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Abstract. Descriptor revision by Hansson is a framework for address-
ing the problem of belief change. In descriptor revision, different kinds of
change processes are dealt with in a joint framework. Individual change
requirements are qualified by specific success conditions expressed by a
belief descriptor, and belief descriptors can be combined by logical con-
nectives. This is in contrast to the currently dominating AGM paradigm
shaped by Alchourrón, Gärdenfors, and Makinson, where different kinds
of changes, like a revision or a contraction, are dealt with separately.
In this article, we investigate the realisation of descriptor revision for
a conditional logic while restricting descriptors to the conjunction of
literal descriptors. We apply the principle of conditional preservation
developed by Kern-Isberner to descriptor revision for conditionals, show
how descriptor revision for conditionals under these restrictions can be
characterised by a constraint satisfaction problem, and implement it
using constraint logic programming. Since our conditional logic sub-
sumes propositional logic, our approach also realises descriptor revision
for propositional logic.

1 Introduction

The work by Alchourrón, Gärdenfors, and Makinson [1] (AGM) and its suc-
cessors have shaped the currently dominating paradigm for belief change. By
AGM, mainly three main kinds of belief changes are subject of interest: revision
(incorporating new beliefs into an agent’s belief state while maintaining consis-
tency), contraction (removing beliefs from the agent’s belief state), and expan-
sion (incorporating new beliefs into an agent’s belief state without maintaining
consistency). The most prominent difference between these kinds of changes is
their success condition. The approach to the problem of belief change by AGM is
top-down, starting from the axiomatisation of each of the three kinds of changes
and then investigating the representational issues through representation theo-
rems.

In the last 20 years, the AGM theory has been extended into several directions
and has been deeply investigated. This gives new insights on the requirements
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of representation and conceptual problems of (AGM) belief change. In partic-
ular, for Hansson [16], the requirement of epistemic states for iterative belief
change [8], the central role of conditionals in belief change and non-monotonic
logic [23,24] and problems like the non-finite representability of the result of a
contraction [14] or concerns about the “select-and-intersect” approach of AGM
[16] were a motivation to design a new framework for belief change. Descrip-
tor revision by Hansson [10] follows the top-down approach to belief change,
but, in contrast to the AGM paradigm, in descriptor revision, different kinds of
changes are expressible in one joint framework. For this, Hansson introduced a
language for success conditions, called belief descriptors. Through belief descrip-
tors, success conditions become an explicit part of the change process, instead of
hiding them in distinct kinds of operations having different success conditions.
This allows to express and analyse change processes that go beyond the classical
AGM operations, e.g., a change process where a contraction of a belief α and
a revision by β appear at the same time. Descriptor revision has been broadly
investigated by Hansson [11–16], but did not gain as much attention as AGM
[26]. In particular, to the best of our knowledge, until now, no approach to the
realisation of descriptor revision is available.

In this article, we investigate descriptor revision for a conditional logic while
using ordinal conditional functions [25], also called ranking functions, as repre-
sentation for epistemic states. We outline how to instantiate the framework of
descriptor revision for this logic and design an approach for its realisation. Fur-
thermore, for descriptor revision we use and adapt the sophisticated principle
of conditional preservation by Kern-Isberner [18,19] for ranking functions. In
summary, the main contributions of this article are:

– Introduction of conditional descriptor revision, which introduces the principle
of conditional preservation to the framework of descriptor revision.

– A sound and complete characterisation of conditional descriptor revision for
elementary descriptors by a constraint satisfaction problem.

– Implementation of elementary descriptor revision using constraint logic pro-
gramming and by employing the developed characterisation.

The article is organised as follows. In Sect. 2, we present logical preliminaries.
We recall descriptors and descriptor revision in Sect. 3. Section 4 introduces our
framework of conditional descriptor revision. Section 5 develops a characterisa-
tion of conditional descriptor revision for elementary descriptors by a constraint
satisfaction problem. The implementation of this approach is sketched in Sect. 6.
We conclude and point out future work in Sect. 7.

2 Logical Preliminaries

Let Σ be a propositional signature (non-empty finite set of propositional vari-
ables) and Lprop the propositional language over Σ. With upper case letters
A,B,C, . . ., we denote formulas in Lprop and with lower case letters a, b, c, . . .
propositional variables from Σ. We allow the typical abbreviation A → B for
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¬A ∨ B, abbreviate A ∧ B by AB and write A for ¬A. With �, we denote a
propositional tautology and with ⊥ a propositional falsum. The set of proposi-
tional interpretations Ω = P(Σ), also called set of worlds, is identified with the
set of corresponding complete conjunctions over Σ, where P(·) is the powerset
operator. Propositional entailment is denoted by |= , the set of models of A
with Mod(A), and Cn(A) = {B | A |= B} is the deductive closure of A. For
a set X, we define Cn(X) = {B | X |= B} and say X is deductively closed
if X = Cn(X). In the context of belief change, a deductively closed set is also
called a belief set.

