
Stable Resolving - A Randomized Local
Search Heuristic for MaxSAT

Julian Reisch1,2(B), Peter Großmann1, and Natalia Kliewer2

1 Synoptics GmbH, Chemnitzer Str. 48b, 01187 Dresden, Germany
{julian.reisch,peter.grossmann}@synoptics.de

2 Freie Universität Berlin, Garystraße 21, 14195 Berlin, Germany
natalia.kliewer@fu-berlin.de

http://www.synoptics.de/

Abstract. Many problems from industrial applications and AI can be
encoded as Maximum Satisfiability (MaxSAT). Often, it is more desir-
able to produce practicable results in very short time compared to opti-
mal solutions after an arbitrary long computation time. In this paper, we
propose Stable Resolving (SR), a novel randomized local search heuristic
for MaxSAT with that aim. SR works for both weighted and unweighted
instances. Starting from a feasible initial solution, the algorithm repeat-
edly performs the three steps of perturbation, improvements and solution
checking. In the perturbation, the search space is explored at the cost of
possibly worsening the current solution. The local improvements work
by repeatedly flipping signs of variables in over-satisfied clauses. Finally,
the algorithm performs a solution checking in a simulated annealing fash-
ion. We compare our approach to state-of-the-art MaxSAT solvers and
show by numerical experiments on benchmark instances from the annual
MaxSAT competition that SR performs comparable on average and is
even the best solver for particular problem instances.

Keywords: Maximum Satisfiability · MaxSAT · Incomplete solving ·
Randomized algorithm · Local search algorithm · Simulated annealing

1 Introduction

We consider the Constraint Satisfaction Problem of Maximum Satisfiability
(MaxSAT). Many NP-hard optimization problems from applications in indus-
try and AI can be encoded as MaxSAT and existing solution algorithms have
proved to yield results that are competitive to domain specific solvers. The appli-
cations vary from periodic scheduling [15], to causal discovery [18], Bayesian
network structure learning [9], correlation clustering [8], reasoning over bionet-
works [16], probabilistic inference [20] and many more. A MaxSAT encoding
consists a Boolean formula that we assume to be in conjunctive normal form
(CNF) which means that the literals are grouped in clauses where they are con-
nected disjunctively (or) and the clauses are connected conjunctively (and).

c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 163–175, 2020.
https://doi.org/10.1007/978-3-030-58285-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58285-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-58285-2_12


164 J. Reisch et al.

Example. A Boolean formula in CNF: F = (¬x ∨ ¬y) ∧ (¬y ∨ ¬z).
A literal is a variable together with a positive or negative sign. A clause is

satisfied if at least one of its literals has the same sign as the variable in the
solution. We also say the literal is true and denote the number of true literals
in a clause its stability. An unsatisfied clause has a stability of zero. When a
clause has a stability greater than 1, we say that the clause is over-satisfied. A
solution is an assignment of the variables to true or false and is called feasible
if all hard clauses are satisfied. We assume the formula to consist of both hard
clauses and (possibly weighted) soft clauses. The sum of (the weights of) satisfied
soft clauses is the objective function value. Then, the task is to find a feasible
solution maximizing the objective function value.

Example. Let F = H1 ∧ H2 ∧ S1 ∧ S2 ∧ S3 where

H1 : ¬x ∨ ¬y
H2 : ¬y ∨ ¬z
S1 : x weight(S1) = 2
S2 : y weight(S2) = 3
S3 : z weight(S3) = 2

are hard and soft clauses with according weights respectively. Then, the optimal
solution of value 4 is x = z = true and y = false.

