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Preface

The annual Text, Speech and Dialogue Conference (TSD), which originated in 1998, is
continuing its third decade. During this time, thousands of authors from all over the
world have contributed to the proceedings. TSD constitutes a recognized platform for
the presentation and discussion of state-of-the-art technology and recent achievements
in the field of natural language processing (NLP). It has become an interdisciplinary
forum, interweaving the themes of speech technology and language processing. The
conference attracts researchers not only from Central and Eastern Europe but also from
other parts of the world. Indeed, one of its goals has always been to bring together NLP
researchers with different interests from different parts of the world and to promote their
mutual cooperation.

One of the declared goals of the conference has always been, as its title suggests,
twofold: not only to deal with language processing and dialogue systems as such, but
also to stimulate dialogue between researchers in the two areas of NLP, i.e., between
text and speech people. In our view, TSD 2020 was again successful in this respect. We
had the pleasure to welcome three prominent invited speakers this year: Diana Maynard
presented keynote titled “Combining Expert Knowledge with NLP for Specialised
Applications” with insight on how to combine expert human knowledge with auto-
mated NLP technologies, Joakim Nivre showed how to combine multilingual parsing
with deep learning techniques in “Multilingual Dependency Parsing from Universal
Dependencies to Sesame Street,” and Paolo Rosso reported on “Multimodal Fake News
Detection with Textual, Visual and Semantic Information.”

This volume contains the proceedings of the 23rd TSD conference, held in Brno,
Czech Republic, in September 2020. In the review process, 54 papers were accepted
out of 110 submitted, each based on three reviews, with an acceptance rate of 49%.
Even though this year's organization was affected by the global epidemic of
COVID-19, the scientific quality of the contributions was at the highest level.

We would like to thank all the authors for the efforts they put into their submissions,
and the members of the Program Committee and reviewers who did a wonderful job
selecting the best papers. We are also grateful to the invited speakers for their con-
tributions. Their talks provided insight into important current issues, applications, and
techniques related to the conference topics.

Special thanks are due to the members of Local Organizing Committee for their
tireless effort in organizing the conference. The pertise of Petr Sojka resulted in the
production of the volume that you are holding in your hands.



We hope that the readers will benefit from the results of this event and disseminate
the ideas of the TSD conference all over the world. Enjoy the proceedings!

July 2020 Aleš Horák
Ivan Kopeček

Karel Pala
Petr Sojka

vi Preface
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Combining Expert Knowledge with NLP
for Specialised Applications

Diana Maynard(B) and Adam Funk

Department of Computer Science, University of Sheffield, Sheffield, UK
d.maynard@sheffield.ac.uk

Abstract. Traditionally, there has been a disconnect between custom-
built applications used to solve real-world information extraction prob-
lems in industry, and automated learning-based approaches developed
in academia. Despite approaches such as transfer-based learning, adapt-
ing these to more customised solutions where the task and data may
be different, and where training data may be largely unavailable, is still
hugely problematic, with the result that many systems still need to be
custom-built using expert hand-crafted knowledge, and do not scale. In
the legal domain, a traditional slow adopter of technology, black box
machine learning-based systems are too untrustworthy to be widely used.
In industrial settings, the fine-grained highly specialised knowledge of
human experts is still critical, and it is not obvious how to integrate this
into automated classification systems. In this paper, we examine two case
studies from recent work combining this expert human knowledge with
automated NLP technologies.

Keywords: Natural language processing · Ontologies · Information
extraction

1 Introduction

Although machine learning, and more recently deep learning-based approaches,
have shown enormous promise and success in Natural Language Processing
(NLP), and more generally in the field of Artificial Intelligence (AI), there are
nevertheless a number of drawbacks when applied to many real-world appli-
cations in industrial settings. The medical and legal domains have been tradi-
tionally slow to adopt automated technologies, due partly to the critical effect
of mistakes. On the other hand, driverless cars and autonomous robots are fast
becoming an everyday reality, despite the numerous ethical considerations. When
a human driver hits the brakes in order to avoid hitting a child who runs in front
of a car, they make a moral decision to shift the risk from the child to their pas-
sengers. How should an autonomous car react in such a situation? One piece of

This work was partially supported by European Union under grant agreement
No.726992 KNOWMAK and No. 825091 RISIS; and by Innovate UK.

c© Springer Nature Switzerland AG 2020
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research [3] showed that in surveys, people preferred an autonomous vehicle to
protect pedestrians even if it meant sacrificing its passengers, as most human
drivers would do, but paradoxically, these people claimed that they would not
want to buy one if it were programmed to do so.

The recent COVID-19 pandemic has driven a wealth of interest in automated
AI technology such as call systems. While call centers have long been a forerunner
in the use of such tools, the pandemic has accelerated their growth due to the
combination of a shortage of workers and an enormous increase in calls. IBM
witnessed a 40% increase in use of Watson Assistant between February and April
2020, and other technologies show a similar popularity rise.1

However, automated call systems only deal with part of the problem, and are
still relatively simple. They are best at signposting users to sources of informa-
tion and mostly rely on posing pre-set questions with simple answers that can
be easily be processed (e.g. yes/no questions, or by spotting simple keywords).
Adapting these kinds of conversational agents to the specific demands of indi-
vidual businesses requires intensive labour and training materials, so is not a
project to be undertaken lightly or urgently.

In this paper, we focus on two case studies in which we have investigated how
expert human knowledge can be interlinked with the advantages of automated
technologies. These enable traditional manual tasks to be carried out faster and
more accurately by processing huge amounts of data, while still ensuring both
the consistency and flexibility to deal with new data as it emerges. The first of
these is in the legal domain, where we have developed tools to assist consultants
to review collateral warranties - an expensive and time-consuming task which
nevertheless demands high precision and intricate levels of linguistic detail. The
second is in the wider field of European scientific and technological knowledge
production and policy making, where tools are needed to assist policymakers in
understanding the nature of this enormous, highly complex and fast-changing
domain.

2 Legal IE

The reviewing of collateral warranties is an important legal and economic task
in the construction industry. These warranties are a type of contract by which
a member of the construction team (e.g. an architect) promises a third party
(e.g. the project funder) that they have properly discharged their contract. For
example, an architect of a new office development owes a duty of care to the
occupier of the development, concerning any design defects that might show up
later. Without a collateral warranty, the architect would typically not be liable.
Collateral warranties may include ‘step-in’ rights which allow the beneficiary to
step into the role of the main contractor. This can be important, for example to
banks providing funding for a project, enabling them to ensure that the project
is completed if that contractor becomes insolvent.
1 https://www.technologyreview.com/2020/05/14/1001716/ai-chatbots-take-call-

center-jobs-during-coronavirus-pandemic.

https://www.technologyreview.com/2020/05/14/1001716/ai-chatbots-take-call-center-jobs-during-coronavirus-pandemic
https://www.technologyreview.com/2020/05/14/1001716/ai-chatbots-take-call-center-jobs-during-coronavirus-pandemic
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There are a number of standard forms of collateral warranty, but their specific
terms can be disputed, with clients often claiming that industry standard war-
ranties favour subcontractors and designers. There may also be complex wording
or terminology in standard contracts which make them too risky because they
are outside the scope of the warranty giver’s insurance cover. Therefore, many
collateral warranties are bespoke. However, completing collateral warranties to
the satisfaction of all parties is incredibly difficult, especially for large projects
with many consultants and sub-contractors, as well as multiple occupants, and
it is legally complex and onerous for lawyers to review them. A single manual
review typically takes 3 h, but is often not properly valued by clients, who see
it as a sideline to the main construction contract.

We have therefore been developing prototype software to assist lawyers in
reviewing collateral warranties. The legal industry typically does not make use
of automated software for these kind of tasks. Existing contract review software
is limited and based on machine learning, which tends to be inadequate because
it neither analyses collateral warranties to the level of detail required, nor does
it provide explanatory output. Furthermore, it is unclear how the highly spe-
cialised human expertise can be replicated in an automated approach. For this
reason, our system uses a rule-based approach which automates some of the
more straightforward parts of the review process and focuses on breaking the
documents down into relevant sections pertaining to each kind of problem the
human reviewer must address. It uses a traffic light system to check standard
protocols and to flag possible problems that the lawyer should investigate, with
explanations as to the nature of the problem.

Fig. 1. Sample annotations in a collateral warranty in the GATE GUI (Color figure
online)

The warranty annotation tool is based on the GATE architecture for NLP [4],
an open source toolkit which has been in development at the University of
Sheffield for more than 20 years. A rule-based approach is used to annotate dif-
ferent sections of the document and to recognise certain relevant entities (such
as copyright issues, the warranty beneficiary, the warranty giver, and so on).
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Figure 1 shows an example of a mocked-up warranty annotated in the GATE
GUI.2 Two annotations are highlighted here, which concern the extent of the
warranty standard and the future warranty standard. In the bottom part of the
picture, we see that these have features red and yellow respectively. This indi-
cates that this part of the contract is something that a human reviewer needs
to check manually.

The human reviewer does not see the GATE GUI at all; we show it only
to explain the underlying technology. Instead, they use the reviewing interface
also developed in the project, which enables them to upload a document, select
some parameters, and run GATE on it via a web service. They can then view the
contract in the interface and zoom in on different parts of the document to see the
suggestions and highlights that GATE has made in an easily understandable way.
The yellow and red flags (“translated” from the GATE features) indicate that
they need to review these parts, and the review cannot be marked as completed
until these are satisfactory. Figure 2 shows the same mocked-up document now
in the reviewing interface. The reviewing process semi-automatically generates a
final report (for the lawyer’s client) based on the current human-written report,
with warnings about the risky passages in the document.

Fig. 2. Sample annotations in a mock-up collateral warranty in the GATE GUI

3 Understanding Scientific Knowledge Production
in Europe

Understanding knowledge production and co-creation in key emerging areas of
European research is critical for policy makers wishing to analyse impact and
2 The warranty is not a real one, for legal reasons, but the annotation is genuine.
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make strategic decisions. Essentially, they need to know who is doing research
on what topic and in which country or region. The RISIS-KNOWMAK tool3 is
the result of a 3-year European project enabling the user to combine multiple
data sources (publications, patents, and European projects), connect the dots
by analysing knowledge production by topics and geography, and to pick from
different kinds of visualisation options for the data they are interested in.

The tool generates aggregated indicators to characterise geographical spaces
(countries or regions) and actors (public research organisations and companies)
in terms of various dimensions of knowledge production. For each topic or combi-
nation of topics, the mapping of documents enables the generation of indicators
such as the number of publications, EU-FP projects, and patents in a specific
region, as well as various composite indicators combining dimensions, such as
the aggregated knowledge production share and intensity, and the publication
degree centrality.

Current methods for characterising and visualising the field have limitations
concerning the changing nature of research, differences in language and topic
structure between policies and scientific topics, and coverage of a broad range
of scientific and political issues that have different characteristics. The kind of
language used in patent descriptions is very different from that used in scientific
publications, and even the terminology can be very different, so it is hard to
develop tools which can classify both kinds of document in the same way.

In recent years, a priori classification systems for science and technology, such
as the Field of Science Classification (OECD, 2002) and IPC codes for patents
[6], have been increasingly replaced by data-driven approaches, relying on the
automated treatment of large corpora, such as word co-occurrences in academic
papers [2], clustering through co-citation analysis [9], and overlay maps to visu-
alise knowledge domains [7]. These approaches have obvious advantages, since
they are more flexible to accommodate the changing structures of science, and
are able to discover latent structures of science rather than impose a pre-defined
structure over the data [8]. Yet, when the goal is to produce indicators for poli-
cymakers, purely data-driven methods also display limitations. On the one hand,
such methods provide very detailed views of specific knowledge domains, but are
less suited to large-scale mapping across the whole science and technology land-
scape. On the other hand, lacking a common ontology of scientific and technolog-
ical domains [5], such mappings are largely incommensurable across dimensions
of knowledge production. Perhaps even more importantly, data-driven methods
do not allow presumptions of categories used in the policy debate to be inte-
grated in the classification process. These are largely implicit and subjective,
implying that there is no gold standard against which to assess the quality and
relevance of the indicators, but these are inherently debatable [1].

The RISIS-KNOWMAK classification tool is a GATE-based web service
which classifies each document according to the relevant topics it is concerned
with. This involves the novel use of ontologies and semantic technologies as
a means to bridge the linguistic and conceptual gap between policy questions

3 https://www.knowmak.eu/.

https://www.knowmak.eu/
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and (disparate) data sources. Our experience suggests that a proper interlink-
ing between intellectual tasks and the use of advanced techniques for language
processing is key for the success of this endeavour.

Our approach was based on two main elements: a) the design of an ontol-
ogy of the Key Enabling Technologies and Societal Grand Challenges (KET and
SGC) knowledge domains to make explicit their content and to provide a com-
mon structure across dimensions of knowledge production; and b) the integration
between NLP techniques (to associate data sources with the ontology categories)
and expert-based judgement (to make sensible choices for the matching process).
This drove a recursive process where the ontology development and data anno-
tation were successively refined based on expert assessment of the generated
indicators.

Ontology development in our application involves three aspects: first, the
design of the ontology structure, consisting of a set of related topics and subtopics
in the relevant subject areas; second, populating the ontology with keywords; and
third, classifying documents based on the weighted frequency of keywords. The
mapping process can be seen as a problem of multi-class classification, with a
large number of classes, and is achieved by relying on source-specific vocabularies
and mapping techniques that also exploit (expert) knowledge about the structure
of individual data sources. This is an iterative process, based on co-dependencies
between data, topics, and the representation system.

Our initial ontology derived from policy documents was manually enriched
and customised, based on the outcome of the matching process and expert assess-
ment of the results. Eventually, the original ontology classes may also be adapted
based on their distinctiveness in terms of data items. Such a staged approach, dis-
tinguishing between core elements that are stabilised (the ontology classes) and
elements that are dynamic and can be revised (the assignment of data items to
classes), is desirable from a design and user perspective. Therefore, the approach
is flexible, for example to respond to changes in policy interests, and scalable
since new data sources can be integrated within the process whenever required.
All three steps require human intervention to define prior assumptions and to
evaluate outcomes, but they integrate automatic processing through advanced
NLP techniques. Consequently, if changes are deemed necessary, the process can
easily be re-run and the data re-annotated within a reasonable period of time.

The ontology is freely available on the project web page4; we refer the inter-
ested reader also to the publications and documentation found there for full
details of the technology. Our experience with this specialised ontology and clas-
sification shows that while NLP techniques are critical for linking ontologies
with large datasets, some key design choices on the ontology and its application
to data are of an intellectual nature and closely associated with specific user
needs. This suggests that the design of interactions between expert-based a pri-
ori knowledge and the use of advanced data techniques is a key requirement for
robust S&T ontologies.

4 https://gate.ac.uk/projects/knowmak/.

https://gate.ac.uk/projects/knowmak/
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We have also produced a number of case studies of how the tool could be used
for policy making. In the field of genomics, we compared the technological and
scientific knowledge production in Europe in the period 2010–2014. Technological
production is measured by patents, while scientific production is measured by
publications. These show different geographical distributions. The former is more
concentrated in space: in terms of volume, Paris is the biggest cluster for both
types. Within regions, production varies a lot: London is the biggest producer
of both types, while Eindhoven is key in terms of technological knowledge (both
for volume and intensity). These findings clearly reflect the different structure
of public and private knowledge.

Fig. 3. Specialisation indexes in biotechnology around Europe

Another example is based on the topic of Industrial Biotechnology (IB),
which offers new tools, products and technologies based on the exploitation of
biological processes, organisms, cells or cellular components. Policymakers might
like to know, for example, which European countries are (more) specialised in this
field, and whether there are differences in the extent of specialisation when con-
sidering scientific and technological development. The tool provides ready-to-use
indicators to answer these questions. Figure 3 indicates the country specialisa-
tion indexes in biotechnology for the three measures of knowledge production in
the period 2010–2014. Values greater/lower than 0 in the specialisation indexes
imply that a country is more/less specialised in IB compared with the average
European country. Amongst larger countries in terms of knowledge production,
Germany, France, Italy and the Netherlands exhibit no clear specialisation in
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IB, with all indexes ranging at moderate levels from −0.09 to 0.07. The only
exception is the UK, which is more specialised in terms of EU-FP projects (spe-
cialisation higher than 0.1).

4 Conclusions

This paper has focused on two case studies based around tools we have devel-
oped for specialised applications (in the legal and scientometrics domains) where
standard NLP tools based on machine learning are unlikely to be satisfactory
due to the kinds of knowledge and output required, and to other constraints
such as explainability (in the legal case) and flexibility (in the scientometrics
case). While new advances in deep learning continue to transform the levels of
achievement of automated tools for a number of NLP classification tasks, as
well as in machine translation and in speech and image recognition, nevertheless
they are not suitable for all NLP tasks, at least as stand-alone tools. Rule-based
systems and the incorporation of human expert knowledge interweaved with
advanced learning may provide better approaches in some cases, as we have
demonstrated. Important future directions in the field of NLP lie not only in
improving the explainability of machine learning tools, such as with the use of
adversarial examples, and improved linguistic knowledge in neural networks, but
also in investigating more deeply the ways in which expert knowledge can best
be integrated.
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Abstract. Research on dependency parsing has always had a strong
multilingual orientation, but the lack of standardized annotations for a
long time made it difficult both to meaningfully compare results across
languages and to develop truly multilingual systems. The Universal
Dependencies project has during the last five years tried to overcome
this obstacle by developing cross-linguistically consistent morphosyntac-
tic annotation for many languages. During the same period, dependency
parsing (like the rest of NLP) has been transformed by the adoption of
continuous vector representations and neural network techniques. In this
paper, I will introduce the framework and resources of Universal Depen-
dencies, and discuss advances in dependency parsing enabled by these
resources in combination with deep learning techniques, ranging from
traditional word and character embeddings to deep contextualized word
representations like ELMo and BERT.

Keywords: Dependency parsing · Multilingual · UD · Word
representations

1 Introduction

Dependency parsing is arguably the dominant approach to syntactic analysis in
NLP today, especially for languages other than English. Its increasing popularity
over the last one and a half decade is undoubtedly due to several factors. First of
all, a dependency tree provides a simple and transparent encoding of predicate-
argument structure that has proven useful in many downstream applications,
such as information extraction [37], often acting as a crude proxy for a semantic
representation. Second, dependency parsing can be achieved with models that
are both simple and efficient, sometimes with linear runtime guarantees [24,26],
which facilitates the implementation and deployment of parsers for large-scale
applications. Finally, dependency-based syntactic representations are compatible
with many linguistic traditions around the world, and annotated corpora for a
wide range of languages are therefore more readily available than for alternative
representations. This is clearly reflected in the research on dependency parsing

c© Springer Nature Switzerland AG 2020
P. Sojka et al. (Eds.): TSD 2020, LNAI 12284, pp. 11–29, 2020.
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in recent years, which has had a strongly multilingual orientation starting from
the influential CoNLL shared tasks in 2006 and 2007 [2,29].1

The first shared task on multilingual dependency parsing was held as part
of the CoNLL-X conference in 2006 [2], and the community owes a huge debt
to the organizing committee consisting of Sabine Buchholz, Amit Dubey, Yuval
Krymolowski and Erwin Marsi, who not only managed to collect dependency
treebanks from 13 different languages but also converted them to a single unified
data format, the CoNLL-X format, which has been a de facto standard for
dependency treebanks and dependency parsing ever since. In this way, they
enabled a new line of multilingual research which has been very fruitful for the
community. The first shared task was followed by a second edition in 2007 [29],
this time involving 10 different languages, and the data sets thus created for 19
different languages2 are still used as benchmarks.

One of the most striking observations in the multilingual evaluation of these
shared tasks is the substantial variation in parsing accuracy across languages.
In 2006, the highest labeled attachment score (LAS) achieved for any language
was 91.7 for Japanese, while the lowest was a modest 65.7 for Turkish. In 2007,
the corresponding extreme points were English (89.6) and Greek (76.3). While
this variation clearly depends on multiple factors, including training set size
and type of text, the organizers of the 2007 shared task in their error analysis
found that one of the best predictors of accuracy level was language type [29].
High accuracy was mainly achieved for languages similar to English, with limited
morphology and relatively fixed word order, while lower accuracy was attained
for languages like Greek, with rich morphology and freer word order. This led to
an increased interest in studying the challenges posed by different languages for
syntactic parsing, in particular parsing of morphologically rich languages [41].3

However, efforts to disentangle the influence of language typology on parsing
also encountered obstacles. In particular, while the CoNLL-X format imposes a
uniform representation of dependency trees, it does not in any way standardize
the content of the linguistic annotations. Thus, assumptions about what consti-
tutes a syntactic head or what categories should be used to classify syntactic
relations could (and did) vary almost without limit. This in turn meant that it
was very hard to determine whether differences in parsing accuracy between lan-
guages were due to differences in language structure or differences in annotation
schemes (or a combination of the two). Evidence that divergent annotations can
be a confound came especially from studies that observed very different results
for closely related languages, for example, Russian and Czech [28].

The desire to compare parsing results across languages in a more mean-
ingful way was one of several motivations behind the Universal Dependencies

1 A multilingual perspective is also prevalent in the theoretical tradition of dependency
grammar, starting with the seminal work of Tesnière [38], and in earlier rule-based
approaches to dependency parsing [34].

2 There was an overlap of 4 languages between the two shared tasks.
3 This research trend was not limited to dependency parsing, but also included ground-

breaking work on constituency parsing.
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(UD) initiative [27,30,31], which aims to create cross-linguistically consistent
morphosyntactic annotation for as many languages as possible. Started as a
small-scale project in 2014, UD has grown into a large community effort involv-
ing over 300 researchers around the world and has to date released over 150
treebanks in 90 languages. In addition to parsing research and benchmarking
for individual languages [42,44], the treebanks are widely used in research on
cross-lingual learning [7,9,40] as well as for linguistic research on word order
typology [8,16,32], to mention only a few applications.

In this paper, I will first introduce the UD annotation framework and the
resources that have been made available through the project. I will then review
three recent studies that take a multilingual perspective on dependency parsing
and uses data from UD to cast light on cross-linguistic similarities and dif-
ferences. These studies explore different ways of representing words in neural
dependency parsing, ranging from traditional word and character embeddings
to deep contextualized word representations like ELMo [33] and BERT [4].

2 Universal Dependencies

The main goal of the UD project is to develop cross-linguistically consistent mor-
phosyntactic annotation for as many languages as possible in order to facilitate
multilingual research within NLP and linguistics. Ideally, the annotation should
allow meaningful linguistic analysis across languages, enable research on syntac-
tic parsing in multilingual settings, support the development of NLP systems
for multiple languages, and facilitate resource-building for new languages. Since
cross-linguistic consistency by necessity implies some abstraction over language-
specific details, UD may not be ideal for in-depth analysis of a single language
and should therefore be seen as a complement to language-specific annotation
schemes, rather than as a replacement.

The UD project started in 2014, and the first version of the guidelines was
released the same year together with an initial batch of ten treebanks [27,30]. A
second version of the guidelines was launched in 2016, and treebanks have been
released (roughly) every six months, with the latest release (v2.5) containing 157
treebanks representing 90 languages [31]. For more complete documentation, we
refer to the UD website.4

2.1 Basic Principles of UD

The main idea underlying UD is to achieve cross-linguistically consistent anno-
tation by focusing on grammatical relations between words, especially content
words. This is illustrated in Fig. 1, which shows two parallel sentences in English
and Finnish, two typologically rather different languages. The two sentences
are similar in that they consist of a verbal predicate with a subject, an object
and a locative modifier, but they differ in how the grammatical relations are

4 https://universaldependencies.org.

https://universaldependencies.org


14 J. Nivre

morphosyntactically encoded. English relies on word order to distinguish the
subject and the object, which are both realized as bare noun phrases, while the
locative modifier is introduced by a preposition. Finnish instead uses different
morphological cases to distinguish all three relations. In addition, the English
noun phrases use an article to encode definiteness, a category that is not overtly
marked at all in Finnish.

the dog chased the cat from the room
DET NOUN VERB DET NOUN ADP DET NOUN

Case=Nom Case=Acc Case=Ela
NOUN VERB NOUN NOUN
koira jahtasi kissan huoneesta

det nsubj

nsubj

det

obj

obj

det

case

obl

obl

Fig. 1. Simplified UD annotation for equivalent sentences from English (top) and
Finnish (bottom)

The goal is to bring out the similarities without obscuring the differences.
Concretely, this is achieved by giving priority in the annotation to argument
and modifier relations involving predicates and nominals – the three relations
that are common to the English and Finnish sentences in Fig. 1. On top of these
grammatical relations, we then capture concrete aspects of morphosyntactic real-
ization in two different ways. On the one hand, we use part-of-speech tags and
morphological features to describe words and their inflections, as exemplified by
the nominal case-marking in Finnish.5 On the other hand, we use special syn-
tactic relations to link grammatical function words to their hosts, as shown by
the articles and the preposition in English.

It is important to note that the notion of word that is relevant here is that of
a syntactic word, which does not always coincide with orthographical or phono-
logical units. For instance, clitics often need to be separated from their hosts and
treated as independent words even if they are not recognized as such in conven-
tional orthography, as in Spanish dámelo = da me lo (lit. give me it), and many
contractions need to be split into several words, as in French au = à le (lit. at
the). Conversely, compound words need a special treatment in languages where
their written form may contain boundary markers such as whitespace. In fact,
coming up with good criteria for determining word boundaries across languages
with different writing systems and orthographic conventions has turned out to
be one of the main challenges of the UD enterprise.
5 The features displayed in Fig. 1 are only a small subset of the features that would

appear in a complete annotation of the two sentences.
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2.2 Morphological Annotation

The morphological annotation of a (syntactic) word in the UD scheme consists
of three levels of representation:

1. A lemma representing the base form of the word.
2. A part-of-speech tag representing the grammatical category of the word.
3. A set of features representing lexical and grammatical properties associated

with the particular word form.

The lemma is the canonical form of the word, which is the form typically found
in dictionaries. The list of universal part-of-speech tags is a fixed list containing
17 tags, shown in Table 1. Languages are not required to use all tags, but the
list cannot be extended to cover language-specific categories. Instead, more fine-
grained classification of words can be achieved via the use of features, which
specify additional information about morphosyntactic properties. We provide
an inventory of features that are attested in multiple languages and need to be
encoded in a uniform way, listed in Table 1. Users can extend this set of universal
features and add language-specific features when necessary.

Table 1. PoS tags (left), morphological features (center) and syntactic relations (right).

Syntactic Relations

Features Clausal

PoS Tags Inflectional Lexical Core Non-Core Nominal

ADJ Animacy Abbr nsubj advcl acl

ADP Aspect Foreign csubj advmod amod

ADV Case NumType ccomp aux appos

AUX Clusivity Poss iobj cop case

CCONJ Definite PronType obj discourse clf

DET Degree Reflex xcomp dislocated det

INTJ Evident Typo expl nmod

NOUN Gender mark nummod

NUM Mood obl

PART NounClass vocative

PRON Number Linking MWE Special

PROPN Person cc compound dep

PUNCT Polarity conj fixed goeswith

SCONJ Polite list flat orphan

SYM Tense parataxis punct

VERB VerbForm reparandum

X Voice root
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2.3 Syntactic Annotation

Syntactic annotation in the UD scheme consists of typed dependency relations
between words, prioritizing predicate-argument and modifier relations that hold
directly between content words, as opposed to being mediated by function words.
As stated previously, the rationale is that this makes more transparent what
grammatical relations are shared across languages, even when the languages
differ in the way that they use word order, function words or morphological
inflection to encode these relations. UD provides a taxonomy of 37 universal
relation types to classify syntactic relations, as shown in Table 1. The taxonomy
distinguishes between relations that occur at the clause level (linked to a pred-
icate) and those that occur in noun phrases (linked to a nominal head). At the
clause level, a distinction is made between core arguments (essentially subjects
and objects) and all other dependents [1,39]. It is important to note that not all
relations in the taxonomy are syntactic dependency relations in the narrow sense.
First, there are special relations for function words like determiners, classifiers,
adpositions, auxiliaries, copulas and subordinators, whose dependency status
is controversial. In addition, there are a number of special relations for link-
ing relations (including coordination), certain types of multiword expressions,
and special phenomena like ellipsis, disfluencies, punctuation and typographi-
cal errors. Many of these relations cannot plausibly be interpreted as syntactic
head-dependent relations, and should rather be thought of as technical devices
for encoding flat structures in the form of a tree. The inventory of universal
relation types is fixed, but subtypes can be added in individual languages to
capture additional distinctions that are useful.

2.4 UD Treebanks

UD release v2.56 [43] contains 157 treebanks representing 90 languages. Table 2
specifies for each language the number of treebanks available, as well as the total
number of annotated sentences and words in that language. It is worth noting
that the amount of data varies considerably between languages, from Skolt Sámi
with 36 sentences and 321 words, to German with over 200,000 sentences and
nearly 4 million words. The majority of treebanks are small but it should be kept
in mind that many of these treebanks are new initiatives and can be expected to
grow substantially in the future. The languages in UD v2.5 represent 20 different
language families (or equivalent). The selection is very heavily biased towards
Indo-European languages (48 out of 90), and towards a few branches of this
family – Germanic (10), Romance (8) and Slavic (13) – but it is worth noting
that the bias is (slowly) becoming less extreme over time.7

6 UD releases are numbered by letting the first digit (2) refer to the version of the
guidelines and the second digit (5) to the number of releases under that version.

7 The proportion of Indo-European languages has gone from 60% in v2.1 to 53% in
v2.5.
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Table 2. Languages in UD v2.5; number of treebanks (#), sentences (S) and words (W).

Language #S W Language #S W Language #S W

Afrikaans 1 1, 934 49, 276 German 4 208, 440 3, 753, 947 Old Russian 2 17, 548 168, 522

Akkadian 1 101 1, 852 Gothic 1 5, 401 55, 336 Persian 1 5, 997 152, 920

Amharic 1 1, 074 10, 010 Greek 1 2, 521 63, 441 Polish 3 40, 398 499, 392

Ancient

Greek

2 30, 999 416, 988 Hebrew 1 6, 216 161, 417 Portuguese 3 22, 443 570, 543

Arabic 3 28, 402 1, 042, 024 Hindi 2 17, 647 375, 533 Romanian 3 25, 858 551, 932

Armenian 1 2502 52630 Hindi English 1 1, 898 26, 909 Russian 4 71, 183 1, 262, 206

Assyrian 1 57 453 Hungarian 1 1, 800 42, 032 Sanskrit 1 230 1, 843

Bambara 1 1, 026 13, 823 Indonesian 2 6, 593 141, 823 Scottish

Gaelic

1 2, 193 42, 848

Basque 1 8, 993 121, 443 Irish 1 1, 763 40, 572 Serbian 1 4, 384 97, 673

Belarusian 1 637 13, 325 Italian 6 35, 481 811, 522 Skolt Sámi 1 36 321

Bhojpuri 1 254 4, 881 Japanese 4 67, 117 1, 498, 560 Slovak 1 10, 604 106, 043

Breton 1 888 10, 054 Karelian 1 228 3, 094 Slovenian 2 11, 188 170, 158

Bulgarian 1 11, 138 156, 149 Kazakh 1 1, 078 10, 536 Spanish 3 34, 693 1, 004, 443

Buryat 1 927 10, 185 Komi

Permyak

1 49 399 Swedish 3 12, 269 206, 855

Cantonese 1 1, 004 13, 918 Komi Zyrian 2 327 3, 463 Swedish Sign

Language

1 203 1, 610

Catalan 1 16, 678 531, 971 Korean 3 34, 702 446, 996 Swiss German 1 100 1, 444

Chinese 5 12, 449 285, 127 Kurmanji 1 754 1, 0260 Tagalog 1 55 292

Classical

Chinese

1 15, 115 74, 770 Latin 3 41, 695 582, 336 Tamil 1 600 9, 581

Coptic 1 1, 575 40, 034 Latvian 1 13, 643 219, 955 Telugu 1 1, 328 6, 465

Croatian 1 9, 010 199, 409 Lithuanian 2 3, 905 75, 403 Thai 1 1, 000 22, 322

Czech 5127, 507 2, 222, 163 Livvi 1 125 1, 632 Turkish 3 9, 437 91, 626

Danish 1 5, 512 100, 733 Maltese 1 2, 074 44, 162 Ukrainian 1 7, 060 122, 091

Dutch 2 20, 916 306, 503 Marathi 1 466 3, 849 Upper

Sorbian

1 646 11, 196

English 7 35, 791 620, 509 Mbyá

Guarańı

2 1, 144 13, 089 Urdu 1 5, 130 138, 077

Erzya 1 1, 550 15, 790 Moksha 1 65 561 Uyghur 1 3, 456 40, 236

Estonian 2 32, 634 465, 015 Naija 1 948 12, 863 Vietnamese 1 3, 000 43, 754

Faroese 1 1, 208 10, 002 North Sámi 1 3, 122 26, 845 Warlpiri 1 55 314

Finnish 3 34, 859 377, 619 Norwegian 3 42, 869 666, 984 Welsh 1 956 16, 989

French 7 45, 074 1, 157, 171 Old Church

Slavonic

1 6, 338 57, 563 Wolof 1 2, 107 44, 258

Galician 2 4, 993 164, 385 Old French 1 17, 678 170, 741 Yoruba 1 100 2, 664

3 Studies in Dependency Parsing

The treebanks released by the UD project have been widely used in NLP research
over the past five years and now constitute the natural benchmark data sets for
dependency parsing in most languages. This tendency has been further reinforced
by the CoNLL shared tasks on UD parsing organized in 2017 and 2018 [42,44].
These tasks are very similar in spirit to the old tasks from 2006 and 2007,
designed to evaluate dependency parsing models on data from multiple lan-
guages, but there are two important differences. The first difference is that the
new tasks focus on the entire task of mapping raw text to rich morphosyntactic
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representations with no prior segmentation or annotation of the input, whereas
the old tasks used gold standard segmentation and morphological annotation
as input to dependency parsing. The second difference is that annotations are
now standardized across languages thanks to the UD framework, which facil-
itates cross-linguistic comparisons. In addition, the number of treebanks and
languages has greatly increased since the pioneering efforts in 2006 and 2007.
The CoNLL 2017 shared task featured 81 test sets from 49 languages (including
4 surprise languages), and the CoNLL 2018 shared task added 8 new languages.
Figure 2 is an attempt to visualize the impact of these shared tasks on the lan-
guages appearing in both tasks. The x axis represents the amount of annotated
data available and the y axis represents the top labeled attachment score (LAS).
For each language, an orange dot and a red dot connected by an arrow represent
the situation before and after the shared tasks, respectively. It is clear that the
overwhelming majority of languages have seen an increase both in the amount
of annotated resources and in parsing accuracy, sometimes very substantially so.

The CoNLL 2017 and 2018 shared tasks are only the tip of the iceberg when it
comes to parsing research based on UD resources, which includes a wide range of
studies of parsing models for individual languages, as well as work on cross- and
multilingual parsing models. I will make no attempt at surveying this large body
of literature here. Instead, I will present three specific studies by the Uppsala
parsing group in order to illustrate how the availability of cross-linguistically
consistent annotation for multiple languages enables us to study the interplay
between parsing techniques and language structure in a more informed way.

Fig. 2. Impact of the CoNLL 2017 and 2018 shared tasks on amount of data (x axis)
and top LAS (y axis) for UD languages. Figure created by Filip Ginter and previously
published in Nivre et al. [31].
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3.1 Parsing Framework

Two of the three studies that will be discussed below make use of a generic
framework for dependency parsing originally proposed by Kiperwasser and Gold-
berg [11]. The core component of the architecture is a BiLSTM encoder:

BiLSTM(x1, . . . , xn) = v1, . . . , vn

The input here is a sequence of vectors x1, . . . , xn representing the input words
w1, . . . , wn of a sentence. The output is a corresponding sequence of vectors
v1, . . . , vn, where each vi is a contextualized representation of the word wi, that
is, a representation that combines information from the input representation xi

with information from both the left context x1, . . . , xi−1 and the right context
xi+1, . . . xn. These contextualized word representations are then fed into an MLP
that scores alternative hypotheses about the dependency structure. If a graph-
based parsing model is assumed, this may mean scoring a potential dependency
arc wi → wj :

S(wi → wj) = MLP(vi, vj)

A full parse can then be computed by finding the maximum spanning tree over
a complete score matrix [22].

If instead a transition-based parsing model is assumed, the model will score
a potential transition t out of the current parser configuration c, represented by
a small number of word vectors vi, . . . vk extracted from the parser’s stack and
buffer:

S(c, t) = MLP(vi, . . . vk, t)

A parse tree can in this case be constructed by repeatedly applying the highest-
scoring transition to the current configuration until a terminal configuration is
reached, using a greedy deterministic parsing algorithm [25].

One of the main achievements of Kiperwasser and Goldberg was to show that
this comparatively simple architecture can lead to state-of-the-art parsing accu-
racy for both graph-based and transition-based models if trained adequately [11].
This model has since been developed further by several researchers and currently
underlie most of the state-of-the-art models for dependency parsing [3,5,6,12].
One of the evolved versions is UUParser [17], originally developed for the CoNLL
2017 and 2018 shared tasks [18,35], which involves two types of modifications.
The first modification is the implementation of models that can handle non-
projective dependency trees. In the transition-based case, this amounts to an
extension of the arc-hybrid transition system [13] with a SWAP transition for
online reordering [19,26]. In the graph-based case, this is achieved by using the
Chu-Liu Edmonds maximum spanning tree algorithm [22]. The second modifica-
tion concerns the input representations x1, . . . , xn and will be discussed in detail
in the following sections.

3.2 Representing Word Types

Our first study, presented at EMNLP 2018 [36], concerns how neural transition-
based dependency parsers benefit from different input representations, specifi-
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cally pre-trained word embeddings, character-based representations, and part-
of-speech tags. All of these techniques have previously been shown to be helpful,
but there is a lack of systematic studies investigating how they compare to each
other and whether the techniques are complementary or redundant. Another
important goal, in line with the goals of this paper, is to find out how the use-
fulness of these techniques vary across languages.

For this study, we use the transition-based version of UUParser and only vary
the way in which the input words w1, . . . , wn are represented. In the simplest
model, the vector xi representing input word wi is simply a randomly initialized
word embedding with a dimensionality of 100:

xi = er(wi)

In the most complex model, xi is the concatenation of three vectors:

xi = et(wi) ◦ BiLSTM(c1:m) ◦ e(pi)

The first vector et(wi) is a word embedding of the same dimensionality as
er(wi), but initialized using the pre-trained word embeddings trained using
word2vec [23] and released for the CoNLL 2017 shared task on universal depen-
dency parsing [44]. The second vector BiLSTM(c1:m) is a character-based repre-
sentation obtained by running a BiLSTM over the character sequence c1, . . . , cm
of wi, with a dimensionality of 100 for the output vector. The vector e(pi), finally,
is an embedding of the part-of-speech tag pi assigned to wi by an independent
part-of-speech tagger [6] (dimensionality 20, random initialization).

Table 3. Mean LAS across nine languages for a baseline system employing randomly
initialised word embeddings only, compared to three separate systems using pre-trained
word embeddings (+ext), a character model (+char), and part-of-speech tags (+pos).
Scores are also shown for a combined system that utilises all three techniques and
corresponding systems where one of the three techniques is ablated (−ext, −char
and −pos).

baseline 67.7 combined 81.0

+ext 76.1 −ext 79.9

+char 78.3 −char 79.2

+pos 75.9 −pos 80.3

In order to study the usefulness of pre-trained word embeddings, character
representations, and part-of-speech tags across different languages, we train and
evaluate the parser with different combinations of these input representations
on a sample of nine languages, selected for diversity with respect to writing
systems, character set sizes, and morphological complexity. Table 3 shows the
labeled attachment score (LAS) for some of these systems when averaged over
all nine languages. In the system +ext, we replace the randomly initialized
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word embeddings of the baseline system with pre-trained word embeddings;
in the systems +char and +pos, we concatenate the random embeddings with
character representations and part-of-speech tag embeddings, respectively. The
results for these three systems show clearly that either of the three techniques
by itself improves parsing accuracy by 8–10% points for our sample of languages,
although the character representations appear to be a little more effective than
the other two techniques. The combined system, where we combine all three
techniques (and omit random embeddings), adds another 5% points to the best
score, which is a substantial improvement but far from what we should expect
if the improvements were completely independent. Finally, omitting any of the
three techniques from the combined system, which gives us the systems −ext,
−char and −pos, shows similar drops in accuracy of 1–2% points for all tech-
niques (with the character representations again being slightly more important).

Fig. 3. Binned HDLAS by word frequency (top), HDLAS by part-of-speech categories
(bottom left), and LAS per language (bottom right).
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The conclusion so far is that all three techniques are helpful but their con-
tributions somewhat redundant with diminishing returns when they are added
on top of each other. However, these results are averaged over all words and
sentences in all languages. In order to get a more fine-grained picture, Fig. 3
presents a breakdown of the results for the baseline, +ext, +char and +pos
systems by word frequency (in equally sized bins), by part-of-speech category,
and by language. The results per language are standard LAS scores; the other
two diagrams plot HDLAS, a harsher metric that considers a word correctly
analyzed only if its syntactic head and all its dependents are correct. The break-
down by frequency shows, not surprisingly, that all three techniques give the
greatest improvements for low-frequency words, including unknown words, and
that character representations are especially effective here. However, it is worth
noting that we see improvements over the whole range of frequencies, and that
character representations gradually lose their advantage, so that the other two
techniques are in fact more effective in the bin with the highest frequency. When
looking at accuracy for different part-of-speech categories, we see the largest
improvements for open classes like nouns, proper nouns, verbs and adjectives,
which is consistent with the results for frequency, since these classes contain
the overwhelming majority of low-frequency words, and we also see that charac-
ter representations give the largest improvement for these categories, with the
notable exception of proper nouns.

When we break down the results by language, finally, some interesting differ-
ences start to emerge. First of all, the magnitude of the improvement over the
baseline varies considerably, with morphologically rich languages like Russian,
Finnish and Korean benefitting the most. In addition, while character represen-
tations give the largest improvements when averaged over all languages, they
are in fact the most effective technique only for four out of nine languages (the
three languages just mentioned together with Ancient Greek). For most of the
other languages, they are outperformed by both pre-trained word embeddings
and part-of-speech tags. This is a good illustration of the need to test hypothe-
ses about parsing technology on a wide range of languages to guard against
unfounded generalizations.

3.3 Representing Word Tokens

The word embeddings used in the first study, whether pre-trained or not, rep-
resent word types. Recent work has shown that results can be further improved
by using contextualized embeddings, which provide distinct representations for
different tokens of the same word type, and models like ELMo [33] and BERT [4]
have quickly become ubiquitous in NLP. Our second study, presented at EMNLP
2019 [14], explores how these token embeddings affect the behavior of parsers
belonging to the two main paradigms for dependency parsing: graph-based and
transition-based. We knew from previous research that, although graph-based
and transition-based parsers often achieve similar accuracy on average, they
used to have distinct error profiles due to their inherent strengths and weak-
nesses [20,21,45]. Broadly speaking, transition-based parsers did better on local
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dependencies and short sentences, thanks to richer feature models, but strug-
gled with non-local dependencies and longer sentences, due to greedy decoding
and error propagation. Conversely, graph-based parsers were less accurate on
local structures, because of lower structural sensitivity, but degraded less as
dependencies and sentences get longer, thanks to exact decoding. However, this
comparative error analysis was all done before the switch to neural network tech-
niques, so we thought it was high time to replicate the old analysis in the new
methodological framework with three main research questions:

1. Do the old error profiles persist after the switch to neural networks?
2. How do contextualized word embeddings change the picture?
3. Are the patterns consistent across different languages?

To answer these questions, we train and evaluate graph-based and transition-
based versions of UUParser with three different input representations, yielding
a total of six parsing models, each of which is applied to 13 different languages.
The baseline parsers gr (graph-based) and tr (transition-based) use the same
input representations as the −pos system in the first study, that is, a com-
bination of pre-trained word embeddings and character representations (but no
part-of-speech tags). For the other four models, we concatenate the baseline rep-
resentation with a token embedding from either ELMo (gr+E and tr+E) or
BERT (gr+B and tr+B). For ELMo, we make use of the pre-trained models
provided by Che et al. [3], who train ELMo on 20 million words randomly sam-
pled from raw WikiDump and Common Crawl datasets for 44 languages. For
BERT, we employ the pretrained multilingual cased model provided by Google,8

which is trained on the concatenation of WikiDumps for the top 104 languages
with the largest Wikipedias.9

Fig. 4. Labeled F1 for six parsing models, averaged over 13 languages.

Figure 4 plots the labeled F1 of all six systems as a function of dependency
length, one of the most striking dimensions previously for differentiating graph-
8 Except for Chinese, for which we make use of a separate, pretrained model.
9 https://github.com/google-research/bert.

https://github.com/google-research/bert
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based and transition-based parsers. Comparing first the two baseline models (gr
and tr), we find that the old error profiles persist only partially. It is still true
that the transition-based parser degrades more as dependencies get longer, but it
no longer has an advantage for the shortest dependencies, because both models
now benefit from an unbounded feature model thanks to the BiLSTM encoder.
On the other hand, we see that the addition of contextualized word embeddings
benefit the transition-based parser more than its graph-based counterpart, pre-
sumably because it mitigates error propagation by giving the parser a better
representation of the global sentence structure. The effect is strongest for the
BERT models (gr+B and tr+B), where the curves are virtually indistinguish-
able, showing that the two parsers do not only make a similar number of errors
but also similar types of errors. The patterns observed both for the baseline mod-
els and their extended counterparts are remarkably consistent across languages,
as can be seen from the first six columns of Table 4, which shows the LAS for
all models and all languages. In particular, despite large variations in parsing
accuracy across languages, the claim that transition-based parsers benefit more
from contextualized word embeddings holds not only on average but for every
single language with both ELMo and BERT embeddings.

Table 4. Column 1–6: LAS for parsing models with/without deep contextualized word
representations [14]. Column 7–8: UAS for supervised parser and structural probe [15].

Language LAS UAS

tr gr tr+E gr+E tr+B gr+B gr+B sp+B

Arabic 79.1 79.9 82.0 81.7 81.9 81.8 88.3 63.9

Basque 73.6 77.6 80.1 81.4 77.9 79.8 86.0 68.2

Chinese 75.3 76.7 79.8 80.4 83.7 83.4 87.0 61.9

English 82.7 83.3 87.0 86.5 87.8 87.6 92.0 73.9

Finnish 80.0 81.4 87.0 86.6 85.1 83.9 91.1 72.8

Hebrew 81.1 82.4 85.2 85.9 85.5 85.9 91.3 71.0

Hindi 88.4 89.6 91.0 91.2 89.5 90.8 95.0 80.0

Italian 88.0 88.2 90.9 90.6 92.0 91.7 95.1 80.4

Japanese 92.1 92.2 93.1 93.0 92.9 92.1 94.7 75.7

Korean 79.6 81.2 82.3 82.3 83.7 84.2 88.5 66.7

Russian 88.3 88.0 90.7 90.6 91.5 91.0 94.6 79.4

Swedish 80.5 81.6 86.9 86.2 87.6 86.9 90.9 74.9

Turkish 57.8 61.2 62.6 63.8 64.2 64.9 74.4 58.1

Average 80.5 81.8 84.5 84.6 84.9 84.9 89.9 71.3
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3.4 Parserless Parsing?

The previous study shows a convergence in behavior of different parsing models
when equipped with deep contextualized word representations, which suggests
that the parsing model is less important than it used to be and that most of the
work is done by the rich pre-trained input representations. This leads inevitably
to the question of whether we need a dedicated parsing model at all, or whether
we can extract syntactic representations directly from the contextualized word
representations provided by models like ELMo and BERT. Our third study,
presented at ACL 2020 [15], explores this question using the probing technique
proposed by Hewitt and Manning [10]. The question asked in the original paper
is whether the vector spaces of token embeddings encode parse trees implicitly,
and the authors approach this question by trying to learn linear transforms of a
vector space such that, given a sentence and its parse tree, the distance between
two token vectors in the new space encodes their distance in the parse tree, on
the one hand, and the norm of a token vector encodes the depth of the token in
the parse tree, on the other. Information about distance and depth is sufficient
to extract undirected dependency trees, and experiments on English shows that
it is possible to reach an undirected unlabeled attachment score (UUAS) of over
80% when evaluating against existing treebanks.

In the new study, we extend this work in two directions. First, we propose
a method for deriving directed dependency trees from the depth and distance
measures, so that we can evaluate accuracy using the standard metric of unla-
beled attachment score (UAS). We first derive scores for all possible directed
dependency arcs wi → wj :

S(wi → wj) =
{−dist(wi, wj) if depth(wi) < depth(wj)

−∞ otherwise

The idea is that shorter distances correspond to higher arc scores, and that
arcs from lower to higher nodes are excluded (by giving them a score of −∞).
Given the arc scores, a directed dependency tree can be obtained by extracted
the maximum spanning tree over the complete score matrix [22]. Our second
extension is to go beyond English and apply the method to the same 13 languages
as in the previous study, to see whether there are interesting cross-linguistic
differences.10

The last two columns of Table 4 show the UAS scores obtained for different
languages when using a weighted average of the predictions from the 12 layers
of the multilingual BERT model. For comparison, we include the UAS scores
achieved by the gr+B parser from the previous study. On the one hand, it is
impressive that we can achieve an average UAS of 71.3 using a simple linear
model on top of a language model that has not been trained with a parsing
objective and has not itself been exposed to parse trees. On the other hand,

10 The published paper contains a third extension, which we omit here because of
space constraints, where we investigate whether the models exhibit a preference for
different syntactic frameworks.
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we see that this result is still very far below the average UAS of 89.9 obtained
with a dedicated parsing model that has access to the same language model
representations. Finally, it is worth noticing that differences in accuracy across
languages are strongly correlated between the two models, with a Pearson cor-
relation coefficient of 0.88 (p ≤ 0.05).

4 Conclusion

The use of deep neural language models that can be pre-trained on very large
data sets and fine-tuned for particular tasks is prevalent in contemporary NLP,
and dependency parsing is no exception. There is no question that models like
ELMo and BERT learn aspects of syntax (although it is still far from clear
exactly what they learn), which makes them very useful for the parsing task,
although we are still not at the point where a dedicated parser is superfluous.
The adoption of continuous representations and neural network techniques in
general has led to a convergence across models and algorithms, where graph-
based and transition-based dependency parsers now share most of their archi-
tecture and also exhibit very similar performance in terms of parsing errors.
Thanks to research on multilingual parsing and initiatives like UD, there is also
some convergence in parsing accuracy across languages, although we still see
significant differences. It is therefore important to maintain a multilingual per-
spective going forward, and we hope that the resources provided by the UD
community can continue to play a role as a touchstone for parsing and probing
studies.
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ing using spanning tree algorithms. In: Proceedings of the Human Language Tech-
nology Conference and the Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pp. 523–530 (2005)

23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

24. Nivre, J.: An efficient algorithm for projective dependency parsing. In: Proceedings
of the 8th International Workshop on Parsing Technologies (IWPT), pp. 149–160
(2003)

25. Nivre, J.: Algorithms for deterministic incremental dependency parsing. Comput.
Linguist. 34, 513–553 (2008)

26. Nivre, J.: Non-projective dependency parsing in expected linear time. In: Proceed-
ings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP
(ACL-IJCNLP), pp. 351–359 (2009)

27. Nivre, J.: Towards a universal grammar for natural language processing. In: Gel-
bukh, A. (ed.) CICLing 2015. LNCS, vol. 9041, pp. 3–16. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18111-0 1

28. Nivre, J., Boguslavsky, I.M., Iomdin, L.L.: Parsing the SynTagRus treebank of
Russian. In: Proceedings of the 22nd International Conference on Computational
Linguistics (Coling 2008), pp. 641–648 (2008)

29. Nivre, J., et al.: The CoNLL 2007 shared task on dependency parsing. In: Proceed-
ings of the CoNLL Shared Task of EMNLP-CoNLL 2007, pp. 915–932 (2007)

30. Nivre, J., et al.: Universal Dependencies v1: a multilingual treebank collection.
In: Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC) (2016)

31. Nivre, J., et al.: Universal Dependencies v2: an evergrowing multilingual tree-
bank collection. In: Proceedings of the 12th International Conference on Language
Resources and Evaluation (LREC) (2020)
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Abstract. Recent years have seen a rapid growth in the number of fake
news that are posted online. Fake news detection is very challenging
since they are usually created to contain a mixture of false and real
information and images that have been manipulated that confuses the
readers. In this paper, we propose a multimodal system with the aim to
differentiate between fake and real posts. Our system is based on a neural
network and combines textual, visual and semantic information. The
textual information is extracted from the content of the post, the visual
one from the image that is associated with the post and the semantic
refers to the similarity between the image and the text of the post. We
conduct our experiments on three standard real world collections and we
show the importance of those features on detecting fake news.

Keywords: Multimodal fake news detection · Visual features ·
Textual features · Image-text similarity

1 Introduction

Recent years have seen a rapid growth in the amount of fake news that are
published online. Although fake news is not a new phenomenon, the rise of social
media has offered an easy platform for their fast propagation. A large amount
of invalid claims, rumours and clickbaits are posted every day online with the
aim to deceive people and to influence their opinions on different topics. For
example, the outcome of Brexit1 has been into question because of the amount
of fake news that were posted before the referendum.

Fake news detection is not a trivial task since the content and the images
are manipulated in many different ways which makes the development of an
effective system difficult. Several researchers have tried to address the problem of
fake news detection. Early works focused on using textual information extracted
from the text of the document, such as statistical text features [2] and emotional

1 https://www.theguardian.com/world/2017/nov/14/how-400-russia-run-fake-
accounts-posted-bogus-brexit-tweets.
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information [6,9]. Apart from the content, researchers have also explored the role
of users [8,16] and the credibility of the source where the post is published [14].

Although content information is very important for the detection of fake
news, it is not sufficient alone. Online articles and posts usually contain images
that provide useful information for a classification system. Some researchers have
proposed multimodal approaches for the detection of fake news [12,22]. The
majority of those systems combine textual and visual information to address the
problem. However, in addition to the visual information, the similarity between
the image and the text is very important since it is possible that in some fake
news the image to be contradictory to the content. Although text-image simi-
larity can be an additional useful information, it still remains under-explored.

In this paper we propose a system that uses multimodal information to dif-
ferentiate between fake and real news. To this end, we combine textual, visual
and semantic information. Our main motivation is that information that comes
from different sources complement each other in detecting fake news. In addi-
tion, some of the fake news contain manipulated images that do not correspond
to the post’s content. Therefore, we also incorporate semantic information that
refers to the similarity between the text and the image. Our experimental results
on three different collections show that combining textual, visual and semantic
information can lead to an effective fake news detection.

2 Related Work

Early attempts on fake news detection were based on textual information.
Castillo et al. [2] explored the effectiveness of various statistical text features,
such as count of word and punctuation, whereas Rashkin et al. [15] incorporated
various linguistic features extracted with the LIWC dictionary [20] into a Long
Short Term Memory (LSTM) network to detect credible posts.

Some researchers explored the role of emotions on the area of fake news.
Vosoughi et al. [21] investigated true and false rumours on Twitter and found
that false rumours triggered fear, disgust and surprise in their replies, whereas
the true rumours triggered joy, sadness, trust and anticipation. Giachanou et
al. [9] proposed an LSTM-based neural network that leveraged emotions from
text to address credibility detection, whereas Ghanem et al. [6] explored the
impact of emotions regarding the detection of the different types of fake news.

Visual information complements the textual one and improve the effective-
ness of systems on fake news detection. Wang et al. [22] proposed the Event
Adversarial Neural Networks (EANN) model that consists of the textual com-
ponent represented by word embeddings and the visual that was extracted using
the VGG-19 model pre-trained on ImageNet. Khattar et al. [12] proposed the
Multimodal Variational Autoencoder (MVAE) model based on bi-directional
LSTMs and VGG-19 for the text and image representation respectively. Zlatkova
et al. [24] explored the effectiveness of text-image similarity in addition to other
visual information but on the task of claim factuality prediction with respect to
an image.
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Different to the previous work, not only we explore the effectiveness of a wider
range of visual features on fake news detection but also of the similarity between
the image and the text. Our visual features include image tags generated using
five different models as well as LBP, whereas the similarity is calculated using
the embeddings of the post’s text and the image tags.

Fig. 1. Architecture of the multimodal fake news detection model.

3 Multimodal Fake News Detection

In this section, we present our multimodal system that aims to differentiate
between fake and real news. Our system is based on a neural network and
combines the following three different types of information: textual, visual and
semantic. The architecture of our system is depicted in Fig. 1.

For the textual information, we combine word embeddings and sentiment. To
extract the word embeddings, we use the public pre-trained words and phrase
vectors GoogleNews-vectors-negative300 that contains 300-dimensional vectors
for 3 million words and phrases.

In addition to the word embeddings, we also estimate the sentiment expressed
in the posts. Sentiment analysis has in general attracted a lot of research atten-
tion and aims to annotate a text regarding to its polarity. Sentimental infor-
mation has been shown to be useful for fake news detection as well as in other
classification tasks [7]. To extract the sentiment score from the documents, we use
the Valence Aware Dictionary for sEntiment Reasoning (VADER). VADER [4]
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is a sophisticated tool that in addition to the terms’ sentiment, takes also into
account factors such as negation and emoticon usage and predicts the normalized
valence of positive or negative sentiment of the given text.

For the visual component, we combine image tags and Local Binary Pat-
terns (LBP) [13]. The visual information can be very useful in case there are
different patterns used in fake and real news or there are images that have been
manipulated. To extract the image tags we use pre-trained CNN-based mod-
els. These models are the VGG16, VGG19 [18], Resnet [10], Inception [19], and
Xception [3]. The models are pre-trained on the visual dataset ImageNet that
contains over 14 million hand-annotated images [5]. We extract the top ten image
tags using the pre-trained models, so every image has in total 50 tags. Then for
each tag, we use the word2vec embeddings to estimate the 300-dimension vector
by averaging the embeddings.

In addition to the image tags, we also explore the effectiveness of LBP. LBP
is a very efficient texture operator which labels the pixels of an image by putting
a threshold on the neighborhood of each pixel and considers the result as a
binary number. LBP has been proved to be very effective in many visual tasks
such as face recognition [11]. Similar to previous studies that have used LBP for
other tasks such as multimodal sentiment analysis [23], we reduce the original
256-dimensional LBP feature histogram to a 53-dimensional vector.

Table 1. Label statistics of the collections

Collection Real Fake

Training Test Training Test

MediaEval 4,997 1,202 6,742 2,483

PolitiFact 1,067 266 1,712 428

GossipCop 16,495 4,124 16,495 4,124

Finally, the semantic information refers to the text-image similarity. Estimat-
ing this similarity is very important since it is possible that fake news contain
images that are not relevant to the text. To calculate the similarity we calculate
the cosine similarity between the word embeddings of the text and the embed-
dings of the image tags extracted from the visual feature extraction. This feature
provides a 5-dimensional vector, where each vector refers to one image tag model
(e.g., VGG16) and is calculated based on the average similarity between the word
embeddings of the text and the embeddings of the image tags.

4 Experimental Setup

In this section we describe the collections and the experimental settings used to
run our experiments.
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4.1 Collections

For our experiments we use MediaEval [1] and FakeNewsNet [17] that, to the
best of our knowledge, are the only standard collections that contain tweets in
English and that can be used for multimodal fake news detection. Table 1 shows
the statistics regarding the labels of the collections.

– MediaEval : This collection was released as a part of the Verifying Multimedia
Use at MediaEval challenge [1]. The aim of the task was to detect fake mul-
timedia content on social media. The collection consists of tweets and each
tweet is provided with textual content, image/video and social context infor-
mation. After removing the tweets that did not have an image, we managed
to have a training set of 11,739 tweets of which 4,997 are real and 6,742 are
fake. Our test set contains 3,685 tweets of which 1,202 are real and 2,483 are
fake.

– PolitiFact : This collection is based on tweets that have been collected with
regards to the posts that are published in PolitiFact2 and is part of the
FakeNewsNet collection [17]. PolitiFact is a website that experts in journalism
annotate news articles and political claims as fake or real. To create the
FakeNewsNet collection Shu et al. used the headlines of those posts as queries
to collect relevant tweets. We used the tweet ids provided as part of the
FakeNewsNet and the Twitter API to collect the tweets (text and image)
that were available. In total, we managed to collect 2,140 fake and 1,333 real
tweets posts.

Table 2. Neural network parameters

Layers Neurons Learning rate Dropout Activation Optimiser Epochs

4 1000, 500, 300, 100 0.001 0.6 Sigmoid Adam 50

– GossipCop: Similar to PolitiFact, this collection is based on the FakeNews-
Net collection [17]. This collection is based on tweets that were collected using
the headlines of articles that were posted and annotated in GossipCop3. Fak-
eNewsNet contains 5,323 fake and 16,817 real news posted in GossipCop. Due
to the imbalance between the classes, we decided to use under-sampling and
we randomly selected 5,323 real news posts. We used the tweet ids and the
Twitter API to collect the tweets (text and image) that were still available.
In total, we managed to collect 20,619 tweets for each class.

4.2 Experimental Settings

For our experiments on the PolitiFact and the GossipCop collections, we use
20% of our corpus of tweets for test and 80% for training. For the MediaE-
val, we use the sets as provided in the original collection, that refer to 23% for
2 https://www.politifact.com/.
3 https://www.gossipcop.com/.

https://www.politifact.com/
https://www.gossipcop.com/
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test and the rest for training. We initialize our embedding layer with the pre-
trained GoogleNews-vectors-negative300 words and phrase vectors. It is worth
to mention that at the beginning of our experiments, we tested also other classi-
fiers including Support Vector Machines and Random Forest. The overall results
showed that the neural network performed better for this particular task. Table 2
shows the parameters for the neural network. We have experimented with other
hyperparameters, such as different hidden layer number, hidden units, learn-
ing rate and dropout. The dropout is applied to each layer. We used the same
parameters for all the three different collections.

We used keras to build the neural network and the VGG16, VGG19, Resnet,
Inception and Xception. Finally, opencv and scikit-image libraries were used to
extract the LBP features4.

5 Results

Table 3 shows the performance results of the experiments on PolitiFact, MediaE-
val and GossipCop with regards to F1-metric. First, we evaluate the system when
one type of information is used. From the results, we observe that in this case
the word embeddings achieve the best performance in all the three collections
compared to the other types of information. This is expected given that word
embeddings are usually a strong indicator in many text classification tasks. In
addition, we notice that in MediaEval, text-image similarity manages to achieve
a high performance as well. With regards to the visual information, we observe
that image tags perform better than LBP on all the collections. This can be due
to the fact that image tags represent a larger vector compared to LBP.

Table 3. Performance results of the different combinations of information and the
different collections on the fake news detection task. The best result for every collection
is emphasized in bold.

PolitiFact MediaEval GossipCop

Embeddings 0.911 0.885 0.815

Sentiment 0.474 0.352 0.562

Tags 0.718 0.615 0.623

LBP 0.474 0.520 0.551

Similarity 0.474 0.875 0.538

Text-tags 0.924 0.637 0.825

Text-LBP 0.909 0.896 0.814

Text-tags-similarity 0.920 0.636 0.827

Text-LBP-similarity 0.910 0.908 0.816

Text-tags-LBP-similarity 0.925 0.622 0.829

4 https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-
opencv/.

https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
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Next, we explore the effectiveness of our system when the text (embeddings
+ sentiment) is combined with the visual information. We observe that on Politi-
Fact and GossipCop, the combination of text and image tags (text-tags) performs
better than the combination of text and LBP, whereas in case of MediaEval, the
text-LBP achieves a higher performance compared to text-tags. We believe that
the poor performance of the image tags on MediaEval has to do with the images
of the collection that refer to natural disasters and tend to be more complex
than the images on PolitiFact and GossipCop.

Finally, we incorporate the text-image similarity into the system to evaluate
its impact when it is combined with the rest of the information. From the results,
we observe that incorporating text-image similarity improves the performance.
With regards to GossipCop, the text-tags-LBP-similarity combination improves
the performance by 1.72% and 1.84% compared to word embeddings and to text-
LBP respectively. Similar, in case of PolitiFact, the text-tags-LBP-similarity
combination achieves a 1.51% increase compared to word embeddings.

Finally, regarding MediaEval we observe that the best performance is
achieved by the text-LBP-similarity combination, whereas the text-tags-LBP-
similarity combination is not very effective. When with text-LBP-similarity the
system combines the text, LBP and text-image similarity it manages to outper-
form word embeddings by 2.53%.

6 Conclusions and Future Work

In this paper, we proposed a multimodal system to address the problem of
fake news detection. The proposed system is based on a neural network and
combines textual, visual and semantic information. The textual information was
based on the word embeddings and the sentiment expressed in the post, the
visual information was based on image tags and LBP, whereas the semantic
one referred to the text-image similarity. The experimental results showed that
combining textual, visual and text-image similarity information is very useful for
the task of fake news detection. Finally, our results showed that different visual
information is effective for the different collections.

In future, we plan to investigate more visual features extracted from images
such as the color histogram. In addition, we plan to explore the effectiveness of
the multimodal information on fake news detection across different languages.
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Abstract. We present a corpus of Spanish tweets of 15 Twitter accounts
of politicians of the main five parties (PSOE, PP, Cs, UP and VOX) cov-
ering the campaign of the Spanish election of 10th November 2019 (10N
Spanish Election). We perform a semi-automatic annotation of domain-
specific topics using a mixture of keyword-based and supervised tech-
niques. In this preliminary study we extracted the tweets of few politi-
cians of each party with the aim to analyse their official communication
strategy. Moreover, we analyse sentiments and emotions employed in the
tweets. Although the limited size of the Twitter corpus due to the very
short time span, we hope to provide with some first insights on the com-
munication dynamics of social network accounts of these five Spanish
political parties.

Keywords: Twitter · Political text analysis · Topic detection ·
Sentiment and emotion analysis

1 Introduction

In recent years, automated text analysis has become central for work in social and
political science that relies on a data-driven perspective. Political scientists, for
instance, have used text for a wide range of problems, including inferring policy
positions of actors [6], and detecting topics [13], to name a few. At the same time,
researchers in Natural Language Processing (NLP) have addressed related tasks
such as election prediction [11], stance detection towards legislative proposals
[16], predicting roll calls [5], measuring agreement in electoral manifestos [8], and
policy preference labelling [1] from a different, yet complementary perspective.
Recent attempts to bring these two communities closer have focused on shared
evaluation exercises [10] as well as bringing together the body of the scholarly
literature of the two communities [4]. The effects of these two strands of research
coming together can be seen in political scientists making use and leveraging
major advances in NLP from the past years [12].

The contributions of this paper are the following ones: (i) we introduce a
corpus of tweets from all major Spanish political parties during the autumn
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2019 election; (ii) we present details on the semi-automated topic and senti-
ment/emotion annotation process; and (iii) we provide a preliminary qualitative
analysis of the dataset over different addressed topics of the election campaign.
Building this preliminary resource of Spanish political tweets, we aim at provid-
ing a first reference corpus of Spanish tweets in order to foster further research
in political text analysis and forecasting with Twitter in languages other than
English.

In the rest of the paper we will describe how each tweet was annotated with
topic information together with sentiments and emotions. Moreover, we will
illustrate the preliminary experiments we carried out on topic detection. Finally,
we will present some insight about sentiment and emotion topic-related analyses.

2 Related Works

Twitter has been used as a source of texts for different NLP tasks like sentiment
analysis [3,9]. One work that is very related to our study is [7]. They collected
a dataset in English for topic identification and sentiment analysis. The authors
used distant supervision for training, in which topic-related keywords were used
to first obtain a collection of positive examples for the topic identification. Their
results show that the obtained examples could serve as a training set for clas-
sifying unlabelled instances more effectively than using only the keywords as
the topic predictors. However, during our corpus development we noticed that
keyword-based retrieval can produce noisy data, maybe because of the content
and the topics of our tweets, and we then used a combination of both a keyword-
based and a supervised approach.

3 Political Tweets in the 10N Spanish Election

In this paper, we focus on the Spanish election of November 10th, 2019 (10N
Spanish Election, hereafter). For this, we analyse tweets between the short time
span of October 10, 2019, and November 12, 2019. We focus on the tweets from
15 representative profiles of the five most important political parties (Table 1)1:
i.e., Unidas Podemos (UP); Ciudadanos (Cs); Partido Socialista Obrero Español
(PSOE); Partido Popular (PP); and VOX.

3.1 Topic Identification

Topic Categories. We first describe how we detect the topic of the tweets on
the basis of a keyword-based and supervised approach. In the context of the 10N
Spanish Election, we focused on the following topics that were mentioned in the
political manifestos of the five main Spanish parties: Immigration, Catalonia,
Economy (and Employment), Education (together with Culture and Research),
Feminism, Historical Memory, and Healthcare. We additionally include a cate-
gory label Other for the tweets that talk about any other topic.
1 The dataset is available at https://github.com/jjsjunquera/10N-Spanish-Election.

https://github.com/jjsjunquera/10N-Spanish-Election
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Table 1. Number of tweets of the five political parties. For each party, we use its
official Twitter account, its leader, and the female politician that took part in the 7N
TV debate.

Parties The main profiles Tweets

UP @ahorapodemos, @Irene Montero , @Pablo Iglesias 671

Cs @CiudadanosCs, @InesArrimadas, @Albert Rivera 789

PSOE @PSOE, @mjmonteroc, @sanchezcastejon 527

PP @populares, @anapastorjulian, @pablocasado 684

Vox @vox es, @monasterior, @santi abascal 749

Total 3582

Table 2. Total number of labelled tweets: the training set (i.e., manually annotated,
and using keywords), and using automatic annotation. The last column has the total
number of labelled tweets considering the training set and the classifier results.

Topic Manual annotated Keyword annotated Automatically annotated Total annotated

Catalonia 115 130 370 615

Economy 71 39 506 616

Education 2 19 23 44

Feminism 10 52 82 144

Healthcare 4 12 7 23

Historical Memory 12 16 30 58

Immigration 9 16 36 61

Other 541 153 1037 1731

Pensions 1 24 55 80

Total 765 461 2146 3372

Manual Topic Annotation. We first manually annotate 1,000 randomly sam-
pled tweets using our topic labels.

Table 2 summarizes the label distribution across all parties. After removing
the noisy tweets, we are left with only 765 posts. Many tweets in our corpus
are not related to any of the topics of interest, and were assigned to the Other
category. Moreover, during the annotation, we noticed in the manifestos of the
five parties little information about topics such as research, corruption, renewable
energy, and climate change.

Keyword-Based Topic Detection. Due to the manual annotation is time
consuming, we complement it by using topic-related keywords to collect tweets
about each topic. We ranked the words appearing in the sections corresponding
to the topics of interest with the highest Pointwise Mutual Information (PMI ).
PMI makes it possible to select the most relevant words for each topic, and is
computed as: PMI (T,w) = log p(T,w)

p(T )p(w) . Where p(T,w) is the probability of a
word to appear in a topic, p(T ) is the probability of a topic (we assume the topic
distribution to be uniform), and p(w) is the probability of w. For each topic, we
collect the top-10 highest ranked keywords and manually filter incorrect ones
(Table 3).
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Table 3. Keywords used for collecting training data for topic identification.

Topic Keywords

Catalonia autonómica; cataluña; civil

Economy bienestar; discapacidad; enerǵıa;
fiscalidad; impuesto; innovación;
inversión; tecnológico

Education cultura; cultural; educación; lenguas;
mecenazo

Feminism conciliación; familia; machismo;
madres; discriminación; mujeres;
sexual; violencia

Healthcare infantil; sanitario; salud; sanidad;
sanitaria; universal

Historical Memory historia; memoria; reparación;
v́ıctimas

Immigration ceuta; extranjeros; inmigrantes;
ilegalmente

Pension pensiones; toledo

Supervised Learning of Topics. For each topic, we collect all tweets in our
corpus in which at least one of its keywords appears. All retrieved tweets are
then manually checked to ensure that the annotated tweets have a ground-truth.

Inspired by the work of [7], we use the topic-related keywords to obtain a
collection of “positive” examples to be used as a training set for a supervised
classifier. However, in our dataset, we noticed that keyword-based retrieval can
produce much noisy data. Therefore, the keyword-based collected tweets are
manually checked before training the classifier.

While our solution still requires the mentioned manual checking, the advan-
tage of using keywords is that the labelling is more focused on tweets that are
likely to be in one of the topics of interest, thus reducing the annotation effort
associated with tweets from the Other category.

Table 2 summarizes in the second and third columns the number of tweets
that we used as a training set. The second column represents the results after
manually evaluating the tweets labelled by using the keywords. It is interest-
ing that the annotated data reveal most attention towards some topics such
as Catalonia, Feminism and Economy. Finally, the dataset used for training is
composed of all the labelled tweets. To avoid bias towards the most populated
categories we reduce their number of examples to 100 for training, for which
we balance the presence of manually annotated and keyword-based annotated
tweets.

We employ a SVM2 to classify the still unlabeled tweets and leave-one-out
cross-validation because of the small size of the corpus. We represent the tweets

2 We used the implementation from sklearn using default parameter values for with a
linear kernel.
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with unigrams, bigrams and trigrams, and use the tf-idf weighting scheme after
removing the n-grams occurring only once.

Evaluation of Topic Detection. Table 4a shows the standard precision, recall,
and F1 scores. Table 2 shows in the fourth column the number of tweets anno-
tated using our supervised model. The last column shows instead the total of
labelled tweets for each of the topics – i.e., the overall number of labelled tweets
obtained by combining manual, keyword-based annotations with the SVM clas-
sifier. We break down the numbers of these overall annotated tweets per party
in Table 4b. The topic distributions seem to suggest that each party is biased
towards specific topics. For instance, Immigration seems to be almost only men-
tioned by VOX, whereas parties like PP and Cs are mainly focused on Catalonia
and Economy.

3.2 Sentiment Analysis

We next analyse the sentiment expressed by the parties about each topic. For
this, we use SentiStrength to estimate the sentiment in tweets since it has been
effectively used in short informal texts [15]. We compute a single scale with
values from −4 (extremely negative) to 4 (extremely positive).

Table 4. Results on topic classification the total number of labelled tweets.

Results on topic classification

Topic Precision Recall F1-score

Catalonia 0.72 0.86 0.78

Economy 0.56 0.7 0.62

Education 0.83 0.48 0.61

Feminism 0.8 0.73 0.77

Healthcare 1 0.38 0.55

Historical Memory 0.82 0.5 0.62

Immigration 0.92 0.44 0.59

Other 0.56 0.6 0.58

Pensions 0.85 0.68 0.76

Macro avg. 0.78 0.6 0.65

Total of labelled tweets

Topic UP Cs PP PSOE VOX

Catalonia 40 198 110 50 72

Economy 114 117 203 84 88

Education 12 12 11 5 4

Feminism 44 30 8 29 31

Healthcare 10 2 3 6 2

Historical Memory 25 7 2 8 16

Immigration 4 1 – 7 49

Other 258 262 200 174 243

Pensions 17 2 14 37 10

Fig. 1. Expressed sentiment for each topic and party.
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In order to compare for each topic the sentiment expressed by a party, we
compute the average of the scores for the party on that topic. Only the topics
with a precision greater than 0.6 (Table 4a), and the parties that wrote more
than 10 tweets on the corresponding topic, were considered in this compari-
son. It means that we ignore, for instance, the sentiment showed towards Econ-
omy (precision lower than 0.6), and Healthcare (only UP wrote 10 tweets, see
Table 4b, and the sentiment that Cs showed towards Pensions (only two tweets,
see Table 4b).

Figure 1 shows the expressed sentiment for the parties for each topic. Senti-
ment scores seem to reveal some common dynamics of political communication
from political parties in social networks in that generally, even when the party
is known to be negative or have a critical stance with respect to a certain topic
(e.g., a populist party on immigration), tweets receive a positive score. Specif-
ically, we see that VOX was the only party addressing the Immigration topic,
and we observe that in general, its sentiment is positive (i.e., solutions were com-
mented). Also, just two parties show mainly negative sentiments, they are VOX
and PP towards Feminism and Pensions respectively.

3.3 Emotion Analysis

We finally analyse the emotions expressed by the parties for different topics using
the Spanish Emotion Lexicon (SEL) [14]. SEL has 2,036 words associated with
the measure of Probability Factor of Affective (PFA) concerning to at least one
Ekman’s emotions [2]: joy, anger, fear, sadness, surprise, and disgust. For each
tweet, we compute the final measure for each of the five emotions by summing
the PFA and dividing by the length of the tweet. We then compute the average
PFA of all the emotions for each party and each topic.

Figure 2 (top image on the left) shows the emotions that the parties present
in their tweets when talking about different topics. We analyse the emotions of
the same pairs of parties and topics we analysed before in Sect. 3.2. Differently to
the case of sentiment, there is a general trend shared in that joy and sadness are
very much present across all parties. This could be due to several reasons. First,
there is a bias in SEL towards joy (668 words related to joy vs. 391 for sadness,
382 for anger, 211 for fear, 209 for disgust, and 175 for surprise), and second, the
terms that help to compute the SentiStrength score are not necessarily the same
that are in SEL. Another interesting thing is the presence of joy and sadness
in the same topic by the same parties. We attribute this behaviour to the fact
that there are tweets describing the current problems and feelings present in
the context of the election – e.g., using words like sufrir (to suffer), muerte
(death), triste (sad), grave (grave), but also there are others with a propositive
discourse about the problems – e.g., using words like esperanza (hope), ánimo
(encouragement), unión (union), fiesta (party).

In Figure 2 we also highlight that PSOE shows contrasting emotions about
Catalonia; and Cs shows high score of joy about topics related to feminism. The
distribution of the emotions from VOX towards Immigration was omitted due
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Fig. 2. Emotions distribution across topics.

to the space. However, despite the positive sentiment that VOX showed in this
topic, the predominant expressed emotion was sadness.

4 Conclusions

In this paper we presented a first study about the most relevant topics that have
been addressed in Twitter in the context of the 10N Spanish election for the five
main political parties, together with their sentiments and emotions.

On the basis of the above analysis, we noticed that each party focused more
on specific topics, expressing different sentiments and emotions. Our analysis,
although preliminary, indicates potentially interesting dimensions of political
communications on social networks such as the tendency towards positive tweets,
as well the contrasted presence of problems vs. solutions. This work provides a
first attempt towards analysing the political communication by the five main
political parties in Spain on social networks using NLP techniques. Although we
are aware of the limitations of this preliminary study due to the very short time
span and the size of the corpus, we hope that this first analysis could contribute
to understand how sentiments and emotions were expressed in Twitter by the
politicians of the main five parties with respect to the topics mentioned in their
manifestos during the political campaign of the 10N Election in Spain.

As future work we plan also to consider additional parties and languages
(e.g. Catalan, Basque and Galician) to provide a more comprehensive resource
as well as a comparative analysis.
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118 00 Prague, Czech Republic

{polakova,mirovsky}@ufal.mff.cuni.cz
http://ufal.mff.cuni.cz

Abstract. Descriptive approaches to discourse (text) structure and
coherence typically proceed either in a bottom-up or a top-down analytic
way. The former ones analyze how the smallest discourse units (clauses,
sentences) are connected in their closest neighbourhood, locally, in a lin-
ear way. The latter ones postulate a hierarchical organization of smaller
and larger units, sometimes also represent the whole text as a tree-like
graph. In the present study, we mine a Czech corpus of 50k sentences
annotated in the local coherence fashion (Penn Discourse Treebank style)
for indices signalling higher discourse structure. We analyze patterns of
overlapping discourse relations and look into hierarchies they form. The
types and distributions of the detected patterns correspond to the results
for English local annotation, with patterns not complying with the tree-
like interpretation at very low numbers. We also detect hierarchical orga-
nization of local discourse relations of up to 5 levels in the Czech data.

Keywords: Local and global discourse coherence · Discourse
relations · Hierarchy · Rhetorical Structure Theory · Penn Discourse
Treebank · Prague Dependency Treebank

1 Introduction

Since the establishment of the discipline of text linguistics (and its equivalent
discourse analysis), the various approaches to coherence and cohesion aiming at
formalizable linguistic description can be characterized in terms of methodology
as local coherence models and global coherence models.

Global coherence is connectivity between the main events of the text (scripts,
plans and goals) and the global relations hold independently of the local coher-
ence relations between discourse segments. In the NLP area and in particular in
automatic discourse processing, the local and the global coherence models are
also referred to as shallow and deep discourse analyses/parsing, respectively [13].
Both types of approaches deal with determination and description of seman-
tic and pragmatic relations between individual text units; these relations are
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typically called coherence relations, discourse relations or rhetorical relations,
depending on the theoretical backgrounds and focus of the analyses.1

At present, there is a publicly available large corpus of local discourse anno-
tation for Czech, the Prague Dependency Treebank 3.5 (PDT 3.5; [1], identi-
fication of discourse connectives and their scopes, see Sect. 2). However, there
is so far no annotation of global coherence for Czech. Also internationally, the
number of corpora annotated for local coherence cover a large range of languages
– mostly following the first and most prominent Penn Discourse Treebank style
(PDTB, [12]), whereas there are only few corpora with global annotations.2 In
spite of this, recent advances in discourse analysis show that global coherence
modeling (often in addition to local coherence models), apart from its obvious
application in automatic coherence evaluation [4,7] and global discourse pars-
ing, can significantly contribute to complex NLP tasks, e.g. summarization, text
generation, textual entailment, text mining and others.

The need to proceed further up from the local coherence analysis to the
global one (more sentences as a separate unit, paragraphs, larger text blocks)
became motivated not only by the applicability mentioned above. A zoomed-out
look on a locally annotated discourse resource revealed even here some patterns
typical for (some type of) global coherence analysis, i.e. even the local anno-
tation already displays features of global text structure: we found hierarchical
organization of smaller and larger discourse relations, connectives and other dis-
course cues operating between larger blocks of texts, long-distance relations,
genre-related patterns and so on.

The goal of the present paper is to systematically exploit an existing local
discourse annotation of Czech for possible signs or features of global discourse
structure. As this includes a wide range of phenomena, we focus in this study
on the issues of structure, or “the shape” of a text, in other words: we investi-
gate mutual configurations of discourse relations (pairwise) and their complexity
within locally annotated texts. We relate the detected settings to:

1. a similar research conducted on English Penn Discourse Treebank [5] - with
the aim to compare the configurations of relations typical for discourse,

2. the principles of a global coherence analysis, namely, to those of Rhetori-
cal Structure Theory, which represents any text document as a single tree-
like structure (see below in Sect. 1.1). On these grounds we try to demon-
strate where the local and global analytic perspectives meet and interact. We
also contribute some empirical material to the burning scientific debate on
whether projective trees are descriptively adequate to represent structure of
texts (e.g. [3,6,9,17]).

1 In this study, we use the term discourse relations, according to the Penn Discourse
Treebank’s terminology.

2 Both ways of text analysis for the same data are rare, yet they exist, e.g. for English
Wall Street Journal texts [2,13,18] and for German news commentaries [14]. For Ger-
man, even a mapping procedure between the two annotation layers was introduced
in [15].



52 L. Poláková and J. Mı́rovský

1.1 Rhetorical Structure Theory, the Tree-Like Global Model

One of the most influential frameworks among the global models is the Rhetorical
Structure Theory (RST, [8]). The main principle of RST is the assumption that
coherent texts consist of minimal units, which are linked to each other, recur-
sively, through rhetorical relations and that coherent texts do not exhibit gaps
or non-sequiturs [16]. The RST represents the whole text document as a single
(projective) tree structure. Basic features of these structures are the rhetorical
relations between two textual units (smaller or larger blocks that are in the vast
majority of cases adjacent) and the notion of nuclearity. For the classification
of RST rhetorical relations, a set of labels was developed, which originally con-
tained 24 relations. The RST has gained great attention, it was further developed
and tested, language corpora were built with RST-like discourse annotation. On
the other hand, the framework was criticized in some of its theoretical claims,
above all, in the question of adequacy/sufficiency of representation of a discourse
structure as a tree graph.3 Linguistically, the strong constraints on the struc-
ture (no crossing edges, one root, all the units interconnected etc.) gave rise to
a search for counter-examples in real-world texts. It was shown that not only
adjacent text units exhibit coherence links and that there are even cue phrases,
which connect non-adjacent units and thus support the claim that a tree graph
is too restricted a structure for an adequate discourse representation [17] and
others.

1.2 Complexity of Discourse Dependencies in PDTB

Lee et al. [5] studied various types of overlaps of discourse relations in the locally
annotated Penn Discourse Treebank 2. They encountered a variety of patterns
between pairs of discourse relations, including nested (hierarchical), crossed and
other non-tree-like configurations. Nevertheless, they conclude that the types of
discourse dependencies are highly restricted since the more complex cases can
be factored out by appealing to discourse notions like anaphora and attribution,
and argue that pure crossing dependencies, partially overlapping arguments and
a subset of structures containing a properly contained argument should not be
considered part of the discourse structure. The authors challenge Czech discourse
researchers to introduce a similar study (footnote 1 in their paper) in order to
observe and compare the complexity of discourse and syntax dependencies in
two typologically different languages.4 We take advantage of the fact that the
corpora used in their and our studies are comparable in genre (journalism), size
(50k sentences), discourse annotation style (PDTB vs. PDTB-like) and number
of annotated explicit discourse relations (approx. 20 thousand).

3 Basically a constituency tree, which is in its nature projective and does not allow
crossing edges, in comparison to the basic mathematical definition of a tree graph.

4 Due to the limited range of this paper, we only compare our results to theirs for
discourse relations. The implications for syntax (level of complexity) is not explicitly
discussed.
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2 Data and Method

The data used in our study come from the Prague Dependency Treebank 3.5
(PDT 3.5; [1]), a corpus of approx. 50 thousand sentences of Czech journalistic
texts manually annotated for morphology, surface syntax (analytics), deep syn-
tax (tectogrammatics) and other phenomena. Discourse relations are annotated
in the PDTB fashion, in a form of binary relations between two text spans (dis-
course arguments).5 For explicit relations, all connectives in a given text were
identified (there was no close list of connectives), then their two arguments were
detected and a semantic/pragmatic relation between them assigned to the rela-
tion. Although the minimality principle [12] was taken into account like in the
PDTB, the annotators could also mark large argument spans and non-adjacent
arguments, if justified (compare Sect. 3.1). The discourse annotation of the PDT
consists of 21 223 explicit discourse relations, i.e. relations signalled by explicit
discourse connectives (both primary and secondary), and 361 list relations, i.e.
relations between subsequent members of enumerative structures. For the present
study, we only take into consideration the explicit discourse relations.

From the whole PDT, we first collected and classified close discourse relation
pairs. We define a close discourse relation pair as pair of discourse relations that
are either adjacent (the left argument of one relation immediately follows the
right argument of the other relation), or they overlap, see Table 1 for various
patterns. Second, we used pairs of nested relations where one of the relations
is as a whole included in one argument of the other relation (lines 12 and 13
from Table 1) to recursively construct tree structures out of pairs of the nested
relations, see Table 2. Based on the quantitative results, we inspected selected
samples of the detected patterns manually, in order to check the script outcome
and to provide a linguistic description and comparison.

3 Analysis

In this section, we first analyze the detected patterns for close relation pairs, next,
a specific subsection is devoted to the description of the detected hierarchical
structures (Sect. 3.1).

We were able to detect 17 628 close relation pairs and for each such pair, we
investigated its pattern, the mutual arrangement of the two relations. In Table 1,
these patterns are also graphically illustrated.6 The table shows figures for all
explicit relation pairs and, in brackets, only for inter-sentential relation pairs.
The most common setting for all relations are “full embeddings”, in other words
two-level hierarchies, 7 134 in total (lines 12 and 13), which is even more
than pure adjacency (succession) of two relations (6 572, line 1). These two

5 Technically, the annotation is not carried out on raw texts, but on top of the syntactic
trees.

6 We have obtained so much data that we must only select certain aspects for this
study. We therefore concentrate on the patterns studied by Lee et al., and on hier-
archical structuring of discourse relations.
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Table 1. Patterns of adjacent or overlapping pairs of discourse relations; the total
number of such close relations was 17 628; 109 of them did not fit any of the listed
patterns. (Numbers in brackets mean frequencies if only inter-sentential discourse rela-
tions were taken into account; in total, there were 2 984 such close relations, 85 of them
did not fit the listed patterns.)

Line Frequency Pattern Visualization

1 6 572 (983) Adjacency <---------> <--------->

<---------> <--------->

2 1 923 (865) Pprogress <---------> <--------->

(shared argument) <---------> <--------->

3 51 (21) Total overlap <---------> <--------->

<---------> <--------->

4 266 (116) Left overlap <---------> <--------->

right adjacency <---------> <--------->

5 25 (10) Left overlap <---------> <--------->

right contained <---------> <--->

6 31 (10) Right overlap <---------> <--------->

left adjacency <---------> <--------->

7 17 (8) Right overlap <---------> <--------->

left contained <---> <--------->

8 250 (146) Containment I <---------> <--------->

<---> <--------->

9 190 (150) Containment II <---------> <--->

(opposite) <---------> <--------->

10 83 (14) Both args <---------> <--------->

contained I <---> <--->

11 73 (8) Both args <---------> <--->

contained II <---> <--------->

12 3 591 (299) Left hierarchy <---------> <--------->

<---> <--->

13 3 543 (56) Right hierarchy <---------> <--------->

<---> <--->

14 10 (10) Crossing <---------> <--------->

<---------> <--------->

15 883 (196) Envelopment <---------> <--------->

<---------> <--------->

16 11 (7) Partial overlap <---------> <--------->

<---------> <--------->

(<---------------> <--------->)

configurations represent together slightly more than 3/4 of all detected patterns.
They are also referred to as very “normal” structural relationships in [5], (p. 82).

The next-largest group is progress (line 2), a shared argument in the PDTB
terminology, with 1 923 instances or 10.9% of all patterns. Lee et. al. report 7.5%
of this type, which is fairly comparable. Total overlap (line 3) is caused by the
possibility to annotate two different relations between the same segments for
cooccurring connectives, as in because for example or but later.

The envelopment pattern (line 15) concerns in vast majority a non-adjacent
(long-distance) relation and a relation in between its arguments. Generally, the
enveloped relation is a sentence with some inner syntactic structure annotated,
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which also explains the drastic difference between all detected envelopment pat-
terns (883) and only the inter-sentential ones (196). Linguistically, some of these
cases are sentences headed by two attribution spans (verbs of saying) and some
structure in the reported content in between, also cases of two linked reporter’s
questions in an interview and the inner structuring of the interviewee’s answer,
but also texts with no striking structural reasons for such an arrangement.
The pattern represents ca. 5% of all settings and it certainly needs further
observation.

The patterns with properly contained arguments, either one of them
(lines 5, 7, 8 and 9) or both (10 and 11), very often involve “skipping one level”
in the syntactic tree of a sentence, see Example 17 of the type 8 (containment
I), i.e. the exclusion of some governing clause from the argument, that makes its
syntactically dependent clause (mostly a “reported-content-argument”) to a sub-
set of the other represented (mostly) by a whole sentence. Besides the discussed
attribution (introductory statements), this is also the case of the annotation
of some secondary connectives forming whole clauses (like This means that ...,
Example 2, type 9, containment II). These verb phrases are not treated as parts
of any of the arguments they relate to,8 and pose a methodological issue. A third
setting concerns multi-sentence arguments, where the contained argument is typ-
ically a single sentence. Patterns with properly contained arguments represent
in total 3.6% (638) of all patterns.

(1) The gap in the standard of living that appears between the qualified scientific
elite and the business sphere, right now, at the beginning of the transforma-
tion of the society, will leave traces. It is therefore appropriate to pamper
young researchers and not misuse the fact that a young researcher works
with enthusiasm for science, regardless of salary. But a person
who begins to find his mission in research also starts a family,
wants to live at a good place and live with dignity.

(2) This brief overview essentially exhausts the areas of notarial activities within
the framework of free competition between notaries. This means that in
these notarial agendas, the client has the option of unlimited
choice of notary at his own discretion , as the notary is not bound
to the place of his work when providing these services.

A (pure) crossing is a setting where the left-sided argument of the right relation
comes in between the two arguments of the left relation, compare line 14 in
Table 1. Pure crossings violate the RST constraints most visibly, with crossing
edges, so the debate on tree adequacy often circles around the acceptability
of crossings in discourse analysis. Lee et al. [5] identify only 24 cases (0.12%)
of pure crossings in their corpus. We detected only 10 such cases, which is a

7 Due to space limit we only present the English translations of the PDT Czech origi-
nals here. Relation 1 is highlighted in italics, relation 2 in bold. The connectives are
underlined.

8 In the representation in Example 2, the clause This means that is not in italics, not
a part of any argument of the left relation.
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negligible proportion. Manual inspection nevertheless revealed several different
scenarios, from clearly incorrect annotation, more interpretations possible, across
cases with attribution spans in between, to a few, in our opinion, perfectly sound
analyses, as exemplified by Example 3.9

(3) (a) What can owners and tenants expect, what should they prepare for?
(b) The new legislation should allow all owners to sell apartments. (c) It
is most urgent for flats owned by municipalities, as they manage
about a quarter of the housing stock of the Czech Republic and
some are - mainly for financial reasons - interested in monetizing
a part of their apartments. (d) The law should also allow to complete
transfers of housing association apartments and their sale to its members. (e)
This is also not a “small portion”, but a fifth of the total number
of dwellings.

If we accepted the possibility that not only (b), but a larger (b + c) unit to relates
to (c) in the “also”-relation, which would be a completely fine interpretation in
the Prague annotation, the relation of (e) – the “neither”-relation – cannot
accept just (d) as its left-sided argument. We also think this case cannot be
factored out due to anaphora. There is, for sure, room for different interpretations
within different theories, we just offer our data, state our view and admit that
crossing structures are extremely rare even in our empirical data.

Partial overlap is a type of structure that violates the RST tree constraint,
too. In the PDTB, there were only 4 such cases. In the Czech data we detected
11 cases (line 16 of Table 1). They often include large arguments of untypical
range (2,5 sentences etc.) which can be questioned. Some of the relations also
include secondary connectives with strong anaphoric links (in this respect, given
the fact that etc.). These relations can be factored out, yet, again, there was a
small number of cases that are linguistically acceptable, compare Example 4.

(4) The responsibility of the future tenant of this 103,000-m2 area will be to
care for all properties, including their maintenance and repairs. The tenant
will also have to resolve the parking conditions for market visitors and to
meet the conditions of the Prague Heritage Institute during con-
struction changes due to the fact that the complex is a cultural
monument. The capital city at the same time envisages preserv-
ing the character of the Holešovice market.

3.1 Hierarchies

The results of applying the second step of the procedure to the whole PDT data
are displayed in Table 2, arranged according to the scheme of such hierarchy trees
(identical structures are summed and represented by the hierarchy scheme). We

9 The “also-not” connective is originally in Czech ani, in the meaning of neither. Lit.
translation: “Neither here is concerned a small portion...”.
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Table 2. Selected schemes of hierarchies of discourse relations. Numbers in brackets
mean frequencies of hierarchy schemes if only inter-sentential discourse relations were
taken into account (no other inter-sentential hierarchies were encountered in the data).

Line Frequency Depth Hierarchy

1 381 (10) 3 A ( B ( C ))

2 64 (1) 3 A ( B ( C ) D )

3 50 3 A ( B C ( D ))

4 23 (1) 3 A ( B ( C ) D ( E ))

5 20 3 A ( B ( C D ))

6 0 (1) 3 A ( B ( C ) D E )

7 0 (1) 3 A ( B C ( D ) E )

8 19 4 A ( B ( C ( D )))

9 7 4 A ( B ( C ( D )) E )

10 5 4 A ( B C ( D ( E )))

11 5 4 A ( B ( C ( D )) E ( F ( G )))

...

12 2 5 A ( B ( C ( D ( E ))) F )

13 1 5 A ( B C ( D ( E ( F ))) G )

14 1 5 A ( B ( C ( D ) E ( F ( G ))) H I J ( K ))

15 1 5 A ( B ( C ( D ( E ))))

16 1 5 A ( B ( C ( D E ( F ))))

only mention cases where there are at least three levels in the tree, as two-level
hierarchies are part of Table 1.

For explanation: The scheme “A ( B )” means that the whole relation B is
included in one of the arguments of the relation A (this is, of course, only a two-
level tree). The scheme “A ( B C ( D ))” means that relations B and C are all
included in the individual arguments of relation A (without specifying in which
argument they are, so they can be both in one argument or each in a different
argument) and the relation D is completely included in one of the arguments of
relation C. It is a three-level hierarchy. Generally, we count the depth (number
of levels) of a hierarchy tree as a number of nodes in the longest path from the
root to a list.

There are many sub-hierarchies in a large/deep hierarchy, for example “B ( C
( D ))” is a sub-hierarchy of “A ( B ( C ( D )) E )”, however such sub-hierarchies
are not counted in Table 2, i.e., each hierarchy is only counted in the table in its
largest and deepest form as it appeared in the PDT data.10

The purpose of looking for such hierarchical structures in the PDT data is
to discover to what extent a local annotation shows signs of some structure, too.

10 This also explains the zeros in Table 2.
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We do not claim that the trees detected by us are the trees a global analysis
like RST would discover, but we demonstrate the existence of some hierarchi-
cal text structure in local annotation. Some of it could perhaps partially match
to RST-formed subtrees (and definitely there would be an intersection of sepa-
rate relations, compare e.g. intersections in Wall Street Journal local and global
annotations [10], but this is yet to be investigated. We are also aware, as pointed
out in [3], that minimal, local annotations cannot form a connected graph.11

In the PDT data, local discourse relations form hierarchies up to five levels.
We have identified 5 patterns of 5-level hierarchies (5-LH), with the total of 6
instances, see Table 2. There is also a number of 3- and 4-level hierarchies. An
analysis of random samples (and of all the deepest ones) revealed, surprisingly,
that there can be a 4-level hierarchy spanning 11 sentences, but also a 5-LH
spanning only two sentences, from which one is typically a more complex com-
pound sentence. The “longest” of the 5-LHs includes also 11 sentences (line 14)
and it also exhibits branching (D, G and K as lists, where the G-path is the
deepest). One of the 5-LHs should be in fact one level flatter (line 12), as the
lowest two relations are three coordinated clauses with two and -connectives:
“the troops protected them and fed them and gave them the impression that they
were invulnerable. . . ”. Such structures are notoriously hard to interpret for any
framework, yet in Prague annotation, the annotation is incorrectly hierarchical
where it should have been flat.

To find out how much structure is involved only within individual sentences,
i.e. how much of sentential syntax forms the hierarchies, in a second phase we
filtered out all intra-sentential relations. The numbers in brackets give counts
for patterns of hierarchies, if only inter-sentential relations are accounted for.
The hierarchies of this type are much less frequent and their maximum depth
is just 3, which implies that beyond the sentence boundary, local annotation of
explicit connectives does not represent hierarchical text structuring very often.
A hypothesis for the lack of hierarchies build by only inter-sentential relations is
that only some of the connectives operating at higher discourse levels were iden-
tified and annotated as such, some of them were assigned local coherence links
due to the minimality principle. This issue was recently discussed in [11], where
the annotated non-adjacency of left arguments of paragraph-initial connectives
was partially interpretable as higher discourse structuring, and the relations in
question were in fact adjacent. Moreover, there surely are other, non-connective
cues operating between larger text blocks in our data.

4 Conclusion

In the present study, we have investigated configurations of pairs of discourse
relations in a large corpus annotated for local discourse coherence of Czech,
in order to detect possible features of global discourse structure (higher text
structuring) and to describe the complexity of semantic/pragmatic relations in
11 And the more so, as we do not include implicit and entity-based relations into our

study.
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discourse. We have identified patterns typical (adjacency, progress, hierarchy,
etc.), less typical (argument containment patterns, envelopment) and quite rare
(total overlap, crossing, partial overlaps etc.) in our data and analyzed them
linguistically. We have compared our findings to those of a similar study con-
ducted on English locally annotated texts [5], learning that the proportions of
occurrence of individual patterns roughly correspond in both corpora, although
our study distinguishes some more subtle configurations. Frequent patterns in
our data comply with the RST tree structure rules. Less frequent patterns in the
PDT mostly deal with attribution spans, but also with the annotation strategies
for secondary connectives in cases where they form a whole clause (It means
that. . . ) or they are anaphoric (in this respect). In some rare patterns, where,
in our opinion, there is a violation of the tree structure in the sense of RST,
we have found a small number of linguistically defensible interpretations with
no anaphora or attribution. Nevertheless, such specific settings would still need
to be compared within a true RST interpretation. Second, we have investigated
hierarchies built by the local relations and we have detected even 5-level hierar-
chies. On the other hand, much of the structure is intra-sentential: beyond the
sentence boundary, local annotation of explicit connectives does not expose hier-
archical text structuring very often. We believe that for a local annotation of the
Penn Discourse Treebank type, hierarchical interpretation beyond the sentence
structure may be advantageous, especially when prompted by connectives oper-
ating at higher levels. This perspective is particularly important, as a consistent
application of the minimality principle can lead to a possible misinterpretation
of such higher relations, which otherwise a local annotation scenario is perfectly
fit to incorporate.

In the future, we plan to analyze especially paragraph-initial connectives and
other signals collected during the implicit relation annotation, and, more impor-
tantly, in a RST-like pilot annotation we will compare and evaluate, whether
the identified local and the global hierarchies actually match and represent the
same types of relations.
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Abstract. In this paper we present the efforts to diversify Serbian-
French-English-Spanish corpus ParCoLab. ParCoLab is the project led
by CLLE research unit (UMR 5263 CNRS) at the University of Toulouse,
France, and the Romance Department at the University of Belgrade,
Serbia. The main goal of the project is to create a freely searchable
and widely applicable multilingual resource with Serbian as the pivot
language. Initially, the majority of the corpus texts represented written
language. Since diversity of text types contributes to the usefulness and
applicability of a parallel corpus, a great deal of effort has been made
to include spoken language data in the ParCoLab database. Transcripts
and translations of TED talks, films and cartoons have been included
so far, along with transcripts of original Serbian films. Thus, the 17.6M-
word database of mainly literary texts has been extended with spoken
language data and it now contains 32.9M words.

Keywords: Parallel corpus · Serbian · French · English · Spanish

1 Introduction

ParCoLab1 is a Serbian-French-English-Spanish corpus developed by CLLE
research unit (UMR 5263 CNRS) at the University of Toulouse, France, and
the Department of Romance Studies at the University of Belgrade, Serbia. The
primary goal of the ParCoLab project is to create a multilingual resource for the
Serbian language, searchable via a user-friendly interface that can be used not
only in NLP and contrastive linguistic research but also in comparative literature
studies, second language learning and teaching, and applied lexicography [14,17].
1 http://parcolab.univ-tlse2.fr. Last access to URLs in the paper: 20 Apr 2020.
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Another goal of the ParCoLab project is to add several layers of annotation to
the corpus text, such as lemmas, morphosyntactic descriptions (MSDs) and syn-
tactic relations [10,13,14,17]. Currently, two portions of the Serbian subcorpus
are annotated – a 150K-token literary subcorpus, ParCoTrain-Synt [12], and a
30K-token journalistic subcorpus, ParCoJour [18].2

In the composition of the ParCoLab corpus, quality of the collected data
and the processing of the texts is prioritized over quantity, which requires a
significant implication of the human factor in the process [17]. The creation
of the ParCoLab corpus started with written literary texts which, in general,
come with high quality translations. The result, a useful, high-quality corpus
was created based on literary classics and a careful selection of good translations.
However, uniformity of the corpus has an important impact on NLP applications.
For instance, the annotation models trained on a single domain corpus are not
particularly robust when used to process the texts of another domain [1,2,6,15].
This was confirmed in a parsing experiment in which a parsing model was trained
on the ParCoTrain-Synt literary treebank and used to parse the ParCoJour
journalistic corpus (see [18]).

It is not only the uniformity of the data that has an impact on the NLP appli-
cations but also the type of that data. It was shown that the differences between
spoken and written language have a significant impact on machine translation.
Ruiz and Federico [16] compared 2M words from 2 English-German corpora,
one of which contained TED talks and the other newspaper articles. They found
that TED talks consisted of shorter sentences with less reordering behavior and
stronger predictability through language model perplexity and lexical transla-
tion entropy. Moreover, there were over three times as many pronouns in TED
corpus than in news corpus and twice as many third person occurrences, as well
as a considerable amount of polysemy through common verbs and nouns [16].

It is therefore necessary to diversify corpus data in order to make them use-
ful for the development of good and robust NLP models. The expansion and
diversification of the ParCoLab database represents an important task for Ser-
bian corpus linguistics, considering that Serbian is one of the under-resourced
European languages in terms of both NLP resources and corpora for other spe-
cialists (teachers, translators, lexicographers, etc.). In order to accomplish the
goals of the ParCoLab project, the corpus should be diversified especially by
adding spoken language data.

However, collecting, transcribing, and translating an authentic spontaneous
speech corpus requires considerable financial and human resources. We were
therefore constrained to search for the data closest to the spontaneous speech
that could be collected more efficiently. It was decided to introduce TED talks
and film and cartoon transcripts and subtitles and the term “spoken language
data” is used to refer to this type of data. We are aware that TED talks are writ-
ten and edited to be spoken in a limited time frame and thus do not represent
spontaneous speech. Film and cartoon transcripts, on the other hand, are more

2 Both corpora can be queried via the ParCoLab search engine and are available for
the download at http://parcolab.univ-tlse2.fr/about/ressources.

http://parcolab.univ-tlse2.fr/about/ressources
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likely to resemble transcribed natural speech although they are also written and
edited beforehand. Another possible downside to using this type of documents
is the questionable quality of the available transcripts and translations of TED
talks and films, which may compromise the quality of the corpus material and its
usefulness (cf. [7]). The method used to include transcripts and translations of
films in the ParCoLab corpus tries to palliate the shortcomings of massive inclu-
sion of unverified data and we present it in this paper. In Sect. 2, we introduce
similar corpora in order to demonstrate the position of the ParCoLab corpus
amongst other parallel resources containing Serbian. In Sect. 3, we describe the
state of the ParCoLab database before the inclusion of the spoken data. The
ongoing work on including spoken data in the ParCoLab corpus is detailed in
Sect. 4. Finally, we draw conclusions in Sect. 5, and present plans for future work.

2 Related Work

In this section, we present other corpora containing the Serbian language and
one of three other languages of the project – French, English or Spanish. We also
discuss the share of spoken data in those corpora. There are two bilingual paral-
lel corpora3 developed at the Faculty of Mathematics, University of Belgrade –
SrpEngKor and SrpFranKor. SrpEngKor [8] is a 4.4M token Serbian-English cor-
pus consisting of legal and literary texts, news articles, and film subtitles. There
are subtitles of only three English films containing approximately 20 K tokens.
SrpFranKor [21] is a Serbian-French corpus of 1.7M tokens from literary works
and general news with no spoken data. Texts in both corpora are automatically
aligned on the sentence level and alignment was manually verified.

Texts in the Serbian language also appear in multilingual corpora. “1984” [9]
of MULTEXT-East project contains George Orwell’s 1984 and its translation
into several languages including 150K-token Serbian translation. SETimes is a
parallel corpus of news articles in eight Balkan languages, including Serbian,
and English [20]. Its English-Serbian subcorpus contains 9.1M tokens. ParaSol
(Parallel Corpus of Slavic and Other Languages), a corpus originally developed
under the name RPC as a parallel corpus of Slavic languages [22], was subse-
quently extended with texts in other languages [23]. The Serbian part of the
corpus contains 1.3M tokens of literary texts, of which only one novel is orig-
inally written in Serbian. These corpora either do not include spoken data in
Serbian language or the film subtitles they contain are neither relevant in size
nor originally produced in the Serbian language.

There are, however, two multilingual corpora, each containing a Serbian sub-
corpus with film subtitles – InterCorp and OPUS. InterCorp4 [5], contains 31M
tokens in Serbian. Texts from literary domain contain 11M tokens, whereas
another 20M tokens come from film subtitles. Given that the pivot language
is Czech, sentences in Serbian are paired with their Czech counterparts. It is
3 Consultable at: http://www.korpus.matf.bg.ac.rs/korpus/login.php. It is necessary

to demand authorization to access the interface.
4 The official website of the project is: https://intercorp.korpus.cz.

http://www.korpus.matf.bg.ac.rs/korpus/login.php
https://intercorp.korpus.cz
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unclear which portion of the Serbian subcorpus can be paired with the subcor-
pora in languages of the ParCoLab project. According to the information5 on
the official website, subtitles are downloaded from the OpenSubtitles6 database.
OPUS7 [19] also contains subtitles from this database. The Serbian subcorpus
contains 572.1M tokens. Neither alignment nor the quality of the translations
are manually verified in these two corpora, leading to a significant amount of
misaligned sentences and questionable quality of the translations. It is highly
unlikely that these corpora contain films originally produced in Serbian.

Serbian spoken data can also be found in several multilingual corpora of TED
talks. TED talks are lectures presented at non-profit events in more than 130
countries [24]. They are filmed and stored in a free online database at https://
www.ted.com/talks. TED provides English transcripts which are translated by
volunteer translators. The translation is then reviewed by another TED trans-
lator, who has subtitled more than 90 min of talk content. Finally, the reviewed
translation is approved by a TED Language Coordinator or staff member [24].
Hence, the TED talks are supposed to be of higher quality than the subtitles from
OpenSubtitles database, which are not verified. Free access to hours of spoken
data translated into more than 100 languages has generated works on collect-
ing corpora based on TED talks. WIT8 [4], is an inventory that offers access to
a collection of TED talks in 109 languages. All the texts for one language are
stored in a single XML file. There are 5.3M tokens in the Serbian file. In order
to obtain parallel corpus, it is necessary to extract TEDs by their ID and to use
alignment tools since the subcorpus for each language is stored separately [4].
MulTed [24] is a parallel corpus of TED talks which contains an important
amount of material in under-resourced languages such as Serbian. The Serbian
subcorpus comprises 871 talks containing 1.4M tokens. All the translations are
sentence-aligned automatically. Only the English-Arabic alignment was manu-
ally verified [24]. According to the official website9 of the project, the corpus will
be available for download soon.

As already mentioned in Introduction, the goal of the ParCoLab project is to
create a parallel corpus of high quality. Even though it is clear that ParCoLab
is not the largest available parallel corpus containing the Serbian language, an
important effort is devoted to ensuring the quality of the alignment. Besides
prioritizing quality over quantity, we pay special attention to including original
Serbian documents. This is also true for film subtitles, whose translation we
improve. Another advantage of the ParCoLab corpus is that it contains tran-
scripts of Serbian films, providing original Serbian content. In comparison to
other corpora destined to NLP users, ParCoLab is accessible and freely available
to general public via the user-friendly interface, which widens its applicability.

5 https://wiki.korpus.cz/doku.php/en:cnk:intercorp:verze12.
6 https://www.opensubtitles.org/en/search/subs.
7 http://opus.nlpl.eu/OpenSubtitles2016.php.
8 https://wit3.fbk.eu/#releases.
9 http://oujda-nlp-team.net/en/corpora/multed-corpus.

https://www.ted.com/talks
https://www.ted.com/talks
https://wiki.korpus.cz/doku.php/en:cnk:intercorp:verze12
https://www.opensubtitles.org/en/search/subs
http://opus.nlpl.eu/OpenSubtitles2016.php
https://wit3.fbk.eu/#releases
http://oujda-nlp-team.net/en/corpora/multed-corpus
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Since 2018, it has been possible to use ParCoLab search engine directly online
without creating an account.

3 ParCoLab Content

The texts included in ParCoLab database are aligned with their translations
using an algorithm integrated in the corpus platform. The alignment process
starts with 1:1 pairing of chapters. It then continues on the level of paragraphs
and, finally, of sentences. Possible errors are pointed out by the algorithm and
corrected manually afterwards [10,11,17]. Corpus material is stored in XML
format in compliance with TEI P5 (https://tei-c.org/guidelines/p5). XML files
include standardized metadata – title, subtitle, author, translator, publisher,
publication place and date, creation date, source, language of the text, language
of the original work, domain, genre, number of tokens, etc. [17].

ParCoLab has been growing steadily since its inception. Initially, it contained
2M tokens [17]. Before the work on diversification presented in this paper, it
contained 17.6M tokens, with 5.9M tokens in Serbian, 7.4M in French, 3.9M
in English and 286K in Spanish. All the languages except for Spanish were
represented through both original works and translations. In Spanish, there were
only fiction translations. Its low representation is due to the fact that it has been
incorporated recently in order to palliate the lack of existing Serbian-Spanish
corpora. There is ongoing work on including more Spanish texts, both original
and translated.

Regarding the type of texts, the corpus content came from predominantly
literary works [3]. A small portion of the corpus was characterized as web con-
tent, legal and political texts and spoken data, but they were not significant
in size – ∼30K tokens of film and TV show subtitles and ∼60K tokens from
TED talks [14]. There were some efforts to diversify the corpus by including
domain specific texts from biology, politics, and cinematography, but this mate-
rial remained secondary. The original number of tokens per type of data and per
language is shown in Table 1.

Table 1. Token distribution per language and text type before including spoken data.

Text type Serbian French English Spanish Total %

Literary texts 5,535,926 6,542,014 3,301,397 286,948 15,666,285 88.77

Non-literary written texts 340,060 761,595 566,656 0 1,668,311 9.45

Spoken data 104,935 125,919 82,504 0 313,358 1.78

Total 5,980,921 7,429,528 3,950,557 286,948 17,647,954

% of corpus 33.89 42.10 22.39 1.63

Even though there were some diversification efforts, the literary works remained
dominant and represented 88.7% of the corpus. ParCoLab corpus consisted
mainly of written texts, apart from only 1.78% of spoken data [11]. As men-
tioned in Introduction, linguistic differences between written and spoken corpus

https://tei-c.org/guidelines/p5
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influence the performance of NLP tools. Therefore, we put in a great deal of
effort to overcome the main shortcoming of the corpus, which we discuss in the
next section.

4 Spoken Language Data in ParCoLab

As we have already discussed in Introduction, one of the easiest way to diversify
a corpus by adding spoken language data is to include TED talks and film
subtitles even though this material is written and edited before oral production.
This method presents a number of other shortcomings. For instance, some of
the subtitles are translated automatically or by amateur translators without
subsequent verification by professional translators. In addition, transcripts and
translations are influenced by the number of characters that can appear on the
screen. Moreover, the subtitles usually do not represent the translation of the
speech in the film, but the translation of the transcripts of that speech, which
are edited to fit the character number limit (see [7]). In what follows, we describe
how these downsides were overcome in the present work.

Although the quality of TED talks translations cannot be guaranteed, they
are reviewed by experienced translators and are supposed to be of higher quality
then subtitle translations downloaded from the OpenSubtitles database. There-
fore, we downloaded TED talks from the official TED site in a batch. We did not
use the transcripts existing in other corpora (cf. Sect. 2). Transcripts of original
TED talks are included in the database alongside their translations into three
languages of the project – Serbian, French, Spanish. At the time of writing this
paper, 2000 TED talks have been included in the ParCoLab database for a total
of 13,458,193 tokens. A TED talk in ParCoLab corpus contains 1,652 words on
average. The shortest TEDs contain only brief introductions or explanations of
musical or art performances of about 200 words, whereas the longest contain
around 8,000 words. They date from 1984 to 2019.

As for the film subtitles, the methodology is slightly different. Original
English and French transcripts are downloaded from the OpenSubtitles database.
The Serbian films were manually transcribed since it was not possible to down-
load original transcripts or to find open source speech-to-text tools for Serbian.
The inclusion of the Serbian film transcripts makes the ParCoLab corpus unique.
The film subtitles translations are downloaded from the OpenSubtitles database
and then improved by students who are translators in training and by the mem-
bers of the ParCoLab team who work as professional translators as well. More-
over, the subtitles are compared to the actual speech in the film and corrected
accordingly. That way, the limit on the number of characters to appear on screen
does not affect the quality of the transcript and translation.

Apart from film transcripts, the transcripts of a large collection of cartoons
are being included in the ParCoLab corpus. The data is collected from the Smurfs
official Youtube channels10 in all four languages of the corpus. The transcripts

10 https://www.youtube.com/channel/UCeY4C8Sbx8B4bIyREPSvORQ/videos.

https://www.youtube.com/channel/UCeY4C8Sbx8B4bIyREPSvORQ/videos
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of popular children’s stories produced by Jetlag Productions11 are also included
in the corpus in all four languages. One of the advantages of this approach is
the fact that the cartoons are dubbed. That way, transcripts in all languages are
transcripts of the speech in that language and not the translations of the edited
transcripts of that speech. There are currently 19 The Smurfs cartoons and 19
children stories from the Jetlag productions in all four languages.

All the spoken language data is stored in XML files in compliance with
the TEI P5 guidelines and included in the ParCoLab database using the same
methodology as for the rest of the corpus (see Sect. 3). Apart from standardized
metadata, the name of the TED editor is included. Time spans are omitted.
Additional metadata for film and cartoon transcripts represent names of char-
acters, gender, and age in order to make it useful for linguistic analysis.

There are now 32.9M tokens in ParCoLab database. The Serbian subcorpus
currently contains 9.6M tokens, French 11.5M, English 7.7M, whereas the Span-
ish portion contains 4.06M. The current percentage of spoken data is listed in
Table 2.

Table 2. Token distribution per language after adding spoken data.

Text type Serbian French English Spanish Total % of corpus

TED talks 3,215,129 3,592,230 3,304,572 3,346,261 13,458,193 40.88

Films 292,916 356,749 252,355 0 902,020 2.74

Cartoons 110,865 68,516 173,865 23,324 376,570 1.14

Spoken data 3,618,910 4,017,495 3,730,792 3,369,585 14,736,783 44.77

Written data 5,989,500 7,475,463 4,030,951 687,127 18,183,041 55.23

Total 9,608,410 11,492,958 7,761,743 4,056,712 32,919,824

% of corpus 29.19 34.91 23.58 12.32

The percentage of literary works dropped from 88.7% to 55.23% whereas the
spoken data represent 44.77% instead of 1.78% of the corpus before the diversi-
fication. We can conclude that the inclusion of, what is called here, spoken data
has already demonstrated a substantial progress in diversifying ParCoLab cor-
pus. All the spoken material can be queried via the user-friendly interface which
makes this corpus accessible not only to researchers but also to the translators,
lexicographers, teachers, etc. The Spanish section of the corpus rose from 1.63%
to 12.32%.

When it comes to the qualitative evaluation of the corpus, this diversifica-
tion helped to cover certain senses and contexts of specific words. For instance,
the Serbian adjective domaći (Eng. domestic) mostly occurred with the sense
‘related to the home’ in the original corpus [11]. Currently, its dominant sense
is ‘not foreign’, which is in accordance with the monolingual Serbian corpora.
Furthermore, as was supposed previously [10], film transcripts contributed to

11 https://en.wikipedia.org/wiki/Jetlag Productions.

https://en.wikipedia.org/wiki/Jetlag_Productions
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augmenting the number of the examples in which French adjective sale (Eng.
dirty) is ‘used to emphasize one’s disgust for someone or something’.

