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Abstract

The demand for energy and the limited supply of fossil fuels and their impact in
the environment have required the development of alternative energy sources.
Among the next generation of energy sources, microbial fuel cells (MFCs) have
emerged as a promising technology due to their ability to recover energy from
wastewaters in the form of electricity using electroactive microorganisms as
catalysts. Among the various factors that affect power generation performance in
MFCs, the efficiency of extracellular electron transfer (EET) is one of the most
important. Several enzymes, specifically multiheme cytochromes, have been
implicated in this process although the electron transfer chain organization
remains to be fully understood. In this chapter, we review in detail the
mechanisms that support EET from electroactive microorganisms to the anode in
MFCs. We focus on the model organism Shewanella oneidensis MR-1, due to
the existence of an extensive molecular characterization of its EET processes.
The recent developments in the characterization of the multiheme cytochromes
involved in these mechanisms will also be reviewed.
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1 Introduction

The constant demand for energy and the limited supply of fossil fuels and their
impact in the environment have required the development of alternative energy
sources. Among the next generation of energy sources, microbial fuel cells (MFCs)
continue to attract wide attention due to their ability to recover energy in the form of
electricity using microorganisms as catalysts. This technology is among the most
studied bioelectrochemical systems (BES), with these devices also being used for
other eco-friendly purposes such as the production of biofuels and chemicals,
biosensors, bioremediation, wastewater treatment and desalination [1–5].

MFCs employ microorganisms to produce electrical current while metabolizing
nutrients available in the medium [6, 7]. The capacity of using organic waste (e.g.,
wastewater) as substrate has opened the possibility of producing electricity in a way
that is close to carbon neutral [8, 9]. These cells consist of an anode that is kept
under anoxic conditions and receives electrons from the bioenergetic metabolism of
the microorganisms growing on its surface. MFCs also contain a cathode that
transfers electrons to the terminal electron acceptor. It is the electron flow from the
anode to the cathode through an external circuit that allows the production of
electrical current. Nowadays, there are a wide variety of designs, where the anode
and the cathode may coexist in a single compartment (single-chamber) or can be
separated by a physical barrier that is permeable to ions (dual-chamber) (Fig. 1)
[10].

In BES, electron transfer efficiency depends on several parameters, with the
electron transfer processes performed by the microorganisms among the core fac-
tors that affect power generation performance [11, 12]. Microorganisms that oxidize
organic compounds and transfer electrons to the anodes of BES are called elec-
troactive but are also known under several other names in the literature, such as,
electricigens, exoelectrogenic, anode-respiring or anodophilic microorganisms [13].
These electroactive microorganisms are united in their ability to perform extra-
cellular electron transfer (EET), directly and/or mediated, to the electrode.

The concept of electric current generation by microorganisms is not new and
was reported over 100 years ago [14], with research on MFCs making several
advances in the last decade [7, 15]. These include different MFC architectures and
construction materials for the anode and cathode, diverse microbial communities
and knowledge on the biochemical characteristics of the EET performed by the
microorganisms [7, 16]. Nevertheless, the commercialization of MFCs is still
limited due to low performance, expensive core parts and materials, and bottlenecks
in scale-up [15, 17]. Therefore, many challenges and room for improvement remain
in BES, including the identification of new electroactive microorganisms with high
electrochemical activities and the characterization of the electron transfer process
between cells and electrodes. This has been a crucial aspect in the enhancement of
MFC performance and paramount in promoting their future applications [18–20].
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In this chapter, we review in detail the mechanisms that support EET from
electroactive microorganisms to the anode in BES. We focus on the model
organism Shewanella oneidensis MR-1, due to the existence of an extensive
molecular characterization of its EET processes. The recent developments in the
characterization of the enzymes involved in these mechanisms will also be
reviewed.

2 Extracellular Electron Transfer Mechanisms

Extracellular electron transfer is defined as a metabolic process that enables electron
transfer between cells and extracellular solid materials and is based on one of the
oldest types of microbial respiration, the dissimilatory reduction of iron [21].
The EET process between electroactive microorganisms and electrodes is the
footstone for developing MFCs and other BES, which connect the intracellular
bioenergetic pathways of microorganisms with the electrochemical reactions of
electrodes [22, 23].

Fig. 1 Schematic representation of a MFC, where the difference between a single and double
chamber design is the presence or absence of a permeable barrier that is often an ion-exchange
membrane separating the anode from the cathode. Bacteria at the anode chamber (circles) feed on
organic or inorganic wastes and transfer electrons to the anode through: a electron shuttles (ES),
b nanowires or conductive pili, or c directly through cell surface redox active proteins. The protons
produced flow through the selectively permeable membrane to the cathode chamber and the
electrons flow through an electrical circuit to the cathode. The electrons are then transferred to the
final electron acceptor. This can be d abiotic or e biotic
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The molecular mechanisms of electron transfer to, or from, extracellular sub-
strates can be divided in direct and mediated EET [24] (Fig. 2). EET is a very
complex phenomenon and in vivo an absolute separation between direct EET and
mediated EET is often difficult since both type of EET can occur simultaneously
within one single organism [23, 25]. The study and elucidation of these mecha-
nisms have led to a better understanding on how EET occurs and provides guidance
for the optimization of MFCs.

2.1 Direct EET

In direct EET, microorganisms attach to solid surfaces, to or from which they
directly transfer electrons without involvement of any diffusible redox compounds.
Although early studies with S. oneidensisMR-1 supported a mechanism of physical
contact for growth on insoluble manganese oxide [26], it was only latter that the
first experimental evidence for this mechanism was revealed [27]. Atomic force
microscopy experiments showed that Shewanella cells grown anaerobically bind
preferentially metal oxides in contrast to aerobically grown cells.