A function κ : Ω → N such that κ−1(0) �= ∅ is a called a ordinal condi-
tional function (OCF), also called a ranking function [25]. It expresses degrees
of implausibility of interpretations. This is lifted to propositional formulas A by
defining κ(A) := min{κ(ω) | ω |= A}, where min ∅ = ∞, yielding a function
κ : L → N ∪ {∞} which specifies a degree of implausibility for each formula.
With Mod(κ) = {ω | κ(ω) = 0} we denote the minimal interpretations with
respect to κ, and Bel (κ) denotes the theory of propositional formulas that hold
in all ω ∈ Mod(κ).

Over Σ and Lprop, we define the set of conditionals Lcond = {(B|A) | A,B ∈
L}. A conditional (B|A) formalizes “if A then usually B” and establishes a plau-
sible connection between the antecedent A and the consequent B. Conditionals
with tautological antecedents are taken as plausible statements about the world.
Because conditionals go well beyond classical logic, they require a richer setting
for their semantics than classical logic. Following De Finetti [9], a conditional
(B|A) can be verified (falsified) by a possible world ω iff ω |= AB (ω |= AB).
If ω �|= A, then we say the conditional is not applicable to ω.

Ranking functions serve here as interpretations in a model theory for a con-
ditional logic. We say a conditional (B|A) is accepted in a ranking function
κ, written as κ |= (B|A), iff κ(AB) < κ(AB), i.e., iff the verification AB
of the conditional is more plausible than its falsification AB. For a proposi-
tional formula A, we define κ |= A if κ |= (A|�), i.e., iff κ(A) < κ(A)
or equivalently iff κ(A) > 0, since at least one of κ(A), κ(A) must be 0 due to
κ−1(0) �= ∅. The models of a conditional (B|A) are the set of all ranking functions
accepting (B|A), i.e. Mod((B1|A1)) = {κ | κ |= (B|A)}. A conditional (B1|A1)
entails (B2|A2), written (B1|A1) |= (B2|A2), if Mod((B1|A1)) ⊆ Mod((B2|A2))
holds. Furthermore, we define the set of consequences for X ⊆ Lcond by
Cn(X) = {(B|A) | X |= (B|A)}. As usual, X ⊆ Lcond is called deductively
closed if X = Cn(X). This ranking function based semantics can be mapped to,
and can also be obtained from, other semantics of conditionals [4].

Example 1 (adapted [5]). Let Σ = {p, b, f} with p meaning “penguin”, b “bird”
and f “able to fly”. “Birds normally fly” is modelled with the conditional r1 =
(f |b), “penguins normally do not fly” with r2 = (f |p), and “penguins are normally
birds” with r3 = (b|p). Consider the ranking function κp from Table 1, which
will act as our running example for the following sections (where we will also
elaborate the other ranking function and conditionals shown in Table 1). Table 1
also contains the verifying and falsifying interpretations of the conditional (f |p).
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The ranking function κp accepts all conditionals in Rpen = {r1, r2, r3}, i.e. κp |=
ri for all 1 � i � 3. For example, κ |= r1 because κ(bf) = 0 < 1 = κ(bf) holds.
For the rest of the article, we will assume that the ranking function κp is the
initial belief state representing the beliefs about penguins, flying, and birds of
our agent.

Table 1. Verifying (v) and falsifying (f) interpretations for the conditionals (p|b), (f |p),
and (f |p), and the ranking functions for the running penguin example.

ω Conditionals Belief states
(p|b) (f |p) (f |p) κp(ω) κ◦

p(ω)

b f p v v f 2 1
b f p f 0 2
b f p v f v 1 1
b f p f 1 3
bf p v f 4 3
bf p 0 0
b f p f v 2 2
b f p 0 0

3 Descriptors and Descriptor Revision

The main building blocks of descriptor revision are belief descriptors, which
provide a language for expressing membership constraints for a belief set.

