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Preface

This proceedings volume contains the papers presented at the 43rd German Conference
on Artificial Intelligence (KI 2020), held during September 21–25, 2020, hosted by
University of Bamberg, Germany. Due to COVID-19, KI 2020 was the first virtual
edition of this conference series.

The German conference on Artificial Intelligence (abbreviated KI for “Künstliche
Intelligenz”) has developed from a series of unofficial meetings and workshops, starting
45 years ago with the first GI-SIG AI meeting on October 7, 1975. GI-SIG AI is the
Fachbereich Künstliche Intelligenz (FBKI) der Gesellschaft für Informatik (GI). As a
well-established annual conference series it is dedicated to research on theory and
applications across all methods and topic areas of AI research. While KI is primarily
attended by researchers from Germany and neighboring countries, it warmly welcomes
international participation.

KI 2020 had a special focus on human-centered AI with a particular focus on AI in
education and explainable machine learning. These topics were addressed in a panel
discussion as well as in a workshop. The conference invited original research papers
and shorter technical communications as well as descriptions of system demonstrations
on all topics of AI. Further, the submission of extended abstracts summarizing papers
that had recently been presented at major AI conferences was encouraged.

KI 2020 received more than 70 submissions from 13 countries which were reviewed
by three Program Committee members each. The Program Committee, comprising 53
experts from 8 countries, decided to accept 16 submissions as full papers, 12 as
technical contributions, and 4 as pre-published abstracts.

The program included six invited talks:

– Anthony G. Cohn, University of Leeds, UK: “Learning about Language and Action
for Robots”

– Hector Geffner, Institució Catalana de Recerca i Estudis Avançats and Universitat
Pompeu Fabra, Spain: “From Model-free to Model-based AI: Representation
Learning for Planning”

– Jana Koehler, DFKI, Germany: “10120 and Beyond: Scalable AI Search Algorithms
as a Foundation for Powerful Industrial Optimization”

– Nada Lavra, Jožef Stefan Institute, Slovenia: “Semantic Relational Learning”
– Sebastian Riedel, Facebook AI Research and University College London, UK:

“Open and Closed Book Machine Reading”
– Ulli Waltinger, Siemens Corporate Technology, Germany: “The Beauty of Imper-

fection: From Gut Feeling to Transfer Learning to Self-Supervision”

The main conference was supplemented with five workshops and seven tutorials. In
addition to the annual doctoral consortium, a student day was introduced encouraging
students – from high-school as well as from bachelor and master programs – to present
their AI projects. Although COVID-19 complicated KI 2020 in several regards, it was a



pleasure to organize this traditional annual event. We are grateful to our co-organizers,
Matthias Thimm (workshops and tutorials chair), Tanya Braun (doctoral consortium
chair), Jens Garbas (demo and exhibition chair), as well as to Johannes Rabold and the
Fachschaft WIAI for organizing the student day, and to Klaus Stein for technical
support. Student volunteers and support from local administrators (especially Romy
Hartmann) was essential for the smooth (virtual) running of the conference. They
supported us not only with generating a virtual city tour, but with many organizational
details. We also want to thank the University of Bamberg for their generous support.

We thank the Program Committee members and all additional reviewers for their
effort and time they invested in the reviewing process. Our appreciation also goes to the
developers of EasyChair; their conference management system provides great func-
tionalities that helped to organize the reviewing process and generate this volume. Last
but not least, we would like to thank Christine Harms and the GI Geschäftsstelle for the
registration support and Springer for publishing the proceedings and sponsoring the
Best Paper Award.

We hope the conference was enjoyed by all who participated.

July 2020 Ute Schmid
Franziska Klügl
Diedrich Wolter
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Two Algorithms for Additive and Fair
Division of Mixed Manna

Martin Aleksandrov(B) and Toby Walsh

Technical University Berlin, Berlin, Germany
{martin.aleksandrov,toby.walsh}@tu-berlin.de

Abstract. We consider a fair division model in which agents have posi-
tive, zero and negative utilities for items. For this model, we analyse one
existing fairness property (EFX) and three new and related properties
(EFX0, EFX3 and EF13) in combination with Pareto-optimality. With
general utilities, we give a modified version of an existing algorithm for
computing an EF13 allocation. With −α/0/α utilities, this algorithm
returns an EFX3 and PO allocation. With absolute identical utilities,
we give a new algorithm for an EFX and PO allocation. With −α/0/β
utilities, this algorithm also returns such an allocation. We report some
new impossibility results as well.

Keywords: Additive fair division · Envy-freeness · Pareto-optimality

1 Introduction

Fair division of indivisible items lies on the intersection of fields such as social
choice, computer science and algorithmic economics [15]. Though a large body
of work is devoted to the case when the items are goods (e.g. [11,19,22,26]),
there is a rapidly growing interest in the case of mixed manna (e.g. [5,13,25]).
In a mixed manna, each item can be classified as mixed (i.e. some agents strictly
like it and other agents strictly dislike it), good (i.e. all agents weakly like it and
some agents strictly like it), bad (i.e. all agents weakly dislike it and some agents
strictly dislike it) or dummy (i.e. all agents are indifferent to it).

An active line of fair division research currently focuses on approximations of
envy-freeness (i.e. no agent envies another one) [18]. For example, Aziz et al. [4]
proposed two such approximations for mixed manna: EF1 and EFX. EF1 requires
that an agent’s envy for another agent’s bundle is eliminated by removing one
particular item from these agents’ bundles. EFX strengthens EF1 to any non-
zero valued item in these bundles, increasing the agent’s utility or decreasing the
other agent’s utility. However, they study only EF1 and identify improving our
understanding of EFX as an important open problem for mixed manna:

“Our work paves the way for detailed examination of allocation of
goods/chores, and opens up an interesting line of research, with many
problems left open to explore. In particular, there are further fairness con-
cepts that could be studied from both existence and complexity issues, most
notably envy-freeness up to the least valued item (EFX) [14].”

c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-58285-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58285-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-58285-2_1


4 M. Aleksandrov and T. Walsh

We make in this paper a step forward in this direction. In particular, we study
not only EFX but also new properties, all stronger than EF1. For example, one
such property is envy-freeness by parts up to some item: EF13. This ensures EF1
independently for the set of all items, the set of goods and the set of bads (i.e.
the different parts). Another such property is envy-freeness by parts up to any
item: EFX3. This requires EFX for each of the different parts of the set of items.
Yet a third such property is EFX0. This one extends the existing envy-freeness
up to any (possibly zero valued) good from [24] to any (possibly zero valued)
bad by relaxing the non-zero marginal requirements in the definition of EFX.
We will shortly observe the following relations between these properties.

EFX0 ⇒ EFX EFX3 ⇒ EFX EF13 ⇒ EF1 EFX3 ⇒ EF13

We analyse these properties in isolation and also in combination with an
efficiency criterion such as Pareto-optimality (PO). PO ensures that we cannot
make an agent happier without making another one unhappier. More precisely,
we ask in our work whether combinations of these properties can be guaranteed,
and also how to do this when it is possible. Our analysis covers three common
domains for additive (i.e. an agent’s utility for a set of items is the sum of their
utilities for the items in the set) utility functions: general (i.e. each utility is real-
valued), absolute identical (i.e. for each item, the agents’ utilities have identical
magnitudes but may have different signs) as well as ternary (i.e. each utility is
−α, 0 or β for some α, β ∈ R>0).

Each of these domains can be observed in practice. For instance, if a machine
can perform a certain task faster than some pre-specified amount of time, then
its utility for the task is positive and, otherwise, it is negative. Thus, multiple
machines can have mixed utilities for tasks. Further, consider a market where
items have prices and agents sell or buy items. In this context, the agents’ utilities
for an item have identical magnitudes but different signs. Finally, a special case
of ternary utilities is when each agent have utility −1, 0, or 1 for every item.
This is practical because we need simply to elicit whether agents like, dislike or
are indifferent to each item. A real-world setting with such utilities is the food
bank problem studied in [1].

We give some related work, formal preliminaries and motivation in Sects. 2, 3
and 4, respectively. In Sect. 5, we give a polynomial-time algorithm (i.e.
Algorithm 1) for computing an EF13 allocation with general utilities. We also
prove that an EFX3 allocation, or an EFX0 allocation might not exist even
with ternary identical utilities. In Sect. 6, we give a polynomial-time algorithm
(i.e. Algorithm 2) for computing an EFX and PO allocation with absolute
identical utilities, and show that Algorithm 1 returns an EF13 and PO allo-
cation. In Sect. 7, we show that Algorithm 1 returns an EF13 and PO allocation
with ternary utilities, whereas Algorithm 2 returns an EFX and PO allocation.
Finally, we give a summary in Sect. 8.
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2 Related Work

For indivisible goods, EF1 was defined by Budish [12]. Caragiannis et al. [14]
proposed EFX. It remains an open question whether EFX allocations exist in
problems with general utilities. Recently, Amanatidis et al. [2] proved that EFX
allocations exist in 2-value (i.e. each utility takes one of two values) problems. In
contrast, we show that EFX and PO allocations exist in problems with ternary
(i.e. −α/0/β) utilities, which are special cases of 3-value problems. Barman,
Murthy and Vaish [7] presented a pseudo-polynomial time algorithm for EF1
and PO allocations. Barman et al. [8] gave an algorithm for EFX and PO allo-
cations in problems with identical utilities. Plaut and Roughgarden [24] proved
that the leximin solution from [17] is also EFX and PO in this domain. Although
this solution maximizes the minimum agent’s utility (i.e. the egalitarian welfare),
it is intractable to find in general [16]. In our work, we give a polynomial-time
algorithm for EFX and PO allocations in problems with absolute identical util-
ities, and show that this welfare and EFX3 are incompatible.

For mixed manna, Aziz et al. [4] proposed EF1 and EFX. They gave the dou-
ble round-robin algorithm that returns EF1 allocations. Unfortunately, these are
not guaranteed to satisfy PO. They also gave a polynomial-time algorithm that
returns allocations which are EF1 and PO in the case of 2 agents. Aziz and
Rey [6] gave a “ternary flow” algorithm for leximin, EFX and PO allocations
with −α/0/α utilities. With −α/0/β utilities, we discuss that these might sadly
violate EFX3 even when α = 1, β = 1, or EFX when α = 2, β = 1. By compari-
son, we give a modified version of the double round-robin algorithm that returns
EF13 allocations in problems with general utilities, EF13 and PO allocations
in problems with absolute identical utilities and EFX3 and PO allocations in
problems with −α/0/α utilities. Other works of divisible manna are [9,10], and
approximations of envy-freeness for indivisible goods are [3,14,21]. In contrast,
we study some new approximations and the case of indivisible manna.

3 Formal Preliminaries

We consider a set [n] = {1, . . . , n} of n ∈ N≥2 agents and a set [m] = {1, . . . , m}
of m ∈ N≥1 indivisible items. We assume that each agent a ∈ [n] have some
utility function ua : 2[m] → R. Thus, they assign some utility ua(M) to each
bundle M ⊆ [m]. We write ua(o) for ua({o}). We say that ua is additive if, for
each M ⊆ [m], ua(M) =

∑
o∈M ua(o). We also write u(M) if, for each other

agent b ∈ [n], ua(M) = ub(M).
With additive utility functions, the set of items [m] can be partitioned into

mixed items, goods, bads and dummies. Respectively, we write [m]± = {o ∈
[m]|∃a ∈ [n] : ua(o) > 0,∃b ∈ [n] : ub(o) < 0}, [m]+ = {o ∈ [m]|∀a ∈ [n] :
ua(o) ≥ 0,∃b ∈ [n] : ub(o) > 0}, [m]− = {o ∈ [m]|∀a ∈ [n] : ua(o) ≤ 0,∃b ∈ [n] :
ub(o) < 0} and [m]0 = {o ∈ [m]|∀a ∈ [n] : ua(o) = 0} for the sets of these items.
We refer to an item o from [m]+ as a pure good if ∀a ∈ [n] : ua(o) > 0. Also, we
refer to an item o from [m]− as a pure bad if ∀a ∈ [n] : ua(o) < 0.
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We say that agents have general additive utilities if, for each a ∈ [n] and
each o ∈ [m], ua(o) could be any number from R. Further, we say that they have
absolute identical additive utilities if, for each o ∈ [m], |ua(o)| = |ub(o)| where
a, b ∈ [n], or identical additive utilities if, for each o ∈ [m], ua(o) = ub(o) where
a, b ∈ [n]. Finally, we say that agents have ternary additive utilities if, for each
a ∈ [n] and each o ∈ [m], ua(o) ∈ {−α, 0, β} for some α, β ∈ R>0.

An (complete) allocation A = (A1, . . . , An) is such that (1) Aa is the set of
items allocated to agent a ∈ [n], (2)

⋃
a∈[n] Aa = [m] and (3) Aa ∩ Ab = ∅ for

each a, b ∈ [n] with a �= b. We consider several properties for allocations.

Envy-Freeness Up to One Item. Envy-freeness up to one item requires that
an agent’s envy for another’s bundle is eliminated by removing an item from the
bundles of these agents. Two notions for our model that are based on this idea
are EF1 and EFX [4].

Definition 1 (EF1). An allocation A is envy-free up to some item if, for each
a, b ∈ [n], ua(Aa) ≥ ua(Ab) or ∃o ∈ Aa∪Ab such that ua(Aa\{o}) ≥ ua(Ab\{o}).

Definition 2 (EFX). An allocation A is envy-free up to any non-zero valued
item if, for each a, b ∈ [n], (1) ∀o ∈ Aa such that ua(Aa) < ua(Aa \ {o}):
ua(Aa \ {o}) ≥ ua(Ab) and (2) ∀o ∈ Ab such that ua(Ab) > ua(Ab \ {o}):
ua(Aa) ≥ ua(Ab \ {o}).

Plaut and Roughgarden [24] considered a variant of EFX for goods where,
for any given pair of agents, the removed item may be valued with zero utility
by the envious agent. Kyropoulou et al. [20] referred to this one as EFX0. We
adapt this property to our model.

Definition 3 (EFX0). An allocation A is envy-free up to any item if, for each
a, b ∈ [n], (1) ∀o ∈ Aa such that ua(Aa) ≤ ua(Aa \ {o}): ua(Aa \ {o}) ≥ ua(Ab)
and (2) ∀o ∈ Ab such that ua(Ab) ≥ ua(Ab \ {o}): ua(Aa) ≥ ua(Ab \ {o}).

An allocation that is EFX0 further satisfies EFX. Also, EFX is stronger than
EF1. It is well-known that the opposite relations might not hold.

Envy-Freeness by Parts. Let A = (A1, . . . , An) be a given allocation. We let
A+

a = {o ∈ Aa|ua(o) > 0} and A−
a = {o ∈ Aa|ua(o) < 0} for each a ∈ [n].

Envy-freeness by parts up to one item ensures that EF1 (or EFX) is satisfied in
each of the allocations A, A+ = (A+

1 , . . . , A+
n ) and A− = (A−

1 , . . . , A−
n ).

Definition 4 (EF13). An allocation A is envy-free by parts up to some item
(EF1-EF1-EF1 or EF13) if the following conditions hold: (1) A is EF1, (2) A+

is EF1 and (3) A− is EF1.

Definition 5 (EFX3). An allocation A is envy-free by parts up to any item
(EFX-EFX-EFX or EFX3) if the following conditions hold: (1) A is EFX, (2)
A+ is EFX and (3) A− is EFX.
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With just goods (bads), EF13 (EFX3) is EF1 (EFX). With mixed manna, an
allocation that is EF13 also satisfies EF1, one that is EFX3 satisfies EFX, and
one that is EFX3 satisfies EF13. The reverse implications might not be true.

Pareto-Optimality. We also study each of these fairness properties in combi-
nation with an efficiency criterion such as Pareto-optimality (PO), proposed a
long time ago by Vilfredo Pareto [23].

Definition 6 (PO). An allocation A is Pareto-optimal if there is no alloca-
tion B that Pareto-improves A, i.e. ∀a ∈ [n]: ua(Ba) ≥ ua(Aa) and ∃b ∈ [n]:
ub(Bb) > ub(Ab).

4 Further Motivation

We next further motivate the new properties EF13 and EFX3 by means of a
simple example. Consider a birthday party where Bob invites his new friends
Alice and Mary. Bob has 3 pieces of his favourite strawberry cake (value is 1)
and 2 pieces of the less favorable to him chocolate cake (value is 0). Bob also
hopes that some of his guests would be willing to help him washing up the
dishes and throwing away the garbage after the party. Alice and Mary arrive and
it turns out that both like only chocolate cake (value is 1), and dislike any of the
household chores (value is −1) as does Bob. How shall we allocate the 5 goods
(i.e. all pieces of cake) and the 2 chores?

For EF1 (EFX) and PO, we shall give the
strawberry cake to Bob and one piece of the
chocolate cake to each of Alice and Mary.
As a result, Bob gets utility 3 whereas Alice
and Mary get each utility 1. If we want to
maximize the egalitarian welfare, we should
assign both chores to Bob. Doing so preserves
EF1 (EFX) and PO for all items. However, it
violates EF13 (EFX3). Indeed, Bob might be
unhappy simply because they have to do both
chores instead of sharing them with Alice and
Mary. This means that an EF1 (EFX) allocation might not satisfy EF13 (EFX3).
In contrast, achieving EF13 (EFX3) avoids assigning both chores to Bob. For
example, asking Bob to wash up the dishes and Alice to throw away the garbage,
or vice versa is EF13 (EFX3). Other such options share the chores between Bob
and Mary, and Alice and Mary. However, none of these maximizes the egali-
tarian welfare. This means that EF11 (EFX3) might be incompatible with this
objective.
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5 General Additive Utilities

We begin with general utilities. An EF1 allocation in this domain can be com-
puted in O(max{m2,mn}) time. For this purpose, we can use the existing double
round-robin algorithm from [4]. However, this algorithm may fail to guarantee
PO because an agent might pick a bad for which some other agent have zero
utility.

Example 1. Consider 2 agents and 2 items, say a and b. Define the utilities as
follows: u1(a) = −1, u1(b) = −1 and u2(a) = −1, u2(b) = 0. In this problem,
the double round-robin algorithm is simply a round-robin rule with some strict
priority ordering of the agents. Wlog, let agent 1 pick before agent 2. Wlog, let
agent 1 pick b. Now, agent 2 can only pick a. The returned allocation gives utility
−1 to agent 1 and utility −1 to agent 2. By swapping these items, agent 1 receive
utility −1 and agent 2 receive utility 0. Clearly, this is a Pareto-improvement. ��

In response, we modify slightly the double round-robin algorithm by adding
an extra preliminary phase where each dummy item/non-pure bad is allocated
to an agent who has zero utility for it: Algorithm 1. As we show, this modified
version gives us an EF13 allocation that is PO not only with −1/0/1 utilities
but also with any ternary utilities, as well as with absolute identical utilities.

Theorem 1. With general utilities, Algorithm 1 returns an EF13 allocation in
O(max{m2,mn}) time.

Algorithm 1. An EF13 allocation (see the Appendix for a complete version).
1: procedure Modified Double Round-Robin([n], [m], (u1, . . . , un))
2: M0 ← {o ∈ [m]|∀b ∈ [n] : ub(t) ≤ 0, ∃c ∈ [n] : uc(t) = 0}
3: ∀a ∈ [n] : Aa ← ∅
4: for t ∈ M0 do � allocate all dummies/non-pure bads
5: pick a ∈ {b ∈ [n]|ub(t) = 0}
6: Aa ← Aa ∪ {t}
7: B ←Double Round-Robin([n], [m] \ M0, (u1, . . . , un))
8: return (A1 ∪ B1, . . . , An ∪ Bn)

Proof. The double round-robin algorithm returns an EF1 allocation, and so B
is EF1. Consider B+ and B−. Let there be qn − p pure bads for some q, p ∈ N

with p < n. The algorithm creates p “fake” dummy items for which each agent
has utility 0, and adds them to the set of pure bads. Hence, the number of
items in this set becomes qn. Thus, the agents come in a round-robin fashion
according to some ordering of the agents, say (1, . . . , n − 1, n), and pick their
most preferred item in this set (i.e. all pure bads and “fake” dummies) until all
of them are allocated. This is EF1 for the pure bads. Hence, B− is EF1.
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Further, the agents come in a round-robin fashion by following the reversed
ordering, i.e. (n, n−1, . . . , 1), and pick their most preferred good until all mixed
items and goods are allocated. If an agent has no available item which gives
them strictly positive utility, they pretend to pick a new “fake” dummy item for
which they have utility 0. This is EF1 for the mixed items and goods. Hence,
B+ is also EF1 which implies that B is EF13. Finally, extending B to all items,
by allocating each dummy item/non-pure bad to someone who holds zero utility,
preserves EF13. This means that the returned allocation is EF13. ��

We move to stronger properties. For example, EFX3 allocations in our setting
might not exist. The rationale behind this is that an agent may get their least
valued bad in an attempt of achieving EFX for the bads. As a result, removing
this bad from their bundle might not be sufficient to eliminate their envy of some
other agent who receive positive utility for a good and a bad.

Proposition 1. There are problems with 2 agents and ternary identical utilities
for 1 pure goods and 2 pure bads, in which no allocation is EFX3.

Proof. Suppose that there are 2 agents and 3 items. We define the utilities as
follows: u(a) = −1, u(b) = −1, u(c) = 2. We note that one EFX allocation
gives items a, b and c to agent 1 and no items to agent 2. However, there is no
allocation that satisfies EFX3.

We observe that there are two EFX allocations of the pure bads, i.e. A =
({a}, {b}) and B = ({b}, {a}). Further, we observe that there are two EFX
allocations of the pure good, i.e. C = ({c}, ∅) and D = (∅, {c}). By the symmetry
of the utilities, we consider only A, C and D.

If we unite (“agent-wise”) A and C, then u(A2 ∪ C2 \ {b}) = 0 < 1 =
u(A1 ∪ C1). Therefore, the union of A and C is not EFX and, therefore, EFX3.
If we unite A and D, then u(A1 ∪ D1 \ {a}) = 0 < 1 = u(A2 ∪ D2). Again, the
union of A and D violates EFX3. Similarly, for B, C and D. ��

By comparison, EFX allocations exist in 2-value problems with goods [2].
It follows immediately that EFX3 allocations exist in such problems. From this
perspective, we feel that our impossibility result compares favorably to this pos-
sibility result because such allocations may not exist in 2-value problems with
goods and bads.

Even more, this result also implies that no EFX allocation satisfies EF13 and
no EF13 allocation satisfies EFX in some problems with identical and ternary
utilities. As a consequence, any allocation that could be returned by Algorithm 1
might violate EFX. These implications are also true for the stronger version
EFX0 in problems where such allocations exist.

However, EFX0 allocations might also not always exist. The reason for this
might be the presence of dummies. One may argue that such items could be
removed. However, some web-applications on Spliddit for example ask agents to
announce items (e.g. inherited items) and utilities but the system has no access
to the actual items and, therefore, cannot remove the dummies [14].
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Proposition 2. There are problems with 2 agents and ternary identical utilities
for 1 pure good and 1 dummy, in which no allocation is EFX0.

Proof. Suppose that there are 2 agents and 2 items, say a and b. We define
the utilities as follows: u(a) = 1 and u(b) = 0. We argue that there is no EFX0

allocation in this problem. To see this, we make two observations. Firstly, with
the given set of items, it is impossible that both agents obtain the same utility,
as the individual utilities are integers and their sum is odd. Secondly, EFX0 for
the agents in this problem where a dummy item is present requires that both
agents have the same utility. This follows by the definition of EFX0. ��

In contrast, a natural restriction of EFX0 to goods is achievable in problems
with 2 agents and general utilities [24], or any number of agents and 0/1 utilities
[2]. By Propositions 1 and 2, it follows that neither EFX3 nor EFX0 can be
achieved in combination with PO, or even a weaker efficiency notion such as
completeness (i.e. all items are allocated), in general.

6 Absolute Identical Additive Utilities

We continue with absolute identical utilities. Requiring such utilities is not as
strong as requiring just identical utilities. To see this, consider agents 1, 2 and
items a, b. Define the utilities as u1(a) = 3, u1(b) = 2 and u2(a) = 3, u2(b) = −2.
The absolute values of these utilities are identical but their cardinal values are
not, e.g. |u1(b)| = |u2(b)| = 2 but u1(b) = 2, u2(b) = −2.

By Proposition 1, EF13 and EFX are incompatible in this domain. Neverthe-
less, we can combine each of them with PO. For example, Algorithm 1 returns
an allocation that satisfies PO besides EF13. The key reason for this result is
that in such problems there are no items that are bads (goods) for some agents
and dummy for other agents.

Theorem 2. With absolute identical utilities, Algorithm 1 returns an EF13 and
PO allocation.

Proof. EF13 follows by Theorem 1. We note that each allocation that gives
at least one mixed item to an agent who values it strictly negatively can be
Pareto-improved by moving this item to an agent who values it strictly posi-
tively. Therefore, such an allocation is not Pareto-optimal. We also note that
each other allocation, including the returned one, maximizes the sum of agents’
utilities because it achieves the maximum utility for each individual item. Such
an allocation is always Pareto-optimal. ��

At the same time, we can compute an EFX and PO allocation in polynomial
time. For this task, we propose a new algorithm: Algorithm 2. We let M(o) =
maxa∈[n] ua(o) denote the maximum utility that an agent derives from item o.
Further, let us arrange the items in non-increasing absolute maximum utility
order by using the following tie-breaking rule.
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Ordering σm: Wlog, |M(1)| ≥ . . . ≥ |M(m)|. Initialize σm to (1, . . . , m).
While there are two items s and t from [m] such that |M(s)| = |M(t)|, M(s) > 0,
M(t) < 0 and t is right before s in σm, do move s right before t in σm. Thus,
within items with the same absolute maximum utilities, σm gives higher priority
to the mixed items/goods than to the pure bads.

Algorithm 2 allocates the items one-by-one in such an ordering σm. If the
current item t is mixed or pure good, then Algorithm 2 gives it to an agent
who has currently the minimum utility among the agents who like the item. If
item t is pure bad, then Algorithm 2 gives it to an agent who has currently the
maximum utility. Otherwise, it gives item t to an agent with zero utility.

Theorem 3. With absolute identical utilities, Algorithm 2 returns an EFX and
PO allocation in O(max{m log m,mn}) time.

Algorithm 2. An EFX and PO allocation.
1: procedure Minimax([n], [m], (u1, . . . , un))
2: ∀a ∈ [n] : Aa ← ∅
3: σm ← (1, . . . , m), where |M(1)| ≥ . . . ≥ |M(m)| and, within items with tied

absolute maximum utilities, mixed items/goods come before pure bads
4: for t ∈ σm do
5: if t is mixed item or good then
6: N ← {b ∈ [n]|ub(t) > 0}
7: MinUtil(A) ← {b ∈ N |ub(Ab) = minc∈N uc(Ac)}
8: pick a ∈ MinUtil(A)
9: else if t is pure bad then

10: MaxUtil(A) ← {b ∈ [n]|ub(Ab) = maxc∈[n] uc(Ac)}
11: pick a ∈ MaxUtil(A)
12: else � t is dummy item or non-pure bad
13: pick a ∈ {b ∈ [n]|ub(t) = 0}
14: Aa ← Aa ∪ {t}
15: return (A1, . . . , An)

Proof. For t ∈ [m], we let At denote the partially constructed allocation of items
1 to t. Pareto-optimality of At follows by the same arguments as in Theorem 2,
but now applied to the sub-problem of the first t items. We next prove that At

is EFX by induction on t. This will imply the result for EFX and PO of Am (i.e.
the returned allocation).

In the base case, let t be 1. The allocation of item 1 is trivially EFX. In the
hypothesis, let t > 1 and assume that the allocation At−1 is EFX. In the step
case, let us consider round t. Wlog, let the algorithm give item t to agent 1. That
is, At

1 = At−1
1 ∪{t} and At

a = At−1
a for each a ∈ [n] \ {1}. It follows immediately

by the hypothesis that each pair of different agents from [n]\{1} is EFX of each
other in At. We note that t gives positive, negative or zero utility to agent 1.
For this reason, we consider three cases for agent a ∈ [n] \ {1} and agent 1.
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Case 1 : Let u1(t) > 0. In this case, t is mixed item or pure good (good) and
u1(At

1) > u1(At−1
1 ) holds. Hence, agent 1 remain EFX of agent a by the hypoth-

esis. For this reason, we next show that agent a is EFX of agent 1. We consider
two sub-cases depending on whether agent a belong to N = {b ∈ [n]|ub(t) > 0}
or not. We note that 1 ∈ N holds because of u1(t) > 0.

Sub-case 1 for a → 1: Let a �∈ N . Hence, ua(t) ≤ 0. As a result, ua(At−1
1 ) ≥

ua(At
1) holds. Thus, as At−1 is EFX, we derive that ua(At

a) = ua(At−1
a ) ≥

ua(At−1
1 \ {o}) ≥ ua(At

1 \ {o}) holds for each o ∈ At−1
1 with ua(o) > 0. We also

derive ua(At
a \ {o}) = ua(At−1

a \ {o}) ≥ ua(At−1
1 ) ≥ ua(At

1) for each o ∈ At
a with

ua(o) < 0. Hence, agent a is EFX of agent 1.

Sub-case 2 for a → 1: Let a ∈ N . Hence, ua(t) > 0. Moreover, ua(At−1
a ) ≥

u1(At−1
1 ) by the selection rule of the algorithm. For each item o ∈ At−1

1 , we have
u1(o) = ua(o) if o is pure good, pure bad or dummy item, and u1(o) ≥ ua(o) if o
is mixed item. Therefore, u1(At−1

1 ) ≥ ua(At−1
1 ) or agent a is envy-free of agent

1 in At−1.
We derive ua(At

a) = ua(At−1
a ) ≥ ua(At−1

1 ) = ua(At
1\{t}) because At

a = At−1
a

and At
1 = At−1

1 ∪{t}. Furthermore, ua(At
1\{t}) ≥ ua(At

1\{o}) for each o ∈ At−1
1

with ua(o) > 0 because ua(o) ≥ ua(t) holds due to the ordering of items used
by the algorithm.

We now show EFX of the bads. We have ua(At
a \ {o}) = ua(At−1

a \ {o}) ≥
ua(At−1

1 ) + ua(t) = ua(At
1) for each o ∈ At−1

a with ua(o) < 0 because |ua(o)| ≥
ua(t) holds due to the ordering of items used by the algorithm. Hence, agent a
is EFX of agent 1.

Case 2 : Let u1(t) < 0. In this case, t is pure bad and ua(At
1) < ua(At−1

1 ) holds.
That is, agent 1’s utility decreases. By the hypothesis, it follows that agent a
remain EFX of agent 1 in At. For this reason, we only show that agent 1 remain
EFX of agent a.

1 → a: We have u1(At−1
1 ) ≥ ua(At−1

a ) by the selection rule of the algorithm. For
each item o ∈ At−1

a , we have ua(o) = u1(o) if o is pure good, pure bad or dummy
item, and ua(o) ≥ u1(o) if o is mixed item. We conclude ua(At−1

a ) ≥ u1(At−1
a )

and, therefore, u1(At−1
1 ) ≥ u1(At−1

a ). Hence, agent 1 is envy-free of agent a in
At−1.

Additionally, it follows that u1(At
1 \ {t}) ≥ u1(At

a) holds because At
1 \ {t} =

At−1
1 and At

a = At−1
a . Due to the order of the items, we have |u1(b)| ≥ |u1(t)|

for each b ∈ At
1 with u1(b) < 0. Hence, u1(At

1 \ {b}) ≥ u1(At
1 \ {t}) ≥ u1(At

a) for
each b ∈ At

1 with u1(b) < 0.
At the same time, u1(At−1

1 ) ≥ u1(At−1
a \{g}) for each g ∈ At−1

a with u1(g) >
0. Again, due to the order of the items, u1(g) ≥ |u1(t)|. Therefore, u1(At

a \
{g}) ≤ u1(At

a) − |u1(t)| = u1(At−1
a ) − |u1(t)| ≤ u1(At−1

1 ) − |u1(t)| = u1(At
1).

Consequently, u1(At
1) ≥ u1(At

a \ {g}) for each g ∈ At
a with u1(g) > 0.

