10 ppm for precursor ions and 0.8 Da for MS?.

d. Only fully tryptic peptides were considered with a maximum of three missed
tryptic cleavage sites.

e. Carbamidomethylation of cysteine was set as a fixed modification and oxida-
tion of methionine was set as a variable modification.

Notes:

i. Additional modifications (i.e. phosphorylation) can be included, which may
increase peptide identification and improve core protein coverage.

ii. Tryptic peptides containing GAG attachment sites will not be recognized
unless the GAGs are enzymatically removed prior to analysis and the appro-
priate modifications are sought during spectral analysis (Noborn et al. 2015,
2016).

This detailed method provides a workhorse approach for isolating proteoglycans
and can serve as the foundation for a proteomics study of core proteins, glycopeptide
analysis or glycomics analysis. In all these applications, it ensures reduction of
sample complexity and brings the PGs to the forefront. Using this approach to define
the proteoglycanome of the ascending thoracic aorta, we identified 20 distinct
proteoglycan core proteins (Cikach et al. 2018).

Pursuing a similar rationale, Talusan and colleagues used ion exchange chroma-
tography isolation of proteoglycans coupled to proteomics analysis by gel-LC-MS/
MS, in which the fractions obtained by urea extraction and High Q support strong
AEC were electrophoresed on gels prior to tryptic digestion of the gel slices and
mass spectrometry (Talusan et al. 2005). They found a strong correlation between
proteoglycan abundance and species in an atherosclerosis-prone artery (internal
carotid) and an atherosclerosis-resistant artery (internal thoracic) (Talusan et al.
2005). Vijayagopal et al. (1996) isolated LDL binding proteoglycans from athero-
sclerotic human arteries using a combination of orthogonal chromatographies. First,
dissociative extraction and ion-exchange chromatography, similar to that described
above, were used to isolate proteoglycans. Next proteoglycans were sub-fractionated
on an LDL affinity column and proteoglycan fractions with high-affinity binding to
LDL were analyzed for GAG species. The extracts from atheromatous plaques
contained a high proportion of chondroitin and heparan sulfate proteoglycans,
whereas normal aorta contained more diverse GAG species. Although core proteins
were not evaluated, the data suggested enrichment of a small subset of proteoglycan
species in atheromas, among which the CSPGs versican and biglycan have been
shown to both bind LDL and be present in plaques (Didangelos et al. 2012; Wight
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and Merrilees 2004). The CSPG aggrecan, typically a component of cartilage, was
also reported in atheromatous plaques and stented coronary arteries (Talusan et al.
2005; Suna et al. 2018).

Mass spectrometry (MS) is used extensively for analysis of glycans, including
GAGs. These applications digest the core protein to completion to preserve the
GAGs and rely heavily on sophisticated bioinformatics approaches. This is because
MS identifies molecules by mass and cannot readily distinguish between isomeric
structures, e.g., glucose, mannose or galactose, although fragmentation of the glycan
by different methods, coupled with other analytic techniques can help resolve its
structure (Rojas-Macias et al. 2019). Profiling of glycans by MS requires dedicated
isolation, derivatization and characterization techniques as well as high-resolution
MS instruments (Rojas-Macias et al. 2019).

Whereas glycomics methods obliterate the core protein structure,
glycoproteomics methods preserve the glycan-peptide linkage and can identify
peptides to which glycans are attached, but these methods have limited ability to
provide structural detail of the GAG. As an example of a glycoproteomics strategy,
Noborn and colleagues have developed approaches to characterize HS and CS
linkage regions, attachment sites, and identify novel proteoglycans (Noborn et al.
2015, 2016, 2018; Gomez Toledo et al. 2015). As in the method we describe here,
their approach first requires isolation and enrichment of glycopeptides after trypsin
digestion, using strong AEC. For identification of CS-attachment sites, for example,
CS chains were depolymerized with chondroitinase ABC, leaving a residual
hexameric structure composed of the linkage region and a GlcA-GalNAc disaccha-
ride dehydrated on the terminal GlcA residue attached to the tryptic peptide. LC-MS/
MS was then used to define the mass of the peptide with the residual hexasaccharide
(Noborn et al. 2015).