5 Conclusion and Future Work

The quadrilingual corpus ParCoLab is one of rare parallel resources containing
a Serbian subcorpus, especially when it comes to original Serbian texts. In the
expansion of the corpus, priority was given to quality over quantity. In addition
to continuing work on enlarging the corpus, a great deal of effort has also been
devoted to the diversification of the predominantly literary content. This paper
describes the method that allowed us to include transcripts and translations of
2000 TED talks containing 13.5M tokens in ParCoLab. Apart from TED talks,
there are film subtitles, among which are those originally produced in Serbian,
as well as the transcripts of dubbed cartoons that are included in the ParCoLab
database. By including additional 73 film and cartoon transcripts alongside the
aforementioned TED talks, ParCoLab corpus database surpasses 32.9M. Thus
we created the material not only for the development of NLP tools (especially
machine translation) but also for teaching and learning French, English, Serbian,
and Spanish as foreign languages and for lexicography.

While the ParCoLab content is being diversified more and more, the anno-
tated portion of the corpus still comes from written documents. Given that the
training corpus for the annotation tools needs to be built on the in-domain data
to perform well, it is necessary to improve the training corpus. A new spoken
language data subcorpus provides us with material to pursue this goal. There-
fore, our next steps in annotating the corpus would be to tag, lemmatize, and
parse added spoken subcorpus.
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tehnologije, Zagreb (2014)
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Zimny, R. (eds.) Beiträge der Europäischen Slavistischen Linguistik (POLYSLAV)
9, pp. 123–138. Verlag Otto Sagner, München (2006)

https://doi.org/10.1007/978-3-319-64206-2_18
https://doi.org/10.1007/978-3-319-64206-2_18
https://serbica.u-bordeaux-montaigne.fr/index.php/revues


70 D. Terzić et al.
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Abstract. This paper presents a quantitative analysis on the morpho-
logical complexity of Malayalam language. Malayalam is a Dravidian
language spoken in India, predominantly in the state of Kerala with
about 38 million native speakers. Malayalam words undergo inflections,
derivations and compounding leading to an infinitely extending lexicon.
In this work, morphological complexity of Malayalam is quantitatively
analyzed on a text corpus containing 8 million words. The analysis is
based on the parameters type-token growth rate (TTGR), type-token
ratio (TTR) and moving average type-token ratio (MATTR). The val-
ues of the parameters obtained in the current study is compared to that
of the values of other morphologically complex languages.

Keywords: Morphological complexity · Types and tokens · TTR ·
Malayalam language

1 Introduction

Malayalam1 is a language with complex word morphology. Malayalam words
undergo inflections, derivations and compounding producing an infinite vocabu-
lary [19]. As a language with high morphological complexity it has a large num-
ber of wordforms derived from a single root word (such as the English words
houses and housing, which stem from the same root word house). Morphological
complexity can be measured either in terms of the average number of grammat-
ical features getting encoded into a word or in terms of the diversity of word
forms occurring in the text corpus of a language. The former approach is called
typological analysis and the latter one is called corpus based analysis of mor-
phological complexity [5]. Morphological complexity of a language has its impact
on applications like automatic speech recognition (ASR) where speech to text
conversion depends largely on the underlying language model. A measure of the

1 https://en.wikipedia.org/wiki/Malayalam.
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complexity is important for improving and adapting the existing methods of
natural language processing (NLP) [10].

This paper analyses the morphological complexity of Malayalam in terms of
corpus based parameters namely, type-token growth rate (TTGR), type-token
ratio (TTR) and moving average type-token ratio (MATTR). These parameters
are formally defined in Sect. 5. The study is conducted on a Malayalam text
corpus of 8 million words.

2 Literature Review

Complexity of a natural language can be in terms of morphology, phonology
and syntax [3]. Morphological level complexity of a language implies a large
possibility of inflections (by grammatical tense, mood, aspect and case forms)
and agglutinations (of different wordforms). The number of possible inflection
points in a typical sentence, the number of inflectional categories, and the number
of morpheme types are all morphological complexity indicators [4]. It requires
a strict linguistic supervision to analyze each word in terms of its morpheme
types to quantify complexity in this manner. Bentz et al. performed typological
analysis of morphological complexity involving human expert judgement and
compared it with corpus based analysis of morphological complexity and drew
strong correlation between the two [5].

Covington et al. suggested the use of MATTR as a reliable measure of linguis-
tic complexity independent of the total corpus length and suggested an efficient
algorithm for computing MATTR [6]. Kettunen [13] compared corpus based
parameters like TTR and MATTR with other methods of complexity measures
as defined by Patrick Juola [12] and concluded both TTR and MATTR give a
reliable approximation of the morphological complexity of languages. Ximena
Gutierrez-Vasques et al. suggested estimating the morphological complexity of
a language directly from the diverse wordforms over a corpus is relatively easy
and reproducible way to quantify complexity without the strict need of linguistic
annotated data [10].

3 Problem Statement

Malayalam has seven nominal case forms (nominative, accusative, dative, socia-
tive, locative, instrumental and genitive), two nominal number forms (singular
and plural) and three gender forms (masculine, feminine and neutral). These
forms are indicated as suffixes to the nouns. Verbs in Malayalam get inflected
based on tense (present, past and future), mood (imperative, compulsive, promis-
sive, optative, abilitative, purposive, permissive, precative, irrealis, monitory,
quotative, conditional and satisfactive), voice (active and passive) and aspect
(habitual, iterative, perfect) [16,19]. The inflecting suffix forms vary depending
on the final phonemes of the root words. Words agglutinate to form new words
depending on the context [2]. Table 1 gives examples of a few complex word
formation in Malayalam.
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Table 1. Complex morphological word formation in Malayalam

Malayalam Word Translation to English Remark
( ) in the box N

to the child N

baby elephant Compound word formed by agglu-
tination of nouns
phant) and

to the baby elephants N
plural form of the compound word

do not stay awake Negative imperative mood of the verb

will be singing Future tense iterative aspect of the
verb

The productive word formation and morphological complexity of Malayalam
are documented qualitatively in the domain of grammatical studies. However
a quantitative study on the same is not yet available for Malayalam language.
Adoption of general NLP solutions of high resource languages like English is not
feasible in the setting of morphologically complex languages. A functional mor-
phology anlayzer, mlmorph addresses the morphological complexity of Malay-
alam applying grammatical rules over root word lexicon [19]. Quantification of
linguistic complexity is important to adapt and improve various NLP applica-
tions like automatic speech recognition, parts of speech (POS) tagging and spell
checking [9,14,17,18]. This study aims at quantifying the morphological com-
plexity of Malayalam in terms of corpus parameters.

4 Material

This study is performed on Malayalam running text from Wikipedia articles. The
Malayalam Wikipedia dump is curated and published by Swathanthra Malay-
alam Computing (SMC) as SMC Corpus [1]. It consists of 62302 articles. The
Malayalam running text often has foreign words, punctuation and numerals
present in it. The corpus is first cleaned up to eliminate non Malayalam con-
tent and punctuations. It is then unicode normalized [7]. The cleaned up corpus
contained 8.14 million Malayalam words. The nature of the text is formal ency-
clopedic Malayalam.

5 Method

An element of the set of distinct wordforms in a running text is called a type.
Every instance of a type in the running text is called a token. For example,
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in the sentence, To be or not to be is the question, there are 7 types and 9
tokens. The types to and be repeat two times each. The relationship between the
count of types and tokens is an indicator of vocabulary richness, morphological
complexity and information flow [10]. The type-token ratio (TTR) is a simple
baseline measure of morphological complexity [13]. TTR is calculated by the
formula defined in Eq. (1), where V is the count of types and N is the count of
tokens.

TTR =
V

N
(1)

The type count gets expanded due to productive morphology and higher
values of TTR correspond to higher morphological complexity [5]. However TTR
is affected by the token count, N [6]. Longer the corpus, it is more likely that the
new tokens belong to the types that have occurred already. The value of TTR gets
smaller with the increase in token count. Computing TTR over incrementally
larger corpus can indicate how the TTR varies with the token count. In this
study, TTR is computed with different token counts starting with 1000 and
increasing upto the entire corpus size. This has enabled comparison of Malayalam
with the morphological complexity of other languages whose TTR values are
available in literature for different token counts.

The type-token growth rate (TTGR) curve is obtained by plotting the graph
of token count vs. type count. It indicates how many new types appear with the
increase in the token count. If the slope of the growth rate curve reduces and
approaches horizontal at a lower value of token count, it indicates a simple mor-
phology [15]. For a morphologically complex language, the type count continues
to grow with the token count [11].

The moving average type-token ratio (MATTR) computes the relationship
between types and tokens that is independent of the text length. Its efficient
implementation by Covington et al. has been used by Kettunen to compare the
morphological complexity of different European languages [6,13]. The algorithm
to compute MATTR is as follows [8]:

Algorithm 1: Computation of MATTR
Data: A text Corpus
Result: MATTR

1 N ← length of corpus;
2 L ← length of window (L¡N);
3 start ← initial position of window ;
4 i = start ← index of window position;
5 while i ≤ (N − L + 1) do
6 Vi = type count in the window [i, i + L − 1];

7 TTR(i) = Vi
L

;
8 i = i + 1;

9 end

10 MATTR(L) =
∑N−L+1

i=1 TTR(i)

N−L+1
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Fig. 1. TTGR and TTR plot of Malayalam for SMC Corpus of Wikipedia text

The corpus with N tokens is divided into the overlapped subtexts of the same
length, say L, the window length. Window moves forward one token at a time
and TTR is computed for every window. MATTR is defined as the mean of the
entire set of TTRs [6]. In this work L is chosen as 500, enabling comparison with
other languages in the study by Kettunen, where the window length is 500 [13].

6 Result and Discussion

Counting the types and tokens on SMC Corpus, TTGR and TTR curves are
plotted. Figure 1 shows the TTGR curve on the left and the TTR on the right.
TTGR curve shows a steep rise initially. As the token count reaches 8 million,
the type count is around 1.2 million. But the curve does not flatten even at that
token count. This pattern is a common property of Dravidian languages as many
unseen wordforms appear as the corpus size is increased [15]. TTR is very high
at around 0.82 when the token count is 1000. TTR reduces to around 0.44 when
the token count is 0.1 million and finally saturates at around 0.16 for the full
corpus of 8 million tokens.

To compare the TTR obtained for Malayalam with that of other languages,
we have used the data reported for European languages by Kettunen and for
Indian languages by Kumar et al. [13,15]. Figures 2a and 2b illustrates the com-
parison. Only those languages with the highest reported TTRs in the respective
papers and English are used for comparison. The token size (in millions) used
for computing TTRs used in the comparisons is indicated for each language.
Malayalam clearly shows more morphological complexity than the European
languages, Finnish, Estonian, Czech, Slovak, English and Spanish in terms of
TTR values. Values of TTR obtained for Malayalam when compared with other
Indian languages Marathi, Hindi, Tamil, Kannada and Telugu indicate a higher
level of morphological complexity for Malayalam.
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Fig. 2. Comparison of Malayalam TTR with that of European Union Constitution
Corpus [13] and DoE-CIIL Corpus [15]

Fig. 3. TTR plotted at different segments of the SMC corpus for 1000 window positions

MATTR is computed with window length, L = 500 over different segments
of the SMC corpus. TTR values for the segments with window position index
1–1000, 5001–6000, 15001–16000 and 18001–19000 are plotted in Fig. 3. These
segments gave MATTR values 0.834, 0.839, 0.836 and 0.800 respectively. Com-
puting MATTR with 0.1 million tokens of SMC corpus resulted in a value 0.806
for Malayalam. Kettunen has reported MATTR values on European Union con-
stitution corpus with each language having a token count slightly above 0.1
million [13]. A comparative graph of the MATTR values reported by Kettunen
with the values obtained for Malayalam is plotted in Fig. 4. It clearly indicates
a higher degree of morphological complexity for Malayalam in terms of MATTR
on a formal text corpus. An equivalent comparison with other Indian languages
could not be done due to non availability of reported studies.
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Fig. 4. Comparison of MATTR values computed for Malayalam on SMC Corpus with
that of European Union Constitution Corpus [13]

7 Conclusion

In this paper we have reported a quantitative analysis of the morphological
complexity of Malayalam language on a formal text corpus of 8 million words.
The corpus based analysis has revealed high degrees of morphological complexity
of Malayalam in terms of TTR and MATTR. It is important that this aspect
of morphological complexity be considered while developing natural language
processing applications like automatic speech recognition, spell checking and
POS tagging for Malayalam. This involves preparing morpheme based language
models and phonetic lexicons for ASR and performing a morphological analysis
of words for POS tagging and spelling correction.
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Abstract. Labeling explicit discourse relations is one of the most chal-
lenging sub-tasks of the shallow discourse parsing where the goal is to
identify the discourse connectives and the boundaries of their arguments.
The state-of-the-art models achieve slightly above 45% of F-score by
using hand-crafted features. The current paper investigates the efficacy
of the pre-trained language models in this task. We find that the pre-
trained language models, when finetuned, are powerful enough to replace
the linguistic features. We evaluate our model on PDTB 2.0 and report
the state-of-the-art results in extraction of the full relation. This is the
first time when a model outperforms the knowledge intensive models
without employing any linguistic features.

Keywords: Explicit discourse relations · Shallow discourse parsing ·
Argument labeling

1 Introduction

Shallow discourse parsing (SDP) refers to the task of segmenting a text into a
set of discourse relations. A typical discourse relation consists of two arguments
and a discourse connective accompanied with a sense reflecting the semantic
relation between the arguments (e.g. cause, precedence). Within the Penn Dis-
course Treebank (PDTB), discourse connectives are assumed to be the lexical
items which connect two abstract objects such as events, states, and propositions
following the definition of [8]. There are two main types of discourse relations,
explicit and implicit, where the difference is the presence of an overt discourse
connective. Parsing explicit and implicit relations are often treated as separate
tasks, and implicit discourse relations have received much of the attention due to
the challenges brought by a lack of an overt signal. In this work, we instead focus
on the less studied task of identifying explicit discourse relations. This consists
of identifying discourse connectives and their arguments in text.

Labeling explicit relations is a challenging task due to three main reasons:
(i) connectives do not always assume a discursive role (ii) the arguments can
consist of discontinuous text spans (iii) the same text span can have different
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roles in different relations. All three challenges are illustrated in the Example 1
and 21.

(1) Although Dr. Warshaw points out that stress and anxiety have their positive
uses, ‘stress perceived to be threatening implies a component of fear and
anxiety that may contribute to burnout.’ He also noted that various work
environments, such as night work, have their own stressors.

(2) Although Dr. Warshaw points out that stress and anxiety have their
positive uses, “stress perceived to be threatening implies a component of
fear and anxiety that may contribute to burnout”

Example 1 presents a case where a complete discourse relation, which is pro-
vided in Example 2, is embedded within another relation. Therefore, the text
span ‘stress and ... uses’ assumes two different roles in two different relations; it
is part of the first argument in the first relation, whereas it is the second argu-
ment in Example 2. Additionally, the second argument in Example 1 consists of
an discontinuous text span as it is interrupted by the connective. Similarly, the
text span (‘Dr. Warshaw ... that’) creates discontinuity between the connective
and the second argument in Example 2 as it does not belong to the relation at
all. Finally, the lexical item and, which is the most common discourse connective,
in Example 2 do not assume any discursive role in this case as it only connects
two noun phrases rather than abstract objects.

Most existing literature heavily relies on feature engineering to deal with
these issues, with [2] and [3] being the only notable exceptions. The current
work follows the latter studies in performing explicit discourse relation labeling
without resorting to any linguistic features. Specifically, we try to answer the
following question: can pre-trained language models, which have shown signifi-
cant gains in a wide variety of natural language tasks, replace the rich feature
sets used in a standard parser? To this end, we model explicit discourse relation
labeling as a pipeline of two tasks, namely connective identification and argu-
ment labeling. Each sub-task is regarded as a token-level sequence prediction
problem and modeled as a simple neural architecture employing BERT [1].

We evaluated our system on the PDTB 2.0 corpus. Experimental results show
that contextual embeddings are indeed powerful enough to replace the linguistics
features used in previous work. Unlike the previous feature-independent models,
the proposed system manages to improve over the existing systems by achieving
8% increase in the extraction of the both arguments2. Besides the performance
gain, the proposed system has the benefit of being directly applicable to any
raw text as it does not require any pre-processing and can straightforwardly
be extended to other languages with available training data and a pre-trained
language model.

1 In the examples, unless otherwise stated, Arg2 is shown in bold, Arg1 is in italics
and the discourse connective is underlined.

2 The source code is available at: https://github.com/MurathanKurfali/shallowdisc.

https://github.com/MurathanKurfali/shallowdisc


Labeling Explicit Discourse Relations Using Pre-trained Language Models 81

2 Background

Shallow discourse parsing (SDP) aims to uncover the local coherence relations
within text without assuming any tree/graph structure between the relations,
hence the name shallow. It started with the release of PDTB 2.0 [8] and, lately,
it attracted attention thanks to the two subsequent shared tasks at CoNLL
2015 [12] and 2016 [13]. Most of the participating systems treat SDP as a pipeline
of sub-tasks following [5] which is the first full end-to-end PDTB-style discourse
parser. A standard pipeline starts with labeling explicit discourse relations which
is followed by sense classification and labeling Implicit discourse relations. Label-
ing explicit relations are further decomposed into a set of sub-tasks which are
connective identification, argument position identification, extraction of each
argument. Each sub-task is addressed by employing a rich set of linguistics
features, including dependency trees, part-of-speech tags, Brown clusters and
Verbnet classes [12,13].

[2] marks the beginning of a new line of research which is to perform shallow
discourse parsing without any feature engineering. The authors address labeling
of explicit discourse relations task in a simplified setting where the task is reduced
to determining the role of each token within a pre-extracted relation span. The
authors train a LSTM on those spans which takes Glove embeddings as its input
and classifies each token with one of the four labels which are Conn, Arg1, Arg2,
None. The network achieves F-score of 23.05% which is significantly lower than
the state-of-the-art models. Nevertheless, the study is of great importance as
it shows that argument labeling is possible without any feature engineering.
[3] extends the idea of [2] to full shallow discourse parsing on raw texts. They
employ a BiLSTM and a sliding window approach, according to which the text
is split into overlapping windows. In each window the system tries to capture
the parts which belong to a discourse relation. The predicted relation spans are
later assembled using a novel aggregation method based on Jaccard distance. The
proposed hierarchy performs considerably better than [2] but still falls short of
matching the state-of-the-art methods.

Method-wise, the closest work to the current paper is that of [6] (ToNy) which
employs contextual embeddings to perform multilingual RST-style discourse seg-
mentation. Instead of directly finetuning BERT, ToNy uses a simplified sequence
prediction architecture which consists of an LSTM conditioned on the concate-
nation of the contextual embeddings (either Elmo or BERT) and the character
embeddings obtained by convolution filters.

3 Method

Unlike previous studies which realize labeling explicit discourse relations as a
long pipeline of tasks which usually consists of 4 to 6 sub-components [9,11],
we propose a simplified pipeline consisting of only two steps, namely connective
identification and argument extraction.

The connective identification step helps us to exploit the lexicalized approach
of the PDTB. In the PDTB framework, the discourse connectives function as
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anchor points and without them, determining the number of relations in a text
become highly problematic, especially when the arguments of multiple relations
overlap as in Example 1 and 2. Bypassing connective identification would require
an extra post-processing step to sort different relations with common arguments
out which is not a trivial task. In order to avoid those problem, we perform
connective identification as the first task, mimicking the original annotation
schema.

Following the previous studies of [2,3], we approach explicit discourse relation
labeling as an N-way token classification problem. To this end, we follow the
standard token classification architecture used in sequence prediction tasks, e.g.
named entity recognition, employing BERT [1]. The architecture consists of a
BERT model with a linear layer on top. The linear layer is connected to the
hidden-states of the BERT and outputs the label probabilities for each token
based on the sub-task it is trained on.

3.1 Connective Identification

The aim of this component is to identify the lexical items which assume a discur-
sive role in the text. Although connective identification seems to be the easiest
step among the other sub-tasks of shallow discourse parsing [4,9], it has its own
challenges. One problem is that discourse connectives in PDTB can be mul-
tiword expressions such as lexically frozen phrases, e.g. on the other hand, or
as modified connectives which co-occur with an adverb e.g. partly because, par-
ticularly since. Such multi-word connectives pose a challenge because different
connectives may also appear in the text consecutively without forming a longer
connective, as illustrated in Example 3 and 4.

(3) a. Typically, developers option property, and then once they get the
administrative approvals, they buy it (Conjunction)

b. Typically, developers option property, and then once they get the
administrative approvals, they buy it (Precedence)

c. Typically, developers option property, and then once they get the
administrative approvals, they buy it (Succession) (WSJ 2313)

(4) Consider the experience of Satoko Kitada, a 30-year-old designer of vehicle
interiors who joined Nissan in 1982. At that time, tasks were assigned
strictly on the basis of seniority (Synchrony) (WSJ 0286)

Both Example 3 and 4 involve a three word sequence annotated as connectives
but in Example 3 each token signals a different relation whereas in the latter
example they are part of the same connective, hence signal only one relation.
Therefore, correct prediction of the boundaries of the connectives is as crucial
as identifying them as such because failing to do so may cause whole system
to miss existing relations or add artificial ones. To this end, unlike previous
studies [2,3], we assign different labels to single and multi token connectives
(#Conn and #MWconn respectively) so at the time of inference, we can decide
whether consecutive tokens predicted as connective is a part of a multiword
connective or signal different relations.
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Table 1. Number of annotations with various span lengths, in terms of the number of
words in the relation, in the training set which consists of 14722 relations in total.

# of Annotations (%) Span length

6231 (42.32%) <25

12243 (83.16%) <50

13810 (93.81%) <75

14240 (96.73%) <100

14617 (99.29%) <250

Average 36.79

One drawback of using the publicly available BERT model is that text spans
longer than 512 wordpieces cannot be encoded [1]. Therefore, we decided to split
the text into paragraphs to ensure the coherence of the text segments as splitting
into an arbitrary number of sentences would risk having incoherent segments.
Manual inspection of the training data reveals that majority of the relations
(84.94%) have both of their arguments in the same paragraph which further
support our decision.

3.2 Argument Extraction

The argument extractor needs to identify the Arg1 and Arg2 spans of each pre-
dicted connective. The extractor searches for the arguments of the relation within
a window of 100 words centered around the discourse connective3. Following the
IOB2 format, the first word of each argument is tagged as #ARGX-B while
other words within the argument spans are simply labeled as #ARGX where X
is the argument number (1 or 2). The words outside of the relations are labeled
as #NONE.

The window size is determined by considering the number of relations that
can be covered and the label distribution in the extracted spans as longer win-
dows sizes introduce a high of number of #NONE labels which negatively affect
the training. Based on the span lengths of the relations in the training data
(Table 1), window size of 100 presents itself as the best candidate since longer
windows only minimally increase the coverage.

4 Experiments

Following the CoNLL 2015 setting, we use the PDTB Sections 2–21, 22 and 23 as
the training, development and test set respectively. We use the cased BERTbase

model in our experiments4 and the classifiers are implemented using the Hug-
gingface’s Transformer library5. The maximum sequence length is set to 400
3 For multiword connectives, we center the window around the first token.
4 https://github.com/google-research/bert.
5 https://github.com/huggingface/transformers.

https://github.com/google-research/bert
https://github.com/huggingface/transformers
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for connective identification and 250 for argument extraction. We use AdamW
optimizer with the learning rate of 5 × 10−5 and ε = 10−8. Both classifiers are
fine-tuned for 3 epochs. We train each classifier for 4 runs in order to estimate
the variance and report the average performance.

5 Results and Discussion

We evaluate our model using the official evaluation script of the CoNLL 2016
shared task6. The script calculates the exact match scores of the identified con-
nectives, extracted spans of the first and the second argument separately as well
as the identification of the both arguments together (Arg1+Arg2).

Table 2. Exact match results (precision, recall, F-score) of explicit discourse relation
labeling on PDTB test set. The models within horizontal lines are the best performing
systems of CoNLL 2015, CoNLL 2016 and the feature independent systems respectively.
*refers to the results when the gold connectives are provided to the model.

Conn Arg1 Arg2 Arg1+Arg2

P R F P R F P R F P R F

[11] 94.83 93.49 94.16 51.05 50.33 50.68 77.89 76.79 77.33 45.54 44.90 45.22

[10] – – 92.77 – – 50.05 – – 76.23 – – 44.58

[14] 91.8 86.6 89.1 47.5 44.8 46.1 70.5 66.4 68.4 40.0 37.7 38.8

[7] 83.42 92.22 87.6 51.25 56.65 53.81 68.36 75.57 71.79 43.12 47.66 45.28

[9] 92.42 94.88 93.63 49.73 51.06 50.38 75.73 77.75 76.73 44.31 45.49 44.9

[4] 99.67 98.19 98.92 42.47 41.84 42.15 76.06 74.92 75.48 36.51 35.97 36.24

[3] 71.35 62.73 66.76 33.16 29.15 31.03 52.47 46.13 49.09 37.25 32.75 34.86

[3]* – – – 46.69 44.59 45.62 68.94 65.83 67.35 48.16 45.99 47.05

Ours 96.62 96.93 96.77 60.02 60.22 60.12 80.37 80.63 80.50 53.20 53.37 53.28

We compare our results with the top performing systems of CoNLL 2015/16
Shared tasks as well as with [3] which is the only feature-independent study that
can run on raw texts (Table 2). We selected the top systems in each sub-task
from CoNLL 2016 whereas for CoNLL 2015 we chose the top 3 ranked systems
as [11] single-handedly achieved the best score in each sub-task that year.

Connective Identification: In line with the previous work, connective identi-
fication is the easiest step where our model achieves almost 97% F-score. Since
the standard deviation among different runs is pretty low (<0.5), we randomly
selected one run and manually checked the predicted connectives. In total, 16
unique text spans are incorrectly predicted as discourse connective for a total of
28 times where most of them are and tokens (30.6%). Similarly, and also con-
stitutes the 30% of the false negatives (the connectives which are not labeled as

6 https://github.com/attapol/conll16st.

https://github.com/attapol/conll16st
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such by the classifier), suggesting that and is more challenging to disambiguate
in term of its discursive role than other connectives. Finally, of all predictions,
only two of them (10 min and end) are not valid connective candidates which
further proves the model’s success on connective identification. However, since
there is not any unseen connective in the test set, we cannot draw any conclu-
sions regarding the generalization capabilities of the proposed model which will
be further examined in a future study.

Argument Extraction: The proposed model achieves the state-of-the-art
results in separate extraction of the arguments as well as the full relation extrac-
tion. The increase in the extraction of the first argument is of special importance
because the first argument is the most challenging component to automatically
predict as it can reside anywhere in the text and do not have any syntactic
bounds with the connective, unlike the second argument.

Manual analysis of the predicted first argument spans reveals that 20% of all
mismatches are only by one or two words and mostly occur in the beginning of
the argument. Several cherry-picked examples are provided in Example 5 where
the predicted spans are underlined and the gold spans are shown in bold.

(5) a. I expect the market to open weaker Monday
b. crumbled. Arbitragers couldn’t dump their UAL stock
c. This has both made investors uneasy and the corporations

more vulnerable

To further investigate the performance of the argument extraction, we ran
two additional evaluations. Firstly, we evaluated the performance on the relations
where the second argument precedes the first one in the text (e.g. Example 2)
which is quite infrequent (less than 10% the relations have this structure in the
test set). However, the proposed model turned out to be quite successful in those
relations and achieves 75.6% F-score in full relation extraction, suggesting that
it learned the argument structure of the discourse connectives considerably well.

In the second evaluation, we focused on the relations with discontinuous
spans where there are at least a five word sequence which do not belong to the
any part of the relation between the first argument and the connective. There
are 93 such relations in the test set and they are the most challenging ones
spreading over a text span of 91 words on average. Unfortunately, the proposed
model fails to extract the arguments of those relations by achieving only 14.7%
F-score in the extraction of the full relation, hence extraction of the arguments
which are not located in the immediate vicinity of the connective still remains a
challenge. Yet, it should also be noted that some of these relations falls outside
of the argument extractor’s scope due to its window size (see Sect. 3.2).

6 Conclusion

We have shown that labeling explicit discourse relations is possible without
any feature engineering. We achieve state-of-the-art results by finetuning a pre-
trained language model on PDTB 2.0 which is the first time that a feature-
independent system outperforms the existing knowledge intensive systems on
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this task. However, detailed evaluations reveal that there is much room for
improvement, especially in identifying the discontinuous relations where the
arguments are interrupted by various text spans. We see the proposed system
as a first step towards a high-performance shallow discourse parser that can be
extended to any language with a sufficient annotated data and a pre-trained
language model.

Acknowledgments. I would like to thank Robert Östling and Ahmet Üstün for their
useful comments and NVIDIA for their GPU grant.
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Abstract. Idiomatic expressions have always been a bottleneck for lan-
guage comprehension and natural language understanding, specifically
for tasks like Machine Translation (MT). MT systems predominantly
produce literal translations of idiomatic expressions as they do not
exhibit generic and linguistically deterministic patterns which can be
exploited for comprehension of the non-compositional meaning of the
expressions. These expressions occur in parallel corpora used for train-
ing, but due to the comparatively high occurrences of the constituent
words of idiomatic expressions in literal context, the idiomatic mean-
ing gets overpowered by the compositional meaning of the expression.
State of the art Metaphor Detection Systems are able to detect non-
compositional usage at word level but miss out on idiosyncratic phrasal
idiomatic expressions. This creates a dire need for a dataset with a wider
coverage and higher occurrence of commonly occurring idiomatic expres-
sions, the spans of which can be used for Metaphor Detection. With this
in mind, we present our English Possible Idiomatic Expressions (EPIE)
corpus containing 25,206 sentences labelled with lexical instances of 717
idiomatic expressions. These spans also cover literal usages for the given
set of idiomatic expressions. We also present the utility of our dataset
by using it to train a sequence labelling module and testing on three
independent datasets with high accuracy, precision and recall scores.

Keywords: Idioms · Idiomatic expressions · Multiword expressions

1 Introduction

Natural language understanding of idiomatic expressions embedded in sentences
has been a complex problem to solve for some time. Idiom handling has been
a problematic area for a variety of NLP tasks. [2,11,14] have discussed the
magnified complexity of this problem with respect to linguistic precision. [12]
provides empirical evidence that state-of-the-art machine translation systems
may achieve only half of the BLEU score on sentences that contain idiomatic
expressions as compared to the ones that do not. This drop in the score occurs
not only due to the comparatively low frequency of the idiomatic phrase with
respect to the frequency of the constituent words, but also due to the lack of
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automatically determinable clear patterns in the wide and varied instances of
idioms in data [4]. This makes a regular monolingual training dataset sparse
with respect to idiomatic expressions. The absence of a dataset rich in idiomatic
expressions hampers the possibility of modelling the problem into a machine
learning task.

Any attempt on handling these idiomatic expressions has to follow certain
predefined steps as discussed in [9]. The first step is to detect lexical occurrences
of idiomatic expressions in a given text. The subsequent steps constitute iden-
tifying the underlying semantics and learning a simpler representation for any
downstream task. In this paper, we attempt the first step from the aforemen-
tioned steps i.e. detection of possible idiomatic expressions in a given text. These
lexical variations can have a literal occurrence as our purpose is to capture the
span of the phrase in order to identify a metaphorical usage as the next step.
We present a dataset of 25,206 sentences which contain lexical occurrences of
717 idiomatic expressions from the IMIL dataset [1]. We identify the detection
of idiomatic expressions as a sequence labelling task and present a two pronged
approach for detection of two different kinds of idioms: Static and Formal. Static
idioms do not undergo lexical changes, therefore labelling them can be as simple
as a string search in the text. Formal idioms, on the other hand, undergo various
lexical modifications, therefore labelling them can be modelled as a supervised
task. We test a model trained on our dataset and test on three datasets, “all
words” and “lex sample” training datasets of SemEval-2013 Task 5b Dataset [7],
and PIE Corpus [5]. All tests give results with high accuracy, precision and recall
scores.

The major contributions of this work can be summarized as follows:

– We publically release a dataset of 25,206 sentences labelled with lexical occur-
rences of 717 idioms. These labels are done by automatic systems with high
accuracy. Of these, 21,891 sentences contain occurrences of Static idioms
which are 359 in number and 3,135 sentences contain occurrences of Formal
idioms which are 358 in number.1

– An analysis of the distribution (Mean and Standard Deviation) of idioms over
the dataset.

2 Related Work

[4] created a distinction in idioms i.e. Formal and Static. Static idioms are the
kind of idioms which do not exhibit internal or morphosyntactic variation. For
example, As soon as possible, no comment, etc. Formal idioms, on the other
hand, undergo inflectional changes, pronominal and determiner modifications,
and internal qualitative modifiers (adjectival and adverbial). For example, keep
eye on, race against time etc. StringNet [15] identified that mapping base forms
of phrases is necessary in order to extract their surface realization. StringNet
used hybrid ngrams and cross indexing to create a resource to extract idiomatic
1 Dataset available at: https://github.com/prateeksaxena2809/EPIE Corpus.

https://github.com/prateeksaxena2809/EPIE_Corpus
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sentences from the British National Corpus [8]. We use StringNet for the first
level extraction of sentences for our work. [1] has created the IMIL dataset
which maps 2000 of the highly occurring English idioms to their counterparts
in different Indian languages. We use their idiom list as a starting point for our
sentence extraction.

There have been some attempts to extract idiomatic expressions. The VNC-
Tokens Dataset [3], IDIX Corpus [13], PIE Corpus [5] and SemEval-2013 Task
5 Dataset [7] all contain around 3,000 to 4,500 potential idiomatic expressions
instances of 53 to 65 candidate idioms. These datasets, though thorough for
their respective candidate idioms, are small in size and limited in coverage. Our
dataset attempts to provide a wider coverage over a larger dataset.

3 Data

Our aim is to create a dataset only containing sentences with lexical occurrences
of idioms for the IMIL dataset. This requires multiple data filtering steps. These
steps are explained in the subsequent subsections.

3.1 StringNet Extraction

Variations in Idiomatic Expressions occurs in the following forms:

– Inflectional Modifications (tense, gender, number, etc):

Bite the dust
• The visiting team bit the dust in the football game yesterday.

– Determiner/Pronominal Replacement:

Keep up the good work
• Keep up your good work and the promotion will follow.

– Named Entities and Qualitative Modifiers inclusions (Adjectival and Adver-
bial)

Keep an eye on
• Keep a keen eye on the child while he plays.

Behind his back
• People say a lot behind James’ back.

In order to extract all instances of an idiomatic expression, it is important
to account for all the variation in the expression. We use StringNet for this
task. Stringnet contains two billion connected hybrid ngrams cross-indexed with
lexeme information, parts of speech information and various word forms. This
matches an idiomatic expression like keep your eye on to its inflectional modifi-
cations like kept your eye on and keeps your eye on. We also utilize StringNet’s
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unique feature of vertical pruning and horizontal pruning. Vertical pruning refers
to generalization of lexemes in a given search entry in order to search occurrence
of parent ngrams and child ngrams of the entry in the corpus. For example, a
parent ngram of the entry Keep your eye on is keep [pron] eye on as [pron]
constitutes all pronouns. Vertical Pruning helps in extraction of pronominal and
determiner variation. Horizontal pruning refers to connecting an ngram with
another ngram which differs by one unit or type of ngram. For example, the
entry keep [det] eye on can be connected to keep eye on and keep [det] keen eye
on using horizontal pruning because it differs from these ngrams by a length
of 1. But the entry keep your eye on can also be connected to keep an eye on
using horizontal pruning because both entries differ by 1 ngram type. Horizon-
tal pruning helps in extraction of determiner-pronoun interchangeability and
internal qualitative modifiers.

We take the 2,000 idioms present in the IMIL dataset and process them auto-
matically in order to be used as search entries into StringNet. The processing
involves two features; lemmatization, and generalization of pronouns and deter-
miners into generic entries [pron] and [det] respectively. An entry keep an eye
on becomes keep [det] eye on. In addition to searching the term, we also search
the idiom in both directions through one level each of vertical and horizontal
pruning. This results in the extraction of 81562 sentences containing instances
from 758 of the 2,000 idioms.

3.2 Candidate Idioms Selection

In this step, we filter out redundant idioms from our idioms list Redundant
idioms constitute similar idiom entries in the 758 idioms list like music to my
ears and music to my ear are clubbed into a single entry, removing duplicate
entries of instances from the sentences. This step results in filtering 749 idioms
and 77,894 sentences. The idioms that remain are unique and have idiomatic
usages.

3.3 Candidate Instances Selection

Idiomatic Expressions are also idiosyncratic in the kind of lexical variations
they allow. In this step, we filter out those lexical variations of idioms, which
will never occur idiomatically. This requires extraction of specific patterns which
are relevant exclusively to particular idioms. For example, the idiom keep an eye
on can occur as keep your eye on but give me a hand cannot occur as give me
your hand. In order to efficiently extract correct patterns, we manually divide
the idioms list into two categories based on [4].

Static Idioms. Static idioms are idioms which do not undergo any lexical
modification. We identify 388 idioms as Static in our idioms list. These idioms
have 45,955 instances in the data. We filter out sentences which did not have an
exact occurrence of the idiom. If no exact occurrence of an idiom is found, we
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reject the idiom altogether. At the end of this step, 21,891 sentences with 359
Static idioms are left.

Formal Idioms. Formal Idioms are idioms which occur in sentences with vari-
ous lexical modifications. We identify 361 idioms from our idioms list as Formal
idioms based on their occurrences. These idioms have 31,939 instances in the
data. As this task requires more flexibility and complexity than Static idioms, an
completely automatic approach is not feasible. At the same time, going through
the whole dataset sentence by sentence is quite inefficient. Thus, in order to
efficiently sift through the data, we extract the unique variations of each idiom
and then manually remove the irrelevant occurrence patterns, thus removing
all sentences with those occurrences. This reduces our load by a scale factor of
1/3 as the unique occurrences are around 10,000 in number. This process does
not reduce the number of idioms to large extent (358) but we do filter out a
considerable number of patterns, resulting in only 3,135 remaining sentences.

3.4 Final Result

Finally we create a dataset of 717 idioms in 25,026 sentences/instances. We
separate the data into two groups; Static and Formal idioms. We create this
distinction in our data because detection of both categories of idioms require
separate steps. Static idioms can be detected by treating them like words-with-
spaces and simply finding their exact matches in the sentence. Formal idioms
detection requires a more complex approach which can identify the similarities
between instances of the same idiom and their difference from other phrases.
Number of sentences and idioms left after each step are given in Table 1. The
first three rows show the results for the total data extraction while the subsequent
rows show extraction results for Formal and Static idioms separately.

Table 1. Number of Sentences and Idioms left after each extraction step

Extraction step Sentences Idioms

StringNet Extraction 81,562 758

Candidate Idioms Selection (Total) 77,894 749

Candidate Instances Selection (Total) 25,206 717

Candidate Idioms Selection (Static Idioms) 45,955 388

Candidate Instances Selection (Static Idioms) 21,891 359

Candidate Idioms Selection (Formal Idioms) 31,939 361

Candidate Instances Selection (Formal Idioms) 3,135 358

We are also interested in finding the spread of each idiom in our idioms list. In
this effort, we calculate the total instances of each idiom and calculate the mean
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Table 2. Test Results from the model trained on Formal Idioms Training Dataset.
Formal Idioms Test Dataset is 25% split from the Formal Idioms Dataset. All datasets
have been tested separately for All Usages and Only Idiomatic usages of potentially
idiomatic expressions in sentences

Test dataset Accuracy Precision Recall

Formal Idioms Test Dataset 0.98 0.95 0.91

SemEval All Words Dataset (all usages) 0.84 0.90 0.85

SemEval All Words Dataset (idiomatic usages) 0.86 0.93 0.86

SemEval Lex Sample Dataset (all usages) 0.89 0.90 0.90

SemEval Lex Sample Dataset (idiomatic usages) 0.92 0.95 0.92

PIE Corpus (all usages) 0.69 0.60 0.69

PIE Corpus (idiomatic usages) 0.88 0.94 0.88

Table 3. Mean and standard deviations of final datasets

Idiom type Sentences Mean Std Dev

Formal 3,135 8.75 8.61

Static 21,891 60.9 160

and standard deviation on the resultant counts respectively for Formal idioms
and Static idioms. Table 3 shows the mean and standard deviation of both the
Formal idioms dataset and Static idioms dataset with respect to their number
of occurrences in data. The mean and standard deviation for Formal idioms are
very close which suggests an exponential distribution whereas the Static idioms
show a skewed distribution.

4 Experiments

We use our Formal idioms dataset containing 3,135 sentences to train on a typical
sequence labelling neural network. We do a 75–25 train-eval split on our dataset
for our training and evaluation. In addition to the Formal idioms test dataset,
we use three independent datasets for testing mentioned as follows:

– “All words” training dataset from [7] containing 1,143 sentences. All sen-
tences contain potentially idiomatic phrases, each usage is labelled with
idiomatic,literal or both usage.

– “Lex sample” training dataset from [7] containing 1,423 sentences. All sen-
tences contain potentially idiomatic phrases, each usage is labelled with
idiomatic,literal or both usage.

– PIE corpus[5] containing 2,239 sentences. All sentences contain potentially
idiomatic phrases, each usage labelled with a sense label, “y” meaning
idiomatic usage and “n” meaning literal usage.
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We evaluate our models on two versions of each of the three datasets: All samples
and samples labelled with idiomatic usages.

We use a BiLSTM-CRF [6] module for our task. We use 300 dimensional glove
embeddings [10] as our embedding input. We use LSTM hidden representation
of dimension 100 and batch size of 20. We train the model for 25 epochs.

5 Results

The Results can be seen in Table 2. We see that the Formal idioms test dataset
gives the best results because of similarity with the training dataset. However,
the model also gives good results with other independent datasets.

6 Conclusion

In this paper, we present a semi-automatic approach to create a new dataset of
labelled potentially idiomatic expressions in 25,206 English Sentences extracted
from the BNC corpus [8] with high accuracy. We segregate our dataset into
two categories, Formal and Static. This we do because of the difference in the
potentially idiomatic span detection mechanisms of these categories.
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Abstract. State-of-the-art machine translation (MT) systems rely on
the availability of large parallel corpora, containing millions of sentence
pairs. For the Icelandic language, the parallel corpus ParIce exists, con-
sisting of about 3.6 million English-Icelandic sentence pairs. Given that
parallel corpora for low-resource languages typically contain sentence
pairs in the tens or hundreds of thousands, we classify Icelandic as a
medium-resource language for MT purposes. In this paper, we present
on-going experiments with different MT models, both statistical and neu-
ral, for translating English to Icelandic based on ParIce. We describe the
corpus and the filtering process used for removing noisy segments, the
different models used for training, and the preliminary automatic and
human evaluation. We find that, while using an aggressive filtering app-
roach, the most recent neural MT system (Transformer) performs best,
obtaining the highest BLEU score and the highest fluency and adequacy
scores from human evaluation for in-domain translation. Our work could
be beneficial to other languages for which a similar amount of parallel
data is available.

Keywords: Machine translation · Parallel data · Evaluation

1 Introduction

Most work in Machine Translation (MT) through the years has mainly either
focused on high-resource or low-resource language pairs. Usually, a language
pair is considered high-resource if a parallel corpus exists consisting of millions
of sentence pairs. In contrast, a language pair is considered low-resource if either
no parallel corpus exists, or the corpus only consists of a few tens or hundreds
of thousands of sentence pairs.
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Neural Machine Translation (NMT), in particular sequence-to-sequence mod-
els based on attention mechanisms, e.g. the Transformer [22], has in recent years
become the dominant paradigm in high-resource settings, replacing the previ-
ously long-standing dominance of Statistical Machine Translation (SMT) [10].

One parallel corpus, ParIce [2], containing about 3.6 million English-Icelandic
(en-is) sentence pairs, currently exists for Icelandic. Given the size of ParIce, and
the fact that we have only been able to use about 1.6 million of its sentence pairs
for training (see Sect. 3.2), we currently categorize the en-is pair as a medium-
resource language pair.

In this paper, we present on-going work of experimenting with different MT
systems, both based on SMT and NMT, for translating in the en → is direction.
We describe the ParIce corpus and the filtering process used for removing noisy
segments, the different models used for training, and the preliminary evaluation
– both with regard to BLEU scores and human evaluation. We find that, while
using an aggressive filtering approach, the most recent NMT system, based on
the Transformer, performs best in our setting, obtaining a BLEU score of 54.71
(6.11 points higher than the next best performing system, Moses). Furthermore,
the Transformer system also obtained the highest fluency and adequacy scores
from human evaluation, in the in-domain setting. Our work could be beneficial
to other languages for which a similar amount of parallel data is available.

2 Related Work

In the last few years, research has shown that the NMT approach has significantly
pushed ahead the state-of-the-art in MT, which before belonged to phrase-based
SMT (PBSMT) systems. For example, [3] compared and analysed the output of
three PBSMT systems and one NMT system for English→ German and found,
inter alia, that i) the overall post-edit effort needed on the output from the NMT
system is considerably lower compared to the best PBSMT system; ii) that the
NMT system outperforms the PBSMT on all sentence lengths; and iii) that the
NMT output contains less morphological errors, less lexical errors and less word
order errors.

Even though NMT has emerged as the dominant MT approach, there have
also been reports of poor performance when using NMT under low-resource
conditions. Compared to SMT, [11] found that NMT systems have lower qual-
ity on out-of-domain texts, sacrificing adequacy (how much of the meaning is
transferred between the source and the generated target) for the sake of flu-
ency (a rating of how fluent the generated target language is). They also found
that the NMT systems performed worse in low-resource settings, but better in
high-resource settings.

[5] discuss the quality of NMT vs. SMT. They argue that “so far it would
appear that NMT has not fully reached the quality of SMT”, based on automatic
and human evaluations for three use cases, and that the results depend on the
different domains and on the various language pairs.

In a study, using the medium-resource language pair English-Polish, [8] found
that an SMT model achieves a slightly better BLEU score than an NMT model
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based on an attention mechanism. On the other hand, human evaluation carried
out on a sizeable sample of translations (2,000 pairs) revealed the superiority of
the NMT approach, particularly in the aspect of output fluency.

Given the mixed findings in the literature regarding comparison between
NMT and PBSMT, especially in low or medium-resource settings, we decided to
include SMT in our experiments.

The only previously published MT results regarding Icelandic are [4,9],
although Icelandic has been included in massively multilingual settings [6]. The
results rely either on rule-based systems or variants of transfer learning. In con-
trast, our work constitutes the first published MT and NMT results for Icelandic
based on direct supervised learning.

3 Corpus and Filtering

In this section, we describe the ParIce corpus and explain which parts of it are
used for training/testing as well as the filtering process for removing segments
not suited for training.

3.1 ParIce

For training, we used ParIce [2], an en-is parallel corpus consisting of roughly
3.6 million translation segments. The corpus data is aligned with hunalign [21]
and filtered using a sentence scoring algorithm based on a bilingual lexicon bag-
of-words method and a comparison between an MT generated translation of a
segment and the original segment.

ParIce is a collection of data from different sources, the largest being a collec-
tion of EEA regulatory texts (48%), data from OpenSubtitles (37%), published
on OPUS [20] but refiltered in the ParIce corpus, and translation segments from
the European Medicines Agency (EMA; 11%) published in the Tilde MODEL
corpus [17] (other sources amount to 4% of the data). From each of these three
corpora, we sampled roughly 2000 segments to serve as test sets.

3.2 Filtering

Starting from the 3.6 million segments compiled in ParIce, we filtered the corpus
before training any models. Among the filters we used, many were adapted from
the suggestions of [15]. Most of the filters are proxies for alignment errors, OCR
errors, encoding errors and general text quality.

Primarily, the filters and post-editing consist of: 1) empty sentence filter;
2) identical or approximately identical source and target sequence, measured
by absolute and relative edit distance; 3) sentence length ratio filter, in charac-
ters and tokens; 4) maximum and minimum sequence length filter, in characters
and tokens; 5) maximum token length; 6) minimum average token length; 7)
character whitelist; 8) digit mismatch: both sides should have the same set of
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number sequences; 9) unique sequence pair, after removing whitespace, punctu-
ation, capitalization and normalizing all numbers to 0 (all number sequences are
equivalent); 10) case mismatches where one side is all uppercase and the other
not; 11) corrupt symbols, e.g. weird punctuation like ? and " inside words; 12)
many other ad-hoc regular expressions for Icelandic and dataset specific OCR
artifacts and encoding errors (e.g. common words where b replaces, i replaces l,
missing accents); 13) normalizing of quotes, bullets, hyphens and other punctu-
ation; 14) fixing line splits where a word was split due to text reflow.

When applicable, we use the numbers provided in [15]. Otherwise the fil-
ters were tuned to fit Icelandic and ParIce specifically. Roughly half of ParIce
was filtered out with this approach, leaving 1.6 million translation segments for
training, consisting of around 29 million Icelandic tokens and 32 million English
tokens.

4 Models

In this section, we describe the key characteristics of PBSMT and NMT models
and the three different systems/models we have experimented with: the SMT
system Moses, and two NMT models, the first one based on BiLSTM and the
second one on the Transformer. Each model attempts to estimate the probability
p(t|s), the probability of a sentence t in the target language given a sentence s
in the source language.

4.1 PBSMT

In PBSMT, p(t|s) is not modelled explicitly, rather Bayes’ theorem is applied
and t is reached via a translation model p(s|t) and a language model p(t) by
estimating argmaxt p(s|t)p(t). Furthermore, s and t are segmented into smaller
phrases, upon which the translation model is defined. The phrases are extracted
and their probabilities estimated during training using the underlying parallel
corpus. The language model ensures the fluidity of t and can be derived from
the training data and/or from a separate monolingual corpus. For further details
see [10].

Moses. We used the standard open source implementation of PBSMT, the
Moses system1. We created a number of different Moses models in order to deal
with the morphological richness of Icelandic. For example, we used a large out-
of-domain monolingual corpus and tokenizers including subword tokenizers such
as SentencePiece [13] with Byte Pair Encoding (BPE) and Unigram for both is
and en, with a 30k vocabulary for each language. For all models we used the
default alignment heuristic, the default distortion model, and a 5-gram KenLM
[7] language model trained on additional monolingual data, i.e. 6.5 million sen-
tences from the Icelandic Gigaword Corpus [18]. The best performing model,
which uses the Moses tokenizer for both en and is, is evaluated against the
NMT based systems in Sect. 5.
1 http://www.statmt.org/moses/.

http://www.statmt.org/moses/
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4.2 NMT

An NMT system attempts to model p(t|s) directly using a large modular neural
network that reads s and outputs t, token by token. Instead of representing
the tokens symbolically, like PBSMT systems, the tokens are represented using
vectors (embeddings). The typical NMT system is based on sequence-to-sequence
learning, and consists of two components: an encoder and a decoder. The system
is trained to maximize p(t|s) by updating the parameters of the network using
stochastic gradient descent to back-propagate the errors from the output layer
to the previous layers. The two dominant NMT architectures over the last few
years are based on 1) LSTM, and 2) self-attention networks (Transformer).

BiLSTM. The general LSTM model for NMT is described in [19]. In this
model, the encoder is an LSTM that converts an input sequence s to a fixed-
sized vector v from which the decoder, another LSTM, generates t. Given the
embedded tokens of s, (x1, . . . , xT ) and v, the model estimates the conditional
probability p(y1, . . . , yT ′ |x1, . . . , xT ) as follows:

p(y1, . . . , yT ′ |x1, . . . , xT ) =
T

′
∏

t=1

p(yt|v, y1, . . . , yt−1) (1)

where (y1, . . . , yT ′ ) represents the target sentence t, and where T
′

may be dif-
ferent from T . In other words, the prediction of each target token depends on
the encoded version of the whole input sequence, as well as on the previously
predicted target words.

The model is further improved by adding an additional LSTM to the encoder
which reads the input in the reverse order, i.e. the encoder is bidirectional.
Additionally, during decoding, these networks can be augmented with attention
[1,14] where alignments between target and source tokens can be modeled more
explicitly. We used the standard BiLSTM implementation from OpenNMT2,
medium and large NMT models with Luong attention [14] (4-layer 256 hidden
unit encoder, 4 layer 512 hidden unit decoder; large model has 6 layers and
double the number of hidden units). We used a 16k joint BPE vocabulary.

Transformer. The Transformer, proposed by [22], builds on previous models in
various ways. Its design provides for much better parallelization, and it leverages
GPU architecture more so than LSTMs. In general, it achieves better machine
translation performance for the same training time and data as compared to
LSTMs.

The Transformer consists of stacked transformer blocks, each of which com-
prises 2–3 sublayers, self-attention, decoder-to-encoder attention, and a fully
connected layer. The block operates independently over a sequence of hidden

2 https://opennmt.net/.

https://opennmt.net/
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vectors hi whereby each vector in the sequence can attend to (i.e. receive infor-
mation from) all other hidden vectors in the sequence before being transformed
by the fully connected sublayer. The decoder block has an added attention sub-
layer that allows it to attend to the encoder in addition to itself. Finally, the
last decoder block has a softmax output layer for token probabilties.

The implementation we use is the reference implementation from [22] of the
transformer-base architecture which is part of the Tensor2Tensor package3. It
has 6 layers each for its encoder and decoder with attention head count of 8.
We used shared source and target embeddings. The included subword tokenizer
provided by Tensor2Tensor was used to build a 16k joint subword vocabulary.

5 Evaluation

In this section, we present the results of automatic and human evaluation of
the individual models, Moses, BiLSTM and Transformer, for translating in the
en → is direction.

Neither NMT model was fine-tuned before evaluation, and the Transformer
used checkpoint-averaging (a gain of about 0.5 BLEU). The batch sizes for the
Transformer and the BiLSTM were 1700 (subword) tokens and 32 sequences,
respectively. No other hyperparameter tuning was performed due to computa-
tional restraints.

5.1 BLEU Scores

We use BLEU for automatic evaluation. It is the most widely used MT quality
metric and it has reasonably high correlation with human evaluations. Due to
possible biases that may be “unfair” to some technologies [16], the BLEU scores
cannot be the primary evidence of the quality of our systems. Therefore, we also
rely on human evaluation.

As discussed in Sect. 3.1, the test sets consists of about 2000 segments sam-
pled from three parts of the ParIce corpus: EEA, EMA, and OpenSubtitles.
Table 1 shows the results for the three system and the different test sets, as well
as the combined sets.

Table 1. BLEU scores for the three systems and the different test sets.

Model EES EMA OpenSubtitles Combined

BiLSTM 38.68 41.60 23.32 38.12

Moses 49.70 54.93 26.11 48.60

Transformer 56.31 58.37 34.71 54.71

3 https://github.com/tensorflow/tensor2tensor.

https://github.com/tensorflow/tensor2tensor
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Table 2. Fluency and adequacy scores from human evaluation.

Test set Model Fluency Adequacy

In-domain BiLSTM 2.49 2.01

Moses 3.64 3.84

Transformer 4.30 4.33

Google 3.80 4.16

Out-of-domain BiLSTM 1.85 1.30

Moses 2.54 2.32

Transformer 3.20 2.86

Google 3.40 3.80

In [22] it was shown that the Transformer is the dominant model in high-
resource settings. Our results indicate that the Transformer also performs best
in medium-resource settings. It is, however, noteworthy that the Moses systems
performs significantly better than the BiLSTM model.

5.2 Human Evaluation

We recruited three people with translation experience for adequacy evaluation
and three Icelandic linguists for fluency evaluation. We randomly chose 100 sen-
tences from our test set for in-domain evaluation, and 100 sentences from news
for out-of-domain evaluation. The sentence lengths varied substantially, averag-
ing 18.2 words per sentence, with a standard deviation of 13.7. Each sentence
was translated by our three systems as well as by Google Translate, for reference.
We used Keops4 for the evaluation.

The fluency group was given the following instructions: Is the sentence good
fluent Icelandic? Rate the sentence on the following scale from 1 to 5. 1 – incom-
prehensible; 2 – disfluent Icelandic; 3 – non-native Icelandic; 4 – good Icelandic;
5 – flawless Icelandic. The adequacy group was given the following instructions:
Does the output convey the same meaning as the input sentence? Rate the sen-
tence on the following scale from 1 to 5. 1 – none; 2 – little meaning; 3 – much
meaning; 4 – most meaning; 5 – all meaning.

We calculated the Intraclass Correlation Coefficient (ICC) for both groups.
This resulted in ICC of 0.749, with 95% confidence interval (CI) in the range
0.718–0.777 for the fluency group, and ICC of 0.734 and 95% CI in the range
0.705–0.760 for the adequacy group. According to [12], this suggests that inter-
rater agreement is moderate to good for both groups.

We calculated adequacy and fluency on our original scale resulting in the val-
ues shown in Table 2. The results show that the Transformer is perceived to give
more adequate and more fluent translations than our other two systems, both
for out-of-domain translations and in-domain, where it even outperforms Google

4 https://github.com/paracrawl/keops.

https://github.com/paracrawl/keops
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Translate, although that may of course be because our in-domain translations
are not in Google Translate’s domain. Our SMT system performs decently, not
as good as the Transformer or Google Translate, but outperforms the BiLSTM
system by far.

6 Conclusion

We have described experiments in using three different architectures (Moses,
BiLSTM and Transformer) for translating in the en → is direction. Automatic
and human evaluation shows that the Transformer architecture performs best,
followed by Moses and BiLSTM (in that order).

In future work, we intend to experiment with larger model sizes, backtrans-
lation, and bilingual language model pre-training. Explicit handling of named
entities is also a problematic issue, as the available parallel data contains very
few Icelandic names.
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Abstract. Large pretrained masked language models have become
state-of-the-art solutions for many NLP problems. The research has been
mostly focused on English language, though. While massively multilin-
gual models exist, studies have shown that monolingual models pro-
duce much better results. We train two trilingual BERT-like models,
one for Finnish, Estonian, and English, the other for Croatian, Slove-
nian, and English. We evaluate their performance on several downstream
tasks, NER, POS-tagging, and dependency parsing, using the multilin-
gual BERT and XLM-R as baselines. The newly created FinEst BERT
and CroSloEngual BERT improve the results on all tasks in most mono-
lingual and cross-lingual situations.

Keywords: Contextual embeddings · BERT model · Less-resourced
languages · NLP

1 Introduction

In natural language processing (NLP), a lot of research focuses on numeric
word representations. Static pretrained word embeddings like word2vec [12] are
recently replaced by dynamic, contextual embeddings, such as ELMo [14] and
BERT [4]. These generate a word vector based on the context the word appears
in, mostly using the sentence as the context.

Large pretrained masked language models like BERT [4] and its derivatives
achieve state-of-the-art performance when fine-tuned for specific NLP tasks. The
research into these models has been mostly limited to English and a few other
well-resourced languages, such as Chinese Mandarin, French, German, and Span-
ish. However, two massively multilingual masked language models have been
released: a multilingual BERT (mBERT) [4], trained on 104 languages, and
newer even larger XLM-RoBERTa (XLM-R) [3], trained on 100 languages. While
both, mBERT and XLM-R, achieve good results, it has been shown that mono-
lingual models significantly outperform multilingual models [11,20]. Arkhipov et
al. (2019) [2] trained a four language (Russian, Bulgarian, Polish, Czech) BERT
model by bootstrapping mBERT. They reported improvements over mBERT on
named entity recognition task.
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In our work, we reduced the number of languages in multilingual models to
three, two similar less-resourced languages from the same language family, and
English. The main reasons for this choice are to better represent each language,
and keep sensible sub-word vocabulary, as shown by Virtanen et al. (2019) [20].
We decided against production of monolingual models, because we are inter-
ested in using the models in multilingual sense and for cross-lingual knowledge
transfer. By including English in each of the two models, we expect to better
transfer existing prediction models from English to involved less-resourced lan-
guages. Additional reason against purely monolingual models for less-resourced
languages is the size of training corpora, i.e. BERT-like models use transformer
architecture which is known to be data hungry.

We thus trained two multilingual BERT models: FinEst BERT was trained
on Finnish, Estonian, and English, while CroSloEngual BERT was trained on
Croatian, Slovenian, and English. In the paper, we present the creation and
evaluation of these models, which required considerable computational resources,
unavailable to most NLP researchers. We make the models which are valuable
resources for the involved less-resourced languages publicly available1.

2 Training Data and Preprocessing

BERT models require large quantities of monolingual data. In Sect. 2.1 we first
describe the corpora used, followed by a short description of their preprocessing
in Sect. 2.2.

2.1 Datasets

To obtain high-quality models, we used large monolingual corpora for each lan-
guage, some of them unavailable to the general public. High-quality English
language models already exist and English is not the main focus of this research,
we therefore did not use all available English corpora in order to prevent English
from overwhelming the other languages in our models. Some corpora are available
online under permissive licences, others are available only for research purposes
or have limited availability. The corpora used in training are a mix of news arti-
cles and general web crawl, which we preprocessed and deduplicated. Details
about the training set sizes are presented in Table 1, while their description can
be found in works on the involved less-resourced languages, e,g., [18].

2.2 Preprocessing

Before using the corpora, we deduplicated them for each language separately,
using the Onion (ONe Instance ONly) tool2. We applied the tool on sentence

1 CroSloEngual BERT: http://hdl.handle.net/11356/1317
FinEst BERT: http://urn.fi/urn:nbn:fi:lb-2020061201.

2 http://corpus.tools/wiki/Onion.

http://hdl.handle.net/11356/1317
http://urn.fi/urn:nbn:fi:lb-2020061201
http://corpus.tools/wiki/Onion
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Table 1. The training corpora sizes in num-
ber of tokens and the ratios for each lan-
guage.

Model CroSloEngual FinEst

Croatian 31% 0%

Slovenian 23% 0%

English 47% 63%

Estonian 0% 13%

Finnish 0% 25%

Tokens 5.9 · 109 3.7 · 109

Table 2. The sizes of corpora sub-
sets in millions of tokens used to
create wordpiece vocabularies.

Language FinEst CroSloEngual

Croatian / 27

Slovenian / 28

English 157 23

Estonian 75 /

Finnish 97 /

level for those corpora that did have sentences shuffled, and on paragraph level
for the rest. As parameters, we used 9-grams with duplicate content threshold
of 0.9.

BERT models are trained on subword (wordpiece) tokens. We created a
wordpiece vocabulary using bert-vocab-builder tool3, which is built upon ten-
sor2tensor library [19]. We did not process the whole corpora in creating the
wordpiece vocabulary, but only a smaller subset. To balance the language rep-
resentation in vocabulary, we used samples from each language. The sizes of
corpora subsets are shown in Table 2. The created wordpiece vocabularies con-
tain 74,986 tokens for FinEst and 49,601 tokens for CroSloEngual model.

3 Architecture and Training

We trained two BERT multilingual models. FinEst BERT was trained on
Finnish, Estonian, and English corpora, with altogether 3.7 billion tokens.
CroSloEngual BERT was trained on Croatian, Slovenian, and English corpora
with together 5.9 billion tokens.

Both models use bert-base architecture [4], which is a 12-layer bidirectional
transformer encoder with the hidden layer size of 768 and altogether 110 million
parameters. We used the whole word masking for the masked language model
training task. Both models are cased, i.e. the case information was preserved. We
followed the hyper-parameters settings of Devlin et al. (2018) [4], except for the
batch size and total number of steps. We trained the models for approximately 40
epochs with maximum sequence length of 128 tokens, followed by approximately
4 epochs with maximum sequence length of 512 tokens. The exact number of
steps was calculated using the expression s = Ntok·E

b·λ , where s is the number
of steps the models were trained for, Ntok is the number of tokens in the train
corpora, E is the desired number of epochs (in our case 40 and 4), b is the batch
size, and λ is the maximum sequence length.

We trained FinEst BERT on a single Google Cloud TPU v3 for a total of
1.24 million steps where the first 1.13 million steps used the batch size of 1024
3 https://github.com/kwonmha/bert-vocab-builder.

https://github.com/kwonmha/bert-vocab-builder
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and sequence length 128, and the last 113 thousand steps used the batch size
256 and sequence length 512. Similarly, CroSloEngual BERT was trained on a
single Google Cloud TPU v2 for a total of 3.96 million steps, where the first 3.6
million steps used the batch size of 512 and sequence length 128, and the last
360 thousand steps were trained with the batch size 128 and sequence length
512. Training took approximately 2 weeks for FinEst BERT and approximately
3 weeks for CroSloEngual BERT.

4 Evaluation

We evaluated the two new BERT models on sensible languages and three down-
stream evaluation tasks available for the four involved less-resourced languages:
named entity recognition (NER), part-of-speech tagging (POS), and dependency
parsing (DP). We compared both models with BERT-base-multilingual-cased
model (mBERT). On the NER task we compared also XLM-RoBERTa (XLM-
R) and Finnish BERT (FinBERT).

4.1 Named Entity Recognition

NER is a sequence labeling task, which tries to correctly identify and classify
each token from an unstructured text into one of the predefined named entity
(NE) classes, or as not NE. The publicly available NER datasets for the involved
languages that we used have only three NE classes in common. To allow a more
direct comparison between languages, we reduced them to the four labels in
common: person, location, organization, and other. All tokens, which are not NE
or belong to any other NE class were labeled as other.

For Croatian and Slovenian, we used NER data from hr500k [10] and
ssj500k [8], respectively. Not all sentences in Slovenian ssj500k are annotated, so
we excluded those that are not annotated. The English dataset comes from the
CoNLL 2013 shared task [17]. For Finnish we used the Finnish News Corpus for
NER [15], and as the Estonian dataset we used the Nimeüksuste korpus [9].

The implementation uses the Huggingface’s Transformer library v2.8, and our
code is based on its NER example4. We fine-tuned each of our BERT models with
an added token classification head for 3 epochs on the NER data. We compared
the results with mBERT, XLM-R and FinBERT models, which we fine-tuned
with exactly the same parameters on the same data. We used maximum sequence
length of 512 and batch size of 6 for all models and languages.

We evaluated the models in a monolingual setting (training and testing on
the same language), and cross-lingual setting (training on one language, testing
on another). We present the results as macro average F1 scores of the three NE
classes, excluding other label. Results are shown in Table 3.

In monolingual setting, the differences in performance of tested models on
English data is negligible. In other languages, our models outperform both the

4 https://github.com/huggingface/transformers/tree/v2.8.0/examples/ner.

https://github.com/huggingface/transformers/tree/v2.8.0/examples/ner
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Table 3. The results of NER evaluation task. The scores are macro average F1 scores
of the three NE classes. NER models were fine-tuned from mBERT(mB), CroSloEngual
BERT (CSE), FinEst BERT (FE), XLM-RoBERTa (XR), and FinBERT (FB).

Train Test mB CSE XR

Croatian Croatian 0.790 0.884 0.817

Slovenian Slovenian 0.897 0.920 0.914

English English 0.939 0.944 0.937

Croatian English 0.807 0.868 0.773

English Croatian 0.602 0.799 0.641

Slovenian English 0.745 0.845 0.747

English Slovenian 0.708 0.833 0.739

Croatian Slovenian 0.810 0.891 0.855

Slovenian Croatian 0.765 0.849 0.786

Train Test mB FE XR FB

Finnish Finnish 0.933 0.957 0.930 0.954

Estonian Estonian 0.898 0.927 0.908 0.876

English English 0.939 0.945 0.937 0.922

Finnish English 0.688 0.812 0.722 0.573

English Finnish 0.764 0.900 0.823 0.817

Estonian English 0.774 0.816 0.755 0.641

English Estonian 0.783 0.832 0.794 0.523

Finnish Estonian 0.798 0.880 0.825 0.529

Estonian Finnish 0.819 0.914 0.869 0.823

mBERT and XLM-R, the difference is especially large in Croatian. FinEst BERT
performs on par with FinBERT on Finnish. In cross-lingual setting, both FinEst
and CroSloEngual BERT show a significant improvement over both mBERT
and XLM-R. This leads us to believe that multilingual BERT models with fewer
languages are more suitable for cross-lingual knowledge transfer.

4.2 Part-of-Speech Tagging and Dependency Parsing

Next, we evaluated the created BERT models on two more syntactic classifi-
cation tasks: POS-tagging and DP. In the POS-tagging task, we predict the
grammatical category of each token (verb, adjective, punctuation, adverb, noun,
etc). DP models predict the tree structure, representing the syntactic relations
between words in a given sentence.

We trained classifiers on universal dependencies (UD) treebank datasets,
using universal part-of-speech (UPOS) tag set. For Croatian, we used the
dataset of Agic and Ljubesic (2015) [1]; for English, we used A Gold Stan-
dard Dependency Corpus [16], and for Estonian we used Estonian Dependency
Treebank [13], converted to UD. The Finnish treebank used is based on the
Turku Dependency Treebank [6]. Slovenian treebank [5] is based on the ssj500k
corpus [8].

We used Udify tool [7] to train both POS tagger and DP classifiers at the
same time. We fine-tuned each BERT model for 80 epochs on the treebank data,
keeping the tool parameters at default values, except for “warmup steps” and
“start step” values, which we changed to the number of training batches in one
epoch.

We present the results of POS tagging as UPOS accuracy in Table 4. In
the monolingual setting, the differences in performance between different BERT
models are small for this task. FinEst and CroSloEngual BERTs perform slightly
better than mBERT on all languages, except Croatian, where mBERT and
CroSloEngual BERT are equal. On Finnish, FinBERT (acc = 0.984) slightly
outperforms FinEst BERT (acc = 0.981). The differences are more pronounced
in cross-lingual setting. When training on Slovenian, Finnish, or Estonian and
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Table 4. The performance on the UD POS-tagging task, using UPOS accuracy for
CroSloEngual BERT (CSE), FinEst BERT, and mBERT.

Train Test mBERT CSE

Croatian Croatian 0.983 0.983

English English 0.969 0.972

Slovenian Slovenian 0.987 0.991

English Croatian 0.876 0.869

English Slovenian 0.857 0.859

Croatian English 0.750 0.756

Croatian Slovenian 0.917 0.934

Slovenian English 0.686 0.723

Slovenian Croatian 0.920 0.935

Train Test mBERT FinEst

English English 0.969 0.970

Estonian Estonian 0.972 0.978

Finnish Finnish 0.970 0.981

English Estonian 0.852 0.878

English Finnish 0.847 0.872

Estonian English 0.688 0.808

Estonian Finnish 0.872 0.913

Finnish English 0.535 0.701

Finnish Estonian 0.888 0.919

testing on English, CroSloEngual and FinEst BERT significantly outperform
mBERT. The exception is training on English and testing on Croatian, where
mBERT outperforms CroSloEngual BERT.

We present the results of DP task with two metrics, the unlabeled attache-
ment score (UAS) and labeled attachment score (LAS). In the monolingual set-
ting, CroSloEngual BERT shows improvement over mBERT on all three lan-
guages (Table 5) with the highest improvement on Slovenian and only a marginal
improvement on English. FinEst BERT outperforms mBERT on Estonian and
Finnish, with the biggest margin being on the Finnish data, while the two mod-
els perform equally on English data. FinBERT again outperforms FinEst on
Finnish, scoring UAS = 0.946 and LAS = 0.930.

In the cross-lingual setting, the results are similar to those seen on
the POS tagging task. Major improvements of FinEst and CroSloEngual
BERT over mBERT are observed in English-Estonian, English-Finnish and
English-Slovenian pairs, minor improvements in Estonian-Finnish and Croatian-
Slovenian pairs, while on English-Croatian pair mBERT outperformed CroSlo-
Engual BERT.

Table 5. The results on the DP task presented with UAS and LAS scores for CroSlo-
Engual BERT, FinEst BERT, and mBERT.

mBERT CroSloEngual

Train Test UAS LAS UAS LAS

Croatian Croatian 0.930 0.891 0.940 0.903

English English 0.917 0.894 0.922 0.899

Slovenian Slovenian 0.938 0.922 0.957 0.947

English Croatian 0.824 0.724 0.822 0.725

English Slovenian 0.830 0.719 0.848 0.736

Croatian English 0.759 0.627 0.782 0.657

Croatian Slovenian 0.880 0.802 0.912 0.840

Slovenian English 0.741 0.578 0.794 0.648

Slovenian Croatian 0.861 0.773 0.891 0.810

mBERT FinEst

Train Test UAS LAS UAS LAS

English English 0.917 0.894 0.918 0.895

Estonian Estonian 0.880 0.848 0.909 0.882

Finnish Finnish 0.898 0.867 0.933 0.915

English Estonian 0.697 0.531 0.768 0.591

English Finnish 0.706 0.561 0.781 0.624

Estonian English 0.633 0.492 0.726 0.567

Estonian Finnish 0.784 0.695 0.864 0.801

Finnish English 0.543 0.433 0.684 0.558

Finnish Estonian 0.782 0.691 0.852 0.778
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5 Conclusion

We built two large pretrained trilingual BERT-based masked language models,
Croatian-Slovenian-English and Finnish-Estonian-English. We showed that the
new CroSloEngual and FinEst BERTs perform substantially better than mas-
sively multilingual mBERT on the NER task in both monolingual and cross-
lingual setting. The results on POS tagging and DP tasks show considerable
improvement of the proposed models for several monolingual and cross-lingual
pairs, while they are never worse than mBERT.

In future, we plan to investigate different combinations and proportions of
less-resourced languages in creation of pretrained BERT-like models, and use
the newly trained BERT models on the problems of news media industry.

Acknowledgments. The work was partially supported by the Slovenian Research
Agency (ARRS) core research programme P6-0411. This paper is supported by Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No 825153, project EMBEDDIA (Cross-Lingual Embeddings for Less-Represented Lan-
guages in European News Media). Research was supported with Cloud TPUs from
Google’s TensorFlow Research Cloud (TFRC).

References
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9. Laur, S.: Nimeüksuste korpus. Center of Estonian Language Resources (2013)
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Abstract. Question answering (QA) of non-mainstream languages
requires specific adaptations of the current methods tested primarily
with very large English resources. In this paper, we present the results
of improving the QA answer selection task by extending the input can-
didate sentence with selected information from preceding sentence con-
text. The described model represents the best published answer selec-
tion model for the Czech language as an example of a morphologically
rich language. The text contains thorough evaluation of the new method
including model hyperparameter combinations and detailed error discus-
sion. The winning models have improved the previous best results by 4%
reaching the mean average precision of 82.91%.

Keywords: Question answering · Answer selection · Czech · Answer
context · Morphologically rich languages

1 Introduction

The state-of-the-art results in question answering (QA) methods have already
surpassed the estimated human performance1 when trained on very large word-
based datasets of more than 100,000 questions such as SQuAD [12], RACE [4]
or GLUE [18]. This allows for very wide benchmarking and comparison of new
deep learning techniques but straightforward application in non-mainstream lan-
guages is difficult.

Nowadays, the answer selection subtask, i.e. identification of the one sen-
tence containing the exact answer to a given question, has advanced from the
early works based on measuring sentence similarity according to string overlap-
ping [17] to complex deep neural network architectures first introduced in [19]
and later improved and refined [13,16,20]. The latest approaches prevalently
lean on employing advanced language models such as BERT/ALBERT [3,5] or
GPT-2 [10].

In this paper, we show the details of a method adaptation and a new tech-
nique evaluated with Czech as a representative of a small but lexically and
1 The human performance with the SQuAD database is 86.8% exact match [11] while

the current best results reach more than 90.7% [20].
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Fig. 1. AQA pipeline schema

morphologically rich language. All methods are evaluated with a published QA
benchmark dataset SQAD 3.0 [9] which contains more than 13,000 question-
answer pairs with detailed metadata related to the morphology and question
answer typology. The current improvements of the QA answer selection task lie
in extending the input candidate sentence with selected information from pre-
ceding sentence context. The following text contains thorough evaluation of all
model hyperparameter combinations and detailed error discussion. The winning
models have improved the previous best results by 4% reaching mean average
precision of 82.91%.

2 AQA Modules for the Czech Language

The Automatic Question Answering system (AQA) is designed to answer ques-
tions in Slavonic languages with the Czech language selected as their represen-
tative for testing and developing purposes. The whole AQA system consists of
multiple modules organised in one pipeline. The pipeline structure is as follows
(see Fig. 1):

1. The first module, triggered after the question input, is the question type anal-
ysis module. This part of the system provides information about what type of
question the system receives and what type of answer it should look for. This
information is exploited later in the pipeline where the system searches for
the final answer. The core of this module uses pre-trained bi-LSTM network
that was trained with the training subset of the SQAD database of manually
annotated question and answer types. For in-depth information see [8].

2. The second module in the pipeline is the document selection module. Its main
purpose it to pick up a document (or top k documents) from the underlying
document collection to be searched for sentences with expected answers. This
module is based on weighted TF-IDF scoring with syntax-based similarity
measures between the question and the document content. The result is a list
of documents ranked according to document relevance to the given question.
For detailed design and evaluation see [9].

3. After a part of the document collection is selected for further analysis, the
answer selection module is employed to select a candidate answer sentence.
The answer selection module is based on attentive bi-directional gated recur-
rent unit architecture that is trained on question-answer pairs and yields a
list of candidate sentences ranked by their relevance to the input question.
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Fig. 2. New answer selection architecture with answer context.

For detailed description see [9]. In the following section, we present new devel-
opments of this module with concentration on adding the answer context to
the network input.

4. From the best scored sentence of the answer selection module, the last answer
extraction module selects the smallest part containing enough information to
answer the input question. The extraction is based on rules based on the
question-answer type information for identifying the boundaries of the exact
answer. Detailed description of this module can be found in [6].

3 Neural Answer Selection Architecture with Context

The AQA answer selection module is based on a specific Siamese neural net-
work [2,15] which exploits a bi-GRU attentive recurrent network to learn the
question-answer similarities of correct answers and dissimilarities of related
incorrect answers [9]. In this paper, we present the latest results of both new
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network hyperparameter setup with improved answer selection and an extension
of the technique with answer contexts as another network input.

The extended network architecture requires three sequences as an input.
Besides the question and a candidate answer, the network takes the answer
context as its third input sequence. Currently, the context is presented in the
form of selected noun phrases from the preceding two sentences in the input
document separated by a new "[SEP]" token.2

The new architecture is presented in Fig. 2. A shared Bidirectional Gated
Recurrent Unit (bi-GRU) layer is applied to all three input sequences, each
sequence using its individual hidden state. Subsequently, the bi-GRU representa-
tion of context is concatenated with the candidate answer representation forming
a single sequence for the question-answer attention matrix.

In the following step, a two-way attention mechanism is applied to the
question (Q) and answer-context (K) representations, producing their respec-
tive attention vectors. The question vector contains importance scores of each
word with regard to the answer, while the answer attention vector consists
of importance scores for all words of the answer and the context, potentially
improving the final ranking in case the target entity was mentioned in the pre-
vious sentence(s). Using the dot product with the corresponding bi-GRU output
makes the final representations to be compared using the vector cosine similarity
measure.

4 Experiments and Results

The SQADv3 [14] dataset consists of almost 13,500 richly annotated question-
answer pairs with full texts of 6,500 Wikipedia articles used as the underlying

Table 1. The answer selection results for various hyperparameter settings with a com-
parison of context and non-context model.

Embedding size Hidden size Optimizer Learning rate Non-context Context

MAP MRR MAP MRR

500 400 Adagrad 0.005 81.78 88.07 82.91 88.75

500 300 Adagrad 0.005 81.65 87.98 82.81 88.86

500 200 Adagrad 0.005 81.33 87.66 82.38 88.51

300 300 Adagrad 0.005 80.99 87.55 82.33 88.53

300 200 Adagrad 0.005 80.8 87.37 82.26 88.38

100 300 Adagrad 0.005 78.97 86.02 80.42 87.21

100 200 Adagrad 0.005 78.54 85.67 80.24 87.04

100 300 SGD 0.6 78.87 85.94 79.39 86.35

100 200 SGD 0.9 79.13 86.13 79.35 86.23

2 Similar approach is frequently used in sequence to sequence machine translation
neural architectures.
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Fig. 3. Hyperparameter sensitivity comparison for both architectures via the hidden
layer size.

document collection. The dataset is partitioned into training, validation and test
set in the ratio of 60:10:30. The validation set is used as an evaluation of the
current model state after each training epoch. The best validated epoch is then
chosen for the final evaluation using the test set. The content of the partitions
is the same as in previous experiments with answer contexts added. Current
experiments were run for both the models with and without context to produce
comparable results.

For each question, the training algorithm randomly samples 20 negative can-
didate answers along with the positive run. The input vectors use pre-trained
FastText [1] word embeddings which are prepared in 100- and 300-dimensional
vectors. A dropout layer is applied to the input data to support generalization.
In previous experiments, the dropout probability of 0.2 was the most promi-
nent while other values were degrading the precision with every single setup [7].
Therefore, the dropout probability was kept at this value for all the following
runs.

Table 2. The answer selection accuracy per question and answer types

Question Context Non-ctx Diff. Answer Context Non-ctx Diff.

Type Count MAP (%) MAP (%) (%) Type Count MAP (%) MAP (%) (%)

ABBR. 97 88.66 91.75 −3.09 ABBR. 95 88.42 91.58 −2.16

LOC. 498 84.94 83.13 1.81 DENOT. 53 88.68 86.79 1.89

DTTIME 592 84.63 83.95 0.68 LOC. 494 88.68 83.20 5.48

ADJ P. 449 83.07 82.63 0.44 DTTIME 589 84.55 83.87 0.67

VERB P. 678 83.63 82.74 0.89 YES NO 675 83.56 82.81 0.75

PERSON 526 83.65 83.84 −0.19 ENTITY 527 82.35 79.70 2.65

ENTITY 738 81.71 79.54 2.17 OTHER 668 80.39 78.44 1.95

NUM. 293 79.52 78.84 0.68 NUM. 298 79.53 79.19 0.34

CLAUSE 139 71.94 68.35 3.59 ORG. 83 74.70 78.31 −3.61
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The size of the bi-GRU layer (hidden size) also corresponds to the dimension-
ality of the attention layer weights thus affecting multiple internal layers of the
network. The following experiments primarily focus on hidden size values from
100 to 500. Models were trained using multiple optimizers, ranging from the
Stochastic Gradient Descent (SGD) with a learning rate scheduler3 to Adagrad,
Adadelta and Adam.

Overall 423 new models were produced while optimizing the parameters for
the non-context model. The best performing models have achieved a Mean Aver-
age Precision (MAP) of 81.78% using the 300-dimensional embeddings which is
a 2.91% increase when compared to the older result [9] with the MAP of 78.87%.
The reason behind this increase is a fine-grained optimization of model param-
eters along with larger embedding size. The best model setups are summarized
in Table 1.

In experiments optimizing the new context architecture, 125 models were pro-
duced. The number of parameter combinations was reduced to the ones which
had achieved reasonable accuracy with the non-context architecture. The best
setup has reached the MAP of 82.91%, outperforming the best configuration of
the non-context architecture by 1.13% (and the previous best result by 4.04%)
using the same parameters. As can be seen in Fig. 3, the hyperparameter sensi-
tivity remains more or less the same but with an increase in the overall precision.

The parameter combinations affect also the running times of the training
and testing process. The non-context model used an average running time of
242 min for 100-dimensional word embeddings.4 For 300-dimensional embed-
dings, the running times increased to 497 min on average, raising to 1,100 min

Table 3. A comparison of Precision at k for the best performing context and non-
context models.

k Context Non-context Sum

Num P@k Sum Num P@k Sum Diff.

1 3327 82.91 82.91 3287 81.91 81.91 1.00

2 319 7.95 90.85 351 8.75 90.66 0.19

3 105 2.62 93.47 117 2.92 93.66 −0.19

4 65 1.62 95.09 65 1.62 95.19 −0.10

5 39 0.97 96.06 39 0.97 96.16 −0.10

6 29 0.72 96.79 21 0.52 96.69 0.10

7 21 0.52 97.31 16 0.4 97.08 0.23

8 12 0.3 97.61 16 0.4 97.48 0.13

9 17 0.42 98.03 16 0.4 97.88 0.15

≥10 79 1.97 100.00 85 2.11 100.00

3 For each epoch, the new learning rate is computed by dividing the initial learning
rate by the current epoch.

4 Including all 25 epochs with their respective validation and the final evaluation.
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with 500-dimensional input. The context models required more complex data
preparation with larger input sequences. This is reflected in the increase of run-
ning times, where 100-dimensional embeddings raised the time to 550 min on
average, 990 min for 300-dimensional word embeddings, and 1,800 min for 500-
dimensional input.

4.1 Discussion and Error Analysis

The context model proved to be superior to the standard (non-context) model
in almost all types of questions and exact answers, see Table 2 for details. Major
improvements can be seen with clause question types (more than 3%) and with
answers of type location (more than 5%). Most other categories are improved
except the abbreviations category which shows a decrease of 2–3% and with
answers that provide a name of an organization (decrease of more than 3%).

If we analyze the system improvements regarding the position of the correct
answer denoted as the Precision at k (or P@k) we can see that the context model
specifically helps to improve the position of the top 3 answers. Since these are
the frequent positions, such step is very important in improving the system as
a whole. See the list of P@k values for the first 10 positions in Table 3.

Record ID: 003189
Question
(Q)

Jaké kapely patř́ı do tzv. Velké thrashové čtyřky ?
(Which bands belong to the “Big Four of Thrash”?)

Non-context
answer with

attention

Thrash zpopularizovala tzv.0.81 ákleV“ 0.64 ávohsarht 0.57 čtyřka0.62 ” :
Anthrax, Megadeth, Metallica a Slayer.
(The subgenre was popularized by the “Big Four of Thrash”: Anthrax,
Megadeth, Metallica, and Slayer.)

Q with att. Jaké kapely patř́ı0.51 do0.53 tzv.1.0 Velké0.68 thrashové0.58 čtyřky ?
score: 0.587
position: 1st

Context
answer with

attention

Tyto1.0 dvě0.39 kapely, spolu s Death a Obituary, patř́ı mezi
ı́šjěnmanzývjen 0.38 áretk,ěnécsévolatemhtaedı́nvalhanynipuks

povstala na Floridě v polovině 80. let.
(These two bands, along with Death and Obituary, were leaders of the
major death metal scene that emerged in Florida in the mid-1980s)

Q with att. Jaké0.86 kapely patř́ı0.53 do tzv.1.0 Velké0.73 thrashové čtyřky ?
context
phrases:

Morbid Angel; neofašistickou symboliku (neo-fascist symbolism);
;edicieD;)dnabmorf(ylepakz;notneBnelG;)snoitpecxefo(kemijývz

při vystoupeńıch (on stage)
score: 0.569
position: 1st

corr. answer
with attention

Thrash zpopularizovala1.0 tzv.0.37 ,xarhtnA:”akřytčávohsarhtákleV“
Megadeth, Metallica a Slayer.

score: 0.469
position: 7th

Fig. 4. An example QA pair which is better analyzed with the standard non-context
model.
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Detailed error analysis of the achieved results showed that not all question
analyses are improved with the context network model. For example, Fig. 4 shows
a QA example where the standard non-context model ranks the correct answer
as the first one of possible answers whereas the context model places the cor-
rect answer at the 7th position. If we compare the normalized attention scores
between the two models, we can see that the standard model puts an empha-
sis on the words patř́ıbelongs, doto, tzv so called, VelkéBig, and thrashovéof Trash

in the question and tzv so called, VelkáBig, thrashováof Trash, and čtyřkaFour in the
answer. On the other hand, the context model significantly emphasizes the words
Jakéwhich, patř́ıbelongs, tzv so called, and VelkéBig of the question and TytoThese,
dvětwo, and nejvýznamněǰśımost important in the first (incorrect) answer and zpo-
pularizovalapopularized and tzv so called in the correct answer at the 7th position.
This information leads us to conclusion that in the case of more names in the
context, the context phrases confused the attention layer and the model focused
on incorrect words.

On the other hand, the context model obviously helps to identify the answer
in candidate sentences that refer to an entity from the question via anaphoric ref-
erence (pronoun) to a preceding sentence. However, even in non-anaphoric cases,
the context model can increase the attentive score of a key phrase, for example
in a question of Kdo dal dohromady koncept výstroje? (Who put together the
equipment concept?) the context model assigns a higher combined score to the
phrase koncept výstrojeequipment score which allowed to improve the rank of the
correct answer sentence.

5 Conclusions

In this paper, we have presented a new method of the answer selection task based
on employing broader answer context in the input of the recurrent neural network
model. The new model is consistently better than the model without context
using the same network hyperparameters. Overall, the best context model offers
an improvement of 4% when compared to the previous best published result
(from 78.87% to 82.91%).

Since the non-context and context models are (partly) supplemental to each
other, one of the main future directions lies in testing ensemble model architec-
tures building on top of these two models.
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Abstract. In this paper we present a part of corpus-driven semantico-
grammatical ontological description of Russian prepositional constructions.
The main problem of a prepositional ontology is its inner controversy because
the ontological structure presupposes logical analysis of concepts, however,
prepositions are usually interpreted as non-lexical grammatical language ele-
ments. In our understanding, this is an ontology of lexico-grammatical relations
that are implemented in prepositional constructions. We demonstrate the onto-
logical structure for semantic rubrics of temporal and locative syntaxemes
extracted through the elaborated technique for processing corpus statistics of
prepositional constructions in modern Russian texts. Common and contrastive
traits between this two topmost semantic domains are shown.

Keywords: Russian prepositional constructions � Preposition meaning �
Corpus statistics � Locative constructions � Temporal constructions � Semantic
rubrics

1 Introduction

The paper presents the next stage of corpus-driven semantic-grammatical description of
Russian prepositional constructions. The collected statistics from various contemporary
corpora for pairs “preposition – its meaning”, their scholarly description [1, 2] and
existing schemes of lexical and syntactic structuring [3] led us to the conception of the
prepositional ontology. We consider this notion as a semi-grammatical language
component linking fuzzy lexico-semantic word classes by the hierarchical set of
grammatical relations. These relations are established by a combination of the partic-
ular preposition, a semantic type of the lexeme attaching the prepositional construction,
and a semantic class and a grammatical form of the dependent noun.

The main problem of such an ontology is its inner controversy since the ontological
structure presupposes logical analysis of concepts. Prepositions, however, are usually
interpreted as non-lexical or not fully lexical language elements. Currently, there is an
understanding that the meaning of prepositions should be considered as a special type
of relationship inside prepositional constructions. A prepositional ontology has a sig-
nificant difference from a classic one. Our understanding is, that it is an ontology of
lexico-grammatical relations which are implied in prepositional constructions. We
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believe that such an ontology cannot be built from the top down. We advocate a data-
driven corpus approach from the bottom up and focus on patterns of usage. The similar
approach one can see in the building the Pattern Dictionary of English Prepositions
(PDEP) [4]. The links and relations between objects of our ontology (syntaxemes), in
turn, can also be identified on the basis of corpus-based approach. The relations of this
kind are usually calculated by the vector space model [5]. Our approach is closer to [6].
But unlike [6], where machine learning is used, we rely on corpus statistics.

We ground our research on two observations by M.I. Steblin-Kamenskiy [7]: (1) an
incomplete awareness of the motivation for grammatical meanings, which is expressed,
for example, in the attribution of animateness to obviously inanimate nominations such
as пoкoйник, мepтвeц (‘dead person’) or кyклa (‘a doll’) and the like, and (2) the
particular type of binary grammatical opposition, where one member, so called char-
acteristic category, expresses a grammatical meaning “A”, and its counterpart is not a
simple opposite of “non A” but some sort of a merger between “non A” and “A” [8].
For our approach, this is a fairly clear principle of distinguishing grammatical oppo-
sitions on the basis of corpus statistics. We will use this idea of the characteristic
category as a guideline for distinguishing grammatical oppositions since purely logical
comparisons of prepositional meanings lead to the so-called “inconsistency” in the use
of prepositional-case constructions due to their grammatical nature.

This corpus-based semantic and grammatical description of Russian prepositional
constructions uses empiric data from various contemporary Russian corpora in order to
identify and then formalize the basic ontological semantic patterns of “prepositional
grammar”.

2 Prepositional Ontology

It is claimed in [9] that a prepositional ontology has a hierarchical structure. The most
abstract concepts are semantic rubrics, which are realized as syntaxemes. This term was
proposed by G.A. Zolotova [3] as a designation of the minimal syntactic-
morphological prepositional constructions having particular meanings. Syntaxemes
may be divided into subtypes (subsyntaxemes) which convey lexico-grammatical
meanings and may be expressed by primary or secondary prepositions in a variety of
textual forms. Notions from ontological levels have grammatical nature that requires a
special quantitative grammatical approach for further structuring.

Quantitative grammatical description is carried out on morphological annotated
corpora using corpus searching tools. Besides, we developed own software to extract
prepositional phrases from the syntactically annotated corpus Taiga [10]. Frequencies
of prepositional meanings obtained from various corpora differ for a variety of reasons,
the most important being the balance of stylistic and thematic text characteristics.
Frequencies in this paper are derived from a balanced corpus of Russian developed at
the Saint-Petersburg University.

The crucial point of our methodology [11] is a compilation of a random sample of
contexts with prepositional constructions from corpora. The sample contexts are
annotated at the first stage by linguists. Prepositional meanings are ranked according to
the percentage of a particular meaning of a preposition. The top ranks demonstrate the
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regular use of prepositional constructions, and the bottom ranks show their irregular
use. The meanings from the top ranks are extrapolated due to the total frequency of a
preposition in the corpus and normalized to a number of millions of tokens presented in
the corpus and processed as an ipm frequency measure of prepositional meanings. They
may be used for aligning the pairs “preposition – its meaning” according to the sim-
ilarity of meanings to subsyntaxemes, syntaxemes, and rubrics of prepositional
constructions.

A prepositional syntaxeme is characterized by a morphological arrangement (a
preposition plus a noun case form) which has a unity of the form and the meaning
functioning as a constructive and significant component of a phrase or a sentence.
Syntaxemes in the original Zolotova’s description look like semantic roles or argument
specification: locative, temporative, directive, destinative, correlative, quantitative,
mediative, qualitative. A typical syntaxeme is expressed by several prepositional
phrases, some of them are synonyms and some are not.

The prepositional semantic rubrics, as well as syntaxemes and subsyntaxemes are
arranged into cortege sets, that manifest the conceding corpus frequencies. Ratio
enumeration of rubrics according to [9] includes localization (.35); temporative (.22);
objective (.14); derivative (.09); qualificative (.05); partitive (.03); quantificative (.02).
Two topmost semantic rubrics of prepositional meanings are localization and
temporative.

In [11] the structure of the localization semantic rubric with appropriate syntaxemes
and subsyntaxemes is outlined. It is build on the context analysis for 10 topmost
Russian prepositions, that are common for all functional styles and periods from
Russian National Corpus [12]: “в” (‘in’), “нa” (‘on’), “c” (‘with’), “пo” (‘by’), “к”
(‘to’), “из” (‘from’), “y” (‘at’), “зa” (‘behind’), “oт” (‘from’), “o” (‘about’).

We verify the alleged structure of the localization rubric incorporating more fre-
quent prepositions from the list in [12]: “дo” (‘to’), “пpи” (‘at’), “пoд” (‘under’),
“пocлe” (‘after’), “бeз” (‘without’), “чepeз” (‘through’), “пepeд” (‘before’), “мeждy”
(‘between’), “нaд” (‘over’), “из-зa” (out of’), “из-пoд” (‘from under’). The verified
structure of the localization rubric is described in the next section.

3 The Grammatical Structure of the Localization Rubric

This rubric is informative due to its frequency domination (about 14000 ipm) in text
corpora, thus various grammatical “characteristic categories” are presented in its types
and subtypes. The framework of this rubric is – in some way – reproduced by other
semantic rubrics conforming the localization grammatical oppositions to their particular
nature. This correspondence is illustrated by the structure of the prepositional tempo-
rative rubric. In [11] 4 syntaxemes are set up: locative, directive, departive, and tran-
sitive. Distribution of ipm frequencies for them and their subtypes (subsyntaxemes) is
shown below in Table 1.
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3.1 Locative Syntaxeme

The general meaning of the locative syntaxeme is the designation of the point or extent
in space. Its 6 subtypes are opposed in corpus frequencies, the case form of the
governee noun, and particularities referring to lexico-semantic classes of governor
words and governee nouns. Governor words in general for all subtypes have verbal
nature designating actions, states and processes. Concrete nouns are used also but with
minor corpus frequencies. The locative_1 formed by “в” (‘in’) and locative_2 formed
by “нa” (‘on’) are combined with nouns in the same case form. This case is placed at
the sixth position in the standard Russian case paradigm, and called “prepositional”.
Governee nouns in these subsyntaxemes are artificial and natural objects which form
the human environment. They are classified into two intersecting groups: Place_1 and
Place_2. Usually difference between these groups is associated with the idea of “in-
clusion” for the former in the contrast to “support” and “contiguity” for the latter [13].
This opposition is supported in examples cидeть в caдy (‘to sit in the garden’), cидeть
нa cтyлe (‘to sit on the chair’). The locative_2 subsyntaxeme with “нa” (‘on’) con-
cedes the locative_1 with “в” (‘in’) greatly: 1800 ipm to 3700 ipm. It is a part of
Russian grammatical structure, that reflects statistical and combinatory characteristics
of modern Russian grammatical usage.

The most frequent variant of the locative_3 involves the genitive case of the
governee noun from both groups Place_1 and Place_2 and designates immediate
proximity. The core preposition is “y” (‘at’) [250 ipm], other synonymous secondary
prepositions designating ‘near’ are “вoзлe” [66 ipm], “oкoлo” [16 ipm], “нeпoдaлeкy
oт” [8 ipm], “вблизи oт” [1 ipm]: cидeть y (вoзлe/oкoлo) мopя (‘to sit by (near/about)
the sea’); зaнять мecтo y oкнa (‘to take a seat by the window’). There is another
variant including the ablative case form: “pядoм c” [73 ipm], “пoд” [35 ipm]: вoeвaть
pядoм c/пoд Mocквoй (‘to fight near Moscow’).

The preposition “зa” (‘behind’) with the ablative case [260 ipm] denotes the
locative_4 designating a dividing limit (кpичaть зa дoмoм ‘to scream behind the
house’; cтoять зa cпинoй ‘to stand behind’), which can simultaneously be a marker of
the offered services (cтoять зa пpилaвкoм ‘to stand behind the counter’, cкyчaть зa
бapнoй cтoйкoй ‘to be bored behind the bar counter’), the latter construction leads to
an “active” interpretation of the locative_4 (быть пpoдaвцoм, бapмeнoм ‘to be a
seller, a bartender’). Prepositions are often included in various idioms. In this case they
lose their primary grammatical meaning. In this article, the problem of identifying and
describing such “prepositional” idioms is not discussed. The object standing as a
governee after “зa” (‘behind’) may be a real obstacle, hiding from the sight of a person
what is behind it cтoять зa двepью/вopoтaми ‘to stand behind the door/gate’,
нaxoдитьcя зa зaбopoм ‘to be behind the fence’. The locative_4 tends to lexicalize:
быть зa гopoдoм (= нa пpиpoдe) ‘to be in the country’, нaxoдитьcя зa pyбeжoм ‘to
be abroad’. This phenomenon indicates the starting point of the threshold range
dividing grammatical and lexical characteristics of a prepositional construction. The
preposition “пepeд” (‘in front of’, ‘before’) with the ablative case denotes a opposite
variant of the locative_4 designating being on this side of a dividing limit from the
sight of a observing person.
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The locative_5 is formed by the preposition “пoд” (‘under’) with the ablative case
[145 ipm]. It designates the position below some marked location: лeжaть пoд
cтoлoм (‘to lie under the table’), cтoять пoд нaвecoм (‘to stand under an awning’).

Another subsyntaxeme locative_6 represents the peripheral usage of the frequent
preposition “пo” (‘over’) taking the dative case [110 ipm]. This preposition is con-
sidered by G.A. Zolotova predominantly as a transitive syntaxeme (see below),
although it is also used for a localization specification denoting the boundaries of non-
directional or chaotic movement: бpoдить пo гopoдy/yлицaм (‘to wander around the
city/the streets’), пyтeшecтвoвaть пo cтpaнe (‘to travel around the country’). This
subtype signals the end of the grammatical threshold range. Less frequent prepositional
constructions are structured according the principles of lexical organization, as a lexico-
semantic group. Plenty examples are given in [9].

Different subtypes of a grammatical syntaxeme may co-occur in the text at the same
time: cидeть в кpecлe нa вepaндe (‘to sit in a chair on the veranda’), гpaбить нa
oткpытыx дopoгax зa гopoдoм (‘to rob on open roads outside the city’). This fact is
usually considered an evidence that these prepositional constructions have different
semantic roles.

3.2 Directive, Departive, and Transitive Syntaxemes

The next type of localization prepositional groups reflects the trajectory of object or
subject movement which is compatible with verbal governors denoting self-propelled
movement or changing object location. Three aspects of this trajectory are usually
specified in corpus texts: (a) the end point of the trajectory, that is, the goal; (b) the
initial or starting point of the trajectory; (c) the space traversed.

The directive syntaxeme [4575 ipm] specifies the end point of the movement. It
shows the conformity with subtypes of the locative syntaxeme. The topmost frequent
prepositions “в” (‘in’) and “нa” (‘on’) have impressive parallelism in their grammatical
specificity. They require the accusative case of nouns and have the identical selectional
preferences for governee nouns as locative_1 and locative_2. Thus, we can introduce
two syntaxeme subtypes: the directive_1 [2500 ipm] and the directive_2 [1250 ipm]:
пoлoжить в шкaф (‘to put in the closet’), пocтaвить нa cтoл (‘to put on the table’).
The same grammatical shift is valid for less frequent directive_4 with the preposition
“зa” (in this sense ‘over’) [115 ipm] and directive_5 with the preposition “пoд”
(‘under’) [70 ipm]: бpocить зa oгpaдy (‘to throw over the fence’), выйти зa oгpaдy
(‘to go over the fence’), пpыгнyть пoд вaгoн (‘to jump under the wagon’), пoлoжить
пoд кpoвaть (‘to put under the bed’).

The novelty in this group is the preposition “к” (‘to’) taking the dative case [650
ipm] which is analogous to locative_3 with preposition “y” (‘at’) as regards lexical
nature of governee nouns: ycтpeмитьcя к вepaндe (‘to rush to the veranda’), пoд-
винyть к oкнy (‘to move to the window’). The enumeration of this syntaxeme subtype
is directive_3. Another variant of this subtype is preposition “дo” (‘to’) taking the
genitive case [65 ipm]: плыть дo ocтpoвa (‘to sail to the island’). This variant is used
with the prefixal verbal derivatives coinciding with the preposition: дoбpaтьcя дo
ocтpoвa (‘to get to the island’).
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The departive syntaxeme specifies the starting point of the movement trajectory. It
does not look sustainable because these constructions have corpus frequencies com-
parable with those of the directive group, and follow the similar type of lexical pref-
erences for governee nouns. Its subtypes match straightforwardly enumeration of the
directive syntaxeme. Departive subtypes attach governee nouns in the genitive case
form. The departive_1 uses the preposition “из” (‘from’) [660 ipm] and denotes the
movement of an object or a subject opposite to that of directive_1: yйти из caдa (‘to
leave the garden’), вытaщить из шкaфa (‘to pull out of the closet’). The same
opposition can be seen in the departive_2 with the preposition “c” (‘from’) [410 ipm]:
yбpaть co cтoлa (‘to clear the table’), yйти c вepaнды (‘to leave the veranda’). The
departive_3 expressed by the preposition “oт” (‘from’) [300 ipm] is an opposite to the
directive_3: oтoдвинyть oт oкнa (‘to move away from the window’), yйти oт
cтoлa (‘to get away from the table’). The departive_4 is expressed by the preposition
“из-зa” (in this sense ‘from’) [40 ipm]. It is the counterpoise of the directive_4:
вытaщить из-зa пaзyxи (‘to pull out from the bosom’), вcтaть из-зa cтoлa (‘to get
up from the table’). Similarly the departive_5 with “из-пoд” (‘from under’) [22 ipm] is
the counteraction of the directive_5: вытaщить из-пoд cтoлa (‘to pull out from under
the table’), тopчaть из-пoд cнeгa (‘to stick out of the snow’).

The transitive syntaxeme forms the peripheral syntaxeme in the localization rubric
due to lesser corpus frequency and more intricate subtype oppositions. The transitive_1
is formed by the only core preposition “пo” (in this sense ‘along’) with the dative case
[360 ipm]: пpoйти пo кopидopy/пoлю (‘to walk along the corridor/field’), cпycкaтьcя
пo лecтницe (‘to go down the stairs’). The secondary synonym is peripheral “вдoль
пo” (‘along’) [2 ipm]. The primary preposition “чepeз” (‘through’ or ‘across’) with the
accusative case of the governee noun [135 ipm] forms the transitive_2 subtype:
пpoйти чepeз xoлл (‘to go through the hall’), пpoвoзить чepeз пepeeзд (‘to transport
across highway crossing’). The secondary preposition “cквoзь” (‘through’) [38 ipm] is
usually considered to belong to the transitive_2 subtype.

The distribution of the frequencies of localization syntaxemes illustrates the
quantitative realization of grammatical oppositions in the ontological structure of
prepositional meanings. Jacobson’s characteristic categories can be seen in the

Table 1. Distribution of ipm frequencies of syntaxemes from the localization rubric in a
balanced corpus (the superscript following the preposition designates the case form as its position
in the standard case paradigm)

Locative Directive Departive Transitive

Locative_1 в6 4000 Directive_1 в4 2500 Departive_1 из2 660 Transitive_1 пo3 360

Locative_2 нa6 2500 Directive_2 нa4 1250 Departive_2 c2 410 Transitive_2 чepeз4 135

Locative_3 y2 … 449 Directive_3 к5 дo2 640 Departive_3 oт2 300 Transitive_2 cквoзь4 38

Locative_4 зa5 260 Directive_4 зa4 115 Departive_4 из-зa2 40

Locative_5 пoд5 145 Directive_5 пoд4 70 Departive_5 из-пoд2 22

Locative_6 пo3 110

ipm 7464 ipm 4575 ipm 1432 ipm 533
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syntaxeme group: the locative_1 prevails over the locative_2, and so forth, and this
ratio is recurrent in every syntaxeme group. This structure is transformed subsequently
into other semantic rubrics, though the fundamental cognitive traits of the localization
rubric are quite clear. The significant feature of the localization syntaxeme structure is
the fact that they are predominantly unambiguous: they involve different prepositions,
and if they coincide, attached case forms vary. This leads to a situation in which the
juxtaposition of Russian localization syntaxemes cannot be translated into English as a
valid phrase due to the repetition of the same preposition. Therefore, we may consider
enumerated syntaxemes to be a joint form of grammatical expression of the localization
ontological system. English translations of the localization syntaxemes reflect the fact
that in some parts the ontological structures in two languages overlap, and partially
they are totally different.

Contextual examples of Russian localization syntaxemes show the correlation
between prefix verbal derivatives and localization syntaxemes in use. The usual
interpretation of this correlation is formulated as follows: prefixal verbal derivatives
create constituents of “governed” prepositional constructions, the prefix regularly
matching the preposition in such a constituent. However, the investigation of this
phenomenon with a help of corpus statistics analysis in [11] shows that realization of
derivative, departive and transitive syntaxemes for prefixed verbal derivatives is higher
than for those without prefixes. The distribution of substantial frequencies of local-
ization syntaxemes over prefixal verbal derivatives illustrates that the appearance of
localization syntaxemes to a considerable extent depends on the semantic type of the
governee noun. Localization subsyntaxemes tend to substitute one another, the formal
repetition of the prefix by its matching preposition is possible, but not obligatory and
predominant.

4 The Grammatical Structure of the Temporative Rubric

The temporative rubric [6140 ipm] concedes to the localization one in frequency.
Naturally, there is no complete isomorphism of spatial and temporal relations, never-
theless, the loose specification of governor words enlarges the number of verbal
derivatives comparing with the localization rubric. The topmost syntaxeme [2765 ipm]
in the temporative rubric is the temporal specification of some event. The grammatical
opposition in corpus frequencies holds between the principal preposition in the
localization rubric “в” (‘in’) in combination with the prepositional (locative) case [1150
ipm] and accusative case [920 ipm] in the same manner as the locative_1 versus the
directive_1. However, these prepositional constructions in the temporative rubric even
at the highest level of the structure exploit specific lexical preferences. The first subtype
temporal_1 attaches nouns denoting months, years, and longer time intervals, these
time specifications may be loaded with an additional meaning component: в 1999 гoдy
(‘in 1999’), в aвгycтe (‘in August’), в 19 вeкe (‘in the 19th century’), в нeoлитe (‘in
the Neolithic’), в дeтcтвe (‘in childhood’). The second subtype temporal_2 with
nouns in the accusative case is used to indicate the day of the week or the time of the
day: в пятницy (‘on Friday’), в пять чacoв yтpa (‘at five in the morning’). The
difference between temporal_1 and temporal_2 reflects the distinction between
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governee nouns denoting time intervals (Time_1) and moments of time (Time_2), and
this linguistic classification appears to be as latent as the locative division into Place_1
and Place_2.

The opposition between two groups of governee nouns (Time_1 and Time_2) is
nullified in the construction temporal_3 similar to directive_4 “зa” (‘during’) attaching
the accusative case [230 ipm]: yничтoжить зa ceкyндy (‘to destroy in a second’),
пocтaвки зa гoд (‘deliveries per year’). The secondary preposition “в тeчeниe”
(‘during’) with genitive case [120 ipm] is widely used supporting this group: дeйcт-
вoвaть в тeчeниe дeкaбpя (‘to act during December’), зaeзд в тeчeниe пятницы (‘a
check in during Friday’).

The next subsyntaxeme temporal_4 is formed according the model of the loca-
tive_4: “зa” (‘during’) attaching the ablative case [110 ipm]. It provides the temporal
reference by mentioning some action: cидeть pядoм зa oбeдoм (‘to sit nearby at
dinner’), cкaзaть зa зaвтpaкoм (‘to say at breakfast’). This subsyntaxeme is sup-
ported by the secondary preposition “вo вpeмя” (‘during’)[138 ipm] with nouns in the
genitive case: вo вpeмя бeceды (‘during the conversation’).

The last subtype temporal_5 in this group is formed on the pattern of the direc-
tive_2: “нa” (in this sense ‘at’) with the accusative case, the governee noun phrase
denotes the date of some event [55 ipm]: гoтoвить втopжeниe нa 12 мaя (‘to
prepare the invasion for May 12’), пoлoжeниe дeл нa 6 фeвpaля (‘the state of affairs
on February 6’). Distribution of ipm frequencies for the syntaxemes from the tempo-
rative rubric is shown in the Table 2.

The co-occurence of temporal subsyntaxemes is possible. There are two basic
types. The standard one: nouns appropriate for temporal_1 stands in genitive after
various subtypes: пpoизoйти в oктябpe 1995 г. (‘to happen in October, 1995’); the
second type is the sequence of several temporal_2 constructions: apecтoвaть в
вocкpeceньe в дeвять чacoв yтpa (‘to arrest on Sunday at nine in the morning’).

The second syntaxeme in the temporative rubric aspective specifies a trajectory
projected on the limits of some time interval: its beginning, accomplishing, duration,
and repetition. In this syntaxeme the opposition of intervals and moments turns in
twofold aspects. The first predominant method presents direct time designation and
indirect nomination by reference to the event as a point without proper duration, this is
a metaphorical transfer of the space trajectory. They are represented as time “marks”:
the beginning happens after this mark as a point of departure, the accomplishment –
before that mark as a point of arrival. The second method presents time as a time
duration in which it is possible to specify logically the beginning and the end. Sec-
ondary prepositions incorporating the preposition “в” (‘in’) designate these boundaries
of the time interval: в нaчaлe [27 ipm] июня (‘at the beginning of June’), в кoнцe [41
ipm] 1995 гoдa (‘at the end of 1995’), в пepиoд [24 ipm] нepecтa (‘during spawn-
ing’). We divide propositional constructions compatible with aspects of temporal
variation into 4 subtypes: the terminative, the intervallum, the inchoative, and the
repetitive. The description of these subtypes is focused primarily on usage of primary
prepositions, because secondary ones include them as a part attaching lexical items
overtly presenting the subsyntaxeme meaning.

The topmost subtype of the aspective syntaxeme is the terminative [504 ipm], it
designates the time of event accomplishment, it is usually the point-wise method of
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time specification. Its first variant transforms the second variant of the directive_3 with
the preposition “дo” (in this sense ‘by’) with the genitive case [236 ipm]: зaкoнчить
дo oceни (‘to finish by fall’), нaлaдить дo 15 мaя (‘to set up by may 15’). This
subsyntaxeme may be included into a sequence with the inchoative producing the
intervallum subsyntaxeme: “c… дo” [22 ipm]: бeгaть c yтpa дo пoзднeгo вeчepa (‘to
run from morning till late evening’), “oт… дo” [14 ipm] длитьcя oт нecкoлькиx
минyт дo чaca, (‘to last from a few minutes to an hour’). The second variant is the
modification of directive_3 “к” (in this sense ‘by’) with dative case [122 ipm]:
зaкoнчить к oceни (‘to finish by fall’). Another variant looks like the directive_5: the
preposition “пoд” (in this sense ‘before’) attaching the accusative case [25 ipm] with
lexical restrictions: yйти пoд вeчep (‘to leave in the evening’), пpиexaть пoд Hoвый
Гoд (‘to come on New Year’s Eve’). The secondary preposition “в кoнцe” (‘at the
end’) [41 ipm] presents the extended view to the time interval: пoлyчить aттecтaт в
кoнцe гoдa (‘to get a certificate at the end of the year’).

The inchoative subsyntaxeme [367 ipm] is opposed to the terminative in the point-
wise system of time representation and specifies the time of event beginning. The
topmost variant is the transformed departive_2, the preposition “c” (‘from’) with the
genitive case [170 ipm]: пить чaй c yтpa (‘to drink tea in the morning’), нaчaть
paбoтaть c 13 лeт (‘to start working from 13 years old’). The second variant is the
transformed departive_3, the preposition “oт” (‘from’) with the genitive case [110
ipm]: в вoзpacтe oт 7 лeт (‘from the age of 7’), cлeпoй oт poждeния (‘blind from
birth’), yкaз oт 12 мaя (‘Decree of May 12’). Both variants are combined with the
terminatives, and form the intervallum (“c… дo”). The frequent extended inchoative is
formed by the secondary preposition “в нaчaлe” (‘at the beginning’).

The intervallum syntaxemes [467 ipm] overlaps with the inchoative and the ter-
minative presented in a sequence in the time. The topmost variant is “зa” (in this sense
‘in’) with the accusative case [230 ipm] (it coincides with the directive_4 in the
localization rubric): пpocмoтpeть тeкcт зa 10 минyт (‘to look through the text in
10 min’). The second variant is a new construction “пo” (in this sense ‘till’) with the
accusative case [180 ipm], it expresses a quantificative time period: жить пo двa
мecяцa в дepeвнe (‘to live two months in the village’). This construction may be used
as binary expression of the time period: “c… пo” [24 ipm] paбoтaть c мapтa пo мaй
(‘to work from March till May’). The third variant of this subtype is the transformed
directive_2, the preposition “нa” (in this sense ‘for’) with the accusative case [24 ipm]:
ocтaвить нa нoчь (‘to leave overnight’), ocвoбoдить нa двa-тpи дня (‘to free for
two-three days’). The secondary prepositions “в пepиoд” and “зa пepиoд” (‘during the
period’) present lexically the intervallum subtype.
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The repetitive subsyntaxeme [180 ipm] is expressed by the transformed locative_6
“пo” (‘on’) with the ablative case: игpaть в кapты пo пятницaм (‘to play cards on
Fridays’). Distribution of ipm frequencies for the aspective syntaxeme and its subtypes
from the temporative rubric is shown in Table 2.

The time definition in texts may reffer to the time of some event. In this case the
time specification turnes out to be relative, such prepositional constructions form the
third syntaxeme taxis (after R. Jacobson’s terminology for verbal relative time).
Specification of taxis is straightforward: the time interval preceding some event –
antecedent, following it – consequent, simultaneous – concurrent.

The topmost subtype of this syntaxeme is consequent [857 ipm]. The first variant is
formed with the secondary preposition “пocлe” (‘after’) [500 ipm] attaching the gen-
itive case.: пpoизoйти пocлe oкaзaния пoмoщи (‘to happen after assisting’), зaмe-
тить пocлe oбыcкa нa квapтиpe (‘to notice after searching the apartment’). The
second variant is the transformed transitive_2 “чepeз” (in this sense ‘after’) [300 ipm]
with the accusative case, the governee noun phrase is usually designation of standard
time measurements potentially quantified: пpийти чepeз дeнь (‘to come in a day’),
пpoизoйти чepeз 2 cтoлeтия (‘to happen after 2 centuries’). The secondary prepo-
sition “cпycтя” (‘later’) with the accusative case [57 ipm] forms the equivalent con-
struction: вoзглaвить миниcтepcтвo cпycтя 20 лeт (‘to head the ministry 20 years
later’). This preposition in small number of contexts (5%) stands after the governee
noun phrase in a postposition: нaйти нecкoлькo лeт cпycтя (‘to find a few years
later’). The first and the second variants can be used in a sequence with a first variant:
вepнyтьcя cпycтя| чepeз гoд пocлe poждeния мaлышa (‘to come back a year after
the birth of the baby’).

The next subtype is concurrent, although there is the only primary preposition
“пpи” (‘during’) [675 ipm]: иcпoльзoвaть пpи oкaзaнии пoмoщи (‘to use in assisting’
= to use when assist).

The third subtype is antecedent [340 ipm] which attaches governee nouns, des-
ignating actions, events, and so on. The topmost variant transforms the second variant
of the directive_3: “дo” (‘before’) with the genitive case [266 ipm]: oцeнивaть

Table 2. Distribution of ipm frequencies of syntaxemes from the temporative rubric in a
balanced corpus (the superscript following the preposition designates the case form as its position
in the standard case paradigm)

Temporal Aspective Taxis

Temporal_1 в6 1150 Terminative до2 к3
в конце2
под5

504 Consequent после2
через4
спустя2

857
Temporal_2 в4 920

Temporal_3 за4
в течение2

350 Intervallum за4 по4
на4
в период2

467 Concurrent при6 675

Temporal_4 за6
во время2

290 Antecedent до2
перед5

340
Inchoative с2 от2

в начале2
367

Temporal_5 на4 55 Repetitive по5 180
ipm 2765 ipm 1518 ipm 1872
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coтpyдникa дo eгo пoявлeния (‘to evaluate an employee before he appears’). The
second variant is formed by the preposition “пepeд” (‘before’) with the ablative case
[74 ipm]: выcкoчить пepeд зaкpытиeм двepeй (‘to pop out before closing the
doors’), ocмoтpeтьcя пepeд выxoдoм (‘to look around before going out’). A great
number of secondary prepositions for this syntaxeme are listed in [9].