Direct EET is achieved through physical contact of the cells to solid surfaces,
with the efficiency of this electron transfer mechanism limited by the maximum cell
density in the bacterial monolayer [28]. This physical contact occurs via redox
active proteins present on the outer membrane or cell envelope [29]. A high number
of multiheme c-type cytochromes (MHCs) have been found in organisms capable of
performing EET, with several of them directly implicated in direct EET [29–32].
These proteins are characterized by multiple heme cofactors that are covalently
attached to the polypeptide chain and can switch between oxidized Fe(III) and
reduced Fe(II) states. Their distances are typically less than 14 between closest
neighbors enabling fast long-range electron transfer via electron hopping [33, 34].

Fig. 2 Strategies employed by microorganisms for electron transfer to insoluble extracellular
electron acceptors. Extracellular electron transfer can occur by direct EET. a through cell
appendages of diverse nature called pili or nanowires (1) or through direct cell contact via cell
surface redox active proteins (2); or indirect EET, b mediated by electron shuttling compounds
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Some microorganisms can establish a thick multilayer electrochemically active
biofilm, and through long-range conductive filamentous appendages, such as
nanowires or pili, achieve higher electron transfer rates and densities per surface
area when compared to cell monolayers [35]. Scanning tunneling microscopy
images show thin filaments with about 8 nm in diameter and 10 µm in length [35].
These conductive filamentous appendages allow the bacteria to conduct electrons
over a large distance within the multiple layers of a biofilm. In terms of mor-
phology, Shewanella nanowires are partially composed of c-type cytochromes [28,
36–39]. This was demonstrated by deleting the genes coding for the
outer-membrane cytochromes, MtrC and OmcA, resulting in non-conductive
nanowires [38]. Also, deleting the gspG gene which is involved in the type II
secretion pathway, that is required for the proper export of the outer-membrane
cytochromes MtrC and OmcA to the cell exterior [40, 41], resulted in
non-conductive nanowires. Later studies using fluorescence microscopy revealed
that Shewanella nanowires are, in fact, extensions of the outer-membrane and
periplasm [42].

Other examples of conductive filaments are the pili [43] and the more recent
multiheme cytochrome OmcS filaments [44, 45] from the Geobacter genus. The
hypothesis that the pili might function as conductive filamentous appendages
resulted from the observation that pili were specifically expressed during growth on
insoluble electron acceptors [46]. Studies showed that type IV pilus monomer PilA
deletion mutant of G. sulfurreducens could not reduce Fe(III) oxide and displayed a
much lower current production in MFCs [28, 47]. The NMR structure of the PilA
monomer of G. sulfurreducens shows that it is shorter than the PilA from other
microorganisms [48]. Indeed, the truncation of PilA in G. sulfurreducens was
proposed to be essential for iron respiration, suggesting that an adaptive evolution
of this organism to dissimilatory iron reduction in natural environments has been
achieved with the truncation of this protein [49]. Using cryo-electron microscopy,
the structure of a different conductive filament was solved, with particle recon-
structions showing that only the outer surface MHC OmcS monomers alone could
produce a perfect fit [44, 45]. This argues for conductive filaments in Geobacter to
be composed entirely of OmcS and that no arrangement with PilA monomers is
present, as previously proposed [50]. These observations provide a context for the
fact that, whereas the mechanism by which electrons are transferred along the PilA
filaments is still fiercely debated [51], the OmcS polymer provides a continuous
chain of hemes at close distance for efficient conduction along the length of the
whole filament [44].

2.2 Mediated EET

Besides direct EET, some bacteria can also reduce extracellular substrates through
mediated electron transfer, using small organic electron shuttles. These serve as the
terminal electron acceptors, and once reduced, can themselves transfer electrons to
iron oxides or anodes in MFCs.
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Electron shuttles are available in the media (e.g., humic acids) or can be
endogenously produced (e.g. flavins) by microorganisms. The possible involvement
of endogenous electron shuttles in reduction of poorly soluble metal minerals by
Shewanella was first proposed by Newman and Kolter [52]. Later, Lies et al.
demonstrated that iron oxide entrapped within nanoporous glass beads could be
reduced by S. oneidensis MR-1, confirming the participation of electron shuttles in
the dissimilatory iron respiration of this bacterium [53]. The ability of flavins to
enhance iron reduction was first examined by Myers and Myers [54], showing that
addition of flavins to the growth medium increased ferric reductase activity in S.
oneidensis MR-1. Since then it was confirmed by numerous researchers that
members of the Shewanella genus are capable of secreting flavins, such as ribo-
flavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) [55–
57]. Also, S. oneidensis MR-1 can accumulate these flavins to high concentrations
in solution (250–500 nM) to be used as electron shuttles for EET to the electrodes
[55].These high levels of flavins enhance the electron transfer efficiency by several
fold and therefore are cost effective since the ATP used on flavin production and
secretion is negligible when compared with the resulting energetic advantage.

Although, electron shuttling seems to be the primary mechanism of EET, outer
membrane MHCs still play a key role in mediated EET and are responsible for at
least 95% of the reduction of extracellular flavins at physiological relevant rates
[58]. Indeed, the Shewanella Mtr complex plays an essential role in flavins’
reduction, with the outer-membrane MHC MtrC accounting for approximately 50%
of the activity observed [59]. Kinetic results showed that direct contact between the
outer-multiheme cytochromes (e.g. OmcA and MtrC) and insoluble iron substrates
or MFC anodes could not account for the rates of electron transfer observed when
using whole cells assays [60, 61], with this gap in electron transfer rates resolved
with the addition of flavins. This demonstrated that outer-membrane cytochromes
are not the only elements responsible for the EET at relevant kinetic rates and that
direct and mediated electron transfer occur in tandem in S. oneidensis MR-1 [60].
Indeed, it has been shown that mediated EET, and not direct EET, is the primary
mechanism of EET employed by S. oneidensis, accounting for approximately 75%
of its EET capacity [57].

