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Abstract. To aid in making software bug-free, several high-tech compa-
nies are moving from coding to modelling. In some cases model checking
techniques are explored or have already been adopted to get more value
from these models. This also holds for Canon Production Printing, where
the language OIL was developed for modelling control-software compo-
nents. In this paper we present OIL and give its semantics. We define
a translation from OIL to mCRL2 to enable the use of model checking
techniques. Moreover, we discuss informal validity requirements on OIL
component specifications and show how these can be formalised and ver-
ified using model checking. To test the feasibility of these techniques, we
apply them to two models of systems used in production.

1 Introduction

To better understand a software system, developers can create abstract models
during the design phase. One such model is a behavioural model, which describes
the executions of the system. To prove that this model meets the requirements
the software should satisfy, one can use model checking, which enables checking
of requirements for all executions of the model. While model checking holds great
promise, industry so far seems reluctant to adopt the technique. One reason is
that most model checking tools build on academic languages, not tailored to the
needs of the average engineer.

One company that has shown an interest in using models in the development
of control software is Canon Production Printing. To investigate the benefits of a
Model-Driven Engineering approach to software engineering, a new language for
modelling the behaviour of control software, called Open Interaction Language
(OIL), was developed within the company.

While printing is the primary business domain of Canon Production Printing,
OIL contains no logic or language constructs specifically tailored to this domain
and can therefore also be used in other business domains. With the use of dedi-
cated tooling one can automatically generate efficient executable code from such
models. Moreover, OIL follows a philosophy of separation of concerns, which helps
the engineer to cope with complex behaviour by enabling one to model separate
aspects of the system separately in a concise way. This philosophy also allows for a
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readable and unambiguous visual representation, which is often deemed an indis-
pensable tool in discussions among engineers.

OIL was not specifically designed to allow for scalable formal analysis on
models written in the language. It is therefore unclear to what extent it is fea-
sible to analyse such models. In this paper, we set out to investigate exactly
this question. Our contributions are as follows. We define a formal operational
semantics for OIL and identify a number of validity requirements on OIL compo-
nent specifications. These validity requirements ensure that code, generated from
the OIL models, behaves reliably and predictably. To enable the use of model
checking techniques, we have defined and implemented a translation from OIL
component specifications to mCRL2 [17]. The latter is supported by a powerful
toolset [10] offering model checking and equivalence checking facilities. Interest-
ingly, the separation of concerns philosophy of OIL poses the biggest challenge in
devising this translation. This is mainly due to the large semantical gap between
OIL concepts and concepts typical to academic languages such as mCRL2. Our
translation from OIL to mCRL2 is implemented in the Spoofax language work-
bench [36]. We have defined the validity requirements in terms of the μ-calculus
so that they can be formally verified on OIL specifications. To test the feasibility
of our methods, we have applied these techniques to some models of systems that
are used in production at Canon Production Printing. Technical details can be
found in [9]; in this paper we focus on the more salient aspects of the work.

Related Work. There is a large body of work reporting on the successful appli-
cation of model checking to industrial cases. These works typically focus on spe-
cific business domains, such as for example railway management [2,3,5,7,26,27],
automotive [23,24,32,34] and biomedical [21,30]. The modelling languages UML
and SysML can be used to model systems of any business domain. A lot of
research has gone into verification of models written in these languages, see for
example [7,12,19,24,25,29,31,37] and the references therein.

Works on modelling control software close to ours are those on the FSM lan-
guage used at CERN [20] and on the Dezyne language developed by the company
Verum [6]. The FSM language used at CERN enforces a strict architecture that
is tailored to the specific application domain; for general use, this architecture
is often too rigid. Using the Dezyne language, a software engineer can model a
software system and automatically verify that such a model adheres to the inter-
faces it uses or implements. Compared to Dezyne, OIL is primarily a modelling
language, focussing on ease of use, flexibility and an unambiguous visualisation,
whereas Dezyne was designed with verification as the primary focus.

Outline. In Sect. 2 we introduce OIL and its semantics informally by means of a
small example and present the validity requirements. Using the same example,
we show in Sect. 3 how OIL specifications are translated to mCRL2 and how to
formally verify the validity requirements. In Sect. 4 we show the results of some
experiments on OIL models of systems used in production. Lastly, we discuss
our techniques and results in Sect. 5 and conclude in Sect. 6.
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2 OIL

OIL (Open Interaction Language) was created by Van Gool within Canon Pro-
duction Printing as a language to analyse and visualise the communication
behaviour of software systems, partly based on [16]. Using dedicated tooling, one
can visualise an OIL specification, analyse traces on it and generate executable
code. Originally the syntax of OIL was based on XML. However, as XML is not
very user friendly due its verbosity, a more compact syntax has been designed
by Denkers [13]. Although OIL is a textual language, it was designed to have a
readable yet unambiguous graphical representation. In the following section we
will give an informal description of the core constructs of OIL by means of an
example.

2.1 A Brief Introduction to OIL

Each OIL specification consists of a number of global state variables, areas and
transitions. A global state assigns a value to each global state variable. Updating
the global state is done by means of simultaneous assignment. Which updates
are performed and when is determined by the areas and transitions.

