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Abstract. While standard dermatological images are relatively easy to
take, the availability and public release of such data sets for machine learn-
ing is notoriously limited due to medical data legal constraints, avail-
ability of field experts for annotation, numerous and sometimes rare dis-
eases, large variance of skin pigmentation or the presence of identifying
factors such as fingerprints or tattoos. With these generic issues in mind,
we explore the application of Generative Adversarial Networks (GANs) to
three different types of images showing full hands, skin lesions, and vary-
ing degrees of eczema. A first model generates realistic images of all three
types with a focus on the technical application of data augmentation. A
perceptual study conducted with laypeople confirms that generated skin
images cannot be distinguished from real data. Next, we propose models
to add eczema lesions to healthy skin, respectively to remove eczema from
patient skin using segmentation masks in a supervised learning setting.
Such models allow to leverage existing unrelated skin pictures and enable
non-technical applications, e.g. in aesthetic dermatology. Finally, we com-
bine both models for eczema addition and removal in an entirely unsu-
pervised process based on CycleGAN without relying on ground truth
annotations anymore. The source code of our experiments is available on
https://github.com/furgerf/GAN-for-dermatologic-imaging.
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1 Introduction

Generative Adversarial Networks (GANs), initially proposed in [8] have since
then produced impressive results in a variety of synthetic data generation tasks.
In contrast to other deep learning methods, which are notoriously data-intensive,
GANs achieve good results even with relatively small data sets [2,7]. This makes
GANs attractive for domains where training data is difficult or expensive to
obtain. A standard example is the medical field, where specialized machinery
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may be needed or occurrences of pathologies may be hard to find. Using data
sets augmented with GAN-generated synthetic data to train machine learning
models has improved performance in a variety of medical domains [3,9,12].

Dermatology is one domain particularly suited for the application of deep
learning models, but with far too few publicly-available data sets compared to
the diversity of the cases encountered in clinical practice. Therefore, the idea
to leverage the GAN framework to generate new samples is very promising.
However, applications in dermatology are to this date still rare. One example
is MelanoGAN [2], which generates images of skin lesions from ISIC 2017 [5].
The authors compare the results of different GAN models by training a lesion
classifier on synthetic data only. In another work, [3] generate skin lesions from
ISIC 2018 by translating lesion segmentation masks to images. The resulting
images are thus directly associated with ground truth segmentations, which can
be leveraged for further applications.

In this paper we present our results for two different types of skin lesions:
eczema and moles. For eczema we use a private data set (due to identifying
patient information) but for moles we use an established public data set for
reproducibility and as an example of the generality of our approach.

Besides technical applications such as data augmentation or the creation of
paired data, image transformation also enables domain-specific use cases such as
prediction of a skin lesion evolution or the evaluation of aesthetic effects of treat-
ment. With this in mind, we train our GAN models to add or remove eczema
from skin pictures pursuing two different strategies: a supervised approach where
we use ground truth lesion segmentation masks to target modifications to pre-
cisely defined areas as well as an unsupervised process entirely freed from the
availability of training data.

2 Materials and Methods

2.1 Data Sets

We conduct experiments on 3 different types of dermatologic images:

Sets of Hands. The first set of experiments is conducted on photos of hands.
Each of the 246 individual pairs of hands was photographed from the front and
the back side, for a total of 492 photos. They were taken under uniform condition
with green background and downscaled to 640 × 480 pixels.

Patches of Skin. Most of the remaining experiments leverage high-resolution
photos (3456 × 2304 pixels) of the back side of hands from the EUSZ2 data set
collected in the SkinApp project [17]. There are 79 photos available for training
and we use a test set of 52 photos to analyze the overfitting of the discriminator.
The photos are annotated with segmentations marking the contour of the hands
and eczema lesions. From these photos, we extract patches of skin fulfilling the
following criteria: a patch consists of skin only (no background) with a specified
amount of skin being afflicted with eczema. We create a data set with healthy
skin patches and a data set with skin with eczema patches, where 10–80% of the
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skin pixels are annotated as eczema. For these experiments, patches of 128×128
pixels are used. This procedure yields 51023 patches of healthy skin and 2872
patches of skin with eczema. Larger patch sizes yield smaller data sets and
significantly increase overfitting, especially in the case of skin with eczema.

