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Abstract. A conditional knowledge base R is a set of conditionals of
the form “If A then usually B”. Using structural information derived
from the conditionals in R, we introduce the preferred structure relation
on worlds. The preferred structure relation is the core ingredient of a new
inference relation called system W inference that inductively completes
the knowledge given explicitly in R. We show that system W exhibits
desirable inference properties like satisfying system P and avoiding, in
contrast to, e.g., system Z, the drowning problem. It fully captures and
strictly extends both system Z and skeptical c-inference. In contrast to
skeptical c-inference, it does not require to solve a complex constraint
satisfaction problem, but is as tractable as system Z.

1 Introduction

In the area of knowledge representation and reasoning, conditionals play a promi-
nent role. Nonmonotonic reasoning investigates qualitative conditionals of the
form “If A then usually B”. Various semantical approaches for inferences based
on sets of such conditionals as well as criteria and postulates for evaluating the
obtained inference relations have been proposed (cf. [1,4,7,8,10,12,14,19–22]).
Among the different semantical models of conditional knowledge bases are Spohn’s
ordinal conditional functions (OCFs) [24,25], also called ranking functions. An
OCF κ assigns a degree of surprise (or degree of implausibility) to each world ω,
the higher the value κ(ω) assigned to ω, the more surprising ω. Each κ that accepts
a set R of conditionals, called a knowledge base, induces a nonmonotonic inference
relation that inductively completes the explicit knowledge given in R.

Two inference relations which are defined based on specific OCFs obtained
from a knowledge base R have received some attention: system Z [13,23] and
c-representations [14,15], or the induced inference relations, respectively, both
show excellent inference properties. System Z is based upon the ranking func-
tion κZ , which is the unique Pareto-minimal OCF that accepts R. The defini-
tion of κZ crucially relies on the notions of tolerance and of inclusion-maximal
ordered partition of R obtained via the tolerance relation [13,23]. Among the
OCF models of R, c-representations are special models obtained by assigning
an individual impact to each conditional and generating the world ranks as the
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sum of impacts of falsified conditionals [14,15]. While for each consistent R, the
system Z ranking function κZ is uniquely determined, there may be many dif-
ferent c-representations of R. Skeptical c-inference [2,5] is the inference relation
obtained by taking all c-representations of R into account.

It is known that system Z and skeptical c-inference both satisfy system P
[5,13,19] and other desirable properties. Furthermore, there are system Z infer-
ences that are not obtained by skeptical c-inference, and on the other hand,
there are skeptical c-inferences that are not system Z inferences [5]. Another
notable difference between system Z and skeptical c-inference is that the single
unique system Z model [23] can be computed much easier than skeptical c-
inference which involves many models obtained from the solutions of a complex
constraint satisfaction problem [5]. In recently published work [18], we showed
that the exponential lower bound 2n−1 is needed as possible impact factor for c-
representations to fully realize skeptical c-inference, supporting the observation
that skeptical c-inference is less tractable than system Z inference (cf. [5,13]).

Inspired by our findings in [18], here we develop the preferred structure rela-
tion on worlds and propose the new nonomonotonic system W inference based
on it. The main contributions of this paper are:

– We introduce the preferred structure relation <w
Ron worlds based on the

notions of tolerance and verification/falsification behavior of a knowledge base
R.

– By exploiting <w
R, we develop a new inference relation, called system W infer-

ence, which is as tractable as system Z.
– We prove that system W inference captures and strictly extends both sys-

tem Z inference and skeptical c-inference.
– We show that system W inference exhibits desirable inference properties like

satisfying the axioms of system P and avoiding the drowning problem.

The rest of the paper is organized as follows. After briefly recalling the
required background in Sect. 2, we introduce the preferred structure on worlds
and prove several of its properties in Sect. 3. In Sect. 4, we give the formal
definition of system W, illustrate it with various examples and show its main
properties. In Sect. 5, we conclude and point out future work.

