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Abstract. Attack detection in cyber-physical systems (CPS) has been
approached in several ways due to the complex interactions among the phys-
ical and cyber components. A comprehensive study is presented in this paper
to compare different attack detection techniques and evaluate them based on a
defined set of metrics. This work investigates model-based attack detectors that
use mathematical system models with the sensor/actuator set as the input/output
of the underlying physical processes. The detection mechanisms include statisti-
cal change monitoring (CUSUM and Bad-Data detectors) and a machine learn-
ing based-method that analyses the residual signal. This is a tale of two testbeds,
a secure water treatment plant (SWaT) and a water distribution plant (WADI),
which serve as case studies for the diverse range of CPS infrastructures found in
cities today. The performance of the detection methods is experimentally studied
by executing various types of attacks on the plants.

Keywords: Cyber-physical systems · Water treatment systems · Water
distribution systems · Model-based attack detection

1 Introduction

A cyber-physical system (CPS) comprises of physical infrastructure that is controlled
by computation and communication frameworks. It includes a combination of intercon-
nected components such as Programmable Logic Controllers (PLCs), sensors, actua-
tors, a Supervisory Control and Data Acquisition (SCADA) workstation, and a Human
Machine Interface (HMI) that communicate across a network. The PLCs check the
present state of the system through the SCADA and implement the corresponding con-
trol actions to facilitate the proper progress and functioning of the sub-processes.

The normal operation of a CPS requires the network and physical elements to work
in tandem, for they directly influence the physical processes. Communication among
such industrial IoTs is helpful but it also exposes them to malicious entities [1,2]. This
makes the design of security measures for a CPS more complicated as compared to
those meant for pure IT systems because attacks can occur in both the cyber and physi-
cal domain [3].

Since an inter-connected CPS also incorporates wireless communication, the infras-
tructure is prone to remote breaches and attacks [4]. This can be detrimental as it endan-
gers the crucial communication links between the different nodes in a CPS, allowing
c© Springer Nature Switzerland AG 2020
A. Rashid and P. Popov (Eds.): CRITIS 2020, LNCS 12332, pp. 17–30, 2020.
https://doi.org/10.1007/978-3-030-58295-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58295-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-58295-1_2


18 S. Athalye et al.

them to be manipulated by external entities. By influencing the underlying processes
in a CPS, cyber attacks could sabotage its physical infrastructure. Physical attacks can
damage the sensors or other devices, which compromises the integrity of the data. This
is a major risk as it results in faulty data being forwarded to the controllers, which
adversely affects the control actions that are computed based on it. Conventionally,
security research is focused on detecting anomalies in the communication network part
of a CPS [5]. However, physical attacks can be more difficult to detect as they may not
be reflected in the system network [6].

In this work, case studies are done on a water treatment testbed and a water dis-
tribution testbed, wherein model-based approaches for attack detection are considered.
The sensor and control data from these plants under normal operation is used to derive
Linear Time-Invariant (LTI) system models. These models are created using a control-
theoretic approach, thus allowing the physical dynamics of the underlying processes to
be captured analytically. The attack detection methods are then applied to the residual
(the difference between the estimated and actual sensor values).

The detection performances of three attack detection techniques are evaluated in
this paper. The first two methods are statistical change detectors called Cumulative Sum
(CUSUM) and Bad-Data detectors that identify instances of abnormal data using empir-
ically determined thresholds. The third technique is a machine learning-based device
fingerprinting method called NoisePrint [3].

While gauging the performance, apart from precision, another important considera-
tion for the attack detection techniques is their sensitivity. This refers to their tendency
of raising false alarms when the plants operate normally. This is vital due to its implica-
tions in practical scenarios, wherein a system of numerous physical components needs
to be checked. Hence, the detection mechanisms are evaluated under normal operating
conditions as well as when the plants are under several attacks to acquire a comprehen-
sive understanding of their performance.