Skin Lesions. The final data sets consist of dermoscopic images of skin lesions
from the ISIC archive 2018 [5,22]. In particular, we generate new lesion images
of Dermatofibroma (DF) and Melanoma (MEL) with 115 and 1113 samples
available for training, respectively. These different data set sizes allow to analyze
the effects on GAN performance. The original images have varying sizes and are
resized to a common resolution of 256 × 256 pixels.

2.2 Model Architecture

This section describes the architecture of the generator and discriminator models
for the experiments. Our models are based on the architecture of DCGAN [19]
with the changes described in the following paragraphs. All models are optimized
using Adam [16] with a learning rate of 5 · 10−5 and default moment decays
β1 = 0.9, β2 = 0.999 (values determined experimentally for model convergence).
The training was organized in batches of varying size depending on the image
resolution and was stopped when the training metrics converged.

Unconditional Generator. The generator for unconditional image synthesis
receives a 100-dimensional input vector (drawn independently from a standard
Gaussian), which is first passed through a dense layer to produce 64 initial feature
maps. The layer’s output is reshaped based on the desired aspect ratio of the
generated images with lower resolution. Then, a sequence of fractionally-strided
convolutions (deconvolutions) increases the image size until the desired output
resolution is achieved.

Following common practice, the number of feature maps per convolution are
halved at each resolution stage. After each convolution, the output is passed
through batch normalization [13] and activated with LeakyReLU [18]. Finally, a
regular convolution with 3 output feature maps is activated with tanh to produce
the RGB-channels of the generated image.

The hand images generator benefits from unstrided convolutions after each
deconvolution to refine the intermediate representations. This is attributed to
the comparatively large complexity of these images and does not help with the
generation of patches of skin and skin lesions. The size of the initial dense layer
and the number of deconvolutions determine the image resolution. Table 1 sum-
marizes the model parametrizations.

Table 1. Unconditional generator: image resolution overview.

Experiment Dense layers Deconvolution Resolution

Full hands (Sect. 3.1) 20× 15× 64 5 640× 480

Skin patches (Sect. 3.1) 8× 8× 64 4 128× 128

Skin lesions (Sect. 3.1) 8× 8× 64 5 256× 256
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Image Translation Generator. The image translation model is based on the
U-Net architecture [20]: an encoder with increasing number of features, which
reduces the image resolution, and a decoder to reverse the process. Additionally,
the encoded representation is translated with a sequence of residual blocks [10].
We find experimentally (with the FID score and a qualitative review of the
results) that 2 strided convolutions in the encoder and 2 deconvolutions in the
decoder yield the best results. Consequently, the residual blocks translate fea-
tures with a resolution of 32 × 32 pixels. We find that 4 residual blocks are
ideal, which is surprisingly low but can be attributed to the fact that the skin
images are small and relatively simple. Skip connections between the encoder
and the corresponding decoder stages are used as suggested by [14]. These con-
nections forward intermediate features from the encoder that are combined with
the decoder features by concatenation.

Finally, we task the image translation generator with image modification. To
that end, the input image is added to the 3 output channels of the generator,
so that it is essentially tasked with generating an image residual. The generated
residual contains the information to modify the input photo in the desired way.

Discriminator. All experiments leverage the same multi-scale discriminator
architecture [23]: two individual discriminators process an input image and
a downscaled version of the image. Afterwards, their outputs are averaged.
This improves the sensibility to low-level details and high-level structures. We
observed that more than two discriminators do not improve results, which can
be explained by our images’ lower resolution when compared with [23].

Both discriminators have the same architecture: a sequence of strided con-
volutions with batch normalization and LeakyReLU activation, followed by a
dense layer with one output neuron to produce the prediction. The features are
doubled after each convolution and the number of convolution layers matches the
deconvolution layers of the corresponding generators, as summarized in Table 1.
All the image translation experiments operate on patches of skin image with
4-convolution discriminators. As the generators produce normalized images, the
channels of the real images are also normalized before discrimination.

Model Balance and Selection. The balance between the generator and dis-
criminator is difficult to maintain, as neither should overpower the other [25].
Model balance is adjusted by selecting the number of initial features of the gen-
erator and discriminator. Table 2 summarizes the initial features of all models in
this work’s experiments. The ideal numbers of features are determined empiri-
cally with the restriction of the available GPU memory.