5 Semantico-Grammatical Parallelism of Localization
and Temporative Rubrics

Semantic rubrics are abstract semantic classes divided into syntaxemes by which we
describe the meaning of prepositional constructions. The localization and temporative
semantic rubrics are two topmost rubrics of prepositional meanings. As shown above,
their framework, division into subtypes, and specification of subtypes are sometimes
similar. Let’s illustrate this parallelism in a compressed form (Table 3). We suppose
that it is a result of an associative transfer of spatial relations into the realm of imag-
inary location and movement on the timeline of events.

We would like to note that there are not only hierarchical relationships between
syntaxemes and subsyntaxemes in our ontology, but horizontal relations between units
from different semantic rubrics, too.

Table 3. Proximity between subsyntaxemes of temporative and localization rubrics

Temporative Localization

Syntaxeme Subsyntaxeme Example Syntaxeme Subsyntaxeme Example

Temporative Temporal_1 в aвгycтe Locative Locative_1 в caдy

Temporative Temporal_3 зa гoд, в тeчeниe
дeкaбpя

Locative Locative_6 в пpeдeлax пoля, нa
пpoтяжeнии пyти

Temporative Temporal_4 зa зaвтpaкoм, вo
вpeмя бeceды

Locative Locative_1 в кoмнaтe, нa
вepaндe

Aspective Terminative зaкoнчить к
oceни, дo oceни

Directive Directive_3 пoдoйти к
вepaндe, плыть дo
ocтpoвa

Aspective Inchoative пить чaй c yтpa,
нaчaть c 13 лeт

Departive Departive_2/Departive_3 yйти c вepaнды,
yйти oт cтoлa

Aspective Intervallum дoйти зa
5минyт, c
мapтa пo мaй

Directive/Departive Directive3/Departive3 oт дoмa дo peки

Taxis Consequent пocлe oбыcкa,
чepeз дeнь

Locative Locative_4 чepeз 3
килoмeтpa, зa
гopoдoм

Taxis Concurrent пpи oкaзaнии
пoмoщи

Locative Locative_3 cидeть y мopя

Taxis Antecedent дo пoявлeния,
пepeд
зaкpытиeм

Locative Locative_4 cтoять пepeд
двepью
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6 Conclusion and Further Work

The semantic rubrics presented in our approach help to organize rather vague prepo-
sitional meanings. Their affinity and difference may be explicated through the overlap
of semantic classes of governing and subordinate words. The whole structure of
prepositional frequencies that so far have not been in any study and neighbor semantic
distributions are resources for the compilation of the quantitative prepositional gram-
mar for Russian.

We proceed to compile the structure of other semantic rubrics on the basis of
outlined technique. The frame of grammatical oppositions are organized by dispersion
of primary prepositional meanings. Secondary prepositions are attached to this system
appending their particular lexical connotation. Occasionally they gain the appropriate
position in the grammatical framework, thus shifting to another level of balance
between grammatical and lexical components of meaning.

Further stages of investigation include:

• to finalize the set of syntaxemes and subsyntaxemes of prepositional semantic
rubrics referring to governers and governees semantic types;

• to compare sets of prepositional constructions (grammatical syntaxemes and their
lexicalized versions with secondary prepositions) from corpora of different genres in
order to discover the significant variation of statistical parameters;

• to investigate the combinatory potential of the extracted grammatical syntaxemes in
order to separate their subtypes and synonymic variants;

• to compile rules of the hybrid generative grammar showing the use and interpre-
tation of syntaxemes for the corpus text.

Acknowledgements. This paper has been supported by the Russian Foundation for Basic
Research, project No. 17-29-09159.
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Abstract. In this paper, we present a new dataset for testing geometric
properties of sentence embeddings spaces. In particular, we concentrate
on examining how well sentence embeddings capture complex phenom-
ena such paraphrases, tense or generalization. The dataset is a direct
expansion of Costra 1.0 [7], which we extended with more sentences and
sentence comparisons. We show that available off-the-shelf embeddings
do not possess essential attributes such as having synonymous sentences
embedded closer to each other than sentences with a significantly differ-
ent meaning. On the other hand, some embeddings appear to capture the
linear order of sentence aspects such as style (formality and simplicity of
the language) or time (past to future).

Keywords: Sentence embeddings · Sentence transformations ·
Paraphrasing · Semantic relations

1 Introduction

Trained vector representations of words and sentences, known as embeddings,
have become ubiquitous throughout natural language processing (NLP). Since
their popularity took off with the introduction of word2vec word embeddings
[15], numerous different methods with different properties have emerged, high-
lighting the importance of estimating their quality. However, it is not entirely
clear in which way the embeddings should be evaluated, aside from the perfor-
mance in the task they originate in. Two main classes, extrinsic evaluation and
intrinsic evaluation, are considered [17].

Extrinsic evaluation utilizes word embeddings as feature vectors for machine
learning algorithms in downstream NLP tasks. It serves well in choosing the best
method for a particular task but not as an absolute metric of embedding quality
as the performances of embeddings do not correlate across different tasks [5].
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[16] demonstrate the presence of linguistic regularities in the word2vec
embedding space. Namely, they show that various word analogy tasks can be
solved by simple vector arithmetic in the embedding space, e.g. finding correct
word D for words A, B, C and their respective embeddings vA, vB , vC by opti-
mizing:

arg max
D∈V \{A,B,C}

simC(vD, vA − vB + vC), (1)

where simC represent cosine similarity between two vectors. This works for var-
ious semantic and syntactic relationships, like for example:

A B C D

king man woman queen
Russia Moscow Paris France
walked walk tell told
bigger big small smaller

This lead to a novel approach—intrinsic evaluation—in which word embeddings
are compared with human judgment on word relations. There is a large number of
available datasets for syntactic and semantic intrinsic evaluation, word analogy
task [15,16] belongs among the most popular methods.

For sentence embeddings this is a different story. When Kiros et al. [12]
introduced Skip-Thought vectors, they evaluated their quality in eight super-
vised tasks such as paraphrase detection or sentiment polarity. This extrinsic
evaluation or ‘transfer tasks’ became the de facto standard for evaluation and
comparison of sentence embeddings, despite the fact that even simple bag-of-
words (BOW) approaches often achieve competitive results on transfer tasks
[18].

[1,11] introduce intrinsic evaluation of sentence embeddings, however, most
of the research in interpretation of sentence embeddings consists of probing for
surface linguistic features of the sentence such as its length, verb tense, word
order, etc. Furthermore, [4,14] indicate that strong performance in these tasks
might be caused by test flaws—the test sentences are grammatically too simple.

However, any geometric properties of an embedding space remain a largely
uncharted territory. We attempt to fill this gap, examining whether sentence
representation spaces exhibit regularities with regard to certain kinds of rela-
tionships, in a way similar to the linear relations observed in word vector spaces.

To this end, we devise a new dataset on the basis of Costra 1.0 [7], which we
extend with information on linear ordering of embedded sentences with regard to
certain kinds of relationships. These allow us to test empirically whether existing
sentence embedding models reflect analogical relationships between sentences.

The paper is structured as follows: Sect. 2 presents existing methods of
semantic evaluation of sentence embeddings and available off-the-shelf embed-
dings. Section 3 describes the methodology for constructing our dataset. Section 4
details the evaluation of embeddings and Sect. 5 presents the results.
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2 Related Work

2.1 Sentence Embedding Space Evaluation

Zhu et al. [21] compare sentence embeddings from a relational perspective using
automatically generated triplets of sentence variations and explore how syntac-
tic or semantics changes of a given sentence affect the similarities among their
sentence embeddings. The following example sentences illustrate this point:

S1: A pig is eating goulash.
S2: A pig is feeding on goulash.
S3: A pig is not eating goulash.

Synonyms (S1, S2) should be embedded closer to each other in a vector space
than sentences with similar wording but different meaning (S1, S3) and (S2, S3).
They discover that several embeddings perform surprisingly well in these tasks.

A sentence analogy task was recently introduced in [21]: in template sen-
tences they substitute a pair of words such as state/capital, man/woman or plu-
ral/singular. To test, whether the embeddings are really able to find the analogy
correctly, they create incorrect sentences similar in wording to the correct ones
and examine whether Eq. (1) finds the ‘correct’ sentence.

Similarly, [6] examined sentences that are close in wording but differ in one
key aspect (e.g. change of gender, adding an adjective, removing a numeral) and
show that the changes form meaningful clusters in the sentence vector space.

In Costra 1.0 [7], we attempted to move to more sophisticated types of sen-
tence relations, beyond those in [6,20]. We present a dataset of complex sentence
transformations in Czech. It is created manually with the aim to thoroughly test
how well sentence embeddings capture the meaning and style of sentences. The
dataset contains sentences very different in wording with a similar meaning as
well as sentences similar on the surface level but very different in meaning.

However, the dataset has certain limitations. For instance, it contains several
generalizations of a sentence but their mutual relations are no further studied.
In other words, we do not know, which ones are more general and should be
embedded closer to the original sentence. Our work directly builds upon [7]. We
decided to make the dataset more robust by extending it with more sentences
and also to ensure that sentences are related to each other whenever possible.
We also created a tool to automatically evaluate the quality of embeddings using
our dataset and used it to compare several off-the-shelf Czech embeddings.

2.2 Sentence Embedding Methods

Since we extend the Costra dataset, we stick to the Czech language. Our goal is to
test as many off-the-shelf Czech sentence embeddings as possible. Unfortunately,
to our best knowledge there is only one directly learned representation for entire
sentences available for the Czech language: LASER [3].

However, there are available pretrained language models such as multilingual
BERT (mBERT) [10] or Flair [2]. Despite neglecting the word order, these meth-
ods yield surprisingly strong results in many downstream tasks. In order to move
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from word vector representations towards representations for entire sentences,
we simply average embeddings of hidden states of all tokens in a sentence. For
BERT, we also consider the CLS token as a sentence embedding.

Sentence multilingual BERT1 (SentBERT) is a sentence encoder initialized
with multilingual BERT and fine-tuned using MultiNLI [19] and XNLI [9]
datasets. The recommended sentence representations are mean-pooled token
embeddings, we use the CLS token too.

3 Annotation

We acquired the data in two rounds of annotation. In the first one, we were
concentrating on adding more related sentences, i.e., making the sentence space
denser. In order to project sentence transformation to a linear scale, we decided
to collect interpolations and extrapolations. In the second round, we collected
pairwise comparisons of sentences from both Costra 1.0 and our first round.

3.1 First Round: Collecting Interpolations and Extrapolations

In the first round of annotation, we present annotators with a seed sentence
and its transformation and ask them to write the following two new sentences:
interpolation – a sentence with meaning/style between the two sentences, and
extrapolation – a sentence with meaning/style even further away from the seed
sentence than the transformation in the suggested direction. An example of one
annotation is presented in Fig. 1.

From the 14 transformation types available in Costra 1.0, we did not select all
types of transformation for the first round.2 The reason was straightforward: it
does not make sense to collect interpolations or extrapolations for some of them.
For example, meaning of paraphrases should be identical or very close to original
sentences and searching for interpolation would be a waste of annotators’ time.
Similarly, there is the non-sense transformation, which is created by shuffling
content words of a seed sentence, so the final sentence is grammatically correct
but has no meaning. There are no interpolations or extrapolations of nonsense.

We manually examined all transformation types and selected only 6 of them
that look most linearly scalable: formal sentence, future, generalization, nonstan-
dard sentence, opposite meaning and past. We do not introduce any new type of
transformations.

We collected almost 1,500 annotations from 7 annotators, containing 2,749
unique sentences. Total volume of Costra 1.1 is 6,968 sentences.

1 http://docs.deeppavlov.ai/en/master/features/models/bert.html.
2 Costra 1.0 contains the following 14 different transformation types: paraphrase, dif-

ferent meaning, opposite meaning, nonsense, minimal change, generalization, gossip,
formal sentence, non-standard sentence, simple sentence, possibility, ban, future, past.

http://docs.deeppavlov.ai/en/master/features/models/bert.html
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seed “Ob .ežůkejuvrkorpoláměvalhanimessač ”
The skin on my head sometimes fills with little blood.

interpolation “K̊uže na hlavě se mi prokrvuje tak akorát”
The skin on my head fills with just the right amount of blood.

transformation “Občas se mi na hlavě hodně prokrvuje k̊uže”
The skin on my head sometimes fills with too much blood.

extrapolation “Nem´ ěvalhanižůkuondážma ”
There is no skin on my head.

Fig. 1. Example from the first round of annotations. The annotator filled the interpo-
lation and extrapolation to the seed and its transformation with opposite meaning.

Implied Sentence Comparison. In the second round of annotations, the annota-
tors are sorting sentence pairs. We however know that an interpolation is closer
in meaning or style to the seed sentence than its pre-existing transformation or
the extrapolation. These implied relations provide us with almost 7,000 sentence
comparisons.

3.2 Second Round: Sentence Comparison

Again, we have manually chosen transformation categories to be compared. We
selected those that are linearly comparable, i.e. changes in tense (future, past),
changes in style (formal sentence, gossip, nonstandard sentence, simple sen-
tence) and significant changes in meaning (generalization, opposite meaning).
We merged two categories (non-standard and gossip) because the actual sen-
tences in the collection often realized ‘gossipping’ via non-standard language
and vice versa.

The annotators were presented with a pair of sentences and criteria, how
to compare them.3 Of course, not always are the sentences comparable. Their
meaning might be either very close or very far from each other, both making
them hard to compare. For every pair of sentences S1 and S2, the annotators
had the following four options:

1. S1 is more general/formal/in the past/non-standard/... than S2.
2. S2 is more general/formal/in the past/non-standard/... than S1

3. S1 and S2 are too similar, for example: “Byl rozčilený a hodně mluvil.” (He
was upset and talked a lot.) and “Ovlivněn silnými emocemi ř́ıkal ledacos.”
(Influenced by strong emotions, he said all kind of things.) are so close in
their meaning that it is almost impossible to select the more general one.

4. S1 and S2 too dissimilar, for example: neither of the sentences “Všechno
zlé je pro něco dobré.” (Every cloud has a silver lining; lit. All bad is good
for something.) and “V Asii jsou r̊uzná obdob́ı.” (There are different seasons

3 Only for opposite meaning the annotators were presented with three sentences: two
candidates and a source sentence. The annotators were then supposed to say which
of the candidates is closer to meaning of the source sentence.
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in Asia.) is generalization of the other sentence, even though they both were
created as generalizations of the sentence “Bangladéšská monzunová sezóna
přináš́ı radost, problémy i pozoruhodné fotografie” (Bangladesh’s monsoon
season brings joy, problems and remarkable photos.)

We collected more than 25k sentence pairwise comparisons from 7 annotators.
We compute inter and intra-annotator agreement using average pairwise Kohen’s
kappa [8]. The scores are generally good, not lower than other types of linguistic
annotation. Our inter-annotator agreement is 0.62 (κ = 0.49) and our intra-
annotator agreement is 0.77 (κ = 0.7).

4 Vector Evaluation

4.1 Sentence Comparison

We combine sentence comparisons obtained in the first and second round of the
annotation. A pair of sentences can have multiple annotations in the collection.
We trust the annotation only if there is an option with the majority of votes.

We keep 16,385 sentence pairs with human comparison and 1,620 were dis-
regarded because of a disagreement in annotators’ judgments.

4.2 Sentence Evaluation

We evaluate sentence embeddings in 12 scales grouped into 6 classes for con-
ciseness. Two focus on transformations without an assumed linear scale behind:
basic: paraphrases should be closer to their seed than any transformation, which
significantly changed the meaning of the seed (different meaning, nonsense, min-
imal change), modality: paraphrases should be closer to their seed than any
transformation, which changes modality of the seed (possibility, ban).

The remaining four classes evaluate whether sentence space reflects the order-
ing implied by the collected comparisons: time (how often the mutual order-
ing of all transformation towards future matches the relative distances in the
embedding space; similarly but separately for past), style (formal sentence, non-
standard sentence, simple sentence), generalization, and opposite.

For categories in the first two classes, we compute the accuracy of sentence
embeddings, i.e., how often simC(vseed, vP) > simC(vseed, vT) for every para-
phrase P and every transformation T of the particular category and in the
examined sentence embeddings v•.

For categories in the latter four classes, the evaluation is based on collected
judgments. So if the annotators judge that sentences A, B and C satisfy A < B
and B < C, we test how often simC(vA, vB) > simC(vA, vC) and simC(vB, vC) >
simC(vA, vC). To make use of the options too similar and too dissimilar, we
check whether simC(vA, vB) > simC(vB, vC) for all sentences A, B, C where the
annotations indicate that A and B are too similar to each other and B and C
are too dissimilar.
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Table 1. Experimental results: geometric relations in sentence embedding spaces

Basic Modality Time Style Gener. Opposite Avg

SentBERT - mean 0.150 0.251 0.667 0.588 0.718 0.685 0.510

SentBERT - CLS 0.172 0.303 0.654 0.577 0.690 0.654 0.508

Flair - mean 0.145 0.157 0.682 0.627 0.695 0.728 0.506

mBERT - CLS 0.262 0.274 0.616 0.579 0.603 0.640 0.496

mBERT - mean 0.103 0.115 0.674 0.621 0.691 0.727 0.489

LASER 0.255 0.244 0.583 0.533 0.667 0.636 0.486

5 Results

As Table 1 shows, none of the examined sentence embeddings are particularly
good in the basic requirement of paraphrases being embedded closer to each
other than sentences with a significantly different meaning. The best perform-
ing method mBERT-CLS reach the accuracy of 26%. This contrasts with [13],
which shows that LASER is particularly good at identifying related sentences
in Polish. However, we must emphasize that transformations in the basic class
were purposefully selected to pose a difficult challenge4 – only very sophisticated
embedding method can achieve high accuracy, which is precisely the purpose of
this testing dataset.

As one can expect, the first two tasks turned out too hard for all BOW
embeddings that use mean to calculate the final vector. On the other hand,
LASER and mBert-CLS perform surprisingly well with more than one-fourth of
paraphrases embedded close to their seeds.

The linearity of time, style, level of generality or the level of opposition
are reflected considerably better: 63–74% of tested sentence triples satisfy the
expectation. Mean-based embeddings (Flair and mBert in particular) achieve
the best performance in this evaluation of linear relations.

6 Conclusion

We presented an extension of COSTRA 1.0, a corpus of sentence transformations,
providing new transformations and relations in order to examine to what extent
embedding spaces reflect linear ordering with regard to certain kinds of sentence
relationships.

We find that paraphrases are often embedded too far from each other and
many meaning-altering transformations lie in a closer range. This confirms that
the selected transformations are not easy to capture since all BOW methods
perform very poorly on them. The natural ordering of sentences with respect to
4 Different meaning, nonsense and minimal change are all very similar in wording to

a seed sentence unlike its paraphrases, which must use different words to express
similar meaning. For more details see [7].
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time, style and level of generalization or opposition is embedded considerably
better.

Interestingly, the only directly learned sentence embedding LASER shows
on average the worst results from all tested methods. However, the differences
between all methods are very small.

Our hope is that Costra 1.1 will help to develop new better sentence embed-
ding for the Czech language. It is freely available at the following link:

http://hdl.handle.net/11234/1-3248

Easy-to-use Czech sentence embeddings quality evaluator is available here:

https://github.com/barancik/costra
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Abstract. In this paper, we introduce a new and improved version of
DeriSearch, a search engine and visualizer for word-formation networks.

Word-formation networks are datasets that express derivational, com-
pounding and other word-formation relations between words. They are
usually expressed as directed graphs, in which nodes correspond to words
and edges to the relations between them. Some networks also add other
linguistic information, such as morphological segmentation of the words
or identification of the processes expressed by the relations.

Networks for morphologically rich languages with productive deriva-
tion or compounding have large connected components, which are dif-
ficult to visualize. For example, in the network for Czech, DeriNet 2.0,
connected components over 500 words large contain 1⁄8 of the vocabu-
lary, including its most common parts. In the network for Latin, Word
Formation Latin, over 10 000 words (1⁄3 of the vocabulary) are in a single
connected component.

With the recent release of the Universal Derivations collection of word-
formation networks for several languages, there is a need for a searching
and visualization tool that would allow browsing such complex data.

Keywords: Derivational morphology · Word formation · Graph
visualization · Search engine

1 Introduction

A word-formation network is a dataset capturing information about derivational,
compounding, conversional and other processes, through which words can be
created. The networks come in many forms [4], but a typical one we focus on in
this paper is a directed graph structure in which the nodes represent individual
lexemes (generally represented by a lemma, which stands for a set of inflectional
forms) and edges represent the word-formation relations between them.

Both the lexemes and the relations can be further annotated in the dataset.
Lexemes are typically listed with their part of speech and morphological infor-
mation such as nominal gender or verbal conjugation paradigm, while relations
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P. Sojka et al. (Eds.): TSD 2020, LNAI 12284, pp. 144–152, 2020.
https://doi.org/10.1007/978-3-030-58323-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58323-1_15&domain=pdf
http://orcid.org/0000-0003-1470-9005
http://orcid.org/0000-0001-8149-4054
https://doi.org/10.1007/978-3-030-58323-1_15


Querying and Visualization of Word-Formation Networks 145

Fig. 1. An excerpt from a word-formational family of the word vraždit (“to murder”),
as present in DeriNet 2.0 in UDer [5]. It shows morph segmentation (roots delimited
by dots), relation labels and compounding. Rendering was made by the presented tool.

can be annotated with the type of the represented process (e.g. derivation, com-
pounding, conversion or clipping) or with the change occurring between the
related words (e.g. addition of the -er suffix). An example of a graph structure
from DeriNet 2.0, a word-formation network for Czech [14], is given in Fig. 1.

A collection of 10 word-formation networks for 10 different languages has
been published recently under the name Universal Derivations 0.5 (UDer) [5].
Several resources in the collection contain large and complex graphs that are dif-
ficult to browse and visualize without specialized tools. For example, the largest
connected component from DeriNet 2.0 contains 56 362 lexemes and over 12%
of the vocabulary is found in components over 500 lexemes large. Similarly, the
largest component in Word Formation Latin [6] contains 10 514 lexemes.

The aim of this article is to present a search engine that is capable of process-
ing and visualizing the graphs in a user-friendly manner. A demo of the search
engine runs at https://quest.ms.mff.cuni.cz/derisearch2/v2/databases/.

2 Related Work

Visualization and searching methods are useful when developing any linguistic
resources whose annotations specify structured data, and word-formation net-
works are no exception. A good visualization tool, which allows its users to gain
insights into the structure and find interesting phenomena in both the annota-
tions and the raw data, helps prevent annotation errors and inconsistencies and
discover more annotation possibilities. Such tools are in use for a long time in
syntactic analysis or in Wordnet creation.

2.1 Comparison with Visualization of Syntactic Trees

Both the syntactic annotation and the word-formation annotation are graph-
based in nature. The practical difference is the size of the trees. The number of

https://quest.ms.mff.cuni.cz/derisearch2/v2/databases/
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nodes in syntactic trees corresponds to the number of tokens in the annotated
sentence - very closely for dependency trees, but even in theories that have many
nonterminal nodes in the structure, the number of nonterminals generally doesn’t
grow too much. Although sentences can be arbitrarily long, typical ones are
usually shorter than a couple dozen tokens. Longer sentences, whether created
with artist’s intent or as a result of stylistic clumsiness, are atypical. In contrast,
languages with rich derivation, such as Russian or Czech, have many derivational
families that contain several thousands of lexemes.

For example, many toponyms in Czech have corresponding compound adjec-
tives with north-, east-, south- and west-, such as jihoamerický (“South Ameri-
can”) or západolondýnský (“of west London”), which makes them all members of
a single huge connected component through the words jih (“the south”), západ
(“the west”) etc. This difference in sizes requires different approaches to visual-
ization and therefore different tools.

2.2 Comparison with Visualization of Wordnets

Wordnet creation is another field similar to word-formation networks, perhaps
more so than syntactic analysis. The authors of various wordnets have, too,
created tools to support browsing and searching their datasets.

One example is the VisDic/DEBVisDic/DEBGrid family of tools [3]. Here,
we can again see differences in requirements - word-formation networks have a
bigger focus on the overall structure and connections between the lexemes, while
DEBVisDic was created to support dictionary editing and browsing (hence the
DEB in the name), which focuses more on the individual dictionary entries. As
a result, for a long time, the tool only visually showed the tree of the hypero-
and hyponyms, other relations had to be browsed a single node at a time, with
hyperlinks pointing to the node’s neighbors. A way of showing the structure of
the synsets as a graph was added recently [9], but even this visualization only
shows neighboring synsets and their member words, not transitive relations to
further synsets and members.

2.3 Visualizers of Word-Formation Networks

As noted by creators of the Word Formation Latin resource a few years ago,
visualization tools for word-formation networks are still in their infancy [2]. The
six searching and visualization tools from five projects, which we list below in
alphabetical order, are known to us:

The creators of CroDeriV [10] have a public search engine that allows looking
a word up by its morphological composition, for example, by its root, part of
speech or prefixes, and an unpublished version that also shows its derivational
family as a graph. It doesn’t allow searching by lemma.

DeriNet [14] has two different browsers and visualizers. Both can only process
and display trees, not more complex graphs with e.g. compounding. DeriNet
Viewer is more limited in its searching abilities, only allowing browsing by lemma.
It has two modes: Either a display of a complete derivational tree for a given
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size, or statistical overviews of tree shapes. DeriSearch allows searching by any
conjunction of regular expressions over lemmas and parts of speech, but doesn’t
allow querying other attributes [12]. It is also able to search for structures,
allowing queries like “all nouns ending in -t́ı derived from verbs”. Its visualization
capabilities include several graph layouts optimized for large trees [13].

Another search engine was created for another Czech resource, Derivancze [7].
It allows searching by lemma and shows the immediate derivational neighbors
of the found word, annotated with their logarithmic frequency in a corpus and a
tag specifying the type of relation between the found word and the neighbor. The
neighbors are hyperlinked, allowing the user to explore the whole derivational
family one word at a time by clicking on the links.

A basic search engine is provided by the DerIvaTario project [11]. It allows
querying by part-of-speech and by affix and various affixal properties, but not by
word form or lemma. The output is a textual listing of the matching lexemes with
their properties and base words, and tables of statistics of the word-formational
processes visible in the set of results. Since the base words are not hyperlinked
and derived words are not listed, browsing the dataset as a graph is difficult.

The last search engine known to us was made for the Word Formation Latin
project [6]. The search engine [2] allows lookup by lemma (using a regular expres-
sion), part of speech, affix (chosen from a list) and word-formational rule. The
results can be further trimmed down: for example, when looking a word up by
lemma, one can view only derivational roots (words without a base word) or
only derived words, and in affix search, include or exclude words that contain
the affix internally, not as the last word-formational step. Visualization is done
using graphs and the user can choose whether to only show the derivational
family, or compounding relations as well.

The tool we introduce in this paper is a reimplementation of DeriSearch, with
an extended query language and improved visualizations aimed at large graphs.

3 Query Language

DeriSearch uses a query language called DCQL [12]. As the name suggests, it is
based on the Corpus Query Language (CQL) used by Manatee, SketchEngine
and other text corpora query engines and descended from a common root in
the IMS Corpus Workbench [1]. The original DCQL used in previous versions of
DeriSearch (called DCQL-1 for the purposes of this paper) had to be extended to
support querying the kinds of information not found in DeriNet versions up to
1.7, such as compounding, morpheme segmentation or relation labels. In the
following two sections, we first give a tutorial on DCQL-1 and then introduce
our extensions as DCQL-2.

3.1 Original Query Language: DCQL-1

The DCQL-1 query language was designed with accessibility to new users in
mind. You can search for a lexeme by typing its lemma into the search box, no
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syntax needed. The result shows you an excerpt of the lexeme’s word-formational
family, with the lexeme itself highlighted. More complex queries need syntactic
constructions, which are expressed in a language similar to CQL. An overview
of the syntax and a discussion of its limits are given below.

Individual lexemes are queried using their attributes. In DCQL-1, these are
the “lemma”, “pos” (the part-of-speech tag) and several resource-specific ones,
such as “techlemma” used for storing bits of extra morphological and seman-
tic annotations in the DeriNet network. A bare-word query means exact string
matching against the “default attribute” (selectable in the graphical user inter-
face, defaulting to lemma).

To query other attributes, or several of them at once, a square bracket nota-
tion familiar from CQL, “[attribute ="regex "]”, is used. It searches for all
lexemes in which the value of “attribute ” matches the regular expression
“regex ”. Multiple queries in conjunction can be connected with “and”. For
example, to search for all nouns ending in -er, one would write “[pos="NOUN"
and lemma=".*er"]”. As a special case, the empty brackets “[]” match any
lexeme.

DCQL-1 only allows to specify each attribute at most once and connect the
individual properties with logical AND. This makes some queries more awk-
ward to express - e.g. a query for all nouns or adjectives must be expressed as
“[pos="NOUN|ADJ"]” instead of the, perhaps more natural, “[pos="NOUN" or
pos="ADJ"]” - and other queries inexpressible, such as “all nouns ending in -ater
or verbs ending in -at”. Approximating this query as “[pos="NOUN|VERB" and
lemma=".*ater|.*at"]” would erroneously include e.g. the noun seat.

Derivational structure can be queried by assembling a tree-shaped query out
of individual lexeme queries using concatenation, similar to how one searches for
consecutive words in CQL, and parentheses with commas. Neighboring lexeme
queries correspond to base-derivative relations between the lexemes. For exam-
ple, to search for lexeme B derived from lexeme A, one would write “A B ”, e.g.
“[pos="VERB"] [lemma=".*er"]” (“words ending in -er derived from a verb”).
Several derivatives at the same level of the tree are written in parentheses sep-
arated by commas, e.g. “[pos="VERB"] ([pos="NOUN"], [pos="NOUN"])” (“a
verb with at least two nouns immediately derived from it”).

DCQL-1 limits queries to tree-shaped ones, because it was designed for use
with DeriNet 0.9, which only contained tree-shaped derivational families. Other
networks and newer versions of DeriNet can contain non-tree-shaped subgraphs.

3.2 Extended DCQL Language: DCQL-2

To support the increased variety and complexity found in the UDer collection,
we extended the DCQL-1 language in several ways, described below. We refer
to the extended language as DCQL-2

We extended the set of queryable attributes of lexemes by all attributes
stored in UDer databases, such as nominal gender (for Czech, French, German
and Latin), verbal aspect (for Czech) or nominal declension (for Latin). Any
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attributes present in the resources can be queried by string comparison and
regular expressions without requiring specific code support in the search engine.

A second extension is the ability to query relations. The UDer collection
has introduced relations as an explicit object in the database, which can carry
annotation such as semantic labels or word-formation process type. The query
syntax is similar to lexeme queries, but with angle brackets instead of square
ones. The relation query must occur between two lexeme queries, like this: “[]
<SemanticLabel="Possessive"> []” (“all derived possessives”).

A third extension is the ability to query general contiguous graphs instead
of just trees. To facilitate this, we introduced labeled nodes with references and
allowed the user to search for several interlinked trees at once by coindexing
the nodes. The user can label an arbitrary node by prepending a user-selected
textual label and a colon before the node or relation definition.

Nodes and relations are coindexed if they are labeled by the same string. A
node can’t be coindexed with a relation and labeling a relation identically as a
node is an error. Coindexed nodes or relations only match if they can point to
the same lexeme or relation in the search results. For example, the query “a: []
[] a: []” matches all nodes (labeled a) that are in a bi-directional relation with
another node (the middle unlabeled one). This currently does not happen in any
dataset from UDer, but it can occur when two lexemes are derivationally related,
but the direction of derivation is unclear, as with some neoclassical formations
[8], and the annotators decide to include both directions of derivation in the
dataset. When coindexing nodes with constraints in them, the resulting query
must match all of them, as if they were connected by logical “and”.

Not all directed structures can be described by a single tree that loops back on
itself using labels. For example, querying compounding requires specifying two
independent parents that needn’t be connected by a cycle. Any general graph can
be, however, described as a union of several directed trees. The user can specify
such a union by connecting several tree queries with “&”, e.g. “[lemma=="week"]
weekday:[lemma=="weekday"] & [lemma=="day"] weekday:[]”.

A final extension is the ability to query morphological segmentation under
the attribute “morfeman”. This is done with regular expressions over a string
representing the segmentation using vertical bars and colons. Each segment
is specified as morph:morpheme:type, where type is R for root, P for pre-
fix, S for suffix, I for infix, X for interfix and U for unknown. The seg-
ments are separated by vertical bars, with extra bars at the start and end of
the whole string. For example, the word revalidation could be expressed as
“|re:re:P|valid:valid:R|at:ate:S|ion:ion:S|”.

We’ve also made a single backwards-incompatible change: The meaning of
regular expressions was changed to match the whole string, instead of a substring.
This means that e.g. the expression “"er$"” from DCQL-1 should be written as
“".*er"” in DCQL-2. The change makes the search engine behavior identical
to the behavior of popular corpus managers using CQL. All examples in this
paper are given in the new format. Otherwise, the regular expressions of DCQL-
2 conform to the specification of Java’s util.regex.Pattern.
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4 Visualization of Results

Since DCQL-1 worked with tree-shaped derivational data only, the search engine
could use algorithms for display of trees that produce tidy, readable layout.
It allowed the user to choose from four different ways of displaying the trees
[13]. DCQL-2 can be used to search arbitrary graphs, limiting our choice of
visualization methods. Therefore, we decided to use a force-directed 2D physics
simulation, in which word-formation links correspond to springs of preset length
and stiffness and lexemes repel one another with an electromagnetic force.

The challenge with large connected components found in recent versions of
several word-formation networks is that we want to allow users to explore the
whole component at their leisure, but at the same time focus at the results of
their query. With huge graphs, this means showing only the part of the graph
with the result, but allowing the user to view other parts on demand easily.

When there are multiple results in a single connected component, which can
easily happen with general queries such as “all adjectives derived from words
ending in -at”, we have several options:

1. unroll enough of the cluster to show them all at the same time,
2. show a limited selection, possibly indicating that there are more results that

are hidden and giving the user an option to view them on demand,
3. display multiple independent views of the same cluster, each focusing on a

different part.

Each of these options has its drawbacks and each can be confusing in some
situations. Option 1 leads to too much data being displayed at once, particularly
for queries such as “[]” (“all lexemes”). With option 2, it can become unclear
how many results there are and how to see them. With very deep clusters, giving
the user an option to quickly show enough of the cluster to see multiple results
reverts to option 1. Option 3 is overwhelming in another way - for queries such
as “[morfeman=".*\|slav:[^:]*:R\|.*"]” (“words with root morph ‘slav’”)
it shows many result panels, all showing the same cluster, just focusing on a
different part.

In the current implementation, we chose method 2, with the option to hide or
show neighbors of arbitrary lexemes by clicking on them. By default, we show all
nodes up to the root of the derivational family of the result and the immediate
neighbors of nodes in the result.

The notions of “neighbors” and “root of derivational family” are, however,
somewhat complicated here. The result may contain nodes belonging to multiple
families, and simply hiding the children of a lexeme on click is not sufficient, nor
is transitively showing all the parents by default, because the graphs may contain
cycles and in those cases it is unclear what to hide, and the default view may
have too many nodes visible. Therefore, we use the following algorithm: We pick
one of the nodes of the selected result as its anchor. For results that happen to
be trees, this is its root; otherwise the selection is arbitrary. We consider the
result to belong to the derivational family given by this anchor, and on click,
we show or hide nodes further away from the anchor than the clicked node.
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By doing all operations relative to a single node, they become well defined,
because the graph can be converted to a tree via breadth-first search from this
node.

5 Conclusions

We presented a new search engine and visualizer for word-formation networks.
It extends the query language of an existing tool to support querying non-tree
structures and attributes found in many existing resources, and adds an improved
visualization that allows for browsing even very large graphs.
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Abstract. Most prior work on definition modelling has not accounted
for polysemy, or has done so by considering definition modelling for a
target word in a given context. In contrast, in this study, we propose a
context-agnostic approach to definition modelling, based on multi-sense
word embeddings, that is capable of generating multiple definitions for a
target word. In further contrast to most prior work, which has primarily
focused on English, we evaluate our proposed approach on fifteen dif-
ferent datasets covering nine languages from several language families.
To evaluate our approach we consider several variations of BLEU. Our
results demonstrate that our proposed multi-sense model outperforms a
single-sense model on all fifteen datasets.

Keywords: Definition modelling · Multi-sense embeddings · Polysemy

1 Introduction

The advent of pre-trained distributed word representations, such as [12], led to
improvements in a wide range of natural language processing (NLP) tasks. One
limitation of such word embeddings, however, is that they conflate all of a word’s
senses into a single vector. Subsequent work has considered approaches to learn
multi-sense embeddings, in which a word is represented by multiple vectors, each
corresponding to a sense [3,10]. More recent work has considered contextualized
word embeddings, such as [5], which provide a representation of the meaning of
a word in a given context.

Definition modelling, recently introduced by [16], is a specific type of language
modelling which aims to generate dictionary-style definitions for a given word.
Definition modelling can provide a transparent interpretation of the information
represented in word embeddings, and has the potential to be applied to generate
definitions for newly-emerged words that are not yet recorded in dictionaries.

The approach to definition modelling of [16] is based on a recurrent neural
network (RNN) language model, which is conditioned on a word embedding for
the target word to be defined, specifically pre-trained word2vec [12] embeddings.
As such, this model does not account for polysemy. To address this limitation,

c© Springer Nature Switzerland AG 2020
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a number of studies have proposed context-aware definition generation mod-
els [4,7,9,11,15]. In all of these approaches, the models generate a definition
corresponding to the usage of a given target word in a given context.

In contrast, in this paper we propose a context-agnostic multi-sense defini-
tion generation model. Given a target word type (i.e., without its usage in a
specific context) the proposed model generates multiple definitions correspond-
ing to different senses of that word. Our proposed model is an extension of [16]
that incorporates pre-trained multi-sense embeddings. As such, the definitions
that are generated are based on the senses learned by the embedding model on
a background corpus, and reflect the usage of words in that corpus. Under this
setup—i.e., generating multiple definitions for each word corresponding to senses
present in a corpus—the proposed definition generation model has the poten-
tial to generate partial dictionary entries. In order to train the proposed model,
pre-trained sense vectors for a word need to be matched to reference definitions
for that word. We consider two approaches to this matching based on cosine
similarity between sense vectors and reference definitions.

Recently, [20] propose a multi-sense model for generating definitions for the
various senses of a target word. This model utilizes word embeddings and coarse-
grained atom embeddings to represent senses [1], in which atoms are shared
across words. In contrast, we only rely on fine-grained multi-sense embeddings.
To match sense vectors to reference definitions during training, [20] propose a
neural approach, and also consider a heuristic-based approach that incorporates
cosine similarity between senses and definitions. Our proposed approach to this
matching is similar to their heuristic-based approach, although we explore two
variations of this method. Furthermore, [20] only consider English for evaluation,
whereas we consider fifteen datasets covering nine languages.

Following [20] we evaluate our proposed model using variations of BLEU [17].
We evaluate our model on fifteen datasets covering nine languages from several
families. Our experimental results show that, for every language and dataset
considered, our proposed approach outperforms the benchmark approach of [16]
which does not model polysemy.

2 Proposed Model

Here we briefly describe the model of [16], referred to as the base model, and
then present our proposed multi-sense model which builds on the base model.

The base model is an RNN-based language model which, given a target word
to be defined (w∗), predicts the target word’s definition (D = [w1, . . . , wT ]). The
probability of the tth word of the definition sequence, wt, is calculated based on
the previous words in the definition as well as the word being defined, as shown
in Eq. 1.

P (D|w∗) =
T∏

t=1

p(wt|w1, . . . , wt − 1, w∗) (1)
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The probability distribution is estimated by a softmax function. The model
further incorporates a character-level CNN to capture knowledge of affixes. A
full explanation of this model is in [16].

In the base model, the target word being defined (w∗) is represented by
its word2vec word embedding. This reliance on single-sense embeddings limits
the model’s ability to generate definitions for different senses of polysemous
target words. To address this limitation, we propose to extend the base model
by incorporating multi-sense embeddings, in which each word is represented by
multiple vectors which correspond to different meanings or senses for that word.
Specifically, we replace w∗ in Eq. 1 by a sense of the target word, represented as
a sense vector.

Most prior work on definition modelling has considered polysemy through
context-aware approaches [4,7,9,11,15] that require an example of the target
word in context for definition generation. In contrast, the model we propose is
context agnostic (as is the base model) and is able to generate multiple definitions
for a target word without requiring that specific contexts of the target word be
given in order to generate definitions.

The base model is trained on instances consisting of pairs of a word—
represented by a word2vec embedding—and one of its definitions, i.e., from a dic-
tionary. Our proposed approach is trained on pairs of a word sense—represented
as a sense vector—and one of the corresponding word’s definitions. In order to
train our proposed approach, we require a way to associate pre-trained sense
vectors with dictionary definitions, where the number of sense vectors and defi-
nitions is often different for a given word.

We consider two approaches to associating sense vectors with definitions:
definition-to-sense and sense-to-definition. For both approaches we require a
representation of definitions. We represent a definition as the average of its
word embeddings, after removing stopwords. For each word in the training data,
we then calculate the pairwise cosine similarity between its sense vectors and
definitions. For definition-to-sense, each definition is associated with the most
similar sense vector for the corresponding word. For sense-to-definition, on the
other hand, each sense is associated with the most similar definition. For both
approaches, the selected sense–definition pairs form the training data.

These approaches to pairing senses and definitions are only used to create
training instances. At test time, to generate definitions for a given target word,
each sense vector for the target word is fed to the definition generation model,
which then generates one definition for each of the target word’s sense vectors.

3 Materials and Methods

In this section, we describe the datasets, word and sense embeddings, and eval-
uation metrics used in our experiments.
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Table 1. The number of words, and proportion of polysemous words (PPW) in each
dataset.

Language Omega Wiktionary WordNet

#Words PPW #Words PPW #Words PPW

Dutch 13093 0.18 – – – –

English 17000 0.20 17000 0.27 20000 0.18

French 15869 0.17 20000 0.26 – –

German 13338 0.12 16000 0.26 – –

Greek – – – – 11517 0.26

Italian 18351 0.21 – – 16290 0.22

Japanese – – – – 20000 0.30

Russian – – 15000 0.17 – –

Spanish 17000 0.19 – – 18934 0.12

3.1 Datasets

In this work, we conduct a multi-lingual study of definition modelling. We extract
monolingual dictionaries for nine languages covering several language families,
from three different sources: Wiktionary,1 OmegaWiki,2 and WordNet [13].

Wiktionary is a free collaboratively-constructed online dictionary for many
languages. The structure of Wiktionary pages is not consistent across languages.
Extracting word–definitions pairs from Wiktionary pages for a given language
requires a carefully-designed language-specific parser, which moreover requires
some knowledge of that language to build. We therefore use publicly-available
Wiktionary parsers. We use WikiParsec for English, French, and German,3 and
Wikokit for Russian,4 to extract word–definition pairs for these languages.

OmegaWiki, like Wiktionary, is a free collaborative multilingual dictionary.
In OmegaWiki data is stored in a relational database, and so language-specific
parsers are not required to automatically extract words and definitions. We
extract the word–definition pairs from OmegaWiki for English, Dutch, French,
German, Italian, and Spanish—the six languages with the largest vocabulary
size in OmegaWiki—using the BabelNet Java API [14].

Finally, we consider WordNets. We only use WordNets for which the words
and definitions are in the same language. We again use the BabelNet Java API
to extract the word–definition entries from English [13], Italian [2], and Spanish
[6] WordNets. We separately extract word–definition pairs from Greek [19] and
Japanese [8] WordNets.

Properties of the extracted datasets are shown in Table 1. Each dataset is
partitioned into train (80%), dev (10%), and test (10%) sets. We ensure that,
1 https://en.wiktionary.org.
2 http://www.omegawiki.org.
3 https://github.com/LuminosoInsight/wikiparsec.
4 https://github.com/componavt/wikokit.

https://en.wiktionary.org
http://www.omegawiki.org
https://github.com/LuminosoInsight/wikiparsec
https://github.com/componavt/wikokit
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for each word in each dataset, all of its definitions are included in only one of
the train, dev, or test sets, so that models are only evaluated on words that were
not seen during training.

3.2 Word and Sense Embeddings

Following [16], we use word2vec embeddings in the singe-sense definition genera-
tion model (i.e., the base model). For the proposed multi-sense models, we utilize
AdaGram embeddings [3]. AdaGram is a non-parametric Bayesian extension of
Skip-gram which learns a variable number of sense vectors for each word, unlike
many multi-sense embedding models which learn a fixed number of senses for
every word. Note that although here we use AdaGram, any multi-sense embed-
ding method could potentially be used.5

For each language, word2vec and AdaGram embeddings are trained on the
most recent Wikipedia dumps as of January 2020.6 We extract plain text from
these dumps, and then pre-process and tokenize the corpora using tools from
AdaGram,7 modified for multilingual support, except in the case of Japanese
where we use the Mecab tokenizer.8 The resulting corpora range in size from
roughly 86 million tokens for Greek to 3.7 billion tokens for English. The same
pre-processing and tokenization is also applied to the datasets of words and
definitions extracted from dictionaries.

We train word2vec embeddings using Gensim [18] with its default parameters.
We also use the default parameter settings for AdaGram. To obtain represen-
tations for words, as opposed to senses, from AdaGram sense embeddings, as
required to form representations for definitions (Sect. 2), we take the most fre-
quent sense vector of each word (as indicated by Adagram) as the representation
of the word itself.

3.3 Evaluation Metrics

BLEU [17] has been widely used for evaluation in prior work on definition mod-
elling [9,15,16]. BLEU is a precision-based metric that measures the overlap of
a generated sequence (here a definition) with respect to one or more references.
For multi-sense models, we calculate BLEU as the average BLEU score over each
generated definition.

While BLEU is appropriate for evaluation of single-sense definition gener-
ation models, it does not capture the ability of a model to produce multiple
definitions corresponding to different senses of a polysemous word. We there-
fore also consider a recall-based variation of BLEU, known as rBLEU, in which
the generated and reference definitions are swapped [20], i.e., the overlap of a

5 In preliminary experiments with MUSE embeddings [10] we found MUSE to perform
poorly compared to AdaGram, and so only report results for AdaGram here.

6 https://dumps.wikimedia.org.
7 https://github.com/sbos/AdaGram.jl/blob/master/utils/tokenize.sh.
8 https://github.com/jordwest/mecab-docs-en.

https://dumps.wikimedia.org
https://github.com/sbos/AdaGram.jl/blob/master/utils/tokenize.sh
https://github.com/jordwest/mecab-docs-en
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reference definition is measured with respect to the generated definition(s). For
each target word, we calculate rBLEU as the average rBLEU score for each of
its reference definitions (for both single and multi-sense models).

In addition to precision-based BLEU, and recall-based rBLEU, we report the
harmonic mean of BLEU and rBLEU, referred to as fBLEU.

Table 2. BLEU, rBLEU, and fBLEU for the single-sense definition generation model
(base) and the proposed multi-sense models using sense-to-definition (S2D) and
definition-to-sense (D2S) for each dataset. The best result for each evaluation met-
ric and dataset is shown in boldface.

Lang. Model OmegaWiki Wiktionary WordNet

BLEU rBLEU fBLEU BLEU rBLEU fBLEU BLEU rBLEU fBLEU

DE Base 12.12 11.55 11.83 11.35 08.80 09.91 – – –

S2D 12.43 16.26 14.09 15.00 15.82 15.40 – – –

D2S 12.44 16.83 14.31 14.07 16.54 15.21 – – –

EL Base – – – – – – 13.21 12.06 12.61

S2D – – – – – – 12.44 12.85 12.64

D2S – – – – – – 13.08 13.63 13.35

EN Base 14.74 14.32 14.53 20.21 16.88 18.40 13.78 12.77 13.26

S2D 14.23 16.02 15.07 18.88 16.99 17.89 12.85 13.09 12.97

D2S 15.22 17.80 16.41 21.49 19.78 20.60 13.84 14.84 14.32

ES Base 17.68 17.70 17.69 – – – 26.46 24.69 25.54

S2D 16.52 19.00 17.67 – – – 25.80 28.14 26.92

D2S 17.54 20.28 18.81 – – – 25.68 27.97 26.78

FR Base 12.58 12.66 12.62 63.48 59.87 61.62 – – –

S2D 11.70 14.26 12.85 63.56 60.00 61.73 – – –

D2S 11.94 14.82 13.23 64.12 60.41 62.21 – – –

IT Base 12.29 11.93 12.11 – – – 21.33 20.65 20.98

S2D 11.43 13.61 12.43 – – – 20.35 23.67 21.88

D2S 11.74 13.95 12.75 – – – 21.96 25.10 23.43

JA Base – – – – – – 10.13 08.50 09.24

S2D – – – – – – 11.53 11.96 11.74

D2S – – – – – – 09.42 09.37 09.39

NL Base 14.37 14.04 14.20 – – – – – –

S2D 13.49 15.88 14.59 – – – – – –

D2S 14.46 17.07 15.66 – – – – – –

RU Base – – – 47.04 46.04 46.53 – – –

S2D – – – 46.24 46.69 46.46 – – –

D2S – – – 47.52 48.09 47.80 – – –
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4 Results

In this section, we present experimental results comparing the proposed multi-
sense definition generation models against the single-sense base model [16]. All
models are trained using parameter settings from [16], i.e., a two-layer LSTM as
the RNN component with 300 units in each level; a character-level CNN with
kernels of length 2–6 and size {10, 30, 40, 40, 40} with a stride of 1; and Adam
optimization with a learning rate of 0.001.

To generate definitions at test time, for each word and sense for the single-
sense and multi-sense models, respectively, we sample tokens at each time step
from the predicted probability distribution with a temperature of 0.1. We com-
pute BLEU, rBLEU, and fBLEU for each word, and then the average of these
measures over all words in a dataset. We repeat this process 10 times, and report
the average scores over these 10 runs.

Results are shown in Table 2. Focusing on fBLEU, for every dataset, the best
results are obtained using a multi-sense model—i.e., sense-to-definition (S2D),
or definition-to-sense (D2S). Moreover, for every dataset, D2S improves over the
base model. These results show that definition modelling can be improved by
accounting for polysemy through the incorporation of multi-sense embeddings.

To qualitatively compare the base model and the proposed model, we consider
the definitions generated for the word state. The following three definitions are
generated for this word by the base model: (1) a state of a government, (2) to
make a certain or permanent power, and (3) to make a certain or administrative
power. In contrast, the proposed multi-sense model using D2S generates the
following three definitions, which appear to capture a wider range of the usages
of the word state: (1) a place of government, (2) a particular region of a country,
and (3) a particular place of time.

Comparing S2D and D2S in terms of fBLEU, we observe that D2S often
performs better. The number of sense vectors learned by Adagram for a given
word is on average higher than the number of reference definitions available for
that word, for every dataset. We hypothesize that the poor performance of S2D
relative to D2S could therefore be due to sense vectors being associated with
inappropriate definitions.

rBLEU is a recall-based evaluation metric that indicates the extent to which
the reference definitions are covered by the generated definitions. A multi-sense
definition generation model—which produces multiple definitions for a target
word—is therefore particularly advantaged compared to a single-sense model—
such as the base model—which produces only one, with respect to this met-
ric. Indeed, we see that for every dataset, both S2D and D2S, outperform the
base model in terms of rBLEU. BLEU, on the other hand, is a precision-based
metric that indicates whether a generated definition contains material present
in the reference definitions. The improvements of the multi-sense models over
the base model with respect to rBLEU do not substantially impact BLEU—as
observed by the overall higher fBLEU obtained by the multi-sense models. Over-
all, these results indicate that a multi-sense model is able to generate definitions



160 A. Kabiri and P. Cook

that better reflect the various senses of polysemous words than a single-sense
model, without substantially impacting the quality of the individual generated
definitions.

5 Conclusions

Definition modelling is a recently-introduced language modelling task in which
the aim is to generate dictionary-style definitions for a given word. In this paper,
we proposed a multi-sense context-agnostic definition generation model which
employed multi-sense embeddings to generate multiple senses for polysemous
words. In contrast to most prior work on definition modelling which focuses
on English, we conducted a multi-lingual study including nine languages from
several language families. Our experimental results demonstrate that our pro-
posed multi-sense model outperforms a single-sense baseline model. Code and
datasets for these experiments is available.9 In future work, we intend to con-
sider incorporating alternative approaches to learning multi-sense embeddings
into our model, as well as alternative approaches to associating sense vectors to
definitions for constructing training instances.
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Abstract. In this work we combine cross-lingual and cross-task super-
vision for zero-shot learning. Our main contribution is that we discovered
that coupling models, i.e. models that share neither a task nor a language
with the zero-shot target model, can improve the results significantly.
Coupling models serve as a regularization for the other auxiliary mod-
els that provide direct cross-lingual and cross-task supervision. We con-
ducted a series of experiments with four Indo-European languages and
four tasks (dependency parsing, language modeling, named entity recog-
nition and part-of-speech tagging) in various settings. We were able to
achieve 32% error reduction compared to using cross-lingual supervision
only.

Keywords: Transfer learning · Cross-lingual learning · Parameter
sharing · Zero-shot learning

1 Introduction

Despite the recent advances in neural methods for NLP, we can not realistically
train deep models for many low resource languages, mainly because we lack the
annotated data [20]. This inspired researchers to use transfer learning [16] to
bootstrap the learning from auxiliary sources. We can use either cross-lingual
supervision, with data from other languages annotated for the same task, or we
can use cross-task supervision, with data in the same language, but annotated
for other tasks. However, various forms of supervision are currently only rarely
combined. We believe that this is unfortunate, since various combinations might
complement each others and improve the results even further.

In this work, we combine these two approaches for zero-shot learning, i.e. for
a situation when we do not have any annotated data for the target model and we
need to rely only on the transfer supervision from auxiliary sources. As confirmed
previously [13], a combination of cross-lingual and cross-task supervision is quite
viable. However, unlike previous works, we supervise the zero-shot target model
with a full grid of models, as depicted in Fig. 1.
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lic, grants No. VG 1/0725/19 and VG 1/0667/18 and by the Slovak Research and Devel-
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SK-IL-RD-18-0004.
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Fig. 1. A grid of models. Each model solves a specific task in a specific language. If
model A is our target model, we can use cross-task supervision from model B and/or
cross-lingual supervision from model C. Model D does not share neither a task nor
a language with A. Instead it serves as a regularization connecting models B and C.
We call models like D coupling models. Color coded is the parameter sharing strategy
described in Sect. 3 - layers with the same color have identical parameters.

We can provide each model with both cross-lingual and cross-task supervi-
sion. On top of that, we also have models that share neither a task nor a language
with the zero-shot target. We found out that these “unrelated” models signifi-
cantly improve the performance in zero-shot setting. We hypothesize, that these
models – we call them the coupling models – serve mainly as a regularization for
the other auxiliary models that provide direct cross-lingual or cross-task super-
vision. Coupling models enable a communication between the other models and
help them find a common ground that can be then exploited by the zero-shot
target model.

This work is a step towards understanding how to use cross-lingual and cross-
task supervision at the same time. The main contribution of our work is that we
are to the best of our knowledge the first to describe the regularization power
of the coupling models and show that they improve performance for zero-shot
learning. We evaluate this claim with a full grid of 16 models (4 tasks and
4 languages). We contrast these results with a low resource scenario, where only
a limited amount of training data is available for the target model. We also
release our code and data, that can be used as a benchmark for future research1.

2 Related Work

Parameter Sharing. Parameter sharing is a technique for multitask learning that
is based on an idea of having the same parameter values (and thus the same
1 https://github.com/matus-pikuliak/crosslingual-parameter-sharing.

https://github.com/matus-pikuliak/crosslingual-parameter-sharing
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behavior) for different models [4]. It was recently successfully used in deep NLP.
Most often, whole layers (e.g. embedding layers or recurrent layers) are shared
across the models [5,8,19].

Multilingual Learning. Multilingual learning can be perceived as a specific
type of multitask learning, where the samples come from different languages.
Recently, parameter sharing based approaches were used to solve dependency
parsing [14], machine translation [1], sequence tagging [21] as well as other NLP
tasks. [13] is the most similar work to ours. They explore various parameter shar-
ing strategies for cross-lingual POS tagging and named entity recognition (NER)
and are able to beat the baseline trained without transfer learning. Compared
to this work we focus on zero-shot learning and the concept of coupling models,
which proved to further improve the results. We also work with more tasks and
languages at the same time using the full grid of 16 models.

3 Transfer Learning Model

Here we propose a neural model that will be used to test various forms of transfer
learning. We need a model that is able to solve word-level tasks and that can use
similar encoder architecture for all the tasks, i.e. dependency parsing, language
modeling, NER and POS tagging. Based on these requirements we propose an
LSTM-based model with following parts:

1. Word embeddings. We use multilingual word embeddings [17] as word repre-
sentations.

2. Bi-directional LSTM encoder. We use an LSTM encoder [9] to get a contex-
tualized representation for each word. This part contains the main bulk of
trainable parameters.

3. Task-specific decoders. We designed a task-specific decoder for each task. We
use conditional random fields [12] based decoders for POS tagging and NER.
Parsing is done via graph-based parser [22]. For language modeling we predict
the word from the previous states of both forward and backward pass of the
encoder, i.e. we do a leave-one-out language modeling.

To implement parameter sharing, we create a model for each task-language
pair, e.g. Spanish NER has its own model. One of the models is then designed
to be the target model. Our goal is to get the best possible performance for
this model. During training we use supervision from other auxiliary models via
parameter sharing. For each learning step we sample a model from all the models
in the grid, we update its parameters with one training batch and then we
propagate the updated parameters to all the other models which are bound to
this model. Each epoch consists of a fixed number of these steps.

Word embeddings are naturally shared across models with the same language
and they are fixed during the training, i.e. their parameters are not changing.
Encoder parameters are shared across all the models. This is where most of the
transfer learning happens. Finally, decoder parameters are shared across models
with the same task. With this setup, we can transfer the parameters to each
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layer of the target model from some auxiliary model(s). This schema is depicted
in Fig. 1 with color-coded blocks representing the layers of the models. Layers
with the same color effectively have the same parameters.

4 Experiments

We have done a series of experiments with various forms of supervision. Our
goal is to find out how well do the coupling models work compared to and
combined with the other forms. We evaluate their performance in zero-shot and
low resource setting on four tasks and four languages.

4.1 Data

We have a dataset for each task in each language (Czech, English, German and
Spanish). Table 1 shows the size of the training sets.

Table 1. Number of sentences in training datasets.

Czech German English Spanish

DP & POS 67.9k 13.8k 12.0k 14.0k

NER 7.1k 24.8k 38.4k 6.9k

LM 6.2M 7.3M 7.4M 6.3M

Dependency Parsing and Part-of-speech Tagging. We use Universal Depen-
dencies [15] dataset for these two tasks. Data from all languages are annotated
with universal tagging schemata for both tasks. POS tagset contains 17 word
tags, tagset for dependency parsing contains 37 syntactic relation tags.

Named Entity Recognition. We combined several datasets: Groningen Mean-
ing Bank [3] for English, GermEval 2014 [2] for German, CoNLL 2002 [18] for
Spanish and Czech Named Entity Corpus [11] for Czech. We unified the tag-
ging schemata to the standard IOB schema with four types of named entities:
persons, locations, organizations and miscellaneous.

Language Modeling. We use dumps from Wikipedia as corpora for language
modeling.

Word Embeddings. We use pre-trained multilingual MUSE [6] word embed-
dings that are available online2.

2 https://github.com/facebookresearch/MUSE.

https://github.com/facebookresearch/MUSE
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4.2 Evaluation Measures

We use accuracy for POS tagging, chunk F1 score for NER and LAS (labeled
attachment score) for dependency parsing as evaluation metrics. Language mod-
eling was used as an auxiliary task only.

We consider two training settings: (1) 4×4 setting, in which case we designate
one model to be the target model and the 15 remaining models are auxiliary
(three models provide cross-lingual supervision, three models provide cross-task
supervision and 9 models are coupling). (2) 2 × 2 setting, where we randomly
sampled 20 target models and with random auxiliary task and language. In this
case we have one model for each kind of supervision.

We show the performance either for a specific task and setting, e.g. POS4 is
an average POS performance in 4×4 setting. Or we show the overall performance
across multiple tasks by calculating the average error reduction (AER), which
is calculated as AER = M−B

U−B , where M is the method being compared to
the baseline B and U is the upper bound of the performance. We calculate U
as a performance of the model trained on its training data without any form of
transfer supervision. AER shows how much error are we able to remove compared
to the baseline. We report the performance on a test set during the epoch with the
highest validation set performance. Validation set is also used for early stopping.

Tuning hyperparameters for each training run we have done would be too
expensive for us. Instead we opted out for fixed hyperparameters tuned before-
hand using several models (Czech NER, German POS, English parsing) without
any form of auxiliary supervision. All the hyperparameters we use will be pub-
lished alongside the code.

4.3 Results

We divided the auxiliary models into three categories: models providing cross-
lingual supervision (CL), models providing cross-task supervision (CT) and cou-
pling models (Co) as illustrated in Fig. 1. The left part of Table 2 shows the
results for zero-shot learning approach, i.e. when we did not use any data for the
target model and all we use was auxiliary supervision.

Note, that cross-lingual supervision is used in all zero-shot learning exper-
iments, since we need it to train the decoder parameters. Having only cross-
lingual supervision is therefore our baseline in zero-shot learning. Combining
cross-lingual and cross-task supervision improves the results, as previously shown
in [13]. Adding coupling tasks to the baseline did not help very much, on con-
trary, the results even deteriorated for 4 × 4 setting. However, using both
cross-task supervision and coupling tasks had an interesting synergic effect.
Even though the coupling tasks proved to be ineffective by themselves (CL-Co),
when combined with cross-task supervision (CL-CT-Co) the resulting perfor-
mance improvement is even greater than the performance improvement gained
by adding cross-task supervision alone. We were able to remove almost one third
of the error rate simply by adding additional auxiliary sources.
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Table 2. Performance for transfer learning with various auxiliary models: cross-lingual
(CL), cross-task (CT) and coupling models (Co).

Zero-shot Low resource

DP4 NER4 POS4 AER4 AER2 DP4 NER4 POS4 AER4 AER2

No transfer – – – – – 57.26 53.91 87.35 0.00 0.00

CL 38.75 49.30 69.05 0.00 0.00 64.30 60.16 90.10 29.54 17.32

CT – – – – – 65.56 61.91 91.64 41.35 29.28

CL-CT 37.38 53.13 77.34 12.62 7.01 70.78 64.82 92.23 54.29 37.89

CL-Co 36.70 47.84 68.95 −3.47 0.28 – – – – –

CL-CT-Co 46.25 56.62 84.09 32.40 18.11 71.05 63.02 92.51 53.63 39.17

The right side of Table 2 shows the results for low resource target model.
In this case, we provided 200 training samples for the target model. The target
model is being used during the training, along with all the other models. The
baseline in this case is a model trained with these 200 samples and without
any auxiliary supervision. We can see that both cross-lingual and cross-task
supervision improve the performance, and their combination even more so. We
were able to remove more than 50% of the error in 4×4 setting compared to the
baseline. However, note that the coupling tasks hardly provide any improvement
(from 54.29 to 53.63 AER4). The performance seems to be on par with the
training without them. Compare this to the huge performance improvement that
coupling models brought for zero-shot learning (from 12.62 to 32.40 AER4).

Based on this behavior of coupling tasks supervision, we hypothesize that
their role in actually to perform as a sort of regularization between models
providing cross-lingual and cross-task supervision. By using coupling tasks we
force these two types of models to find a common ground. This common ground
can then be exploited during the target model evaluation. Even with little target
model data, this external regularization is no longer needed. The target model
by itself is able to couple cross-lingual and cross-task models and perhaps even
better so, considering that it directly optimizes the evaluation objective.

5 Discussion and Conclusions

The conducted experiments are limited by the tasks and language we have
selected. We used high resource language for which we could gather significant
datasets for both training and evaluation. This might have posed unrealistic
performance expectation [10]. We mainly focus on the basic research of NLP
supervision types and their combination. The application of these techniques to
truly low resource languages is left to future work. We are working mainly with
low-level syntactic tasks here. We believe that it is possible to extend our app-
roach to other, more semantics oriented tasks, e.g. natural language inference,
question answering, etc. It is also possible that this method could be used in
other domains than NLP, where there are multiple tasks being solved for mul-
tiple domains, e.g. in computer vision various tasks can be solved on real-life
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photography data and rendered 3D images. In that case, a grid similar to ours
could be constructed.

It is practically impossible to compare our results to the previous state-of-
the-art, because we work with unique data requirements. Previous work is mainly
focused on either cross-lingual or cross-task supervision. Using the same auxiliary
datasets is necessary for the comparability of the results. We believe that it is an
important future work to create a standardized benchmark to better compare
results combining various forms of supervision. The data we plan to release
might be a step towards this goal. As far as supervision techniques go, our
cross-lingual supervision baseline used for zero-shot learning is similar to what
is currently being used as state-of-the-art methods and our comparison with this
baseline should be sufficient to prove the merit of our approach. The only work
that combines cross-lingual and cross-task supervision in similar fashion to ours
is [13]. We confirm their results and extend their work by using coupling models.

We show in this work that it is possible to efficiently combine various forms of
supervision for zero-shot learning. We also show that previously overlooked cou-
pling models provide in many cases a significant performance boost. Discovering
their regularizational power is the main contribution of our work.

We plan to extend our work with evaluation on additional text representation
techniques. Right now we use multilingual word embeddings, but we believe that
our method would still apply even if we used non-aligned monolingual word
embeddings or even if we used pre-trained large-scale language models [7]. It
would be also interesting to explore how well our method works with various
data requirements, e.g. with low-level target languages or target tasks. In the
future, it might be possible to construct a large-scale repository of many NLP
datasets that can form a supervision grid similar to the 4×4 grid that we used in
our experiments. Training a new task in a new language could be relatively easy,
even if this grid would be sparse. We believe that constructing such grids and
working on methods of training with them is an interesting research direction.
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16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

17. Ruder, S., Vulic, I., Søgaard, A.: A survey of cross-lingual word embedding models.
J. Artif. Intell. Res. 65, 569–631 (2019)

18. Sang, E.F.T.K.: Introduction to the CoNLL-2002 shared task: language-
independent named entity recognition. CoRR cs.CL/0209010 (2002)

19. Søgaard, A., Goldberg, Y.: Deep multi-task learning with low level tasks supervised
at lower layers. In: Proceedings of the 54th Annual Meeting of the ACL, Berlin,
Germany, vol. 2, pp. 231–235. ACL (2016)

20. Tsvetkov, Y.: Opportunities and Challenges in Working with Low-Resource Lan-
guages. Carnegie Mellon University (2017), lecture notes

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


170 M. Pikuliak and M. Šimko
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Kateřina Macková and Milan Straka(B)

Faculty of Mathematics and Physics, Charles University,
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Abstract. Reading comprehension is a well studied task, with huge
training datasets in English. This work focuses on building reading com-
prehension systems for Czech, without requiring any manually annotated
Czech training data. First of all, we automatically translated SQuAD
1.1 and SQuAD 2.0 datasets to Czech to create training and develop-
ment data, which we release at http://hdl.handle.net/11234/1-3249. We
then trained and evaluated several BERT and XLM-RoBERTa baseline
models. However, our main focus lies in cross-lingual transfer models.
We report that a XLM-RoBERTa model trained on English data and
evaluated on Czech achieves very competitive performance, only approx-
imately 2% points worse than a model trained on the translated Czech
data. This result is extremely good, considering the fact that the model
has not seen any Czech data during training. The cross-lingual transfer
approach is very flexible and provides a reading comprehension in any
language, for which we have enough monolingual raw texts.

Keywords: Reading comprehension · Czech · SQuAD · BERT ·
Cross-lingual transfer

1 Introduction

The goal of a reading comprehension system is to understand given text and
return answers in response to questions about the text. In English, there exist
many datasets for this task, some of them very large. In this work, we consider
the frequently used SQuAD 1.1 dataset [12], an English reading comprehension
dataset with around 100,000 question-answer pairs, which is widely used to train
many different models with relatively good accuracy. We also utilize SQuAD 2.0
dataset [11], which combines SQuAD 1.1 dataset with 50,000 unanswerable ques-
tions linked to already existing paragraphs, making this dataset more challenging
for reading comprehension systems.

In this paper, we pursue construction of a reading comprehension system for
Czech without having any manually annotated Czech training data, by reusing
English models and English datasets. Our contributions are:
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P. Sojka et al. (Eds.): TSD 2020, LNAI 12284, pp. 171–179, 2020.
https://doi.org/10.1007/978-3-030-58323-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58323-1_18&domain=pdf
http://orcid.org/0000-0001-9815-2763
http://orcid.org/0000-0003-3295-5576
http://hdl.handle.net/11234/1-3249
https://doi.org/10.1007/978-3-030-58323-1_18


172 K. Macková and M. Straka

– We translated both SQuAD 1.1 and SQuAD 2.0 to Czech by state-of-the-art
machine translation system [10] and located the answers in the translated
text using MorphoDiTa [13] and DeriNet [14], and released the dataset.

– We trained several baseline systems using BERT and XLM-RoBERTa archi-
tectures, notably a system trained on the translated Czech data, and a system
which first translates a text and a question to English, uses an English model,
and translates the answer back to Czech.

– We train and evaluate cross-lingual systems based on BERT and XLM-
RoBERTa, which are trained on English and then evaluated directly on Czech.
We report that such systems have very strong performance despite not using
any Czech data nor Czech translation systems.

2 Related Work

There exist many English datasets for reading comprehension and question
answering, the readers are referred for example to [12] for a nice overview.

Currently, the best models for solving reading comprehension are based on
BERT architecture [4] (which is a method of unsupervised pre-training of con-
textualized word embeddings from raw texts), or on some follow-up models like
ALBERT [7] or RoBERTa [9].

Most BERT-like models are trained on English, with two notable excep-
tions. Multilingual BERT (mBERT), released by [4], is a single language model
pre-trained on monolingual corpora in 104 languages including Czech; XLM-
RoBERTa (XLM-R) [2] is a similar model pre-trained on 100 languages, and is
available in both base and large sizes, while only base mBERT is available.

Cross-lingual transfer capability of mBERT has been mentioned in 2019 by
many authors, for example by Kondratyuk et al. [6] for morphosyntactic analysis
or by Hsu et al. [5] for reading comprehension.

Very similar to our paper is the parallel independent work of Lewis et al. [8],
who perform cross-lingual transfer evaluation of reading comprehension models
on six non-English languages (neither of them being Czech).

3 Constructing Czech Reading Comprehension Dataset

The SQuAD 1.1 dataset consists of 23,215 paragraphs belonging to 536 articles.
Attached to every paragraph is a set of questions, each with several possible
answers, resulting in more than 100,000 questions. While the train and the devel-
opment datasets are public, the test set is hidden. We refer the readers to [12] for
details about the dataset construction, types of answers and reasoning required
to answer the questions.

The SQuAD 2.0 dataset [11] extends SQuAD 1.1 with more than 50,000
unanswerable questions linked to the existing paragraphs.
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3.1 Translating the Data and Locating the Answers

We employed the English-Czech state-of-the-art machine translation system [10]
to translate the SQuAD data.1 Translation of all texts, questions and answers
of SQuAD 2.0 took 3 days.

Because the answers are subsequences of the given text in SQuAD, we also
needed to locate the translated answers in the text. We considered several alter-
natives:

– Estimate the alignment of the source and target tokens using attention of
the machine translation system, and choose the words aligned to the source
answer. Unfortunately, we could not reliably extract alignment from the atten-
tion heads of a Transformer-based machine translation system.

– Mark the answer in the text before the translation, using for example quo-
tation marks, similarly to [8]. Such an approach would however result in
a dataset with every question linked to a custom text, which would deviate
from the SQuAD structure.

– Locate the answer in the given text after the translation, without relying on
the assistance from the machine translation system.

We chose the third alternative and located the translated answers in the texts
as follows:

1. We lemmatized the translated text and answer using MorphoDiTa [13].
2. We replaced the lemmas by roots of their word-formation relation trees

according to the DeriNet 2.0 lexicon [14].
3. Then we found all continuous subsequences of the text with the same DeriNet

roots as the answer, but with any word order.
4. Finally, if several occurrences were located, we chose the one with the relative

position in the text being the most similar to the relative position of the
original answer in the original text.

We believe the proposed algorithm has substantially high precision (after
manually verifying many of the located answers), and we also find its recall
satisfactory. Notably, in the SQuAD 2.0 training dataset, we have preserved
107,088 questions (which is 82.2% of the English ones) and in the development
dataset we kept 10,845 questions, 91.3% of the original dataset. The detailed sizes
of the created Czech datasets are presented in Table 1. Note that the ratio of the
kept data in SQuAD 1.1 is lower, because unanswerable questions of SQuAD 2.0
are always preserved.

The dataset is available for download at http://hdl.handle.net/11234/1-3249.

3.2 Evaluation Metrics

The SQuAD dataset is usually evaluated using two metrics: exact match, which
is the accuracy of exactly predicted answers, and F1-score computed over indi-
vidual words of the answers.
1 Available on-line at https://lindat.mff.cuni.cz/services/translation/.

http://hdl.handle.net/11234/1-3249
https://lindat.mff.cuni.cz/services/translation/
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Table 1. Size of the translated Czech variant of SQuAD 1.1 and SQuAD 2.0.

Dataset English questions Czech questions Percentage kept

SQuAD 1.1 Train 87,599 64,164 73.2%

Test 10,570 8,739 82.7%

SQuAD 2.0 Train 130,319 107,088 82.2%

Test 11,873 10,845 91.3%

Given that Czech is a morphologically rich language, we performed lemma-
tization and then replaced lemmas by DeriNet roots (as in Sect. 3.1) prior to
evaluation with the official evaluation script.

4 Model Training and Evaluation

Considering that the current best SQuAD models are all BERT based, we also
employ a BERT-like architecture. We refer readers to [4] for detailed description
of the model and the fine-tuning phase.

Because our main goal is Czech reading comprehension, we consider such
BERT models which included Czech in their pre-training, notably Multilingual
BERT (mBERT), released by [4], both cased and uncased, and also XLM-
RoBERTa (XLM-R) [2], both base and large. As a reference, we also include
English BERT base, both cased and uncased.

We finetuned all models using the transformers library [15]. For all base
models, we used two training epochs, learning rate 2e−5 with linear warm-up of
256 steps and batch size 16; for XLM-RoBERTa we increased batch size to 32
and for XLM-RoBERTa large we decreased learning rate to 1.5e−5 and increased
warm-up to 500.

All our results are presented in Table 2 and also graphically in Fig. 1.

English. For reference, we trained and evaluated all above models on English
SQuAD 1.1 and SQuAD 2.0. The results are consistent with the published
results. It is worth noting that the only large model reaches considerably better
performance, and that mBERT achieves better results than English BERT.

Czech Training, Czech Evaluation. Our first baseline model is trained
directly on the Czech training data and then evaluated on the development set.
The relative performance of the BERT variants is very similar to English, but
the absolute performance is considerably lower. Several facts could contribute
to the performance decrease – a smaller training set, noise introduced by the
translation system and morphological richness of the Czech language.



Reading Comprehension in Czech via MT and Cross-Lingual Transfer 175

Table 2. Development performance of English and Czech models on SQuAD 1.1, 2.0.

Model Train Dev SQuAD 1.1 SQuAD 2.0

EM F1 EM F1

BERT cased EN EN 81.43% 88.88% 72.85% 76.03%

BERT uncased EN EN 80.92% 88.59% 73.35% 76.59%

mBERT cased EN EN 81.99% 89.10% 75.79% 78.76%

mBERT uncased EN EN 81.98% 89.27% 74.88% 77.98%

XLM-R base EN EN 80.91% 88.11% 74.07% 76.97%

XLM-R large EN EN 87.27% 93.24% 83.21% 86.23%

BERT cased EN CZ 9.53% 21.62% 53.48% 53.84%

BERT uncased EN CZ 6.16% 21.75% 54.78% 54.83%

mBERT cased EN CZ 59.49% 70.62% 58.28% 62.76%

mBERT uncased EN CZ 62.09% 73.89% 59.59% 63.89%

XLM-R base EN CZ 64.63% 75.85% 62.09% 65.93%

XLM-R large EN CZ 73.64% 84.07% 73.50% 77.58%

BERT cased EN CZ-EN-CZ 64.06% 76.78% 64.35% 69.11%

BERT uncased EN CZ-EN-CZ 63.57% 76.61% 65.26% 69.86%

mBERT cased EN CZ-EN-CZ 65.09% 77.47% 67.40% 71.96%

mBERT uncased EN CZ-EN-CZ 65.00% 77.38% 66.20% 70.72%

XLM-R base EN CZ-EN-CZ 64.52% 76.91% 65.62% 70.00%

XLM-R large EN CZ-EN-CZ 69.04% 81.33% 72.82% 78.04%

mBERT cased CZ CZ 59.49% 70.62% 66.60% 69.61%

mBERT uncased CZ CZ 62.11% 73.94% 64.96% 68.14%

XLM-R base CZ CZ 69.18% 78.71% 64.98% 68.15%

XLM-R large CZ CZ 76.39% 85.62% 75.57% 79.19%

English Models, Czech Evaluation via Machine Translation. Our sec-
ond baseline system (denoted CS-EN-CS in the results) reuses English models
to perform Czech reading comprehension – the Czech development set is first
translated to English, the answers are then generated using English models, and
finally translated back to Czech.

The translation-based approach has slightly higher performance for base
models, which may be caused by the smaller size of the Czech training data.
However, for the large model, the direct approach seems more beneficial.

Cross-Lingual Transfer Models. The most interesting experiment is the
cross-lingual transfer of the English models, evaluated directly on Czech (with-
out using any Czech data for training). Astonishingly, the results are very com-
petitive with the other models evaluated on Czech, especially for XLM-R large,
where there are within 1.6% points in F1 score and 2.75% points in exact match
of the best Czech model.
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Fig. 1. Development set performance of all models for English and Czech SQuAD 1.1
and SQuAD 2.0 datasets.

4.1 Main Findings

Why Does Cross-Lingual Transfer Work. The performance of the cross-
lingual transfer model is striking. Even if the model never saw any Czech reading
comprehension data and it never saw any parallel Czech-English data, it reaches
nearly the best results among all evaluated models.

This strong performance is an indication that mBERT and XLM-R represent
different languages in the same shared space, without getting an explicit training
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signal in form of parallel data. Instead, we hypothesise that if there is a large-
enough similarity among languages, the model exploits it by reusing the same
part of the network to handle this phenomenon across multiple languages. This in
turn saves capacity of the model and allows reaching higher likelihood, improving
the quality of the model. In other words, greedy decrease of a loss function
performed by SGD is good enough motivation for representing similarities in
a shared way across languages.

Furthermore, word embeddings for different languages demonstrate a remark-
able amount of similarity even after a simple linear transformation, as demon-
strated for example by [1] or [3]. Such similarities are definitely exploitable (and
as indicated by the results also exploited) by BERT-like models to achieve shared
representation of multiple languages.

Pre-training on Czech Is Required. The strong performance of cross-lingual
models does not necessarily mean the models can “understand” Czech – the
named entities could be similar enough in Czech and English, and the model
could be capable of answering without understanding the question.

Therefore, we also considered an English reading comprehension model based
on English BERT, which did not encounter any other language but English dur-
ing pre-training. Evaluating such a model directly on Czech delivers surprisingly
good performance on SQuAD 2.0 – the model is unexpectedly good in recognizing
unanswerable questions. However, the performance of such model on SQuAD 1.1
is rudimentary – 9.53% exact match and 21.62% F1-score, compared to 62.90%
exact match and 73.89% F1-score of an mBERT uncased model.

Cased Versus Uncased. Consistently with intuition, cased models seem to
perform generally better than uncased. However, in the context of cross-lingual
transfer, we repeatedly observed uncased models surpassing the cased ones. We
hypothesise that this result could be caused by larger intersection of Czech and
English subwords of the uncased models (which discard not only casing informa-
tion, but also diacritical marks), because larger shared vocabulary could make
the cross-lingual transfer easier.

5 Conclusion

In this paper, we have explored Czech reading comprehension without any man-
ually annotated Czech training data. We trained several baseline BERT-like
models using translated data, but most importantly we evaluated a cross-lingual
transfer model trained on English and then evaluated directly on Czech. The
performance of this model is exceptionally good, despite the fact that no Czech
training data nor Czech translation system was needed to train it.
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Abstract. Multiple studies have probed representations emerging in
neural networks trained for end-to-end NLP tasks and examined what
word-level linguistic information may be encoded in the representations.
In classical probing, a classifier is trained on the representations to
extract the target linguistic information. However, there is a threat of
the classifier simply memorizing the linguistic labels for individual words,
instead of extracting the linguistic abstractions from the representations,
thus reporting false positive results. While considerable efforts have been
made to minimize the memorization problem, the task of actually mea-
suring the amount of memorization happening in the classifier has been
understudied so far. In our work, we propose a simple general method
for measuring the memorization effect, based on a symmetric selection of
comparable sets of test words seen versus unseen in training. Our method
can be used to explicitly quantify the amount of memorization happen-
ing in a probing setup, so that an adequate setup can be chosen and the
results of the probing can be interpreted with a reliability estimate. We
exemplify this by showcasing our method on a case study of probing for
part of speech in a trained neural machine translation encoder.

Keywords: Probing · Memorization · Neural networks

1 Introduction

In recent years, there has been a considerable amount of research into linguistic
abstractions emerging in neural networks trained for various natural language
processing (NLP) tasks. It has been found that, to some degree, neural net-
works often capture abstractions which seem to correspond to classical linguistic
notions known from the linguistic studies of morphology, syntax or semantics,
even if they were not explicitly trained to do so. The common hypothesis is
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that modern neural networks are sufficiently powerful to unravel many linguistic
properties and regularities of language, and that they do so if this is useful for
solving the task for which they are trained.

In this work, we focus on the subfield of identifying word-level linguistic
abstractions, such as part-of-speech (POS) labels, in word-level representations,
such as static or contextual word embeddings.

The usual method of assessing the amount to which linguistic abstractions
are captured by a neural network is to use probing, which we review in Sect. 2.
In word-level probing, we take representations of words from a trained neural
network (such as word embeddings or hidden states from an encoder) and train
a classifier to predict linguistic labels (such as POS) from the representations
corresponding to the words, using linguistically annotated data (such as a tagged
corpus). The common assumption is that if the classifier learns to predict the
linguistic labels with a high accuracy, it is an indication that the neural word
representations contain a latent abstraction similar to the linguistic notion (e.g.
that contextual word embeddings encode POS of the words).

1.1 The Memorization Problem

A major threat associated with the probing approach is that of memorization. As
the probing classifier learns to assign labels to words, it can succeed in two ways.
Either, it learns to extract an abstraction from the word representation which
corresponds to the label to assign; this is the intended case, which we refer to as
generalization. Or, it simply memorizes the label associated with each word; we
refer to this as memorization. If memorization occurs, the result of the probing
can be misinterpreted as the representations capturing some linguistic abstrac-
tions, while the actual underlying mechanism is that the representations simply
capture the word identity. The probing classifier thus only learns to extract the
word identity from the representation and memorizes the label for the word.1 A
crucial problem is that, without taking additional measures, there is no way of
distinguishing the true positive result from the false positive result.

With context-independent word representations (static word embeddings), it
is of course possible to avoid the problem by splitting the vocabulary into two
disjoint sets of words, training the classifier on a train set and testing it on a
test set. However, for contextual representations, this cannot be done easily, as
the representations need to be computed for whole sentences, not for individual
words, and the train and test sets thus need to be composed of full sentences,
which unavoidably have a large word overlap. While we might evaluate the probe
only on test set words unseen in the training data, these are not representative
of the language, as such a set of test words will be biased towards low-frequency
words. We argue that we rather need to evaluate on the full test set while mea-
suring and minimizing the memorization effect.
1 Unlike static word embeddings, contextual representations of the same word in dif-

ferent sentences are different, which makes memorization harder, but not impossible:
the identity of the word is still strongly encoded in the contextual representation and
can be extracted from it, especially when a stronger classifier is used.
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1.2 Measuring Memorization

In this paper, we suggest a general method of measuring the amount of memo-
rization occurring in word-level probing of neural network representations, based
on comparing the probing classifier accuracy on sets of seen and unseen words.
Although a standard test set contains both words seen and unseen in training
data, the seen words tend to be frequent while the unseen ones are typically rare
words; we thus regard an approach of comparing accuracies on these sets of words
as inadequate and uninformative. Instead, we propose a method which samples
the seen and unseen words in a symmetric way to ensure their comparability.

We do not present a new method for probing itself; our method is designed to
complement existing probing approaches by explicitly measuring their reliability
with respect to the memorization problem. This can help the researcher to select
an adequate probing setup by providing means for quantifying the magnitude
of the memorization problem, allowing for a trustworthy interpretation of the
probing results.

As a case study, we apply our method to measure the amount of memorization
in probing for POS in word representations from a neural machine translation
system.

2 Related Work

A comprehensive survey of word embeddings evaluation methods was compiled
by Bakarov [2]. An overview can also be found in the survey of methodology for
analysis of deep learning models for NLP by Belinkov and Glass [4]. Another
overview [12] mentions “[n]o standardized splits & overfitting” as one of the
problems of evaluating word embeddings with similarity tasks.

There are various strategies when it comes to the train/dev/test splitting in
probing.

When it is possible to predict the probed property from the word type itself,
the vocabulary may be split into train/test sets. This strategy is used e.g. in
[19,21] to evaluate POS tag and other morphological features prediction.

Some works split the dataset into train/dev/test sets, without regard to the
same words occuring in both. These include predicting syntactic and semantic
labels (including POS) from hidden states on sentences [3,5,11,18,22] or tree-
banks [7,15].

Bisazza and Tump [6] address the problem with the overlap. They observe
that even a dummy random feature can be predicted with high accuracy when
the same words occur both in the train and the test data. They extract one vector
per token from the NMT encoder. They randomly split the vocabulary into two
parts and use one to filter the training data and the other to filter the test data.
They repeat the experiments several times and report mean accuracies.

Another approach to evaluating words in context of sentences is presented
by [10]. They propose the word content task that tests whether it is possible to
recover information about the original words in the sentence from its embedding.
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They pick 1000 mid-frequency words from the source corpus vocabulary and
sample equal numbers of sentences that contain one and only one of these words.
The words can then be partitioned into train and test sets without the risk of
their overlapping.

The ability of deep neural networks to memorize is a challenge for the the-
ory of deep learning [1]. It also has implications for the applications of neural
networks, because it may be problematic if a portion of the training data can be
reconstructed from the trained model [9].

In connection with probing neural networks, memorization was addressed by
Hewitt and Liang [14], who propose control tasks to complement the linguistics
tasks. A control task associates word types with random labels. If the classifier
performs well on the control task, this means that it is able to memorize the
training set. However, the data distribution affects the generalization ability
of deep neural networks and they tend to learn simple patterns when possible
[16]. Our approach differs from [14] by using the original data to measure the
memorization effect, evading the problem created by altering the distribution in
a control task.

3 Method

In the usual probing approach, we operate with two sets of sentences, a training
set and a test set, both labelled with the word-level labels corresponding to the
linguistic abstraction for which we are probing the neural word representations
(e.g. POS). The training set is used to train a probing classifier to predict the
labels from the word representations. The classifier is then evaluated on the test
set, and its accuracy, compared to a baseline, is used to estimate to what extent
the given linguistic abstraction is encoded in the word representations.

The goal of our method is to measure to what extent the probing classifier
only memorizes word identities instead of measuring the generalization captured
by the word representations. The main idea is to compare the probing classifier
accuracies on words that are part of the training data (seen words) and on words
that are not (unseen words), while keeping the sets of seen and unseen words
otherwise comparable (as discussed in Sect. 1), which we ensure by a symmetric
way of creating these sets.

We propose the following approach:

1. Randomly split the training set into two halves, which we will refer to as seen
sentences and unseen sentences.

2. Train the probing classifier only on the seen sentences.
3. Apply the probing classifier to the test set.
4. Define the set of seen words as words that are contained in the seen sentences

but not in the unseen sentences.
5. Define the set of unseen words as words that are contained in the unseen

sentences but not in the seen sentences.



184 R. Rosa et al.

6. Evaluate the accuracy of the probing classifier separately on seen words and
on unseen words, ignoring words that are neither seen nor unseen.2

Using this approach, we can now quantify the magnitude of the memorization
effect occurring in the probing setup as the difference between the classifier
accuracy on seen and on unseen words. If the memorization problem is not
present, these accuracies should be identical, as the classifier only extracts the
linguistic abstraction from the representation, regardless of the word identity;
in this case, the classifier accuracy reliably measures the amount of linguistic
information encoded by the representation. On the other hand, a higher accuracy
on seen words than on unseen words signalizes that the classifier memorized some
of the seen words’ identities to some extent, instead of extracting the linguistic
abstractions from them.

To stabilize the evaluation, we propose to sample the seen and unseen sen-
tences and train the classifier multiple times, and to compute the microaverage
accuracy.

We define our method as operating on words and word representations, as
this makes the subsequent word-level probing straightforward. Our method is
in principle applicable even for setups using subwords. However, in such cases,
it is up to the researcher to decide whether for the given language and setup,
subword-level memorization is a problem or not, as our method only deals with
word-level memorization.

3.1 Which Words Are Selected for Evaluation?

It is important to note that the distribution of words selected for evaluation
by our method is strongly biased towards lower-frequency words. Very frequent
words are never selected for evaluation, and medium-frequency words are rarely
selected, as they always or nearly always appear in both seen and unseen sen-
tences, and our method is thus unable to measure the memorization effect for
such words.

Specifically, the probability Psel(w) of a word w being selected as unseen
(or seen) follows a hypergeometric distribution: Psel(w) ∼ Hypergeometric(
|S|, |S|

2 , |Sw|
)
, where S is the set of training sentences, out of which its subset

Sw contains the word w. For most words,3 it is similar to the binomial distri-
bution Bi(|Sw|, 0.5), and Psel(w) is thus inversely exponentially proportional to
|Sw|: Psel(w) ≈ (

1
2

)|Sw|.
2 Note that words which occur in both seen and unseen sentences are neither seen

words nor unseen words. We also need to remove words that are part of the devel-
opment set if one is used for training the probing classifier. Technically, words that
do not appear in the test set can also be removed from the sets of seen and unseen
words as they do not influence the results.

3 For frequent words, the actual probability is even lower than the (already negligi-
ble) approximated value; for words that appear in more than half of the training
sentences, the probability is 0. The probability is also technically 0 for words that
do not appear in the test set.
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We believe that for very frequent words (especially function words such as
common prepositions, pronouns, determiners and punctuation), avoiding memo-
rization is hard – a set of sentences constructed not to contain a given word from
this class would typically not be very representative of the language. Moreover,
the probed neural network is typically not very likely to meaningfully abstract
over such words, as it is usually more economical for the network to simply
memorize the most frequent words and treat them as special cases.4,5

For medium-frequency words, such as common nouns and verbs, we see
their underrepresentation as a shortcoming of our method which we intend to
focus on in future work. We specifically plan to further investigate the approach
of Bisazza and Tump [6], reviewed in Sect. 2, who train the probing classifier on
representations of only some words in the training sentences and regard the other
words as unseen. We appreciate the approach, but we believe that it must be
analyzed to what degree it may be influenced by the contextual representations
of the seen words containing information about surrounding words regarded as
unseen.6

Our method mostly focuses on lower-frequency words, which we believe
to be reasonable, as the lower the frequency of the word, the stronger is the
network forced to abstract over the word. We are thus mostly interested in such
words in probing, as if the network captures the abstractions that we are probing
for, they should be most prominent in representations of lower-frequency words.

Still, we also omit very rare words, which either do not appear in the test
sentences or in the training sentences (or, obviously, in none of those). For these
words, the memorization effect is very unlikely to occur.

4 Case Study

As a case study, we apply our method to probing representations from a
neural machine translation model for POS. We study the memorization phe-
nomenon along three dimensions, varying the train set size, the contextuality of
the representation (static word embeddings versus encoder output states), and
the power of the probing classifier, using either a linear classifier or a multi-layer
perceptron classifier (MLP).

We analyze a Transformer model [24] implemented within the Neural Mon-
key framework7 [13], trained for the task of machine translation from Czech to

4 Which they often are, as frequent words tend to behave irregularly in language [23,
p. 116].

5 Arguably, it is sane to memorize very frequent words rather than abstracting over
them. Nevertheless, we should be able to measure this reliably, not mistaking one
for the other.

6 In their method, unseen words are part of the training sentences and can thus influ-
ence the contextual representations of the seen words which are used for training
the probing classifier, whereas in our method, the training sentences do not contain
the unseen words at all.

7 https://github.com/ufal/neuralmonkey.

https://github.com/ufal/neuralmonkey
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Table 1. Case study evaluation on POS prediction, varying the number of training
sentences, the probed representations, and the probing classifier. The difference between
the accuracy of the probe on seen versus unseen words represents the magnitude of the
memorization problem. Micro-average over 10 repetitions, in percentage points, with
standard deviations.

Accuracy Stand. dev. Accuracy Stand. dev.

Train sent. seen unseen diff seen unseen Train sent. seen unseen diff seen unseen

Encoder output states, linear classifier Encoder word embeddings, linear classifier

50 90.5 87.3 3.3 3.4 5.6 50 98.5 74.3 24.1 0.9 7.6

100 89.1 86.8 2.3 1.8 2.0 100 97.0 78.0 19.0 0.8 2.3

500 93.9 92.8 1.1 0.9 1.1 500 97.6 80.5 17.1 0.7 3.2

1,000 94.7 93.9 0.8 0.9 0.8 1,000 97.0 82.8 14.2 1.0 1.5

5,000 95.5 94.9 0.7 0.5 0.6 5,000 96.2 84.7 11.4 0.5 1.7

10,000 95.7 95.5 0.2 0.8 0.8 10,000 95.2 85.3 10.0 0.8 1.0

30,000 95.8 95.9 0.0 0.4 0.4 30,000 93.5 88.0 5.4 0.6 1.3

Encoder output states, MLP Encoder word embeddings, MLP

50 97.7 93.3 4.4 1.5 3.2 50 98.5 76.6 21.8 0.9 6.9

100 96.2 93.6 2.7 1.0 1.4 100 97.0 81.4 15.6 0.7 3.0

500 97.2 94.5 2.7 0.3 0.9 500 97.8 87.4 10.3 0.4 1.9

1,000 96.8 94.9 1.9 0.7 0.7 1,000 97.7 89.8 7.9 0.5 1.4

5,000 97.6 95.7 1.9 0.4 0.5 5,000 98.4 92.7 5.6 0.2 1.0

10,000 98.0 96.2 1.8 0.7 0.7 10,000 98.7 93.5 5.2 0.2 1.0

30,000 97.7 96.1 1.6 0.6 0.7 30,000 98.4 94.2 4.1 0.6 1.2

English on the CzEng dataset8 [8]. The setup is based on [17], with the excep-
tion of splitting the sentences into words instead of subwords, as explained in
Sect. 3; we use a vocabulary of 25,000 words that are most frequent in the parallel
training data.

We probe the source word embeddings and source encoder output states
for Universal POS with a linear classifier (softmax) or a MLP with one hidden
layer of dimension 512, using the Universal Dependencies 1.4 version of the
Czech Prague Dependency Treebank [20]. We use the first 500 sentences from
the treebank training data as tuning data for the probing classifier, the rest of the
training data is used to create the seen and unseen sentence sets, using either the
full data or subsampling smaller subsets. The probing classifier is then evaluated
using the development part of the treebank using token-based evaluation. For
each setup, we repeat the experiment 10 times with different samples of the seen
and unseen sentences and report micro-average results.

By comparing the accuracies of the probing classifier on seen and unseen
words in Table 1, we can see that the memorization problem is clearly most
pronounced with static word embeddings, where the magnitude of the effect (the
difference in the accuracies) ranges from 4 points for the full training set up to 24
points for a training set of 50 sentences, while for the contextual representations,

8 http://ufal.mff.cuni.cz/czeng.

http://ufal.mff.cuni.cz/czeng
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the effect does not surpass 5 points. The memorization effect is more pronounced
with the stronger classifier, and disappears only with the linear classifier applied
to contextual representations when trained with the largest train set.

5 Conclusion

We presented a method for measuring the memorization effect in word-level prob-
ing of neural representations of words, based on a comparison of the accuracy
of the probing classifier on symmetrically sampled comparable sets of seen and
unseen words. As we showed in a case study on probing for POS, our method
can measure the magnitude of the memorization problem and can thus serve as
a means for selecting an appropriate probing setup, as well as for estimating the
reliability of the findings of the probing experiment with respect to the threat
of mistaking memorization for generalization.

In future, we intend to tackle the shortcoming of our method of underrepre-
senting medium-frequency words. We also plan to apply the method to a wider
range of word-based probing tasks, as well as to measure the memorization effect
for existing previous probing works and reassess results reported by their authors
from this perspective.
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Abstract. This paper deals with automatic morphological segmenta-
tion of Czech lemmas contained in the word-formation network DeriNet.
Capturing derivational relations between base and derived lemmas, and
segmenting lemmas into sequences of morphemes are two closely related
formal models of how words come into existence. Thus we propose a novel
segmentation method that benefits from the existence of the network; our
solution constitutes new state-of-the-art for the Czech language.
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1 Introduction

Morphological segmentation in a standard task in NLP, whose aim is to decom-
pose a word into a sequence of minimal meaning-bearing units called mor-
phemes (e.g., unreachable → un-reach-able). It has been tackled by a variety
of approaches (ranging from rule-based methods to modern machine learning
methods), and several shared tasks focused on it.

In this paper, we report a work in progress focused on morphological seg-
mentation of Czech lemmas. Czech is a morphologically rich language, both in
inflection and derivation. Large-coverage NLP tools for Czech inflection have
been developed since the 1990s (such as the MorfFlex CZ dictionary, currently
covering around 1M lemmas [3]), and data resources for derivation are available,
too; cf. the word-formation network DeriNet [15]. However, to our knowledge,
there is no publicly available large-scale machine-tractable segmentation lexicon
for Czech. We aim to build one.

The task of modeling inflection and derivation of a natural language and the
task of morphological segmentation are closely connected. Thus we hypothesize
that the information stored in derivational trees of DeriNet (see Fig. 1 (a) for
a sample) could be used – in combination with deep learning methods – for
improving performance in morphological segmentation.

Relying on the existence of a derivational resource might look as a rather
exotic bottleneck, as derivational data are much scarcer than, e.g., data resources
c© Springer Nature Switzerland AG 2020
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for inflection. However, according to [7] there are at least 22 languages for which
reasonably-scaled derivational databases exist, out of which data for 11 lan-
guages are available in the tree-shaped scheme used in our approach [6]. Thus
our approach could be viable also for several languages other than Czech.

2 Related Work

2.1 Morphological Segmentation as a Linguistic Task

Even if a morpheme is defined simply as a phoneme/grapheme sequence asso-
ciated with a particular meaning that cannot be further subdivided, i.e., as the
smallest linguistic sign, delimitation of morphemes in Czech is difficult especially
because individual morphemes are often attested in multiple variants (morphs)
due to allomorphy; cf. the morphs of the morpheme br (as in the verb br-á-t ‘to
take’) in vy-b́ır-a-t ‘to choose’, v́ı-běr ‘choice’, and vý-bor ‘committee’.

In the linguistic description of Czech, morphological segmentation as iden-
tification of all morphemes within the word structure is considered a task of
morphology; e.g., lod’-k-a ’small boat’ is cut into the root morpheme lod’, the
(derivational) suffix k and the (inflectional) ending a. A related task of delimiting
morphemes that distinguish a word from an immediately simpler word (e.g. lod’-
ka ’small boat’ from lod’ ‘boat’) falls under derivation as part of word-formation,
which is subsumed under lexicology in the Czech linguistic tradition.

These two perspectives are documented in existing NLP accounts and data
resources, too. Slav́ıčková’s retrograde dictionary [13], Weisheitelová et al. [16],
Osolsobě and Pala [9], or Skoumalová [12] aim at providing complete morpho-
logical segmentation, whereas Šǐska’s dictionary of root allomorphs [11] and
Šimandl’s dictionary of affixes [10] focus rather on word-formation analysis.

2.2 Approaches to Automatic Morphological Segmentation

The task of morphological segmentation is recognized in NLP for a long time,
and solutions have been proposed as early as in the 1950s. Diverse approaches
have been developed since, based, e.g., on (i) lists of affixes and grammar rules,
(ii) supervised machine learning models, (iii) unsupervised models that optimize
heuristic criteria such as minimal description length, or (iv) unsupervised models
that optimize probability such as Bayesian models (see [1] for references).

One can find empirical performance comparisons of various approaches in
publications related to shared tasks on morphological segmentation, such as [8]
or [5], but Czech is not among the studied languages. As shown in [14], even the
modern models considered as state-of-the-art in these shared tasks, do not reach
reasonable accuracy for Czech.
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3 Our Annotated Data

3.1 Sample of Completely Segmented Lemmas

For training and evaluation purposes, we selected 2,100 lemmas from the Der-
iNet lemma set as follows: (1) 1,000 lemmas were sampled randomly with uni-
form probabilities, (2) additional 1,100 lemmas were sampled randomly with
probabilities proportional to their frequencies in the Czech National Corpus [4].

Morpheme boundaries in both sets were manually annotated. The basic prin-
ciple of delimiting morphemes through their recurrence in words is challenged
by allomorphy, in particular, of root morphemes. In Czech, roots often start and
end in consonants, having a CVC (consonant-vowel-consonant), CC and other
structures, with the final consonant alternated due to some suffixes (hák ‘hook’
> háč-ek ‘small hook’) and the middle vowel (if present) dropped or alternated
in individual allomorphs (cf. the allomorphy of the br root above).

While segmentation of prefixes is rather easy due to their limited number
and relatively regular patterns documented across the part-of-speech boundaries
(e.g., prefix vowel lengthening in verb-to-noun derivation vy-br-a-t ‘to choose’ >
vý-běr ‘choice’), suffix parts of many lemmas allow for multiple analyses based
on different analogies. For instance, the ova suffix is delimited in kup-ova-t ‘to
buy.imperf’ in contrast to koup-i-t ‘to buy.perf’; if propagated to kup-ová-va-t
‘to buy.imperf-iter’, one obtains a lengthened variant (ová), which is not found
in other iteratives. An alternative, more subtle segmentation (kup-ov-a-t > kup-
ov-áv-a-t) which is applicable also to other iteratives (plav-a-t ‘to swim.imperf’
> plav-áv-a-t ‘to swim.imperf-iter’) was thus preferred in the annotation.

The resulting set of completely segmented lemmas was randomly divided into
a training portion (1,050 lemmas), a development test portion (525 lemmas), and
an evaluation test portion (525 lemmas).

3.2 Sets of Root Allomorphs for Selected DeriNet Trees

The complete manual segmentation drew our attention to native, high frequent
roots with individual allomorphy, which is hard to capture (cf. the analysis dá-t
‘to give.perfective’ vs. d-á-v-a-t ‘to give.imperfective’ provided by [13]).

In order to annotate these lemmas as consistently as possible, a simple
method was proposed on how to detect root morpheme boundaries in groups
of derivationally related words gathered in individual derivational trees in the
DeriNet network, still with minimal annotation effort. First, 1,760 biggest deriva-
tional trees were selected in DeriNet. Then an annotator added a list of all root
morpheme variants to each tree as a whole (actually the list was pre-generated,
in order to make the annotation even faster), without annotating individual lem-
mas in the tree. Then the longest-matching root allomorph was marked as the
root morpheme in each lemma. This resulted in 240k lemmas with highly reliable
root-morpheme boundaries.
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4 Morphological Segmentation Procedure

In general, our segmentation approach is constructed as a combination of rule-
based and machine learning methods operating on separate words, with methods
that detect and propagate morpheme-boundaries along derivational edges in the
DeriNet 2.0 derivational trees.

Our algorithm consists of four main parts, detection, propagation, prun-
ing, and post-processing. In the detection phase, the morpheme boundaries are
detected separately on each word, with use of simple rules and neural classifiers.
In this phase, we also add manually annotated root morphemes. In the propaga-
tion phase, we operate on DeriNet 2.0 derivational trees, and use them to induce
new morphological boundaries, as well as to propagate already known bound-
aries to other words. The following pruning phase uses two neural classifiers for
removing wrong boundaries. In the final post-processing phase, a small set of
rules is used to correct systematic errors of the classifiers, and we once again use
the manual root annotations, this time to add the annotated boundaries which
may have been removed, and to remove any further segmentation of annotated
roots.

4.1 Inducing Morpheme Boundaries from Derivational Trees

This approach consists of two techniques, boundary detection and boundary
propagation. Boundary detection tries to detect new morpheme boundaries by
examining the changes along derivational edges. For instance, the change in the
parent–child pair lod’ka ‘small boat’ > lodička ‘tiny boat’ can be used to reveal
the child’s internal structure. We first use the edit-distance measure to find the
most likely way how the words are aligned, and then examine the difference
between them. We see that lodička was created as [“lod’”, “+ič”, “ka”], i.e.,
lod’ remained the same, ič was inserted, and ka was repeated. The most likely
scenario is that ič is either a morpheme or a group of morphemes, and that
it was inserted between two morphemes, i.e., where a morpheme boundary is
assumed to be located. The induced segmentations are lod’-ka and lod-ič-ka.

The boundary propagation propagates the known boundaries (be it from the
previous algorithm or, e.g., from neural networks), between two words connected
with a derivational edge. For instance, if we have an edge between roz-dělit ‘to
distribute’ > přerozdělit ‘to redistribute’, we would like to transfer the boundary
roz- into the second word. For this, we create the exact same mapping between
two words as above: přerozdělit = [“+pře”, “rozdělit”]. We can conclude from
this mapping that the boundary can safely be translated into the second word
since the subword rozdělit, which contains our boundary, remained unchanged.
The boundary just needs to be shifted inside the word because three letters were
added in front of the boundary. This way, we get the boundary přeroz-dělit.

The actual algorithm applies both rules at the same time, while iterating
trough edges in a specific order: We start with leaves and create and propagate
boundaries to their parents. Once all children of a node are processed, boundaries
are propagated from this node to its parent. When the tree root is reached, the
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second phase starts and boundaries are propagated in the opposite direction, i.e.,
from parents to their children. This approach ensures that the whole propagation
is handled in O(N), where N is the number of words in the tree.

This method helps us to find boundaries that would otherwise remain unde-
tected, but it also leads to a relatively high number of false positives. For this
reason, the differences caused by changes in letter accents are ignored, while com-
paring two words. This may cause some false negatives but the overall impact is
highly positive. Boundaries in the final output are further pruned by classifiers
to increase precision.

4.2 Deep Learning Component

We use two neural network classifiers. Both of them are convolutional networks
with character level embeddings trained altogether with the classifiers.1 For each
position of the input word, they return values 0 to 1 signalizing whether there
is a morpheme-boundary on a given position of the word. The first network
was trained on the manually annotated dataset mentioned in Sect. 3.1, whereas
the second one was trained in a semi-supervised manner using a combination of
the manually annotated and of a synthetically generated dataset. The synthetic
dataset was generated by the complete algorithm as described in this paper,
without the final post-processing, and cleanup phase. The goal was to make
the second classifier learn from the tree-based algorithm and to smooth its out-
puts. Both classifiers are used with two thresholds, one for the addition of new
boundaries and the second one for removal of suspicious boundaries.

4.3 Adding Further Information on Morphemes

Our procedure also attempts to classify the identified morphemes as prefixes,
suffixes, or roots. Given a derivational tree with segmented lemmas, the root
morpheme of the lemma is identified in the root node of the tree, and the infor-
mation about the root morpheme is then propagated down the tree. With the
root being identified in all nodes, we distinguish prefix and suffix morphemes
(simply by their relative position with respect to the root morpheme), which is
certainly an oversimplification that completely disregards the existence of inter-
fix morphemes in compounds and other issues.

In the last step, a representative allomorph is assigned to each morpheme,
which could be considered “allomorph lemmatization”. We align morpheme
sequences of a parent lemma and a child lemma, allowing only links 1-1, 1-0,
and 0-1. Aligned morphemes are either written identically, or they are allo-
morphs. For each group of allomorphs, we chose their representative as the
topmost-appearing allomorph (the one that appears closest to the root node
of the derivational tree).

1 TensorFlow, http://tensorflow.org/.

http://tensorflow.org/
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Table 1. Comparison of our method with other approaches on the dictionary data [13]

Method Morphemes Boundaries Words

Precision Recall F1 Precision Recall F1 Accuracy

Our method 58.94% 62.62% 63.74% 96.11% 91.63% 93.81% 72.15%

EMmh, i1 64.82% 66.54% 65.67% 91.38% 87.42% 89.36% 35.45%

FlatCat unsup. 37.19% 21.57% 27.31% 97.98% 64.92% 78.10% 1.17%

FlatCat sup. 66.20% 57.72% 61.67% 92.59% 81.15% 86.49% 31.10%

5 Experiments and Evaluation

5.1 Evaluated Setups

Similarly to [14], we use three measures to evaluate the quality of generated
segmentations by comparing them to manually annotated data: (1) lemma cor-
rectness – the percentage (accuracy) of lemmas whose segmentation is completely
correct, (2) morpheme correctness – the precision, recall, and f-measure of cor-
rectly recognized morphemes, and (3) boundary correctness – precision, recall,
and f-measure of correctly recognized boundaries between adjacent morphemes.

We have experimented with various sets of rules as well as with multiple neu-
ral network architectures based on recurrent, convolutional and deconvolutional
networks with various hyper-parameters. Only the configuration that achieved
the best results on the development set is presented here. In general, recurrent
neural networks did not work, probably due to the small training set, while the
best results were achieved by convolutional networks with 2 convolutional layers
(400 filters, kernel size 4, stride 1, ReLU activation) and a single fully connected
layer with one output (sigmoid activation). However, this architecture is more of
an example, since slightly different architectures had comparable results. With
the deconvolutions we expected to help spreading information about morphemes
through the word, but it did not yield any improvements.

The pipeline required certain structural optimization: we have experimented
with omitting various layers and also with using the same layer on multiple
places. Special care was needed to set-up the classifiers. Each of them has two
thresholds – one for adding a new boundary, and one for removing a boundary
from a place where it likely should not be. The first threshold was set indepen-
dently for each classifier in such a way that classifier has the highest possible
recall, while not dropping bellow 95% precision. The second – removal – thresh-
olds were configured together on both classifiers. The performance of the pipeline
was evaluated for various combinations of thresholds, and the values which have
sufficient precision and a reasonable precision-recall balance were chosen. The
architecture of the classifiers was chosen on the basis of the maximum recall at
95% precision too, which resulted in choosing a simple CNN with two hidden
convolutional layers.
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5.2 Results

The performance of our algorithm was evaluated on the part of our manually
annotated dataset which was not used during previous development. We evalu-
ated the performance in three ways: We measured how accurately the algorithm
marks boundaries (Precision 93.3%, Recall 81.5%) and morphemes (Prec. 64.5%,
Rec. 58.6%), and how big a percentage of words was correctly segmented (58.9%).
In comparison, semisupervised Morfessor Flatcat achieved results: Boundaries -
P:83.7%, R:35.7%; Morphemes - P:36.4%, R:21.2%, Words 26.7%. To compare
our method with Czech state of the art we evaluate it also on the retrograde
dictionary data. [13], on which we can compare it with EMmh method [14] as
well as with Morfessor FlatCat [2], as also evaluated in [14]; see Table 1.

Figure 1 (b) shows how precision and recall change as data passes through
the layers of the pipeline. Interestingly, classifier 2 during its training learned to
partially mimic the behavior of the Tree Propagation. Because of this, it looks
as if all the work was done by the classifiers, and the Tree Propagation was not
useful at all. The plot was evaluated on our manually segmented dataset.

The outputs of the previous versions of the algorithm have undergone a
linguistic inspection, and most of the observed systematic errors have been fixed
by adding specialized rules into the post-processing phase. Yet there are still
some known sources of errors remaining, such as compounds, which we are unable
to handle in standard ways, and therefore will need a specialized approach. There
is also an issue with clean-up done by classifiers. As can be seen in Fig. 1 (b),
their presence is essential, yet they tend to remove many correct segments.

Fig. 1. (a) The derivational tree with the base noun most ‘bridge’ from DeriNet 2.0.
(b) The changes of precision, recall and F1 on different layers of the pipeline.

6 Conclusions

We have presented a novel approach to morphological segmentation, which bene-
fits from the availability of derivational trees and uses deep learning components.
Our system outperforms previous solutions developed for the Czech language. A
natural extension of the task would be to segment also inflected word forms.
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9. Osolsobě, K., Pala, K.: Czech stem dictionary for IBM PC XT/AT. In: Confer-
ence on Computer Lexicography, pp. 163–172. Hungarian Academy of Sciences,
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16. Weisheitelová, J., Kráĺıková, K., Sgall, P.: Morphemic Analysis of Czech. MFF
UK, Prague (1982)

http://hdl.handle.net/11234/1-1673
http://hdl.handle.net/11234/1-1593
http://hdl.handle.net/11234/1-1593
https://doi.org/10.1007/978-3-642-15754-7_71
https://doi.org/10.1007/978-3-642-15754-7_71
http://hdl.handle.net/11234/1-2995


Interpreting Word Embeddings Using
a Distribution Agnostic Approach

Employing Hellinger Distance

Tamás Ficsor1(B) and Gábor Berend1,2
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Abstract. Word embeddings can encode semantic and syntactic fea-
tures and have achieved many recent successes in solving NLP tasks.
Despite their successes, it is not trivial to directly extract lexical infor-
mation out of them. In this paper, we propose a transformation of the
embedding space to a more interpretable one using the Hellinger dis-
tance. We additionally suggest a distribution-agnostic approach using
Kernel Density Estimation. A method is introduced to measure the inter-
pretability of the word embeddings. Our results suggest that Hellinger
based calculation gives a 1.35% improvement on average over the Bhat-
tacharyya distance in terms of interpretability and adapts better to
unknown words.

Keywords: Word embeddings · Interpretability · Computational
semantics

1 Introduction

There have been many successes in the field of NLP due to the application of
word embeddings [3]. There is a new forefront as well called contextual embed-
dings (e.g., BERT), which further increases the complexity of models to gain
better performance. [2] showed there is only a small performance increase on
average regard to complexity, but this performance varies on each employed
task. Thus static embeddings still serve a good ground for initial investigations
about the interpretability.

Prior research by [12] has investigated the issue of semantic encoding in
word embeddings by assuming that the coefficients across each dimensions of
the embedding space are distributed normally. This assumption may or may nor
hold for a particular embedding space (e.g. the normality assumption is unlikely
to hold for sparse word representations), hence we argue for the necessity of
similar algorithms that operate in an distribution-agnostic manner. We introduce
such a model that allows the word embedding coefficients to follow arbitrary
distributions by relying on Kernel Density Estimation (KDE). A further novelty
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of our work is that we propose the application of the Hellinger distance – as
opposed to the Bhattacharyya distance – which could be a more suitable choice
due to its bounded nature. We also make our source code publicly available1 in
order to foster the reproducibility of our experiments.

2 Related Work

Word embeddings can capture the semantic and syntactic relationships among
words [9]. [15] was one of the first providing a comparison of several word
embedding methods and showed that incorporating them into established NLP
pipelines can also boost their performance.

There are several ways to incorporate external knowledge into NLP mod-
els. Related methods include the application of auto-encoders [16], embedding
information during training [1] or after the training phase, called retrofitting
[5]. One way to understand the semantic encoding of a dimension in embed-
ding spaces is to link them to human interpretable features. [12] introduced
the SEMCAT dataset and a method that relies on the Bhattacharyya distance
for doing so. Their proposed method can produce a more interpretable space
where each dimension encodes a predefined semantic category from the SEM-
CAT dataset, which was tested on GloVe [11] word embedding. There have been
various approaches to nd these semantic categories. Such an approach is to con-
struct datasets in a way which involves human participants only [8], or in a
semi-automated manner where the construction is based on statistics to make
the connections between the members of semantic categories and curated later
by human participants [13].

Our proposed approach relies on the application of the Hellinger distance,
which has already been used in NLP for constructing word embeddings [7]. Note
that the way we rely on the Hellinger distance is different from prior work in that
we use it for improving the interpretability of some arbitrarily trained embed-
ding, whereas in [7] the Hellinger distance served as the basis for constructing
the embeddings.

3 Our Approach

In this paper we follow a process to produce interpretable word vectors which is
similar to [12]. Unlike [12], who trained their own GloVe embeddings, in order to
mitigate the variability due to training, we are using the pre-trained GloVe with
6 billion token as our embedding space with 300 dimensions. Furthermore the
SEMCAT dataset is going to serve as the definition of the semantic categories.
Instead of GloVe and SEMCAT other kinds of embeddings (e.g., fastText) and
datasets incorporating semantic relations (e.g., the McRae dataset [8]) can be
integrated into our framework.

1 https://github.com/ficstamas/word embedding interpretability.

https://github.com/ficstamas/word_embedding_interpretability
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3.1 Information Encoding of Dimensions

The assumption of normality of the embedding dimensions is statistically a con-
venient, however, empirically not necessarily a valid approach. As the normal
distribution is simple and well-understood, it is also frequently used in predic-
tive models, however, assuming normality could have its own flaws [14]. The
assumption of normality plays an essential role in the method proposed by [12],
that we relax in this paper.

If we try to express the information gain from a dimension regarding some
concept, we can do so by measuring the distance between the concept’s and
dimension’s distribution. In order to investigate the semantic distribution of
semantic categories across all dimensions, we define WD ∈ R

|d|×|c|
≥0 , with |d| and

|c| denoting the number of dimensions of the embedding space and the number
of semantic categories, respectively.

In this paper, we rely on two metrics, Bhattacharyya and Hellinger distances.
The suggestion of Hellinger distance is an important step, as it is more sensi-
tive to small distributional differences when the fidelity (overlap) of the two
distributions is close to 1, which can be utilized in case of dense embeddings.
Furthermore it is bounded on interval [0, 1], which could be beneficial for sparse
embeddings where the fidelity has a higher chance of being close to 0 (causing
the Bhattacharrya distance to approach infinity).

First we separate the ith dimension’s coefficients into category (Pi,j) and
out-of-category (Qi,j) vectors. A coefficient belongs to the Pi,j vector if the
associated word to that coefficient is an element of the jth semantic category,
and it belongs to the Qi,j otherwise. It is going to be denoted for P and Q for
short.