Case 3 : Let u1(t) = 0. In this case, t is dummy item or non-pure bad. Hence,
ua(At−1

1 ) ≥ ua(At
1) and u1(At

1) = u1(At−1
1 ) hold. That is, agent 1’s utility does

not change. By the hypothesis, this means that they remain EFX of each agent
a and also each agent a remains EFX of them in At.
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Finally, computing maximum values takes O(mn) time and sorting items
takes O(m log m) time. The loop of the algorithm takes O(mn) time. ��

For problems with identical utilities, Aziz and Ray [6] proposed the “egal-
sequential” algorithm for computing EFX and PO allocations. By Theorem 3,
Algorithm 2 also does that. However, we feel that such problems are very restric-
tive as they do not have mixed items unlike many practical problems.

Corollary 1. With identical utilities, Algorithm 2 returns an EFX and PO allo-
cation.

Algorithm 2 allocates each mixed item/good to an agent who likes it, and each
dummy item/non-pure bad to an agent who is indifferent to it. As a consequence,
the result in Theorem 3 extends to problems where, for each mixed item/good,
the likes are identical and, for each pure bad, the dislikes are identical.

Corollary 2. With identical likes (i.e. strictly positive utilities) for each mixed
item, identical likes for each good and identical dislikes (i.e. strictly negative
utilities) for each pure bad, Algorithm 2 returns an EFX and PO allocation.

7 Ternary Additive Utilities

We end with ternary utilities. That is, each agent’s utility for each item is from
{−α, 0, β} where α, β ∈ R>0. We consider two cases for such utilities.

7.1 Case for Any α, β

By Proposition 1, it follows that an EFX3 allocation might not exist in some
problems even when α = 1 and β = 2. However, we can compute an EF13

(notably, also EF1-EFX-EFX) and PO allocation with Algorithm 1.

Theorem 4. With ternary utilities from {−α, 0, β} where α, β ∈ R>0, Algo-
rithm 1 returns an EF13 and PO allocation.

Proof. The returned allocation is EF13 by Theorem 1. This one achieves the
maximum utility for each individual item. Hence, the sum of agents’ utilities
in it is maximized and equal to β multiplied by the number of goods plus β
multiplied by the number of mixed items minus α multiplied by the number of
pure bads. In fact, this holds for each allocation that gives each mixed item/good
to an agent who has utility β, and each dummy/non-pure bad to an agent who
has utility 0. Each other allocation is not PO and does not Pareto-dominate the
returned allocation. Hence, the returned one is PO. ��
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One the other hand, we already mentioned after Proposition 1 that each
allocation returned by Algorithm 1 in such problems may violate EFX. However,
Algorithm 2 returns an EFX and PO allocation in this case.

Theorem 5. With ternary utilities from {−α, 0, β} where α, β ∈ R>0, Algo-
rithm 2 returns an EFX and PO allocation.

Proof. This is where the ordering used by the algorithm plays a crucial role.
If β ≥ α, we note that all mixed items and goods are allocated before all pure
bads and all of these are allocated before the remaining items (i.e. dummy items
and non-pure bads). If β < α, we note that all pure bads are allocated before all
mixed items and goods and all of these are allocated before the remaining items.
Further, we observe that agents have identical likes for each mixed item or each
good (i.e. β), and identical dislikes for each pure bad (i.e. −α). Therefore, the
result follows by Corollary 2. ��

By comparison, the “ternary flow” algorithm of Aziz and Rey [6] may fail to
return an EFX allocation even with −2/1 utilities. To see this, simply negate
the utilities in the problem from Proposition 1. This algorithm allocates firstly
one good to each agent and secondly the bad to one of the agents. This outcome
violates EFX.

7.2 Case for α = β

In this case, we can compute an EFX3 and PO allocation with Algorithm 1.
Although we consider this a minor result, we find it important because it is the
only one in our analysis when EFX3 and PO allocations exist.

Theorem 6. With ternary utilities from {−α, 0, α} where α ∈ R>0, Algorithm 1
returns an EFX3 and PO allocation.

Proof. The returned allocation is EF11 and PO by Theorem 4. With general
(and, therefore, ternary) utilities, an allocation that is EFX3 also satisfies EF13

because EFX is a stronger property than EF1, but the opposite implication might
not be true. In fact, with utilities from {−α, 0, α}, the opposite implication also
holds. Indeed, if an allocation is EF1 for a given pair of agents, then removing
some good from the envied agent’s bundle or removing some bad from the envy
agent’s bundle eliminates the envy of the envy agent. But, the envious agent likes
each such good with α and each such bad with −α. Hence, such an allocation is
EFX. This implies that an EF13 allocation is also EFX3 in this domain. ��
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By Theorem 5, Algorithm 2 returns an EFX and PO allocation in this case.
However, this one might falsify EFX3 even when α = 1 (see motivating example).
The same holds for the “ternary flow” algorithm of Aziz and Rey [6] because it
maximizes the egalitarian welfare when α = 1 (see motivating example).

8 Conclusions

We considered additive and fair division of mixed manna. For this model, we
analysed axiomatic properties of allocations such as EFX0, EFX3, EFX, EF13,
EF1 and PO in three utility domains. With general utilities, we showed that an
EF13 allocation exists and gave Algorithm 1 for computing such an allocation
(Theorem 1). With absolute identical or −α/0/β utilities, this algorithm returns
an EF13 and PO allocation (Theorems 2 and 4). With −α/0/α utilities, it returns
an EFX3 and PO allocation (Theorem 6).

With absolute identical utilities, we gave Algorithm 2 for computing an
EFX and PO allocation (Theorem 3). With ternary utilities, this algorithm also
returns such an allocation (Theorem 5). We further proved two impossibilities
results (Propositions 1 and 2). In particular, with ternary identical utilities, an
EFX0 allocation, or an EFX3 allocation might not exist. We leave for future
work two very interesting open questions with general utilities. Table 1 contains
our results.

Table 1. Key: �-possible, ×-not possible, P-polynomial time, α, β ∈ R>0 : α 
= β.

Property General Ident. & abs. −α/0/β −α/0/α

utilities utilities utilities utilities

EF13 �, P (Theorem 1)

EF13 & PO open �, P (Theorem 2) �, P (Theorem 4)

EFX & PO open �, P (Theorem 3) �, P (Theorem 5)

EFX3 × (Proposition 1)

EFX3 & PO �, P (Theorem 6)

EFX0 × (Proposition 2)

A A Complete Version of Algorithm 1

For reasons of space, we presented a short version of Algorithm 1 in the main
text. We present in here a complete version of it.
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Algorithm 1. An EF13 allocation.
1: procedure Modified Double Round-Robin([n], [m], (u1, . . . , un))
2: M0 ← {o ∈ [m]|∀b ∈ [n] : ub(t) ≤ 0, ∃c ∈ [n] : uc(t) = 0}
3: Allocate each item from M0 to an agent who has utility 0 for it. We let A

denote this allocation.
4: M− ← {o ∈ [m] \ M0|∀a ∈ [n] : ua(o) < 0}
5: Suppose |M−| = qn − p for some q, p ∈ N with p < n. Create p “fake” dummy

items for which each agent has utility 0, and add them to M−. Hence, |M−| = qn.
6: Let the agents come in some round-robin sequence, say (1, . . . , n − 1, n), and

pick their most preferred item in M− until all items in it are allocated.
7: M+ ← {o ∈ [m] \ M0|∃a ∈ [n] : ua(o) > 0}
8: Let the agents come in the round-robin sequence (n, n−1, . . . , 1) and pick their

most preferred item in M+ until all items in it are allocated. If an agent has no
available item which gives them strictly positive utility, they pretend to pick a
“fake” dummy item for which they have utility 0.

9: Remove the “fake” dummy items from the current allocation and return the
resulting allocation. We let B denote this allocation.

10: return (A1 ∪ B1, . . . , An ∪ Bn)
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I. pp. 430 1896. vol. II. pp. 426. F. Rouge, Lausanne (1897)
24. Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. In:

Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7–10, 2018, pp. 2584–2603 (2018)

25. Sandomirskiy, F., Segal-Halevi, E.: Fair division with minimal sharing. CoRR
abs/1908.01669 (2019)

26. Young, H.P.: Equity - In Theory and Practice. Princeton University Press, Prince-
ton (1995)



Dynamic Play via Suit Factorization
Search in Skat

Stefan Edelkamp(B)

University of Koblenz-Landau, Post Box 201 602, 56016 Koblenz, Germany
stefan.edelkamp@gmail.com

Abstract. In this paper we look at multi-player trick-taking card games
that rely on obeying suits, which include Bridge, Hearts, Tarot, Skat,
and many more. We propose mini-game solving in the suit factors of
the game, and exemplify its application as a single-dummy or double-
dummy analysis tool that restricts game play to either trump or non-
trump suit cards. Such factored solvers are applicable to improve card
selections of the declarer and the opponents, mainly in the middle game,
and can be adjusted for optimizing the number of points or tricks to
be made. While on the first glance projecting the game to one suit is
an over-simplification, the partitioning approach into suit factors is a
flexible and strong weapon, as it solves apparent problems arising in the
phase transition of accessing static table information to dynamic play.
Experimental results show that by using mini-game play, the strength of
trick-taking Skat AIs can be improved.

1 Introduction

Computer game-playing AIs have shown outstanding performances in perfect-
information board games like Go, Chess, and Shogi [26,27], and in multi-player,
non-trick-taking card games like Poker [2]. As state-of-the-art programs are still
playing considerable worse than human experts, there is a growing research
interest in studying incomplete information multi-player trick-taking games, like
Bridge [4], or Skat [5,20,21].

Many existing card-playing AIs perform some sort of machine learning on a
large selection of expert games [7,10,19,28], often mixed with information-set
sampling and open-card game play [4]. Especially in the opening stage of the
trick-taking game such as the bidding stage or the first card to issue, static rec-
ommendation tables suggest cards by selecting and analyzing the feature vectors
of human records [5].

In this paper, we consider Skat [24,25], a popular three-player international
card game (see Fig. 1). For the single declarer, determined in a bidding stage, and
the two opponents, we derived an approximation of winning probabilities from
millions of expert games [5]. This goes down to associating statistical information
to card groups, i.e., the patterns of cards within a certain suit. Depending on
the game being played, card groups contain eight cards (Null), seven non-trump
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Fig. 1. Skat competition game cards, international deck, partitioned into suits (left,
image credits: thanks to Sönke Kraft/Arnulf zu Linden); review of Skat game played
on our Server with Skat taken and put, as well as first trick being played (right). The
declarer plays Grand.

cards (Suit and Grand), and four trump cards (Grand), or eleven trump cards
(Suit). Once cards in the suits have been played, this static group information,
however, is no longer accurate.

By the vast amount of possible hands in a deal, and an even larger number of
different trick-taking play in card games, there is a limit of what an expert game
information can actually provide. While one can infer and store reliable statistical
recommendations for the first cards to play, for later tricks in the middle game,
this information is blurred, as with the cards that have already been played, the
lookup tables associated to card groups loose precision. For example, it makes a
great difference, whether or not the highest card of the game is still in play. The
aim of the paper, therefore, is to obtain dynamic information in the suit factors
of the game, where a factor is a projection of the card game to one of its suit.
The contributions of the paper are as follows.

1. Devising a single- and double-dummy mini-game open card game solver that
efficiently determines the outcome of a game between the declarer and the
opponent(s); restricted to either one trump or non-trump suit, suggesting the
card with the best possible payoff in optimal open card play. Card recom-
mendations of different factors are compared for the overall suggestion.

2. Introduce several applications of mini-game solving for improving dynamic
play and to determine the best possible card in a suit for the declarer and/or
the opponent(s). We will address non-trump play in Grand and trump play
in Suit games.

3. As the single-dummy solver becomes available in circumstances. Where suits
are not obeyed, the knowledge of the distribution of cards at least in the suits
is maintained and updated accordingly. Effectively the two player with the
remaining suit cards play a two-player game.

4. For the double-dummy algorithm, we save high non-trump cards from being
played too eagerly to save tricks and points for the declarer.

5. Experimental findings based on playing series of thousands of high-quality
games show the impact of the mini-game searches in improving the playing
strength of an existing Skat AI.
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The paper is structured as follows. After kicking off with a motivation of two
scenarios for Suit factorization, we briefly look into recent algorithmic develop-
ments in trick-taking card games, including PIMC and αμ [4]; their strength
and their pitfalls. Then, we turn to factorizing the search space by projecting
the game to one of its suits (trump or non-trump). We provide the essentials of
the single- and double-dummy implementation we used, and give insights in how
the information on card distributions in each suit is updated within the game.
The experiments illustrate the potential of the factorization method, which we
wrap-up with concluding comments.

2 Two Scenarios

2.1 Trump Card Selection in Suit

Once the distribution of cards in one suit has been clarified, e.g., by one player
not obeying a suit, the game projected to that suit, essentially, is a two-person
game. To monitor and improve trump play of the opponents, the knowledge of
the players is maintained and updated in knowledge vectors/sets Kij , containing
the cards that due to the cards being played, Player i knows that Player (or
Skat) j must not have [6]. The opponent player, who ran out of cards in that
suit acts as a dummy (known terminology in Bridge), putting high cards in her
partner’s trick and low cards in the declarer’s ones. In such trump factor of the
game, we assume the declarer to be strong, and, once a trick gets lost, to receive
back the right of issuing the next card. Similarly, if the declarer is about to issue
a card, she can start the double-dummy analysis.

2.2 Standing Card Selection in Grand

For the declarer to select a non-trump card in Grand, we integrate statistical
information tables for choosing the card to build what we call a standing group.
After a few cards have been played, however, the accuracy of the information
gained from a millions of games drops significantly, resulting in a rising need of
a dynamic analysis.

Surely, towards the end of the game, we can apply additional plausibility
tests. If the declarer already has 50 points, we should prefer playing an Ace to
seal the deal, even if the analysis tells us to build groups by using a low-value
card. Similarly, if the opponents already have 47 points, we avoid finessing the
10 with issuing a Queen.

Suppose as an example, we are playing Grand and are analyzing ♠. The
declarer is about to open a trick and to have hand cards ♠A,♠Q,♠9 with
♠8 being already played. We have that ♠10,♠K,♠7 are the possible opponent
cards. According to the hyper-geometric distribution there is a 78.9% chance
of the opponent cards to be partitioned into 2:1 cards, and with probability of
21.1% for a partitioning into 3:0 cards. For the factor analysis of standing cards
in Table 1 we assume that if one opponents run out of cards they lift the other
with 10 points, while no foreign points are given to the declarer. As a result
issuing ♠A is worse by about 5 points on average than playing ♠9.
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3 Limits of Perfect Information Monte-Carlo Sampling

The main challenge is that based on the impartial knowledge about the cards,
there is uncertainty in the players’ belief of the real card distribution. Moreover,
card playing conventions enable to transfer card information transfer among
the players. There have been notable recent suggestions on how to organize the
search in trick-taking games, so that the search maintains information (alias
belief) sets instead of singleton cards.

Counter-factual regret minimization (CFR) [31] has been established as a
very powerful tool for the selection of moves in incomplete information games,
but the search trees generated for its application in trick-based card play are
widely considered to be currently too deep for a timely analysis [7].

Table 1. Skat factor analysis for all possible opponent card distributions; numbers:
points lost to the opponents by the declarer, percentage of games being affected accord-
ing to the hyper-geometric distribution, influence equals points time percentage (left),
expected average, maximum and minimum points made by the opponents, rounded to
full integers (right).

Opp.’s card Card played Points Prob [%] Influence

♠10, ♠K, ♠7 ♠A 34 21.1% 7.17

♠10, ♠K, ♠7 ♠Q 37 21.1% 7.81

♠10, ♠K, ♠7 ♠9 34 21,1% 7.17

♠10, ♠K ♠A 20 26.3% 5.26

♠10, ♠K ♠D 13 26.3% 3.42

♠10, ♠K ♠9 10 26.3% 2.63

♠10, ♠7 ♠A 20 26.3% 5.26

♠10, ♠7 ♠Q 13 26.3% 3.42

♠10, ♠7 ♠9 10 26.3% 2.63

♠K, ♠7 ♠A 14 26,3% 3.68

♠K, ♠7 ♠Q 17 26.3% 4.47

♠K, ♠7 ♠9 14 26.3% 3.68

♠ A ♠Q ♠9

aver. Points 21 19 16

max. Points 34 37 34

min. Points 14 13 10

Perfect information Monte-Carlo sampling (PIMC) as introduced by
Levy [15] is currently still one the best algorithmic options for dealing with
imperfect information in trick-taking card games. It has already been used in
Ginsberg’s popular Bridge-playing program GIB [8], and taken on to other trick-
taking games like Skat [7,11,13], or Spades/Hearts [29]. An attempt for the anal-
ysis of PIMC is made by Long [16]. The algorithmic take in PIMC is, at each
decision point to select a card, to evaluate a larger sample of the belief space
and call a double-dummy solver for each of the worlds, followed by selecting
the card with maximum score. Furtak [7] has proposed recursive Monte-Carlo
search to improve PIMC. Several limitations have been identified for Bridge play
as matters of strategy fusion and non-locality by [4], leading to the αμ search
algorithm(s) that lifts some of them. The main observation is that even if the full
belief space would be sampled and analyzed, the individual searches in PIMC
may lead to contradicting card proposals. The main contribution of αμ is to
devise Pareto optimality into the search process and increase the look-ahead
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(parameter M) in PIMC for a better exploration/exploitation trade-off. The
increase in running time is reduced by further pruning rules. In its nestedness
the recursive strategy shares similarities with nested Monte-Carlo search [3,30]
or nested rollout policy adaptation [23].

4 Factorized Search

Factorizing the search is a concept well-known from combinatorial game the-
ory [1] and has been applied to endgame play in Computer Go [18]. The main
approach, readily applicable to simple games such as Nim and put forward to a
divide-and-conquer search strategy is to decompose the larger game into several
smaller ones, whose combination exactly solve the original game [17]. With this
paper we aim much lower, and look at mini-searches in the factors for each of
the suits (either trump or non-trump) to approximately solve the overall game
through addressing some of the problems in dynamically optimizing play; e.g.,
providing card suggestions for the case, when information about card become
clarified, possibly due to non-obeying suits.

Our so-called mini-game solver is widely usable to bridge the opening of the
trick-taking stage, where we can apply reliable statistical information for proper
card recommendations, to the endgame, where we can analyze the entire belief-
space. We give some examples in the game of Skat, but the approach is applies
many other trick-taking card games as well. In particular, mini-game search can
be used, e.g,

– for book-keeping trumps in opponent play, where we have to select a trump
card and evaluate the strength of the play against the declarer. Suppose ♣ is
trump, that the declarer issues ♥J, and is known to have ♣J,♣Q,♣9,♣8 as
remaining cards in her hand, with one opponent bailing out on trump. The
other opponent has ♦J,♣A,♣10, so that in trump 28 points are available. If
we further set that the declarer gets back the right to open a trick, mini-game
search determines that, assuming optimal play, 17 points are at reach for the
declarer, suggesting to play card ♣10 first, on ♣J playing ♦J second, holding
back the ♣A for the 11 points difference.

– For book-keeping non-trumps for the opponents. If we were to know that
the declarer has ♦A,♦K,♦9, and ♦7 in one suit and the others three of the
total seven cards are located at one opponent, then she knows that she has
to overtake an issued no-value card played by the declarer with the Q to save
the ♦10. Similarly, for ♦10, ♦K, ♦9 in the declarer’s hand the opponents will
be able to secure the Ten, if the Ace is held with two other cards.

– for the analysis of standing cards as an estimate on the number of tricks in a
suit that will go home eventually. The first card to issue can be extracted from
expert rules, but in the middle game, this lacks dynamic information about
trick-taking. The number of tricks (if any) to be secured by the opponents can
be counted and indicate, which card the declarer has to show. Based on this
information in the endgame it is even possible to detect so-called non-trump
or trump forks.
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Given a formal definition of a game that describes of the hands and moves,
it is straight-forward to derive one for a mini-game by simply projecting all its
card sets in the hand and moves to the currently analyzed suit φ. One could
use extensive form game G = (N,A,H,Z, ρ, σ, u, I) with factor G ↓ φ = (N,A ↓
φ,H ↓ φ,Z ↓ φ, ρ ↓ φ, σ ↓ φ, u ↓ φ, I ↓ φ), where N is the set of players and H is
the set of non-terminal states in the game. is defined as the history of all actions
taken Z is the set of terminal histories. H ∩Z = ∅ and H ∪Z = S is the set of all
states in the game. Z corresponds to the set of leaf nodes in a game tree. Utility
function ui : Z → IR gives a real-valued payoff to player i given that the game
ends at state z ∈ Z. ρ : H → N is a function that defines which player is to move
in state h ∈ H. A(h) is the set of moves available in state h. σ : H × A → S is
the state transition function that maps a non-terminal state and action to a new
state. For all h1, h2 ∈ H and a1, a2 ∈ A if σ(h1, a1) = σ(h2, a2) then h1 = h2

and a1 = a2. Information sets I are partitions of non-terminal states that players
cannot tell apart. When |I| = 1 for all I we are in a perfect information game.
As we generate all possible open card distributions, in mini-game search, we look
at a series of perfect information games only.

While in principle possible wrt. the requested brevity and contribution of
the paper, we avoid mapping the rules of Skat into extensive form games in full
detail. As the number of projected hand cards may vary among the players,
additional rules for filling up the hands of the opponents, and of obeying have
to be found if a player runs out of cards. It is also often requested to modify the
rules of issuing a trick, as in some cases we may want the alter the right to issue
the trick. Other than this the playing rules are the same as in the original game,
making it a game tree abstraction.

5 The Power of Suit Partitioning

Following early work of Lasker [14], it has mathematically been motivated and,
later on, empirically been shown that for variants of the Null-Games (Null,
Null-Hand, Null-Ouvert, Null-Ouvert-Hand, the misére game variants in Skat),
approximating the winning probabilities Pw(h) of a hand h multiplying the pro-
jected ones Pw(h ↓ s) in each suit, s ∈ {♣,♠,♥,♦} is astonishingly accurate [5],
so that

Pw(h) ≈
∏

s∈{♣,♠,♥,♦}
Pw(h ↓ s).

If the hand h is represented as a set of cards and s is represented by the set of
all cards in a suit, then Pw(h ↓ s) = Pw(h ∩ s).

We use bit-vectors for card sets. Patterns in each suit are indexed. For a
suit of eight cards in the Null game we have the card group CG8(h, s) = h ↓
s ∈ {0, . . . , 255}. For non-trump we have groups CG7(h, s) and for trump play
either CG11(h, s) (Suit), or CG4 (Grand). In GGk there are at most 2k hands.
Given that there are three different players and cards that already been played,
pre-computing all possible card combination for a fast lookup in a hash table is
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cumbersome and leads to large tables. In the static variant, where the groups
have not been touched during trick play, we generate tables of size 2k with the
probabilities for winning have to be pre-computed using the large amount of
stem games. The concept of such table is present for many different aspects of
the Skat game like color change, first cards to issue, cutting cards, etc.

Unfortunately, the statistical information does not easily cover on-going
games, as the CGs are affected by the removal of cards being played. As an
example of the concept of dynamic suit partitioning is the computation of safe
cards, since a hand of the declarer in a Null game is safe (100% certain), if it is
safe in each of the suits [12].

For trump games (Grand/Suits) the concept of accumulating static infor-
mation in each suit (either trump or non-trump cards only) is also reflected in
some of the features of a hand, to determine the winning probability. One such
feature is the number of trump aces and non-trump aces and tens, or free suits,
which are empty groups. A critical one is estimating the number of standing
cards in each suit, a player expects to win. The approximation of standing cards
are added for the entire hand,

standing(h) =
∑

s∈{♣,♥,♠,♦}
standing(h ↓ s),

where standing(h ↓ s) = standing(h ∩ s). For estimating standing(h ↓ s) sta-
tistical information is collected.

While this works well for bidding, for Skat putting and for the early stages of
trick play, the dynamic evolution of CGs, e.g., for standing cards, this proves to
be a real challenge. Note that the algorithm for detecting safe suits and hands
that takes into account the cards being played is not easily to be extended, as
in trump games the right to issue cards often changes, and we necessarily need
to count tricks and points.

Therefore, a dynamic concept of standing cards is needed, which we call
mini-games, i.e., the reduction of the overall game to one suit or the set of
trump cards, aggregating the values for the entire game, possible averaging with
respect to the amount of uncertainty in the cards. In mini-games, only cards in
one suit, are issued. To overcome the problem we use an open card mini-game
solver, the mini-glassbox.

6 Mini-Glassbox Search

Open alias dummy card solving is a search using a glassbox by having with
perfect information that is not necessarily present but may be sampled. There
are single-dummy and double-dummy variants of the mini-glassbox search algo-
rithm (MGB-SDS and MGB-DDS for short). These algorithms compute the best
playing card wrt. the optimization objective and the trick’s starting condition,
while assuming optimal play of the opponents. The search spaces in the mini-
games are so small that for the sake of performance, we omit transposition table
pruning [22], as the total exploration efforts in these state spaces are negligible
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and the gain in the number of explored nodes are dominated by re-initializing
the hash table after each invocation of the solver.

Our exploration algoithm for such open card solvers, is decomposed into
decision procedure on a given threshold for the point and embedded in a binary
search for computing the optimum (a paradigm also known as moving test driver,
cf. e.g., [12]).

6.1 Single-Dummy Mini-Glassbox Solver

The simplest case is given if one of the three players is known not to have a
card of a certain (non-trump or trump) suit s, e.g. by not obeying s. Then,
the mini-game reduces to only two parties that remain to hold cards of s in
their hands. Except of the cards put in the Skat, full knowledge of all cards in
s is known. There are also other measures monitoring the play to deduce if one
player cannot have any card of a certain kind, as one may generally assume that
the lowest-value card is given to the trick owned by the opposing party, and the
highest-value card to the trick owned by the own party.

In practice the single-dummy variant of the mini-game solver applies to trump
play in suit games in order to decide on the trump card for an opponent to obey,
or to a player to decide whether or not to start issuing trump cards from top to
bottom. At this stage of the game it has been clarified that the other player has
no trump card left.

The algorithm counts the number of points the declarer can cash in, and
assumes optimal play of both parties. Notice a few subtle insights. While the
result of the trick is correctly distributed to the players, the next turn will always
be at the declarer’s site, which compensates for the fact that s/he tries to win

Fig. 2. Single-dummy mini-glassbox solver for declarer node, counting points.
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and is assumed to get back to play with the stronger by-hand. The reasoning
is that the declarer will get his/her right to issue the card. The single-dummy
algorithm is given in Fig. 2, so that there are two players, of which we selected
the declarer node. The algorithm is tuned for speed. It uses bitvectors for the
hands, played, and playable cards. Function select extracts one bit in the set (via
constant-time processor instructions), winner determines the leader in a trick.
Hand cards are h[j], table cards are t[j], with j being Player j ∈ {0, 1, 2}, If
the declarer (Player 0) runs short of playable trumps, all remaining cards are
counted for the opponents (opoints). Otherwise, a card is selected, and the search
continues.

There are some further issues to be solved, as some cards may be already
present on the table. They also influence the maximum of points that can be
obtained. As we count points, we take into account the value of the partner card
in the first trick.

6.2 Double-Dummy Mini-Glassbox Solver

The double-dummy version of the mini-glassbox solver is shown in Fig. 3, also
for the declarer’s turn. Besides being defined for three players, it aligns with the
notation of variables in the single-dummy version of Fig. 2.

The double-dummy mini-glassbox solver shares similarities with the double-
dummy solver for the overall game. But the search space is much smaller, as the
game is restricted to only one suit. Again, we skip transposition table pruning
to avoid cleaning the hash table. For the standing card value we use the solver

Fig. 3. Double-dummy mini-glassbox solver for declarer node, counting tricks.
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for counting the number of tricks, while for computing the optimal card we also
count points as illustrated in the motivating example. As we see there are now
three players AND, OR1, and OR2.

In this case we want the number of tricks as a measure about to generate
standing non-trump cards for the declarer. Again the decision variant for a given
threshold is shown. An example for the algorithm for building standing cards is
as follows. Assume the declarer has A, K, 8, 7 in some arbitrary suit, and plays
the 8.

Case 1. Both opponents obey the suit, then only one card is in the opponents
hands, and the ace is the highest card, so that the declarer gets all tricks if she
plays from above, as she has three standing cards.

Case 2. One opponent does not have a remaining card in the requested suit.
If the 10 drops immediately, the AS wins all further tricks, given that she issues
from highest- to lowest-value card. If one opponent overtakes the trick with the
Queen, the declarer has to take the Ace to loose the 7. For this case she only
has 2 standing cards.

For the glassbox solver after a trick has been collected and counted for the
correct party, we impose that the declarer gets the right to issue the next card,
only if there is no other card of the suit that can be played.

Padding with irrelevant cards aligns the number of cards to the one of the
declarer if needed. When we were to count points, opponent cards become padded
with high cards, with their value is not being counted in a declarer’s trick.

Fig. 4. Calling the Mini double-dummy glassbox solver for all distributions of opponent
cards.
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Of course this again is only an approximation. Setting the turn for the next
trick neglects the play in the other suits and trump cards. Always assigning it to
the declarer neglects finessing the cards, which is an important factor in almost
all trick-taking games.

The binary search optimization algorithm for the exact value assuming opti-
mal play is called for each possible card distribution of the opponents. As this
distribution might be uneven, to allow playing on, we pad cards of different suits
to the opponents.

It is well-known that the number of cards in a suit follow a hyper-geometric
distribution [9]. In Fig. 4 we illustrate how to generate all possible remaining
opponent hands, given the hand for the declarer. The algorithm is recursive
and puts all possible cards still to distribute in either the one or the other
hand until no opponent card remains. The result of evaluating all calls with the
mini-glassbox solver is added, and later on averaged for the number of possible
distributions.

7 Experiments

In the experiments we look at 10,000 Suit games in of all types t ∈ {♦,♥,♠,♣}
and an equal number of Grand games. In a three-player pure AI game we replay
the deal of human expert games, using the human Skat, and the human game
chosen. We also ran the AIs on 3,600 random deals on our Skat server.

While the mini-glassbox (MGB) solving approach is more general and can be
modified to different objectives, we decided to evaluate a) single-dummy mini-
glassbox search for better trump play in Suit games, optimizing the number
of points; and b) double-dummy search for better non-trump play in Grand
games, optimizing the number of points and tricks. Our computer has an Intel(R)
Core(TM) i7-8565 CPU @ 1.8 GHz and 16 GB RAM given to an Oracle Linux
VM. The programming language was C++ (gcc, version 7.4.0 Ubuntu-8.04.1).

Single-Dummy Mini-Game Search for Playing and Obeying Trump in
Suit Games. We extracted 10,000 Skat expert Suit games and added the MGB
solver to the opponents. Once the monitor of the knowledge base has derived
that there are only two hands remaining that have trump cards, it calls the MGB
to help selecting a trump card according to the suggested outcome of the solver.

The obtained empirical results are presented in Table 2. We separate between
the play with and without the support of the MGB solver, and further partition
with respect to a) the Human game play outcome and b) the outcome of an
open card (retrospective) solver for the entire game. The advances in this case
are visible but moderate. We see that with the support of the MGB solver the
opponents are able to win 32 more games against the same AI for the declarer.
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Table 2. Suit games without and with opponent support of a Mini-Glassbox analysis.

Human wins Glassbox wins Computer wins Count Percentage CPU time

Without MGB 0 0 0 763 7.6%

0 0 1 756 7.6%

0 1 0 58 0.6%

0 1 1 271 2.7%

1 0 0 462 4.6%

1 0 1 1,250 12.5%

1 1 0 244 2.4%

1 1 1 6,196 62.0%

Total (Wins) 8,152 6,769 8,473 10,000 100% 633 s

With MGB 0 0 0 776 7.8%

0 0 1 743 7.4%

0 1 0 57 0.6%

0 1 1 272 2.7%

1 0 0 467 4.7%

1 0 1 1,245 12.5%

1 1 0 259 2.6%

1 1 1 6,181 61.8%

Total (Wins) 8,152 6,769 8,441 10,000 100% 647 s

Double-Dummy Mini-Game Search for Standing Cards in Grand
Games. In the second set of experiments, we took 10,000 Skat expert Grand
games and added the MGB solver to find the declarer’s best card to issue; via
generating standing cards in each of the non-trump suits. As described above,
we generated all possible distributions of the non-trump suit and compared the
standing card value gain between the different playing options.

