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Abstract. Minimal complexity machines (MCMs) minimize the VC
(Vapnik-Chervonenkis) dimension to obtain high generalization abilities.
However, because the regularization term is not included in the objective
function, the solution is not unique. In this paper, to solve this problem,
we propose fusing the MCM and the standard support vector machine
(L1 SVM). This is realized by minimizing the upper bound on the deci-
sion function for the training data in the L1 SVM. We call the machine
Minimum complexity L1 SVM (ML1 SVM). We compare the ML1 SVM
with other types of SVMs including the L1 SVM using several bench-
mark data sets and show that the ML1 SVM performs comparable to or
better than the L1 SVM.

1 Introduction

In the support vector machine (SVM) [1,2], training data are mapped into the
high dimensional feature space, and in that space, the separating hyperplane is
determined so that the nearest training data of both classes are maximally sepa-
rated. Here, the distance between a data sample and the separating hyperplane
is called margin.

Motivated by the success of SVMs in real world applications, many SVM-like
classifiers have been developed to improve the generalization ability. The ideas
of extensions lie in incorporating the data distribution (or margin distribution)
to the classifiers.

To cope with this, one approach proposes kernels based on the Mahalanobis
distance [3,4]. Another approach reformulates the SVM so that the margin is
measured by the Mahalanobis distance [5,6].

Yet another approach controls the overall margins instead of the minimum
margin. In [7], a large margin distribution machine (LDM) is proposed, in which
the average margin is maximized and the margin variance is minimized. Although
the generalization ability is better than that of the SVM, the number of hyper-
parameters is larger than that of the SVM. To cope with this problem, in [8],
the unconstrained LDM (ULDM) is proposed, which has the equal number of
hyperparameters and which has the generalization ability comparable to that of
the LDM and the SVM.
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The generalization ability of the SVM can be analyzed by the VC (Vapnik-
Chervonenkis) dimension [1] and the maximum generalization ability is achieved
by minimizing the radius-margin ratio, where the radius is the minimum radius
of the hypersphere that encloses all the training data in the feature space.

If the center of the hypersphere is assumed to be at the origin, the radius of
the hypersphere can be minimized for a given feature space as discussed in [9].
The minimal complexity machine (MCM) is derived based on this assumption. In
the MCM, the VC dimension is minimized by minimizing the upper bound of the
soft-margin constraints for the decision function. Because the regularization term
is not included, the MCM is trained by linear programming. The generalization
performance of the MCM is shown to be superior to that of the SVM, but
according to our analysis [10], the solution is non-unique and the generalization
ability is not better than that of the SVM. The problem of non-uniqueness is
shown to be solved by adding the regularization term in the objective function
of the MCM, which is a fusion of the MCM and the linear programming SVM
(LP SVM) called MLP SVM.

In this paper we propose fusing the MCM with the standard SVM, i.e.,
L1 SVM, to improve the generalization ability of the L1 SVM. We call the
fused architecture minimal complexity L1 SVM (ML1 SVM). The ML1 SVM
is obtained by adding the upper bound on the decision function and the upper
bound minimization term in the objective function of the L1 SVM. We derive
the dual form of the ML1 SVM with one set of variables associated with the
soft-margin constraints and the other set, upper-bound constraints. We then
decompose the dual ML1 SVM into two subproblems: one for the soft-margin
constraints, which is similar to the dual L1 SVM, and the other for the upper-
bound constraints. These subproblems neither include the bias term nor the
upper bound. Thus, for a convergence check, we derive the exact KKT (Karush-
Kuhn-Tucker) conditions that do not include the bias term and the upper bound.
The second subproblem is different from the first subproblem in that it includes
the inequality constraint on the sum of dual variables. To remove this, we change
the inequality constraint into two equality constraints and called this architecture
ML1v SVM.

In Sect. 2, we summarize the architectures of L1 SVM and the MCM. In
Sect. 3, we discuss the architectures of the ML1 SVM and ML1v SVM. In Sect. 4,
we compare the generalization ability of the proposed classifiers with other SVM-
like classifiers using two-class and multiclass problems.