Due to its generic form, almost any problem from combinatorial optimization
and many optimization problems in AI can be encoded as MaxSAT and practice
shows that this conversion often works well. In this paper, we propose a novel
heuristic solution approach to the MaxSAT problem called Stable Resolving
(SR). The aim is to solve even large problem instances with millions of clauses
and variables within short time, that is, up to 60 s, to a practicable solution. To
do so, SR repeatedly performs the three steps of perturbation, improvements and
solution checking, starting from an initial feasible solution. In the perturbation,
the search space is explored by satisfaction of randomly picked unsatisfied (soft)
clauses at the cost of other clauses becoming unsatisfied. More precisely, we con-
sider the randomly picked clauses as hard clauses and call a SAT solver on them,
together with the original hard clauses. If other, formerly satisfied soft clauses
become unsatisfied by this perturbation, we write them in a list of unsatisfied
candidate clauses. Then, in the improvement part, a local search technique is
employed that builds on the clauses’ stabilities. Starting with the first member
of the list of unsatisfied candidate clauses, clauses with stability zero are being
satisfied by flipping the sign of a randomly chosen variable. Flipping the sign of
one of its variables increases the clause’s stability by 1 but might cause other
clauses to become unsatisfied. These unsatisfied clauses are added to the (local)
search space and will be tried to be satisfied later. On the other hand, if flipping
a variable’s sign increases other clauses’ stabilities to a number larger 1, that
is, they become over-satisfied, they can have at least one literal falsified with-
out becoming unsatisfied. This falsification can hence satisfy yet other clauses
that contain the same variable with opposite sign and improve the objective



Stable Resolving - A Randomized Local Search Heuristic for MaxSAT 165

function again. In this way, the local search space grows until all unsatisfied
clauses have been tried to satisfy. Then, the improvement step ends and if the
objective function value has decreased, the previous solution is restored. Else,
newly unsatisfied clauses are added to the list of unsatisfied candidate clauses.
As candidate clauses are only added when the objective function value increases,
and one candidate is erased when it decreases, this list will eventually be empty.
Then, the solution checking part begins. Here, a worsening of the objective value
is allowed with a probability that decreases during the run of the algorithm.

The outline of the paper will be as follows. After a literature overview over
existing approaches in Sect. 2, we explain the algorithm in detail in Sect. 3. In
Sect. 4, we present and discuss our results on common benchmark instances and
finally give a conclusion and outlook in Sect. 5.

2 Related Work

There are numerous solution approaches for the MaxSAT problem both exact
and heuristic ones. Let us point out the differences between SR and other state-
of-the-art MaxSAT solvers. In the 2019’s MaxSAT competition [1], the solver
Loandra performed best in the incomplete unweighted track. It combines a core-
guided approach for finding a lower bound [7] and a linear algorithm for an upper
bound. As the linear algorithm, the authors use LinSBPS [13] that performs a
neighborhood search in a complete algorithmic setting by repeatedly calling the
SAT Solver glucose [4]. In contrast to LinSPBS, we only call glucose once at
the beginning for an initial solution and for the perturbation of a solution but
not in order to achieve an improvement. Moreover, we do not calculate lower
bounds at all. The local search algorithms MaxRoster (a description can be
found in [5]) which is based on Ramp [14] and SATLike [19] which iteratively
flips the sign of variables that bring the best improvement work differently than
our solver in the respect that they adapt weights of clauses in order to leave
local optima. We, however, perturb a current solution for that purpose and
instead of changing weights. (Max-)WalkSAT and GSAT [23] are local search
approaches similar to SR in the sense that unsatisfied clauses are picked at
random and one of their variables’ sign is flipped. The difference to our approach
is that SR searches a larger neighborhood with a more complex improvement
heuristics based on stabilities. In fact, one can consider SR a large neighborhood
search, as pursued in the OR world (cf. e.g. [21]), with the difference that SR
finds improvements in the neighborhood heuristically and without calling an
exact solver whereas the repair procedure in large neighborhood searches often
involve an exact solver. At the end of each iteration, SR checks the solution in a
simulated annealing fashion. Simulated annealing with reset has been used also
for MaxSAT [10,17]. Finally, let us point out that the splitting of our algorithm
into perturbation, improvement and solution checking was introduced for a state-
of-the-art Maximum Independent Set (MIS) heuristic [3] that in a previous work,
we have been able to extend by a different improvement technique and simulated
annealing solution checking in order to solve MaxSAT instances that have been



166 J. Reisch et al.

transformed to MIS [22]. In contrast, in this paper we propose an algorithm that
works directly on the Boolean formula.

