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Abstract. Forecasting the weather is a great scientific challenge. Physics-
based, numerical weather prediction (NWP) models have been developed
for decades by large research teams and the accuracy of forecasts has
been steadily increased. Yet, recently, more and more data-driven machine
learning approaches to weather forecasting are being developed. In this
contribution we aim to develop an approach that combines the advantages
of both methodologies, that is, we develop a deep learning model to pre-
dict air temperature that is trained both onNWPmodels and localweather
data. We evaluate the approach for 249 weather station sites in Switzerland
and find that the model outperfoms the NWP models on short time-scales
and in some geographically distinct regions of Switzerland.
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1 Introduction

To forecast the weather is a long-standing scientific challenge. Also, accurate
weather forecasts have great economic impact and mitigate costs to lives and
assets in the case of high-impact weather.

Our weather is produced by a physical atmospheric system with complex
dynamics. The usual metereological models used in numerical weather predic-
tion (NWP) are based on modeling the atmospheric dynamics and atmosphere-
land-sea couplings. The simulation of these models, initialized by a wealth of
measured and inferred data, then allows to forecast various parameters such as
air temperature or precipitation. In recent years and decades, the models and
simulation techniques have been developed to the point where they allow a fairly
accurate weather forecast for up to 10 days.

Despite these successes of the common meteorological models, more and more
work is recently being undertaken that aims to produce weather forecasts using a
machine learning (ML) approach. It is hoped that this further improves weather
forecasting, especially in terms of fast and accurate spatio-temporal resolution.
Such forecasting on a relatively short time-scale is also called nowcasting.

Instead of aiming to replace the elaborate physical models completely by ML
approaches, we propose in this contribution a hybrid approach, combining the
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NWP models with a deep learning (DL) approach. We believe this combines the
advantages of NWP models such as an accurate representation of atmospheric
physics and a global approach to weather forecasting with the advantages of
data-driven ML approaches such as fast and comprehensive local data analysis.

Our approach develops a DL model which is trained on local measurement
data of weather stations and the corresponding forecasts of the NWP models
plus local past weather data. The main contributions of this work can be sum-
marised as follows: 1. We analyze the performance of the main NWP models
for Switzerland in regard to forecast accuracy of air temperature at 249 weather
station sites, 2. We design a DL model that learns to make local air temper-
ature forecasts based on the performance of the NWP models and additional
local data. As we will discuss in more detail, the results indicate that our app-
roach allows to generate improved forecasts on short time-scales and for some
geographically distinct regions of Switzerland.

The rest of the work is structured as follows: Next, we discuss the background
and related work. In Sect. 3 we describe the data situation and the NWP models
used. In Sect. 4 we describe the technical details of our approach. In Sect. 5 we
present the results of experiments with the model on Swiss weather data. In
Sect. 6 we conclude with a discussion of our approach and results.

2 Background and Related Work

Weather prediction has a long and successful history. In numerical weather pre-
diction (NWP) the methodology usually centers on modeling the physics of the
atmosphere and taking samples from numerical simulations of these models to
generate forecasts [1,2]. The approach essentially consists in modeling the physics
of the atmosphere and it couplings e.g. to sea and land, in model initialization
schemes, and running large simulations on super-computing facilities. Ensem-
ble modeling allows for an estimate of the uncertainty of forecasts. Advanced
computational techniques are used in order to run simulations of models. The
current state of the art in numerical weather prediction is reviewed by Bauer
et al. [3]. The NWP models are developed at large research centers such as the
European Centre for Medium-Range Weather Forecasts (ECMWF). We will also
use ECMWF models in this work (see Table 1), but refrain from explaining these
models in more detail as this does not constitute the focus of this contribution.

In recent years there have been more and more approaches to weather fore-
casting with ML models. These models sometimes try to predict a number of
parameters [4,5], as NWP models, but often the focus is on certain parameters,
e.g. on precipitation forecasts [7,8]. Also, some authors devise a hybrid app-
roach, by combining different models or modeling strategies, where others rely
on a straight ML or DL modeling approach. Our approach is in the spirit of
Reichstein et al. [6] where the authors argue for hybrid modeling strategies for
the earth sciences, combining physical models with ML approaches.