Besides visual inspection, we minimize the Fréchet Inception Distance (FID)
[11] to select the best model. The FID measures the dissimilarity between real
and generated images, it is commonly used to quantitatively compare the results
of GAN models. In our experiments, this metric works well with unconditional
generation, but not with image translations showing that the generator’s sec-
ondary objective of retaining certain image regions penalizes image realism.
Furthermore, we observe that FID scores computed on different data sets should
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not be compared as the data set’s inherent statistics and variability greatly
influence the FID scores.

Model selection is additionally guided by the discriminator’s predictions con-
fidence and consistency, which indicate whether the discriminator requires addi-
tional capacity to adequately distinguish real and generated samples, and thus,
to better guide generator learning.

3 Experiments

3.1 Unconditional Dermatology Data Synthesis

The first experiments concern the unconditional generation of dermatology data.
The objective is to explore the quality of generated images for different target
data sets. The findings indicate the expected performance when the GAN task
is not restricted and serves as a baseline for later comparisons with the results
of restricted tasks.

Table 2. Initial features for the generator and discriminator models.

Experiment Generator Discriminator

Full hands (Sect. 3.1) 512 32

Healthy patches (Sect. 3.1) 1024 128

Eczema patches (Sect. 3.1) 1024 256

Skin lesions (Sect. 3.1) 512 64

Targeted eczema (Sect. 3.2) 1024 256

Untargeted eczema (Sect. 3.3) 1024 256

Sets of Hands. There are two central aspects to the quality of the generated
images: high-level structures like anatomy and low-level details like textures.
Here, the multi-scale discriminator architecture proves useful, as the two dis-
criminators each focus on one of these aspects. However, many of the generated
images still contain visible defects such as hands with more than 5 fingers. These
issues are linked to unlikely generator input vectors and can be mitigated using
the truncation trick [23] to improve the quality of the generated images.

The truncation technique includes the truncation of the input below some
a priori defined threshold. Every exceeding component of the input vector is
re-sampled. Truncation trades sample variability for quality: aggressive trunca-
tion significantly reduces variability, while sample quality increases. We deter-
mine empirically that a threshold of 0.1 is suitable for the generation of hands,
based on the generated samples and FID scores. These scores are summarized
in Table 3. Figure 1 shows the results with a truncation threshold of 0.1.

While the samples do not show great variability, their quality is generally
high. The hands’ textures look realistic, the side (front or back) of most pairs of
hands can be determined in most samples and most hands consist of four fingers
and a thumb.
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Table 3. Truncation threshold selection with FID score.

Threshold 0.01 0.02 0.05 0.1 0.2 0.5 1 None

FID 111.4 94.5 75.0 69.5 69.5 70.3 74.1 74.2

Fig. 1. Samples of the unconditional generation of hands.

This application shows that high-resolution dermatology images can be gen-
erated with a relatively small data set. These images could be mistaken for real
photos at short glance. The model obtains a FID score of 74.2 without trun-
cation, a significantly lower value than in all other experiments. This indicates
that FID scores on different data sets should not be compared.

Patches of Skin. We further experiment with the unconditional generation of
images of healthy skin and of skin that contains eczema. These experiments are
a prerequisite for later eczema modification experiments.

Healthy Skin. With the large data set of 51023 patches of skin that do not
contain any eczema, our GAN is able to generate high-quality images. Samples
are shown in Fig. 2. The generated samples look very realistic and are also very
diverse. Different types of skin, as well as creases and wrinkles are generated.
The selected model achieves a FID score of 538.7.

Fig. 2. Samples of the unconditional generation of healthy skin (first line) and skin
with eczema (second line).

Skin with Eczema. We observe that the discriminator’s task becomes more
difficult when classifying patches of skin with eczema, so that the best results
are achieved when the discriminator contains more feature maps. Sample results
are shown in Fig. 2. The quality of the generated images is comparable with
the synthetic healthy skin. The skin is detailed and contains different kinds of
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wrinkles and eczema. Overall, there are more creases than in the patches of
healthy skin, which is attributed to the increased prevalence of eczema in such
areas of the hand. The model achieves a FID score of 599.6 for this task.