The results are presented in Table 3. The opponents are able to win 160 more
games. This advance of declarer play is a significant improvement, as the number
of games won was already close to the the maximum of 10,000 games: almost
30% of the previously lost games, are now won by the new AI for the declarer.

In both cases, the performance offset is acceptable, as the average time of an
entire game is below 0.1 s and includes all file handling, pre-computation efforts
and the open-card analysis of the entire game. We also see, that the AI declarer
wins significant more games than the human one. This might indeed be a sign
of superior computer play, but also an indication that the AI opponents are not
yet strong enough.

Overall. We also played 3,600 games of various kinds on our skat server
with three fully independent Skat AI clients. We included suit factorization
and endgame support [6] for both the declarer and the opponents after trick
5 with a belief-space size of at most 100 (see Fig. 4). Including bidding the
entire simulation took 19.82 m in total. Of the 3,600 games, 154 games were
folded (4.27%). We applied a rating of the games that is also used in com-
petitions. For this, the average playing strength for a series of 36 games was
(88, 157 + 89, 522 + 94, 797) · (3, 600/3, 446)/(3 · 100) ≈ 950.
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Table 3. Grand games without and with declarer support of a Mini-Glassbox analysis.

Human wins Glassbox wins Computer wins Count Percentage CPU time

Without MGB 0 0 0 135 1.4%

0 0 1 274 0.2%

0 1 0 15 0.2%

0 1 1 140 1.4%

1 0 0 178 1.8%

1 0 1 658 6.6%

1 1 0 229 2.3%

1 1 1 8,371 83.7%

Total (Wins) 9,436 8,755 9,443 10,000 100% 794 s

With MGB 0 0 0 121 1.2%

0 0 1 288 2.8%

0 1 0 8 0.1%

0 1 1 147 1.5%

1 0 0 134 1.3%

1 0 1 702 7.0%

1 1 0 134 1.3%

1 1 1 8,466 84.6%

Total (Wins) 9,436 8,755 9,603 10,000 100% 902 s

Table 4. Results on 3,600 games for random deals played on the Skat server, with AI
bidding, skat putting, and trick-taking play. For each player the first row shows points,
games won, games lost, and estimated card strength.

8 Conclusion

Factorized card-game solving is an almost universally applicable technique to
optimize trick-taking play in cases, where the remaining hands among the players
are either known exactly or the information set can be enumerated completely.
The approach is based on projecting a game to its suits and combining the result
of the according game factors. It is applied for the declarer or the opponents to
optimize the number of tricks or points, assuming the game is not already won in
the current trick. The players optimize dynamic card play, since after one trump
trick static information on average distribution and probabilities is no longer
available. As one means, the declarer can use it for a dynamic computation of
non-trump standing cards. Similarly, all players can optimize trump play. We
can also use it for approximating the number of declarer points for announcing
Schneider and Schwarz.

The approach of mini-game open card solving is a tool to improve card selec-
tion in Skat. Although much information about all the other cards in the game is
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neglected, and given that we combine the exploration results directly to an eval-
uation of the overall search space, compared to combinatorial game theory, the
factorized approach of optimally solving partial problems helps in many cases
for choosing the best card.

Acknowledgments. Thanks to Rainer Gößl for his invaluable help as a skat expert.
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Abstract. Convolutional neural networks (CNN) are getting more and
more complex, needing enormous computing resources and energy. In this
paper, we propose methods for conditional computation in the context
of image classification that allows a CNN to dynamically use its chan-
nels and layers conditioned on the input. To this end, we combine light-
weight gating modules that can make binary decisions without causing
much computational overhead. We argue, that combining the recently
proposed channel gating mechanism with layer gating can significantly
reduce the computational cost of large CNNs. Using discrete optimiza-
tion algorithms, the gating modules are made aware of the context in
which they are used and decide whether a particular channel and/or a
particular layer will be executed. This results in neural networks that
adapt their own topology conditioned on the input image. Experiments
using the CIFAR10 and MNIST datasets show how competitive results
in image classification with respect to accuracy can be achieved while
saving up to 50% computational resources.

Keywords: Conditional computation · Channel and layer gating ·
CNN · ResNet · Image classification

1 Introduction

Conditional computation is a new emerging field in deep learning [3,4]. Condi-
tional computation aims to dynamically allocate resources in a neural network
conditionally on the data. Conditional computation can be implemented in dif-
ferent ways such as dynamic execution of different sub-networks inside the main
network or different layers or filters. Such models could allow running of differ-
ent computation graphs conditioned on the input. For example, images that are
easier may need less layers/filters or even shallower sub-branches in the network
for making a prediction, while more complex examples may warrant the use of
more computational resources in the network.

The most obvious benefits of conditional computation is saving resources at
inference time. This is because the network is able to dynamically use parts of its
units conditioned on the input. While the original base network can have a very
large number of parameters and Multiply-accumulate operations (MAC), due to
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the dynamic structure of the network during inference, the resulting model may
use a much lower average number of parameters and MACs.

The other advantage of conditional computation can be related to the forma-
tion of mixture of experts [11] inside the network. By gating individual compo-
nents inside a network, we can make the parts that are active more specialized
for the specific input, while other elements (filters/layers or sub-networks) may
be specialized to perform well on other types of inputs. The idea of mixture of
expert neural networks has been previously explored. Early works trained inde-
pendent expert models to do different tasks and then joined the models and used
a gating unit that could select the right model for the given input. Conditional
computation, offers a generalized way of forming mixture of experts inside a
neural network in which there is potentially a single expert model per example.

Dynamic capacity networks (DCN) [1] picked-up this idea by using a high
capacity and a low capacity sub-network. The low capacity sub-network analyzes
the full image, while the high capacity sub-network only focuses on task-relevant
regions identified by the low capacity part.

In this paper, we propose to combine channel and layer gating using light-
weight gating modules that can make binary decisions (1 for execution and 0
otherwise), saving computational costs, while maintaining high performance.

2 Related Work

There are several works in recent literature on conditional computation that suc-
cessfully use gating to learn conditional layers/features in their networks. In this
section we review and discuss several approaches for implementing conditional
computation for computer vision applications.

2.1 Conditional Computation in Neural Networks

Stochastic Times Smooth Neurons. Bengio et al. [4] introduced stochastic times
smooth neurons as gating units for conditional computation that can turn off
large chunks of the computation performed within a deep neural network. The
proposed gating units can produce actual zero for certain irrelevant inputs and
hence lead to a sparsity that greatly reduces the computational cost of large deep
networks. Even though stochastic gates perform non-smooth functions such as
thresholds, the authors show that it is possible to obtain approximate gradients
by introducing perturbations in the system and observing the effects.

The proposed stochastic neurons were used in the context of conditional
computation to dynamically select parts of some computational graph for exe-
cution, given the current input. This work was among the first to show that a
dynamic computational saving could be obtained without any significant loss in
performance.
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2.2 Layer Gating

Independence of Layers in Residual Neural Networks. Many of the modern CNNs
are based on the recently proposed residual neural networks. In traditional archi-
tectures such as AlexNet [14] or VggNet [16], inputs are processed via low-level
features in the first few layers up to task specific high-level features in the very
deep layers. However, the identity skip-connection in residual networks allows
the data to flow from any layers to any subsequent layer [19]. In a study by Veit
et al. [19], it was shown that removing single layers from residual networks at test
time does not cause a significant drop in performance. This is in sharp contrast to
traditional architectures such as AlexNet and VGG which have a dramatic per-
formance drop after a layer removal. This shows that layers in ResNets [8] exhibit
a significant degree of independence and that residual networks can be viewed
as a collection of many paths, instead of a single very deep network. Motivated
by these results, several methods were proposed for skipping execution of layers
inside a network conditioned on the input such as convolutional neural networks
with adaptive inference graph (ConvNet-AIG) [18] and SkipNet [20].

Convolutional Networks with an Adaptive Inference Graphs. Veit et al. [18] pro-
posed a CNN architecture called convolutional neural networks with adaptive
inference graph (ConvNet-AIG) that dynamically decides whether the current
layer should be activated or not based on the input it receives. This allows con-
structing adaptive inference graphs conditionally on the input. This is achieved
by training a set of gating units. Specifically, ConvNet-AIG [18] works with resid-
ual networks (ResNets) architecture [8] that are gated at each layer. The gating
function is actually a basic neural network that can get the same featuremap
that goes to a ResNet block as the input. The gating network makes a binary
decision whether a layer should be enabled or turned off for the given input.

In ConvNet-AIG [18], the gating unit computes the global average pooling
of the input and shrinks the entire featuremap into a vector size of 1 × 1 × C,
where C is the number of input channels. This vector is then passed to two fully
connected layers that generate an output. This output has two nodes for two
decisions: on meaning executing the layer, and off meaning skipping the layer.
Technically, selecting the maximum between these two decisions for learning the
gating function is a bad idea. If the network only considers this maximum deci-
sion, it might end up learning trivial solutions (For example, the gate may learn
to remain always on or always off regardless of the input). Besides that tak-
ing the hard argmax function of the output is not differentiable. To circumvent
this problem, the authors used the Gumbel-max trick [7]. Gumbel sampling is a
strategy that allows us to sample from a discrete distribution.

The major limitation of this method is that it is not able to save computation
on a more fine-grained level. In ConvNet-AIG [18], gates are only defined for each
individual ResNet block (skip a whole block). It makes sense to enable more fine-
grained gating such as gating of filters of the convolutional layers.

Skipping Layers Using Long Short-Term Memory Gates. SkipNet [20] is another
method that can dynamically skip a layer in a ResNet architecture in a similar



36 A. Ehteshami Bejnordi and R. Krestel

fashion. The authors use Long Short-term Memory (LSTM) [9] modules as the
gating units for their network. For skipping redundant layers, the gating blocks
of SkipNet [20] use a binary decision similar to ConvNet-AIG [18]. To overcome
the problem of non-differentiable discrete decision Wang et al. [20] proposed a
hybrid algorithm that is a combination of supervised learning and reinforcement
learning.

The gating module of SkipNet [20] is composed of a global average pooling
layer and one 1× 1 convolutional layer and also one LSTM layer. This recurrent
gating design allows it to take benefits of LSTM architecture and reduces the cost
of a CNN network inference time while at the same time achieving better results.
SkipNet [20] bypasses fewer layers for difficult samples like dark or noisy images
and skips more layers for easy images. However, in comparison to ConvNet-AIG
[18] it achieves lower performance. One major problem with SkipNet [20] is that
its accuracy drops rapidly as it saves more compute.

2.3 Gating Individual Filters/Channels

GaterNet [5] is a gating architecture that learns a complete convolutional net-
work jointly and in parallel with the original network, and tries to gate individual
filters in the base model. This method, however, comes at a high extra computa-
tion cost which may not be necessary. The authors proposed a gater network that
extracts the features of the input and then based on these features gates the fil-
ters of main network. Chen et al. employed Improved SemHash trick [12] to make
discrete gate functions differentiable during the backward pass. Unfortunately,
the authors do not report any information about the MAC count or trade-off
points between the accuracy and MAC-saving for different sparsity levels. This
makes comparison of their approach with other methods challenging.

Dynamic channel pruning [6] is another recently proposed method that selects
individual features to be turned on/off based on the input. This is done by
choosing the top-k ranked features that should be executed for the specific input.
Gao et al. [6] proposed using Feature Boosting and Suppression (FBS) method.
This method uses auxiliary blocks that determine the importance of the output
of a convolutional layer based on the input it receives. The authors showed that
the Feature Boosting and Suppression method can improve the execution time 5
times faster than VGG-16 and 2 times faster than ResNet-18 while at the same
time the reduction in accuracy is less than 0.6%.

Bejnordi proposed a model [2] which performs a more fine-grained level skip-
ping by learning to execute filters inside a residual block conditioned on the
input. The authors also proposed the batch-shaping loss to encourage the net-
work to learn more conditional features. More recently, a new residual block
was proposed where a gating module learns which spatial positions to evaluate
exploiting the fact that not all regions in the image are equally important for
the given task. The major benefit of our method is the ability of saving more
computation cost rather than other methods. This architecture allows the model
to gate a channel in a convolutional layer or a whole layer of residual block based
on the input it receives.
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3 Dynamic Layer and Channel Gating

In this work, we design a neural network architecture that enables fine-grained
filter gating as well as layer-gating of whole residual blocks of convolutional
neural networks. Unlike GaterNet [5] that gates individual channels using a
learned auxiliary network, we use very light-weight gating modules similar to
the ones used in ConvNet-AIG [18] for gating the filters and layers in each layer.
Our proposed solution is called dynamic layer and channel gating (DLCG).

Fig. 1. Overview of different mechanism for gating a residual network. The top shows
the layer gating approach proposed by Veit et al. [18]. The ResNet block in the bottom
shows our proposed joint channel and layer gating (DLCG). In DLCG, we use a single
gating module Gφ to jointly gate filters and layers

3.1 Proposed Gating Architecture

Figure 1 shows an overview of different gating strategies we consider in our work:
Layer gating as proposed by Veit et al. [18], and our proposed joint channel and
layer gating (DLCG). As shown in the lower part of the figure, we learn a single
gating module to jointly gate layers and filters in the residual block.

3.2 The Structure of Our Gating Module

The aim of the gating module Gφ is to estimate the relevance of a layer or filter
given the input features. The gating module should have a light design (low MAC
consumption) to not undermine the value of conditional computation, while at
the same time operate in an input dependent fashion and make smart decisions
for activating channels or layers in the block. Beside that, the gates should make
binary decisions. A gate with a soft output will not be useful. While a hard zero
means we can skip the computation of a unit, a soft value such as 0.3 means we
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should still give some attention to the current unit and hence no computational
saving will be obtained.

Our gating modules have a light and efficient structure inspired by the gating
modules of ConvNet-AIG [18]. An overview of our gating module is presented in
Fig. 2. Our gating module takes the incoming featuremap to the residual block
as input and applies a global average pooling to reduce the input dimension to
1 × 1 × N , where N is the number of channels in the input featuremap. This
step significantly reduces the computation costs of the gating network and is
similarly used in Squeeze and Excitation networks [10]. This representation is
obtained through:

zc =
1

H × W

H∑

i=1

W∑

j=1

xi,j,c (1)

Fig. 2. Illustration of the gating module structure for our joint channel and layer gating
network

This representation is then fed to a small MLP with a first fully connected
layer with 16 neurons. This fully connected layer is a shared layer for both
channel and layer gating. The output of this layer is passed to a ReLU non-
linearity. After that, there are two separate heads, one for channel gating and
one for layer gating (see Fig. 2). The fully connected layer on the channel gating
head generates the output probabilities for gating individual filters α̂i, where i ∈
{1, 2, · · · , N ′}, and N ′ denotes the number of channels in the first convolutional
layer of the ResNet block. Note that each element in the output of this gating
network is an independent binary gate α̂i responsible to choose to either execute
or skip the computation of the filter i in the first convolutional layer of the
ResNet block.
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For layer gating, we use a fully connected layer that linearly projects the
feature to a single output β̂ (single gate) whose output determines if the current
residual block should be executed or not. All the gates are trained using the
Gumbel max trick [7] with sigmoid relaxation.

Note that during inference, we first look at the output of the layer gating
and if it chooses to skip the layer, we do not perform any channel gating and
the whole ResNet block is skipped. And in case the gate decides to execute the
block, we proceed with the channel gating unit.

3.3 Sparsity Objective

Consider a gated classification model which only uses the task loss (e.g. cate-
gorical cross-entropy) to optimize the network. The gradients coming from the
task loss could be back-propagated through the gating units. The most trivial
solution for the gating units would be to make sure all the gates are always on.
In this case, we end up with a network that is equivalent to a model trained
without any gating units. Ideally, however, we would like the units and layers
in the network to be input dependent. That means we want the gates to be on
when the specific layer/filter is relevant for the current input and to be off if oth-
erwise. To encourage this behaviour we use a sparsity objective which penalizes
the gates for being always on.

Target Loss. In ConvNet-AIG [18], the sparsity is achieved by defining a loss
function that encourages each layer to be executed at a certain target rate. The
target rate can take a value between 0 and 1 representing the overall execution
percentage of a layer. The execution rate is penalized in a mini-batch of data.
The loss term is expressed as:

Ltarget =
N∑

l=1

(z̄l − t)2 (2)

in which t is the target rate and is a parameter selected by the user during
training and z̄l represents the fraction of images that are executed for a certain
layer l and N is the total number of ResNet blocks. The total loss for optimizing
the layer gated network is then obtained by summing up the normal loss function
LC (categorical cross-entropy) and the target rate loss Ltarget:

LAIG = LC + Ltarget (3)

In practice, the best results in ConvNet-AIG [18] were achieved by manual
setting of target rates per layer and following a lot of heuristics and hyper-
parameter tuning. For example, the target rate of the initial layers and layers
at the end of the network were set to 1 while the intermediate layers were given
lower target rates as they seemed to be more prunable.
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Target-Free Sparsity Loss. Unlike ConvNet-AIG [18], we propose to remove
the target rate. This would allow different layers/channels to take varying
dynamic execution rates. This way, the network may automatically learn to
use more units for a specific layer and less for another, without us having to
determine a target rate in advance. Besides that, we give weight to the sparsity
loss by the coefficients λ and γ which control the pressure on the sparsity loss
for layer gating and channel gating, respectively. The resulting loss equation for
layer gating is, therefore:

Ll−sparsity =
N∑

l=1

z̄2l (4)

And for the case of channel gating we have:

Lch−sparsity =
K∑

f=1

z̄2ch (5)

where zch denotes the fraction of images which activate a specific gate that
gates whole layers, and K is the total number of filters that are gated in the
network. Therefore, the final objective for joint channel and layer gating of our
DLCG network is:

LDLCG = LC + λLl−sparsity + γLch−sparsity (6)

We optimize this loss with mini-batch stochastic gradient descent. To gener-
ate different sparsity levels for our gating network we set different values for our
λ and γ coefficients.

4 Experiments

Evaluation Metrics. Top-1 and top-5 accuracies [14] are the measures that are
used to evaluate the performance of algorithms for image classification tasks such
as the ImageNet [14] or CIFAR [13] classification. Top-1 accuracy describes that
the classifier gives the highest probability to the target label. Top-1 accuracy is
also known as the normal accuracy and is widely used in benchmarks to rank
different algorithms. Top-5 accuracy is mostly common when the number of
classes are very large such as for ImageNet classification (1000 classes). Since we
apply our model to MNIST and CIFAR10 classification tasks, we only report
the top-1 accuracy.

Also for evaluating the computation cost of the model we report multiply-
accumulate operations count (MAC). This measure gives us a good criterion of
how fast our model is in practice. The computation time of a layer in a CNN
architecture mostly depends on the MAC operations performed on that layer
during the convolutional operation. The MAC count for a standard convolutional
layer is (H×W ×C)×(K×K×C ′). Where (H×W ×C) represents the dimension
of the input featuremap and (K × K × C ′) represents the spatial size of filters
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times the number of filters in the convolutional layer. By gating a specific filter
we affect the number of filters C ′ that are applied to the input. Note that gating
filters not only reduces the MAC count of the current layer, but also affects the
MAC count of the following layer because the input dimension to the next layer
is automatically reduced.

To get better insight into the effectiveness of the gating architectures, we also
plot the MAC versus Accuracy curve to see how saving computation affects the
accuracy of the gated models.

Table 1. Results of the experiment on the CIFAR10 dataset for our joint channel and
layer gating architecture (DLCG) with different sparsity loss coefficients

Gate loss factor Average activation rate Accuracy GMAC

Layer Channel Layer Channel

0.09 0.15 0.399 0.215 88.96 0.0076

0.07 0.12 0.464 0.262 89.67 0.0089

0.09 0.10 0.405 0.272 89.87 0.0091

0.05 0.10 0.564 0.305 90.59 0.0115

0.05 0.07 0.677 0.388 91.55 0.0145

0.02 0.03 0.727 0.548 91.99 0.0206

0.00 0.03 0.992 0.591 92.49 0.0232

0.00 0.05 0.999 0.791 92.74 0.0320

0.00 0.00 0.999 0.880 92.86 0.0353

4.1 Experiments on CIFAR10

For evaluation of our approach, we use the CIFAR10 dataset [13]. CIFAR10 is a
popular dataset for the task of image classification consisting of 10 categories It
contains of 50000 images for training and 10000 images for testing of size 32×32
pixels.

Training Configuration for CIFAR10 Classification. We used ResNet20 [8] as
the base network for our CIFAR10 experiments. We trained our joint layer and
channel gated models using stochastic gradient descent with Nesterov momen-
tum [17]. The network was trained for a total of 400 epochs with a batch size
of 256. At the start of training, the learning rate was set to 0.1. We followed
a step policy for learning rate drop and divided the initial learning rate by a
factor of 10 at epochs 200, 300 and 375. The weight decay for the parameters
of the network was set to 5e−4. We did not apply weight decay to any of the
parameters of the gating modules (weights or biases).

We used random cropping and random horizontal flipping as data augmen-
tation to improve the generalization of our model. To generate trade-off points
for our MAC-accuracy curve, we experimented with different values of λ and γ
for the sparsity objectives.
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Fig. 3. The top-1 accuracy vs MAC count curve for the three gating architectures
trained on CIFAR10 dataset

Results on CIFAR10: We present the result of our DLCG model in Table 1 with
different accuracy vs mac trade-offs. This model is performing consistently better
than ConvNet-AIG [18] as shown in Fig. 3. We additionally compare the results
to the case in which we only use channel gating. The accuracy of our DLCG
model is slightly higher than a sole channel gated model as well. We argue that
the major performance gain comes from the channel gating modules and that
is clear from the significant performance gap between channel gating alone and
ConvNet-AIG [18].

In Fig. 3, we show the trade-off between MAC count and accuracy for the
three different gating schemes: ConvNet-AIG [18] and channel gating as well as
joint channel and layer gating. Note that in all MAC count calculations, we also
include the overhead of the gating modules (less than 0.03%).

From the results, it is obvious that our proposed gating models outperform
ConvNet-AIG [18] by a large margin. In this plot we also present the performance
of two baseline models: ResNet20 and ResNet14 without any gating. As can be
seen, ResNet14 without gating outperforms a gated ConvNet-AIG [18] model at
a similar MAC count. This result is surprising, because in such a case one would
prefer to use a ResNet14 model rather than a ConvNet-AIG [18] model with a
ResNet20 backbone. This result questions the entire value of conditional com-
putation. Our ResNet20 based gated models, in contrast, outperform ResNet14
non-gated baseline by a large margin at a similar MAC count. This is highly
desirable, as it means we can take a large capacity neural network (such as
ResNet20) and sparsify it to the size of a smaller network (such as ResNet14),
while getting a much higher accuracy than the smaller non-gated model.
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Fig. 4. The top-1 accuracy vs MAC count curve for the three gating architectures
trained on MNIST dataset

4.2 Experiments on MNIST

To verify our results from the CIFAR10 dataset, we additionally evaluated our
approach on the smaller MNIST dataset [15]. MNIST is a database of handwrit-
ten digits from 0 to 9. Each image is available in the form of a grayscale image
with a size of 28×28 pixels. This dataset contains 60000 images for training and
10000 images for testing.

Figure 4 shows the top-1 accuracy versus MAC count curve for the three
gating scenarios: layer gating, channel gating, and joint channel and layer gating
(DLCG). As can be seen, our DLCG model outperforms the channel gating
model and also the ConvNet-AIG [18] model (layer gating) in high accuracy
ranges. DLCG outperforms ConvNet-AIG [18] at all trade-off points and shows
that the addition of a more fine-grained gating mechanism could be beneficial
for conditional computation neural networks.

5 Conclusions and Future Work

In this paper, we studied conditional computation models for vision applica-
tions. An important limitation in conventional neural network architectures is
their fixed static graph. The deep learning models we train for various tasks are
largely task- and context-agnostic. This implies that regardless of the input, all
elements of the network are executed. This shortcoming may render such mod-
els inefficient in many real-world applications such as running models on mobile
devices. Therefore, we focused on the design of a convolutional neural network
that can dynamically utilize its units conditioned on the input image. In partic-
ular, we presented a joint layer and channel gating architecture, that can decide
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to activate or deactivate channels in a convolutional layer or a whole residual
block based on their relevance to the specific input.

Our empirical evaluations show that channel gating alone can outperform
layer gating methods such as ConvNet-AIG [18] by a large margin on the MNIST
and CIFAR10 datasets. This increase in performance could be attributed to the
fine-grained nature of our architecture design. Rather than saying a whole resid-
ual block with all its computation units are irrelevant for the input, we decide the
computation saving at the fine-grained channel level. Our joint layer and channel
gating show some improvement over channel gating alone, but not significantly
as most of the computational saving comes from the channel gating operations.
Overall, our proposed gating architecture provides improved efficiency and clas-
sification accuracy.

We speculate that the reason why channel gating alone may perform as good
as joint channel and layer gating could be as follows. The gating module gener-
ally produces very sparse channel gating solutions in each ResNet block which
would lead to significant saving in computation. However, the small number of
filters which are remaining active are necessary to achieve a high performance.
Therefore, the model generally prefers to choose some filters from each layer
(albeit small in number) rather that skipping the entire block.

A highly desirable aspect of our proposed gating approach is that we can
take a large capacity neural network such as ResNet20 and sparsify it to the size
of a smaller network such as ResNet14, while achieving a much higher accuracy
than this small non-gated model (ResNet14).

There are many future research directions. One would be to use the batch-
shaping loss proposed in [2] for our model. We think our joint channel and layer
gating architecture could potentially benefit from this loss. It would additionally
be useful to evaluate the performance of our method on the larger scale ImageNet
dataset.

Another direction would be to integrate early exiting methods to our model
to not only save computation by gating individual filters and layers but also exit
the whole model at an early stage in case the model is already certain about
the decision regarding an easy example. This way, the model can choose to skip
huge amount of computation for easier examples.
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Abstract. The automatic transcription of historical printings with
OCR has made great progress in recent years. However, the correct seg-
mentation of demanding page layouts is still challenging, in particular,
the separation of text and non-text (e.g. pictures, but also decorated ini-
tials). Fully convolutional neural nets (FCNs) with an encoder-decoder
structure are currently the method of choice, if suitable training material
is available. Since the variation of non-text elements is huge, the good
results of FCNs, if training and test material are similar, do not easily
transfer to different layouts. We propose an approach based on dividing
a page into many contours (i.e. connected components) and classifying
each contour with a standard Convolutional neural net (CNN) as being
text or non-text. The main idea is that the CNN learns to recognize
text contours, i.e. letters, and classifies everything else as non-text, thus
generalizing better on the many forms of non-text. Evaluations of the
contour-based segmentation in comparison to classical FCNs with vary-
ing amount of training material and with similar and dissimilar test data
show its effectiveness.

Keywords: Page segmentation · Connected components · State of the
art.

1 Introduction

Digitization of historical documents allows for an easy access of invaluable works
of our past. This would allow access without strict conditions and the require-
ment to physically visit a library or museum for research. Digitization of a large
quantity of historical printings can also severely influence the quality and the
speed of new findings in terms of research questions, when not only a limited
amount of resources, but a vast amount of resources is available in computer
readable formats. The digitization of entire library stocks requires the support
of intelligent and high quality automation in order to finish the tasks in a rea-
sonable amount of time.

The digitization process of historical books usually consists of a multitude
of different steps, each coming with their own challenges for automatic systems.
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While the scanning process still requires manual intervention, the detection of
the layout and the recognition of the textual characters can be greatly supported
with modern day automation.

A typical OCR-Workflow (Reul et al., 2019) with a scan as input and plain
text as output consists of the following four steps: pre-processing, segmentation,
text recognition (core OCR) and post-processing. Pre-processing converts the
image in a standard binary (or sometimes grayscale) format and deals with arte-
facts of the scan-process, e.g. dewarping to rectify a distorted scan, denoising
or despeckling to clean up the scan and cropping the printing area to remove
unwanted scan periphery. Segmentation separates text regions from non-text
regions (e.g. images) and often provides finer grained classes for text regions like
running text, marginalia, headings etc. broken down in text lines with a read-
ing order. The core OCR step gets a text line as input and a transcription as
output. Due to many factors the OCR for historical printings is not perfect. Con-
sequently, a post-correction step using e.g. statistical information and linguistic
background knowledge is often added for correction of transcription errors.

At the time of writing no pipeline exists that is able to fully automatically
produce a quality which suffices and does not need manual post-correction of
any sort. One of the key-findings of the project OCR-D1 was, that an auto-
matic segmentation based on a pre-processed scan is still the worst component
in the OCR-workflow. Recent advances in layout recognition mainly focused on
pixel-based methods, centred around fully convolutional neural networks that
are arranged in an encoder-decoder architecture.

In this work we present an alternative way to achieve state of the art results
of historical layout analysis using connected components (from now on referred
to as contours) as input to our neural network. The idea is that the contours
of individual characters are very similar throughout pages of documents of the
same origin, while the contours that appear in images show more variety and can
not be compressed as efficiently by an encoder-decoder architecture. A classifier
can be tuned on the features of the contours that appear many times on the
pages and the resulting features can be used to decide whether the contour is
part of a text region or an image region. Our intuition behind this approach is
that while a sliding window (as is the case in a regular CNN) may be able to
extract features from every part of the image, it is unlikely to focus on contours,
thus missing the notion of “letters” and therefore has to approximate it or use
other features of text.

This work is structured as follows: In Sect. 2 we present previous work and
their results on the task of historical page segmentation, followed by the presen-
tation of the data sets we utilized in this work in Sect. 3. Our main contribution,
the neural network based on contours is presented in Sect. 4 and the experi-
ments we conducted are explained in Sect. 5. The discussion of our results in
comparison to a pixel classifier is given in Sect. 6 and the paper is concluded in
Sect. 7.

1 https://ocr-d.de/.

https://ocr-d.de/
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2 Related Work

Fig. 1. In the left image each of the areas enclosed by red borders is a superpixel
generated by the SLIC algorithm (compactness = 1, segments count = 3000). In the
right image every contour (i.e. region with connected pixels) is treated as a separate
region. Some contours are highlighted with a different color for illustration (Color figure
online).

This section gives an overview over the existing supervised techniques for the
layout analysis. In general, the approaches can be classified into three distinct
groups:

– superpixel-approach grouping similar pixels to so-called superpixels
– pixel-classifier trained with different classes like text and image
– base-line detection of virtual lines beneath letters in a text row

The superpixel approach is pursued in the works of Chen et al. (2016a) and
(2016b). The first step in this approach is to separate the page into super pixels
using the Simple Linear Iterative Clustering (SLIC)-algorithm (Noh and Wood-
ward, 1976). SLIC groups pixels with similar visual properties into a single so-
called super pixel. Each super pixel is subsequently classified with a convolu-
tional neural network into different regions. The authors report pixel accuracies
of up to 96% on historical documents. This approach shares similarities with the
method presented in this paper. The first similarity being that the classification
is done on a local snippet of the image without any further information about the
context, but their approach relies heavily on the quality of the resulting super
pixels, since errors that occur during preprocessing usually can not be recov-
ered. Figure 1 shows the difference of the input segmented using SLIC and the
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input segmented into contours. We reimplemented the approach of the authors
as best as possible but could not achieve results anywhere near state-of-the-art.
Our work is therefore based on connected components and is inspired by the
success of Bukhari et al. (2010) who used a Multi-layer-Perceptron and reached
evaluation accuracies of over 95%.

A pixel-classifier predicts a single mask for an entire page in a single pre-
diction pass with the neural network. This approach was first applied for page
segmentation by Long et al. (2015) and further extended by Wick and Puppe
(2018) for historical documents. The idea is that making use of a fully convolu-
tional encoder-decoder structure also allows the algorithm to focus on a further
neighborhood of a single pixel (as opposed to the approach using superpixels).