Areas are organised in a tree structure, so an area is either a root area or
has a parent. OIL distinguishes between three types of areas: regions, states
and scopes. A region contains a collection of states and refers to a global state
variable. A state in this region represents a value of the referred to global state
variable, also called the variable for this state. A region is typically used to define
an aspect of the behaviour of the system and the different states of that aspect.
A scope contains a boolean expression that serves as an invariant. It is typically
used to restrict possible behaviour.

Transitions have a source and target area and are labelled with an event.
Optionally, a transition can have a guard, a collection of assignments and an
assert. A transition between two states typically represents the update of a
variable from the value of the source state to the value of the target state.

Example. Figure 1 depicts an example OIL component specification of a system
with overheating issues, which will serve as a running example in this section. The
example has three global state variables: power, job and tmp. The variable power
models whether the system is switched off ('off') or on ('on'), the variable
job models whether the system is idle ('idle') or busy handling a job ('busy')
and the integer variable tmp models the temperature of the system. The initial
global state maps power to 'off', job to 'idle' (as can be seen by a slight
colouring of the corresponding states) and tmp to 20 (not shown in the figure).
For brevity of notation, we will denote such a global state as 〈'off', 'idle', 20〉.
Global state variables are prepended with the keyword ‘this’ to indicate that
these belong to the scope of the modelled component.
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Fig. 1. The visualisation of an OIL specification of a system with overheating issues.
(Colour figure online)

The example has eight areas: two regions, each containing two states, and
two scopes. Regions are drawn as dotted boxes, states as ovals, scopes as solid
boxes and transitions as arrows. Areas are directly contained in their parent
area. The two regions refer to the variables power and job and contain states
for each value of these variables. Each transition between two states updates
a variable to its other value. The top right scope models that the system may
only handle jobs when it is switched on. An alternative way of modelling this
restriction would be to make the region that refers to job a child of state 'on'.
The value of tmp can be updated by the assignments (the expressions preceded
by a backslash) of the lower two transitions. The right transition of these two has
a guard (the expression between square brackets) that requires the temperature
to be more than 20. The scope these transitions have as source and target limit
the temperature to be less than 45.

Each area is associated with a condition (the area condition) and an update
(the area update). The area condition of a region is true iff it is a root area or
the area condition of its parent area is true. For the area condition of a state we
additionally require that the variable for this state has the value of this state,
whereas for the area condition of a scope we additionally require that its invariant
holds. We say that an area is active given a global state iff its area condition
is true in this global state. The area update of a region or scope performs no
assignments if it is a root area, else it equals the area update of its parent area.
For a state the area update is extended with the assignment of the value of this
state to the variable for this state.

Example. In the running example there are three active areas in the initial global
state, coloured green. The region referring to power is active since it is a root
area. The state with value 'off' is active since its parent is active and the initial
global state maps power to 'off' (power = 'off'). The bottom scope is active
since it is a root area and its invariant is true. An example of an area update is
the one for state 'off', which is power := 'off'.
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An update of the global state is triggered by the occurrence of an event.
Whenever an event occurs, all transitions that are labelled with this event that
can fire, do fire. A transition can fire if its transition precondition is true, that
is when its source area is active and its guard is true in the current global state.
When a transition fires, its transition update is applied, defined by the area
update of its target area in combination with the transition’s assignments. All
updates of transitions that fire are applied simultaneously. If these updates try
to change the same variable to two different values, we say that these updates
are incompatible. This causes the event to fail, resulting in an inconsistent state.
An event can also fail if after applying the transition updates the transition
postcondition of one of its fired transitions is not met, that is if one of the fired
transition’s target area is inactive or assert is false.

Example. Suppose that in the initial global state of the running example
the event turn on() occurs. This event corresponds to two transitions, iden-
tified as turn on() #1 and turn on() #2. Both transitions can fire since
their source areas are active. When they fire, turn on() #1 updates power
to 'on' and turn on() #2 updates tmp to tmp + 5, resulting in the global
state 〈'on', 'idle', 25〉. In this global state both target areas are active, since
power = 'on' and tmp < 45, and therefore the event succeeds.

It is possible for an event to fail in the running example. When turn on()
occurs in the global state 〈'off', 'idle', 40〉, both transitions fire and result
in the global state 〈'on', 'idle', 45〉. Since in this resulting global state it
does not hold that tmp < 45, transition turn on() #2 (and therefore the event
turn on()) fails. This failure models a crash of the system due to overheat-
ing. To make this restriction more explicit to the user of the system, a guard
[this.temp < 40] can be added to turn on() #2.

As mentioned in the introduction, OIL follows the separation of concerns
philosophy. This philosophy enables one to model different aspects of the system
separately, which helps keeping the OIL models of complex systems compact.
The running example shows this philosophy well. There are three different parts
of the specification that each model a different aspect of the system: the top
left region models the power aspect, the top right region models the job aspect
and the bottom part models the temperature aspect. The separation of concerns
philosophy also allows one to easily change the specification if an aspect of the
system changes. For instance, if more detailed job handling is required for the
running example, the top right part of the OIL model that models the handling
of jobs can be easily replaced with a more refined one.