Perceptual Study. We further evaluate the generated images quantitatively in
a perceptual study. The results are presented in Sect. 3.1 along with the analysis
of synthetic skin lesion images.

Overfitting. Finally, we analyze the models’ overfitting, quantitatively for
the discriminator and qualitatively for the generator. For patches of skin with
eczema, the discriminator increasingly overfits over the course of the training.
Samples from the training set are predicted as real with high likelihood, while
testing samples are increasingly being rejected as generated. We observe that this
is not the case for the discriminator of healthy skin. As the discriminator for skin
with eczema has greater capacity, it is more prone to overfitting. However, we
find that overfitting is mainly linked to the data set size. Low-capacity discrim-
inators also overfit to the set of 2872 images, while high-capacity discriminator
do not overfit on larger data sets.

We further investigate how the overfitting of the discriminator for patches of
skin with eczema impacts the generator. We perform a qualitative assessment of
the generator overfitting with the common method of comparing generated sam-
ples with their nearest training samples [4,6,15]. In our experiments, the struc-
tural similarity index [24] yields more similar samples than the mean squared
error. We find that the generated samples do not contain memorized parts of
the training set, so we can conclude that the discriminator’s overfitting is not
leading the generator to overfit as well.

Skin Lesions. Finally, we generate images of skin lesions. Samples of generated
DF and MEL lesions are shown in Fig. 3.

Fig. 3. Samples of the unconditional generation of DF (first line) and MEL (second
line) lesions.

Dermatofibroma. While these images resemble the samples of the training set,
they lack variability. Furthermore, they show clear tiling artifacts, i.e. patterns
that are repeated within a generated image. In this case, the discriminator is
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trained with only 115 real samples and overfits severely. This visibly impacts
the generator: we observe structures, such as lesion shapes or the hairs in the
bottom left corners across different samples. With these negative aspects, the
generator achieves a FID score of 822.9.

Melanoma. The generated images of MEL lesions contain far greater variability
but also suffer from significant tiling. In this case, the generator’s FID is 607.8.
There is significantly less overfitting, as this data set contains 1113 samples.
However, some of the hairs are still repeated. We hypothesize that such specific
and distinctive hairs are prone to be copied, as they are rare among the real
samples.

Fig. 4. Perceptual study: the box plots show the three quartiles of the obtained F1-
scores for each data set.

Perceptual Study. We assess the realism of the generated patches of skin lesions
with a perceptual study, where we ask 104 participants (laymen without prior
training) to determine whether a given image is real or generated. The partici-
pants are asked to discriminate 20 images from one of four sets: patches of healthy
skin, patches of skin with eczema,DF lesions, andMEL lesions. They have 2–3 sec-
onds observation time per image and do not receive intermediate feedback. Such
experiments are often conducted to assess if the generated images are easily identi-
fied [14,21,23]. The classifications are evaluatedwith theF1-score and the distribu-
tion of the results are visualized per data set in Fig. 4. The majority of participants
are unable to distinguish real and generated patches of skin, regardless of the pres-
ence of eczema: the mean F1-scores are just above random guessing, with 0.58 and
0.53. The third quartiles are also very low, with 0.63 and 0.59. This result confirms
that the models are able to generate realistic skin patches. On the other hand, skin
lesions are simpler to distinguish, with a mean F1-scores of 0.65 and 0.71. This
reflects the observations of the qualitative analysis, where generated lesions look
less realistic than synthetic patches of skin. Interestingly, DF lesions are perceived
as slightly more realistic than MEL lesions.
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3.2 Targeted Eczema Modification

We formulate eczema addition and removal as an image translation task: the
generator receives a skin photo and an eczema segmentation mask as input and
should either remove or add eczema within the indicated areas. This is performed
by generating a residual, which is added to the input image. To encourage pairing
between the generator’s input and output, its adversarial objective is combined
with the relevancy loss [1].

The translations are performed between the data sets of skin with and with-
out eczema, two data sets with very different sample sizes. Thus, the set of
patches of healthy skin is truncated to 2872 samples, to match the smaller data
set. We use additional healthy skin images to train the discriminator for eczema
removal, which effectively prevents overfitting. Furthermore, we use the same
segmentation with multiple photos of healthy skin. This also helps with gener-
alization, though the effects of this technique are less pronounced.