With reduction potentials of −219 mV (FMN and FAD) and −208 mV (ribo-
flavin) [30], flavins have the capability to act as efficient extracellular redox
mediators for the reduction of metal oxides at neutral pH (redox couple
ferrihydrite/Fe(II) has a reduction potential ranging from −100 to +100 mV [62]).
Thus, Shewanella species that can secrete and utilize flavins as electron shuttles
have an advantage in environments that contain poorly soluble metal oxides but
lack exogenous redox mediators, such as humic acids. Another advantage of flavin
secretion by Shewanella is their potential application in the construction of MFCs
without addition of costly exogenous redox mediators [63]. Furthermore, flavin
secretion by Shewanella may also support mediated EET by other microbial species
present in the BES and thereby increase the efficiency of current generation in
mixed cultures [56].
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3 Electroactive Microorganisms

In Nature, there is a great diversity of microorganisms that can be used in MFCs,
with more than 100 different electroactive species presently identified [16, 64].
Most of these electroactive microorganisms are Gram negative bacteria, with more
than half belonging to the Proteobacteria phylum. Also, the majority of these
electroactive species are: (i) mesophilic; (ii) have low tolerance to high salinity;
(iii) possess motility; (iv) have biofilm formation capabilities; and (v) exhibit anodic
EET activity, with most species performing EET via mediated electron transfer and
only a small percentage capable of performing direct EET [64]. As MFC research
advances, we expect that significantly more electroactive microorganisms will be
discovered, especially those that can exist and thrive in more extreme environments
[65].

Presently, it is well known that mixed microbial cultures colonizing anodes in
MFCs produce greater current densities with higher columbic efficiency, compared
with experiments using pure cultures [66]. Presently, the highest current densities
obtained are from microbial mixed cultures that are dominated by d-Proteobacteria
of the Geobacter genus [16]. The reason for this is the fact that mixed cultures have
a higher flexibility towards external factors due to symbiotic effects. This allows a
greater diversity regarding metabolic pathways, as well as the combination of
different electron transfer mechanisms that permit a complete oxidation of the
organic substrates existent in the MFC reactor [67, 68].

Though mixed microbial cultures produce more current density, MFCs operating
with pure cultures of electroactive bacteria are preferred for the detailed investi-
gation of EET mechanisms as they allow a better characterization of the pathways
than in mixed cultures. Understanding the processes by which electroactive
organisms transfer electrons to an electrode, as well as microbial-electrode inter-
actions will allow the enhancement of EET and ultimately benefit operational
performance of the MFCs and enable their future practical applications. The Gram
negative proteobacterium S. oneidensisMR-1 has been used as a model organism to
understand EET [23, 32]. The ability to grow Shewanella robustly under oxygen
conditions, the large quantity of sequenced genomes, and their easy genetic
manipulation makes these bacteria ideal to work with, both in the laboratory and in
BES applications.

3.1 Shewanella: A Model Organism

Organisms currently assigned to the genus Shewanella have been recognized for
nearly 90 years, having first been isolated from the surface of rotten butter in 1931
[69]. Over the subsequent decades, these bacteria received little attention, with the
exception of the name, that was frequently changed. In 1985, based on 5S rRNA
sequence data a reclassification was proposed [70]. At this time the new genus
Shewanella was created, to honor Dr. James Shewan for his contributions in the
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study of these microorganisms. Although, most newly discovered Shewanella
strains were initially classified as S. putrefaciens, DNA:DNA hybridization and 16S
rRNA sequences resulted in the identification of more than 60 species within this
genus [71].

It was only in 1988, with the discovery of members of the Shewanella genus
with the capacity to perform EET, that these microorganisms started to find a
prominent position within the scientific community [26]. These findings strongly
suggested that this genus could play important roles in the biogeochemical cycles of
the elements and in biotechnological applications, such as in BES [23, 32].

Members of the genus Shewanella are facultative anaerobic Gram negative
c-Proteobacteria. They generally possess a single polar flagellum and a rod shape
with 2–3 lm in length and 0.5–0.6 lm in diameter [72]. The vast majority of the
Shewanella isolates were obtained from marine environments, where they are
sometimes found as fish pathogens with important impact in the aquaculture
industry [73, 74]. Shewanella are also found in other habitats such as the freshwater
S. oneidensis MR-1 [72].

Numerous Shewanella species are capable of growing at low temperatures
(<5 °C) even though their optimal growth temperature is above 16 °C [75]. By
contrast, those species found to be opportunistic human pathogens such as S. algae
can grow at the relatively high temperature of 42 °C [76]. Another major aspect of
the versatility of Shewanella is their ability to utilize a broad variety of organic and
inorganic compounds as a final electron acceptor [77]. This allows them to thrive in
a wide range of aquatic habitats, both marine and freshwater, and play a significant
role in several biogeochemical redox cycles, including those of iron and manganese
[26]. Since many of these organic and inorganic compounds are toxic or highly
insoluble, they do not enter the bacteria and are extracellularly reduced by terminal
reductases localized on the surface of the cell [31].