By assuming that P and Q are normally distributed, we can derive the closed
form definitions for the Bhattacharyya and Hellinger distances as included in
Eqs. (1) and (2), respectively. In the below formulas μ and σ denote the mean
and standard deviation of the respective distributions.
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1
4
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q
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)
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√
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p + σ2

q

e
− 1

4 · (μp−μq)2
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By discarding the assumption that P and Q are distributed normally, the
more general formulas are included in Eqs. (3) and (4) for the Bhattacharyya
and Hellinger distances

DB(p, q) = − ln

∞∫
−∞

√
p(x)q(x) dx (3)
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E Standardize ES

SEMCAT + Distance WD Normalize WND

Sign CorrectionWNSD×

I

Fig. 1. The flowchart of the generation of the interpretable space I. E refers to the input
word embeddings, whereas WD denotes the matrix describing the semantic distribution
of the embedding. WD constructed from the distances of distributions of semantic
category (from SEMCAT) - dimension pairs.

DH(p, q) =

√√√√√1 −
∞∫

−∞

√
p(x)q(x) dx (4)

with the integrand being the Bhattacharyya coefficient, also called fidelity. In
order to calculate the fidelity, we can apply Kernel Density Estimation (KDE)
[6] for turning the empirical distributions of coefficients P and Q into continuous
(and not necessarily normally distributed) probability density functions p and q.

By calculating either the closed or the continuous form of distances, we can
calculate WD(i, j) = D(Pi,j , Qi,j), where D is any of the above defined distances.

3.2 Interpretable Word Vector Generation

We normalize WD so, that each semantic category vector in WND sum up to 1
(�1 norm). This step is important because otherwise the dominance of certain
semantic categories could cause an undesired bias. Additionally, WNSD(i, j) =
sgn(Δi,j)WND(i, j), where Δi,j = μpi,j

− μqi,j
and sgn is the signum function.

This form of sign correction is useful as a dimension can encode a semantic
category in negative or positive direction and we have to keep the mapping of
the words in each dimension.

We standardize the input word embeddings in a way that each dimension
has zero mean and unit variance. We denote the standardized embeddings as ES
and obtain the interpretable space of embeddings I as the product of ES and
WNSD.

3.3 Word Retrieval Test

In order to measure the semantic quality of I, we used 60% of the words
from each semantic category for training and 40% for validation. By using the
training words, we are calculating the distance matrix WD using either one of
the Bhattacharyya or the Hellinger distance. We select the largest k weights
(k ∈ {15, 18, 30, 37, 62, 75, 125, 150, 250, 300}) for each category and replace the
other weights with 0 (WS

D). We are doing that, so we can inspect the strongest
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encoding dimensions generalization ability. Then in the calculation pipeline
(Fig. 1) we are going to use WS

D instead of WD, and we continue the rest of the
calculations as it was defined earlier, by that we are going to obtain the inter-
pretable space IS . We are going to rely on the validation set and see whether the
words of a semantic category are seen among the top n, 3n or 5n words in the
corresponding dimension in IS , where n is the number of the test words varying
across the semantic categories. The final accuracy is the weighted mean of the
accuracy of the dimensions, where the weight is the number of words in each
category for the corresponding dimension.

3.4 Measuring Interpretability

To measure the interpretability of the model, we are going to use a functionally-
grounded evaluation method [4], which means it does not involve humans in the
process of quantification. Furthermore we use continuous values to express the
level of interpretability [10]. The metric we rely on is an adaptation of the one
proposed in [12]. We desire to have a metric that is independent from the dimen-
sionality of the embedding space, so models with different number of dimensions
can be easily compared.

IS+
i,j =

|Sj ∩ V +
i (λ × nj)|
nj

(5)

IS−
i,j =

|Sj ∩ V −
i (λ × nj)|
nj

(6)

In the same way we defined the interpretability score for the positive
(5) and negative (6) directions. In both equations i represents the dimension
(i ∈ {1, 2, 3, . . . , |d|}) and j the semantic categories (j ∈ {1, 2, 3, . . . , |c|}). Sj

represents the set of words belonging to the jth semantic category, nj the num-
ber of words in that semantic category. V +

i and V −
i gives us the top and bot-

tom words selected by the magnitude of their coordinate respectively in the ith
dimension. λ×nj is the number words selected from the top and bottom words,
hence λ ∈ N is the relaxation coefficient, as it controls how strict we measure the
interpretability. As the interpretability of a dimension-category pair, we take the
maximum of the positive and negative direction, i.e. ISi,j = max

{
IS+

i,j , IS−
i,j

}
.

Once we have the overall interpretability (ISi,j), we are going to calculate the
categorical interpretability Eq. (7). We thought that it is a too optimistic method
to decide the interpretability level based on the maximum value in each selec-
tion. It is apparent from ISi = maxj ISi,j , taking the max for every dimension
would overestimate the true interpretability, because it would take the best-
case scenario. Instead, we calculate Eq. (7), where we have a condition on the
selected i which is defined by Eq. (8). We are going to select from the given
interpretability scores provided by ISi,j (where j is fixed) the ith value where i
is the maximum in the jth concept in WD(i, j). This condition Eq. (8) ensures
that we are going to obtain the interpretability score from the dimensions where
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the semantic category is encoded. This method is more suitable to obtain the
interpretability scores, because it is relying on the distribution of the semantic
categories, instead of the interpretability score from each dimension.

ISj = ISi∗
j ,j × 100 (7)

i∗j =i′ WD(i
′
, j). (8)

Finally, to get the overall interpretability of the embedding space, we have to
calculate the average of the interpretability scores across the semantic categories,
where C is the number of categories.

Accuracy of the word embedding Interpetability of the word embedding
a b

Fig. 2. Values from Table 1 with n test words in word retrieval test in a and Table 2
with 60% of the categories used in b.

4 Results

We load the most frequent 50,000 words from the pre-trained embeddings similar
to [12] and tested for their normality using the Bonferroni corrected Kolmogorov-
Smirnov test for multiple comparisons. Our test showed that 183 of the dimen-
sions are normally distributed (p > 0.05). [12] reported more dimensions to
behave normally, which could be explained by the fact that the authors trained
their own GloVe embeddings. We deem this as an indication for the need towards
the kind of distribution agnostic approaches we propose by relying on KDE. Dur-
ing the application of KDE, we utilized a Gaussian kernel and a bandwidth of
0.2 throughout all experiments.

4.1 Accuracy and Interpretability

Table 1 and Table 2 contains the quantitative performance of the embeddings
from two complementary angles, i.e. their accuracy and interpretability. These
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Table 1. Performance of the model on word category retrieval test for the top
n, 3n and 5n where n is the number of test words varying across the categories.
k (∈ {15, 18, 30, 37, 62, 75, 125, 150, 250, 300}) is the number of top weight kept from
WD in each category. The method was discussed in Sect. 3.3

k 15 18 30 37 62 75 125 150 250 300

n

Closed form of Bhattacharyya 13.18 13.85 14.84 14.67 15.61 16.05 15.58 15.66 15.69 15.64

Closed form of Hellinger 13.44 13.27 14.46 14.85 15.55 15.34 15.84 15.75 15.99 16.13

Bhattacharyya KDE 12.54 12.86 14.06 14.29 15.23 15.58 16.05 16.08 16.10 16.13

Hellinger KDE 13.09 13.71 14.55 15.14 15.43 15.75 16.04 16.04 15.96 16.16

3n

Closed form of Bhattacharyya 25.76 27.25 29.53 30.61 32.92 33.71 34.15 34.30 33.39 33.18

Closed form of Hellinger 25.35 26.87 29.74 30.73 32.36 33.77 34.03 34.56 34.82 34.73

Bhattacharyya KDE 24.76 26.20 29.06 29.82 31.72 32.16 33.59 33.48 33.63 33.57

Hellinger KDE 25.32 27.39 29.88 30.38 32.54 33.27 34.27 34.38 34.50 34.41

5n

Closed form of Bhattacharyya 34.53 36.43 39.65 40.56 43.24 43.51 44.21 45.03 44.68 44.30

Closed form of Hellinger 33.92 36.05 39.15 40.41 42.87 43.30 44.59 44.15 45.00 44.94

Bhattacharyya KDE 33.07 34.41 37.90 39.15 42.55 43.01 44.30 44.68 45.18 45.27

Hellinger KDE 34.10 35.79 39.33 40.21 42.87 43.39 44.73 44.65 45.00 45.12

Table 2. Interpretability scores for the interpretable space I with different λ parameter
values (λ = 1 the most strict and λ = 10 the most relaxed) using different distances.
The r ∈ {100, 80, 60} percentage of the words kept from the semantic categories relative
to category centers

λ 1 2 3 4 5 6 7 8 9 10

100% of the words

GloVe 2.82 4.84 6.83 8.72 10.37 12.08 13.34 14.55 15.79 16.87

Closed form of Bhattacharyya. 35.34 48.84 56.47 61.35 65.01 68.21 70.81 72.42 73.88 75.45

Closed form of Hellinger 36.32 49.94 57.64 62.75 66.72 69.52 72.08 74.09 75.54 76.72

Bhattacharyya KDE 35.47 49.05 56.69 61.60 65.35 68.37 70.57 72.53 74.02 75.31

Hellinger KDE 36.24 49.49 57.35 62.73 66.63 69.56 71.92 74.04 75.42 76.78

80% of the words

GloVe 1.85 3.42 4.91 6.33 7.69 9.00 10.21 11.34 12.20 13.07

Closed form of Bhattacharyya 23.96 36.99 45.70 51.66 55.37 59.13 61.96 64.50 66.40 67.91

Closed form of Hellinger 24.36 38.36 47.18 53.32 57.49 61.09 63.35 65.89 67.91 69.48

Bhattacharyya KDE 25.08 39.04 46.80 52.70 57.10 60.73 63.18 65.26 67.16 68.62

Hellinger KDE 24.57 38.34 47.16 53.09 57.22 60.54 63.38 65.70 67.82 69.38

60% of the words

GloVe 1.05 1.87 2.62 3.71 4.71 5.67 6.59 7.47 8.20 9.08

Closed form of Bhattacharyya 12.44 22.76 30.72 36.61 41.38 45.00 47.89 50.64 52.78 55.02

Closed form of Hellinger 13.12 24.36 33.14 39.24 43.66 47.25 50.76 53.42 55.69 57.57

Bhattacharyya KDE 15.01 26.44 34.92 40.22 44.66 48.10 51.01 53.45 55.87 57.56

Hellinger KDE 13.37 24.36 32.74 39.51 43.94 47.36 50.65 53.30 55.82 57.95
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results are better to be observed jointly (Fig. 2) since it is possible to have a high
score for interpretability but a low value for accuracy suggests that the original
embedding has a high variance regarding to the probed semantic categories.
Figure 2a illustrates a small sample of the results where we can observe that
a word’s semantic information is encoded in few dimensions, since relying on
a reduced number of coefficients from WD achieves similar performance to the
application of all the coefficients. Our results tend to have close values, which can
be caused by the high number of normally distributed dimensions. The results
show that the proposed method is at least as good as [12]’s method, but it can
be applied to any embedding space without restrictions.

5 Conclusions

The proposed method can transform any non-contextual embedding into an
interpretable one, which can be used to analyze the semantic distribution which
can have a potential application in knowledge base completion.

We suggested the usage of Hellinger distance, which shows better results
in terms of interpretability when we have more words per semantic categories.
Furthermore, easier to analyze the Hellinger distance due to its bounded nature.
By relying on KDE, our proposed method can be applied even in cases when
the normality for the coefficients of the dimensions is not necessarily met. This
allows our approach a broader range of input embeddings to be applicable over
(e.g., sparse embeddings).

The proposed modification on interpretability calculation, opened another
dimension of freedom. It let us compare the interpretability of word embeddings
with different dimensionality. So for every embedding space, the compression of
semantic categories can be observed and the modification gives us a better look
at the encoding of semantic categories, because we probe the category words
from dimensions where they are deemed to be most likely encoded.
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Abstract. At this time of a pandemic turning into an infodemic, it is
significant to answer questions asked on the research related to that. This
paper discusses a method of answering questions leveraging the syntac-
tic structure of the sentences to find the verb of action in the context
corresponding to the action in the question. This method generates cor-
rect answers for many factoid questions on descriptive context passages.
The proposed method finds all the sentences in the passage, which has
the same or synonymous verb as the verb in the question, processes the
dependencies of the verbs obtained from the dependency parser and pro-
ceeds with further rule-based filtering for matching the other attributes
of the answer span. We demonstrate this method on CORD-19 data [3]
evaluated with free form natural language questions.

1 Introduction

Machine reading comprehension (MRC) is the essential task of textual question
answering, in which each question is given a related context from which the
answer should be inferred. This paper presents a method for answering a natural
language question from a single descriptive passage, in which the verb describing
the action in the question is identified, and the passage is analyzed for candidate
sentences having verbs synonymous with the verb in the question out of which the
answer can be deduced. Machine comprehension systems are particularly suited
to high-volume, rapidly changing information sources. The most effective way of
understanding a passage is by answering multiple questions on the passage, and
it requires domain knowledge [8].

The human reader starts to comprehend by skimming the passage to get
a general idea about the text, followed by scanning the passage to get some
specific information. We speculate that one of the approaches during scanning
is attempting to identify the verb in the question and finding a similar verb in
the passage. A question will often have a main verb in it. Our machine reader
focuses on pruning the passage text based on the required action comparable to
the one mentioned in the question.
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2 Related Work

The different datasets, their comparison [23], and approaches for MRC are
described by [25]. The methods and trends for MRC are explained by [15] and
an investigation on the popular benchmarks in MRC is done by [12]. There are
popular non-neural methods used in MRC, such as the bag of words [9], sliding
window, logistic regression, TF-IDF boosted method, and integrated triaging [7].
The neural methods include mLSTM+Ptr, DCN, GA [4], BiDAF, FastQA [5],
and QAnet [24]. There are methods incorporating reading strategies [19] and
discourse relations [11].

Some syntax-based comprehension methods like [22] replace the options from
the multiple-choice answers in the question and compare it with the sentences
in the context passage. While the state-of-the-art results are obtained by neural
models relying on embeddings such as Bert [2] and Electra [6], they hugely
depend on the quality and quantity of training data and the fine-tuning of the
hyper-parameters. While the majority of question answering systems on CORD-
19 [3] depend on BioBERT [14] or SciBERT [10] language models explicitly
trained on biomedical texts and scholarly articles, we present a syntax-based
method which can produce significant answers. Our approach can be applied
successfully to multiple datasets, supports free form questions, and does not
require any training with a specific dataset.

3 Proposed Method

We propose a method for answering free form natural language English ques-
tions on any passage given as context. Our approach begins with dependency
parsing the question and the passage using StanfordCoreNLP [17] to obtain the
typed dependency relations existing in them. The question word is identified,
and all the nouns and verbs in the question are filtered along with their cor-
responding dependencies. Structural connections establish dependency relations
between words [20]. The Stanford parser [18] converts the parse into a depen-
dency tree. For every element that one has in the utterance at hand, there is
exactly one node in the syntactic structure that corresponds to that element. One
of the advantages of dependency parsers for NLP is that the parse can be eas-
ily encoded in a table. The output obtained from Stanford CoreNLP parser [17]
consists of tuples like {‘dep’: ‘nsubj’, ‘governor’: 6, ‘governorGloss’: ‘celebrated’,
‘dependent’: 5, ‘dependentGloss’: ‘Koch’}1 which mainly consist of a governor-
Gloss, dependentGloss and a dependency relation existing between them. In the
dependency tree obtained for a sentence, there will be edges labeled with the
dependency relation from the governorGlosses to the dependentGlosses.

The modules in our syntax-based MRC is shown in Fig. 1. The Question han-
dler does all the processing, such as POS tagging, verb and noun filtering, finding
the dependency relation associated with verbs, and question word identification
1 This is one of the tuples obtained for the sentence “Christina Koch celebrated with

a thumbs up as she got out of the Souyz capsule”.
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Fig. 1. Modules in this syntax-based MRC

on the question utterance. The Passage handler processes the passage by prepro-
cessing and separating the sentences. Finding the dependency relations of verbs
in it, getting the list of lemmatized verbs and POS tagging the sentences in the
passage. The Answer handler identifies candidate answers, which either matches
the verb in the question or has a synonymous verb as that in the question or
otherwise, has the maximum text span matching with the question. The Answer
selector module pinpoints the answer to the question by iterating through the
dependency tuples obtained from the dependency parser. For the named enti-
ties that could not be filtered from the candidate answer, the whole candidate
sentence is output as the answer. The following section outlines the answering
strategy.

3.1 Strategy for Answering Questions

The context passage is a scholarly article from the CORD-19 dataset UID:
br33p9xd, titled “Preventive Behaviors Conveyed on YouTube to Mitigate Trans-
mission of COVID-19”. The question asked is, “Does COVID spread by con-
tact?”.

The algorithm selects the article whose title and abstract contain the named
entities which significantly overlap with the list of named entities of the question
asked. The answering strategy is explained in the following sections.

Identify the Question Word, Verbs and Nouns. Question word is identified
from the question, and all the nouns and all the verbs in the question are filtered
with their corresponding dependencies. The dependency parsed question is given
in Fig. 2. The parts-of-speech tagged question is [(‘does’, ‘VBZ’), (‘COVID’,
‘NN’), (‘spread’, ‘VBN’), (‘by’, ‘IN’), (‘contact’, ‘NN’), (‘?’, ‘.’)]
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Fig. 2. Dependency parsed question

Preprocess the Question and the Passage. The question and the passage
sentences are converted to lowercase and preprocessed by converting the verbs
in the question to their lemmatized form. WordNet Lemmatizer in NLTK [16]
is used for lemmatizing the verbs. The question word is Does, which is a polar
question. The nouns in the question are ‘COVID’: ‘NN’, ‘contact’: ‘NN’, and
the verbs in the question are [(‘do’, ‘VBZ’, 0), (‘spread’, ‘VBN’, 2)].

The 141 sentences in the article given as context contain 185 verbs and 160
nouns as follows: [(‘cross-sectional’, ‘NNP’), (‘study’, ‘NNP’), (‘monitoring’,
‘VBG’)], [(‘travis’, ‘NNP’), (‘sanchez’, ‘NNP’), (‘reviewed’, ‘VBN’)], [(‘author’,
‘NN’), (‘information’, ‘NN’), (‘article’, ‘NNP’), (‘notes’, ‘VBZ’)], [(‘coron-
avirus’, ‘NN’), (‘spreads’, ‘VBZ’)], [(‘system’, ‘NN’), (‘meet’, ‘VBP’)],.....
[(‘surveillance’, ‘NNP’), (‘are’, ‘VBP’), (‘provided’, ‘VBN’)]

Find the Candidate Sentences by Matching the Verbs. The verbs in
the question are compared with the verbs in the passage, by iterating through
the dependency tuples and comparing the V.+ nodes. If they match, then that
sentence from the passage is added to the candidate sentence list. The auxiliary
verbs such as ‘am’, ‘are’, ‘is’, ‘was’, ‘were’, ‘can’, ‘could’, ‘may’, ‘might’, ‘must’,
‘shall’, ‘should’, ‘will’, ‘would’, ‘do’, ‘does’, ‘did’, ‘has’, ‘have’ can frequently
occur in most English passages and they can often overshadow the main verbs.
So the auxiliary verbs are deprioritized while considering the passage to identify
the presence of the verb from the question. The auxiliary verbs are considered
only when there is no main verb. In the question “Does COVID spread by
contact?”, the main verb ‘spread’ is considered instead of ‘does’ for comparison
with verbs in context passage sentences. The possible answer from the original
passage is obtained as ‘COVID-19 is largely spread by contact with respiratory
droplets from an infected individual’. The dependency structure of the sentence
with a matching verb is given in Fig. 3.

Find the Candidate Sentences if Synonymous Verbs Match. If a sen-
tence contains a verb that is synonymous with the verb in the question, then
that sentence is added to the candidate sentence list. Thesaurus and Synonyms
are generated using NLPCompromise packages [13]. The sense of the word is
also included while finding synonyms to avoid confusion between noun and verb
senses. If candidate sentences are not obtained on the exact verb match, they are
retrieved through the synonymous verb match by replacing the question verbs
with each verb in the synonym list and rechecking the passage for a match.
For the verb, ‘spread’, the synonyms ‘grow, increase, escalate, advance, develop,
broaden, proliferate’ are also considered.
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Fig. 3. Dependency parsed matching sentence from the passage

Select Sentences with the Highest Cosine Similarity and Longest
Matching Span. Out of the candidate sentences collected, those with the
longest matching span, and the best cosine similarity are selected to be the
answer sentence. For passages describing many actors doing the same action in
different contexts, all the passage sentences with the action verb will be match-
ing. The order of their occurrence in the passage is not significant for deciding
their candidature for being the answer to the question. So, in that case, the
cosine similarity of the matching passage sentence with the question is evalu-
ated for making the best choice. The longest matching span is also evaluated for
reinforcing the decision.

Find the Candidate Sentences with Matching Predicates. If there is no
matching verb in the passage, then the predicate of the question is matched with
the sentences in the passage, to get the answer. The nouns in the best-matched
sentences are compared with the nouns in question to get the most suitable
candidate sentence as the answer sentence.

Obtain Answer Phrase from the Answer Sentence. Once the answer
sentence is identified, the answer to a ‘Who’ question is found out by iterating
through the dependency relation tuples obtained from the dependency parser
and matching ‘governorGloss’ of the dependency tuple with the verb in the
question and the having ‘dep’ as ‘nSubj’ or ‘amod’. The sentence with the verbs
converted to their lemmatized form is used to identify the answers. If the answer
is a noun compound, the chain of nouns in the answer is obtained by following
the dependency relation ‘compound’ until it reaches the last modifier from the
head noun. To find the answer to ‘How’ questions, ‘dependentGloss’ of depen-
dencies ‘advmod’ and ‘amod’ are found out. For answering ‘What’ questions, the
matching verb’s dependent ‘dependentGloss’ with a dependency relation ‘dobj’
is found out.

4 Results and Evaluation

This approach of utilizing the syntactic structure and matching the verbs is
efficient in the cases where the passage is action-oriented. However, this method
is not suitable if inference calculation, paraphrase understanding, or coreference
resolution is required for finding the answer. This approach shows lesser efficiency
when a chain of verbs is embedded in the sentence. Comparing to the deep
learning methods in MRC requiring long passages as training data, this approach
using syntax obtains answers with fewer data.
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Table 1. Evaluation results of our machine reader

Data source #Documents
considered

#Questions Genre EM p@1 p@3 Hit@3

CORD-19 2 14 Scholarly
Articles

– 0.64 0.71 0.71

NewsQA 4 4 Crowd
sourced
questions
on news
articles

25% 0.5 0.75 0.75

Table 2. Context passages, questions and computed answers

Context
passage

Question Computed answer

CORD-19
UID: 41jqgsv0

What are the
precautions needed
while using
hydroxychloroquine as
a drug?

caution and contraindication
with chloroquine and
hydroxychloroquine
expectedly, some precautions
will be need while use both
these drugs that include
frequent monitoring of
hematological parameters
(rbc, wbc and platelet
counts), measurement of
serum electrolytes, blood
glucose (because of
hypoglycemic potential of
hcq) and hepatic as well as
renal functions

CORD-19
UID:
cpu3q9o6

What is the
recommended dose?

retinopathy be a
dose-limiting adverse effect of
hydroxychloroquine, and a
safe daily dose appear to
correspond to 6.5 mg/kg of
ideal body weight and
5.0 mg/kg of actual body
weight [8]

For evaluating our system, we use some extractive metrics mentioned in a
survey on machine reading comprehension systems [1]. The metrics applied are
(i) Exact Match (EM) or Accuracy - the percentage of answers that exactly
match with the correct answers (ii) Precision@K - the number of correct answers
in the first K returned answers without considering the position of these correct
answers (iii) Hit@K - count of the number of samples where their first K returned
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answers include the correct answer. The evaluation results of our reader on a
few samples from CORD-19 [3] and NewsQA [21] are given in Table 1, and the
context passages, questions, and computed answers are given in Table 2.

5 Conclusion and Future Work

Finding out the answer span is the first step in reading comprehension, which
is attained in this work. Even when the verb in the question is not present
in the passage, the matching span congruence and similarity calculations iden-
tify the best candidate answer if the question is answerable. The future work
would incorporate paraphrasing, inferences, and sentence reduction techniques
to answer questions from the syntactic structure obtained as dependency tuples
with enhanced results from Stanza [26].
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Abstract. In this paper, we present our experiments with BERT models
in the task of Large-scale Multi-label Text Classification (LMTC). In the
LMTC task, each text document can have multiple class labels, while
the total number of classes is in the order of thousands. We propose a
pooling layer architecture on top of BERT models, which improves the
quality of classification by using information from the standard [CLS]
token in combination with pooled sequence output. We demonstrate the
improvements on Wikipedia datasets in three different languages using
public pre-trained BERT models.

Keywords: Text classification · BERT model

1 Introduction

In present days, text classification task plays a very important role among Natu-
ral Language Processing (NLP) problems. With increasing amounts of available
electronic texts, there is a natural need to classify those texts automatically into
predefined classes. In many real-world problems, however, a text can belong to
more than one class (e.g. news article about hurricane can be classified into
both weather and disaster classes). The NLP task where one text document can
belong to more than one class, is known as Multi-label Text Classification.

When the number of classes the text can possibly belong to reaches the order
of thousands, it is known as Large-scale Multi-label Text Classification problem
(LMTC) [2].

In the last few years, deep neural networks based on Transformers [4] has
dominated the research field of NLP and NLU (Natural Language Understand-
ing). Self-attention [13] Transformers, known as BERT (Bidirectional Encoder
Representations from Transformers), has achieved amazing results in many tasks,
including multi-label text classification [1,11], sentiment analysis [9], language
modeling [15] or text summarization [7].

BERT-based classification models typically use the feature vector generated
for a special classification token (denoted as [CLS]), which was used during pre-
training for next sentence prediction. In this task, the classification token was
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used to distinguish between inputs with two consequent sentences and inputs
with two randomly chosen sentences from a corpus, i.e. it was pre-trained to a
classification problem with two classes.

When using only output from the [CLS] token, the information about the
document’s classification must be encoded in a single vector, which in the case
of BERT-base architecture has 768 elements. In this paper, we hypothesize that
for LMTC tasks where the number of labels is in the order of thousands, the
classification could be inaccurate due to information compression. Another moti-
vation for our proposed solution was the fact that the text classification result is
often based on a presence or absence of a strong keyword in the documents. In
our solution, the information about such strong keywords can be easily pooled
out from the sequence of output features (one feature vector per input token)
and thus it can contribute to the classification results more directly. We call the
top layer which converts BERT’s output into classification a Pooling Layer.

The paper is organized as follows. Section 2 describes related work we are
aware of. In Sect. 3, we propose novel architecture of BERT’s pooling layer and
Sect. 4 offers details about experimental setup. Results are summarized in Sect. 5
and in the final Sect. 6, we discuss achieved results.

2 Related Work

The automatic text classification problem has been studied intensively during
the last decades with significant improvements scored recently by models based
on Transformers [4]. Since text classification tasks are also part of GLUE bench-
mark [14], it attracts the most successful researchers in NLU field in present
days to compete1.

BERT model was successfully applied to document classification tasks for
example in [1], while an exhaustive set of experiments concerning fine-tuning
methods of BERT models for text classification was published in [11]. In both
mentioned papers, the number of target classes was rather small (in the order
of tens).

Large-scale multi-label text classification with thousands of labels has been
studied in [2]. In this paper, BERT model was used to classify legislative docu-
ments into a set of 4.3 thousand of labels. It was shown that fine-tuned BERT
model significantly outperforms all previously published attention-based deep
neural networks models in a LMTC task.

Moreover, when the number of labels raises to extreme values (e.g. order
of millions), the standard approaches using one neuron per label in the output
layer easily reach hardware limitations. This task is known as XMC (extreme
multi-label text classification) and BERT-based solution was presented in [3].
The paper proposes X-BERT, a scalable solution to fine-tune BERT models on
the XMC problem by building label representations.

The majority of published works use BERT with default pooling layer, i.e.
the classification is based only on the final hidden state of the [CLS] token. In
1 https://gluebenchmark.com/leaderboard.

https://gluebenchmark.com/leaderboard
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Fig. 1. Architecture of pooling layer in baseline model (a) and in our proposed model
(b).

[8], the effect of different pooling layers on top of BERT models was studied. The
mean-pooling of hidden states performed the best in this paper experiments. In
[10], another two effective pooling strategies have been proposed. The idea here
was to pool all intermediate representations of the [CLS] token. In this paper,
we propose a pooling layer which combines [CLS] token with pooled sequence
output. As far as we know, there is no published work similar to our proposed
solution for LMTC task.

3 Proposed Solution

We propose a model where the classification result is based not only on the
information from the final hidden state of the first token (i.e. [CLS] token) but
also on the information from the full output sequence. The difference between the
standard use of BERT models in classification tasks and our proposed solution
is depicted in Fig. 1.

As a baseline approach, we took a standard pooling layer used on top of
BERT models for classification tasks (model (a) in Fig. 1). In this model, the
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classification is based only on the information encoded in the final hidden state
of [CLS] token, which is fully connected to a feed forward layer with as many
neurons as the number of different labels in the dataset. In this final classification
layer, each neuron computes output for one label. The output is then squeezed
between 0 and 1 by a sigmoid activation function.

Our proposed model (model (b) in Fig. 1) uses additional information from
final hidden states of input tokens t1, t2, . . . tN . The BERT’s sequence output
is fetched into time-distributed fully connected dense layer with the number of
neurons equal to the number of labels. The output of this layer is pooled in
two different ways using the max-pooling and the average-pooling. Max-pooling
outputs the maximum of each feature across all tokens, thus it reacts on strong
class-related keywords. The average-pooling, on the other hand, outputs the
average of each feature over the sequence and thus attends to all tokens in
the sequence evenly. To compute average-pooling, we clipped all features into
interval [−1, 1] to intentionally suppress the influence of strong keywords. When
computing pooled values, we ignored all padding tokens (denoted as [PAD]).
Finally, the features generated from the pooled output and the output for the
[CLS] token are summed together. The sigmoid functions predict the output of
the model in the form of class probabilities.

As we involved one extra time-distributed dense layer into our solution, we
slightly increased the number of trainable parameters (by BERT’s hidden size
times the number of labels). However, we did not observe any slowdown of the
fine-tuning.

4 Experimental Setup

Since the first paragraph of Wikipedia pages typically contains short text sum-
mary (which should be enough to classify the whole text), we limited input
sequences to the first 128 tokens.

The output for each classified document is a vector of per-label scores (soft
predictions), which must be converted into binary hard prediction. We used the
following thresholding strategy:
Given a vector of per-label scores s = (s1, s2, ..., sK), assign i-th label, if

si
max(s1, s2, . . . , sK)

≥ p (1)

with threshold p optimized on development data. This simple yet effective strat-
egy was used for example by two winning teams in WISE 2014 Challenge [12].

For each experiment, we used the training dataset to fine-tune the BERT
model, the development dataset for early stopping and to estimate optimal
thresholds and the test dataset to evaluate models. As an evaluation metric,
we used sample-averaged F1 score, which is the harmonic mean of precision P
and recall R:

F1 =
2PR

P + R
, (2)
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P =
tp

tp + fp
, (3)

R =
tp

tp + fn
, (4)

where tp are true positives (number of correctly assigned labels), fp false posi-
tives (incorrectly assigned labels) and fn false negatives (missed labels).

4.1 BERT Models

For all our experiments, we used BERT-base model architecture, i.e. all models
had 12 transformation blocks, 12 attention heads, 110 million trainable param-
eters and the hidden size of 768 neurons.

For English dataset, we used uncased variants of published pretrained BERT-
base model2. For Czech and Slovak, we used recommended cased variant of
published pretrained multi-lingual model3.

Fine-Tuning. We run fine-tuning on a single GPUs using the keras-bert
library4. During the fine-tuning, we used adapters [5] and updated only about
2% of the model’s parameters, namely self-attention normalization layers, feed
forward normalization layers and the adapter layers.

All models were fine-tuned with the same setup: learning rate 1e − 4 with
RAdam [6] and categorical entropy loss, maximum sequence length 128 tokens,
batch size 32 and maximum 50 epochs with early stopping after 3 non-improving
epochs. The improvement in the mean of the loss function was measured on the
development data after each epoch. Most of the time, the model converged after
approximately 10 epochs, which took about 7 h of fine-tuning on a single Tesla
T4 GPU.

4.2 Datasets

We tested the proposed approach on Wikipedia datasets. We used individual
Wikipedia pages as documents (instances) and associated categories as labels
(classes). We chose 3 languages: Czech and Slovak, which are at our main focus,
and English to incorporate also one widely-studied dataset.

To keep the problem in the limits of a LSMC, which typically contains thou-
sands of labels (classes), we randomly selected an appropriate subset of each
dataset. This was especially important for English dataset, which has about
6 million of pages associated with more than 1.35 million different categories
in total. Classifying documents into such a large collection of classes is a differ-
ent task known as XMC (extreme multi-label text classification), which cannot
2 https://storage.googleapis.com/bert models/2018 10 18/uncased L-12 H-768 A-

12.zip.
3 https://storage.googleapis.com/bert models/2018 11 23/multi cased L-12 H-

768 A-12.zip.
4 https://github.com/CyberZHG/keras-bert.

https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://github.com/CyberZHG/keras-bert
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Table 1. Datasets statistics. For each dataset, we are showing the total number of
documents (split into train, development and test subsets) and a total number of
different labels. Since we are dealing with the multi-label problem, we are also showing
average per-document label count and average per-label document count.

Dataset #trainDocs #devDocs #testDocs #labels #labels/doc #docs/label

English 44 651 14 884 14 884 1 212 2.7 165.7

Czech 63 631 21 211 21 211 2 720 3.9 153.6

Slovak 75 523 25 175 25 175 1 268 1.5 147.2

be solved by standard pooling layer on top of BERT model due to extreme
computational complexity [3].

Since the XMC task is not in the focus of this paper, we restricted Wikipedia
dataset for each language by following these steps:

1. Extract all pages and associated categories from the latest Wikipedia dump.
2. Randomly select subcorpus containing 200 thousand pages.
3. To avoid rare labels, keep only categories with at least N = 50 pages in

selected subcorpus.
4. Remove pages without any associated label from selected subcorpus.
5. Split dataset into train-dev-test in ratio 60:20:20.

In this way, we created a dataset for each of three selected languages with
the number of labels suitable for LSMC task. The details about created datasets
are shown in Table 1.

5 Results

Our achieved results are summarized in Table 2. For each dataset, we fine-tuned
the pre-trained BERT model with four different output layers. We run each
experiment five times and report mean results with standard deviations.

The baseline uses only information encoded in the final hidden state of [CLS]
token, which is the standard approach of how to use BERT model in classification
tasks. The other three tested pooling layers combine information from [CLS]
token with pooled sequence output as depicted in Fig. 1(b). In all three variants
of the proposed pooling layer, the final classification is based on a simple element-
wise vector addition of information from [CLS] token and pooled information.
To make the addition possible, vectors [CLS], AVG and MAX must have the
same size (one feature per label), which is ensured by setting a corresponding
number of neurons in the preceding feed forward layers.

As can be seen from the results, adding only the output from the average-
pooling ([CLS]+AVG rows) is not beneficial. On the contrary, this pooling layer
adjustment harmed the classification performance in all of our experiments. On
the other hand, for all tested datasets, adding information from max-pooling



220 J. Lehečka et al.

Table 2. Results table. The abbreviations used for the pooling layer are following:
[CLS] stands for using information encoded in the final hidden state of [CLS] token,
AVG is average-pooled information from BERT’s sequence output, MAX is max-pooled
information from BERT’s sequence output and the “+” symbol stands for element-wise
addition of vectors.

Dataset BERT-model Pooling layer F1[%]

English public English (uncased) [CLS] (baseline) 81.64 ± 0.13

[CLS]+AVG 81.05 ± 0.10

[CLS]+MAX 82.10 ± 0.12

[CLS]+MAX+AVG 82.26 ± 0.14

Czech public multi-lingual (cased) [CLS] (baseline) 77.41 ± 0.38

[CLS]+AVG 77.07 ± 0.31

[CLS]+MAX 77.92 ± 0.25

[CLS]+MAX+AVG 79.86 ± 0.17

Slovak public multi-lingual (cased) [CLS] (baseline) 88.70 ± 0.14

[CLS]+AVG 88.54 ± 0.03

[CLS]+MAX 89.07 ± 0.08

[CLS]+MAX+AVG 89.15 ± 0.12

([CLS]+MAX rows) improved F1 score and additional adding of AVG vector
leads to further improvement.

To summarize the achieved results, adding the max-pooled information from
BERT’s output always improved F1 score while average-pooled information is
only advantageous in combination with max-pooling. A simple two-sided t-test
confirmed that our improvements are statistically significant with p < 0.005 for
all tested datasets.

6 Conclusion

In this paper, we have presented our experiments with BERT models in the
task of Large-scale Multi-label Text Classification (LMTC) in three languages
(English, Czech and Slovak). We proposed pooling layer adjustment leading to
an improvement in terms of F1 score. Results of our experiments confirmed that
using pooled information from BERT’s sequence output can be used as additional
information in order to enhance the quality of multi-label text classification with
thousands of labels.

We obtained the best results when the document classification was based on
the combined information of the classification token with both max- and average-
pooled information from BERT’s sequence output. The absolute improvement
of F1 varies between 0.3% for Slovak dataset and 3.3% for Czech dataset with
more than two times more labels.
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For future research, it would be interesting to investigate in detail the relation
between the total number of labels and improvement gained from the proposed
solution.
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Abstract. We present annotation results for a dataset of public anonymous
online confessions in Russian (“Overheard/Podslushano” group in VKontakte,
posts tagged #family). Unlike many other cases with online social network data,
intentionally anonymous posts do not contain any explicit metadata such as age
or gender. We consider the problem of predicting the author’s preferred gram-
matical gender for self-reference, a problem that proved to be surprisingly hard
and not reducible to simple morphological analysis. We describe an expert label-
ing of a dataset for this problem, show the findings of predictive analysis, and
introduce rule-based and machine learning approaches.

Keywords: Anonymous data · User profiling · Russian NLP

1 Introduction

The Web 2.0 era has brought an abundance of user-generated content (UGC) in popular
social online services, both general-purpose such as Facebook, MySpace, VKontakte,
or Odnoklassniki, and specialized such as Instagram for images, Last.FM for music
etc. Some portals add a certain degree of anonymity, e.g., 4chan allows completely
anonymous responses, ask.fm allows to ask registered users anonymous questions, etc.,
and an important recent trend is the rise in the desirable level of anonymity; see also,
e.g., [5,7]. Anonymous texts lack important metadata usually available in social net-
work profiles such as age, gender, location, etc. Previous studies that had aimed to pre-
dict, e.g., demographic information given user-generated texts [3,9,12], tried to mine
for clues that come up in an anonymous text: e.g., a mention of “my wife” strongly sug-
gests the marital status of the author. Or, if a user refers to themselves in the feminine
grammatical gender, this does not lead to strong conclusions but still can be used as a
feature for various author profiling tasks (though actual usefulness is yet to be studied)
or generating correct automatic responses for the user.

In this work, we have focused on the analysis of anonymous texts written by VKon-
takte social network users in the Overheard (“Podslushano”) group1. A typical post in

1 https://vk.com/overhear, with more than 3,987,000 users reading the community as of Febru-
ary 20, 2020.
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this community is a short text; the editors claim that “people share their secrets, rev-
elations and real-life situations anonymously in front of a massive audience”. Judging
by the hashtags (special tokens usually starting with #) provided by moderators, one of
the most popular topics in Overheard is family. Many posts touch upon serious cases
of adverse childhood experiences, home abuse, sex-related problems, etc. We consider
the problem of detecting the grammatical gender of the author in short Russian texts;
e.g., the author of the sentence

(“But why am I to blame?”) prefers the masculine gender. Russian speakers
can easily recognize the gender of verbs, but there are many cases where the speaker
does not refer to themselves and the grammatical gender remains unclear. Note that we
are talking strictly about grammatical gender: sometimes people change their gender in
writing, and we are not suggesting a one-to-one correspondence.

The contribution of this work is twofold: first, we introduce the dataset of 2603
Overheard posts in Russian annotated with the authors’ preferred grammatical gender
(PGG); second, we develop and compare several models for PGG prediction. In the
paper, Sect. 2 reviews related work, Sect. 3 describes the original dataset, Sect. 4 intro-
duces the baseline models, in Sect. 5 we report and discuss the problem and our results,
and Sect. 6 concludes the paper.

2 Related Work

Anonymity on the Web has been studied and discussed in numerous research works,
e.g., [5,7]. We have found one study analyzing the Overheard community data: the
thesis [6] measures the dynamics of topics in the posts dynamics and reports that large
UGC-driven communities inevitably shift towards family, health issues, midlife crises
etc. A large number of works have used VKontakte data; e.g., the work [13] claims to
have constructed the largest so far Russian-language sentiment analysis dataset based
on VKontakte posts.

To the best of our knowledge, this is the first study of text author’s preferred gram-
matical gender prediction for Russian or any other Slavic languages.

3 Data

We have collected all anonymous posts in the Overheard (Podslushano) VKontakte
community from January 4th, 2014 to November 27th, 2019 that were annotated
with #family hashtags by the moderators. The texts are usually free of mis-
spellings and grammatical errors. We have collected 6,803 #family posts (latest at the
moment of collection), removed the hashtags, and annotated a random sample of 2,631
of them.

The annotation task follows the proposed research question: each text is assigned
a label of “femn” (feminine grammatical gender), “masc” (masculine), or “unk”
(unknown). We took a formal approach, instructing the annotators to use only grammat-
ical clues, overlooking, e.g., the mention of a “wife” unless there is a masculine self-
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reference2. Based on the experience of several unsuccessful attempts at crowdsourcing,
we have asked annotators to pay special attention to reported speech and quotations. If the
quote was related to the author (someone addressing them using some grammatical gen-
der), thiswas avalid clue, but if thequotewas about adifferent persononeobviously could
not use it to derive

Basic text statistics of the prepared dataset are the following: “femn”, 1539 (58.4%)
posts, 11129 sentences; “unk”, 878 (33.4%) posts, 4743 sentences; “masc”, 214 (8.1%)
posts, 1574 sentences. To evaluate the approaches described in Sect. 4, we have split the
data into training (80%), development (10%), and test (20%) sets, keeping the shares of
classes (“femn”, “masc”, “unk”) approximately the same as in the whole dataset.

4 Prediction

In this section we introduce the baseline models.
Bag-of-Words. In the bag-of-words (BoW) approach, the text is treated as a mul-

tiset of its tokens. Clearly, BoW-based models will not be able to distinguish which
person a given gendered verb refers to. Still, we use this as the simplest baseline pos-
sible, training a logistic regression on tokens and token bigrams as features3, with and
without lemmatization (done with the RNNMorph analyzer [4]).

Syntax-Aware Rule-Based Approach. In Russian, PGG prediction can be solved
(up to a point) with a few simple syntax-based rules, for example:

2 Wehavemade several attempts to tackle the annotation task via crowdsourcing platforms, updat-
ing the instructions and addingmore advanced qualification tests. However,most annotators still
derived the gender based on stereotypes, sowehad to ask our own experts to label the data,which
explains the modest size of the corpus.

3 We have used tokens and bigrams available in the training set with the minimum document
frequency of 3; scikit-learn’s [11] default TF-IDF weighting scheme was employed.
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The algorithm is shown in Listing 1. The input of the algorithm is a dependency
grammar syntax tree with set of vertices V and set of arcs E. The recursive func-
tion IsGender checks whether the given subtree of a vertex vfrom allows to make
a conclusion that author prefers grammatical gender gen. conjAllow is a parameter
that helps to work with verb “sequences” mentioned above. The function IsGender
returns MaybeNo, MaybeYes or CertainlyYes. Having applied the function to all
sentences in a text, we aggregate the outputs, ordering these values by “strength” for
each gender: CertainlyYes� MaybeYes� MaybeNo. A similar procedure is per-
formed in function AggChildren computer after the recursive calls of IsGender
on all subtrees of vfrom.

To preprocess the data for syntax-based methods, we have used the UDPipe [14]
pretrained model for Russian “russian-syntagrus-ud-2.5-191206.udpipe”4 [15].

“Bag-of-Arcs” Gradient Boosted Decision Trees Approach. The relative effi-
ciency of the previous approach (at least compared to bag-of-words) leads to the idea
of allowing a machine learning model to construct syntax-based rules by itself. We

4 As of June 11, 2020, the model is available at: https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-3131.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3131
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3131
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Table 1. PGG prediction results (Pr — precision, Re — recall).

macro femn masc unk

Method F1 Pr Re Pr Re Pr Re

Bag-of-words, lemmatized 0.4923 0.682 0.695 0.278 0.233 0.534 0.537

Bag-of-words, tokenized 0.6148 0.762 0.750 0.526 0.465 0.578 0.611

Syntax-based rules 0.7474 0.897 0.796 0.597 0.861 0.665 0.726

Bag-of-arcs, GBDT 0.7733 0.895 0.854 0.923 0.558 0.694 0.817

have again parsed all the sentences, and converted each text into a multiset (“counts-
preserving set”) of the items using the following feature engineering algorithm:

1. for every childless vertex v, generate (DepRel(v),Gender(v), ′no children′);
2. for every v without outgoing nsubj arcs, generate (DepRel(v),Gender(v),

Case(v),′ → no nsubj′);

We collect such items for every sentence and merge them for every text into a single
multiset that we call bag-of-arcs (BoA). The only weakness of this approach compared
to the previous one is that BoA-based models cannot make predictions taking sentence
splitting into account. We have trained a Gradient Boosted Decision Trees model (Light-
GBM [8,10]), finding the best hyperparameters on training and validation sets via the
Optuna framework [2]. We have run a hyperparameters search based on tree-structured
Parzen estimators, maximizing the mean of on 10 last F1macro values in 4-fold vali-
dation. In a one-vs-all multiclass setting, one of the strategies leading to the achieved
score was to run 863 boosters, each of them being a decision tree of depth ≤ 2, with
minimal number of samples to create a “child” equal to 18 and feature sampling rate
equal to 0.43.

5 Results and Discussion

For evaluation, we have used the macro-averaged F1-measure. The results are pre-
sented in Table 1. As expected, BoW-based approaches are relatively weak. Using
eli5 [1], we have built a table (see Fig. 1) showing which logistic regression weights
“favor”/“disfavor” which classes. It clearly demonstrates that word-based representa-
tions make the models encode non-grammatical properties of the texts. E.g. for class
“femn”, the top feature in terms of regression model weight is the word (“hus-
band”) rather than any grammatical feature. We believe that a more sophisticated app-
roach could yield better results in terms of classification performance. However, this
bias-encoding behaviour is inescapable in word/n-gram models, from BoW-based lin-
ear models to the best-performing text classification ones such as e.g. [16]. This is why
the main focus of this work are syntax-aware approaches that perform clearly better.
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Fig. 1. Largest logistic regression weights in the BoW-based setting.
are relationship roles. This bias-encoding behaviour is inescapable in word/n-gram models, being
our motivation to propose bias-free syntax-based models described in this paper.

The rule-based method’s results are a challenging benchmark, at least for the bag-of-
arcs approach, which showed similar or superior performance when compared to other
models, except for “masculine” class recall. The label imbalance in the dataset shown in
Sect. 3 might be the reason why rule-based approach might favor the “masculine” class
in a larger number of cases than an essentially statistical GBDT model. The natural
question is why are the results so weak on so simple a task? It turns out that there are
several important problems that leave this problem open for further research, includ-
ing the more fine-grained error analysis by testing the impact of each of the challenges
listed below.
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6 Conclusion

In this work, we have introduced a new dataset of texts annotated with preferred gram-
matical gender of their authors: “feminine”, “masculine”, and “unknown”. We have
established several baselines: a BoW-based model, a rule-based algorithm, and a fea-
ture engineered “bag-of-arcs” predictive model. The latter showed the best performance
in terms of macro-averaged F-score: 0.773. The results show that in spite of the seem-
ing simplicity of the task, there is still a lot of room for improvement, and we suggest
this as an interesting problem for further research.

Acknowledgement. This work was carried out at the Samsung-PDMI Joint AI Center at Steklov
Mathematical Institute at St. Petersburg and supported by Samsung Research. We would like to
thank anonymous reviewers for insightful comments that helped us to improve the paper.

Appendix: instructions for annotation

Which grammatical gender do authors use when talking about themselves?5

Short description: We ask you to carefully read the short text and report in
what grammatical gender the authors refer to themselves, based on grammatical evi-
dence/clues.

It is usually clear which grammatical gender (feminine/masculine/etc.) the users
prefer when speaking about themselves in their posts. However, sometimes it may be
impossible. Not all cases are obvious, please do read the instructions.

IMPORTANT: only grammatical features and clues can be used to determine
the gender. The task is not to guess whether a man or a woman wrote the text. The task
is to determine with confidence which grammatical gender they prefer when talking
about themselves.

Sample cases with possible errors.

5 Originally in Russian, translated into English.
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San Andrés Cholula, Mexico

{mearagon,mmontesg}@inaoep.mx
2 Centro de Investigación en Matemáticas (CIMAT), Guanajuato, Mexico
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Abstract. Different mental disorders affect millions of people around
the world, causing significant distress and interference to their daily life.
Currently, the increased usage of social media platforms, where people
share personal information about their day and problems, opens up new
opportunities to actively detect these problems. We present a new app-
roach inspired in the modeling of fine-grained emotions expressed by the
users and deep learning architectures with attention mechanisms for the
detection of depression and anorexia. With this approach, we improved
the results over traditional and deep learning techniques. The use of
attention mechanisms helps to capture the important sequences of fine-
grained emotions that represent users with mental disorders.

Keywords: Mental disorders · Emotional patterns · Deep learning

1 Introduction

There are many different mental disorders characterized by abnormal behaviors,
thoughts, and perceptions that affect the relationships and daily activities of
people [1]. Mental disorders continue to grow in all countries of the world and
provoke significant impacts on health, social environments, and big expenses to
maintain hospitals. The causes of mental disorders are related to different risk
factors like stressful environments, including abuse, neglect, traumatic events,
etc. [2]. Mental disorders increase in countries over time, some studies reveal that
one person in five suffers a mental disorder, and one in four will be damaged
with these problems at least once in their life.

Living in a modern world implies that social life is developed in the physical
world and also in a virtual world created by social media platforms. Around 45%
of the worldwide population has an active social media account, where they share
personal information about their daily life [3]. This presents an opportunity to
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analyze this information and actively detect people that present signs of a mental
disorder. With this in mind, the main focus of this research is to analyze social
media texts and detect people with depression or anorexia.

Several studies for the detection of depression and anorexia have used linguis-
tic and sentiment analysis [4]. For example, [5] proposed the use of emotions as
features, such as “anger”, “disgust” or “joy” instead of only positive or negative
sentiments. Making a step forward with emotions, [6] introduced a new represen-
tation built using information extracted from emotion lexicons combined with
word embeddings, creating sub-groups of emotions for a flexible representation of
users with depression; this approach creates emotions in a fine-grained way, thus
being called, sub-emotions. In this study, we extend this preceding work by eval-
uating a deep learning architecture that incorporates an attention mechanism to
try to exploit sub-emotions to capture their relevance in the context. To test the
robustness of the approach we also add the analysis of another important men-
tal disorder, anorexia. Results suggest that the proposed approach outperforms
traditional and other deep learning methods.

2 Related Work

Depression is a common mental disorder that is characterized by recurrent sad-
ness, loss of interest in daily activities, feelings of guilt, low self-esteem, loss of
appetite, tiredness, among others symptoms. On the other hand, Anorexia Ner-
vosa is a mental disorder mainly characterized by weight loss. People that suffer
anorexia have difficulties maintaining an appropriate weight, as a consequence
of unusual habits of eating and a distorted body image. Recently, several works
have focused on detecting users with these mental disorders in social media
platforms. One of the most common strategies consists in using the frequency of
words and words sequences to create an encoded language of the users [4] and
build a rule-based classifier. The results are still modest with this strategy; an
analysis showed an overlap in the language between healthy people and people
with a mental disorder. It is also common to apply sentiment analysis techniques
to look for the positive and negative charge in the users’ posts [4].

Other strategies focus on the usage of LIWC [9] to extract different categories
of words at a psychological level and analyze their relation depression or anorexia
common topics [7]. Another approach proposed the creation of lexicons related
to mental disorders, for example, in [8] the authors designed a method to exploit
a micro-blog platform for detecting psychological pressures from teenagers.

Finally, in [10] the authors employed and combined multiple strategies based
on four machine learning models. They considered a wide range of features to
build their models, e.g., they used models based on LSTM neural networks
and convolutional neural networks for the extraction of local features, and then
extract readability features, LIWC features, user-level linguistic metadata, and
specific terms related to depression and anorexia. Although in that work it was
shown that neural models were useful to determine if a person suffers from
depression and anorexia, the interpretability of the models were limited; this
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presents an opportunity to create a model that extracts important information
using a neural model with attention mechanism to help ameliorate this issue.

3 Modeling Text by Sub-emotions

As previously mentioned, in [6] the authors proposed the use of sub-emotions
instead of words for representing the users’ posts. In this section, we briefly
describe the creation of the sub-emotions and how to convert the posts’ content
into sub-emotions sequences.

Creation of Sub-emotions. The creation of sub-emotions, as proposed in [6],
is based on the lexical resource from [13]. This lexical resource consists of eight
recognized emotions [15] and two sentiments: Anger, Anticipation, Disgust, Fear,
Joy, Sadness, Surprise, Trust, Positive and Negative, respectively. Each of these
emotions is defined by a set of words associated to it. The process to create the
sub-emotions consists of two steps. Given the set of words associated to each
emotion, first we obtain a word vector for each word using pre-trained word
embeddings from FastText [14]. Then, we generate sub-groups of words using the
Affinity Propagation clustering algorithm [16]. The centroids of each sub-group
represent the new sub-emotions. The main idea of this approach is to separate
the words of each emotion in different topics. With the help of these topics,
we can capture more specific emotions that users expressed in their posts. For
example, if the lexicon associated to the emotion Surprise contains the words:
accident, art, crash, disaster, museum, magician, gallery and wizard, then, after
this process it will be generated three subgroups, each one representing a different
sub-emotion or type of surprise, such as Surprise1 = [accident, crash, disaster],
Surprise2 = [art, museum, gallery] and Surprise3 = [magician, wizard].

Text to Sub-emotions. Once generated the sub-emotions, we mask the users’
posts by replacing each word with the label of its closest sub-emotion. To do
this, we calculate for each word in the vocabulary their embedding vector using
FastText. Then, we use the set of sub-emotions to measure the cosine similarity
between each word vector and all sub-emotions (i.e., their centroid vector). Once
we obtain these similarities, each word is replaced by the label of the closest
sub-emotion. For example, the text “The most important thing is to try and
inspire people.”, will be masked as “anticipation27 joy27 positive5 negative62
anticipation10 anticipation29 positive20 negative80 trust23 joy16”.

4 Deep Emotion Attention Model

To detect users that suffer from a mental health disorder, particularly depression
or anorexia, our proposal consists on processing their posts masked with sub-
emotions using a deep learning model with an attention mechanism. Figure 1
represents the whole process step by step. The intuition of using attention mod-
els is that not all sub-emotions contribute equally to the representation of the
sentence in the post history. Using the attention mechanism, we can extract the
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sub-emotions that are more important to the meaning of the sentence and aggre-
gate this importance to the representation. In the following lines we described
the architecture in detail.

Fig. 1. Diagram of the deep attention model.

Feature Extraction. Given an input text masked with its sub-emotions, first,
we represent each sub-emotion with an embedding vector, which corresponds
to the centroid of the vectors from their associated words, and then, we use a
Convolutional Neural Network (CNN) architecture for feature extraction of the
sub-emotions [17]. The intuition about this network is to see the post history as
images, that is, we look for the convolution taking one or two sub-emotions at
once since our filters size are 1 and 2. We can think of filter sizes as unigrams
and bigrams. We obtain different feature maps for each region and concatenate
together to form a single feature vector.

Sequence Learning. After we obtained the feature vectors with the CNN, we
capture the context provided for the sequence of sub-emotions using a BiDi-
rectional Gated Recurrent Unit (GRU). GRU helps us to remember previous
information learning the sequential structure of the sub-emotions, where every
sub-emotion is dependent on the previous one. Furthermore, the BiDirectional
GRU keeps the contextual information in both directions.

Attention Mechanism. With the CNN extracting the feature vectors and the
GRU taking care of the sequence structure, we add the ability to give higher
weight to more important sub-emotions using an attention mechanism. This
mechanism extracts sub-emotions that are important in the sentence and add the
information of those sub-emotions. Then, we multiplied each sub-emotion score
with their GRU output obtaining a weight according to their importance. Finally,
the summed outputs use dense layers with a softmax for the classification.
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5 Evaluation

5.1 Data Collections

We use the datasets from eRisk 2018 and 2019 evaluation tasks [11,12]. They
contain the post’s history and comments of several users from Reddit. For each
task, we have two categories of users, users that are affected by depression or
anorexia, and control users that are not affected by any mental disorder. The
positive class is composed of people that explicitly mentioned that they were
diagnosed by a medical specialist with depression or anorexia. Users with vague
expressions like “I think I have anorexia/depression” were discarded. The neg-
ative class of users is composed of random users from the Reddit platform, but
including users who often interact in the depression or anorexia threads to add
more realism to the data. Table 1 shows some numbers from these data sets.

Table 1. Mental disorders datasets. Each dataset have two classes (No Control (have
mental disorder) = NC, Control (do not have mental disorder) = C).

Data set Training Test

NC C NC C

dep eRisk’18 135 752 79 741

anor eRisk’19 61 411 73 742

5.2 Experimental Settings

Preprocessing: For the experiments, we normalized all words with lowercase
and removed special characters. After preprocessing, we masked the posts’ words
with the created sub-emotions (refer to Sect. 3 for details).

Classification: Once the post history of each user is masked, we separate it
in parts of N sub-emotions1. We process each part of the post history as an
individual input and then we average the results from all their parts. If the
majority of the posts are positive the user is classified as showing a mental
disorder. The main idea is to detect consistent and major signs of depression or
anorexia through all the posts of the users. In the training part, we used the
weighted class parameter for the imbalance present in the collections.

Baselines: We considered methods using well-known representations based on
the occurrences of words (BoW) and word sequences (N-grams). We also included
some deep learning approaches for text classification: CNN and RNN networks
with Glove and word2vec word embeddings. Furthermore, RNN networks with

1 We select N empirically, testing recommended sizes of sequences in the literature of
25, 35, 50 and 100.
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attention mechanisms that use words and general emotions are also considered
using FastText embeddings (we named these approaches as Deep Attention and
Deep Emotion Attention with emotions respectively).

Evaluation Measure: We expressed the results using the f1-measure over the
positive class, as done in the eRisk shared task [11].

5.3 Results of the Deep Emotion Attention Model

Table 2 presents the evaluation results of our approach and the different baselines
in the two tasks. The first thing to notice is that our approach, using sub-
emotions as well as emotions as text representation, achieves the best results,
outperforming traditional and deep learning approaches. This result proves that
the attention mechanism helps to improve the detection of both depression and
anorexia. These results also indicate that the use of sub-emotions allow obtaining
better performance than the use of broad emotions, demonstrating that sub-
emotions helps to capture more specific topics of interest and moods from social
media users. On the other hand, it is surprising to observe that traditional
approaches based on a BOW representation in combination with a SVM classifier
were able to achieve better results than deep learning models based on standard
CNN and RNN architectures. We presume that these results could be due to the
small size of the data collections as well as to the diversity of their vocabularies.

Table 2. F1 results over the positive class in the two collections.

Method Anorexia Depression

Baselines BoW 0.67 0.54

N-grams 0.66 0.54

RNN-Glove 0.65 0.46

RNN-word2vec 0.65 0.48

CNN-Glove 0.67 0.51

CNN-word2vec 0.66 0.48

Deep-Attention (with FastText) 0.66 0.50

eRisk results First place 0.71 0.64

Second place 0.68 0.60

Third place 0.68 0.58

Our methods Deep Emotion Attention (broad
emotions)

0.71 0.46

Deep Emotion Attention
(sub-emotions)

0.79 0.58
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5.4 Analysis of the Results

For the analysis of what is captured by the attention model, we extracted the
weights given to each sub-emotion on different sequences. For this, we selected
examples of sequences with a high probability of being positive cases of a men-
tal disorder and extracted the weights for each sub-emotion. Figure 2 presents
some examples of these sequences, the shading represents the weight given to
the sub-emotion, a darker shade means a higher weight. In these examples, it
is possible to appreciate that the weight of sub-emotions depend on their sur-
rounding context. For example, take the sub-emotion “anticipation16” related
to life, experience, and events. In the first sequence, the weight is high because it
is close to sub-emotions related to worries, afraid, mistakes, and incidents. But,
its weight is lower in the second and third sequence because it is close to gain,
growth, home, and place. With the attention model, we can capture the impor-
tance of the sub-emotions in the post history taking into account the context
and the sub-emotions help the model to learn these patterns.

Fig. 2. Examples of weighted sequences of sub-emotions, each sequence in this Figure
corresponds to the label of sub-emotion assigned to each word in a sequence of words.
The lower part shows the topics related to each sub-emotion.

6 Conclusions

In this paper we considered the representation of social media posts as a sequence
of emotion and sub-emotion labels, and proposed using a deep neural architec-
ture with an attention mechanism to learn emotional patterns useful for the
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automatic detection of users that suffer from mental health issues, particularly
depression and anorexia. Our experiments showed that this approach outper-
formed traditional and other deep learning methods, and confirmed that repre-
senting the posts’ content by means of fine-grained emotions is particularly per-
tinent for these kind of tasks, since they help capturing specific topics of interest
and moods from social media users. Because the attention model allowed learn-
ing the importance of the sub-emotions depending on their context in the post
history, its inclusion improved the interpretability and analysis of results.
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Abstract. Discourse relations between two textual spans in a document
attempt to capture the coherent structure which emerges in language
use. Automatic classification of these relations remains a challenging task
especially in case of implicit discourse relations, where there is no explicit
textual cue which marks the discourse relation. In low resource languages,
this motivates the exploration of transfer learning approaches, more par-
ticularly the cross-lingual techniques towards discourse relation classifi-
cation. In this work, we explore various cross-lingual transfer techniques
on Hindi Discourse Relation Bank (HDRB), a Penn Discourse Treebank
styled dataset for discourse analysis in Hindi and observe performance
gains in both zero shot and finetuning settings on the Hindi Discourse
Relation Classification task. This is the first effort towards exploring
transfer learning for Hindi Discourse relation classification to the best of
our knowledge.

Keywords: Discourse relation classification · Cross-lingual transfer
learning

1 Introduction

Linguistic units such as clauses and sentences are stitched together to form a
wider and consistent semantic context than just the individual meaning immedi-
ately represented by them. Discourse Analysis forms the study of how such lin-
guistic units come together to present a coherent semantic structure in language.
Various frameworks such as Rhetorical Structure Theory [10] and Tree Adjoin-
ing Grammar for discourse [16] aim to understand and formalise the underlying
structure and semantics of these discourse units in language.

The Penn Discourse Treebank (PDTB) takes a theory neutral approach to
annotate the argument structure, semantics and attribution of discourse units
in text following [15]. Two adjacent spans of text (eg. clauses, sentences) called
the discourse arguments, may be related to each other by a discourse relation.
As shown in Example 1.1, this discourse relation may be explicitly established
by lexical items (called discourse connective) and thus called a explicit discourse
relation, or implied by the discourse arguments and thus called implicit discourse
relation.
c© Springer Nature Switzerland AG 2020
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Explicit Relation: The game was cancelled because it started to rain
heavily.

Implicit Relation: Encouragement is fine, [Implicit but] compulsion is not.

Example 1.1: Examples for Explicit and Implicit Discourse relations. The
argument 1, connective and argument 2 have been formatted for clarity.

Following the lines of PDTB annotations, discourse treebanks were developed
for several other languages like Hindi, Turkish, Chinese etc [11,18]. While the
development of discourse treebanks in other languages has fostered research into
discourse parsers for these languages, the scarcity of annotated data has limited
their performance and hindered the adoption of recently proposed deep learning
methods in low resource settings. With this purview, we explore various cross-
lingual transfer learning approaches for implicit discourse relation classification
in Hindi.

Implicit Discourse Relation Classification is one of the most challenging parts
of a discourse parser owing to the absence of any explicit discourse connective
to mark the relation [17]. Infact during the development of PDTB, annotators
proceeded by first inserting an implicit discourse connective along the argu-
ments, and then proceeding to mark the implicit discourse relation type. In
this work, we investigate both, the zero shot and the finetuning performance
of Implicit Discourse relation classification for Hindi via cross-lingual transfer
learning from English. We evaluate the cross transferability across 3 different
model types, namely the MUSE multilingual embeddings encoder, the pretrained
multilingual sentence encoder LASER, and the transformer based cross-lingual
Masked Language Model XLM. We also evaluate the performance on the rela-
tively easier task of explicit discourse relation classification. Our results suggest
that discourse relation classification can gain performance from both zero shot
and finetuning on small amount of available training data for the resource scarce
discourse treebanks like Hindi.

2 Related Work

Implicit Discourse relation identification has received considerable interest due to
the challenging nature of the task. Traditional methods used linguistic feature
based approaches using dependency and syntactic parse, lexical and polarity
based features, often requiring extensive feature engineering to see performance
gains [12,13].

More recently, end to end neural network based approaches have led to
increase in performance, with word vector based feedforward network [3], latent
variable recurrent and recursive neural networks [6,7]. [14] perform a compre-
hensive set of experiments to show the efficacy of simple bag of words feed-
forward networks at implicit discourse classification, in comparison to various
recurrent and recursive architectures. [2] encode multiple layers of information in
arguments, including character, subword, word, sentence and sentence pair level
information to push the state of the art performance on the PDTB2 test set.
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[8] for the first time explore the cross-lingual transfer of implicit discourse
classification in zero-shot setting from English to Turkish and the TED multi-
lingual discourse corpus. They employ a simple feedforward network proposed
in [14] to evaluate the cross lingual transferability of implicit discourse classifi-
cation.

Table 1. Data distribution across relation types for PDTB2 and HDRB

PDTB2 HDRB

Sense Train Dev Test Train Dev Test

Comparison 1884 398 146 169 14 10

Contiguity 3263 622 276 262 13 9

Expansion 6756 1240 556 472 73 87

Temporal 659 93 68 62 14 8

3 Approach

As seen in the example in Example 1.1, the Implicit Discourse relations are char-
acterised by an implied discourse connective which is absent in the surface form
in text. Owing to this lack of an explicit connective marking the relation, the
Implicit Discourse relation classification is a challenging part of discourse pars-
ing, even more so in comparison to its explicit relation classification counterpart.

As shown in Table 1, the Hindi Discourse Relation Treebank is a low resource
dataset for the task in comparison to its English counterpart, the Penn Dis-
course Treebank. The datasets are annotated with textual spans marking the
discourse relation type (Implicit or Explicit), arg 1 span, arg 2 span, lexical con-
nective and various levels of discourse relation senses, as illustrated in the exam-
ples in Example 1.1. The discourse relation senses are annotated with multiple
levels of granularity with the four senses at the top level, namely Comparison,
Contingency, Expansion and Temporal. Since the discourse relation classification
is a semantic task and the annotations used in the two datasets largely follow
similar guidelines, we propose to investigate the cross-lingual transferability of
the task from English to Hindi.

We formulate the task as follows: Given the arg 1 and arg 2 for an implicit
discourse relation, we want to predict the relation sense for this discourse rela-
tion. For our study, since the amount of data was limited, we choose to predict
among the 4 top level relation types. We explore 3 neural network models for the
relation classification task, which take a pair of arguments as inputs to predict
the discourse relation among them. To work with the high class imbalance and
to allow a comparison of results with previous work [8], we train the models in a
one vs all manner, thus resulting in a model for each relation sense. The model
approaches are described below:
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LASER Based Feedforward Neural Network: Following [8], we explore a
simple feedforward neural network for relation classification. The input to the
model is a pair of multilingual sentence representations generated by the LASER
encoder [1], which is multilingual sentence encoder trained on 93 languages for
the translation objective. The LASER encoder performs well on the zero-shot
cross-lingual NLI (XNLI), a task similar to the implicit discourse relation classi-
fication as both are multiclass classification tasks which expect a pair of texts as
input. Given V1 and V2 as the LASER representation for arg 1 and arg 2 respec-
tively, the input to the feedforward model is [V1;V2; (V1+V2)/2;V1−V2;V1×V2],
where; represents concatenation. The resulting vector is followed by a 100 dimen-
sional hidden layer and ReLU activation, and finally to 2 dimensions followed by
Softmax function to output the distribution for the relation sense. Since the pre-
trained LASER encoder generates the semantic sentence representations aligned
across languages, we keep the incoming representations from the encoder fixed.

Multilingual Word Embeddings Based Model: We also propose a mul-
tilingual word embedding based LSTM encoder pair model. We employ two
bidirectional LSTMs [5] to encode arg 1 and arg 2 using the multilingual word
embeddings for Hindi and English (we use 100 dimensional glove vectors aligned
in the same space using the MUSE library [4]). The terminal hidden states of the
bidirectional LSTM (128 dims in each direction) are concatenated to represent
the argument encoding, which are further concatenated to form the input to a
128 dimensional multilayer perceptron similar to the LASER based feedforward
neural network described above.

Cross-Lingual Language Models (XLM): Since pretrained masked lan-
guage models have demonstrated their efficiency at a variety of language under-
standing tasks, we propose to employ a pretrained cross lingual language model
(XLM) [9] for discourse relation classification. It is a transformer based masked
language model which is characterised by deep bidirectional multihead self atten-
tion to generate token and sequence representations trained on both masked LM
and masked translation LM objective. The XLM has proven its efficacy on the
similar cross lingual natural language inference task (XNLI), and is pretrained on
both English and Hindi, further motivating its efficacy for relation classification
task. We segment the arguments using the BPE vocabulary for the pretrained
model, concatenate them as a single input sequence with a delimiter token, and
add [CLS] symbol as the first token to represent the whole sequence. The result-
ing sequence is input to the pretrained XLM model and the resulting vector
representation corresponding to the [CLS] token is followed by a linear layer and
Softmax function to predict the relation.

4 Experiments

The above described models are evaluated in both the zero-shot and finetuning
setup by training them first on the Penn Discourse Treebank (PDTB2), and
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then evaluating and finetuning them on the Hindi Discourse Relation Treebank
(HDRB) data. To compare results with previous work, we split the PDTB2 data
into the following respective splits: Training (Section 2–20), Validation (Section
0–1 and 23–24) and Test (Section 21–22). For HDRB, we split the Section 11
into validation and test portion, and Section 16 and Section 17 as the training
portion. To deal with the high class imbalance among the relation types, we
train each model in a one-vs-all manner for each relation type, and randomly
oversample from other classes at each epoch to balance the positive and negative
samples. We train the models using Cross Entropy loss, and use Adam optimizer
for gradient updates. For finetuning, the learning rate was reduced by a factor
of 0.8. For XLM model, we also use a linear schedule with warmup for the first
10% training steps. For LASER and MUSE model, we report the average of 25
runs to account for variance in performance.

Table 2. Results for implicit discourse classification.

Training mode Test set

PDTB2 HDRB

LASER model

HDRB training only 39.31 29.60

Zero Shot 40.68 31.95

Finetuning 42.76 34.56

MUSE model

HDRB training only 35.90 30.55

Zero Shot 41.79 28.82

Finetuning 39.65 31.98

XLM model

HDRB training only 38.28 33.88

Zero Shot 43.15 37.06

Finetuning 43.05 36.75

In the zero-shot learning setup, we train our model on the PDTB2 training
set for upto 100 epochs with early stopping criteria on the validation f-score for
15 epochs. We then evaluate the best validation model on the test set of both
PDTB2 and HDRB. To evaluate the gain posed by further training the best
English model on the limited available Hindi data, we finetune the model on
HDRB training data with the same early stopping condition, and evaluate on
the HDRB test set.

To draw parallel with the easier explicit connective counterpart, we run the
same set of experiments for the explicit relation classification. Since the explicit
connective is syntactically tied to arg 2, we append the discourse connective to
beginning or end of the arg 2 span corresponding to their relative position. The
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rest of the preprocessing and modelling procedure for the explicit case follows
the implicit relation classification setting.

Table 3. Results for explicit discourse classification.

Training mode Test set

PDTB2 HDRB

LASER model

HDRB training only 44.04 41.33

PDTB pretraining 44.14 39.30

HDRB Finetuning 38.64 31.55

MUSE model

HDRB training only 57.68 59.60

PDTB pretraining 88.73 28.68

HDRB Finetuning 54.25 63.15

XLM model

HDRB training only 64.25 57.53

PDTB pretraining 88.25 59.30

HDRB Finetuning 73.85 58.23

5 Results and Discussion

Table 2 and Table 3 report the results of experiments on implicit and explicit dis-
course relation classification respectively. All reported results are macro-averaged
F1 scores across the relation categories. We report the the performance on both
PDTB2 and HDRB test set in the columns of the tables. For each model class,
we report the result of training the model only on the HDRB training set (HDRB
training only), which serves as a non-transfer learning baseline for that model
class, training the model only on PDBT2 training set (Zero Shot), and fine-
tuning the PDTB2 pretrained models on the HDRB training set (Finetuning).
We primarily focus on the results corresponding to the HDRB test set to mea-
sure the efficacy of our experiments towards zero shot and finetuning mode of
cross-lingual transfer learning.

For the implicit case, we observe that pretraining on the larger PDTB2 helps
in both zero shot and finetuning settings for HDRB, when compared to training
on HDRB alone. We also observe that while zero shot leads to considerable gain
for both LASER and XLM model, it leads to a decrease in performance in case
of MUSE model. One explanation to this decrease is that while the encoders
for LASER and XLM model have already been pretrained on Hindi data in
their encoder specific pretraining objective (i.e. translation and masked language
modelling), the MUSE model encoder needs finetuning on the Hindi sequences
to be able to perform well, and its efficacy is observable when finetuned on the
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limited HDRB training data. We also observe that in most cases, the models
perform better as the training data increases (due to both PDTB2 pretraining
and follow-up HDRB finetuning.) This is true even on the PDTB2 test data for
LASER model, where the sentence encodings are unperturbed by training on
discourse classification.

For the explicit case, we observe that the model performances are consider-
ably higher compared to the implicit case. For the LASER model, we observe
that the HDRB deteriorates with increasing data. This could be explained by
the fact that the arg 2 when concatenated with the discourse connective forms
a clause with a connective, thus forming a half sentence which is not seen in the
encoder-specific pretraining, and thus leads to poorly aligned representations for
such inputs. On the other hand, both MUSE and XLM perform well as they
are trained on HDRB data in both HDRB only as well as Finetuning settings.
The high performance of zero shot on PDTB2 test set indicates that the models
learn the corresponding task well.

6 Conclusion

In this work, we present the first set of experiments towards the efficacy of
cross-lingual transfer learning for Hindi Discourse Relation Classification. We
investigate both zero shot and finetuning transfer learning across 3 different
modelling approaches and show consistent gains in performance for both explicit
and implicit discourse relation classification. Our proposed methods can plug
into existing discourse parsers to improve relation identification module, and
can also be further extended to develop end-to-end discourse parsers for low
resource languages.
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Abstract. Malicious posts from a social media account by an unau-
thorized user could have severe effects for the account holder, such as
the loss of a job or damage to their reputation. In this work, we con-
sider an authorship verification task to detect unauthorized malicious
social media posts. We propose a novel approach for authorship veri-
fication based on personalized, i.e., user-tailored, language models. We
evaluate our proposed approach against a previous approach based on
word embeddings and a one-class SVM. A large amount of text might
not necessarily be available for an individual social media user. We
therefore demonstrate that our proposed approach out-performs previ-
ous approaches, while requiring orders of magnitude less user-specific
training text.

Keywords: Authorship verification · Language models · Personalized
NLP

1 Introduction

Malicious posts from a social media account by an unauthorized user could have
severe effects for the account holder such as the loss of a job or a negative
impact on their reputation. Authorship verification is the task of determining
if a given text is written by a particular author. One potential application of
authorship verification is to determine if a social media post is indeed written
by the account holder, or whether it is a malicious post by an unauthorized user.
In this work, we propose the use of personalized (user-tailored) language models
for authorship verification. In our experiments, we simulate malicious posts from
an unauthorized user with text from three sources that would typically not be
appropriate if posted from a professional social media account, specifically erotic
stories, hate speech, and email spam.

[5] approached authorship verification by averaging word embeddings to rep-
resent a document and recruited a one-class SVM for classification. Their method
outperformed the method used by [3], which was one of the best performing
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models in the PAN-2013 authorship verification task1 and used as the bench-
mark in the PAN-2014 authorship verification task.2

Language models can be used to generate probability distributions over text
after training on a background corpus. Tuning language models to text from
people sharing demographic characteristics with an author, such as age or gender,
has outperformed untuned language models [7]. [6] found that tuning a language
model to a single author can outperform models that were tuned to texts written
by people sharing demographic characteristics with that author. They tuned an
LSTM language model using a priming technique, which involves exposing the
LSTM to text from the author to update its state without updating the hidden
layers (which are usually tuned during training). This priming approach required
relatively little text from the author to outperform untuned models, as well as
models tuned on text from authors from the same demographic.

We propose and evaluate two different types of methods for authorship verifi-
cation. The first method involves representing a document by embedding it, and
then using a one-class SVM for classification. The second method involves per-
sonalizing a language model by tuning it on text from an author, and comparing
its probabilities to a non-personalized language model. We compare our models
across different amounts of author-specific text available for model training and
tuning, and different sized test documents. We show that our proposed person-
alized language model-based method outperforms embedding-based methods,
while requiring orders of magnitude fewer tokens from the user for tuning.

2 Dataset and Evaluation

Here we discuss the creation of our dataset, and the evaluation measures used.

2.1 Dataset

In this subsection, we describe the sources of positive and negative instances
used to create our dataset, and then the structure of the dataset. Here, positive
instances are texts from a specific author, while negative instances are texts from
one of the three malicious text types.

Sources of Text. The positive instances in our dataset consist of blog posts
from a corpus containing 19, 320 authors [12]. We select all authors who have
at least 300 posts with at least 100 tokens in them, giving us 103 authors for
experiments. For each of these 103 authors, we ignore their 10% smallest and
10% largest documents to avoid outlier documents.

The texts belonging to the remaining authors are used as a background corpus
for training our language models, which consists of approximately 143M tokens.
The text from any one author is limited to 30k tokens to avoid text from any

1 http://pan.webis.de/clef13/pan13-web/author-identification.html.
2 http://pan.webis.de/clef14/pan14-web/author-identification.html.

http://pan.webis.de/clef13/pan13-web/author-identification.html
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one author strongly biasing the corpus to represent their text. We replace each
word in the background corpus that has a frequency less than 10 with a special
token (UNK). We do this to reduce the cost of training language models.

The negative instances were gathered from three different sources, specifically
erotic stories, hate speech, and email spam. We use several types of malicious
documents to avoid the task being framed as document classification for a spe-
cific (malicious) text type. For example, if we only used hate speech, then the
task could be approached as identifying hate speech, as opposed to the broader
authorship verification task that we consider.

All erotic stories are gathered from textfiles.com/sex/EROTICA. We arbi-
trarily selected all plaintext documents with titles starting with “A” or “B”,
which resulted in a relatively large amount of text. We removed lines containing
metadata from each document. We then selected all documents that contain at
least 200 tokens, giving us 1463 documents.

We gathered hate speech documents from a white supremacy forum from the
dataset of [2]. The dataset originally contained individual sentences from the
documents with information about which sentences are from the same document
and the order in which they appear. We reconstructed the documents using this
information. We selected all documents that contain more than 50 tokens. This
resulted in 172 documents in total.

We gathered spam from the Enron-Spam dataset [9]. We removed lines con-
taining the text “subject:” and removed paragraph boundaries. We then selected
all documents containing at least 200 tokens, resulting in 6230 documents.

All documents—positive and negative instances—were casefolded and tok-
enized using the Stanford Core NLP toolkit [8], except for the hate speech texts,
which were pre-tokenized. All training and testing documents are prepended
with a start-of-sentence token and appended with an end-of-sentence token.

Dataset Structure. We split our dataset into a development set (DEV ) and
a testing set (TEST ). We randomly select 10 authors from the 103 blog post
authors for DEV for preliminary experiments, and we use the remaining 93
authors for TEST. The authors in TEST include 48 males and 45 females, with
an average age of 27 years, ranging from 14 to 48 years old.

The following design is used for both DEV and TEST. For each author, we
create user-specific training (DEV train and TEST train) and testing (DEV test
and TEST test) datasets. For each author, we randomly select 45 of their doc-
uments for testing, which make up the positive instances in DEV test and
TEST test. The remaining documents for each author are put into DEV train
and TEST train. For each author, we then select 15 erotica, 15 hate speech,
and 15 spam documents as negative test instances, and add them to the user-
specific testing sets (i.e., DEV test and TEST test). A given malicious document
is never included in both DEV and TEST. For each author, this gives 45 mali-
cious documents that do not belong to them. We repeat this 5 times, to create
5 different test sets for each author. All test documents (positive and negative

http://www.textfiles.com/sex/EROTICA


Authorship Verification with Personalized Language Models 251

instances) are selected without replacement for an individual author. As such, a
given document will only occur in TEST test at most once for a given author.

We limit negative instances to approximately the first 1000 tokens. This
reduces computational cost. Moreover, we control the number of tokens used
from test documents in our experiments, and none of the authorship verification
approaches considered use document length as a feature.

In TEST, the average amount of text from an author is approximately 200 k
tokens, with a minimum and maximum of 97 k and 526 k, tokens respectively.

2.2 Evaluation

We evaluate our models on the 93 authors from TEST over 5 iterations. In each
iteration, we select documents for training/tuning by concatenating documents
from TEST train until we have at least x tokens, where x is a parameter that
controls the amount of text available for training. We then give the model y
tokens of running text from a test document from TEST test for classification,
where y is a parameter that controls the amount of text used from a test doc-
ument. Limiting the amount of text from training documents simulates having
only a small amount of text from the user available for building the model; lim-
iting the amount of text from test documents simulates documents of various
lengths, e.g., microblogs vs longer documents, such as blogs.

We evaluate our models using accuracy and F1 score. Our test sets contain a
50/50 split of positive and negative instances, which makes accuracy an appro-
priate metric.

3 Methods

In this section, we describe our two methods for authorship verification based
on embeddings and language models. We frame the authorship verification task
as predicting whether an unknown document belongs to a given author or not,
while crucially only observing documents from that author during training, i.e.,
the model does not see negative instances during training. This resembles the
real-world scenario where we do not know in advance what kinds of malicious
documents an unauthorized user of a social media account would attempt to
post. The lack of negative instances during training means that standard super-
vised approaches to binary document classification are not applicable.

3.1 Embeddings

In this method, we represent documents as embeddings, using either word2vec
[10] or DistilBERT [11], and then use a one-class SVM for classification.
For word2vec, following [5], we train skipgram [10] on a snapshot of English
Wikipedia with an embedding size of 300 and a window size of ±8, and then
represent a document as the average of its word embeddings.
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DistilBERT [11] is a lighter-weight version of the BERT transformer model
with 6 layers, an embedding size of 768, and 12 attention heads. These are the
default parameters for the DistilBERT implementation from [13] which we use.
We embed a document by using the document as input to the model, which
generates an embedding for the document as part of its output layer.

We represent training documents using these approaches to document
representation—i.e., either word2vec or DistilBERT—and then train a one-class
SVM. Given a test document, we use the same approach to representing it,
and then input it into the trained one-class SVM to classify the document as
belonging to the author or not. We use the one-class SVM implementation from
scikit-learn.3 We use the default parameters for this model, which include a radial
basis function kernel.4 We refer to these approaches which use a one-class SVM
along with document representations based on either word2vec or DistilBERT
as W2V and BERT, respectively.

3.2 Language Models

In this method, we require two language models. The first language model,
referred to as the background language model, is trained on a background corpus
of blog posts (described in Sect. 2.1). The second language model is a personal-
ized language model that is generated by copying the first language model, and
then tuning it using the training text from a single author. Our language models
consist of an LSTM with a single hidden layer with 1024 units, an embedding
size of 128, and are trained for 1 epoch with a batch size of 45.

We personalize language models—i.e., tune language models to a specific
author—using the priming technique from [6], which has performed relatively
well when only a small amount of author-specific text is available for tuning.
To prime our model, we expose the language model to text from the author’s
training documents to modify the LSTM’s state without altering the hidden
layer of the network that is tuned during standard training.

Given a test document, each language model—i.e., the background and per-
sonalized language model—outputs a probability for every token in the docu-
ment. We score each model by counting the number of tokens for which that
model assigns a higher probability than the other language model. We classify
the document as belonging to the author (i.e., a positive instance) if the per-
sonalized language model scored higher than the non-personalized background
language model, and classify the document as not belonging to the author (i.e.,
a negative instance) if the background model achieved a higher score.5 We refer
to this method as LM from hereon.

In preliminary experiments on DEV, we found LM performed well on shorter
test documents, but performed poorly as the length of the test documents
3 https://scikit-learn.org.
4 These parameter settings could be tuned on DEV. We leave this for future work.
5 In preliminary experiments on DEV we considered alternative approaches, including

comparing the perplexity of the two language models, and thresholds for differences
in probability. None of these approaches performed as well as our proposed approach.

https://scikit-learn.org
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increased. We believe this was due to the fact that the state of the LSTM changes
fairly quickly as a test document is processed. As such, for longer documents,
the state of the personalized language model becomes similar to the state of the
background language model, and the effect of personalization is lost. To address
this, we sentence tokenized the test documents,6 and reinitialized the person-
alized language model’s state to its original primed state at the beginning of
each sentence.7 We found that this sentence-level re-initialization always led to
improvements, and so only report results for this approach.

4 Experimental Results

In this section, we evaluate our proposed models using accuracy and F1 score.
We consider different amounts of user-specific training text, to simulate having
varying amounts of user-specific data available. We further consider different
cut-off lengths for test documents, to simulate different test document sizes.

Fig. 1. Accuracy for each method, using different amounts of training text, and differ-
ent test document sizes.

Figure 1 shows the accuracy of our models when using different amounts
of user-specific training data, and differing cut-offs for test document sizes;8

6 We used NLTK’s sentence tokenizer [1].
7 Each sentence had the beginning-of-sentence and end-of-sentence tokens appended

to the start and end of the sentence, respectively.
8 We do not report results for LM using all available user-specific training data. These

experiments are computationally expensive, and preliminary experiments indicated
that this approach performed very well with only modest amounts of training data.
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the number appended to each model’s name in the legend indicates the cut-off
length for the number of tokens used from the test documents; i.e., BERT 100
indicates BERT with test documents cut-off after the first 100 tokens. LM out-
performs both embedding-based models—i.e., W2V and BERT—regardless of
the amount of training text or test document size. Remarkably, LM achieves an
accuracy of 0.69 with only 100 tokens of user-specific training text when using
the full test documents. The embedding-based models perform relatively poorly
when only a small amount of user-specific training data is available, but perform
better as more training text is used. For every amount of training data, and
test document length, considered, BERT always outperforms W2V. The highest
accuracies achieved by BERT and W2V are 0.66 and 0.62, respectively. Unlike
the embedding-based models, LM does not always perform better when more
training text is available, which could be because the state of the LSTM does
not retain much information from tokens that are far away [4].

Figure 1 also shows that the embedding-based models achieve close to their
highest values when using only 1000 tokens from the test documents, and do
not perform substantially better on longer test documents. This could be due
to the construction of the dataset, where malicious documents are truncated
to approximately 1000 tokens.9 LM generally performs better on larger test
documents, and achieves its best accuracy of 0.70 using full test documents and
10k tokens of user-specific training text.

Fig. 2. F1 score for each method, using different amounts of training text, and different
test document sizes.

Figure 2 shows the F1 score of our models for different amounts of training
data and test document sizes. The findings are overall similar to those in Fig. 1,
9 We do not apply the same document size limitation to documents from the user.
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with LM outperforming the embedding-based models, and achieving a highest
F1 score of 0.74, and an F1 score of 0.73 when trained on only 100 tokens
of user-specific text. The best F1 score of an embedding-based model is 0.57.
Interestingly, here the performance of LM is not overly affected by the test
document length. One difference here is that BERT no longer outperforms W2V
for the same amount of training text and test document size.

5 Conclusions

Malicious posts from an unauthorized user on a social media account could be
damaging to the account holder. We proposed a novel approach to authorship
verification using personalized language models, and evaluated it in an experi-
mental setup motivated by this scenario. We compared our proposed approach
against a previous embedding-based model, and showed that it outperformed
embedding-based models while requiring orders of magnitude less user-specific
training data, and shorter test documents. Our proposed language model-based
approach, trained on just 100 tokens of user-specific text, achieved an accuracy
and F1 score of 0.69 and 0.73, respectively, compared to the best embedding-
based model which achieved an accuracy and F1 score of 0.66 and 0.57, respec-
tively, while requiring much more user-specific training text. In future work, we
intend to consider language models based on transformers, and further sources
of malicious documents.

References

1. Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python. O’Reilly
Media Inc., Sebastopol (2009)
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Abstract. The authoring of meaningful sentences is an essential
requirement for AAC systems aimed at the education of children with
complex communication needs. Some studies propose the use of linguistic
knowledge databases to meet that requirement. In this paper, we propose
and present a Semantic Grammar (SG) for AAC systems based on visual
and semantic clues. The proposed SG was acquired using an automatic
process based on Natural Language Processing (NLP) techniques for the
extraction of semantic relations from text samples. We assessed the SG
precision on suggesting the correct words on reconstructing telegraphic
sentences and obtained a precision average of 90%.

Keywords: Semantic Grammar · Augmentative and Alternative
Communication · Ontology.

1 Introduction

Augmentative and Alternative Communication (AAC) [2] systems are essential
tools for supporting the inclusion of children with complex communication needs
in the educational process. In this context, these systems must be intuitive and
may work with images (e.g., photos or pictograms) that represent an object,
person, place, or concept. Figure 1 shows a telegraphic message created with a
set of pictograms. Notice that the telegraphic message is formed only by key-
words (i.e., nouns, verbs, adjectives, and adverbs), without connecting words
(i.e., conjunctions, prepositions, and articles) and verb conjugation. According
to [9], an AAC system should provide clues to help the authoring of telegraphic
phrases with syntactic and semantic correctness. These clues can be visual (e.g.,
colors and arrows) or semantic (e.g., questions and sample words). For this, these
systems must rely on linguistic knowledge bases, which provide information on
how words relate in natural language.

Some studies [12–14] propose the use of Semantic Grammars (SGs) as a basis
to support the construction of understandable sentences in AAC systems. In this
type of base, lexical semantics relations of hierarchy and predicate-argument

This research was supported by the Coordination of Improvement of Higher Education
Personnel (CAPES) [88882.347547/2019-01 and 88887.481522/2020-00].
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Fig. 1. Example of a telegraphic sentence with pictograms.

connect the lexical concepts that make up a controlled vocabulary, facilitating
the text’s automatic analysis and construction [6]. However, the SGs used in
these works do not take into account visual and semantic cues for helping the
users on structuring sentences and founding words. Besides, the construction of
the proposed SGs does not take into account AAC vocabulary or grammar, or
even corpus evidence on how words are semantically related to each other in
natural language. To overcome these weaknesses, we propose an SG for AAC
systems based on three resources: (i) an AAC controlled vocabulary, (ii) text
samples extracted from an extensive corpus, and (iii) a grammar extracted from
a therapeutic tool for teaching deaf children to construct and read well-formed
sentences. Besides, in this paper, we report how the proposed SG was automati-
cally generated by using NLP techniques for semantic role labeling, dependency
parsing, word sense disambiguation, and named entity recognition; and report
how it was evaluated.

2 Background and Related Work

A Semantic Grammar (SG) [6] is a linguistic knowledge base in which lexical-
semantic properties of hierarchy (e.g., cat isA animal) and predicate-argument
(e.g., cat hasDescriptor color) connect the words and concepts they denote. Its
theoretical foundation comes from the Frame Semantics theory [8], which states
that understanding the meaning of a word requires access to all the essential
knowledge related to that word. Thus, each word evokes a semantic frame that
represents the specific concept to which it refers. Each semantic frame is a set of
statements that provide characteristics, attributes, and functions of a concept,
and their interactions with things necessary or typically associated with it [1].
For example, in the sentence “He ate the fish quickly”, the word ate denotes the
frame eat that carries its meaning and its attributes defined by semantic roles:
the agent (He), the theme (the fish), and the manner (quickly).

In an SG, others semantic frames fill the semantic roles of each semantic
frame with predicative characteristics. For example, for the frame eat a frame of
persons may fill the semantic role agent. According to [6], this allows the usage
of the lexical-semantic knowledge of hierarchy (e.g., man isA person) in the
process of analyzing and constructing sentences in natural language, avoiding
the grammatical ambiguity that can exist when using only grammatical classes
(e.g., noun).

Some AAC proposals use SGs, or similar linguistic bases, for supporting the
authoring of meaningful sentences. The COMPANSION system [13], for example,
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uses an ontology as a basis for expanding telegraphic sentences to complete and
correctness sentences. In this system, the users input keywords of a pretended
sentence, not necessarily well ordered, and the system finds the best order and
the word relations through semantic parsing, based on the ontology. According to
[14], the main issue regarding this approach is how efficient a semantic parser can
be, given the existing gaps in the telegraphic text (e.g., absence of prepositions,
conjunctions, and verb conjugation). For this reason, the authors proposed a
AAC system based on a controlled process for creating sentences. In this system,
a set of specifications made by a surface realizer1, which uses an ontology as a
basis, controls the sentence construction by suggesting words. [12] adopted a
similar method on proposing the Simple Upper Ontology (SUpO), described as
a semantic grammar for beginning communicators. SUpO is an extension of a
subset of FrameNet [4] combined with grammar rules for text realisation.

The central gap of these solutions is the absence of the use of SGs based on
visual and semantic clues to support sentences authoring. Besides, these bases
construction was not based on evidence extracted from text samples, and, except
for SUpO, they do not use vocabularies aimed at AAC users.

3 Semantic Grammar

3.1 Construction

Figure 2 shows an overview of the method used to build the proposed SG, which
is divided into three steps and takes three materials as input. The following
sub-sections present both, the inputs and the steps.

Fig. 2. Overview of the method for constructing semantic grammar

Input Materials. The three materials taken as input are: a controlled vocab-
ulary, a text corpus, and a grammar. The controlled vocabulary consists of a
list of the 621 words that have the best accumulated-recall over children’s state-
ments extracted from CHILDES corpora [11] and its corresponding WordNet

1 A module of natural language generation systems, that convert an abstract semantic
representation into a linguistic utterance.
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synsets2 organized in a taxonomy. It is a result produced by a research project
started in [10]. The text corpus is the British National Corpus (BNC) [7], which
is extensive, has well-formed sentences, and is widely used in the field of NLP.
The grammar is based on the Colourful Semantic (CS) [5], which is a therapeu-
tic tool used for teaching children with complex communication needs to create
and read meaningful well-formed sentences. As shown in Fig. 3, this tool uses a
simple grammatical structure in which the slots are assigned by semantic roles
associated with colors and questions. According to [5], this association (i) estab-
lishes a significant relationship between the question and the semantic role, (ii)
associates each type of phrase with a visual sequence of colors, and (iii) serves
to alert children when they omit a semantic role. The input grammar consists of
a mapping of Colourful Semantics roles to PropBank-like [3] labels, and of rules
that determines what class of synset can fill each role. For example, only synsets
of adverbs can fill the manner role, and no verbs, adverbs, or adjectives synsets
can fill the agent role.

Fig. 3. Colourful semantics

Sentence Searching. The first step of the method consists of searching in the
corpus sentences in which each verb or noun of the controlled vocabulary occurs.
These are called reference sentences, and it is from there that we extracted the
predicate-argument relations. We established a limit maximum of 500 sentences
for each word. However, it was not possible to reach this number for some words
(e.g., breakfast, out, and lunch), due to the low frequency of its occurrence in
BNC.

Semantic Parsing. This step consists of extracting the semantic structures
(e.g., eat hasAgent person) from the reference sentences. For this, for each sen-
tence, two sub-tasks are performed. The first one has the objective of identifying
the arguments (e.g, hasAgent, hasTheme) presents in the sentences. For doing
that, we use (i) Semantic Role Labeling (SRL) when the target word is a verb,
or (ii) Dependency Parsing (DP) when it is a noun. For SRL, we use the SLING
framework [17], which can identify verbal predicates in text and label its argu-
ments with ProbBank-like [3] labels. In this work, these labels are mapped to
VerbNet labels using SemLink [15] and then mapped to the roles used by CS.

2 A synset is a set of cognitive synonyms expressing a concept.



A Semantic Grammar for Augmentative 261

For DP, we use spaCy dependency parser3 for identifying adjectival modifiers of
nouns and label it as Descriptor in CS labels. This process generates a semantic
structure for each sentence, in which the arguments are labeled with the CS
semantic roles, and its complements are words.

The second sub-task of semantic parsing consists of identifying the synsets
evoked by each of these words. For this, we use Named Entity Recognition (NER)
and Word Sense Disambiguation (WSD). For NER, we use SLING, which labels
named entities with OntoNotes classes (e.g., PERSON, LOCATION, ORG) that
we mapped to WordNet synsets based on their meanings (e.g., PERSON is
mapped to person.n.01). For WSD, we use a structure-based agent based on Wu
& Palmer similarity [18], with labels ambiguous words with WordNet synsets.
However, the synsets identified by NER and WSD may not necessarily be part
of the set of synsets of the input controlled vocabulary. Therefore, we use Wu &
Palmer similarity to identify its most similar in the input set.

The execution of these two sub-tasks generates a semantic structure in which
each word has the arguments that were identified in the text samples, the synsets
that fill those arguments, and the frequencies with which each of these synsets
occurs. For example, the verb eat has the argument hasAgent that filled by the
synsets person.n.01 and pronou.n.01 with their respective frequencies: 10 and 8.

Removing Redundancies. There may be redundancy in synsets that fill a
given argument of a given verb or noun. It happens when two or more synsets
of the same taxonomy branch (i.e., they have some level of inheritance relation)
fill an argument. These redundancies can have adverse effects when performing
queries on the SG, so they must be removed.

For removing the redundancies, the synsets filling a given argument are orga-
nized in a tree according to their hyperonymy relationships from WordNet. Then,
the tree is analyzed from the lowest to the highest nodes, removing those that are
less frequent than their nearest hyperonym. Next, a cut by importance is made
by establishing a cut-off threshold based on the frequency of occurrence of the
synsets. This cut-off threshold is established empirically, using Z-score when the
frequency distribution follows the normal distribution, and T-score when not.
Finally, the remaining synsets tree is analyzed, keeping only the highest nodes
of each branch. This way, the redundant and insignificant synsets are removed.
The remaining are inserted as complements to that argument in the SG.

3.2 Overview

The proposed SG consists of an ontology that is composed by a structure of con-
cepts (synsets) with relations of hierarchy and predicate-argument. The hierar-
chy relations are inherited from WordNet, and the predicate-argument relations
are inserted by the procedure described in the previous section. The proposed
SG has a total of 4295 predicate-argument relationships, which can be used

3 https://spacy.io/.

https://spacy.io/
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to perform searches in the prediction and suggestion of words during the cre-
ation of sentences. The properties used for these relations are based on CS (i.e.,
hasAgent, hasTheme, hasRecipient, hasManner, hasLocation, hasT ime, and
hasDescriptor), and connects the predicates to its arguments, as shown in Fig. 4.

Fig. 4. Excerpt from the semantic grammar

4 Evaluation

As the proposed SG consists of an ontology, it is evaluated following an ontology
assessment approach. It is a task-based assessment, which consists of assessing
how efficient an ontology is in fulfilling the task for which it is directed [16].
In our case, SG’s task is to support the construction of meaningful telegraphic
sentences. For this reason, we evaluated the precision the SG has on suggesting
the correct words in the reconstruction of telegraphic phrases extracted from
CHILDES [11]. For this, the sentences of CHILDES were preprocessed to become
telegraphic, and its reconstruction was simulated.

Table 1 shows the summary of evaluation results, with the total number of
sentences for each sentence type, the average precision, the number of sentences
that were wholly reconstructed (100%), and the number of those in which the
reconstruction precision was higher than or less than 50%. The results show
that the proposed SG can support the reconstruction of understandable tele-
graphic phrases with an average accuracy of 90%, considering a total of 1246
sentences. This means that the probability of a user of an AAC system using the
SG as a database to find the correct arguments for verbal predicates during sen-
tence construction is 90%. In addition, 71.9% of the sentences were fully recon-
structed. This number indicates the level of coverage that the predicate-argument
relationships present in the SG have over children’s statements extracted from
CHILDES. 26.6% of the sentences were not fully reconstructed but had a preci-
sion greater than or equal to 50%, and 1.4% (18) had precision less than 50%.

The low score of some sentences is caused by errors in the annotation of
CHILDES sentences (e.g., blackbirds lemmatized as black), or by semantic
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Table 1. Summary of evaluation results

Sentence type n Average
precision

100% >50% <50%

Agent + Verb + Theme 1162 0,91 864 285 13

Agent + Verb + Location 42 0,80 22 13 5

Agent + Verb + Theme + Location 23 0,86 10 13 0

Theme + Verb + Description 19 0,67 0 19 0

TOTAL 1246 0,90 896 332 18

errors, as in the telegraphic sentence “bed sit bed”. However, it is also the result
of the absence of predicate-argument relationships between some concepts in the
SG. For example, in the sentence “I sit in the chair”, no one of the arguments
of the verb sit was filled, given to the absence of relations between the concept
evoked by this verb and the concepts pronoun.n.01 (for I ) and chair.n.01 (for
chair).

5 Conclusions

This paper proposes a Semantic Grammar (SG) as a basis for supporting well-
formed and semantic correct telegraphic sentences authoring in AAC systems. It
was acquired by an automatic process that extracted predicate-argument rela-
tions from text corpus using NLP techniques. For this, we used three main
resources: 1) an AAC domain controlled vocabulary, 2) a corpus, and 3) a gram-
mar based on visual and semantic clues. We evaluated the proposed SG using
a task-based ontology assessment approach. For this, we extracted a total of
1246 sentences from CHILDES corpora and simulated its reconstructions using
the knowledge represented in the SG. We compared the reconstructed sentences
with its references extracted from CHIELDS by assessing a modified precision
score and obtained a precision average of 90%. Besides, the SG supported the
full reconstruction of 71,9% of the sentences.

These results demonstrate that the proposed SG can provide the necessary
support for the construction of meaningful sentences. However, there are still
aspects that need to be addressed better. Besides, the proposed SG has not
been evaluated by humans or tested in real contexts of AAC use. As future
work, we intend to gather resources to replicate the SG construction method to
build a similar base for the Portuguese language.
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Abstract. Despite their success in a multitude of tasks, neural models
trained on natural language have been shown to memorize the intrica-
cies of their training data, posing a potential privacy threat. In this work,
we propose a metric to quantify unintended memorization in neural dis-
criminative sequence models. The proposed metric, named d-exposure
(discriminative exposure), utilizes language ambiguity and classification
confidence to elicit the model’s propensity to memorization. Through
experimental work on a named entity recognition task, we show the
validity of d-exposure to measure memorization. In addition, we show
that d-exposure is not a measure of overfitting as it does not increase
when the model overfits.

Keywords: Named entity recognition · Natural language
understanding · Privacy

1 Introduction

Neural networks have become prevalent in numerous machine learning tasks
in general and in natural language processing in particular. An issue that has
been identified with neural models, however, is that they tend to memorize
their training data [2,7,10]. Memorization raises severe privacy concerns in cases
where such models are trained on datasets that contain sensitive information
such as credit card numbers, passwords, etc. If such models are deployed e.g. on
smartphones [5] or as a service [4], they give attackers access to the memorized
sensitive information.

The focus of this paper is on unintended memorization, which occurs when
models retain information that are orthogonal to the learning task. For example,
for the task of named entity recognition (NER) on a dataset of emails, memoriz-
ing passwords that appear in the dataset is unintended. Existing work focuses on
neural generative sequence models, such as language models and machine trans-
lation models, and uses model perplexity to quantify unintended memorization

This research has received funding by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 3081705 – COMPRISE (https://
www.compriseh2020.eu/).

c© Springer Nature Switzerland AG 2020
P. Sojka et al. (Eds.): TSD 2020, LNAI 12284, pp. 265–272, 2020.
https://doi.org/10.1007/978-3-030-58323-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58323-1_29&domain=pdf
http://orcid.org/0000-0001-7490-5011
https://www.compriseh2020.eu/
https://www.compriseh2020.eu/
https://doi.org/10.1007/978-3-030-58323-1_29


266 M. Helali et al.

[2]. In this paper, we propose a metric for discriminative models where perplex-
ity cannot be utilized. The idea is to give practitioners the means to assess the
degree of memorization in models intended for deployment, allowing them, e.g.,
to choose hyper-parameter settings that minimize privacy-threatening informa-
tion leakage.
Our main contributions are:

– A method for quantifying memorization in discriminative models. This
involves inserting specifically designed ambiguous phrases into the training
set of the model and analyzing the model’s confidence with respect to the
created phrases. The proposed metric is named d-exposure (for discrimina-
tive exposure).

– An experimental validation of the proposed definition on a competitive neu-
ral NER model and benchmark dataset. As in previous work, we find that
exposure increases with the number of repetitions of inserted phrases in the
training set. In addition, we confirm that d-exposure is not a measure of over-
fitting as unintended memorization does not increase when the model starts
to overfit.

2 Related Work

In one of the earliest studies on memorization in neural networks, Zhang
et al. [10] show that neural networks have the capability to fit data with random
labels, meaning that state-of-the-art models are at risk of memorization. Song
et al. [7] present a method to create neural models that memorizes the training
data with no noticeable difference in utility. This raises concerns because utility
is often the main criterion for deciding which model to deploy. In their analysis
of memorization, Arpit et al. [1] show that memorization is not only dependent
on the model, but also on the dataset. While these works are important in the
analysis of memorization, they do not provide a quantitative method for gauging
the depth of the problem.

The first work on assessing unintended memorization in neural models on
language tasks was by Carlini et al. [2]. To assess unintended memorization, they
define a metric, named exposure, that is based on comparing the perplexity Px(s)
of a random phrase s inserted into the training set with the perplexities of other
phrases from the same random space. The basic tenet is that a significantly lower
perplexity of the inserted phrase vs. those of the other random phrases signals
that the neural model has unintentionally memorized that phrase. Specifically,
for a random phrase s inserted into the training set of a model θ, exposure is
defined as:

exposureθ(s) = −log2 Pr
r∈R

[Pxθ(r) ≤ Pxθ(s)] (1)

where R is the random space of all such phrases. Note that high memoriza-
tion, i.e., low perplexity, is reflected by high exposure values. The authors test
their definition empirically and conclude that memorization is not directly linked
to overfitting but rather to the learning process itself, making memorization
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a prevalent issue in state-of-the-art neural models. However, the authors’ app-
roach is limited to generative sequence models because the definition of exposure
is based on perplexity. We show below how a similar line of reasoning can be
utilized for an exposure measure on discriminative models.

Another related notion to the problem of memorization is membership infer-
ence attacks, where an attacker tries to infer whether a set of samples belong to
the dataset of a trained model. Truex et al. [9] have done an extensive analysis
on how such attacks can be carried out and on the vulnerability of the mod-
els under attack. Though membership inference is related to our work, there are
notable differences between the approaches. First, the goal of our work is to mea-
sure the model’s propensity to leaking information, not analyzing whether the
model can be attacked. For example, for an overfit model, membership inference
probability increases [6], while memorization is not correlated with overfitting.
Moreover, calculating exposure is a simpler procedure that does not involve
building shadow datasets and attack models as in membership inference.

3 Approach

The existing definition of exposure in [2] is inapplicable to discriminative models
because it is based on perplexity, which is not supplied by discriminative models.
Instead, such models output for each class a level of confidence that the input
word belongs to that class. This motivates a definition of exposure per class as it
can behave differently for each class. While exhaustive enumeration of perplexity
is inefficient [2], it is feasible to enumerate the model’s confidence for all words in
each class because these are in the magnitude of only a few thousands, depending
on the dataset.

Intuitively, memorizing is the opposite of generalizing. A good model will
classify an unambiguous sentence with high confidence. For example, in the
sentence “I prefer Germany”, the last word should clearly be labeled as a location
in an NER task. Polysemous words, however, may constitute different named
entities depending on the context. For instance, the word “Jordan” could refer
to a person (e.g., Michael Jordan), a location (e.g. the country of the same name),
or an organization (e.g. The Jordan Company). If some of these cases appear with
roughly the same frequency in the training data, an ambiguous test sentence,
such as “I prefer Jordan”, should thus be classified with low confidence. Even
adding the same sentence to the training data should not change this – unless
the model tends to memorize sentences. In other words, an unexpected high
confidence in the classification of an ambiguous sentence hints at the possibility of
unintended memorization in a given model. We base our definition of d-exposure
on this notion and follow the general procedure given by Carlini et al. [2].

3.1 d-exposure for Discriminative Models

Given a fixed phrase that has a word s with multiple possible class labels, we
insert the phrase in the training set with s labeled as Ci and train the model θ.
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d-exposure for class Ci is then given by:

d-exposureθ,Ci
(s) = −log2 Pr

w∈Ci

[conf(w) ≥ conf(s)] (2)

where conf(s) is the confidence returned by the model when labeling s. Therefore,
d-exposure has a value ∈ [0, log2|Ci|] with |Ci| denoting the number of words
that are labeled only as Ci. Maximum d-exposure is obtained when s has the
highest confidence (high memorization) and vice versa. Note that this is the case
if all words are assigned the correct class. If s is labeled incorrectly, however,
d-exposure is defined to be zero. On the other hand, if other words in Ci are
incorrectly labeled, they are treated as having lower confidence than s, because
the model classified the ambiguous phrase correctly while failing to correctly
classify the clear one. We apply the same process for other entity classes in the
dataset and calculate d-exposure of the model as:

d-exposureθ(s) =
1
N

∑

Ci

d-exposureθ,Ci
(s) (3)

where N is the number of classes. This definition allows one to ignore classes that
are considered irrelevant for the task at hand. For example, if one is interested in
measuring the memorization of their model on the names of persons and locations
only, one could simply compute d-exposure for these two classes. Recall that the
purpose of the metric is to guide the choice of model settings before deployment.
Which phrases and classes to consider are choices made by the user.

4 Experimental Validation

In this section, we experimentally test the proposed definition of d-exposure
in order to: (1) show its validity as a measure of unintended memorization in
discriminative models, and (2) demonstrate that d-exposure is not linked to
overfitting. We show our results on a named entity recognition task as an example
of discriminative models.

4.1 Setup

We conduct our experiments on CoNLL-2003 [8], a popular NER dataset in
English. In our experiments, we focus on the tags: S-PER, S-ORG, and S-LOC.
We discard S-MISC to decrease the variability as including it would lead to
the inserted phrase having multiple correct labels (based on the definition of
S-MISC). Table 1 shows statistics of these classes in CoNLL-2003 dataset. The
first column is the number of unique entities that belong only to the respective
class (|Ci|); the second column is the number of unique entities that have more
than one possible label (i.e. candidates for s); the third column is the frequency
of each class in the training set.

For the inserted phrase, we choose the ambiguous format: “There are many
people who like ”, which allows entities of the three types to fill the blank.
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Table 1. Statistics of the cho-
sen classes in the training set of
CoNLL-2003.

Label Exclusive Overlapped Frequency

S-ORG 1001 101 3836

S-PER 949 19 2316

S-LOC 937 97 6101

Table 2. Number of occurrences of
the chosen entities in the training
set of CoNLL-2003.

Word S-PER S-ORG S-LOC

Williams 7 8 0

Chelsea 5 6 0

Melbourne 0 4 5

For the chosen entities, “Williams” was inserted as S-ORG, “Chelsea” as S-PER
and “Melbourne” as S-LOC. We chose these entities because their occurrences
in the training set are more balanced than others. Table 2 shows the number
of occurrences of these entities as each class. That said, we found out that the
general behavior of d-exposure does not change based on the chosen entities, as
long as they are not highly imbalanced towards one class, nor does it change
based on the format, as long as it is ambiguous.

For the model, we use a BiLSTM with GloVe embeddings, SGD optimizer,
dropout (50%) and learning rate decay, implemented with Targer1, a neural
tagging library [3]. This model achieves an F1 of 90.0 on CoNLL-2003 dataset.

4.2 Repeated Occurrences in the Training Set

In this experiment, we test whether d-exposure increases with the number of
times the chosen phrase appears in the training set. The intuition is that the
more the model sees the sentence, the higher the incentive to memorize it. For
this matter, we insert the chosen sentences 4, 16, 64, 128 and 256 times and
observe d-exposure for each category. Figure 1 shows the effect of the number
of repetitions of the inserted sentence on d-exposure. As expected, d-exposure
generally increases with the number of repetitions, implying that repeated occur-
rence of a sentence in the training set tends to produce higher memorization.
Another observation is that d-exposure does not behave the same in all classes.
Rather, it is much lower for S-LOC than the other two. This validates our claim
that exposure is to be measured per-class as different classes occur in different
contexts but the exact reasons for the differing behavior require further inves-
tigation. In additional experiments with other model architectures not detailed
here, we found the same general trend in the curves but the behavior of S-PER
and S-LOC reversed. Table 3 shows d-exposure evaluated at different epochs
(columns) and number of repetitions (rows) for the three classes. The first row
is the value of d-exposure when the phrase is not inserted in the training set.

1 https://github.com/achernodub/targer.

https://github.com/achernodub/targer
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Fig. 1. d-exposure vs. repetitions for individual classes and averaged on CoNLL-2003
at 150 epochs.

4.3 Overfitting

In this experiment, we observe the behavior of d-exposure against overfitting.
We conduct this analysis to confirm that exposure is not a measure of overfitting
but rather of memorization. If it was so, we expect it to reach its maximum value
for all classes when overfitting begins or to keep increasing while the model is
overfitting. To make the model overfit, we train it only on 10% of the training
data, increase the number of epochs to 250 and disable learning rate decay and
dropout. Figure 2 shows the results when the phrases are repeated 16 times. d-
exposure increases as the model is learning and stops increasing when overfitting
begins. In addition, maximum d-exposure for S-LOC (8.0) or S-ORG (8.1) is
not reached at any point. Recall that the maximum d-exposure for a class Ci

is log2|Ci|, where |Ci| is the number of entities belonging only to that class.
For S-PER, however, maximum d-exposure (7.5) is reached only at stages where
the model has not yet overfit. Therefore, we conclude that d-exposure is not
correlated with overfitting and for the case of S-PER, the model has higher
memorization. Similar results were found for different numbers of repetitions.

Table 3. d-exposure for the classes S-LOC, S-PER, and S-ORG for different numbers
of repetitions (rows) and epochs (columns).

S-LOC S-PER S-ORG

25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150

0 1.76 1.42 1.51 1.33 1.55 1.46 0.00 0.00 0.00 0.31 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 1.87 1.68 1.47 1.71 1.57 1.46 0.00 0.43 0.48 0.59 0.72 0.78 0.00 0.00 0.00 0.82 0.00 0.00

16 1.87 1.74 1.72 2.00 1.78 1.51 0.49 0.58 0.82 0.98 0.79 1.10 0.00 1.12 0.67 1.28 1.28 1.26

64 2.68 2.27 2.30 2.47 2.68 2.52 2.71 1.40 3.57 2.47 4.47 3.64 2.38 3.14 2.96 2.89 4.16 4.16

128 3.27 3.00 3.50 2.51 2.09 2.09 4.61 4.50 3.94 4.76 4.80 5.19 2.24 4.11 5.01 4.24 4.68 5.51

256 4.52 3.03 3.43 3.57 3.83 3.29 8.89 8.31 8.31 9.89 7.89 7.89 3.46 4.21 6.16 5.21 6.06 6.16
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Fig. 2. d-exposure vs. overfitting for S-LOC, S-PER, and S-ORG on CoNLL-2003.

5 Conclusion and Future Work

In this work, we presented a measure of unintended memorization in discrimina-
tive neural models. It is inspired by previous work on generative sequence models
but offers an approach for tasks where measuring perplexity is not feasible. The
core idea is to identify the exposure of potentially private data with confidence
assessments of model predictions. We show how ambiguous sentences can be
employed towards that goal in a named entity recognition task. One limitation
of this methodology is that it can only be applied to NER classes that share
some linguistic materials with at least one other class.

We performed a number of in-depth experiments to illustrate the effectiveness
of our new metric for assessing model memorization. While we focus on one task
here, with a reduced number of NE labels, we are nevertheless able to confirm
the findings of the previous work on exposure for generative sequence models.
In particular, these are 1) higher d-exposure values for repeated insertions of
a test phrase into the training data; and 2) independence of d-exposure from
model overfitting. The first finding confirms that the number of occurrence of
a phrase in the training data, the expected memorization of that phrase in the
model, and the proposed metric all correlate positively. The second finding sets
our approach apart from methods such as membership inference attacks which
are prone to significant performance drops for overfitted models.

In the future, we plan to perform similar validation experiments for other
natural language processing tasks as well. The definition of what constitutes an
“ambiguous phrase” for each task poses a challenge but is a necessary step in the
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proposed methodology. For the NER task addressed here, a number of additional
experiments are conceivable as well, e.g., going beyond single-word entities.

With a powerful metric now in place, an even more interesting future step
will be the exploration of principled ways in which counter-measures for model
memorization could be realized. Ultimately, assessing a potential information
leakage is only the first step, supporting the prevention or confinement of such
leakages must be the goal to aspire to.
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unintended neural network memorization & extracting secrets. In: Proceedings of
the 28th USENIX Security Symposium, pp. 267–284. USENIX Association, Santa
Clara, CA, USA, 14–16 August 2019 (2019)

3. Chernodub, A., et al.: Targer: neural argument mining at your fingertips. In: Pro-
ceedings of the 57th Annual Meeting of the Association of Computational Linguis-
tics (ACL’2019). Florence, Italy (2019)

4. Hesamifard, E., Takabi, H., Ghasemi, M., Wright, R.: Privacy-preserving machine
learning as a service. Proc. Privacy Enhancing Technol. 3, 123–142 (2018). https://
doi.org/10.1515/popets-2018-0024

5. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated learning: strategies for improving communication efficiency. In: NIPS
Workshop on Private Multi-Party Machine Learning (2016)

6. Long, Y., Bindschaedler, V., Gunter, C.A.: Towards measuring membership privacy
(2017). http://arxiv.org/abs/1712.09136

7. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember
too much. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, pp. 587–601. Association for Computing
Machinery, New York (2017)

8. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: language-independent named entity recognition. In: Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147
(2003)

9. Truex, S., Liu, L., Gursoy, M.E., Yu, L., Wei, W.: Demystifying membership infer-
ence attacks in machine learning as a service. IEEE Trans. Serv. Comput. (Early
Access), 05 February 2019

10. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learn-
ing requires rethinking generalization. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, 24–26 April, 2017, Conference Track
Proceedings. OpenReview.net (2017)

https://doi.org/10.1515/popets-2018-0024
https://doi.org/10.1515/popets-2018-0024
http://arxiv.org/abs/1712.09136


Investigating the Impact of Pre-trained
Word Embeddings on Memorization

in Neural Networks

Aleena Thomas(B) , David Ifeoluwa Adelani, Ali Davody, Aditya Mogadala,
and Dietrich Klakow

Spoken Language Systems Group, Saarland Informatics Campus,
Saarland University, Saarbrücken, Germany

{athomas,didelani,adavody,amogadala,dietrich.klakow}@lsv.uni-saarland.de

Abstract. The sensitive information present in the training data, poses
a privacy concern for applications as their unintended memorization dur-
ing training can make models susceptible to membership inference and
attribute inference attacks. In this paper, we investigate this problem in
various pre-trained word embeddings (GloVe, ELMo and BERT) with the
help of language models built on top of it. In particular, firstly sequences
containing sensitive information like a single-word disease and 4-digit
PIN are randomly inserted into the training data, then a language model
is trained using word vectors as input features, and memorization is mea-
sured with a metric termed as exposure. The embedding dimension, the
number of training epochs, and the length of the secret information were
observed to affect memorization in pre-trained embeddings. Finally, to
address the problem, differentially private language models were trained
to reduce the exposure of sensitive information.