Definition 1 (Descriptor [15]). Let L be a logical language. For any sentence
ϕ ∈ L the expression Bϕ is an atomic descriptor (over L). Any connection of
atomic descriptors with disjunction, conjunction and negation is called a molec-
ular descriptor (over L). A composite descriptor (over L) is a set of molecular
descriptors (over L).

As stated by Hansson [15], composite descriptors are just denoted as descrip-
tors. A molecular descriptor of the form Bϕ or ¬Bϕ is called a literal descriptor.
An elementary descriptor is a set of literal descriptors (and therefore a descrip-
tor).

Definition 2 (Descriptor Semantics [15]). An atomic descriptor Bϕ holds
in a belief set X, written X � Bϕ, if ϕ ∈ X. This is lifted to molecular descrip-
tors truth-functionally. A descriptor Ψ holds in X, likewise written X � Ψ , if
X � α holds for every molecular descriptor α ∈ Ψ .

For an example of descriptors, consider the following example.
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Example 2. Assume that Lab is the propositional language over Σ = {a, b} and
X = Cn(a ∨ b). Then, ¬Ba expresses that a is not part of the belief set,
whereas B¬a states that the formula ¬a is part of the belief set, e.g. X � ¬Ba
and X �� B¬a. Likewise, Ba ∨ Bb expresses that a or b is believed, whereas
B(a ∨ b) states that the formula a ∨ b is believed, e.g. X � B(a ∨ b) and
X �� Ba ∨ Bb.

For the setting of belief change, we assume that every agent is equipped with a
belief state, also called epistemic state, which contains all information necessary
for performing belief change operations. We denote belief states by K,K1,K2, . . .
following the notion of Hansson [15]. General descriptor revision does not specify
what a belief state is, but assumes that a belief set Bel (K) is immanent for
every epistemic state K. To make descriptors compatible with belief states, we
naturally lift the semantics to belief states, i.e. K � Ψ if Bel (K) � Ψ .

Example 3 (Continued). Assume ranking functions as a representation of
belief states. Let κp be the belief state from Table 1 and let Ψ =
{Bp, B(b → f), ¬Bbf} be an elementary descriptor. The descriptor Ψ expresses
belief in p (it is not a penguin) and b → f (a bird flies) and not believing bf (it is
a non-flying bird). The immanent belief set of κp is Bel (κp) = Cn(p ∧ (b → f)).
The descriptor Ψ holds in κp , i.e. κp � Ψ , since p ∈ Bel (κp), b → f ∈ Bel (κp)
and bf /∈ Bel (κp).

AGM theory [1] focuses on properties of revision (or contraction) operations
by examining the interconnection between prior belief state, new information
and posterior belief state of a change. Descriptor revision examines the inter-
connection between prior belief state and posterior belief states that satisfy a
particular descriptor. Let KK denote the set of all reasonable conceivable suc-
cessor belief states for a belief state K. A descriptor revision by a descriptor Ψ
is the process of choosing a state K ′ from KK such that K ′ � Ψ . We abstract
from the internal process of how KK is obtained and define descriptor revision1

as follows.

Definition 3. (Descriptor Revision, Adapted [15]). Let K be a belief state,
KK a set of belief states and C : P(KK) → KK be a choice function. Then the
change from K to K◦ = K ◦ Ψ is called a descriptor revision by Ψ realised by
C over KK if the following holds:

K ◦ Ψ = C( {K ′ ∈ KK | K ′ � Ψ} ) (1)

We say that the change from K to K◦ is a descriptor revision (by Ψ), if C and
KK (and Ψ) exist such that the change from K to K◦ is realised by C over KK .
We also say K◦ is the result of the descriptor revision of K (by Ψ under KK).

1 In the original framework by Hansson this is much more elaborated. By the ter-
minology of Hansson, here we present a form of local deterministic monoselective
descriptor revision [15]. Moreover, we primarily focus on one change, while Hansson
designs the framework for change operators.
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Descriptors allow to express a variety of different success conditions, e.g.

{Bϕ} Revision by ϕ
{¬Bϕ} Contraction by ϕ (also called revocation [16])
{¬Bϕ,¬B¬ϕ} Giving up the judgement on ϕ (also called ignoration [5]).

Additionally, Hansson provides the following examples [16]:

{Bϕ1, . . . ,Bϕn} Package revision by {ϕ1, . . . , ϕn}
{¬Bϕ,Bψ} Replacement of ϕ by ψ
{Bϕ1 ∨ . . . ∨ Bϕn} Choice revision by {ϕ1, . . . , ϕn}
{Bϕ ∨ B¬ϕ} Making up one’s mind about ϕ.