3 Algorithm

The overall procedure of SR is shown in Algorithm 1. We first apply a SAT-
based preprocessing on the formula. That is, we label the soft clauses meaning
that each soft clause gets an additional variable l and will be considered a hard
clause. In addition, for each label, we introduce a unit soft clause ¬l with the
weight the original soft clause had [6]. For the obtained equivalent formula, we
apply unit clause propagation and bounded variable elimination (cf. e.g. [12])
on the hard clauses, as long as it is possible. Note that the label variables are
excluded from the propagations since these operations are only sound for hard
clauses. Then, for an initial feasible solution the SAT solver glucose [4] is called.

The algorithm then repeatedly executes the three steps of perturbation,
improvement and solution checking.

Algorithm 1. StableResolving()
Preprocess()
CalculateInitialSolution()
while timeout has not been reached do

Perturb()
StableImprove()
CheckSolution()

end

Let us explain the single parts in greater detail. In the perturbation part
shown in Algorithm 2, we explore the search space. More precisely, we first
sample a random number k from the geometric distribution with parameter p
and select k unsatisfied clauses uniformly at random. Then, we call the SAT
solver glucose on all hard clauses and the selected clauses. Additionally, we give
the previous solution as an initial solution to the solver in order to speed up
the computation. If this formula is feasible, we have altered the solution, but
maybe at the cost of a lower objective function value because formerly satisfied
clauses are now unsatisfied. These unsatisfied clauses are added to the back of
a list of candidates that potentially can be satisfied by improvements. We keep
and update this list throughout the algorithm.

Algorithm 2. Perturb()
k = random number where P[k = i] = p(1 − p)i−1

C = set of k unsatisfied clauses picked uniformly at random
Call SAT solver on C and all hard clauses and overwrite the solution
Add newly unsatisfied clauses to the back of candidates



Stable Resolving - A Randomized Local Search Heuristic for MaxSAT 167

Example. Consider the example formula F from above. An initial feasible solu-
tion is given by all variables set to false. The perturbation might set k = 1,
choose the unsatisfied clause C = S2 and the SAT solver returns the feasible
solution of y = true and x = z = false. No clause gets unsatisfied by this step.

Remark. In some large instances from industrial applications, sampling a ran-
dom unsatisfied clause is computationally expensive when all clauses are iterated
through in order to detect the unsatisfied ones and sample among them. This
is why we keep a superset of the unsatisfied clauses where every time a clause
gets unsatisfied, it is added to. Moreover, we apply a heuristic in this superset
and sample 1000 clause indices at random and only return if the corresponding
clause indeed is unsatisfied. Only if all 1000 sampled clauses are satisfied, we
iterate through the superset to find the unsatisfied clauses and sample among
them.

Algorithm 3. StableImprove()
while candidates �= ∅ do

C = pop first clause from candidates
Init A = ∅ and C = {C}
while ∃v = variable picked uniformly at random in vars(C) \ A do

Flip sign of v and add v to A
Add newly unsatisfied clauses to C
Stab1→2 = set of clauses whose stability has grown to 2
foreach S ∈ Stab1→2 do

w = variable of second true literal in S
if w is in no clause of stability 1 nor in A then

Flip sign of w and add w to A
end

end

end
if objective function value has decreased then

Revert flips of variables in A
end
else

Add C at the back of candidates
end

end

In the improvement part shown in Algorithm 3, we iteratively pick a variable
uniformly at random of an unsatisfied clause (at first from the candidates and
later from the clauses that have been unsatisfied during this improvement step)
and flip its sign. A flip might lead to other clauses becoming unsatisfied now and
we store them in the set C. Note that also hard clauses can become temporarily
unsatisfied. On the other hand, there might be a set Stab1→2 of clauses whose
stability grows from 1 to 2 which means that there exists now a second true
literal whose variable’s sign can now be flipped without unsatisfying this clause.



168 J. Reisch et al.

This optimization technique of considering variables in over-satisfied constraints
is well-known in mathematical optimization (cf. e.g. Simplex Method [11]) and
we apply it here as a local improvement heuristics. In our algorithm, the clauses
in Stab1→2 are iterated through and checked for such an improvement. When
no more variables are found that can be flipped, either because C is empty or
all variables from C, denoted vars(C), are flipped already, the improvement step
ends. Either the objective function value has increased, then the now unsatisfied
clauses are added to the candidates, or it has not and the flips, stored in A,
are reverted. Note that the feasible solution remains feasible as the objective
function value cannot increase when hard clauses have become unsatisfied. The
improvement part ends when there are no more candidate clauses.