Keywords: Differential privacy · Word representations · Unintended
memorization

1 Introduction

Several advances were made in machine learning for addressing numerous tasks
of Computer Vision and Natural Language Processing (NLP). However, there
exist some practical hurdles when applying them in the industry, particularly
when it involves training the models from data containing sensitive information
such as users’ attributes, financial information, and health records. It has been
recently shown that an adversary can recover sensitive information (as a result of
memorization [3]) or observations used for training (a.k.a membership inference
attack [11–14]) from a publicly available pre-trained model in a black-box attack,
i.e., without access to the training data.

Word embeddings [4,8] are often used as primary features for obtaining
state-of-the-art results in NLP tasks as they incorporate both syntactic and
semantic relationships between the words. However, when they are trained on
c© Springer Nature Switzerland AG 2020
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user-generated content like social media posts or clinical notes (containing con-
sultation notes, patient discharge summaries, and history notes), the relationship
between users and their attributes e.g., interests, disease, and health history can
be learned and re-identified using membership inference attack methods. Models
trained on sensitive information are publicly available like Twitter-Glove1 and
Clinical-BERT [2] as they help to improve the performance of downstream NLP
tasks in the domain of interest. Although, the extent to which these models leak
users’ information has not been quantified.

In this paper, we aim to quantify the leakage of sensitive information in pre-
trained word embeddings, namely GloVe, ELMo, and BERT when they are used
for downstream NLP tasks. Recently, the leakage of sensitive information has
been studied for text generation tasks [14] like machine translation, dialogue
generation and language modeling. This leakage can also be viewed as neural
networks memorizing secret information which was proven to be true [3]. A
simple attack on a language model is predicting sensitive information like credit
card number when given the context in which the secret information appears,
this is even more probable when we limit the space of most likely words, say
from all words in the vocabulary to only numbers. If indeed word embeddings
leads to better performance on many NLP tasks including language model, does
it also make this attack easier?

It is not straightforward how to compute sensitive information captured by
word embeddings without using them to train an NLP task. So, we have made
use of a simple language model with these word vectors as input features. We
address the problem of quantifying the leakage of sensitive information in pre-
trained embeddings by investigating if they exacerbate the problem of memoriza-
tion in a language model when used as input features. We quantify the amount
of information memorized by neural networks or exposed at inference using the
exposure metric proposed by [3]. Specifically, we compare the exposure of sensi-
tive information on using different kinds of embeddings: distributed embeddings
obtained by GloVe [8] and contextualized embeddings i.e., ELMo [9] and BERT
[4]. In our experiments, we observe that leakage in higher dimensional word vec-
tors is greater than or equal to the leakage observed in lower-dimensional vectors
of the word representations. This is particularly concerning because oftentimes,
the higher dimensional embeddings have better performance when used as fea-
tures for downstream NLP tasks [4,10]. Training differentially private language
models [7] helps to drastically reduce the exposure of private information, thus
providing better privacy [3].

2 Memorization in Deep Learning Models

Recently, Carlini et al. [3] introduced the exposure metric to measure unintended
memorization in neural networks. Given a model fθ, a secret format s, e.g.,
s = “My PIN number is ####”, and secret s[r] with a randomness r ∈ R

1 Glove trained on 2 billion tweets: https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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Algorithm 1. Precise Exposure
1: procedure CalculatePreciseExposure(D, s[r], EMBEDDING TYPE, R, K )
2: Additional Inputs: {s[r2], s[r3], ..., s[rK ]} for multiple insertions
3: s[r1] = s[r]
4: for k from 1 to K do
5: D ← D ∪ s[rk]
6: end for
7: Z ← getEmbeddings(D, embedding type)
8: θ ← trainedLSTM(Z )
9: τ ← {}

10: for r̂ ∈ R do
11: τr̂ ← log-perplexityθ(s[r̂])
12: end for
13: τ ′ ← sort(τ)
14: ρr ← getRank(s[r], τ ′)
15: exposure(s[r]) ← log2|R|− log2ρr

16: end procedure

(randomness space), e.g., “My PIN number is 2467”; r = 2467, the exposure of
the secret s[r] is defined as:

exposureθ(s[r]) = log2 |R| − log2 rankθ(s[r]) (1)

where, the rankθ(s[r]) is the rank of s[r] in the sorted list of log-perplexities
of s[r̂] for all possible r̂ ∈ R. The sorting is in ascending order.

The exposure metric depends on the space of R and the implication is that
the maximum value of the metric for longer sequences such as credit card number
or 4-digit PIN is higher than exposure for a single word prediction like a disease.
Carlini et al [3] measured memorization by (1) adding a sequence (e.g., John’s
PIN number is 2467 ) containing secret information to the training data (2)
training a language model on the augmented dataset (3) computing the exposure
based on the rank of the log-perplexity of the inserted secret, say 2467 from the
other R = 104 available combinations when the model is given a context “John’s
PIN number is”. If the rank is very high especially if the domain of the training
dataset is very different from the inserted sequence, this is an indication of
memorization.

3 Measuring and Preventing Unintended Memorization

3.1 Measuring Memorization of Secrets

Following the approach introduced by Carlini et al. [3], we analyze the effect
of different word representations on memorization. We make use of an LSTM
language model to compare the levels of exposure while using different pre-
trained embeddings as input features.
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First, we augment the training data with an additional sequence with a secret
such as “my PIN number is 2467” i.e D ← D ∪ s[r] in Algorithm 1. For multiple
insertion of secrets, we insert multiple sequences, s[rk] with K different PIN
numbers, where s[r1] = s[r]. Next, we obtain pre-trained embeddings for all
the training sequences. We represent all the input embeddings with Z which
is passed into the LSTM model. The trained weights, θ of the LSTM model
are learned after training and used to compute the log-perplexity τr̂ for all the
possible secret values, r̂ ∈ R.

Exposure is computed using the rank of the log-perplexity of the inserted
sequence containing secret s[r] from the list of all log-perplexities of different
secret values (r ∈ R). The step-by-step procedure for computing the exposure of
a secret sentence s[r] given a corpus D, R, the number of sentences to be added,
K and the word embedding embedding type is in Algorithm 1.

3.2 Preventing Memorization with Differential Privacy

Differential privacy is a strong approach to resist attacks aiming to extract sensi-
tive information from a dataset D. The main idea is that releasing an aggregated
result should not disclose too much information about any individual record in
the dataset. More specifically, if we define a dataset D′ that differs with D in
only one record, xn, when the attacker makes a query on both datasets, he/she
should get almost the same results.

Definition 1. (Differential Privacy [5]). A randomized algorithm M is (ε, δ)
differential private if for all sets of outputs S and for all neighboring datasets
D1 and D2 differing on at most one data point

Pr[M(D1) ∈ S] ≤ exp (ε) Pr[M(D2) ∈ S] + δ (2)

Intuitively a (ε, δ) differential private algorithm guarantees that the absolute
value of information leakage will be bounded by ε with probability at least 1−δ.
Therefore ε controls the level of privacy protection and so is called privacy loss.

Differential privacy can be integrated with deep learning to protects models
from different kinds of attacks. However, directly applying random noise within
a deep learning model yields inferior performance because of the high sensitivity
of the network’s output to the parameters. A solution to this challenge has
been proposed in [1]. The core idea is adding random noise to the stochastic
gradient descent (SGD) updates and make it private, leading to differentially
private SGD (DPSGD). Differentially private training can be used to prevent
unintended memorization and membership inference in deep neural models. In
particular, a variant of DPSGD [1] has been used in [3] to train recurrent neural
networks. It has been shown there that differential privacy fully eliminates the
memorization effects and reduces exposure of secrets.

4 Experimental Setup

In this section, we present the experimental setups of two sets of experiments
on the Penn Treebank (PTB) dataset for different word representations: GloVe,
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ELMo and BERT embeddings. We train a 1-layer LSTM language model with
256 hidden units on 2,000 sentences from the PTB text data that consists of
35,000 sequences (assuming a minimum context size of one) and 12,921 vocab-
ulary words. The first set of experiments is trained on the dataset augmented
with secret sequence(s) using Adam optimizer [6], while the second set of exper-
iments helps to reduce memorization using the DPSGD training. We consider
pre-trained embeddings with various vector dimensions, d = 100, 300, 768, 1024
i.e GloVe-{100d, 300d}, ELMo-1024d, BERT-{768d, 1024d}.

To study how the length of the secret affects its memorization, we use two
types of secrets; namely single word - disease and four digit - PIN. Disease type
of secret is inserted as follows - < name > is suffering from < disease >. For all
the experiments with this type of secret augmented, we compute the exposure
value of the sequence, s[r]: john is suffering from alzheimers after training the
model on a dataset including this sentence. Since the number of diseases is too
small to be considered as sample space, we assume the vocabulary as the sample
space from which the diseases are drawn from. In the PIN type of secret, the
inserted secret is of the form - < name > atm PIN number is < #### >.
Here, the sample space size for computing the exposure is 104.

The memorization could also be affected by the presence of multiple secrets
in the dataset, which may confuse the model. In order to analyze the effect of
having multiple secrets, we use two types of insertion of secrets:

– Single insertion with a pair of secrets: in this case, we augment the dataset
with a single sentence that contains either disease or PIN type secret.

– Multiple insertions with unique pairs of secrets: in this case, we augment
the dataset with multiple sentences all of which contains either disease types
or PIN types. For example, we test the exposure of the sequence s[r] after
augmenting the dataset with M additional secrets like: {oliver is suffering
from influenza, laura is suffering from cholera, ... }. In the experiments, M =
16 for disease type and M = 10 for the PIN type secret.

(a) Secret-type: disease (b) Secret-type: 4-digit PIN

Fig. 1. Exposure values for single insertion of a sequence with a pair of secrets and
multiple insertion of sequences with unique pairs of secrets. The number of epochs for
the disease and the PIN type secrets are 5 and 40 respectively.
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5 Results

In this section, we present the results of the experiments to analyze memorization
in word representations. Figure 1 shows the exposure values for different kinds
of embedding types for single and multiple insertions of secrets. From the plots,
we observe a pattern between the exposure value and embedding dimension
regardless of the secret type, or insertion type for GloVe and BERT embed-
dings. Higher exposure levels are observed for higher dimensions except when
the exposure values were already maximum. This indicates that for the same
embedding type, representations with higher dimensions may memorize more.
This is particularly concerning as a higher performance is generally observed
when the higher dimensions of an embedding type are used.

We also observe that multiple type of insertion of secrets decreases the expo-
sure values except for GloVe embeddings with the disease secret type. This
suggests that the presence of multiple instances of the same type of secret could
confuse the model and helps in lowering the exposure levels.

(a) GloVe vs Random embeddings (b) GloVe vs BERT embeddings

Fig. 2. Exposure values for random, GloVe and BERT embeddings at different stages
of training for the disease secret type with single insertion type of secrets

The length of the secret was also found to affect the memorization. One
interesting finding during the experiments was that the length of the secret
affected the stage of training the exposure values reach the maximum. For the
disease type, the exposure values were already maximum at 40 epochs unlike in
the case of PIN. This is the reason for the lower number of epochs for disease
type of secret in Fig. 1a.

Figure 2 shows the exposure levels of random embeddings and pre-trained
embeddings types; GloVe and BERT at different stages of training. It is observed
that the memorization in the case of GloVe saturates much earlier in training
compared to BERT as shown in Fig. 2b. The memorization in BERT represen-
tations is seen to happen later in training, reaching the maximum exposure
only after the 36th epoch as compared to the 12th epoch in the case of GloVe.
The exposure values in the case of GloVe embeddings were observed to reach
its maximum value earlier than that of random embeddings. This shows that
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Table 1. Exposure values of disease-type of secret for different embedding-types with
differential privacy(DP) training vs non-DP training. The number of epochs for both
versions is 40.

Embedding type Single insertion Multiple insertion

Non-DP DP Non-DP DP

GloVe-100d 5.87 1.61 7.9 1.72

GloVe-300d 6.03 1.17 13.65 2.19

ELMo-1024d 13.39 2.04 9.33 0.65

BERT-768d 14.85 0.12 14.85 1.62

BERT-1024d 14.85 0.27 14.85 2.20

although pre-trained embeddings give an improvement in performance over ran-
dom embeddings, the former are at a higher risk of exposing sensitive information
in the training dataset.

Lastly, we performed experiments by training the LSTM models with
DPSGD (with parameters ε = 10, δ = 2e−5, resulting noise level σ = 0.44), we
observe a drastic reduction in exposure values as shown in Table 1 especially for
models with maximum exposure (BERT-768d and BERT-1024d) from 14.85 to
less than 2.21 for both single insertion and multiple insertions of disease-type of
secrets. Our observation confirms what Carlini et al. [3] observed that differential
privacy helps in reducing memorization. But the DP versions run considerably
slower than non-DP versions, e.g., training the non-DP and DP version using
GloVe embeddings take on average, 12 min and 14 hours respectively on GPU
(Nvidia Titan X). All the reported exposure values have a maximal standard
deviation of 1.09.

6 Conclusion

In this paper, we investigated memorization in word representations commonly
used as features for training the state-of-the-art natural language understanding
tasks. We compare the degree of memorization of three different word embedding
types (GloVe, ELMo and BERT). All the embedding types were found to expose
sensitive information up to a certain extent. This observation implies a possible
privacy threat when they are used in applications with private and sensitive data.
We observed an increase in the exposure levels (except when the exposure value
is already maximum) with the embedding dimension for GloVe and BERT, and
multiple instances of the sensitive information in the training dataset is seen
to lower memorization. Further, we observed that different embedding types
start memorizing at different stages of training. The GloVe embeddings were
found to reach maximum exposure level earlier in training compared to random
embeddings of the same dimension.

As future work, we plan to investigate membership inference attack on the
pre-trained embeddings and train differentially private variants of the embed-
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dings to prevent leakage of sensitive information in practical applications.
Recently, Vu [15] proposed dpUGC – a differentially private Word2Vec model
but the utility of the model was not investigated on NLU tasks. We hope to inves-
tigate the utility of the differentially private variants of the word embeddings on
standard NLU tasks like named entity recognition and text classification.
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3. Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., Song, D.X.: The secret sharer: evaluat-
ing and testing unintended memorization in neural networks. In: USENIX Security
Symposium, pp. 267–284 (2018)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of NAACL,
pp. 4171–4186 (2019)

5. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://
doi.org/10.1007/11761679 29

6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, 7–9 May, 2015, Conference Track Proceedings (2015).
http://arxiv.org/abs/1412.6980

7. McMahan, B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private
recurrent language models. In: ICLR (2018)

8. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of EMNLP (2014)

9. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of
NAACL, Volume 1 (Long Papers), pp. 2227–2237. Association for Computational
Linguistics, June 2018

10. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language mod-
els are unsupervised multitask learners (2018). https://d4mucfpksywv.cloudfront.
net/better-language-models/language-models.pdf

11. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on SP, pp. 3–18 (2017)

12. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the
22nd ACM Conference on CCS, pp. 1310–1321 (2015)

13. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember
too much. In: Proceedings of the ACM SIGSAC Conference on CCS, pp. 587–601
(2017)

http://www.compriseh2020.eu/
http://www.compriseh2020.eu/
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
http://arxiv.org/abs/1412.6980
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf


Investigating Memorization in Pre-trained Word Embeddings 281

14. Song, C., Shmatikov, V.: Auditing data provenance in text-generation models. In:
Proceedings of KDD, pp. 196–206. ACM, New York (2019)

15. Vu, X.-S., Tran, S.N., Jiang, L.: dpUGC: learn differentially private representation
for user generated contents. In: Proceedings of CICLing. La Rochelle, France (2019)



Speech



Investigating the Corpus Independence
of the Bag-of-Audio-Words Approach
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Abstract. In this paper, we analyze the general use of the Bag-of-
Audio-Words (BoAW) feature extraction method. This technique allows
us to handle the problem of varying length recordings. The first step of
the BoAW method is to define cluster centers (called codewords) over
our feature set with an unsupervised training method (such as k-means
clustering or even random sampling). This step is normally performed
on the training set of the actual database, but this approach has its
own drawbacks: we have to create new codewords for each data set and
this increases the computing time and it can lead to over-fitting. Here,
we analyse how much the codebook depends on the given corpus. In
our experiments, we work with three databases: a Hungarian emotion
database, a German emotion database and a general Hungarian speech
database. We experiment with constructing a set of codewords on each of
these databases, and examine how the classification accuracy scores vary
on the Hungarian emotion database. According to our results, the clas-
sification performance was similar in each case, which suggests that the
Bag-of-Audio-Words codebook is practically corpus-independent. This
corpus-independence allows us to reuse codebooks created on different
datasets, which can make it easier to use the BoAW method in practice.

Keywords: Emotion detection · Bag-of-Audio-words · Human voice ·
Sound processing

1 Introduction

Human speech is not only used for encoding the words uttered, but it also
includes some information about the speakers physical and mental state. One
of the latter attributes is the emotional state of the speaker. Nowadays emotion
detection from audio data (speech emotion recognition, SER) is an active area of
research with a wide range of possible applications, including human-computer
interfaces (monitoring human communication) [6], dialog systems [1] and call
centers [12]. In the future with good emotion recognition systems, we will be
able to create more human-oriented and friendlier systems.
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Since the beginning of research in this area, many feature extraction and
classification techniques have been used along with different datasets to get the
best results. The basis of our study is a previous paper [11], where we investi-
gated the Bag-of-Audio-Words (BoAW [7]) technique and its efficiency. One of
the major problem using the BoAW technique was the time required to generate
a codebook, which could be solved if we utilize a predefined codebook instead
of generating a new one for each data set. In this paper, we discuss the conse-
quences of using a predefined codebook. We address the question of whether a
codebook from another database can produce similar or better results than by
using a codebook from the original database. We perform our experiments on a
Hungarian emotion speech database; previous classification accuracy scores on
this database were around 66–70%. We measured Unweighted Average Recall
(UAR, [9]) scores in the range 66–71%, so our view is that the BoAW method
with a predefined codebook is a competitive technique for emotion recognition.

2 The Bag-of-Audio-Words Method

With the representation of emotional speech data, there are many open ques-
tions and problems. One of them is feature extraction from recordings. Often
the utterances we have to handle are of different lengths, but most classifica-
tion techniques require fixed-sized feature vectors. The Bag-of-Audio-words is a
feature extraction method similar to the Bag-of-Words [7] technique. With the
BoAW feature representation, we can resolve the problem of varying length.

In the BoAW procedure, first we have to extract the frame-level feature
vectors per recording; unfortunately, the number of vectors created depends on
the original length of the evaluated recording and the frame’s windowing size.
In the next step, we collect all the feature vectors from all the recordings of
the training set, put them into one big “bag” and perform clustering on it.
Cluster size (N) is one of the parameters of the BoAW method. The result
of the clustering step, the center vector of each calculated cluster, is called a
“codeword”. The group of codewords is then called the “codebook”.

After, in the vector quantization step, we again work with individual record-
ings and create a histogram for each recording (both for the training and test
sets). We calculate the closest codeword for each feature vector in the actual
recording and replace the original feature vectors by the index of the closest
codeword. We can also specify how many closest vectors we examine (this is
also a parameter of the BoAW method). As a result, the same sized (i.e. N)
histogram is produced for each recording. All of the codeword indices appear on
the histogram’s x axis. On the y axis, there are quantities which represent the
set of recording feature vectors that were mapped to a particular codeword.

In the last step, we normalize the histogram, so the given frequencies are
divided by the number of frames of the speech recording. These normalized
histograms will be our new feature vectors, that have an independent length
from the recording sizes (i.e. they will consist of N values) We will call this set
of histograms “Bag-of-Audio-Words” and use it as features for our classifier.
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3 Data and Methods

3.1 Data Sets

In each experiment, we created and evaluated our classification model on the
Hungarian emotion database training and test sets. The other two databases
were used to construct the codebook.

Hungarian Emotion Database. This database contains speech from 97 native
Hungarian speakers [10]. Most of the segments were recorded from a continuous,
spontaneous speaking television program with actors, while the other part came
from an improvisation show. In the first case, the samples are vivid, and the
emotions are more clear because of the actors. The samples from the second case,
however, are closer to real-life emotions. The database contains 1111 sentences,
separated into an 831 sample training set (cca. 20 min long) and a 280 sample
test set (cca. 7 min long). We had four emotions: neutral, joy, anger and sad.

German Emotion Database. This database (also known as EmoDB) contains
speech from 10 native German speakers [2]. The recordings were made with
actors aged between 25 and 35. Each participant produced 10 German utterances
(5 short and 5 longer sentences), all of them with a different emotion. The
classification labels were: neutral, anger, boredom, disgust, fear, happiness and
sadness. The whole database contains approximately 25 min of recordings.

Hungarian Speech Database. This database contains Hungarian television
news recordings taken from 8 different TV channels [5]. The whole data set
consists of 28 h of recordings. In terms of emotion detection, all of the labels can
be treated as neutral because newsreaders are not allowed to show any emotion.

3.2 Feature Set

Our frame-level feature set is based on the Interspeech ComParE Challenge [9].
This set contains 65 frame-level features (4 energy-related, 55 spectral and 6
voicing related). We used the open-source openSMILE feature extractor [4] with
the IS13 ComParE config file. For each frame we calculated the derivatives (i.e.
Δ values) as well; these hold information about the dynamics of the samples.

3.3 Evaluation

Classification is performed by the LIBSVM library [3]. We optimized the SVM C
complexity parameter in the range 10−5, 10−4 to 100. We applied standardization
on the BoAW feature vectors before each model was trained. In the optimization
part of our experiments, we worked with the training set, based on speaker-
independent 10-fold cross-validation. In the test scenario, we trained one SVM
model on the whole training set with the optimal C parameter found above and
evaluated it on the test set.



288 M. Vetráb and G. Gosztolya

Table 1. Baseline: best results got with normalization and standardization, when we
evaluate our technique with cross-validation and do it on the test set.

Feature-transformation UAR Codebook size

a CV Test

Normalization 5 58.08% 48.13% 512

10 57.48% 50.27% 512

Standardization 5 55.43% 53.54% 512

10 56.57% 64.32% 256

3.4 Parameters of the BoAW Method

The BoAW method has many adjustable parameters. In our study, we tested the
effect of the preprocessing method, the codebook size N , and the quantization
neighbour number parameters on the learning algorithm performance. For the
codebook building we used an open-source program called openXBOW [8].

Codebook size: In each experiment we tested the effect of the following
lengths: 32, 64, 128, 256, 512, 1 024, 2 048.

Histogram neighbour number: Instead of looking for just the closest code-
word, each vector may also be assigned to a certain number of the closest code-
words. Previously [11] we found that using more neighbours leads to a more
precise description of the recordings besides the same feature vector size. This
is why we experimented with two different settings (5 and 10).

Preprocessing techniques: If some of the features have an extremely high or
low value compared to the others, it may dominate the Euclidean distance during
the BoAW vector quantization step. Previously [11] we found that preprocessing
the frame-level vectors by standardizing or normalizing them can improve the
performance, so we tried both solutions.

Derivatives: In a previous study [11] we found that using the derivatives of
the frame-level attributes can improve the performance, so we also used them
in our experiments. The openXBOW tool also gives the opportunity to create
separate codebooks for the original frame-level values and another for the Δs;
because we opted for this technique, the codebook sizes provided have to be
multiplied by 2 to get the actual number of features.

4 Tests and Results

As the baseline, we create the codebook from the Hungarian emotion database
training set. Our results are shown on Table 1. The best result of cross-validation
(i.e. 58.08%) came with normalization, 5 neighbours, and a 512-sized codebook.
The best result of the test (i.e. 64.32%) came with standardization, 10 neighbours
and N = 512. In addition, it is clear that in 3 out of 4 cases the results obtained
on the test database were lower than the results of cross-validation, which may
be due to overfitting to the training set during codebook creation.
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Fig. 1. Results of the Baseline and EmoDB generated codebooks with cross-validation
and evaluation on the test set.

Table 2. EMODB : best results with normalization and standardization, when we
evaluate our technique with cross-validation and do it on the test set.

Feature-transformation UAR Codebook size

a CV Test

Normalization 5 59.52% 70.07% 1 024

10 60.13% 62.70% 256

Standardization 5 57.34% 66.59% 128

10 58.81% 70.70% 256

4.1 Codebook from the EmoDB Database

Next, we wanted to know whether working with a codebook from other databases
could produce similar or better results than a codebook created from the original
database. In this part, the codebooks were created from EmoDB ; then we built
the BoAW representation for the Hungarian emotion database and performed
classification using these features.

Examining the results (see Fig. 1 and Table 2) we can see that there was a
significant improvement over the baseline in all four test cases. In 2 cases out of
4, we also see a reduction in the size of the required codebook, which can also
reduce the time needed to produce a BoAW representation.

This improvement and the fact that all EmoDB test cases have more accurate
scores than all the EmoDB cross-validation scores, in our opinion, might indicate
that a codebook made from the original database tends to lead to overfitting,
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Fig. 2. Cross-validation results got from the Baseline and from the News database

and a predefined codebook (which is generated independently from the actual
training samples) can eliminate this problem.

4.2 Codebook from the News Database

Based on the previous tests, it is apparent that a codebook created from a dif-
ferent database led to significant improvements. On the other hand, it is still
not clear whether the type of speech (e.g. rich of emotions or completely neu-
tral) present in the database used for codebook creation affects the emotion
classification performance. To examine this, next the codebooks were prepared
from subsets of the (non-emotion) Hungarian television recordings database [5].
Otherwise, all classification steps were done similarly as before. To investigate
whether the length of the database also affects this performance, we used an 1-h,
2-h, 5-h, and 10-h long subset for codebook creation.

Based on the results of the cross-validation (see Fig. 2), we could not correlate
the length of the database with the success of the classification. The same can
be said about the type of preprocessing method and the number of closest neigh-
bors: all the scores ranged from 55.75% to 60.74%. Most of the best-performing
codebook sizes were 1 024 and 2 048, which are relatively large feature sets. The
best result of cross-validation came from a 1-h length database, with standardiza-
tion, taking 5 neighbors, using 1 024 sized codebook, giving the score of 60.74%.
The results did not reveal significant differences depending on the length of
the database, hence no general relationship could be found. In addition, we did
not get significantly better or worse scores than using a codebook specifically
designed for emotion detection from a EmoDB database.
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Fig. 3. Test result got from the Baseline and from the Hungarian speech database

The best score of the test was 71.86%, with the 10-h dataset, standardization,
with 10 neighbours and a 1 024-sized codebook. However, besides the required
increase in the codebook size, no obvious inferences could be made here (Fig. 3).

5 Conclusions

In this paper, the BoAW (Bag-of-Audio-Words) feature representation method
was simultaneously applied on multiple databases for emotion recognition. We
were interested in the possibility of creating BoAW codebooks from other
datasets; this would allow the re-using of codebooks for several corpora, there-
fore allowing to cut execution times significantly. From this viewpoint, building
a codebook from other, similar purpose databases gives better scores than those
got using purpose-built database codebooks.

Based on our tests, it can be clearly stated that each predefined codebook
can be successfully used to extract BoAW feature representations of any other
databases. The best score of the tests with the Hungarian emotion database own
codebook was 64.32%. Compared to this, when we used other database code-
books we got better results. The best score of the tests with the Hungarian speech
database codebook was 66–71.86%. The best score of the tests with the German
emotion database codebook was 66–70.70%. With these results, we could not
find a clear answer to whether it is advisable to use a codebook between any two
databases created for similar purposes but a different language or for a similar
language but different purpose. In both cases, our results varied on a similar
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scale, with no significant difference. They just differed in codebook size, so this
point requires deeper study.

Now we know that codebooks are portable, but there are several directions
we can pursue in the future. One good question is what type of databases can be
most effectively transferred from the viewpoint of codebook reusability. Is there
a close connection between certain types of databases? We could also test other
frame-level feature sets to see whether there are any benefits in practice.
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1 Department of Electrical, Computer, and Software Engineering,
University of Auckland, Auckland, New Zealand

{jesin.james,c.watson}@auckland.ac.nz
{ishi836,rber798}@aucklanduni.ac.nz

2 Te Puna Wānanga, University of Auckland, Auckland, New Zealand
p.keegan@auckland.ac.nz

Abstract. Te reo Māori (the Māori language of New Zealand) is an
under-resourced language in terms of availability of speech corpora and
resources needed to develop robust speech technology. Māori is an endan-
gered indigenous language which has been subject to revitalisation efforts
since the late 1970s, which are well known internationally. The Māori
community recognises the need for developing speech technology tools
for the language, which will improve its study and usage in wider and
more digital contexts. This paper describes the development of speech
resources in Māori to build one of the first Text To Speech synthesis
system for the language. A speech corpus, extended dictionary and a
parametric speech synthesiser are the main contributions of the study.
To develop these resources, text processing, segmentation and alignment,
letter to sound rules creation were also done with existing resources that
were modified to be used for Māori. The acoustic similarity of synthesised
speech vs natural speech was measured to evaluate the speech synthesis
system statistically. Future work required is described.

Keywords: Under-resourced language · Tts system · Te reo Māori

1 Introduction

Speech technology is a dominant research field and technology that talks is
becoming the new norm. However, a majority of these studies are happening
only in a few privileged languages (1.4% of world languages) [10]. Languages
that do not have the technical support to develop speech processing technologies
are termed as under-resourced languages. Te reo (means language) Māori1 is the
indigenous language of New Zealand and has official language status. However,
1 We thank Te Hiku Media for their generous support in funding this project (https://

tehiku.nz/). We thank the MAONZE research group [1] for their encouragement.
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New Zealand English is the dominant language in the country. The 2018 New
Zealand census reports2 that there are 185955 Māori speakers, which accounts
for only 4% of the total population (4.58 million). There is a lack of speech
and language resources in Māori, making it under-resourced. In 1998, Laws [12]
developed a diphone-based synthetic Māori voice. A Festival-based TTS system
was planned [13], but its development was stopped in 2003. The lexicon resources
developed by Laws are sadly lost, although a copy of the recorded diphones
remains. Since Laws’ pioneering work, a lot more tools have become available
to developing speech and language resources. But, no more work was done on
Māori. In this paper, we present the development of speech resources for Māori
(preliminary work reported in [18]), with the larger aim of developing a Text To
Speech synthesis (TTS) system.

2 Motivation : Te Reo Māori Revitalisation

Māori language spoken in New Zealand derives from the languages/dialects spo-
ken by arrivals from Eastern Polynesian region of the South Pacific, 800 years
ago. It was heavily influenced by English speakers who began arriving in the
early 1800s. Since the early 1900s, most Māori were taught in English and were
discouraged from speaking Māori in schools. Between 1950–1980 there was a
sharp decline in the number of fluent Māori speakers [9,20]. From the 1980s
there have been strong Māori revitalisation efforts (known internationally [2])
involving both Māori community initiatives, support from New Zealand Gov-
ernment in education, the media, official contexts and other organisations. Te
Hiku Media is an example, who in addition to providing media services to the
local Māori, are involved in developing digital tools (like speech tools) for the
wider community. The Māori community is aware of sound change over time. It
is regarded as a result of the break in intergenerational transmission; thus, this
sound change has been regretted [20]. The MAONZE research group [1] has been
doing extensive research into sound change in Māori [14,21]. A Māori pronun-
ciation aid (MPAi) is being developed [20], and research is focused on the ways
to provide feedback to people from the aid. In this context, a module that can
produce synthesised Māori speech can provide speech feedback to MPAi users.
Also, a TTS system can be used by people not so proficient in Māori to listen to
how words/sentences are spoken. This has potential applications like e-readers,
human-computer interaction systems where the technology used in New Zealand
currently is English-based. The new generation of Māori users are all exposed
to the latest technology. If Māori-based interfaces are available to them, te reo
Māori use can be boosted. Given all these applications, and the larger aim to
revitalise the language, speech resource development in Māori is essential.

Māori Phonology: (Details in [11,14]) Māori, as with other Polynesian
languages did not have an indigenous writing system. The Roman script was
used to write Māori since the early 1800s. Māori uses macrons to differentiate

2 https://www.stats.govt.nz/information-releases/2018-census-totals-by-topic-
national-highlights-updated.
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between long and short vowels. The language has ten consonants <p, t, k, m,
n, N, f, w, R, h> and five short vowels <i, e, a, o, u>. Vowel length is phonemic,
i.e., there are five contrasting long vowels < ı̄, ē, ā, ō, ū >. Research points out
that the timing unit in Māori as the mora, a unit consisting of a short vowel
plus any preceding consonant. There are no consonant clusters.

3 Te Reo Māori Resources Development

As Māori is under-resourced, many resources needed for the TTS system had to
be developed. Knowledge of Māori language is essential to build these resources.

Māori Speech Corpus: To build a parametric speech model for Māori,
an appropriate speech corpus was developed. The transcript for the corpus was
sourced from a collection of Māori myths and legends called Ngā Mahi a Ngā
tūpuna [7]. These source files were processed, and text cues for recording were
produced. Lines were split according to the presence of [ . ? ! ; : ]. The source
files use old Māori alphabet, where long vowels were represented without macrons
(e.g. old alphabet ‘aa’, new alphabet ‘ā’). Conversion to the current Māori alpha-
bet was made by replacing long vowels. Some occurrences of double vowels should
not be replaced with macros as the sequence occurs across a morpheme boundary
(e.g. whakaaro) and they were hand-corrected. A basic phonetic transcription
was created via Python-based coding. This produced a new file which replaced
macron symbols (e.g. ‘ā’) with a symbol and a colon to indicate length (e.g. ‘a:’),
and ‘r’ with ‘R’, and digrams ‘ng’ and ’wh’ with‘ŋ’ and ‘f’, respectively. Each line
of the transcript was split into separate prompt files for recording.

Lexicon: An existing dictionary from the MAONZE project was used as
the starting point. All words which appeared in the transcript but not in the
original dictionary were added using Python scripts that performed comparison.
The created lexicon contains over 10000 words and 18000 names, along with a
phonetic transcription of words, syllable boundaries and stress mark up. The
latter two are determined using Bigg’s stress rules [3] and the division of words
into morae. The automated rules were checked on 959 hand-transcribed rules,
and the accuracy was 95%.

Corpus Recording: Recordings took place in a WhisperRoom Sound Iso-
lation chamber. The speaker was recorded using a Rode Lavalier Lapel micro-
phone kept 15 cm from their mouth. The microphone was connected to a Roland
OCTA-CAPTURE. Audacity R©3 was used for audio capture at 44.1 kHz sam-
pling frequency. A computer monitor displaying the prompts was set up on a
desk inside the recording enclosure. The pre-amplifier gain was set to 37.5 dB. A
middle-aged male Māori speaker was used to record the corpus. The speaker was
given time to read over each phrase and familiarise with it before recording. Long
sentences were read as phrases by speaker, using his own judgement to deter-
mine ‘natural’ phrase boundaries within sentences. The audio playthrough was
enabled so that audio quality and correctness of the utterance could be assessed
during recording. While the recording was trimmed and saved by the recorder,
3 Audacity R© software is copyright c©1999–2019 Audacity Team.
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the speaker read the following sentence to be recorded. Each recording was saved
in stereo WAV format. Recording sessions were limited to approximately 200 sen-
tences to ensure speaker comfort. Each session took about 2–2.5 h, accounting
for a break in between the session. In total, 1030 sentences were recorded. The
first 800 of these correspond to the first 800 lines of the transcript. The final 230
were selected from the remaining transcript after a basic analysis of phone and
diphone coverage.

Diphone Coverage: A basic analysis of diphone coverage was undertaken
after the first 800 sentences were recorded. 30 occurrences were arbitrarily chosen
as the goal for each insufficiently covered diphone. Sentences from the remaining
unrecorded transcript that had instances of these were selected. Comparison
of the frequency of occurrence of long and short vowels largely reflects rates
reported in [16]. Figure 1 gives the diphone coverage of the corpus developed.
Diphone pairs such as /wu/ and /wo/ only appear in loanwords. Diphones /fu/
and /fo/, although not well covered in the corpus, are very rare. There are few
instances where the corpus insufficiently covers a diphone pair, such as ‘nge’
(/Ne/).

Alignment: Montreal Forced Aligner (MFA Version 1.0.0) [15] was used to
align text with the recordings. Recordings in WAV format, phonetic transcrip-
tions in TextGrid format and dictionary are needed for the alignment. Manual
checking of alignment and hand corrections were done. For converting TextGrid
to .lab format (needed for MaryTTS voice creation), the phone tier is extracted,
and each symbol and its corresponding end time are stored in the .lab format.

Fig. 1. Occurrences of diphones in the Māori corpus
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4 Te Reo Māori TTS System Development and Analysis

This project used MaryTTS [17] (Java-based) to generate a Hidden Markov
Model (HMM) - based (parametric speech synthesis) Māori voice. A deep-
learning approach was not taken as a sufficiently large corpus is unavailable. An
open-source speech synthesiser with good speech quality and support for new
languages was needed for this project; which lead to the choice of MaryTTS.

Adding a New Language to MaryTTS: MaryTTS New Language Sup-
port was used to develop the Māori TTS system. The locale name used for Māori
was ‘mi’ following Windows locale codes. Requirements for new language addi-
tion are the allophone list, lexicon, letter to sound rules and language corpus.
The lexicon and language corpus were built, as described previously. An allo-
phone list was added specifying the features: vowel length, vowel height, vowel
frontness, lip rounding, consonant type, place of articulation, consonant voicing.
39 allophones (28 for vowels, 10 for consonants, one for silence) are identified for
Māori.

Creation of Letter to Sound Rules: MaryTTS transcription tool was
used to create letter to sound (LTS) rules using the dictionary and allophone
set. First, a manual specification of all letters and corresponding phones that
can be used to render them are created. The complete lexicon that is used for
training is then aligned to the corresponding phones based on the mapping table.
Then a classification and regression tree was built using the training data for
LTS rules.

Voice Building: The voice building process in MaryTTS was followed
with the language resources. The linguistic features extracted are ToBI accents;
quinphones for each phone; part-of-speech of each word and features of each
phone. This is Text analysis and Linguistic analysis. HMM-based voice build-
ing was done based on these features. The pitch range was set to 50–300 Hz
(for male speaker). Mel-generalised cepstrum coefficients, log of fundamental
frequency and strength were the speech features modelled. The final step builds
the language-based speech model. This model will be used for Waveform Gener-
ation. An end-to-end Māori TTS system was set up as in Fig. 2, with Māori text
input, and the output is synthesised speech. Native Māori speakers listened the
synthesised speech produced, and they commented that the pronunciations were
in alignment with those expected from Māori speakers. A client-server model-
based speech synthesiser for Māori was set up in the University of Auckland
robotspeech server and is available for the various research activities at the uni-
versity. We are working on making the online TTS system accessible to the wider
public. The lexicon and speech corpora will not be made available publicly, as
we are guided by Te Hiku media’s data sovereignty stance4.

Signal-Based Quality Diagnosis: To evaluate the synthesised speech, a
simplified version of the signal-based quality diagnosis (mel-cepstral distortion -
MCD) described in [5] was implemented. MCD measures the difference between

4 https://tehiku.nz/te-hiku-radio/te-putahi/12707/dr-tahu-kukutai-keoni-mahelona-
data-sovereignty.

https://tehiku.nz/te-hiku-radio/te-putahi/12707/dr-tahu-kukutai-keoni-mahelona-data-sovereignty
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Fig. 2. The end-to-end Māori Text To Speech synthesis system

two sequences of mel cepstra as shown in Fig. 3. Segmentation is done at the word
level (using MFA), for the original and synthesised speech. MFCCs are extracted
using [4]. Difference in timing of the two sequences is aligned by Dynamic Time
Warping (DTW) (based on [6]). Consider the synthesised speech and reference
original speech MFCCs as a time series X = (x1, x2...xN ) and Y = (y1, y2...yM )
respectively. A correspondence between their elements is established by a warp-
ing curve Φ = (φt, ψt); t = 1, ...T . (T depends on the lengths M and N).
The optimal warping curve is the one that minimises the distance between the
two time series, represented by: Φ̂ = (φ̂t, ψ̂t) = argmax

(φt,ψt)

=
∑T

t=1
d(xφt ,yψt )mt,Φ

MΦ

[19]. Here mt,φ: local weighting coefficient, Mφ: path-dependent normalisation
=

∑T
t=1 mt,Φ, d: local distance. The minimum cumulative distance is obtained

as: D(X,Y ) =
∑T

t=1

d(xφ̂t
,yψ̂t

)mt,Φ̂

MΦ̂
. The distance measure obtained is the average

per-step distance along the warping curve.

Fig. 3. Acoustic similarity measure for synthesised speech

432 words from 30 sentences in the Māori corpus were tested. Example of
time series alignment obtained after warping is shown in Fig. 4. The alignment is
perfect when it is between the same words (a), and the alignment is poor when
the original and synthesised versions are from different words (c). The alignment
is good for the original and synthesised version of the same word (b), which
is an indication of the performance of the TTS system. Normalised distance
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Fig. 4. Time series alignment using DTW of MFCCs. (a) Same words (b) natural vs
synthesised version of same word, (c) natural vs synthesised version of two words [6].

Fig. 5. (a) Confusion matrix of distance between original and synthetised MFCCs. (b)
The probability distribution of distance between original and synthesised MFCCs.

measure between the original and synthesised MFCC time series is then taken
as described in Fig. 3 [8]. Figure 5 (a) shows the confusion matrix of distance
measures for 6 example words. It can be seen that the distance is comparatively
lower when the original and synthesised MFCCs are of the same word (see Fig. 4).
Figure 5 (b) shows the probability distribution of the distance measures for:
Comparison A: Between MFCCs of original and synthesised versions of different
words and Comparison B: Between MFCCs of original and synthesised versions
of same words for all words tested. It is clear that Comparison A results in
larger distance compared to Comparison B. This statistically shows the acoustic
similarity between the words in the original and synthesised speech signals.

5 Conclusion and Future Work

This paper describes the development of te reo Māori TTS system. Māori is
under-resourced, and development of speech technology resources is critical for
its revitalisation. A speech corpus was developed containing 1030 sentences. The
Māori lexicon was built with 10000 words and 18000 names. Existing tools (like
Montreal Forced Aligner) were customised to segment and align the text and
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speech signals in the corpus. These resources were then used to develop an
end-to-end Māori TTS system, where Māori text is entered, and the output
is synthesised speech. Acoustic similarity analysis of the synthesised speech was
done. Perceptual testing of the synthesised speech will be conducted. Future
work will focus on expanding the Māori lexicon and checking entries, especially
where orthography does not align with the current Māori phonetics. There is
also a need to incorporate modern Māori pronunciations (like the occurrence of
affrication and semi-vowels not present in traditional Māori) into the lexicon.
Also, the effect of phraseology on the assignment of stress/syllable structure
needs to be added to the linguistic analysis. In the real world, code-switching is
common in spoken Māori; therefore, any useful Māori TTS system will need to
accommodate New Zealand English. We hope to implement this by 2021 [18].
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Abstract. Voice Onset Time (VOT) has been used as an acoustic mea-
sure for a better understanding of the impact of different motor speech
disorders in speech production. The purpose of our paper is to present
a methodology for the manual measuring of VOT in voiceless plosive
sounds and to analyze its suitability to detect specific articulation prob-
lems in Parkinson’s disease (PD) patients. The experiments are per-
formed with recordings of the diadochokinetic evaluation which consists
in the rapid repetition of the syllables /pa-ta-ka/. A total of 50 PD
patients and 50 healthy speakers (HC) participated in this study. Man-
ual measurements include VOT values and also duration of the closure
phase, duration of the consonant, and the maximum spectral energy dur-
ing the burst phase. Results indicate that the methodology is consistent
and allows the automatic classification between PD patients and healthy
speakers with accuracies of up to 77%.

Keywords: Voice onset time · Acoustic analysis · Speech processing ·
Diadochokinesis

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the
progressive loss of neurons in the mid-brain [6]. Primary motor symptoms include
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tremor, rigidity, freezing of gait, and postural instability. PD also affects muscles
involved in the speech production process, resulting in hypokinectic dysarthria,
which is a set of motor speech disorders including bradylalia, lack of articulation
accuracy, and dysphonia [4]. Many of the symptoms are controlled with medi-
cation, however there is no clear evidence indicating the positive effects of those
treatments to reduce motor speech disorders. Proper speech therapy combined
with the pharmacological treatment improve the communication ability of PD
patients [16]. Thus, it makes sense to develop methodologies based on acoustic
analysis to evaluate speech impairments in PD patients. The resources of instru-
mental phonetics allow acoustic analysis of segmental and supra-segmental char-
acteristics ranging from isolated sounds to spontaneous speech analysis. These
tools allow a linguistic and physiological understanding of atypical phenomena
in speech and their relationship with the presence of symptoms related with sub-
glottic, glottic or supra-glottic nature. In the case of PD, the diadochokinetic
exercises (DDK) are used to study the production of voiceless plosive conso-
nants (VPC) and vocal segments, which allows the analysis of coordination in
supra-glottic and glottic components [2].

The pronunciation of the VPCs /p/,/t/, and /k/ involves the production
of VOT which is defined as the time between the burst and the beginning of
the emission of the next vowel [9]. In hypokinetic dysarthria VOT is useful to
assess speech impairments by identifying the increase or decrease in duration.
These patterns may be related to glottal adduction, degree of vocal cord tension,
and quality of intra-oral pressures [5]. Preliminary results describe a significant
VOT reduction in some VPCs, which can be explained by the loss of neuro-
muscular control during speech production. There is also another hypothesis
where increase in VOT is related with loss of laryngeal and supra-laryngeal
coordination [10].

VOT is measured by manual syllable-by-syllable labeling. The wide-band
spectrogram shows the frequency and its relation with the duration of the signal.
Abrupt changes associated to physiological phenomena can also be captured. The
burst is visually identified as a short explosion bar with energy distributed over
the entire frequency spectrum. The onset of the vowel is identified as the high
energy values with the corresponding formant structure in the spectrogram [8].
Manual labeling requires to consider the relationship among these results and
the signal represented in the oscillogram to have a better view of the signal’s
disturbances including abnormal changes in the consonant to vowel segment [1].
There are other measurement parameters to define acoustic integrity of VPCs
such as the duration of the closure and the point of maximum spectral energy
in the burst. These characteristics are considered in this paper through manual
labeling and represent physiological correlations with supra-glottic pressure and
articulatory accuracy of the sound.

From the automation/engineering point of view, VOT has been considered
in DDK exercises to extract relevant information such as VOT duration and
VOT ratio between VOT and vowel length (CV ratio). These parameters were
used in [11] to classify between PD patients and healthy speakers. The authors
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reported accuracies of 92.2%. In [12] the authors measured VOT and obtained
articulatory characteristics in relation to physiological correlates of vocal quality,
articulatory accuracy, occlusion quality, and glottal and supra-glottal coordina-
tion. In general, automated methods help in reducing costs and time of clinical
screenings including those that required to evaluate and monitor motor speech
disorder in PD patients [14]. The automatic computational methods should con-
sider the existence of approximate or incomplete productions in DDK tasks.
Note that the alternating and rapid repetition of the plosives /p/, /t/, and
/k/ generate variations that reveal patterns like debilitation of the burst, pres-
ence of voicing and loss of the articulatory tension. Fusion of automatic and
manual labeling methods may improve the accuracy in detecting the aforemen-
tioned variations and allow the description of the acoustic “correctness” of each
consonant segment. The purpose of our paper is to present a methodology for
measuring VOT of VPCs in /pa-ta-ka/ using phonetic-acoustic manual methods
and the automatic measurement method to evaluate and analyze the accuracy
of the detection of speech disorders in PD patients.

2 Methodology

Details of the proposed methodology are provided below. It includes the descrip-
tion of the database and the steps followed in the manual labeling process along
with its automatic evaluation.

2.1 Data

Speech recordings of the PC-GITA database are considered [13]. This corpus
includes 50 PD patients and 50 healthy speakers. The participants were asked
to perform the rapid repetition of /pa-ta-ka/ for at least 3 seconds. The speech
signals were captured in a sound-proof booth using a professional audio setting.
All of the patients were evaluated by a neurologist expert following the MDS-
UPDRS-III scale [7]. Table 1 summarizes demographic and clinical information
of the speakers.

Table 1. Clinical and demographic information of the speakers. Values in terms of
(Mean± Standard deviation).

PD patients HC speakers

Male Female Male Female

Number of speakers 25 25 25 25

Age [Years] 61± 11 60± 7 60± 11 61± 7

Years diagnosed 13± 11 9± 5 – –

MDS-UPDRS-III 37.4± 21.7 37.6± 14.0 – –
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2.2 Acoustic Phonetic Analysis of VPCs

Voiceless plosive consonants are characterized by three stages in Spanish: app-
roach, closure, and release. During the approach phase, the articulators move
towards each other, creating an obstruction of airflow during the closure phase.
Finally, the articulators move away from each other during the release phase pro-
ducing an explosive burst of air with energy spread across the audible spectrum.
Figure 1 shows time and spectral representation of the VPC /p/, followed by the
vowel /a/. The shaded regions represent the closure and the release phases. The
closure phase is characterized by the absence of speech, which can be observed
in the time signal (Fig. 1A) and in the spectrogram (Fig. 1B). The release stage
is typically observed by looking at the spectral representation. Precision to pro-
duce voiceless plosive sounds can be reduced due to the presence of a motor
problem. Loss of pressure in the lips changes /p/ sounds; impaired movement
of the tongue affects /t/ sounds, and loss of contact with the soft palate and
no burst deviates /k/ sounds. Altered versions of these sounds are perceived
as /β/, /δ/, and /γ/, instead of /p/, /t/, and /k/, respectively. These weak-
ened consonants are characterized by the loss of tension, increased voicing and
incomplete contact of the articulators. As a result, there is no silence nor burst
during the closure and release phases, respectively. Figure 2 shows an example
of a weak consonant /β/ (/p/), produced in the transition from one utterance
of /pa-ta-ka/ to another.

Fig. 1. Time (Figure A) and spectral (Figure B) representations of the voiceless plosive
sound /p/. The shaded regions represent the closure and release phases.

2.3 Manual Labeling

Manual labels are found using the software Praat [3], as follows:

1. Determine the start and total duration of the consonant in a syllable by
syllable fashion. The total duration of the VPC is measured as the total
duration of the approach, closure, and release phases.

2. Identify the closure phase as the time prior to the burst indicated by the
point of minimum intensity relative to the surrounding sounds, i.e., tension
phase with increased supra-glottic pressure.
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Fig. 2. Weak consonant /β/ (/p/) produced in the syllables /pa-ta-ka/.

3. Measure the maximum spectral energy during the release stage. A spectral
slice is extracted in the first energy burst produced in a VPC sound. Then,
the point with highest spectral energy is extracted.

4. Measure the VOT by placing labels at the initial burst of the consonant and
vowel onset. The time of the initial burst is detected by computing the zero
crossing points. The vowel onset is set at the beginning of a periodic-like
signal. Formant frequencies and the presence of pitch are used to mark the
beginning of voicing in a stop-vowel transition.

5. Identify weak consonants /β/, /δ/, and /γ/, in order to measure negative
VOT. In this case, VOT is measured as the time between the end of the pre-
vious vowel and the beginning of the next one. The energy between syllables,
e.g. /ka/ to /βa/, /pa/ to /δa/, and /ta/ to /γa/, is computed to detect the
beginning of the weakened consonant.

These steps are followed to extract the acoustic measures: VOT value, dura-
tion of the closure phase, total duration of the consonant, and the frequency point
with the maximum spectral energy measured in the burst phase. Mean value,
standard deviation, kurtosis, and skewness are computed from the acoustic mea-
sures to create 48-dimensional feature vectors (4 measurements * 3 plosives * 4
functionals) per speaker.

2.4 Automatic Classification Between PD Patients and HC
Speakers

A radial basis function – Support Vector Machine (rbf–SVM) with margin
parameter C and kernel bandwidth γ is considered. Parameters are optimized
through a grid search with 10−4 < C < 104 and 10−6 < γ < 103. The selection
criterion is based on the performance obtained in the training set following a
10-fold cross validation strategy. The performance of the system is evaluated by
means of accuracy (Acc), sensitivity (Sen), specificity (Spe), and the F1-score.
Additionally, the Area Under the ROC Curve (AUC) is considered to present
results more compactly. The values of the AUC range from 0.0 to 1.0, were 1.0
means perfect classification.
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3 Results and Discussion

3.1 Preliminary Observations with Manual Labels

To evaluate the suitability of the proposed method to detect abnormal produc-
tion of VPCs based on manual labels, the following measures are considered:
the VOT, duration of the closure phase, total duration of the consonant, and
the frequency point with the maximum spectral energy measured in the burst
phase. Figure 3 shows box plots with the four manual acoustic features. Kruskal-
Wallis tests were applied and significant differences are found in almost all of the
acoustic features except for the duration of the consonants /p/ and /t/ and the
frequency of burst in /t/ and /k/. Figure 4A shows the number of positive and
negative VOTs measured for the PD and HC groups. In general, the number of
positive VOT values is higher than the negative ones. Also, the number of neg-
ative VOTs is higher in PD compared with respect to the HC group. Figures 4B
and 4C show the number of negative VOT per consonant measured in the HC
and PD groups, respectively. The presence of the weak consonants indicates loss
of acoustic integrity of VPC, this phenomenon was observed in both HC and
PD speakers. As shown in Figs. 4B and 4C, /p/ is more sensible to turn into its
voiced version /β/. Finally, it is relatively common to observe an increase in the
approximations in /β/ and /γ/ within the HC group. This is because in Spanish
the DDK /pa-ta-ka/ has the energy of the accent in /tá/, which maintains the
closure and the explosion in this dental sound.

Fig. 3. Box-plots of acoustic measures extracted from each group. Kruskal-Wallis tests
were applied with the following significance criteria: p-values: ***p < 0.001; **p < 0.01;
*p < 0.05 and n.s. (non-significant). Light grey diamonds represent outliers.
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Fig. 4. Number of positive and negative VOT measurements found in our data.
Figure 4A shows the number of positive and negative VOTs measured for the PD
and HC groups. Figure 4B shows the number of negative VOTs measured in the HC
group for each consonant. Figure 4C shows the number of negative VOTs measured in
the PD group for each consonant.

3.2 Automatic Classification of PD vs. HC Subjects

Table 2 shows the performance of the rbf–SVM classifier. Four scenarios were
considered: feature vectors from consonants /p/, /t/, /k/, and the combina-
tion of all. The highest accuracies were obtained with the SVMs trained with
features from the consonant /p/ and with features from the three consonants
(Acc = 77%). Furthermore, the lowest accuracy was obtained when the rbf–SVM
is trained only with features of the consonant /k/ (Acc = 68%).

Table 2. Classification results (PD vs. HC) using manually extracted acoustic mea-
sures. Acc: Accuracy. Sen: Sensitivity. Spe: Specificity. AUC: Area under the ROC
curve

Feature set Acc (%) Sen (%) Spe (%) F1-score AUC

Consonant /p/ 77 80 74 0.77 0.82

Consonant /t/ 71 70 72 0.71 0.76

Consonant /k/ 68 84 52 0.67 0.74

All consonants 77 76 78 0.77 0.83

The results obtained here confirm that articulatory imprecision is a common
characteristic in PD speech and it is exhibited as a slowing down in the transi-
tion towards the beginning of the vowel. The decrease in supra-glottic tension,
which debilitates the frequency burst in the consonants, is also confirmed by
experiments. VOT allows accurate classification of PD vs. HC people. As indi-
cated in [17] there is an increas in VOT of PD patients which is associated with
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voicing and aspiration. The method proposed in this paper shows accuracies of
up to 77% in the consonant /p/, which is approximated as β in several cases due
to the absence of tension before the burst as a decrease in the closure in bilabial
sounds [15].

4 Conclusions

Acoustic phonetic analysis with manual labeling allows validation of the acous-
tic characteristics of consonants and their variations depending on the linguis-
tic context while automatic methods are established as rapid detection tools
that together determine the accuracy, sensitivity and specificity of cases. In this
way, the fusion of both methodologies makes possible the classification between
healthy people and people with PD from the measurement of VOT and closure.
In the future, we plan to speed up the labeling process and to automatize the
feature extraction.
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Abstract. The widespread availability of open source and commer-
cial text-to-speech (TTS) engines allows for the rapid creation of tele-
phony services that require a TTS component. However, there exists
neither a standard corpus nor common metrics to objectively evaluate
TTS engines. Listening tests are a prominent method of evaluation in
the domain where the primary goal is to produce speech targeted at
human listeners. Nonetheless, subjective evaluation can be problematic
and expensive. Objective evaluation metrics, such as word accuracy and
contextual disambiguation (is “Dr.” rendered as Doctor or Drive?), have
the benefit of being both inexpensive and unbiased. In this paper, we
study seven TTS engines, four open source engines and three commercial
ones. We systematically evaluate each TTS engine on two axes: (1) con-
textual word accuracy (includes support for numbers, homographs, for-
eign words, acronyms, and directional abbreviations); and (2) naturalness
(how natural the TTS sounds to human listeners). Our results indicate
that commercial engines may have an edge over open source TTS engines.

1 Introduction

As voice enabled devices gain prominence in our daily lives, it is increasingly
important that such technologies possess human-like speech capabilities. The
perceptual quality of TTS speech synthesis technology impacts the acceptability
of such systems. For this reason, there is a push among TTS researchers to
make synthetic speech more naturalistic. The applications for such technologies
are vast, including solutions for the visually impaired, hands-free technology,
customer-service centers, etc. In the market today, there are many TTS engines
with varied capabilities. The goal of this study is to propose a set of evaluation
metrics which can be used to evaluate TTS engines. The proposed evaluation
is based on a measure we call contextual word accuracy (formally defined in
Sect. 3), and the necessary, though subjective measure of naturalness, i.e., how
do human listeners rank the TTS engines?

Seven TTS engines were considered: four open source engines and three com-
mercial engines. The open source engines were:
c© Springer Nature Switzerland AG 2020
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– Mimic1: Mimic is the light-weight TTS component based on Carnegie Mel-
lon’s FLITE software (see below).

– CMU FLITE2: FLITE is a small TTS synthesis engine developed at Carnegie
Mellon University (CMU) and is designed for small, embedded machines as
well as large servers.

– MaryTTS 3: MaryTTS is a Java-based multilingual TTS synthesis platform
using a Hidden Markov Model (HMM-) model.

– DeepVoice34 [2]: DeepVoice3 is a fully convolutional attention-based neural
TTS system.

The following commercial engines were evaluated using their respective cloud-
based interfaces:

– Voicery5: Voicery is a commercial start-up offering a deep neural network.
– Acapela6: Acapela is a European company specializing in personalized digi-

tized voices.
– Selvy7: Selvy a TTS synthesis engine from a South Korean company.

There are additional commercial engines such as Amazon Polly8, Google
Tacotron [3], and IBM Watson Text to Speech9. While we are not aware of
any scientific study comparing these engines in a formal manner, it is widely
assumed by practitioners that these engines are the state-of-art in TTS. Given
this assumption, we use Amazon Polly as a control variable and benchmark on
which to evaluate the seven TTS engines under consideration.

The remainder of the paper is organized as follows: Sect. 2 motivates the
work, Sect. 3 presents our evaluation corpus of 21 test utterances, Sect. 4 details
the evaluation methodology, and Sect. 5 presents results and discusses findings.
Beyond Sect. 6 are several appendices that provide the raw data to elaborate on
results.

2 Related Work and Contribution

Despite recent advancement in speech synthesis, the evaluation of such tech-
nology has seen little advancement and lacks an established gold standard of
evaluation metrics. The classic approach for TTS evaluation is to synthesize a
set of samples, present the samples to listeners, and to draw conclusions about
the systems based on listener evaluation.
1 https://mycroft.ai/documentation/mimic (last visit: April 23, 2020).
2 http://www.festvox.org/flite/ (last visit: April 23, 2020).
3 http://mary.dfki.de (last visit: April 23, 2020).
4 https://github.com/r9y9/deepvoice3 pytorch (last visit: April 23, 2020).
5 https://www.voicery.com (last visit: March 2020).
6 https://www.acapela-group.com/ (last visit: April 23, 2020).
7 http://speech.diotek.com/en/text-to-speech-demonstration.php (last visit: April 23,
2020).

8 https://aws.amazon.com/polly/ (last visit: February 2020).
9 https://www.ibm.com/Watson/services/text-to-speech/ (last visit: May 2019).
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Objective measures have been developed for speech quality evaluation in
telecommunication systems, such as measuring mel cepstral distortion [4,5].
While these serve as a proxy for how well the TTS model represents natu-
ral speech, automating this process is challenging and often requires a bench-
mark natural speech signal [6]. While some measures do not require a refer-
ence speech signal [8], subjective listening tests remain the gold standard in
the literature. The most common listening tests are Mean Opinion Score tests
(MOS, ITU-T Rec. P.10, 2006), MUltiple Stimuli with Hidden Reference and
Anchor (MUSHRA, ITU-T Rec. BS.1543, 2015), preference tests, and transcrip-
tion tasks. The attributes measured by such tests include measures of natural-
ness, intelligibility, similarity, etc.

The Blizzard Challenge was developed to better understand and compare
research techniques in building corpus-based speech synthesizers on the same
data [7]. Competitors present the results from a standard listening test and
describe their systems. These tests included listening to a fixed number of utter-
ances and subsequently assigning a domain-specific MOS score based on the test
set. While this challenge has a well developed listening test, it is also subjective.

Primary Contributions: TTS engines are used in a variety of applications and
it is important that such technologies are flexible enough to adapt to the proper-
ties of novel environments. However TTS systems can be fragile, and often break
down with minor changes in the lexicon. This work proposes a corpus (Sect. 3) of
diverse set of English phonological and morphological artifacts (homographs, for-
eign loan words, acronyms, directional abbreviations, etc.) that present potential
challenges to TTS engines. We seek to establish this corpus as a canonical corpus
for evaluating TTS engines. Furthermore, we propose two evaluation method-
ologies (Sect. 4): an objective metric that allows for impartial evaluation of TTS
response to complex input, and while the second metric is a subjective listen-
ing test, we attempt to control for subjectivity in evaluating it through using
multiple advanced voting techniques.

3 Evaluation Corpus

The set of 21 vectors used to evaluate the TTS engines is shown in Table 1.
These sentences represent a diverse set of English phonological and morpholog-
ical grammatical constructs that present potential challenges to TTS engines.
While these sentences would be easily produced and understood by humans, they
include ambiguities and homographs that could present challenges to a TTS sys-
tem - challenges which potentially indicate inadequate training of the system.
Thus, we test if the system can render these vectors with the accuracy that a
human reader could easily achieve.

These stimuli included sentences with homographs (Test cases 10–12) and
foreign words (Test cases 18 and 21). We also evaluate forms of abbreviations,
including context dependent abbreviations (i.e. “Dr.” as a prefix to a name will
be expanded as “Doctor”, while “Dr.” as a suffix to an address is expected to be
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expanded as “Drive”), abbreviations in addresses (i.e. “Apt.”, “Pl.”, “Pkwy.”),
and abbreviations of names (i.e. “Chas.” for “Charles”). Finally, we evaluate
numbers (i.e. roman numerals, numbers in street addresses, and numbers occur-
ring in a string denoting times or dates) and symbols (“&”).

Table 1. Corpus for evaluating the TTS engines

Test case Sentence

1 American Communications & Engineering, Inc. is located at 123 NW. Main St., Apt.

1A, St. Paul, MN 60655

2 Natoma Professional Ctr. 555 Oakdale Pkwy., is located at 123 S 2nd Pkwy., Ste.

700, Ft. Lauderdale, FL.

3 Valor Telecom Ltd. 1910 E. Kimberly Pl. P.O.B 93425, Old Village Sq., CA

4 Sec. of State Hillary Clinton and Sen. Lisa Murkowski spoke with Pres. Mahmaud

Abbas to discuss FASB

5 Ex-Gov. Sarah Palin and Ex-HP CEO Carly Fiorina met with Israeli Ex-Prime

Minister Ariel Sharon to discuss RBOC

6 Treasury Sec. Timothy F. Geithner used to be the COO at JPMorgan and earned

$4.5-million-a-year and earned an MBA from Harvard

7 Rep. Chas. Rangel Ph.D was censured by PETA

8 Mr. John Smith Sr. and Mrs. Jane Smith worked at Levi Strauss & Co. with their

son, John Smith Jr., and daughter Ms. Judy Smith

9 Gen. Douglas MacArther was tired of receiving SPAM from the NYSE

10 They were too close to the door to close it

11 The dove dove into the water

12 The team lead had lead us to victory

13 After I read a book I add it to my list of books that I’ve read.

14 The farm was used to produce produce

15 People who use are of no use

16 Prof. Robt. B. Reich is a bona fide rocket scientist

17 Dr. Albert Einstein, Phd had a lot of chutzpah turning down the presidency.

18 Jas. A. Barone III said bon voyage to Capt. Wm. O. Barnett before the coup d’etat

19 I was born Mon., Sept. 25, 1989 at 12:30 AM

20 Lt. Cmd. Jas. W. Marks was born Wed. the 3rd. Of Mar. at 2:30 p.m

21 I live in La Crosse county, Wisconsin. This is close to Eau Claire and Prarie du Chien

In summary, these 21 cases present non-trivial challenges to TTS engines to
unambiguously pronounce the sentence in a manner consistent with expectations.

4 Evaluation Methodology

We present two metrics of evaluation. The first of these metrics is φ, or contextual
word accuracy. To evaluate φ, a sentence is considered as a bag of words. With
that assumption, φ is defined as:

φ =
1
n

n∑

i=1

I(xi), (1)
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where n is the total number of words in the bag, xi enumerates over all the
words in the bag, and I(xi) is the word pronunciation identity function defined
as:

I(x) =
{

1 : x is pronounced as expected
0 : otherwise (2)

The range of φ is [0, 1], and we seek to maximize φ. If all of the words in
the bag are rendered in the expected manner, φ will be 1.0. Thus, contextual
word accuracy measures both the phonological and morphological effects of a
TTS engine producing all words in the sentence. Scoring word-level accuracy
was done manually, and was a rather straighforward process. When determing
accuracy, we were tracking word stress and phonetic realization to determine
whether a word was rendered correctly or not.

The second metric is naturalness. We evaluated the TTS engines on natu-
ralness by synthesizing the 21 sentences and presenting them to listeners. The
listening test asked participants to rate engines by placing them in ranked order
from most to least human-like.

We recruited 14 participants, each of whom ranked, in descending order of
preference, the seven TTS engines according to how natural they deemed the
rendering to be. The participants ranged in age from 16 years to 64 years, with
a median age of 28. They were asked to listen to a portion of a passage called
“The Rainbow Passage” rather than the 21 test vectors used in the previous
evaluations in an effort to make the grammatical artifacts that were the target
of the accuracy evaluation less salient to participants. “The Rainbow Passage”
is a standard reading passage, commonly used in speech evaluations, reading
comprehension tests, and for testing language recognition software10. The result
was an audio file rendered by each TTS engine. (Appendix C contains a link
to these files.) In addition, the participants were asked an open-ended question:
“What cues in the speech made you find it more (or less) robotic?” (Results in
Appendix B.) To minimize selection bias, we explicitly chose individuals who are
not in the field of linguistics, and excluded colleagues at our respective academic
or industrial institutions. Instead, we chose participants who were not involved
in any area related to speech technologies. To eliminate confirmation bias, each
subject was presented the recordings in isolation from other participants.

We score the resulting TTS engine rankings in two ways; Condorcet voting
and the Borda Count method [1]. These methods are preferred over others (e.g.,
averaging the votes across all participants) as they are robust and less influenced
by presence of outliers. The Condorcet method selects the best candidate (i.e.
TTS engine) by considering pairwise head-to-head elections among the candi-
dates, and selects the candidate that would win the majority of the votes in
all such pairwise contests. Under certain circumstances (presence of cycles in
voting, e.g., A is preferred over B, B is preferred over C, C is preferred over

10 “When the sunlight strikes raindrops in the air, they act like a prism and form a
rainbow. The rainbow is a division of white light into many beautiful colors. These
take the shape of a long round arch, with its path high above, and its two ends
apparently beyond the horizon”.
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A), the Condorcet method may not elect an authoritative winner, however, this
turned out not to be the case with our voting. The Borda Count method asks
participants to rank candidates in order of preference. Then, each engine, for
each ballot, is given a certain number of points corresponding to the number of
engines ranked lower. After counting all the votes, the candidate with the most
points is the winner. The advantage of this method is that it selects a broadly
acceptable candidate instead of those preferred by a majority.

5 Results and Discussion

5.1 Contextual Word Accuracy (φ)

The results for contextual word accuracy are presented in Fig. 1. In tabulating
these results, we included Amazon Polly as our control variable as we discussed
in Sect. 1. Appendix A shows in detail how each TTS engine fared against each
test case, resulting the specific value of φ.

Results demonstrate that φ is high among commercial TTS engines, with
Acapela reaching a word accuracy rate of 0.975 with minimal variance across
the accuracy rate for each of the 21 sentences. Amazon Polly is a close second
with an average word accuracy rate of 0.967, with some dispersion around the
1st and 3rd quartiles with respect to the median.

Fig. 1. Contextual word accuracy (%) across the evaluation
corpus.

The open source
engines are less accu-
rate; the best accu-
racy is seen by FLITE
(0.844) and the low-
est accuracy by Deep-
Voice3 (0.761). This is
surprising given that
DeepVoice3 uses convo-
lutional sequence learn-
ing and is considered
a state-of-art neural
speech synthesis sys-
tem.

5.2 Naturalness

A method of ranked comparison was used to evaluate naturalness. As mentioned
in Sect. 4, we produced an audio file containing the rendering of “The Rainbow
Passage” from each engine. (Appendix C contains a link to a ZIP archive of these
files; DeepVoice3 only rendered 9s with what appears to be an abrupt, premature
termination, and Acapela also terminates prematurely after 12s.) The partici-
pants were asked to rank the audio files and answer an open ended question, i.e.,
“What cues in the speech made you find it more (or less) robotic?” (Answers to
the question provided by the participants are in the link in Appendix B).
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The identity of each TTS engine was hidden from the participants. Instead,
an opaque name (“Engine 1”, ..., “Engine 7”) was provided for ranking. Partic-
ipants were told to rank each engine from 1 (most natural sounding) to 7 (least
natural sounding), and were permitted to rank more than one TTS engine at
the same level. Results of the ranking are in the table in Table 2.

Table 2. Raw rankings of 14 participants (En implies TTS Engine N; a - implies that
the participant did not vote for any TTS engine at that rank.)

Participants

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 E7 E6, E7 E7 E7 E7 E7 E6, E7 E6 E2 E7 E7 E7 E6 E7

2 E6 E1 E4 E1, E6 E2 E2 E2 E2, E7 E7 E1 E6 E6 E2 E6

3 E1 E4 E3 E2, E4 E4 E3 E3, E5 E5 E6 E6 E1 E1 E1 E2

4 E2 E5 E2 E3, E5 E6, E3, E5 E6 E4 E1 E1 E4 E4 E5 E7 E1

5 E4 E3 E5 – E1 E5 E1 E4 E4, E5 E2 E5 E2 E4 E4

6 E3 E2 E6 – – E4 – E3 E3 E5 E3 E4 E5 E5

7 E5 – E1 – – E1 – - - E3 E2 E3 E3 E3

The result of Condorcet voting and the Borda Count indicated a unanimous
winner, Voicery. Condorcet declares as winner the candidate that wins every
comparison against all other candidates. Thus, for 7 candidates, Condorcet per-
forms 21 pairwise comparisons and chose the winner to be the candidate who
wins every comparison with all other candidates. That candidate is Voicery.

Table 3. Borda Count of TTS
engines based on votes received by
each engine

TTS engine Points
Engine 7 (Voicery) 53
Engine 6 (Selvy) 42
Engine 1 (Acapela) 32
Engine 2 (DeepVoice3) 32
Engine 4 (MaryTTS) 27
Engine 5 (Mimic) 20
Engine 3 (FLITE) 18

The Borda Count method assigns points
to each candidate in the ranked lists corre-
sponding to the number of candidates that
were ranked lower. After counting all the
votes, the candidate with the most points is
the winner. An advantage of the Borda Count
is that, in addition to declaring an absolute
winner, it provides a ranking of the remain-
ing candidates. As Table 3 shows, Voicery
received the highest score with Selvy receiv-
ing the second highest. The contrast between
Fig. 1 and Table 3 is instructive. The φ value
for Voicery is not the strongest as is evi-
dent from Fig. 1, however, it is deemed the
most naturalistic. DeepVoice3 did not receive
a high score in the φ metric, but tied for third place in the naturalness metric.
This discrepancy demonstrates a need for further research in new metrics for
evaluating TTS engines.
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6 Conclusion

In this paper, we study evaluating open source and commercial TTS engines
on both subjective and objective measures. The two metrics used—aggregate
accuracy (objective), and naturalness (subjective)—demonstrate their viability
for use in business and academic contexts. We have attempted to control for the
subjectivity in naturalness by using robust voting techniques such as Condorcet
and Borda Count that have advantages over simple techniques like majority vote.

Our results indicate that the commercial TTS engines are superior to their
open source counterparts. While some open source engines receive high marks
for aggregate accuracy, they fall short on measures of naturalness. From the
seven TTS engines evaluated, none emerge as a clear winner across both metrics.
Acapela is the winner among commercial TTS engines with respect to φ (c.f.,
Fig. 1), while FLITE gets the nod in the open source category. The naturalness
metric clearly points to Voicery as the winner, but Voicery is not the preferred
engine with respect to φ. Assuming each metric is weighed evenly, Acapela would
be declared the winner, but clearly, naturalness is an important metric where
Acapela does not perform as expected.

In summary, although open source TTS engines do not reach the level of
naturalness of the commercial engines, they demonstrate aggregate accuracy
that show promise for deployment in business and academic settings. Future work
should explore ranking TTS engines with weighted contributions of subjective
and objective metrics. It could also prove interesting to evaluate the TTS engines
using an automated speech recognition (ASR) system, however such a method
would only evaluate accuracy as it would not be able to evaluate naturalness.
Finally, future work should consider expanding the corpus we propose in Sect. 3,
perhaps including non-English langauges, and explore evaluating the naturalness
of TTS renderings through more objective measures, including feature extraction
for similarity comparisions to human speech.

A Appendix A: Evaluation of TTS Engines on Our
Corpus

URL: http://www.cs.iit.edu/∼vgurbani/tsd2020/appendix-a.pdf
SHA-1 Hash: b14f7632306c2c9aa4154882d97c1c829ee48224

B Appendix B: Survey Answers by Participants

URL: http://www.cs.iit.edu/∼vgurbani/tsd2020/appendix-b.pdf
SHA-1 Hash: f92c24fd84c35ee0be210801122deccf17ab0818

http://www.cs.iit.edu/~vgurbani/tsd2020/appendix-a.pdf
http://www.cs.iit.edu/~vgurbani/tsd2020/appendix-b.pdf
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C Appendix C: Rendering of “The Rainbow Passage”

URL: http://www.cs.iit.edu/∼vgurbani/tsd2020/tsd-paper1023.zip
SHA-1 Hash: 8ef25f33b2f95300abb1e3200d0d7cc9ead856e8

References

1. Eric, P.: Voting methods. The Stanford Encyclopedia of Philosophy (2012). http://
plato.stanford.edu/entries/voting-methods/

2. Wei, P., et al.: Deep voice 3: 2000-speaker neural text-to-speech (2017). arXiv
preprint arXiv:1710.07654

3. Wang, Y., et al.: Tacotron: a fully end-to-end text-to-speech synthesis model (2017).
arXiv preprint arXiv:1703.10135

4. Yamagishi, J., et al.: Analysis of speaker adaptation algorithms for HMM-based
speech synthesis and a constrained SMAPLR adaptation algorithm. IEEE Trans.
Audio Speech Lang. Process. 17(1), 66–83 (2009)

5. Tribolet, J. M., et al.: A study of complexity and quality of speech waveform coders.
In: IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP 1978, vol. 3. IEEE (1978)
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Abstract. This paper concentrates on the design and evaluation of the
method that would be able to automatically correct the spelling of i/y
in the Czech words at the output of the ASR decoder. After analysis of
both the Czech grammar rules and the data, we have decided to deal only
with the endings consisting of consonants b/f/l/m/p/s/v/z followed by
i/y in both short and long forms. The correction is framed as the classi-
fication task where the word could belong to the “i” class, the “y” class
or the “empty” class. Using the state-of-the-art Bidirectional Encoder
Representations from Transformers (BERT) architecture, we were able
to substantially improve the correctness of the i/y spelling both on the
simulated and the real ASR output. Since the misspelling of i/y in the
Czech texts is seen by the majority of native Czech speakers as a blatant
error, the corrected output greatly improves the perceived quality of the
ASR system.

Keywords: Grammatical error correction · ASR · BERT

1 Introduction

The correct spelling of the homophones y/i is being taught already in primary
school and therefore any misspelling of those letters is perceived as a blatant
error. There is a range of situations (see Sec. 2) where this spelling depends on
the context of the surrounding words. Those words guiding the spelling could
appear both before and after the word in question and could be rather distant
from it. It means that the n-gram language models that are still prevalent in
real-time ASR engines are not able to capture the necessary word dependencies
and often select the incorrect variant.

We propose a method that post-processes the ASR output using techniques
that are mostly employed in the task called Grammatical Error Correction
(GEC)1. This task has recently received a significant attention [1,8] and is usu-
1 We are aware of the fact that the phenomenon that we are dealing with falls linguis-

tically into the domain of orthography, not grammar. However, the context depen-
dency described above simply makes GEC methods more suitable.
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322 J. Švec et al.

ally addressed by the cutting-edge NLP techniques. In fact, two-thirds of the
participants of the BEA-2019 Shared Task on Grammatical Error Correction,
employed an approach based on the Transformer architecture [11], including its
recent variant called BERT [4]. We based our solution on the same architecture.

The paper is structured as follows: Sect. 2 offers a brief sketch of the lin-
guistic phenomena that we are trying to address. Section 3 explains the details
of our models, Sect. 4 introduces data set for training and evaluation, Sect. 5
describes the experimental setup including a non-trivial baseline model used for
comparison and finally Sect. 5.3 discusses the achieved results.

2 Description of Czech y/i Related Grammar

In Czech, the phoneme i could be written both as i and y. The actual spelling
depends on the context. The context could be very short, most often it is just
the preceding consonant – i is written after consonants ž/š/č/ř/c/j/ď/ť/ň
(although the bigrams ďi/ťi/ňi are very rare and used in some exceptional cases),
and y after consonants h/ch/k/r/d/t/n. This rule has an exception if the word
is a foreign word, in which case the spelling depends on the original word. After
consonants b/f/l/m/p/s/v/z both i and y could be written. The same rules
apply for long vowel ı́ which could be written both as ı́ and ý. The choice of
i or y depends on many factors:

1. If the word is or is derived from a so-called listed word (a word belonging
to a specified set that is mentioned in Czech language reference books), it is
usually written with y (mlýn, lit. a mill, mlynář, lit. a miller).

2. If the word ends with a vowel i preceded by consonant b/f/l/m/p/s/v/z,
the choice of i/́ı or y/ý depends on the intra- or inter-sentence context, e.g.:
(a) If the word in question is a past tense or conditional, then the choice

depends on the grammatical gender of the subject (Chlapci jedli., lit. The
boys ate./d́ıky jedly., lit. The girls ate.). This is complicated by the fact
that the subject in Czech could be unexpressed and its gender must be
”transferred” from the previous sentence or sentences. Also, if there is
multiple subject in the sentence composed of words with different gram-
matical gender (The boy and the girl ate.), the masculine gender “domi-
nates” the feminine and the i is used (Chlapec a d́ıvka jedli).

(b) If the word in question is an adjective, the choice depends on the gram-
matical number of the corresponding noun (hloupý chlapec, lit. stupid
boy/hloup ı́ chlapci, lit. stupid boys).

(c) If the word in question is a noun, the choice depends on the morphology of
the corresponding inflectional paradigm (chlupy, lit. hair is written with
y because its pattern hrady, lit. castles is written with y since it follows
consonant d).

(d) There is also an exception, for example word brzy (lit. soon) is a listed
word and the grammar of i/y does not depend on the context.
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This simplified description is only to illustrate the relative complicated
orthography of i/y in Czech. These rules have many exceptions and the children
are learning the rules through almost the whole time they are attending elemen-
tary schools. The knowledge where to write i/y is supposed to be an elementary
knowledge and it is not tolerated if there is an error in writing of i/y in written
materials (e.g. newspapers, school works, subtitles, personal letters).

2.1 The Role of Grammar Errors in ASR Output

As we stated in the previous section, the errors in writing i/y in Czech are
not tolerated. At the same time, the rules are very complicated and there is a
necessity to understand not only the meaning of the given word but also the
meaning of the whole sentence (more sentences). If the ASR output is used to
automatically generate subtitles for the audio or to produce a transcript, the
errors in i/y are usually flagrant. As stated above, some word forms are not
ambiguous because they are always written with i or y regardless of context. In
this cases, the i/y occur usually in the middle of the word. The most ambiguities
occur in the word endings due to reasons described in Sect. 2.

The speech recognizer usually uses the correct form if the context needed to
disambiguate i/y fits into the n-gram history of the language model. Otherwise,
the recognizer selects the more probable variant. The errors are most frequent
in the past tense of verbs. This motivates the work described in this paper - to
design, train and evaluate a model which automatically corrects the word form
of the ambiguous words.

3 Proposed Solution

In this section, we will describe a novel method for i/y spelling disambiguation
based on the surrounding word context. The method is not based on a classical
NLP approach using syntactic parsing, it employs machine learning with much
simpler features instead. We have observed that the majority of i/y errors is
caused by wrong word endings consisting of consonant b/f/l/m/p/s/v/z fol-
lowed with i/́ı/y/ý (see Table 1 and related comments for concrete numbers).
We therefore focus only on correcting such cases. Then the task could be simpli-
fied to a classification task, where for each word we assign the following classes:
i (the word should end with i/́ı), y (the word should end with y/ý) and ∅ (the
word is not ending with i/́ı/y/ý).

The training data for this classification task could be easily obtained by min-
ing web text data, for example from news portals etc. We use the state-of-the-art
approach based on the Transformer architecture and BERT pre-training [4] to
be able to generate context-dependent vector representations of input tokens.
Although the input to BERT could be the whole word tokens, more common
is the use of sub-word tokens. The pre-trained models supplied by Google2 use

2 Avaialable for download from https://github.com/google-research/bert.

https://github.com/google-research/bert
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WordPiece tokenization. Unfortunately, the code for generating WordPieces is
Google’s internal C++ code and only the resulting WordPiece vocabulary is sup-
plied together with pre-trained models. Therefore we decided to use a similar
method SentencePiece authored also by Google [6] which allows to estimate the
sub-word lexicon and tokenization model from unlabeled textual data3.

3.1 SentencePiece Model

The SentencePiece method provides a lossless tokenization, i.e. the tokenized
text could be transformed into a sequence of tokens and back without any loss
of characters or punctuation and spacing. The only parameter needed to train the
SentencePiece model is the size of the vocabulary. In our experiments we use 100k
SentencePieces as we have a huge amount of textual data for Czech language, so
the higher number of tokens is outweighed by the precise modelling of the words
(higher number of words is directly included into the vocabulary instead of being
composed from sub-word tokens). A great advantage of SentencePiece models is
the production of self-contained models, which are easily usable in subsequent
tasks and provide reproducible results. We can use the SentencePiece algorithm
for processing the raw input text, but in the context of ASR (which already
produces word-level tokens) we use it to split word tokens into a sequence of
sub-word units. This way the model is able to process the words not seen during
training.

3.2 BERT Pre-training

For pre-training the BERT Transformer, we used the collection of web data
processed in our web mining tool [9]. Our motivation was to train an ASR-
friendly BERT Transformer for Czech, so we removed all punctuation marks
and casing information from the BERT training data. The architecture of the
BERT Transformer is the same as for the Google’s BERT-base model.

Our text corpus for pre-training consists of more than 8 million documents
harvested during the last decade from Czech news servers. With a total word
count exceeding 2.75 billion words and vocabulary size 6.4 million words, this
corpus provides rich data source for pre-training Czech BERT models.

From the text corpus, we prepared two variants of datasets: (1) sequences
with maximum length of 128 tokens and 20 predictions per sequence, and
(2) sequences with maximum length of 512 tokens and 80 predictions per
sequence. Since pre-training with longer sequences is disproportionately expen-
sive, dataset (1) was used most of the time during the pre-training, while dataset
(2) was used only at the final stage to tune positional embeddings. For both
datasets, we used whole word masking and duplication factor of 2. The total
counts of training examples were 82.6 million and 38.4 million respectively.

We pre-trained BERT model in two phases. In the first phase, we trained for
2 million gradient steps with dataset (1), batch size 256 and the learning rate

3 SentencePiece code available from https://github.com/google/sentencepiece.

https://github.com/google/sentencepiece
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warmed up over the first 10 000 steps to a peak value at 1 · 10−4, followed by
250 thousand steps with dataset (2) and batch size 64. After that we evaluated
the model and decided to train more steps as the performance was still improving.
In the second phase, we decreased the learning rate to 2 · 10−5 and trained for
2.55 million more steps with dataset (1) followed by 200 thousand steps with
dataset (2). After the total of 5 million steps, we evaluated the model again
and stopped the pre-training as the model had already converged to masked LM
accuracy equal to 0.5 and next sentence accuracy 0.98. The whole pre-training
took approximately 4 weeks on one 8-core TPU with 128 GB of memory.

3.3 Prediction Model and Fine-Tuning

The pre-trained BERT model could be used to build a task-specific classifier. In
this case, the BERT model is embedded into the classification neural network and
subsequently optimized with most of the BERT parameters fixed. This transfer
learning is called a fine-tuning of the Transformer. We used the keras-bert
library4 together with the Keras [3] framework.

The classification layers are stacked on the top of the BERT pre-trained
Transformer. Those layers are time-distributed dense layers, i.e. the layers out-
put the prediction for each input token (SentencePiece) based on the feature
vector generated by BERT Transformer without taking any contextual feature
vectors in account. In other words, the classification output for a given token is
dependent only on the current BERT feature vector. The contextual dependency
is fully modelled using the multi-head self-attention mechanism included in the
BERT Transformer. The classification layers consist of two dense ReLU layers
(256 and 64 units) and one softmax layer (output probabilities of classes ∅, i, y).

The training data for predicting i/y classes are automatically generated from
the mined web text mainly from the news portals (only the texts of articles
without discussion). We suppose that the news are written by journalists who
are able to write grammatically correct sentences with i/y used correctly. For
training we use the sequence length of 128 SentencePiece tokens and the input
text is processed as a single stream without any overlaps. For each word ending
with consonant b/f/l/m/p/s/v/z followed with i/́ı/y/ý, the respective target
class is set for the last SentencePiece of the word, all other SentencePieces have
an ∅ class assigned. To prevent the transformer from learning an identity map,
we randomly flip (with equal probability) the i/y at the end of the input word,
so that the classifier could not rely on the correctness of the input assignment
and is forced to classify based on the word root and the word’s context.

During fine-tuning we update the parameters of the following Transformer
layers: self-attention normalization layers, feed forward normalization layers,
multi-headed self-attention of the last layer and the adapter layers [5]. The clas-
sification layers are initialized and fully trained.

In the prediction phase, the target classes are assigned not to the words but
to the input SentencePieces. Some kind of decision strategy must be employed

4 Available from https://github.com/CyberZHG/keras-bert.

https://github.com/CyberZHG/keras-bert
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to create a word-level predictions from the SentencePiece predictions. We exper-
imented with many schemas like average pooling or voting but the best results
were achieved with the following schema: if the model predicts y class for at
least one SentencePiece, then the predicted class for the word is y, otherwise if
the model predicts i class for at least one SentencePiece, the predicted class is i.
Otherwise the ∅ class is used. Having the word-level predictions, the ending of
the word is changed according to the predicted class. If the word does not end
with i/́ı/y/́ı or the predicted class is ∅, the word is kept untouched.

4 Data Description

We used the large corpus of web text mined from news portals [9]. The down-
loaded web pages were automatically cleaned into the form of plain-text, the
metadata were extracted. The tokenization was performed so that the text con-
sists of a sequence of space separated tokens. The availability of the metadata
(esp. the date of publication) allow us to easily split the data into different par-
titions (See Table 1). We pre-trained the BERT model in Feb 2020, so we used
the data that we have never seen (month 02/2020) as the test data (further
denoted as web data). While the pre-training process was running, we developed
the proposed method and we used the year 2018 as development data.

Table 1. Train/development/test partitions.

Training phase Train data Dev. data Test data

BERT pre-training Years 2000-01/2020 – –

2.75 billion tokens – –

BERT fine-tuning Years 2011–2017, 2019 Year 2018 Month 02/2020

2.1 billion tokens 213 million tokens 15.7 million tokens

Baseline model Years 2016, 2017, 2019 Year 2018 Month 02/2020

717 million tokens 213 million tokens 15.7 million tokens

For evaluating the proposed model on an ASR output, we used two different
tasks. In the first task, we used 10k paragraphs not containing numerals written
as digits5 from the BERT fine-tuning test data and we synthesized them using
our in-house high-quality TTS system [7,10]. The synthetic voice was randomly
chosen from the set of 6 voices. The resulting audio was recognized using the
UWebASR ASR service [12]. We denote such data as synth. ASR. The second
task is a real data from the Czech MALACH archive [13] containing natural
spontaneous interviews with Holocaust survivors.

The Table 2 shows the number of ambiguous cases of i/y at the end of the
word. The column i/y incorr. shows the number of cases which are incorrectly
5 Numerals such 1000 are synthesized and recognized as one thousand and are causing

errors during ASR evaluation, since the reference is normalised this way.
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assigned using the most probable variant (row Web data) or using the ASR
(Synth. ASR / MALACH data). The automatic correction method should focus
especially on such cases. The Clsf. acc. column shows the classification accuracy
when considering the most probable variant or ASR output only, i.e. without
using any correction method. The last column ASR acc. displays the recognition
accuracy when ASR is in use. The values impose a lower bound on the respective
metrics. Note that the most probable/ASR output variant have by definition the
value of F1-metric equal to 0% (see Sect. 5.2 for description of these metrics).

Table 2. Table summarizing the number of ambiguous cases (more in the text). Just
for the comparison - the number of ambiguous tokens with i/y in the middle is only
6856 for the web data.

Test data Tokens Ambig. endings i/y i/y incorr Clsf. acc.% ASR acc%

Web data 15.7M 239 k 62 k 74.0 –

Synth. ASR 401 k 6246 910 85.1 91.9

MALACH data 63 k 495 115 83.3 80.9

5 Experiments and Results

5.1 Baseline Method

We compare the results achieved by the proposed method with a strong base-
line. The baseline is designed as a logistic regression with TF-IDF feature vectors
computed from left- and right- context of the word for which the target class
(∅, i, y) is predicted. The TF-IDF features were computed as L2-normalized
n-gram (unigram, bigram and trigram) features and maximum number of fea-
tures was limited to 500 k. The feature vector has a doubled dimensionality, i.e.
1 M features (500 k features for left context and 500 k for right context. We used
sklearn implementation of logistics regression with the SAGA solver [2]. In the
experiments we determined the optimum length of left context to be 10 words
and for the right context 5 words.

5.2 Evaluation Metrics

To evaluate the performance of i/y disambiguation we use at first the classifica-
tion accuracy evaluated on the words ending with consonant b/f/l/m/p/s/v/z
followed by i/́ı/y/ý. Because not all words with such endings are ambiguous (one
of such example is the pronoun si which is an invalid word with the y ending),
we extract the set of ambiguous pairs of words from the training, development
and test data and we evaluate only on such words.

The classification accuracy is easily understandable since it express the por-
tion of words correctly classified using the automatic grammar error correction.
The drawback of this method is that many of the words forms could be correctly
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guessed only by assigning the most probable label for a given ambiguous pair.
We therefore use the input tokens which were replaced with the most probable
word-form as a reference point and we compute the F1 metric using the following
numbers:

– TP – number of true positives, i.e. the number of cases, where the word form
was successfully predicted and the most probable word-form is different from
the correct word form.

– FP – number of false positives denotes the number of words, which were
changed from the correct most probable form into an incorrect one.

– FN – number of false negatives counting the number of cases, where the most
probable word form is incorrect and it wasn’t corrected by the model.

Then the F1-metric is computed using a formula F1 = 2·TP
(2∗TP+FP+FN) . Such

definition of metric allows us to compensate the effect of the prior distribution
of the classes i and y for different words. Together with F1-metric, we are also
able to compute precision P = TP

TP+FP and recall R = TP
TP+FN .

For an experiment with the ASR result, we use the classical recognition accu-
racy defined as Acc = H−I

N where H is the number of correctly recognized words,
I is the number of insertions and N is the number of words in the reference.

5.3 Results

In the experimental evaluation, we evaluated the baseline method and the fine-
tuned BERT model on the textual web data and the ASR outputs on two differ-
ent datasets. The results are shown in Table 3. The classification accuracy ( Clsf.
acc.) and ASR accuracy (ASR acc.) could be directly compared with the lower-
bounds presented in Table 2. The fine-tuned BERT model clearly outperforms
the baseline and also the lower-bound on all three tasks in both the classification
accuracy and the F1-metric. The performance is degrading when the ASR errors
are introduced. It is interesting that the Recall is deteriorating more rapidly with
lowering ASR accuracy than the Precision for both the baseline and BERT-based
models. The effect of i/y spelling disambiguation on the ASR accuracy is not
significant due to the low number of i/y incorrectly predicted by an ASR (910
and 115 words, see Table 2), but the i/y disambiguation greatly improves the
grammatical correctness and readability of the ASR output.

Table 3. Experimental results

Dataset Model Clsf. acc.% Precision% Recall% F1-metric% ASR acc.%

Web data Baseline 83.1 73.9 53.8 62.3 –

BERT fine-tuning 96.7 93.6 93.4 93.5 –

Synth. ASR Baseline 86.9 58.2 44.6 50.5 91.9

BERT fine-tuning 96.2 90.5 84.9 87.6 92.0

MALACH Baseline 81.3 39.6 25.2 30.8 80.8

BERT fine-tuning 88.8 77.2 50.3 60.9 81.1
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6 Conclusion

We presented a simple and powerful method for correcting the ASR output.
The method was designed and evaluated on i/y spelling disambiguation task for
Czech language, but it could be easily modified to other languages and similar
grammatical phenomenons. The method uses the Transformer pre-trained using
the BERT approach with training data specially designed to be compatible with
ASR output. In the future work we would like to use the same Transformer in
other tasks improving the readability of ASR output.
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Abstract. Parkinson’s Disease is a neurodegenerative disorder charac-
terized by motor symptoms such as resting tremor, bradykinesia, rigid-
ity and freezing of gait. The most common symptom in speech is called
hypokinetic dysarthria, where speech is characterized by monotone inten-
sity, low pitch variability and poor prosody that tends to fade at the end
of the utterance. This study proposes the classification of patients with
Parkinson’s Disease and healthy controls in three different languages
(Spanish, German, and Czech) using a transfer learning strategy. The
process is further improved by freezing consecutive different layers of the
architecture. We hypothesize that some convolutional layers character-
ize the disease and others the language. Therefore, when a fine-tuning
in the transfer learning is performed, it is possible to find the topology
that best adapts to the target language and allows an accurate detection
of Parkinson’s Disease. The proposed methodology uses Convolutional
Neural Networks trained with Mel-scale spectrograms. Results indicate
that the fine-tuning of the neural network does not provide good per-
formance in all languages while fine-tuning of individual layers improves
the accuracy by up to 7%. In addition, the results show that Transfer
Learning among languages improves the performance in up to 18% when
compared to a base model used to initialize the weights of the network.

Keywords: Parkinson’s disease · Speech processing · Transfer
Learning · Convolutional neural networks

1 Introduction

Parkinson’s Disease (PD) is a neurological disorder characterized by progressive
loss of dopaminergic neurons in the substantia nigra of the midbrain [3]. PD pro-
duces motor and non-motor deficits in patients such as resting tremor, bradyki-
nesia, rigidity and freezing of gait, which contribute significantly to decrease the
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quality of life of the patients [6,7]. Most PD patients develop several speech
deficits, which are grouped and called hypokinetic dysarthria [18]. This type of
dysarthria is characterized by a low voice volume, reduced voice quality, reduc-
tion of prosodic pitch, imprecise pronunciation of consonants and vowels, lack of
fluency, voice tremor, and others. These symptoms often have adverse effects in
the speech intelligibility and the quality of life [20].

Different studies in the literature about the automatic evaluation of PD
speech are based on deep learning techniques, especially in Convolutional Neural
Networks (CNN). For instance, in [4], the authors implemented different CNNs
to discriminate 41 PD patients and 40 healthy controls (HC) using utterances of
the sustained vowel /ah/. Each audio was transformed into spectrograms. The
authors implemented data augmentation techniques. The best performing net-
work was composed of 2 convolutional layers, 2 max pooling layers and a fully
connected layer. This achieved accuracies of up to 75.7%. The authors from [14]
modeled the articulatory deficits in PD patients with CNNs. Initially, the transi-
tions between voiced and unvoiced segments were detected to model difficulties
of patients to start/stop the vibration of the vocal folds. Then, a time-frequency
representation for each transition was computed to train the CNNs. The authors
considered speech recordings to classify PD patients and HC subjects in 3 differ-
ent languages (Spanish, German, and Czech). They obtained accuracies ranging
from 70% to 89%, depending on the language. The authors in [17] presented
an approach to PD detection using a ResNet architecture dedicated originally
to image classification. Initially, the authors trained a base model using the
ImageNet and Saarbruecken Voice Database (SVD) databases. Then, the model
was re-trained and evaluated using spectrograms calculated on the sustained
vowel /ah/ of 50 PD patients and 50 HC subjects from the PC-GITA database.
The authors used a 10-fold speaker independent stratified cross-validation strat-
egy. The accuracy obtained in the validation set was 91%. A similar work was
performed in [9] where 2 transfer learning strategies were implemented (layer
freezing and fine-tuning) for the classification of the PD patients using hand-
writing signals. The authors showed that the proposed strategies improved the
accuracy up to 92.3%. Finally, in [15], the authors proposed to use a transfer
learning strategy among languages to discriminate between PD patients and HC
subjects. The authors considered recordings in 3 different languages (Spanish,
German and Czech). Base models were created for each language and after-
wards the parameters were transferred to the other languages. According to
their results, the transfer learning strategy improves the accuracy by up to 8%.

The main objective of the present study is to discriminate between PD
patients and HC speakers in different languages using a layer freezing strat-
egy in a transfer learning scenario. The aim is to have robust models designed
for each language based on previous knowledge from a different corpus. In [5], the
efficiency of partial layer freezing was demonstrated for image recognition using
CNNs when transfer learning is applied to a small target database. Therefore,
we believe that by performing a fine-tuning in the transfer learning, only the
layers that perform the disease characterization are transferred from the base
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language to the target one. We show the effect of copying all layers and fine-tune
a sequential number of layers, by freezing some layers of the base models. CNNs
were trained with utterances in Spanish, German and Czech using Mel-scale
spectrograms. The results indicate that layer freezing improves the performance
of the models in up to 7% of accuracy with respect to the models using a transfer
learning of all parameters (without layer freezing).

2 Materials and Methods

2.1 Data

Three databases in different languages are considered: Spanish, German and
Czech, each database containing PD patients and HC subjects. All recordings
were recorded in controlled acoustic conditions and down-sampled to 16 kHz.
Demographic information of the participants is shown in Table 1. Labels of the
neurological state of the patients, according to the Movement Disorder Society
- Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-III) are included [2].

Table 1. Clinical and demographic information of the speakers in the three datasets.
G.: gender (M. male or F. female). Values are reported in terms of mean ± standard
deviation.

G Spanish German Czech

PD HC PD HC PD HC

# of Subjects M 25 25 47 44 30 30

F 25 25 41 44 20 19

Age [years] M 61.3± 11.4 60.5± 11.6 66.7± 8.7 63.8± 12.7 65.3± 9.6 60.3± 11.5

F 60.7± 7.3 61.4± 7.0 66.2± 9.7 62.6± 15.2 60.1± 8.7 63.5± 11.1

Years diagnosed M 8.7± 5.9 – 7.0± 5.5 – 6.7± 4.5 –

F 12.6± 11.6 – 7.1± 6.2 – 6.8± 5.2 –

MDS-UPDRS-III M 37.8± 22.1 – 22.1± 9.9 – 21.4± 11.5 –

F 37.6± 14.1 – 23.3± 12.0 – 18.1± 9.7 –

Subjects from the three corpora were requested to perform different speech
tasks including the rapid repetition of /pa-ta-ka/, reading isolated sentences,
reading a text, and a monologue. Additional information about the speech tasks
for each database is available in [12] for Spanish, [1] for German, and [13] for
Czech.

2.2 Segmentation

We consider the onset and offset segments to model the capability of the patients
to start/stop the vocal fold vibration [11]. The change between a voiced and
unvoiced segment is detected based on the presence of fundamental frequency
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values. Once the borders are detected, we take 80 ms of the signal to the left and
to the right, forming segments with 160 ms length. The segmented transitions
are transformed into a Mel-scale spectrogram with 80 Mel filters and a time shift
of 4 ms to get a 80 × 41 time-frequency representation to feed the CNN.

2.3 CNN Model

The CNN implemented here consists of four convolutional layers of size 4, 8, 16,
and 32 respectively, each one followed by a max-pooling layer of size 2 × 2. In
addition, 3 fully connected layers of size 128, 64, and 2. ReLu activations are
considered in the hidden layers, and a softmax activation function is considered
in the output to make the final decision. For the training of the network we used
Pytorch with a cross-entropy loss function and an Adam optimizer. Dropout and
L2-regularization techniques are also used [15].

2.4 Transfer Learning

The main objective of transfer learning is to take the knowledge (weights, and
biases) of previously trained models to improve the performance of a target
model [16]. We perform transfer learning among languages for the classification
of PD patients and HC subjects. Therefore, we take a base model, that is, a
model in a specific language, and we use this model to re-train the network with
the remaining two languages.

Frozen Layers. Layer freezing means that the parameters of some layers in
a model are not updated when performing transfer learning. In this work, in
addition to performing a total transfer of parameters among languages, we also
perform a freezing of the 4 convolutional layers in a sequential way. This allows
the system to perform a high level characterization from the base model and
adjust to the target model with the remaining layers (without layer freezing) [10].

3 Experiments and Results

The experiments are divided as follows: (1) CNNs are trained to classify PD
vs. HC speakers in each language individually. Thus they can be used as a base
model in the transfer learning. For this case, we use a random parameter ini-
tialization. The results are the same as those obtained in [15] and are used as
the baseline of this work. (2) CNNs from each language are retrained with data
from the remaining two languages using a transfer learning strategy with layer
freezing, i.e., we sequentially freeze the convolutional layers in order to keep a
constant part of the learned weights from the base models, Fig. 1 summarizes this
procedure. All experiments were performed through a 10-fold speaker indepen-
dent stratified cross-validation strategy. In addition, the McNemar’s test was
performed between the baseline and the best performing model after transfer
learning with layer freezing. This test checks if the disagreements between two
cases match. In terms of comparing two binary classification algorithms, the test
evaluates whether the two models make errors in the same proportion [8].
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Fig. 1. Transfer learning strategy proposed in this study to classify PD patients vs.
HC subjects from speech with utterances from different languages. Fx, x ∈ {1, 2, 3, 4}
indicates the number of sequentially frozen convolutional layers.

3.1 Transfer Learning with Layer Freezing

CNNs were trained for each language using a transfer learning strategy with
layer freezing, denoted as Fx, where x indicates the number of sequentially frozen
convolutional layers. For example, F3 means a freezing of the first 3 convolutional
layers. Table 2 shows results when base models in Spanish and German are re-
trained to classify Czech speakers. In this case, the best results are obtained
in F0 for both base models, i.e., transfer learning without layer freezing. The
results improve by 4% with respect to the baseline when the Spanish base model
is re-trained (from 68.5% to 72.5%). The McNemar’s test was performed to
compare these two models (p > 0.05). This results implies that both models
make errors in the same proportion, i.e., transfer learning had no significant
effect on the results. This is because the layer freezing increases the sensitivity of
the models, but reducing the specificity, similar to the baseline (94% sensitivity).
This behavior generates over-fitting in the system and also low accuracy.

The results to test the German data are shown in Table 3. On the one hand,
when we used the Spanish base model, the best result is obtained with F2 with
an accuracy of 78.3%, mainly because the sensitivity improves with respect to
F0. This is because the Spanish base model has higher sensitivity (74.0%) than
specificity (68.0%) (see Table 4). On the other hand, when we used the Czech base
model, CNN with F4 improved the accuracy by 5.3% compared to F0 (without
layer freezing). In addition, this result improves the accuracy by 18.9% compared
to the German base model (without using transfer learning). For this case, the
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Table 2. Classification for the transfer learning using the Czech target model. T.
lang.: Target language. F. l.: Frozen layers. Acc: Accuracy. Sen: Sensitivity. Spe:
Specificity. Values are reported in terms of mean ± standard deviation.

T. lang. L. F. Spanish base model German base model

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

Czech F0 72.5±13.9 82.0±14.7 62.0±28.9 70.6±14.6 80.0±16.3 62.5±26.4

F1 65.7± 12.6 86.0± 18.9 45.0± 22.7 65.9± 11.5 84.0± 12.6 48.0± 31.5

F2 60.4± 17.1 76.0± 30.9 44.0± 30.9 65.4± 16.5 86.0± 25.0 45.5± 30.7

F3 65.9± 19.4 78.0± 17.5 54.0± 35.3 66.5± 17.3 92.0± 13.9 40.0± 32.7

F4 60.6± 15.1 94.0± 9.6 27.0± 34.6 58.5± 14.5 92.0± 13.9 25.0± 34.4

Czech baseline 68.5± 14.1 94.0± 13.5 42.0± 33.2 68.5± 14.1 94.0± 13.5 42.0± 33.2

statistical test produced a p � 0.05, which implies that transfer learning has a
significant effect on the performance of the model.

Table 3. Classification for the transfer learning using the German target model. T.
lang.: Target language. F. l.: Frozen layers. Acc: Accuracy. Sen: Sensitivity. Spe:
Specificity. Values are reported in terms of mean ± standard deviation.

T. lang. L. F. Spanish base model Czech base model

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

German F0 77.3± 11.3 86.3± 13.8 68.3± 14.2 76.7± 7.9 87.5± 11.0 66.0± 15.6

F1 75.5± 6.7 86.0± 13.6 65.0± 14.1 77.9± 11.9 82.1± 18.1 73.8± 19.8

F2 78.3±11.3 90.0±11.0 68.6±13.5 75.0± 12.6 78.4± 21.8 71.5± 13.2

F3 75.7± 8.5 78.8± 21.8 72.6± 17.7 74.7± 10.6 80.7± 14.4 68.8± 17.0

F4 75.0± 9.8 71.4± 18.7 78.6± 16.7 82.0±11.0 93.3±7.7 70.7±18.4

German baseline 63.1± 11.7 43.1± 38.0 83.1± 17.7 63.1± 11.7 43.1± 38.0 83.1± 17.7

Finally, Table 4 shows the results of classifying the speakers of the Spanish
corpus using base models in German and Czech. For this case, we obtained the
best result when the first layer was frozen (F1), improving the accuracy in up to
7% compared to the CNN without layer freezing. This improvement is supported
by McNemar’s test with a p � 0.05 which implies a significant change in model
performance because of layer freezing. These results confirm that the transfer
learning strategy with layer freezing can improve the classification accuracy of
systems when fine-tuning some layers from the base model.
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Table 4. Classification for the transfer learning using the Spanish target model. T.
lang.: Target language. F. l.: Frozen layers. Acc: Accuracy. Sen: Sensitivity. Spe:
Specificity. Values are reported in terms of mean ± standard deviation.

T. lang. L. F. Czech base model German base model

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

Spanish F0 72.0± 13.1 67.0± 11.6 78.0± 23.9 70.0± 12.5 62.0± 19.9 78.0± 29.0

F1 78.0±16.8 76.0±20.6 80.0±18.8 77.0±11.6 64.0±18.4 90.0±14.1

F2 74.0± 10.7 72.0± 14.0 76.0± 24.6 71.0± 20.8 54.0± 26.7 88.0± 19.3

F3 74.0± 18.4 66.0± 25.0 82.0± 17.5 76.0± 13.5 60.0± 23.1 92.0± 14.0

F4 73.0± 6.7 60.0± 13.3 86.0± 9.7 68.0± 14.7 48.0± 30.1 88.0± 10.3

Spanish baseline 71.0± 15.9 74.0± 25.0 68.0± 28.6 71.0± 15.9 74.0± 25.0 68.0± 28.6

4 Conclusion

We proposed a methodology based on transfer learning with layer freezing to
classify between PD patients and HC subjects from speech in three different
languages: Spanish, German, and Czech. The objective is to improve the perfor-
mance of the network with respect to a random initialization or a full transfer of
the parameters. Firstly, we obtained the base models for each language (without
transfer learning) using CNNs trained with Mel-scale spectrograms extracted
from the transitions between voiced and unvoiced segments. Secondly, the pro-
posed methodology was implemented using 1 language as a target model and
the remaining 2 languages as base models.

The results show that the proposed strategy improves the accuracy of CNNs
in up to 7% compared to a full fine-tune of the CNN (F0). These result open a
gap to investigate the hypothesis that some layers of the base model are focused
on the characterization of the disease, therefore, these layers should be frozen in
the transfer learning. While the remaining layers (unfrozen) were in charge of
characterizing and adjusting the neural network to the target language. In addi-
tion, it was observed that with the proposed method the accuracy of the models
improves in a range from 4% to 18% compared to the base models without any
transfer learning. In future research, it is necessary to create more robust base
models to identify which layers are responsible for characterizing the pathology
and the language. A first approach for such understanding could be the use of
saliency maps and class-specific image generation [19].

In further experiments, we will train the CNNs with data from other diseases
in the same language and with data from different languages, with the aim
to accurately identify the layers focused on characterizing the presence of the
disease and to observe the level of abstraction of each layer. In addition, we
will also address experiments for the detection of PD using transfer learning
with CNNs trained for emotion recognition. We hypothesize that as the disease
progresses, patients suffer disorders that can affect their emotional life, which
can be reflected in changes of emotions that are perceived from the speech.
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Abstract. Phrase boundary detection is an important part of text-to-
speech systems since it ensures more natural speech synthesis outputs.
However, the problem of phrasing is ambiguous, especially per speaker
and per style. This is the reason why this paper focuses on speaker-
dependent phrasing for the purposes of speech synthesis, using a neural
network model with a speaker code. We also describe results of a listening
test focused on incorrectly detected breaks because it turned out that
some mistakes could be actually fine, not wrong.

Keywords: Phrase boundary detection · Text-to-speech system ·
Neural network · Speaker-dependent phrasing

1 Introduction

A phrase is a group of words carrying a special meaning. For humans, it is natural
to split sentences into phrases which makes the speech more comprehensible and
easy to follow by listeners. And it also has one very important physiological
reason – a man needs pauses in speech to breathe. Although text-to-speech
(TTS) systems do not need to take a breath, the phrase breaks detection is
an important part of the text processing before synthesizing the prompt [15].
Appropriate phrasing makes the TTS outputs more natural and understandable.

More technically, the phrasing problem could be defined as a sequence-to-
sequence problem. The author of [15] uses the following: The phrasing is a looking
for a sequence of juncture types j0, j1, . . . jn for an input sequence of tokens t0,
t1, . . . tn, where ji = 1 if a phrase break follows a token ti, and ji = 0 otherwise.

There are many different approaches to this task. One of the most used is
also the simplest one – phrase boundaries are put in the input sentence accord-
ing to punctuation, mostly commas. This approach has also been used in our
TTS system [17] for years. However, modern stochastic methods, supporting
sequence-to-sequence training, proved to be a good tools for the phrase boundary
detection problem [2,16], outperforming the “classical” classification-based tech-
niques with the decision-making about each juncture type separately [4,7,12,14].
This paper presents a neural network (NN) phrasing model.
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The main problem of the task of dividing an input sentence with phrase
breaks in smaller units is that there are usually more correct phrase boundary
positioning – which very complicate the evaluation. Contrary to many natural
language processing (NLP) tasks with clear correct and wrong predictions, in
the phrasing issue some of false positives and false negatives are not wrong, in
fact. Nevertheless, for this paper, we decided to evaluate the proposed phrasing
model on the labeled data in a common way in Sect. 3, i.e. using default mea-
sures accuracy, precision, recall and F1-score. But we also inspected some of the
“faults” and prepared a small listening test to estimate the percentage of really
wrong predicted phrase breaks and no-breaks (see Sect. 3.1).

2 Training NN-based Phrasing Model with Speaker Code

In general, the phrasing problem is very vague since there are usually more possi-
ble (correct) sentence splittings into phrases. And it depends on many aspects (a
speaker, situation, audience, etc.) which exact representation is used by humans.
Therefore, it seems to be a good idea to focus more on training a speaker-
dependent model (as e.g. [8,9,13]) since the speech synthesis should sound more
natural when adopting various characteristic of the speaker who had recorded
the speech corpus used. So we decided to train one model for phrase bound-
ary detection using data from more speakers and just mark each input sentence
with a specific code to allow the network to distinguish one speaker from the
others – the similar approach is sometimes used for the speech synthesis itself to
improve the performance of the conventional speaker-dependent neural network
method [6].

2.1 Training Data

As our training data for this issue, we used our proprietary large-scale speech cor-
pora recorded for the purposes of speech synthesis, 6 Czech voices (both male and
female) and 2 English ones; all of them were recorded in neutral, “newspaper”
style, and they are used as commercial voices in our TTS system ARTIC [17].
These corpora were automatically segmented [3,10,11] and the prosodic breaks
and breaths were labeled. Afterwards, this information about the breaks/breaths
positions in the signal were “copied” to the text representation of the particular
sentences. The corpora were also labelled with part-of-speech (POS) tags – we
used our proprietary NN-based tagger for Czech and default NLTK tagger for
English [1].

Due to that, we obtained text corpora with the information of correct phrase
boundaries – specific for each speaker. Naturally, we got some sentences with
different phrasing (depending on the speaker), see the example below (EN: There
is nothing worse than having a sports watch under a good suit):

• speaker1:
Neńı nic horš́ıho | než mı́t pod dobrým oblekem | sportovńı hodinky.
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• speaker2:
Neńı nic horš́ıho | než mı́t pod dobrým oblekem sportovńı hodinky.

The Table 1 contains the basic statistics of all corpora used. 90% of all the
data were used for the training phase and 10% for the evaluation in the Sect. 3.
The table shows that some corpora have significant number of breaks (pauses in
speech) not corresponding any comma in the sentence text representation.

Table 1. Text corpora statistics.

Language Speaker No. of sentences No. of junctures No. of breaks No-comma breaks

Czech Speaker1 9,619 104,387 16,202 4,060

Speaker2 8,189 91,065 12,487 443

Speaker3 12,151 119,115 12,851 776

Speaker4 9,484 102,106 15,133 2,969

Speaker5 7,662 85,595 12,590 2,451

Speaker6 9,288 93,542 20,137 10,025

English Speaker1 19,909 132,556 9,856 2,241

Speaker2 19,909 133,035 10,229 2,612

2.2 Neural Network Architecture

For the experiment, we designed a NN-based model shown in Fig. 1. As the input
of the network, we used POS tags ti (corresponding to the words wi in the input
sentence which are not used in the model) with the punctuation marks pi and
the speaker code s. The first layer of our model is the embedding layer which
transforms each POS tag to a vector representation. These are, altogether with
the punctuation of the sentence and the speaker code, put to the bidirectional
Long-Short-Term-Memory [5] (biLSTM) layer. The output of biLSTM layer is
then put to the Dense layer, which outputs the sequence of breaks/no-breaks for
the given sentence (or more precisely for the frame of words at the input).

The proposed model was trained independently for 2 different languages,
Czech and English, however, together for all voices per language presented in
Sect. 2.1. The Table 2 shows the best settings for the NN architecture.

Table 2. Best settings for the BiLSTM phrasing model.

Language Best accuracy Best loss Frame count Tags embeddings Units in biLSTM

Czech 97.7% 0.066 10 64 64

English 98.4% 0.073 10 32 64
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3 Results

For the evaluation we used the usual measures: Accuracy (Acc), Precision (P ),
Recall (R) and F1-score (F1), defined as below:

Acc =
tp + tn

tp + tn + fp + fn
(1)

Fig. 1. The structure of our BiLSTM phrasing model



344 M. J̊uzová and D. Tihelka

P =
tp

tp + fp
(2)

R =
tp

tp + fn
(3)

F1 = 2 · P ·R
P + R

(4)

where

• tp = true positives – correctly predicted phrase boundaries
• tn = true negatives – correctly predicted junctures with no-breaks
• fp = false positives – incorrectly predicted breaks at no-breaks junctures
• fn = false negatives – missed phrase boundaries.

The results are shown in the Table 3 and Table 4. We compare the proposed
BiLSTM model with speaker-code (NN Speaker) to the baseline phrasing model
using only commas (OnlyComma) and also to the same BiLSTM model without
speaker-code (NN General), i.e. a general phrasing model for all the voices,
training per language.

The results show that the proposed model which uses the speaker code out-
performs the same model trained without information about the speaker if eval-
uated per speaker. This means we can follow the particular speaker’s phrasing
style more precisely. And let us also add that both NN-based models mostly
outperform the baseline approach for phrasing – the phrasing based on sentence
punctuation (mostly commas).