An application of the base-line approach for historical documents was pre-
sented in the work of Grüning et al. (2019). Their network structure, called the
ARU network, can be seen as a combination of two individual networks that are
trained in an end-to-end setting. The first network is a variation of the classical
U-net (Ronneberger et al., 2015) with the convolutional layers being replaced by
residual blocks to obtain more stability during training. The second part of the
network called A-net produces an attention feature map which is later combined
with the results of the first subnetwork. The result of that network undergoes
some post processing steps, yet again involving super pixels before the final pre-
diction occurs. Because only baselines are extracted, the output must be adapted
in further steps to the segmentation output of the other algorithms.

3 Data

During this work, we used two different data sets for our experiments. The
first one is used as a test set exclusively for evaluation and originates from the
project OCR-D and is a collection of many different printings between the 16th
and 19th century. The individual 170 pages in that data set have been selected to
represent a large variety of different layouts. Instead of using the original data
set, we removed the periphery of the pages (that is, we removed any borders
and clipped the page content to its actual content) imitating the effect of the
preprocessing step in the OCR-Workflow (see above)2.

The second data set referred to as Layout ground truth (LGT) is used for
training and is a compilation of several different early prints from the 14th up to
the 16th century. In total, LGT comprises 4933 pages with 1515 pages containing
at least one image.

Finding a suitable data set is not easy. We experimented for about a year
with data sets derived from the DTA (Deutsches Text Archiv). In their data sets,
the regions are labeled using bounding boxes which we found to be insufficient in
many cases and yielding too bad results when we used it to train our algorithms.

2 https://gitlab2.informatik.uni-wuerzburg.de/ocr4all-page-segmentation/evaluation-
datasets.

https://gitlab2.informatik.uni-wuerzburg.de/ocr4all-page-segmentation/evaluation-datasets
https://gitlab2.informatik.uni-wuerzburg.de/ocr4all-page-segmentation/evaluation-datasets
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4 Contour-Based Page Segmentation

This section describes our approach to segment between textual regions and
image regions based on individual contours. The first step is to determine all
connected components using the Block-Based Connected Components algorithm
Chang et al. (2015) provided by OpenCV. For each connected component, an
axis-aligned bounding box is extracted and reshaped, so that a single network
can be used to deal with inputs of different sizes. This reshaping distinguishes
two cases: The first case arises when the resulting bounding box is smaller than
the required input of the network. We applied a downscaling approach using
a linear intrapolation while retaining the aspect ratio of the original bound-
ing box. Any resulting border areas are treated as background pixels. The sec-
ond case deals with connected components that are smaller than the required
network input. These components are enlarged using linear extrapolation and
subsequently binarized by applying a thresholding function. The resulting pixel
values are normalized to reside in the interval [0, 1].

4.1 CNN-Architecture

The resulting image snippet is then fed into a CNN (depicted in Fig. 2). The net-
work consists of three convolution-pooling blocks applied in a linear fashion and
a feature reduction using two fully-connected layers and a subsequent softmax
classification. During training, the parameters are tuned using the cross-entropy
loss function.

Since not every part of the image is part of a connected component, we
complement the CNN-architecture with a customized post-processing routine,
which is described in the next section.

Fig. 2. The neural network architecture for the contour based approach to distinguish
between text regions and non-text (e.g. image) regions. The architecture is a classical
convolution and pooling network, which subsequently is reduced to just two values for
the prediction of the final class.
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4.2 Post-processing

We developed a sophisticated model to post-process the results of our contour
based network in order to overcome its main weakness classifying each contour
independently without using information from neighboring contours. For exam-
ple, pixels of a letter might be faded thus splitting a letter in parts, so that
the remaining contours don’t resemble a letter anymore. In addition, historical
printings contain a lot of noise, which might resemble e.g. a dot in the text.
These problems are enlarged by the fact that all contours are scaled up or down
to the same size as input to the CNN.

The main idea of the post-processing is therefore to improve the initial pre-
dictions using context information by a rule-based algorithm. For very small
contours, this is simply an adaption to their neighbor contours. “Normal” con-
tours are grouped to regions with different techniques (see below) and all con-
tours within a region take over the majority class of the contours of that region
(with the nice side effect, that letters within an image might change their class
from letter to image). A special case are decorated initials, which are wide-
spread in historical printings. They resemble a letter, but should be treated as
an image. They are recognized by their bigger size relative to a text line. The
post-processing produces a final mask that is returned as the page segmenta-
tion. In the following, the eight steps of the post-processing are described in
more detail, an exemplary output is shown in Fig. 3:

1. Adaptation of small contours: This first post-processing step reclassifies small
contours. A small contour is a contour with a diagonal that is shorter than 5 times
the median height of all text boxes (denoted as h̄, as determined by the classifier).
The bounding box is extended by h̄ in all directions and the neighboring boxes
are taken into account. If 85% of all foreground pixels in the extended box show
a different class, then the class is changed.

2. Recognition of text lines We utilize a recursive version of k-means. We start
with all text blocks and cluster them into two clusters. If the y-coordinates of
the resulting cluster centers differ by at least 0.6 · h̄, then k-means is applied
recursively on both clusters, else the clusters are assumed to only contain text
blocks of the same line.

3. Column detection After text lines have been found, they are split into columns.
For this, the text block in the previously detected lines are sorted using their
x-coordinates and a split is introduced if the distance between two sorted neigh-
boring text blocks is larger than 2 · h̄.

4. Separation of decorated initials Since in our data, decorated initials are
labelled as images, this step has the goal to split initials from the remaining
text blocks. A text block is identified as a decorated initial if the height of the
first text box is larger than 1.8 times the maximum height of all other boxes of
the same line.
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5. Reconstruction of text areas For each text line, we create a bounding box
that contains all text blocks of that line. The algorithm to detect text areas
starts with a line and creates a list of candidate lines that might be merged with
the current line. A candidate line may not differ by more than 1.5 · h̄ at the
left and right x-coordinates. The final grouping is decided by the differences in
y-direction of the line centres. Neighboring candidate lines are merged until a
candidate is found with a distance of more than 2.5 · h̄ to the nearest candidate
(using the centres of the lines respectively). Each resulting cluster can then be
treated as a text area with all ungrouped lines being their own area.

6. Classification of the resulting text blocks This step creates a polygon around
each previously detected text area. If at least 50% of the foreground of that
polygon consists of text blocks, then all containing elements are treated as text,
otherwise they are treated as an image region. This step gets rid of some elements
that are misclassified, e.g. a small region that was previously labelled as an image
that is actually found inside a text area.

7. Classification of the image regions This step has the purpose to predict rect-
angular shapes for every image region. In this algorithm, we apply an iterative
optimization routine based on simulated annealing. At first, initial predictions of
rectangles are produced using selective search (Uijlings et al., 2013). The second
step filters these rectangles so that only rectangles remain which contain at least
one image pixel and show no overlap to text regions of more than 5% and are
not completely contained by a larger rectangle. The remaining rectangles are
then independently readjusted to their individual local neighborhood by either
randomly shrinking or extending them in a random direction. Each rectangle
after that morphological transformation is scored using a fitness function:

ΔF = (Δpi − 10 · Δpt − 0.05 · Δpb) · 500

with Δpi being the difference in image pixels, Δpb the difference in background
pixels and Δpt the difference in textual pixels when compared to the initial
rectangle.

If the fitness function is either positive or the evaluation of the inequality
exp ΔF

T > ρ holds (with ρ being a random number in [0, 1[ and T starting at
10.000 the candidate rectangle is replaced by the candidate rectangle in the next
iteration.

8. Final classification This final step takes the resulting mask and readjusts the
class labels by majority voting of the classified foreground pixels of each contour.
On a tie, we label the contour as an image.

5 Experiments

In this work, the primary goal is to show that using the contours of a page and
the application of a CNN results in state of the art segmentation results, when
only classifying in two categories of regions (text and non-text regions). For this,
we conducted two different experiments.
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Fig. 3. The left image shows the prediction of the contour classifier. The image in the
middle depicts the text and image regions detected by the post-processing algorithm.
The rightmost image shows the corrected prediction when using the results of the post-
processing. Contours / regions belonging to the text class are colored in green while
non-text elements are illustrated in blue (Color figure online).

5.1 In-Domain Experiment

In the in-domain experiment we train our contour based classifier, as well as our
baseline (see Sect. 5.3) on the LGT data in a fivefold setting. For this experiment,
foreground pixels labelled as background in the ground truth are counted as non-
text pixels.

5.2 Cross-Domain Experiment

In the cross-domain experiment the pixel classifier and the contour based app-
roach are compared on the OCR-D test set with its 170 scans, which is completely
different from the LGT training set. This setting is more realistic for the ulti-
mate goal of a fully automatic OCR-Pipeline. We vary the amount of training
data using the full LGT data set and a balanced subset using only those pages
containing at least one image.

Foreground pixels, which are not labelled as text or non-text in the ground-
truth pose an issue for the evaluation. Such pixels could either be remnants of the
page’s periphery, degradation or dirt on the original document or noise induced
by the binarization method. Therefore we conduct the evaluation using two
different methods: in the first method (with background) we count foreground-
pixels not labelled as text or non-text as non-text pixels, therefore including all
elements on the page. For the second method (without background) we ignore all
foreground-pixels, which aren’t labelled as text or non-text in the ground truth,
as well as all “random” pixels belonging to a contour with 8 pixels or less.

As the main metrics for the evaluation we used the foreground pixel accuracy
(FgPA) (Wick and Puppe, 2018) and the F1 scores on the text and non-text class,
respectively. Additionally, we report the precision and recall scores for each class.
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Only pixels in the foreground are considered for the calculation of all the metrics.
For all of these measures, we count each foreground-pixel individually as either
correctly or incorrectly classified based on the prediction and the label of the
pixel in the ground truth.

5.3 Experimental Settings

The exact parameters for replication of our experiments are given in this section.
Our code for both, the pixel classifier3 and the contour based approach4 are made
available.

Hyperparameter Pixel classifier: The pixel classifier uses a total of 7 convolu-
tional layers in the encoder, each layer uses a kernel size of [5, 5] and a stride of
[2, 2]. The amount of the encoder filters grows: 20, 30, 40, 40, 60, 60. After every
second convolutional layer, we apply a single max-pooling layer. The decoder is
composed of five deconvolutional layer with 80, 60, 40, 30 and 20 filters respec-
tively. Each deconvolutional layer gets access to a former convolutional layer of
the encoder using skip connections. All activation functions used are rectifier
linear units. The pixel classifier is trained using Adam with a batchsize of 1 and
a learning rate of 10−4 and a cross-entropy loss. Training is carried out for 100
epochs and stopped if no improvements on validation data could be achieved
for 30 epochs. The pixel classifier uses a post-processing step by a majority vote
on the pixels of each contour labeling all pixels of the contour either as text or
non-text.

Contour Classifier: The contour based classifier had three convolutional layers
with 50, 100 and 200 filters respectively, each having the size of [5, 5]. We trained
using a batchsize of 64 using Adam and a learning rate of 10−4.

6 Discussion

Table 1. Results of the in-domain experiment of the contour and pixel classifier with
training on the full LGT data set and evaluation of one split in a five fold scenario. We
report the averaged results of pixel-wise Precision, Recall and F1 in percent.

Approach FgPA Ptext Rtext F1text Pimg Rimg F1img

Pixel-classifier 99.5 99.5 99.9 99.7 99.3 97.9 98.6

Contour-Classifier (with post-proc.) 98.8 99.3 98.7 99.3 94.2 99.1 96.6

3 https://gitlab2.informatik.uni-wuerzburg.de/ls6/ocr4all-pixel-classifier.
4 https://gitlab2.informatik.uni-wuerzburg.de/s331055/contour-classifier-clean.

https://gitlab2.informatik.uni-wuerzburg.de/ls6/ocr4all-pixel-classifier
https://gitlab2.informatik.uni-wuerzburg.de/s331055/contour-classifier-clean
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Table 2. Results of cross-domain experiment of the contour- and pixel-classifier with
training on the full or reduced (balanced) LGT dataset and evaluation on the OCR-D
dataset with or without small background contours removed. All results are the average
of a ten fold. We report the results of pixel-wise Precision, Recall and F1 in percent as
well as the standard deviation for the ten models.

Contour-based segmentation Pixel-classifier

Training dataset

(LGT):

Full Balanced Full Balanced

Post-processing Yes No Yes No No No

Eval with or

without

background

W/o With W/o With W/o With W/o With W/o With W/o With

FgPA 98.9 97.6 97.0 96.8 98.9 97.6 97.1 97.0 99.1 98.6 98.3 97.7

Standard

Deviation

0.06 0.20 0.29 0.30 0.09 0.11 0.30 0.30 0.14 0.15 0.27 0.27

Text F1 99.4 98.7 98.4 98.2 99.4 98.7 98.5 98.3 99.5 99.3 99.1 98.8

Standard

Deviation

0.03 0.11 0.16 0.17 0.05 0.06 0.17 0.17 0.07 0.08 0.15 0.15

Text Precision 99.7 99.5 99.4 99.2 99.7 99.5 99.3 99.2 99.6 99.4 99.8 99.6

Standard

Deviation

0.06 0.05 0.09 0.14 0.08 0.05 0.16 0.16 0.06 0.07 0.04 0.07

Text Recall 99.1 97.9 97.3 97.2 99.2 97.9 97.6 97.5 99.4 99.1 98.4 97.9

Standard

Deviation

0.09 0.22 0.37 0.38 0.15 0.14 0.45 0.46 0.11 0.15 0.32 0.36

Non-Text F1 92.6 86.7 80.6 82.3 92.6 86.6 81.4 83.1 93.4 91.7 88.9 87.4

Standard

Deviation

0.36 0.98 1.38 1.30 0.54 0.54 1.39 1.22 0.94 0.88 1.59 1.27

Non-Text

Precision

89.4 80.2 71.8 74.8 89.7 79.9 73.6 76.6 92.0 90.3 81.5 80.5

Standard

Deviation

0.92 1.67 2.55 2.36 1.69 1.05 3.37 3.10 1.38 1.51 2.91 2.61

Non-Text Recall 96.0 94.4 92.0 91.7 95.6 94.6 91.2 91.1 94.9 93.3 97.7 95.5

Standard

Deviation

0.75 0.57 1.20 1.53 1.07 0.59 2.21 1.88 0.82 0.75 0.57 0.74

Table 3. Evaluation of the fraction of the exact errors that occurred on both
approaches in relation to the total errors of the approach. The results are reported
in percent. Both approaches only have about 1/3 of their errors in common.

Training LGT-Data Balanced Full

Eval with or w/o background With W/o With W/o

Contour classifier 28.4% 30.4% 24.9% 32.3%

Pixel classifier 30.1% 19.0% 42.8% 37.6%

The results of the in-domain experiment with a fivefold cross-validation within
the LGT full data are listed in Table 1. It shows very good results for the Pixel-
Classifier with an overall foreground pixel accuracy (FgPA) of 99.5%, with an
F1-Score for text-pixels of 99.7% and for non-text pixels of 98.6%. The contour
classifier shows also good results for FgPA and F1-score for text around 99%,
but the F1-score for non-text contours drops to 96.6%. However, this scenario
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Fig. 4. Comparison of demanding images from the OCR-D evaluation dataset classified
with both approaches illustrating their different kinds of errors. The upper row shows
the predictions of the contour-classifier with post-processing, whereas the lower row
shows the predictions of the pixel-classifier. Contours colored in green or blue have been
classified as text or as non-text respectively. Typical errors of the contour-classifier are
decorated letters in headlines, because they are much less frequent than normal letters
and have a much higher variation, so there were too few examples available for them
in the training material. The pixel-classifier does not show such clear error patterns
(Color figure online).

may be seen as an upper bound, what results can be achieved, since usually the
algorithms classify pages different from the training set which is evaluated by
the cross-domain experiment.

The results of the cross-domain experiment with the OCR-D data set are
shown in Table 2. It contains two training sets, the full LGT data set with 4933
pages and a reduced, “balanced” version, where only the 1515 pages with at
least one image are used. The contour classifier has nearly the same evaluation
results on both data sets, because it uses an internal parameter balancing the
number of text and non-text contours in a relation of 5 : 1, so that it does not
use the additional text pages in the full LGT data set. Post-processing improves
the result of the contour classifier. The pixel classifier does not profit from this
post-processing, therefore we omitted the results (however it post-processes its
raw classification results by a majority vote over pixels within a contour, see
above). Removing background pixel as well as small contours with less than 8
pixel, improves the results of both classifiers. The main results are printed in bold
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in table 2: The contour classifier is slightly better when trained on the smaller
balanced LGT data set and the pixel classifier achieves better scores when trained
on the full LGT data set with a small lead of less than 1% in FgPA, Text F1 and
Non-Text F1, respectively, which is however not significant taking the standard
deviations into account, in particular the relatively high standard deviations
for Non-Text F1, precision and recall. We conducted a further experiment to
investigate, whether both approaches misclassify the same contours. The results
are shown in table 3 and example pages are shown in Fig. 4. It turns out that
both approaches misclassify different pixels: when training with the full LGT
data set and evaluating without background pixels (with post-processing) only
about 32%–37% of all misclassified pixel were the same in both approaches.
In the setting using the balanced LGT data set for training, this proportion
drops to only 19% to 30% of identical pixel errors in relation to all pixel errors.
Including the background pixels, the percentages of identical pixel errors are
slightly higher, but similar. We conclude, that both approaches achieve similar
results for segmenting text and non-text in historical printings, but produce
different errors. This heterogeneity can be utilized by a combination of both
approaches.

7 Outlook

In this work, we showed that an approach that uses connected components as
its input yields comparable results to a state of the art pixel classifier on a
completely different data set it was trained on. We expect to improve upon our
results with the contour based approach if we experiment with Conditional Ran-
dom Fields (Lafferty et al., 2001) and modern Graph Neural Networks (Scarselli
et al., 2008) to integrate the context of neighboring contours and page lay-
out information directly. Improvements should not be restricted to the contour
based approach. We showed that a pixel classifier is less robust to a change of the
domain. For this purpose future experiments with modern attention mechanism
could further improve upon the pixel classifier. Combining both approaches by
e.g. confidence voting or using the approach of base line detection for text lines
as additional information source is a further promising approach, since about
2/3 of their pixel errors are different.
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Abstract. Algorithm selection (AS) is defined as the task of automati-
cally selecting the most suitable algorithm from a set of candidate algo-
rithms for a specific instance of an algorithmic problem class. While
suitability may refer to different criteria, runtime is of specific practical
relevance. Leveraging empirical runtime information as training data,
the AS problem is commonly tackled by fitting a regression function,
which can then be used to estimate the candidate algorithms’ runtimes
for new problem instances. In this paper, we develop a new approach to
algorithm selection that combines regression with ranking, also known as
learning to rank, a problem that has recently been studied in the realm
of preference learning. Since only the ranking of the algorithms is even-
tually needed for the purpose of selection, the precise numerical estima-
tion of runtimes appears to be a dispensable and unnecessarily difficult
problem. However, discarding the numerical runtime information com-
pletely seems to be a bad idea, as we hide potentially useful information
about the algorithms’ performance margins from the learner. Extensive
experimental studies confirm the potential of our hybrid approach, show-
ing that it often performs better than pure regression and pure ranking
methods.

Keywords: Algorithm selection · Hybrid loss optimization ·
Combined ranking and regression

1 Introduction

Algorithm selection (AS) refers to the task of automatically selecting an algo-
rithm from a set of candidate algorithms, which appears to be most suitable for
a given instance of a problem class. A typical application of AS is the selection
of solvers for computationally hard problems on a per-instance basis. Prominent
examples of such problems include the Boolean satisfiability problem (SAT) [24]
and the travelling salesman problem (TSP) [15]. Depending on the specific prob-
lem class, different criteria can be considered for assessing candidate algorithms.
Especially important in this regard is an algorithm’s efficiency measured in terms
of its runtime.
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On the basis of empirical runtime information, i.e., observations of runtimes
on training instances, the AS problem is typically tackled by fitting regression
functions, one per algorithm, to predict the runtime on new query instances
[5,24]. Collecting the predictions for all algorithms, the presumably fastest one
is then selected. Regression-based approaches proved to perform well in practice,
often improving over the algorithm that performs best on average, also known
as the single best solver (SBS), by orders of magnitude [24].

In spite of this practical success, one may wonder whether AS should indeed
be tackled as a regression problem. First, since selection is eventually based on
the comparison of the predicted runtimes, regression appears to be an unnec-
essarily difficult problem. Indeed, prediction errors could be tolerated as long
as they do not change the ranking of the algorithms, or even less, the presum-
ably best algorithm. From this point of view, one may also question symmetric
loss functions like the squared error loss, as commonly used in regression. For
example, if algorithms A and B have runtimes of, respectively, 10 and 13 min,
the estimates 12 and 11 min are clearly better than 5 and 9 min in terms of
the squared error. However, whereas the former switch the order of the two
algorithms, the latter will still promote the faster algorithm, namely A.

These considerations may suggest to tackle AS as a ranking instead of a
regression problem, and indeed, ranking methods from the field of preference
learning have been used for constructing algorithm selectors [6,8,18,21,22]. Such
models are learned from data comprised of problem instances together with
respective rankings of the candidate algorithms. Data of that kind can often be
collected more easily than precise numerical runtimes, which is another advan-
tage of ranking methods. For example, if algorithm A finished before a given
timeout is reached, while algorithm B did not, the preference A � B can still be
derived as training information, even if the concrete runtime of B is not known.

However, the ranking-based approach could be criticized as well, namely
for ignoring potentially useful training information about the actual runtimes,
if available, and the performance margins between algorithms. For example, a
runtime of 2 min for algorithm A and 2.1 min for B leads to the same ranking
A � B as a runtime of 2 min for A and 200 min for B.

In this paper, we propose a hybrid approach to algorithm selection that
combines both approaches, ranking and regression, hoping to benefit from the
best of the two worlds: simplifying the learning task and solving the right prob-
lem while providing sufficiently detailed information such that concrete runtime
information and margins between candidate algorithms are taken into account.
To this end, we make use of hybrid loss functions [20]. Following a more formal
description of the AS setting in the next section, our approach will be detailed
in Sects. 3 and 4.

Our experimental evaluation in Sect. 5 confirms the potential of the proposed
hybrid approach, which proves beneficial for several of the investigated scenarios.
More specifically, optimizing our hybrid regression and ranking loss improves
over optimizing the pure regression respectively ranking loss in terms of various
metrics, eventually yielding a better performing algorithm selector.
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2 Algorithm Selection

In the (per-instance) algorithm selection problem, first introduced by Rice [17],
one is concerned with automatically selecting the most suitable algorithm from
a set of candidate algorithms A = {A1, . . . , AK} for a specific instance I ∈ I of
an algorithmic problem class such as the Boolean satisfiability problem (SAT).
Formally, the goal is to find a mapping s : I → A, also referred to as algorithm
selector, from a problem instance space I to the set of candidate algorithms A,
which optimizes a costly-to-evaluate performance measure m : I × A → R of
interest. The arguably most relevant example of such a measure, which is also
considered in this paper, is runtime. The optimal algorithm selector (the oracle)
is defined as

s∗(I) ..= arg min
A∈A

E [m(I,A)] , (1)

for I ∈ I, where the expectation accounts for the potential randomness of the
algorithm (and any other random effects causing the performance of A on I to
be non-deterministic).

2.1 Existing Approaches

To evaluate the performance measure m, an algorithm normally needs to be run
on a given problem instance. This makes an exhaustive search over the algorithm
space A computationally intractable or at least extremely costly. To circumvent
this problem, a surrogate model m̂ : I ×A → R can be used to estimate the per-
formance. Such models, which should be cheap to evaluate, are trained on data
collected from previous algorithm runs. A feature extraction function f : I → R

d

is used to compute d-dimensional feature representations of problem instances,
which then allow for modeling the algorithm performance as functions of instance
features. To keep the notation simple, we will not distinguish between I and f(I)
in the remainder of this paper; instead, we denote both a problem instance and
its feature representation by I. Using such a model, the canonical algorithm
selector will suggest the algorithm A with the lowest predicted runtime on the
instance I:

ŝ(I) ..= arg min
A∈A

m̂(I,A) (2)

A natural choice for m̂ is an algorithm-specific regression model m̂k : I → R,
directly estimating the runtime achieved by an algorithm Ak ∈ A on a problem
instance of interest I ∈ I [7].

Early work on such surrogates can be found in [12], where the authors tackle
the winner determination problem for the CPLEX solver. They demonstrate
that, under certain conditions, the hardness of an instance represented by fea-
tures, i.e., the expected performance of an algorithm on that instance, can be
learned using machine learning approaches. Both linear and nonlinear models
(multivariate adaptive regression splines [5]) were successfully applied for mod-
eling the hardness of an instance (with respect to the root mean squared error).
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In one of the earlier versions of the well-known algorithm selection approach
Satzilla [24], the authors leverage such empirical hardness models on a per-
algorithm basis. To this end, they learn one linear model per algorithm using
ridge regression, which estimates its performance for unseen instances based on
associated features.

Similarly, restart strategies are selected based on conditional runtime pre-
diction models in [6]. These models are inferred through ridge linear regression
conditioned on the satisfiability of an instance. Instead of directly selecting an
algorithm based on the predicted runtime, the authors of [4] use regression tech-
niques in a more indirect way: The runtimes predicted by random forests are
used to map instances into another feature space, in which k-nearest neighbor
methods are then applied to make the final selection.

As already explained in the introduction, an accurate prediction of runtimes
is a sufficient but not necessary condition for selecting the best performing algo-
rithm. Actually, such a selection rather corresponds to a classification instead of
a regression problem, with the algorithms playing the role of the classes. Training
a classifier, however, has a number of disadvantages. For example, by looking at
the best algorithm only, large parts of the training data would be ignored. Like-
wise, recommendations are not very informative in this setting, as they do not
differentiate between the (presumably) non-optimal algorithms. Alternatively,
the AS problem could also be tackled as a ranking task, which can be seen as a
compromise between classification and regression.

Ranking methods have been developed in the field of preference learning.
Specifically relevant in the context of AS is so-called label ranking (LR) [23].
Here, instances are associated with rankings over a set of choice alternatives, in
our case algorithms. Thus, training data is of the form

(I,A1 � · · · � Az) ∈ R
d × R(A) , (3)

where R(A) is the set of all total orders on A, and Ai � Aj suggests that algo-
rithm Ai performs better than algorithm Aj . What is then sought is a model
h : R

d → R(A), which, given an instance I ∈ I (resp. its feature representation
f(I)), predicts a ranking over the set of candidate algorithms A. A recommen-
dation can then be derived from that ranking, for example in the form of the
top-1 or more generally top-k candidates. An example of label ranking applied
to AS can be found in [6], where the authors infer rankings of collaborative
filtering algorithms for instances of recommendation problems. Similarly, the
authors of [8] use neural network based LR techniques to select meta-heuristics
for travelling salesman problem instances.

In [22], dyadic approaches to ranking and regression are presented, which do
not only leverage instance but also algorithm features, allowing one to select from
an extremely large set of algorithms. A ranking method based on the Plackett-
Luce model is shown to perform very well in a setting with many algorithms
and very few training data, called extreme algorithm selection. Similarly, [14]
leverage a ranking approach motivated from a Bayesian perspective, where the
joint utility score of a pair of algorithms for an instance is defined in terms of
the difference of the individual utility scores.
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For a comprehensive and up-to-date survey of methods for algorithm selec-
tion, we refer to [10].

3 Hybrid Ranking and Regression Losses

There are several motivations for casting AS as a (label) ranking instead of a
regression problem. As already explained, ranking not only appears to be the
simpler task, but actually also the “right” problem. Indeed, the goal of AS is
better reflected by a (non-symmetric) ranking than by a (symmetric) regression
loss. Besides, precise numerical performance degrees are not always observable,
for example when an algorithm is timed out, leading to missing or censored data
in the case of regression, while preferences can still be derived. On the other hand,
if precise performances are available, then considering only the qualitative part of
the training information, namely the order relations, comes with a certain loss of
information. For example, information about the algorithms’ actual performance
degrees, and the differences between them, may provide useful information about
the reliability of a (pairwise) comparison.

These considerations suggest that both aspects should be taken into account
when training an algorithm selector: predicted runtimes should first of all match
the order of algorithms, and if possible, even be close to the actually observed
runtimes. This could be accomplished by training the predictor with a hybrid
loss function that combines both aspects into a single criterion.

Therefore, we propose the use of hybrid ranking and regression approaches
for the AS problem. To this end, we model the performance of each algorithm
in the candidate set Ak ∈ A in terms of a scoring function vk : I → R. As
will be seen, the scoring function is in direct correspondence to the performance
measure mk, though not necessarily the same. The overall scoring model v is
then given by v(I,Ak) ..= vk(I). Similar to the original combined regression
and ranking approach presented by Sculley [20], our hybrid loss functions are
based on a convex combination of a ranking term LRANK that imposes ordering
constraints between the individual predictions vk(I), k ∈ [K] ..= {1, . . . , K}, and
a regression term LREG that relates vk to the actual runtime m(I,Ak) achieved
by algorithm Ak on the respective instance I.

3.1 Training Data

As training data, we assume (possibly incomplete or partial) information about
the performance of algorithms on a set of training instances I1, . . . , IN ∈ I:

D ..=
{

(In,m′
1(In), . . . ,m′

K(In))
}N

n=1
, (4)

where m′
k(In) is information about the performance (runtime) of algorithm Ak

on the instance In. Usually, m′
k(In) is the runtime itself, however, the perfor-

mance is also allowed to be unknown (m′
k(In) = ⊥), for example because the
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algorithm has not been executed. Moreover, m′
k(In) might be censored infor-

mation about the true performance. A practically motivated example of such
information is a timeout (m′

k(In) = TO): algorithm Ak has been run on In, but
not till the end, because it did not terminate within a given time frame.

From the information about each of the N instances In, we construct a set of
training examples Rn for a regression learner and a set of training examples Pn

for a preference learner. For regression, if m′
k(In) �= ⊥, we include an example

(In, yk,n) which is normalized by the timeout Tmax, namely yk,n = 1 if m′
k(In) =

TO and yk,n = m′
k(In)/Tmax. In the case where m′

k(In) = ⊥, no information
about Ak is included in Rn.

The set Pn consists of pairwise preferences of the form Ai � Aj , suggesting
that algorithm Ai performed better on In than algorithm Aj . We include such a
preference, which we formally represent as (In, i, j), whenever one of the following
conditions holds:

– m′
i(In) �∈ {⊥, TO}, m′

j(In) �∈ {⊥, TO}, m′
i(In) < m′

j(In),
– m′

i(In) �∈ {⊥, TO}, m′
j(In) = TO.

3.2 Loss Functions

As already said, the overall loss of a model v on a dataset D is a convex combi-
nation of a ranking and a regression loss:

L(D, v) ..= λLRANK (D, v) + (1 − λ)LREG (D, v) , (5)

where the hyperparameter λ ∈ [0, 1] can be tuned to balance the two objectives.
Setting λ = 0 corresponds to a pure regression model, whereas λ = 1 results in
a pure ranking model.

In general, any ranking loss LRANK and any regression loss LREG can be used
to instantiate our generic framework. Here, we model the latter in terms of the
mean squared error (MSE)

LREG(Rn, v) ..=
1

|Rn|
∑

(In,yk,n)∈Rn

(

vk(In) − yk,n

)2
. (6)

The overall loss LREG(D, v) is then obtained by averaging (6) over all N training
instances.

For ranking, we consider the squared hinge ranking loss given by

LRANK(Pn, v) ..=
(|Pn|

2

)−1
∑

(In,i,j)

�
(

ε − vi(In) + vj(In)
)

, (7)

where ε ∈ R
+ is a margin and �(x) = (max{0, x})2. This loss function is a smooth

convex approximation of the simple 0/1 loss and enforces a margin effect in the
sense that, to have a loss of 0, the two predictions must be correctly ordered and
have a distance of at least ε. Again, the loss on the entire data, LRANK(D, v) is



Hybrid Ranking and Regression for Algorithm Selection 65

obtained by averaging over all N training instances. For computational reasons,
since LRANK(Pn, v) contains a quadratic number of preferences, one may consider
approximating this loss by sampling a subset of these preferences.