In 2001, the genome of S. oneidensis MR-1 was sequenced, primarily due to its
position as a model organism for dissimilatory metal reduction and its potential role
in several biotechnological applications [78]. Since then, approximately 40 other
Shewanella genomes have been sequenced [79]. Analysis of the S. oneidensis
MR-1 genome revealed that the chromosome encodes for 41 putative c-type
cytochromes (9 in the cytoplasmic membrane, 27 in the periplasm, and 5 in the
outer membrane) [80, 81]. The capability to transfer electrons to a vast range of
electron acceptors and perform EET is linked to this large number of c-type
cytochromes, which spans from the cytoplasmic membrane to the outer membrane
[82, 83]. Using a variety of genetic (e.g., knock-out studies) and biochemical
techniques (e.g., protein characterization), some of the components involved have
been identified and characterized in detail (Fig. 3). The so called “minimal setup” of
redox proteins which are assigned to the EET process will be discussed below.
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4 Extracellular Electron Transfer (EET) Pathway

MHCs play an important role in EET pathways, being critical elements for extra-
cellular respiration and current output in electroactive microorganisms. In
S. oneidensis MR-1, the MtrCAB pathway is the major EET pathway and is
composed by several c-type cytochromes, that allow electrons generated from
substrate oxidation to be transferred from the inner membrane, through the
periplasmic space, to the outer-membrane for the reduction of terminal extracellular
electron acceptors (e.g., metal oxides in the natural environment or electrodes in
BES) (Fig. 3).

Fig. 3 Scheme of the so called “minimal setup” of redox proteins involved in the EET process of
S. oneidensis MR-1. Arrows represent electron transfer processes
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4.1 Cytoplasmic Membrane

Electron transfer at the cytoplasmic membrane involves the linkage of dehydro-
genases responsible for oxidation of carbon sources in the cytoplasm (e.g. formate
dehydrogenase), through a lipid soluble quinone pool, to electron transfer proteins
(e.g. cytochromes) bound to the cytoplasmic membrane [84]. This mechanism
generates a proton-electrochemical gradient that is used to produce ATP via the
ATP synthase [85]. In parallel, the electron flow through the quinone pool towards
extracellular electron acceptors appears to serve also as a pathway to discharge
electrons without coupling to the generation of transmembrane electrochemical
potential [86].

S. oneidensis MR-1 is known to produce three quinones (menaquinone,
methylmenaquinone and ubiquinone) [87]. The deletion of menD and menB genes
involved in the biosynthesis of menaquinone produced a phenotype incapable of
iron respiration, revealing that menaquinone but not ubiquinone plays a role in
metal respiration [88, 89]. This is in line with the difference in the reduction
potentials of these two quinones with the ubiquinone potential more aligned to
participate in aerobic respiratory chains.

4.1.1 CymA
Presently, it is well established that the linkage between the membrane quinone
pool and EET chain is provided by a tetraheme c-type cytochrome called CymA
that is attached to the periplasmic surface of the cytoplasmic membrane by a a-
helical anchor [88, 90–93]. CymA from Shewanella has 21 kDa and is a member of
the NapC/NirT protein family. It is able to bind quinol (Kd = 0.1–1 lM) [94],
functioning as a quinol oxidase [88, 92, 95]. Deletion of the cymA gene severely
hindered the reduction of a variety of substrates including Fe(III)/Mn(IV) oxides,
fumarate, nitrate, nitrate, and DMSO [82, 90, 91]. This supported the proposal that
CymA is one of the major hubs for electron transfer to the periplasm, being
essential for EET. CymA’s ability to interact with multiple periplasmic cytochrome
partners has been amply demonstrated and explored [92, 96, 97]. Also, overex-
pression of this gene is enough to enhance electricity generation by S. oneidensis
MR-1 in an MFC [98]. CymA’s role in EET was further confirmed by cloning the
gene in E. coli and observing that the heterologous expression of CymA is enough
to make this bacterium capable of EET [99].

Although no structural characterization is presently available for CymA, it
contains three low spin hemes with bis–histidine axial ligation and one high-spin
heme with a histidine–water axial ligation [88, 100]. This high-spin heme forms an
intrinsic part of the quinol oxidation site. Also, site-directed mutagenesis experi-
ments revealed that the amino acid Lysine-91 is essential for quinol interaction with
CymA from Shewanella sp. strain ANA-3 [94]. Redox properties were determined
for CymA from S. oneidensis MR-1, with macroscopic midpoint potentials at pH
7.0 of approximately −110, −190 and −265 mV for the three low-spin hemes and
−240 mV for the high-spin heme [88]. These potentials are below that of the
menaquinol/menaquinone couple (Eº’ � −80 mV), and thus electron transfer only
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becomes spontaneous when the menaquinol/menaquinone balance is shifted
towards menaquinol. Once the electrons enter the heme network, electron flow to
the metal oxides becomes thermodynamically favorable due to progressively less
negative redox potentials of the electron transfer proteins that are downstream of
CymA [101].

Despite the importance of CymA for EET, the quinol dehydrogenase complex
SirCD is capable of partially replacing it, restoring the capability of Shewanella
DcymA strains to use Fe(III), fumarate or DMSO as terminal electrons acceptors
[102]. Shewanella contains another tetraheme cytochrome attached to the
inner-membrane denominated TorC [103]. Like CymA, TorC is a quinol dehy-
drogenase and is involved in the reduction of the terminal electron acceptor,
Trimethylamine N-oxide (TMAO) to trimethylamine (TMA). This capability is the
origin of the designation putrefaciens for the smell of rotten fish [104].

4.2 Periplasmic Space

In S. oneidensis MR-1, the periplasmic space has a width of approximately 235 Å
[105] and contains an abundance of soluble electron transfer proteins (e.g. MHCs),
in extremely high concentration, estimated to reach the mM range [106]. These
proteins can be terminal reductases of soluble electron acceptors, or proteins that
mediate electron transfer to the outer-membrane proteins for the reduction of
insoluble electron acceptors. The two most abundant periplasmic cytochromes are
the tetraheme flavocytochrome c FccA [97, 107, 108] and the small tetraheme
cytochrome c STC [97, 107, 109].