Note that all given examples, except for choice revision and “making up one’s
mind”, are elementary descriptors. In particular, elementary descriptor revision
subsumes operations of AGM, and, furthermore, also allows to express changes
which lead to a revision and a contraction at the same time. For a concrete
example, we continue our running example.

Example 4 (Continued). Let κp and κ◦
p be as in Table 1, let Kκp

be the set of all
ranking functions, let C be a choice function such that C(X) = κ◦

p if κ◦
p ∈ X, and

let Ψ = {Bb ∨ Bp, ¬Bbf} be a descriptor. The descriptor Ψ expresses posterior
belief in b or belief in p and disbelief in bf . In particular, ¬Bbf expresses a
contraction with bf (it is a flying bird), but for Bb ∨ Bp (it is not a bird or
it is a penguin), there is no straight counterpart in the AGM framework. Note
that we have Bel

(
κ◦
p

)
= Cn(b ∧ p), and thus, it holds that b ∈ Bel

(
κ◦
p

)
and

bf /∈ Bel
(
κ◦
p

)
, and therefore, the descriptor Ψ holds in κ◦

p . Thus, the change
from κp to κ◦

p is a descriptor revision by Ψ realised by C over Kκp
.

4 Conditional Descriptor Revision

We instantiate descriptor revision for the case in which the underlying logic is
the conditional logic Lcond and ranking functions serve as a representation for
epistemic states. Furthermore, we adapt the principle of conditional preservation
by Kern-Isberner [18] to the requirements of descriptor revision.

4.1 Adaptions for Conditionals in Lcond

In the formal framework of descriptor revision by Hansson, as recalled in Sect. 3,
semantics of a descriptor refer to a belief set, containing formulas of the under-
lying logic. Thus, when using the logic Lcond, we need to refer to the set of
conditionals accepted by a ranking function κ when choosing ranking functions
as representations for epistemic states. However, the belief set Bel (κ) of a rank-
ing function κ is a set of propositional beliefs, i.e. Bel (κ) ⊆ Lprop. We define the
set of conditional beliefs for a ranking function κ as follows:

Belcond (κ) = { (B|A) | κ |= (B|A) }
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Clearly, the set Belcond (κ) is a deductively closed set for every ranking function
κ and therefore a belief set. Descriptors and descriptor revision for Lcond then
refer to the set of conditional beliefs Belcond (κ), and their formal definition can
be easily obtained by correspondingly modifying Definitions 1, 2 and 3.

Note that the conditional logic Lcond embeds the propositional logic Lprop,
hence every proposition A ∈ Lprop can be represented by (A|�). Moreover, the
definition of Belcond (κ) ensures compatibility of propositional beliefs with the
conditional beliefs, i.e. {(A|�) | A ∈ Bel (K)} ⊆ Belcond (K). Thus, our app-
roach to descriptor revision by conditionals, presented in the following, subsumes
descriptor revision for propositions.

4.2 Conditional Preservation

When an agent performs a belief change, the change might not only affect explicit
beliefs, but also implicit beliefs. Boutilier proposed that belief change should
also minimize the effect on conditional beliefs [6]. Kern-Isberner introduced the
principle of conditional preservation (PCP) and gave a thorough axiomatisation
of PCP [17,18] in a very general manner.

Note that the principle of conditional preservation is usually defined as a
property of a change by a set of conditionals R. However, when having a descrip-
tor revision, the underlying change framework and its parameters and capabili-
ties might be hidden. Thus, we abstract from the assumption that the change is
done by a set of conditionals R, and just state that a change satisfies PCP with
respect to a set of conditionals R. This allows us to say that a change satisfies
the principle of conditional preservation without assuming the involvement of
specific parameters in the underlying change framework. In the following, we
present our relaxed variant of the principle of conditional preservation for the
special case of ranking functions.

Definition 4. (PCP for OCF Changes, Adapted [20]). A change of a
ranking function κ to a ranking function κ◦ fulfils the principle of conditional
preservation with respect to the conditionals R = {(B1|A1), . . . , (Bn|An)}, if
for every two multisets of propositional interpretations Ω1 = {ω1, . . . , ωm} and
Ω2 = {ω′

1, . . . , ω
′
m} with the same cardinality m such that the multisets Ω1 and

Ω2 contain the same number of interpretations which verify, respectively falsify,
each conditional (Bi|Ai) in R, the ranking functions κ and κ◦ are balanced in
the following way:

m∑

i=1

κ(ωi) −
m∑

i=1

κ(ω′
i) =

m∑

i=1

κ◦(ωi) −
m∑

i=1

κ◦(ω′
i) (2)