Eczema Removal. In Fig. 5 we show the translation results of removing eczema
from afflicted skin. Columns 3 and 6 still show the same parts of hands as the
input photos in columns 1 and 4, but they no longer contain the structures
and skin disruptions associated with eczema. However, the generated patches
generally lose some fine details such as creases, which are often less visible,
compared to the inputs. We observe that the FID score applies poorly to the
results of image translation. For these experiments, the FID is often oscillating, in
this case between 600 and 1100. Thus, we rely on the visual qualitative evaluation
of the generated samples.

Fig. 5. Eczema removal (first line) and addition (second line) from afflicted skin:
columns 1 and 4 show the input photos, columns 2 and 5 the input segmentations
and columns 3 and 6 the generation results.

Eczema Addition. We modify photos of healthy skin by adding eczema to
specified areas. Figure 5 shows sample results of this translation. The generator
again produces realistic images, as we show in columns 3 and 6. Generally, the
structures of the skin are retained and fewer details are lost, compared to eczema
removal. Further, realistic-looking eczema is placed in the desired parts of the
images. These results show that convincing eczema can be in-painted accurately
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in the indicated locations, which enables applications such as simulating the
progression of untreated eczema.

3.3 Untargeted Eczema Modification

We experiment the cyclic translation between patches of skin with and without
eczema. No segmentation masks are used and the translations are learned with
the completely unsupervised CycleGAN framework [26]. The pairing between
generator input and output is achieved with the cycle consistency loss [26],
which penalizes differences between a generator’s input and its reconstruction.
While placing a greater emphasis on cycle consistency does increase the pair-
ing, this benefit comes at the cost of reduced sample quality. Sample results of
unsupervised eczema modification are shown in Fig. 6.

Fig. 6. Unsupervised cyclic eczema transformation: columns 1 and 4 show the sick and
healthy input photos, columns 2 and 5 the generated translations without and with
eczema and columns 3 and 6 the input reconstructions.

The results are realistic and the original inputs are reasonably reconstructed
although some details are missing. This is to be expected, as the generated
patches of healthy skin in column 2 should not contain any hints on where or how
to in-paint specific eczema. Eczema addition produces realistic-looking lesions,
however, it is no longer targeted and can not always be clearly determined.

The loss of details observed in previous translation experiments is barely
noticeable here, likely a positive effect of the cycle consistency objective. The
metrics of these cyclic translation experiments are more stable than those of the
individual translations. For completeness, we mention that the synthetic patches
of healthy skin have a FID of 654.7 to the real data, while the synthetic patches
of skin with eczema have a FID of 690.2. These scores are reasonably similar to
the scores of unconditional generation, with 538.7 and 599.6, respectively.

4 Conclusion

We present different applications of GANs on dermatologic images. First, uncon-
ditional image generation is performed successfully with photos of hands and
patches of skin in particular. This is also shown for skin patches in the percep-
tual study. The validity of our approach is therefore confirmed and our initial
objective to create realistic synthetic data achieved.
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In the case of generated skin lesions, the results do not look as realistic. This
could be corrected by further filtering of the images with rare features (such
as hair in our particular case), when compared to the other images in the data
set. Our analysis shows that the discriminator already overfits with data sets of
several thousand images. On the other hand, we only notice overfitting in the
generator when using smaller data sets of merely hundreds of samples. Thus, we
conclude that the discriminator complexity should be especially controlled when
working with small data sets

In the second part of this work, we explore the task of image modification,
with eczema addition or removal within a specified area. The obtained results are
again visually appealing but we observe that the FID score may be unsuitable
to assess the quality of image translation experiments. In particular, we demon-
strate the precise addition of eczema to the areas indicated by the segmentation
mask. These results open the door for new applications in dermatology such as
anomaly detection in a disease appearance or the visualization of the long term
aesthetic effects of a disease.

Finally, we also perform domain translation between healthy skin and skin
with eczema lesions in an entirely unsupervised experiment. In particular, the
eczema removal results may be interesting for future applications, such as
weakly-supervised eczema segmentation similar to [1]. This is certainly the most
probable case that researchers will encounter as labeling is a costly step. In
practice, before labeling is even considered, it is often necessary to first get pro-
totyping results which could be achieved following this approach.
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