The motivation for this work is to exhaustively test and compare attack detection
techniques for CPS on different testbeds. The implementation of such methods on real-
world systems is able to provide some useful insights to address the following issues:

1. Impact of Noise on System Models: The implementation and verification of theoreti-
cal models brought up some problems, one of them being the noise from the process
for each different run. It can be seen that the effect of noise from the environmen-
tal disturbances on the process causes unpredictable deviations from its modelled
behavior.

2. Sensor Faults: One of the problems was the unseen faults in sensors even during the
normal operation of the plant, which hindered the creation of useful system models.
This means that during the data collection under normal operation, the components
must be thoroughly checked to ensure that all of them are functioning properly.

3. Data Availability and Reliability: Data availability plays a vital role in the design
and performance of an anomaly detector. Prior to model creation, it is necessary
to procure sufficient data that (a) represents the components’ entire performance
cycle, and (b) covers all possible modes of the operation of the Industrial Control
System (ICS) in the absence of momentary glitches and outliers. In general, when a
dataset is created for a study, the plant is run continuously under normal operating
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conditions. The same has been done in this study for obtaining the data to create
the models. However, when these models were tested on the plant when it was not
running, unexpected outcomes were observed.

4. Attack Detection Speed: The speed with which a process anomaly is detected is
of prime concern for the safety of the plant, but it is often ignored as a perfor-
mance attribute [7]. Rapid detection allows for appropriate actions to be taken ear-
lier, thereby mitigating the impact. Therefore, Time Taken for Detection (TTD) has
been used as an important performance metric in this study, while highlighting its
significance.

Organization: The remainder of this paper is organized as follows. The mathematical
modelling of the two testbeds as systems is explained in Sect. 2. The attack detection
framework in Sect. 3 briefly explains the working of the three detection techniques that
form the focus of this paper. Following this, Sect. 4 defines the attacker profile while
detailing the potential attack scenarios and their execution. The performance of the
detection mechanisms is evaluated in Sect. 5, whereby the techniques are tested under
normal and attack conditions. Based on the analysis of the results obtained, the conclu-
sions that map to the contributions above, are presented in Sect. 6.

2 System Model

2.1 Two Testbeds: Our Playground

Research facilities with operational testbeds of prevalent cyber-physical systems have
been utilised to implement the security strategies and test their capabilities. As men-
tioned earlier, these include a secure water treatment plant (SWaT) [8] and a water
distribution plant (WADI) [9]. These are operational, scaled down plants that simulate
the larger industrial infrastructure found in cities today. The physical process here is that
of water flow, wherein it undergoes specific processes, for e.g., ultra-filtration, reverse
osmosis, etc. The plants are divided into different stages, each carrying out a specific
sub-process. The detailed workings of the testbeds are explained in papers [8,9].

2.2 System Models

Each of the two testbeds is treated as a multi-input, multi-output system, following the
model-based approach. A system model represents the dynamics of a physical process
using a mathematical formulation. Sub-space system identification techniques are used
to obtain models of the following form, for a system with p control inputs (actuators)
and m outputs (sensors): {

xk+1 = Axk+Buk+ vk,
yk =Cxk+ηk.

(1)

where k represents the time instance, x ∈ R
n is system state vector of n states, A ∈

R
n×n is state-space matrix, B ∈ R

n×p is the control matrix, y ∈ R
m is the vector of the

measured outputs, C ∈ R
m×n is measurement matrix, and u ∈ R

p denotes the system
control input.

The state-space matrices A,B andC capture the system dynamics and can be used to
find a specific system state given an initial state. The sensor and process noise vectors
are represented by ηk and vk, respectively.
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2.3 Validation of the System Models

It is necessary to validate the models created for each of the systems. For this, the state-
space matrices from the system identification process are applied and the estimates
for the output of the system are obtained. These modelled values and real-time sensor
measurements are then compared. The difference between the measured sensor values
and estimates is considered using the root mean square error (RMSE). The RMSE value
for N readings is given as follows:

RMSE=

√
∑N
i=1

(
yi − ŷi

)2
N

.

where yi is the actual i-th sensor reading, and ŷi is the i-th model estimate.
The accuracy of the system identification-based model for 6 sensors in the SWaT

testbed is shown in Table 1 as an example, and it can be seen this model has high accu-
racy. In control theory literature, models with accuracy as high as 70% are considered
a sufficiently precise approximation of real system dynamics [10,11].