2 Conditional Logic, System Z, and C-Representations

Let Σ = {v1, ..., vm} be a propositional alphabet. A literal is the positive (vi)
or negated (vi) form of a propositional variable, v̇i stands for either vi or vi.
From these we obtain the propositional language L as the set of formulas of Σ
closed under negation ¬, conjunction ∧, and disjunction ∨. For shorter formu-
las, we abbreviate conjunction by juxtaposition (i.e., AB stands for A∧B), and
negation by overlining (i.e., A is equivalent to ¬A). Let ΩΣ denote the set of
possible worlds over L; ΩΣ will be taken here simply as the set of all proposi-
tional interpretations over L and can be identified with the set of all complete
conjunctions over Σ; we will often just write Ω instead of ΩΣ . For ω ∈ Ω, ω |= A
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means that the propositional formula A ∈ L holds in the possible world ω. With
ΩA = {ω ∈ ΩΣ | ω |= A}, we denote the set of all worlds in which A holds, and
≡ denotes propositional equivalence.

A conditional (B|A) with A,B ∈ L encodes the defeasible rule “if A then
normally B” and is a trivalent logical entity with the evaluation [11,14]

�(B|A)�ω =

⎧
⎨

⎩

v iff ω |= AB (verification) ,
f iff ω |= AB (falsification) ,
− iff ω |= A (not applicable) .

(1)

An ordinal conditional function (OCF, ranking function) [24,25] is a function
κ : Ω → N0∪{∞} that assigns to each world ω ∈ Ω an implausibility rank κ(ω):
the higher κ(ω), the more surprising ω is. OCFs have to satisfy the normalization
condition that there has to be a world that is maximally plausible, i.e., κ−1(0) 	=
∅. The rank of a formula A is defined by κ(A) = min{κ(ω) | ω |= A} where
min ∅ = ∞. An OCF κ accepts a conditional (B|A), denoted by κ |= (B|A),
if the verification of the conditional is less surprising than its falsification, i.e.,
κ |= (B|A) iff κ(AB) < κ(AB). This can also be understood as a nonmonotonic
inference relation between the premise A and the conclusion B: Basically, we say
that A κ-entails B, written A |∼ κ

B, if κ accepts (B|A); formally, this is given
by

A |∼ κ
B iff A ≡ ⊥ or κ(AB) < κ(AB). (2)

Note that the reason for including the disjunctive condition in (2) is to ensure
that |∼ κ satisfies supraclassicality, i.e., A |= B implies A |∼ κ

B, also for the case
A ≡ ⊥ as it is required, for instance, by the reflexivity axiom A |∼ A of system P
[1,19]. Let us remark that κ-entailment is based on the total preorder on possible
worlds induced by a ranking function and can be expressed equivalently by:

A |∼ κ
B iff ∀ω′ ∈ ΩAB ∃ω ∈ ΩAB κ(ω) < κ(ω′) . (3)

The acceptance relation is extended as usual to a set R of conditionals, called
a knowledge base, by defining κ |= R iff κ |= (B|A) for all (B|A) ∈ R. This is
synonymous to saying that κ is admissible with respect to R [13], or that κ is a
ranking model of R. R is consistent iff it has a ranking model.

Two inference relations which are defined by specific OCFs obtained from a
knowledge base R have received some attention: system Z [23] and c-represen-
tations [14,15], or the induced inference relations, respectively, both show excel-
lent inference properties. We recall both approaches briefly.

System Z [23] is based upon the ranking function κZ , which is the unique
Pareto-minimal OCF that accepts R. The definition of κZ crucially relies on the
notion of tolerance. A conditional (B|A) is tolerated by a set of conditionals R
if there is a world ω ∈ Ω such that ω |= AB and ω |= ∧n

i=1(Ai ∨ Bi), i.e., iff
ω verifies (B|A) and does not falsify any conditional in R. For every consistent
knowledge base, the notion of tolerance yields an ordered partition (R0, ...,Rk)
of R, where each Ri is tolerated by

⋃k
j=i Rj . The inclusion-maximal partition of

R, in the following denoted by OP(R) = (R0, . . . ,Rk), is the ordered partition
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of R where each Ri is the (with respect to set inclusion) maximal subset of
⋃k

j=i Rj that is tolerated by
⋃k

j=i Rj . This partitioning is unique due to the
maximality and can be computed using the consistency test algorithm given
in [13]; for an inconsistent knowledge base R, OP(R) does not exist. Using
OP(R) = (R0, . . . ,Rk), the system Z ranking function κZ is defined by

κZ(ω) :=

⎧
⎨

⎩

0 , if ω does not falsify any conditional r ∈ R,

1 + max 1�i�n

ω|=AiBi

Z(ri), otherwise,

(4)
where the function Z : R → N0 is given by Z(ri) = j if ri ∈ Rj .