2 L1 Support Vector Machines and Minimal Complexity
Machines

In this section, we briefly explain the architectures of the L1 SVM and the MCM
[9]. Then we discuss the problem of non-unique solutions of the MCM and one
approach to solving the problem [10].
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2.1 L1 Support Vector Machines

Let the M training data and their labels be {xi, yi}(i = 1, . . . ,M), where xi

is an n-dimensional input vector and yi = 1 for Class 1 and −1 for Class 2.
The input space is mapped into the l-dimensional feature space by the mapping
function φ(x) and in the feature space the following separating hyperplane is
constructed:

w�φ(x) + b = 0, (1)

where w is the l-dimensional constant vector and b is the bias term.
The primal form of the L1 SVM is given by

min Q(w, b, ξ) =
1
2

‖w‖2 + C

M∑

i=1

ξi (2)

s.t. yi (w� φ(xi) + b) + ξi ≥ 1, ξi ≥ 0, i = 1, . . . ,M, (3)

where ξ = (ξ1, . . . , ξM )�, ξi is the slack variable for xi, and C (> 0) is the
margin parameter that determines the trade-off between the maximization of the
margin and minimization of the classification error. Inequalities (3) are called
soft-margin constraints.

2.2 Minimal Complexity Machines

The VC dimension is a measure for estimating the generalization ability of a
classifier and lowering the VC dimension leads to realizing a higher generaliza-
tion ability. For an SVM-like classifier with the minimum margin δmin, the VC
dimension D is bounded by [1]

D ≤ 1 + min
(
R2/δ2min, l

)
, (4)

where R is the radius of the smallest hypersphere that encloses all the training
data.

In training the L1 SVM, both R and l are not changed. In the LS SVM,
where ξi are replaced with ξ2i in (2) and the inequality constraints, with equality
constraints in (3), although both R and l are not changed by training, the second
term in the objective function works to minimize the square sums of yi f(xi)−1.
Therefore, like the LDM and ULDM, this term works to condense the margin
distribution in the direction orthogonal to the separating hyperplane.

The MCM that minimizes the VC-dimension, i.e., R/δmin in (4) is

min Q(α, h, ξ, b) = h + C

M∑

i=1

ξi (5)

s.t. h ≥ yi

⎛

⎝
M∑

j=1

αj Kij + b

⎞

⎠ + ξi ≥ 1, i = 1, . . . M, (6)
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where h is the upper bound of the soft-margin constraints and Kij = K(xi,xj) =
φ� (xi)φ(xj). Here, the mapping function φ(x) in (1) is [11]

φ(x) = (K11, . . . ,K1M )�, (7)

and w = α. The MCM can be solved by linear programming.
Because the upper bound h in (6) is minimized in (5), the separating hyper-

plane is determined so that the maximum distance between the training data
and the separating hyperplane is minimized.

The MCM, however, does not explicitly include the term related to the mar-
gin maximization. This makes the solution non-unique and unbounded.

To make the solution unique, in [10] the MCM and the LP SVM are fused
and the resulting classifier is called minimal complexity LP SVM (MLP SVM):

min Q(α, h, ξ, b) = Ch h +
M∑

i=1

(Cα |αi| + C ξi) (8)

s.t. h ≥ yi

⎛

⎝
M∑

j=1

αj Kij + b

⎞

⎠ + ξi ≥ 1, i = 1, . . . M, (9)

where Ch is the positive parameter and Cα = 1. Deleting Ch h in (8) and upper
bound h in (9), we obtain the LP SVM. Setting Ch = 1 and Cα = 0 in (8), we
obtain the MCM.

3 Minimal Complexity L1 Support Vector Machines

In this section, we discuss the architecture and optimality conditions of the
proposed classifiers.