Table 1. Validating SWAT model obtained from sub-space system identification.

Sensor FIT101 LIT101 LIT301 FIT301 LIT401 FIT401

RMSE 0.0363 0.2867 0.2561 0.0200 0.2267 0.0014

(1-RMSE) * 100% 96.3670 71.3273 74.3869 98.0032 77.3296 99.8593

3 Attack Detection Framework

This work focuses on detecting attacks on sensors, primarily by validating the incoming
readings. This is done by (1) estimating the sensor output using the system model, and
(2) examining the residual between the actual and estimated values and verifying the
source of the sensor readings. The second step is in turn done using the three different
detectors (CUSUM, Bad-Data and NoisePrint) for comparison.

System Model and Estimation: The concept of creating system models is explained
in the previous section. These can be obtained either using data-based techniques or
from first principles [12–14]. Using the system model, it is possible to estimate the
states of the system and ultimately predict the output from a sensor applying Eq. 1. At
a time instance k, a residual vector (rk) is calculated by taking the difference between
the sensor measurements (yk) and estimated sensor output (ŷk), which is given as:

rk = yk − ŷk. (2)

For the residual, the hypothesis testing is for H0, the normal mode (no attacks), and
H1, the faulty mode (with attacks). The residuals are obtained using this data and the
state estimates. The two hypotheses are stated as follows:
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H0 :

{
E[rk] = 0,
E[rkrTk ] = Σ, or H1 :

{
E[rk] �= 0,
E[rkrTk ] �= Σ.

Threshold-Based Detection: To detect the presence of an attack, the residual vector
is tested against a predefined threshold designed for a particular false alarm rate. A
threshold is created for the residual distribution, and while testing the model against
the actual data from the plant, an attack is declared if the residual values exceed that
threshold:

|rk| > τ, Alarm= TRUE (3)

where τ is the threshold and |rk| is the absolute value of the residual. There have been
studies on optimizing the parameters of different stateful and stateless detectors [13,14].
Next, the three attack detection techniques deployed in this study are outlined.

3.1 Cumulative Sum (CUSUM) Detector

The standard CUSUM [15] procedure is explained using the following equations.

CUSUM: S−
0,i = 0, S+0,i = 0, k̃+i = 0, k̃−

i = 0,
{
S+k,i =max(0,S+k−1,i+ rk,i − T̄i −κi), if S+k−1,i ≤ τ+i ,
S+k,i = 0 and k̃+i = k̃+i +1, if S+k−1,i > τ+i .

(4)

{
S−
k,i =min(0,S−

k−1,i+ rk,i − T̄i+κi), if S−
k−1,i ≥ τ−

i ,

S−
k,i = 0 and k̃−

i = k̃−
i +1, if S−

k−1,i < τ−
i .

(5)

Design parameters: bias κi > 0 and threshold τi > 0.
Output: alarm(s) = k̃+i + k̃−

i .

From Eqs. 4–5, it can be observed that the CUSUM values S+k,i and S−
k,i accumulate the

distance measured rk,i over time to measure how far the values of the residual are from
the target mean (T̄i). The slack variable κ can be adjusted to tune this window for error.
The parameters are chosen suitably to achieve a required false alarm rate A∗

i .

3.2 Bad-Data Detector

The Bad-Data detector is widely used in the CPS security literature [16].

Bad-Data Procedure:

If |rk,i| > αi, k̃i = k, i ∈ I. (6)

Design parameter: threshold αi > 0.

Output: alarm time(s) k̃i.