Example 5 (Continued). Assume our agent lives in Antarctica and she starts
to question her beliefs about penguins and birds. The only birds she sees in
Antarctica are penguins, and moreover, she observes, through her window, a
lot of penguins jumping off a cliff, and thus, flying for a moment. Her belief
state is changing from κp to κ◦

p from Table 1. Consider now the conditional
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(p|b) expressing that birds are usually penguins, the conditional (f |p) expressing
that penguins usually fly, and the conditional (f |p) expressing that penguins
usually don’t fly. The change from κp to κ◦

p satisfies the principle of conditional
preservation with respect to the conditionals in R = {(p|b), (f |p), (f |p)}. For
instance, the two multisets Ω1 = {bfp, b fp} and Ω2 = {bfp, bfp}, containing
for every conditional in R the same number of verifying and falsifying worlds,
and their values under κp and κ◦

p are balanced according to Eq. (2), i.e.

κp(bfp) + κp(b fp) − κp(bfp) − κp(bfp) = 2 + 2 − 1 − 4 = −1
= 1 + 2 − 1 − 3 = κ◦

p(bfp) + κ◦
p(b fp) − κ◦

p(bfp) − κ◦
p(bfp).

The definition of the principle of conditional preservation, as given in Defi-
nition 4, does not require information about the success condition of a change.
Thus, the notion of the principle of conditional preservation is directly available
for descriptor revision of conditionals when we provide a set of conditionals. A
natural choice are the conditionals appearing in a descriptor Ψ . For a descriptor
Ψ over Lcond, we define the set of conditionals in Ψ , denoted by cond(Ψ), as
follows:

– for Ψ = ∅ let cond(Ψ) = ∅,
– for Ψ = {B(B|A)} let cond(Ψ) = {(B|A)},
– for Ψ = {α, β, . . .} let cond(Ψ) = cond({α}) ∪ cond({β, . . .}),
– for Ψ = {α ∨ β} let cond(Ψ) = cond({α}) ∪ cond({β}),
– for Ψ = {α ∧ β} let cond(Ψ) = cond({α}) ∪ cond({β}), and
– for Ψ = {¬α} let cond(Ψ) = cond({α}).

In the following, we use a central characterisation [19,20] of the principle of
conditional preservation to obtain a characterisation of the principle of condi-
tional preservation for descriptor revisions.

Proposition 1. (PCP for Descriptor Revision, Adapted [20]). Let Ψ be
a descriptor over Lcond and cond(Ψ) = { (B1|A1), . . . , (Bn|An) } be the set of
conditionals in Ψ , and let κ◦ be the result of the descriptor revision of κ by Ψ .
Then this change satisfies the principle of conditional preservation with respect
to the conditionals in cond(Ψ) if and only if there are integers2 κ0, γ

+
i , γ−

i ∈ Z,
1 � i � n, such that:

κ◦(ω) = κ0 + κ(ω) +
∑

1�i�n
ω |= AiBi

γ+
i +

∑

1�i�n
ω |= Ai∧¬Bi

γ−
i (3)

The proof of Proposition 1 is directly obtainable from a proof given by Kern-
Isberner [19, Theorem 4.6.1], since no specific information on the success condi-
tion for the conditionals in the descriptor was used in Proposition 1. The idea
underlying Proposition 1 is that interpretations that are verifying and falsifying

2 As noted by Kern-Isberner [20], all κ0, γ
+
i , γ−

i can be rational, but κ◦ has to satisfy
the requirements for OCF, in particular, all κ◦(ω) must be non-negative integers.
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the same conditionals are treated in the same way. Thus, for every conditional
(Bi|Ai) ∈ cond(Ψ), the two constants γ+

i and γ−
i handle how interpretations are

shifted over the change process. The constant κ0 acts as a normalizer, ensuring
that κ◦ is indeed a ranking function, i.e. there is at least one world ω such that
κ◦(ω) = 0.

Example 6 (Continued). Consider the change from κp to κ◦
p , both given in

Table 1. As shown in Example 5, this change satisfies the principle of conditional
preservation with respect to the conditionals in R = {(p|b), (f |p), (f |p)}. Indeed,
as stated in Proposition 1, we can obtain κ◦

p from κp via Eq. (3) by choosing
κ0 = 0, γ+

1 = 0, γ−
1 = −1, γ+

2 = 0, γ−
2 = 2, γ+

3 = 0, and γ−
3 = 0.