3.1 Architecture

Similar to the MLP SVM, here we propose fusing the MCM given by (5) and
(6) and the L1 SVM given by (2) and (3):

min Q(w, b, h, ξ) = Ch h +
1
2

‖w‖2 + C
M∑

i=1

ξi (10)

s.t. yi (w� φ(xi) + b) + ξi ≥ 1, ξi ≥ 0, (11)
h ≥ yi (w� φ(xi) + b), i = 1, . . . , M, (12)
h ≥ 1, (13)

where ξ = (ξ1, . . . , ξM )�, Ch is the positive parameter to control the volume
that the training data occupy, and h is the upper bound of the constraints. The
upper bound defined by (6) is redefined by (12) and (13), which exclude ξi. This
makes the KKT conditions for the upper bound simpler. We call (12) the upper
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bound constraints and the above classifier minimum complexity L1 SVM (ML1
SVM).

In the following, we derive the dual problem of the ML1 SVM. Introducing
the nonnegative Lagrange multipliers αi, βi, and η, we obtain

Q(w, b, h, ξ,α,β, η) = Ch h +
1
2

‖w‖2 −
M∑

i=1

αi

(
yi (w� φ(xi) + b) − 1 + ξi

)

+C

M∑

i=1

ξi −
M∑

i=1

βi ξi −
M∑

i=1

αM+i

(
h − yi (w� φ(xi) + b)

) − (h − 1) η, (14)

where α = (α1, . . . , α2M )�, β = (β1, . . . , βM )�.
For the optimal solution, the following KKT conditions are satisfied:

∂Q(w, b, h, ξ,α,β, η)
∂w

= 0,
∂Q(w, b, h, ξ,α,β, η)

∂h
= 0, (15)

∂Q(w, b, h, ξ,α,β, η)
∂b

= 0,
∂Q(w, b, h, ξ,α,β, η)

∂ξ
= 0, (16)

αi (yi (w� φ(xi) + b) − 1 + ξi) = 0, αi ≥ 0, (17)
αM+i

(
h − yi (w� φ(xi) + b)

)
= 0, αM+i ≥ 0, (18)

βi ξi = 0, βi ≥ 0, ξi ≥ 0, i = 1, . . . , M, (19)
(h − 1) η = 0, h ≥ 1, η ≥ 0, (20)

where 0 is the zero vector whose elements are zero. Equations (17) to (20) are
called KKT complementarity conditions.

Using (14), we reduce (15) and (16), respectively, to

w =
M∑

i=1

(αi − αM+i) yi φ(xi),
M∑

i=1

αM+i = Ch − η, (21)

M∑

i=1

(αi − αM+i) yi = 0, αi + βi = C, i = 1, . . . ,M. (22)

Substituting (21) and (22) into (14), we obtain the following dual problem:

max Q(α) =
M∑

i=1

(αi − αM+i) − 1
2

M∑

i,j=1

(αi − αM+i)

×(αj − αM+j) yi yj K(xi,xj) (23)

s.t.
M∑

i=1

yi (αi − αM+i) = 0, (24)

Ch ≥
M∑

i=1

αM+i, (25)

C ≥ αi ≥ 0, Ch ≥ αM+i ≥ 0, i = 1, . . . , M. (26)
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If we delete variables αM+i and Ch from the above optimization problem, we
obtain the dual problem of the original L1 SVM.

For the solution of (23) to (26), positive αi and αM+j are support vectors.
We consider decomposing the above problem into two subproblems: 1) opti-

mizing αi (i = 1, . . . , M) and 2) optimizing αM+i (i = 1, . . . , M). To make this
possible, we eliminate the interference between αi and αM+i in (24) by

M∑

i=1

yi αi = 0,

M∑

i=1

yi αM+i = 0. (27)

Then the optimization problem given by (23) to (26) is decomposed into the
following two subproblems:

Subproblem 1: Optimization of αi

max Q(α0) =
M∑

i=1

(αi − αM+i) − 1
2

M∑

i,j=1

(αi − αM+i)

×(αj − αM+j) yi yj K(xi,xj) (28)

s.t.
M∑

i=1

yi αi = 0, (29)

C ≥ αi ≥ 0 for i = 1, . . . , M, (30)

where α0 = (α1, . . . , αM )�.