Some work on weather forecasting with DL methods we would like to men-
tion specifically: Grover et al. [4] develop a hybrid approach where they combine
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machine learning algorithms locally trained on key weather variables with a deep
learning model that models the joint statistics of the variables and a statistical
method for spatial interpolation. The model predicts wind, temperature, pres-
sure and dew point for weather station locations in the US and in some cases
outperforms the NOAA (National Oceanic and Atmospheric Administration)
models. Weyn et al. develop a convolutional neural network (CNN) approach to
model the atmospheric state [5]. Xingjian et al. develop a convolutional LSTM
model for precipitation nowcasting and outperfom an operational precipitation
forecasting algorithm using radar map data [7]. Hernández et al. use an autoen-
coder and FNN (feedforward neural network) to forecast accumulated daily pre-
cipitation for a meteorological station in Colombia [8]. The cited work shows
that the main DL models such as FNN, CNN, conv-LSTM, etc. are currently
being explored for weather forecasting tasks.

3 Description of Data and Weather Prediction Models

In order to build and evaluate our approach we use weather data collected by
weather stations and historic weather forecast data generated by some of the
main NWP models for Europe.

In regard to the measurement data we selected a number of key weather
parameters and collected these for 249 weather stations locations in Switzerland
for the time period 1990–2020. In this contribution we however only consider the
mean temperature 2 m above ground in 1 h frequency. The data was collected by
MeteoSwiss (Swiss Federal Institute of Meteorology and Climatology) weather
stations and provided by Meteomatics, a private weather data provider.1

The forecast data was collected for the NWP models listed in Table 1 for the
time period 2019-09-17 to 2020-03-24. These models constitute some of the main
NWP models for Europe. Some regional models such as COSMO are however
missing.

We analysed the performance of the NWP models by the mean squared error
(MSE) of their forecasts per forecast horizon for the 249 weather station sites
for the air temperature 2 m above ground. Figure 1 shows an example for the
location Wädenswil, Switzerland. We can see that, as expected, the predictions
become worse with growing forecast horizon.

We aim to beat these models or the best of these models in accuracy. However,
what is the best model for a given time and location? At some point in time
t it is not a priori clear which model will perform best for the next hours and
days. We therefore constructed a benchmark model in the following way: given
a location and some point in time we determine the model that has performed
best in the past 60 h. The forecasts of that model will be picked as comparison
to the forecasts made by our own model for the prediction made at time t.
This procedure is repeated for every location and point in time. In Fig. 1 the
thereby generated benchmark predictions, averaged over the entire time-period,
are shown, yielding the lowest prediction errors compared to the original models.

1 Meteomatics, https://www.meteomatics.com. Last accessed June 2020.

https://www.meteomatics.com
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Table 1. NWP models used in the work.

Short name Description

cmc-gem Global Environmental Multiscale model operated by the Canadian
Meteorological Center

ecmwf-ifs The European Center for Medium-Range Weather Forecasts’ (ECMWF)
Integrated Forecasting System (IFS). Atmospheric global circulation model
used for medium-range forecasts

ecmwf-ens Ensemble Prediction System (EPS) by ECMWF

ecmwf-mms Long-range seasonal forecast by ECMWF

ecmwf-vareps Long-range ensemble forecast by ECMWF

knmi-hirlam High Resolution Limited Area Model from the Royal Netherlands
Meteorological Institute.

mf-arome Regional model by Meteo France

mix Mixture model combining different models designed by Meteomatics

mm-swiss1k High-resolution model for Switzerland designed by Meteomatics

ncep-gfs Global Forecasting System by the National Centers for Environmental
Prediction (NCEP)

ncep-gfs-ens Ensemble model of Global Forecasting System by NCEP

ukmo-euro4 European model by the UK MetOffice

Fig. 1. MSE of the NWP model predictions of the air temperature 2 m above ground
for the location Wädenswil, Switzerland for different forecast horizons. The lowest
line indicates a benchmark model. Data considered for the time-period 2019-09-17 to
2020-03-24.
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4 Method

The main idea is to train locally, i.e., at each selected weather station location,
a DL model that takes as input time-series forecast data generated by the NWP
models and the measurement data at that site. There are thus several time series,
one for the measurements and several for the NWP models, which we collect in
one feature time series vector. The target is the forecast h steps into the future
which is then compared to the actual, measured values. That is, for each location
where data is available (the site of a weather station), the model aims to close
the gap between forecasted values and actually recorded values by training the
model accordingly on the historic data.