Definition 1 (system Z inference, |∼ Z
R [13]). Let R be a knowledge base

and let A, B be formulas. We say that B can be inferred from A by system Z
in the context of R, denoted by A |∼ Z

RB, iff A |∼ κZ

B holds.

Among the OCF models of R, c-representations are special models obtained
by assigning an individual impact to each conditional and generating the world
ranks as the sum of impacts of falsified conditionals. For an in-depth introduction
to c-representations and their use of the principle of conditional preservation
ensured by respecting conditional structures, we refer to [14,15]. The central
definition is the following:

Definition 2 (c-representation [14]). A c-representation of a knowledge base
R is a ranking function κ #»η constructed from #»η = (η1 , . . . , ηn) with integer
impacts ηi ∈ N0 , i ∈ {1 , . . . , n} assigned to each conditional (Bi|Ai) such that
κ accepts R and is given by:

κ #»η (ω) =
∑

1�i�n

ω|=AiBi

ηi (5)

We will denote the set of all c-representations of R by O(CR(R)).

As every ranking model of R, each c-representation κ #»η gives rise to an
inference relation according to (2). While for each consistent R, the system
Z ranking function κZ is uniquely determined, there may be many different
c-representations of R. C-inference [2,5] is an inference relation taking all c-
representations of R into account.

Definition 3 (c-inference, |∼ c
R [2]). Let R be a knowledge base and let A, B

be formulas. B is a (skeptical) c-inference from A in the context of R, denoted
by A |∼ c

RB, iff A |∼ κ
B holds for all c-representations κ for R.

In [5] a modeling of c-representations as solutions of a constraint satisfaction
problem CR(R) is given and shown to be sound and complete with respect to
the set of all c-representations of R.
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Definition 4 (CR(R) [2]). Let R = {(B1|A1), . . . , (Bn|An)}. The constraint
satisfaction problem for c-representations of R, denoted by CR(R), on the con-
straint variables {η1, . . . , ηn} ranging over N0 is given by the conjunction of the
constraints, for all i ∈ {1, . . . , n}:

ηi � 0 (6)

ηi > min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj − min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj (7)

A solution of CR(R) is an n-tuple (η1, . . . , ηn) ∈ N
n
0 . For a constraint satis-

faction problem CSP , the set of solutions is denoted by Sol(CSP). Thus, with
Sol(CR(R)) we denote the set of all solutions of CR(R).

Proposition 1 (soundness and completeness of CR(R) [5]). Let R =
{(B1|A1), . . . , (Bn|An)} be a knowledge base. With κ #»η as in (5), we then have:

O(CR(R)) = {κ #»η | #»η ∈ Sol(CR(R))} (8)

Example 1 (Rbird). To illustrate the definitions and concepts presented in this
paper let us consider an instance of the well known penguin bird exam-
ple. This example is our running example and it will be continued and
extended throughout the paper. Consider the propositional alphabet Σ =
{p , b , f} representing whether something is a penguin (p), whether it is
a bird (b), or whether it can fly (f). Thus, the set of worlds is Ω =
{p b f , p b f , p b f , p b f , p b f , p b f , p b f , p b f}. The knowledge base Rbird =
{r1 , r2 , r3 , r4} contains the conditionals

r1 = (f |b) “Birds usually fly”,

r2 = (f |p) “Penguins usually do not fly”,

r3 = (f |bp) “Penguins which are also birds usually do not fly”,
r4 = (b|p) “Penguins are usually birds”.