As an alternative to the squared hinge ranking loss (7), we also consider the
following loss:

LRANK(Pn, v) ..=
(|Pn|

2

)−1
∑

(In,i,j)

�
(

vi(In), vj(In)
)

, (8)

with
�
(

x, y
)

= log
(

exp(−x) + exp(−y)
)

+ x . (9)

This loss corresponds to the negative log-likelihood of observing a pairwise pref-
erence under the Plackett-Luce (PL) model for ranking data [13,16], which is
commonly used in preference learning and label ranking [3].

4 Models and Optimization

For modeling the scoring functions vk : I → R, we consider three types of mod-
els, namely linear models, quadratic models, and feed-forward neural networks.
Linear models define the score of an algorithm Ak ∈ A for a specific problem
instance I ∈ I in terms of a linear combination of the instance features:

vk(I) = wT
k I , (10)

where wk ∈ R
d are the model parameters. To model quadratic relationships,

a polynomial feature transformation φ : Rd → R
d(d+1)/2 is applied that maps

the instance features to all monomials of degree 2. Consequently, the quadratic
models are described by weight vectors wk ∈ R

d(d+1)/2. We summarize all model
parameters in a single parameter set W = {wk |Ak ∈ A}. Since all loss terms
are convex, their convex combination (5) remains convex, and their minimization
can be accomplished using gradient-based optimization methods. We apply the
L-BFGS-B algorithm [2,25] for this task. To avoid overfitting, we employ weight
decay by adding a regularization term R(W ) = γ

∑K
k=1

∑d
j=1[wk]2j , which can

be adjusted by setting γ ∈ R to an appropriate value.
The neural network is given by a simple feed-forward architecture as illus-

trated in Fig. 1.
We adapt the training procedure from [19] for our setting of hybrid ranking

and regression. For adjusting the model’s weights W , backpropagation is applied.
The Adam optimizer [11] was selected as a gradient-based optimization method
for minimizing the loss function. Regularization is implemented in terms of early
stopping. Before the training procedure starts, a fraction of the original training
dataset is selected as a validation set and removed from the training data. During
the training, the model’s loss on this validation set is computed periodically. A
rising validation loss is an indicator of overfitting, thus the training procedure is
stopped if an increase in the validation loss is observed for several consecutive
checks. Afterwards, the model parameters are fixed to the set of weights that
achieved the best validation loss during training.
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Fig. 1. Architecture of the neural network. Problem instance feature descriptions are
fed into the input layer. The nodes of the fully connected hidden layer use a sigmoidal
activation function in order to learn non-linear relationships. The nodes in the output
layer use the identity as an activation function. Here, [I]j denotes the j-th entry of the
instance feature vector.

5 Evaluation

In order to evaluate the performance of the proposed hybrid ranking and regres-
sion approach to the algorithm selection problem, we make use of the ASlib
benchmark [1]. This benchmark contains several AS scenarios, which are collec-
tions of performance data of algorithms achieved on several problem instances.
As we consider runtime as a selection criterion in the scope of this paper, we
evaluated our approach using scenarios from the algorithmic problem domains
of Boolean satisfiability (SAT), mixed integer programming (MIP), constraint
satisfaction (CSP), and container pre-marshalling (CPMP).

5.1 Performance Metrics

For assessing the performance achieved by the proposed approaches, we con-
sider both ranking measures as well as specific algorithm selection measures.
Ranking measures quantify how well the ranking over algorithms according to
their predicted performance corresponds to the ranking implied by their true
performance. We represent a ranking of the algorithms {A1, . . . , AK} in terms
of a mapping π : [K] → [K], such that π(k) is the position of the algorithm Ak

in the ranking — allowing for ties,1 we may have π(i) = π(j) for i �= j. One
prominent measure is the rank correlation coefficient Kendall’s tau [9]. Given a
ground truth ranking π and a predicted ranking π̂, Kendall’s τ is defined as

τ(π, π̂) =
C − D

√

(C + D + Tπ) · (C + D + Tπ̂)
, (11)

where C is the number of correctly ordered pairs ((π(i)−π(j))(π̂(i)− π̂(j)) > 0),
D is the number of incorrectly ordered pairs ((π(i) − π(j))(π̂(i) − π̂(j)) < 0),
1 Ties are mainly caused by timeouts in the “ground truth” data but rarely occur in

the predicted performances.
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and Tπ and Tπ̂ are the number of ties in ranking π and π̂, respectively. Kendall’s
τ takes values in [−1, 1], where τ(π, π̂) = 1 means that the rankings π̂ and π are
in perfect agreement and τ(π, π̂) = −1 the exact opposite (one of them is the
reversal of the other one).

A widespread performance measure in the field of AS with respect to runtime
is the penalized average runtime with a penalty factor of 10 (PAR10). Typically,
the algorithms for the problem domains considered in this paper are not run
for an indefinite amount of time until they eventually terminate, but are rather
aborted after a predefined timeout is exceeded. The PAR10 score simply aver-
ages the runtime achieved by the selected algorithms for all problem instances
of a scenario and accounts for timed out runs with 10 times the timeout as
their runtime. We ignore feature costs, i.e., the runtime of the feature extraction
function f , when computing PAR10 scores, as not all of the considered scenarios
provide this information.

5.2 Evaluation Setup

The experimental results were obtained by conducting a 10-fold cross validation.
In each fold, a fraction of 90% of a scenario’s problem instances and the corre-
sponding algorithm performances was used for training the algorithm selector,
and the remaining 10% were used as a test set. For each scenario, we used the full
set of features provided by ASLib [1]. Missing feature values were imputed with
the feature’s mean. Afterwards, feature values were standardized before training
the models. Algorithm runtimes are given in terms of the PAR10 format, i.e.,
timed out runs are accounted for with 10-times the timeout. As the set of pair-
wise preferences Pn grows quadratically in the number of candidate algorithms,
we approximate it by a sample P̂n containing at most 5 pairwise algorithm com-
parisons for each instance. Should this number of comparisons not be available,
we sample the maximum number of possible comparisons.

To evaluate the influence of the hyperparameter λ on the predictive perfor-
mance, we conducted the experiments for λ ∈ {0.0, 0.1, . . . , 1.0}. For training
the linear and quadratic models, we set the regularization parameter γ = 10−3

and ran the L-BFGS-B [2,25] algorithm for at most 100 iterations in order to
minimize the loss functions. For the neural network-based approaches, we used
the Adam [11] optimizer with a learning rate of η = 10−3 for minimizing the loss
functions and a batch size of 128. The architecture consists of a single hidden
layer with 32 nodes, each using the sigmoid activation function t �→ 1

1+e−t . For
early stopping, a fraction of 0.3 of the original training data is used as a vali-
dation set. We compute the loss on this validation set every 8 epochs and stop
the training procedure if it increases for 8 consecutive checks. After the training,
the model weights are set to the values for which the best validation loss was
observed. If early stopping does not apply, the training procedure is stopped
after a maximum number of 1,000 epochs. We evaluated the performance met-
rics for six independent runs on different random seeds and aggregated them by
averaging the results.
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The implementation of the proposed approaches including a documentation
is provided on GitHub.2

5.3 Results

In the following, we discuss the results obtained by the experimental evaluation
for all considered approaches, i.e., the two ranking loss functions in combina-
tion with the mean squared error as regression loss: the linear models (PL-LM,
Hinge-LM), the quadratic models (PL-QM, Hinge-QM), and the neural net-
works (PL-NN, Hinge-NN). Figure 2 shows the average Kendall’s τ rank correla-
tion achieved by each of the proposed approaches for several values of λ. Recall
that lower values of λ correspond to emphasizing the regression objective while
higher values correspond to emphasizing the ranking objective. At first glance,
we observe a tendency that larger values for λ lead to better rankings. Notably,
however, in various cases the peak performance is not achieved for λ = 1, but
rather for a proper compromise between ranking and regression. Consider for
example the MIP-2016, SAT11-RAND or SAT11-HAND scenario, for which sev-
eral of the proposed approaches achieve their peak performance for intermediate
λ values.

Fig. 2. Average Kendall’s τ rank correlation coefficient achieved by the proposed
approaches for different values of λ on a variety of AS scenarios. In multiple cases,
an intermediate setting of λ ∈ (0, 1) achieves a better rank correlation than pure
regression (λ = 0) or pure ranking (λ = 1).

Figure 3 shows the PAR10 scores achieved by the proposed approaches.
Again, we observe that neither pure regression nor pure ranking achieve the
2 https://github.com/JonasHanselle/CoRRAS.

https://github.com/JonasHanselle/CoRRAS
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best performance consistently. Instead, a combination of the two appears to be
favorable for most of the AS scenarios. Especially in the CSP-2010 and the MIP-
2016 scenarios, the best performances, i.e. lowest PAR10 scores, are achieved for
most of the proposed models when considering a hybrid ranking and regression
loss.

Fig. 3. Penalized average runtime achieved by selecting the top ranked algorithm pre-
dicted by the proposed models for each problem instance of the considered AS scenario.

Table 1 shows the number of scenarios for which a pure regression approach
(λ = 0), a pure ranking approach (λ = 1), or a hybrid ranking and regres-
sion approach (λ ∈ {0.1, . . . , 0.9}) achieves the best performances according to
Kendall’s τ and the PAR10 score. Regarding the rank correlation, unsurprisingly
none of the proposed models achieved the best performance with the pure regres-
sion setting. The hybrid ranking and regression results are either on par with
pure label ranking results or ahead of them. With respect to the PAR10 scores,
hybrid regression and ranking performs the best for all model-loss combinations.
Overall, for the majority of model-scenario combinations, a hybrid regression
and ranking approach performs the best. While setting the hyperparameter λ
to an intermediate value yields promising results, we could not reliably identify
an optimal default value for this parameter. Instead, as can be seen in the plots
in Figs. 2 and 3, the value for which the best performance is achieved depends
both on the model and the scenario at hand.
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Table 1. Number of scenarios for which each configuration achieved the best (average)
performance according to Kendall’s τ coefficient resp. PAR10 score. Recall that λ = 0
means pure regression, λ ∈ (0, 1) a hybrid approach, and λ = 1 pure ranking.

Model τ PAR10

λ = 0 λ ∈ (0, 1) λ = 1 λ = 0 λ ∈ (0, 1) λ = 1

PL-LM 0 6 0 0 5 1

PL-QM 0 3 3 1 3 2

PL-NN 0 4 2 1 5 0

Hinge-LM 0 4 2 1 4 1

Hinge-QM 0 3 3 1 3 2

Hinge-NN 0 5 1 1 4 1

6 Conclusion

In this paper, we advocated the use of hybrid ranking and regression for the algo-
rithm selection problem, mainly with the objective to tackle the “right” prob-
lem — which is selection, or, more generally, ranking — while not losing poten-
tially useful numerical information about observed performances (runtimes).
The proposed framework is built upon optimizing combined loss functions that
take both regression and ranking criteria into account. We investigated three
classes of models for estimating algorithm performances, namely linear models,
quadratic models, and non-linear models in the form of neural networks. The
results obtained by our experimental evaluation confirm that considering both
ranking and regression objectives often leads to better algorithm choices than
solely relying on one of the two objectives.

The proposed approaches rely on minimizing a convex combination of a rank-
ing and a regression loss function. We investigated the squared hinge ranking
loss and a ranking loss based on the Plackett-Luce model in combination with
the mean squared error as a regression loss. In future work, we plan to further
elaborate on suitable hybrid losses and to investigate the performance of other
combinations. Of particular interest are regression methods for censored data, as
these allow for modeling timeouts in a theoretically sound way. Another impor-
tant question concerns the influence of the hyperparameter λ, which balances the
regression and the ranking objectives. As we did not observe a suitable default
value, it would be interesting to identify properties of algorithm selection sce-
narios that seem to influence the optimal choice of this parameter, i.e., which
allow for deciding which of the two objectives, regression or ranking, should be
emphasized more.
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23. Vembu, S., Gärtner, T.: Label ranking algorithms: A survey. In: In: Fürnkranz J.,
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Abstract. The Weak Completion Semantics is a computational and
nonmonotonic cognitive theory based on the three-valued logic of
�Lukasiewicz. It has been applied to adequately model – among oth-
ers – the suppression task, the selection task, syllogistic reasoning, and
conditional reasoning. In this paper we investigate the case where the
antecedent of a conditional is true, but its consequent is unknown. We
propose to apply abduction in order to find an explanation for the con-
sequent. This allows to derive new conditionals which are necessarily
true. But it also leads to two problems, viz. that consequents should not
abduce themselves and that the antecendent of a conditional should be
relevant to its consequent. We propose solutions for both problems.

Keywords: Human reasoning · Conditional reasoning · Logic ·
Nonmonotonicity · Relevance · Weak Completion Semantics

1 Introduction

Classical binary logic is often considered as a normative theory in the psychology
of reasoning. Oaksford and Chater [28] have identified five fundamental problems
for this – as they call it – old paradigm, viz. that it is knowledge poor, that
background knowledge must be consistent, that there can be no learning, that
it is monotonic, and that it concentrates on individual reasoning. Indeed, many
data from experiments show that participants do not seem to apply classical
binary logic in their reasoning, cf. [3,21].

Somewhat surprisingly, after their initial analysis, Oaksford and Chater jump
to the probabilistic paradigm. However, there appears to be an alternative to
both, the old, classical binary logic paradigm as well as to the probabilistic
paradigm, which may be called the new, multi-valued, and nonmonotonic logic
paradigm. This paradigm has been extensively studied within the fields of artifi-
cial intelligence and logic programming since the 1970s and it has the additional
advantage of being computational. Recently, it has also been applied to human
reasoning by Stenning and van Lambalgen [33,34]. They have proposed a two-
stage process: in the first stage, reasoning is towards a logic program; in a second
stage, reasoning is with respect to the program.

Based on the ideas underlying the approach of Stenning and van Lambalgen
the Weak Completion Semantics has been developed [16]. It is mathematically
c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 73–87, 2020.
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sound [17], computational, and has been applied to different human reasoning
tasks including the suppression [7] and the selection task [8]. In syllogistic reason-
ing [29], the Weak Completion Semantics has outperformed all other cognitive
theories discussed in [21] including PSYCOP [32] as well as the mental [18] and
the verbal models theory [31].

The Weak Completion Semantics has also been applied to conditional reason-
ing [5,6]. In particular, a method called minimal revision followed by abduction
(MRFA) was proposed to evaluate conditionals. In this paper we will consider
the case, where the antecedent of a conditional is evaluated to true whereas its
consequent is evaluated to unknown. We will pursue the idea to consider such a
consequent as an observation and to apply abduction in an attempt to explain
it. This leads to two problems. Firstly, a consequent should not abduce itself.
Secondly, the antecedent should be relevant to the consequent. But how should
relevance be defined?

The main contribution of this paper is the development of a model-theoretic
notion of relevance and its incorporation into the MRFA procedure such that
the two abovementioned problems are solved.

The paper is organized as follows. In Sect. 2 the Weak Completion Semantics
and the MRFA procedure are illustrated. In Sect. 3 we will present our idea
and the problems which may occur. Three different notions of relevance will be
developed in Sects. 4, 5, and 6. It will turn out that the first two are inadequate.
We will build the third notion of strong relevance into the MRFA procedure and
apply it to several examples in Sect. 7. In the final Sect. 8 we put our contribution
in perspective. We assume readers to be familiar with logic (e.g. [15]), logic
programming (e.g. [23]), and abductive logic programming [20].1

2 The Weak Completion Semantics

In a nutshell, the Weak Completion Semantics consists of five steps: (1) Rea-
soning towards a program. (2) Weakly completing the program. (3) Computing
its least model under �Lukasiewicz logic. (4) Reasoning with respect to the least
model. (5) If necessary, applying abduction.

To illustrate the Weak Completion Semantics as well as its evaluation of
conditionals we consider the suppression task [3]. It is a set of twelve experiments
where subjects were given a fact and one or two conditionals as background
knowledge and were asked to draw conclusions. The experiments showed that
in certain contexts subjects reject previously drawn conclusions. This holds for
valid as well as for invalid conclusions with respect to two-valued classical logic.
In this paper, rather than adding a fact like she has an essay to write to the
background knowledge and asking whether subjects are willing to conclude that
she will study late in the library we will evaluate the conditional if she has an
essay to write, then she will study late in the library.
1 Usually, abductive frameworks come with integrity constraints. In this paper we

assume that the set of integrity constraints is empty, but the presented approach
can be straightforwardly extended by non-empty sets of integrity constraints.
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Suppose that the conditional if she has an essay to write, then she will study
late in the library is given as background knowledge. Stenning and van Lambal-
gen have proposed that reasoning towards a program should lead to

P1 = {� ← e ∧ ¬abe, abe ← ⊥},

where � and e denote that she will study late in the library and that she has an
essay to write, respectively, abe is an abnormality predicate which is assumed to
be false, and ⊥ is a truth constant denoting falsehood. They consider a condi-
tional not as a truth functional connective but as a license for inferences, and
the abnormality predicate is used to represent this principle. Weakly completing
program P1 we obtain2

wc P1 = {� ↔ e ∧ ¬abe, abe ↔ ⊥}.

As shown in [17], each weakly completed program has a unique least model3

under the three-valued logic of �Lukasiewicz [24]. This model can be computed
as the least fixed point of a semantic operator introduced by Stenning and van
Lambalgen. Reasoning is then performed with respect to this least model. In
the example, the least model MP1 of wc P1 maps the atom abe to false and the
atoms e and � to unknown.

Suppose that given P1 as background knowledge we would like to evaluate the
conditional if she has an essay to write, then she will study late in the library
(if e then �) with respect to the weak completion of P1. Its antecedent e is
unknown under MP1 . In this case, MRFA4 considers e as an observation that
should be explained. It can be explained by abducing the (minimal) explanation
e ← �, where � is a truth constant denoting truth. Adding this fact to P1 we
obtain5

P2 = {� ← e ∧ ¬abe, abe ← ⊥, e ← �}.
Its weak completion is

wc P2 = {� ↔ e ∧ ¬abe, abe ↔ ⊥, e ↔ �},

whose least model MP2 maps the atoms e and � to true and the atom abe to false.
Consequently, the conditional if e then � is mapped to true, which corresponds
to the results of the first experiment reported in [3].

In this example, we could have simply added the fact e ← � to the program
P1 to obtain the same result. But in other experiments the addition of a defini-
tion for the antecedent of a conditional is not sufficient and abduction is needed.

2 Weak completion differs from Clark’s completion [4] in that undefined atoms – like e
in this example – are not mapped to false but to unknown.

3 Let I� and I⊥ be the sets of ground atoms mapped to true and false, respectively,
by an interpretation I. For interpretations I1 and I2 we define I1 ⊆ I2 if and only if
I�
1 ⊆ I�

2 and I⊥
1 ⊆ I⊥

2 . This allows to partially order the set of interpretations.
4 See the Appendix for a complete specification of MRFA.
5 This is the program proposed in [34] to model the first experiment reported in [3].
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E.g., suppose we want to evaluate the conditional if she will study late in the
library, then she has an essay to write (if � then e) given the background knowl-
edge P1. P1 contains already a definition for � and it does not seem to be partic-
ularly meaningful to add � ← � to it. However, applying abduction we find that
adding e ← � to P1 explains �. Hence, the conditional if � then e is evaluated
to true, which corresponds again to the experimental results reported in [3].

Now suppose that the conditional if the library stays open, then she will study
late in the library is added to the background knowledge P1. Following [34] and
reasoning towards a program we obtain

P3 = {� ← e ∧ ¬abe, � ← o ∧ ¬abo, abe ← ¬o, abo ← ¬e},

where o denotes that the library will stay open and abo is another abnormality
predicate. The library not being open is an abnormality with respect to abe.
Likewise, not having a reason to go to the library is an abnormality with respect
to abo and having an essay to write is the only reason in this scenario so far.
Weakly completing the program P3 we obtain

wc P3 = {� ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo), abe ↔ ¬o, abo ↔ ¬e},

whose least model MP3 maps the atoms �, e, o, abe, and abo to unknown.
Suppose that considering this extended background knowledge we would like to
evaluate the conditional if e then � again. Its antecedent e is unknown given
the background knowledge, but as before it can be explained by the explanation
e ← �. Adding this explanation to the program P3 we obtain

P4 = {� ← e ∧ ¬abe, � ← o ∧ ¬abo, abe ← ¬o, abo ← ¬e, e ← �}.

Its weak completion is

wc P4 = {� ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo), abe ↔ ¬o, abo ↔ ¬e, e ↔ �},

whose least model MP4 maps the atom e to true, the atom abo to false, and
the atoms �, o, and abe to unknown. Hence, the conditional if e then � is now
unknown contrary to being evaluated to true earlier. This shows that the Weak
Completion Semantics is nonmonotonic and can model suppression.

As a forth example consider the shooting of Kennedy scenario discussed in [1]:
If Oswald shot, then the president was killed. If somebody else shot, then the
president was killed. Oswald shot. Reasoning towards a program we obtain

P5 = {k ← os ∧ ¬abos, k ← ses ∧ ¬abses, abos ← ⊥, abses ← ⊥, os ← �},

where k , os, ses denote that Kennedy was killed, Oswald shot, and somebody
else shot, respectively, and abos as well as abses are abnormality predicates which
are assumed to be false. Its weak completion is

wc P5 = {k ↔ (os ∧ ¬abos) ∨ (ses ∧ ¬abses), abos ↔ ⊥, abses ↔ ⊥, os ↔ �},
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whose least model MP5 maps the atoms os and k to true, abos and abses to
false, and ses to unknown.

Suppose that given this background knowledge we want to evaluate the coun-
terfactual if Oswald did not shoot Kennedy in Dallas, then Kennedy was not
killed in Dallas (if ¬os then ¬k). Its antecedent ¬os is false in MP5 . In order
to satisfy the antecedent, we have to revise P5. Within MRFA this can be (min-
imally) done by replacing os ← � by the assumption os ← ⊥6 to obtain

P6 = {k ← os ∧ ¬abos, k ← ses ∧ ¬abses, abos ← ⊥, abses ← ⊥, os ← ⊥}.

Its weak completion is

wc P6 = {k ↔ (os ∧ ¬abos) ∨ (ses ∧ ¬abses), abos ↔ ⊥, abses ↔ ⊥, os ↔ ⊥},

whose least model MP6 maps the atoms os, abos and abses to false, and k and
ses to unknown. Consequently, the conditional if ¬os then ¬k is unknown.

3 An Idea and Two Problems

Herein, we consider conditionals of the form if A then C, where antecedent A
and consequent C are consistent sets of literals7 and A is true but C is unknown
given the background knowledge. As an example – adapted from [27] – consider
a scenario where a person has observed that a liquid spilled on blue litmus paper
has colored the paper red, but otherwise has forgotton basic chemistry. Then,
from the observer’s perspective, the antecedent of the conditional if a liquid turns
blue litmus paper red, then it is acidic is true, but the consequent is unknown.

We conjecture that often humans are unsatisfied if they cannot assign true or
false to the consequent of a conditional and continue to reason about it. The idea
pursued in this paper is to consider an unknown consequent as an observation
that should be explained. We apply abduction [20] in order to find an explanation
for such a consequent. In that case, if the explanation is added to the antecedent,
a new conditional arises which is necessarily true.

For example, in the suppression task the conditional if e then � 8 is evaluated
to unknown given the background knowledge P4. But its consequent � can be
explained by o ← �. Consequently, the new conditional if she has an essay to
write and the library stays open, then she will study late in the library can be
derived and is known to be true. In the shooting of Kennedy scenario the condi-
tional if ¬os then ¬k is evaluated to unknown given the background knowledge
P6. But its consequent ¬k can be explained by ses ← ⊥. Consequently, the new

6 Phan Minh Dung has suggested to call expressions of the form A ← ⊥ assumptions as
they can be overwritten by any other definition for A. E.g., wc{A ← ⊥} = {A ↔ ⊥},
whereas wc{A ← ⊥, A ← �} = {A ↔ � ∨ ⊥}. ¬A holds in the former, but A holds
in the latter example showing that negation is by default and is defeasible.

7 A set of literals is consistent iff it does not contain an atom and its negation.
8 In case of singleton sets we often drop the curly brackets and write e instead of {e}.
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conditional if Oswald did not shoot Kennedy in Dallas and nobody else did, then
Kennedy was not killed in Dallas can be derived and is known to be true.

However, the idea leads to two problems. Firstly, it should be impossible
that the consequent of a conditional can abduce itself. For example, the condi-
tional if ¬os then ¬ses is unknown given the background knowledge P6. But
its consequent ¬ses can be explained by ses ← ⊥ and, hence, the conditional if
Oswald did not shoot Kennedy in Dallas and no one else shot, then no one else
would have is known to be true, but appears to be meaningless. As has been
pointed out by Johnson-Laird and Byrne [19], a conclusion is worth drawing if
it preserves semantic information, be parsimonious, and states something new.
In the case of abduction, the given background knowledge is preserved and a
(minimal) explanation is added to the antecedent of the given conditional such
that its consequent becomes true. But the explanation should be something new
which does not involve the consequent.

Secondly, a conditional like if she is studying late in the library, then light-
ning will occur may be evaluated to true given the background knowledge
P2 ∪ {lightning ← �}. But such an evaluation does not seem to be very helpful
as there is no connection between her studying late in the library and the occur-
rence of lightning. Rather, we need to check whether the antecedent of a true
conditional is related or relevant to its consequence. This is a long-standing issue
which has already been discussed in e.g. [13,14,25] and is central to relevance
theory (see e.g. [10] or [26]). In logic programming, relevance has received some
attention in the attempt to query logic programs by conditionals (see e.g. [2]),
but this does not seem to be a recent issue anymore. In all approaches that we
have examined, relevance is treated proof theoretically and is quite involved. To
the best of our knowledge, there does not exist a common understanding on how
relevance shall be defined in the context of human reasoning.

4 Relevance Through Dependencies

In logic programming, the depends relation is often used in the analysis of pro-
grams, where an atom A depends on an atom B if and only if A and B are in the
transitive closure of the following relation: Given a program P, atom A directly
depends on atom B if and only if P contains a rule of the form A ← Body and
either B or ¬B occurs in Body. As an example, consider the program

P7 = {t ← ps ∧ ¬abt, abt ← ⊥, p ← ps ∧ ¬abp, abp ← ⊥}
encoding that usually pipe smokers ( ps) have tobacco (t) and pipe smokers have
a pipe ( p). abt and abp are abnormality predicates which are assumed to be
false. In this program, the atom t depends on ps and abt, whereas p depends on
ps and abp, but neither does p depend on t nor does t depend on p.

We may define relevance through dependencies as follows: atom B is relevant
to atom A if and only if A depends on B. In the program P7, neither p is relevant
to t nor t is relevant to p. Assume that we would like to evaluate the conditional if
somebody has a pipe then he/she has tobacco (if p then t) given the background
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knowledge P7. The least model MP7 of the weak completion of P7 maps the
atoms ps, p, and t to unknown and abt and abp to false. Applying MRFA we
can explain having a pipe by the (minimal) explanation that the person is a
pipesmoker. Adding the explanation ps ← � to the program P7 we obtain

P8 = {t ← ps ∧ ¬abt, abt ← ⊥, p ← ps ∧ ¬abp, abp ← ⊥, ps ← �}.

Now, p, t as well as if p then t are mapped to true by the least model MP8 of

wc P8 = {t ↔ ps ∧ ¬abt, abt ↔ ⊥, p ↔ ps ∧ ¬abp, abp ↔ ⊥, ps ↔ �}.

Thus, p influences t with respect to the background knowledge P8. But, p is still
irrelevant to t. Hence, this definition of relevance does not meet our intention
and we look at developing notions of relevance which may.

5 Weak Relevance

In order to define a better notion of relevance we will make use the following
function: deps assigns to a given program P and a given consistent set S of
literals the set of facts, i.e. rules of the form B ← �, and assumptions, i.e. rules
of the form B ← ⊥, occurring in P, on which the literals occurring in S depend:

deps(P,S) = {B ← Body ∈ P | Body ∈ {�,⊥} and there exists A ∈ S or
¬A ∈ S such that A depends on B}.

Returning to the previous example, we find

deps(P8, {t}) = {ps ← �, abt ← ⊥}

and
deps(P8, {p}) = {ps ← �, abp ← ⊥}.

With the help of the function deps we can now define the following – let’s call
it – weak notion of relevance given a conditional if A then C: antecedent A and
consequence C are weakly relevant to one another with respect to a program P if
and only if

(A ∪ deps(P,A)↓) ∩ (C ∪ deps(P, C)↓) �= ∅,

where
Q↓ = {A | A ← � ∈ Q} ∪ {¬A | A ← ⊥ ∈ Q}

and Q is a program containing only facts and assumptions. In words, A and C
are weakly relevant to one another if and only if there is at least one common
literal occurring in A and the set of literals on which A depends as well as in C
and the set of literals on which C depends. This appears to be a generalization of
the variable sharing principle applied in relevance theory (see e.g. [26]) in that a
shared variable (or literal) must not just occur in A and C, but may also occur
in the set of literals on which A and C depend.
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Applied to the program P8 and the conditional if p then t we find

({p} ∪ {ps,¬abp}) ∩ ({t} ∪ {ps,¬abt}) = {ps} �= ∅.

The atoms p and t are weakly relevant to one another with respect to P8.
As another example consider the conditional if Joe is winning in the million

Euro lottery then he is rich and the program

P9 = {rich X ← win X ∧ ¬ abX, abX ← ⊥, win joe ← �, rich joe ← �}

encoding the background knowledge that usually if somebody is winning in the
million Euro lottery (win) then this person is rich (rich), Joe is winning, Joe
is rich, and ab is an abnormality predicate which is assumed to be false for
all X. The fact rich joe ← � may be due to Joe inheriting a fortune when his
aunt died some years ago and, thus, is completely independent of playing in the
million Euro lottery. Considering the ground instance g P9 of P9 by replacing
the variable X with the constant joe we find

deps(g P9, {win joe}) = ∅

and
deps(g P9, {rich joe}) = {win joe ← �, ab joe ← ⊥}.

Hence,

({win joe} ∪ ∅) ∩ ({rich joe} ∪ {win joe,¬ ab joe}) = {win joe} �= ∅

and we conclude that win joe is weakly relevant to rich joe with respect to g P9.
But, this does not seem to correctly represent the background knowledge encoded
in program g P9, because the truth of win joe has no influence on the truth of
rich joe. The atom rich joe will always be true in the least model Mg P9 of

wc g P9 = {rich joe ↔ (win joe ∧ ¬ ab joe) ∨ �, win joe ↔ �, ab joe ↔ ⊥}

because (win joe ∧ ¬ ab joe) ∨ � is semantically equivalent to �.

6 Strong Relevance

In this section we will develop a better notion of relevance which is called strong
relevance. In order to do so, we need the following function: def assigns to a
program P and a set S of literals the set of program clauses defining S, i.e.,

def (P,S) = {A ← Body ∈ P | A ∈ S or ¬A ∈ S}.

Let P be a program encoding the background knowledge and MP be the least
model of the weak completion of P. Furthermore, let A as well as C be consistent
sets of literals and consider the conditional if A then C. Its antecedent A is
strongly relevant to its consequent C with respect to P if and only if A and C are



Conditional Reasoning and Relevance 81

true under MP , but C is not true under MP′ , where MP′ is the least model
of the weak completion of P ′ = P \ (def (P,A) ∪ deps(P,A)). The idea behind
strong relevance is to check whether the consequent C looses support as soon
as the support of the antecedent A is withdrawn. One should observe that in
contrast to weak relevance, strong relevance is not symmetrical.

In order to check whether the atom win joe is strongly relevant to the atom
rich joe with respect to the program g P9, we firstly need to check that both
atoms are true in Mg P9 , which is indeed the case. Thereafter, with

def (g P9, {win joe}) = {win joe ← �}
and

deps(g P9, {win joe}) = ∅
we find

g P ′
9 = g P9 \ {win joe ← �} =

= {rich joe ← win joe ∧ ¬ ab joe, ab joe ← ⊥, rich joe ← �}.
The least model Mg P′

9
of the weak completion of g P ′

9 maps the atom rich joe
to true and the atom win joe to unknown. Thus, rich joe does not loose support
as soon as the support for win joe is withdrawn. In other words, even if Joe is
not winning, he will still be rich. win joe is not strongly relevant to the atom
rich joe with respect to the program g P9.