Such separate parts of an OIL model can interact with each other by means
of references to global state variables, such as power referred to by both the top
left region and the top right scope. They can also interact with each other by syn-
chronising on the same event. Synchronisation occurs whenever separate parts
of an OIL model contain transitions of the same event. When these transitions
can fire and the corresponding event occurs, the transitions fire simultaneously,
making these separate parts proceed simultaneously.
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We can force such synchronisation, that is make sure that separate parts
only proceed with an event if all involved parts can proceed, by restricting the
possible combinations of transitions of an event that can fire simultaneously. In
OIL this is done by labelling transitions with one or more concerns. Typically,
every separate part of an OIL model is associated with a unique concern. We say
that an event is part of a concern if one of its transitions is labelled with that
concern. Then an event may only occur if for each concern this event is part of,
at least one of its transitions labelled with that concern can fire. We refer to this
as the concern condition. If an event occurs and its concern condition is met, all
transitions labelled with this event that can fire, do fire.

Example. In the running example there are three concerns defined, namely
POWER, JOB and HEAT, shown after the event name on a transition. The two
transitions of event turn on() are both labelled with different concerns, namely
POWER and HEAT, which makes event turn on() only allowed if both transitions
can fire. This forces synchronisation between the part modelling the power of
the system with the part that models the temperature of the system, making it
illegal to turn the system on when it is already on.

In OIL component specifications we distinguish between two types of events:
reactive and proactive events. Reactive events are events that the component
receives from the environment, whereas proactive events are events that the
component produces itself, either internal or sent to the environment. This dis-
tinction determines in which way the code generated from an OIL specification
is executed: when a component is running in an environment it uses a scheduler
with run-to-completion semantics, which prioritises proactive events over reac-
tive events. At the level of OIL’s semantics, this effectively partitions the set of
global states in a set of quiescent global states from which no proactive events
are possible and a set of non-quiescent global states from which only (at least
one) proactive events are possible. If there is a choice between multiple proactive
events, the scheduler chooses arbitrarily.

Example. In the running example only event job done() is proactive, which
is indicated in the visualisation with a backslash preceding the event name.
Whenever a component with this specification is in a global state where event
job done() can be produced, no other event is possible. Any other global state
in this example is quiescent.

The formal semantics of OIL is defined by associating a Labelled Transition
System (LTS) to each syntactically correct OIL model. The LTS for the example
specification has a total of 16 reachable states and 28 reachable transitions. See
Fig. 2 for a visualisation of this LTS.
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Fig. 2. The LTS that describes the semantics of the running example OIL specification
of Fig. 1. The left half of a state is gray iff power = 'off', the right half of a state is
gray iff job = 'idle' and the value of tmp is written in the state. The red state with
label F indicates that an event has failed. Action label on refers to event turn on(),
off to turn off(), add to add job(), done to job done() and cool to cool down().
(Colour figure online)

2.2 Validity of OIL Component Specifications

The scheduler that is used to execute the code generated from an OIL model
is required to run as efficiently as is possible. This means that the scheduler
performs only the most basic checks to prevent system crashes. To guarantee
error-free code execution, engineers have adopted informal rules to which OIL
models should adhere, and that help prevent such situations. In the process of
formalising the semantics of OIL, we have formalised these rules as four validity
requirements. These validity requirements are expressed as constraints on the
set of paths permitted in the LTS underlying an OIL model. Below we give only
an informal explanation of these requirements and the rationale behind them.

Requirement 1. Safe lookaheadlessness: Reachable proactive events should
not fail.

When the scheduler checks which proactive events are possible, it only checks
the transition preconditions and concerns. It does not consider the postconditions
as this is computationally expensive, since it would require to apply the updates
that correspond to the event and then roll back for every proactive event. By
posing this requirement, we prevent the scheduler from possibly producing failing
events. We do allow reactive events to fail, as this is considered inappropriate
usage of the component by the environment.
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Requirement 2. Finite proactivity: All reachable sequences of proactive events
must be finite.

If a component reaches a state from which an infinite path of proactive events
is possible, such as a loop, the scheduler will follow this path and never consider
a reactive event. In the scope of a system of components, this would result
in a component that never reacts to events from other components, effectively
blocking the progress of other components.

Requirement 3. Confluent proactivity: In all reachable non-quiescent global
states, all possible sequences of proactive events that end up in a quiescent
global state must end up in bisimilar quiescent global states.

When the scheduler has the choice between multiple proactive events, there
are multiple routes of proactive events the scheduler can take until it reaches a
quiescent state. Since the scheduler chooses between proactive events arbitrarily,
the choice between these routes is non-deterministic. If some of these routes
end up in behaviourally different quiescent global states, this non-determinism
permeates the whole component, which is considered undesirable.

Requirement 4. Predictable proactivity: In all reachable non-quiescent global
states, all possible sequences of proactive events that end up in a quiescent global
state must consist of the same multi-set of events.

In case these routes of proactive behaviour consist of different events, it
would mean that whether an event is produced or not is determined non-
deterministically. This is undesired, as this event may be needed for other com-
ponents to proceed. The scheduler is free to choose the order in which the events
are produced however.

mCRL2 LPS LTS

property

PBES true/false
mcrl22lps lps2lts

lts2pbes

pbessolve

Fig. 3. One of the basic work flows in the mCRL2 toolset for generating an LTS and
for checking a mu-calculus property. The edges are labelled with tool names.