For R0 = {(f |b)} and R1 = Rbird \R0 we have the ordered partitioning (R0,R1)
such that every conditional in R0 is tolerated by R0 ∪ R1 = Rbird and every
conditional in R1 is tolerated by R1. For instance, (f |b) is tolerated by Rbird

since there is, for example, the world pbf with pbf |= bf as well as pbf |= (p ⇒
f) ∧ (pb ⇒ f) ∧ (p ⇒ b). Furthermore (R0 ,R1) is indeed the inclusion-maximal
partition of R. Therefore, R is consistent. An OCF κ that accepts Rbird is:

ω p b f p b f p b f p b f p b f p b f p b f p b f

κ(ω) 2 1 2 2 0 1 0 0

For instance, we have κ |= (f |b) since κ(bf) = min{κ(pbf), κ(pbf)} =
min{2, 0} = 0 and κ(bf) = min{κ(pbf), κ(pbf)} = min{1, 1} = 1 and there-
fore κ(bf) < κ(bf).
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3 Preferred Structure on Worlds

Aiming at developing a nonmonotonic inference relation combining advantages of
system Z like tractability and of skeptical c-inference like, for instance, avoidance
of the downing problem [9,23], we first introduce the new notion of preferred
structure on worlds with respect to a knowledge base R. The idea is to take into
account both the tolerance information expressed by the ordered partition of R
and the structural information which conditionals are falsified.

Definition 5 (ξj, ξ, preferred structure <w
R on worlds). Consider a con-

sistent knowledge base R = {ri = (Bi|Ai) | i ∈ {1, . . . , n}} with OP(R) =
(R0, . . . ,Rk). For j ∈ {0, . . . , k}, ξj and ξ are the functions mapping worlds
to the set of falsified conditionals from the tolerance partition Rj and from R,
respectively, given by

ξj(ω) := {ri ∈ Rj | ω |= AiBi}, (9)

ξ(ω) := {ri ∈ R | ω |= AiBi}. (10)

The preferred structure on worlds is given by the binary relation <w
R⊆ Ω × Ω

defined by, for any ω , ω′ ∈ Ω,

ω <w
R ω′ iff there exists m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m + 1 , . . . , k}, and (11)
ξm(ω) � ξm(ω′) .

Thus, ω <w
R ω′ if and only if ω falsifies strictly less conditionals than ω′

in the partition with the biggest index m where the conditionals falsified by ω
and ω′ differ. The preferred structure on worlds will be the basis for defining a
new inference relation induced by R. Before formally defining this new inference
relation and elaborating its properties, we proceed by illustrating the preferred
structure on worlds for a knowledge base R, relating it to c-representations of
R, and proving a set of its properties that will be useful for investigating the
characteristics and properties of the resulting inference relation.

Example 2 (<w
Rbird

). Let us determine the preferred structure on worlds <w
Rbird

for the knowledge base Rbird from Example 1 whose verification/falsification
behavior is shown in Table 1. The inclusion-maximal partition OP(Rbird ) =
(R0,R1) is given by R0 = {r1 = (f |b)} and R1 = {r2 = (f |p) , r3 = (f |bp) , r4 =
(b|p)}. Figure 1 shows the preferred structure on worlds <w

Rbird
for the knowledge

base Rbird . An edge ω → ω′ between two worlds indicates that ω <w
Rbird

ω′. The
full relation <w

Rbird
is obtained from the transitive closure of → in Fig. 1.

The following proposition can be seen as a generalization of a result from
[6]. It extends [6, Proposition 15] to the relation <w

R and to arbitrary knowl-
edge bases, not just knowledge bases only consisting of conditional facts as in
[6, Proposition 15]. It tells us that the set of c-representations is rich enough to
guarantee the existence of a particular c-representation κ #»η ∈ O(CR(R)) fulfill-
ing the ordering constraints given in the proposition.
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Table 1. Verification/falsification behavior of the knowledge base Rbird ; (v) indicates
verification, (f) falsification, and (−) non-applicability. The OCF κZ is the ranking
function obtained from Rbird using system Z.

ω pbf pbf pbf pb f pbf pbf pbf pb f

r1 = (f |b) v f − − v f − −
r2 = (f |p) f v f v − − − −
r3 = (f |pb) f v − − − − − −
r4 = (b|p) v v f f − − − −
κZ(ω) 2 1 2 2 0 1 0 0

pbf

pbf pb f

pbf pbf

pbf pbf pb f

Fig. 1. The preferred structure relation <w
Rbird

on worlds for the knowledge base Rbird .