Returning to the conditonal if p then t and the program P8, we find that the
atoms p and t are true under MP8 . Let

P ′
8 = P8 \ {p ← ps ∧ ¬abp, abp ← ⊥, ps ← �} = {t ← ps ∧ ¬abt, abt ← ⊥}.

Hence, because the least model MP′
8

of the weak completion of P ′
8 maps the

atom t to unknown, the antecedent p is strongly relevant to the consequent t
with respect to the program P8.

Consider the conditional if e then � and the program P4. Because MP4 maps
the antecedent e to true and the consequent � to unknown, e is not strongly
relevant to � with respect to P4. Now consider the program

P10 = P4 ∪ {o ← �}.
Its weak completion is

wc P10 = {� ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo), abe ↔ ¬o, abo ↔ ¬e, e ← �, o ↔ �}.
We find that MP10 maps the atoms e, o, and � to true, whereas it maps the
atoms abe and abo to false. Furthermore, with

def (P10, {e}) = {e ← �}
and

deps(P10, {e}) = ∅
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we obtain

P ′
10 = P10 \ {e ← �}

= {� ← e ∧ ¬abe, � ← o ∧ ¬abo, abe ← ¬o, abo ← ¬e, o ← �}.

The least model MP′
10

of the weak completion of program P ′
10 maps the atom o

to true, the atom abe to false, and the atoms �, e, and abo to unknown. Hence,
the antecedent she has an essay to write is strongly relevant to the consequent
she will study late in the library with respect to the program P10.

As a last example consider the conditional if she has an essay to write and
the library is open then she will study late in the library and the program P10.
In order to check whether the antecedent {e, o} is strongly relevant to the con-
sequent � with respect to the program P10 we recall that MP10 maps the atoms
e, o, and � to true. With

def (P10, {e, o}) = {e ← �, o ← �}

and
deps(P10, {e, o}) = ∅

we now obtain

P ′′
10 = P10 \ {e ← �, o ← �}

= {� ← e ∧ ¬abe, � ← o ∧ ¬abo, abe ← ¬o, abo ← ¬e}.

The least model MP′′
10

of the weak completion of P ′′
10 maps all atoms to unknown.

Hence, the antecedent {e, o} is strongly relevant to the consequent � with respect
to the program P10.

7 Extending MRFA by Strong Relevance

We will modify the case where the antecedent of a conditional is mapped to true
of the procedure minimal revision followed by abduction (MRFA) in three ways:
Firstly, by checking whether for true conditionals the antecedent is strongly rel-
evant to the consequent, secondly, by allowing abduction in case the antecedent
is true and the consequence is unknown, and thirdly, by disallowing that a con-
sequent abduces itself. Let if A then C be a conditional, P a program, AP be
the set of abducibles for the program P, MP be the least model of the weak
completion of the program P, and C↑ = {A ← � | A ∈ C} ∪ {A ← ⊥ | ¬A ∈ C}.
We are interested in the three cases where MP maps A to true:
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If MP maps A and C to true
then if A is strongly relevant to C with respect to P

then the value of the conditional if A then C is true
else the conditional is meaningless.

If MP maps A to true and C to false
then the value of the conditional if A then C is false.

If MP maps A to true and C to unknown
then the value of the conditional if A then C is unknown and

if X ⊆ AP \ C↑ explains C
and A ∪ X ↓ is strongly relevant to C with respect to P ∪ X
then the value of the conditional if A ∪ X ↓ then C is true.

As before, we expect explanations to be minimal. For the cases where MP
maps A to false or unknown, the reader is refered to the Appendix and the
literature [5,6] as they do not play a role in the idea and the problems discussed
in this paper. However, the case where MP maps A to false was presented
in the shooting of Kennedy scenario in Sect. 2. It was just meant to show that
counterfactuals can be treated by minimal revision followed by abduction as well.
In the paper, we have also discussed various examples, where the antecedent A
was unknown but could be explained by abduction. The name MRFA, however,
was given due to the case where MP maps A to unknown and abduction alone
cannot explain A. In particular, in [6] it was shown that there are examples
within the firing squad scenario introduced in [30] which cannot be solved by
abduction alone. In this case, a minimal revision step is added before abduction
is applied. The complete extended MRFA procedure is listed in the Appendix.

The first two steps of the extended MRFA procedure should be obvious, but
the third step needs clarification. Given a program P, the set of abducibles AP
usually consists of all facts and assumptions for atoms which occur only in the
bodies of rules in P. For example, in the program P3 the atoms o and e occur
only in the bodies of rules. Hence, AP3 = {e ← �, e ← ⊥, o ← �, o ← ⊥}. To
avoid that a consequent abduces itself, A ← � is deleted from AP if the atom A
occurs in the consequent C and A ← ⊥ is deleted from AP if the negated atom
¬A occurs in C. It may suffice that only a subset O of C needs to be explained
by X as long as the least model MP∪X of the weak completion of the program P
along with the explanation X maps C to true. In this case a new conditional can
be derived, where the antecedent is extended by all atoms A such that A ← �
occurs in the explanation X and all negated atoms ¬A such that A ← ⊥ occurs
in X . Of course, we need to check that the antecedent of the new conditional is
strongly relevant to the consequent C with respect to the program P ∪ X .

We have already discussed various applications of the extended MRFA pro-
cedure in this paper. The conditional if she has an essay to write and the library
stays open, then she will study late in the library has been derived from the
conditional if she has an essay to write, then she will study late in the library
and the program P4. The given conditional being unknown, the explanation
X = {o ← �} explains that she will study late in the library (�). In the last
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section, it was shown that the least model of the weak completion of P10 = P4∪X
maps � to true and, moreover, that the atoms e and o are strongly relevant to �.

The conditional if Oswald did not shoot Kennedy in Dallas and no one else
shot, then no one else would have cannot be derived from the conditional if
Oswald did not shoot Kennedy in Dallas, then no one else would have and the
program P6. The given conditional being unknown, we may be tempted to apply
abduction. The set of abducibles for P6 is AP6 = {ses ← �, ses ← ⊥}. However,
ses ← ⊥ must be deleted from the set of abducibles because the consequent is
¬ses and we do not want consequents to abduce themselves. After the deletion
the consequent cannot be abduced anymore.

On the other hand, the conditional if Oswald did not shoot Kennedy in Dal-
las and nobody else did, then Kennedy was not killed can be derived from the
conditional if Oswald did not shoot Kennedy in Dallas, then Kennedy was not
killed and program P6. The given conditional being unknown, the explanation
X = {ses ← ⊥} explains ¬k because the least model of the weak completion
of P6 ∪ X maps ¬k to true. It still needs to be checked that {¬os,¬ses} are
strongly relevant to ¬k with respect to the program P6 ∪ X , but this does hold.

Finally, the conditional if she is studying late in the library then lightning
will occur will be evaluated as meaningless with respect to the program P2 ∪
{lightning ← �}. Both, antecendent and consequent, are mapped to true in the
least model of the weak completion of P2∪{lightning ← �}, but the antecedent �
is not strongly relevant to the consequent lightning .

8 Conclusion

In this paper we have pursued the idea to apply abduction in order to find an
explanation for an unknown consequent of a conditional whose antecedent is true.
If such an explanation can be abduced then new conditionals can be generated
which are known to be true. We identified two problems with this idea which
can be solved by disallowing consequents to abduce themselves and by requiring
that an antecedent is strongly relevant to the consequent of a conditional. The
definition of strongly relevant is with respect to the models of a program and,
thus, deviates from the mostly proof theoretic definitions of relevance in relevance
theory.

We are unaware of any experimental data supporting our claim that humans
are unsatisfied if they cannot assign true or false to the consequent of a condi-
tional whose antecedent is true. Likewise, we are unaware of any experimental
data supporting our idea that in this case, humans construct novel and true con-
ditionals by applying abduction to explain an unknown consequence. However,
in the context of legal reasoning, Bob Kowalski has argued that legal experts
understand conditionals like if she has an essay to write, then she will study
late in the library and if the library stays open, then she will study late in the
library often as the context dependent rule if she has an essay to write and
the library stays open, then she will study late in the library [22]. In this paper
we have shown that exactly this context dependent rule can be derived by the
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Weak Completion Semantics using the extended minimal revision followed by
abduction procedure.

We have not yet thoroughly investigated on how precisely the different theo-
ries of relevance mentioned in Sect. 3 correspond to the notion of strong relevance
developed in Sect. 6. This is a topic for future research.

The presented approach is based on the three-valued logic of �Lukasiewicz
[24]. It is nonmonotonic. It can deal with inconsistencies when confronted with a
counterfactual and, in this case, revision is applied to remove the inconsistency.
Moreover, as shown in [9], the Weak Completion Semantics can be computed in
a connectionist or articifical neural network setting. In particular, the semantic
operator used to compute the least model of a weakly completed program can
itself be computed by a feed-forward connectionist network. As shown in [12]
such semantic operators can be learned by backpropagation given appropriate
training data. Once the network has been trained, a novel logic program can
be extracted using appropriate rule extraction techniques (see e.g. [11]). Hence,
programs can be learned. We strongly believe that the new, multi-valued, and
nonmonotonic paradigm should be extensively studied in the context of human
reasoning.

Acknowledgements. I would like to thank Emmanuelle-Anna Dietz Saldanha and
Lúıs Moniz Pereira for many discussions, comments and ideas on conditionals and the
Weak Completion Semantics. This paper is a revised and extended version of our joint
effort [6]. Many thanks also to Meghna Bhadra for many suggestions and corrections.

Appendix: The MRFA Procedure

In [6] the MRFA procedure was specified as follows:

If MP maps A to true
then the value of the conditional if A then C is MP(C).

If MP maps A to false
then evaluate if A then C with respect to Mrev(P,S), where

S = {L ∈ A | MP L = ⊥} and rev(P,S) = (P \ def (P,S)) ∪ S↑.
If MP maps A to unknown

then evaluate if A then C with respect to MP′ , where
P ′ = rev(P,S) ∪ X
and S is a smallest subset of A
and X ⊆ Arev(P,S) is an explanation for A \ S
such that MP′ maps A to true.

In this paper, the first step is extended as specified in Sect. 7.
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Abstract. To make planning feasible, planning models abstract from
many details of the modeled system. When executing plans in the actual
system, the model might be inaccurate in a critical point, and plan exe-
cution may fail. There are two options to handle this case: the previ-
ous solution can be modified to address the failure (plan repair), or the
planning process can be re-started from the new situation (re-planning).
In HTN planning, discarding the plan and generating a new one from
the novel situation is not easily possible, because the HTN solution cri-
teria make it necessary to take already executed actions into account.
Therefore all approaches to repair plans in the literature are based on
specialized algorithms. In this paper, we discuss the problem in detail
and introduce a novel approach that makes it possible to use unchanged,
off-the-shelf HTN planning systems to repair broken HTN plans. That
way, no specialized solvers are needed.

Keywords: HTN Planning · Plan repair · Re-planning

1 Introduction

When generating plans that are executed in a real-world system, the planning
system needs to be able to deal with execution failures, i.e. with situations dur-
ing plan execution that are not consistent with the predicted state. Since plan-
ning comes with several assumptions that may not hold the real system, such
situations may arise for several reasons like non-determinism in the problem,
exogenous events, or actions of other agents. When we speak of an execution
failure, we mean that the outcome of an action is not like anticipated by the
planning model (e.g. due to the given reasons).

Two mechanisms have been developed to deal with such situations: Systems
that use re-planning discard the original plan and generate a new one from the
novel situation. Systems using plan repair adapt the original plan so that it can
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deal with the unforeseen change. In classical planning, the sequence of already
executed actions implies no changes other than state transition. The motivation
for plan repair in this setting has e.g. been efficiency [20] or plan stability [18],
i.e. finding a new plan that is as similar as possible to the original one.

In hierarchical task network (HTN) planning [8,17], the hierarchy has wide
influence on the set of solutions and it makes the formalism also more expres-
sive than classical planning [21,22]. The hierarchy can e.g. enforce that certain
actions might only be executed in combination. By simply re-starting the plan-
ning process from the new state, those implications are discarded, thus simple
re-planning is no option and plans have to be repaired, i.e., the implications
have to be taken into account. Several approaches have been proposed in the
literature, all of them use special repair algorithms to find the repaired plans.

In this paper we make the following contributions (some of the work has been
presented before in a workshop version of the paper [25]):

– We discuss the issues that arise when using a re-planning approach that re-
starts the planning process from the new state in HTN planning.

– We survey the literature on plan repair in HTN planning.
– Based on a transformation for plan and goal recognition [23], we introduce a

transformation-based approach that makes it possible to use unchanged HTN
planning systems to repair broken HTN plans.

Outline. We first introduce HTN planning and specify the plan repair problem
(Sect. 2), discuss issues with repairing HTN plans (Sect. 3), summarize related
work (Sect. 4), and give our transformation (Sect. 5) and its properties (Sect. 6).

2 Formal Framework

This section introduces HTN planning and specifies the repair problem.

2.1 HTN Planning

In HTN planning, there are two types of tasks: primitive tasks equal classical
planning actions, which cause state transitions. Abstract tasks describe more
abstract behavior. They can not be applied to states directly, but are iteratively
split into sub-tasks until all tasks are primitive.

We use the formalism by Geier and Bercher [19,22]. A classical planning
problem is defined as a tuple Pc = (L,A, s0, g, δ), where L is a set of propositional
state features, A a set of action names, and s0, g ∈ 2L are the initial state and
the goal definition. A state s ∈ 2L is a goal state if s ⊇ g. The tuple δ =
(prec, add , del) defines the preconditions prec as well as the add and delete effects
(add , del) of actions, all are functions f : A → 2L. An action a is applicable
in a state s if and only if τ : A × 2L with τ(a, s) ⇔ prec(a) ⊆ s holds. When
an (applicable) action a is applied to a state s, the resulting state is defined as
γ : A × 2L → 2L with γ(a, s) = (s \ del(a)) ∪ add(a). A sequence of actions
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(a0a1 . . . al) is applicable in a state s0 if and only if for each ai it holds that
τ(ai, si), where si is for i > 0 defined as si = γ(ai−1, si−1). We call the state
sl+1 the resulting state from the application. A sequence of actions (a0a1 . . . al)
is a solution if and only if it is applicable in s0 and results in a goal state.

An HTN planning problem P = (L, C, A, M, s0, tnI , g, δ) extends a classical
planning problem by a set of abstract (also called compound) task names C, a
set of decomposition methods M , and the tasks that need to be accomplished
which are given in the so-called initial task network tnI . The other elements are
equivalent to the classical case. The tasks that need to be done as well as their
ordering relation are organized in task networks. A task network tn = (T ,≺, α)
consists of a set of identifiers T . An identifier is just a unique element that is
mapped to an actual task by a function α : T → A ∪ C. This way, a single task
can be in a network more than once. ≺ : T × T is a set of ordering constraints
between the task identifiers. Two task networks are called to be isomorphic if
they differ solely in their task identifiers. An abstract task can by decomposed by
using a (decomposition) method. A method is a pair (c, tn) of an abstract task
c ∈ C that specifies to which task the method is applicable and a task network tn,
the method’s subnetwork. When decomposing a task network tn1 = (T1,≺1, α1)
that includes a task t ∈ T1 with α1(t) = c using a method (c, tn), we need an
isomorphic copy of the method’s subnetwork tn ′ = (T ′,≺′, α′) with T1∩T ′ = ∅.
The resulting task network tn2 is then defined as

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t �→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 �= t ∧ t2 �= t}

We will write tn →∗ tn ′ to denote that a task network tn can be decomposed
into a task network tn ′ by applying an arbitrary number of methods in sequence.

A task network tn = (T ,≺, α) is a solution to a planning problem P if and
only if 1. all tasks are primitive, ∀t ∈ T : α(t) ∈ A, 2. it was obtained via
decomposition, tnI →∗ tn, 3. there is a sequence of the task identifiers in T in
line with the ordering whose application results in a goal state.

2.2 Plan Repair Problem in HTN Planning

Next we specify the plan repair problem, i.e., the problem occurring when plan
execution fails (that could be solved by plan repair or re-planning), please be
aware the ambiguity of the term repair naming the problem and a way to resolve
it. A plan repair problem consists of three core elements: The original HTN
planning problem P , its original solution plus its already executed prefix, and
the execution error, i.e., the state deviation that occurred during executing the
prefix of the original solution.

Most HTN approaches that can cope with execution failures do not just rely
on the original solution, but also require the modifications that transformed the



HTN Plan Repair via Model Transformation 91

initial task network into the failed solution. How these modifications look like
depends on the planning system, e.g., whether it is a progression-based sys-
tem [24,26,28] or a plan-space planner [11,16]. To have a general definition, we
include the so-called decomposition tree (DT) of the solution. A DT is a tree rep-
resentation of the decompositions leading to the solution [19]. Its nodes represent
tasks; each abstract task is labeled with the method used for decomposition, the
children in the tree correspond to the subtasks of that specific method. Order-
ing constraints are also represented, such that a DT dt yields the solution tn it
represents by restricting the elements to dt ’s leaf nodes.

Definition 1 (Plan Repair Problem). A plan repair problem can now be
defined as a tuple Pr = (P , tns, dt , exe, F+, F−) with the following elements.
P is the original planning problem. tns = (T ,≺, α) is the failed solution for
it, dt the DT as a witness that tns is actually a refinement of the original ini-
tial task network, and exe = (t0, t1, . . . tn) is the sequence of already executed
task identifiers, ti ∈ T. Finally, the execution failure is represented by the two
sets F+ ⊆ L and F− ⊆ L indicating the state features that were (not) holding
contrary to the expected state after execution the solution prefix exe.

Notice that not every divergence of the state predicted by the model and the
actual state during execution prevents further execution of the plan. A technique
detecting whether repair is necessary is e.g. described by Bercher et al. [10].

Though they have been introduced before, we want to make the terms re-
planning and plan repair more precise.

Definition 2 (Re-Planning). The old plan is discarded, a new plan is gen-
erated starting from the current state of the system that caused the execution
failure.

Definition 3 (Plan Repair). The system modifies the non-executed part of
the original solution such that it can cope with the unforeseen state change.

3 About Re-planning in HTN Planning

In classical planning, a prefix of a plan that has already been executed does not
imply any changes to the environment apart from the actions’ effects. It is there-
fore fine to discard the current plan and generate a new one from scratch from
the (updated) state of the system. HTN planning provides the domain designer
a second means of modeling: the hierarchy. Like preconditions and effects, it can
be used to model either physics or advice. Figure 1 illustrates the Toll Domain.
A car moves in a road network. The red square indicates the city center (the toll
area). Whenever the car takes a road segment starting inside the center, a toll
has to be paid at a position marked with a credit card. Since the car may want
to use a segment more than once (e.g. because the driver wants to visit certain
shops in a specific ordering), it is not sufficient to mark which segments have
been used, they need to be counted. For simplicity, we assume that the toll area
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Fig. 1. The Toll domain. (Color figure online)

is left at the end (i.e. the final position is outside). An HTN domain is given in
Figure 2.

It contains five methods. Actions are given in boxes, abstract tasks are non-
boxed. The driveTA action is only applicable inside the toll area, drive only
outside it and the payToll action only at positions marked with a credit card.
Whenever driveTA is added to the plan, an instance of the payToll task is added
and the toll for that single segment is paid when the toll area is left. The domain
is a simple example for a context-free language-like structure. When described in
STRIPS, one has to commit to a maximum number of visits or encode it using
a richer classical model (e.g. supporting numeric variables).

Consider a car starting at position A and driving to H. A planning system
could come up with the following plan:

drive(A,C ), driveTA(C ,G), driveTA(G ,F ),
driveTA(F ,H ), payToll(), payToll(), payToll()

Consider an execution failure after the first driveTA action: being at location G:
the driver gets aware that the road to F is closed. Re-planning is triggered. The
planning system comes up with the following new plan:

driveTA(G ,E ), driveTA(E ,F ), driveTA(F ,H ),
payToll(), payToll(), payToll()

move(a, b)

driveTA(a, b) payToll()

move(a, c)

driveTA(a, b) move(b, c) payToll()

move(a, b)

drive(a, b)

move(a, b)

∅

move(a, c)

drive(a, b) move(b, c)

Fig. 2. Sketch of an HTN model for the Toll domain.
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The driver executes the plan and reaches H, but while four segments are used,
the toll gets only paid three times.

As we have seen, the hierarchy assures that certain properties hold in every
plan and the domain designer might rely on these properties. There are different
ways to ensure them during a repair process:

1. The responsibility can be shifted to the domain designer, i.e., the domain
must be created in a way that the planning process can be started from any
state of the real-world system. This leads to a higher effort for the domain
expert and it might also be more error-prone, because the designer has to
consider possible re-planning in every intermediate state of the system.

2. The reasoning system that triggers planning and provides the planning prob-
lem is responsible to incorporate additional tasks to make the system safe
again. This shifts the problem to the creator of the execution system. This is
even worse, since this might not even be a domain expert, and the execution
system has to be domain-specific, i.e., the domain knowledge is split.

3. The repair system generates a solution that has the properties assured by the
hierarchy. This solution leads to a single model containing the knowledge, the
planning domain; and the domain designer does not need to consider every
intermediate state of the real system.

Since it represents a fully domain-independent approach, we consider the last
solution to be the best. This leads us to a core requirement of a system that solves
the plan repair problem: regardless of whether it technically uses plan repair
or re-planning, it needs to generate solutions that start with the same prefix
of actions that have already been executed. Otherwise, the system potentially
discards “physics” that have been modeled via the hierarchy. Therefore we define
a solution to the plan repair problem as follows.

Definition 4 (Repaired Plan). Given a plan repair problem Pr = (P , tns,
dt , exe, F+, F−) with P = (L, C, A, M, s0, tnI , g, δ), tns = (T ,≺, α) and
exe = (t0, t1, . . . tn), a repaired plan is a plan that

1. can be executed in s0
2. is a refinement of tnI ,
3. has a linearization with a prefix (α(t0), α(t1), . . . α(tn)) followed by tasks exe-

cutable despite the unforeseen state change, resulting in a goal state.

4 HTN Plan Repair: Related Work

Before we survey practical approaches on plan repair in HTN planning, we recap
the theoretical properties of the task. Modifying existing HTN solutions (in
a way so that the resulting solution lies still in the decomposition hierarchy)
is undecidable even for quite simple modifications [5] and even deciding the
question whether a given sequence of actions can be generated in a given HTN
problem is NP-complete [6,7]. Unsurprisingly, the task given here – finding a
solution that starts with a given sequence of actions – is undecidable [6].
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We now summarize work concerned with plan repair or re-planning in hier-
archical planning in chronological order.

One of the first approaches dealing with execution failures in hierarchical
planning is given by Kambhampati and Hendler [27]. It can be seen as plan
repair, since it repairs the already-found solution with the least number of
changes. There are two properties we want to point out regarding our classi-
fication: (1) Though they assume a hierarchical model, (i.e., they also feature
abstract tasks and decomposition methods for refining them), the planning goals
are not defined in terms of an initial task network, but as a state-based goal.
Abstract tasks use preconditions and effects so that they can be inserted as well.
The plan that is repaired is a primitive plan, but it was generated by a hierar-
chical planner. (2) They do not base their work on an execution error, such as an
unexpected change of a current situation, but instead assume that the problem
description changes, i.e., the initial state and a goal description.

Drabble et al. [15] introduced algorithms to repair plans in case of action
execution failure and unexpected world events by modifying the existing plan.

Boella and Damiano [14] propose a repair algorithm for a reactive agent
architecture. Though they refer to it as re-planning, it can be seen as plan repair
according to our classification. The original problem is given in terms of an initial
plan that needs to be refined. Repair starts with a given primitive plan. They
take back performed refinements until finding a more abstract plan that can be
refined into a new primitive one with an optimal expected utility.

Warfield et al. [31] propose the RepairSHOP system, which extends the
progression-based HTN planner SHOP [29] to cope with unexpected changes
to the current state. Their plan repair approach shows some similarities with
the previous one, as they backtrack decompositions up to a point where differ-
ent options are available that allow a refinement in which the unexpected change
does not violate executability. To do this, the authors propose the goal graph,
which is a representation of the commitments that the planner has already made
to find the executed solution.

Bidot et al. [12] propose a plan repair algorithm to cope with execution fail-
ures. The same basic idea has later been described in a more dense way relying
on a simplified formalism [13]. Their approach also shows similarities to the
previous two, as they also start with the failed plan and take planning deci-
sions back, starting with those that introduced failure-associated plan elements,
thereby re-using much of the planning effort already done. The already executed
plan elements (steps and orderings) are marked with so-called obligations, a new
flaw class in the underlying flaw-based planning system.

The previous plan repair approach has been further simplified by Bercher et
al. [9,10]. Their approach uses obligations to state which plan elements must
be part of any solution due to the already executed prefix. In contrast to the
approaches given before, it starts with the initial plan and searches for refine-
ments that achieve the obligations. Technically, it can be regarded re-planning,
because it starts planning from scratch and from the original initial state while
ensuring that new solutions start with the executed prefix. It was implemented
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in the plan-space-based planning system PANDA [11] and practically in use in
the described assembly scenario, but never systematically evaluated empirically.

The most recent approach for HTN plan repair is the one by Barták
and Vlk [4]. It focuses on scheduling, i.e., the task of allocating resources to
actions and determine their execution time. In case of an execution error (a
changed problem specification), another feasible schedule is found via backjump-
ing (conflict-directed backtracking).

All these approaches address execution failures by a specialized algorithm. In
the next section, we propose a novel approach that solves the problem without
relying on specialized algorithms. Instead, it encodes the executed plan steps and
the execution error into a standard HTN problem, which allows to use standard
HTN solvers instead.

5 Plan Repair via Domain Transformation

Technically, the task is similar to plan recognition as planning (PGR) and we
heavily build on the transformation-based PGR approach by Höller et al. [23].
The encoding of actions used by Höller et al. is similar to the one introduced by
Ramı́rez and Geffner [30] in plan recognition in the context of classical planning.

Let Pr = (P , tns, dt , exe, F+, F−) be the plan repair problem, P = (L, C, A,
M, s0, tnI , g, δ) with δ = (prec, add , del) the original HTN planning problem,
exe = (a1, a2, . . . , am) the sequence of already executed actions1, and F+, F− ∈
2L the sets of the unforeseen positive and negative facts, respectively. We define
the following HTN planning problem P ′ = (L′, C ′, A′,M ′, s′

0, tn
′
I , g

′, δ′) with
δ′ = (prec′, add ′, del ′) that solves the plan repair problem.

First, a set of new propositional symbols is introduced that indicate the
position of some action in the enforced plan prefix. We denote these facts as li
with 0 ≤ i ≤ m and li �∈ L and define L′ = L ∪ {li | 0 ≤ i ≤ m}.

For each task ai with 1 ≤ i < m − 1 in the prefix of executed actions, a new
task name a′

i is introduced with

prec′(a′
i) �→ prec(ai) ∪ {li−1},

add ′(a′
i) �→ add(ai) ∪ {li} and

del ′(a′
i) �→ del(ai) ∪ {li−1}.

The last action in the executed prefix am needs to have additional effects, it
performs the unforeseen state change.

prec′(a′
m) �→ prec(am) ∪ {lm−1},

add ′(a′
m) �→ (

add(am) \ F−) ∪ F+ ∪ {lm} and

del ′(a′
m) �→ del(am) ∪ F− ∪ {lm−1}.

1 To simplify the following definitions, the definition is slightly different from Defini-
tion 1, where it is a sequence of identifiers mapped to the tasks. The latter makes it
possible to identify which decomposition resulted in an action, which is not needed
here.
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The original actions shall be ordered after the prefix, i.e., ∀a ∈ A : prec′(a) �→
prec(a) ∪ {lm}. The new set of actions is defined as A′ = A ∪ {a′

i | 1 ≤ i ≤ m}.
To make the first action of the prefix applicable in the initial state, the symbol
l0 is added, i.e., s′

0 = s0 ∪ {l0}. We enforce that every solution starts with the
entire prefix, i.e. g′ = g ∪ {lm}.

Having adapted the non-hierarchical part of the problem, the newly intro-
duced actions now need to be made reachable via the hierarchy. Since they
simulate their duplicates from the prefix of the original plan, the planner should
be allowed to place them at the same positions. This can be enabled by intro-
ducing a new abstract task for each action appearing in the prefix, replacing the
original action at each position it appears, and adding methods such that this
new task may be decomposed into the original or the new action. Formally, the
transformation is defined in the following way.

C ′ = C ∪ {c′
a | a ∈ A}, c′

a �∈ C ∪ A,

M c = {(c, (T ,≺, α′)) | (c, (T ,≺, α)) ∈ M}, where

=∀t ∈ T with α(t) = k we define α′(t) =

{
k, if k ∈ C

c′
k, else.

Ma = {(c′
a, ({t}, ∅, {t �→ a})) | ∀a ∈ A},

So far the new abstract tasks can only be decomposed into the original action.
Now we allow the planner to place the new actions at the respective positions
by introducing a new method for every action in exe = (a1, a2, . . . , am), decom-
posing a new abstract task c′

ai
into the executed action ai:

Mexe = {(c′
ai

, ({t}, ∅, {t �→ a′
i})) | ai ∈ exe}

The set of methods is defined as M ′ = M c ∪ Ma ∪ Mexe .
Figure 3 illustrates the method encoding. On the left, a method m is given

that decomposes an abstract task c into another abstract task c′ and an action
a. When we assume that a is contained in the prefix once, the given approach
will result in three new methods in the new model that are given on the right.
In the original method m, the action a is replaced by a new abstract task ca
(the resulting method is named m1). When a is contained in other methods, it is
replaced in the same way as given here. The abstract task ca can be decomposed
using one of the two methods m2 and m3. They replace ca either by the original
action a or by the newly introduced copy a′. That way, a′ can be added into the
solution at exactly the positions where a has been possible before.

Figure 4 shows the schema of plans generated from our transformation: The
structure of preconditions and effects results in a totally ordered sequence of
actions in the beginning that is equal to these actions already executed. The
last action (a′

m) has additional effects that realize the unforeseen state change.
Afterwards the planner is free to generate any partial ordering of tasks as allowed
by the original domain. The newly introduced goal feature forces the prefix to
be in the plan.
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Fig. 3. Encoding of methods.
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Fig. 4. Schema of the overall plan generated from our transformation.

Now we come back to our example. Starting the planner after the execution
failure on the transformed model, it might now come up with the following plan
that is executed starting with the third action. Now the toll is paid correctly.

drive(A,C )′, driveTA(C ,G)′, driveTA(G ,E ),
driveTA(E ,F ), driveTA(F ,H ),

payToll(), payToll(), payToll(), payToll()

Like the approach given by Bercher et al. [9], our transformation is a mixture
between re-planning and repair. The planning process is started from scratch,
but the system generates a solution that starts with the executed prefix and
incorporates constraints induced by the hierarchy. Since it enforces the properties
by using a transformation, the system that generates the actual solution can
be a standard HTN planning system. For future work, it might be interesting
to adapt the applied planning heuristic to increase plan stability (though this
would, again, lead to a specialized system).

A problem class related to HTN planning where our transformation may also
be used is HTN planning with task insertion [2,8,19] (TIHTN planning). Here,
the planning system is allowed to add actions apart from the decomposition pro-
cess. This makes the issues described in Sect. 3 less obvious, since the sequence
of already executed actions might simply be considered inserted. However, a
TIHTN planner needs to include all actions that are enforced via the hierarchy
into the plan. Consider an action that can only be executed once and that has
already been executed. When the prefix is considered inserted and planning is
done from scratch, the planner needs to insert it again and no executable plan is
found. Using our techniques (with minor changes) will prevent such situations.
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6 Theoretical Properties of the Transformation

We do not give an empirical evaluation of the encoding. Instead we analyze the
theoretical properties of the transformation.