4.5 Conclusions and Future Perspectives

In summary, we have briefly reviewed the immense biological significance of pro-
teoglycans that justifies the need for specialized -omics approaches to obtain com-
plete characterization, but it is obvious that this is a complex endeavor requiring
multidisciplinary combinations of specialized techniques, instruments and skills.
Regardless of whether the final goal is a proteoglycanome, glycoproteome or
glycome, the strategy will employ some measure of enrichment of proteoglycans
as an initial step. One can thus imagine several potential applications of the basic
approaches we have outlined here. An important application is to identify the
complete repertoire of “part-time” proteoglycans, since GAG-attachment contributes
substantially to the functional diversity of the genome. Akin to our delineation of the
aortic proteoglycanome, it is possible to use the approach to identify the
proteoglycanome of any tissue or organ in development, health and disease. For
example, taken together with isolation of specific organ structures such as renal
glomeruli, or neural ganglia, proteoglycanomes of specific structures in organs can
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also be achieved. The emerging explosion of single cell RNA sequence data for
many tissues and organs, both adult and at many stages of embryonic development,
will further allow a very refined determination of the proteoglycan repertoire.
Another application that has been explored to only a limited extent is to define
how proteoglycanomes differ in various diseases. This would be most informative if
a quantitative analysis could be applied. One such approach would be to digest
extracts of normal and disease tissue with trypsin, label the tryptic peptides with
isobaric tags, and then combine the samples for glycopeptide enrichment steps prior
to LC-MS/MS. In this way, variables introduced by preparation of each sample
separately are eliminated, and moreover, the combined enriched glycopeptide pool
can be analyzed in the same mass spectrometry run, avoiding run-to-run variation as
well. The improved sensitivity of modern instruments and informatics tools that can
combine glycopeptide analysis in multi-omics strategies, e.g., with single cell RNA
sequencing, will likely make this approach important in understanding many dis-
eases in the future.
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Chapter 5 )
Historical Overview of Integrated s
GAG-omics and Proteomics

Manveen K. Sethi and Joseph Zaia

Abstract The ECM is a complex molecular network that surrounds all cells and
consists of proteins, glycoproteins, hyaluronan, glycosaminoglycans (GAGs), and
proteoglycans (PGs). GAGs and PGs play vital roles in ECM-related processes such
as cell migration, proliferation, adhesion, and differentiation. Among the omics
technologies, including genomics, transcriptomics, and proteomics, glycomics is
the least mature. Over the past two decades, with efforts from glycoscientists around
world, and the advent of new glyco-techonologies, databases, tools, and methods,
much progress has been made. Now, the focus is to integrate proteomics and
glycomics domains in a new platform to analyze and characterize biomolecule
classes and define their structural and functional roles. Towards this end, we have
developed approaches that integrate analysis of GAGs and proteins towards an end
goal of elucidating pathophysiological mechanisms to inform development of dis-
ease therapies and regenerative medicine. In this chapter, we provide a historical
overview of our groups’ methods for glycomics, glycoproteomics, and proteomics of
key ECM constituents, i.e., GAGs and PGs, as reported over the past decade.

Abbreviations

CE Capillary electrophoresis
CS Chondroitin sulfate

DS Dermatan Sulfate

ECM Extracellular matrix

GAGs Glycosaminoglycans
GalNAc  N-acetylgalactosamine
GIcA Glucuronic acid
GIcNAc  N-acetylglucosamine
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HA Hyaluronic acid
HEP Heparin
HILIC Hydrophilic interaction chromatography

HS Heparan sulfate

IdoA Iduronic acid

IMS Imaging mass spectrometry

IPRP Ion-pair reversed-phase chromatography
KS Keratan sulfate

LC Liquid chromatography

LIF Laser-induced fluorescence

MALDI Matrix-assisted laser desorption/ionization
MS Mass spectrometry

MS/MS  Tandem mass spectrometry
MWCO  Molecular weight cut-off filters

PGs Proteoglycans

PNNs Perineuronal nets

PTMs Post-translational modifications
SEC Size exclusion chromatography

TOF Time-of-flight

5.1 Introduction

Glycosylation is required for all life forms and abundant, with over 50% of mam-
malian proteins being glycosylated (Apweiler et al. 1999). In comparison to other
major biomolecules such as proteins and DNA, the biological roles of carbohydrates
remain poorly understood. Carbohydrates, being complex and remarkably diverse in
nature, are arduous to synthesize, characterize, and analyze. However, over the past
decade, with the advent of new technologies, experimental techniques, and instru-
mentation, analysis of glycans and glycoproteins, also formally known as
‘glycomics’ and ‘glycoproteomics’, respectively, has gained momentum.
Proteoglycans (PGs) and glycosaminoglycans (GAGs) are ubiquitous compo-
nents of the ECM and play essential roles in all areas of physiology, including cell
signaling, cell adhesion, and cell functions (Afratis et al. 2012). PGs are composed of
core proteins to which GAG chains are attached. GAGs are linear polysaccharides
consisting of repeating disaccharide units of hexosamine (N-acetylglucosamine or
N-acetylgalactosamine), and hexuronic acid (glucuronic acid or iduronic acid) that
are covalently attached. GAGs can be divided into categories based on the repeated
disaccharide unit, i.e., heparan sulfate (HS), chondroitin sulfate (CS), dermatan
sulfate (DS), keratan sulfate (KS) and hyaluronic acid (or hyaluronan)
(HA) (Table 5.1) (Sethi and Zaia 2017). They are heterogeneous concerning chain
length and subsequent modifications, including sulfation, acetylation, and uronic
acid epimerization of disaccharide units. GAG structure is spatially and temporally
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Table 51-1 Tyg; Oé glycg%- Type of GAG Disaccharide unit
aminoglycan (GAG), and its — ~pyo b0 GIcNAc and GlcA
repeating disaccharide unit
Chondroitin sulfate (CS) GalNAc and GIcA
Dermatan sulfate (DS) GalNAc and GlcA/IdoA
Heparin sulfate (HS) GlcNAc and GlcA/IdoA
Keratan sulfate (KS) GIcNAc and Gal