3.1 Listening Tests

As mentioned in Sect. 1, the phrasing suffers from the problem of ambiguous
results which makes a clear evaluation more difficult. The in-depth inspecting
of false positives (fp; the proposed model said there was a break but there
was no break in the data at that position) revealed that some of them are not
wrong – these just matched another possible phrasing of the particular sentence.
And, on the other hand, some false negatives (fn; i.e. missed phrase boundaries)
seemed to be strange in the particular sentence. Therefore, we decided to pre-
pare a short listening test with 30 randomly selected sentences across (Czech)
speakers with 25 false positives and 25 false negatives. These sentences (with
predicted and “correct” phrase breaks) were synthesized with our LSTM-based
TTS[18] and the listeners were asked to mark for every pause whether it was
fine or strange/disturbing, regarding the sentence meaning. Note that the LSTM-
based TTS was used to prevent the situation when the listener’s evaluation was
affect by a possible unnatural speech artefact which could occasionally appear in
unit selection synthesis, or by an unnatural intonation which could occasionally
appear in DNN-based synthesis.

We had 15 listeners, 7 of them being speech synthesis experts. For some
phrase breaks the answers differ a lot, so we counted the answers for each phrase
break and divide the breaks into 3 groups:
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• “break is OK” – if more than 70% of listeners vote for that
• “break is strange” – if more than 70% of listeners vote for that
• “tie” – otherwise (the answers were almost balanced)

The listening test clearly proved that the results of BiLSTM-based model are,
in fact, higher than the results shown in the Table 3 and Table 4 – see Table 5.
More than a half of randomly selected false positives are considered to be correct
by most of the listeners and, similarly, about a half of missed phrase breaks (false
negatives) were marked as strange by the majority.

Table 3. The comparison of results for Czech voices

Speaker Phrasing model Acc P R F1

Speaker1 NN Speaker 97.4% 100.0% 88.9% 94.1%

NN General 97.0% 100.0% 87.3% 93.2%

OnlyComma 96.7% 99.8% 86.2% 92.5%

Speaker2 NN Speaker 99.6% 99.8% 98.5% 99.1%

NN General 99.5% 100.0% 97.8% 98.9%

OnlyComma 99.4% 99.8% 97.6% 98.7%

Speaker3 NN Speaker 99.3% 99.5% 97.0% 98.2%

NN General 99.3% 99.7% 96.8% 98.2%

OnlyComma 99.3% 100.0% 96.5% 98.2%

Speaker4 NN Speaker 97.5% 100.0% 89.4% 94.4%

NN General 97.2% 100.0% 88.1% 93.6%

OnlyComma 96.9% 100.0% 87.1% 93.1%

Speaker5 NN Speaker 97.4% 99.5% 89.1% 94.0%

NN General 97.2% 99.8% 88.2% 93.6%

OnlyComma 97.1% 99.8% 87.4% 93.8%

Speaker6 NN Speaker 91.8% 98.8% 72.6% 83.7%

NN General 91.1% 100.0% 70.3% 82.6%

OnlyComma 89.6% 100.0% 66.5% 79.9%

Table 4. The comparison of results for English voices

Speaker Phrasing model Acc P R F1

Speaker1 NN Speaker 98.8% 100.0% 94.6% 97.2%

NN General 98.6% 100.0% 93.6% 96.7%

OnlyComma 98.5% 99.3% 93.8% 96.4%

Speaker2 NN Speaker 98.5% 99.8% 93.6% 96.6%

NN General 98.3% 100.0% 92.8% 96.3%

OnlyComma 97.6% 96.4% 93.0% 94.7%
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Table 5. Listening test results.

Break is OK Tie Break is strange

fp 14 5 6

fn 5 7 13

4 Conclusion

The paper focused on training a speaker-dependent neural-network model for
phrase boundary detection and compared the results to the outputs of a general
phrasing model (trained on data from several speakers) and to the results of
the baseline system. The results presented in Sect. 3 show the advantages of
speaker-dependent phrasing.

The false positives and false negatives were further examined during the
listening test. The answers proved that not all of them are real mistakes so the
ability of the proposed model to correctly detect appropriate phrase boundaries
is very high.

The future work includes the training on different languages and testing the
general and speaker-dependent models on a new, unseen speaker.
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(LNAI), vol. 11107, pp. 369–378. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00794-2 40
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Abstract. This study examines phonetic attrition of the first lan-
guage (L1) affected by second language (L2) in Czech speakers living
in Toulouse (late Czech-French bilinguals – CF). We compared the pro-
duction of vowels by 13 CF and 13 Czech monolinguals living in the
Central Bohemian Region (C). CF had been living in France for at least
one year and started to learn French when they were more than 6 years
old. Both C and CF were speakers of Common Czech. We recorded their
production in reading task and semi-spontaneous speech and performed
measurements of vowel formants. Results show a statistically significant
difference between F1 of CF [a:] and F1 of C [a:], and between F3 of
CF [i:] and F3 of C [i:]. These findings are discussed in relation to the
perceptual approach suggesting that several vowels can be perceived as
different in C and CF production.

Keywords: Phonetic attrition · Vowels’ quality · Late Czech-French
bilinguals

1 Introduction

Intensive use of an L2 can influence the speaker’s L1 at the phonetic level [14],
a phenomenon often branded as first language phonetic attrition or phonetic
cross-linguistic influence. The former, first language attrition, refers to the non-
pathological decline of previous L1 language skills [13], which happens as a “natu-
ral consequence of decrease in the [L1] use” [12] and consists of long-term changes
due to extensive, and not necessarily recent, L2 contact [6]. The latter, cross-
linguistic influence (CLI), introduced by [24], refers to any kind of effect that
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one language may have on another. For [21], L1 attrition is one among these
possible kinds of effect, a position we will adopt here.

For now, only a small part of studies in the area of phonetic attrition and
CLI examined vowels by acoustic measurement (see, e.g., [4,17]). In addition,
there is no study on the influence of L2 French on L1 Czech at the phonetic
level, although several interesting differences exist in the vowel systems of both
languages (see [16]). The present paper proposes to fill this gap with a study
investigating phonetic attrition in vowels’ quality in the L1 speech of Czechs
who have been living in France for more than one year and started to learn
French after the age of six (henceforth CF, late Czech-French bilinguals).

1.1 Comparison of Czech and French Vowels

Without [@], Czech comprises 10 monophthongal not nasalized vowels [25] and
French 11 monophthongal not nasalized vowels [18]. Czech distinguishes short
and long vowels contrary to French, where vowel’s length is not a phonological
feature. The articulatory features of these Czech and French vowels are described
in Table 1 showing that these languages do not attribute the same articulatory
properties to [E], [a] and [o]. Some inconsistencies exist among authors in the
IPA symbols used for certain vowels (see [16]). We use the symbol [u], and not
[U], for Czech /u/ for the reason of simplicity and the symbol [E] for Czech /e/
because this sound is acoustically slightly nearer to French [E] than to French [e].

Table 1. Articulatory properties of Czech and French not nasalized monophthongal
vowels, (white column = Czech vowels, gray column = French vowels). Vowels with the
same IPA symbol, but different articulatory properties are in bold. Source [16,18]

Anteriority Front Central Back

Lip shape unrounded rounded unrounded rounded

Degree
of
aperture

Close I, i: i y u, u: u

Close-mid e ø o

Mid E, E: o, o:

Open-mid E œ O

Open a a, a: A

Regarding the link between articulatory and acoustic properties of vowels,
the F1 is traditionally determined by degree of aperture and F2 by anteriority
and lip articulation [18,25]. The F3 can also be determined by lip shape [18]. [29]
also suggests to include F3 and F4 in acoustic studies of French vowels because
F4 with F3 makes a prominent energy packet in the high frequencies (F3/F4).
Therefore, in our study, we will analyse F1, F2, F3 and F4.

Based on the results of [10,20,26,27], Table 2 compares F1 and F2 means of
Czech and French not nasalized vowels. In the present study, we focus on the



350 M. Hévrová et al.

production of CF, all female speakers, in a reading task (hereafter RT) and semi-
spontaneous speech (hereafter SS). Therefore, the formants obtained from the
production of only female speakers in RTs and SSs are compared in Table 2. [26]
studied Czech vowels of 48 women aged from 20 to 30 years reading a continuous
text. [27] analysed the production of 9 French women reading the monosyllables
formed by either /pV1/, where V1 was /e/, /o/, /u/, /y/, or /ø/, or /pV2R/
where V2 was /i/, /E/, /a/, /O/, or /œ/. In [20], 10 Czech women aged 25–
34 years commented spontaneously on 20 objects. [10] analysed a speech of 15
French women mainly extracted from broadcast news. We are conscious that
the F1 and F2 means in Table 2 cannot be considered as reference values for
any female speaker because each study used for the creation of Table 2 has its
limitations. For example, [28] reproaches [27] that the /R/ used in coda position
could lengthen the previous vowel and consequently increase the F1 value and
decrease the F2 value.

The frequency difference limen (DLF) refers to the difference in the frequency
values perceptible by the human ear [16]. The DLF for F1 is 10–30 Hz and 20–
100 Hz for F2 according to [9]. In Table 2, the F1 values of vowels that differ in
Czech and French from 30–60 Hz are in slight gray, and in dark gray when the
difference is higher than 60 Hz. F2 values are in slight gray when the difference
between Czech and French is 100–200 Hz, and in dark gray when the difference
is more than 200 Hz. Table 2 does not contain the values of Czech [o:], as this
vowel, infrequent in Czech speech, will not be analyzed in our study. Regarding
F3 and F4, to the best of our knowledge, there is no study comparing these
formants of Czech and French vowels produced in RTs and SSs. Only studies of
formant values of vowels in isolation in Czech and French give means of F3 and
F4 for certain vowels [16,19].

In our study, all CF were living in the Toulouse area. [8] supports that French
spoken in Toulouse differs from standard French although more than one variety
of Toulouse French exists [7,8]. For a majority of speakers from Toulouse, the
phonological differences between French [e] and [E], [œ] and [ø], [a] and [A], and
[O] and [o] are absent in minimal pairs [8], while other speakers from Toulouse
may respect these differences according to the position rule [7,8]. Thus, from
a phonological point of view, vowels in Toulouse French can differ from vowels
of standard French. However, as far as we know, no study focused entirely on
acoustic properties of Toulouse French vowels. Hence, we can only suppose that
the Czech vowels of CF may be more influenced by vowels of Toulouse French
than standard French. However, no prediction about this can be made as an
acoustic study of Toulouse French vowels is lacking.

Taking into account all these considerations, we made the hypothesis that
the phonetic CLI is more likely to occur in vowels which are acoustically slightly
dissimilar in French and in Czech and in vowels which exist only in one of both
languages.
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Table 2. F1 and F2 of Czech and French vowels for female speakers in RTs and SSs
according to [10,20,26,27]. (CZ= Czech, FR = French).

Reading task Semi-spontaneous speech

Formant F1 F2 F1 F2

Language CZ FR CZ FR CZ FR CZ FR

i NA 350 NA 2400 NA 348 NA 2365

i: 328.5 NA 2603 NA 287 NA 2504 NA

I 492.1 NA 2251.2 NA 411 NA 2177 NA

y NA 350 2050 NA NA 371 2063 NA

e NA 450 NA 2300 NA 423 NA 2176

E 686.3 650 1823 2000 650 526 1726 2016

E: 709.5 NA 1904.3 NA 671 NA 1825 NA

a 780.9 750 1480.2 1550 733 685 1322 1677

a: 801.2 NA 1417.6 NA 784 NA 1436 NA

ø NA 450 NA 1650 NA 420 NA 1693

œ NA 550 NA 1650 NA 436 NA 1643

u 415.3 350 1003.6 850 330 404 1221 1153

u: 343.6 NA 757 NA 341 NA 851 NA

o 528 450 1166.2 950 474 438 1161 1140

O NA 600 NA 1200 NA 528 NA 1347

2 Method

We recorded the Czech production in RT and in SS of 13 female native Com-
mon Czech speakers (mean = 35.1 years) living in the Central Bohemian region
of the Czech Republic (hereafter C) and 13 CF speakers of Common Czech
(mean = 34.2 years). All CF have not never lived in any region where some vari-
ety of Czech different from Common Czech is spoken. They all declared not to
think to speak Czech with some specific accent as for example Moravian accent
in socio-linguistic form filled after recording. The average of their length of resi-
dence in France was 9.9 years (min = 1.42 year, max = 28.25 years). All C and CF
speakers were aged 20–50 years, hence the stability of their f0 was assured [11].

In the RT, the speakers read a short text chosen from [5]. In the SS, they
talked for one minute and a half about one or more proposed topics such as
plans for holidays or the next weekend, describing a typical day, job, studies,
family, hobbies, etc. CF were recorded in a quiet recording studio (PETRA) at
University of Toulouse using a Neumann TLM 49 microphone and sound card
MOTU ULmk3. They received a small reward for participation. C were recorded
in a quiet, comfortably furnished office with a low level of ambient noise and
short natural reverberation in Prague. A head-mounted condenser microphone
(Bayerdynamic Opus 55) was plugged directly into a pocket recorder set to
uncompressed 48 kHz 16-bit mode.

All recordings were orthographically transcribed. Their semi-automatical seg-
mentation and labeling in Praat [2] were corrected manually. Vowels’ boundary
placement was guided by the presence of full formant structure. Initial glottal
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stops and final voice decay time were not considered to be part of the vowel.
Vowels ending by the schwa of hesitation, vowels in foreign words such as English
names of movies or names of French cities, unpronounced and semi-pronounced
vowels in the recordings of SS were excluded from the analysis. Vowels preceded
or followed by nasal consonants in RT and in SS were excluded from the analysis
too, since nasal context coarticulation may lead to uncontrolled extra formants.
The Czech conjunction /a/, meaning “and” in English, longer than 150ms was
considered as a hesitation and excluded from analysis (cf. [23]). The conjunc-
tion /a/ with duration lower than 150ms was labelled as a short Czech [a] and
included in analysis. Formants were measured automatically using Praat script
computing the mean of formant value from the second third of the vowel dura-
tion. This way, we resolved the issue of the effect of coarticulation on the formant
value. In total, the analysis involved 10 147 vowels.

The data were analyzed in RStudio [22] using the packages lme4 [1], dplyr
[31], rPraat [3], and ggplot2 [30]. We computed the mean value of each formant
of each vowel for each task and each group separately. The significance level
was set at α = 0.05. In order to examine differences between C and CF vowels’
formant values, we performed linear mixed-effects models for each formant of
each vowel. We analyzed the relationship between group and formants’ values.
We had intercepts for speakers and words of the vowel’s occurrence as random
effects. As fixed effects, we entered group and task. Visual inspection of residual
plots did not reveal any obvious deviations from homoscedasticity or normality.
P-values were obtained by likelihood ratio tests of the full model with the effect
in question against the model without the effect in question.

3 Results

The analysis showed that the group affected F1 of [a:] (χ2(1) = 5.6428, p =
0.01753) increasing the F1 value of CF by 51.17 Hz ± 21.18 (standard errors).
This result is also visible on the Fig. 1 showing F1 and F2 fields with values in
Hertz of C and CF obtained in RT and in SS. The group affected also F3 of [i:]
(χ2(1) = 7.5502, p = 0.006) increasing the F3 value of CF by 114.41 Hz ± 40.13
(standard errors). There were no other significant results.

4 Discussion and Conclusions

Our study showed a significant difference between the groups in F1 value of [a:]
and in F3 value of [i:]. By comparison of [a:] F1 value of our C in Table 3 with
its values in Table 2, we suppose that the C [a:] F1 corresponds to the standard
pronunciation of this vowel in Common Czech. Similarly, comparing the [i:] F3
value of our C with [20] results, we assume that the [i:] F3 of C corresponds to
the standard pronunciation of this vowel in Common Czech.

As shown by [14], studies of phonetic L1 attrition and CLI support two
possible explanations for sound changes: ‘assimilation’ and ‘dissimilation’. In
the former case, L1 sounds shift towards L2 sound’s norms. In the latter case,
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Fig. 1. Czech vowels in RT (left) and in SS (right) plotted in the F1-F2 plane. The
ellipses indicate 50% of the formant values, shown in Hz

Table 3. Formant values of C and CF vowels which are supposed to be perceived as dif-
ferent. (v = vowel, m = mean, CI= confidence interval, light gray= C, dark gray= CF,
RT= reading task, SS= semi-spontaneous speech)

v F1m F1 CI v F2m F2 CI v F2m F2 CI v F3m F3 CI

RT SS SS RT

a: 791 767, 815 i: 2421 2377, 2465 E: 1746 1701, 1792 i: 3236 3189,

3282

a: 881 855, 907 i: 2515 2490, 2541 E: 1912 1838, 1986 i: 3368 3313,

3424

SS I 2023 2000, 2046 a 1481 1465, 1496 SS

I 439 434, 444 I 2140 2115, 2166 a 1589 1570, 1608 i: 3115 3075,

3154

I 417 411, 423 E 1831 1814, 1848 i: 3320 3278,

3361

a: 778 765, 791 E 1943 1924, 1962

a: 861 844, 879

the speaker tries to maintain a difference between L1 and L2 sound, which leads
to deepening of the acoustic distance between these two sounds. In the light of
this suggestion, the significant difference in [a:] F1 value between groups may
be considered as the result of dissimilation: the acoustic distance between CF
[a:] F1 and French [a] F1 is bigger than the difference between C [a:] F1 and
French [a] F1 (see Table 2 and 3). For the CF [i:] F3 value, we can speak about
assimilation. According to the study of vowels in isolation [16], the F3 of French
[i] is significantly higher than the F3 of Czech [i:]. Therefore, the F3 of CF [i:] is
probably influenced by French [i].

Using a perceptual approach, we suppose that DLF can predict if two sounds
will be perceived as the same or different. Hence, Table 3 presents formants’
mean values for vowels which are expected to be perceived differently in C and
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CF production: confidence intervals of formants are not overlapping between C
and CF and the difference in formants’ mean value between C and CF is equal
to or higher than DLF. [a:] F1 and [i:] F3 have been already discussed above.
For the others, we suppose that, due to the assimilation, F1 and F2 of CF’ [I] is
probably influenced by French [i] as well as F2 of CF’ [E] and [E:] is by French [E]
and F2 of CF’ [a] by French [a]. F2 of [i:] is higher in CF than in C probably due
to a small dissimilation. Table 3 shows also that the differences between groups
in formant values, which can be perceived by the human ear, are more frequent
in SS than in RT. This observation is in agreement with the findings of [15].

Taken together, this paper showed tendencies of phonetic attrition on vowels
in L1 production of CF, which are statistically significant or perceptually pre-
dictable. The study of inter-speaker variation in the results should allow us to
better understand the results.
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Abstract. Parkinson’s disease (PD) is a neuro-degenerative disorder
that produces symptoms such as tremor, slowed movement, and a lack
of coordination. One of the earliest indicators is a combination of differ-
ent speech impairments called hypokinetic dysarthria. Some indicators
that are prevalent in the speech of Parkinson’s patients include, impre-
cise production of stop consonants, vowel articulation impairment and
reduced loudness. In this paper, we examine those features using phono-
logical posterior probabilities obtained via parallel bidirectional recur-
rent neural networks. We also utilize information such as the velocity
and acceleration curve of the signal envelope, and the peak amplitude
slope and variance to model the quality of pronunciation for a given
speaker. With our feature set, we train Gaussian Mixture Model based
Universal Background Models for a set of training speakers and adapt a
model for each individual speaker using a form of Bayesian adaptation.
With the parameters describing each speaker model, we train SVM and
Random Forest classifiers to discriminate PD patients and Healthy Con-
trols (HC), and to determine the severity of dysarthria for each speaker
compared with ratings assessed by expert phoneticians.

1 Introduction

Parkinson’s disease (PD) is a neuro-degenerative disorder that produces symp-
toms such as tremor, slowed movement, and lack of coordination. It is believed
that the underlying cause for these physical symptoms is due to the immod-
erate spread of the protein α-synuclein throughout the peripheral and central
nervous systems (PNS, CNS). The general function of α-synuclein is to help
regulate the release of dopamine, a type of neurotransmitter that is critical for
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controlling the start and stop of voluntary and involuntary movements [8]. In the
case of PD patients, excessive α-synuclein begins to accumulate along the PNS
and CNS, and is toxic to affected cells. This ultimately leads to a loss of neu-
ronal populations, in particular, dopaminergic neurons in the substantia nigra
and contralateral striatum, both being structures in the basal ganglia largely
responsible for regulating both our reward network and motor systems [15,18].
Currently, there is no treatment to halt or slow the progression of PD, though
there are several pharmacotherapeutic and neurosurgical options available that
offer an alleviation of certain symptoms. A large contributing factor for there not
being any stronger intervening methods, stems from the fact that the disease is
often diagnosed after roughly 50% of neurons in the substantia nigra have been
irrevocably damaged and over 80% of striatal dopamine has been depleted [17].
This highlights the importance of being able to identify the earliest symptoms
of PD in order to be proactive in addressing the disease in the prodromal phase.
This of course requires the ability to discern how severe symptoms of a given
patient are, and quantify it accurately and consistently.

Speech is well known to be one of the more complex motor skills that we
perform requiring precision from over 100 different muscles. This in turn makes
our vocal system one of the more sensitive motor related systems to the effects of
PD [4]. One of the earliest indicators of PD is a combination of different speech
impairments called hypokinetic dysarthria that affects roughly 90% of all those
diagnosed with PD [3,9,10,17]. Many studies have focused on identifying speech
specific bio-markers that characterize these impairments and distinguish PD
patients from healthy controls (HC). Some of the more prevalent speech symp-
toms include: a hoarse sounding voice, imprecise production of stop consonants
(e.g. ‘p’, ‘t’, ‘k’), vowel articulation impairments, and reduced loudness [3,5].

With the aim to reduce the subjectivity of the clinical evaluation process
when diagnosing potential PD patients, researchers have pushed to develop
many different signal processing and machine learning techniques to identify
PD. In [19], the authors considered phonological posterior features (a set of vec-
tors that are used to express the pronunciation of a given speaker), recurrent
neural networks based on gated recurrent units, as well as Mel frequency cep-
strum coefficients (MFCCs) to assess speech impairments of PD patients. Results
for assessing the different levels of dysarthria were best when all features were
used. In [21], the authors proposed a series of different features that were used
to predict the dysarthria level of both PDs and HCs, most notably articulation
features (i.e. formant frequencies, MFCCs and their derivatives) and i-vectors.
The scores were correlated with modified Frenchay-Dysarthria-Assessment (m-
FDA) scores (a modified version of the common rating system used to evaluate
dysarthria which is detailed in Sect 2.1), and Spearman-correlation results of
up to 0.63 were achieved when using articulation features and 0.69 with the
i-vector approach.

In this paper, we consider several novel ways of characterizing PD, the first
one being with phonological posterior features. We believe these features are
intuitive in nature; more so than features such as MFCCs or embeddings from
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neural networks as they are much more interpretable for clinicians [19]. The use
of phonological posteriors has been considered for several applications related to
pathological speech. In [20], the authors developed a tool to extract phonological
posteriors directly from speech signals utilizing a bank of parallel bidirectional
recurrent neural networks. These networks estimate the posterior probabilities
of the occurrence of different phonological classes, with a reported accuracy over
90%. Another set of features we consider are statistics derived from the ampli-
tude envelope of speech signals and modeled as a kinematic system. Such systems
are said to capture the smoothed amplitude fluctuation pattern over time, illus-
trating how energy is distributed across a given signal [7]. These statistics have
been shown to hold a correspondence to the kinematic statistics of the lower lip
(i.e. lip velocity and acceleration), which in turn has been noted to be greater
in speakers with PD relative to normal geriatrics [5].

The rest of the paper is organized as follows: in Sect. 2.1, we consider the
materials and methods used in the evaluation process such as the data set and
evaluation methods. In Sect. 2.2, we go more in-depth into the features that
were considered. In Sect. 2.3, we discuss the classification method used to eval-
uate the aforementioned features; in particular their ability to classify PD and
HC patients. We also detail how our classifier was used to identify the severity
of the dysarthria of all patients. In short, this was done by training Gaussian
Mixture Model based Universal Background Models (GMM-UBMs) for a set of
training speakers, GMM-UBMs being one of the more dominant techniques for
text-independent speaker recognition [14]. We then adapt a model for each indi-
vidual speaker using a maximum a-posterior adaption process [14], and build
GMM-UBM Mean Interval (GUMI) supervectors. We then use these supervec-
tors to derive a kernel that measures the statistical dissimilarity between the
UBM and a given adapted speaker distribution based on the Bhattacharyya dis-
tance [23]. Finally, we train SVM and Random Forest Classifiers based on the
GUMI supervectors, to classify both PD and HC patients and to assess their
respective severity of dysarthria. In Sect. 3 we look at the correlation between
m-FDA scores and the different features considered, as well as discuss the results
of our classifier in making the binary distinction between PD and HC patients,
as well as predicting the dysarthria level via the m-FDA. It was found that the
best Spearman correlation score when correlating the predicted m-FDA scores
with the actual scores was roughly 0.6. These results are competitive to what
has been achieved in studies that used more complex features.

2 Procedural Overview

2.1 Dataset and Evaluation Methods

The speech quality of patients is commonly addressed using diadochokinetic
(DDK) exercises, which consist of the rapid repetition of syllables like /pa-
ta-ka/ [22]. The exercise is particularly helpful in evaluating PD speakers, as
it requires the continuous movement of different articulators such as the lips,
tongue and velum. The performance of DDK tasks are variable with the timing
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in which patients perform the exercises, e.g. if a patient has just taken their
medication, they generally tend to perform better. Though this was in a sense
controlled for, it still is worth mentioning.

In this paper we consider a set of 100 speakers from the PC-GITA cor-
pus [12] (50 PD patients and 50 HC subjects), all of them Colombian Spanish
native speakers. All participants were recorded pronouncing the phrase /pa-
ta-ka/ repeatedly and were evaluated remotely by clinicians with the m-FDA
scale to measure their dysarthria severity [19]. Though the Movement Disor-
der Society–Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-III) is the
commonly used scale to evaluate potential PD patients, it only utilizes one item
out of 33 to evaluate speech. The FDA scale on the other hand covers a wide
range of speech-related motor actions including reflex, respiration, lip movement,
palate movement, laryngeal capacity, tongue posture/movement, intelligibility,
and swallowing. However, in many cases travelling from home to a clinic is not
possible, e.g. for those who live in more rural areas, or for many PD patients
in intermediate or advanced stages who typically have a reduced mobility. To
overcome some of these issues, the m-FDA scale was introduced. The scale was
designed specifically such that it could be administered remotely and thus only
considers speech recordings of a given patient and ignores tests such as swal-
lowing which requires a clinician to be present in order to make an evaluation.
Some of the different categories evaluated include respiration, lip movement,
palate/velum movement, laryngeal movement, intelligibility, and monotonicity.
In total, the scale considers 13 items, each of which are assigned scores from
0 (completely healthy) to 4 (very impaired). Thus the scale ranges from 0 to
52 [21].

It’s worth noting that the evaluation of HC patients we considered included
smokers, who exhibit some speech qualities commonly found in PD patients (e.g.
hoarseness, or shortness of breath).

2.2 Features

Phonological Features. For pathological speech processing, only a small sub-
set of basic features are commonly used, e.g. fundamental frequency, jitter, shim-
mer, or formant frequencies. More complex feature sets like MFCCs, Perceptual
Linear Predictors, or embeddings from neural networks are sometimes avoided
in this context due to their lack of interpretability [21]. Phonological features
are believed to be a viable feature candidate when it comes to speech pathol-
ogy, as they are commonly understood by clinicians as features describing the
movements of the articulators in the vocal tract and also are robust in terms of
relaying information about the dysarthria level of a patient. Phonological fea-
tures are generally represented by phonological posteriors, the probabilities of
phonological classes inferred from a given speech signal [1].

In our study, we consider classes that correspond to both plosive and voiced
segments of speech. In particular we consider the following phonological classes:
‘stop’ and ‘consonantal’ (classes that include phonemes /p/, /t/, and /k/),
‘back’, and ‘open’ classes (classes that include /a/), and also the ‘anterior’ and
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‘close’ classes (classes containing vowels /e/ and /i/ and /i/ and /u/ respec-
tively). The ‘stop’, ‘consonantal’, ‘back’ and ‘open’ phoneme classes were all
chosen as they contain phonemes that makeup the utterance, /pa-ta-ka/. Thus,
the expectation for the class posteriors was that they would be higher for less
dysarthric patients who are able to fully articulate each syllable. The ‘close’,
and ‘anterior’ classes on the other hand were used to identify speakers that have
difficulty in fully articulating the voiced segments of /pa-ta-ka/. Impairment of
vowel articulation, is said to occur as a consequence of a reduced articulatory
range of motion, i.e. “undershooting” of articulatory gestures, which is said to
be a consequence of PD [9]. The phonological features were extracted using the
Phonet toolkit [20], which is freely available and based on recurrent neural net-
works with gated recurrent units.

Kinematic Features. One of the more important aspects for qualitatively
assessing dysarthria is rhythm [3,9,10]. It is well known that the pulmonic air
pressure is the primary energy source of speech, and the amplitude modulation
describing the pressure and rhythm for a given speaker is largely determined by
articulatory behaviors, especially mandible and lip movements [7]. Furthermore,
it is noted in [7] that the kinematic parameters of the amplitude envelope capture
the smooth amplitude fluctuation pattern over time and indicate how energy is
distributed across a given signal.

In practice, the kinematic parameters of the amplitude envelope are obtained
by applying the Hilbert transform to the signal, taking the complex-modulus,
applying a low pass filter, and then normalizing to consider any potential gain
factor [7]. The result is known as a displacement curve. We then take the first
and second order difference to obtain the envelope velocity and acceleration.

It was shown in [2,7] how these parameters correspond to articulatory move-
ments during speech. Both papers assert that speaker-specific articulatory kine-
matics, including velocity, acceleration and spatial displacement reflect speaker
individuality because of anatomical idiosyncrasies of the articulators and the way
speakers acquired control over them. In particular, the authors in [2] noted that
the amplitude envelope co-varied with the area of a speaker’s mouth opening
(i.e. larger mouth opening areas correlated with peaks in the amplitude enve-
lope displacement curve), and the authors in [7] noted a correspondence between
the amplitude envelope and lower lip kinematics. This was done by comparing
the peaks and troughs of the displacement curve to the signal measurements of
a speaker’s lip and mandible movement measured by x-ray microbeams. It was
shown that the two signals displayed a strong inverse correspondence, meaning
peaks in the first and second order differences of the amplitude envelope typi-
cally matched with troughs in the lower lip displacement curve and vice-versa.
Though the authors here did not consider speakers with dysarthria in particular,
it has been shown in prior research that the lower lip closing velocities expressed
as a function of movement amplitude are greater for PD speakers than for nor-
mal geriatrics [5]. It was also noted in this study that the increased velocity of
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lower lip movement may reflect a difference in control of lip elevation for PD
speakers, an effect that increases with the severity of dysarthria.

Spectrogram Slope and Peak Standard Deviation. One characteristic
common in Parkinson’s disease speakers is an inconsistency of speech pattern
in the subject speaker [3]. In order to model this, we apply a peak detection
algorithm to the spectrogram of each speaker, and take the slope of a fitted
line through these peaks. We also utilize the standard deviation of the peak
amplitudes in order to evaluate the stability in the energy distribution for the
different syllables in the DDK task. As noted in [3], previous findings of acoustic
and kinematic studies report a reduced amplitude and velocity of articulators
(lips, tongue, jaw) for PD patients, suggesting that articulation deficits reflect
hypokinesia and rigidity of the vocal tract. We hypothesized the slope and peak
amplitude information would convey this, with speech output volume decreasing
over time (corresponding to a more negative slope), and a higher variation in
peak amplitudes (corresponding to a higher variability in speech energy output).

2.3 Classification Method

GMM-GUMI Supervectors. One of the most common and effective tools
used for text-independent speaker recognition, has been GMM-UBMs [13]. These
models are well known for their effectiveness and scalability in modeling the spec-
tral distribution of speech [23]. In this approach, speaker models are obtained
from the adaptation of a GMM-UBM through the maximum a-posteriori (MAP)
criterion. The GMM-UBM is usually trained by means of the expectation-
maximization (EM) algorithm from a background data set, which includes a
range of different speakers, and produces a set of parameters, namely mean vec-
tors, covariance matrices and mixture weights, that characterize a speaker set.

For our considerations, we build three different types of UBMs, one consisting
of only PD patients, one with HC, and one using a combination of both. We
train each UBM based on the aforementioned features, with an optimal number
of Gaussian components chosen via 10 fold cross validation. From the UBMs, we
adapt speaker models for all patients in a leave two out manner (one PD and
one HC patient left out per iteration), and build a GUMI supervector (stacked
mean intervals output from the Bayesian adaptation process as detailed in [23]).
We then classify PD patients and HC subjects using the GUMI supervectors
and two different classification strategies: an SVM with a Bhattacharyya based
kernel, and a random forest. We also consider a support vector regression (SVR)
approach and a random forest-based regression to predict the m-FDA score
assigned to the speakers by expert phoneticians.

3 Results

All extracted features were assigned a Spearman correlation score (with respect
to the m-FDAs of all patients). The mean and standard deviation for all features
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Fig. 1. Correlation between all features considered and m-FDA scores for the total set
of speakers (left), and of the 90th percentile of extreme cases (m-FDA scores less than
or equal to 2 or greater than or equal to 40) (right).

were estimated over consecutive utterances of the phrase /pa-ta-ka/. Results can
be seen in Fig. 1. The average and standard deviation of the posterior proba-
bility output for the ‘close’ class (containing vowels /e/ and /i/) were among
the highest absolute correlative scores with the m-FDA (0.49 for the mean and
0.45 for the standard deviation). The positive correlation is a result of the fact
that patients that had a higher average posterior probability of uttering vowels
/e/ or /i/ rather than /a/ are likely more dysarthric, meaning they would hypo-
thetically have had a higher m-FDA score assigned to them. When we zoom
in and look at the more extreme cases, (i.e. speakers with m-FDA scores less
than or equal to 2 and greater than or equal to 40 which represents 10% of the
overall set), correlative scores are higher. The ‘anterior’ class, which is said to
be characterized by an obstruction located in front of the palato-alveolar region
of the mouth [19] which also characterizes a speaker’s inability to formulate the
/a/ sound consistently, similarly performed well (correlation of 0.44, 0.43 for the
mean, and standard deviation respectively for all cases and 0.57 and 0.65 in the
more extreme cases). Kinematic features also exhibited high absolute correlative
scores (-0.6 in the most extreme cases). This can be attributed to the link noted
in [7] that the first and second order differences in the amplitude envelope for a
given speaker inversely correspond to the velocity and acceleration of lower lip
movement which as noted are typically higher in PD patients [5].

The results for binary classification (PD vs. HC) and for predicting the m-
FDA scores of all speakers are shown in Table 1. Results are observed for each
type of UBM, and for each classifier. The most accurate predictor with respect to
binary classification was achieved with an HC based UBM and an SVM classifier
(accuracy of 89%). This same model and classifier achieved the highest correla-
tion predicting the m-FDA score (0.6). The performance of the HC based UBM
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can likely be attributed to the fact that range of m-FDA scores for PD patients
was much more variable compared to HC patients. Thus, when training on only
HC patients, there is a much clearer distinction for the classifier to recognize.

Table 1. Results of PD, HC and PD+HC based UBMs to classify patients using SVM
and Random Forest (RF) classifiers. Results include the accuracy (ACC) classifying PD
and HC subjects, and the Spearman’s correlation coefficient ρ predicting the m-FDA
score of the participants.

ACC. ρ ACC. ρ

RF RF SVM SVM

PD-based UBM 78.0 0.43 75.0 0.33

HC-based UBM 63.0 0.42 89.0 0.60

PD+HC-based UBM 63.0 0.26 72.0 0.24

4 Conclusions

In this paper we considered a set of different features that are useful in distin-
guishing PD and HC patients, and in assessing the severity of a given patient’s
speech dysarthria. The features were chosen such that they were both com-
prehensive and easily interpretable. It was found that the average back, open,
anterior and close phoneme class posterior probabilities, as well as the average
and standard deviation of the first and second order envelope kinematic parame-
ters were among the strongest indicators, as seen by the correlation with patient
m-FDA scores. Those features were also shown to be strongly correlated when
considering the most extreme cases (i.e. patients with m-FDA scores above and
below certain thresholds). Different methods for classification were also discussed
and used to show that the considered features were in fact useful for classification
purposes, as well as dysarthria assessment. The best results were found to be
competitive with those obtained in studies that utilized more complex features.

The results obtained with our proposed method are similar and comparable
to others reported in the literature when the same data was used, and which
considered different sets of features. For instance, features based on phonation,
articulation, and prosody [12], features based on Gaussian mixture model rep-
resentations [11], features based on nonlinear dynamics [6], and empirical mode
decomposition [16], among others.

Moving forward, studies considering hybrid models that utilize features such
as MFCCs, or neural network embeddings as well as more easily interpretable
features, such as those we considered in this paper, should be done. In addition,
it would be of use to consider a wider variety of languages to ensure the results
obtained are consistent in different contexts.
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nan, S., Nöth, E.: Articulation and empirical mode decomposition features in diado-
chokinetic exercises for the speech assessment of Parkinson’s disease patients. In:
Nyström, I., Hernández Heredia, Y., Milián Núñez, V. (eds.) CIARP 2019. LNCS,
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Abstract. The x-vectors are features extracted from speech signals
using pretrained deep neural networks, such that they discriminate well
among different speakers. Their main application lies in speaker identifi-
cation and verification. This manuscript studies, which other properties
are encoded in x-vectors. The focus lies on distinguishing between speech
signals/noise and utterances of a single speaker versus overlapped-speech.

We attempt to show that the x-vector network is capable to extract
multi-purpose features, which can be used by several simple back-end
classifiers. This means a common feature extracting front-end for the
tasks of voice-activity/overlapped speech detection and speaker identifi-
cation. Compared to the alternative strategy, that is training of indepen-
dent classifiers including feature extracting layers for each of the tasks,
the common front-end saves computational time during both training
and test phase.

Keywords: Voice activity detection · Overlapped speech detection ·
x-vectors · Time-delayed deep neural networks

1 Introduction

The goal of speaker embeddings is to map utterances to fixed-dimensional
vectors which encode characteristics of the given speaker. The concept of
speaker embeddings has been introduced for tasks such as speaker recogni-
tion [23] and diarization [7]. Several embedding variants exist such as i-vectors [4]
stemming from Gaussian-Mixture-Model-based Universal-Background-Model
(GMM-UBM, [20]) or embeddings derived from Deep Neural Networks (DNN).
The DNN-based features differ mostly by topology of the network used to extract
them. The embeddings derived from fully-connected DNN (sometimes abbre-
viated as d-vectors) were proposed in [24], whereas utterance-based embed-
dings for analysis of sequences via long-short term memory (LSTM) networks
were presented in [2,11]. The x-vectors studied in this work were introduced
in [7,23]. These attempt to alleviate complicated training of sequence-based
approaches and yet utilize the context contained in the utterance. The x-vectors
are extracted using the time-delayed DNN (TDNN) topology proposed in [18].
c© Springer Nature Switzerland AG 2020
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Although the embeddings/x-vectors are primarily trained to contain infor-
mation about the speakers, other properties are encoded within as well and are
subject of studies. The authors in [26] study i-vectors and d-vectors from [2,24]
to find suitability of the embeddings to classify qualities like utterance length,
channel information, speaker gender or speaking rate. Recent work in [19] ana-
lyzes directly the x-vectors and next to to the already mentioned properties
studies also environmental effects. This includes session identification (different
instances of single speaker occurrence) and classification of background noise
used for augmentation.

The speaker characteristics encoded in the embedding can be utilized to solve
several problems besides already mentioned speaker identification and diariza-
tion. Fully supervised extraction of target speaker via pretrained DNN-based
beamformer was presented in [30,31]. Blind source separation-based extraction
of the desired speaker using x-vectors was proposed in [13]. In the context of
speech recognition and voice assistant design, the adaptation of general multi-
condition acoustic model for specific speaker using embeddings was presented
in [29]. Application to speaker adaptive speech synthesis was presented using
i-vectors, d-vectors and LSTM-based embeddings in [5,6,27], respectively.

This manuscript investigates, whether the x-vectors encode information
about other speech-related properties, specifically absence of speech (non-speech)
and presence of multiple active speakers (overlapped speech/cross-talk). Conven-
tional approach to detection of these phenomenons lies in training of Gaussian
mixture model (GMM,[15]) using pre-designed features. To this end, kurtosis,
spectral flatness measure and mel frequency cepstral coefficients (MFCC) were
utilized in [22,28]. Recently, DNN-based approaches were introduced in [14,21].

Our motivation for utilization of x-vectors for these tasks compared to train-
ing of a dedicated classifier lies in possibility of sharing common feature extract-
ing front-end for several classification tasks, such as speaker identification and
cross-talk/non-speech detection. This configuration lowers the computational
demands of classification during both training and test phase. The extensive fea-
ture extractor is trained once and the rather undemanding back-end is retrained
for multiple purposes. Such joint classifier is beneficial for speaker diarization [7]
or when utilizing blind extraction methods for speech enhancement [13]. With-
out additional information, blind methods extract arbitrary speech source. It
is thus beneficial to have prior information, whether to apply the extraction
(i.e., detect speech segments with background noise and cross-talk segments)
and whether the target speaker is active at all (i.e., perform identification of an
active speaker).

We investigate an utterance-wise classification, where the whole utterance is
assigned to one of three classes (non-speech, speech, cross-talk) and frame-wise
classification, where each frame of the audio-signal is assigned independently. We
compare several variants of augmentation for the training datasets of x-vector
DNN and investigate functionality of the resulting networks with respect to pres-
ence of distortions (reverberation and background noise) in the test utterances.
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Moreover, several configurations of the back-end classifiers are discussed, with
respect to accuracy and complexity of the classifier.

2 Datasets and Methods

2.1 The x-Vector DNN

Our implementation of the x-vector DNN, described in Table 1, comes from [23].
Its input consists of a single-channel audio signal, i.e., no spatial information is
used. The input features are 40 filter bank coefficients computed from frames
of length of 25 ms and frame-shift of 12.5 ms. The TDNN (time-delayed DNN)
layers introduced in [18] operate on frames with a temporal context centered on
the current frame �. The TDNN layers build on top of the context of the earlier
layers, thus the final context is a sum of the partial ones.

In contrast to [23], we introduced four differences in the DNN: 1) We use
all the frames in the context (and usually longer context) without any sub-
sampling in order to exploit the time-dependencies in the signal. 2) To reduce
the number of trainable parameters arising from the longer context, we weight
all the frames in the context by a trainable matrix at the input of each TDNN
layer and perform mean time-pooling. 3) We replaced the rectified linear units
at the output of TDNN and fully-connected layers by exponential linear units
(ELU), which speeds up convergence in our case. 4) The pooling layer computes
only means of frames (variances are omitted) in the context, which is during the
training phase set to Lc = 101.

The DNN was trained to classify N speakers and possibly non-speech class.
The training examples consisted of 201 frames of features and the speaker label.

Table 1. Description of the DNN producing the x-vectors. The input size for the
TDNN layers is stated after the mean pooling operation.

Layer Layer context Total context Input× output

TDNN 1 � ± 80 161 40 × 1024

TDNN 2 � ± 4 169 1024 × 768

TDNN 3 � ± 4 177 768 × 512

TDNN 4 � ± 4 185 512 × 384

TDNN 5 � ± 4 193 384 × 256

TDNN 6 � ± 4 201 256 × 128

Fully-conn. 1 � 201 128 × 128

Pooling � ± Lc−1
2

max(201, Lc) (Lc · 128) × 128

Fully-conn. 2 � max(201, Lc) 128 × 128

Softmax − max(201, Lc) 128 × N
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2.2 Back-End Classifiers

To process the x-vector embeddings, we utilize three classifiers, which were pre-
viously used either directly for cross-talk detection or speaker identification;
namely GMM [15], probabilistic linear discriminant analysis (PLDA, [12]) and
fully-connected DNN [9]. We assign into three classes: 1) non-speech, which
includes silence and noise-only audio, 2) speech, corresponding to utterances
of a single person and 3) overlapped speech/cross-talk, for simultaneous talk-
ing of two people. The x-vectors are length-normalized prior back-end classifier
training. For specific information on training dataset, see Sect. 2.3.

We train the GMM via the maximum-likelihood approach using the
expectation-maximization algorithm. The models employ full covariance matrix.
The number of components for each class is selected in interval 1− 25, via mini-
mization of the Akaike information criterion (AIC). The GMM classifier trained
in this manner is rather large, featuring from 490k − 655k of free parameters.
The precise number varies for each of the x-vector variants. In order to reduce
the number of model parameters, we employ optional feature-vector dimension-
ality reduction via Linear Discriminant Analysis (LDA, efficient implementation
from [3]). Since three classes are classified, the reduced feature-vector dimension
is 2 and the classifier consists of 15 free parameters.

We utilize the PLDA classifier in a similar form, which is widely applied
in speaker identification and diarization scenarios. Here, a hypothesis is tested
whether the embedding of an unknown test example is produced by any of known
classes (speakers). The known speakers are represented by embeddings computed
from short clean utterances called enrollments. In this form, the PLDA has
advantage that it allows classification of a class (speaker) unseen in the training
phase (open class-set). This advantage is not exploited for the given task, since
here we work with known classes/closed class-set. We do not perform any feature
dimensionality reduction prior the PLDA modeling, which results into models
with about 65k parameters. The selection of the enrollment signals is discussed
in Sect. 2.3.

Our DNN classifier has fully-connected topology. The input layer of size 128
accepts one x-vector without any context, in order to be comparable to the
other back-end classifiers. Based on best results in preliminary experiments, we
selected the hyper-parameters such that the DNN contains one hidden layer
of size 128 and ReLU nonlinearity. Training proceeds through minimization of
cross-entropy loss via Adam optimizer. The classifier contains about 17k train-
able parameters.

2.3 Training Datasets and Their Augmentations

The training data for the x-vector DNN originate from the development part
of the Voxceleb database [16] and the training part of the LibriSpeech cor-
pus [17]. The data from training part of the TIMIT dataset [8] are used to train
the back-end classifiers. VoxCeleb is an audio-visual dataset consisting of short
clips of human speech, extracted from interview videos uploaded to YouTube.
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The provided utterances are recorded in various environments and may contain
reverberation and background noise. The part of the Librispeech dataset desig-
nated “train-360-clean” is utilized in our training. It contains excerpts of read
audio-books with total duration 360 hours. The data should be rather free of
distortions thus we subject it to additional augmentations. The TIMIT corpus
for automatic speech recognition consists of 6300 English phonetically rich sen-
tences read by 630 speakers. The dataset is recorded in anechoic and practically
noiseless environment, thus we apply additional augmentations to it as well.

The train set of the x-vector network, as summarized in Table 2, is
compiled in three variants, in order to study the influence of various augmenta-
tions on the classification. Each training set contains one instance of Voxceleb
dataset without any additional augmentation. Further, one or more instances of
Librispeech dataset are added, each with one of the following augmentations:

1. None: The original Librispeech dataset.
2. Reverberation: The utterances are convolved with artificial impulse responses

generated by [10]. The artificial RIRs originate from a shoe-box room of size
8 × 7 × 3. We generate RIRs corresponding to four different rooms with T60

ranging from 175 − 650 ms. The source-microphone distance is 1 − 2 m.
3. Noise: The background noise with was added to the original Librispeech

dataset.
4. Reverberation+noise: The background noise with was added to the reverber-

ated Librispeech dataset.

Noises for augmentations by background noise are taken from the train-
ing part of the CHiME-4 simulated dataset ([25], we use channel 1 of six-
channel recordings) and the development dataset available in the Task 1 of the
DCASE2018 challenge [1]. This data were also added to the training set with-
out speech, creating a non-speech class besides the speakers classified by the
network.

The noise in the background is amplified, such that the signal-to-noise ratio
(SNR) measured in intervals with active speech is 10 dB. This means that the
noise is louder compared to global SNR case, when the whole signals are consid-
ered without respect to speech activity.

The Training Set of the Back-End Classifiers requires smaller amounts of
data, since the classifiers contain smaller number of free parameters. It is derived
from the training part of the TIMIT corpus [8]. The original training data consist
of 4620 sentences uttered by 462 speakers. A subset of 4400 utterances is used
to train the classifiers, 220 sentences are reserved for the enrollment of PLDA.

Since the TIMIT dataset does not contain any cross-talk or environmental
distortions, we introduce the overlap and signal augmentations artificially. This
is done in a manner similar to [21], in order to make the results approximately
comparable to this work. We leave one instance of a sentence as it is (speech
class). Another instance containing cross-talk is created, such that an utterance
of a different speaker is selected and summed together. A random shift is intro-
duced at the beginning of the summed utterance, such that a minimum length of
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overlap is one second. The frame-wise true class-labels are created using energy
thresholding of the original TIMIT files. Reverberation and noise are added in
combinations as described for the x-vector DNN training set. The noise data
originate from the train part of the CHiME-4 dataset [25]. Because the x-vector
network requires context of frames, the classification of short sentences is bur-
dened with higher error rate. To mitigate, we add 100 frames of non-speech to
the beginning and end of the augmented signals.

The described procedure results in 4400 (utterances)× 2 (speech classes)× 5
(reverberation conditions including anechoic)× 2 (background noise presence)
+ 6900 (noise-only signals) = 94900 training signals and 220 × 2 × 5 × 2 +
238 = 4638 enrollment sentences for PLDA. From each such signal one feature
vector for training of back-end classifiers is created. It is an average of all vectors
corresponding to the most represented class in the signal.

Table 2. X-vector network variants

X-vector variant Augmentations

X-vec:Rev None, reverberation

X-vec:NoiBg None, reverberation, noise

X-vec:NoiComp None, reverberation, noise, reverberation+noise, non-speech class

2.4 Test Dataset

Out test dataset is derived from the test part of the TIMIT corpus [8]. The cross-
talk is introduced in a same manner as described in Sect. 2.3 for the training set of
the back-end classifiers. The original test data consist of 1680 sentences uttered
by 168 speakers, sampled at 16 kHz. The noise data originate from the test
part of the CHiME-4 dataset [25]. This results in 1680 (utterances)× 2 (speech
classes)× 5 (reverberation conditions including anechoic)× 2 (background noise
presence) + 2960 (noise-only signals) = 36560 test signals. In other words, there
is 16800 signals of both speech and cross-talk in various acoustic conditions and
2960 examples of noise-only signals.

Considering the frame-wise occurrence of classes, about 58% of frames corre-
sponds to speech, 21% to cross-talk and 21% to non-speech. Non-speech frames
are located in the noise-only signals and also at the boundaries of speech in all
other files.

3 Experiments

We report results of two types of experiments in this section.

1. The utterance-wise experiments are designed to assign a single class label to
each of the test files. These are meant to verify, whether the x-vectors encode
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the information about non-speech/cross-talk. The reference for each file is
selected such that: 1) Non-speech is assigned to files with no speech, 2) Speech
is assigned to files with speech and without cross-talk and 3) Cross-talk is
assigned to files with overlapping utterances. The classification proceeds only
on frames, which correspond to the true file reference. An average feature
vector is computed using these frames and assigned to the class using one
of the back-end classifiers. The utterance-wise experiments tend to be overly
optimistic, because the decision of the classifier is supported by information
obtained from multiple frames.

2. The frame-wise experiments correspond to practical utilization of the classi-
fiers in the real-world, classifying each of the frames within a signal separately.
The result for each test file is a set of time-aligned estimated class-labels.

The results are reported separately for each of the acoustic conditions within the
test set. There are 3360 anechoic noiseless signals, 16800 noiseless signals (both
reverberated and anechoic), 2960 noise-only signals and 16800 noisy signals. The
experiments are evaluated using accuracy [%], either per-file for utterance-wise
experiments or per-frame for frame-wise scenarios.

The comparison of x-vector network configurations is performed with the
GMM classifier without any dimensionality reduction in Sects. 3.1 and 3.2. Using
the best configuration, we compare the various discussed back-end classifiers in
Sect. 3.3.

3.1 Utterance-Wise Experiments

The results summarized in Table 3 indicate that the x-vectors encode the non-
speech/cross-talk information. The classification is highly accurate (more than
95%) for both anechoic and reverberant noiseless conditions. The features also
well discriminate the non-speech class (more than 99%).

The classification seems to be significantly less accurate in the presence
of background noise. The accuracy drops to 65.9% for X-vec:Rev, which does
not have any noisy data within its training set. The augmentations applied to
the training data of the x-vector network compensate partly for this deterio-
ration. The best accuracy for the noisy data rises to 80.6%, achieved by the
X-vec:NoiComp network.

Table 3. Accuracy [%] achieved in the utterance-wise experiments using GMM back-
end classifier.

X-vector variant Anechoic Noiseless Noise-only Noisy Total

X-vec:Rev 99.38 95.30 99.93 65.93 82.18

X-vec:NoiBg 98.69 95.96 99.90 73.98 86.18

X-vec:NoiComp 98.78 96.07 99.90 80.61 89.27
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3.2 Frame-Wise Experiments

The accuracy is lower compared to the utterance-wise case; the best total accu-
racy is 76.7% achieved by the X-vec:NoiComp variant. We conjecture that this is
caused: 1) by the fact that the back-end classifiers analyze each frame indepen-
dently (compared to frame-average over the whole signal) and 2) by the design
of the back-end training, which corresponds to utterance-wise classification. The
training examples are averages of x-vectors in training signals, which may be too
approximate for the frame-wise scenario.

The effect of augmentation is also much less significant for the frame-wise
experiment. The X-vec:NoiComp network outperforms the X-vec:Rev variant by
1.2% in total results, compared to more than 7% for utterance-wise classification
(Table 4).

Table 4. Accuracy [%] achieved in the frame-wise experiments using GMM back-end
classifier.

X-vector variant Anechoic Noiseless Noise-only Noisy Total

X-vec:Rev 82.70 76.18 99.73 67.30 75.48

X-vec:NoiBg 81.56 75.98 99.51 68.11 75.72

X-vec:NoiComp 82.49 77.82 99.55 68.48 76.68

3.3 Comparison of Back-End Classifiers

The comparison of the back-end classifiers is presented in Table 5. The highest
accuracy (76.7%) is achieved using the GMM classifier without any dimensional-
ity reduction. The DNN classifier yields total accuracy lower by 1.6%, however, it
has the advantage of significantly lower number of free parameters (528k for the
GMM and 17k for the DNN). Compared to GMM, the GMM:LDA and PLDA
achieve total accuracy lower by about 3%. PLDA achieves the lowest accuracy
for the non-speech class. We conjecture, this is partly due to sub-optimal enroll-
ment set, which is difficult to compile for the heterogeneous non-speech class.
All classifiers (i.e., x-vectors in general) are highly accurate for detection of long
intervals of non-speech (column Noise-only in Table 5), however encounter errors
at the boundaries of speech.

This experiment can be partially compared to investigation performed in [21],
where similar (but not identical) test set was created by adding augmentation
via reverberation and background noise to TIMIT. In [21], the baseline clas-
sifier (GMM model trained on MFCC, spectral-flatness measure and kurtosis)
achieved 64.5% accuracy on the noisy data. Thus, the x-vectors appear to be
better suited to the discussed classification then the conventional pre-designed
features. However, the DNN-based feature extractors/classifiers dedicated to
classification of cross-talk achieved accuracy 71.8 − 79.9% on the noisy data,
thus outperforming the x-vectors.
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Table 5. Comparison of back-end classifiers via accuracy [%] obtained in the frame-wise
experiments using x-vector setting X-vec:NoiComp. Last three columns state accuracy
for each class achieved on the whole test dataset.

Classifier Anechoic Noiseless Noise-only Noisy Total Total

speech

Total

cross-talk

Total

non-speech

GMM (no reduction) 82.49 77.82 99.55 68.48 76.68 77.78 77.64 73.77

GMM:LDA 80.16 76.81 99.80 62.99 73.90 65.75 86.91 83.19

PLDA 80.13 76.35 92.46 65.22 73.68 73.33 83.59 64.51

DNN 82.23 75.55 99.42 67.12 75.09 71.29 86.48 73.97

4 Conclusions

This manuscript investigated to what extend the speech presence and cross-
talk are encoded within the x-vector features. The following conclusions were
drawn: 1) The x-vectors can be used for detection of cross-talk and non-speech
in a frame-wise manner, especially for environments with low activity of back-
ground noise. 2) The detection using x-vectors outperforms the conventional
pre-designed features, such as kurtosis or MFCC, but it achieves lower accuracy
compared to DNN-based feature extractors/classifiers specialized for this task.
3) The negative effects of reverberation can be mitigated to high degree using
the augmentation of training data for the x-vector network. 4) Significant accu-
racy deterioration is observed on data with background noise; the augmentation
does have limited effect here. 5) The GMM classifier without any dimensional-
ity reduction achieves the highest accuracy from the back-end classifiers. The
accuracy of DNN classifier is slightly lower, but it consists of considerably less
trainable parameters.

For the future work: 1) In the current form, the frame-wise classification
suffers from short spurious changes between classes, especially for noisy environ-
ments. This behavior can be mitigated by inclusion of smoothing of the output
results, e.g., in the form of weighted finite-state transducers. 2) Frame-wise classi-
fication can be improved by training a back-end classifier, which takes frame con-
text into consideration, such as TDNN or convolutional neural network. 3) The
classification may be improved by inclusion of the cross-talk directly in the train-
ing of the x-vector network. However, direct addition of a cross-talk class to the
training dataset violates the idea behind the current targets of the x-vector net-
work, i.e., one speaker is active in one training utterance at the most. More
plausible variant lies in a change of the x-vector network cost-function/targets.
One variant is to allow multi-label classification, i.e., the training utterance can
contain more than one speaker.
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Abstract. Current Automatic Speech Recognition (ASR) systems
mainly take into account acoustic, lexical and local syntactic information.
Long term semantic relations are not used. ASR systems significantly
decrease performance when the training conditions and the testing con-
ditions differ due to the noise, etc.. In this case the acoustic information
can be less reliable. To help noisy ASR system, we propose to supple-
ment ASR system with a semantic module. This module re-evaluates
the N-best speech recognition hypothesis list and can be seen as a form
of adaptation in the context of noise. For the words in the processed
sentence that could have been poorly recognized, this module chooses
words that correspond better to the semantic context of the sentence.
To achieve this, we introduced the notions of a context part and possi-
bility zones that measure the similarity between the semantic context of
the document and the corresponding possible hypothesis. The proposed
methodology uses two continuous representations of words: word2vec and
FastText. We conduct experiments on the publicly available TED confer-
ences dataset (TED-LIUM) mixed with real noise. The proposed method
achieves a significant improvement of the word error rate (WER) over
the ASR system without semantic information.

Keywords: Automatic Speech Recognition · Semantic context ·
Embeddings

1 Introduction

Despite constant efforts and some spectacular advances, the ability of a com-
puter to recognize speech is still far from equaling that of humans. Current ASR
systems significantly deteriorate performance when the conditions in which they
are trained and those in which they are used differ. The causes of variability
between these conditions can be the acoustic environment and/or the acquisi-
tion of the signal. Even if many approaches to compensate this variability have
been proposed [18], the performance of an ASR system on a given word always
depends on the distortion at the precise moment when this word was spoken.

Current ASR systems mainly take into account only acoustic (acoustic
model), lexical and syntactic information (local n-gram language models). We
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suggest moving towards a contextualization of the ASR system. Indeed, lexi-
cal and semantic information is important for an ASR system to be efficient.
Recently, several researchers have proposed to use semantic information to
improve the ASR performance. For example, exploring the topic and semantic
context to enable the recovery of proper names [14], using a semantic language
model based on the theory of frame semantics [2], assigning semantic category
labels to entire utterances and re-ranking the N-best list of ASR [11]. [7] learns
semantic grammar for the ASR system. In [5] authors combine information from
the semantic parser and ASR’s language model for re-ranking. In [4], a method
for re-ranking black-box ASR hypotheses using an in-domain language model
and semantic parser trained for a particular task is investigated.

In this article, we propose to complete the noisy ASR step by adding the
semantic information in order to detect the words in the processed sentence that
could have been poorly recognized and to investigate words of similar pronuncia-
tions that correspond better to the context. This semantic analysis re-evaluates
(rescores) the N-best transcription hypotheses (N-best) and can be seen as a
form of dynamic adaptation in the specific context of noisy data. Reevaluation
is performed through a definition of context part and possibility zones. Seman-
tic information is introduced using predictive continuous representations [3,9].
These representations have proven to be effective for a series of natural lan-
guage processing tasks [1]. The efficiency and the semantic properties of these
representations motivate us to explore them for our task of ASR in mismatched
conditions. We hope that in very noisy parts, the language model and the seman-
tic model could remove the acoustic ambiguities in order to find the words spoken
by the speaker. All our models are based on high-performance DNN technologies.
Compared to the previous works using the rescoring of N-best list [12,15,16],
we don’t use several features, and we only rely on semantic information. Fur-
thermore, the specificity of our approach is the use of the context part and
the possibility zones of N-hypotheses list: semantic part represents the semantic
information of the topic context of the document to recognize and possibility
zone corresponds to the area where we want to find the words to be corrected.
This allows us to give less importance to the words in the possibility zone which
do not correspond to the context of the document, and to give low semantic
score to the corresponding hypothesis.

2 Proposed Methodology

2.1 Semantic Model

An effective way to take into account semantic information is to re-evaluate
(rescore) the best hypotheses of the ASR system. This system provides an acous-
tic score Pac(w) and a linguistic score Plm(w) for each word of the hypothesis
sentence. The best sentence is the one that maximizes the probability of the
word sequence:

Ŵ = arg max
hi∈H

∏

w∈hi

Pac(w)α · Plm(w)β (1)
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Ŵ is the recognized sentence (the end result); H is the set of N -best sentence
hypotheses; hi is the i-th sentence hypothesis; w is a hypothetical word. α and β
represent the weights of the acoustic and the language models. These weights are
essential because acoustic scores and linguistic scores are not always normalized
(they are often likelihoods and not probabilities).

We want to add semantic information to guide the recognition process. The
most natural approach to integrating this information is to modify the calcula-
tion of the probability of the sequence of words in the following way:

Ŵ = arg max
hi∈H

∏

w∈hi

Pac(w)α · Plm(w)β · Psem(w)γ (2)

We added the semantic probability of each word: Psem(w). To have a good
balance between the different models, we introduce a third weight γ to weigh
the semantic information. It will be adjusted on a development corpus.

2.2 Definition of Context Part and Possibility Zones

To estimate the semantic probability, we propose to introduce the concepts of
context part and possibility zone. A context part consists of words which are
common to all the N -best hypotheses generated by the ASR. We assume that
they are correct. This context part allows to extract semantic information of
the topic context of the document or of the current part of the document to be
recognized. The context part can contain several parts. A zone of possibilities is
an area between the context parts. It is in this area that we want to find the
words to be corrected. From the N-best hypotheses of a sentence, we extract
only one context part and one or more possibility zones. Each zone can contain
several words. Figure 1 illustrates these concepts on an example. Here, the 2-best
hypotheses list is the following:

H1: the cat eats the big fat mouse
H2: the cat bits the bigfoot mouse

In this example, the context part Zcont is composed of four words: Zcont =
{the, cat, the,mouse}. These are the words which are common to all the hypothe-
ses and we assume that they are correct. Between these words, we define
two possibility zones: the first is made up of two alternatives, eats and bits:
Zpos,1 = {eats, bits}. The second is also made up of two alternatives: Zpos,2 =
{bigfat, bigfoot}. One alternative corresponds to a choice in the possibility zone.
We assume that the possibility zones correspond to the zones where the ASR
hesitates between different solutions.

To obtain the context part, we use a dynamic programming algorithm which
allows us to pair the hypotheses two by two in order to determine the words
common to all the hypotheses. If the context part is empty, we don’t study this
sentence.
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Fig. 1. Illustration of the context part and the possibility zones, as an example.

2.3 Semantic Representation of the Context Part
and the Possibility Zones

To take into account the semantics of the document, we propose to represent
each word of the N-best hypotheses by an embedding vector. In our approach, we
used word2vec [9] and FastText [3]. We compute an average embedding Econt

for the context part which is equal to the average of the embedding vectors of
all the words in the context part. In the same way, we calculate an average
embedding Epos(i, ah) for i-th possibility zone of alternative ah of hypothesis
h as the average of the embedding vectors of all the words in this alternative
of possibility zone. We use the angular similarity to estimate a semantic score
between each possibility zone and the context part:

Ssem(Econt, Epos(i, ah)) = 1 − cos−1 cos(Econt, Epos(i, ah))
π

(3)

From the semantic representations of the context part and the possibility
zones, we compute a semantic probability of a hypothesis h. A semantic prob-
ability of a hypothesis h Psem(h) is computed as follows:

Psem(h) =
Np∏

i=1

Ssem(Econt, Epos(i, ah)) (4)

where Np is the number of possibility zones. We assume that the Eq. (2) can be
approximated as follow:

Ĥ = arg max
h∈H

Pac(h)α · Plm(h)β · Psem(h)γ (5)

where Ĥ is the N -best list. The Eq. (5) is used to re-rank the N -best hypothesis
list. For each hypothesis we compute the semantic score and associate it with
acoustic and linguistic scores according to (5). The hypothesis obtaining the best
score is considered as the recognized sentence.
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3 Experiments

3.1 Corpus Description

We used the publicly available TED-LIUM corpus [6], containing the recordings
of the TED conferences. This corpus is well suited to our study because each
conference is focused on a particular subject. We want to add the semantic
module to improve the performance of our recognition system.

We used the partition of the TED corpus into a train, a development and
a test corpus proposed in the TED-LIUM distribution: 452 h for training, 8
conferences (496 sentences, 17926 words) for development and 11 conferences
(1091 sentences, 27021 words) for testing.

3.2 Recognition System

Our recognition system is based on the Kaldi voice recognition toolbox [13].
We used TDNN triphone acoustic models, trained on the training part of TED-
LIUM. The lexicon and language model was provided in the TED-LIUM distri-
bution. The lexicon contains 150k words and the language model has 2 million
4-g, learned from a textual corpus of 250 million words. We also performed the
recognition using the RNNLM model [10]. We want to see if using more powerful
language model (LM), the proposed semantic module can improve the ASR. As
usual, we used the development set to choose the best parameter configuration
and the test set to evaluate the proposed methods with this best configuration.
We used the word error rate (WER) to measure the ASR performance.

The performance of our ASR system on TED-LIUM using n-gram LM is
around 8% of WER. We are not interested in noise-free conditions because in
this case the acoustics allow to properly guide the recognition. This research
work was carried out as part of an industrial project. This project concerns the
recognition of speech in noisy condition, more precisely, in a fighter aircraft.
To get closer to actual conditions, we added noise to the development and test
sets: additive noise at 10 dB and 5 dB SNR (noise of F16 from the NOISEX-92
corpus [17]).

3.3 Embeddings

We trained word2vec model on a text corpus of a billion words extracted from
the OpenWebText corpus. The generated models have the size of 300 and model
700K words. As FastText model, we used the same embedding dimension. The
advantage of FastText compared to word2vec is the taking into account of all
possible words.

4 Experimental Results

4.1 Overall Results

Before performing the speech recognition evaluation, we wanted to investigate
the impact of the semantic module alone on the search for the best sentence,
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without using the acoustic and linguistic scores. For this, for a reference sentence
text, we simulated the recognition errors by replacing a random word (or two
successive words) of the reference sentence by one (or two) acoustically close
word(s). This can be easily performed using a phonetic dictionary. In this way,
we generated N -best hypotheses for the given sentence (N = 10). We performed
this generation for every 496 sentences of the development set.

After N -best hypotheses generation, we used our semantic module to rank
the 11 hypotheses (the 10 generated sentences plus the correct sentence) and we
evaluated the number of errors corrected on the top hypothesis. Here, we did not
use the acoustic and the language scores. For 496 sentences of the development
set, the word2vec-based semantic module corrects about 67% of simulated errors
and the FastText semantic module corrects about 61% of errors. We see that the
long context embeddings alone succeed to correct the large number of errors. This
shows that the proposed semantic module captures well the semantic information
of a sentence.

Table 1 presents the WER for the development and the test sets for two noise
condition (10 dB and 5 dB) and two language models (n-gram and RNNLM). The
first line of results (method Random), corresponds to the random selection of
the recognition result from the N-best hypotheses without using the semantic
module. The second line, Baseline, corresponds to the speech recognition sys-
tem without using the semantic module (standard ASR). The last line, Oracle,
represents the maximum performance that can be obtained by searching in the
N -best hypotheses: selection of the hypothesis which minimizes the WER for
each sentence. The other lines of the table give the performance of the proposed
approaches. At each case of the table, value between the parentheses corresponds
to the recognition result using the RNNLM. From this table we can make the
following observations.

Table 1. Recognition results in terms of WER (%). N -best hypotheses list of 50
hypotheses. TED-LIUM development and test sets, SNR of 10 dB and of 5 dB. n-gram
LM and RNNLM (between the parentheses).

Method SNR 10 dB SNR 5 dB

Dev Test Dev Test

Random 17.9 (14.8) 24.1 (21.5) 34.2 (29.8) 42.1 (39.3)

Baseline system 15.7 (12.3) 21.1 (17.7) 32.7 (28.2) 40.3 (37.1)

word2vec embedding 15.3 (12.0) 20.7 (17.6) 31.9 (27.4) 39.4 (36.4)

FastText 15.2 (11.8) 20.5 (17.5) 31.8 (27.4) 39.2 (36.1)

Oracle 9.6 (6.9) 12.8 (10.3) 25.4 (21.1) 30.5 (27.6)

The proposed semantic module outperforms the baseline system for all con-
ditions and all evaluated embeddings. For example, on the test set, the semantic
module with the FastText obtained an absolute improvement of 0.6% for 10 dB
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and n-gram LM (21.1% WER versus 20.5% WER) and 1.1% for 5 dB and n-gram
LM (40.3% versus 39.2%) compared to the baseline system. This represents 8%
of relative improvement for 10 dB and about 11% for 5 dB in the reduction of
the gap between the baseline and the oracle systems. For all datasets, noise
levels and two language models the obtained improvements are significant (con-
fidence interval is computed according to matched-pairs test [8]). This shows
that the proposed semantic module is able to capture a significant proportion of
the semantic information in the data.

The proposed embeddings give similar performances with a slight superiority
of the FastText embedding. All these observation are valid for two experimented
language models: n-gram and RNNLM.

4.2 Impact of Hyperparameters

Figure 2 (left) shows the evolution of the WER according to the parameter γ (cf.
Eq. (2)) for the development set, SNR of 5 dB and n-gram LM. We observe that
this parameter plays an important role. For too large values of γ (bigger than
300), the semantic information becomes dominant compared to the acoustic and
linguistic information and the WER begins to increase. Therefore, the value of
γ between 100 and 300 seems to be optimal. Figure 2 (right) reports the WER
as a function of the N -best list size. We can see that 5 or 10 hypotheses are not
enough. Using more than 25 hypotheses shows no further improvement.

Fig. 2. Semantic module with word2vec embedding, TED-LIUM development set, SNR
of 5 dB. WER as a function of the semantic weight γ (left figure) and the N -best
hypothesis number (right figure). The dotted line corresponds to the baseline result.
n-gram LM.

5 Conclusion and Discussion

In this article, we proposed a new approach of introducing semantic informa-
tion for the performance improvement of a noisy ASR system. We investigated
a new methodology for taking into account semantics through predictive repre-
sentations that capture the semantic characteristics of words and their context.
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The efficiency and the semantic properties of these representations motivate us
to explore these representations for our task of speech recognition. We used
word2vec and FastText embeddings. The semantic information is taken into
account through the rescoring module of the N -best hypotheses of the recog-
nition system. Semantic representations are applied to the context part and pos-
sibility zones. We evaluated our methodology on the corpus of TED-LIUM con-
ferences with added real noise. The proposed methodology shows a better WER
compared to the baseline system. This represents 8% of relative im-provement for
10 dB and about 10% for 5 dB in the reduction of the gap between the baseline
and the oracle systems. These improvements are statistically significant. This
observation is valid for the ASR with n-gram and with RNNLM.

It is important to note that in word2vec and FastText the word embedding
is static and the words with multiple meanings are conflated into a single rep-
resentation. In future work, we would like to investigate the dynamic BERT
embedding. We will conduct a deep analysis of the performance of semantic
module as a function of the noise characteristics (e.g., nonstationarity) and the
uncertainty propagation in noisy environment to guide the rescoring.
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Abstract. Stuttering is a complex speech disorder that can be identi-
fied by repetitions, prolongations of sounds, syllables or words and blocks
while speaking. Severity assessment is usually done by a speech therapist.
While attempts at automated assessment were made, it is rarely used
in therapy. Common methods for the assessment of stuttering sever-
ity include percent stuttered syllables (%SS), the average of the three
longest stuttering symptoms during a speech task or the recently intro-
duced Speech Efficiency Score (SES). This paper introduces the Speech
Control Index (SCI), a new method to evaluate the severity of stuttering.
Unlike SES, it can also be used to assess therapy success for fluency shap-
ing. We evaluate both SES and SCI on a new comprehensively labeled
dataset containing stuttered German speech of clients prior to, during
and after undergoing stuttering therapy. Phone alignments of an auto-
matic speech recognition system are statistically evaluated in relation to
their relative position to labeled stuttering events. The results indicate
that phone length distributions differ in respect to their position in and
around labeled stuttering events.

Keywords: Speech and voice disorders · Pathological speech ·
Language

1 Introduction

Stuttering is a speech disorder with a prevalence of 1% of the population [4]. It
is a complex disorder of nerve coordination between both brain hemispheres. It
can be identified by repetitions, prolongations of sounds, syllables or words, and
blocks while speaking.

In addition to these so-called core symptoms, a wide variety of linguistic,
physical, behavioral and emotional accompanying symptoms can occur, some of
them overlapping the core symptoms. Stuttered disfluencies are usually accom-
panied by physical tension [12]. The frequency of occurrence and the dura-
tion of the symptoms vary considerably depending on individual severity and
can seriously impair the communication of the person who stutters (PWS) [3].
c© Springer Nature Switzerland AG 2020
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The individual appearance of the symptoms of each PWS also depends on the
respective communication situation, the linguistic complexity of the utterance
and the typical phased progress of the speech disorder [6,19]. Since PWS know
exactly what they want to say, the cause of the stuttered disfluency does not lie
in planning or formulating speech, but in executing the plan of articulation [12].
The condition is treatable but not curable.

One possible technique to overcome stuttering is a technique called fluency
shaping [9,26]. Good results could be achieved by adapting it to stuttering ther-
apy [13]. PWS learn a method to overcome blocks which is characterized by
“easy” voice onset [10]. A German adaption of this technique is the Kasseler
Stottertherapie which has also been proven to work well [7,8]. To assess the
severity of stuttering and stuttering therapy success in some way, it is important
to measure stuttering in a reliable way. This is important both for therapeutic
practice and research. A stuttering diagnosis consists of the objective and sub-
jective evaluation of the stuttering symptoms as well as the evaluation of the
impairment of everyday life caused by the disorder. It should provide a reliable
picture of the individual severity of stuttering.

The objective evaluation of linguistic symptoms typically measures the fre-
quency of stuttering events in percent of stuttered syllables (%SS), whereby the
number of stuttered syllables is related to overall spoken syllables. However, this
measure has only little agreement among different observers [6] and does not
take into account the type of stuttering symptom, e.g. one-time syllable repeti-
tion vs. several-second tense block, nor its duration, which significantly reduces
the significance of %SS regarding the severity of stuttering [6,24]. Additionally
to %SS, the duration of stuttering events can be determined in order to increase
the reliability of the results. However, commonly only a small part of the dura-
tion of stuttering events is taken into account, e.g.; in SSI-4 only the average of
the three longest stuttering symptoms is used [23]. These methods also do not
record atypical stuttering disfluencies, which however can occur as accompany-
ing linguistic symptoms and can significantly influence the impression of the
severity of stuttering. Subjective stuttering severity rating scales are a widely
used measure for assessing the severity of stuttering. These are commonly used
both in speech therapy [18] and in clinical research [27]. For clinical purpose,
severity rating scales are more reliable than %SS, to provide a statement about
individual stuttering severity [11].

Methods for the automated assessment of stuttering and stuttering severity
have been proposed in the past. Nöth, Niemann, Haderlein, et al. use a stan-
dard speech recognition system and evaluated vowel and fricative durations on
a standardized reading task to discriminate between PWS and normal speakers
[16]. To classify prolongations and repetitions, Chee et al. extracted Mel Fre-
quency Cepstral Coefficients (MFCC) and used them to train k-NN and LDA
classifiers on a very small sample taken from the University College London
Archive of Stuttered Speech [5]1. Mundada et al. use the K-Means clustering
algorithm to separate normal speakers from PWS. They also use MFCC feature

1 Available at https://www.uclass.psychol.ucl.ac.uk/uclassfsf.htm.
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extraction and Dynamic Time Warping (DTW) for classification [15]. Świetlicka
et al. use artificial neural networks to discriminate between syllable repetitions,
blocks before words that start with a plosive, and phone prolongations [25].
Alharbi et al. recognize the need to develop customized ASR that can produce
full verbatim transcripts including pseudo words and word parts without mean-
ing. Their approach is mainly focused on the detection of repetitions [1]. Ochi
et al. investigated the automatic evaluation of soft articulatory contact, as it is
taught in stuttering therapy. Detecting modified speech is necessary to account
for it in automatic evaluation of PWS that went through speech therapy [17].

Our Contributions. In this work, we introduce the Speech Control Index
(SCI), a new method to evaluate the severity of stuttering which can also be
used to assess therapy success for fluency shaping. We evaluate both SES and
SCI on a new comprehensively labeled dataset acquired at the Institut der Kas-
seler Stottertherapie(KST) containing stuttered German speech of clients prior
to, during and after undergoing stuttering therapy. Based on phone alignments
of an automatic speech recognition system, we perform a statistical evaluation
of phone length distributions in relation to stuttering events.

2 Data

The data used in this paper was specifically created and labeled with stuttering
and stuttering therapy in mind. In the future, data gathered for this work will be
used to create means to provide unobstrusive monitoring of stuttering. Thus, the
dataset was created to represent reality as good as possible. No special recording
equipment was used and the dataset was recorded with consumer hardware. All
recordings were created before, during and after therapy at the KST. The therapy
contains a number of different tasks such as reading, calling unacquainted people
for inquiry purposes or talking to strangers in the street.

The labeling was done by two clinical linguists familiar with stuttering ther-
apy at the KST. The data is labeled in great detail differentiating twelve states
of fluent or disfluent speech as well as prosodic pauses and blocks. The focus
is to comprehensively label stuttering behavior such as interrupted or repeated
words or sentences in whole or parts. The dataset also labels interjections, which
can be a typical stuttering related behavior, even though it is also common in
regular speakers. Another unique feature of the dataset is the labeling of mod-
ified speech: speech as it is produced when applying the fluency shaping tech-
nique taught and trained at the KST. Additionally to the labeling of stuttering
behavior, a transcript is provided in which word abortions are marked and tran-
scribed in a verbatim way. During preprocessing, the recordings were resampled
to 16 kHz where necessary and in case of stereo recordings only one channel is
used. The dataset contains 214 recordings by 37 speakers of which 28 were male
and 9 were female. The dataset amounts to about 207 min of labeled speech.

To the best of our knowledge, these features make it one of the largest and
most comprehensively labeled datasets containing stuttered speech. One of its
most important features is the existence of stuttered and modified speech prior
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to, during and after therapy, enabling extensive research and the creation of
practical applications that can be used in a therapeutic context.

3 Method

To assess the severity of stuttering or disfluency of speakers using fluency shap-
ing, common evaluation methods such as %SS or SSI-4 are insufficient, as these
methods do not account for therapy artefacts and accompanying linguistic symp-
toms. Since a purely subjective measure of stuttering severity has many draw-
backs in clinical practice, we chose to calculate the SES based on classifying
speech as either efficient, inefficient or silence.

3.1 Speech Efficiency Score

The Speech Efficiency Score (SES) is a recent method for the evaluation of
(dis)fluent speech that was proposed by Amir et al. [2]. This method puts the
fraction of fluent speech in relation to the fraction of disfluent speech. Thus, SES
determines the communicative efficiency of a speaker by focusing on the time
domain.

SES =
Efficient time

Total time − Silence
· 100% (1)

With this method, all kinds of disfluencies, both typical and atypical to
stuttering, are taken into account, as well as the duration of the fluent and
disfluent speech components, which makes it superior to previous methods. Amir
et al. concluded that, due to the high correlation they found between SES and
subjective severity rating scales, SES also provides reliable information about the
severity of stuttering. Since SES considers prolongations, which are perceived as
abnormal, to be inefficient, it must be assumed that the SES fails to take adapted
speaking behaviors into account. This in turn implies that for the calculation of
SES, speech fractions that contain modified speech, such as fluency shaping, are
counted as inefficient.

Fluency shaping focuses on restructuring the way of speaking, aiming at
modifying speech in a way that little or no stuttering symptoms occur. The
technique includes gentle voice onsets as well as syllable and word bindings, in
which the vibration of the vocal cords is not supposed to stop. It allows PWS
to regain a high degree of control over their own speech and speak much more
fluently. However, applying this technique, especially at the beginning of the
therapy, sounds quite unnatural due to the prolongations that are not present in
a normal flow of speech [20]. Since calculating SES includes speech fractions that
have been modified by fluency shaping as inefficient, the measure does not give
a reliable picture of the severity of stuttering in PWS who apply this technique.
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3.2 Speech Control Index

To address the shortcomings of SES in the context of speech therapy using
fluency shaping, we propose a new method that can be used to assess the severity
of stuttering but still is able to account for and measure therapeutic success. The
Speech Control Index (SCI) was developed at the KST and accounts for speech
modifications which relate to fluency shaping. By adding modified speech to
the controlled speech, the SCI not only provides a measure for the individual
severity of stuttering, but also whether or not PWS are able to control their
speech by using the speaking technique. The SCI quantifies the proportion of
time between controlled speech components, which means fluent and modified
speech, and uncontrolled speech components such as disfluencies and blocks.
Thus SCI, similar to SES, considers speaking over time.

To achieve this, speech fractions are grouped in one of three categories:

1. Controlled time - all parts of speech produced that can be considered fluent
or modified, which means a PWS uses a speaking technique to overcome
stuttering. Additionally prosodic pauses are added to this category.

2. Disfluent time - all parts of a sample that can be identified as stuttered
disfluencies are being counted to disfluent speech, i.e. repetitions of sounds,
syllables, words, prolongations, blocks and silent blocks. In addition, speech
fractions containing atypical stuttering disfluencies such as the repetition of
phrases, interjections, revisions including incomplete words and phrases are
being added to disfluent time.

3. Silence - long pauses in which the PWS is not speaking and not trying to
speak as well as interruptions by the dialogue partner, etc.

Accordingly, “Total time” in Eq. 2 is the sum of the three aforementioned
categories.

Based on the correlation between subjective severity rating scales and the
SES, Amir et al. concluded that SES also provides reliable information about
the severity of stuttering [2]. As calculation of SCI is similar to SES beside the
attribution of modified speech fractions, the same is expected to hold for the SCI.
In cases where PWS do not use the speaking technique, which can be assumed
for recordings done prior to therapy, both measures are equal. The same is true
for cases in which only little speaking technique is applied, which is confirmed
by Fig. 1.

SCI =
Controlled time

Total time − Silence
· 100% (2)

3.3 Phone Durations

One of the core symptoms of stuttering is the prolongation of sounds. This
should be directly observable in the time alignment outputs produced by an
automatic speech recognition (ASR) system. Such information can be used to
differentiate between a PWS and a normal speaking person. A major difficulty is
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that phone lengths are unique speech properties characteristic of every speaker
and may vary depending on various factors. To generalize such an assessment, a
sample of multiple speakers is necessary. It can be assumed that especially close
to and during a stuttering event, phone durations should on average be longer
than during fluent speech portions. To verify these assumptions, phone align-
ments were produced and categorized with respect to their relative position to
stuttering events: Phones inside labeled disfluencies, phones within 0.25 s before
a disfluency, 0.25 s before and after a disfluency, 0.25 s before, after and inside
a disfluency. To have a set that is free from modifications, which also prolong
phone lengths, a set of phones was chosen which where within speech fractions
labeled as fluent. The sets were then refined by the phone classes vowels, frica-
tives, sonorants and plosives. Altogether, 44 sets of phone duration distributions
were created, but the individual sets became to small to make generalizable
conclusions.

To obtain the alignments for calculating phone lengths, an ASR system
trained based on the system described in [14] was used. For training, the German
part of the Spoken Wikipedia Corpora, the German subset of the m-ailabs read
speech corpus as well as the Tuda-De corpus were used2. Only minor modifica-
tions to the training recipe were made to reduce the number of training targets in
acoustic model training from 732 to 260. The model was trained using the Kaldi
toolkit [21], using speaker adaptive training on top of LDA and MLLT features
[22]. Prior to computing the forced alignments, the lexicon transducer of the
ASR system was modified to be able to align incomplete words. The transcripts
created for the files were checked against the lexicon and pronunciations for
missing and incomplete words were generated by using a grapheme-to-phoneme
(g2p) model trained on the original lexicon3.

4 Experiments

SCI and SES were computed for each of the 214 files in the dataset. Pearson’s
correlation between the SCI and SES over all 214 files is at 0.142 and only shows
a very weak linear relationship between the two indices. This is confirmed by the
distribution plots in Fig. 2, and the irregular plot for SES values over higher SCI
values in Fig. 1. Comparing the SCI and SES directly, the absolute difference
is less than 0.1% points for 114 recordings, which is indicated by the plot in
Fig. 1. This is exactly the part of the data that has no labeled modifications in
it, which is supported by a correlation of 1 between SCI and SES for this part of
the data. This shows that SCI and SES are identical for samples without speech
modifications.

2 Kaldi recipe available at https://github.com/uhh-lt/kaldi-tuda-de.
3 G2P tool available online at https://www-i6.informatik.rwth-aachen.de/web/

Software/g2p.html.

https://github.com/uhh-lt/kaldi-tuda-de
https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
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Fig. 1. Plot of SES over SCI values computed from labels for every file in the dataset.
Crosses representing samples that contain modified speech, dots representing samples
without.

Fig. 2. Value distribution of SCI and SES scores in the dataset (N = 214).
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Table 1. Phone duration (in seconds) distributions descriptive statistics.

Dataset N Mean phone
dur.

Phone dur.
at 90th P

Phone dur.
at 95th P

Percent
outlier

Inside disfluency 9818 0.230 0.570 0.850 3.14

Before disfluency 7898 0.199 0.460 0.670 2.12

Before to after disfluency 23227 0.192 0.480 0.730 2.58

All phones 73410 0.150 0.330 0.520 1.99

Fluent 41195 0.109 0.200 0.310 0.84

Fig. 3. Fluent, All, and inside disfluency phone length distributions plotted as relative
portions of phone durations. Area under step function represents percentage of values
inside a 0.1 s wide phone length interval.

Table 1 shows the descriptive statistics about the created phone subsets. In
this context, outliers were defined as phones of which the duration is at least
three times the standard deviation σ greater than the mean phone duration in
the overall set. The set containing all phones has about 2% outliers, which is
higher than the expected value for this definition of outliers. The difference to the
set containing only fluent speech as well as the set inside labeled disfluencies is
most striking. Fluent speech only contains 0.84% outliers and the average phone
duration relative to the set containing all phones is 27% shorter. Phones inside a
disfluency compared to the set containing all phones are on average 53% longer.
Relative difference between average duration of phones inside fluently labeled
speech compared to speech inside disfluencies is 111%. These numbers show a
clear relationship between phone duration and stuttering related disfluencies.
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It can be concluded that especially phone durations starting from the 90th

percentile within a sample can be very useful in differentiating stuttered speech
from normal speech. The plot in Fig. 3 supports this observation. It contains
histogram plots of the relative portion of phone durations in 0.1 s wide intervals.
This shows that apart from the phones with a duration below 0.2 s, the relative
number of phones inside these 0.1 second wide intervals is greatest for phones
inside disfluencies. Looking at the relative fraction of phones above or below a
duration of 0.2 s, might be enough to differentiate between fluent and disfluent
speech.

5 Conclusion

The SCI provides an accurate measure with similar properties as the SES for
speakers who speak mostly fluent or do not use a special speech technique.
The advantage of SCI is its ability to account for modified speech of PWS who
underwent therapy and regained a level of fluency and control that is more
effective than stuttering, even though speech may not be classified as natural or
normal. An extensive comparison between the objective measures SSI-4 (%SS
and mean duration of the three longest symptoms), SES and SCI, as well as a
comparison of these procedures with subjective stuttering severity rating scales
will be a part of future work.

The data showed that there is a clear relation between the duration of phones
and their relative position to stuttering events. As indicated here, a normal
speech recognition system can be easily modified to distinguish fluent and dis-
fluent speech in utterances based on heuristic measures as long as it can produce
alignments. For this the recognition system needs to be able to recognize incom-
plete words and syllable repetitions. This insight will be used to build automatic
stuttering recognition systems that can differentiate different levels of fluency.
The comprehensively labeled dataset enables future exploration of different kinds
of disfluencies and the use of statistical learning methods such as support vector
machines or neural networks. By classifying the amount of fluent, disfluent and
modified speech in a speech sample, the automated and continuous calculation
of the SCI can provide a reliable measure for stuttering severity and therapy
success. This will provide valuable feedback to the client as well as the therapist.
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Abstract. In the context of people with complex communication needs
who depend on Voice Output Communication Aids, the ability of speech
synthesisers to convey not only sentences, but also emotions would be a
great enrichment. The latter is essential and very natural in interpersonal
speech communication. Hence, we are interested in the expressiveness of
speech synthesisers and their perception. We present the results of a
study in which 82 participants listened to different synthesised sentences
with different emotional contours from three synthesisers. We found that
participants’ ratings on expressiveness and naturalness indicate that the
synthesiser CereVoice performs better than the other synthesisers.

Keywords: Complex Communication Needs · Voice Output
Communication Aid · Expressive Speech Synthesis · Online survey

1 Introduction

How often do we vocally speaking people use our tone of voice to communicate
our intentions, wishes, or desires to a communication partner throughout the
day? Depending on the emotions to be conveyed, the tone of voice is portrayed
by a variation of prosodic features (rhythm, speed and pitch, etc.) and voice
quality [5]. For instance, a sad person has different tone of voice than a happy
one. The first one typically speaks slower and lower pitched than the latter one.

As Hoffmann and Wülfing pointed out in a survey [11] with 129 participants,
people who cannot or almost not articulate themselves vocally would like to
do the same with the help of their VOCA (Voice Output Communication Aid).
These VOCAs fall into the group of technologies in the domain of AAC (Alterna-
tive and Augmentative Communication). VOCAs take text input and synthesise
the input as auditory output. Yet, the possibilities and potentials of synthesis-
ers have not been used extensively. In the past, industry has mainly focused on
naturalness neglecting variability in expressive style. However, as text-to-speech
synthesisers continue to improve, the question arises of whether synthesisers may
help people use VOCAs to express their feelings, wishes, and intentions as well.

c© Springer Nature Switzerland AG 2020
P. Sojka et al. (Eds.): TSD 2020, LNAI 12284, pp. 397–408, 2020.
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As a first step to answer this question, we investigate the expressiveness
of three freely available synthesisers in terms of recognised emotions and their
naturalness in terms of perceived pronunciation quality. For this purpose, we
conducted a survey with 82 participants in order to investigate which of these
synthesisers shows the highest expressiveness and naturalness for sentences gen-
erated for the German language. We decided to evaluate MaryTTS v5.21 devel-
oped collaboratively by the German Research Center for Artificial Intelligence
and Saarland University and eSpeak2 v1.48.04 developed by Jonathan Duddig-
ton and maintained by Reece Dunn. Both are open source synthesisers. eSpeak
provides voices created by using formant synthesis. MaryTTS provides both unit
selection and voices based on Hidden-Markov Models (HMM) [13]. As a third
synthesiser, we chose the commercial CereVoice unit selection speech system3

v4.0.6 developed by CereProc’s Ltd. CereVoice is a commercial-grade real-time
ESS (Expressive Speech Synthesis) system [2]. For our study, we used an aca-
demic licence provided by CereProc Ltd.

All three synthesisers have capabilities to manipulate prosodic features and
make use of a markup language that more or less follows the industry standard
SSML (Speech Synthesis Markup Language) v1.14. eSpeak uses SSML, however,
with fewer options to manipulate. For MaryTTS, MaryXML5 serves as its own
data representation format which facilitates the synthesis of prosodic utterances
- the syntax is similar to SSML. In addition to SSML support, CereVoice offers
CereVoice XML extensions6 for emotional synthesis control. In our previous work
[16], we evaluated how a VOCA that enables the specification of certain emo-
tional states via Emojis would be perceived by users with CCN. To this end, we
presented them with a first prototype VOCA ‘EmotionTalker’ (ET) in their daily
environment. Here, we focus on which speech synthesiser to use for enhancing a
VOCA with expressive speech. To this end, we compared three publicly avail-
able speech synthesisers (eSpeak, MaryTTS, CereVoice) in a perception study
with 82 participants. Our long-term objective is to pave the way towards a new
generation of VOCAs that convey emotions and personality.

2 Related Work

Recently, the naturalness of synthesised speech has significantly improved. In
some cases, it has become hard to distinguish artificially created voices from
human voices. This is in particular true for commercial speech synthesisers,
such as CereVoice. In the area of speech synthesis, basically two approaches
have been used: unit selection approaches and statistical parametric synthesis
approaches (see [3] for a recent survey). Unit selection approaches make use

1 http://mary.dfki.de (accessed 02/06/20).
2 http://espeak.sourceforge.net (accessed 02/06/20).
3 https://www.cereproc.com/en/products/academic (accessed 11/06/20).
4 https://www.w3.org/TR/speech-synthesis11/ (accessed 02/06/20).
5 http://mary.dfki.de/documentation/maryxml/ (accessed 12/06/20).
6 https://www.cereproc.com/de/products/sdk (accessed 12/06/20).

http://mary.dfki.de
http://espeak.sourceforge.net
https://www.cereproc.com/en/products/academic
https://www.w3.org/TR/speech-synthesis11/
http://mary.dfki.de/documentation/maryxml/
https://www.cereproc.com/de/products/sdk
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of a large inventory of human speech units that are subsequently selected and
combined based on the sentence to be synthesised. Statistical parametric synthe-
sis approaches create acoustic models from recorded speech (for example, using
Hidden Markov Models or Deep Neural Networks) that are used to reconstruct
synthesised speech from the generated parameters. Usually, more natural syn-
thesis results are obtained by unit selection approaches. However, unit selection
approaches offer little flexibility to manipulate speech parameters in a way that
different emotional styles are conveyed. To give users more control over the syn-
thesised speech, specific extensions for the industry standard SSML have been
developed, such as CereProc XML extensions or MaryXML, that enable users
to create different styles of expressive speech.

To evaluate the quality of the produced speech, a variety of perceptual qual-
ity dimensions of synthetic speech, such as intelligibility and naturalness, have
been defined (see [10] for an overview) that are also employed in the annual
‘Blizzard’ challenge7 on advancing speech synthesis. Also, the emotional atmo-
sphere of a scene and the moods of the characters have been included as a quality
dimension in audiobook synthesis tasks. Wagner et al. [15] point out that the
evaluation of TTS is still using criteria from the early days of speech synthesis
research and argue for a user-centered approach that considers a larger diversity
of users including gender and age. A user-centered approach is in particular rec-
ommended for AAC users who would like to communicate with expressive voices
as shown in our previous research [16]. When developing VOCAs with expressive
speech, the question arises of how to enable AAC users to control the quality of
speech in an easy manner. Recent work on expressive VOCAs (see [16] and [8])
makes use of expressive keyboards that include Emojis to specify the emotions
to be conveyed. While such interfaces enable an easy specification of the emo-
tional content, they provide the AAC user only with a limited amount of control
over the synthesised speech. However, when being engaged in a conversation, the
fine-grained control of a large number of parameters that would ensure a high
quality of expressive speech is no option. For this reason, we decided to focus in
our study on a few set of parameters that can be easily mapped on emotions to
be conveyed without requiring extensive fine-tuning.

3 Study

In order to evaluate the expressive capabilities of the three synthesisers to be
considered for integration into a VOCA, we performed an online survey. Partici-
pants were acquired through a mailing list at the first author’s home university,
the news-site of the department to which the authors are affiliated, and a forum
entry especially for AAC users and their personal assistants.

3.1 Online Survey

The online survey consisted of 27 WAV-files (3 sentences * 3 emotions * 3 syn-
thesisers) which were prepared in advance. For the study, we relied on Ger-
man voices. In particular, we used the following voices: eSpeak (Formant, male,
7 http://www.festvox.org/blizzard (accessed 02/06/20).

http://www.festvox.org/blizzard
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de), MaryTTS (HMM, female, bits1-hsmm), CereVoice (Unit Selection, female,
Gudrun). Following Murray et al. [12], we selected three emotionally neutral sen-
tences. ‘Emotionally neutral’ means that the semantics of a sentence does not
provide any clue on the speaker ’s emotion. For example, one of the sentences
was “Ich kann da drüben Leute sehen” (engl. “I can see people over there”). In
order to convey the emotions (happy, sad, angry), we used SSML-markups to
manipulate pitch, volume, rate and contour. In light of later integration into an
easy-to-use VOCA GUI, we did not exploit the full potential of XML extensions
to enable more sophisticated emotional control. The online survey and sentences
were reviewed by several researchers in terms of wording and conveyed emotions.

Structure. The survey had three parts. First of all, participants had to agree
to a DPA (Data Processing Agreement) in order to continue. Then, they had to
provide demographic data including age, sex, and cultural background (in order
to exclude any disposition). Next, participants had to listen to the 27 sentences.
After each audio clip, they were asked in the online survey to type the sentence
heard, to indicate the emotion perceived, and how satisfied they were with their
choice of the selected emotion. After evaluating all 27 sentences, the participants
were presented again with three sentences explicitly indicated as happy, sad, or
angry. This time, participants had to mark how satisfied they were with the
naturalness and expressivity of the corresponding speech synthesiser. This third
part was designed as a double check of the second part.

Questions. In the second part of the survey, we presented the participants
with a forced response choice. Following the approach of Murray et al. [12], we
included two additional emotions (fear and disgust) and a neutral state as dis-
tractors. That is, we disguised the number and the category of the emotions
actually being tested. The participants had to listen to short sentences played
back through WAV-files in a randomised order of the speech synthesisers. The
first question in part two “Please, write the heard sentence into the box” (transl.)
was asked in order to identify any acoustic issues. The second question “Which
emotion do you link to the sentence” provided us with the perceived emotion.
The last question “How satisfied are you with the choice of the perceived emo-
tion” served as a confidence measure for the previous answer. The third part
of the online survey served to get information on the participants’ subjective
impression of the speech synthesiser. Participants were asked “Please, evaluate
the synthesiser XX in respect ...”, “... to its articulation”, and “... to its expres-
sivity”.

4 Results

The online survey was conducted between February and May 2019 with 82
German-speaking participants, who filled in the survey completely. We had 32
male/50 female participants aged between 18 and 65 years (M = 28.78, SD =
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10.61). In addition, the participants had the opportunity to state their origin.
The large majority came from Germany. In addition, Austria, Poland, Rus-
sia, Asia, Latin, and Turkey were stated. Participants needed on average 798 s
(SD = 151.41) to complete the survey.

In total, participants had to evaluate three sentences for three synthesisers for
each of the three emotions, i.e., for each synthesiser, they had to correctly assign
emotions to nine sentences. The highest number of correctly assessed emotions
were: Seven correct for CereVoice by one participant, six correct for MaryTTS
by one participant, and four correct for eSpeak by nine participants. Regarding
the emotions, the highest number of correctly assessed emotions was achieved
for Sadness (eight hits by 16 participants), followed by Angry (five hits by six
participants) and Happiness (four hits by three participants).

4.1 Average Number of Recognised Emotions

Which of the synthesisers expresses which of the emotions best? In order to
answer this question, we look at the correctly assessed emotions. Table 1 gives
an overview of the mean values and the corresponding standard deviations for
the number of correctly assessed emotions from the synthesised sentences across
all three synthesisers and separately for each of the three emotion classes. If we
consider only the correctly assessed emotions independent of the synthesisers
(aggregated over all synthesisers), then the class Sad was recognised best with
3.68 sentences (SD = 1.92), followed by the class Angry with M = 2.22, SD =
1.60. The class Happy was expressed the worst of all (M = 1.28, SD = 1.11).
When all emotion classes are considered together for each of the synthesisers,
CereVoice scores best with an average of 2.78 (SD = 1.42) correctly assessed
emotions, closely followed by MaryTTS with 2.62 (SD = 1.54) correctly assessed
emotions. The synthesiser eSpeak has the worst average score of 1.78 (SD =
1.31) correctly assessed emotions.

Table 1. Means and standard deviations for the number of correctly assessed emotions.
“Assessed” is abbreviated with A.

#A. emotions per synthesiser (0..9) #A. emotions overall (0..9)

E - eSpeak M = 1.78, SD = 1.31 a - Angry M = 2.22, SD = 1.60

M - MaryTTS M = 2.62, SD = 1.54 h - Happy M = 1.28, SD = 1.11

C - CereVoice M = 2.78, SD = 1.42 s - Sad M = 3.68, SD = 1.92

#A. emotions per synthesiser and emotion class (0..3)

Emotion E - eSpeak M - MaryTTS C - CereVoice

a - Angry M = .94, SD = .85 M = .67, SD = .74 M = .61, SD = .64

h - Happy M = .29, SD = .48 M = .62, SD = .60 M = .37, SD = .53

s - Sad M = .55, SD = .63 M = 1.33, SD = .99 M = 1.8, SD = .99
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4.2 Performance Between Synthesisers

Which of the synthesisers has the best/worst numbers of correctly assessed
instances across all emotion classes? The answer to this question is provided
by a comparison of the mean values for assessed emotion instances of all three
synthesisers (see Table 1, “#Assessed emotions per synthesiser”).

Here, a repeated measurement ANOVA [9] showed highly significant dif-
ferences between the synthesisers (F (2, 162) = 18.05, p < .001). The post-
hoc pairwise comparisons (with Bonferroni corrections) for each measured syn-
thesiser revealed that there are significant differences between the synthe-
siser eSpeak (denoted by E) and MaryTTS (denoted by M) (E-M: p < .001,
−.84, 95% − CI[−1.27,−.42]) as well as eSpeak and CereVoice (denoted by C)
(E-C: p < .001, −1.00, 95% − CI[−1.40,−.60]), meaning that emotions were
in general recognised significantly better with MaryTTS and CereVoice than
with eSpeak. Figure 1 shows all mean values and standard deviations of Table 1,
whereby the blue bars indicate an unequal distribution of the correctly assessed
emotion classes within the synthesisers, which we discuss further in the following.

Fig. 1. Means and standard deviations of correctly assessed emotions from sentences.
(Color figure online)

Performance Within Individual Synthesisers. If we consider the mean
values within individual synthesisers, which of the emotion classes is expressed
better/worse than the other classes? To answer this question, we have a more
detailed look at the individual emotion classes across the three synthesisers.

Repeated measurement ANOVAs for each of the emotion classes and syn-
thesisers revealed further differences of the correctly assessed emotions for each
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of the synthesisers as indicated by the blue bars in Fig. 1. We found highly
significant differences in the recognition of synthesised emotions within the
synthesiser eSpeak (F (2, 162) = 22.00, p < .001). Post-hoc pairwise compar-
isons showed that the recognition of the emotions Angry, Sad, Happy (in that
order) differ significantly from well to badly recognisable. With the synthesiser
CereVoice, the highly significant differences between all three emotion classes
(F (2, 162) = 97.59, p < .001), i.e., post-hoc comparisons, showed that Sad was
recognised best and Happy worst. Smaller amount of differences were found
with MaryTTS (F (2, 162) = 23.63, p < .001). The significant differences with
MaryTTS from post-hoc pairwise comparisons showed that Sad could be better
distinguished from the other emotion classes.

4.3 Performance Between Emotion Classes

Considering the recognition of emotion classes aggregated over all synthesisers,
which emotion class is recognised best? And which synthesiser performs best on
which emotion class? For the answer to these questions, we combine the assessed
rates of the different emotion classes across all synthesisers (c.f., Table 1). For the
analysis within an emotion class we take a more detailed view on the individual
synthesisers (c.f., green bars in Fig. 1).

A repeated measurement ANOVA comparing the correctly assessed emo-
tions for each emotion class showed a highly significant difference (F (2, 162) =
59.80, p < .001) in correctly assessed emotions between the emotion classes. Post-
hoc pairwise comparisons revealed that the class Sad was most frequently and
thus significantly more often correctly identified by participants (a-s: p < .001,
−1.46, 95% − CI[−2.04,−.88]; h-s: p < .001, −2.40, 95% − CI[−2.97,−1.84])
than for the other classes. Furthermore, the class Angry was significantly more
often identified than the class Happy (a - h: p < .001, .94, 95% − CI[.47, 1.41]),
meaning that the class Happy was the worst recognisable.

Performance Within Individual Emotion Classes. If we consider the mean
values within individual emotion classes, which of the synthesisers expresses the
emotions better/worse than the other synthesisers? To answer this question, we
have a more detailed look at the means across the three synthesisers for each of
the emotion classes (c.f., blue bars in Fig. 1).

For the emotion class Angry, we found significant differences (F (2, 162) =
6.03, p < .005) between the synthesisers, where post-hoc analysis identified
eSpeak as significantly better recognisable than the other synthesisers. For the
emotion class Happy, there was a significant difference (F (2, 162) = 10.52, p <
.005) between the synthesisers in favour of MaryTTS revealed by post-hoc pair-
wise comparisons. Finally, for the emotion class Sad, the statistics showed highly
significant differences (F (2, 162) = 59.78, p < .001), where the post-hoc analysis
identified that each of the synthesisers significantly differed from each other in
the order CereVoice, MaryTTS, and eSpeak from best to worst.
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4.4 Satisfaction with the Choice of Assessed Emotions

For each of the assessed emotions, participants were asked to rate on a Likert
scale (“not satisfied at all - 1”, “undecided - 3”, “very satisfied - 5”), how satisfied
they were with the choice of the assessed emotion class. Table 2 contains all mean
values and standard deviations. Participants seemed to have different degrees of
satisfaction with their choice between the synthesisers. While participants rated
on average with less than “undecided-3” for eSpeak, the ratings for MaryTTS
and CereVoice tended to be higher towards “satisfied - 4”. However, the mean
values for satisfaction hardly differed between the emotion classes (a, h, s), with
mean values slightly above “undecided - 3”.

Table 2. Overview of the means and standard deviations for the satisfaction ratings
(on a scale of 1 ... 5) for a chosen emotion (and emotion class).

For chosen emotions per synthesiser For chosen emotions

eSpeak M = 2.81, SD = 0.94 a - Angry M = 3.12, SD = 0.67

MaryTTS M = 3.26, SD = 0.63 h - Happy M = 3.12, SD = 0.71

CereVoice M = 3.27, SD = 0.63 s - Sad M = 3.11, SD = 0.74

Satisfaction ratings for chosen emotions per synthesiser and emotion

Emotion E - eSpeak M - MaryTTS C - CereVoice

a - Angry M = 2.91, SD = 1.10 M = 3.27, SD = 0.70 M = 3.12, SD = 0.68

h - Happy M = 2.76, SD = 1.03 M = 3.34, SD = 0.75 M = 3.26, SD = 0.79

s - Sad M = 2.76, SD = 1.00 M = 3.17, SD = 0.64 M = 3.38, SD = 0.78

4.5 Satisfaction Between Synthesisers

Which synthesiser showed the highest satisfaction with the choice on average
when all emotion classes were included? To address this question, we com-
pared the given satisfaction ratings between each of the synthesisers. As already
indicated by Table 2, the repeated measurement ANOVA showed highly sig-
nificant differences between the synthesisers (F (2, 162) = 27.33, p < .001).
Overall, the participants were significantly more satisfied with their choice of
an emotion class while listening to sentences synthesised by MaryTTS (E-
M: p < .001, −.45, 95% − CI[−.65,−.26]) and CereVoice (E-C: p < .001,
−.47, 95% − CI[−.67,−.26]) than by eSpeak.

Satisfaction Within Individual Synthesisers. With which of the conveyed
emotion classes were the participants most satisfied measured by the mean values
within the synthesisers? For answering this question, we compared the values
within the individual emotion classes across the three synthesisers.
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Only CereVoice showed a measurable significant effect (F (2, 162) = 3.43, p <
.05), meaning that participants were more satisfied with the choice of the class
Sad than with the class Angry (a-s: p = .037, −.20, 95% − CI[−.39,−.01]).

4.6 Satisfaction Between Emotion Classes

We also analysed the aggregated satisfaction ratings (all synthesisers together)
for the emotions to investigate whether satisfaction with the choice for one of the
emotions was rated distinctly better. However, no significant effects were found.

Satisfaction Within Individual Emotion Classes. Which synthesiser elicits
the highest satisfaction ratings for individual emotion classes? To answer this
question, we conducted ANOVAs for each of the emotion classes and synthesisers.

For all emotion classes, we found significant differences (Angry : F (2, 162) =
7.56, p < .01; Happy : F (2, 162) = 22.199, p < .001; Sad : F (2, 162) = 24.459, p <
.001) between the synthesisers, where post-hoc analysis identified eSpeak as sig-
nificantly less satisfactory when choosing the emotion class than both of the other
synthesisers. In addition, for the emotion class Sad, the post-hoc pairwise com-
parisons also revealed that satisfaction with emotions generated by CereVoice
resulted in significantly higher ratings than with MaryTTS.

4.7 Pronunciation/Emotion

In the final part of the online survey, participants had to rate both the pro-
nunciation and the synthesised emotions on a Likert scale from very poor (1)
to very good (5). The synthesisers were presented one after the other, and for
each synthesiser sentences with all three emotion classes were generated, which
could be listened to by the participant as often as desired before both ratings
were given. Table 3 contains the mean values and standard deviations for both
ratings. The mean values indicate that eSpeak was rated worst and CereVoice
was rated best for pronunciation as well as synthesised emotions.

Table 3. Means and standard deviations for the ratings of pronunciation and synthe-
sised emotions on a scale of 1 ... 5.

Rating of Pronunciation/Emotion (1 .. 5)

Emotion E - eSpeak M - MaryTTS C - CereVoice

Pronunciation M = 1.74, SD = .93 M = 2.77, SD = .99 M = 3.27, SD = .89

Emotion M = 1.60, SD = .65 M = 3.88, SD = .95 M = 4.06, SD = .78
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Rating of Pronunciation/Synthesised Emotion. A repeated measure-
ment ANOVA on the ratings for pronunciation showed significant differences
between the synthesisers (F (2, 162) = 88.83, p < .001). Post-hoc pairwise com-
parisons revealed that pronunciation of the generated sentences were rated from
best to worse in the order CereVoice, MaryTTS, and eSpeak (E-M: p < .001,
−1.02, 95% − CI[−1.32,−.72]; E-C: p < .001, −1.52, 95% − CI[−1.81,−1.24];
M-C: p < .001, −.50, 95% − CI[−.72,−.23]).

A similar picture could be found for the ratings of the synthesised emotions. A
repeated measurement ANOVA on the ratings for synthesised emotions showed
significant differences between the synthesisers (F (2, 162) = 345.47, p < .001).
The post-hoc pairwise comparisons identified the synthesiser eSpeak as worse
than MaryTTS and CereVoice (E-M: p < .001, −2.28, 95%−CI[−2.56,−2.0]; E-
C: p < .001, −2.46, 95%−CI[−2.70,−2.23]) in terms of the synthesised emotions.

5 Discussion

As Aylett et al. [1] mentioned, the time to only mimicry the naturalness of human
voice is over. People especially those with CCN (Complex Communication Needs)
have a great need for speech synthesisers that are able to convey a variety of
expressive styles in a natural manner. This aspect is also important in light of
the rapidly increasing speech interaction and its acceptance in smarthomes [6],
to respond appropriately to the emotions of residents [7].

Researchers spent decades in developing natural sounding TTS (Text-to-
Speech) incorporating prosodic elements with different approaches. As shown
in Table 1, there are differences in correctly assessing emotions per synthesiser
(in decreasing order: CereVoice [M = 2.78, SD = 1.42], MaryTTS [M = 2.62, SD
= 1.54], eSpeak [M = 1.78, SD = 1.31]). These results are confirmed in the final
part of the online survey (see Table 3). It comes as no surprise that the quality of
the single synthesisers provided different, but consistent subjective assessments
as they are based on different underlying techniques: formant synthesis (eSpeak),
HMM-based synthesis (MaryTTS) and unit selection (CereVoice).

Our results are in line with previous studies investigating the quality of dif-
ferent types of speech synthesisers (see, for example, the chapter on Perceptual
Quality Dimension by [10]). Formant synthesis tends to sound mechanical and
artificial while the greatest amount of naturalness is typically achieved with
unit selection. Even though we did not exploit the full potential of MaryXML
and CereProc XML to control the quality of the expressive speech, MaryTTS
and CereVoice performed better in terms of expressivity than eSpeak. CereProc
showed the best results both in terms of satisfaction with the pronunciation, i.e.
naturalness, and ability to convey emotional states as a whole, i.e. expressive-
ness. While it can be argued that we only used simple markups, we have to take
into account that CCN users need to be able to control their voices in an easy
and quick manner. The next step would be to integrate capabilities for expres-
sive speech into EmotionTalker by enabling AAC users to specify emotions at a
higher level of abstraction, but still communicate the intended expressive style
in a believable manner.
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The current research complements our previous research on the evaluation of
EmotionTalker, a first prototype of a VOCA interface that included Emojis to
enable people specify the intended emotion. For this experiment, we relied on a
small number CCN users who tested EmotionTalker in their daily environment.
Even though we aimed to include AAC users in our current evaluation by con-
tacting an AAC forum, the current evaluation was not specifically addressed to
AAC users. This was due to our focus on a perceptive study with a large number
of users. For the online survey, it could be objected that we could not control
the participants’ surroundings and their equipment for listening to the sentences.
However, to complete the survey, participants had to listen to all sentences with
all synthesisers. So, they had a direct comparison.

6 Conclusion

Our objective was to identify a natural speech synthesiser with variability in
expressive style for integration into a VOCA. To this end, we evaluated the
ability of three synthesisers (eSpeak/MaryTTS/CereVoice) to convey emotion-
ally neutral utterances in a happy, sad, or angry manner. Our assumption that
CereVoice has the best capabilities was confirmed. In our online survey most of
the 82 participants rated CereVoice better than MaryTTS - eSpeak was rated
worst. As outlined by [4], people with CCN may have deficits in building emo-
tional competencies during childhood. In order to improve their capabilities,
it would have potential to equip VOCAs with ESS and usable input methods.
CereVoice seems to be an adequate candidate, as our findings show.

The next step will be to extend our tests with EmotionTalker. We plan to
have people with CCN test EmotionTalker in their own environment in specified
situations over one week. It has to be shown if they can socialise more easily
with a VOCA capable of ESS. Furthermore, novel synthesis paradigms should be
taken into account, see the recent developments on the MaryTTS architecture to
enable synthesis based on Deep Neural Networks [14] or the recently announced
neural speech synthesis system CereWave AI by CereProc Ltd.8
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Abstract. Recent studies measured significant differences in formant
values in the production of short and long high vowel pairs in the Czech
language. Perceptional impacts of such findings were confirmed employ-
ing listening tests proving that a perceived vowel length is influenced by
formant values related to a tongue position. Non-native speakers of Czech
may experience difficulties in communication when they interchange the
vowel length in words, which may lead to a completely different mean-
ing of the message. This paper analyses perception of two-syllable words
with manipulated duration and formant frequencies of high vowels i/i:
or u/u: in the first syllable using automatic speech recognition (ASR)
system. Such a procedure makes it possible to set a fine resolution in the
range of examined factors. Our study confirms the formant values have
a substantial impact on the perception of high vowels’ length by ASR,
comparable to mean values obtained from listening tests performed on a
group of human participants.

Keywords: High Czech vowels · Vowel length · Vowel quality ·
Automatic speech recognition · Perception

1 Introduction

The acquisition of a vowel system is one of the key aspects of learning a sec-
ond language (L2). Czech vowel system consists of five pairs of short and long
monophthongs and three diphthongs [8,12,13]. Since the vowel length is phono-
logically distinctive, its improper interchange in L2 speakers’ production may
lead to a misunderstanding (e.g.., /kru:ci: farma:rfii/ vs /kruci: farma:rfii/ (mean-
ing turkey farmers vs cruel farmers).
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Differences between formant values (i.e., vowel quality correlating with a
tongue setting in a vocal tract) of a short and a long vowel in a pair are tradi-
tionally described as insignificant (both in production and perception perspec-
tive) except for /i/ and /i:/ [5]. Later, a differentiation of short [I] and long [i:]
symbols in the international phonetic alphabet (IPA) was proposed [4].

In addition to statistical evaluation of production data of [I] and [i:], [10] per-
formed a perception analysis of manipulated items with a stimulus array covering
the spectral and the durational span between both vowels in one syllable where
both lengths create meaningful words with a comparable probability frequency.
The study also found a significant difference in the perception of Bohemian (the
western part of the Czech Republic) and Moravian (the eastern region of the
Czech Republic) where Bohemians relied more on the spectrum, whereas Mora-
vians relied more on the duration. Later, [14] found differences in pronunciation
of [I] and [i:] in the speech of Czech Radio newsreaders.

[12] focuses on the production of Czech in Bohemian and Moravian regions,
and there is a clear trend of the [u] vs [u:] formant shift in the Bohemian sub-
group in addition to the previously observed [I] and [i:] relation. Spontaneous
Czech speech was analysed in [7], the formant shifts between [I] – [i:] and [u]
– [u:] were measured, and also a promising difference between the [o] and [o:]
formant positions appeared. [9] conducted a listening test with artificial one-
syllable pseudowords containing manipulations of [I] – [i:] and [u] – [u:] vowels
analogous to [10] experiment. In both Czech high vowels, the quality (formant
values) played a crucial role in a vowel length discrimination in the subgroup of
listeners from the Bohemian region.

The main purpose of this paper is to compare the automatic speech recogni-
tion (ASR) of Czech high vowels’ length with human perception in 3 experiments.

To emphasize the difference of qualities, we decided to use the [U] IPA symbol
for the short vowel and [u:] for the long vowel in the following text.

Experiment 1 examines perception of quantity (phonological length) of vow-
els [I] and [i:] based on their quality (formant values in the spectrum). ASR
evaluates items manipulated with a fine resolution in both duration and for-
mant dimensions. A subset of this data set with a less detailed formant scale is
also evaluated perceptually by human participants (Bohemian region) in a lis-
tening test. The question is whether ASR perceives the boundary between short
and long vowels in a comparable manner and whether these results correspond
to [10].

Experiments 2 and 3 analyse ASR behaviour on vowels [U] and [u:] manip-
ulated similarly. Experiment 3 focuses on the fine detail of the transition part
found in experiment 2. The question is, whether the effect of formant values has
an impact on the perceived length in compliance with the novel findings in [9],
where artificial one-syllable pseudowords were tested by human participants in
a listening test.