Proposition 2. Let R = {ri = (Bi|Ai) | i = 1 , . . . , n} be a consistent knowl-
edge base, let ω′ ∈ Ω and let ΩV ⊆ Ω. Assume that ω 	<w

R ω′ for all ω ∈ ΩV .
Then there exists a solution #»η ∈ Sol(CR(R)) and thus a c-representation,
κ #»η ∈ O(CR(R)) such that, for all ω ∈ ΩV , we have:

κ #»η (ω′) � κ #»η (ω) (12)

Proof. (Sketch) Due to lack of space, we give a sketch of the proof. The claim
follows by combining the following two statements:

(i) If ηi ∈ N , i ∈ {1 , . . . , n}, satisfy

ηi >
∑

j∈{1,...,n}
rj∈⋃m−1

l=0 Rl

ηj (13)

for all i ∈ {1 , . . . , n} where m = m(i) ∈ {0 , . . . , k} with ri ∈ Rm then
#»η = (η1 , . . . , ηn) is a solution of CR(R) and so κ #»η defined as in (5) is a
c-representation of R.

(ii) Because of ω 	<w
R ω′ for all ω ∈ ΩV we can choose #»η = (η1 , . . . , ηn) satisfy-

ing (13) such that κ #»η defined as in (5) satisfies (12) for all ω ∈ ΩV .

A complete proof that (i) and (ii) hold is given in the full version of this paper
[17]. ��
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The rest of this section is dedicated to the investigation of further properties
of the relation <w

R. Let us start with a lemma that tells us that worlds falsifying
the same sets of conditionals are equivalent with respect to <w

R.

Lemma 1. Let R = {(Bi|Ai) | i = 1, . . . , n} be a knowledge base, and let
ω1 , ω2 ∈ Ω falsify the same sets of conditionals, i.e., for all i ∈ {1 , . . . , n}, we
have ω1 |= AiBi iff ω2 |= AiBi. Then ω1 , ω2 behave exactly the same way with
respect to R, i.e., for all ω ∈ Ω, the following equivalences hold:

ω <w
R ω1 iff ω <w

R ω2 ,

ω1 <w
R ω iff ω2 <w

R ω .

Proof. The claim follows from ξi(ω1) = ξi(ω2) for all i ∈ {0 , . . . , k}. ��
In general, the relation <w

R cannot be obtained from a ranking function.

Lemma 2. There exists a knowledge base R such that there is no ranking func-
tion κ : Ω → N

∞
0 with ω1 <w

R ω2 iff κ(ω1) < κ(ω2).

Proof. The proof is by contradiction. Assume there is a ranking function κ :
Ω → N

∞
0 with ω1 <w

R ω2 iff κ(ω1) < κ(ω2) for Rbird . For <w
R (cf. Fig. 1) we

have p b f 	<w
Rbird

p b f and p b f 	<w
Rbird

p b f and furthermore p b f 	<w
Rbird

p b f and
p b f 	<w

Rbird
p b f . Therefore, we obtain κ(p b f) = κ(p b f) and κ(p b f = κ(p b f).

Thus, κ(p b f) = κ(p b f) which is a contradiction to p b f <w
Rbird

p b f . ��
Let us end this subsection by proving that <w

R defines a strict partial order.

Lemma 3. The relation <w
R is irreflexive, asymmetric, and transitive, meaning

that <w
R is a strict partial order.

Proof. Condition (11) immediately yields that <w
R is irreflexive and asymmetric.

It remains to show that <w
R is transitive. Define a := max{i ∈ {0, . . . , k} |

ξi(ω1) 	= ξi(ω2)} and b := max{i ∈ {0, . . . , k} | ξi(ω2) 	= ξi(ω3)}. Then ω1 <w
R ω2

and ω2 <w
R ω3 is equivalent to ξa(ω1) � ξa(ω2) and ξb(ω2) � ξb(ω3).