GlcNAc N-acetylglucosamine, GalNAc N-acetylgalactosamine,
GlcA glucuronic acid, IdoA iduronic acid, Gal galactose

regulated and plays specific and distinct functional roles during development and
disease onset (Iozzo and Schaefer 2015). Unlike other GAGs, HA does not contain
sulfate and is not bound to a core protein; rather it exists as a molecular backbone for
extracellular matrix complexes consisting of glycoproteins, proteoglycans, collagens
and other interacting molecules.

The ECM is a complex molecular network that surrounds all cells, occupying
approximately a 20% volume fraction of the adult brain (Sykova and Nicholson
2008). Its main components include hyaluronan, proteoglycans, glycoproteins, and a
variety of posttranslational remodeling proteases, such as matrix metalloproteinases
(MMPs), which cleave ECM molecules, allowing for highly dynamic functional
adaptations (Muir et al. 2002; Rivera et al. 2010). Organized forms of ECM, namely
perineuronal nets (PNNs), composed of hyaluronan, proteoglycans, glycoproteins,
and collagen, surround the synapse and interact with cell surface receptors. In
pathologies, including cancers, cardiovascular diseases, fibrosis,
neurodevelopmental and neuropsychiatric diseases, ECM structure and function
becomes dysregulated. Thus, characterizing the ECM structure is central to the
understanding of physiology and pathophysiology in many diseases (Raghunathan
et al. 2019a). The matrisome is defined as the supramolecular complexes, consisting
of proteoglycans, glycoproteins, collagens, and hyaluronan, that form the functional
units of the ECM (Martin et al. 1984), including the associated molecules.
According to the matrisome project, the core matrisome consists of 195 glycopro-
teins, 44 collagens, and 35 proteoglycans (Shao et al. 2019).

Large scale proteomics studies have quantified, and cataloged expression patterns
of various ECM and associated proteins (Byron et al. 2013; Chang et al. 2016;
Goddard et al. 2016; Hill et al. 2015; Lindsey et al. 2016; Naba et al. 2012, 2015,
2017), but have not defined the glycosylation patterns of these proteins. It is essential
to profile the glycosylation of the matrisome molecules to understand its structural,
functional, and biological role in critical molecular mechanisms necessary to under-
stand biomolecular deregulation related to a disease or condition.

Our group has developed methods for performing GAG glycomics, proteomics,
glycoproteomics in both separate and integrated forms employing multiple experi-
mental techniques such as in solution and on slide tissue digestion followed by liquid
chromatography based-tandem mass spectrometry (LC-MS/MS). In this chapter, we
provide a historical overview of these methods for glycomics, glycoproteomics, and
proteomics of key ECM constituents, i.e., GAGs and PGs, as reported over the past
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decade (Bielik and Zaia 2010, 2011; Bowman and Zaia 2010; Gill et al. 2013;
Hitchcock et al. 2008a, b; Huang et al. 2011; Khatri et al. 2014, 2016; Klein et al.
2018; Leymarie et al. 2012; Raghunathan et al. 2019b; Shao et al. 2013a, b; Shi et al.
2012; Staples et al. 2009, 2010; Turiak et al. 2014). We describe the experimental
approaches and their optimization to achieve higher coverage and better quality data.