4.2.1 FccA
FccA, a 64 kDa tetraheme c-type flavocytochrome, is a unidirectional fumarate
reductase with a FAD cofactor in the active site [110]. This enzyme is unique in
comparison to other fumarate reductases since it is a monomeric and soluble
periplasmic protein. X-ray crystal structures of FccA from S. frigidimarina
NCIMB400 and S. oneidensis MR-1 are available [111, 112], showing that these
proteins fold into three domains: a N-terminal cytochrome domain with four bis–
histidine low-spin c-type hemes, a C-terminal flavoprotein domain with a
non-covalently bound FAD group and a clamp domain that was proposed to control
the access to the active site of the enzyme. The hemes found in the N-terminal
domain of FccA are arranged in a quasi-linear architecture that allows an efficient
conduction of the electrons across the length of the protein to the FAD catalytic
center [111–113]. Electron transfer to the active site is performed by heme IV,
which is in close proximity (�5 Å) to the FAD cofactor.

A microscopic redox characterization was obtained for FccA from S. frigidi-
marina NCIMB400 and S. oneidensis MR-1, revealing that despite their similar
structure the details of the redox properties of the hemes are different [113, 114].
However, the differences are compatible with a common theme of internal control
of the electron transfer flow that appears to direct electrons to the flavin catalytic
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site only when the protein is reaching full reduction. From these observations a
molecular mechanism for regulating the contribution of FccA in the EET vs
fumarate reduction in Shewanella was proposed [114].

FccA can also transfer electrons to MtrA, the outer-membrane associated dec-
aheme cytochrome implicated in EET [97, 108, 115]. Binding studies performed
in vitro demonstrated that FccA interacts with its redox partners, CymA and MtrA,
through a single heme (heme II), avoiding the establishment of stable redox
complex capable of spanning the periplasmic space [97]. Gene knock-out experi-
ments of FccA showed defective phenotypes in several anaerobic cell growth
conditions involving extracellular electron acceptors [106], which corroborates the
previous studies implicating FccA as a periplasmic electron shuttle involved in the
EET pathway of Shewanella [97, 108, 115]. Furthermore, in vitro and in vivo
studies have also shown the occurrence of electron transfer between CymA and
FccA [92, 97, 108].The high abundance in the periplasm, the interactions with
CymA and MtrA, and the phenotypes of the deletion mutants make FccA a major
player in electron shuttling in the periplasm during EET.

4.2.2 STC
STC is a highly abundant small tetraheme cytochrome c from the periplasm of
Shewanella with a molecular weight of 12 kDa [116]. Based on gene knock-out
experiments, STC is recognized as a key component in the EET pathway of
S. frigidimarina NCIMB400 and S. oneidensis MR-1 [106, 109, 117, 118]. This
was rationalized by studies with double STC and FccA knock-out experiments
showing that at least one of these two cytochromes must be present in the periplasm
to allow reduction of DMSO, ferric citrate or nitrate [106]. Overexpression of STC
showed that it is a major component in the EET pathway of Shewanella [119].

High-resolution crystal structures of STC from S. oneidensis MR-1 and S. algae
are available [120, 121] and a nuclear magnetic resonance (NMR) solution structure
exists for STC from S. frigidimarina NCIMB400 [122]. Comparison of the struc-
tures from these three proteins showed that the general fold is very similar, and the
relative positions of the heme groups are well conserved [121]. All four hemes are
low-spin and have a bis–histidine axial ligation to the polypeptide chain [120–122].
The arrangement of the pairs of hemes in perpendicular and parallel geometries
allows a short distance between the cofactors that enables a rapid intramolecular
transfer of the electrons [123].

Microscopic redox properties measured for STC from S. frigidimarina
NCIMB400, S. oneidensis MR-1 and S. algae DSM 9167 revealed similarities
between these three ortholog proteins [121, 124, 125]. The microscopic reduction
potentials for the four hemes of all three STCs cover similar, although not entirely
overlapping reduction potential ranges: −190 to −229 mV; −171 to −243 mV; and
−153 to −207 mV for S. frigidimarina NCIMB400, S. oneidensis MR-1 and
S. algae DSM 9167, respectively. The redox potentials are in the range expected for
bis-histidinyl-ligated heme groups with substantial exposure to the solvent [126].
Also, the results showed that electrostatic effects dominate the heme-heme inter-
actions (covering a range of 8–56 mV for S. frigidimarina; 11–72 mV for

226 B. M. Fonseca et al.



S. oneidensis; and 6–61 mV for S. algae [121, 124, 125], in agreement with the
modest redox-linked structural modifications that occur in all three STCs. Fur-
thermore, protonation has a considerable influence (redox–Bohr effect) on the redox
properties of the hemes (covering a range of −4 to −36 mV for S. frigidimarina
NCIMB400; −9 to −56 mV for S. oneidensis MR-1; and −1 to −51 mV for
S. algae DSM 9167 [121, 124, 125], with heme III having in all three STCs the
strongest redox-Bohr interaction, with a value similar to those reported for proto-
nation of heme propionates [127]. In comparison, all three studied STC differ in
their relative order of oxidation of the hemes due to changes that have occurred over
time in their amino acid composition and/or structural arrangement. However, these
three STC still possess a common feature that is heme III always presenting the
highest reduction potential, and therefore is always the last heme to be oxidised
[121, 124, 125].