Formally, let M(t) denote the measured value at time t and let F (i)
h (t) denote

the prediction made by model i at time t for time t + h In other words, F (i)
h (t)

is an estimate of M(t + h). In this contribution, we only consider the air tem-
perature 2 m above ground as value. Because M is available on an hourly basis,
but forecasts are available on a 3 h basis only, we split M into 3 time series with
a 1 h lag relative to each other and add these new time series to the feature
vector. Given a forecast horizon h, we then construct for every time t the target
Yh(t) =

(
M(t + h)

)
and the input or feature vector

X(t) =
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We further transform, as the time series is not stationary, X(t) and Y (t) by
subtracting M(t) from each value, yielding Yh(t) =

(
M(t + h) − M(t)

)
and
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Finally, we are using X(t), · · · ,X(t − l), with look back period l = 20, for
predicting Y (t). The value for l seems reasonable to us, amounting to a 60 h look
back window, but we did not investigate that parameter value further.

The described data preparation was then carried out for each location.
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4.1 Model

With relatively small amount of data (ca. 1000 time steps), a small model with
one GRU (Gated Recurrent Unit) layer with 2 nodes and a subsequent dense
layer seemed appropriate. Larger models quickly overfitted. However we did not
yet look systematically into this matter.

4.2 Benchmark

We defined the benchmark as the prediction of the NWP model which performed
best during the past 20 time steps (the same time window with a look back period
l = 20) corresponding to 60 h. Formally, we have

bench(t) = F
(i)
h (t), where i = arg min

i

∑20

j=0
(F (i)

h (t − j) − M(t − j))2

4.3 Training

Data was split for cross validation using the last 10% of the data for testing and
the rest for training.

A model was trained using each possible combination of the following param-
eters:

– Forecast Horizon: 3 h, 6 h, 12 h, 18 h, 24 h
– Station: 1 of 249
– Look back: 20
– Weather parameter: hourly mean temperature 2 m above ground

This results in 5 · 249 = 1245 models. Each model was trained for 1000 epochs.

4.4 Implementation

All computation was done using python3.8 on linux. Models were built, trained
and evaluated on an NVIDIA RTX 2060 GPU using Tensorflow 2.1. We used
Tensorflow’s standard implementation of the ‘Adam’ optimizer and the mean
squared error (MSE) loss function.

4.5 Evaluation

For each time t, the predicted values were evaluated against the benchmark
model predictions. The error (MSE) was computed for the testing and training
sets for both the newly trained models and the benchmark model for every
station s ∈ S, resulting in msetrain(s),msetest(s), benchtrain(s), benchtest(s).
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For each station we can then build the differences msetrain(s)−benchtrain(s)
and msetest(s) − benchtest(s). If the difference is smaller than 0, the new model
is better than the benchmark for the given station.

5 Results

The performance of the new model was assessed by looking at the difference
of the prediction error to the benchmark error. The error used was the mean
squared error (MSE) either over the training period or the testing period. Here,
we focus on the results for the testing set.

5.1 Nowcasting and Geographic Differences

We evaluated the model for 249 weather station sites in Switzerland. We note
two main points: 1. The model performs consistently better for a forecast horizon
of 3 h, i.e., in the “nowcasting” range; 2. For larger forecast horizons the model
performs better for some locations or some regions of Switzerland but not for
whole country.

Figure 2 shows two examples for two distinct locations: in a) the model does
not perform better while in b) the model performs better over all forecast hori-
zons. As expected, the model performs better than the benchmark model on the
training set in both cases.

Figure 3 shows an overview of the errors per station for each forecast horizon
on a national scale. The model performs well for the 3 h forecast for most sta-
tions. Forecasts quality seems to deteriorate for increasing forecast horizon and
seem worst for 12 h forecast horizon. Interestingly, there seem to be clusters of
locations, e.g. in the canton of Valais, where the model seems to be consistently
better than the benchmark model. We therefore decided to look at the Valais
example in more detail. Figure 4 shows a zoomed in view on the stations in the
canton of Valais.