Using the Bad-Data detector, an alarm is triggered if distance measure, taken as |rk,i|,
exceeds the threshold αi. Analogous to the CUSUM procedure, the parameter αi is
selected to satisfy a required false alarm rate A∗

i .
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3.3 NoisePrint (Machine Learning-based Device Fingerprinting)

NoisePrint is a sensor fingerprinting technique that makes use of a Support Vector
Machine (SVM) [3]. It is based on the principle that when the system is in steady
state [17], the residual vector of its model is a function of sensor and process noise.
Therefore, it is possible to extract these sensor and process noise characteristics of the
given ICS from the residual vectors. Following this, pattern recognition techniques such
as machine learning are applied on the residual vectors to fingerprint the given sensor
and process.

The proposed scheme begins with data collection which is then divided into smaller
chunks to extract a set of time domain and frequency domain features. Features are
combined and labeled with a sensor ID. A machine learning algorithm is used for clas-
sifying sensors based on their noise profiles. For more details, an interested reader is
referred to [3,18].

4 Threat Model

Since the attacks taken into consideration for this work are on sensors, a few assump-
tions have been made about the attacker. These are given as follows:

1. The attacker has access to yk,i =Cixk+ηk,i (i.e., the i-th sensor measurements at the
kth time instance).

2. The attacker has the knowledge about the system dynamics, the state-space matrices,
the control inputs and outputs, and the implemented detection measure.

Tables 2 and 3 show the attacks carried out on SWaT and WADI. Based on their execu-
tion, these can be classified as follows:

– Single-point Attack—these types of attacks target a single point in the system,
manipulating its value and/or disrupting its communication link.

– Multi-point Attack—in these types of attacks, multiple points are targeted simulta-
neously.

– Stealthy Attack—these are the attacks wherein the data value of a sensor is altered
very slightly, which makes it difficult to detect the abnormality.

The single- and multi-point attacks, in turn, can be single-stage or multi-stage. In
single-stage attacks, the attack points are limited to one particular stage of the plant,
whereas in multi-point attacks, the target points can be spread across several stages. In
real scenarios, these are dependent on the attacker’s competence, extent of access and
intentions.

The attacks mentioned in Tables 2 and 3 simulate data injection attacks of two kinds:

– Bias Injection Attack: The attacker’s goal in this type of attack is to deceive the
control system by sending incorrect sensor readings. The attack vector in such a
scenario can be defined as:

ȳk = yk+δk, (7)

where ȳk is the general sensor measurement at a time instance k, yk is the actual
sensor reading and δk is the biased value injected by the attacker.
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For e.g., Atk-2-s in Table 2 is a simple attack wherein a bias is added to the LIT-101
reading such that the value read by the PLC is changed from the original, which is
659mm, to a spoofed value of 850mm. Similarly, in Atk-2-w in Table 3, the 2-FIT-
001 value is changed from its original 0 m3/h to a 1.5 m3/h, and the control actions
taken by the PLC are based on this fake value.

– Stealthy Attack: In this case, the attack vector δk for Eq. (7) is chosen in a way
that it stays inconspicuous while using statistical detectors. This happens because in
these types of attacks, the residual vector may not noticeably change or exceed the
thresholds, which is necessary for statistical detectors to confirm an attack.
A example of a stealthy attack is Atk-1-s from Table 2. In this attack, the reading
of LIT-101 is originally 659mm, and during the course of the attack, a small bias is
repeatedly injected such that this value gradually increases by 1mm every second.

Such attacks are operational technology (OT) attacks that aim to compromise the
normal performance of the plant by manipulating sensor and/or actuator states. The
SCADA system coupled with the SWaT and WADI testbeds provides an option of man-
ually altering the sensor/actuator values that are being sent to the PLCs, and this func-

Table 2. List of attacks (SWaT): column 1 states the attack ID, and column 2 provides the details,
wherein the ‘/’ separates the system state before and during the attack.