3 Model Checking OIL Specifications with mCRL2

To enable the formal verification of OIL specifications we have formalised OIL’s
LTS semantics in the modelling language mCRL2 [17] by means of a transla-
tion. With the mCRL2 toolset [10] one can visualise and simulate an mCRL2
specification and apply model checking techniques to it, such as checking proper-
ties and equivalence. Properties can be stated in the modal μ-calculus extended
with data [17]. See Fig. 3 for the workflow in the mCRL2 toolset that we use to
analyse mCRL2 specifications.
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In the following subsections we highlight the key parts of the translation from
OIL to mCRL2 (Sect. 3.1), its implementation in Spoofax [36] (Sect. 3.2) and our
formalisation of the four validity requirements (Sect. 3.3). We again use the OIL
specification of Fig. 1 as running example.

3.1 Translation to mCRL2

To represent the global state we define a type GS type, which is an object that
contains all global state variables. To query or change the value of a variable in
a global state we define getter and setter functions GET v and SET v for every
global state variable v. For each area a, we define functions AC a and AU a for
the area condition and area update respectively. To model that proactive events
have priority over reactive events, we define the quiescence condition QC, which
is true iff the current global state is quiescent. Reactive events are only allowed
when the quiescence condition is true.

The process specification consists of two processes: the main recursive process
P and a process FAIL that models event failure by means of a self-loop labelled
with an action failure. Process P is a monolithic process with one parameter
of type GS type that represents the current global state and consists of a non-
deterministic choice between so-called summands, each representing one event
and its transitions. Each summand models what happens when that event occurs
and is of the form:

PPCe(s) ∧ CCe(s) → (POSTe(UPDe(s)) → e.P(UPDe(s)) � e.FAIL)

where s is the global state parameter and e is the event this is the summand of.
The operators b → p and b → p � q are conditional process operators. For either
operator, process p is executed iff condition b is true. For the latter operator,
process q is executed iff b is false.

The proactive priority condition function PPCe(s) is true in case e is a proac-
tive event, else it equals QC. The function CCe(s) is the concern condition, which
can be easily encoded in mCRL2 using conjunctions and disjunctions over tran-
sition preconditions. The rest of the summand is more complex however. With
UPDe(s) we update the current global state to a new one using the transition
updates of the transitions of event e. The updates are applied in some fixed
order by sequentially rewriting the global state for every update. A complica-
tion is that we need to use the original global state s and not the intermediate
global state that is being updated for getting values of global state variables to
correctly simulate the simultaneous update. Also, to only apply the updates of
those transitions that fire, we need the transition preconditions. In mCRL2 we
define this sequential update by nesting update functions.

The check whether transition updates are compatible poses another issue. We
could check whether assignments to the same variable result in different values
before updating the state. However, since we do not know beforehand what
transitions of an event will fire, we need to check compatibility for every pair of
transitions in the worst case, which can lead to a number of checks quadratic
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in the number of transitions. Instead, inspired by the C++ code generator from
the original OIL tooling, we check compatibility after doing the update. This is
done by creating a compatibility check x == e for every assignment x := e. Now
if two assignments are incompatible when updating the global state, the second
assignment effectively overwrites the first, which will make the compatibility
check of the first assignment false. These compatibility checks are performed
in the function POSTe(s), together with the transition postconditions of the
transitions of event e. Similar to UPDe(s), the transition preconditions are used
to only check the postconditions and compatibility checks of transitions that
have fired.

Each summand models the following behaviour:

– If PPCe(s) ∧ CCe(s) ∧ POST (UPDe(s)) holds, event e is enabled and after
execution of e, recurse to P with the updated global state UPDe(s).

– If PPCe(s) ∧ CCe(s) ∧ ¬POST (UPDe(s)) holds, event e is enabled and after
execution of e, execute process FAIL.

– If ¬(PPCe(s) ∧ CCe(s)) holds, event e is not enabled.

For the purpose of testing the translation to mCRL2, a version of the transla-
tion was created that defined auxiliary variables in each summand, one for every
transition precondition and one for the updated state. This was done to make
the generated mCRL2 specification more readable. Somewhat to our surprise,
experiments showed that this version required considerably more time for model
checking because more rewriting effort was needed. The tool lpssumelm from the
mCRL2 toolset can typically eliminate such auxiliary variables. Remarkably, it
is not able to so on mCRL2 specifications generated by the translation from OIL.

Example. See Fig. 4 for part of the main process P of the running example,
showing only the summand for the event turn on() with auxiliary variables.
Line 4 corresponds to PPCe(s). On line 5 we define auxiliary variables f1 and
f2 which represent the transition preconditions of the transitions turn on() #1
and turn on() #2 respectively. This is done using the sum-operator to declare
the variables, followed by conditions to fix their values. The concern condition
CCe(s) is checked on line 6. On lines 7–8 we define the auxiliary variable uv GS
which represents the updated state UPDe(s). Note that the update functions
here are nested to update the global state sequentially. The variables f1 and f2
are supplied to the update functions to only apply the updates of transitions
that can fire. The postconditions POSTe(s) are shown on lines 9–10. Note that
the compatibility check GET tmp(uv GS) == GET tmp(v GS) + 5 is added due
to the update SET tmp(.., f2, GET tmp(v GS) + 5). On line 11 the action
turn on is done and then the process recurses with the updated global state, or
it starts the failure process, depending on whether the postconditions were true.
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1 proc

2 P(v_GS : GS_type) =

3 ...