The ASR approach applied in this study may bring several advantages. The
number of items in a listening test is naturally limited due to the requirement
of keeping human participants entirely focused. For this reason, the number of
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tested factors and the resolution of coverage of their span have to be notably
decreased in many experiments. The purpose of such experiments is to map a
subjective perception of random individuals and then to estimate the mean value
of the population. ASR systems are trained on a large sample of the population,
and hence they also may provide evaluation similar to an average representative
of the population. Such a procedure can be repeated many times with different
settings and a large number of items, which would be impossible with human
participants of listening tests.

2 Method

2.1 Experiment 1

For the first experiment, we created 147 manipulated items (21 formant steps
and 7 duration steps) using Praat [2] and rPraat [3] as follows. A minimal pair
consisting of two words [vIrI] (meaning viruses) and [vi:rI] (meaning vortices)
was chosen to serve as boundaries lying on a diagonal of a two-dimensional
duration–formant space to be explored. The advantage of the analysis of vowel
in the first syllable is that it is not prone to phrase-final lengthening [15].

We recorded both words in a slow speech rate by an adult female speaker in
a quiet low-reverb room (PCM uncompressed, the sample rate of 32 kHz, 16-bit
depth). Estimated median values of formant frequencies F1–F4 of the target (first
syllable) short [I] were 405, 2295, 2866, and 4099Hz and of the long [i:] were 305,
2700, 3000, and 4099Hz (we rounded the fourth formant values in both vowels to
the same number because instantaneous values reached a large variability around
roughly the same values in both short and long vowels). For the manipulation
purposes, we chose the record of [vi:rI] as a basis because stimuli with shorter
durations of the target vowel can be easily created by truncating the original
long vowel.

The upper-part spectrum of the basis stimulus obtained by a high-pass Hann
filter with a cut-off frequency of 4500Hz was stored as a separate signal to be
returned to manipulated signals at the final step of stimuli creation to obtain a
more natural sound with a full range of the spectrum.

To obtain the source (excitation) signal and formant object, the basis stim-
ulus was resampled to 16000Hz and processed using the Burg method of linear
predictive coding (LPC) with a prediction order of 15 (leading to max. 7 for-
mant frequencies detected), 25 ms segmentation window length with 5 ms time
step and pre-emphasis frequency of 50 Hz. Note: preliminary, prediction orders
of 16 and 15 were examined in all experiments, the order of 16 in experiment
1 lead to an unnatural, artificial distortion at high frequencies; the order of 16
was necessary for experiments 2 and 3. To avoid random jumps in the formant
object, formant trajectories were subsequently smoothed by a formant-tracking
algorithm with 4 formant tracks.

In the next step, formant frequencies in the time interval of the first vowel
duration were manipulated between the values of [I] and [i:] in 21 linear steps. For
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each step, the manipulated sound was created by filtering the source (excitation)
signal with the formant filter.

Finally, to create the whole set of target stimuli, each sound file was obtained
by a concatenation of the first part of the original basis stimulus (until the first
vowel), the shortened vowel from formant-manipulated signals with the upper-
part spectra signal superposed, and the remaining part of the basis stimulus.
The target vowel was shortened to durations in the range from 90ms to 300ms
in 7 linear steps.

Automatic Speech Recognition. To evaluate manipulated stimuli by an
automatic speech recognition system (ASR), we concatenated all stimuli in a
random order into one long sound file. Each item was separated by a short
pause and a neutral nonmanipulated word [vlakI] (meaning trains) by the same
speaker to reduce possible interferences of two successive manipulated stimuli
and also to clearly distinguish the boundaries of tested items in case the item
was not recognized properly, e.g.., as two separate one-syllable words.

In total, we prepared five replications of the experiment, i.e., five different
permutations of all manipulated items with different random order to avoid a
possible effect of the order of stimuli.

To evaluate the concatenated sound file, we employed a commercial state-
of-the-art ASR system Beey by NEWTON Technologies [6] set to the Czech
language recognition and with additional text postprocessing switched off.

Although all nonmanipulated filler-words [vlakI] were recognized correctly,
the ASR occasionally had problems with the recognition of manipulated items
(probably due to their overall lower quality) and recognized them as a different
word or a couple of two one-syllable words, e.g., [vi:lI] (fairies), [bIlI] (they were),
[I vI] (also you) or [bI jI] (would her). Not surprisingly, the consonants were
affected, and the vowels remained either [I] or [i:]. For this reason, we focused on
the length of the first-syllable vowel [I] or [i:] in such cases, ignoring mismatches
in consonants.

For each item, the resulting score was calculated as a mean value of all five
replications of the experiment.

Listening Test. To compare the results of ASR with human perception, we
performed a listening test with 20 participants (native speakers of Czech, both
male and female students, median age = 23 years) using comfortable headphones
in a quiet room. To keep them focused throughout the test, we decided to select
a subset of items only. The resolution of the vowel duration scale was kept the
same, i.e., 7 linear steps between 90ms and 300ms. The resolution of formant
transition was reduced to 5 discrete steps, resulting to 35 items. In addition to
these “items-of-interest”, other 15 two-syllable words with different vowels were
included as distractors. Each of the total of 50 items in the test was initiated
with a short desensitization beep sound.

The listening test was administrated using Praat multiple forced-choice
(ExperimentMFC) environment [2]. After a short training set (6 items) to resolve
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possible problems and questions, the main test with 50 items in a random order
for each listener was performed. Each item could be played three times at the
most. The task was to click on a button with the word closest to the sound (both
words with a short and a long vowel in the first syllable were offered). After the
first 25 items, the participants were instructed to take a short break and listen
to a song included in the test folder.

2.2 Experiment 2

In the second experiment, we created a set of stimuli focused on short [U] and
long [u:]. We recorded an adult male voice saying [krUci:] (meaning cruel in
plural) and [kru:ci:] (meaning turkey adjective).

Estimated median values of formant frequencies F1 – F4 of the target (first
syllable) short [U] were 360, 906, 2774, and 3994Hz, and of the long [u:] were
288, 567, 2774, and 3994Hz (we rounded the third and the fourth formant values
in both vowels to the same number because instantaneous values reached a large
variability around roughly same values in both short and long vowels).

The process of manipulation was conducted in the same manner as in the
experiment 1; the LPC prediction order was set to 16. The transition between
two formant boundaries was divided into 19 linear steps. The duration of the
vowel in the first syllable ranged from 90ms to 300ms in 7 linear steps.

This time, only the ASR task was performed with five random permutations
of stimuli. Each item was concatenated with a nonmanipulated word [farma:rfiI]
(meaning farmers), both variants creating a meaningful phrase with a similar
probability frequency, i.e., the ASR should not prefer one variant at the expense
of the other.

2.3 Experiment 3

The third experiment continued with the same original records of experiment
2, but we aimed at the middle transient area. The formant axes were focused
on the lower two thirds (as compared to experiment 2) with detailed 21 steps,
and the duration focused on the middle part ranging from 125ms to 230ms in
9 detailed steps.

3 Results

We are aware of the fact our findings depend on a speech rate, a prosody, and an
individual speaker’s vocal space area; therefore we do not want to interpret our
results as absolute values of boundaries between short and long vowel perception.
Since this dependence can be a result of a complex combination of many factors,
we do not even normalise duration and formant values because it could imply
a universal rule. Rather than that, we focus on the shape of boundaries in the
duration – formants relation which reflects the fact the vowel length perception
is influenced by formant values, i.e., vowel quality.
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3.1 Experiment 1

The results of ASR are depicted in Fig. 1a; a grey value of each rectangle rep-
resents a mean value of five replications of the experiment. Due to the statistic
approach of ASR, some items were classified differently in some of the replica-
tions, which is mostly the case of items near the visible edge between short and
long area.

Fig. 1. Evaluation of [I] and [i:] vowels in experiment 1. The vowel is manipulated both
in duration and formant values, Fratio stands for ratio on the range between formant
values of natural [I] and [i:]. Shades of grey represent mean values of evaluated vowel
lengths from (a) 5 realisations of ASR, (b) 20 participants of the listening test (white
= long, black = short).

The shortest items (duration of 90 ms) were identically identified as short
vowel [I]. All other items above the 90 ms duration were split into short [I] and
long [i:] with an almost horizontal boundary implying ASR used the vowel quality
(i.e., spectrum) as the main cue to differentiate these two variants. This result
complies with Bohemian Czech listeners in [9] (analysing artificial one-syllable
words), although the ASR boundary seems slightly more horizontal.

We tested a statistic significance of duration and Fratio (a ratio on the span
between typical formant values of the short and the long vowel) effects using
mixed-effects models with logistic regression (binomial family for binary out-
come) [1] in [11]. Both fixed effects (duration and Fratio) were centred and stan-
dardised, replication was a random effect. The model formula (including random
slopes) is length ∼ duration+Fratio+ (1 + duration+Fratio|replication), p-
values were obtained by likelihood ratio tests of the full model with the effect
against the model without the effect.

For both Fratio and duration effects, p < 0.001. We also passed a subset
of data with a duration equal or larger than 160ms, and for the Fratio, p-value
remained <0.001; however, for the duration, p = 0.2554. This finding corresponds
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with 1a very well because vowel quality seems to be the main cue for longer
durations.

Figure 1b represents the mean values of 20 participants of our listening test.
These results are similar to ASR decision in Fig. 1a, although the Fratio scale
is sampled in much fewer steps. However, for durations equal to or larger than
230ms, some listeners evaluated items with Fratio = 0 (i.e., [I]) as long. Statis-
tical evaluation of both fixed effects was conducted analogously to the one with
the ASR, subject (human participant) being a random effect. For both Fratio
and duration, p < 0.001.

3.2 Experiment 2

Figure 2a represents results of ASR evaluating records with manipulated [U]/[u:]
vowels. For durations lower than or equal to 125ms, all vowels were recognized as
short despite the Fratio. For longer durations, the effect of the Fratio is visible.
For both Fratio and duration, p < 0.001.

These ASR results are closely comparable to the relations observed in the
listening tests of one-syllable pseudo-words in [9].

3.3 Experiment 3

The results of experiment 3 (i.e., detail zoom of the transition area of experiment
2) are depicted in Fig. 2b. The impact of vowel quality on recognized length is
apparent and compatible with observations in [9]. For both Fratio and duration
factors, p < 0.001.

Fig. 2. Evaluation of [U] and [u:] vowels. Fratio stands for ratio of the range between
formant values of natural [U] and [u:]. Shades of grey represent mean values of 5 evalu-
ated vowel lengths by ASR in (a) experiment 2, (b) experiment 3 (white = long, black
= short).
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4 Conclusions

In the task of the evaluation of perceived phonological vowel length, ASR trained
on an extensive sample of population reached results comparable with listening
tests conducted on human subjects. The recent findings of the impact of vowel
quality on perceived length of Czech high vowels in one-syllable pseudo-words
[9] were confirmed on real two-syllable words in this paper.

Due to its phonological status in Czech, a mismatch in the vowel length
could lead to misunderstandings and generally difficult communication, which
is typical of foreign learners of the Czech language. Interestingly, based on our
informal observation, we can say the vast majority of näıve L1 users of Czech
language is not aware of these differences in quality of short and long pairs of
high vowels. Teachers of L2 Czech learners, especially during the pronunciation
training, should be aware of the fact that their perception of the phonological
vowel length could be influenced not only by the vowel duration but also by the
quality of short and long high vowel pairs.

The ASR technique may bring advantages in the process of evaluation in
such a way that the count of items is not limited and the range of examined
parameters can be covered in much more detail than in listening tests. On the
other hand, a combination with these perception experiments is recommended
as they may uncover additional effects such as region, sex or age of the listener.
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6. NEWTON Technologies: Beey [web-based platform]. Version 0.7.16.5 (2020).

https://editor.beey.io
7. Paillereau, N., Chládková, K.: Spectral and temporal characteristics of Czech vow-

els in spontaneous speech. AUC PHILOLOGICA 2019(2), 77–95 (2019)
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oboru. Univerzita Karlova, vydavatelstv́ı Karolinum (1994)
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Abstract. The output of a speech recognition system is a continuous
stream of words that has to be post-processed in various ways, out of
which punctuation insertion is an essential step. Punctuated text is far
more comprehensible to the reader, can be used for subtitling, and is nec-
essary for further NLP processing, such as machine translation. In this
article, we describe how state-of-the-art results in the field of punctuation
restoration can be utilized in a production-ready business environment in
the Czech language. A recurrent neural network based on long short-term
memory is employed, making use of various features: textual based on
pre-trained word embeddings, prosodic (mainly temporal), morphologi-
cal, noise information, and speaker diarization. All the features except
morphological tags were found to improve our baseline system. As we
work in a real-time setup, it is not possible to employ information from
the future of the word stream, yet we achieve significant improvements
using LSTM. The usage of RNN also allows the model to learn longer
dependencies than any n-gram-based language model can, which we find
essential for the insertion of question marks. The deployment of an RNN-
based model thus leads to a relative 22.6% decrease in punctuation errors
and improvement in all metrics but one.

Keywords: Automatic speech recognition · Czech language ·
Punctuation insertion

1 Introduction

In our everyday business practice we employ automatic speech recognition (ASR)
for different purposes, from meeting transcriptions to subtitling or media mon-
itoring. We have long keenly felt the absence of a reliable punctuation adding
system in our target languages, in this case Czech. The usefulness of punctua-
tion marks (full stops, commas, question marks, etc.) is twofold - it significantly
improves the comprehensibility of a text for a human reader, but also it is neces-
sary for further natural language processing (NLP) of the recognized text, which
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requires reliable sentence boundaries. Morphosyntactic tagging, machine trans-
lation, dialogue analysis and other advanced algorithms all display significantly
worsened performance without - or with incorrect - sentence boundaries. There
is ample anecdotal evidence for ambiguity caused by incorrectly placed commas,
such as “stop clubbing, baby seals” or “let’s eat kids”, but the truth is that in
real-world speech technology applications, these errors may well render the ASR
output unusable without manual corrections by human editors.

While our company does employ human editors to create 100% transcripts
for specific purposes, adding punctuation to recognized text was by our internal
review evaluated as one of the priorities to shorten editing time and speed up
the process (the other being emergent content out-of-vocabulary tokens).

Our previous approach to punctuation adding was rule-based. Regarding
commas, contexts with high-probability of a comma were mined from text cor-
pora and refined by linguists. The Czech language has quite a rigid system of
comma placement based on syntax, therefore these rules were able to add com-
mas with high precision around subordinate clauses. Other contexts, such as
parentheses, vocatives, or enumerating items in lists, could not be captured.

Full stops were added based on length of non-speech events (mainly pauses),
which also is not without specific disadvantages. Both systems were comple-
mented with a set of black lists, stating contexts where punctuation marks should
not occur. No attempt was made to create rules for question mark placement.

Due to the aforementioned limitations of our baseline system, a neural net-
work-based approach was developed, the results of which are presented here.

Working in a production environment comes with its own set of advantages
and limitations. One of the main advantages is access to data - our company
transcribes approximately 920 TV, radio and internet broadcasts a week, which
are then corrected by human annotators. Our chief limitation lies in the fact that
punctuation needs to be inserted into streamed data in real-time. The nature
of our workflow does not allow for processing finished ASR outputs, but needs
to run in parallel. This brings up the challenge of inserting punctuation into
unfinished sentences or phrases.

Within this experiment, we considered adding full stops, commas and ques-
tion marks only, since other punctuation symbols were too rare in our datasets.

1.1 Related Works

Many previous works about punctuation restoration have been published. Usu-
ally n-grams are used in multiple ways: they can be directly used to train a
language model [15], or they can serve as a basis for a set of rules (as in our
case) [1,2]. N-gram models unfortunately suffer from sparsity issue [18], which
hurts their ability of generalization. In recent years, recurrent neural networks
(RNN), namely their type - long short-term memory (LSTM), [5] - proved to be
able to generalize much better with regard to unseen sequences, partially due to
their ability to work with larger contexts than any n-gram. This also leads us to
believe that a model based on LSTM could be suitable for predicting question
marks, as these usually depend on the beginning of a sentence.



420 P. Hlub́ık et al.

We base our approach on the work of Tilk and Alumäe [18], where a two-
stage model is proposed. First, a purely textual model is trained on the Wikipedia
dataset, subsequently the output of its last hidden layer is utilized as high-level
input features for a second stage, which also takes pause duration into account.
This is followed by a bidirectional RNN with attention mechanism [19], which
unfortunately does not fit the constraints of our setup.

Worth mentioning is also the use of convolutional neural networks (CNN).
As CNNs prove to be effective in various tasks regarding sequences – sentence
classification or sentiment analysis [6,7], it might be useful to employ them for
punctuation insertion as well [3]. A proposed approach is to consider a sliding
window of m words, a sample matrix formed with embedding of these words
by convolutional filters of various sizes and then predict punctuation after word
wm/2.

2 Method

As mentioned above, our approach is constrained by our production workflow.
Our system incorporates many technological submodules and its back-end is
complex. In this paper we focus our attention solely on the submodule adding
punctuation to recognized words. For a diagram of the whole system see Fig. 1.

Fig. 1. Diagram of our ASR workflow. Voice-to-text (V2T) and diarization (DIA)
modules take audio input and produce slightly delayed real-time streams of timed
events. Post-processing module (PP) provides formatting of numbers, abbreviations,
titles, etc. The delay between V2T and DIA event streams is variable, the stream
merger module compensates for this variability between event streams.

The stream merger is the connection point between the whole processing
chain and the punctuation submodule. The voice-to-text (V2T) module [11–13]
produces two types of events: words and non-speech events. At the end time of
every V2T event there is a slot that can contain document events (e.g. speaker or
language change). Slots after word events may also contain punctuation marks.
Some slots are disabled by the post-processing (PP) module that binds specific
words together. The stream merger also implements several heuristic overrides
(e.g. changing comma after the last word of the utterance into a full stop).
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2.1 Baseline Punctuation Module

The main motivation for our work is to improve our current punctuation module
by incorporating machine learning algorithms. The baseline module is a hierar-
chic chain of partial tasks starting with those with highest precision (in order to
limit excess punctuation): i) rule-based adding of commas, ii) black-list blocking
of slots, iii) utilization of diarization and iv) tempo-based addition of full stops.

Comma addition is based on large text corpora analysis employed to extract a
set of n-gram rules (up to 2 words before and after punctuation position). These
rules are implemented via weighted finite-state transducers as shown in [1,2].
These rules were optimized towards high precision and cannot process language
phenomena such as enumerations or parentheses. Black-list slot blocking is a set
of rules that prevent the punctuation module from placing full stops in certain
slots, such as after prepositions or inside frequent collocations.

Full stop placing is triggered in free slots followed by longer non-speech
events. The length threshold of non-speech is adapted via a flowing window that
logs the duration of last 20 observed non-speech events (hesitations, breaths,
silences, etc.). Moreover, full stops are automatically placed into slots where
speaker change occurs. This rule can also override an already placed comma.

2.2 Dataset

The dataset used for this task consists of machine transcriptions of various
broadcasts from the Czech TV and radio collected over several months. These
machine transcriptions do not contain any punctuation. We also possess man-
ual corrections of these transcriptions, in which mistakes of the ASR system
are corrected by human editors and punctuation is added. To mimic the con-
ditions of the model’s future deployment, we did not wish to train it on these
corrected transcripts, therefore a sequence alignment of machine and manually
corrected transcripts is performed, and punctuation is projected into original
machine transcriptions, which can be then used as labelled data.

As is the usual practice, we split the dataset into training, validation and
test parts.1 For number of files and tokens in each part, see Table 1.

Table 1. Dataset size. Tokens are speech events provided by the ASR system.

Split Files Tokens

Train 11204 12.5M

Validation 467 480k

Test 448 421k

1 The test set is publicly available on: http://newtontech.net/punctuator/tsd2020
testdata.zip.

http://newtontech.net/punctuator/tsd2020_testdata.zip
http://newtontech.net/punctuator/tsd2020_testdata.zip
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2.3 Features

In an attempt to utilize all the information we posses about the text, we tried to
employ various feature types from previous works. With regard to information
related to prosody of speech, we decided to incorporate temporal features only.
The reasons were twofold: other prosodic features, such as F0 contours or energy
features, were not shown to add much to the accuracy of punctuation insertion
[4,14], their extraction from the speech signal is more difficult and requires longer
computing time, thereby forbidding their application in our real-time use case.

Consequently, we opted to include 4 types of features that could be reliably
acquired directly from the raw ASR output:

Textual features consisted of 300-dimensional word embeddings, obtained
by a pre-trained fasttext embedder [10]. They were based on n-grams of char-
acters rather than single words to more effectively deal with unknown words.
Information about morphology is also to some extent contained in the embed-
dings and it saves us the need to lemmatize words.

Prosodic features (primarily temporal) were related to both words and
non-speech segments. We extracted word duration, word tempo, type of non-
speech segment (pause, breath, hesitation or other noise) and its duration. Word
tempo indicates relative increase or decrease of word duration, thereby capturing
phrase-final lengthening and other changes. It was computed as the ratio of real
word duration to its predicted duration based on phonemes contained in the
word and word length. Reference phoneme durations were taken from [20].

Morphological features were extracted using the MorphoDiTa tagger [16].
Diarization features were employed in a 3-dimensional vector. The first

position (0 or 1) indicates whether a speaker change point occurred during the
word or preceding noise events. The second position represents the time offset
of the change point from the beginning of the word, the third position being the
offset value if the change point occurred within a preceding noise.

2.4 Model

The model we use is an LSTM-based RNN with 2 hidden layers. The first one is
a dense layer of size 100 with softmax activations acting as an input filter, the
second one an LSTM layer with 200 units. The output layer is a softmax layer
of size 4, which corresponds to the number of classes we use.

In training, the first three predicted labels are omitted and the others are
shifted to the left, so that the network predicts punctuation with delay of three
words, utilizing the features of three words after predicted punctuation.

The input vectors for the model have the dimension of 396 and consist of
concatenated feature vectors of all types described above.

We employed Tensorflow 2.0 to create and train our models. In all exper-
iments, we trained the model with the Adam optimizer [8] and learning rate
α = 10−4. One GPU was utilized for training, which we have found to bring suf-
ficient speedup. Dropout rate of 0.2 is applied to all hidden layers, which seems
to be enough to prevent overfitting. Convergence of the model usually occurs
after 300 epochs, which corresponds to several hours in our training setup.
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3 Experiments and Results

One of our goals during the experiments was to evaluate the contribution of dif-
ferent types of features. As expected with regard to findings of Tilk and Alumäe
[18], temporal prosodic features (which include pause duration) are useful for
inserting full stops. A model trained on prosodic features only outperformed our
baseline in inserting full stops, however failed terribly when it came to commas,
with recall <1%. This corroborates the findings of [4] and [9], and is in agreement
with our knowledge about non-final prosodic boundaries, which can be marked
by means of different prosodic events (see e.g. [17]), since prosodic features work
in synergy and can to some extent substitute one another.

Morphological features were employed in a hope they would be beneficial in
certain situations, such as inserting commas into enumerations. This assumption
did not hold. Excluding these features from training vectors did not worsen
performance of our model and a model trained exclusively on them performed
very poorly overall.

The most significant finding about feature importance is the model’s sen-
sitivity to diarization features. In the training data, speaker change points co-
occur with full stops and question marks, as speakers usually finish their sentence
before another speaker takes the floor. But this accounts directly only for approx-
imately a third of full stops/question marks present in the data set. We found
out that if we omit these features - replace them with zeros - to mimic a situa-
tion when the diarization system is temporarily unavailable, performance drops
significantly. This drop cannot be explained by errors around speaker change
points only, as there are not enough of these. We hypothesize that a decision to
insert a full stop greatly changes the model’s hidden state, which in turn affects
many future predictions.

3.1 Performance Comparison and Discussion

One of our main concerns regarding evaluation of the model is the comparison
with our baseline system. We measure the performance of both models in a setup
that simulates conditions under which the model is going to be used in produc-
tion. The model is deployed on server and receives one word at a time, which
will be the case in production. Our neural network-based model outperforms the
baseline in all metrics except one: The baseline system shows higher precision in
inserting commas. Full results can be found in Table 2.

From the comparison of the results it can be seen that the new model
reduces number of errors in punctuation by 22.6%, which should bring a valuable
improvement in our workflow. On the other hand, the neural network seems to
struggle with precision when inserting commas. The baseline, rule-based model
is very precise in this regard, with precision of 80.7%. Neural network trades
some of this precision for recall, which might not necessarily be a desired result
in a production case. We have concluded from pilot testing that excess commas
are perceived by human readers as more noticeable errors than missing ones.
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Table 2. Comparison of performance: precision and recall for full stops (.), commas
(,) and question marks (?), plus a total error rate. Precision is a rate of true positives
(TP) over the number of TP plus false positives (FP). Recall means the number of TP
over the number of TP+FP. Total error rate is the fraction of misclassified samples.

Prec(.) Rec(.) Prec(,) Rec(,) Prec(?) Rec(?) Err.

Baseline 0.587 0.421 0.807 0.572 – – 0.0903

Neural network 0.720 0.660 0.739 0.641 0.611 0.172 0.0699

Relative improvement 22.7% 56.7% −8.4% 12.0% – – 22.6%

Furthermore, we hypothesize that the use of RNN allows the model to learn
longer dependencies, which is essential for the insertion of question marks, which
are usually coded at the beginning of the sentence.

It should be noted that classes in our data set are not evenly distributed.
There is one majority class of “blank” symbol (i.e. no punctuation). Generally,
training algorithms are known to suffer due to nonuniform prior distribution of
classes. However, due to satisfying results and a higher desirability of precision
at the expense of recall, we were not forced to tackle the issue.

4 Conclusion and Future Work

We presented a RNN-LSTM-based approach to inserting punctuation into ASR
output utilizing pre-trained word embeddings, prosodic features consisting of
temporal information about words and non-speech events (e.g. pause duration,
word tempo, noise type), morphological and diarization features. This approach
was tested in a production-ready environment, where the data stream is pro-
cessed word by word, without the possibility to look into the future.

This new model achieved a total error rate of 6.99% and outperformed our
baseline (a rule-based model) in all metrics but one. The relative decrease of
punctuation errors is 22.6%. Our results imply that the least useful feature in
our experiment were morphological tags, which did not add much to overall
performance. On the other hand, word embeddings, prosodic and diarization
features all contributed to performance improvement. The diarization features
especially seem to add a significant value.

In the future we would like to explore some other possibilities. As the baseline
model performs well on commas, we would like to utilize its potential. One
way could be including its predictions into feature vectors used by the network.
Another way might be training an ensemble model per se.

Input text preprocessing is also an area where many more experiments can be
done. When manually evaluating punctuated text, we noticed a lot of mistakes
around numbers. While our evidence for this claim remains speculative, we would
like to explore the contribution of substituting all numbers with a single number
token. We also decided not to lemmatize words in a hope that more meaning
would be preserved in word sequences, yet lemmatization remains a standard
step in an NLP pipeline and should be at least evaluated in our case.
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1. Boháč, M., Blavka, K.: Using suprasegmental information in recognized speech
punctuation completion. In: TSD (2014)

2. Boháč, M., Rott, M., Kovář, V.: Text punctuation: an inter-annotator agreement
study. In: TSD (2017)

3. Che, X., Wang, C., Yang, H., Meinel, C.: Punctuation prediction for unsegmented
transcript based on word vector. In: LREC (2016)

4. Christensen, H., Gotoh, Y., Renals, S.: Punctuation annotation using statistical
prosody models. In: ITRW on Prosody in Speech Recognition and Understanding,
pp. 35–40 (2001)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–80 (1997)

6. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the ACL
(Volume 1: Long Papers), pp. 655–665 (2014)

7. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2014)

9. Levy, T., Silber-Varod, V., Moyal, A.: The effect of pitch, intensity and pause
duration in punctuation detection. In: 2012 IEEE 27th Convention of Electrical
and Electronics Engineers in Israel, pp. 1–4 (2012)

10. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: LREC (2018)

11. Nouza, J., et al.: Making Czech historical radio archive accessible and searchable
for wide public. J. Multimedia 7, 159–169 (2012)

12. Nouza, J., et al.: Speech-to-text technology to transcribe and disclose 100,000+
hours of bilingual documents from historical Czech and Czechoslovak radio archive.
In: Interspeech (2014)
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Abstract. In the paper we present an architecture of a keyword spot-
ting (KWS) system that is based on modern neural networks, yields
good performance on various types of speech data and can run very fast.
We focus mainly on the last aspect and propose optimizations for all
the steps required in a KWS design: signal processing and likelihood
computation, Viterbi decoding, spot candidate detection and confidence
calculation. We present time and memory efficient modelling by bidirec-
tional feedforward sequential memory networks (an alternative to recur-
rent nets) either by standard triphones or so called quasi-monophones,
and an entirely forward decoding of speech frames (with minimal need
for look back). Several variants of the proposed scheme are evaluated on
3 large Czech datasets (broadcast, internet and telephone, 17 h in total)
and their performance is compared by Detection Error Tradeoff (DET)
diagrams and real-time (RT) factors. We demonstrate that the complete
system can run in a single pass with a RT factor close to 0.001 if all
optimizations (including a GPU for likelihood computation) are applied.

Keywords: Spoken term detection · Keyword spotting · Deep neural
network · Feedforward sequential memory network · Real-time factor

1 Introduction

Keyword spotting (KWS) is a frequently used technique in spoken data process-
ing whose goal is to detect selected words or phrases in speech. It can be applied
off-line for fast search in recorded utterances (e.g. telephone calls analysed by
police [1]), large spoken corpora (like broadcast archives [2]), or data collected by
call-centres [3]. There are also on-line applications, namely for instant alerting,
used in media monitoring [4] or in keyword activated mobile services [5].

The performance of a KWS system is evaluated from two viewpoints. The
primary one is a detection reliability, which aims at missing as few as possible
keywords occurring in the audio signal, i.e. to achieve a low miss detection rate
(MD), while keeping the number of false alarms (FA) as low as possible. The
second criterion is a speed as most applications require either instant reactions,
or they are aimed at huge data (thousands of hours), where it is appreciated
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if the search takes only a small fraction of their duration. The latter aspect is
often referred to as a real-time (RT) factor and should be significantly smaller
than 1.

There are several approaches to solve the KWS task [6]. The simplest and
often the fastest one, usually denoted as an acoustic approach, utilizes a strat-
egy similar to continuous speech recognition but with a limited vocabulary made
of the keywords only. The sounds corresponding to other speech and noise are
modelled and captured by filler units [7]. An LVCSR approach requires a very
large continuous speech recognition (LVCSR) system that transcribes the audio
first and after that searches for the keywords in its text output or in its inter-
nal decoder hypotheses arranged in word lattices [8]. This strategy takes into
account both words from a large representative lexicon as well as inter-word
context captured by a language model (LM). However, it is always slower and
fails if the keywords are not in the lexicon and/or in the LM. A phoneme lattice
approach operates on a similar principle but with phonemes (usually represented
by triphones) as the basic units. The keywords are searched within the phoneme
lattices [9]. The crucial part of all the 3 major approaches consist in assign-
ing a confidence score to keyword candidates and setting thresholds for their
acceptance or rejection. The basic strategies can be combined to get the best
properties of each, as shown e.g. in [10,11], and in general, they adopt a two-pass
scheme.

The introduction of deep neural networks (DNN) into the speech processing
domain has resulted in a significant improvement of acoustic models and there-
fore also in the accuracy of the LVCSR and phoneme based KWS systems. Vari-
ous architectures have been proposed and tested, such as feedforward DNNs [12],
convolutional (CNN) [13] and recurrent ones (RNN) [14]. A combination of the
Long Short-Term Memory (LSTM) version of the latter together with the Con-
nectionist Temporal Classification (CTC) method, which is an alternative to the
classic hidden Markov model (HMM) approach, have become popular, too. The
CTC provides the location and scoring measure for any arbitrary phone sequence
as presented e.g. in [15]. Moreover, modern machine learning strategies, such as
training data augmentation or transfer learning have enabled to train KWS also
for various signal conditions [16] and languages with low data resources [17].

The KWS system presented here is a combination of several aforementioned
approaches and techniques. It allows for searching any arbitrary keyword(s) using
an HMM word-and-filler decoder that accepts acoustic models based on various
types of DNNs, including feedforward sequential memory networks that are an
efficient alternative to RNNs [19]. An audio signal is processed and searched
within a single pass in a frame synchronous manner, which means that no inter-
mediate data (such as lattices) need to be precomputed and stored. This allows
for very short processing time (under 0.01 RT) in an off-line mode. Moreover, the
execution time can be further reduced if the same signal is searched repeatedly
with a different keyword list. The system can operate also in an on-line mode,
where keyword alerts are produced with a small latency. In the following text,
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we will focus mainly on the speed optimization of the algorithms, which is the
main and original contribution of this paper.

2 Brief Description of Presented Keyword Spotting
System

The system models acoustic events in an audio signal by HMMs. Their smallest
units are states. Phonemes and noises are modelled as 3-state sequences and the
keywords as concatenations of the corresponding phoneme models. All different
3-state models (i.e. physical triphones in a tied-state triphone model) also serve
as the fillers. Hence any audio signal can be modelled either as a sequence of the
fillers, or - in presence of any of the keywords – as a sequence of the fillers and
the keyword models. During data processing, the most probable sequences are
continuously built by the Viterbi decoder and if they contain keywords, these are
located and further managed. The complete KWS system is composed of three
basic modules. All run in a frame synchronous manner. The first one – a signal
processing module - takes a frame of the signal and computes log-likelihoods
for all the HMM states. The second one – a state processing module – controls
Viterbi recombinations for all active keywords and filler states. The third one – a
spot managing module – focuses on the last states of the keyword/filler models,
computes differences in accumulated scores of the keywords and the best filler
sequences, evaluates their confidence scores and those with the scores higher than
a threshold are further processed. This scheme assures that the data is processed
almost entirely in the forward direction with minimum need for look-back and
storage of already processed data.

3 KWS Speed and Memory Optimizations

The presented work extends – in a significant way – the scheme proposed in [18].
Therefore, we will use a similar notation here when explaining optimizations in
the three modules. The core of the system is a Viterbi decoder that handles
keywords w and fillers v in the same way, i.e. as generalized units u.

3.1 Signal Processing Module

It computes likelihoods for each state (senone) using a trained neural network.
This is a standard operation which can be implemented either on a CPU, or
on a GPU. In the latter case, the computation may be more than 1000 times
faster. Yet, we come with another option for a significant reduction in the KWS
execution.

The speed of the decoder depends on the number of units that must be pro-
cessed in each frame. We cannot change the keyword number but let us see what
can be done with the fillers. Usually, their list is made of all different physical
triphones, which means a size of several thousands of items. If monophones are
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used instead, the number of fillers would be equal to their number, i.e. it would
be smaller by 2 orders and the decoder would run much faster, but obviously
with a worse performance.

We propose an optional alternative solution that takes advantages from
both approaches. We model the words and fillers by something we call quasi-
monophones, which can be thought as triphone states mapped to a monophone
structure. In each frame, every quasi-monophone state gets the highest likeli-
hood of the mapped states. This simple triphone-to-monophone conversion can
be easily implemented as an additional layer of the neural network that just takes
max values from the mapped nodes in the previous layer. The benefit is that the
decoder handles a much smaller number of different states and namely fillers.
In the experimental section, we demonstrate the impact of this arrangement on
KWS system’s speed and performance.

3.2 State Processing Module

The decoder controls a propagation of accumulated scores between adjacent
states. At each frame t, new score d is computed for each state s of unit u by
adding log likelihood L (provided by the previous module) to the higher of the
scores in the predecessor states:

d(u, s, t) = L(s, t) + max
i=0,1

[d(u, s − i, t − 1)] (1)

Let us denote the score in the unit’s end state sE as

D(u, t) = d(u, sE , t) (2)

and T (u, t) be the frame where this unit’s instance started. Further, we denote
two values dbest and Dbest:

dbest(t) = max
u,s

[d(u, s, t)] (3)

Dbest(t) = max
u

[D(u, t)] (4)

The former value serves primarily for pruning, the latter is propagated to
initial states s1 of all units in the next frame:

d(u, s1, t + 1) = L(s1, t + 1) + max[Dbest(t), d(u, s1, t)] (5)

3.3 Spot Managing Module

This module computes acoustic scores S for all words w that reached their last
states. This is done by subtracting these two accumulated scores:

S(w, t) = D(w, t) − Dbest(T (w, t) − 1) (6)
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The word score S(w, t) needs to be compared with score S(vstring, t) that
would be achieved by the best filler string vstring starting in frame T (w, t) and
ending in frame t.

R(w, t) = S(vstring, t) − S(w, t) (7)

In [18], the first term in Eq. 7 is computed by applying the Viterbi algorithm
within the given frame span to the fillers only. Here, we propose to approximate
its value by this simple difference:

S(vstring, t) ∼= Dbest(t) − Dbest(T (w, t) − 1) (8)

The left side of Eq. 8 equals exactly the right one if the Viterbi backtrack-
ing path passes through frame T (w, t), which can be quickly checked. A large
experimental evaluation showed that this happens in more than 90% cases. In
the remaining ones, the difference is so small that it has a negligible impact on
further steps.

Hence, by substituting from Eq. 6 and Eq. 8 into Eq. 7 we get:

R(w, t) = Dbest(t) − D(w, t) (9)

The value of R(w, t) is related to the confidence of word w being detected in
the given frame span. We just need to normalize it and convert it to a human-
understandable scale where number 100 means the highest possible confidence.
We do it in the following way:

C(w, t) = 100 − k
R(w, t)

(t − T (w, t))NS(w)
(10)

The R value is divided by the word duration (in frames) and its number of
HMM states Ns, which is further multiplied by constant k before subtracting
the term from 100. The constant influences the range of the confidence values.
We set it so that the values are easily interpretable by KWS system users (see
Sect. 5.4).

The previous analysis shows that the spot managing module can be made
very simple and fast. In each frame, it just computes Eq. 9 and 10 and the
candidates with the confidence scores higher than a set threshold are registered
in a time-sliding buffer (10 to 20 frames long). A simple filter running over the
buffer content detects the keyword instance with the highest score and sends it
to the output.

3.4 Optimized Repeated Run

In many practical applications, the same audio data is searched repeatedly, usu-
ally with different keyword lists (e.g. during police investigations). In this case,
the KWS system can run significantly faster if we store all likelihoods and two
additional values (dbest and Dbest) per frame. In the repeated run, the signal
processing part is skipped over and the decoder can process only the keywords
because all information needed for optimal pruning and confidence calculation
is covered by the 2 above mentioned values.
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4 System and Data for Evaluation

4.1 KWS System

The KWS system used in the experiments is written in C language and runs
on a PC (Intel Core i7-9700K). In some tasks we employ also a GPU (GeForce
RTX 2070 SUPER) for likelihood computation.

We tested 2 types of acoustic models (AM) based on neural networks. Both
accept 16 kHz audio signals, segmented into 25 ms long frames and preprocessed
to 40 filter bank coefficients. The first uses a 5-layer feedforward DNN trained
on some 1000 h of Czech data (a mix of read and broadcast speech). The second
AM utilizes a bidirectional feedforward sequential memory network (BFSMN)
similar to that described in [19]. We have been using it as an effective alternative
of RNNs. In our case, it has 11 layers, each covering 4 left and 4 right temporal
contexts. This AM was trained on the same source data augmented by about
400 h of (originally) clean speech that passed through different codecs [20]. For
both types of the NNs we have trained triphone AMs, for the second also a
monophone and quasi-monophone version.

4.2 Dataset for Evaluation

Three large datasets have been prepared for the evaluation experiments, each
covering a different type of speech (see also Table 1). The Interview dataset
contains 10 complete Czech TV shows with two-persons talking in a studio. The
Stream dataset is made of 30 shows from Internet TV Stream. We selected the
shows with heavy background noise, e.g. Hudebni Masakry (Music Masacres
in English). The Call dataset covers 53 telephone communications with call-
centers (in separated channels) and it is a mix of spontaneous (client) and mainly
controlled (operator) speech. All recordings have been carefully annotated with
time information (10 ms resolution) added to each word.

Table 1. Datasets for evaluation and their main parameters.

Dataset Speech type Signal type Total duration [min] # keywords

Interview Planned Studio 272 3524

Stream Informal Heavy noise 157 1454

Call Often spontaneous Telephone 613 2935

5 Experimental Evaluation

5.1 Keyword List

Our goal was to test the system under realistic conditions and, at the same time,
to get statistically conclusive results. A keyword list of 156 word lemmas with
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555 derived forms was prepared for the experiments. For example, in case of
keyword “David” we included its derived forms “David”, “Davida”, “Davidem”,
“Davidovi”, etc. in order to avoid false alarms caused by words being substrings
of others. The list was made by combining 80 most frequent words that occurred
in each of the datasets, from which some were common and some appeared
only in one set. The searched word forms had to be at least 4 phonemes long.
The mean length of the listed word forms was 6.9 phonemes. The phonetic
transcriptions were automatically extracted from a 500k-word lexicon used in
our LVCSR system.

5.2 Filler Lists

The list of fillers was created automatically for each acoustic model. The triphone
DNN model generated 9210 fillers and the triphone BFSMN produced 10455 of
them. In contrast to these large numbers, the monophone and quasi-monophone
BFSMN model had only 48 fillers (representing 40 phonemes + 8 noises).

5.3 Evaluation Conditions and Metrics

A word was considered correctly detected if the spotted word-form belonged to
the same lemma as the word occurring in the transcription at the same instant
- with tolerance ±0.5 s. Otherwise it was counted as a false alarm. For each
experiment we computed Missed Detection (MD) and False Alarm (FA) rates as
a function of acceptance threshold value, and drawn a Detection Error Tradeoff
(DET) diagram with a marked Equal Error Rate (EER) point position.

5.4 Evaluation Results

The Interview dataset was used as a development data, on which we experi-
mented with various models, system arrangements and also user preferences. In
accord with them, the internal constant k occurring in Eq. 10 was set to locate
the confidence score equal to 75 close to the EER point. The first part of the
experiments focused on the accuracy of the created acoustic models. We tested
the triphone DNN and 3 versions of the BFSMN one. Their performance is illus-
trated by DET curves in Fig. 1, where also the EER values are displayed. It is
evident that the BFSMN-tri model performs significantly better than the DNN
one, which is mainly due to its wider context span. This is also a reason why
even its monophone version has performance comparable to the DNN-tri one.
The proposed quasi-monophone BFSMN model shows the second best perfor-
mance but the gap between it and the best one is not that crucial, especially if
we take into account its additional benefits that will be discussed later.

Similar trends can be seen also in Fig. 2 and Fig. 3 where we compare the
same models (excl. the monophone BFSMN) on the Stream and Call datasets.
In both cases, the performance of all the models was worse (when compared to
that of the Interview set) as it can be seen from the positions of the curves and
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Fig. 1. KWS results for the Interview dataset in form of DET curves drawn for 4
investigated neural network structures.

the EER values. This is due to the character of speech and signal quality as
explained is Sect. 4.2. Yet, we can notice the positive effect of the training of
the BFSMN models on the augmented data (with various codecs), especially on
the Call dataset. Again, the gap between the best triphone and the proposed
quasi-monophone version seems to be not that critical.
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KWS DET - Stream dataset

BFSMN-quasi-mono    EER=21%
BFSMN-tri    EER=19%
DNN-tri    EER=29%

Fig. 2. DET curves compared for 3 models on the Stream dataset

Now, we shall focus on the execution time of the proposed scheme. As
explained in Sect. 3, the three modules of the KWS system can be split into
2 parts: the first with the signal processing module, the second with the remain-
ing two. Both can run together on a PC (in a single thread), or if extremely
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Fig. 3. DET curves compared for 3 models on the Call dataset

fast execution is required, the former can be implemented on a GPU. We tested
both approaches and measured their RT factors. Similar measurements (across
all the tree datasets) were performed also in the second part for all the proposed
variants and operation modes (see Table 2 for results.). The total RT factor is
obtained by adding the values for selected options in each of the two parts.

Table 2. Execution times for proposed KWS variants expressed as RT factors.

System part, variant, mode Real-time factor

Part 1 (signal proc. module)

on CPU 0.12

on GPU 0.0005

Part 2 (rest of KWS system)

triphone BFSMN 0.012

quasi-mono BFSMN 0.002

triphone BFSMN, repeated 0.009

quasi-mono BFSMN, repeated 0.001

Let us remind that the proposed quasi-monophone model performs slightly
worse but it offers two practical benefits: a) a speed that can get close to 0.001
RT (if a GPU is used for likelihood computation) and b) a small disk memory
consumption in case of repeated runs (with different keywords) because only
48 × 3 + 2 = 146 float numbers per frame need to be stored. Moreover, the
speed of the proposed KWS system is only slightly influenced by the number of
keywords. A test made with 10.000 keywords (instead of 555 ones used in the
main experiments) showed only twice slower performance.
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6 Conclusion

In this contribution we focus mainly on the speed aspect of a modern KWS
system, but at the same time we aim at the best performance that is available
thanks to the advances in deep neural networks. The used BFSMN architecture
has several benefits for practical usage. In contrast to more popular RNNs, it
can be efficiently and fast trained on a large amount (several thousands of hours)
of audio and at the same time yields performance comparable to more complex
RNNs and LSTMs as shown in [19]. Its phoneme accuracy is high (due its large
internal context) so that it fits both to acoustic KWS systems as well as to
standard speech-to-text LVCSR systems. The latter means that it is well suited
for a tandem KWS scheme where a user requires that the sections with detected
keywords are immediately transcribed by a LVCSR system. In our arrangement
this can be done very effectively by reusing some of the precomputed data. (Let
us recall that if we use the quasi-monophones, their values are just max values
from the original triphone neural network and hence both acoustic models can
be implemented by the same network with an additional layer.)

The results presented in Sect. 5 allow for designing an optimal configuration
that takes into account the three main factors: accuracy, speed and cost. If the
main priority is accuracy and not the speed, the KWS system can run on a
standard PC and process data with a RT factor about 0.1. When very large
amounts of records must be processed within very short time then the addition
of a GPU and the adoption of the proposed quasi-monophone approach will
allow for completing the job in time that can be up to 3 orders shorter than the
audio duration.

We evaluated the performance on Czech datasets as these were available with
precise human checked transcriptions. Obviously, the proposed architecture is
language independent and we plan to utilize it for other languages investigated
in our project.
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Abstract. Advanced neural network models have penetrated Auto-
matic Speech Recognition (ASR) in recent years, however, in language
modeling many systems still rely on traditional Back-off N-gram Lan-
guage Models (BNLM) partly or entirely. The reason for this are the
high cost and complexity of training and using neural language mod-
els, mostly possible by adding a second decoding pass (rescoring). In
our recent work we have significantly improved the online performance
of a conversational speech transcription system by transferring knowl-
edge from a Recurrent Neural Network Language Model (RNNLM) to
the single pass BNLM with text generation based data augmentation.
In the present paper we analyze the amount of transferable knowledge
and demonstrate that the neural augmented LM (RNN-BNLM) can help
to capture almost 50% of the knowledge of the RNNLM yet by drop-
ping the second decoding pass and making the system real-time capable.
We also systematically compare word and subword LMs and show that
subword-based neural text augmentation can be especially beneficial in
under-resourced conditions. In addition, we show that using the RNN-
BNLM in the first pass followed by a neural second pass, offline ASR
results can be even significantly improved.

Keywords: Speech recognition · Neural text generation · RNNLM ·
Data augmentation · Call center speech · Morphologically rich language

1 Introduction

Deep learning has penetrated machine learning in the past years, including
speech technology and language modeling in particular [5,12]. Despite the suc-
cess of this architectural paradigm shift, application of Neural Network Lan-
guage Models (NNLM) in a single decoding pass is still challenging due to their
c© Springer Nature Switzerland AG 2020
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structure and computational complexity. NNLMs can still be used in ASR, when
passing to the 2-pass decoding scheme: in the first pass, a small footprint generic
Language Model (LM) is used, and the output of this step is a simplified recog-
nition network with reduced search space. On this reduced lattice, a second
decoding pass is applied with the NNLM for rescoring the hypotheses obtained
in the first pass. Although by splitting the decoding into two parts we can lever-
age knowledge of the NNLMs and demonstrate significant Word Error Rate
Reduction (WERR), it also introduces considerable processing delay [4,5,12].

Therefore, techniques exploiting the capabilities of NNLMs in a single-pass
decoding approach have received particular attention recently [9,13]. A possible
technique is to augment the in-domain training data with a large text corpus
generated by an NNLM [1,3]. Of course, there is a compromise: the augmented
model is no more suitable for capturing long contexts, and lose capability to sup-
port continuous space features. So far there has been no throughout evaluation of
what NNLM capabilities can be transferred by neural text based data augmen-
tation and how these compare to traditional Back-off N-gram Language Models
(BNLM), especially for the morphologically rich languages. The only exception is
our earlier study for Hungarian [14] showing that by combining subword lexical
modeling with text based approximation of NNLM (referred to as RNN-BNLM)
we can greatly improve the performance of an online ASR system.

In this paper we significantly extend our previous work: (1) we quantify
the amount of knowledge that can be transferred from the NNLM to single
pass decoding with a BNLM augmented with data generated by the NNLM;
(2) we show that the performance of offline decoding can also be significantly
improved if we apply the augmented model in the first-pass for generating the
lattice; (3) we evaluate the impact of training corpus size on the effectiveness of
the data augmentation method. Rich morphology, per se, results in extremely
large vocabularies, which constitutes a challenge for language modeling. Since
data sparsity problems can be often handled by estimating language models on
statically derived subword units (such as morphs) [2,6], we will also evaluate
morph-based models in our experiments.

In a related work, Suzuki et al. [13] use a domain balanced mixture of the
training corpora to train a shallow RNNLM for text generation and improve
speech recognition results for Japanese, Korean and English tasks. For Korean
subword-based language models are also utilized, but only for text generation,
since in the language model of the ASR system subwords are merged. Using sub-
word units for language models and ASR has been mostly considered for Finnish
and Estonian, which are morphologically very rich languages [2,6]. In [4], the
authors managed to outperform word-based baseline model on Finnish and Esto-
nian conversations by training subword RNNLMs and utilizing them in the sec-
ond pass to rescore ASR lattices. N-gram based approximation of RNNLM was
also investigated in a recent paper [9], where subword and character-based mod-
els were trained for Finnish and Arabic OOV keyword search tasks. Although
the interpolation of approximated RNNLM and BNLM models improved OOV
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retrieval the proposed system was not evaluated on in-vocabulary tokens and no
Word Error Rate (WER) was presented either.

2 Data and Methods

2.1 Database

Conventional Training Data. Data for modeling word units are taken from
the Hungarian Call Center Speech Database (HCCSD). The HCCSD corpus
contains real conversations recorded in customer service centers. The conver-
sations are transcribed and validated by human proofreaders. A total of 3.4M
word tokens could be used allowing for a dictionary 100K distinct word forms.
In order to speed up training, the final vocabulary was limited to the most 50K
word forms. The remaining Out-Of-Vocabulary (OOV) words were replaced with
〈unk〉 and the sentence endings were mapped to the 〈eos〉 symbol. Training cor-
pus statistics are summarized in Table 1.

Table 1. Training and test database statistics

Training Validation Evaluation

Duration [h:m] 290:07 7:31 12:12

# of word tokens 3,401,775 45,773 66,312

# of morph tokens 3,822,335 57,849 84,385

Morph Segmented Training Data. Morphologically rich languages like Hun-
garian show heavy agglutination and hence vocabulary gets much larger. This
also results in higher variability regarding word sequences, and estimation of
model parameters becomes less accurate. Segmenting words into smaller units
is driven by the idea to both decrease vocabulary size and increase sequential
consistency in morph sequences [6]. Morfessor [2] is a popular algorithm for
segmenting words into subword units as it iteratively finds the optimal decom-
position of vocabulary words into subword units, called morphs. In [10] it was
shown that Morfessor can outperform the nowadays so popular character-level
Byte Pair Encoding (BPE) algorithm.

The training corpus contained 3.8M units after applying Morfessor and
decomposing words into morphs (see Table 1). The number of vocabulary entries
decreased to around 1/3 of the word vocabulary, that is 32K entries cover-
ing the same text corpora as the word based model. The morph vocabulary
was finally limited 30K morphs based on frequency, in order to provide enough
training samples to 〈unk〉. Morphs in non-word-initial position were additionally
tagged by the ‘+’ sign to preserve this syntactic information relative to original
word boundaries. The following example illustrates a morph-based tokenization
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(decomposition) of the sentence ‘well I will discuss this with my wife’:

Conventional tokenization: hát megbeszélem a nejemmel
Morph-based tokenization: hát meg +beszél +em a nejem +mel

Development and Test Data. For validation and testing, two further disjoint
data sets were created using 20 h of conversations, reserved from the HCCSD cor-
pus (see Table 1). The validation set is required for the optimization of the hyper-
parameters (e.g. Morfessor segmentation, control training of language models),
whereas the evaluation set is used for performance evaluation and comparison
of the models.

2.2 Language Modeling Methods

Back-Off N-Gram Models. N-gram models are statistical, count-based mod-
els estimated on large text corpora. Back-off N-gram Language Models (BNLM)
formed the state-of-the-art in language modeling for ASR over several decades,
and still today, for a number of tasks they are the primary choice, especially in
systems requiring real-time or smaller footprint setups. All BNLMs in this work
are estimated with the SRI language modeling toolkit [11] and smoothed with
Chen and Goodman’s modified Kneser-Ney discounting.

Recurrent Neural Language Model. We implemented1 a 2-layered LSTM
structure according to the scheme presented in [14]. After fine-tuning the hyper-
parameters on the validation set, we use a batch size of 32 sequences, composed
of 35 tokens each (tokens can be either words or morphs). LSTM states are pre-
served between the batches (stateful LSTM). The 650 dimensional embedding
vectors were trained from scratch, as transfer learning from existing Hungarian
pretrained embeddings proved to be suboptimal. After trying several optimiz-
ers, we decided on the traditional, momentum accelerated Stochastic Gradient
Descent (SGD) algorithm. The initial learning rate was set to 1, which is halved
after every epoch where the cross entropy loss increases. To prevent overfitting
dropout layers are used with keep probabilities of 0.5. Early stopping with a
patience of 3 epochs is also applied.

Text Generation Based Data Augmentation. Approximation of a NNLM
with a back-off ngram language model can be achieved in several different
ways [1,3]. In [1] three such methods are described and evaluated, coming to
a conclusion that the so called text generation based data augmentation yields
the best results. The main idea of this approach is to estimate the BNLM param-
eters from a large text corpus generated by a NNLM. In our work, we generated
100 million words/morphs with the corresponding RNNLM (RNN-BNLM 100M)
that was formerly trained on the in-domain training set. In order to get an insight
1 https://github.com/btarjan/stateful-LSTM-LM.

https://github.com/btarjan/stateful-LSTM-LM
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how the corpus size influences the language model capabilities, we also generated
a larger text corpus with 1 billion morphs (RNN-BNLM 1B). To achieve the best
results the models trained on augmented text (RNN-BNLMs) are interpolated
with the baseline models (BNLM + RNN-BNLM). Interpolation weights are
optimized on the development set.

3 Results and Discussion

3.1 Experimental Setup

40 dimensional MFCC vectors were used as input features for a Factored Time
Delay Neural Network (TDNN-F) acoustic model trained applying LF-MMI cri-
terion in a similar manner as in [7] using the Kaldi Toolkit [8]. The matrix
size (hidden-layer dimension) was 768 and the linear bottleneck dimension was
80 resulting in a total number of 6M parameters in the twelve hidden layers.
Acoustic and language model resources were compiled into weighted finite-state
transducers and decoded with our in-house ASR decoder, called VoXerver.

Table 2. WER of the online ASR system using the proposed language models

Token
type

Model
# of

n-grams
[million]

Memory
usage
[GB]

WER
[%]

WERR over
Word/Morph
BNLM [%]

W
or

d BNLM 5.0 1.3 21.9
RNN-BNLM 100M 4.8 0.9 22.5 -2.6*
BNLM + RNN-BNLM 100M 7.0 1.5 21.3 2.7*

M
or

ph

BNLM 5.1 1.0 21.1 3.4*
RNN-BNLM 100M 8.5 1.1 21.1 3.7* 0.3
RNN-BNLM 1B 7.2 0.9 20.5 6.4* 3.2*
BNLM + RNN-BNLM 100M 7.9 1.1 20.4 6.8* 3.5*

BNLM + RNN-BNLM 1B
7.2 1.1 20.2 7.7* 4.5*
46.6 5.9 19.9 8.8* 5.6*

* Sign indicates significant difference compared to Word or Morph-based BNLM
models and was tested with Wilcoxon signed-rank test (p < 0.05).

3.2 Online ASR Results with Data Augmentation

We perform single-pass decoding with 4-gram BNLM and RNN-BNLM models
and calculate WER on the evaluation set. In order to ensure the fair comparison
among the modeling approaches, we pruned each RNN-BNLM so that they had
similar runtime memory footprint as the baseline BNLM models (≈1 GB). The
most promising model, where the baseline is augmented with 1 billion token
corpus (BNLM + RNN-BNLM 1B) however, is also evaluated in a setup allowing
for larger memory consumption to determine the full capability of the model.
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Fig. 1. Impact of training data limitation on the WER of baseline and augmented LMs
and the corresponding relative WERRs

Results with Original Training Corpus. First we discuss the online ASR
results (see Table 2) obtained with models trained on the original training corpus
(3.4M word/3.8M morph tokens). The n-gram model estimated on the corpus
that was generated with the word-based RNNLM (RNN-BNLM 100M) has a
slightly higher WER than the baseline word-based BNLM (2.6% relative WER
increase), but with the interpolated model (BNLM + RNN-BNLM 100M) we
are able to significantly outperform both of them (2.7% rel. WERR).

Switching to subword setups we observed the following results: the simple
act of replacing words with subwords in the baseline BNLM already yields a sig-
nificant WER reduction (3.4% rel.). The LM trained on the 100-million-morph
generated corpus (RNN-BNLM 100M) has the same WER as the morph-based
BNLM (21.1% WER). However using a ten times larger corpus to train the
approximative model reverses this trend: morph-based RNN-BNLM 1B model is
the first augmentation model that outperforms a baseline BNLM by itself, with-
out taking any benefit from interpolation (20.5% WER). When adding interpo-
lation, we can leverage a further increase in performance. BNLM + RNN-BNLM
1B model can reduce WER of morph-based BNLM by 5% or even 6% if runtime
memory consumption is not a restricting factor. All in all, with morph-based
neural text generation we managed to reduce the WER of our call center speech
transcription system by 9% relative while preserving real-time operation.

Impact of Training Corpus Size. The RNNLM used to generate augmen-
tation data is trained on in-domain training corpus, hence we assume that the
amount of available training data is closely related to the effectiveness of this
modeling approach. In order to confirm this hypotheses, we repeated the experi-
ments from the previous section, but we limited the size of training database (see
Fig. 1). The original corpus containing 3.4M tokens was reduced to two smaller
corpora following a log-uniformly spaced scale (600K and 100K). We found that
in case of word-based modeling the less training data is used the smaller is the
benefit of data augmentation. In contrast, morph-based augmented models even
increase their advantage over the baseline for smaller training sets. Based on
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Fig. 2. A comparison of online (baseline LM: BNLM, augmented model: BNLM+RNN-
BNLM) and offline (rescoring BNLM with RNNLM: BNLM+RNNLM, rescoring
BNLM+RNN-BNLM with RNNLM: BNLM+RNN-BNLM+RNNLM) ASR results
with word and morph based lexical modeling. * indicates offline, 2-pass decoding

the above, we conclude that text based augmentation can be indeed effective in
under-resourced conditions, if it is paired with subword lexical modeling app-
roach so that the RNNLM has enough samples for learning.

3.3 Comparing Online and Offline ASR Results

In this section we compare the performance of the original RNNLM applied for
2-pass, offline decoding and the RNN-BNLMs in order to assess the amount of
knowledge that can be transferred to the online ASR system (see Fig. 2). With
offline, 2-pass decoding, the baseline WER can be reduced by ≈12–13% (BNLM
+ RNNLM). Word-based augmentation can capture 22% of this WERR as it
reduces the WER by 2.7% compared to the 12.2% of 2-pass decoding. Using
morph-based lexical modeling and a 10 times larger augmentation corpus the
relative WERR can be increased to 5.6% (Morph BNLM + RNN-BNLM). On
this basis we can conclude that up to 45% of the WERR (5.6% from 12.9%)
potential hold by the RNNLM can be transferred to the first pass of the decoding.

Text based data augmentation was introduced to improve online ASR results
by transferring knowledge from the neural model to the BNLM. However, we
found that even offline speech recognition can benefit from this approach. The
last column in Fig. 2 shows that significant (p = 0.01) WERR can be achieved if
the lattice used for rescoring is generated with the augmented model (BNLM +
RNN-BNLM + RNNLM) instead of the original BNLM (BNLM + RNNLM).

4 Conclusions

In this paper neural LMs were used to transfer their knowledge to traditional
back-off LMs by generating samples for probability estimation. The morphologi-
cal complexity of Hungarian was treated by using morph-based models evaluated
on a call center ASR task. We found that by generating a text with 1 billion
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morphs, the WER can be reduced by 9% relative while preserving real-time oper-
ation. The investigated neural text based data augmentation technique proved
to be especially effective in under-resourced conditions provided that subword-
based modeling is applied.

With the augmented LMs we managed to transfer ≈45% of WERR of the
offline, 2-pass configuration to our online system. Finally, we also showed that
augmented LMs can improve not only online but offline ASR results if they are
used for generating the lattice for the 2nd decoding pass.

Acknowledgements. The research was supported by the CAMEP (2018-2.1.3-
EUREKA-2018-00014) and NKFIH FK-124413 projects.
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Department of Cybernetics, New Technology for the Information Society (NTIS),
Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czech Republic
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Abstract. In this paper, we continue to investigate the use of classi-
fiers for the automatic detection of glottal closure instants (GCIs) in
the speech signal. We introduce context to extreme gradient boosting
(XGBoost) and show that the context-aware XGBoost outperforms its
context-free version. The proposed context-aware XGBoost is also shown
to outperform traditionally used GCI detection algorithms on publicly
available databases.
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1 Introduction

Detection of glottal closure instants (GCIs), also called pitch marks or epochs, in
speech signals was shown to be useful in many practical applications, especially in
those where pitch-synchronous speech processing was required (see e.g. [7,9,23]).
GCI detection could be viewed as a task of determining peaks in voiced parts of
the speech signal that correspond to the moment of glottal closure, a significant
excitation of a vocal tract during the speaking.

Many algorithms were proposed to detect GCIs in the speech signal. Tradi-
tionally, they exploit some expert knowledge and hand-crafted rules and thresh-
olds to identify GCI candidates from local maxima of various speech represen-
tations (e.g. linear predictive coding like in DYPSA [20], YAGA, wavelet com-
ponents, multi-scale formalism (MMF) [11]), glottal flow (GEFBA) [12], proba-
bilistic source-filter model (PSFM) [19], and/or from discontinuities or changes
in signal energy (Hilbert envelope, Frobenius norm, zero-frequency resonator, or
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SEDREAMS [8]). Dynamic programming is then often used to refine the GCI
candidates [19,20,22].

Recently, classification-based approaches were re-introduced by Matoušek et
al. [16–18]. In this approach, GCI detection could be viewed as a two-class clas-
sification problem: whether or not a peak in a speech waveform represents a
GCI [3]. The advantage is that once a training dataset is available, classifier
parameters are set up automatically without manual tuning. It was shown that
classification-based GCI detection, and especially the one based on extreme gra-
dient boosting (XGBoost), was able to perform very well and consistently out-
performed traditionally used algorithms on several test datasets [18].

In this paper, we continue to investigate the use of XGBoost for GCI detec-
tion. More specifically, we introduce context to XGBoost detection and examine
whether the presence of neighboring GCI candidates can improve GCI detection.

2 Experimental Data

Experiments were performed on clean 16 kHz-sampled speech recordings (here-
after referred to as UWB). The recordings were primarily intended for speech
synthesis. We used 88 utterances (≈11.5 min of speech) for the development of
the proposed classifiers, and 20 test utterances (≈2.5 min of speech) were held
out for an unbiased comparison with other methods. The set of utterances was
the same as in [14] – it comprised various Czech (male and female), Slovak
(female), German (male), US English (male), and French (female) voices. Most
voices were part of both the development and test datasets. Reference GCIs
produced by a human expert using both speech and electroglottograph (EGG)
signals were available for each utterance and were synchronized with the corre-
sponding minimum negative sample in the speech signal.

Speech waveforms were processed in the same way as in [18]. They were
mastered to have equal loudness, low-pass filtered by a zero-phase Equiripple-
designed filter with 0.5 dB ripple in the pass band, 60 dB attenuation in the
stop band, and with the cutoff frequency 800 Hz to reduce the high-frequency
structure in the speech signal. The signals were then zero-crossed to identify
peaks (both of the negative and positive polarity) that are used for feature
extraction in further processing. Since the polarity of speech signals was shown to
have an important impact on the performance of a GCI detector [15], all speech
signals were switched to have the negative polarity, and only the negative peaks
were taken as the candidates for the GCI placement. For the purpose of training
and testing, the location of each reference GCI was mapped to a corresponding
negative peak in the filtered signal. There were 98227 and 20338 candidate peaks
in the development and test datasets respectively (marked by both ◦ and • in
Fig. 1), 56025 and 10807 of them corresponded to true GCIs (marked by • only).

3 Experiments and Results

In all following experiments, we used extreme gradient boosting (XGBoost) [5] as
the GCI detection model. It is an efficient implementation of gradient boosted
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Fig. 1. Illustration of feature extraction: amplitude of a negative peak (A), amplitude
of a positive peak (B), difference between two negative peaks (C), width of a negative
peak (D), correlation between waveforms of two negative peaks (E). GCI candidates
are marked by ◦, true GCIs by •.

decision trees designed for speed and performance that dominated many Kaggle
competitions. XGBoost was also shown to outperform other classifiers in the
GCI detection problem [18].

To evaluate the performance of the proposed models, standard classification
measures like recall (R), precision (P ), F1, and area under the receiver operat-
ing characteristic curve (AUC) were utilized. Scikit-learn [21] and XGBoost [5]
toolkits were employed to train and evaluate the proposed models.

3.1 Baseline Model

The baseline XGBoost system did not use any information about the detec-
tion/prediction of neighboring peaks; it trained and predicted each peak inde-
pendently on the neighboring peaks [18]. Inspired by [3], the input features for
classification were associated with negative peaks in the low-pass filtered speech
waveforms. Each peak is described by a set of local descriptors reflecting the posi-
tion and shape of other 3 neighboring peaks [16]: the amplitudes of the given
negative peak and 6 neighboring (3 prior and 3 subsequent) negative peaks (7 fea-
tures, denoted as A in Fig. 1), amplitudes of 6 neighboring positive peaks (6,
B), the time difference between the given negative peak and each of the neigh-
boring negative peaks (6, C), the width of the given negative peak (a distance
between two zero-crossings) and each of the neighboring negative peaks (7, D),
the correlation of the waveform around the given negative peak and the wave-
forms around each of the neighboring negative peaks (6, E). The baseline 32 fea-
tures were then extended with other acoustic and spectral features: zero-crossing
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rate (ZCR), log energy, harmonic-to-noise ratio (HNR), voiced/unvoiced, the 1st
(F1) and 2nd (F2) formant frequencies, F1/F2 distance and ratio, peak ratio
to 6 neighboring peaks, spectral centroid/bandwidth/roll-off, peak slope, max-
imum of power spectral density function estimate (PSD) and its corresponding
frequency, and mel-frequency cepstral coefficients (MFCCs). All these features
were calculated from 10ms-long speech segments extracted around every peak
candidate, resulting in a total number of 66 features. Recursive feature elim-
ination (RFE) with cross-validation was applied to select important features
automatically [17]. Finally, the most correlated features were removed, so that
the resulting feature set consisted of 50 features. Extensive XGBoost model
hyper-parameter tuning using grid search with repeated 10-fold cross-validation
(with 10 repetitions) was conducted on the development dataset [18].

Note that although no knowledge of the prediction of neighboring peaks is
available (i.e., 0 neighboring peaks are taken into account at the prediction level),
the feature set comprises the context of 3 neighboring peaks1 (GCI candidates)
implicitly on the feature level (denoted as F3P0 hereafter). To switch off the
impact of the context, features related to the neighboring peaks were discarded.
The model with no contextual features was denoted as F0P0 and consisted of
20 features.

3.2 Context Modeling

The idea behind context modeling is that a classifier can use information about
the prediction of n neighboring peaks. We believe that octal halving/doubling
errors can be eliminated in this way. Therefore, context modeling can be seen as
an alternative to dynamic programming-based GCI post-processing.

To avoid a bias towards the training data and to ensure a generalization
performance on unseen data, out-of-fold (OOF) predictions were utilized:

1. The baseline context-free classifiers at the prediction level F3P0 and F0P0
were 10-fold cross-validated and out-of-fold probabilistic predictions were col-
lected.

2. Contextual information at the prediction level (the out-of-fold predictions of
n preceding and n succeeding peaks denoting the probability of the previ-
ous/current/next peak to be a GCI) together with the original features of a
current peak were then used to train a set of contextual classifiers F3Pn and
F0Pn (where n = 1–10 stands for the context length) on the out-of-fold data.

To evaluate the influence of the context modeling on GCI detection accuracy,
the context-free models F3P0 and F0P0 were used to make predictions on the
test dataset. The predictions of n neighboring peaks were then combined with
the original features of each current peak and inputted to the contextual models
F3Pn and F0Pn which in turn yielded unbiased predictions on the test dataset.

It can be clearly seen in Fig. 2 that information about the prediction of
neighboring peaks does help, especially in the case of F0Pn which does not
1 3 preceding and 3 succeeding peaks were found optimal [16].
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Fig. 2. The impact of neighboring peaks on the prediction of the actual peak for F0Pn
and F3Pn systems with respect to AUC score on the test dataset.

contain any other contextual information at the feature level. It is also evident
that using context on both feature and prediction levels (the case of F3Pn) yields
the best results. The comparison of the best contextual systems F0P5 (for no
neighboring peak at the feature level and 5 neighboring peaks at the prediction
level) and F3P7 (3 neighboring peaks at the feature level and 7 neighboring peaks
at the prediction level), and their baselines F0P0, F3P0 is given in Table 1.

Table 1. Comparison of classifiers’ GCI detection performance on the test dataset
(left) and the corresponding statistical significance according to McNemar’s test [6]
(right). The symbols � and > mean that the row classifier is significantly better at
the significance level α = 0.01 and α = 0.05 respectively than the column classifier.
The symbol = means that the respective classifiers perform the same.

Model R (%) P (%) F1 (%) AUC (%)

F3P7 97.79 99.05 98.42 98.36

F3P0 97.50 99.03 98.26 98.21

F0P5 97.34 98.67 98.00 97.92

F0P0 96.37 98.38 97.36 97.28

Model F3P7 F3P0 F0P5 F0P0

F3P7 = > � �
F3P0 < = � �
F0P5 � � = �
F0P0 � � � =

4 Comparison with Other Methods

In order to compare the proposed classifiers with different GCI detection algo-
rithms, standard GCI detection measures that concern the reliability and accu-
racy of the GCI detection algorithms were used [20]. The former includes the
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Table 2. Summary of the performance of the GCI detection algorithms for the four
datasets.

Dataset Method IDR (%) MR (%) FAR (%) IDA (ms) A25 (%) E10 (%)

UWB

F3P7 96.78 2.34 0.88 0.24 98.73 95.66
F3P0 96.60 2.56 0.85 0.23 98.79 95.54
SEDREAMS 93.12 4.00 2.88 0.28 98.10 91.69
MMF 85.08 11.43 3.48 0.47 97.85 83.55
DYPSA 89.64 6.25 4.11 0.37 98.04 88.22
REAPER 92.81 5.51 1.69 0.27 98.00 91.45
GEFBA 91.24 7.68 1.08 0.22 98.89 90.34
PSFM 88.17 9.71 2.12 0.39 98.27 86.88

BDL

F3P7 94.19 2.80 3.01 0.37 98.59 92.90
F3P0 94.04 2.93 3.03 0.36 98.58 92.74
SEDREAMS 91.80 3.03 5.16 0.45 97.37 90.02
MMF 90.42 4.63 4.95 0.56 97.15 87.87
DYPSA 89.43 4.38 6.19 0.54 97.13 86.89
REAPER 93.24 4.39 2.37 0.56 98.01 91.47
GEFBA 87.93 10.05 2.02 1.02 99.11 87.18
PSFM 87.05 9.65 3.30 0.71 96.95 84.50

SLT

F3P7 96.64 1.34 2.01 0.17 99.73 96.39
F3P0 96.49 1.57 1.95 0.19 99.71 96.22
SEDREAMS 94.66 1.13 4.21 0.17 99.67 94.36
MMF 92.44 5.29 2.26 0.40 99.17 91.78
DYPSA 93.25 2.91 3.84 0.32 99.39 92.75
REAPER 95.57 1.66 2.77 0.19 99.67 95.27
GEFBA 94.85 2.62 2.53 0.17 99.76 94.63
PSFM 86.95 10.46 2.60 0.45 99.26 86.42

KED

F3P7 96.82 2.31 0.87 0.24 98.63 95.83
F3P0 96.60 2.56 0.85 0.22 98.76 95.68
SEDREAMS 92.30 6.03 1.66 0.29 99.12 91.76
MMF 90.16 7.16 2.68 0.35 98.99 89.52
DYPSA 90.27 7.07 2.65 0.30 99.25 89.72
REAPER 91.05 8.18 0.78 0.28 99.47 90.67
GEFBA 88.51 10.36 1.13 0.21 99.74 88.30
PSFM 89.47 9.59 0.94 0.39 99.22 88.85
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percentage of glottal closures for which exactly one GCI is detected (identifica-
tion rate, IDR), the percentage of glottal closures for which no GCI is detected
(miss rate, MR), and the percentage of glottal closures for which more than
one GCI is detected (false alarm rate, FAR). The latter includes the percentage
of detections with the identification error ζ ≤ 0.25 ms (accuracy to ±0.25 ms,
A25) and standard deviation of the identification error ζ (identification accuracy,
IDA). In addition, we use a more dynamic evaluation measure [13]

E10 =
NR − Nζ>0.1T0 − NM − NFA

NR
(1)

that combines the reliability and accuracy in a single score and reflects the local
pitch period T0 pattern (determined from the reference GCIs). NR stands for the
number of reference GCIs, NM is the number of missing GCIs (corresponding to
MR), NFA is the number of false GCIs (corresponding to FAR), and Nζ>0.1T0 is
the number of GCIs with the identification error ζ greater than 10% of the local
pitch period T0. For the alignment between the detected and reference GCIs,
dynamic programming was employed [13].

We compared the proposed classifiers with six existing state-of-the-art GCI
detection methods:

– Speech Event Detection using the Residual Excitation And a Mean-based Sig-
nal (SEDREAMS) [8], shown in [9] to provide the best of performances com-
pared to other methods;

– fast GCI detection based on Microcanonical Multiscale Formalism (MMF)
[11];

– Dynamic Programming Projected Phase-Slope Algorithm (DYPSA) [20] avail-
able in the VOICEBOX toolbox;

– Google’s Robust Epoch And Pitch EstimatoR (REAPER) [2];
– Glottal closure/opening instant Estimation Forward-Backward Algorithm

(GEFBA) [12];
– Probabilistic source-filter model (PSFM) [19].

We used the implementations available online; no modifications of the algorithms
were made. Since all algorithms (except REAPER) estimate GCIs also during
unvoiced segments, their authors recommend filtering the detected GCIs by the
output of a separate voiced/unvoiced detector. We applied an F0 contour esti-
mated by the REAPER algorithm for this purpose. There is no need to apply
such post-processing on GCIs detected by the proposed classification-based app-
roach since the voiced/unvoiced pattern was included directly in the feature set.
To obtain consistent results for all methods, the detected GCIs were shifted
towards the neighboring minimum negative sample in the speech signal.

4.1 Test Datasets

Firstly, the evaluation was carried out on the UWB test dataset (≈2.5 min of
speech) described in Sect. 2. GCIs produced by a human expert were used as
reference GCIs.
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Secondly, two voices, a US male (BDL) and a US female (SLT) from the CMU
ARCTIC databases intended for unit selection speech synthesis [1] were used as
a test material. Each voice consists of 1132 phonetically balanced utterances of
a total duration of ≈54 min per voice. Additionally, KED TIMIT database [1]
comprising 453 phonetically balanced utterances (≈20 min) of a US male speaker
was also used for the evaluation. All these datasets comprise clean speech. Since
there are no hand-crafted GCIs available for these datasets, GCIs detected from
contemporaneous EGG recordings by the Multi-Phase Algorithm (MPA) [13]
(again shifted towards the neighboring minimum negative sample in the speech
signal) were used as the reference GCIs. Original speech signals were downsam-
pled to 16 kHz. It is important to mention that no voice from these datasets was
part of the training dataset used to train the proposed classifiers.

4.2 Results

The results in Table 2 confirm that the proposed context-aware XGBoost model
(F3P7) consistently outperforms the standard context-free XGBoost (F3P0).
It is also evident that both XGBoost models (and especially the contextual
one) generally perform very well for all tested datasets. They excel in terms
of reliability, especially with respect to the identification (IDR) and miss (MR)
rates, and also in terms of the dynamic detection accuracy (E10). As for the
accuracy, they also performed reasonably well as they often achieved the second-
best results (behind the GEFBA algorithm which, however, tends to miss GCIs
quite often) in terms of identification accuracy (IDA) and of the smallest number
of timing errors higher than 0.25 ms (A25).

5 Conclusions

In this paper, we showed that the introduction of context to XGBoost classifier
improved GCI detection. The proposed context-aware XGBoost outperformed its
context-free version, improving GCI detection accuracy F1 by 0.16% to 98.42%
(statistically significant at the significance level α = 0.05). From a more practical
point of view, the improvement means that, on average, 2.28 peaks would be
classified better and 1.45 GCIs would be identified better in a 10s-long utterance.
The context-aware XGBoost also yielded very good results when compared to
other existing state-of-the-art methods on several test datasets.

In our future work, we plan to investigate whether a deep learning algorithm
could further increase the performance of the proposed classification-based GCI
detection method [4,10,24]. Robustness of the proposed method to noisy signals
and/or to emotional or expressive speech will also be researched.
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Abstract. This paper describes experiments on speech segmentation by
using bidirectional LSTM neural networks. The networks were trained
on various languages (English, German, Russian and Czech), segmen-
tation experiments were performed on 4 Czech professional voices. To
be able to use various combinations of foreign languages, we defined
a reduced phonetic alphabet based on IPA notation. It consists of 26
phones, all included in all languages. To increase the segmentation accu-
racy, we applied an iterative procedure based on detection of improperly
segmented data and retraining of the network. Experiments confirmed
the convergence of the procedure. A comparison with a reference HMM-
based segmentation with additional manual corrections was performed.

Keywords: Speech segmentation · Neural networks · LSTM

1 Introduction

The aim of speech segmentation is to determine phone boundaries in a speech
recording with a given orthographic transcription. For words with several pro-
nunciation forms, the proper phonetic transcription is selected. The segmentation
process could also involve insertion of pauses. An accurate speech segmentation
is important for many application in the field of speech processing.

For a long time, HMM-based speech segmentation [1] was a predominant
method. Recently, neural networks play an important role in almost all speech
processing applications. One of the most employed type is long short-term mem-
ory (LSTM) recurrent neural network [2,5].

A common system for speech segmentation is language dependent, i.e. it is
trained and run on the same language. The aim of this research is to analyze
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whether it is feasible to use a LSTM network to segment speech data of another
language than it has been trained on. This would make possible to segment data
of a new language, for which no reference training data are available.

For our experiments, we utilized Czech, English, German and Russian speech
data sets recorded for a unit selection TTS system [10]. Our first segmentation
experiments were performed on Czech data because the most accurate refer-
ence segmentation was available for these voices; the other languages were used
to train segmentation models. We assume that the proposed approach can be
applied to other language combinations of training and segmentation data.

This paper is organized as follows: Sect. 2 describes the phonetic alphabet
used for our multi-language experiments. Section 3 gives an overview of the
neural network architecture and the segmentation process. Experiments and the
evaluation are presented in Sect. 4. Conclusions and plans for the future work
are given in Sect. 5.

2 Phonetic Alphabet

A common phonetic alphabet used for computer applications is SAMPA [11]
which uses a limited set of 7-bit ASCII symbols. However, it is defined for indi-
vidual languages and different language-specific phones can be assigned to the
same symbol. Therefore, SAMPA is not directly applicable for multi-language
tasks. Recently, various modifications, extensions or redefinitions of the original
SAMPA were introduced, e.g. X-SAMPA, that allow to overcome this limitation.

We decided to use directly the International Phonetic Alphabet (IPA) [7]
which generally describes all distinctive speech sounds and allows a straight and
naturally consistent combination of different languages. No phonetic transforma-
tion between different languages is needed. The complete list of phones included
in our data, including diacritic combinations, is presented in Table 1.

The complete set contains 127 phones; some of them are included only in
one language, e.g. phones rfi, r̊fi, EU, dz, c, é, ñ, r

"
, and G are specific for the Czech

language. This could be a significant complication of the segmentation process
since those phones would not be included in the training data and the network
would not recognize them. To cope with this problem, we have defined a reduced
phonetic alphabet based on IPA notation, where all similar phones are joint
together and represented by one symbol. As an extra effect, compacting the
phonetic alphabet increases the robustness of the segmentation process [3,4,6].
The reduction process consists of the following steps

1. removing all punctuation marks, e.g. for vowel duration (a:, O:, ĕ, etc.), con-
sonant syllabicity (r

"
, l
"
, m
"
, etc.), palatalization (pj, bj, dj, etc.), nasalization

(ã, Ẽ, õ:, etc.),
2. splitting all composed (strongly coarticulated) phones to single phones, e.g.

diphthongs (EI, E@, aU, etc.), affricates (ts, tS, dz, dZ, etc.),
3. unifying acoustically similar phones – see Table 2.
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Table 1. The complete list of phones in particular languages.

IPA Languages IPA Languages IPA Languages IPA Languages

p cs, de, en, ru, sk pf de pj ru b cs, de, en, ru, sk

bj ru t cs, de, en, ru, sk ts cs, de, ru, sk tS cs, de, en, sk

tj ru d cs, de, en, ru, sk dz cs, sk dZ cs, de, en, sk

dj ru c cs, sk é cs é
ff

sk

k cs, de, en, ru, sk kj ru g cs, de, en, ru, sk gj ru

P cs, de, en, sk m cs, de, en, ru, sk mj ru m
"

cs, en

M cs, de, en, sk n cs, de, en, ru, sk n
¯

sk nj ru

n
"

en ñ cs, sk ñ
ff

sk N cs, de, en, sk

N: de r cs, de, ru, sk r̊fi cs rj ru

rfi cs r
"

cs, sk r
"
: sk f cs, de, en, ru, sk

fj ru v cs, de, en, ru, sk vj ru T en

D en s cs, de, en, ru, sk sj ru z cs, de, en, ru, sk

zj ru S cs, de, en, sk Z cs, de, en, sk ù ru

ü ru ç de x cs, de, ru, sk xj ru

G cs, sk K de h de, en H cs, en, sk

V sk ô en j cs, de, en, ru, sk ô cs, de, en, sk

lj ru l
"

cs, en, sk l
"
: sk L sk

w en C: ru ý: ru ë ru

tC ru i de, ru i: cs, de, en, sk ı̆ ru

e de, ru eI en e: de ĕ ru

E cs, de, en, ru, sk EU cs E@ en Ẽ de

Ẽ: de E: cs, de, sk a cs, de, ru, sk aI de, en

aU cs, de, en ã de ã: de a: cs, de, sk

A en A: en O de, sk OI en

OY de O: en o cs, de, ru oU cs, en

õ: de o: cs, de, sk u de, ru, sk u: cs, de, en, sk

y de y: de ø de ø: de

œ de œ: de 6 en 2 en

1 en, ru 0 en, ru I cs, de, en, ru, sk IE sk

Ia sk Iu sk I@ en I
“

sk

Y de U cs, de, en, ru UO sk U@ en

U
“

sk @ cs, de, en, ru @U en 8 ru

5 de, ru æ de, en, ru, sk 3 en 3: en
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Table 2. Reduced alphabet – definition of similar phones.

Reduced Assigned Reduced Assigned Reduced Assigned Reduced Assigned

phone phones phone phones phone phones phone phones

t t c d d é m m M n n N ñ

r r R K ô s s T z z D S S ù C

Z Z ü ý x ç x h H H G l l L ë

v v w i i 1 I y Y e e E ø œ a a A 2 5 æ

o O o 6 8 u u 0 U @ @ 3

Remaining (unassigned) phones p b k g P f j

The resulting reduced alphabet contains 26 phones. The selection of assigned
phones was performed manually with a strict requirement to share all phones by
all languages.

3 System Architecture

The network for acoustic modeling consists of 2 bidirectional LSTM layers fol-
lowed by linear projection and softmax activation. The network inputs vectors of
13 normalized MFCCs and outputs classification scores (that can be considered
as posterior probabilities) of particular phones – see Fig. 1. The speech waveform
is downsampled to 16 kHz, pre-processed by a preemphasis filter and parameter-
ized with 5 ms frame shift. During training, cross entropy loss is minimized. We
did not use any network for duration modeling within this research.

3.1 Segmentation Procedure

For a given utterance the network outputs a classification score matrix, in which
rows correspond to phones and columns to speech frames. According to given
phonetic transcription, lines of score matrix corresponding to particular phones
are selected and composed to a new matrix in which the optimal alignment
between frames and phones is found by a simple application of dynamic pro-
gramming – see Fig. 1. Since each word can have more phonetic transcriptions,
the alignment procedure is not performed on a single matrix but on a structure
composed of matrices for particular words [3].

3.2 Detection of Incorrectly Segmented Phones

During the segmentation process, the most suitable phonetic transcription of
each word is selected and aligned with the speech data. However, the result is
not always fully correct. The selected transcription may not exactly correspond
to the spoken word due to a mispronunciation, text-speech mismatch or due to an
improper phonetic transcription. Problem could be also caused by the acoustic
model that can be insufficiently robust to work properly on a given voice.
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Fig. 1. Neural network for acoustic modeling.

We proposed a simple procedure for detection of such improperly segmented
phones, referred to as invalid phones. First, all frames aligned with particular
phones are checked whether the highest classification score corresponds to the
given phone. When it is not fulfilled for more than 1/3 of frames, the phone is
supposed to be invalid.

When the acoustic model fails, the segmentation can contain markedly short
or long segments assigned to particular phones, especially when no duration
model is used to reduce/mask that problem. Therefore, the mean duration is
calculated for particular phones and phone instances with duration out of interval
50–200% of the mean value are also taken as invalid.

3.3 Iterative Segmentation Process

The segmentation performed by models trained on different languages can be
inaccurate due to different phone sets in the training and segmentation data. It
can contain many invalid phones as defined in the previous paragraph. Retraining
of the network by using this initial segmentation (excluding invalid phones) could
improve the result. The retraining-segmentation procedure can be repeated until
the resulting segmentation is not significantly changing.
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Table 3. Training and segmentation data.

Language Speaker #sentences #words #phones Duration

Training data Czech (CZ) Male 12,487 107,102 561,878 13:25:27

Female 12,136 118,875 627,466 16:11:25

German (DE) Male 20,096 132,529 625,515 17:30:51

Female 13,001 95,136 468,585 12:30:35

English (EN) Male 19,909 132,872 448,860 10:59:11

Female 11,482 115,684 442,606 12:27:51

Russian (RU) Male 20,829 108,395 539,609 10:55:17

Female 20,829 108,402 539,509 13:22:08

Segmentation data Czech (CZ) Male 1 12,240 119,922 631,698 13:44:02

Male 2 12,150 119,166 627,525 15:00:54

Female 1 12,151 119,113 628,081 14:58:42

Female 2 12,708 108,909 570,100 12:40:33

4 Experiments and Results

4.1 Experimental Data

For our experiments, we used speech data recorded by professional voice tal-
ents for the purposes of unit selection speech synthesis [9]; particular voices are
described in Table 3. Speech data was supplemented by a phonetic segmentation
created by a HMM-based segmentation procedure with various additional cor-
rection procedures [8]. Czech voices selected for the segmentation experiments
have been utilized for many years in a TTS system [10] and lots of additional
manual corrections have been made over time, therefore their phonetic transcrip-
tion and segmentation can be considered very accurate and applicable for our
segmentation experiments.

4.2 Initial Segmentation

We trained individual LSTM networks for all languages by using training data
described in Table 3. Besides, we trained one network for all foreign languages
(without Czech) together. All networks were applied on the segmentation data
and the segmentation accuracy was evaluated by comparison with the reference
segmentation using the mean segmentation error. Results are presented in Fig. 2;
results for the multi-language network are labeled with XX.
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Fig. 2. Mean segmentation error for various training data and the number of units in
both LSTM layers. The lower part of each bar corresponds to the error determined for
valid phones only. The complete bar corresponds to all phones.

Not surprisingly, the best results were obtained for the Czech network, where
the training and segmentation data are phonetically consistent, and also for the
multi-language network, which is supposed to be the most robust one. Figure 2
also proves the relevance of invalid phones detection: The mean segmentation
error without invalid phones is significantly lower, i.e. the detection procedure
successfully revealed the badly segmented data.

4.3 Iterative Segmentation

We performed several steps of the iterative segmentation procedure; the starting
points were segmentation results from the previous paragraph (0-th iteration).
The evaluation by the mean segmentation error and the number of invalid phones
is presented in Fig. 3. The labels in all graphs refer to languages used in the 0-th
iteration, although the training/segmentation procedure ran with speech data of
particular speakers. In all cases, segmentation error and the number of invalid
phones were decreasing during 2–3 iterations. The final values are different for
particular languages of initial networks. The resulting accuracy is consistent with
results for the initial segmentation, i.e. the best accuracy was obtained with the
Czech and multi-language initial networks.

An interesting issue is also the ability of a network with the selected topology
to learn a given segmentation. We performed a simple experiment: the network
was trained directly using the reference segmentation and used to re-segment the
training data. In this manner the mean segmentation error and the number of
invalid phones were determined for particular speakers; the values are included
as reference lines in Fig. 3.
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Fig. 3. Mean segmentation error and the number of invalid phones.

5 Conclusion

This paper presented an initial research on LSTM-based speech segmentation
used with different language of training and segmentation data. We performed
experiments with models trained on Czech, German, English and Russian data
and also model trained on all foreign languages together. The segmentation pro-
cedure was tested on Czech speech data, however, we assume that this approach
is applicable to other language combinations of training/segmentation data. Pri-
mary results demonstrate that native (Czech in this study) and multi-language
networks can accomplish comparable results.

In our future work, we intend to include other languages, e.g. French, Slovak
and Polish. The segmentation accuracy should be analyzed in more detail. The
definition of reduced alphabet should be also based on a proper data analysis.
Since the speech data were originally recorded for speech synthesis, the segmen-
tation should be evaluated by its application in a TTS-system. We will also focus
on the network robustness to be able to segment speech data of worse quality,
that was not originally recorded for the purposes of speech synthesis, e.g. audio
books, which are more difficult to work with.
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Abstract. In this paper, we discuss some of the properties of training
acoustic models using a lattice-free version of the maximum mutual infor-
mation criterion (LF-MMI). Currently, the LF-MMI method achieves
state-of-the-art results on many speech recognition tasks. Some of the
key features of the LF-MMI approach are: training DNN without initial-
ization from a cross-entropy system, the use of a 3-fold reduced frame
rate and the use of a simpler HMM topology. The conventional 3-state
HMM topology was replaced in a typical LF-MMI training procedure
with a special 1-stage HMM topology, that has different pdfs on the
self-loop and forward transitions. In this paper, we would like to dis-
cuss both the different types of HMM topologies (conventional 1-, 2- and
3-state HMM topology) and the advantages of using biphone context
modeling over using the original triphone or a simpler monophone con-
text. We would also like to mention the impact of the subsampling factor
to WER.

Keywords: Speech recognition · Acoustic modeling · HMM topology ·
Lattice-free MMI

1 Introduction

Lattice-free maximum mutual information (LF-MMI) HMM-DNN models [9]
achieved state-of-the-art word error rates (WER) on different well-known speech
databases such as Switchboard and Wall Street Journal (WSJ) in recent years
[5,9]. The conventional HMM topology in ASR is a 3-state left-to-right HMM
that can be traversed in a minimum of 3 frames. This topology was replaced in
the typical LF-MMI training procedure with a topology that can be traversed
in one frame. This one-state HMM topology has different pdfs on the self-loop
and forward transitions. The observations are associated with the arcs (rather
than the states). This topology is based on similarity to Connectionist Temporal
Classification (CTC) [3]. In this article, we would like to mention different types
of HMM topologies.

In [9], it was also proposed an effective approach using left-biphones to allow
context-dependent modeling. We would like to discuss the advantages of using
c© Springer Nature Switzerland AG 2020
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biphone context modeling over the use of the original triphone or a simpler
monophone context. We would also like to mention the impact of the subsampling
factor to WER.

Table 1. Statistics of train and test data-sets.

Train Dev Test

# of speakers 2670 10 20

# of sentences 581 k – –

# of tokens 3.1M 26 k 53 k

Dataset length [hours] 738 3.3 6.7

Last but not least, we also describe the computational and memory require-
ments of the TDNN LF-MMI acoustic model (AM). Even in the case of trans-
ferring the calculation of AM to the GPU, we may be interested in memory
demands, especially for low-performance graphics cards, or to answer the ques-
tion of how many parallel tasks can we run on a single GPU at a time.

The following sections briefly describe the training and testing datasets. In
Sect. 3, we describe a typical TDNN LF-MMI setup. The experiments and results
are described in Sect. 4. The conclusions are presented in Sect. 5.

2 Training and Testing Data

All experiments were performed using a high-quality Czech speech corpus. This
corpus consists of multiple read-speech databases and contains a total of 2670
different speakers. Each speaker read at least 150 sentences. A total of 738 738 h
of speech data were available. No speech augmentation was performed. Data
were sampled at 16 kHz with a resolution of 16 bits.

The test part contains recordings from 30 people (15 men and 15 women),
where each speaker read randomly selected newspaper articles for 20 min. Our
test, therefore, includes a total of 10 10 h of speech. We also excluded a devel-
opment subset from this test set. Details of the training and testing files are
summarized in Table 1.

3 Experimental Setup

3.1 Acoustic Feature Extraction

The front-end is based on the Mel-frequency cepstral coefficients (MFCC). These
40-dimensional features were used not only as an input to the DNN but also
to the GMM. Only in the case of training basic HMM-GMM model, delta and
delta-delta features were added to the original coefficients. No mean and variance
normalizations were used. No i-vectors or other speaker adaptation techniques
were used in the feature extraction process either. Feature vectors were calculated
every 10 ms (100 frames per second) from the 32 ms frames.
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3.2 Acoustic Modeling

Structure and parameters of the acoustic models in LVCSR system were tuned
using KALDI toolkit [8].

GMM: The first step is building a monophone acoustic model. A monophone
AM is trained from the flat start using the MFCCs features (static + delta +
delta delta). Secondly, we trained the triphone AM. As the number of triphones
is typically too large, decision trees are used to tie their states. We also applied
linear discriminant analysis (LDA) and Maximum Likelihood Linear Transform
(MLLT) over a central frame spliced across ±3 frames. LDA+MLLT project
the concatenated frames into 40 dimensions space. We used the feature-space
Maximum Likelihood Linear Regression (fMLLR) and Speaker-adaptive training
procedure (SAT) to adapt GMM models. The whole training data were forced
aligned using the resulting HMM-GMM model. This alignment is necessary as
an input for DNN training [7–9] as opposed to the end-to-end approach (such
as [6] and [4]), where this information is not needed.

TDNN CE: Time Delay Neural Networks (TDNN) have shown to be effective
in modeling long-range temporal dependencies [14]. The TDNNs used for cross-
entropy (CE) training were slightly modified compared to those presented in [7].
The first splicing was the Linear Discriminant Analysis (LDA) transforms layer
(−2, −1, 0, 1, 2). Subsequent layers then had contexts (−1, 0, 1), (−1, 0, 1), (−3,
0, 3) and (−6, −3, 0). The (−1, 0, 1) means that the first layer sees 3 consecutive
frames of input thus the (−3, 0, 3) means that the hidden layer sees 3 frames of
the previous layer, separated by 3 frames. In total, we have five hidden layers of
ReLu activation function with 650 nodes. The softmax output layer computes
posteriors for clustered GMM based triphone states (4408 states). The overall
context is therefore 13 frames to the left and the 7 to the right. State-level
Minimum Bayes Risk (sMBR) [13] has been used to improve previously trained
models to achieve state-of-the-art results.

TDNN LF-MMI: Maximum mutual information (MMI) [1] is a discrimina-
tive objective function that aims to maximize the probability of the reference
transcription while minimizing the probability of all other transcriptions. The
denominator graph has traditionally been estimated using n-best lists or later
using lattices.

Povey et al. [9] applied MMI training with HMM-DNN models using a full
denominator graph (hence the name lattice-free) by using a phone language
model (instead of a word language model). Instead of a frame-level objective, the
log-probability of the correct phone sequence as the objective function is used.
The LF-MMI (Lattice-Free Maximum Mutual Information) training procedure
has a sequence discriminative training criterion without the need for frame-level
cross-entropy pre-training. In regular LF-MMI, all utterances are split into fixed-
size chunks (usually 150 frames) to make GPU computations efficient [9]. This
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is done using the alignments from the HMM-GMM system. Standard setup:
12 TDNN layers; dimension in the hidden layers is 1024, bottleneck dimension
is 128; context is ±28 i.e. context per layer 1 1 1 0 3 3 3 3 3 3 3 3.

3.3 Language Modeling

Our ASR system is using the universal trigram back-off Language Model (LM)
with the mixed-case vocabularies with more than 1.2M words. Our training
text corpus contains the data from newspapers (520M tokens), web news (350M
tokens), subtitles (200M tokens), and transcriptions of some TV programs (175M
tokens, details can be found in [11]). The resulting LM has 35M bigrams and
almost 30M trigrams. Although we have a comprehensive vocabulary, the per-
centage of OOV words on the test set is 1.3%.

3.4 Decoding

All recognition experiments were performed using our in-house real-time ASR
system. This LVCSR system is optimized for low latency in the real-time (RT)
operation with very large vocabularies. To enable recognition with a vocabulary
containing more than one million words in RT, we speeded up decoding using
a parallel approach (Viterbi search on CPU and DNN segments scores on GPU
[12]). The optimal weight/tradeoff between the acoustic model and the language
model was set on the development data for each recognition experiment.

4 Experiments

4.1 HMM-topology

Figure 1 shows a simple left-right HMMs with 1-, 2- and 3- emitting states. The
conventional HMM topology in ASR is a 3-state left-to-right HMM [15] (3state)
(shown in Fig. 1(f)). This HMM can be traversed in a minimum of 3 frames.
The 3state skip (shown in Fig. 1(e)) has additional skip transitions. The skip
transitions are used because of frame subsampling (i.e., because the output rate
at the end of the network is 33.33 Hz compared to typical setups where it is
100 Hz [9,10]). A similar extension (addition of a skip transition) was performed
for the classical 2-state HMM (shown in Fig. 1(c) and (d)).

The conventional HMM 3-state topology was replaced in a typical LF-MMI
training procedure with a special 1-stage topology (see Fig. 1(b), that has dif-
ferent pdfs on the self-loop and forward transitions (highlighted in bold in the
image). The observations are associated with the arcs (rather than the states).
All HMM transitions probabilities are fixed and uniform because adjusting them
does not improve the recognition results [9]. In Table 2 we can see the impact of
a different HMM topologies on the final WER. In all experiments, a frame sub-
sampling factor of 3 was used. It can be seen that the 1-state models (arc-based
or state-based HMMs) perform slightly better than a 2 or 3-state model.
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4.2 Context-Dependent Modeling

As the past studies have shown [2] context-dependent(CD) modeling has been a
fundamental part of HMM-based models, not only for HMM-GMM, but also for
HMM-DNN. Commonly used CD phones are biphones and triphones. The higher
order context is rarely used due to high computational burdens. An alternative to
CD modeling, is context-independent (CI) modeling, i.e. monophones. CI models
have a significantly smaller number of states and can be simply used without
state tying.

Fig. 1. Different HMM topologies. The circles represents the states and arrows the
transitions. Input and output states are non-emitting and are shown in black. a) 1state,
b) 1statearc, c) 2state skip, d) 2state, e) 3state skip and f) 3state

Table 2. Impact of the HMM-topology on recognition results

WER %

Monophone Biphone Triphone

1state 10.58 9.95 10.09

1statearc 10.29 9.86 10.02

2state skip 10.57 10.07 10.17

3state skip 10.62 10.09 10.15

A pruned context-dependency left biphone tree is used for regular LF-MMI
training. In Table 2, it can be seen the advantages of using biphone context
modeling over the use of triphone or a simpler monophone context.
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4.3 Subsampling

As in [9], we investigated an impact of frame subsampling factor. Subsampling
factor 3 speeds up training by a factor of 2. Subsampling can save a lot of
calculations if the implementation supports this. An example of the impact of
the subsampling factor on recognition results is depicted on the Table 3.

Table 3. Impact of subsampling factor on recognition results (triphones CD tree was
used)

HMM topology Subsampling factor # of clustered phonetic states WER %

1state 1 3320 11.42

1state 3 3040 10.09

1statearc 1 2992 10.86

1statearc 3 2888 10.02

2state 1 2936 10.80

2state skip 3 2968 10.17

3state 1 4232 11.30

3state skip 3 4120 10.15

4.4 Implementation Issues

Unfortunately, our LVCSR system is based on the classic HMM implementation
[15]. HMMs observations in “HTK-style” are associated with states rather than
arcs. This brings the need to transform arc-based to state-based HMM (espe-
cially for the 1statearc HMM). The Fig. 2 shows an example of such a transfor-
mation. However, it can be seen from the figure that after the conversion, the
original single-state arc-based model (with the different pdfs associated with the
self-loop and forward transitions) changed to two states state-based model. Thus
both HMMs may emit the same outputs: either a, or ab, or abb, etc.

Fig. 2. An example of arc-based transformation to state-based HMM.

4.5 Computational Aspect of DNN Acoustic Models

In this paper, we have evaluated three types of context-dependent acoustic mod-
els: triphone, left biphone and monophone. They shared the same structure and
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differ only in the last layer and number of outputs. In some experiments, a
subsampling factor of 3 was used. Subsampling can save a lot of calculations if
the implementation supports this and the TDNN context is equal to the sub-
sampling factor and/or its multiples. However, the speed-up is not equal to the
subsampling factor because only a part of NN is subsampled. The total number
of parameters for the 12 TDNN layers is approximately 6.4 M, and the esti-
mated number of MAD operations (multiply-and-add operations for which the
GPU is particularly suitable) required to evaluate the input signal (without
downsampling) is 317 M per second. Due to the subsampling and the bottleneck
NN structure, the NN inference may be run on a low-end GPU even in multi-
ple parallel copies. Note that this estimate assumes absolute reusing of already
computed intermediate results in the TDNN layers. Moreover, we have excluded
the last layer with a different number of outputs for a clear comparison.

5 Conclusion

This paper discussed and compared some interesting parameters of acoustic mod-
eling using TDNN LF-MMI in terms of computational complexity. The influence
of HMM topology was investigated, 1- 2- and classical 3-states HMM were tested
and compared. Various context dependencies (monophone, left biphone and tri-
phone) were also investigated. The effect of subsampling was also analyzed. The
most interesting results are summarized in Table 4.

Table 4. Summary of the recognition results

WER [%]

GMM 19.95

TDNN CE
12.05

sMBR 11.51

TDNN LF-MMI 3state triph. 11.30

2state triph. 10.80

subsmpl. = 3 1state biph. 9.95

1statearc biph. 9.86

1state monoph. 10.58

New methods based on the use of TDNN have yielded more than 10% abso-
lute improvement compared to the solution based on the standard HMM-GMM.
The best recognition result (9.86% WER) was achieved using 1statearc HMM
topology together with left-biphones. TDNN CE with sMBR also worked very
similarly to TDNN LF-MMI for a 3state triphone model (without subsampling).

A very interesting result was also achieved using a monophone model with
1state HMM topology. In this case, there were as many outputs of the DNN as
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there were different phonemes in the task. With an appropriate network struc-
ture, we can even evaluate every third frame (using subsampling). Although
there was a deterioration of 0.72 % (from the best result), this result was very
promising, because using monophones instead of biphones significantly simplified
the whole decoding process.

As future work, we would like to analyze the influence of the DNN con-
text. We are mainly interested in its possible minimization with regard to the
recognition results and use in real-time. We would also like to perform similar
experiments on well-known speech databases and verify the obtained results by
a test of statistical significance.

Acknowledgments. This paper was supported by the project LO1506 of the Czech
Ministry of Education, Youth and Sports under the program NPU I.
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large scale language modelling corpus. In: Habernal, I., Matoušek, V. (eds.) TSD
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Abstract. In this article we present the Leyzer dataset, a multilingual
text corpus designed to study multilingual and cross-lingual natural lan-
guage understanding (NLU) models and the strategies of localization of
virtual assistants. The proposed corpus consists of 20 domains across
three languages: English, Spanish and Polish, with 186 intents and a
wide range of samples, ranging from 1 to 672 sentences per intent. We
describe the data generation process, including creation of grammars
and forced parallelization. We present a detailed analysis of the cre-
ated corpus. Finally, we report the results for two localization strategies:
train-on-target and zero-shot learning using multilingual BERT models.

Keywords: Virtual assistant · Multilingual natural language
understanding · Text corpus · Machine translation

1 Introduction

Virtual assistants (VAs) have been available since 1960s, but the release of their
recent generation on smartphones and embedded devices has opened them to a
broader audience. The most popular development approach for such systems is to
release initial set of languages, usually English as the first, and then the following
languages. Although there might be various reasons for choosing such approach,
it is clear that adding support for new languages is a time- and cost-consuming
process.

There are over 6900 living languages in the world, from which more than 91
have over 10 million users. If we want to build an unfragmented e-society, we
have to develop methods that will allow us to create multilingual VAs also for,
so called, low-resource languages.

In this work we present Leyzer1, a dataset containing a large number of utter-
ances created for the purpose of investigation of cross-lingual transfer learning in

1 Named after Ludwik Lejzer Zamenhof, a Polish linguist and the inventor of the
international language Esperanto, the most widely used constructed international
auxiliary language in the world. https://en.wikipedia.org/wiki/L. L. Zamenhof.

c© Springer Nature Switzerland AG 2020
P. Sojka et al. (Eds.): TSD 2020, LNAI 12284, pp. 477–486, 2020.
https://doi.org/10.1007/978-3-030-58323-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58323-1_51&domain=pdf
http://orcid.org/0000-0002-9360-1395
http://orcid.org/0000-0002-9937-4402
https://en.wikipedia.org/wiki/L._L._Zamenhof
https://doi.org/10.1007/978-3-030-58323-1_51
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natural language understanding (NLU) systems. We believe that Leyzer presents
great opportunities to investigate multilingual and cross-lingual NLU models and
localization strategies, which allow translating and adapting an NLU system to
a specific country or region. While creating our dataset, we focused particularly
on testing localization strategies that use machine translation (MT) and multi-
lingual word embeddings. First localization strategy that we tested was the so
called train-on-target, where the training corpus of a system is translated from
one language to another and the model trained from this corpus is tested on
a parallel testset that was created manually by language experts (LEs). Sec-
ond localization strategy tested was zero-shot learning, where the system that
used multilingual embeddings is supposed to generalize from the language it was
trained on to new languages that it will be later tested on. Finally, we report
results for two types of baseline models that were trained either on single lan-
guage data only or on all data available in three languages at once.

To the best of our knowledge, Leyzer is the largest dataset in terms of the
number of domains, intents (where intent is understood as an utterance-level
concept representing system functionality available for the user) and slots (where
slot is defined as a word-level concept representing the parameters of a given
intent) in the area of multilingual datasets focused on problems of the localization
of VA datasets. It has been publicly released, with the code to allow reproduction
of the experiments and is available at https://github.com/cartesinus/leyzer.

2 Related Datasets

There exist a couple of text corpora which are often used in the context of VAs,
which can be divided into two groups.

Table 1. Statistics of existing corpora compared to Leyzer, proposed in this work.
First group consists of resources designed to train and test VAs without focusing on
multilingual setup. Second group concerns multilingual VAs.

Dataset Languages # Utterances # Domains # Intents # Slots

ATIS [11] en 5871 1 26 83

Larson et al. [8] en 23,700 10 150 0

Liu et al. [9] en 25,716 19 64 54

Snips [5] en, fr 2,943/1,136 – 7 72

Schuster et al. [12] en, es, th 43,323/8,643/5,083 3 12 11

Leyzer (this work) en, es, pl 3779/5425/7053 20 186 86

The first group, represented by The Air Travel Information System (ATIS)
[11] dataset consists of spoken queries from flight domain in the English lan-
guage. ATIS has a small number of intents and is heavily unbalanced with most
utterances belonging to three intents. Larson et al. [8] created a dataset to study

https://github.com/cartesinus/leyzer
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out-of-scope queries that do not fall into any of the system’s supported intents.
Presented corpus consists of 23,700 queries equally distributed among 150 intents
which can be grouped into 10 general domains. Yet another corpus for English
is the one created by Liu et al. [9]. Their dataset, created as a use case of a
home robot, can be used to train and compare multiple NLU platforms (Rasa,
Dialogflow, LUIS and Watson). The dataset consists of 25,716 English sentences
from 21 domains that can be divided into 64 intents and 54 slot types.

The Snips [5] dataset represents the second category of VAs datasets that
were designed to train and evaluate multilingual VAs. The dataset has a small
number of intents; each intent, however, has a large number of sentences. Schuster
et al. [12] proposed a multilingual dataset for English, Spanish and Thai to
study various cross-lingual transfer scenarios. The dataset consists of 3 domains:
Alarm, Reminder and Weather with small number of intents and slots (11 intents
and 12 slots in total). Different languages have different number of sentences,
with English having 43,323, Spanish 8,643 and Thai having 5,083 ones. It follows
that there is a large number of sentences per intent and per slot type.

Table 1 summarizes the existing corpora used to test VAs, and compares
them with our dataset, proposed in this article. There are many multi-domain
and multi-intent resources for English from which to choose. However, to the
best of our knowledge, there exist no multilingual resources with many domains,
intents and slot types.

3 Our Dataset

We designed our dataset to be useful mostly in the following two areas related
to VAs:

– development and evaluation of VAs, and
– creation and localization of the dataset into other languages in order to have

a parallel multilingual dataset.

Commercial VA systems often face multiple challenges:

1. Number of languages and their linguistic phenomena, which represents a chal-
lenge of building a multilingual system and handling phenomena such as flex-
ion, which has impact on slot recognition,

2. Number of domains and their distribution, that introduce two major chal-
lenges:
(a) how to train a model to equally represent each domain, even if our trainset

is not balanced in terms of number of sentences per domain,
(b) how to treat sentences that are similar or identical in more than one

domain,
3. Number of intents and how they differ. This introduces a problem of having

multiple intents that differ only by one parameter or word,
4. Number of slots and their values, that introduces a challenge of how to train a

model that will recognize slots not by their values but rather by their syntactic
function in the sentence.
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We approached these typical problems by creating a dataset (Table 2) that
consists of a large number of intent classes (186), yet also contains a wide range
of samples per intent class, ranging from 1 to 672 sentences per intent. We
selected three languages that represent separate language families (Germanic,
Romance, Slavic) to address problems typical for multilingual systems.

There is no easy mapping between the intents in Leyzer and these of Larson
et. al. [8], some intents however, overlap. When comparing the intents of Leyzer
and the intents in the corpus created by Liu et al. [9] we found out that out
of their 18 domains (called scenarios in [9]) we could match seven domains in
Leyzer. Similarly to Schuster et al. [12], in our paper we tested train-on-target
and one zero-shot scenarios. When compared to Schuster et al., our dataset
consists of more intents and slots, which, we believe, may have significant impact
on the results, especially for the train-on-target scenario. If an NLU system
has hundreds of closely-related intents, MT systems may easily fail to properly
distinguish them, which, as a consequence, may lead to a lot of mismatches.

Leyzer differs from corpora such as MultiWoz [1], because our dataset con-
tains isolated utterances instead of dialogues. We wanted to create a resource
that is controllable and cheap in terms of the time needed to create or modify
it. We also wanted to demonstrate that VAs able to handle hundreds of intents
and slots are still a challenging task.

3.1 Creation of Corpus

Generation of Leyzer consisted of four steps: creating base grammars, creating
target grammars, applying forced parallelization, slot expansion and splitting
data into train-, dev- and testsets. They are briefly characterized below.

In contrast to approaches such as MultiWoz, where utterances are usually
gathered with the use of crowdsourcing, we decided to use grammars that are
written by qualified LEs. We believe that all concerns on grammar-based gener-
ated text, namely on their lack of naturalness, can be eliminated if the procedure
of quality control is implemented. We think that grammar-based corpora have
two noteworthy advantages: they are cheap in generation and remodeling, and
they can cover all possible ways to express a given intent, which crowdsourced
approaches can easily miss.

Base Grammars Creation. Starting with English, we created 20 grammars
with sentence patterns in the JSpeech Grammar Format (JSGF). Initial set of
intents in each domain was inspired by example commands available in Almond
Virtual Assistant [2]. Slot values were crawled from the Internet or created man-
ually. Depending on slot type, we gathered from a few to a few hundreds values
for each slot.

All sentence patterns in the corpus were generated from grammars. Each
of such patterns represents possible way to utter a sentence without explicitly
giving the content of the slots. Later on, grammars were filled with the slot
values. Since sentences generated in such fashion might contain some unnatural
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expressions or grammatical errors, we requested verification by LEs. Wherever
it was possible, incorrect sentences were fixed, and if that was not possible,
sentences were removed.

Target Grammars Creation. The same procedures were used to create target
grammars. To have intents and slots with same meaning in all languages, LEs
were asked to create grammars with intents which represent the same meaning
as in English, but at the same time, represent the most natural way of expressing
such an intent in the target language. Slot values were either crawled or created
manually.

Forced Parallelization. Although, as discussed in the previous step, the same
intents will have the same meaning in all languages, there is no sentence-to-
sentence mapping between different languages. It is so because intents can be
expressed differently across languages and our creation procedure did not imply
parallel translations. To mitigate this problem, we decided to create a paral-
lel subset of our corpus that can be used as a testset for cross-lingual exper-
iments. All English patterns were machine translated into Polish and Spanish
with Google Translate and then verified and fixed by the LEs in the OmegaT2

tool.

Slot Expansion. Patterns for all languages, as presented in Table 3, were
expanded with slot values that were previously crawled or manually created.
We paid a lot of attention to gathering enough slot values so that during expan-
sion each pattern, if possible, has a different slot value. This way, we were able
to avoid the systematic error of the system that memorizes the slots on the basis
of their values. Once the patterns were expanded, the LEs verified them and
changed them, if needed.

Data Split. The last step of corpus creation was splitting it into three parts:
trainset, testset and development set. To create the testset, we first created
parallel sentences, as described in Forced Parallelization step, and later expanded
the slots. Then, we selected at least one sentence from each intent which at the
same time was available in all three languages. This way it will be possible to
test cross-lingual scenarios. The training and development parts of the corpus
were taken from the target grammar patterns that were expanded with the slots.
Up to 10% of such expansion formed the development set, while the remaining
part formed the trainset.

3.2 Domain Selection

Following [2] we used 20 domains, which represent popular applications that can
be used on mobile devices, computers or embedded devices. We can categorize
them into groups with similar functions:
2 A computer-assisted translation tool: https://omegat.org/.

https://omegat.org/


482 M. Sowański and A. Janicki

– Communication with Email, Facebook, Phone, Slack and Twitter domains
in that group. All these domains contain a kind of command to send a mes-
sage.

– Internet with Web Search and Wikipedia. The aim of these domains is to
search for information on the web and, therefore, these domains will have a
lot of open-title queries.

– Media and Entertainment with Spotify and YouTube domains in that
group. The root function of these applications is to find content with name
entities connected with artists or titles.

– Devices with Air Conditioner and Speaker domains. These domains repre-
sent simple physical devices that can be controlled by voice.

– Self-management with Calendar and Contacts. These domains consist of
actions that involve time planning and people.

– Other non categorized domains represent functions and language not com-
mon to the other categories. In that sense, remaining domains can be repre-
sented as intentionally not matching other domains.

Table 2. Statistics of sentences, intents and slots across domains and languages in
Leyzer dataset.

Domain # Intents # Slots # English Utt. # Spanish Utt. # Polish Utt.

Airconditioner 13 3 48 61 52

Calendar 8 5 69 120 190

Contacts 12 4 306 481 615

Email 11 7 294 315 301

Facebook 7 4 48 581 193

Fitbit 5 3 89 116 263

Google Drive 11 5 55 241 305

Instagram 10 6 144 471 579

News 4 3 31 30 42

Phone 5 4 192 283 130

Slack 13 8 268 268 295

Speaker 7 2 73 72 43

Spotify 18 7 633 827 823

Translate 9 6 462 109 452

Twitter 6 3 147 270 122

Weather 10 5 154 159 123

Websearch 7 2 167 291 1498

Wikipedia 8 1 200 234 162

Yelp 12 5 222 142 326

Youtube 10 3 177 354 539

Total 186 86 3779 5425 7053
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As mentioned above, several domains differ in size to better reflect propor-
tions from the real world problems where some applications will only have a
few possible ways to express commands, while the other ones will have almost
infinite number of valid expressions.

3.3 Intent and Slot Selection

There is a close relationship between intents and slots in our corpus, as the
intents represent functions or actions that users want to perform, while the
slots are the parameters of these intents. In many cases intents represent the
same action, but they have been distinguished on the basis of the number of
parameters. During the creation of intents our principle was that intents must
differ from each other either by the language (different important keywords) or by
the number of slots they have. The reason for that is purely pragmatic because
in order to avoid system’s unstability we cannot have two identical sentences
with different intents. The model input is a sentence and its output is the intent,
so if in the training corpus we had two identical sentences pointing to different
intents, then the model would not able to learn to which intent this sentence
should be assigned.

Table 3. Representative patterns from selected domains of the corpus.

Domain Intent Sentence Pattern

Calendar AddEventWithName Add an event called $EVENT NAME

Email ShowEmailWithLabel Show me my emails with label $LABEL

Facebook ShowAlbumWithName Show photos in my album $ALBUM

Slack SendMessageToChannel Send $MESSAGE to $CHANNEL on slack

Spotify PlaySongByArtist Play $SONG by $ARTIST

Translate TranslateTextToLanguage Translate $TEXT to $TRG LANG

Weather OpenWeather What’s the weather like

Websearch SearchTextOnEngine Google $TXT QUERY

The slots in our corpus can be categorized into two groups:

– Open-titled – where the value of the slot can be treated as infinite and
therefore cannot be listed. Open-title slots are challenging for NLU systems
because they force them to generalize the unseen data.