Attack ID Description (Initial state/Attack state)

Stage 1

Atk-1-s LIT101 = 659mm/change level +1mm/s

Atk-2-s LIT101 = 659mm/LIT101 = 850mm

Atk-3-s LIT101 = 659mm/LIT101 = 210mm

Atk-4-s LIT101 = 679mm/LIT101 = 700mm

Atk-5-s LIT101 = 1029mm/LIT101 = 700mm

Atk-6-s LIT101 = 789mm/LIT101 = 789mm

Atk-7-s LIT101 = 784mm/LIT101 = 600mm

Stage 3

Atk-8-s L < LIT301 < H/LIT301 = HH+

Atk-9-s L < LIT301 < H/change level −1mm/s

Atk-10-s L < LIT301 < H/change level −0.5mm/s

Atk-11-s FIT301 = 0 m3/h/FIT301 = 2m3/h

Atk-12-s L < LIT301 < H/water leakage attack

Stage 4

Atk-13-s FIT401 = 0.48m3/h/FIT401 = 0m3/h

Atk-14-s LIT401 < 1000mm, P401 = ON/LIT401 = 1000mm and P401 = ON

Atk-15-s L < LIT401 < H, P301 = ON/LIT401 = 600mm and P301 = ON

Atk-16-s L < LIT401 < H/LIT401 < L

Atk-17-s LIT401 = 1005mm/LIT401 = 1005mm



24 S. Athalye et al.

Table 3. List of attacks (WADI): column 1 states the attack ID, and column 2 provides the details,
wherein the ‘/’ separates the system state before and during the attack.

Attack ID Description (Initial state/Attack state)

Atk-1-w 1-FIT-001 = 1.71m3/h/1-FIT-001 = 1.5m3/h

Atk-2-w 2-FIT-001 = 0m3/h/2-FIT-001 = 1.5m3/h

Atk-3-w 2-FIT-003 = 0m3/h/2-FIT-003 = 1m3/h

Atk-4-w 1-LT-001 = 55%/1-LT-001 = 80%

Atk-5-w 1-LT-001 = 40.21%/1-LT-001 = 40.21%

Atk-6-w 2-LT-002 = 46%/2-LT-002 = 65%

Atk-7-w 2-LT-002 = 71.2%/2-LT-002 = 71.2%

tion has been used to simulate some of the simple bias injection attacks. For the more
complicated attacks, customised Python programs have been developed that gradually
change the attack vector to simulate a stealthy attack. Custom-coded modules developed
at iTrust Labs [19] have been used that are able to communicate with the LabVIEW-
based1 SCADA interface in order to launch the stealthy attacks.

5 Performance Evaluation

5.1 Performance Metrics

The precision and sensitivity of the attack detection method are part of the criteria
to analyse its effectiveness. The following metrics have been used to assess the three
procedures:

– True Positive Rate (TPR) and False Negative Rate (FNR)—The TPR refers to the
number of times the method correctly raises alarms (predicts an attack) over the
duration of the attack. The FNR is an alternate way of expressing the same metric:

FNR= 100 %−TPR

– False Positive Rate (FPR) or False Alarm Rate (FAR)—this refers to the number of
times the method incorrectly raises alarms in the absence of any attack.

– Time Taken for Detection (TTD)—this refers to the time taken by the procedure to
raise an alarm in the event of an attack.

The TPR of the technique is a direct indication of its attack detection accuracy and must
be as high as possible. The FPR represents the tendency of the procedure to raise false
alarms, which is extremely inconvenient in practical scenarios, and should be satisfac-
torily small. A high TPR is not very beneficial if the mechanism takes too long to detect
the attack. This is because in a realistic sense, the CPS performs critical, large-scale

1 Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a system-design soft-
ware developed by National Instruments. For attack tool see: https://gitlab.com/gyani/NiSploit.

https://gitlab.com/gyani/NiSploit
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processes that influence the surrounding economy in multiple ways. A significant delay
in the detection of an attack can be detrimental not only to the system itself, but also to
its end-users. Therefore, the detection mechanism must have reasonable TTD.