5.2 Evaluation Metrics and Error Distribution

We analyzed the differences between our model’s performance to the benchmark
model performance by looking at the mean and median differences of the MSE
of the predictions by our model and the benchmark model, further on referred
to as MBP and MEBP, respectively. Also, we assessed the ratio of stations that
performed better under the model than with the benchmark model. A station is
assumed to perform better than the benchmark, if the difference of MSE(model)
- MSE(benchmark) < 0. We performed this analysis on the level of the forecast
horizons once for all available stations and once for the Valais stations. Results
are summarized in Table 2. Both tables show that the majority of stations (81%
for Switzerland and 89% for Valais) have better forecasts with the new model
than with benchmark for the 3 h forecast. While the MPB seems to indicate
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(b) Turtmann, Canton of Valais

Fig. 2. Prediction errors of our model and benchmark model over forecast horizons for
a) Wädenswil and b) Turtmann.

better performance for all forecast horizons except the 12 h, the ratio of improved
models and the MEBP indicate that these values are probably caused by outliers.
In the case of the stations in Valais, there seems to be improvement for all forecast
horizons, although the improvement for 24 h forecast is very small.



A Hybrid Deep Learning Approach for Forecasting Air Temperature 243

(a) 3 h (b) 6 h (c) 12 h

(d) 18 h (e) 24 h

Fig. 3. Geographic error distribution: Each dot corresponds to one station. Red indi-
cates station where model performed worse than the benchmark model while blue dots
indicate stations where the model was better. Darker shades indicate larger absolute
differences. (Color figure online)

(a) 3 h (b) 6 h (c) 12 h

(d) 18 h (e) 24 h

Fig. 4. Geographic error distribution in the canton of Valais. Coloring analogous to
Fig. 3.
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Table 2. FH: forecast horizon (h), R: Ratio of stations where the model is better
than benchmark model, MPB: Mean difference of MSE of the predictions model vs.
benchmark model, MEPB: median difference of MSE of the predictions model vs.
benchmark model.

FH MPB R MEPB

3 -2.01 0.81 -1.06

6 -0.54 0.45 0.20

12 0.73 0.36 0.70

18 -0.30 0.47 0.10

24 -0.54 0.51 -0.02

(a) Switzerland

FH MPB R MEPB

3 -2.37 0.89 -1.54

6 -1.09 0.61 -0.64

12 0.46 0.56 -0.22

18 -0.99 0.54 -0.34

24 -0.43 0.51 -0.02

(b) Valais

Figure 5 shows the distribution of the difference MSE(model)−MSE
(benchmark) for all stations and for the stations in the Valais. Furthermore,
the colors indicate the mean error of the station over all forecast horizons. We
can easily recognize that stations either perform consistently bad or well over all
forecast horizons on both geographic scales. That is, if a station benefits from
the model forecasts for any forecast horizon, it is likely to benefit for the other
forecast horizons as well. This seems to support the thesis that ML boosted
models can improve forecast quality in difficult to model locations while other
locations might not benefit from our approach.

(a) Switzerland (b) Valais

Fig. 5. MSE (model) and MSE (benchmark) distribution per forecast. Colors indicate
the mean difference over all forecast horizons. Note that these colors do not correspond
to the colorscale used on the map visualizations.

6 Discussion

We have developed in this contribution an approach that combines numerical
weather prediction (NWP) models with a machine learning (ML) approach.
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Specifically, we developed a deep learning (DL) model to predict air temper-
ature 2 m above ground that is trained both on NWM models and local weather
data and evaluated the approach for 249 weather station sites in Switzerland.
Our preliminary results show that the approach has potential: in the nowcasting
domain, i.e., for short time-scales, the model performs better almost everywhere,
for longer forecast horizons it seems that the approach could bring improvements
for some but not all regions. A new task may therefore be to identify the loca-
tions that could benefit from our approach, e.g., a classifier based on geographic
features might come into play.

We currently interpret the results as shown on the map (Fig. 3) as follows:
in mountainous regions such as the Valais, the potential for improvement seems
to be highest, because there you might find yourself in a special micro weather
situation, possibly created by the mountains that shield the region from the
coarse-meshed macro weather situation simulated by the NWP models. However,
this hypothesis should be examined more closely. Unfortunately, we have not
collected forecast data for all mountain valley regions in Switzerland such as the
Engadin.

We have not yet systematically analyzed the DL model in terms of architec-
ture and parameter tuning. Therefore we think that with further experiments
and analyses of the model substantial improvements are still possible.

In future work we will work further on the following approaches: 1. To forecast
further parameters, for example to predict precipitation, 2. To use data from
neighboring stations to forecast the weather at a particular station and 3. Collect
more data, e.g. provided by small weather stations at local farmers, and develop
the model further.

We believe that the blend of NWP models and ML models has great potential
and will continue to find its way into the science of weather forecasting.
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