Remark. In some test instances, the set C monotonously grows and never
shrinks because there are more new unsatisfied clauses than clauses that can
either be satisfied or whose variables have all been considered for an improve-
ment. In order to avoid that we spend too much time in a single local improve-
ment step, we set an iterations limit of 25 for the inner while-loop.

Note that both while-loops terminate. For the outer one, candidate clauses
are only added if the objective function value has increased which cannot be
infinitely often as MaxSAT instances are always bounded. The inner one ends -
besides the iterations limit - when A contains all variables.

Example. Consider the example formula F with solution

(x, y, z) = (false, true, false)

from above. The stabilities of the following steps are illustrated in Fig. 1. S1 is
unsatisfied and might be the first candidate clause (a). Flipping the sign of its

Fig. 1. Stabilities of clauses during an improvement step.



Stable Resolving - A Randomized Local Search Heuristic for MaxSAT 169

only variable x unsatisfies H1 because y has been set to true in the perturbation
already (b). Hence, H1 gets added to C and x to A. Flipping the sign of one of
the variables of H1 (the only clause in C) that has not already been flipped (i.e.
that is not in A) means flipping y to false. Note that H2 has now stability 2 and
gets added to Stab1→2 as both variables y and z are false (c). The variable z is
the second true literal that has been true before, so its sign gets flipped because
no further clause is being unsatisfied by that flip. The improvement step ends
with a objective function value that has increased from 3 to 4 (d).

Let us mention that during an improvement step (and after the perturbation),
it is possible that formerly satisfied hard clauses become unsatisfied. Hard clauses
have a weight greater than the sum of the weights of the soft clauses. Therefore,
breaking hard clauses (without satisfying other formerly unsatisfied hard clauses)
worsens the solution. In order to leave local optima, however, a worsening is
possible in our algorithm - with decreasing probability according to the simulated
annealing step, as will be explained in the remainder of this section.

Algorithm 4. CheckSolution()
if objective function value has increased to the best one ever seen then

Save new best solution
end
else if objective function value has decreased then

if number of iterations without improvement has exceeded m then
Restore best solution

end
else

Restore previous solution with probability exp(−prob)
end

end

After the improvements we have arrived in a local optimum. The current
solution might be of smaller objective function value than the previous solu-
tion from before this iteration of Algorithm 1 if the improvements could not
compensate the perturbation. Still, we sometimes allow such a worsening in the
simulated annealing approach shown in Algorithm 4 in order to be able to leave
local optima. More precisely, we restore the previous solution if it had a better
objective function value with a probability growing exponentially with a factor
prob that decreases linearly during the course of the algorithm from 1 to 0 and
represents the temperature of the simulated annealing. If, however, the number
of iterations without an improvement exceeds a parameter m, we reset to the
best solution ever seen. When SR terminates, this best solution is returned.



170 J. Reisch et al.

4 Experimental Results

We have applied SR to problem instances and compared it to results that are
taken from the 2019’s MaxSAT competition1 [1]. The instances encode various
industrial applications’ and theoretical problems, such as scheduling, fault diag-
nosis, tree-width computation, max clique problems, causal discovery, Ramsey
number approximation and many more. An overview of the competing solvers
can be found in [5]. For all calculations, we set the parameters for the geometric
distribution and maximum steps in SR to p = 0.75 and m = 1000, respectively,
because they yield the best results on average. We performed all computations on
an Intel Core i7-8700K and with a time limit of 60 s. Note that if a solver from [1]
yields worse results on our machine than in the results of the 2019’s MaxSAT
competition where computations were performed on the StarExec Cluster [2],
we include the better results for the analysis here. We mark such solvers with
an asterisk*.