5.2 Glycosaminoglycan Analysis/GAG-omics
5.2.1 Overview of GAGs

The GAG classes include unsulfated hyaluronan (HA), and sulfated heparin/heparin
sulfate (HS), chondroitin/dermatan sulfate (CS/DS), and keratan sulfate
(KS) (Fig. 5.1a—d). HS and CS are unbranched polymers composed of ~20-200
repeating  disaccharide  units;  N-acetylgalactosamine  (GalNAc)  or
N-acetylglucosamine (GIcNAc) and uronic acid, e.g., glucuronate (GIcA) or
iduronate (IdoA) attached to serine or threonine residue of core protein through a
characteristic tetrasaccharide linker (Kjellen and Lindahl 1991). In contrast, HA is
not covalently attached to a core protein and is not sulfated, but consists of repeating
disaccharide units of GlcA and GIcNAc attached via alternating p1,3- and p1,4-
glycosidic linkage (Sethi and Zaia 2017). KS is composed of repeating disaccharide
units of Gal, and GIcNAc via alternating 1,4 and p1,3-glycosidic linkage. The KS
GAG chain may be attached to the core protein in three ways: KSI, where the GAG
is a sulfated lactosamine chain attached to an N-glycan, KSII where the sulfated
lactosamine chains are attached to O-linked glycans on serine/threonine residues,
and KSIII which the GAG chains are attached to the core protein through mannose-
Ser linkage (Funderburgh 2000). Identified over 100 years ago, GAGs are found in
mast cell granules, cell surfaces, basement membrane, and extracellular matrix
(ECM) (Zaia 2008). The sulfated GAGs consist of repeating disaccharide units
that become modified biosynthetically via a series of enzymatic events, including
deacetylation, sulfation, and epimerization. Figure 5.1e shows CS and HS biosyn-
thesis. These spatial and temporal variations in GAG structure give rise to context-
specific interactions with protein partners, growth factors, receptors, ligands respon-
sible for critical biological processes such as cell signaling, adhesion, and interaction
in normal and pathological conditions. These modifications are also responsible for
the heterogeneous, anionic, and complex nature of GAGs that make GAG analyti-
cally challenging to study (Zaia 2005).

5.2.2 Analytical Challenges of GAG Analysis

Routinely, a GAG oligosaccharide is subjected to a series of chemical and enzymatic
degradation steps and analyzed using chromatographic, electrophoretic, or mass
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spectrometric methods (Conrad 1997; Turnbull et al. 1999; Venkataraman et al.
1999; Zaia 2009). Mass spectrometry serves as an essential tool for structural
analysis of GAGs with high sensitivity and versatility. Over the years, several
MS-based methods for GAG-glycomics or GAG-omics have been reported, includ-
ing matrix-assisted laser desorption ionization (MALDI)-MS, size exclusion chro-
matography (SEC)-MS, and ion-pair reversed-phase chromatography (IPRP)-MS,
and HILIC-MS (Henriksen et al. 2004; Hitchcock et al. 2008b; Laremore and
Linhardt 2007; Liu et al. 2019; Shao et al. 2013b; Venkataraman et al. 1999;
Wang et al. 2012). Success in MS analysis of GAGs depends largely on the
extraction and workup methods used. In particular, it is important to remove salts,
contaminants, nucleic acids, or lipids that could interfere with further analysis (Zaia
2009). Other analytical challenges include problems with recovery of GAGs from
liquid chromatography (LC) system as charged glycans may stick to the titanium
containing metallic loops, filters or transfer lines. In addition, it is necessary to use
mass spectrometer fragile ion tuning parameters to minimize the extent to which
sulfated ions dissociate during desolvation and ion transfer prior to mass analysis
(Staples and Zaia 2011). We and others have developed effective analytical tech-
niques to overcome these challenges (Bodet et al. 2017; Henriksen et al. 2004;
Hitchcock et al. 2008a; Laremore and Linhardt 2007; Liu et al. 2019; Shao et al.
2013a; Solakyildirim 2019; Staples et al. 2009, 2010; Wang et al. 2012).

5.2.3 GAG LC-MS/MS Analysis Using SEC
and Amide-HILIC

In 2006, we demonstrated successful LC-MS/MS platform with a compatible
extraction method for quantifying CS GAGs using a size exclusion column (SEC)
with on-line MS detection (Hitchcock et al. 2006). Despite its robustness and
reliability, SEC is a low-resolution technique. Thus, in 2008 we implemented
LC-MS/MS platforms utilizing amide-hydrophilic interaction chromatography
(HILIC) instead of SEC for analyzing CS GAGs from connective tissues. We
were able to profile the GAG chain non-reducing end, the linker region, and
A-unsaturated interior oligosaccharide domains of the CS chains. The GAGs were
extracted from the core protein using sequential p-elimination, C-18 cleanup to
remove hydrophobic molecules, and finally, anion exchange spin columns to remove
cationic molecules. The eluted anionic GAG mixture was then partially
depolymerized with chondroitinase enzymes, and further differentially stable
isotope-labeled by reductive amination using 2-anthranilic acid—d, and d4, and
subjected to amide-HILIC on-line LC-MS/MS analysis (Hitchcock et al. 2008b).
One limiting factor of using amide-HILIC LC-MS/MS was the stability of the spray
interface as conventional silica sprayers clogged in negative mode, and thus,
required time consuming and extensive optimization. This problem was solved by
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using a non-silica sprayer such as provided by the Agilent Chip Cube and the Advion
NanoMate robot.