If a = b then ξa(ω1) � ξa(ω3) and a = max{i ∈ {0, . . . , k} | ξi(ω1) 	=
ξi(ω3)} and so ω1 <w

R ω3. If a < b then ξb(ω1) � ξb(ω3) and b = max{i ∈
{0, . . . , k} | ξi(ω1) 	= ξi(ω3)} and so ω1 <w

R ω3. If a > b then ξi(ω2) = ξi(ω3)
for all i ∈ {b + 1, . . . , k} and b + 1 � a � k; therefore ξa(ω1) � ξa(ω3) and
a = max{i ∈ {0, . . . , k} | ξi(ω1) 	= ξi(ω3)} and so ω1 <w

R ω3. ��

4 System W

The preferred structure <w
R on worlds for a knowledge base R is defined using

both the tolerance information provided by the inclusion-maximal ordered parti-
tion OP(R) and information on the set of falsified conditionals. Inference based
on <w

R is called system W inference and is defined as follows.
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Definition 6 (system W, |∼ w
R). Let R be a knowledge base and A,B be for-

mulas. Then B is a system W inference from A (in the context of R), denoted

A |∼ w
RB iff ∀ω′ ∈ ΩAB ∃ω ∈ ΩAB ω <w

R ω′ . (14)

A consequence of this definition is that system W inference is as tractable as
system Z because the preferred structure on worlds is obtained directly from the
ordered partition of R and the verification/falsification behavior of R. We apply
the definition of system W to our running example.

Example 3 (Rbird , cont.). Consider again Rbird from Example 1. Let us show
that for A = b f and B = p we have A |∼ w

Rbird
B, i.e., that flying birds are usually

not penguins. Due to ξ(b f p) = ∅ and ξ(b f p) = {r2, r3} (see Table 1) it follows
that b f p <w

Rbird
b f p. Therefore, since ΩAB = {b f p} and ΩAB = {b f p}, from

(14) it follows that indeed b f |∼ w
Rbird

p.

Note that b f |∼ c
Rbird

p, i.e., this inference is also a skeptical c-inference (cf. [5,
Example 5]). Therefore, Example 3 presents a c-inference that is also a system W
inference. The following proposition tells us that A |∼ c

RB always implies A |∼ w
RB.

Proposition 3 (system W captures c-inference). Let R be a consistent
knowledge base. Then we have for all formulas A ,B ∈ L:

If A |∼ c
RB then A |∼ w

RB . (15)

Proof. The proof of (15) is by contraposition. Assume A 	|∼ w
RB and thus

∃ω′ ∈ ΩAB ∀ω ∈ ΩAB ω 	<w
R ω′ . (16)

Our goal is to show A 	|∼ c
RB. Let us fix ω′ ∈ ΩAB such that (16) holds. Let us

define ΩV := ΩAB . Then ω 	<w
R ω′ for all ω ∈ ΩV . Due to Lemma 2 there exists

a c-representation κ #»η ∈ O(CR(R)) such that κ #»η (ω′) � κ #»η (ω) for all ω ∈ ΩAB .
This means that A 	|∼ κ #»η

R B and so indeed A 	|∼ c
RB. ��

Furthermore, every system Z inference is also a system W inference.

Proposition 4 (system W captures system Z). Let R be a consistent
knowledge base. Then we have for all formulas A ,B ∈ L

If A |∼ Z
RB then A |∼ w

RB . (17)

Proof. Inspecting (4) and (11) and given any worlds ω, ω′ ∈ Ω, we conclude
that κZ(ω) < κZ(ω′) implies ω <w

R ω′. Therefore, comparing (3), applied to the
ranking function κZ , with (14), shows that (17) is fulfilled. ��

In [16], a preference relation on worlds is defined that is based on structural
information by preferring a world ω to a world ω′ if ω falsifies fewer conditionals
than ω′ and ω′ falsifies at least all conditionals falsified by ω. Using this pref-
erence relation, the following entailment relation along the scheme as given by
(3) is obtained; we present the definition from [16] in a slightly modified form
adapted to our notion ξ(ω) for the set of conditionals from R falsified by ω.
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Definition 7 (σR-structural inference [16]). Let R = {r1, . . . , rn} with ri =
(Bi|Ai) for i = 1, . . . , n be a knowledge base, A,B formulas, and let <σ

R be the
relation on worlds given by ω <σ

R ω′ iff ξ(ω) � ξ(ω′). Then B can be structurally
inferred, or σR-inferred, from A, written as

A |∼ σ
RB iff ∀ω′ ∈ ΩAB ∃ω ∈ ΩAB ω <σ

R ω′ . (18)

We can show that every σR-structural inference is also a system W inference.