Table 1. Sum of scores by solver on unweighted instances

Loandra LinSBPS 2018 SR SATLike* Open WBO g sls mcs* sls mcs lsu* Open WBO ms

251.7327 238.3298 231.1436 227.4589 204.1828 202.7803 202.7158 190.9274

Table 1 and Table 2 show the sum of scores of the competing solvers on the
unweighted and weighted benchmark instances, respectively, from the incom-
plete track of the MaxSAT competition against the scores of SR. The score of
a solver on an instance is calculated in the following way. Maximizing the sum

Table 2. Sum of scores by solver on weighted instances

Loandra 236.2272

TT Open WBO Inc* 233.4784

LinSBPS2018 231.6581

Open WBO Inc (inc bmo satlike)* 220.3607

Open WBO Inc (inc bmo complete)* 218.6454

SR 213.3262

Open WBO g* 212.1081

SATLike* 210.6802

sls mcs2* 203.1498

Open WBO ms* 194.5451

sls mcs* 191.4503

uwrmaxsat inc* 190.7841

1 We have submitted SR to the 2020’s MaxSAT competition.



Stable Resolving - A Randomized Local Search Heuristic for MaxSAT 171

(of weights) of satisfied soft clauses is equivalent to minimizing the sum (of
weights) of unsatisfied soft clauses, which is denoted by the gap. The score of a
solver on an instance is the fraction of the best gap known divided by the gap
of the particular solver. If a solver’s solution violates a hard clause, its score is
zero and its gap infinity.

Example. Consider the example above. In the optimal solution, only S2 is unsat-
isfied which yields the optimal gap of 3. If solver A has achieved this optimum,
solvers B and C satisfy only S2 and not S1 and S3, then their scores are 3/4
while solver A has the maximal score of 1 on this instance.

Fig. 2. Accumulated sum of scores of unweighted instances after 60 s computation time

The score hence reflects the ratio of the achieved result to the optimal (or
best known) one. In Fig. 2 and Fig. 3, we see the accumulated sum of scores of the
single instances, ordered by SR’s scores and grouped by the competing solvers
for the unweighted and weighted instances, respectively. The figures illustrate
that SR (black) has the highest sum of scores on a large subset of instances.
Counting all instances, including those where SR has low scores, we conclude
that SR still has a competitive performance. More precisely, in 210 and 179 of
the 299 unweighted and 297 weighted instances, SR has a score at least the mean
of the other solvers. Furthermore, SR performs especially well on the unweighted
instances, in comparison to the other solvers.

What is more, SR often has the best result among all solvers for particu-
lar instances. We observe that in the unweighted case, SR performs especially
well on instances from atcos, extension enforcement and set covering. In the
weighted case, SR is best on many instances encoding the Minimum Weight
Dominating Set Problem. See Tables 3 and 4 for complete lists of such instances
in the unweighted and weighted case, respectively. For a better comparison, we
include a column showing the gaps of the winning solver Loandra, as well.



172 J. Reisch et al.

Fig. 3. Accumulated sum of scores of weighted instances after 60 s computation time