We first show that the common sub-classes of HTN planning are closed under
the transformation, i.e., that the transformed problem is in the same class as
the original problem. We consider the following sub-classes:

1. Full HTN planning – The full formalism without restrictions.
2. Totally ordered HTN planning [1,17] – The subtasks of all methods as well

as the initial task network are totally ordered.
3. Tail-recursive HTN planning [1,3] – In this class, there exists a pre-order on all

tasks in the domain (not to be confused with the partial order on tasks within
task networks). For all methods, the following holds: All subtasks except the
distinct last task (if there is one) have to be smaller than the decomposed task
with respect to the pre-order. The last task may not be greater. Intuitively,
there are layers of tasks and all but the last task are in lower layers. The last
task may be in the same layer. It is always possible to put primitive tasks on
a single lowest layer.

4. Acyclic HTN planning – There is no recursion, i.e. (one or more steps of)
decomposition of a task can not end up with the same task.

Afterwards, we show that the size of the transformed problem is – in the
worst case – quadratic when considering the executed prefix part of the input
(as done in our definition, cf. Definition 1). Please be aware, however, that the
transformed problem can become arbitrary large in comparison to the original
planning problem when the prefix is not considered part of the input.

6.1 Closure Properties

We first show closure properties of the given HTN sub-classes.

Full HTN Models. Since the model resulting from the transformation is a com-
mon HTN model, it is obvious that this class is closed under the transformation.

Totally Ordered HTN Models. When we have a look at the transformation,
we see that (1) the ordering of modified methods is exactly as it was before and
that (2) new methods contain a single subtask (making them totally ordered, i.e.
maximally restricted in the ordering). Surely we do not change properties related
to method ordering and the transformation resulting from a totally ordered
model as input will also be totally ordered.

Tail-recursive HTN Models. The newly introduced abstract tasks form a decom-
position layer between the original abstract tasks and the original and newly
introduced actions: when such a new abstract task is reached, it is not pos-
sible to reach any abstract task anymore, only actions are reachable from it.
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Given there was an ordering of the tasks with the given properties before the
transformation, we can define one on the transformed model by inserting a new
“layer” between the original actions and the original abstract tasks and put the
new abstract tasks on this layer. So if there was a pre-order with the given prop-
erties on all tasks in the first place (making the problem tail-recursive) the new
model will still possess such a pre-order, i.e. it is still tail-recursive.

Acyclic Models. We do not introduce recursive decomposition structures. When
a model is non-recursive before, it will also be non-recursive afterwards.

6.2 Model Size

Next we show that the transformation is in the worst case quadratic in the input.
Let n be the size of the HTN model and m the size of the already executed prefix.
We consider both model and prefix as part of the input. For each step in the
prefix, the transformation adds to the model:

1. a single state feature,
2. a single new action,
3. up to two methods (with constant size), and
4. at most a single abstract task.

Due to the (rather artificial) case that the actions included in the prefix
dominate the size of the HTN model (e.g. if they have every state feature as pre-
condition/effect and the elements defining the hierarchy, i.e. abstract tasks and
methods are small in comparison to the actions) the size of the transformation
is bounded by n × m (caused by adding a new action m times). In practice, it
should be much smaller, though.

Even in this artificial kind of domain, the size of the encoding will only be
quadratic for a certain prefix length. When the prefix is very small, the size of
the input model will dominate the size of the resulting model, if it becomes very
large, the prefix dominates the size. Only when they are of similar size we end
up with quadratic model size.

7 Conclusion

In this paper we introduced a novel approach to repair broken plans in HTN
planning. We discussed that simply re-starting the planning process is no option
since this discards constraints implied by the hierarchy. Instead, systems need
to come up with a new plan that starts with the actions that have already been
executed. All systems in the literature tackle the given problem by specialized
algorithms. We provided a transformation-based approach that enables the use
of unchanged HTN planning systems.
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Abstract. A conditional knowledge base R is a set of conditionals of
the form “If A then usually B”. Using structural information derived
from the conditionals in R, we introduce the preferred structure relation
on worlds. The preferred structure relation is the core ingredient of a new
inference relation called system W inference that inductively completes
the knowledge given explicitly in R. We show that system W exhibits
desirable inference properties like satisfying system P and avoiding, in
contrast to, e.g., system Z, the drowning problem. It fully captures and
strictly extends both system Z and skeptical c-inference. In contrast to
skeptical c-inference, it does not require to solve a complex constraint
satisfaction problem, but is as tractable as system Z.

1 Introduction

In the area of knowledge representation and reasoning, conditionals play a promi-
nent role. Nonmonotonic reasoning investigates qualitative conditionals of the
form “If A then usually B”. Various semantical approaches for inferences based
on sets of such conditionals as well as criteria and postulates for evaluating the
obtained inference relations have been proposed (cf. [1,4,7,8,10,12,14,19–22]).
Among the different semantical models of conditional knowledge bases are Spohn’s
ordinal conditional functions (OCFs) [24,25], also called ranking functions. An
OCF κ assigns a degree of surprise (or degree of implausibility) to each world ω,
the higher the value κ(ω) assigned to ω, the more surprising ω. Each κ that accepts
a set R of conditionals, called a knowledge base, induces a nonmonotonic inference
relation that inductively completes the explicit knowledge given in R.

Two inference relations which are defined based on specific OCFs obtained
from a knowledge base R have received some attention: system Z [13,23] and
c-representations [14,15], or the induced inference relations, respectively, both
show excellent inference properties. System Z is based upon the ranking func-
tion κZ , which is the unique Pareto-minimal OCF that accepts R. The defini-
tion of κZ crucially relies on the notions of tolerance and of inclusion-maximal
ordered partition of R obtained via the tolerance relation [13,23]. Among the
OCF models of R, c-representations are special models obtained by assigning
an individual impact to each conditional and generating the world ranks as the
c© Springer Nature Switzerland AG 2020
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sum of impacts of falsified conditionals [14,15]. While for each consistent R, the
system Z ranking function κZ is uniquely determined, there may be many dif-
ferent c-representations of R. Skeptical c-inference [2,5] is the inference relation
obtained by taking all c-representations of R into account.

It is known that system Z and skeptical c-inference both satisfy system P
[5,13,19] and other desirable properties. Furthermore, there are system Z infer-
ences that are not obtained by skeptical c-inference, and on the other hand,
there are skeptical c-inferences that are not system Z inferences [5]. Another
notable difference between system Z and skeptical c-inference is that the single
unique system Z model [23] can be computed much easier than skeptical c-
inference which involves many models obtained from the solutions of a complex
constraint satisfaction problem [5]. In recently published work [18], we showed
that the exponential lower bound 2n−1 is needed as possible impact factor for c-
representations to fully realize skeptical c-inference, supporting the observation
that skeptical c-inference is less tractable than system Z inference (cf. [5,13]).

Inspired by our findings in [18], here we develop the preferred structure rela-
tion on worlds and propose the new nonomonotonic system W inference based
on it. The main contributions of this paper are:

– We introduce the preferred structure relation <w
Ron worlds based on the

notions of tolerance and verification/falsification behavior of a knowledge base
R.

– By exploiting <w
R, we develop a new inference relation, called system W infer-

ence, which is as tractable as system Z.
– We prove that system W inference captures and strictly extends both sys-

tem Z inference and skeptical c-inference.
– We show that system W inference exhibits desirable inference properties like

satisfying the axioms of system P and avoiding the drowning problem.

The rest of the paper is organized as follows. After briefly recalling the
required background in Sect. 2, we introduce the preferred structure on worlds
and prove several of its properties in Sect. 3. In Sect. 4, we give the formal
definition of system W, illustrate it with various examples and show its main
properties. In Sect. 5, we conclude and point out future work.

2 Conditional Logic, System Z, and C-Representations

Let Σ = {v1, ..., vm} be a propositional alphabet. A literal is the positive (vi)
or negated (vi) form of a propositional variable, v̇i stands for either vi or vi.
From these we obtain the propositional language L as the set of formulas of Σ
closed under negation ¬, conjunction ∧, and disjunction ∨. For shorter formu-
las, we abbreviate conjunction by juxtaposition (i.e., AB stands for A∧B), and
negation by overlining (i.e., A is equivalent to ¬A). Let ΩΣ denote the set of
possible worlds over L; ΩΣ will be taken here simply as the set of all proposi-
tional interpretations over L and can be identified with the set of all complete
conjunctions over Σ; we will often just write Ω instead of ΩΣ . For ω ∈ Ω, ω |= A
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means that the propositional formula A ∈ L holds in the possible world ω. With
ΩA = {ω ∈ ΩΣ | ω |= A}, we denote the set of all worlds in which A holds, and
≡ denotes propositional equivalence.

A conditional (B|A) with A,B ∈ L encodes the defeasible rule “if A then
normally B” and is a trivalent logical entity with the evaluation [11,14]

�(B|A)�ω =

⎧
⎨

⎩

v iff ω |= AB (verification) ,
f iff ω |= AB (falsification) ,
− iff ω |= A (not applicable) .

(1)

An ordinal conditional function (OCF, ranking function) [24,25] is a function
κ : Ω → N0∪{∞} that assigns to each world ω ∈ Ω an implausibility rank κ(ω):
the higher κ(ω), the more surprising ω is. OCFs have to satisfy the normalization
condition that there has to be a world that is maximally plausible, i.e., κ−1(0) 	=
∅. The rank of a formula A is defined by κ(A) = min{κ(ω) | ω |= A} where
min ∅ = ∞. An OCF κ accepts a conditional (B|A), denoted by κ |= (B|A),
if the verification of the conditional is less surprising than its falsification, i.e.,
κ |= (B|A) iff κ(AB) < κ(AB). This can also be understood as a nonmonotonic
inference relation between the premise A and the conclusion B: Basically, we say
that A κ-entails B, written A |∼ κ

B, if κ accepts (B|A); formally, this is given
by

A |∼ κ
B iff A ≡ ⊥ or κ(AB) < κ(AB). (2)

Note that the reason for including the disjunctive condition in (2) is to ensure
that |∼ κ satisfies supraclassicality, i.e., A |= B implies A |∼ κ

B, also for the case
A ≡ ⊥ as it is required, for instance, by the reflexivity axiom A |∼ A of system P
[1,19]. Let us remark that κ-entailment is based on the total preorder on possible
worlds induced by a ranking function and can be expressed equivalently by:

A |∼ κ
B iff ∀ω′ ∈ ΩAB ∃ω ∈ ΩAB κ(ω) < κ(ω′) . (3)

The acceptance relation is extended as usual to a set R of conditionals, called
a knowledge base, by defining κ |= R iff κ |= (B|A) for all (B|A) ∈ R. This is
synonymous to saying that κ is admissible with respect to R [13], or that κ is a
ranking model of R. R is consistent iff it has a ranking model.

Two inference relations which are defined by specific OCFs obtained from a
knowledge base R have received some attention: system Z [23] and c-represen-
tations [14,15], or the induced inference relations, respectively, both show excel-
lent inference properties. We recall both approaches briefly.

System Z [23] is based upon the ranking function κZ , which is the unique
Pareto-minimal OCF that accepts R. The definition of κZ crucially relies on the
notion of tolerance. A conditional (B|A) is tolerated by a set of conditionals R
if there is a world ω ∈ Ω such that ω |= AB and ω |= ∧n

i=1(Ai ∨ Bi), i.e., iff
ω verifies (B|A) and does not falsify any conditional in R. For every consistent
knowledge base, the notion of tolerance yields an ordered partition (R0, ...,Rk)
of R, where each Ri is tolerated by

⋃k
j=i Rj . The inclusion-maximal partition of

R, in the following denoted by OP(R) = (R0, . . . ,Rk), is the ordered partition
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of R where each Ri is the (with respect to set inclusion) maximal subset of
⋃k

j=i Rj that is tolerated by
⋃k

j=i Rj . This partitioning is unique due to the
maximality and can be computed using the consistency test algorithm given
in [13]; for an inconsistent knowledge base R, OP(R) does not exist. Using
OP(R) = (R0, . . . ,Rk), the system Z ranking function κZ is defined by

κZ(ω) :=

⎧
⎨

⎩

0 , if ω does not falsify any conditional r ∈ R,

1 + max 1�i�n

ω|=AiBi

Z(ri), otherwise,

(4)
where the function Z : R → N0 is given by Z(ri) = j if ri ∈ Rj .

Definition 1 (system Z inference, |∼ Z
R [13]). Let R be a knowledge base

and let A, B be formulas. We say that B can be inferred from A by system Z
in the context of R, denoted by A |∼ Z

RB, iff A |∼ κZ

B holds.

Among the OCF models of R, c-representations are special models obtained
by assigning an individual impact to each conditional and generating the world
ranks as the sum of impacts of falsified conditionals. For an in-depth introduction
to c-representations and their use of the principle of conditional preservation
ensured by respecting conditional structures, we refer to [14,15]. The central
definition is the following:

Definition 2 (c-representation [14]). A c-representation of a knowledge base
R is a ranking function κ #»η constructed from #»η = (η1 , . . . , ηn) with integer
impacts ηi ∈ N0 , i ∈ {1 , . . . , n} assigned to each conditional (Bi|Ai) such that
κ accepts R and is given by:

κ #»η (ω) =
∑

1�i�n

ω|=AiBi

ηi (5)

We will denote the set of all c-representations of R by O(CR(R)).

As every ranking model of R, each c-representation κ #»η gives rise to an
inference relation according to (2). While for each consistent R, the system
Z ranking function κZ is uniquely determined, there may be many different
c-representations of R. C-inference [2,5] is an inference relation taking all c-
representations of R into account.

Definition 3 (c-inference, |∼ c
R [2]). Let R be a knowledge base and let A, B

be formulas. B is a (skeptical) c-inference from A in the context of R, denoted
by A |∼ c

RB, iff A |∼ κ
B holds for all c-representations κ for R.

In [5] a modeling of c-representations as solutions of a constraint satisfaction
problem CR(R) is given and shown to be sound and complete with respect to
the set of all c-representations of R.
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Definition 4 (CR(R) [2]). Let R = {(B1|A1), . . . , (Bn|An)}. The constraint
satisfaction problem for c-representations of R, denoted by CR(R), on the con-
straint variables {η1, . . . , ηn} ranging over N0 is given by the conjunction of the
constraints, for all i ∈ {1, . . . , n}:

ηi � 0 (6)

ηi > min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj − min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj (7)

A solution of CR(R) is an n-tuple (η1, . . . , ηn) ∈ N
n
0 . For a constraint satis-

faction problem CSP , the set of solutions is denoted by Sol(CSP). Thus, with
Sol(CR(R)) we denote the set of all solutions of CR(R).

Proposition 1 (soundness and completeness of CR(R) [5]). Let R =
{(B1|A1), . . . , (Bn|An)} be a knowledge base. With κ #»η as in (5), we then have:

O(CR(R)) = {κ #»η | #»η ∈ Sol(CR(R))} (8)

Example 1 (Rbird). To illustrate the definitions and concepts presented in this
paper let us consider an instance of the well known penguin bird exam-
ple. This example is our running example and it will be continued and
extended throughout the paper. Consider the propositional alphabet Σ =
{p , b , f} representing whether something is a penguin (p), whether it is
a bird (b), or whether it can fly (f). Thus, the set of worlds is Ω =
{p b f , p b f , p b f , p b f , p b f , p b f , p b f , p b f}. The knowledge base Rbird =
{r1 , r2 , r3 , r4} contains the conditionals

r1 = (f |b) “Birds usually fly”,

r2 = (f |p) “Penguins usually do not fly”,

r3 = (f |bp) “Penguins which are also birds usually do not fly”,
r4 = (b|p) “Penguins are usually birds”.

For R0 = {(f |b)} and R1 = Rbird \R0 we have the ordered partitioning (R0,R1)
such that every conditional in R0 is tolerated by R0 ∪ R1 = Rbird and every
conditional in R1 is tolerated by R1. For instance, (f |b) is tolerated by Rbird

since there is, for example, the world pbf with pbf |= bf as well as pbf |= (p ⇒
f) ∧ (pb ⇒ f) ∧ (p ⇒ b). Furthermore (R0 ,R1) is indeed the inclusion-maximal
partition of R. Therefore, R is consistent. An OCF κ that accepts Rbird is:

ω p b f p b f p b f p b f p b f p b f p b f p b f

κ(ω) 2 1 2 2 0 1 0 0

For instance, we have κ |= (f |b) since κ(bf) = min{κ(pbf), κ(pbf)} =
min{2, 0} = 0 and κ(bf) = min{κ(pbf), κ(pbf)} = min{1, 1} = 1 and there-
fore κ(bf) < κ(bf).
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3 Preferred Structure on Worlds

Aiming at developing a nonmonotonic inference relation combining advantages of
system Z like tractability and of skeptical c-inference like, for instance, avoidance
of the downing problem [9,23], we first introduce the new notion of preferred
structure on worlds with respect to a knowledge base R. The idea is to take into
account both the tolerance information expressed by the ordered partition of R
and the structural information which conditionals are falsified.

Definition 5 (ξj, ξ, preferred structure <w
R on worlds). Consider a con-

sistent knowledge base R = {ri = (Bi|Ai) | i ∈ {1, . . . , n}} with OP(R) =
(R0, . . . ,Rk). For j ∈ {0, . . . , k}, ξj and ξ are the functions mapping worlds
to the set of falsified conditionals from the tolerance partition Rj and from R,
respectively, given by

ξj(ω) := {ri ∈ Rj | ω |= AiBi}, (9)

ξ(ω) := {ri ∈ R | ω |= AiBi}. (10)

The preferred structure on worlds is given by the binary relation <w
R⊆ Ω × Ω

defined by, for any ω , ω′ ∈ Ω,

ω <w
R ω′ iff there exists m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m + 1 , . . . , k}, and (11)
ξm(ω) � ξm(ω′) .

Thus, ω <w
R ω′ if and only if ω falsifies strictly less conditionals than ω′

in the partition with the biggest index m where the conditionals falsified by ω
and ω′ differ. The preferred structure on worlds will be the basis for defining a
new inference relation induced by R. Before formally defining this new inference
relation and elaborating its properties, we proceed by illustrating the preferred
structure on worlds for a knowledge base R, relating it to c-representations of
R, and proving a set of its properties that will be useful for investigating the
characteristics and properties of the resulting inference relation.

Example 2 (<w
Rbird

). Let us determine the preferred structure on worlds <w
Rbird

for the knowledge base Rbird from Example 1 whose verification/falsification
behavior is shown in Table 1. The inclusion-maximal partition OP(Rbird ) =
(R0,R1) is given by R0 = {r1 = (f |b)} and R1 = {r2 = (f |p) , r3 = (f |bp) , r4 =
(b|p)}. Figure 1 shows the preferred structure on worlds <w

Rbird
for the knowledge

base Rbird . An edge ω → ω′ between two worlds indicates that ω <w
Rbird

ω′. The
full relation <w

Rbird
is obtained from the transitive closure of → in Fig. 1.

The following proposition can be seen as a generalization of a result from
[6]. It extends [6, Proposition 15] to the relation <w

R and to arbitrary knowl-
edge bases, not just knowledge bases only consisting of conditional facts as in
[6, Proposition 15]. It tells us that the set of c-representations is rich enough to
guarantee the existence of a particular c-representation κ #»η ∈ O(CR(R)) fulfill-
ing the ordering constraints given in the proposition.
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Table 1. Verification/falsification behavior of the knowledge base Rbird ; (v) indicates
verification, (f) falsification, and (−) non-applicability. The OCF κZ is the ranking
function obtained from Rbird using system Z.

ω pbf pbf pbf pb f pbf pbf pbf pb f

r1 = (f |b) v f − − v f − −
r2 = (f |p) f v f v − − − −
r3 = (f |pb) f v − − − − − −
r4 = (b|p) v v f f − − − −
κZ(ω) 2 1 2 2 0 1 0 0

pbf

pbf pb f

pbf pbf

pbf pbf pb f

Fig. 1. The preferred structure relation <w
Rbird

on worlds for the knowledge base Rbird .

Proposition 2. Let R = {ri = (Bi|Ai) | i = 1 , . . . , n} be a consistent knowl-
edge base, let ω′ ∈ Ω and let ΩV ⊆ Ω. Assume that ω 	<w

R ω′ for all ω ∈ ΩV .
Then there exists a solution #»η ∈ Sol(CR(R)) and thus a c-representation,
κ #»η ∈ O(CR(R)) such that, for all ω ∈ ΩV , we have:

κ #»η (ω′) � κ #»η (ω) (12)

Proof. (Sketch) Due to lack of space, we give a sketch of the proof. The claim
follows by combining the following two statements:

(i) If ηi ∈ N , i ∈ {1 , . . . , n}, satisfy

ηi >
∑

j∈{1,...,n}
rj∈⋃m−1

l=0 Rl

ηj (13)

for all i ∈ {1 , . . . , n} where m = m(i) ∈ {0 , . . . , k} with ri ∈ Rm then
#»η = (η1 , . . . , ηn) is a solution of CR(R) and so κ #»η defined as in (5) is a
c-representation of R.

(ii) Because of ω 	<w
R ω′ for all ω ∈ ΩV we can choose #»η = (η1 , . . . , ηn) satisfy-

ing (13) such that κ #»η defined as in (5) satisfies (12) for all ω ∈ ΩV .

A complete proof that (i) and (ii) hold is given in the full version of this paper
[17]. ��
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The rest of this section is dedicated to the investigation of further properties
of the relation <w

R. Let us start with a lemma that tells us that worlds falsifying
the same sets of conditionals are equivalent with respect to <w

R.

Lemma 1. Let R = {(Bi|Ai) | i = 1, . . . , n} be a knowledge base, and let
ω1 , ω2 ∈ Ω falsify the same sets of conditionals, i.e., for all i ∈ {1 , . . . , n}, we
have ω1 |= AiBi iff ω2 |= AiBi. Then ω1 , ω2 behave exactly the same way with
respect to R, i.e., for all ω ∈ Ω, the following equivalences hold:

ω <w
R ω1 iff ω <w

R ω2 ,

ω1 <w
R ω iff ω2 <w

R ω .

Proof. The claim follows from ξi(ω1) = ξi(ω2) for all i ∈ {0 , . . . , k}. ��
In general, the relation <w

R cannot be obtained from a ranking function.

Lemma 2. There exists a knowledge base R such that there is no ranking func-
tion κ : Ω → N

∞
0 with ω1 <w

R ω2 iff κ(ω1) < κ(ω2).

Proof. The proof is by contradiction. Assume there is a ranking function κ :
Ω → N

∞
0 with ω1 <w

R ω2 iff κ(ω1) < κ(ω2) for Rbird . For <w
R (cf. Fig. 1) we

have p b f 	<w
Rbird

p b f and p b f 	<w
Rbird

p b f and furthermore p b f 	<w
Rbird

p b f and
p b f 	<w

Rbird
p b f . Therefore, we obtain κ(p b f) = κ(p b f) and κ(p b f = κ(p b f).

Thus, κ(p b f) = κ(p b f) which is a contradiction to p b f <w
Rbird

p b f . ��
Let us end this subsection by proving that <w

R defines a strict partial order.

Lemma 3. The relation <w
R is irreflexive, asymmetric, and transitive, meaning

that <w
R is a strict partial order.

Proof. Condition (11) immediately yields that <w
R is irreflexive and asymmetric.

It remains to show that <w
R is transitive. Define a := max{i ∈ {0, . . . , k} |

ξi(ω1) 	= ξi(ω2)} and b := max{i ∈ {0, . . . , k} | ξi(ω2) 	= ξi(ω3)}. Then ω1 <w
R ω2

and ω2 <w
R ω3 is equivalent to ξa(ω1) � ξa(ω2) and ξb(ω2) � ξb(ω3).

If a = b then ξa(ω1) � ξa(ω3) and a = max{i ∈ {0, . . . , k} | ξi(ω1) 	=
ξi(ω3)} and so ω1 <w

R ω3. If a < b then ξb(ω1) � ξb(ω3) and b = max{i ∈
{0, . . . , k} | ξi(ω1) 	= ξi(ω3)} and so ω1 <w

R ω3. If a > b then ξi(ω2) = ξi(ω3)
for all i ∈ {b + 1, . . . , k} and b + 1 � a � k; therefore ξa(ω1) � ξa(ω3) and
a = max{i ∈ {0, . . . , k} | ξi(ω1) 	= ξi(ω3)} and so ω1 <w

R ω3. ��

4 System W

The preferred structure <w
R on worlds for a knowledge base R is defined using

both the tolerance information provided by the inclusion-maximal ordered parti-
tion OP(R) and information on the set of falsified conditionals. Inference based
on <w

R is called system W inference and is defined as follows.
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Definition 6 (system W, |∼ w
R). Let R be a knowledge base and A,B be for-

mulas. Then B is a system W inference from A (in the context of R), denoted

A |∼ w
RB iff ∀ω′ ∈ ΩAB ∃ω ∈ ΩAB ω <w

R ω′ . (14)

A consequence of this definition is that system W inference is as tractable as
system Z because the preferred structure on worlds is obtained directly from the
ordered partition of R and the verification/falsification behavior of R. We apply
the definition of system W to our running example.

Example 3 (Rbird , cont.). Consider again Rbird from Example 1. Let us show
that for A = b f and B = p we have A |∼ w

Rbird
B, i.e., that flying birds are usually

not penguins. Due to ξ(b f p) = ∅ and ξ(b f p) = {r2, r3} (see Table 1) it follows
that b f p <w

Rbird
b f p. Therefore, since ΩAB = {b f p} and ΩAB = {b f p}, from

(14) it follows that indeed b f |∼ w
Rbird

p.

Note that b f |∼ c
Rbird

p, i.e., this inference is also a skeptical c-inference (cf. [5,
Example 5]). Therefore, Example 3 presents a c-inference that is also a system W
inference. The following proposition tells us that A |∼ c

RB always implies A |∼ w
RB.

Proposition 3 (system W captures c-inference). Let R be a consistent
knowledge base. Then we have for all formulas A ,B ∈ L:

If A |∼ c
RB then A |∼ w

RB . (15)

Proof. The proof of (15) is by contraposition. Assume A 	|∼ w
RB and thus

∃ω′ ∈ ΩAB ∀ω ∈ ΩAB ω 	<w
R ω′ . (16)

Our goal is to show A 	|∼ c
RB. Let us fix ω′ ∈ ΩAB such that (16) holds. Let us

define ΩV := ΩAB . Then ω 	<w
R ω′ for all ω ∈ ΩV . Due to Lemma 2 there exists

a c-representation κ #»η ∈ O(CR(R)) such that κ #»η (ω′) � κ #»η (ω) for all ω ∈ ΩAB .
This means that A 	|∼ κ #»η

R B and so indeed A 	|∼ c
RB. ��

Furthermore, every system Z inference is also a system W inference.

Proposition 4 (system W captures system Z). Let R be a consistent
knowledge base. Then we have for all formulas A ,B ∈ L

If A |∼ Z
RB then A |∼ w

RB . (17)

Proof. Inspecting (4) and (11) and given any worlds ω, ω′ ∈ Ω, we conclude
that κZ(ω) < κZ(ω′) implies ω <w

R ω′. Therefore, comparing (3), applied to the
ranking function κZ , with (14), shows that (17) is fulfilled. ��

In [16], a preference relation on worlds is defined that is based on structural
information by preferring a world ω to a world ω′ if ω falsifies fewer conditionals
than ω′ and ω′ falsifies at least all conditionals falsified by ω. Using this pref-
erence relation, the following entailment relation along the scheme as given by
(3) is obtained; we present the definition from [16] in a slightly modified form
adapted to our notion ξ(ω) for the set of conditionals from R falsified by ω.



Nonmonotonic Inferences with Qualitative Conditionals 111

Definition 7 (σR-structural inference [16]). Let R = {r1, . . . , rn} with ri =
(Bi|Ai) for i = 1, . . . , n be a knowledge base, A,B formulas, and let <σ

R be the
relation on worlds given by ω <σ

R ω′ iff ξ(ω) � ξ(ω′). Then B can be structurally
inferred, or σR-inferred, from A, written as

A |∼ σ
RB iff ∀ω′ ∈ ΩAB ∃ω ∈ ΩAB ω <σ

R ω′ . (18)

We can show that every σR-structural inference is also a system W inference.

Proposition 5 (system W captures σR-structural inference). Let R be
a consistent knowledge base. Then we have for all formulas A ,B ∈ L

If A |∼ σ
RB then A |∼ w

RB . (19)

Proof. Inspecting (11) and the definition of <σ
R, we conclude that ω <σ

R ω′

implies ω <w
R ω′ for all ω, ω′ ∈ Ω. Combining (11) and (18) yields (19). ��

The following proposition summarizes Propositions 3, 4, and 5 and shows
aditionally that system W strictly extends skeptical c-inference, system Z, and
structural inference by licensing more entailments than each of these three infer-
ence modes.

Proposition 6 (system W) For every consistent knowledge base R

|∼ c
R ⊆ |∼ w

R, |∼ Z
R ⊆ |∼ w

R and |∼ σ
R ⊆ |∼ w

R. (20)

Furthermore, there are knowledge bases R1 ,R2 ,R3 such that the inclusions in
(20) are strict, i.e.:

|∼ c
R1

� |∼ w
R1

(21)

|∼ Z
R2

� |∼ w
R2

(22)

|∼ σ
R3

� |∼ w
R3

(23)

Proof. The inclusions in (20) are shown in Propositions 3, 4, and 5. Thus, we
are left to show that the inclusions in (21)–(23) are strict.

1. For proving the strictness part of (21), consider the knowledge base R∗ =
{(b|a), (b c|a)} whose verification/falsification behavior is given by Table 2.
First, due to ξ(a b c) = {(b c|a)} � {(b|a), (b c|a)} = ξ(a b c), we obtain
a c |∼ w

R∗b. Making use of the verification/falsification behavior stated in
Table 2, for CR(R∗) we obtain η1 > −η2 and η2 > 0. Now consider the
solution vector #»η = (η1, η2) = (0, 1). For the associated c-representation κ #»η

(see Table 2) we then obtain κ #»η (a b c) = η2 = η1 + η2 = κ #»η (a b c) and thus
a c 	|∼ c

R∗b.
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Table 2. Verification/falsification behavior and (generic) c-representation of the knowl-
edge base R∗ in the proof of Proposition 6; (v) indicates verification, (f) falsification
and (−) non-applicability.

ω abc abc abc ab c abc abc abc ab c

r1 = (b|a) v v f f − − − −
r2 = (bc|a) v f f f − − − −
κ #»η (ω) 0 η2 η1 + η2 η1 + η2 0 0 0 0

2. For proving the strictness part of (22), consider the knowledge base Rbird from
Example 1. Let us show that for A = p b and B = f we have A |∼ w

Rbird
B, i.e.,

that penguins which are no bird usually do not fly. According to Example 2,
we have p b f <w

Rbird
p b f . Therefore, since ΩAB = {p b f} and ΩAB = {p b f}

it follows from (14) that indeed p b |∼ w
Rbird

f . Looking at Table 1, we observe
κZ(AB) = 2 = κZ(AB) and thus p b 	|∼ Z

Rbird
f .

3. For proving the strictness part of (23), consider again Rbird with OP(Rbird ) =
(R0,R1) where R0 = {(f |b)} and R1 = {(f |p), (f |bp), (b|p)} (cf. Example 2).
For ω = p b f , we get (cf. Table 1) that ξ(ω) = {(f |p), (f |pb)}, ξ(p b f) =
{(f |b)} and ξ(p b f) = {(b|p)}. Thus, there is no world ω′ ∈ Ω with ω′ |= p f
and ω′ <σ

Rbird
ω (which is equivalent to ξ(ω′) � ξ(ω)). Therefore, p 	|∼ σ

Rbird
f .

To show p |∼ w
Rf fix any ω ∈ Ω with ω |= p f . Then (f |p) ∈ ξ(ω) where

(f |p) ∈ R1. For ω′ = p b f we have ω′ <w
R ω due to ξ(ω′) = {(f |b)} where

(f |b) ∈ R0. Thus, indeed p |∼ w
Rf . ��

After comparing system W with other established inference methods let us
deal with further of its properties.

Proposition 7. In general, system W inference cannot be obtained from a rank-
ing function, i.e., there exists a knowledge base R such that there is no ranking
function κ : Ω → N

∞
0 with |∼ w

R = |∼ κ.

Proof. This follows immediately from Lemma 2. ��
Nonmonotonic inference relations are usually evaluated by means of proper-

ties. In particular, the axiom system P [1,19] provides an important standard
for plausible, nonmonotonic inferences.