4 QC(v_GS) ->

5 sum f1, f2 : Bool.(f1 == AC_off(v_GS) && f2 == AC_heat(v_GS)) ->

6 (f1 && f2) ->

7 sum uv_GS : GS_type.(uv_GS == AU_heat(SET_tmp(AU_on(v_GS,

8 f1), f2, GET_tmp(v_GS) + 5), f2)) ->

9 ((f1 => AC_on(uv_GS)) &&

10 (f2 => (AC_heat(uv_GS) && GET_tmp(uv_GS) == GET_tmp(v_GS) + 5)) ->

11 turn_on.P(uv_GS) <> (turn_on.FAIL) +

12 ...;

Fig. 4. Part of the main process P of the mCRL2 specification generated from the
running example of Fig. 1, showing only the summand for the event turn on() with
auxiliary variables.

3.2 Implementation of the Translation

The translation from OIL to mCRL2 has been implemented in the Spoofax lan-
guage workbench [36] using the model transformation language Stratego [8]. It
makes use of the already available Spoofax implementations of OIL by Denkers
[13] and mCRL2 by Van Antwerpen1. A total of 20 separate consecutive trans-
formations are used to translate an OIL specification to an mCRL2 specifica-
tion. See Fig. 5 for a visualisation of this pipeline. An OIL specification is first
transformed to the normalised AST, which serves as a middle ground between
OILXML and OILDSL. On this normalised AST a number of desugaring and
explication transformations have been defined, which are required for the trans-
formation to the desugared AST. This desugared AST is semantically equivalent
to the normalised AST, reduced to basic constructs. To annotate variables with
types, static analysis is applied on the desugared AST. Inspired by the work of
Frenken [15] on a C++ code generator for OIL in Spoofax, an additional inter-
mediate representation is generated before generating mCRL2, called OILSEM.
This intermediate representation is close to the formal definition of the semantics
of OIL. On this representation we add compatibility checks to the postconditions
of transitions. Lastly, we transform the OILSEM representation to mCRL2.

OILXML

OILDSL

NORM DES OILSEM mCRL2

desugar (14x) static analysis add comp. checks

Fig. 5. The transformation pipeline implemented in Spoofax from OIL specification
to mCRL2 specification. NORM refers to the normalised AST and DES refers to the
desugared AST.

1 https://github.com/MetaBorgCube/metaborg-mcrl2.

https://github.com/MetaBorgCube/metaborg-mcrl2
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The transformations consist of about 1200 lines of code and 400 transforma-
tion rules. Most desugar transformations are fairly small with at most 40 lines of
code and 10 transformation rules. The most complex transformation is the one
from OILSEM to mCRL2 with 300 lines of code and 130 transformation rules.

During the development of the translation to mCRL2 we have relied on the
mCRL2 toolset to check for regressions and correctness of the translation. When-
ever a new aspect of OIL was added to the translation, an OIL specification illus-
trating this aspect was translated to mCRL2. Then the corresponding LTS was
generated using the mCRL2 toolset to check whether the implementation of the
new aspect resulted in expected behaviour. Also, we used equivalence checking
to test whether a refactoring in the translation to mCRL2 did not change the
behaviour of generated mCRL2 specifications, such as the one that adds auxiliary
variables to summands. This was done by comparing the LTS before with the
LTS after the refactoring, for a test set of OIL specifications. In a few occasions
this has revealed subtle errors in refactorings that might have been overlooked
otherwise. Equivalence checking was also applied to test whether mCRL2 speci-
fications generated from the current translation and from one written in Python,
developed in an exploratory phase of this project, have the same behaviour. This
showed that there was a subtle mistake in the original Python translation that
resulted in faulty behaviour in some generated mCRL2 specifications. In general,
the use of formal methods during the development process has given us more
confidence regarding the correctness of the translation implemented in Spoofax.

3.3 Formal Verification of Validity Requirements

The validity requirements posed in Sect. 2.2 are too complex to be checked on
an OIL component specification directly, for instance by means of static analy-
sis. This is mainly because these requirements are about patterns in the global
behaviour of the component, which cannot be easily extracted from the struc-
ture of the OIL specification. To expose these patterns, we use the translation to
mCRL2 and the mCRL2 toolset to generate the underlying LTS. To check the
validity requirements on the LTS we define them in terms of the μ-calculus. In
this subsection we cover the challenges faced when doing so and provide pattern-
like formulae. We use E for the set of all events and EP for the set of all proactive
events in an OIL specification. Wherever possible, we use regular expressions as
short-hands.

The first two validity requirements can be easily encoded in the μ-calculus.
For safe lookaheadlessness we need to check whether there is any proactive event
followed by the failure action, which can be encoded by a μ-calculus formula
of the form [E∗][EP ][failure]false. With finite proactivity we want to enforce
finiteness of proactive behaviour, which can be expressed by a least fixpoint
operator as follows: [E∗]μX.[EP ]X. The remaining two Requirements 3 and 4,
confluent proactivity and predictable proactivity, are not so easily encoded in
the μ-calculus however.

For confluent proactivity we need to be able to check whether states are
bisimilar. Since the μ-calculus is based on actions, this is not possible without
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augmenting the model. To be able to identify bisimilar quiescent states, we
first reduce the LTS modulo bisimulation [35] and then add a self-loop to each
quiescent state with the action i(j), for some index j that is unique for each
quiescent state. Then we can check the requirement with a μ-calculus formula
of the form:

[E∗](〈EP 〉true ⇒ ∃j:Nat : [E∗
P ]([EP ]false ⇒ 〈i(j)〉true))

For predictable proactivity we need to be able check whether sequences con-
sist of the same multi-set of events. Since we use μ-calculus with data, we can
build up and store the sequences of proactive events encountered by mapping
each proactive event to some value. To check multi-set equality we need to define
additional maps and corresponding equations in the data specification of the
(generated) mCRL2 specification. Then we can check the requirement with a
μ-calculus formula of the form:

[E∗](〈EP 〉true ⇒ ∃w∈E∗
P

: νX(w′ : E∗
P := ε).