5.2.4 GAG CE-LIF Analysis

We then ventured into capillary electrophoresis (CE) coupled with laser-induced
fluorescence (LIF) for GAG disaccharide compositional analysis, an essential step
towards understanding the GAG structure-function relationship. We first reported a
method that utilized capillary electrophoresis (CE) with laser-induced fluorescence
(LIF) to analyze GAG disaccharides in the biological samples. This method made
several improvements to existing methods including, optimization of reductive
amination conditions, an increase in sensitivity by using cellulose cleanup for
derivatization, and optimization of separation for reproducibility and robustness
(Hitchcock et al. 2008a). CE has various benefits over other analytical methods,
including high resolving power and separation efficiency for disaccharide structural
isomers differing in sulfation position, economical (use of less buffer and sample),
faster, automated and reproducible analysis, but has not been widely used mainly
because of disaccharides recovery issues after derivatization workup. Our method
eliminated noise background and improved quantification of biological samples by
100-fold, and thus, enabled disaccharide quantification of HS and CS GAGs from
biologically relevant PGs and intact tissue samples. This method was not, however,
compatible with on-line MS detection.

5.2.5 GAG HILIC-CHIP-MS Based Analysis

In order to improve the chromatographic resolution of the LC-MS method for
GAGs, we utilized a novel chip-based amide-HILILC system for negative ion
LC-MS/MS of partially depolymerized heparin/HS, and CS/DS GAGs. The chip-
based trapping cartridges assisted in the removal of contaminating proteins, lipids,
nucleic acids, and acidic non-GAG carbohydrates by focusing the analyte in the MS
while allowing contaminants to flow through with minimum interaction with the
stationary phase. We were able to achieve robust positioning of the spray needle and
the analysis of GAGs isolated from complex biological and chemical samples
(Staples et al. 2009). In this work, we noted that there was a physical limitation for
analysis of highly sulfated (polar) GAG oligosaccharides such as HS dp10s that start
to elute when the source voltage is not able to maintain the electrospray.

To overcome this problem, we optimized the novel amide-HILIC HPLC CHIP
platform with an introduction of makeup flow (MUF) (Staples et al. 2010). The MUF
chips allowed electrospray in high aqueous conditions during negative-ion mode
LC-MS, thus, eliminating the need to raise spray voltages as aqueous content
increased. We used this chip for analysis of highly modified GAG domains involved
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in various biological processes. We were able to analyze dp10-dp14 HS and dp14-18
heparin oligosaccharides, which was not possible with a standard amide-HILIC
HPLC chips (Staples et al. 2010). The HILIC-Chip based platform was a unique
platform for analysis of GAGs but the ions observed were low in charge, resulting in
undesirable sulfate loss from precursor ion during collision-induced dissociation
(CID). To overcome sulfate losses, we used metal cation adducts to stabilize sulfate
groups or nonvolatile polar compounds such as sulfolane to supercharge proteins
could be added. Thus, we utilized microfluidic novel pulsed makeup flow (MUF)
HPLC-chips that enabled controlled application of additives during a given chro-
matographic window and thus, reduced the nonvolatile additive build up in the ion
source. Using these chips, the tandem-MS of these supercharged precursor ions
showed significant decrease in sulfate loss (Huang et al. 2011). We further worked to
improve tandem mass spectrometry of GAGs by reducing sulfate loss and generating
better product ion profiles (Bielik and Zaia 2011; Leymarie et al. 2012; Shi et al.
2012).

5.2.6 Tetraplex Stable Isotope-Coded Based Quantitative
GAG Glycomics

We demonstrated an effective method for tetraplex stable isotope-labeled reductive
amination tags for quantitative glycomics of chondroitin sulfate proteoglycans
(CSPGs), pharmaceutical heparins, and N-glycans from glycoproteins subjected to
an online LC-MS platform as well as tandem mass spectrometry which was used or
comparison of isomeric glycan fine structures from various samples. This method
provided not only a precise compositional profiling of GAGs but also fine structural
compositions together with multiplexing benefits for high-throughput (Bowman and
Zaia 2010).

5.2.7 GAG Disaccharide Analysis Using HILIC LC-MS

Using a single LC-MS platform to generate complete disaccharide profiles for GAG,
we utilized HILIC-MS for quantification of both enzyme-derived and nitrous acid
depolymerization products for structural analysis of HS and CS/DS GAGs (Gill et al.
2013). HILIC is one of the most widely used separation tools for glycans. It offers
several advantages such as shorter sample preparation time, ultrafast analysis due to
low column backpressure and improved MS sensitivity. HILIC with online ESI-MS
has been used widely for the analysis of released glycans (Luo et al. 2009; Mauko
et al. 2011; Ruhaak et al. 2008; Zauner et al. 2011), glycopeptides (Calvano et al.
2008; Wohlgemuth et al. 2009; Zauner et al. 2010), GAG oligosaccharides (Huang
et al. 2011; Kailemia et al. 2014; Staples et al. 2010). For GAG disaccharide
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analysis the challenge with HILIC is to find mobile phase conditions that achieve
efficient retention of disaccharides containing a range of 0—4 sulfate groups. Gener-
ally speaking, chromatographic resolution is best for 2.1 and 1.0 mm internal
diameter columns. It is typically necessary to use a tandem MS step to differentiate
isomeric disaccharides that co-elute using HILIC (Gill et al. 2013).