Subproblem 2: Optimization of αM+i

max Q(αM ) =
M∑

i=1

(αi − αM+i) − 1
2

M∑

i,j=1

(αi − αM+i)

×(αj − αM+j) yi yj K(xi,xj) (31)

s.t.
M∑

i=1

yi αM+i = 0, (32)

Ch ≥
M∑

i=1

αM+i, (33)

Ch > αM+i ≥ 0, i = 1, . . . , M, (34)

where αM = (αM+1, . . . , α2M )�. Here we must notice that αM+i �= Ch. If
αM+i = Ch, from (32), at least

∑

j =1,...,M, yj �=yi

αM+j = Ch (35)

is satisfied. This contradicts (33).
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We solve Subproblems 1 and 2 alternatingly until the solution converges.
Subproblem 1 is very similar to the L1 SVM and can be solved by the SMO
(Sequential minimal optimization) combined with Newton’s method [12]. Sub-
problem 2, which includes the constraint (33) can also be solved by a slight
modification of the SMO combined with Newton’s method.

3.2 KKT Conditions

To check the convergence of Subproblems 1 and 2, we use the KKT complemen-
tarity conditions (17) to (20). However, variables h and b, which are included in
the KKT conditions, are excluded from the dual problem. Therefore, as with the
L1 SVM [13], to make an accurate convergence test, the exact KKT conditions
that do not include h and b need to be derived.

We rewrite (17) as follows:

αi (yi b − yi Fi + ξi) = 0, i = 1, . . . ,M, (36)

where

Fi = yi −
M∑

j=1

yj (αj − αM+j)K(xi,xj). (37)

We can classify the conditions of (36) into the following three cases:

1. αi = 0. Because yi b − yi Fi + ξi ≥ 0 and ξi = 0, yi b ≥ yi Fi, namely, b ≥ Fi

if yi = 1; b ≤ Fi if yi = −1.
2. C > αi > 0. Because βi > 0, ξi = 0 is satisfied. Therefore, b = Fi.
3. αi = C. Because βi = 0, ξi ≥ 0 is satisfied. Therefore, yi b ≤ yi Fi, namely,

b ≤ Fi if yi = 1; b ≥ Fi if yi = −1.

Then the KKT conditions for (36) are simplified as follows:

F̄i ≥ b ≥ F̃i, i = 1, . . . , M, (38)

where

F̃i = Fi if (yi = 1, αi = 0), C > αi > 0 or (yi = −1, αi = C), (39)
F̄i = Fi if (yi = −1, αi = 0), C > αi > 0 or (yi = 1, αi = C). (40)

To detect the violating variables, we define blow and bup as follows:

blow = max
i

F̃i, bup = min
i

F̄i. (41)

If the KKT conditions are satisfied,

bup ≥ blow. (42)

The bias term is estimated to be

be =
1
2
(bup + blow), (43)

where be is the estimate of the bias term using (17).
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Likewise, using (37), (18) becomes

αM+i (h + yi Fi − yi b − 1) = 0, i = 1, . . . , M. (44)

Then the conditions for (18) are rewritten as follows:

1. αM+i = 0. From h + yi Fi − yi b − 1 ≥ 0, we have yi b − h ≤ yi Fi − 1, namely,
b − h ≤ Fi − 1 if yi = 1; b + h ≥ Fi + 1 if yi = −1.