Proposition 5 (system W captures σR-structural inference). Let R be
a consistent knowledge base. Then we have for all formulas A ,B ∈ L

If A |∼ σ
RB then A |∼ w

RB . (19)

Proof. Inspecting (11) and the definition of <σ
R, we conclude that ω <σ

R ω′

implies ω <w
R ω′ for all ω, ω′ ∈ Ω. Combining (11) and (18) yields (19). ��

The following proposition summarizes Propositions 3, 4, and 5 and shows
aditionally that system W strictly extends skeptical c-inference, system Z, and
structural inference by licensing more entailments than each of these three infer-
ence modes.

Proposition 6 (system W) For every consistent knowledge base R

|∼ c
R ⊆ |∼ w

R, |∼ Z
R ⊆ |∼ w

R and |∼ σ
R ⊆ |∼ w

R. (20)

Furthermore, there are knowledge bases R1 ,R2 ,R3 such that the inclusions in
(20) are strict, i.e.:

|∼ c
R1

� |∼ w
R1

(21)

|∼ Z
R2

� |∼ w
R2

(22)

|∼ σ
R3

� |∼ w
R3

(23)

Proof. The inclusions in (20) are shown in Propositions 3, 4, and 5. Thus, we
are left to show that the inclusions in (21)–(23) are strict.

1. For proving the strictness part of (21), consider the knowledge base R∗ =
{(b|a), (b c|a)} whose verification/falsification behavior is given by Table 2.
First, due to ξ(a b c) = {(b c|a)} � {(b|a), (b c|a)} = ξ(a b c), we obtain
a c |∼ w

R∗b. Making use of the verification/falsification behavior stated in
Table 2, for CR(R∗) we obtain η1 > −η2 and η2 > 0. Now consider the
solution vector #»η = (η1, η2) = (0, 1). For the associated c-representation κ #»η

(see Table 2) we then obtain κ #»η (a b c) = η2 = η1 + η2 = κ #»η (a b c) and thus
a c 	|∼ c

R∗b.
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Table 2. Verification/falsification behavior and (generic) c-representation of the knowl-
edge base R∗ in the proof of Proposition 6; (v) indicates verification, (f) falsification
and (−) non-applicability.

ω abc abc abc ab c abc abc abc ab c

r1 = (b|a) v v f f − − − −
r2 = (bc|a) v f f f − − − −
κ #»η (ω) 0 η2 η1 + η2 η1 + η2 0 0 0 0

2. For proving the strictness part of (22), consider the knowledge base Rbird from
Example 1. Let us show that for A = p b and B = f we have A |∼ w

Rbird
B, i.e.,

that penguins which are no bird usually do not fly. According to Example 2,
we have p b f <w

Rbird
p b f . Therefore, since ΩAB = {p b f} and ΩAB = {p b f}

it follows from (14) that indeed p b |∼ w
Rbird

f . Looking at Table 1, we observe
κZ(AB) = 2 = κZ(AB) and thus p b 	|∼ Z

Rbird
f .

3. For proving the strictness part of (23), consider again Rbird with OP(Rbird ) =
(R0,R1) where R0 = {(f |b)} and R1 = {(f |p), (f |bp), (b|p)} (cf. Example 2).
For ω = p b f , we get (cf. Table 1) that ξ(ω) = {(f |p), (f |pb)}, ξ(p b f) =
{(f |b)} and ξ(p b f) = {(b|p)}. Thus, there is no world ω′ ∈ Ω with ω′ |= p f
and ω′ <σ

Rbird
ω (which is equivalent to ξ(ω′) � ξ(ω)). Therefore, p 	|∼ σ

Rbird
f .

To show p |∼ w
Rf fix any ω ∈ Ω with ω |= p f . Then (f |p) ∈ ξ(ω) where

(f |p) ∈ R1. For ω′ = p b f we have ω′ <w
R ω due to ξ(ω′) = {(f |b)} where

(f |b) ∈ R0. Thus, indeed p |∼ w
Rf . ��

After comparing system W with other established inference methods let us
deal with further of its properties.