5.3 On-Slide Tissue Digestion Coupled with LC-MS/MS
for Integrated Glycomics and Proteomics

We innovated a novel on slide digestion platform in our lab that utilized serial
enzyme digestions from surfaces of fresh frozen or fixed tissue sections
(Raghunathan et al. 2019b; Shao et al. 2013a; Turiak et al. 2014). To understand
the biological roles played by GAGs and PGs expression during pathogenesis, it is
crucial to detect and profile GAGs and proteins at the histological scale to minimize
cell heterogeneity and potentially inform diagnosis and prognosis. This method
provided a readout of HA, CS, HS GAG quantities, domain structures, and
non-reducing end structures as well as N-glycans, and proteins using a simple
workflow of application of enzyme and extraction of biomolecules with minimal
need for workup (Fig. 5.2). The method was able to quantify different biomolecules
and perform integrated omics for tissue volumes of 10 nL or greater, corresponding
to a 1 pL droplet of enzyme solution applied to a 1 mm diameter target on a 10 pm
thick tissue slide. Using this method allowed the staining of parallel sections or
immunohistochemistry to guide the selection of the target area on an unstained tissue
section. This method provides a targeted approach to analyze a specific tissue area,
for example, tumor vs. non-tumor, myelin vs. non-myelin, etc., and uncover detailed
structural profiles and establish a functional relationship to understand the disease or
normal pathology.

Compared to in solution digestion (Ji et al. 2015; Wisniewski 2016), on slide
digestion is more economical in terms of time required per sample. On slide
digestion also requires less post-digestion cleanup prior to the LC-MS step. The
LC step results in higher dynamic range of detection for GAGs and proteins than can
be achieved using MALDI imaging mass spectrometry (IMS) (Raghunathan et al.
2019b; Shao et al. 2013a; Turiak et al. 2014). By contrast, MALDI-IMS has the
advantage of higher tissue spatial resolution than the on slide digestion method
(Drake et al. 2017, 2018a).

In 2013, we reported this method for comparative glycomics profiling of HS
disaccharides from human astrocytoma, and glioblastoma tissues (Shao et al. 2013a).
Later, in 2014, we modified the technique to include various compound classes
GAGs, N-glycans, and proteins/peptides using the bovine cortex and mouse brain
tissue sections (Turiak et al. 2014). The data from a small 1.5 mm diameter tissue
spot was consistent with previously published bulk mouse, liver, and brain tissue
demonstrating the power of our method. More recently, we reduced the number of
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Fig. 5.2 Schematic
representation of On slide
tissue digestion workflow.
Taken and modified from
Raghunathan et al. (2019b)
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processing steps by digesting HS disaccharides, and N-glycans together
(Raghunathan et al. 2019b).

We have applied this state-of-the-art platform to understand various brain pathol-
ogies, including glioblastoma (Shao et al. 2013a), aging (Raghunathan et al. 2018),
schizophrenia (unpublished), and Parkinson’s disease (unpublished), and have
uncovered several dysregulated GAGs, ECM related proteins and pathways.

5.4 In Solution Tissue Digestion for Integrated Proteomics
and Glycomics

In the past, we have performed in solution tissue digestions to characterize GAGs
and proteins but not in a sequential and/or an integrated omics manner (Jacobsen
et al. 2019; Shao et al. 2013b). Recently, we developed a streamlined serial in
solution protocol to analyze GAGs and proteins from the brain or other tissues
(Fig. 5.3) (manuscript submitted). Compared to our on-slide digestion protocol that
provides a selection of target area on a tissue slides (Raghunathan et al. 2018, 2019b;
Shao et al. 2013a; Turiak et al. 2014) and MALDI-imaging method for glycans that
offers higher spatial resolution (Drake et al. 2017, 2018a, b), this method can be
applied to free-floating or frozen tissues and provides a high depth of coverage. This
platform is more rapid (time-effective) and efficient (single-pot) than the currently
used parallel approach, i.e., a multi-pot simultaneous enzyme application method
(Chen et al. 2017; Shao et al. 2013b; Turnbull et al. 2010). The removal of GAGs
also facilitates protein identification of the remaining deglycosylated PGs with
higher peptide-coverage using conventional-proteomics (Klein et al. 2018), com-
pared to current studies achieving only low PG-coverage (Donovan et al. 2012;
Hondius et al. 2016). The protocol follows a filter-aided sample preparation (FASP)
type (Wisniewski et al. 2009) serial in-solution digestion using molecular weight
cut-off MWCO) membrane filters as a reactor to digest glycosaminoglycan (GAG)
classes, including HA, CS, and HS, and collect it as a flow-through, and finally
collect proteins to perform trypsin digestion to generate peptides from tissue or cell
lysates. We have applied this workflow to mouse brain tissue, and human healthy
and Alzheimer’s brain tissue.