4.3 Descriptor Revision with Conditional Preservation

The principle of conditional preservation is a powerful basic principle of belief
change and it is natural to demand satisfaction of this principle. The principle
demands a specific relation between the conditionals in the prior belief state K,
the conditionals in the posterior state K◦ and the conditionals in the descriptor
Ψ . Remember that by Definition 3, a descriptor revision from K to K◦ is deter-
mined by a choice function C, the descriptor Ψ and the set KK such that Eq. (1)
holds, but none of these components allow to express a direct relation between
K, K◦ and Ψ . Thus, there is no possibility to express conditional preservation
by the means of descriptor revision. The principle of conditional preservation is
somewhat orthogonal to descriptor revision, which gives rationale to the follow-
ing definition of conditional descriptor revision.

Definition 5 (Conditional Descriptor Revision). Let κ be a ranking func-
tion. A descriptor revision of κ to κ◦ by a descriptor Ψ over Lcond (realised by
C over Kκ) is called a conditional descriptor revision of κ to κ◦ by Ψ (realised
by C over Kκ) if the change from κ to κ◦ satisfies the principle of conditional
preservation with respect to cond(Ψ).

In Definition 5, we choose ranking functions as representations for belief states,
but note that the principle of conditional preservation also applies to other rep-
resentations [19]. Thus, for other kinds of representations of belief states one
might give a definition of conditional descriptor revision similar to the one given
here. However, for the rest of the article, we focus on ranking functions. More-
over, we assume Kκ to be the set of all ranking functions, i.e. when revising by
a descriptor over Ψ , we choose over the set of all ranking functions.

Example 7 (Continued). Consider κp to κ◦
Ψ given in Table 1. The change from

κp to κ◦
Ψ is a conditional descriptor revision by Ψ = {B(p|b),¬B(f |p),¬B(f |p)}.

Note that cond(Ψ) = {(p|b), (f |p), (f |p)}, and therefore, as stated in Example 5,
the change from κp to κ◦

Ψ satisfies the principle of conditional preservation with
respect to cond(Ψ). Note that Ψ holds in κ◦

p , i.e. κ◦
p � Ψ . In particular, it is the

case that κ◦
p � ¬B(f |p), which is equivalent to κ◦

p �|= (f |p), i.e. κ◦
p(fp) �< κ◦

p(fp).
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5 Characterisation of Conditional Descriptor Revision
with Elementary Descriptors by CSPs

The arithmetic nature of ranking functions and the characterisation of the prin-
ciple of conditional preservation by Proposition 1 allow us to give a constraint,
expressing the success condition of a literal descriptor.

Definition 6. (Constraint for Literal Descriptors, CRD(κ, α, Ψ)). Let κ be
a ranking function, let Ψ = {α1, . . . , αm} be an elementary descriptor over Lcond

with cond(Ψ) = {(B1|A1), . . . , (Bn|An)}, and let α be a literal descriptor in Ψ .
The constraint for α in κ under Ψ , denoted by CRD(κ, α, Ψ), on the constraint
variables γ+

1 , γ−
1 , . . . , γ+

n , γ−
n ranging over Z, is given for a positive literal α =

B(Bi|Ai) descriptor by

γ−
i − γ+

i > ( min
ω�AiBi

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j )

− ( min
ω�AiB̄i

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j ) for i = 1, . . . , n

(4)

and for a negative literal descriptor α = ¬B(Bi|Ai) by

γ−
i − γ+

i � ( min
ω�AiBi

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j )

− ( min
ω�AiB̄i

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j ) for i = 1, . . . , n.

(5)

The rationale for Definition 6 is that a positive literal descriptor {B(B|A)} holds
in the posterior state κ◦ if (B|A) is accepted by κ◦, more formally κ◦ |= (B|A),
i.e. κ◦(AB) < κ◦(AB). Likewise, a negative literal descriptor {¬B(B|A)} cor-
responds to κ◦ �|= (B|A), i.e. κ◦(AB) � κ◦(AB). Combining all the constraints
obtained for each literal descriptor in Ψ yields a constraint satisfaction problem.

Definition 7. (CSP for Elementary Descriptors, CRD(κ, Ψ)). Let κ be
a ranking function and Ψ be an elementary belief descriptor with cond(Ψ) =
{(A1|B1), . . . , (An|Bn)}. The constraint satisfaction problem for κ and Ψ , on the
constraint variables γ+

1 , γ−
1 , . . . , γ+

n , γ−
n ranging over Z, denoted by CRD(κ, Ψ),

is given by the conjunction of the constraints CRD(κ, α, Ψ) for each α ∈ Ψ .