2. Ch > αM+i > 0. yi b − h = yi Fi − 1, namely, b − h = Fi − 1 if yi = 1;
b + h = Fi + 1 if yi = −1.

The KKT conditions for (18) are simplified as follows:

if yi = −1, F̄i
− + 1 ≥ b− ≥ F̃i

−
+ 1,

if yi = 1, F̄i
+ − 1 ≥ b+ ≥ F̃i

+ − 1, i = 1, . . . , M, (45)

where b− = b + h, b+ = b − h, and

F̃i
−

= Fi + 1 if yi = −1, (46)

F̄i
− = Fi + 1 if yi = −1, Ch > αM+i > 0, (47)

F̃i
+

= Fi − 1 if yi = 1, Ch > αM+i > 0, (48)

F̄i
+ = Fi − 1 if yi = 1. (49)

To detect the violating variables, we define b−
low, b+low, b−

up, and b+up as follows:

b−
low = max

i
F̃i

−
, b+low = max

i
F̃i

+
,

b−
up = min

i
F̄i

−
, b+up = min

i
F̄i

+
.

(50)

In general, the distributions of Classes 1 and 2 data are different. Therefore,
the upper bounds of h for Classes 1 and 2 are different. This means that either of
b−
up (F̄i

−) and b+low (F̃i
+

) may not exist. But because of (32), both classes have at
least one positive αM+i each, and because of (44), the values of h for both classes
can be different. This happens because we separate (24) into two equations as in
(27). Then, if the KKT conditions are satisfied, both of the following inequalities
hold

b−
up ≥ b−

low, b+up ≥ b+low. (51)

From the first inequality, the estimate of h, h−
e for Class 2, is given by

h−
e = −be +

1
2
(b−

up + b−
low). (52)

From the second inequality, the estimate of h, h+
e for Class 1, is given by

h+
e = be − 1

2
(b+up + b+low). (53)
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3.3 Variant of Minimal Complexity Support Vector Machines

Subproblem 2 of the ML1 SVM is different from Subproblem 1 in that the former
includes the inequality constraint given by (33). This makes the solution process
makes more complicated. In this section, we consider making the solution process
similar to that of Subproblem 1.

Solving Subproblem 2 results in obtaining h+
e and h−

e . We consider assigning
separate variables h+ and h− for Classes 1 and 2 instead of a single variable h.
Then the complementarity conditions for h+ and h− are

(h+ − 1) η+ = 0, h+ ≥ 1, η+ ≥ 0, (h− − 1) η− = 0,

h− ≥ 1, η− ≥ 0, (54)

where η+ and η− are the Lagrange multipliers associated with h+ and h−,
respectively. To simplify Subproblem 2, we assume that η+ = η− = 0. This makes
the equations corresponding to (33) equality constraints. Then the optimization
problem given by (31) to (34) becomes

max Q(αM ) =

M∑

i=1

αi − 1

2

M∑

i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi,xj) (55)

s.t.

M∑

yi=1,i=1

αM+i = Ch,

M∑

yi=−1,i=1

αM+i = Ch, (56)

C ≥ αi ≥ 0, Ch ≥ αM+i ≥ 0, i = 1, . . . , M. (57)

Here, (32) is not necessary because of (56). We call the above architecture ML1v
SVM.

For the solution of the ML1 SVM, the same solution is obtained by the ML1v
SVM with the Ch value given by

Ch =
∑

i=1,...,M,yi=1

αM+i =
∑

i=1,...,M,yi=−1

αM+i. (58)

However, the reverse is not true, namely, the solution of the ML1v SVM may
not be obtained by the ML1 SVM. As the Ch value becomes large, the value
of η becomes positive for the ML1 SVM, but for the ML1v SVM, the values of
αM+i are forced to become larger. But as the following computer experiments
show, the performance difference is small.

4 Computer Experiments

In this section, we compare the generalization performance of the ML1v SVM
and ML1 SVM with the L1 SVM, MLP SVM [10], LS SVM, and ULDM [8] using
two-class and multiclass problems.
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4.1 Comparison Conditions

We determined the hyperparameter values using the training data by fivefold
cross-validation, trained the classifier with the determined hyperparameter val-
ues, and evaluate the accuracy for the test data.

We trained the ML1v SVM, ML1 SVM, and L1 SVM by SMO combined with
Newton’s method [12]. We trained the MLP SVM by the simplex method and
the LS SVM and ULDM by matrix inversion.