In practical applications, there often exists a trade-off between a high TPR and a
low FPR. A detection method may have a high FPR while managing to achieve a good
TPR. Likewise, it is also possible to design for a low FPR but at the cost of missing
some attacks, resulting in a low TPR. Hence, the two rates must always be balanced
such that a satisfactory TPR is attained while having a feasible FPR.

5.2 Normal Operation

As emphasized earlier, attack detection mechanisms must be designed in a way such
that they do not raise too many false alarms. Hence, the detection techniques were
implemented on both the plants, and their performances were observed when the plants
were under normal operation.

For both the plants, the thresholds for the CUSUM and Bad-Data detectors have
been designed to allow an FPR of 5% (or less). This is done to account for the temporary
aberrations caused by technical glitches or external disturbances, which often occur in
practical industrial plants. Each detector has thresholds and design parameters dedicated
to each sensor, which are presented in Tables 4 and 5. It can be seen in these tables
that, for both plants, these two attack detection methods generate false alarms within a
reasonable window around the designed limit.

Figure 1 shows the residual from the system identification-based model for the level
sensor (2-LT-002) in WADI. It can be seen that it mostly remains below its Bad-Data
threshold during normal operation, shown in Fig. 1a. Likewise, the CUSUM values also
stay within the thresholds for 2-LT-002 under normal operation, as seen in Fig. 1b. This
implies that the design of the Bad-Data and CUSUM thresholds is in accordance with
the requirement and it is feasible to implement these detectors on the plants under nor-
mal operating conditions.

When tested on SWaT, NoisePrint performed very well, with low or zero FPRs for
almost all of the sensors. However, in the case of WADI, the FPRs for most of the
sensors were above the desired 5%. The sensors in WADI are known to be sensitive to
disturbances from the environment, thus resulting in some faults in their measurements,
and this could be the reason NoisePrint fails to perform well.

From these figures and tables, it can be concluded that the detection methods per-
form satisfactorily well on both the testbeds under normal operating conditions. The
x-axis for all the figures is the time in seconds for which sensor data is plotted. How-
ever, it is to be noted that these figures are for demonstration purposes only and do not
show the complete dataset. For the normal operation of the water plants, the dataset
is collected for more than a week and the attack data ranges from 5–30min for each
attack [20]. The FPR is only shown for the normal data evaluations. As for the case
of the attack evaluation table in the following section, the data used was recorded only
when the sensors were under attack, and hence shows FNR only. The rate (TPR) is
calculated using the number of alarms raised for the whole duration of the attack.
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Table 4. False positives under normal operation in SWaT.

Sensor FIT101 LIT101 FIT301 LIT301 FIT401 LIT401

CUSUM detector

Threshold 0.0149 3.1168 0.2209 0.5529 0.0156 0.5674

κ 0.0074 0.3117 0.0276 0.1382 0.0028 0.1135

FAR 5.54% 5.19% 5.34% 4.65% 4.02% 4.03%

Bad Data detector

Threshold 0.0205 1.4100 0.1184 0.4887 0.0108 0.4178

FAR 4.29% 5.32% 4.84% 4.56% 5.41% 5.42%

NoisePrint

FAR 0% 1.29% 8.3% 2.44% 0% 0%

Table 5. False positives under normal operation in WADI.

Sensor 1-LT-001 2-LT-002 2-PIT-001 2-PIT-002 1-FIT-001 2-FIT-001 2-FIT-002 2-FIT-003

CUSUM detector

Threshold 1.109 0.6534 8.6809 0.2107 0.2964 0.0995 0.311 1.2972

κ 0.3466 0.2042 0.8681 0.3511 0.0823 0.0829 0.0389 0.1081

FAR 4.61% 3.76% 5.01% 3.47% 4.29% 4.13% 4.93% 5.01%

Bad Data detector

Threshold 1.122 0.7674 3.5104 0.7239 0.2063 0.3018 0.1548 0.487

FAR 4.40% 4.19% 4.08% 3.89% 4.64% 3.49% 4.56% 4.80%

NoisePrint

FAR 13.04% 6.95% 21.74% 6.95% 6.08% 11.30% 4.34% 11.30%

5.3 Attack Detection

The three detection techniques were tested under different attack scenarios on both the
plants. Tables 2 and 3 show the attacks carried out on SWaT and WADI, respectively.
The residuals for the sensors from the system identification-based models were obtained
and the detection techniques were applied while the plants were under attack. The per-
formance metrics were computed for the different attacks on each of the testbeds and
can be seen in Tables 6 and 7.