With Sol(CRD(κ, Ψ)), we denote the solutions of the constraint satisfaction
problem CRD(κ, Ψ). Each solution �γ = 〈γ+

1 , γ−
1 , . . . , γ+

n , γ−
n 〉 ∈ Sol(CRD(κ, Ψ))

induces a unique ranking function κ�γ obtained from Eq. (3) in Theorem 1 by
choosing κ0 as the smallest integer such that the equation yields a ranking func-
tion, i.e., there is a propositional interpretation ω ∈ Ω such that κ�γ(ω) = 0 and
for all ω ∈ Ω the value κ�γ(ω) is a non-negative integer.
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Example 8 (Continued). Consider κp from Table 1 and the elementary descrip-
tor Ψ = {B(p|b),¬B(f |p),¬B(f |p)}. The CSP CRD(κ, Ψ) is given by:

CRD(κp ,B(p|b), Ψ) : γ−
1 − γ+

1 >min{κp(bfp) + γ+
2 +γ−

3 , κp(bfp) + γ+
3 + γ−

2 }
−min{κp(bfp), κp(bfp))}

CRD(κp ,¬B(f |p), Ψ) : γ−
2 − γ+

2 �min{κp(bfp) + γ+
1 + γ−

3 , κp(bfp) + γ−
3 }

−min{κp(bfp) + γ+
1 + γ+

3 , κp(b fp)) + γ+
3 }

CRD(κp ,¬B(f |p), Ψ) : γ−
3 − γ+

3 �min{κp(bfp) + γ+
1 + γ−

2 , κp(b fp) + γ−
2 }

−min{κp(bfp) + γ+
1 + γ+

2 , κp(bfp)) + γ+
2 }

The vector �γ = 〈γ+
1 , γ−

1 , γ+
2 , γ−

2 , γ+
3 , γ−

3 〉 with γ+
1 = 0, γ−

1 = −1, γ+
2 = 0, γ−

2 = 2,
γ+
3 = 0, and γ−

3 = 0 is a solution of Sol(CRD(κp , Ψ)), i.e. �γ ∈ Sol(CRD(κp , Ψ)).
We obtain the ranking function κ◦

p = κ�γ given in Table 1.

We examine whether our approach is sound and complete with respect to
conditional descriptor revision.

Theorem 1. (Soundness of CRD(κ, Ψ)). Let κ be an ordinal conditional rank-
ing function, Ψ be an elementary belief descriptor, and let �γ ∈ Sol(CRD(κ, Ψ)).
Then, the change from κ to κ�γ is a conditional descriptor revision by Ψ (over
all ranking functions).

Note that a ranking function κ◦ is a c-representation [19] for a set of conditionals
R if and only if κ◦ is the result of a conditional descriptor revision starting form
a ranking function κ such that κ(ω) = 0 for every ω ∈ Ω with a descriptor
Ψ = {B(B|A) | (B|A) ∈ R}. The construction of a c-representation can be
characterised by a constraint-satisfaction problem similar to the one given in
Definition 7 [3,19]. The soundness proof transfers to a proof of Theorem 1.

Theorem 2. (Completeness of CRD(κ, Ψ)). Let Ψ be an elementary belief
descriptor and κ, κ◦ be ordinal conditional functions. If the change from κ to κ◦

is a conditional descriptor revision by Ψ (over all ranking functions), then there
exists a vector �γ ∈ Sol(CRD(κ, Ψ)) such that κ◦ = κ�γ .

Proof (Sketch). Because of Proposition 1, there exists κ0 and �γ = 〈γ+
1 , γ−

1 , . . .〉
such that the ranking function κ◦ is representable as stated in Eq. (3). Therefore,
we have κ◦ = κ�γ . It remains to show that �γ ∈ Sol(CRD(κ, Ψ)). Note that by our
assumptions κ◦ � α holds for each α ∈ Ψ . Suppose that α is a positive literal
descriptor, i.e. α = B(B|A), and thus, κ◦(AB) < κ◦(AB). By employing Eq. (3),
we obtain Eq. (4) from κ◦(AB) < κ◦(AB) by algebraic transformations [19]. In
an analogue way, one can obtain Eq. (5) from a negative literal descriptor. Note
that these are exactly the inequalities in CRD(κ, Ψ). Therefore, the vector �γ is
a solution for Sol(CRD(κ, Ψ)).
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6 Implementation by ChangeOCF