Because RBF kernels perform well for most pattern classification applica-
tions, we used RBF kernels: K(x,x′) = exp(−γ‖x − x′‖2/m), where γ is the
parameter to control the spread of the radius, and m is the number of inputs.

In cross-validation, we selected the γ values from
{
0.01, 0.1, 0.5, 1, 5, 10, 15,

20, 50, 100, 200
}

and the C and Ch values from
{
0.1, 1, 10, 50, 100, 500, 1000,

2000
}
. For the ULDM, C value was selected from

{
10−12, 10−10, 10−8, 10−6,

10−4, 10−3, 10−2, 0.1
}
.

For the L1 SVM, LS SVM, and ULDM, we determined the γ and C values
by grid search. For the ML1v SVM, ML1 SVM, and MLP SVM, to shorten
computation time, first we determined the γ and C values with Ch = 1 (Ch = 0.1
for the MLP SVM) by grid search and then we determined the Ch value by line
search fixing the γ and C values with the determined values.

After model selection, we trained the classifier with the determined hyper-
parameter values and calculated the accuracy for the test data. For two-class
problems we calculated the average accuracies and their standard deviations,
and performed Welch’s t test with the confidence level of 5%.

4.2 Two-Class Problems

Table 1 lists accuracies for the two-class problems. In the first column, I/Tr/Te
denotes the numbers of input variables, training data, and test data. Except
for the image and splice problems, each problem has 100 training and test data
pairs. For the image and splice problems, 20 pairs.

In the table, for each classifier and each classification problem, the average
accuracy and the standard deviation are shown. For each problem the best aver-
age accuracy is shown in bold and the worst, underlined. The “+” and “−”
symbols at the accuracy show that the ML1v SVM is statistically better and
worse than the classifier associated with the attached symbol, respectively. The
“Average” row shows the average accuracy of the 13 problems for each classifier
and “B/S/W” denotes the number of times that the associated classifier showed
the best, the second best, and the worst accuracies. The “W/T/L” row denotes
the number of times that the ML1v SVM is statistically better than, comparable
to, and worse than the associated classifier.

According to the “W/T/L” row, the ML1v SVM is statistically better than
the MLP SVM but is comparable to other classifiers. From the “Average” mea-
sure, the ULDM is the best and the ML1v SVM, the second. However, the
differences of the measures among the ML1v SVM, ML1 SVM, and L1 SVM are
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Table 1. Accuracies of the test data for the two-class problems

Problem I/Tr/Te ML1v SVM ML1 SVM L1 SVM MLP SVM LS SVM ULDM

Banana 2/400/4900 89.11± 0.70 89.18± 0.70 89.17± 0.72 89.07± 0.73 89.17± 0.66 89.12± 0.69

Cancer 9/200/77 73.12± 4.43 73.03± 4.45 73.03± 4.51 72.81± 4.59 73.13± 4.68 73.70± 4.42

Diabetes 8/468/300 76.33± 1.94 76.17± 2.25 76.29± 1.73 76.05± 1.74 76.19± 2.00 76.51± 1.95

Flare-solar 9/666/400 66.99± 2.16 66.98± 2.14 66.99± 2.12 66.62± 3.10 66.25+± 1.98 66.28+± 2.05

German 20/700/300 75.97± 2.21 75.91± 2.03 75.95± 2.24 75.63± 2.57 76.10± 2.10 76.12± 2.3

Heart 13/170/100 82.96± 3.25 82.84± 3.26 82.82± 3.37 82.52± 3.27 82.49± 3.60 82.57± 3.64

Image 18/1300/1010 97.27± 0.46 97.29± 0.44 97.16± 0.41 96.47+± 0.87 97.52± 0.54 97.16± 0.68

Ringnorm 20/400/7000 97.97± 1.11 98.12± 0.36 98.14± 0.35 97.97± 0.37 98.19± 0.33 98.16± 0.35

Splice 60/1000/2175 88.99± 0.83 89.05± 0.83 88.89± 0.91 86.71+± 1.27 88.98± 0.70 89.16± 0.53