In vitro binding studies showed that STC could interact with both inner mem-
brane cytochrome CymA and outer-membrane protein MtrA from the MtrCAB
complex [97]. These studies also showed that STC interacts with its redox partners,
CymA and MtrA, through a single heme (heme IV), which forces detachment from
the donor before attaching to the acceptor, preventing the formation of stable redox
complexes that can span the periplasmic space of Shewanella [97]. Interestingly,
although STC and FccA coexist and are highly abundant in the periplasmic space of
Shewanella, they do not exchange electrons among themselves. This ensures that
electron transport across the periplasmic space via these two proteins is segregated
[97].

4.3 Outer Membrane

In order to reduce insoluble electron acceptors, electrons must cross the outer
membrane and reach the cell exterior. Several redox proteins from Shewanella have
been shown to be associated or bound to the outer membrane. Of these, the
MtrCAB-OmcA protein complex is required to achieve maximal extracellular iron
reduction rates [31, 128–130]. The genes encoding for this complex are clustered in
an operon organized in the order: omcA-mtrC-mtrA-mtrB, where MtrC and OmcA
are decaheme cytochromes present at the cell surface, MtrA is a decaheme
periplasmic cytochrome and MtrB is a porin in which MtrA and MtrC are
embedded on [131, 132].

4.3.1 MtrB
The outer-membrane ß-barrel protein MtrB is a 78 kDa protein with no cofactors
but essential for EET [128]. Its pore size is estimated to be approximately
70 � 55 � 45 Å and embed MtrA and MtrC [132, 133]. The role of MtrB in metal
reduction was first demonstrated by showing that a MtrB knock-out mutant strain
lost its ability to reduce Fe(III) and Mn(IV) oxides [128]. MtrB knock-out mutants
in S. oneidensis MR-1 showed mis-localization of both outer-membrane cyto-
chromes MtrC and OmcA [134]. Furthermore, it was also demonstrated that the
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decaheme cytochrome MtrA is only associated with the outer membrane when
MtrB is expressed [135]. Using knock-out mutations and subsequent monitoring of
complex assembly, revealed the existence of a synergetic relationship between
MtrA and MtrB [136]. The assembly of the MtrAB subcomplex stabilizes MtrB,
while subcomplex MtrBC does not assemble in the absence of MtrA. Three other
stable modules similar to MtrAB have been identified in S. oneidensis MR-1. The
MtrDE is proposed to be alternative to MtrAB, the DmsEF is part of porin cyto-
chrome complex specific for DMSO reduction and SO4359-60 forms a secondary
alternative iron reducing pathway to MtrAB [118, 130, 137, 138]. Moreover, gene
clusters encoding for homologous MtrAB modules are phylogenetically distributed
among organisms capable of electron exchange with the extracellular environment
[135, 139]. Both metal-reducing (e.g., Shewanella and Geobacter) and
metal-oxidizing (e.g., Rhodopseudomonas and Sideroxydans) bacteria have
homologous MtrAB modules (Fig. 4) [30, 31, 135, 140–142]. This strengthens the
hypothesis that the MtrAB module is essential for both outwards and inwards EET
[131, 143].

4.3.2 MtrA
Decaheme cytochrome MtrA is a 37 kDa periplasmic cytochrome with 10
bis-histidine low-spin c-type hemes that is associated with the outer membrane via
the integral membrane protein complex MtrCAB [30, 31, 135, 144, 145]. In vivo
cross-linking assays showed that MtrA interacts on the periplasmic side with the
outer membrane ß-barrel protein MtrB [144]. Also, it was shown in vitro that MtrA
forms a stable protein complex with a dissociation constant stronger than 0.1 lM
with its outer membrane partners, MtrB and MtrC [135]. However, under different
experimental conditions MtrA was found to be present in the soluble periplasmic
fraction hinting to weaker affinity for MtrB [108, 145]. In vitro studies showed that
MtrA can interact and receive electrons from the periplasmic cytochrome FccA [97,
108] and also interact with the periplasmic cytochrome STC [97]. It was also
revealed that MtrA can be directly reduced by CymA [96, 108]. Potentiometric
redox titrations showed that MtrA is active over a potential range from −100 to
−400 mV at pH 7.5 [145].

A high-resolution structure of MtrA has not been reported yet but its aminoacid
sequence shows that it is likely to be evolutionarily related to the structurally
characterized pentaheme cytochrome NrfB [146]. Small-angle X-ray scattering
showed that MtrA is shaped like an extended molecular “wire” with overall
dimensions 104 Å � 20 Å � 50 Å [133]. Given that the thickness of the

c

Fig. 4 a MtrAB gene cluster in different electroactive microorganisms and their context in the
genome. Cytochromes and b-barrel membrane proteins (MtrB/PioB homologues) are represented
in black and gray, respectively. b Phylogenetic distribution of MtrAB modules in organisms
known to be electroactive [16, 64]. Maximum-likelihood phylogeny with ModelFinder method
(best model: LG + I + G4) of concatenated sequences of MtrA and MtrB. Bootstrap and SH-Like
Test (-alrt) confidence values (from 1000 replicates each) are shown near each node of the major
splits
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Gram-negative outer membrane is �70 Å [147], the estimated length of MtrA
would be sufficient for transferring electrons heme-to-heme across the outer
membrane even though the Small Angle Neutron Scattering model of the whole
MtrCAB complex suggests that MtrA is only partially inserted in MtrB [143].
Indeed, the 3D-structure determination of an MtrCAB complex revealed that MtrA
has very little secondary structure [132], which confer greater flexibility to the
protein, allowing it to accept electrons from its various physiological partners
[97, 108].