Table 3. Gaps of unweighted instances where SR performs best

Benchmark SR Loandra

1 aes/sbox-8.wcnf.gz 443 690

2 atcoss/mesat/atcoss-mesat-04.wcnf.gz 97 Inf

3 atcoss/mesat/atcoss-mesat-05.wcnf.gz 74 Inf

4 atcoss/mesat/atcoss-mesat-10.wcnf.gz 32 40

5 atcoss/mesat/atcoss-mesat-18.wcnf.gz 80 Inf

6 atcoss/sugar/atcoss-sugar-15.wcnf.gz 133 Inf

7 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-1-10-0.wcnf.gz 7 18

8 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-2-10-2.wcnf.gz 12 20

9 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-3-10-1.wcnf.gz 8 9

10 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-3-10-4.wcnf.gz 10 16

11 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-4-10-1.wcnf.gz 7 17

12 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-4-10-2.wcnf.gz 6 13

13 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-4-10-4.wcnf.gz 8 18

14 min-fill/MinFill-R3-miles1000.wcnf.gz 3634 3755

15 optic/gen-cvc-add7to3-9999.wcnf.gz 197 204

16 pseudoBoolean/garden/normalized-g100x100.opb.msat.wcnf.gz 2163 2526

17 railway-transport/d4.wcnf.gz 8296 8524

18 SeanSafarpour/wb-4m8s1.dimacs.filtered.wcnf.gz 58 282

19 SeanSafarpour/wb-4m8s4.dimacs.filtered.wcnf.gz 220 230

20 set-covering/crafted/scpclr/scpclr13-maxsat.wcnf.gz 27 28

21 set-covering/crafted/scpcyc/scpcyc07-maxsat.wcnf.gz 145 149

22 set-covering/crafted/scpcyc/scpcyc08-maxsat.wcnf.gz 363 390

23 set-covering/crafted/scpcyc/scpcyc09-maxsat.wcnf.gz 835 972

24 set-covering/crafted/scpcyc/scpcyc10-maxsat.wcnf.gz 1967 2242

25 set-covering/crafted/scpcyc/scpcyc11-maxsat.wcnf.gz 4771 5623

26 uaq/uaq-ppr-nr200-nc66-n5-k2-rpp4-ppr12-plb100.wcnf.gz 75 78

27 xai-mindset2/liver-disorder.wcnf.gz 316 318



Stable Resolving - A Randomized Local Search Heuristic for MaxSAT 173

Table 4. Gaps of weighted instances where SR performs best

Benchmark SR Loandra

1 causal-discovery/causal-Water-10-1000.wcnf.gz 11339025 16041455

2 causal-discovery/causal-Wdbc-8-569.wcnf.gz 1446339 2541316

3 correlation-clustering/Rounded-CorrelationClustering-Vowel-BINARY-N740-

D0.200.wcnf.gz

120199215 130874895

4 correlation-clustering/Rounded-CorrelationClustering-Vowel-BINARY-N760-

D0.200.wcnf.gz

120800405 132256968

5 drmx-cryptogen/geffe128-7.wcnf.gz 812 846

6 min-width/MinWidthCB-mitdbsample-100-43-1k-5s-2t-5.wcnf.gz 32010 32200

7 min-width/MinWidthCB-mitdbsample-200-64-1k-2s-1t-4.wcnf.gz 76975 78325

8 min-width/MinWidthCB-mitdbsample-300-43-1k-6s-1t-8.wcnf.gz 45780 45825

9 MinimumWeightDominatingSetProblem/delaunay-n24.wcnf.gz 304532225 350820532

10 MinimumWeightDominatingSetProblem/hugebubbles-00020.wcnf.gz 694937186 753286458

11 MinimumWeightDominatingSetProblem/inf-road-usa.wcnf.gz 840126999 903206743

12 MinimumWeightDominatingSetProblem/sc-rel9.wcnf.gz 15590036 16746750

13 MinimumWeightDominatingSetProblem/web-wikipedia2009.wcnf.gz 28120892 37674803

14 pseudoBoolean/miplib/normalized-mps-v2-20-10-p0548.opb.msat.wcnf.gz 12451 25494

15 spot5/log/1401.wcsp.log.wcnf.gz 463106 469110

16 spot5/log/1407.wcsp.log.wcnf.gz 459591 465638

5 Conclusion and Outlook

In this paper, we have proposed a novel local search algorithm for solving large
MaxSAT problems in short time. We could prove by numeric experiments on
benchmark instances encoding problems from combinatorial optimization and
AI that our algorithm yields results that are comparable to and for some problem
families even better than state-of-the-art solvers.

As a possible prospect, we aim at developing more sophisticated improve-
ment methods that take into account not single over-satisfied clauses but sets
of such. Also, we can think of caching unsuccessful local improvements so that
they will never be performed a second time. Finally, we want to analyse the dif-
ferent components of our algorithm by replacing each of the perturbation, stable
improvements and simulated annealing by a naive technique. This will give an
insight into the contribution of each component to the solvers performance.