5.5 Deep Sequencing of Proteoglycans

The peptide sequence coverage for large and highly complex PGs containing a high
degree of glycosylation arising from GAGs, N-glycans, and mucin O-glycans are
poorly-annotated by conventional MS analysis. Thus, little is known about the role
of site-specific glycosylation of PGs in normal and disease pathologies. We devel-
oped a workflow (Fig. 5.4) to improve sequence coverage and identification of
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Fig. 5.4 Schematic representation of the workflow for enrichment of proteoglycan linker-peptides
taken from Klein et al. (2018)

glycosylated peptides in biologically relevant proteoglycans (PGs), including small
leucine-rich proteoglycan (SLRP) decorin and three hyalectan proteoglycans:
neurocan, brevican, and aggrecan necessary to understand their role in pathophys-
iology (Klein et al. 2018). Using the workflow, we were able to identify linker-
glycosite (created by removal of GAGs that leaves a linker tetrasaccharide plus one
disaccharide to the protein/peptide), and 3 N-glycosylation sites for decorin, densely
glycosylated mucin like region in the extended domain for neurocan and brevican,
and 50 linker-glycosites and mucin-type O-glycosites in the extended region and
N-glycosites in the globular domains for Aggrecan, many of which were not
previously identified or reported.

5.6 Conclusions

Over the past decade, glycoscientists around the world have created a vast pool of
knowledge, glyco-databases, and glyco-technologies to characterize and analyse
glycans, to define their structural composition, and relate their biological functions.
Mass spectrometry has played a major role in determining the structural composi-
tions of various biomolecules, and multiple disciplines viz. genomics,
transcriptomics, proteomics, glycomics, and glycoproteomics have been integrated
omics to address biologically relevant questions for the understanding of the biolog-
ical system. Towards this end, we have developed various platforms for integrated
omics approach and gain insights into development, disease, therapy, and regener-
ative medicine.

At this time, there are effective analytical methods for the combined analysis of
GAGs and proteins from tissue samples. These methods employ digestion steps prior
to electrospray mass spectral analysis. The first system developed employed
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SEC-MS, a system that is extremely robust but of limited sensitivity. The use of
HILIC-MS allows effective profiling of GAG oligosaccharide mixtures and is the
preferred method for disaccharide analysis. That HILIC-MS can be reduced in scale
allows it to be used for detection of GAGs released using on slide digestion. We have
analyzed tissue cohorts of several dozen samples using this approach. In order to
improve the depth and sensitivity of PG coverage, we optimized in solution enrich-
ment and digestion protocols. Looking ahead, there is no barrier to quantitative
profiling of GAGs and proteins from tissue. Analytical throughput would be
improved by application of robotic automation. The use of robotics may also reduce
the volume of tissue required for analysis.
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Chapter 6 )
Extracellular Matrix Networks: From Creck o
Connections to Functions

Sylvie Ricard-Blum

Abstract The extracellular matrix (ECM) forms of a three dimensional interaction
network mostly comprised of proteins, collagens being the most abundant ones
(Ricard-Blum, Cold Spring Harb Perspect Biol 3:a004978, 2011), glycosaminogly-
cans (GAGs) and proteoglycans (PGs) (Iozzo and Schaefer, Matrix Biol 42:11-55,
2015; Karamanos et al., Chem Rev 118:9152-9232, 2018). We review here the
major methods used to identify and characterize ECM protein, glycosaminoglycan,
and proteoglycan interactions with a focus on high-throughput methods able to
identify a number of interactions simultaneously such as yeast two hybrid assays,
ECM protein and GAG arrays, and affinity purification coupled to mass spectrom-
etry (MS). The use of large experimental interaction datasets publicly available, and
of interaction databases to retrieve interaction data required to build interaction
networks is discussed. The interest of the data generated from the functional and
structural analyses of interactomes to decipher molecular mechanisms of biological
processes, to design further functional experiments, and to select ECM proteins or
GAGs and/or their biomolecular interactions as therapeutic targets is illustrated by
several examples. The ultimate goal of these studies is to build three-dimensional
ECM networks, integrating the 3D structure of individual ECM molecules and their
complexes.