∧

e∈EP

[e]X(w′ + e) ∧ ([EP ]false ⇒ w ≈ w′))

where ε is the empty list and ≈ is multi-set equality.
The μ-calculus formulae for the last two requirements quantify over an infi-

nite dataset: the set of natural numbers and the set of all sequences of proactive
events are infinite. Therefore, checking these formulae does not terminate with-
out augmenting the LTS further. For each non-quiescent state s, we first follow
some sequence of proactive events w until we reach some quiescent state with
index j. Then we add two self-loops to s: one with action ti(j) (target index)
and one with action tw(w) (target word). See Fig. 6 for a visualisation of this
extension. Note that these transformations do not truly modify the behaviour
represented by the model. These actions can then be used in the μ-calculus for-
mulae for Requirements 3 and 4 right after the existential quantifier to give the
rewriter a fixed value for the enumeration. It is possible to encode these two
requirements in μ-calculus formulae for which such extensions to the LTS are
not necessary while guaranteeing termination. However, this exploits knowledge
of how the tools currently check these properties, which is undesirable in general.

s · · · ( )
p1 p2 pn−1 pn

ti(j), tw(w) i(j)
w

Fig. 6. A visualisation of how the LTS is extended with actions i, ti and tw to help
check the mu-calculus formulae for confluent proactivity and predictable proactivity.
The actions p1, . . . , pn correspond to proactive events. A (δ) within a state indicates
that this state is quiescent.
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Transformations have been defined in Spoofax to automatically generate the
μ-calculus formulae of all four validity requirements from an OIL specification.
These transformations have been defined on OILSEM to reuse the translation
to mCRL2 as much as possible. To add the i(j), ti(j) and tw(w) self-loops, a
dedicated graph transformation is applied after the LTS is generated and reduced
modulo bisimulation.

4 Experiments

To test the feasibility of our techniques, we have used two OIL models repre-
senting systems used in production at Canon Production Printing. We refer to
these two models as EPC and AGA. In the rest of this section we will give some
results and experiences regarding experiments done on these models.

To obtain the size of the global state space, we generate the LTS from the
generated mCRL2 specification. This LTS is then reduced modulo bisimulation
to remove any superfluous behaviour. Afterwards we extend this LTS with addi-
tional information as explained in Sect. 3.3 and check the validity requirements
on it. See Fig. 3 for the tools used to generate an LTS and to check a property.

The experiments are done on a laptop with Windows 10, an Intel Core i7-
56500U 2.50 GHz processor and 16 GB of RAM. Although the mCRL2 toolset
tends to run slower on Windows machines, it is the main operating system used
within Canon Production Printing. This way we can test whether we can achieve
acceptable performance within the default production environment. With regard
to the time needed for the translations, we split the transformation pipeline in
two: the translation from OIL specification to analysed desugared AST and
from analysed desugared AST to mCRL2 or μ-calculus. This is done because
the analysed desugared AST can easily be reused to do multiple translations.
For all timings mentioned we have taken the average of at least five runs, except
if the time is larger than half an hour, in which case it is only run once.

4.1 The EPC Case

The EPC model is an OIL specification with a total of 10 global state variables,
5 regions, 1 scope, 26 states, 29 transitions and 27 events. It starts with an
initialisation phase, then enters a loop and from this loop it can return to the
initial state via a termination phase. It models a system used in production, but
the code generated from the model itself is not used in production. The analysed
desugared AST of the EPC OIL specification is generated in 6.9 s. From this
analysed model the mCRL2 specification is generated in 3.3 s. The LTS can be
generated from the mCRL2 specification in 10 s. This LTS has 6466 states, 94
actions and 11491 transitions. After reduction modulo strong bisimulation, the
LTS has 1178 states and 3207 transitions.

All four validity requirements are met on this model. The reduced LTS is
extended with extra information needed for the last two validity requirements in
0.6 s. See Table 1 for the times needed to generate each requirement and check
them on this LTS.
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Table 1. The time needed to generate each requirement from the analysed desugared
AST and the time needed check the requirement on the reduced LTS for both the EPC
and the AGA case. The times shown are in seconds.

Requirement 1 Requirement 2 Requirement 3 Requirement 4

Generate Check Generate Check Generate Check Generate Check

EPC 0.06 0.7 0.06 0.4 0.1 0.9 57 1.3

AGA 1.9 35 1.8 22 2.1 129 76 125

4.2 The AGA Case

The AGA model is an OIL specification with a total of 55 global state variables,
18 regions, 2 scopes, 179 states, 220 transitions and 185 events. It starts with an
initialisation phase and then enters a loop. It models a system used in production
and, unlike the EPC model, it is used to generate the actual code for this system.
The analysed desugared AST of the AGA OIL specification is generated in 26 s.
From this analysed model the mCRL2 specification is generated in 130 s. To be
able to generate the LTS for this model within a reasonable amount of time,
some changes needed to be made to the OIL specification:

– We gave event parameters of reactive events with an infinite domain a fixed
value. These parameters represent values received from the environment. In
case such a parameter has an infinite domain, there would be an infinite
number of transitions possible in the LTS, which causes the generation of the
LTS to not terminate. Since the values of these parameters were only used
to be passed on to other components, this change does not affect the control
flow behaviour of the model.