References

1. MaxSAT Evaluation 2019. https://maxsat-evaluations.github.io/2019/index.html
2. Starexec Cluster. https://www.starexec.org/starexec/public/about.jsp. Accessed

2019
3. Andrade, D.V., Resende, M.G.C., Werneck, R.F.F.: Fast local search for the max-

imum independent set problem. J. Heuristics 18(4), 525–547 (2012). https://doi.
org/10.1007/s10732-012-9196-4

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence,
IJCAI 2009, San Francisco, CA, USA, pp. 399–404 (2009)

https://maxsat-evaluations.github.io/2019/index.html
https://www.starexec.org/starexec/public/about.jsp
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10732-012-9196-4


174 J. Reisch et al.

5. Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT evaluation 2018: new develop-
ments and detailed results. J. Satisf. Boolean Model. Comput. 11, 99–131 (2019).
https://doi.org/10.3233/SAT190119

6. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 96–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
45221-5 7

7. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incom-
plete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 3

8. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via
weighted partial maximum satisfiability. Artif. Intell. 244, 110–142 (2017). https://
doi.org/10.1016/j.artint.2015.07.001. Combining Constraint Solving with Mining
and Learning

9. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian
networks via maximum satisfiability. In: Kaski, S., Corander, J. (eds.) Proceedings
of the Seventeenth International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research, vol. 33, pp. 86–95. PMLR, Reykjavik,
22–25 April 2014

10. Bouhmala, N.: Combining simulated annealing with local search heuristic for Max-
SAT. J. Heuristics 25(1), 47–69 (2019). https://doi.org/10.1007/s10732-018-9386-
9

11. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

12. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

13. Demirović, E., Stuckey, P.J.: Techniques inspired by local search for incomplete
MaxSAT and the linear algorithm: varying resolution and solution-guided search.
In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 177–194. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30048-7 11

14. Fan, Y., Ma, Z., Su, K., Sattar, A., Li, C.: Ramp: a local search solver based on
make-positive variables. In: MaxSAT Evaluation (2016)

15. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.:
Solving periodic event scheduling problems with SAT. In: Jiang, H., Ding, W., Ali,
M., Wu, X. (eds.) IEA/AIE 2012. LNCS (LNAI), vol. 7345, pp. 166–175. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31087-4 18

16. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfi-
ability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 67

17. Hoos, H.H.: Solving hard combinatorial problems with GSAT—A case study. In:
Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 107–119. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61708-6 53

18. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: con-
flict resolution with answer set programming. In: Proceedings of the 30th Confer-
ence on Uncertainty in Artificial Intelligence, pp. 340–349 (2014)

19. Lei, Z., Cai, S.: Solving (weighted) partial MaxSAT by dynamic local search for sat.
In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, pp. 1346–1352. International Joint Conferences on Artifi-
cial Intelligence Organization, July 2018. https://doi.org/10.24963/ijcai.2018/187

https://doi.org/10.3233/SAT190119
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1016/j.artint.2015.07.001
https://doi.org/10.1016/j.artint.2015.07.001
https://doi.org/10.1007/s10732-018-9386-9
https://doi.org/10.1007/s10732-018-9386-9
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/978-3-030-30048-7_11
https://doi.org/10.1007/978-3-642-31087-4_18
https://doi.org/10.1007/978-3-642-33558-7_67
https://doi.org/10.1007/3-540-61708-6_53
https://doi.org/10.24963/ijcai.2018/187


Stable Resolving - A Randomized Local Search Heuristic for MaxSAT 175

20. Park, J.D.: Using weighted Max-SAT engines to solve MPE. In: Proceedings of the
18th National Conference on Artificial Intelligence, pp. 682–687 (2002)

21. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of Metaheuristics. International Series in Operations Research &
Management Science, vol. 146, pp. 399–419. Springer, Boston (2010). https://doi.
org/10.1007/978-1-4419-1665-5 13

22. Reisch, J., Großmann, P., Kliewer, N.: Conflict resolving - a maximum indepen-
dent set heuristics for solving MaxSAT. In: Proceedings of the 22nd International
Multiconference Information Society, vol. 1, pp. 67–71 (2019)

23. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pp. 521–532 (1995)

https://doi.org/10.1007/978-1-4419-1665-5_13
https://doi.org/10.1007/978-1-4419-1665-5_13

	Stable Resolving - A Randomized Local Search Heuristic for MaxSAT
	1 Introduction
	2 Related Work
	3 Algorithm
	4 Experimental Results
	5 Conclusion and Outlook
	References