Proposition 7. In general, system W inference cannot be obtained from a rank-
ing function, i.e., there exists a knowledge base R such that there is no ranking
function κ : Ω → N

∞
0 with |∼ w

R = |∼ κ.

Proof. This follows immediately from Lemma 2. ��
Nonmonotonic inference relations are usually evaluated by means of proper-

ties. In particular, the axiom system P [1,19] provides an important standard
for plausible, nonmonotonic inferences.

Proposition 8. System W inference satisfies System P.

Proof. According to Lemma 3, <w
R is a strict transitive relation. Furthermore,

since Ω is finite, the triple Mw(R) = [Ω, |=, <w
R] is a stoppered classical prefer-

ential model [22]. Thus, the definition of system W given by (14) in Definition 6
ensures that system W inference is a preferential inference, hence satisfying sys-
tem P (cf. [19,22]). ��
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An inference relation suffers from the Drowning Problem [9,23] if it does not
allow to infer properties of a superclass for a subclass that is exceptional with
respect to another property because the respective conditional is “drowned” by
others. E.g., penguins are exceptional birds with respect to flying but not with
respect to having wings. So we would reasonably expect that penguins have
wings.

Example 4 (R∗
bird [5]). We extend the alphabet Σ = {p, b, f } of our running

example knowledge base Rbird from Example 1 with the variable w for having
wings, the variable a for being airborne, and the variable r for being red, obtaining
the alphabet Σ∗ = {p, b, f ,w , a, r}. We use the knowledge base

R∗
bird =

{
(f |b), (f |p), (b|p), (w|b), (a|f)

}

where the conditional (w|b) encodes the rule that birds usually have wings, and
the conditional (a|f) encodes the rule that flying things are usually airborne;
the other three conditionals (f |b), (f |p), (b|p) are the same as in Rbird .

The Drowning Problem distinguishes between inference relations that allow
for subclass inheritance only for non-exceptional subclasses (like system Z infer-
ence) and inference relations that allow for subclass inheritance for exceptional
subclasses (like skeptical c-inference [5, Observation 1] and inference with mini-
mal c-representations, cf. [16,26]). As an illustration for the drowning problem,
consider R∗

bird from Example 4. Here, we have κZ(p w) = 1 = κZ(p w), and con-
sequently p 	|∼ Z

R∗
bird

w (cf. [5, Example 9]), illustrating that system Z suffers from
the drowning problem. In contrast, the following observation shows that sys-
tem W licenses the inference that penguins usually have wings and thus avoids
this drowning phenomenon.

Observation 1 System W inference does not suffer from the drowning problem
in Example 4, i.e., we have p |∼ w

R∗
bird

w.

Proof. The inclusion-maximal partition OP(R∗
bird) = (R0,R1) of R∗

bird in
Example 4 is given by R0 = {(f |b), (w|b), (a|f)} and R1 = {(f |p), (b|p)}.

Consider ω ∈ Ω with ω |= p w. Choose an arbitrary ω′ ∈ Ω with ω′ |= p b fw.
We will show ω′ <w

R∗
bird

ω. Obviously, ω′ falsifies only the conditional (f |b) which
is in R0, written as a formula ξ(ω) = {(f |b)}. Since ω |= pw, we can distinguish
the following two cases:

(i) If ω |= p w f then the conditional (f |p) from R1 is falsified.
(ii) If ω |= p w f then we can again distinguish two cases:

(a) If ω |= p w f b then (b|p) from R1 is falsified.
(b) If ω |= p w f b then at least (f |b), (w|b) (both from R0) are falsified.

Due to (11), we thus get ω′ <w
R∗

bird
ω in every case, implying p |∼ w

R∗
bird

w. ��
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5 Conclusions and Future Work

In this paper, we introduced system W and its underlying preferred structure of
worlds. System W inference captures both System Z inference and skeptical c-
inference and exhibits desirable properties. For instance, in contrast to system Z,
it avoids the drowning problem. In contrast to skeptical c-inference, it does not
require to solve a complex constraint satisfaction problem, but is as tractable
as system Z because the preferred structure on worlds is obtained directly from
the ordered partition of R and the verification/falsification behavior of R. In
future work, we will empirically evalute system W with the reasoning platform
InfOCF [3] and investigate further inference properties of it.
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