– We removed the assignments of global state variables that are at most only
used to pass information on to other components. This keeps these variables
at their initial values, which avoids creating multiple branches in the LTS.
Note that this effectively abstracts away some event parameters in proactive
events, used to send information to the environment. This is no issue, since
we are (for now) only concerned with the behaviour of a single component.

– We added assignments to reset global state variables to their initial value
after their value becomes irrelevant. This makes the branches in the LTS that
represent different values for this variable converge earlier.

After these changes, the LTS can be generated in 63 min2. The resulting LTS
has 113844 states and 177156 transitions. After reduction modulo strong bisim-
2 As mentioned earlier, the mCRL2 toolset tends to run slower on Windows machines.

This is mostly because the compiling rewriter (passing option -rjittyc to lps2lts,
the state space generation tool), which is typically much faster than the default
rewriter, is not available on Windows machines. To experiment what improvement
the compiling rewriter could bring we used a virtual machine running Ubuntu 20.04
and using half the laptop’s memory. On this virtual machine the LTS can be gen-
erated in 6 min from the mCRL2 specification using the options -bo for mcrl22lps

and the option -rjittyc for lps2lts.
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ulation, the LTS has 23372 states and 40820 transitions. Some of this reduction
is due to non-optimal placement of the resets. However, investigation shows that
this is not the only reason for the observed reduction. For instance, we found
that the value of a certain global state variable has no effect on the behaviour if
another global state variable was set to false.

All validity requirements are met on this model. The reduced LTS is extended
with extra information needed for the last two validity requirements in 28 s. See
Table 1 for the times needed to generate each requirement and check them on
this LTS.

These validity requirements are of course not the only properties we can
check on these models. For instance, we can check deadlock freedom with the
μ-calculus formula [E∗]〈E〉true, which we can verify to be true on the AGA
model. A more interesting property is whether it is always possible to go to the
start of the loop in the AGA model. This requirement can be encoded with the
μ-calculus formula [E∗]〈E∗.start〉true, where start represents the event at the
beginning of the loop. Checking this formula on the AGA model results in false,
which is due to events in the loop that are deliberately put in the model to fail.
Removing these events from E and checking the formula again results in true.
These formulae can be checked on the reduced LTS within a few seconds.

5 Discussion of Results

Our translation from OIL to mCRL2 and the subsequent verification of two
OIL specifications show that it is possible to model check OIL specifications.
The current implementation of this translation comprises a large number of
smaller transformations to bridge the large semantical gap between OIL and
mCRL2. While this is beneficial for the maintainability and reusability of (parts
of) the translation, a monolithic translation would be more efficient. However,
the experiments show that for increasingly large models the current translation
time is rather insignificant compared to the time needed for model checking. The
generation of the fourth validity requirement seems to be an exception to this,
but investigation showed that the large generation time is caused by an issue in
the pretty printer generated by Spoofax.

At the same time, it is clear that improvements are necessary before model
checking can be made available to the average engineer. These improvements
concern both automating some of the preprocessing of OIL models needed to
scale the analysis and enhancements to the back-end verification methodology
we currently use.

Process Structure. We have chosen to describe the semantics of OIL in mCRL2
by using a single monolithic process with a parameter that represents the global
state. A drawback of having a monolithic approach over a compositional app-
roach would be the inability to reuse processes whenever only a part of an OIL
specification changes. In the monolithic approach, the whole process specifica-
tion needs be generated anew. Also, the separate composable processes could be
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reduced before being combined which could speed up the state space generation
of the whole model. Another typical benefit of a compositional approach is main-
tainability. OIL seems to be quite suitable for a compositional approach due to
the separation of concerns. However, we think that a compositional approach
for describing the semantics of OIL in mCRL2 would be more complex than the
current monolithic approach, mainly for two reasons.

Firstly, processes defined in mCRL2 lack a notion of shared variables and
can only exchange information via communication of actions. Since from every
part in an OIL specification any global state variable can be read or assigned to,
the global state would need to be synchronised between all processes frequently.
A possible alternative would be to model the global state as a separate process,
but such solutions typically scale poorly due to the overhead induced by the
extra communications needed by the main process with this additional parallel
process.

Secondly, it is complex to model the atomicity of simultaneously firing OIL
transitions in mCRL2 in a compositional manner. Communications of actions in
mCRL2 seem suitable to describe synchronisation on an event by means of con-
cerns by creating a process for each concern. However, this synchronisation also
requires updating the global state, if these updates are found to be compatible,
and checking whether the event fails. To share results and prevent race condi-
tions between processes when checking compatibility, updating the global state
and checking the postconditions, additional communication would be needed.

Automating Preprocessing. As the AGA case clearly shows, the state space of
an OIL specification has the potential to explode if it has many global state
variables. To help the state space generator, we manually analysed the usage
of these variables and adapted the OIL specification. This is both tedious and
error-prone, and therefore a candidate for automation. We note that there is
a wealth of literature on such static analysis; see for instance research in the
fields of program slicing [33] and live variable analysis [14]. A more interesting
challenge, however, is to investigate whether it is possible to implement such
static analysis techniques at the meta-level in a language workbench such as
Spoofax, so that such techniques become available to all languages defined in
such a workbench.