4.3.3 Decaheme Cytochromes MtrC and OmcA
Decaheme cytochromes MtrC and OmcA are two cytochromes with 75 and 85 kDa,
respectively, anchored to the outer membrane via a lipidated cysteine [129, 148,
149]. Treatment by proteinase K significantly degraded MtrC and OmcA by 31 and
71%, respectively [148]. This indicates that both proteins are exposed on the outer
surface of the cells and that MtrC is not as exposed to the extracellular environment
as OmcA, which is coherent with the proposal that MtrC becomes partly buried
upon association with the b-barrel protein MtrB [143]. The Small Angle Neutron
Scattering structural data agree with previous in vivo cross-linking studies that
revealed an interaction of MtrC with the b-barrel protein MtrB forming in com-
bination with the decaheme cytochrome MtrA an outer membrane protein complex
MtrCAB, with a 1:1:1 stoichiometry [144]. Cross-linking assays demonstrated that
MtrC and OmcA physically interact with each other on the bacterial cells [144,
150], and in vitro studies reported a dissociation constant smaller than 0.5 lM for
the MtrC-OmcA complex [151].

Several studies showed that MtrC and OmcA are highly expressed by S. onei-
densis MR-1 under ferric iron reducing conditions [129, 130, 152] and are capable
of direct electron transfer to iron oxides [153–155]. Both MtrC and OmcA
polypeptides were shown to contain a putative hematite-binding motif
(Ser/Thr-Pro-Ser/Thr) [156] and the physical interaction between MtrC and OmcA
synergistically boosts the metal reductase activity of these outer-membrane cyto-
chromes [151]. Disruption of the mtrC or omcA genes did not affect the growth of S.
oneidensis MR-1 on soluble terminal electron acceptors, such as fumarate, nitrate
and DMSO [149]. In contrast, reduction of insoluble iron oxides and electron
transfer to MFC anodes was severely diminished [58, 82, 118, 152, 157, 158].
A series of knock-out mutations of all the outer-membrane cytochromes and sub-
sequent expression of each one individually, showed that MtrC is critical for EET
and that mutants containing only the OmcA cytochrome were not capable of
transferring electrons to iron [130]. This fact suggests that while OmcA is an iron
terminal reductase [60, 149], its contact with the periplasmic redox chain is
mediated by MtrC [130]. Additionally, it has been shown that MtrC is responsible
for most of the electron transfer to carbon electrodes, while OmcA is mainly
involved in cellular attachment to solid surfaces, playing a smaller role in electron
transfer [58]. This is coherent with data obtained by antibody functionalized atomic
force microscopy (AFM) tips that showed OmcA in the interface between the cell
and insoluble substrate, while MtrC displays a more uniform distribution across the

230 B. M. Fonseca et al.



cell surface [158]. Purified MtrC and OmcA were reported to reduce iron oxides at
much slower rates compared to measurements with intact Shewanella cells and that
with the addition of flavins, rates were increased to values comparable to those
measured with intact cells [60]. These results demonstrate a role of electron shuttle
for flavins during MtrC and OmcA mediated reduction of ferric iron oxides.

Both cytochromes have 10 low-spin c-type hemes [95, 148, 157, 158]. Poten-
tiometric titrations revealed that both MtrC and OmcA titrate over a broad range of
redox potential from +100 mV to −500 mV and −20 mV to −320 mV, respec-
tively [101, 151, 157]. Crystal structures of these proteins have revealed that the
proteins are formed by 4 domains, two multiheme domains that are flanked by two
b-barrels with b-strands arranged in Greek key motifs [159, 160]. Both MtrC and
OmcA contain a conserved decaheme staggered cross cofactor arrangement, where
an octaheme chain formed by hemes V, IV, III, I, VI, VIII, IX, X is crossed by a
tetraheme chain consisting of hemes II, I, VI, VII. All the hemes display bis‐
histidine axial ligand coordination to the heme iron, with each heme within 7 Å of
its nearest neighbor, ensuring rapid intra‐molecular electron transfer. In vitro
experiments revealed that OmcA and MtrC (as well as its homologues MtrF and
UndA) are capable of transferring electrons to chemically varied soluble electron
acceptors typically found in the oxic-anoxic interface habitats where Shewanella is
found, with clear differences in the rates for different acceptors [161]. NMR and
computational docking studies revealed that whereas for negatively charged FMN
and AQDS binding occurs near heme II, neutral riboflavin binds near hemes IX and
X and positively charged phenazine methosulphate binds near heme X in a different
position. For OmcA, which plays a more important role in surface attachment than
MtrC, it was observed that iron oxide particles and graphene oxides do not come
into close proximity to the hemes, in agreement with experimentally observed slow
electron transfer [162]. Altogether these studies reveal that the structure of these
proteins appears to be designed such as the staggered cross provides different exit
points for electron through different exposed hemes [161].

EET Enhancement in Shewanella
To increase EET in MFCs, over-expression of the MHC involved in EET of S.
oneidensis MR-1 has been used to enhance current output. For example, it was
observed that overexpression of mtrC in S. oneidensis MR-1 could generate 35%
more current in MFCs than that of wild-type organism [82]. Furthermore, the
co-expression of the metal-reducing biosynthesis gene cluster mtrC-mtrA-mtrB also
exhibited an increase in maximum current density of approximately 87% [163].
More recently, the genetic manipulation of S. oneidensis MR-1 where the proteins
that may compete with STC for EET processes in the periplasmic space were
replaced by STC, led to the creation of a mutant that presented 23% higher current
generation when compared with the wild-type strain [119]. These studies highlight
the importance of genetic engineering to design and tailor MHC towards enhanced
electron transfer processes to push forward the practical implementation of elec-
troactive organisms in BES [18].
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Genetic engineering was also shown to be crucial to increase the metabolic
capacity of S. oneidensis MR-1. The heterologous incorporation of metabolic
pathways allowed S. oneidensis MR-1 to use glucose, xylose or glycerol as the sole
carbon and energy source for electricity production in MFC [164–166]. Further-
more, the heterologous expression of proteorhodopsin, a light-dependent proton
pump, led Shewanella to consume lactate at an increased rate when it is illuminated
which was reflected by the increase in current generation when compared with
wild-type organism [167]. Recently, genetic manipulation of S. oneidensis MR-1
allowed the modification of this organism to use electrons from a cathode to drive
reduction of acetoin to 2,3-butanediol, demonstrating the capacity to genetically
engineer a microbial electrosynthesis pathway [168].