We implemented descriptor revision for conditionals and elementary descriptors
under the principle of conditional preservation. Given a ranking function κ and
an elementary descriptor Ψ , our system, called ChangeOCF, calculates a list
of possible outcomes of a revision of κ with Ψ . To calculate the possible out-
comes of the revision, ChangeOCF uses a constraint system based on CRD(κ, Ψ)
introduced in Sect. 5. Following the Propositions 1 and 2, the solutions of this
constraint system correspond to the outcomes of a conditional descriptor revi-
sion. A straightforward approach would be to solve CRD(κ, Ψ) for the given κ
and Ψ . Then, for each �γ ∈ Sol(CRD(Ψ)) the corresponding ranking function κ�γ

is calculated.
In general, Sol(CRD(Ψ)) may contain infinite elements, but there is only a

finite number of equivalence classes with respect to the acceptance of condi-
tionals. Therefore, it is possible to restrict the set of solutions to finitely many
without losing interesting results. To do this, we used an approach inspired by
maximal impacts for c-representations [3] that addresses a similar problem for
the enumeration of c-representations. The idea of maximal impacts is to add
explicit bounds for the value of each γ+

i , γ−
i . This reduces the set of possible

solutions to a finite set, without losing equivalent solutions when choosing the
bounds appropriately. ChangeOCF limits the value of γ+

1 , γ−
1 , . . . , γ+

n , γ−
n to an

individual finite domain by extending the constraint system CRD(κ, Ψ) with con-
straints umin−

i � γ−
i � umax−

i and umin+
i � γ+

i � umax+
i for 1 � i � n. We

denote this extended constraint system by CR�u
D(κ, Ψ) with �u = 〈umin−

1 , umax−
1 ,

umin+
1 , umax+

1 , . . . , umax+
n 〉. Like for c-representations [21], it is an open problem

which values for �u guarantee that a representative for each equivalence class of
solutions with respect to the acceptance of conditionals is found for a given κ
and Ψ .

The implementation of ChangeOCF is build upon by InfOCF-Lib [22], a
Java library for reasoning with conditionals and ranking functions. InfOCF-Lib
calculates the c-representations of a conditional knowledge base by solving a
constraint system similar to CR�u

D(κ, Ψ). The interface of ChangeOCF is imple-
mented in Java. To solve CR�u

D(κ, Ψ), we use SICStus Prolog and its constraint
logic programming library for finite domains [7]. The Prolog implementation is
an adaption of the implementation of InfOCF [2] to the more general case of
belief change.

Example 9 (Continued). Consider again the descriptor revision of κp from
Table 1 with the elementary descriptor Ψ = {B(p|b),¬B(f |p),¬B(f |p)}. The
corresponding constraint satisfaction problem CR�u

D(κ, Ψ) is given by the con-
junction of CRD(κ, Ψ) from Example 8 with the following constraints:

umin−
1 � γ−

1 � umax−
1 umin−

2 � γ−
2 � umax−

1 umin−
3 � γ−

3 � umax−
3

umin+
1 � γ+

1 � umax+
1 umin+

2 � γ+
2 � umax+

1 umin+
3 � γ+

3 � umax+
3
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If we choose for example �u = 〈−2, 0, 0, 2,−1, 1,−1, 1, 0, 0, 0, 0〉, there are nine
solutions to CR�u

D(κ, Ψ). One of the solutions is �γ = 〈0, 2,−1, 0, 0, 0〉, which cor-
responds to κ�γ = κ◦

p from Table 1.

7 Summary and Future Work

In this article, we investigated descriptor revision for a conditional logic and
its realisation. We defined elementary descriptors, a large fragment of the full
descriptor language, allowing to express a multitude of different kinds of change
processes. In particular, elementary descriptors cover the success conditions of
AGM revision and AGM contraction. We introduced conditional descriptor revi-
sion, which is an extension of descriptor revision for conditionals obeying the
principle of conditional preservation by Kern-Isberner. We gave a characterisa-
tion by a constraint satisfaction problem and an implementation of conditional
descriptor revision with elementary descriptors was presented.

For future work, we plan to give a characterisation of conditional descriptor
revision with descriptors with disjunction. This requires a more fine-grained
handling of the interaction of the constraints, and might require transformations
of a descriptor into a normal form. Another open problem is the determination
of maximal impacts for the constraint problem such that all solutions up to
equivalence with respect to acceptance of conditionals are captured.
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