We remark that the mCRL2 toolset already contains some tools that help
reduce the state space by removing variables that have no effect on behaviour,
such as lpsparelm, lpssumelm and lpsstategraph [28]. However, experiments
have shown that these tools are not very effective on mCRL2 specifications
generated from OIL specifications. This is due to our monolithic representation
of the global state. To make these tools more effective, the structure of the
generated mCRL2 will have to be redesigned or the tools have to be improved.

Enhanced Back-End. The μ-calculus is a good fit for encoding two out of the
four validity requirements, namely safe lookaheadlessness and finite proactivity.
For confluent proactivity and predictable proactivity however, changes needed
to be made to the model. We do remark that this is the first time that we have
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come across a functional property that cannot be expressed in the first-order
modal μ-calculus without adding non-trivial information to the model. It may
be necessary to resort to an even more expressive logic, such as a higher-order
fixed point logic [1] or some hybrid logic [22], to encode such properties without
modifying the model. The downside of using such logics is that, as far as we
are aware of, no toolset supports such logics. Alternatively, it may be possible
to check these requirements more efficiently using other techniques, for instance
by encoding these requirements directly in a parameterised Boolean equation
system [18] (see Fig. 3), thereby sidestepping the limitations of the μ-calculus,
or by building dedicated verifiers.

Another aspect that could be exploited is that specifications such as the
AGA model have a number of global state variables set during the initialisation
phase. These basically create configurations for the behaviour that is defined in
the loop after the initialisation phase. This could be exploited by modelling them
as features instead and apply techniques in the context of software product lines
[11]. Some research has already been done regarding model checking software
product lines in the context of mCRL2 [4].

6 Conclusion

We have discussed our formalisation of the semantics of OIL, a language for
modelling system behaviour. Although OIL was not specifically designed for
the efficient application of formal methods, we have been able to define and
implement a translation from OIL component specifications to mCRL2 to enable
formal verification of such OIL specifications. We have introduced four validity
requirements and showed how these can be checked on an OIL specification using
mCRL2 and the μ-calculus. Lastly, we have translated two OIL specifications
that model systems used in production to mCRL2 and formally verified the
four validity requirements on them, thereby positively answering the question
whether OIL models can be verified. Scalability could become a concern, as the
second case study illustrates. At the same time, the modifications we made to
the second case to speed up the analysis show that standard static analyses
techniques are likely to help in mitigating such concerns.

Future Work. As software systems typically consist of multiple components,
research is needed regarding how to formalise their interaction. We expect this
to give rise to more model checking challenges such as checking system wide
properties.

OIL can also be used to define protocols, which model the communica-
tion behaviour between components. By translating protocol specifications to
mCRL2, they can be used to check whether the interaction among components
conforms to the protocol. What type of conformance relation would best fit OIL
still needs to be investigated.

Due to its mathematical nature, the μ-calculus is not a suitable language for
use by software engineers. Since OIL is aimed to be used in an industrial setting,
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we plan to investigate how engineers can easily define properties without losing
precision.

OIL is also used to model existing components (as illustrated by our first
case study). To check for regressions between these OIL specifications and the
existing implementations, one can use model-based testing; preliminary work in
this direction for OIL was carried out by Frenken [15].
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- visual automated transformations for formal verification and validation of UML
models. In: ASE, pp. 267–270. IEEE Computer Society (2002)

13. Denkers, J., van Gool, L., Visser, E.: Migrating custom DSL implementations to a
language workbench (tool demo). In: SLE, pp. 205–209. ACM (2018)

14. Fernandez, J., Bozga, M., Ghirvu, L.: State space reduction based on live variables
analysis. Sci. Comput. Program. 47(2–3), 203–220 (2003)

15. Frenken, M.: Code generation and model-based testing in context of OIL. Master’s
thesis, Eindhoven University of Technology (2019)

16. van Gool, L.: Formalising interface specifications. Ph.D. thesis, Eindhoven Univer-
sity of Technology (2006)

17. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

18. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor.
Comput. Sci. 343(3), 332–369 (2005)

19. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards
model checking executable UML specifications in mCRL2. Innovations Syst. Softw.
Eng. 6(1–2), 83–90 (2010). https://doi.org/10.1007/s11334-009-0116-1

20. Hwong, Y., Keiren, J.J.A., Kusters, V.J.J., Leemans, S.J.J., Willemse, T.A.C.: For-
malising and analysing the control software of the compact muon solenoid exper-
iment at the Large Hadron Collider. Sci. Comput. Program. 78(12), 2435–2452
(2013)

21. Islam, M.A., Cleaveland, R., Fenton, F.H., Grosu, R., Jones, P.L., Smolka, S.A.:
Probabilistic reachability for multi-parameter bifurcation analysis of cardiac alter-
nans. Theor. Comput. Sci. 765, 158–169 (2019)

22. Kernberger, D., Lange, M.: Model checking for hybrid branching-time logics. J.
Logic. Algebraic Methods Program. 110, 100427 (2020)

23. Kim, J.H., Larsen, K.G., Nielsen, B., Mikučionis, M., Olsen, P.: Formal analysis
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