6.1 Introduction

The extracellular matrix (ECM) forms of a three dimensional interaction network
mostly comprised of proteins, glycosaminoglycans (GAGs) and proteoglycans
(PGs). ECM proteins (e.g. collagens, laminins, fibronectin, elastin) and associated
proteins, which comprise the matrisome (Chap. 2), self-organize in association with
proteoglycans (Iozzo and Schaefer 2015; Theocharis et al. 2019) to form
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Individual assays

EXPERIMENTAL INTERACTION DATA High-throughput assays
e BioPlex & HuRI datasets

Literature curation & databases

o Adhesome (Cell-matrix interactions)

e MatrixDB (ECM-specific interactions)
e Other IMEx consortium databases

BUILDING & VISUALIZATION OF INTERACTION NETWORKS

Fig. 6.1 Sources of experimental interaction data used to build an interaction network visualized
with two Cytoscape layouts (Shannon et al. 2003) (https://cytoscape.org/). The large datasets are
BioPlex (Huttlin et al. 2015, 2017, 2020) (https://bioplex.hms.harvard.edu/), and HuRI (a reference
map of the human binary protein interactome, (Luck et al. 2020). Interactions can also be retrieved
from databases such as MatrixDB, an ECM database (http://matrixdb.univ-lyonl.fr/), the
adhesome, a focal adhesion network (www.adhesome.org), and those from the International
Molecular Exchange (IMEx) consortium (https://www.imexconsortium.org/) described in this
chapter and in the first chapter

supramolecular assemblies, which are molecular alloys (Bruckner 2010). In addition
to the interactions they establish to promote ECM assembly, ECM proteins and
proteoglycans exert their biological activities in a concerted and regulated manner by
binding to a variety of partners. These dynamic interactions influence each other
in vivo and form networks, which are rewired depending on the physiopathological
context, and orchestrate the functions of the ECM. The first step to decipher the
molecular mechanisms of ECM assembly, homeostasis and changes induced by
diseases (Bonnans et al. 2014; Theocharis et al. 2019), to identify new therapeutic
targets and to design new therapies is to make an inventory of the biomolecular
interactions connecting the ECM constituents (Fig. 6.1), and then to add on this
scaffold the information required to build subnetworks specific of a tissue, a molec-
ular function, a biological process or a disease (Fig. 6.2). This process, often referred
to as contextualization, can be carried out by integrating experimental data related to
ECM proteins or proteoglycans such as genomic, transcriptomic and quantitative
proteomic data collected in healthy or diseased tissues. Keywords from the
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Proteins

e Gene & protein annotations

e Biological pathways/Molecular functions
e Omic data (proteomics, transcriptomics)

DATA INTEGRATION & NETWORK ANALYSIS  ® Diseases

Interactions

o Kinetics & affinity
e Binding sites

o Effect of mutations

SPECIFIC NETWORKS

NETWORK ANALYSIS =
¢ -
INTEGRATIVE MODELS -
Tissue 1 Tissue 2

Fig. 6.2 Contextualization of interaction networks: integration of gene/protein annotations and
-omic data to build specific interaction networks (e.g. tissue-specific or disease-specific interaction
networks), of kinetics and affinity to rank interaction in networks, and of binding sites to discrim-
inate competitive interactions from those occurring simultaneously

UniProtKB database (UniProt Consortium 2019), and annotations from Gene Ontol-
ogy (The Gene Ontology Consortium 2017) (Chap. 1) can also be integrated in the
networks to provide information on the cell/tissue locations, molecular functions and
the biological processes ECM proteins and proteoglycans are involved in. The
parameters governing interactions (kinetics, affinity and binding sites) can also be
added to discriminate transient from stable interactions, rank the interactions within
the networks and identify those competing for the same binding site(s) on an
extracellular protein or a proteoglycan (Fig. 6.2).

We review here the major methods used to identify and characterize ECM
protein, glycosaminoglycan, and proteoglycan interactions with a focus on high-
throughput methods able to identify a number of interactions simultaneously such as
yeast two hybrid assays, ECM protein and GAG arrays, and affinity purification
coupled to mass spectrometry (MS). We also discuss the use of large experimental
interaction datasets publicly available, and of interaction databases to retrieve
interaction data required to build interaction networks. Text-mining based compu-
tational approaches to extract protein-protein interactions from biomedical literature
(Papanikolaou et al. 2015; Yu et al. 2018) and the prediction of protein-protein
interactions (Kotlyar et al. 2017) are both beyond the scope of this chapter. This
review also provides selected examples of interaction networks of individual ECM
protein, glycosaminoglycan or proteoglycans, ECM families (e.g. syndecans), and of
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ECM networks contextualized by integrating expression or proteomic data, which
are specific of a particular biological process or disease. We illustrate the usefulness
of these networks and how the data generated from their functional and struct