In the case of SWaT, it can be seen in Table 6 that the CUSUM and Bad-Data
detectors perform well under a variety of bias injection attacks, like Atk-11-s, Atk-
4-s and Atk-5-s. However, they fail to detect the stealthy attacks Atk-17-s and Atk-6-s.
Whereas, NoisePrint is able to successfully detect the presence of all attacks, including
the stealthy attacks, and demonstrates a comparable TPR for other cases. The attacks
that report poor TPR while using CUSUM and Bad-Data thresholds can be detected
better using NoisePrint. However, the superior performance of NoisePrint comes at the
cost of speed of detection. The time taken by the CUSUM and Bad-Data detectors to
confirm the occurrence of the attack is considerably less than that of NoisePrint, imply-
ing that they have a better TTD compared to NoisePrint.
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(a) Bad-Data detection (b) CUSUM detection

Fig. 1. Statistical attack detection methods applied on the residual for level sensor (2-LT-002)
estimates from WADI under normal operation. X-axis shows number of sensor reading sampled
at 1 s intervals.

Figure 2 shows the residual when the level sensor (LIT-101) in SWaT is under a
stealthy attack. In this attack, an attacker chooses to spoof the sensor measurement at
the same value as the last known normal reading, thus deceiving the controller, while
the real process state continues to progress differently. As seen in Figure 2a, the resid-
ual stays below the threshold during the stealthy attack. Similarly, in Figure 2b, it can
be seen that the CUSUM values also always stay below the CUSUM thresholds. This
shows that the stealthy attack could not be detected by either of the two detectors. How-
ever, as mentioned in Table 6 NoisePrint is able to detect this attack.

In the case of WADI, when the CUSUM detector is implemented on the residuals
obtained from the system models, unsatisfactory TPRs are reported for all the attacks,
as shown in Table 7. The Bad-Data detector performs reasonably well for attacks Atk-
2-w and Atk-7-w, while NoisePrint shows a 100% TPR for attacks Atk-2-w, Atk-3-w
and Atk-7-w. Both methods report poor TPRs for the other attacks. Similar to the case
of SWaT, the TTD of NoisePrint is much higher than that of the Bad-Data detector.

These results show that while the statistical detectors, Bad-Data and CUSUM, are
successfully able to confirm basic attacks such as bias injections, they fail to detect the
more complicated stealthy attacks. This is expected because stealthy attacks are devised
such that they do not tend to cause substantial changes to the residuals obtained from
models, thereby ensuring the thresholds that determine the presence of an attack are
not crossed. On the other hand, NoisePrint is able to identify such attacks, since the
attacker may not be able to replicate the process and sensor noise, which form the basis
of detection in NoisePrint. However, despite achieving better accuracy, NoisePrint falls
behind in terms of detection speed.

Given the nature and performance of the detection mechanisms, the practical appli-
cability of the methods can be challenged. The testbeds used in this work are small-scale
and hence, obtaining complete system models for them was a feasible task. This might
not be the case for actual industrial CPSs. A possible solution to this would be divid-
ing the larger plants into several sub-stages (based on the processes taking place) and
having multiple models corresponding for each sub-system.
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Table 6. Attack detection performance on SWaT testbed.