Thyroid 5/140/75 95.37± 2.50 95.32± 2.41 95.35± 2.44 95.12± 2.38 95.08± 2.55 95.15± 2.27

Titanic 3/150/2051 77.40± 0.79 77.37± 0.81 77.39± 0.74 77.41± 0.77 77.39± 0.83 77.46± 0.91

Twonorm 20/400/7000 97.38± 0.25 97.36± 0.28 97.38± 0.26 97.13+± 0.29 97.43± 0.27 97.41± 0.26

Waveform 21/400/4600 89.67± 0.75 89.72± 0.73 89.76± 0.66 89.39+± 0.53 90.05−± 0.59 90.18−± 0.54

Average 85.27 85.26 85.26 84.84 85.23 85.31

B/S/W 3/1/0 1/3/1 1/2/0 0/1/9 3/4/3 6/1/0

W/T/L — 0/13/0 0/13/0 4/9/0 1/11/1 1/11/1

small. From the “B/S/W” measure, the ULDM is the best and the LS SVM is
the second best.

4.3 Multiclass Problems

Table 2 shows the accuracies for the ten multiclass problems. The symbol “C” in
the first column denotes the number of classes. Unlike the two-class problems,
each multiclass problem has only one training and test data pair.

We used fuzzy pairwise (one-vs-one) classification for multiclass problems
[2]. In the table, for each problem, the best accuracy is shown in bold, and the
worst, underlined. For the MLP SVM, the accuracies for the thyroid, MNIST,
and letter problems were not available.

Among the ten problems, the accuracies of the ML1v SVM and ML1 SVM
were better than or equal to those of the L1 SVM for nine and seven problems,

Table 2. Accuracies of the test data for the multiclass problems

Problem I/C/Tr/Te ML1v SVM ML1 SVM L1 SVM MLP SVM LS SVM ULDM

Numeral 12/10/810/820 [2] 99.76 99.76 99.76 99.27 99.15 99.39

Thyroid 21/3/3772/3428 [14] 97.23 97.26 97.26 — 95.39 95.57

Blood cell 13/12/3097/3100 [2] 93.55 93.19 93.16 93.36 94.23 94.61

Hiragana-50 50/39/4610/4610 [2] 98.98 99.46 99.00 98.96 99.48 98.92

Hiragana-13 13/38/8375/8356 [2] 99.79 99.89 99.79 99.90 99.87 99.90

Hiragana-105 105/38/8375/8356 [2] 100.00 100.00 100.00 100.00 100.00 100.00

Satimage 36/6/4435/2000 [14] 91.85 91.85 91.90 91.10 91.95 92.25

USPS 256/10/7291/2007 [15] 95.42 95.47 95.27 95.17 95.47 95.42

MNIST 784/10/10000/60000 [16] 96.96 96.96 96.55 — 96.99 97.03

Letter 16/26/16000/4000 [14] 97.95 98.03 97.85 — 97.88 97.75

Average 97.15 97.19 97.05 — 97.04 97.08

B/S/W 2/1/1 5/1/0 3/0/3 2/0/2 3/3/2 5/0/2
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respectively. In addition, the best average accuracy was obtained for the ML1
SVM and the second best, the ML1v SVM. This is very different from the two-
class problems where the difference was very small.

5 Conclusions

In this paper, to solve the problem of the non-unique solution of the MCM, and
to improve the generalization ability of the L1 SVM, we fused the MCM and the
L1 SVM. We derived two dual subproblems: the first subproblem corresponds to
the L1 SVM and the second subproblem corresponds to minimizing the upper
bound. We further modified the second subproblem by converting the inequality
constraint into two equality constraints. We call this architecture ML1v SVM
and the original architecture, ML1 SVM.

According to computer experiments for two-class problems, the average accu-
racy of the ML1v SVM is statistically comparable to that of the ML1 SVM and
L1 SVM. For multiclass problems, the ML1v SVM and ML1 SVM generalized
better than the L1 SVM.
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