Another approach used to enhance the rate of EET in S. oneidensis MR-1 was
the increase of the intracellular electron pool, by engineering and driving the
metabolic flux toward the enhancement of intracellular NADH regeneration [169].
In this work three different modules (the de novo pathway, the salvage pathway and
the universal biosynthesis pathway) were over-expressed, and the capacity for
electricity production of mutated S. oneidensis MR-1 was evaluated. The increase
in electricity generation and Coulombic efficiency showed that an increase in the
NAD(H+) pool results in the transfer of more electrons from increased oxidation of
the electron donor to the EET pathway, enhancing intracellular electron flux and
EET rate [169].

Mediated electron transfer has been demonstrated to be one of the most
important mechanism for S. oneidensis MR-1 in performing EET. Promoting redox
shuttle biosynthesis in this organism also enhances EET efficiency in BES [163,
170]. The heterologous expression of the flavin biosynthesis pathway from Bacillus
subtilis enhanced EET rate of S. oneidensis MR-1, with an increase of 13,2 times of
the maximum power output when compared with wild-type strain [170]. Likewise,
the homologous expression of the flavin biosynthesis gene cluster ribA-E in S.
oneidensis MR-1 increased the maximum current density by approximate 110%
[163]. Furthermore, overexpression of the gene ydeH from E. coli in S. oneidensis
MR-1, responsible for the biosynthesis of c-di-GMP enhanced biofilm formation
and bioelectricity generation [171]. The high levels of intracellular c-di-GMP
promote the expression of adhesive matrix components, which facilitates bacterial
biofilm formation. The maximum power density obtained with the engineered strain
was *2.8 times higher than that achieved by the wild-type strain [171].

The recent work on the CRISPR/Cas9 approach to manipulate S. oneidensis
MR-1 enables the precise site-directed mutagenesis of the bacterial chromosome
[172]. This allows the modification of several different genes, and the introduction
of various types of mutations, including individual base changes and net gene
deletion in this model strain [172]. This approach will simplify the genetic
manipulation of this electroactive organism facilitating the implementation of
high-throughput genomic engineering technologies, contributing to the improve-
ment of this type of organisms towards the practical implementation of BES.
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5 Conclusion

MFCs have been intensively investigated over the past decades with tremendous
advances. Despite all the improvements made to increment MFC power output, the
low EET rate from electroactive microorganisms to the electrode surfaces remains a
bottleneck that prevents the practical application of BES [173–175]. At this time,
means to improve electroactivity are being explored, on the biochemical, genetic
and technological fronts [121, 176–178].

EET has been observed and studied in phylogenetically diverse microorganisms
[16], indicating that this microbial trait is widespread in nature. Despite the
microbial diversity, only a few species have emerged as model organisms for the
study of EET (e.g., Geobacter sulfurreducens, Shewanella oneidensis and Ther-
mincola spp.). Of all the EET model organisms, S. oneidensis MR-1 is the most
extensively studied and presently has the best characterized molecular mechanism
of EET [23, 32, 179]. The extensive study of Shewanella versus other electroactive
bacteria has to do with a number of combined factors such as robust growth under
oxygen conditions, existence of sequenced genome, straightforward genetic
manipulation, and robust strategies for overexpression of the relevant multiheme
cytochromes which makes these bacteria ideal to work with. It is well known that
Geobacter species are the dominant members in acetate fed BES electrode biofilms
and that Thermincola spp. are able to grow at higher temperature, and both produce
higher current densities compared to Shewanella [16, 176, 180–182], making them
more attractive candidates for BES applications. Despite these positive aspects,
several difficulties mainly involving growth and genetic manipulation have ren-
dered these bacteria more challenging to study and fully characterize their EET
pathways, with numerous gaps in the understanding of their molecular mechanisms
of EET.

Using as model organism bacteria such as S. oneidensis MR-1, our under-
standing on how EET occurs has increased greatly. Here, MHCs continuously
revealed themselves as key players, creating an efficient redox network that stret-
ches from the cytoplasmic membrane, across the periplasmic space and through the
outer membrane, transferring electrons directly or indirectly to their insoluble
acceptors [29, 183]. The detailed functional characterization of the MHCs from
microorganisms capable of EET will ultimately lead to a more rational design and
optimized biotechnological applications which use these organisms. This opti-
mization can be biological or technological, using different approaches such as
molecular biology to tune the reduction potentials of hemes found in the MHC
involved in the electron transfer pathway [121, 162, 184, 185], manipulation of
electron mediator synthesis pathways [186] reprogramming gene regulatory circuits
to enhance electron transfer pathways [187] or even surface enhancement of
electrodes for improved cellular contact [188]. Either way, all stand to benefit from
the full characterization of these complex electron transfer pathways.
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In this chapter, the key c-type cytochromes for EET in S. oneidensis MR-1 were
reviewed in order to shed light on how electrons are delivered to the cell surface
during EET and possible mechanisms that could be applied to enhance the function
of MFCs and other BES, bringing them closer to commercial applications.
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