Attack NoisePrint CUSUM Bad Data

TPR FNR TTD (s) TPR FNR TTD (s) TPR FNR TTD (s)

Single point attacks

Atk-8-s 85.72% 14.28% 121.22 17.46% 82.54% 2 16.75% 83.25% 2

Atk-9-s 14.50% 85.50% 179 88.15% 11.85% 2 93.18% 6.82% 2

Atk-10-s 80.64% 19.35% 130.09 56.30% 43.70% 5 58.48% 41.52% 3

Atk-11-s 87.50% 12.50% 89.59 100% 0% 1 100% 0% 1

Atk-12-s 63.63% 36.37% 117.83 95.42% 4.58% 6 96.64% 3.36% 6

Atk-1-s 88.88% 11.12% 32.48 91.16% 8.83% 2 91.34% 8.66% 1

Atk-2-s 67.56% 32.44% 46.90 85.08% 14.92% 1 78.02% 21.98% 1

Atk-3-s 90.91% 9.09% 35.25 98.92% 1.08% 1 99.08% 0.92% 1

Atk-7-s 88.24% 11.76% 57.35 77.58% 22.42% 1 60.62% 39.38% 1

Atk-13-s 55% 45% 44.43 32.82% 67.18% 2 13.94% 86.06% 2

Atk-16-s 86.21% 13.79% 56.26 6.21% 93.79% 1 6.32% 93.68% 1

Multi-point attacks

Atk-14-s 81.82% 18.18% 125.59 16.32% 83.68% 1 6.76% 93.24% 1

Atk-15-s 77.78% 22.22% 105.3 54.68% 45.32% 2 99.64% 0.36% 2

Atk-4-s 94.73% 5.26% 35.59 99.66% 0.34% 1 100% 0% 1

Atk-5-s 90.47% 9.53% 44.50 99.68% 0.32% 1 100% 0% 1

Stealthy attacks

Atk-17-s 80% 20% 67.03 0% 100% ND 0% 100% ND

Atk-6-s 75% 25% 174.84 0% 100% ND 0% 100% ND

Table 7. Attack detection performance on WADI (System identification model).

Attack NoisePrint CUSUM Bad Data

TPR FNR TTD (s) TPR FNR TTD (s) TPR FNR TTD (s)

Single point attacks

Atk-1-w 25% 75% 100 7.89 % 92.11 % 1 21.74 % 78.26 % 1

Atk-2-w 100% 0% 50 51.28 % 48.72 % 2 91.11 % 8.89 % 2

Atk-3-w 100% 0% 50 22.22 % 77.78 % 1 13.16 % 86.84 % 1

Atk-4-w 20.51% 79.49% 150 1.81 % 98.19 % 1 3.59 % 96.41 % 1

Atk-6-w 56.25% 43.75% 100 17.67 % 82.33 % 1 32.49 % 67.51 % 1

Stealthy attacks

Atk-5-w 19.44% 80.56% 200 1.40 % 98.60 % 2 2.51 % 97.49 % 1

Atk-7-w 100% 0% 50 45.79 % 54.21 % 3 94.02 % 5.98 % 1

In the case of NoisePrint, its longer detection time might render it less efficient
when applied to some industrial CPSs, such as power grids, which require immediate
response during attacks or anomalies. However, its accuracy is an important advantage
when it comes to large systems with several sensors, and the method is still be applicable
to CPSs wherein the attacks could take a longer time to cause any physical harm.
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Fig. 2. Statistical attack detection methods (Bad-Data and CUSUM) applied on the residual for
level sensor (LIT-101) estimates from SWaT under stealthy attack

6 Conclusions

From the model validation results, it is understood that the models generated using
well-established system identification algorithms perform reasonably well. An impor-
tant insight is that obtaining a normal reference system model for the plants and sensors
sensitive to environmental disturbances (e.g., for the WADI testbed in this study) is a
non-trivial task. It is deduced that bias injection attacks on sensors that are quite similar
to faults can be easily detected using statistical techniques like Bad-Data and CUSUM
detectors. However, it is observed that advanced stealthy attacks require more sophis-
ticated detection techniques, like NoisePrint. From the various tests carried out on the
plants, it is concluded that while detection methods must be able to demonstrate accu-
racy, their attack detection speed is also a crucial metric for critical CPSs.
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