– Close-titled – where the values of the slots can be listed.

4 Experiments

4.1 Experimental Setup

As an architecture for all of our experiments we used the Joint BERT architec-
ture [4] implemented in the NeMo toolkit [7]. We used the pre-trained multilin-
gual cased BERT model [13] consisting of 12-layers and 110 M parameters. If
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not stated otherwise, we trained models for 100 epochs and saved checkpoints
for each one. All checkpoint were evaluated on test part of corpora. Reported
results come from the checkpoint which achieved the highest score in the tests.
The batch size was 128. Adam [6] was used for optimization with an initial learn-
ing rate of 2e−5. The dropout probability was set to 0.1. We trained each model
independently with all data available in the training part of corpus. In all of our
experiment we used the first version of our corpus (0.1.0).

4.2 Testing Scenarios

We evaluated the proposed corpus using the following four scenarios:

– Single-language Models – here we trained each language independently
on all sentences available in the trainset and we evaluated the model on a
testset.

– Multi-language Model – in this experiment we trained one model using all
training data available for all three languages and independently evaluated it
for each language.

– Train-on-target – similar to strategy proposed by Cettolo et al. [3], we used
Google Translate to translate English patterns into Polish and Spanish, and
expanded them with target slot values.

– Zero-shot Learning – to test this scenario we trained English model with
multilingual cased BERT from the English part of Leyzer trainset and tested
it on Polish and Spanish testsets.

We used the accuracy to evaluate the performance of intent prediction and the
standard BIO structure to calculate macro F1-score that does not take label
imbalance into account. We used the evaluation metric implemented in scikit-
learn [10] and provided in the NeMo evaluation script. Using this script, we
tested each model epoch, and the results for the ones that scored best on both
the intent and the slot level are presented in Table 4.

4.3 Results and Discussion

The Single-BERT models scored relatively low on both the intent and the slot
level, yielding 47%, 52% and 69% intent accuracy for English, Polish and Span-
ish, respectively. We believe that reason for that is a large number of intent
classes in our corpus, which, by the way, was a motivation to create such corpus.

In order to give some perspective to our experiments, we trained the model
on the training part of the ATIS dataset with the same parameters as in the
Single-BERT scenario. When evaluated on the test part of ATIS, we received
97.31% on the intent and 55.23% on the F1-macro slot level (and 97.11% for F1-
micro). Those results suggest that easier problems, such as ATIS, can be easily
learned by Single-BERT model.

The Multi-BERT experiment scored better than the Single-BERT models on
both intent and slot level. We believe that the reason for this is that multilingual
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Table 4. Results for NeMo models trained on various configurations of Leyzer corpus

Model type Language Intent acc. Slot F1 macro

Single-BERT English 46.58 45.07

Polish 51.66 54.56

Spanish 68.88 67.79

Multi-BERT English 62.80 76.48

Polish 64.17 74.83

Spanish 72.26 84.66

Train-on-target Polish 41.67 40.70

Spanish 46.42 52.38

Zero-shot Polish 13.82 15.39

Spanish 30.21 24.13

model had more data to learn how to separate intent classes and eliminate incon-
sistencies. Presented results suggest that multilingual models might benefit from
joint learning on multiple languages, at least for problems that are formulated
as in this paper.

The train-on-target models scored low when compared to the Single-BERT
models. We think that the MT errors, especially in the most important compo-
nents of the sentence (usually verbs) led to a drastic performance drop. On the
intent classification level the accuracy for Polish and Spanish were respectively
9.9% and 22.5% relative lower than the baseline.

The zero-shot scenario scored very low when compared to the Single-BERT or
the train-on-target experiments. Large number of intent classes, combined with
different slot values in each language is a non-trivial problem, and, apparently,
more sophisticated methods are needed.

The results presented in this article may seem unsatisfactory, especially if
we compare them to other VA publications. However, it is noteworthy that a
search for the best architecture and parameters was not an intent of this work
– we rather wanted to set the baselines and to show complexity of the MT
problem for the proposed data. We aimed to create a challenging corpus which
can be a subject of future works, such as the localization of VAs with the use of
train-on-target and zero-shot learning scenarios.

5 Conclusions and Future Work

In our work we introduced a new dataset, named Leyzer, designed to study
multilingual and cross-lingual NLU models and localization strategies in VAs.
We also demonstrated the results for the models trained on our corpus that can
set the baseline for further work.

In the future we plan to extend our dataset to new languages and increase
the number of sentences per intent. Another line of work that we consider is to



486 M. Sowański and A. Janicki

add follow-up intents, as this would allow to build a fully autonomous VA from
our dataset.

The Leyzer dataset, the translation memories and the detailed experiment
results presented in this paper are available at https://github.com/cartesinus/
leyzer. We hope that this way we will foster further research in machine trans-
lation for the virtual assistants.

Acknowledgements. We thank Ma�lgorzata Misiaszek for her help in verifying the
quality of our corpus and improving its consistency.

References

1. Budzianowski, P., et al.: MultiWOZ - a large-scale multi-domain wizard-of-Oz
dataset for task-oriented dialogue modelling. In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
pp. 5016–5026. Association for Computational Linguistics (2018). https://www.
aclweb.org/anthology/D18-1547

2. Campagna, G., Ramesh, R., Xu, S., Fischer, M., Lam, M.S.: Almond: the architec-
ture of an open, crowdsourced, privacy-preserving, programmable virtual assistant.
In: Proceedings of the 26th International Conference on World Wide Web, pp. 341–
350 (2017)

3. Cettolo, M., Corazza, A., De Mori, R.: Language portability of a speech under-
standing system. Comput. Speech Lang. 12(1), 1–21 (1998)

4. Chen, Q., Zhuo, Z., Wang, W.: BERT for joint intent classification and slot filling
(2019)

5. Coucke, A., et al.: Snips voice platform: an embedded spoken language understand-
ing system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190
(2018)

6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of the 6th International Conference on Learning Representations (ICRL 2015), San
Diego, CA (2015)

7. Kuchaiev, O., et al.: NeMo: a toolkit for building AI applications using neural
modules (2019)

8. Larson, S., et al.: An evaluation dataset for intent classification and out-of-scope
prediction. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP 2019), Hong Kong, China (2019)

9. Liu, X., Eshghi, A., Swietojanski, P., Rieser, V.: Benchmarking natural lan-
guage understanding services for building conversational agents. arXiv preprint
arXiv:1903.05566 (2019)

10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

11. Price, P.: Evaluation of spoken language systems: the ATIS domain. In: Proceedings
of the Speech and Natural Language Workshop, Hidden Valley, PA (1990)

12. Schuster, S., Gupta, S., Shah, R., Lewis, M.: Cross-lingual transfer learning for
multilingual task oriented dialog. In: Proceedings of the 2019 Annual Conference
of the North American Chapter of the Association for Computational Linguistics
(NAACL-HLT 2019), Minneapolis, MN (2019)

13. Wolf, T., et al.: Huggingface’s transformers: State-of-the-art natural language pro-
cessing. ArXiv abs/1910.03771 (2019)

https://github.com/cartesinus/leyzer
https://github.com/cartesinus/leyzer
https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1903.05566


Registering Historical Context
for Question Answering in a Blocks

World Dialogue System

Benjamin Kane(B) , Georgiy Platonov, and Lenhart Schubert

University of Rochester, Rochester, NY 14627, USA
{bkane2,gplatono,schubert}@cs.rochester.edu

Abstract. Task-oriented dialogue-based spatial reasoning systems need
to maintain history of the world/discourse states in order to convey that
the dialogue agent is mentally present and engaged with the task, as
well as to be able to refer to earlier states, which may be crucial in col-
laborative planning (e.g., for diagnosing a past misstep). We approach
the problem of spatial memory in a multi-modal spoken dialogue system
capable of answering questions about interaction history in a physical
blocks world setting. We employ a pipeline consisting of a vision system,
speech I/O mediated by an animated avatar, a dialogue system that
robustly interprets queries, and a constraint solver that derives answers
based on 3D spatial modelling. The contributions of this work include a
semantic parser competent in this domain and a symbolic dialogue con-
text allowing for interpreting and answering free-form historical questions
using world and discourse history.

Keywords: Question answering · Blocks world · Semantic parsing ·
Discourse context

1 Introduction

Intelligent, task-oriented dialogue agents that interact with humans in a physical
setting are a long-standing AI goal and have received renewed attention in the
last 10 or 20 years. However, they have generally lacked the sort of recall of earlier
discourse and perceived “world” situations and events—an episodic memory—
needed to provide a sense of shared contextual awareness and, ultimately, a basis
for diagnosing past errors, planning to re-achieve an earlier situation, repeating
a past action sequence, etc.

The blocks world domain is an ideal setting for developing prototypes with
such capabilities.

In this work, we present a speech-based question-answering system for a phys-
ical blocks world featuring a virtual agent, that not only models and understands
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spatial relations but is able to register historical context and answer questions
about the session history, such as “Which block did I just move?”, “Where was
the Toyota block before I moved it?”, “Did the Target block ever touch the Tex-
aco block?”, “Was the Twitter block always between two red blocks?”, etc. Since
explicit storage of detailed successive scene models would be difficult to extend to
general complex settings as well as being cognitively implausible (people seem to
reconstruct past situations from high-level properties [15]), we maintain a com-
pact symbolic record of changes to the world, allowing reconstruction of past
states when combined with current spatial observations.

2 Related Work

Early studies featuring the blocks world include [18] and [3], both of which
maintained symbolic memory of blocks-world states. They demonstrated impres-
sive planning capabilities, but their worlds were simulated, interaction was text-
based, and they lacked realistic understanding of spatial relations.

Modern efforts in blocks worlds include work by Perera et al. [13], which is
focused on learning spatial concepts (staircases, towers, etc.) based on verbally-
conveyed structural constraints, e.g., “The height is at most 3”, as well as explicit
user-given examples and counterexamples.

Bisk et al. [2] use deep learning to transduce verbal instructions into block
displacements in a simulated environment.

Some deep learning based studies achieve near-perfect scores on the CLEVR
question answering dataset [10,12]. A common limitation of these approaches is
reliance on unrealistically simple spatial models and domain-specific language
formalisms, and in relation to our work, there is no question answering function-
ality or episodic memory.

We are not aware of any recent study in a physical blocks world domain
that makes use of spatial memory in answering questions about past states and
events.

Outside of the blocks world domain, the TRAINS and TRIPS systems [4,5]
were noteworthy for their dialogue-based problem solving ability in a virtual map
environment and their support of planning through temporal reasoning based
on Allen Interval Logic [1]. A system aimed at human-like performance on a
virtual reality map recall task [11] was based on the LIDA symbolic cognitive
architecture and represented spatial context using a grid representation of the
world and hierarchical “place nodes” with progressively updated activations.

Recent deep-learning based approaches to modelling spatial episodic mem-
ory include [16] and [6]. The former uses an unsupervised encoder-decoder model
to represent episodic memory as latent embeddings, and show that this model
can allow a robot to recall previous visual episodes in a physical scene. The lat-
ter introduces a neuro-symbolic Structured Event Memory (SEM) model which
is capable of segmenting events in video data and reconstructing past memory
items. These methods, however, do not readily lend themselves to use for reason-
ing about historical relations or interactions in a blocks world question answering
system.
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3 Blocks World System and Eta Dialogue Manager

Figure 1a, b depict our physical blocks world (consisting of a square table with
several cubical blocks, two Kinect sensors and a display) and the system’s soft-
ware architecture. The blocks are color-coded as green, red, or blue, and marked
with corporate logos which serve as unique identifiers. The system uses audio-
visual I/O: the block tracking module periodically updates the block position-
ing information by reading from the Kinect cameras and an interactive avatar,
David, is used for communication. The block arrangement is modeled as a 3D
scene in Blender, which acts as system’s “mental image” of the state of the world.

Blocks world setup Dialogue pipeline

Fig. 1. System overview. (Color figure online)

The Eta dialogue manager (DM) is responsible for semantic parsing and
dialogue control. Eta is designed to follow a modifiable dialogue schema, the
contents of which are formulas in episodic logic [17] with open variables describ-
ing successive steps (events) expected in the course of the interaction. These are
either realized directly as instantiated actions, or expanded into sub-schemas1.

In order to instantiate schema steps and interpret user inputs, the DM uses
hierarchical pattern transduction, similarly to the mechanism used by the LISSA
system [14] to extract context-independent gist clauses given the prior utter-
ance. Transduction hierarchies specify patterns at their nodes to be matched to
input, with terminal nodes providing result templates, or specifying a subschema.
The pattern templates look for particular words or word features (including
“wildcards” matching any word sequence of some length). Eta uses gist clause
extraction for tidying-up the user’s utterance, and then derives an unscoped
logical form (ULF) [9] (a preliminary form of the episodic logic syntax of the
dialogue schema) from the tidied-up input. ULF differs from similar semantic
representations, e.g., AMR, in that it is close to the surface form of English, type-
consistent, and covers a rich set of phenomena. To derive ULFs, we introduced
semantic composition into the transduction trees. The resulting parser is quite
1 Intended actions obviated by earlier events may be deleted.
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efficient and accurate for the domain at hand. The input is recursively broken
into constituents, such as a VP segment, until a lexical subroutine supplies ULFs
for individual words, which are propagated back up and composed into larger
expressions by the “calling” node. The efficiency and accuracy of the approach
lies in the fact that hierarchical pattern matching can segment utterances into
meaningful parts, so that backtracking is rarely necessary.

An example of a transduction tree being used for parsing a historical question
into ULF is shown and described in Fig. 2. As can be seen from this example,
the resulting ULF retains much of the surface structure, but uses semantic typ-
ing and adds operators to indicate plurality, tense, aspect, and other linguistic
phenomena. Eta also has a limited coreference module utilizing syntactic con-
straints, recency, and other heuristics.

Fig. 2. An example ULF parse, with the input shown in red, and the resulting ULF
(at each composition step) shown in green. The nodes with rectangles represent ULF
composition nodes, where the numbers in the upper box correspond to the indices of
the lower boxes (if no upper boxes, simple concatenation). All unframed nodes are
patterns to be matched to the corresponding span of input text. (Color figure online)

4 Historical Question-Answering

To answer historical questions, the DM needs to maintain a dialogue context
including some sort of spatial episodic memory, so that the ULF obtained from
parsing can be resolved into operations over this episodic memory. Based on
the cognitive considerations discussed in [15], we maintain a high-level symbolic
memory with which the agent can reconstruct past scenes, rather than a detailed
visual or vector-based memory.
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The vision system records the centroid coordinates and moves of blocks in
real time. On the DM side, a “perceive-world” action in the schema causes the
DM to request ULF perceptions from the vision system. We rely on a simple lin-
ear, discrete time representation. The temporal entities (|Now0| etc.) are related
to each other and to perceived actions propositionally, making use of the episodic
operators described in [17]. Based on this context, the DM can efficiently recon-
struct a scene at any past time by backtracking from perceived block locations,
and evaluate approximate spatial relationships based on centroid coordinates. A
simplified example is shown in the top half of Fig. 3.

An example of answering a historical question given a ULF parse is shown in
the bottom half of Fig. 3. Phrases with head types “adv-e”, “adv-f”, and “ps”,
indicate temporal constraints that are applied during the scene reconstruction
algorithm, and their semantic types allow them to be lifted to the sentence level.
frequency modifiers) map a set of times to a subset of those times, whereas
binary modifiers take two times and map to a truth value. Any constraint may
be further modified by a “mod-a” term (e.g. “just.mod-a”), which modifies how
that mapping is applied.

Note that the example in Fig. 3 is ambiguous; the answer could be “A, D, C”
or “A, C”. In fact, we found that many natural historical questions are similarly
underspecified, presenting a major source of difficulty. To deal with this issue,
the DM’s pragmatic module attempts to infer temporal constraints in these
ambiguous cases – in this particular example, Eta would infer the constraint
“most recently”.

The algorithm shown extracts the uninverted base ULF relation, where argu-
ments are represented as entities or variables (possibly with restrictions for noun
modifiers). This base ULF, and any temporal constraints, are used to compute
a list of times with attached facts through backtracking over past times. In the
case of a binary constraint with a complex noun phrase or relative clause, this
algorithm is applied recursively (as shown by the red constituents in Fig. 3).
The algorithm would likewise be applied recursively in the case of a query where
the historical content is embedded in a noun phrase, e.g. “the first block that I
moved”.

Once a list of final times is obtained, an answer is generated by making the
appropriate substitutions in the query ULF, applying syntactic transformations,
and converting to surface form. If no relations are obtained, the DM’s pragmatics
module will attempt to respond to any presuppositions of the query, based on
the work in [8]. For instance, if the query is “What block was the Twitter block
on?”, Eta will respond “The Twitter block wasn’t on any block.”

5 Evaluation and Discussion

Since the COVID-19 pandemic made testing the physical blocks world system
on-site impossible, the authors had to resort to evaluating using a virtual envi-
ronment that mirrors our setup, sans the physical block tracker and the audio
I/O. However, as the crucial components being evaluated (parser, DM, and spa-
tial context) were unchanged, the results should not be affected.
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Fig. 3. A simplified example of how the context is represented and how the DM uses
the context to compute relations given temporal constraints (top half), and an example
of the DM determining an answer from a specific historical query (bottom half). (Color
figure online)

We enlisted 4 student volunteers for the user study, both native and non-
native English speakers. The participants were instructed to move the blocks
around and ask general questions about changes in the world, with no restrictions
on wording. After the system displayed its answer, the participants were asked
to provide feedback on its quality by marking it as correct, partially correct or
incorrect. Each participant contributed about 100 questions or above (primarily
historical questions, but also including some non-historical spatial questions).

Each session started with the blocks positioned in a row at the front of the
table. The participants were instructed to move the blocks arbitrarily to test
the robustness and consistency of the spatial models. The data is presented in
Table 1. Non-historical questions, as well as a few malformed questions, were
excluded when computing accuracy.

We find these results encouraging, given the pragmatic richness of the task
and the unrestricted form of the questions. About 77% of Eta’s answers were
judged to be fully correct, with accuracy rising to 80% when including partially
correct answers. We find that the semantic parser itself is very reliable, with 94%
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Table 1. Evaluation data.

Total number of questions asked 496

Well-formed historical questions 387

Correct answers 297 (77% of 387)

Partially correct answers 13 (3% of 387)

Incorrect answers 77 (20% of 387)

Number of correctly parsed questions 363 (94% of 387)

Accuracy (correct + partially correct) 80%

of grammatical sentences being parsed correctly. Parsing failures accounted for
a third of the incorrect answers.

Analyzing the remaining incorrect answers, we find that a major source of
error is in the handling of under-specified historical questions, as described in
Sect. 4. There are many nuances to how humans naturally interpret these, that
are difficult to capture with simple set of pragmatic rules.

For example, Eta will plausibly interpret “What blocks did I move before the
Twitter block?” as meaning “What blocks did I recently move before I moved the
Twitter block?”; however if the user instead asked “How many blocks did I move
before the Twitter block?”, it seems that the questioner really means “How many
blocks did I ever move before I moved the Twitter block?”. Currently, Eta would
add “recently” for the latter case, which would be incorrect. In future work, we
aim to investigate this phenomenon further and improve the pragmatic inference
module to handle these cases correctly. In addition, the tense structure in some
more complex questions violated our simplifying assumption of discrete linear
time. In future work, we plan to look into the use of more general temporal
reasoning systems such as the tense trees described in [7] to enable more robust
handling of different aspectual forms and more complex embedded clauses.

6 Conclusion

We have extended a spatial question answering system in a physical blocks world
system with the ability to answer free-form historical questions using a symbolic
dialogue context, keeping track of a record of block moves and other actions.
A custom semantic parser allows historical questions to be parsed into a logical
form, which is interpreted in conjunction with the context to generate an answer.
We obtained an accuracy of 80%, which we believe is a strong result in view of the
free-form and often underspecified nature of the historical questions that users
asked, though it also leaves much room for improvement. Overall, we believe
that the pragmatic richness and complexity that we’ve observed in historical
question-answering indicates that further work towards representing episodic
memory and enabling dialogue systems to reason about historical context will
be fruitful in this sparsely researched area.
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Abstract. Voice assistants in mobile devices and smart speakers offer
the potential of conversational agents as storytelling peers of children,
especially those who may have limited proficiency in spelling and gram-
mar. Despite their prevalence, however, the built-in automatic speech
recognition features of voice interfaces have been shown to perform
poorly on children’s speech, which may affect child-agent interaction.
In this paper, we describe our experiments in deploying a conversa-
tional storytelling agent on two popular commercial voice interfaces -
Google Assistant and Amazon Alexa. Through post-validation feedback
from children and analysis of the captured conversation logs, we compare
the challenges encountered by children when sharing their stories with
these voice assistants. We also used the Bilingual Evaluation Understudy
to provide a quantitative assessment of the text-to-speech transcription
quality. We found that voice assistants’ short waiting time and the fre-
quent yet misplaced interruptions during pauses disrupt the thinking pro-
cess of children. Furthermore, disfluencies and grammatical errors that
naturally occur in children’s speech affected the transcription quality.

Keywords: Conversational agents · Voice interfaces · Storytelling

1 Introduction

Stories abound in the everyday conversations of children. Through storytelling,
children can gain an understanding of their world and express their experiences
through recollection and sharing with others. This collaborative storytelling
is not limited to human-to-human interaction, but may also be manifested in
human-to-robot interaction [20].

Commercial voice assistants, such as Apple’s Siri, Google Assistant and Ama-
zon’s Alexa, that are ubiquitously embedded in mobile phones, tablets and smart
speakers [11], such as the Google Home and Amazon Echo, enable users to give
voice commands and queries in natural language. Children who have limited
proficiency in spelling and grammar can utilize these technologies to express
their narrative by talking to the voice assistant. Not only is voice more natural
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for children to carry a conversation; they can also do away with less structure
typically required from written text [16].

Despite their prevalence, however, the built-in automatic speech recognition
features of voice interfaces have been shown to perform poorly on children’s
speech. Furthermore, while studies on child-agent interaction through conversa-
tional interfaces are surfacing [5,8,10], there are those that reported problems of
using voice interfaces by non-native English speakers [6,19]. These two challenges
may affect the child-agent interaction.

Our study seeks to investigate the challenges that children encounter during a
collaborative storytelling session with voice-based conversational agents. We pay
particular focus on two popular voice interfaces, Amazon Alexa running in Echo
and Google Assistant in Home, where we deployed our collaborative storytelling
agent. In Sect. 2, we give a short review of related work on storytelling and voice
interfaces, followed by a description of the design of our collaborative storytelling
agent in Sect. 3. In Sect. 4, we present our results from conducting validation with
children and analyzing the transcription quality.

2 Related Work

Voice interfaces can be used to engage children in learning activities. However,
previous studies have reported the challenges of voice interfaces in understanding
the speech of young children, as the built-in automatic speech recognition facility
performed poorly on children’s speech [5,8]. The problem is mainly attributed
to the differences in children’s speech from adults’ speech not only in content
but also in patterns of stress, intonation and prosody [10,13]. This can lead to
incorrect transcription of input speech, which causes misunderstanding and the
generation of inappropriate responses [16].

Despite the challenges, voice interfaces in robots and digital assistants have
found applications as homework tutors [22], diagnostic tools for reading disorders
[12] and social assistance [9]. A storytelling system composed of both reader and
listener robots was developed by [21] to investigate the effect of a listener robot
acting as a side-participant in a storytelling situation with children. They found
that children preferred storytelling with the listener robot than without it.

Children employ different repair strategies when they encounter problems
with voice-driven interfaces [2]. Instead of giving up, they often showed persis-
tence by repeating themselves, augmenting their speech, adjusting the tone and
pronunciation of their words and substituting with a simpler word [2,14].

Unlike task-oriented voice assistants typically found in retail applications,
storytelling agents have to engage children in a conversation that is fluent, user-
directed and consistent with the context of the shared story [15]. This mimics the
spontaneous turn-taking that typically occurs in human-to-human storytelling.
The sharing that occurs between storytellers is beneficial in improving children’s
listening and comprehension skills, enhancing their ability to interact with others
[18], and using language to express their thoughts and sense of the world [3,4].
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3 Method

The conversational storytelling agent (CSA) was deployed on two voice assistants
(VA), namely Google Assistant and Alexa, using the smart speakers Google
Home and Amazon Echo, respectively, as the physical interface. An issue we
ran into while porting the agent was that Alexa does not allow getting the
whole user input due to security issues. For Alexa to process the user’s input,
specific keywords need to be detected for mapping to the appropriate intent, so
we required participants to add the phrase “my turn” before their actual input.

10 children between the age of 7 to 11 years old were invited to participate
in the study. They were briefed regarding the keywords they could use to start
and end the sessions, to seek for help and to take the dialogue turn in the case of
Alexa. Each participant was asked to share their own story with each of the VA.
While the original intent was to have the child share two different stories, in the
course of testing with Alexa, it was observed that the agent exits the application
when the participant takes time to craft his/her story, thus exceeding the built-
in 7-second wait time of the device. Because of this, 7 out of 10 children used
the same story for both devices.

An observation checklist was used to monitor the child-agent interaction, with
a focus on instances where children enjoy or get frustrated with storytelling. A
post-interview and survey form asked participants to rate the agent’s collabo-
rative features using a 5-point Likert scale and to give qualitative feedback on
the interaction. The verbal conversation and the transcription of speech to text
were also recorded.

Results were analyzed using three criteria general UX, frustration and enjoy-
ment. The general UX criterion assesses the CSA and the participant’s capability
to understand and follow each other’s commands and responses. The frustration
criterion [1,7] refers to aspects of the interaction with the CSA that caused the
participants to feel bored, irritated or distracted. The enjoyment criterion is
used to assess the quality of the conversation based on the satisfaction of the
participants and includes acknowledgement of the CSA as an actual being that
children would talk to again. We also used the Bilingual Evaluation Understudy
(BLEU) [17] to analyze and determine the quality of the text-to-speech transla-
tion performed by each of the voice assistants.

4 Results

4.1 User Feedback

Table 1 presents the results of user feedback from the survey forms. Requiring
the phrase “my turn” for Alexa made it difficult and unnatural for the children to
carry on a smooth conversation flow which led to a lower general UX score com-
pared to Google Assistant. There were also instances wherein they forget to say
the keywords before starting their story. Occurrences of misunderstanding also
affected the score, especially when Alexa and Google Assistant misinterpreted
the words in the child’s input. Examples of these are shown in Table 2. When



498 J. Ureta et al.

Table 1. Average rating from participants’ survey forms.

Criteria Google Alexa

General UX 3.67 3.61

Frustration 3.93 3.63

Enjoyment 3.73 3.47

misunderstandings occur, participants tend to get thrown off and confused at
first. They will then try to make sense of what the agent said. If they are unable
to do so, they tend to give up and continue on with their story.

In the conversation with P2, Alexa misheard “insects” as “sex” (lines 2 and
4), and “he then” as “heathen” in line 6. At first, P2 tried to correct the mistake
by repeating what he said in line 3. But when Alexa repeated the same mistake,
P2 just ignored the misunderstanding and continued with his/her story. For P7
and P10, there were clear indications of their confusion, as seen in lines 3 of
their respective log. For P7, he/she was initially thrown off by the mistake that
the interface made but did not try to correct it at all and just continued with
the story. For P10, he/she got really confused with the misunderstanding and
was only able to move on with the story when the storytelling agent issued the
prompt “So what happens next?” in line 6.

Children’s frustration and enjoyment in sharing stories with the conversa-
tional agent were affected by the latter’s ability to understand the utterance
in order to generate appropriate responses and the frequent need for children
to have to repeat themselves as a repair strategy. These instances of misunder-
standing are detailed in the next section.

4.2 Transcription Quality

BLEU is a metric which is primarily used to evaluate the quality of machine-
translated text by comparing a candidate translation to one or more reference
translations. BLEU scores range from 0 to 1, with values closer to 1 representing
a higher similarity with the reference text.

BLEU was used to evaluate how effective the voice interfaces were in tran-
scribing the speech of the children. We used the manually transcribed utterance
of the participants from the recorded vouce conversations as the reference and
compared the transcriptions of the voice assistants against these. As shown in
Table 3, the number of dialogue turns (input) the child took as well as the BLEU
scores for both interfaces were calculated. Based from the results, Google Assis-
tant has a higher BLEU score than Alexa for all transcribed conversations.

Table 3 also indicates the number of instances when Alexa asked each par-
ticipant to repeat their utterances because the agent failed to “hear” the input.
Every time this happens, a BLEU score of 0 is assigned to the utterance because
an empty string is compared with the actual utterance of the participant found
in the reference transcription. The higher the number of repetitions, the lower
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Table 2. Examples of misunderstanding between the agent and the children.

Excerpt of conversation of P2 with Alexa (A)

1 P2: the fish would go up to the river everyday to see if there were insects

2 A: I need help, please use sex in a sentence

3 P2: the fish would go up to the river everyday to see if there were insects

4 A: I need help, please use sex in a sentence

5 P2: he then would go back if there were none

6 A: Tell something about heathen

7 P2: it would then go to the reef and rest and wait for the next day

Excerpt of conversation of P7 with Google Assistant (GA)

1 P7: after we play soccer me and my friend got tired and went back at my house

2 GA: I need help, please use software in a sentence

3 P7: I don’t know what that mean (misunderstanding)

4 GA: The moon is cold

5 P7: my mom give us drinks . . . my mom give us drinks and towel

Excerpt of conversation of P10 with Google Assistant (GA)

1 P10: when he got there he got the books were interesting

2 GA: What if the erica got get?

3 P10: Yes? What (P10 got confused)

4 GA: Tell something about erica

5 P10: What? (P10 got confused)

6 GA: So what happens next?

7 P10: when he opened the book it wasnt really that big

Table 3. BLEU scores for Alexa and Google assistant.

Alexa Google assistant

P Inputs Repeats BLEU Inputs Repeats BLEU

P1 7 4 0.20 12 0.61

P2 15 2 0.56 23 0.90

P3 34 19 0.35 18 0.91

P4 23 9 0.51 19 0.93

P5 23 10 0.27 8 0.56

P6 13 4 0.42 10 0.76

P7 18 7 0.46 13 0.64

P8 11 4 0.28 5 0.80

P9 13 3 0.56 16 0.94

P10 25 5 0.51 17 0.77
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the BLEU score. Those participants who made at least 30% repetitions have
BLEU scores that fall below 0.50.

Another factor that affected the BLEU score is the total number of words
uttered by a participant. This is illustrated in the plot in Fig. 1. From the plot,
we get a correlation coefficient of 0.1334; the more words that participants say
and were heard by Alexa, the better the score becomes. The 2 outlying cases in
the given plot are from P3 and P5. P3 spoke in a soft voice and would at times
mumble. For P5, despite his/her loud and clear voice, Alexa still misinterpreted
the words he/she said, as seen in lines 11–13 of the transcribed log in Table 4.
This may be due to P5 speaking fast in some parts which resulted in Alexa
mishearing the words.

Table 4. Examples of Alexa misinterpreting the participants’ utterances.

Line Transcribed Alexa

11 He gone to the mall to buy a new
game!

rigan to the multiply on you
game

12 he go and buy the game he wanted hi go and buy the give you 1 that

13 when he played the game he loved
it so he bought the game from the
store and gone back to his home

when he played the game he loved
it so he the game from the store
and gun back to his home

The plot for Google Assistant is shown in Fig. 2. It has a correlation coefficient
of -0.0359, which means there is no correlation between the number of words and
the BLEU score that generally floats above 0.5.

Multiple disfluencies and grammatical errors can be found in natural child
speech [8]. Disfluencies like the ones shown in Table 5 for P5 and P9 often led
Alexa to mistake them as the end of an utterance. These problems in the par-
ticipants’ speech also affect the BLEU scores negatively.

Fig. 1. Correlation between the BLEU
score and the number of words per par-
ticipant with Alexa.

Fig. 2. Correlation between the BLEU
score and the number of words per par-
ticipant with Google Assistant.
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Table 5. Examples of disfluencies and grammatical errors in participants’ utterances.

Alexa

P3 then in math class I didn’t understand

P3 If I had 5 mistakes, then I will fail

P4 and then I ate recess

P5 He - he go .. gone to the mall to buy a new game

P5 so-so Jacob and his little sister play the played till 12 pm O clock

P7 after we play soccer me and my friend got tired and went back

P9 he was disappoint - ed that but his friend comforted him

Google assistant

P1 but thay already made an idea they sell drinks

P4 until in december 4 it should be returned

P5 and when he go camping

5 Conclusion

Conversational agents can engage children in collaborative storytelling to develop
their language and literacy skills. In this paper, we deployed our conversational
storytelling agent in voice interfaces, particularly Amazon Alexa and Google
Assistant, to provide access to children with limited proficiency in spelling and
grammar. Our results are in line with those reported in previous studies where
voice interfaces perform poorly on children’s speech. Our findings showed that
these problems, combined with the short waiting time, frequent interruptions
during pauses and mishearing words affect the child-agent interaction and led to
difficulties in carrying out a smooth turn-based storytelling session.

We also used BLEU scores to compare the transcription quality of Alexa and
Google Assistant, with an average of 0.34 and 0.65 respectively. Analysis of the
conversation logs showed a high incidence of repetitions among participants when
conversing with Alexa, leading to BLEU scores that fall below 0.50. Disfluencies
that are descriptive in children’s speech also affect the BLEU scores negatively.
For future work, word error rate (WER) should be considered and a comparison
between the two metrics in the area of storytelling can also be done. While
children employ repair strategies and do their best to finish their stories, their
inability to carry on a smooth conversation flow with the storytelling agent led to
frustration and non-enjoyment of the interaction. Future voice interface designers
should take into account the spontaneous nature of children’s storytelling, their
limited vocabulary and pronunciation abilities, and the length of time they need
to formulate their stories.
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Abstract. Chatbots, conversational interfaces and NLP have achieved
considerable improvements and are spreading more and more in every-
day applications. Solutions on the market allow their implementation
easily in different languages, but the proposals for the Italian language
are not so effective as the English ones. This paper introduces Con-
versIAmo, the prototype of a conversational agent which implements
a question answering system in Italian on a closed domain concerning
artificial intelligence, taking the answers from online articles. This sys-
tem integrates IBM services (Watson Assistant, Discovery and Natural
Language Understanding) with functions developed within ConversIAmo
and Tint, an open-source tool for the analysis of the Italian language.
Our QA pipeline turned out to give better results than those obtained
from using Watson Discovery service on its own, as for precision, F1-
score and correct answer ranking (on average +12%, +21% and +20%
respectively). Our main contribution is to address the need for an effec-
tive but easy-to-apply method aimed to improve performances of IBM
Watson services for the Italian language. In addition, the AI domain is
a new one for an Italian conversational agent.

Keywords: Conversational agents · Question answering · IBM
Watson · Artificial intelligence · Italian language

1 Introduction

Artificial intelligence has become a trending topic in the last few years and both
researchers and companies are striving to improve results in many areas, from
medical diagnosis to any kind of business process and products. Meanwhile,
Software-as-a-Service (SaaS) solutions offered by the IT corporations on the
market are now integrating powerful AI-as-a-Service (AIaaS) products, includ-
ing conversational and QA (Query Answering) modules. Task-oriented dialog
agents, designed for specific goals and set up to have short conversations to
reach their purpose, include digital assistants on smartphones or home con-
trollers (Siri, Cortana, Alexa, Google Now/Home, etc.), which can give travel
directions, control home appliances, find restaurants, and so forth, and many
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companies deploy their own task-based conversational agents to support cus-
tomers. They are usually based on a knowledge structure representing the most
common intents expressed by the user and related to the task. This implies
a finite number of cases, designed by a dialog designer, each one with many
input examples to train the classification, sets of entities for the given domain
and preset answers (e.g., Google Dialogflow, Amazon Lex, Microsoft Bot Frame-
work, Oracle Digital Assistant and IBM Watson Assistant as the most famous
ones).

However, while several conversational and QA systems exist in English lan-
guage, few examples are available in Italian (e.g., [4,6,12]), and performances
using commercial tools are on average lower.

In this paper we present a QA prototype system, ConversIAmo, which uses
unstructured text documents in Italian language in the Artificial Intelligence
(AI) domain. Based on Watson services, ConversIAmo integrates new modules
that we developed and Tint, an Italian NLP tool, with the goal of improving
performances compared to Watson Discovery on Italian questions.

Watson Discovery Service (WDS from now on) showed experimentally good
recall but low precision and weak ranking of the correct answers (around 51%
of correct answers among the first three), unlike when the English version is
used for English texts. Since the relevance of ranking is a well-known principle
in interactive IR and QA systems, the main goal, that guided our approach,
was to improve this measure, keeping the recall high. Results seem encouraging
since we obtained that by questioning our ConversIAmo prototype on a dataset
on AI in Italian language, precision, F1-score and accuracy outperform WDS
(respectively +12%, +21% and +20%).

Our contribution consists not only in the creation of a question-answer
dataset in Italian language regarding the topic of AI, which can be used for
further research, but mainly in the proposal of an easy-to apply method to inte-
grate IBM NL-related services with new modules to create an Italian speaking
agent about AI. This is the first chatbot in Italian on AI domain and, to the
best of our knowledge, also in other languages.

The paper is structured as follows: Sect. 2 presents related works, Sect. 3
describes ConversIAmo, Sect. 4 its experimental evaluation, results and
discussion.

2 Background and Related Works

With the surge of technologies available, conversational agents are being used in
many different fields. Beyond off-the-shelf solutions, different technologies allow
to create custom dialog systems that can be trained and specialized on spe-
cific application scenarios. IBM Watson, is one of the most widely-adopted QA
frameworks [6]. It combines several different techniques for NLP, IR and ML
and uses IBM’s DeepQA software and the Apache UIMA (Unstructured Infor-
mation Management Architecture) framework implementation. Its effectiveness
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increases when it is extensively trained [1,11], but this task is very time con-
suming, thus other approaches have been proposed, such as using automati-
cally generated question-answer pairs [8]. Several conversational agents have
been developed using Watson services. Recently it has been exploited in [13]
to build a multilingual student support system regarding exam stress, in [10] to
build a parallel programming assistant (PAPA) to support programmers, in [1]
to provide answers about programs and other issues in a university.

However, while performances are usually good with dialog agents in English,
the effectiveness with other languages is not the same. Italian in particular,
is not currently fully supported by Watson services, as reported in [2,6]. Our
experience confirms this gap. We found that Watson Discovery did not get the
same precision and accuracy that we got with English texts. We had to develop
new modules that were used in the answer selection and ranking process to
improve these measures on Italian texts. Conversely, recall was very high (around
95%) and not further improvable with ConversIAmo. Recent systems that use
Watson services with Italian text are described in [6] and [4]. The former is
a virtual assistant that supports students and staff of a smart campus. The
authors compare the trained and untrained versions finding improvements after
training, even though they notice that there were no improvements with out-of-
scope questions, maybe due to the language, which is not fully supported [6].
In [4], the authors describe a pipeline for Italian that uses IBM services and
tools for Italian language processing. The same group also developed a query
expansion module to improve the retrieval phase [5]. Like to us, they exploit
Tint for linguistic analysis.

In addition to the QA systems above, few examples can be further mentioned
among Italian-based QA systems [12,14]. Some of the reasons might be difficul-
ties related to the highly variable structures of queries, that may impact the
question analysis and interpretation, and shortage of multilingual datasets [14].

3 ConversIAmo Prototype

ConversIAmo is a QA prototype that exploits Watson Assistant (WA), Watson
Discovery Service (WDS), and Watson Natural Language Understanding (NLU).
Moreover, it includes Tint and ad-hoc modules to increase performances for
Italian language. WA is the IBM platform to build and manage chatbots, WDS
is the service to retrieve information from unstructured data and NLU to extract
metadata from text such as entities, keywords, categories, relations, etc. Tint is
an open-source tool for NLP in Italian, based on Stanford CoreNLP (tint.fbk.eu).
ConversIAmo Question Answering Pipeline is shown in Fig. 1.

Setup and Training
ConversIAmo dialog flow has been created using the WA graphical interface on
IBM Cloud which allows to insert nodes that correspond to different intents of
the user’s question. As typical in conversational agents, intents are associated
to question classes, which are mapped to corresponding Lexical Answer Types
(LAT). As in many other QA systems [4,6,9], question classes are organized in

http://tint.fbk.eu
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a taxonomy. The main classes are factoid questions and description questions,
each organized into sub-classes. Factoid class refers to questions that expect
specific entities as answer types, while Description class refers to questions that
expect as answer descriptive text that concerns the topic(s) of the question, e.g.,
“what’s the difference between supervised learning and unsupervised learning?”
The sub-classes we considered for factoid questions are: HUMAN (split in: indi-
vidual and group), NUMERIC (split in: count, date, money, percent, period),
LOCATION and ENTITY. Each sub-class is associated to a set of suitable
entity types. E.g., HUMAN group sub-class expects Organization or Company
as entity types. Description questions are split in GENERIC DESCRIPTION
(DESCRIPTION) and DEFINITION. A further class is ABBREVIATION. For
each class, examples are to be provided in order to train WA to classify them.
We provided 10 examples for each sub-class on our AI domain in Italian.

Finally, the setup includes document ingestion and information extraction.
Once prepared and formatted as required, the documents on the AI subject
domain are uploaded on WDS to let it extract concepts and named entities,
which are then imported into WA to be used in the QA flow.

QA Flow
The QA flow is the process performed each time the user submits a question and
the system has to find some answers to output (see Fig. 1).

Fig. 1. Question answering scheme.

Question Analysis. This is the first phase of all QA systems and the funda-
mental one to determine the success of the process since its output will be used in
the next steps. We deploy different services (WA, NLU and Tint) to accomplish
this task, which includes three processes, other then the morpho-syntactic and
syntactic analysis carried out using Tint. (i) Question classification is handled by
WA, which is in charge of handling directly the user’s question. The intent rec-
ognized by WA in the user question is one of the question classes specified above,
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which corresponds to the expected LAT. (ii) Named entities extraction is accom-
plished by combining named entities recognized by WDS, and imported in WA,
with those extracted by NLU. Their intersection resulted to be the most effective
combination. (iii) As for keywords extraction we have developed and tested two
different approaches: the simplest, exploiting the keywords extracted by NLU,
and a more complex one, developed with the tool Tint, specifically tailored for
Italian. Thanks to its linguistic analysis, it allows to identify the linguistic fea-
tures and select those candidates to become keywords: nouns, adjectives and
verbs. Then, looking for direct dependencies between these words with any of
the others selected, in particular between nouns and their adjectives, we merged
related keywords. Overall, this method for keyword identification includes more
keywords than those extracted by Watson NLU.

Information Retrieval. As first, we execute stop words removal through a
function that enriches the set of Italian question words (e.g., “quali, qual, quale”,
are three forms of “which”) taking into account the context of the word.

Then the flow continues with this reworked query stop words passed to Dis-
covery, which returns the text passages that it retrieves with an associated score.

Answers Selection and Dialog Flow Expansion. Filtering and sorting of
text passages is the step where Watson services for Italian mainly failed. Thus,
we do not exploit any pre-existing service for this stage, but we implemented our
own “ConversIAmo answers manager” which exploits the result of the question
analysis. We followed two different filtering strategies according to the classifi-
cation of the user input, depending on whether the question belongs to: (I) the
factoid group (HUMAN, LOCATION and NUMERIC), that requires a specific
type of entity in the answer or (II) questions without any specific type of entity
to search for (i.e., description questions and ABBREVIATION). For questions of
the first group, the filtering technique requires that text passages contain at least
one entity of the type required by the question, while the others are removed.
Questions that WA is not able to classify (unclassified questions) are taken into
account as the second group in order to treat them with the less restrictive app-
roach and not to lose any answer. Then, for both groups, a scoring technique
is applied that takes each text passage with its Discovery score and increases it
depending on the percentage match between (i) the keywords and (ii) the enti-
ties in the original question and in the text passage, limited to those occurring
in the same role (as from the morpho-syntactic analysis). Once the scores have
been updated, the passages are rearranged in descending order, then the scores
are normalized and results below a certain threshold are deleted, to limit them
to the most inherent to the question.

At the end, the results are displayed to the user and s(he) is asked to check
the correct one. If an answer is selected, it is inserted in a node of WA dialogue
flow within its question class branch and with the named entities identified
in the question as entry condition for the node. This is aimed to extend the
conversational agent knowledge base and improve results over time.
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4 Experimental Results

Question Classification. In order to test the approach, we used a question-
answer dataset that we built since none was available in Italian nor, as far as
we know, in other languages on the subject of AI. Questions respect the prin-
ciples in [7] about the way people usually interact with machines, and follow
the example of popular question-answer datasets such as WikiQA dataset, MS
MARCO, the Stanford Question Answering Dataset, and the Italian version of
SQuAD. The dataset is composed of 110 questions on basic topics in AI, anno-
tated with their correct question type extracted manually from the corpus of
130 articles each with its correct passages of text as answers. Questions are
distributed among classes as follows: factoid questions 37.3% (NUMERIC 20%,
HUMAN 10.9% and LOCATION 6.4%, further split in sub-classes); description
questions 60% (DESCRIPTION 48.2%, DEFINITION 11.8%) and ABBREVI-
ATION 2,7%.

To test WA’s ability to classify the questions, we passed as input all the 110
questions in our dataset and we obtained the following results: 9 wrong classifica-
tions on 110 (8%), of which 8 DESCRIPTION labeled as DEFINITION, and 13
unclassified questions (11%) that Assistant was not able to assign to any intent,
all belonging to description questions. Since we apply the same method for both
DESCRIPTION and DEFINITION, such misclassification has no consequences
on the answer selection, but it can impact the final dialog node expansion.

From these data, 10 examples have proved to be enough for factoid ques-
tions training, because they usually have in common some question words (e.g.,
“Dove”, “Where” or “In quale città/stato/paese”, “In what/which city/state/
country” for LOCATION), while they are not enough to cover the variety of
question forms that ask for a description, resulting in misclassified or unclassi-
fied questions. As explained in Sect. 3, we face unclassified questions by treating
them as description questions and not inserting them in new dialog nodes.

QA Results. To evaluate the performance of ConversIAmo compared to WDS,
we uploaded the test corpus of 130 articles, and use the widely adopted metrics
in QA and IR communities precision, recall and F1 score. Moreover, we use accu-
racy computed as the ratio of questions that returned at least one correct answer
within the first 3 answers of the response [3]. By running WDS, we found that
while performance is good as for recall, it is not for the other measures. Accuracy
in particular is below expectations for a QA system, where the correctness of
the first answers is of foremost importance for the user experience. The design of
ConversIAmo was mostly aimed to keep the recall at that high level (we obtained
also a slight improvement of this parameter, though) while improving ranking,
and thus accuracy, that is the placement of the correct text passages provided
as answers. By improving ranking, we were also able to reduce the number of
answers to be returned to the user and this led to an increase of precision and
F1 score.

Figure 2 shows the results for factoid (left side) and description type questions
(right side). Each side reports the results for WDS compared to ConversIAmo.
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Fig. 2. Results on factoid and description type questions.

Results for the latter are provided with two configurations: ConversIAmo(1) uses
Tint for keyword extraction, while ConversIAmo(2) uses NLU. Other than that
there are no differences between the two versions as for NLP processing, question
analysis, stop word removal and results filtering.

As showed in Fig. 2, for factoid questions we achieved a consistent +30% in
accuracy (from WDS 49% to our 80%), keeping the recall at its max, improving
precision and F1 score by respectively about 20% and 35%, with the two different
approaches on keyword extraction that perform almost similarly.

While we achieved very good improvements for factoid questions, only a
slight improvement has been accomplished with description questions. In these
latter, recall is kept at its max, precision and F1 score have a slight increment
(about 7% and 12% respectively), but accuracy is not significantly improved
(only +2/3%). Again, the two versions of ConversIAmo perform similarly.

The difference in results is mostly related to the fact that factoid questions
involve directly an entity type and the filtering technique we designed, combined
with the scoring technique, works well, while this is not the case for the broad
type of description questions. In the dataset used for the test, the questions
that fall in this class are very different from each other and more complex (e.g.,
“what is the difference between ...”), such that improvements can difficultly be
gained using rule-based approaches and without extensive training. However,
improvements could come from refining the keyword extraction method used in
ConversIAmo(1), which performed worse than expected (we discuss it in Sect. 5).

As a general result of our approach, we got that, despite the inverse rela-
tionship between precision and recall that is typical in IR systems, and that
we also found with WDS results, our approach was able to keep recall at WDS
max level and we achieved a significant improvement in accuracy. In detail, the
combined results of factoid and description questions, including the abbreviation
class, which performed similarly to the latter, are: +20% accuracy (from 51% to
71%) and improvements also on precision (+12%) and F1 score (+21%).

5 Conclusions and Discussion

In this paper we presented ConversIAmo, the prototype of an Italian speak-
ing agent on the AI domain, the first as far as we know. Based upon IBM
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Watson framework (Watson Assistant, NLU, Discovery), it exploits custom-
made Java functions and Tint, a NLP tool for Italian language, in order to
improve performances, compared to IBM Watson service used on its own. The
results are encouraging since we gained improvement in accuracy and slightly in
precision and F1 score, while recall was already high. In addition, ConversIAmo
is designed to dynamically feed the agent with answers, dialog nodes and entities,
to improve results over time. About limits, we acknowledge that the approach
is effective with factoid questions, while less with description questions. This is
true for both question classification and QA results. The method for keyword
extraction that we proposed as an alternative to NLU keyword extraction was
intended to improve such results, but the two perform similarly. Thus, as future
work we plan to improve this method, and also try other approaches for keyword
expansion (e.g., as in [5]). Moreover we plan further tests to balance the need of
an extensive training with the deployment of an effective easy-to-apply method.
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Abstract. The article presents a method of using F0 parameter in
speech coding to transmit hidden information. It is an improved app-
roach, which uses interpolation of pitch parameters instead of transmit-
ting exact original values. Using an example of the Speex codec, we
describe six variants of this method, named originally as HideF0, and we
compare them by analyzing the capacity of the hidden channels, their
detectability and the decrease in quality introduced by pitch manipula-
tion. In particular, we perform listening tests using 20 participants to ver-
ify how perceptible the pitch manipulations are. The results are presented
and discussed. We prove that minor modifications of pitch parameters
are hardly perceptible, what can be used to create hidden transmission
channels. One of the best proposed variants, called HideF0-FM, is shown
to enable hidden transmission at the bitrate of over 120 bps at no speech
quality degradation at all. Higher bitrates are also possible, only with
minor quality degradation and limited detectability.

Keywords: Speech coding · Information hiding · Pitch · Listening
tests · Speex

1 Introduction

Large volume of encoded voice streams transmitted over the Internet has
attracted those trying to use them as a carrier of hidden information. Numerous
researchers have proposed various steganographic methods to be used with IP
telephony voice streams [12]. Some of these methods are based on exploiting
unused fields in protocol headers, other manipulate the encoded speech data,
yet another group modifies time relationship between packets.

Existence of hidden channel can result in a major security breach. They can
be used to allow leakage of sensitive data out of, for example, a governmental
institution, or they can be used to control behavior of malicious software, which
can be used to attack a host or a network. Therefore it is very important to be
aware of various information hiding techniques and research on their counter-
measures.

A relatively small group of algorithms use pitch parameters to hide infor-
mation. One of such methods, called HideF0, was proposed in [7]. In this paper
c© Springer Nature Switzerland AG 2020
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an improved version of this method is presented. In particular, we will try to
find out if changes in pitch parameters are noticeable by listeners, therefore an
auditory assessment of perceptibility of pitch manipulation will be shown.

The article is organized as follows: we will start with a brief overview of
main information hiding techniques used in speech coding. Next, in Sect. 3, we
will present our algorithm with particular focus on the new variants. In Sect. 4
we will describe the experiments and their results. This section will be followed
by discussion in Sect. 5 and conclusions in Sect. 6.

2 Hiding Information Using Speech Coding

Speech coding has been used for information hiding already for several years [5].
A large group of data hiding methods used with encoded speech is based on
a very popular steganographic method: it uses least significant bits (LSB) to
transmit hidden data. For example, in [2] the author proposed applying the
LSB method directly to G.711 speech samples, in order to transmit the side
information to extend the conveyed acoustic bandwidth.

The LSB method can be also used for encoded speech parameters. In [15]
the authors used it with the G.723.1 codec by embedding a secret message into
various bitstream parameters (VQ index, codebook lags, pulse positions etc.),
achieving bitrates up to 133.33 bps. It is noteworthy that the LSB methods are
easily prone to removing the hidden content by applying the so called content
threat removal (CTR).

Another group of algorithms replaces completely the voice payload encoded
by one codec, using another, more efficient speech codec. Such a method was
called transcoding steganography [11]. The payload type in the RTP header
remains unchanged, i.e., it indicates that the original, less efficient codec is used.
The saved bits are used to hide own data.

So far, only a few steganographic methods used pitch or pitch-related param-
eters to hide information. In [6] the LSB technique was used for F0 parameter
in G.729 codec. The authors achieved the steganographic bandwidth of 200 bps.
In [14] a similar technique was proposed for the AMR codec.

The authors in [10] described a method dedicated to the ACELP codec,
which was based on embedding secret information into the fractional pitch delay
parameters, while at the same time keeping the integer pitch delay parameters
unchanged. A variant of LSB was used for information hiding in the so called
random LSB of pitch and Fourier magnitude steganography (RLPFS) [9]. The
authors claimed that they were able to create a covert channel with maximum
capacity of 266.64 bps at the cost of a steganographic noise between 0.031 and
0.62 MOS, but the method was detection-resistant only when the bitrate was
ca. 44 bps.

The method discussed in this article, originally proposed in [7], was based
on interpolation of the pitch contour. In its first version it offered the hidden
channel of ca. 200 bps of capacity, at the steganographic cost of 0.5–0.7 MOS.
In this paper several new variants of this algorithm are proposed and evaluated.
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3 Proposed Algorithm

The proposed method takes advantage of the fact that parameters describing
the pitch value, used in speech coding, for voiced speech change relatively slowly
in time. This is why one can try to use approximated pitch values instead of the
original ones and use the save bits to hide information.

Fig. 1. Proposed variants of the HideF0 algorithm.

In this paper we will analyze three main variants of this method (see Fig. 1):

– HideF0-FF (First-First);
– HideF0-FL (First-Last);
– HideF0-FM (First-Middle).
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We will explain them using an example of the Speex codec, where the pitch
values are represented using four Fine Pitch parameters (FP1–FP4) per 20 ms
frame, each occupying seven bits.

The first variant (HideF0-FF) is used as a reference method [8]. It uses the
first FP value from the current frame (FP1(n)) and the first FP value from the
next frame (FP1(n + 1)) and uses these values to approximate the remaining
ones. Next, the algorithm calculates the distance between the actual FPs and
the approximated ones. If the approximation error is below certain threshold θ
in the MSE sense, the values FP2(n)..FP4(n) are used for hidden transmission.
On the receiver side, the hidden data are extracted and the missing FP values
are reconstructed using a simple linear approximation formula:

FPx(n) = FP1(n) +
FP1(n + 1) − FP1(n)

4
· x, x = {2..4} (1)

and the resulting values are rounded to the closest integer. The frames with
manipulated pitch values are flagged using any of the unused bits in IP, TCP,
UDP or RTP headers (according to [13], in the IP header alone, there are 64
bits where the data can be hidden), so that the receiver knows which frames to
extract the hidden information from.

The second variant – HideF0-FL, proposed in this paper, uses only one frame
to approximate FP values. Values FP2(n) and FP3(n) are calculated as:

FPx(n) = FP1(n) +
FP4(n) − FP1(n)

3
· x, x = {2, 3} (2)

The next steps are analogous to the HideF0-FF variant.
The third variant proposed was named as HideF0-FM (First-Middle). In this

variant the approximation is tried twice for each frame: between FP1(n) and
FP3(n), and also between FP3(n) and FP1(n + 1), where the approximated
values are simply arithmetic means of the neighboring ones. It is noteworthy that
in this variant a 2-bit flag is needed to inform if any approximation is required
in the first, second or both half-frames.

4 Experiments

The three variants of the HideF0 algorithm were subjects to several experi-
ments, in order to verify their effectiveness and detectability. In addition to the
base variants, we also tested their modifications, in which only a random subset
of qualified frames were used for hidden transmission – we wanted to see what
impact it would have on the detectability of hidden transmission. In this paper
we denote them as “Rnd” variants, in contrast to “All” variants, using every
frame meeting the MSE condition for data hiding. In total, for all six variants
of the HideF0 algorithm we ran the following experiments:

– Measurement of quality loss against the capacity of the hidden channel;
– Perceptibility tests for various capacities of the hidden channel;
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Fig. 2. Quality decrease (steganographic cost) in the function of capacity of hidden
channel (steganographic bandwidth).

Fig. 3. Results of perceptibility tests for various variants of the HideF0 algorithm.
Value “−1” denotes “speech modifications imperceptible”, value “1” denotes “speech
modifications clearly perceptible.”

– Detectability tests for various capacities of the hidden channel.

All experiments were run for the narrowband Speex codec mode 5 (quality
8), working with bitrate 15 kbps, using the US English recordings taken from
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the TIMIT corpus [3]. We emulated hidden transmission with six various HideF0
variants and various values of threshold θ to allow hidden transmission at various
(the so called steganographic) bitrates. The details of the experiments and their
output are presented below.

4.1 Quality Loss vs. Capacity of Hidden Channel

First we measured what quality decrease (the so called steganographic cost)
was associated with pitch manipulation caused by hidden transmission. We ana-
lyzed the mean opinion score low quality objective (MOS-LQO) results returned
by the Perceptual Evaluation of Speech Quality (PESQ) algorithm [1]. As the
audio material we used 24 male and 24 female recordings, each lasting ca. 30 s,
composed out of the TIMIT audio files downsampled to 8 kHz.

The results are shown in Fig. 2. It can be seen that the HideF0 method allows
hidden transmission at no quality decrease at the ca. 50 bps for the FF and FL
variants, and above 120 bps for the FM variants. When moving to the bitrates
at the level of 200 bps, the PESQ-estimated speech quality decrease caused by
pitch approximation was at the level of 0.4 MOS (for FM variants), 0.5 MOS (for
the FM-All and FL-All variants) and 1.2 MOS for random variants of FM and
FL. For bitrates over 350 bps the quality loss for all variants exceeded 1.4 MOS.

4.2 Perceptibility of Pitch Modifications

In the second test we wanted to verify how much the pitch approximation caused
by the hidden transmission is perceptible. The testing methodology applied was
similar to the preference tests used, e.g., for synthetic speech evaluation [4].
Twenty listeners, aged 19–30 yrs, were exposed to 60 random, gender-balanced
TIMIT speech recordings, which were transcoded with various share of manip-
ulated frames. The listeners were in a quiet environment and used headphones.
For each audio file the participants were asked to answer the question: “Has this
recording been manipulated?”. The possible answers were “No” (scored as −1),
“Difficult to say” (scored as 0) and “Yes” (scored as 1). The scores were then
averaged across the participants.

The results are displayed in Fig. 3. It shows that for the bitrates below 200 bps
the perceptibility of the FM variants was clearly lower than for the remaining
HideF0 variants and yielded values below −0.4. For bitrates 200–270 bps the
perceptibility was similar to that of the FF-All variant and oscillated around 0,
which denotes “Difficult to say”. For bitrates over 300 bps most of the listeners
noticed that the audio was manipulated, with the score for FM-All being the
lowest (ca. 0.2). Interestingly, even if no pitch approximation was used at all
(left bottom end of each line in the plot), a few participants pointed them also
as suspicious.

4.3 Detectability of Hidden Transmission

In the third test we wanted to test if the use of HideF0 can be easily detected
by analysis of the bitstream of encoded speech. Following the state-of-the-art



Modification of Pitch Parameters in Speech Coding for Information Hiding 519

Fig. 4. Area under the ROC curve (AUC) for detection of hidden transmission assum-
ing method-aware detection system.

techniques we used the machine learning approach. We tried several algorithms,
such as support vector machines (SVM) or Näıve Bayes (NB), but we achieved
the best results for the Random Forest (RF) classifier, therefore the below results
are presented for this algorithm only.

First we tried a näıve approach, i.e., we assumed that we have no prior
knowledge of a technique used to hide data, which is usually the case. We tried
to train the RF classifier based on 2/3 of the encoded speech data (with and
without pitch manipulation), using the remaining data as a testing set. As a
feature vector we used histograms of byte values of the voice payload. Depending
on hidden channel capacity, the RF classifier yielded the area under the ROC
curve (AUC) in the range of 0.50–0.52, what indicated a random classification.

To consider an opposite case, we assumed the worst-case detection scenario:
the full knowledge of the data hiding technique, so that the detection algorithm
was aware that HideF0 was used and in which variant. In this case the feature
vector consisted of difference values (deltas) between the actual FP values and
the approximated ones, using the approximation formulae for the respective
HideF0 variant, calculated for a window spanning over 2.5 s. The RF algorithm
was tested using the data, where 3/4 of encoded speech was benign and 1/4 of
encoded speech was manipulated using HideF0.

We analyzed AUC and precision of the hidden transmission detection for
various HideF0 variants. The results are depicted in Figs. 4 and 5, respectively.
They show that for lower bitrates (i.e., when the steganographic cost equals 0)
the detection was hardly possible, despite being aware of the data hiding method
- the AUC was below 0.55. For bitrates over 200 bps the AUC exceeded 0.9 for
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Fig. 5. Precision of detection of hidden transmission assuming method-aware detection
system.

all variants, what meant that the detection became easier. But even for bitrates
exceeding 300 bps the precision of detection for some of the HideF0 variants (FF,
FM-Rnd) was below 96%, what would result in a relatively high false alarm rate.

5 Discussion

Approximation of pitch-related parameters is mostly effective when these param-
eters change slowly and monotonously. This is the case when the speech is voiced.
When the speech is unvoiced, the F0 is undetermined and pitch-related param-
eters (such as FP in Speex) take unpredictable values, therefore their approxi-
mation results in high differences and is easily noticeable. Only the frames for
which the approximation error is below certain threshold θ take part in hiding
data. The presented capacity values of the hidden channel were averaged across
the analyzed recordings, but it must be remembered that the actual capacity
depends on the voice activity of the speaker and the amount of voiced speech
within the transmitted signal.

In several tests the variant HideF0-FM yielded the best results. This can be
easily explained by the fact that it is easier to interpolate a single pitch value
between two neighbors than two or three values in a row. Therefore such an
interpolation can happen more often, so that this variant can lead to higher
bitrates of hidden transmission at lower quality cost. It is noteworthy, however,
that since such an interpolation can happen twice per frame, it requires another
bit flag hidden in the TCP, UDP or RTP header, what increases the side channel
capacity by 50 bps and may also have impact on increased detectability of the
method as a whole.
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The HideF0 “Rnd” variants which involved random use of the frames for
hidden transmission, did not turn out to be very successful in terms of qual-
ity, when comparing them with “All” methods for the same size of the hidden
channel. This can be explained by the fact that creating a hidden channel of the
same capacity as for the “All” variant, required random selection of frames out
of a larger set of frames, among which there might be frames with much higher
approximation error. This could lower the quality and increase the perceptibility
of such a manipulation. However, the “Rnd” variants may turn out to be quite
difficult to detect for lower steganographic bitrates using statistical detection
methods, but this would need to be verified in additional experiments.

The applied perceptibility test requires some comments. The listeners were
informed that the recordings might have been manipulated, therefore they paid
special attention to any distortions in the perceived speech. This is probably the
reason why some of the listeners found files with no modifications also as manip-
ulated. We think that in real environment speech transmitted with such quality
would raise no suspicions at all. Therefore we suspect that the perceptibility test
was biased toward increased perceptibility of HideF0.

The listeners turned out to be moderately sensitive to pitch manipulation: for
the PESQ-estimated quality degradation of 1.0 MOS (which is relatively high)
the perceptibility oscillated around 0, what meant that on average the listeners
were not sure if any manipulation took place.

6 Conclusions

In this paper we discussed the idea of using interpolation of pitch parameters
in encoded speech bitstream for the purpose of hidden transmission. The main
objective was to verify experimentally how efficient such hidden channels would
be and if they are easy to perceive and detect. These elements were novel in this
article:

– New variants of the HideF0 method, named First-Last (FL) and First-Middle
(FM), were proposed and tested.

– Versions “Rnd” with random subset of frames used to hide data were proposed
and evaluated.

– Perceptual listening tests with 20 participants were conducted and they
results were analyzed.

– Experiments with detection of all six variants were run and their outcomes
were analyzed.

We can conclude that the discussed methods, especially the newly proposed
HideF0-FM variant, can pose a security risk, as they allow to create a relatively
highly efficient hidden channel (with the steganographic bitrate over 120 bps)
at no quality decrease, with lack of perceptibility and detectability, while the
original version of this algorithm (named here as HideF0-FF) offered the costless
variant at the bitrate of ca. 50 bps only. The HideF0-FM methods can also
provide higher steganographic bitrates (around 200 bps), while still not being
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well noticed by listeners nor efficiently detected by a trained classifier, even if it
is method-aware.
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Abstract. Conversational and task-oriented dialogue systems aim to
interact with the user using natural responses through multi-modal inter-
faces, such as text or speech. These desired responses are in the form of
full-length natural answers generated over facts retrieved from a knowl-
edge source. While the task of generating natural answers to questions
from an answer span has been widely studied, there has been little
research on natural sentence generation over spoken content. We pro-
pose a novel system to generate full length natural language answers
from spoken questions and factoid answers. The spoken sequence is com-
pactly represented as a confusion network extracted from a pre-trained
Automatic Speech Recognizer. This is the first attempt towards generat-
ing full-length natural answers from a graph input (confusion network)
to the best of our knowledge. We release a large-scale dataset of 259,788
samples of spoken questions, their factoid answers and corresponding
full-length textual answers. Following our proposed approach, we achieve
comparable performance with best ASR hypothesis.

Keywords: Confusion network · Pointer-generator · Copy attention ·
Natural answer generation · Question answering

1 Introduction

Full-length answer generation is the task of generating natural answers over
a question and an answer span, usually a fact-based phrase (factoid answer),
extracted from relevant knowledge sources such as knowledge-bases (KB) or
context passages. Such functionality is desired in conversational agents and dia-
logue systems to interact naturally with the user over multi-modal interfaces,
such as speech and text. Typical task-oriented dialogue systems and chatbots
formulate coherent responses from conversation context with a natural language
generation (NLG) module. These modules copy relevant facts from context while
generating new words, maintaining factual accuracy in a coherent fact-based nat-
ural response. Recent research [7,10] utilizes a pointer-network to copy words
from relevant knowledge sources. While the task of generating natural response
c© Springer Nature Switzerland AG 2020
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to text-based questions have been extensively studied, there is little research
on natural answer generation from spoken content. Recent research on Spoken
Question Answering and listening comprehension tasks [6] extracts an answer-
span and does not generate a natural answer. This motivates us to propose the
task of generating full length answer from spoken question and textual factoid
answer. However, such a task poses significant challenges as the performance of
the system is highly dependent on Automatic Speech Recognizer (ASR) error.
To mitigate the effect of Word Error Rate (WER) on ASR predictions, a list
of top-N hypothesis, ASR lattices or confusion networks has been used in vari-
ous tasks such as Dialogue-state-tracking [2,16], Dialogue-Act detection [8] and
named-entity recognition. These tasks show that models trained using multiple
ASR hypotheses outperforms those trained top-1 ASR hypothesis. While classi-
fication and labeling tasks benefit from multiple hypothesis by aggregating the
predictions over a list of ASR hypothesis, it is non-trivial to apply the same for
NLG using pointer-networks. Our proposed system aims to take advantage of
multiple time-aligned ASR hypotheses represented as a confusion network using
a pointer-network to generate full-length answers. To the best of our knowledge,
there is no prior work for full length answer generation from spoken questions.
Our overall research contributions are as follows:

– We propose a novel task of full-length answer generation from spoken ques-
tion. To achieve this, we develop a ConfNet2Seq model which encodes a con-
fusion network and adapts it over a pointer-generator architecture.

– We compare the effects of using multiple hypothesis encoded with a confusion
network encoder and the best hypothesis encoded with a text encoder.

– We publicly release the dataset, comprising of spoken question audio file, the
corresponding confusion network, the factoid answer and full-length answer.

2 Related Work

Spoken Language Understanding (SLU) has the additional challenge of disam-
biguation of ASR errors which drastically affect performance. Several methods
have been proposed to curb the effects of the WER. Word lattices from ASR
were first used by [1] over ASR top-1 hypothesis for tasks such as named-entity
extraction and call classification. Word confusion networks have been recently
used by [4] for intent classification in dialogue systems and by [2,9] for dialogue
state tracking (DST). [2] show that confusion network gives comparable perfor-
mance to top-N hypotheses of ASR while [9] show that using confusion network
improves performance in both in time and accuracy. Another related task in
SLU is that of Spoken Question Answering. Recent work [6] on SQuAD dataset
introduces the task for machine listening comprehension where the context pas-
sages are in audio form. [5] released Open-Domain Spoken Question Answering
Dataset (ODSQA) with more than three thousand questions in Chinese and used
an enhanced word embedding comprising of word embedding and pingyin-token
embedding. [15] developed a QA system for spoken lectures and generates an
answer span from the video transcription.



526 V. Pal et al.

3 Models

Our system generates full length answer from a textual factoid answer and spo-
ken question. We use a pointer generator architecture over two sequences, i.e.,
over the textual factoid answer sequence and the encoded question sequence
produced by the confusion network encoder. In this section, we describe the 1)
Confusion network encoder, 2) Final model over spoken question and factoid
answer. The full architecture is shown in Fig. 1.

3.1 Confusion Network Encoder

A Confusion Network is a weighted directed acyclic graph with one or more
parallel arcs between consecutive nodes where each path goes through all the
nodes. Each set of parallel arcs represents time-aligned alternative words or
hypothesis of the ASR weighed by probability. The total probability of all parallel
arcs between two consecutive nodes sums up to 1. A confusion network C can
be defined formally as a sequence of sets of parallel weighted arcs as:

where is the jth ASR hypothesis at position i, and πj
i its associated probabil-

ity. We use a confusion network encoder to transform a 2-dimensional confusion
network into an 1-dimensional sequence of embeddings as described in [8]. Each

word of the confusion network can be encoded by weighing the word embed-
ding by the ASR probability followed by a non-linear transformation as:

where W1 is a trainable parameter. Each set of parallel arcs can be encoded into
a vector by a weighted sum over the words of the parallel arc set. The weights
measure the relevance of each word among the alternate time-aligned hypothesis.
The learnt weight distribution for each parallel-arc set is:

αj
i =

exp(W2q
j
i )∑

j exp(W2q
j
i )

(3)

where W2 is a trainable parameter. The final encoding of each set of parallel
arcs is:

βi =
∑

i

αj
i q

j
i (4)

3.2 Full Length Answer Generation from Spoken Questions

We have followed a Seq2Seq with pointer generator architecture as [10] to gen-
erate full-length answers from a question and factoid answer. However, we query
with spoken questions instead of textual questions. The confusion network is
extracted from spoken questions using a standard ASR. The question is encoded
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Fig. 1. Full length answer generation from spoken question and textual factoid answer:
The confusion-network encoder generates a sequence of 1D-encodings of the sequence
of parallel arcs (2D graph). The ASR scores are multiplied with the global-attention
weights of the encodings to generate the copy-attention distribution of the question.

as Q = {q1, q2, ..., qn} where qt is the encoding from the confusion network
encoder explained in Sect. 3.1.

The factoid answer is represented as A = {a1, a2, a3, . . . , am} where at is the
GloVe embedding [11] of a word. We encode the sequences using two 3-layered
bi-LSTMs which share weights as:

ht
Q = BILSTM(ht−1

Q , qt)

ht
A = BILSTM(ht−1

A , at)
(5)

The encoded hidden states of the 2 encoders are stacked together to produce a
single list of source hidden states, hS = [hQ;hA]. The decoder is initialized with
the combined final states of the two encoders as h0

T = hn
Q + hm

A .
The global attention weights attnt

i are computed on the n hidden states of
the question and m hidden states of the answer, stacked to produce a total of
m + n global attention weights. For each source state, hi, and decoder state, st:
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where battn, , Wh, Ws are learnable parameters. The copy mechanism for
summarization introduced in [13] takes advantage of a word distribution over
an extended vocabulary comprising of source words and vocabulary words. The
probability of copying a word from a text sequence is . To copy
words from the confusion network, we compute the global attention weights over
each set of parallel-arc encodings. Here, the global attention weights denote a
probability distribution over parallel-arc sets instead of words. These attention
weights attnt

i are sampled to select the hidden state representation, βi, of a set
of parallel arcs. The ASR scores πi is a probability distribution over the set
of parallel words at position j in the confusion network. These are sampled to
select the most likely word from that set of parallel arcs. The final probability
of copying a word from the confusion network is the joint-probability:

The probability of copying a word from the answer is:

The final probability of a word output at at time t by the decoder is as
shown in

where is a soft switch for the decoder to generate words or copy words from
the source. is the probability of generating a word from the vocabulary.
These parameters are computed as described in [13].

4 Dataset

To generate data for our task, we use 258, 478 samples from the full-length answer
generation dataset introduced in [10] where each sample consists of a question,
factoid answer and full-length answer. The samples in the dataset were chosen
from SQuAD and HarvestingQA. Each sample in our dataset is also a 3-tuple
(q, f, a) in which q is a spoken-form question, f is a text-form factoid answer and
a is the text-form full-length natural answer. 256, 478 samples were randomly
selected as the training set, 1000 as the development set and 1000 as the test
set. We also extracted 470 samples from NewsQA dataset and 840 samples from
Freebase to evaluate our system on cross-domain datasets.1

We used Google text-to-speech to generate the spoken utterances of the ques-
tions. Google Voice en-US-Standard-B was used to generate 239, 746 spoken
questions in male voice and Google Voice en-US-Wavenet-C was used to gen-
erate 16, 730 spoken questions in female voice. All samples are in US accented
English. The ASR lattice was extracted using Kaldi ASR [12] and converted
to a confusion network for compact representation using SRILM [14]. We used
1 Code and dataset at: https://github.com/kolk/ConfnetPointerGenBaseline.

https://github.com/kolk/ConfnetPointerGenBaseline
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the pre-trained ASpIRE Chain Model which has been trained on Fisher English
to transcribe the spoken question and extract the ASR lattices. The training
dataset has a WER of 22.94% and test set has a WER of 37.57% on the best
hypothesis of the ASR, while the cross-dataset evaluation test sets- NewsQA has
a WER of 34.60% and Freebase has a WER of 43.80%.

5 Experiments and Results

We built our system over OpenNMT-Py [3]. We used a batch size of 32, dropout
rate of 0.5, RNN size of 512 and decay steps 10000. The maximum number of
parallel arcs in the confusion network and maximum sentence length are set to
20 and 50 respectively. The confusion network contains noise and interjections
such as *DELETE* and [noise], [laughter], uh, oh which leads to degradation in
system performance. To mitigate the effect of such noise, we remove the whole
set of parallel arcs if all the arcs are noise and interjection words. As shown in
Table 1, the pruned confusion network, named clean confnet, outperforms the
system marginally for the SQuAD/HarvestingQA dataset. We also compare the
system with a model trained on the best hypothesis of the extracted from the
ASR lattice using Kaldi. Here, the confusion network encoder is replaced with a
text encoder which shares weights with the factoid answer encoder.

As shown in Table 1, we observe for SQuAD/HarvestingQA dataset that the
Best-ASR-hypothesis outperforms the clean confusion network model with a 5%
margin in BLEU score and 2% margin in ROGUE-L score. To asses the cross-
domain generalizability, we also perform cross-dataset evaluation by evaluating
our models on 840 samples of a KB based dataset (Freebase) and 470 samples
of a machine comprehension dataset (NewsQA). The clean confusion network
marginally outperforms the best-hypothesis model in ROGUE scores for cross-
dataset evaluation and gives comparable results on BLEU scores. This shows
that the confusion network system generalizes better on cross-domain noisy data
and is less sensitive to noise introduced by new domains and noisy input sig-
nal, when compared with the Best-ASR-Hypothesis model. A plausible reason
to this could be that the confusion network model is itself trained on a closed
set of hypothesis, as compared to the Best-ASR-Hypothesis model which makes
simplifying assumptions about the input signal. A compelling extension to the
confusion network model is to adapt the copy attention over all the time-aligned
hypotheses of the confusion network input. This would allow the confusion net-
work model to copy among top-N words at any given time-step of the confusion
network, instead of an erroneous word with the highest ASR score.

An example of results on a SQuAD/HarvestingQA test sample is in Table 1.

– Gold Question: what was the title of the sequel to conan the barbarian?
– Top-Hypothesis: what was the title of the sequels are counting the barbar-

ian
– Factoid Answer: conan the destroyer
– Full-length Answer: the title of the sequel to conan the barbarian was

conan the destroyer
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Table 1. Top section shows the scores on 1000 SQuAD/HarvestingQA test samples.
Bottom 2 section shows the scores for cross-dataset evaluation on a Knowledge-Base
(Freebase) dataset and a machine comprehension (NewsQA) dataset. For each section,
the top row displays the score on the best hypothesis of the confusion network, the
middle row displays the scores on the confusion network, while the bottom row displays
the results on the pruned clean confusion network

Test dataset Input BLEU ROGUE-1 ROGUE-2 ROGUE-L

SQuAD/HarvestingQA Best hypothesis 60.26 82.43 70.61 78.21

Confnet 55.38 81.60 68.02 76.68

Clean confnet 55.92 81.39 67.79 76.78

Freebase Best hypothesis 43.21 71.37 51.72 64.98

Confnet 41.86 72.42 51.84 65.78

Clean confnet 42.89 72.54 52.77 66.39

NewsQA Best hypothesis 49.98 75.82 59.59 72.65

Confnet 53.45 76.45 60.32 72.78

Clean confnet 56.86 76.07 61.18 73.12

– Clean Confnet Model prediction: the title of the sequels to the barbarian
was conan the destroyer

– Best-Hypothesis Model prediction: the title of the sequels are counting
the barbarian

6 Conclusion

We propose the task of generating full-length natural answers from spoken ques-
tions and factoid answer. We generated a dataset consisting of triples (spoken
question, factoid answer, full length answer) and extracted confusion network
from the questions. We have used the pointer-network over ASR graphs (confu-
sion network) and show that it gives comparable results to the model trained on
the best hypothesis. Our system achieves a BLEU score of 55.92% and ROGUE-
L score of 76.78% on SQuAD/HarvestingQA dataset. We perform cross-dataset
evaluation to obtain a BLEU score of 42.89% and ROGUE-L score of 66.39%
on Freebase, and a BLEU score of 56.86% and ROGUE-L score of 73.12% on
NewsQA dataset.
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Abstract. Graph Convolutional Networks have achieved impressive
results in multiple NLP tasks such as text classification. However, this
approach has not been explored yet for the student answer assessment
task. In this work, we propose to use Graph Convolutional Networks to
automatically assess freely generated student answers within the context
of dialogue-based intelligent tutoring systems. We convert this task to
a node classification task. First, we build a DTGrade graph where each
node represents the concatenation of the student answer and its corre-
sponding reference answer whereas the edges represent the relatedness
between nodes. Second, the DTGrade graph is fed to two layers of Graph
Convolutional Networks. Finally, the output of the second layer is fed to
a softmax layer. The empirical results showed that our model reached
the state-of-the-art results by obtaining an accuracy of 73%.

Keywords: Graph Convolutional Networks · Student answers
assessment · Intelligent tutoring systems

1 Introduction

Student answers assessment or short text grading is a well-defined problem in
Natural Language Processing (NLP). It is a an extremely challenging task as
students can express the same answer in multiple ways owing to different indi-
vidual styles and varied cognitive abilities and knowledge levels. Table 1 shows
four answers, articulated by four different college students, to a question asked by
the state-of-the-art intelligent tutoring system (ITS) DeepTutor [13]. It should
be noted that all four student answers in Table 1 are correct answers to the
tutor question. As can be seen from the table, some students write full sentences
(student answer A4), some others write very short answers (A3), and yet other
students write elaborate answers that include additional concepts relative to the
reference answer (A1).

Assessing the freely generated student answers in conversational tutoring can
be achieved using various approaches. Semantic similarity is a widely adopted
and scalable approach in which the student answer is compared to a reference
answer produced by an expert. Typically, a normalized semantic similarity score,
from 0 to 1 (or from 0 to 5), between the student answer and the expert answer
c© Springer Nature Switzerland AG 2020
P. Sojka et al. (Eds.): TSD 2020, LNAI 12284, pp. 532–540, 2020.
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Table 1. Examples of student answers showing the diversity of responses from Deep-
Tutor

Problem description:

While speeding up, a large truck pushes a small compact car

Tutor question:

How do the magnitudes of forces they exert on each other compare?

Reference answer:

The forces from the truck and car are equal and opposite

Student answers:

A1. The magnitudes of the forces are equal and opposite to each
other Due to Newton’s third law of motion

A2. they are equal and opposite in direction

A3. equal and opposite

A4. the truck applies an equal and opposite force to the car

is generated. A high score implies that the student answer is correct, and a low
score implies the student answer is incorrect.

More recently deep learning has shown its effectiveness in solving the stu-
dents answers assessment task [1,2,9,11]. These deep learning models have the
advantage of capturing semantic and syntactic information for the text input.
Graph Convolutional Networks, in particular, have received a growing attention
recently [4,6]. Graph neural networks have been effective at tasks that have rich
relational structure and can preserve global structure information of a graph in
graph embeddings.

In this paper, we propose a novel approach based on Graph Convolu-
tional Networks [15], for the students answers assessment task. We construct
a DTGrade graph where each node consists of the concatenation of a student
answer and its corresponding reference answer. We model the graph with a
Graph Convolutional Network (GCN) that encodes relevant information about
its neighborhood as a real-valued feature vector. The edge between two nodes
is built using word frequency and word’s document frequency method and an
embedding based method. Then, we turn the assessment task into a node clas-
sification task.

The rest of the paper is organized as follows: Sect. 2 presents a review of
several prior research works that used Graph Convolutional Networks for differ-
ent NLP tasks. Section 3 explains the proposed approach. Section 4 summarizes
the conducted experiments to evaluate the performance of our approach and
the results obtained on the DT-Grade dataset. Finally, we discuss conclusions
and highlight future research directions to improve results and overcome the
limitations.
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2 Related Work

Graph Convolutional Networks (GCN) have yielded great results in multiple
NLP tasks. For instance, Sahu and colleagues [14] proposed a novel inter-sentence
relation extraction model that builds a labelled edge Graph Convolutional Net-
work on a document-level graph. The experimental results showed that the model
has achieved a comparable performance to state-of-the-art neural models on the
inter-sentence relation extraction task. Working on the same task, Zhang and
colleagues [17] proposed a novel model for the relation extraction task. Their
model consists of the following components: 1) an instance encoder based on
convolutional neural networks (CNN) to encode the instance semantics into a
vector, 2) a relational knowledge learning component that employs graph con-
volutional networks to learn explicit relational knowledge, and 3) a knowledge-
aware attention component to select the most informative instance that matches
the relevant relation. The experimental results showed that this model outper-
forms several baselines such as CNN. GCNs have been applied successfully as
well for the semantic role labeling task that can be described as the task of
discovering in texts who did what to whom. To this end, Marcheggiani and col-
leagues [12] have proposed a model that consists of the following components:
1) word embeddings, 2) a BiLSTM encoder that takes as input the embedding
representation of each word, 3) a syntax-based GCN encoder that re-encodes
the BiLSTM representation based on the predicted syntactic structure of the
sentence, and 4) a classifier to predict the role associated with each word. The
empirical results showed that this based GCN model has achieved the state-of-
the-art results. GCNs have been explored successfully in text classification. For
this purpose, Yao and colleagues [16] proposed to use Graph Convolutional Net-
works for text classification. They built a single text graph for the whole corpus
based on word co-occurrence and document word relations then learnt a Text
Graph Convolutional Network for the corpus. The proposed model has been eval-
uated using multiple benchmarks. The experimental results showed that GCN
outperforms several baselines such as Bi-Directional LSTM and LSTM. In this
work, we don’t consider a heterogenous graph where nodes present words and
documents. The nodes represent documents only as a concatenation between
student answers and reference answers. Based on these successes of Graph Con-
volutional Networks on NLP related tasks, we have explored their potential for
assessing student answers. To the best of our knowledge, this is the first attempt
at using GCNs for assessing student generated answers in conversational intelli-
gent tutoring systems.

3 Proposed Method

Our proposed method consists of building first a graph from the DTGrade. The
built graph is fed into two GCN layers. Finally, we apply a classifier to predict
the class of each text node (Fig. 1).



Graph Convolutional Networks for Student Answers Assessment 535

Fig. 1. The model architecture consists of: 1) building a DTGraph, 2) feeding it to two
GCN layers, and finally 3) applying a classifier

3.1 DT-Grade Graph

We build a text graph from the DT-Grade dataset based on the citation relation
approach [15]. We consider each document, whose content is the combination of
the student answer and its corresponding reference answer, as a node. Thus, the
classification of a pair of student answer and reference answer turns to a node
classification task. The number of the nodes in the text graph is 900 which is
the number of instances in the DT-Grade dataset. Formally given a graph G =
(V,E) where V and E are sets of nodes and edges. The weight of the edge between
two nodes is calculated using two methods: a TF-IDF method and an embedding
based method. In the first one, we compute the term frequency-inverse document
frequency (TF-IDF) between two text nodes. We add an edge between two nodes
if the weight is above a threshold of 0.9. The second method is based on word2vec
embeddings. First, word2vec is used to learn a vector representation for each
word in the text representing each node. Then, we compute the Word Mover’s
Distance (WMD) to measure the similarity between two texts representing two
nodes in the graph. Texts that share many words should have smaller distances
than texts with very dissimilar words. WMD has been introduced to measure
the distance between two text documents that takes into account the alignments
between words. In this paper, we consider the text associated with each node as a
short document. The WMD algorithm finds the values of an auxiliary ‘transport’
matrix T , such that Tij describes how much dai should be transported to. The
WMD learns T to minimize:

D(xi, xj) = min
T>=0

n∑

i,j=1

Tij ||xi − xj ||p2 (1)

Subject to:
∑n

i,j=1 Tij = dai ,
∑n

i,j=1 Tij = dbi
where: dai and dbi are the n-dimensional normalized bag-of-vectors for the two
nodes’ texts, xi ∈ Rd is the embedding vector of the ith word and p is usually
set to 1 or 2. The resulted graph is fed afterwards into a two-layers GCN, as
explained next.
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3.2 Graph Convolutional Networks (GCN)

GCN is a recent class of multilayer neural networks that operate on graphs [8,
15]. For every node in the graph, GCN encodes relevant information about its
neighborhood as a real-valued feature vector. Formally given a graph G = (V,E)
where V and E are sets of nodes and edges. Every node is assumed to connect
with itself, i.e., (v, v) ∈ E for any v. Let X ∈ Rn×m be a matrix containing all n
nodes with their features, where m is the dimension of the feature vectors, each
row xi ∈ R is the feature vector for v. We consider A an adjacency matrix of the
graph G and its degree matrix D where Dii =

∑
j Aij . When using GCN with

multiple layers, the information about larger neighbors is captured. Following the
recommendation of Kipf et al. [15] that multiple layers yield better performance,
we consider multiple layers of GCN. The new k-dimensional node feature matrix
of layer L(j+1)is computed as following:

L(j+1) = p(ÃL(j)Wj) (2)

where Ã = D−1/2AD−1/2 is the normalized symmetric adjacency matrix and
Wj is a weight matrix and p is an activation matrix and L(0) = X.

3.3 The Classifier

The output of the second GCN layer is fed into a softmax layer as following:

Z = softmax (ÃReLU(ÃXW0)Wj) (3)

where Ã = D−1/2AD−1/2 is the normalized symmetric adjacency matrix, Wj ,
W0 are weight parameters and softmax (xi) = exp(xi) ÷ ∑

i exp(xi). ÃXW0

contains the first layer document embeddings and (ÃReLU(ÃXW0)Wj) contains
the second layer document embeddings.

4 Experiments

Our experiments were conducted in the context of student generated answers in
response to hints (in the form of questions) in conversational intelligent tutoring
systems. To this end, we have used a previously annotated dataset as described
next.

4.1 DT-Grade Dataset

The DT-Grade dataset [3] was created by extracting student responses from
logged tutorials interactions between 36 junior level college students and a state
of the art ITS. During the interactions, each student solved 9 conceptual physics
problems – they had to provide the correct answer and a full justification based
on Physics principles. Their answer was evaluated and if the answer was incor-
rect or incomplete, e.g., a full justification was not provided, a dialogue followed
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in which the ITS helped the student discover the solution through personalized
scaffolding in the form of hints that varied in their degree of information/help
provided. Each annotation instance in the DT-Grade dataset consists of the fol-
lowing attributes: (1) problem description (describes the scenario or context),
(2) tutor question, (3) student answer (as typed by the students, i.e., without
correcting spelling and grammatical errors) and (4) reference answers. In addi-
tion, the data includes the correctness class of each student answer. Each student
response was categorized by human experts into one of the following four classes:
(1) Correct: Answer is correct; (2) Correct-but- incomplete: The response pro-
vided by the student is correct, but something is missing; (3) Incorrect: Student
answer is incorrect; and (4) Contradictory: The student answer is contradicting
with the answer.

In this work, we consider only two classes: correct and incorrect. The correct
answers are those labeled as “correct” in the DT-Grade dataset. All the other
instances are considered “incorrect”. As a result, we obtained the following class
distribution shown in Table 2.

Table 2. The distribution of classes in training (800 instances) and testing data (100
instances)

Dataset Correct(%) Incorrect(%)

Training 41 59

Testing 41.59 58.41

4.2 Experimental Setting

Several experiments have been conducted with different parameters settings to
evaluate the performance of our proposed method. To this end, we trained and
evaluated a two-layer GCN using the DTGrade dataset. In all experiments, we
trained our model for a maximum of 1000 epochs (training iterations) using
the Categorical Cross Entropy loss function and Adam optimizer [10] with a
learning rate of 0.01. We stopped the training when the validation loss does not
decrease for 100 consecutive epochs, as suggested in prior works [15]. To avoid
overfitting, we applied a dropout rate = 0.5. For the graph convolution layer, we
used a hidden layer size of 16 units with L2 regularization and ReLU activation.
We selected randomly 600 instances for training, 100 instances for validation,
and 200 instances as an independent test set.

In the first set of experiments, we have used the TF-IDF approach to compute
the weight of the DTGrade graph edges. Then, we repeated the experiment with
the following filters: 1) local pool filter [15] which is considered as a baseline
filter for Graph Convolutional Networks, 2) Chebyshev polynomial filter [7] and
3) ARMA filter [5].
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In a second set of experiments, we have used the word2vec embedding with
300 dimension and WMD distance (see Sect. 3.1) to compute the weight of the
edges. We report the accuracy of the model using the three filters.

4.3 Results and Analysis

Table 3 summarizes the results of using GCN with different parameters settings.
Several observations can be made. First, the use of the TF-IDF method to com-
pute the weights between the edges outperform the word2vec based method in all
experiments. The highest accuracy obtained with TF-IDF was 73% versus 70%
of the word2vec method. The performance degradation when using the embed-
ding based approach may due to adding some edges between nodes that are not
very related closes. This explains the incorrect assessment of many short stu-
dents’ responses. Added to this, the word2vec embedding based approach may
not propagate label information to the whole graph well in comparison with the
TF-IDF approach. Second, the empirical results show that ARMA filter outper-
forms the other polynomial filters regardless the method used for weighting the
edges in the DTGraph. This is attributed to the implementation strategy of the
ARMA filter that allows better handling of the graph variations.

The results depicted in Table 3 show also that Graph Convolutional Net-
works outperform the previous deep learning models: Transformer [2], Bi-GRU
Capsnet [1], LSTM and Bi-GRU by obtaining the state of the-art results on the
DTGrade dataset. Graph neural networks have been effective at tasks thought
to have rich relational structure and can preserve global structure information
of a graph in graph embeddings.

Table 3. Performance of GCN using binary encoding with different filters

Model Accuracy

GCN (TF-IDF+localpool filter) 68

GCN (TF-IDF+ Chebyshev filter) 72

GCN (TF-IDF+ARMA filter) 73(+0.5)

GCN (word2vec+WMD+ localpool filter) 62.5

GCN ((word2vec+WMD+chebyshev filter) 70

GCN ((word2vec+WMD+ARMA filter) 70

Transformer Encoder+Elmo 71

Bi-GRU+Glove 56.25

LSTM + Glove 60

Bi-GRU Capsnet+ Elmo 72.5
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5 Conclusion

Motivated by good results of applying the Graph Convolutional Networks (GCN)
in the NLP, we propose to use a GCN based model to assess the correctness
of student answers in conversational intelligent tutoring systems. This is the
first time such model is applied for this task. The results demonstrated the
effectiveness of the proposed model by yielding state of the-art results on the
DT-Grade dataset. A highest accuracy of 73% has been achieved when using the
TF-IDF and the ARMA filter. As a future direction, we are planning to explore
more novel deep learning models that perform well on a small size of dataset
such as ours.
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Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du
Boulay, B. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 193–198. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93846-2 35

12. Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks
for semantic role labeling. In: EMNLP (2017)

13. Rus, V., D’Mello, S.K., Hu, X., Graesser, A.C.: Recent advances in intelligent
tutoring systems with conversational dialogue. AI Mag. 34(3), 42–54 (2013)

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1901.01343
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-93846-2_35


540 N. A. Khayi and V. Rus

14. Sahu, S.K., Christopoulou, F., Miwa, M., Ananiadou, S.: Inter-sentence rela-
tion extraction with document-level graph convolutional neural network. In: ACL
(2019)

15. Kipf, T., Welling, M.: Semi supervised classification with graph convolutional net-
works. In: ICLR (2017)

16. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
The AAAI Conference on Artificial Intelligence, vol. 33, pp. 7370–7377 (2019)

17. Zhang, N., et al.: Long-tail relation extraction via knowledge graph embeddings
and graph convolution networks. In: NAACL-HLT (2019)



Author Index

Adelani, David Ifeoluwa 273
Ait Khayi, Nisrine 532
Alekseev, Anton 222
André, Elisabeth 397
Aragón, Mario Ezra 231
Argüello-Vélez, Patricia 303
Arias-Vergara, Tomas 303
Azarova, Irina 122

Barančíková, Petra 135
Bayerl, Sebastian P. 386
Berend, Gábor 197
Berriman, Rebekah 294
Besacier, Laurent 524
Bodnár, Jan 189
Boháč, Marek 418
Bojar, Ondřej 135
Bořil, Tomáš 348, 409
Brito, Celina Iris 495

Červa, Petr 426
Cook, Paul 153, 248

Dahiya, Anirudh 240
Dang, Chi Tai 397
Davody, Ali 273
Dy, Jilyan Bianca 495

Fegyó, Tibor 437
Ficsor, Tamás 197
Fidalgo, Robson 257
Fohr, Dominique 377
Franco, Natália 257
Funk, Adam 3

George, Elizabeth Jasmi 206
Giachanou, Anastasia 30
González, Luis C. 231
González-Rátiva, María Claudia 303
Gosztolya, Gábor 285
Gurbani, Vijay K. 312

Hanzlíček, Zdeněk 456
Helali, Mossad 265

Hévrová, Marie 348
Hlubík, Pavel 418
Hönig, Florian 386
Horák, Aleš 112
Hosier, Jordan 312

Illina, Irina 377
Ircing, Pavel 214, 321

James, Jesin 294
Janicki, Artur 477, 513
Jayan, A. R. 71
Jónsson, Haukur Páll 95
Jůzová, Markéta 340

Kabiri, Arman 153
Kalfen, Jordan 312
Kane, Benjamin 487
Keegan, Peter J. 294
King, Milton 248
Klakow, Dietrich 265, 273
Kleinbauer, Thomas 265
Köpke, Barbara 348
Kurfalı, Murathan 79

Lehečka, Jan 214, 321
Leoni, Chiara 504
Level, Stephane 377
Loftsson, Hrafn 95
López-Monroy, A. Pastor 231

Macková, Kateřina 171
Málek, Jiří 366
Manohar, Kavya 71
Mareček, David 180
Marjanović, Saša 61
Matoušek, Jindřich 446
Maynard, Diana 3
Medveď, Marek 112
Mihajlik, Péter 437
Miletic, Aleksandra 61
Miller, Gabriel F. 356
Mírovský, Jiří 50



Mogadala, Aditya 273
Montes-y-Gómez, Manuel 231
Musil, Tomáš 180

Nikolenko, Sergey 222
Nivre, Joakim 11
Nöth, Elmar 303, 331, 356
Nouza, Jan 426

Ong, Ethel 495
Orozco-Arroyave, Juan Rafael 303, 331

Pal, Vaishali 240, 524
Paul, Soma 87
Pereira, Jayr 257
Pikuliak, Matúš 162
Platonov, Georgiy 487
Poláková, Lucie 50
Ponzetto, Simone Paolo 41
Pražák, Aleš 465
Psutka, Josef V. 465

Radej, Adrian 513
Rajan, Rajeev 71
Reister, Joëlle 386
Riedhammer, Korbinian 386
Rios-Urrego, Cristian David 331
Robnik-Šikonja, Marko 104
Rosa, Rudolf 180
Rosso, Paolo 30, 41
Rus, Vasile 532

Sabol, Radoslav 112
Sánchez-Junquera, Javier 41
Santos, Kyle-Althea 495
Saxena, Prateek 87
Schubert, Lenhart 487
Schuster, Maria Elke 303
Ševčíková, Magda 189
Sharma, Dipti Misra 240
Sharma, Nikhita 312

Shields, Isabella 294
Shrivastava, Manish 240, 524
Šimko, Marián 162
Símonarson, Haukur Barri 95
Šmídl, Luboš 214, 321
Snæbjarnarson, Vésteinn 95
Sowański, Marcin 477
Španěl, Martin 418
Steingrímsson, Steinþór 95
Stosic, Dejan 61
Straka, Milan 171
Švec, Jan 214, 321
Szaszák, György 437

Tarján, Balázs 437
Terzić, Dušica 61
Thomas, Aleena 273
Tihelka, Daniel 340
Torre, Ilaria 504

Ulčar, Matej 104
Ureta, Jennifer 495

Vaněk, Jan 465
Vásquez-Correa, Juan Camilo 331, 356
Vercelli, Gianni 504
Veroňková, Jitka 409
Vetráb, Mercedes 285
Vidra, Jonáš 144
Villaluna, Winfred 495
Vít, Jakub 456
Vraštil, Michal 446

Watson, Catherine I. 294
Weingartová, Lenka 418
Wülfing, Jan-Oliver 397

Žabokrtský, Zdeněk 144, 189
Zakharov, Victor 122
Žďánský, Jindřich 366, 426
Zhang, Guobiao 30

542 Author Index


	Preface
	Organization
	Contents
	Invited Papers
	Combining Expert Knowledge with NLP for Specialised Applications
	1 Introduction
	2 Legal IE
	3 Understanding Scientific Knowledge Production in Europe
	4 Conclusions
	References

	Multilingual Dependency Parsing from Universal Dependencies to Sesame Street
	1 Introduction
	2 Universal Dependencies
	2.1 Basic Principles of UD
	2.2 Morphological Annotation
	2.3 Syntactic Annotation
	2.4 UD Treebanks

	3 Studies in Dependency Parsing
	3.1 Parsing Framework
	3.2 Representing Word Types
	3.3 Representing Word Tokens
	3.4 Parserless Parsing?

	4 Conclusion
	References

	Multimodal Fake News Detection with Textual, Visual and Semantic Information
	1 Introduction
	2 Related Work
	3 Multimodal Fake News Detection
	4 Experimental Setup
	4.1 Collections
	4.2 Experimental Settings

	5 Results
	6 Conclusions and Future Work
	References

	Text
	A Twitter Political Corpus of the 2019 10N Spanish Election
	1 Introduction
	2 Related Works
	3 Political Tweets in the 10N Spanish Election
	3.1 Topic Identification
	3.2 Sentiment Analysis
	3.3 Emotion Analysis

	4 Conclusions
	References

	Mining Local Discourse Annotation for Features of Global Discourse Structure
	1 Introduction
	1.1 Rhetorical Structure Theory, the Tree-Like Global Model
	1.2 Complexity of Discourse Dependencies in PDTB

	2 Data and Method
	3 Analysis
	3.1 Hierarchies

	4 Conclusion
	References

	Diversification of Serbian-French-English-Spanish Parallel Corpus ParCoLab with Spoken Language Data
	1 Introduction
	2 Related Work
	3 ParCoLab Content
	4 Spoken Language Data in ParCoLab
	5 Conclusion and Future Work
	References

	Quantitative Analysis of the Morphological Complexity of Malayalam Language
	1 Introduction
	2 Literature Review
	3 Problem Statement
	4 Material
	5 Method
	6 Result and Discussion
	7 Conclusion
	References

	Labeling Explicit Discourse Relations Using Pre-trained Language Models
	1 Introduction
	2 Background
	3 Method
	3.1 Connective Identification
	3.2 Argument Extraction

	4 Experiments
	5 Results and Discussion
	6 Conclusion
	References

	EPIE Dataset: A Corpus for Possible Idiomatic Expressions
	1 Introduction
	2 Related Work
	3 Data
	3.1 StringNet Extraction
	3.2 Candidate Idioms Selection
	3.3 Candidate Instances Selection
	3.4 Final Result

	4 Experiments
	5 Results
	6 Conclusion
	References

	Experimenting with Different Machine Translation Models in Medium-Resource Settings
	1 Introduction
	2 Related Work
	3 Corpus and Filtering
	3.1 ParIce
	3.2 Filtering

	4 Models
	4.1 PBSMT
	4.2 NMT

	5 Evaluation
	5.1 BLEU Scores
	5.2 Human Evaluation

	6 Conclusion
	References

	FinEst BERT and CroSloEngual BERT
	1 Introduction
	2 Training Data and Preprocessing
	2.1 Datasets
	2.2 Preprocessing

	3 Architecture and Training
	4 Evaluation
	4.1 Named Entity Recognition
	4.2 Part-of-Speech Tagging and Dependency Parsing

	5 Conclusion
	References

	Employing Sentence Context in Czech Answer Selection
	1 Introduction
	2 AQA Modules for the Czech Language
	3 Neural Answer Selection Architecture with Context
	4 Experiments and Results
	4.1 Discussion and Error Analysis

	5 Conclusions
	References

	Grammatical Parallelism of Russian Prepositional Localization and Temporal Constructions
	Abstract
	1 Introduction
	2 Prepositional Ontology
	3 The Grammatical Structure of the Localization Rubric
	3.1 Locative Syntaxeme
	3.2 Directive, Departive, and Transitive Syntaxemes

	4 The Grammatical Structure of the Temporative Rubric
	5 Semantico-Grammatical Parallelism of Localization and Temporative Rubrics
	6 Conclusion and Further Work
	Acknowledgements
	References

	Costra 1.1: An Inquiry into Geometric Properties of Sentence Spaces
	1 Introduction
	2 Related Work
	2.1 Sentence Embedding Space Evaluation
	2.2 Sentence Embedding Methods

	3 Annotation
	3.1 First Round: Collecting Interpolations and Extrapolations
	3.2 Second Round: Sentence Comparison

	4 Vector Evaluation
	4.1 Sentence Comparison
	4.2 Sentence Evaluation

	5 Results
	6 Conclusion
	References

	Next Step in Online Querying and Visualization of Word-Formation Networks
	1 Introduction
	2 Related Work
	2.1 Comparison with Visualization of Syntactic Trees
	2.2 Comparison with Visualization of Wordnets
	2.3 Visualizers of Word-Formation Networks

	3 Query Language
	3.1 Original Query Language: DCQL-1
	3.2 Extended DCQL Language: DCQL-2

	4 Visualization of Results
	5 Conclusions
	References

	Evaluating a Multi-sense Definition Generation Model for Multiple Languages
	1 Introduction
	2 Proposed Model
	3 Materials and Methods
	3.1 Datasets
	3.2 Word and Sense Embeddings
	3.3 Evaluation Metrics

	4 Results
	5 Conclusions
	References

	Combining Cross-lingual and Cross-task Supervision for Zero-Shot Learning
	1 Introduction
	2 Related Work
	3 Transfer Learning Model
	4 Experiments
	4.1 Data
	4.2 Evaluation Measures
	4.3 Results

	5 Discussion and Conclusions
	References

	Reading Comprehension in Czech via Machine Translation and Cross-Lingual Transfer
	1 Introduction
	2 Related Work
	3 Constructing Czech Reading Comprehension Dataset
	3.1 Translating the Data and Locating the Answers
	3.2 Evaluation Metrics

	4 Model Training and Evaluation
	4.1 Main Findings

	5 Conclusion
	References

	Measuring Memorization Effect in Word-Level Neural Networks Probing
	1 Introduction
	1.1 The Memorization Problem
	1.2 Measuring Memorization

	2 Related Work
	3 Method
	3.1 Which Words Are Selected for Evaluation?

	4 Case Study
	5 Conclusion
	References

	Semi-supervised Induction of Morpheme Boundaries in Czech Using a Word-Formation Network
	1 Introduction
	2 Related Work
	2.1 Morphological Segmentation as a Linguistic Task
	2.2 Approaches to Automatic Morphological Segmentation

	3 Our Annotated Data
	3.1 Sample of Completely Segmented Lemmas
	3.2 Sets of Root Allomorphs for Selected DeriNet Trees

	4 Morphological Segmentation Procedure
	4.1 Inducing Morpheme Boundaries from Derivational Trees
	4.2 Deep Learning Component
	4.3 Adding Further Information on Morphemes

	5 Experiments and Evaluation
	5.1 Evaluated Setups
	5.2 Results

	6 Conclusions
	References

	Interpreting Word Embeddings Using a Distribution Agnostic Approach Employing Hellinger Distance
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Information Encoding of Dimensions
	3.2 Interpretable Word Vector Generation
	3.3 Word Retrieval Test
	3.4 Measuring Interpretability

	4 Results
	4.1 Accuracy and Interpretability

	5 Conclusions
	References

	Verb Focused Answering from CORD-19
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Strategy for Answering Questions

	4 Results and Evaluation
	5 Conclusion and Future Work
	References

	Adjusting BERT's Pooling Layer for Large-Scale Multi-Label Text Classification
	1 Introduction
	2 Related Work
	3 Proposed Solution
	4 Experimental Setup
	4.1 BERT Models
	4.2 Datasets

	5 Results
	6 Conclusion
	References

	Recognizing Preferred Grammatical Gender in Russian Anonymous Online Confessions
	1 Introduction
	2 Related Work
	3 Data
	4 Prediction
	5 Results and Discussion
	6 Conclusion
	References

	Attention to Emotions: Detecting Mental Disorders in Social Media
	1 Introduction
	2 Related Work
	3 Modeling Text by Sub-emotions
	4 Deep Emotion Attention Model
	5 Evaluation
	5.1 Data Collections
	5.2 Experimental Settings
	5.3 Results of the Deep Emotion Attention Model
	5.4 Analysis of the Results

	6 Conclusions
	References

	Cross-Lingual Transfer for Hindi Discourse Relation Identification
	1 Introduction
	2 Related Work
	3 Approach
	4 Experiments
	5 Results and Discussion
	6 Conclusion
	References

	Authorship Verification with Personalized Language Models
	1 Introduction
	2 Dataset and Evaluation
	2.1 Dataset
	2.2 Evaluation

	3 Methods
	3.1 Embeddings
	3.2 Language Models

	4 Experimental Results
	5 Conclusions
	References

	A Semantic Grammar for Augmentative and Alternative Communication Systems
	1 Introduction
	2 Background and Related Work
	3 Semantic Grammar
	3.1 Construction
	3.2 Overview

	4 Evaluation
	5 Conclusions
	References

	Assessing Unintended Memorization in Neural Discriminative Sequence Models
	1 Introduction
	2 Related Work
	3 Approach
	3.1 d-exposure for Discriminative Models

	4 Experimental Validation
	4.1 Setup
	4.2 Repeated Occurrences in the Training Set
	4.3 Overfitting

	5 Conclusion and Future Work
	References

	Investigating the Impact of Pre-trained Word Embeddings on Memorization in Neural Networks
	1 Introduction
	2 Memorization in Deep Learning Models
	3 Measuring and Preventing Unintended Memorization
	3.1 Measuring Memorization of Secrets
	3.2 Preventing Memorization with Differential Privacy

	4 Experimental Setup
	5 Results
	6 Conclusion
	References

	Speech
	Investigating the Corpus Independence of the Bag-of-Audio-Words Approach
	1 Introduction
	2 The Bag-of-Audio-Words Method
	3 Data and Methods
	3.1 Data Sets
	3.2 Feature Set
	3.3 Evaluation
	3.4 Parameters of the BoAW Method

	4 Tests and Results
	4.1 Codebook from the EmoDB Database
	4.2 Codebook from the News Database

	5 Conclusions
	References

	Developing Resources for Te Reo Māori Text To Speech Synthesis System
	1 Introduction
	2 Motivation : Te Reo Māori Revitalisation
	3 Te Reo Māori Resources Development
	4 Te Reo Māori TTS System Development and Analysis
	5 Conclusion and Future Work
	References

	Acoustic Characteristics of VOT in Plosive Consonants Produced by Parkinson's Patients
	1 Introduction
	2 Methodology
	2.1 Data
	2.2 Acoustic Phonetic Analysis of VPCs
	2.3 Manual Labeling
	2.4 Automatic Classification Between PD Patients and HC Speakers

	3 Results and Discussion
	3.1 Preliminary Observations with Manual Labels
	3.2 Automatic Classification of PD vs. HC Subjects

	4 Conclusions
	References

	A Systematic Study of Open Source and Commercial Text-to-Speech (TTS) Engines
	1 Introduction
	2 Related Work and Contribution
	3 Evaluation Corpus
	4 Evaluation Methodology
	5 Results and Discussion
	5.1 Contextual Word Accuracy ()
	5.2 Naturalness

	6 Conclusion
	A Appendix A: Evaluation of TTS Engines on Our Corpus
	B Appendix B: Survey Answers by Participants
	C Appendix C: Rendering of ``The Rainbow Passage''
	References

	Automatic Correction of i/y Spelling in Czech ASR Output
	1 Introduction
	2 Description of Czech y/i Related Grammar
	2.1 The Role of Grammar Errors in ASR Output

	3 Proposed Solution
	3.1 SentencePiece Model
	3.2 BERT Pre-training
	3.3 Prediction Model and Fine-Tuning

	4 Data Description
	5 Experiments and Results
	5.1 Baseline Method
	5.2 Evaluation Metrics
	5.3 Results

	6 Conclusion
	References

	Transfer Learning to Detect Parkinson's Disease from Speech In Different Languages Using Convolutional Neural Networks with Layer Freezing
	1 Introduction
	2 Materials and Methods
	2.1 Data
	2.2 Segmentation
	2.3 CNN Model
	2.4 Transfer Learning

	3 Experiments and Results
	3.1 Transfer Learning with Layer Freezing

	4 Conclusion
	References

	Speaker-Dependent BiLSTM-Based Phrasing
	1 Introduction
	2 Training NN-based Phrasing Model with Speaker Code
	2.1 Training Data
	2.2 Neural Network Architecture

	3 Results
	3.1 Listening Tests

	4 Conclusion
	References

	Phonetic Attrition in Vowels' Quality in L1 Speech of Late Czech-French Bilinguals
	1 Introduction
	1.1 Comparison of Czech and French Vowels

	2 Method
	3 Results
	4 Discussion and Conclusions
	References

	Assessing the Dysarthria Level of Parkinson's Disease Patients with GMM-UBM Supervectors Using Phonological Posteriors and Diadochokinetic Exercises
	1 Introduction
	2 Procedural Overview
	2.1 Dataset and Evaluation Methods
	2.2 Features
	2.3 Classification Method

	3 Results
	4 Conclusions
	References

	Voice-Activity and Overlapped Speech Detection Using x-Vectors
	1 Introduction
	2 Datasets and Methods
	2.1 The x-Vector DNN
	2.2 Back-End Classifiers
	2.3 Training Datasets and Their Augmentations
	2.4 Test Dataset

	3 Experiments
	3.1 Utterance-Wise Experiments
	3.2 Frame-Wise Experiments
	3.3 Comparison of Back-End Classifiers

	4 Conclusions
	References

	Introduction of Semantic Model to Help Speech Recognition
	1 Introduction
	2 Proposed Methodology
	2.1 Semantic Model
	2.2 Definition of Context Part and Possibility Zones
	2.3 Semantic Representation of the Context Part and the Possibility Zones

	3 Experiments
	3.1 Corpus Description
	3.2 Recognition System
	3.3 Embeddings

	4 Experimental Results
	4.1 Overall Results
	4.2 Impact of Hyperparameters

	5 Conclusion and Discussion
	References

	Towards Automated Assessment of Stuttering and Stuttering Therapy
	1 Introduction
	2 Data
	3 Method
	3.1 Speech Efficiency Score
	3.2 Speech Control Index
	3.3 Phone Durations

	4 Experiments
	5 Conclusion
	References

	Synthesising Expressive Speech – Which Synthesiser for VOCAs?
	1 Introduction
	2 Related Work
	3 Study
	3.1 Online Survey

	4 Results
	4.1 Average Number of Recognised Emotions
	4.2 Performance Between Synthesisers
	4.3 Performance Between Emotion Classes
	4.4 Satisfaction with the Choice of Assessed Emotions
	4.5 Satisfaction Between Synthesisers
	4.6 Satisfaction Between Emotion Classes
	4.7 Pronunciation/Emotion

	5 Discussion
	6 Conclusion
	References

	Perceived Length of Czech High Vowels in Relation to Formant Frequencies Evaluated by Automatic Speech Recognition
	1 Introduction
	2 Method
	2.1 Experiment 1
	2.2 Experiment 2
	2.3 Experiment 3

	3 Results
	3.1 Experiment 1
	3.2 Experiment 2
	3.3 Experiment 3

	4 Conclusions
	References

	Inserting Punctuation to ASR Output in a Real-Time Production Environment
	1 Introduction
	1.1 Related Works

	2 Method
	2.1 Baseline Punctuation Module
	2.2 Dataset
	2.3 Features
	2.4 Model

	3 Experiments and Results
	3.1 Performance Comparison and Discussion

	4 Conclusion and Future Work
	References

	Very Fast Keyword Spotting System with Real Time Factor Below 0.01
	1 Introduction
	2 Brief Description of Presented Keyword Spotting System
	3 KWS Speed and Memory Optimizations
	3.1 Signal Processing Module
	3.2 State Processing Module
	3.3 Spot Managing Module
	3.4 Optimized Repeated Run

	4 System and Data for Evaluation
	4.1 KWS System
	4.2 Dataset for Evaluation

	5 Experimental Evaluation
	5.1 Keyword List
	5.2 Filler Lists
	5.3 Evaluation Conditions and Metrics
	5.4 Evaluation Results

	6 Conclusion
	References

	On the Effectiveness of Neural Text Generation Based Data Augmentation for Recognition of Morphologically Rich Speech
	1 Introduction
	2 Data and Methods
	2.1 Database
	2.2 Language Modeling Methods

	3 Results and Discussion
	3.1 Experimental Setup
	3.2 Online ASR Results with Data Augmentation
	3.3 Comparing Online and Offline ASR Results

	4 Conclusions
	References

	Context-Aware XGBoost for Glottal Closure Instant Detection in Speech Signal
	1 Introduction
	2 Experimental Data
	3 Experiments and Results
	3.1 Baseline Model
	3.2 Context Modeling

	4 Comparison with Other Methods
	4.1 Test Datasets
	4.2 Results

	5 Conclusions
	References

	LSTM-Based Speech Segmentation Trained on Different Foreign Languages
	1 Introduction
	2 Phonetic Alphabet
	3 System Architecture
	3.1 Segmentation Procedure
	3.2 Detection of Incorrectly Segmented Phones
	3.3 Iterative Segmentation Process

	4 Experiments and Results
	4.1 Experimental Data
	4.2 Initial Segmentation
	4.3 Iterative Segmentation

	5 Conclusion
	References

	Complexity of the TDNN Acoustic Model with Respect to the HMM Topology
	1 Introduction
	2 Training and Testing Data
	3 Experimental Setup
	3.1 Acoustic Feature Extraction
	3.2 Acoustic Modeling
	3.3 Language Modeling
	3.4 Decoding

	4 Experiments
	4.1 HMM-topology
	4.2 Context-Dependent Modeling
	4.3 Subsampling
	4.4 Implementation Issues
	4.5 Computational Aspect of DNN Acoustic Models

	5 Conclusion
	References

	Dialogue
	Leyzer: A Dataset for Multilingual Virtual Assistants
	1 Introduction
	2 Related Datasets
	3 Our Dataset
	3.1 Creation of Corpus
	3.2 Domain Selection
	3.3 Intent and Slot Selection

	4 Experiments
	4.1 Experimental Setup
	4.2 Testing Scenarios
	4.3 Results and Discussion

	5 Conclusions and Future Work
	References

	Registering Historical Context for Question Answering in a Blocks World Dialogue System
	1 Introduction
	2 Related Work
	3 Blocks World System and Eta Dialogue Manager
	4 Historical Question-Answering
	5 Evaluation and Discussion
	6 Conclusion
	References

	At Home with Alexa: A Tale of Two Conversational Agents
	1 Introduction
	2 Related Work
	3 Method
	4 Results
	4.1 User Feedback
	4.2 Transcription Quality

	5 Conclusion
	References

	ConversIAmo: Improving Italian Question Answering Exploiting IBM Watson Services
	1 Introduction
	2 Background and Related Works
	3 ConversIAmo Prototype
	4 Experimental Results
	5 Conclusions and Discussion
	References

	Modification of Pitch Parameters in Speech Coding for Information Hiding
	1 Introduction
	2 Hiding Information Using Speech Coding
	3 Proposed Algorithm
	4 Experiments
	4.1 Quality Loss vs. Capacity of Hidden Channel
	4.2 Perceptibility of Pitch Modifications
	4.3 Detectability of Hidden Transmission

	5 Discussion
	6 Conclusions
	References

	ConfNet2Seq
	1 Introduction
	2 Related Work
	3 Models
	3.1 Confusion Network Encoder
	3.2 Full Length Answer Generation from Spoken Questions

	4 Dataset
	5 Experiments and Results
	6 Conclusion
	References

	Graph Convolutional Networks for Student Answers Assessment
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 DT-Grade Graph
	3.2 Graph Convolutional Networks (GCN)
	3.3 The Classifier

	4 Experiments
	4.1 DT-Grade Dataset
	4.2 Experimental Setting
	4.3 Results and Analysis

	5 Conclusion
	References

	Author Index