Proposition 8. System W inference satisfies System P.

Proof. According to Lemma 3, <w
R is a strict transitive relation. Furthermore,

since Ω is finite, the triple Mw(R) = [Ω, |=, <w
R] is a stoppered classical prefer-

ential model [22]. Thus, the definition of system W given by (14) in Definition 6
ensures that system W inference is a preferential inference, hence satisfying sys-
tem P (cf. [19,22]). ��
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An inference relation suffers from the Drowning Problem [9,23] if it does not
allow to infer properties of a superclass for a subclass that is exceptional with
respect to another property because the respective conditional is “drowned” by
others. E.g., penguins are exceptional birds with respect to flying but not with
respect to having wings. So we would reasonably expect that penguins have
wings.

Example 4 (R∗
bird [5]). We extend the alphabet Σ = {p, b, f } of our running

example knowledge base Rbird from Example 1 with the variable w for having
wings, the variable a for being airborne, and the variable r for being red, obtaining
the alphabet Σ∗ = {p, b, f ,w , a, r}. We use the knowledge base

R∗
bird =

{
(f |b), (f |p), (b|p), (w|b), (a|f)

}

where the conditional (w|b) encodes the rule that birds usually have wings, and
the conditional (a|f) encodes the rule that flying things are usually airborne;
the other three conditionals (f |b), (f |p), (b|p) are the same as in Rbird .

The Drowning Problem distinguishes between inference relations that allow
for subclass inheritance only for non-exceptional subclasses (like system Z infer-
ence) and inference relations that allow for subclass inheritance for exceptional
subclasses (like skeptical c-inference [5, Observation 1] and inference with mini-
mal c-representations, cf. [16,26]). As an illustration for the drowning problem,
consider R∗

bird from Example 4. Here, we have κZ(p w) = 1 = κZ(p w), and con-
sequently p 	|∼ Z

R∗
bird

w (cf. [5, Example 9]), illustrating that system Z suffers from
the drowning problem. In contrast, the following observation shows that sys-
tem W licenses the inference that penguins usually have wings and thus avoids
this drowning phenomenon.

Observation 1 System W inference does not suffer from the drowning problem
in Example 4, i.e., we have p |∼ w

R∗
bird

w.

Proof. The inclusion-maximal partition OP(R∗
bird) = (R0,R1) of R∗

bird in
Example 4 is given by R0 = {(f |b), (w|b), (a|f)} and R1 = {(f |p), (b|p)}.

Consider ω ∈ Ω with ω |= p w. Choose an arbitrary ω′ ∈ Ω with ω′ |= p b fw.
We will show ω′ <w

R∗
bird

ω. Obviously, ω′ falsifies only the conditional (f |b) which
is in R0, written as a formula ξ(ω) = {(f |b)}. Since ω |= pw, we can distinguish
the following two cases:

(i) If ω |= p w f then the conditional (f |p) from R1 is falsified.
(ii) If ω |= p w f then we can again distinguish two cases:

(a) If ω |= p w f b then (b|p) from R1 is falsified.
(b) If ω |= p w f b then at least (f |b), (w|b) (both from R0) are falsified.

Due to (11), we thus get ω′ <w
R∗

bird
ω in every case, implying p |∼ w

R∗
bird

w. ��
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5 Conclusions and Future Work

In this paper, we introduced system W and its underlying preferred structure of
worlds. System W inference captures both System Z inference and skeptical c-
inference and exhibits desirable properties. For instance, in contrast to system Z,
it avoids the drowning problem. In contrast to skeptical c-inference, it does not
require to solve a complex constraint satisfaction problem, but is as tractable
as system Z because the preferred structure on worlds is obtained directly from
the ordered partition of R and the verification/falsification behavior of R. In
future work, we will empirically evalute system W with the reasoning platform
InfOCF [3] and investigate further inference properties of it.
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Abstract. Free logics are a family of logics that are free of any exis-
tential assumptions. Unlike traditional classical and non-classical logics,
they support an elegant modeling of nonexistent objects and partial func-
tions as relevant for a wide range of applications in computer science,
philosophy, mathematics, and natural language semantics. While free
first-order logic has been addressed in the literature, free higher-order
logic has not been studied thoroughly so far. The contribution of this
paper includes (i) the development of a notion and definition of free
higher-order logic in terms of a positive semantics (partly inspired by
Farmer’s partial functions version of Church’s simple type theory), (ii)
the provision of a faithful shallow semantical embedding of positive free
higher-order logic into classical higher-order logic, (iii) the implemen-
tation of this embedding in the Isabelle/HOL proof-assistant, and (iv)
the exemplary application of our novel reasoning framework for an auto-
mated assessment of Prior’s paradox in positive free quantified proposi-
tional logics, i.e., a fragment of positive free higher-order logic.

Keywords: Knowledge representation and reasoning · Interactive and
automated theorem proving · Philosophical foundations of AI ·
Partiality and undefinedness · Prior’s paradox.

1 Introduction

The proper handling of nonexistence and partiality constitutes a key challenge
not only for applications of formal methods in philosophy and mathematics
but also for computational approaches to artificial intelligence and natural lan-
guage [15–17]. In a so-called free logic, terms do not necessarily have to denote
existing objects allowing for theories involving both partial and total functions.
For that reason, free higher-order logics provide elegant solutions to the han-
dling of some well-known paradoxes in knowledge representation and reasoning,
many of which are beyond first-order logic. Moreover, free logics are well suited
to represent abstract objects and to support hypothetical reasoning with fictive
(and concrete) entities, and can therefore also be applied in metaphysics, ethics,
and law.
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Modern interactive and automated theorem provers, however, are typically
developed for classical notions of logic, in which only total functions are sup-
ported natively. Instead of investing time and effort in the development of new
theorem provers for free first-order and higher-order logics, a promising approach
for the implementation of such logics in existing higher-order theorem provers are
shallow semantical embeddings (SSEs) [5]. The contribution of this paper is four-
fold: We (i) developed a notion and definition of free higher-order logic in terms
of a positive semantics (partly inspired by Farmer’s partial functions version
of Church’s simple type theory [14]), (ii) provided a faithful shallow semantical
embedding of positive free higher-order logic into classical higher-order logic,
(iii) implemented this embedding in the Isabelle/HOL proof-assistant, and (iv)
applied our novel reasoning framework for an automated assessment of Prior’s
paradox [29] in positive free quantified propositional logics, i.e., a fragment of
positive free higher-order logic. Furthermore, we are currently integrating the
results reported in this paper in the LogiKEy framework [9] for expressive, plu-
ralistic normative reasoning.

Prior, coinciding with Kaplan [19], showed that paradoxes can arise quickly in
particular philosophical theories that include both sets and propositions. Bacon,
Hawthorne, and Uzquiano [3] discovered that universal instantiation, or, bet-
ter, the rejection of it, is key to blocking certain paradoxes inherent in such
higher-order logics. Logics without existential assumptions, i.e., free logics, just
naturally reject the principle of universal instantiation. The family of paradoxes
considered by Bacon et al. is represented by what we will call Prior’s paradox in
this paper. Prior’s paradox states:

Q∀p. (Qp → ¬p) → ∃p. (Qp ∧ p) ∧ ∃p. (Qp ∧ ¬p) .

Reading Qp as, e.g., ‘Kaplan says at midnight that p’, Prior’s paradox implies
that if Kaplan says at midnight that everything Kaplan says at midnight is false,
then Kaplan has said a true and a false thing at midnight. We end up with a
logical self-contradiction that, as we will discuss and demonstrate later in this
paper, is indeed resolved in free higher-order logic.

The paper structure is as follows: Sect. 2 briefly recaps classical higher-order
logic (HOL), before positive free higher-order logic (PFHOL) is introduced in
Sect. 3. Section 4 presents a faithful embedding of PFHOL in HOL, and Sect. 5
discusses its encoding in Isabelle/HOL. Section 6 applies the encoded embedding
to “solve” Prior’s paradox, and the last section concludes the paper.

2 Classical Higher-Order Logic (HOL)

Church’s simple type theory [13] is a classical higher-order logic defined on top
of the simply typed λ-calculus. Church’s original definitions, as generalized by
Henkin [18] to extensional type theory, the logical basis of most automated the-
orem proving systems for higher-order logic, are summarized below.
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2.1 Syntax

The main components of Church’s type theory are types and terms; more pre-
cisely, typed terms. The set of simple types τ is freely generated from a set of
two base types, {o, i}, and the right-associative function type constructor →.
Intuitively, o is the type of standard truth values, and i is the type of individ-
uals.1 τ is thus defined by α, β := o | i | (α → β). τ o � τ , the set of simple
types of (goal) type o, is given by β := o | (α → β) (with α ∈ τ ). τ i � τ , the
set of simple types of (goal) type i, is analogously given by β := i | (α → β)
(with α ∈ τ ).

Starting with some nonempty countable sets of typed constant symbols Cα

and some nonempty countable sets of typed variable symbols Vα, the simply
typed terms of HOL are defined by the following formation rules (where α, β ∈ τ ,
Pα ∈ Cα, and xα ∈ Vα):

s, t := Pα | xα | (sα→β tα)β | (λxα. sβ)α→β .

We assume the following constant symbols to be part of our “signature”: ¬o→o ∈
Co→o, ∨o→o→o ∈ Co→o→o, =α→α→o∈ Cα→α→o, ∀(α→o)→o ∈ C(α→o)→o, and
ι(α→o)→α ∈ C(α→o)→α with α ∈ τ . These constant symbols, which we call logical
constants, have a fixed interpretation according to their intuitive meaning.2 For
example, the definite description (ι(α→o)→α(λxα. so)α→o)α denotes the unique
object x of type α ∈ τ satisfying so if such an object exists and some fixed
but arbitrary object of type α otherwise. It offers the possibility to define an
if-then-else operator as follows (with α ∈ τ ):

iteo→α→α→α := λso. λxα. λyα. ι(λzα. (s → z = x) ∧ (¬s → z = y)) .

Further logical constants can be introduced as abbreviations, e.g., ∧ o→o→o :=
λxo. λyo.¬(¬x ∨ ¬y) and ∃(α→o)→o := λpα→o.¬∀(λxα.¬(p x)) with α ∈ τ .
Terms of type o are formulas, nonformula terms of type α ∈ τ o are called
predicates. Formulas whose leftmost nonparenthesis symbol is either equality or
some nonlogical constant or variable are called atomic formulas. A variable x is
bound in a term s if it occurs in the scope of the binder λ in s. x is free in s
when it is not bound in s.

Type information may be omitted if clear from the context. For each binary
operator op with prefix notation ((op s) t) we may fall back to its infix notation
(s op t) to improve readability. Likewise, the binder notation {∀, ι}(x. s) may be
used as shorthand for {∀, ι}(λx. s). In the remainder of this paper, a match-
ing pair of parentheses in a type or term may be dropped when they are not

1 There is no serious restriction to a two-valued base set so that further base types
could be added [8].

2 The set of primitive logical constants could be a much smaller one, e.g., equality is
known to be sufficient in order to define all remaining logical constants of classical
higher-order logic apart from the description operator [6].
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necessary, assuming that, in addition to the generally known rules, s t, func-
tion application, and λx. s, function abstraction, are left- and right-associative3,
respectively, and that application has a smaller scope than abstraction.

2.2 Semantics

A frame D = {Dα : α ∈ τ } is a set of nonempty sets (or domains) Dα, such
that Di is chosen freely, Do = {T,F} where T �= F and T represents truth and F
represents falsehood, and Dα→β is the set of all total functions from domain Dα

to codomain Dβ . A standard model is a tuple M = 〈D, I 〉 where D is a frame
and I is a family of typed interpretation functions, i.e., I = {Iα : α ∈ τ }. Each
interpretation function Iα maps constants of type α to appropriate objects of
Dα. The logical constants =, ¬, ∨, ∀, and ι are interpreted as follows:

I(=α→α→o) := id ∈ Dα→α→o s.t. for all d, d′ ∈ Dα :
id(d, d′) = T iff d is identical to d′,

I(¬o→o) := not ∈ Do→o s.t. not(T) = F and not(F) = T,

I(∨o→o→o) := or ∈ Do→o→o s.t. or(v1, v2) = T iff v1 = T or v2 = T,

I(∀(α→o)→o) := all ∈ D(α→o)→o s.t. for all f ∈ Dα→o :
all(f) = T iff f(d) = T for all d ∈ Dα,

I(ι(α→o)→α) := desc ∈ D(α→o)→α s.t. for all f ∈ Dα→o :
desc(f) = d ∈ Dα if f(d) = T and for
all d′ ∈ Dα: if f(d′) = T, then d′= d,

otherwise desc(f) = e where e is a
fixed but arbitrary object in Dα.

gα is a variable assignment mapping variables of type α to corresponding objects
in Dα. Thus, g = {gα : α ∈ τ } is a family of typed variable assignments. g [x→d]
denotes the variable assignment that is identical to g, except for variable xα,
which is now mapped to dα. The value � sα �M,g of a HOL term sα in a standard
model M under variable assignment g is an object d ∈ Dα and defined as follows:

�Pα �M,g := I(Pα),

�xα �M,g := g(xα),

� (sα→β tα)β �M,g := � sα→β �M,g(� tα �M,g),

� (λxα. sβ)α→β �M,g := the function f from Dα into Dβ

s.t. for all d ∈ Dα: f(d) = � sβ �M,g[x→d].

A formula so is true in a standard model M under variable assignment g, denoted
by M, g � s, if and only if � so �M,g = T. A formula so is valid in M , denoted by

3 For an abstraction, being right-associative means that its body extends as far right
as possible. For instance, λx.s t corresponds to λx. (s t) and not (λx. s) t.
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M � s, if and only if M, g � s for all variable assignments g. Moreover, a formula
so is (generally) valid, denoted by � so, if and only if so is valid in all standard
models M .

As a consequence of Gödel’s incompleteness theorem, Church’s type theory
with respect to the ordinary semantics based on standard models is incomplete.
However, Henkin [18] introduced a generalized notion of a model in which the
function domains contain enough but not necessarily all functions: In a standard
model, a domain Dα→β is defined as the set of all total functions from Dα to
Dβ . In a Henkin model (or general model) the domains Dα→β in the underlying
frame are some nonempty sets of total functions, Dα→β ⊆ { f | f : Dα → Dβ},
containing at least sufficiently many of them such that the valuation function
remains total.

For Henkin’s generalized notion of semantics, sound and complete proof cal-
culi exist [1,2,18]. Any standard model is obviously also a Henkin model. Hence,
any formula that is valid in all Henkin models must be valid in all standard
models as well. Therefore, the semantics employed in this paper are Henkin’s
general models. For truth, validity, and general validity in a Henkin model, the
above definitions are adapted in the obvious way.

For further details on the semantics of HOL, we refer to the literature [6,7].

3 Positive Free Higher-Order Logic (PFHOL)

Free logic, a term coined by Lambert [21], refers to a family of logics that are free
of existential presuppositions in general and with respect to the denotation of
terms in particular. Terms of free logic may denote existent4 objects, but are not
necessarily required to do so. Quantification and definite descriptions are treated
as in classical logic, meaning that quantifiers and description operators range
over the existing objects only. In the following, we will pursue an inner-outer
dual-domain approach for the representation of the relationship between existing
and nonexisting objects. The inner-outer dual-domain approach postulates that
some domain D contains both existing and nonexisting objects whereas the
quantification domain E, a subdomain of D, contains solely the existing ones.

A free logic is known to be positive if it allows atomic formulas containing
terms that refer to nonexisting objects to be either true or false [22,32]. For exam-
ple, even though isHuman(Pegasus) is, in general, denied, hasLegs(Pegasus)
may be regarded as a valid formula since the denotation of Pegasus is a mytho-
logical creature that is usually depicted in the form of a winged horse (with
legs).

3.1 Syntax

Except for terms, all definitions and terminology for PFHOL correspond to those
presented in Sect. 2.1 for HOL. Simply typed terms of PFHOL have essentially
4 In the paper at hand, the terms existent/existing and defined are used interchange-

ably even though a differentiation is advisable. The same applies to the terms nonex-
istent/nonexisting and undefined.
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the same structure as terms of HOL, but we additionally include the nonlog-
ical constant symbol E!α→o ∈ Cα→o in the “signature”. Apart from that, the
interpretation of the universal quantifier changes since free logical quantification
is traditionally limited to existing objects only. Moreover, not only quantifiers
have existential import: Definite descriptions of free logic denote a unique object
satisfying some property if and only if such an object exists and is defined [4].

3.2 Semantics

The following proposal of a positive semantics for free higher-order logic com-
bines two sophisticated concepts that go back to Benzmüller and Scott [10] and
Farmer [14].

While a frame is defined exactly as in HOL, a subframe E = {Eα : α ∈ τ } is
a set of nonempty sets (or domains) Eα such that Eα � Dα for each α ∈ τ i and
Eα = Dα for each α ∈ τ o.5 We assume, inspired by Farmer, that ⊥α ∈ Dα\ Eα

for all α ∈ τ i with ⊥α→β (d) := ⊥β for all d ∈ Dα. Furthermore, each domain
Dα with α ∈ τ o contains the element Fα defined inductively by Fo := F and
Fα→β (d) := Fβ for all d ∈ Dα. The purpose of these objects is to propagate the
nondenotation or falsehood of a term up through all terms containing it with ⊥i

symbolizing ‘the undefinedness’ among individuals. Their intended use will be
explained in the further course of this section. Exemplary schematics of some of
the domains can be found in Fig. 1. A standard model is a triple M = 〈D,E, I 〉
where D is a frame, E is a subframe, and I is a family of typed interpretation
functions, i.e., I = {Iα : α ∈ τ }. Each interpretation function Iα maps constants
of type α to appropriate elements of Dα. The nonlogical constant E! and the
logical constants =, ¬, ∨, ∀, and ι are interpreted as follows:

I(E!α→o) := ex ∈ Eα→o s.t. for all d ∈ Dα : ex(d) = T iff d ∈ Eα,

I(=α→α→o) := id ∈ Eα→α→o s.t. for all d, d′ ∈ Dα :
id(d, d′) = T iff d is identical to d′,

I(¬o→o) := not ∈ Eo→o s.t. not(T) = F and not(F) = T,

I(∨o→o→o) := or ∈ Eo→o→o s.t. or(v1, v2) = T iff v1 = T or v2 = T,

I(∀(α→o)→o) := all ∈ E(α→o)→o s.t. for all f ∈ Dα→o :
all(f) = T iff f(d) = T for all d ∈ Eα,

I(ι(α→o)→α) := desc ∈ E(α→o)→α s.t. for all f ∈ Dα→o :
desc(f) = d ∈ Eα if f(d) = T and for
all d′ ∈ Eα: if f(d′) = T, then d′= d,

otherwise desc(f) = ⊥α if α ∈ τ i and
desc(f) = Fα if α ∈ τ o.

5 Restricting nondenotation to the domain of individuals, i.e., to define Ei � Di and
for all α �= i, Eα=Dα, is reasonable but complicates the definition of strict functions.
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Fig. 1. Schematics of domains Di, Do and Di→o

As for HOL, gα is a variable assignment mapping variables of type α to corre-
sponding objects in Dα. The value � sα �M,g of a PFHOL term sα in a standard
model M under the variable assignment g is an object d ∈ Dα and evaluated as
follows:

�Pα �M,g := I(Pα),

�xα �M,g := g(xα),

� (sα→β tα)β �M,g := � sα→β �M,g(� tα �M,g),

� (λxα. sβ)α→β �M,g := the function f from Dα into Dβ

s.t. for all d ∈ Dα: f(d) = � sβ �M,g[x→d].

The application is hereby defined in a nonstrict manner. A strict function appli-
cation would be defined like this (with α → β ∈ τ i):6

� (sα → β tα)β �M,g :=

{
� sα → β �M,g(� tα �M,g) if � tα �M,g ∈ Eα

⊥β else .

A strictly applied function results in undefined if one of its arguments is unde-
fined. In simple type theory, arguments are typically processed one after another.
To be able to pass the undefined state of a once applied argument through any
other possibly following arguments, the objects ⊥α were added to each relevant
domain Dα. ⊥α→β maps any argument of type α to ⊥β until ⊥i appears. This
way, undefinedness is transmitted until the evaluation of the application has
reached its end.7 Predicates, on the other hand, do not generally require such
6 Farmer also checked the function itself for existence. But since the distinction

between existing and nonexisting functions – in contrast to existing/nonexisting
individuals – is unusual and not well-defined, this was left out.

7 Restraining applications like this could lead to malformed evaluations, i.e., evaluated
terms might not receive the actually intended value. For instance, the ite operator
must be handled separately when the then- or else-parts are meant to be undefined.
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a special treatment. In positive free logic, atomic formulas may denote truth or
falsehood even if one of the arguments is undefined. Otherwise, the objects Fα

could be used for transmitting falsehood.
The definitions of truth, validity, and general validity in PFHOL are equiv-

alent to the corresponding definitions in HOL. The partiality characteristic for
free logic is implemented by a trick that exploits the objects ⊥α, enabling the
functions in each domain Dα→β to remain total. Hence, the generalization of
standard models to Henkin models is equally applicable to PFHOL.8

4 Embedding of PFHOL in HOL

To provide a shallow semantical embedding of PFHOL in HOL, the “signature”
of HOL has to be enriched with an additional nonlogical constant Eα→o ∈ Cα→o

denoting a unary predicate that enables an explicit distinction of existing and
nonexisting objects in the domain Dα. In addition, we include the object eα

in each domain Dα with α ∈ τ , which is meant to be the error object that is
returned by the definite description (ι(α→o)→α(λxα. so)α→o)α if no such object
exists. We redefine the interpretation of ι thus as follows:

I(ι(α→o)→α) := desc ∈ D(α→o)→α s.t. for all f ∈ Dα→o :
desc(f) = d ∈ Dα if f(d) = T and for
all d′ ∈ Dα: if f(d′) = T, then d′= d,

otherwise desc(f) = eα.

Obviously, for all α ∈ τ o: (∀xα. (Eα→o xα)o)o = T, and (Eα→o eα)o = F for
each α ∈ τ i. Then, a HOL term [ sα ] is assigned to each PFHOL term sα

according to the following translation function:9

[Pα ] = Pα,

[xα ] = xα,

[ (E!α→o sα)o ] = (Eα→o [ sα ])o,

[ ((=F

α→α→o sα)α→o tα)o ] = ((=H

α→α→o [ sα ])α→o [ tα ])o,

[ (¬F

o→o so)o ] = (¬H

o→o [ so ])o,

[ ((∧F

o→o→o so)o→o to)o ] = ((∧H

o→o→o [ so ])o→o [ to ])o,

[ (∀F

(α→o)→o(λxα. so)α→o)o ] = (∀H

(α→o)→o(λxα. ((E x)o →H

o→o→o [ so ])o)α→o)o,

[ (ιF

(α→o)→α(λxα. so)α→o)α ] = (ιH

(α→o)→α(λxα. ((E x)o ∧H

o→o→o [ so ])o)α→o)α,

[ (sα→β tα)β ] = ([ sα→β ] [ tα ])β ,

8 As shown by Farmer and Schütte [31], it is possible to give a Henkin-style complete-
ness proof for free higher-order logic defined based on a partial valuation function.

9 A similar translation, although for free first-order logic, was provided and proved to
be sound and complete by Meyer and Lambert [26] and Benzmüller and Scott [10].
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[ (λxα. sβ)α→β ] = (λxα. [ sβ ])α→β .

Note that operators of HOL and PFHOL are annotated with H and F , respectively.
The main trick of this translation is that the existential import of the uni-

versal quantifier and the description operator is secured by cleverly exploiting
the additional predicate Eα→o as a guard. When mapping definite descriptions,
[ (ιF

(α→o)→α(λxα. so)α→o)α ] could also be translated into

(iteH

o→α→α→α

(∃H

(α→o)→o(λxα.

(((Eα→o xα)o ∧H

o→o→o [ so ])o
∧H

o→o→o (∀H

(α→o)→o(λyα.(((Eα→o yα)o →H

o→o→o [ so ])o

→H

o→o→o (yα =H

α→α→o xα)o)o)α→o)o)o)α→o)o

(ιH

(α→o)→α(λxα. ((Eα→o xα)o ∧H

o→o→o [ so ])o)α→o)α

eα)α

using the if-then-else operator ite to ensure that the classical definite description
definitely returns the error object eα in case of no such existing object. But due
to our previously done redefinition of the classical description operator, this is
not really necessary here. Furthermore, it is noteworthy that any term ∃Fx. s is
translated into ¬H∀Hx. E x →H ¬Hs, which is the same as ∃Hx. E x ∧H s .

Next, we establish the faithfulness of this embedding.

Theorem 1. �PFHOL so if and only if �HOL [ so ] .

The proof of Theorem. 1 is sketched in the appendix. For full details, see
Makarenko [25].

5 Implementation in Isabelle/HOL

In this section, the encoding of the embedding from Sect. 4 in Isabelle/HOL [27]
is presented. The general syntax and semantics of Isabelle/HOL can be found
in the specified literature and is therefore omitted here. The encoding starts
with a declaration of the base type for individuals while the type o of HOL is
associated with the predefined type in Isabelle/HOL.

Next, we introduce an existence predicate, , for each of the base and compound
types. In the signature, the single quote in indicates that this is a type variable,
meaning that the definition given hereupon is polymorphic.



Positive Free Higher-Order Logic and Its Automation 125

Then, for each type, we define another new constant, , and, in accordance with
the definitions in Sect. 4, we postulate of type to be nonexistent and of
type to be . Furthermore, and are declared as existent.

The embedding of the logical constants =, ¬, and ∨ is straightforward. PFHOL
operators are presented in bold-face fonts to distinguish them from HOL
operators.

Now, for the embedding of the existential import of the universal quantifier, we
utilize the existence predicate of the respective type exactly as discussed in
Sect. 4. Isabelle/HOL supports the introduction of syntactic sugar for binding
notations, which we adopt in the following definition in order to support the
more intuitive notation ∀x. P x instead of writing ∀(λx. P x) or ∀P .

For encoding the PFHOL operator ι, we rely on Isabelle/HOL’s own definite
description operator . Unlike the embedding from Sect. 4, we must here spec-
ify the object that will be returned if there is no unique object that has the
desired properties. We use Isabelle/HOL’s if-then-else operator for this.

We also introduced binder notation for . Further PFHOL operators are embed-
ded as abbreviations.
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For experiments, tests, and for the Isabelle/HOL sources, see Makarenko [25].10

6 Automated Assessment of Prior’s Paradox

In our practical studies, we benefit from the fact that Isabelle/HOL integrates
powerful reasoning tools such as the model finder Nitpick [11] and the meta-
prover Sledgehammer [28], which, in turn, invokes third-party resolution provers,
SMT solvers, and higher-order provers as Satallax [12] and Leo-III [34]. Apply-
ing Sledgehammer together with our embedding of PFHOL in HOL to Prior’s
paradox, we end up with the following result.

The theorem is valid. But as can be clearly seen, the theorem is proved by using
the axioms and imposing that both truth values are
defined. We try it again without these.

This time the model finder Nitpick actually found a countermodel. Observe that
in this countermodel one of the two truth values is undefined, namely . This
10 The Isabelle/HOL sources are also available at https://github.com/stilleben/Free-

Higher-Order-Logic.

https://github.com/stilleben/Free-Higher-Order-Logic
https://github.com/stilleben/Free-Higher-Order-Logic
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coincides with the countermodel provided by Bacon, Hawthorne, and Uzquiano.
However, on a metaphysical level, it is highly questionable to shift even one of
the truth values into the undefined range. Bacon et al. themselves did not find
this approach for overcoming the paradox very promising and have constructed
other countermodels as a substitute, which we could not reproduce with our
embedding of PFHOL in HOL. For these countermodels, at least three different
truth values are needed, and hence trivalent or other many-valued free higher-
order logics should be used for that. Research has already been conducted in this
direction, which, so far, has concentrated mainly on using deep embeddings [35]
as opposed to adapting shallow ones [33].

An alternative option, already explored and implemented by Makarenko [25],
is to embed and automate the free semantics specially developed by Bacon et al.
to overcome this particular paradox. The semantical theory they introduced is a
positive free higher-order logic based on set theory where only (possible) worlds
are taken as primitive, and the validity of propositions is then modeled as world
dependent. The embedding of this ‘modal’ positive free logic has proved useful
and adequate in dealing with the paradox, as was confirmed by verifying further,
more reasonable countermodels to Prior’s paradox. Moreover, it is worth men-
tioning that there is currently a growing interest to further adapt the definitions
of Sect. 3 and the embedding of Sect. 4 to develop proper notions of modal and
intensional positive free higher-order logic and to embed them faithfully in HOL.
An interesting application, and related ongoing work, includes the exploitation of
free logic machinery in Kirchner’s embedding of hyperintensional second-order
modal logic and abstract object theory in Isabelle/HOL [20, Footnote 7 and
Sect. 5] utilized for the encoding, assessment, and further investigation of Zalta’s
Principia Logico-Metaphysica [36].

7 Conclusion

Positive free higher-order logic and its characteristics of nonexistent objects and
partial functions have been faithfully represented in an adequately modified ver-
sion of simple type theory. A key point of the inner-outer dual-domain app-
roach is that partiality is only simulated instead of inherently accomodating
it, such that a classical logic environment could be maintained. Subsequently,
our embedding was implemented in Isabelle/HOL to support interactive and
automated reasoning. We applied this embedding to Prior’s paradox and recon-
structed some of the results Bacon, Hawthorne, and Uzquiano provided in dealing
with the theorem. This shows that certain paradoxes can fruitfully be addressed
in free higher-order logic. However, we were also able to verify that two-valued
free logic is not enough to resolve the issue. Our ongoing research has therefore
also been concerned with other variants of free logic. Traditionally, the family
of free logics involves not only positive free logic, but also negative [30], neu-
tral [24], and supervaluational [4] free logic whose semantics differ in the way
how atomic formulas with terms that refer to nonexistent objects are treated.
Furthermore, free many-valued logic or a logic with more than one notion and/or
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degree of nonexistence could be imagined. Some of these variants have already
been successfully embedded and tested in Isabelle/HOL, as for example neg-
ative free higher-order logic and partly also supervaluational free higher-order
logic [25], others are still under development. Of special interest are in particular
neutral free higher-order logic and, as indicated in the previous section, many-
valued (positive) free higher-order logic. Obviously, a mixture between shallow
and deep embedding appears conceivable in this context and worth investigating.
Fact is, nondenoting terms have always been and will always be an intriguing
subject in logic, and, considering the lack of theorem provers for free logic, the
development of an appropriate definition of free logic suited for embedding in
HOL as well as the automation of free logic via a semantical embedding seems
more important than ever.

Acknowledgments. We thank the anonymous reviewers whose insightful comments
and suggestions have helped to improve this manuscript.

Appendix

For the proof of Theorem 1, we first need to elaborate how to transform a PFHOL
model M into a HOL model M ∗, and a PFHOL variable assignment g into a HOL
variable assignment g ∗. We assume that D ∗

α = Dα and C ∗
α \ {Eα→o} = Cα\

{E!α→o} for all α ∈ τ , and set eα= ⊥α for each α ∈ τ i and eα= Fα for each
α ∈ τ o. Then, M = 〈D,E, I 〉 corresponds to the model M ∗= 〈D ∗, I ∗〉 where
I ∗ is a family of interpretation functions that assigns the standard interpretation
to the logical constants =, ¬, ∨, ∀, and ι of HOL as described in Sect. 2. For
all other constants Pα �= Eα→o, Pα ∈ C ∗

α : I ∗(Pα) = I(Pα). The nonlogical
constant Eα→o ∈ C ∗

α is interpreted as follows:

I ∗(Eα→o) := ex ∈ D ∗
α→o s.t. for all d ∈ D ∗

α : ex(d) = T iff d ∈ Eα.

We further assume V ∗
α = Vα for all α ∈ τ , and hence, for all xα ∈ V ∗

α and
α ∈ τ , g ∗

α(xα) = gα(xα).
Next, we first need to establish the following lemma.

Lemma 1. For all PFHOL models M and PFHOL variable assignments g,

� sα �M,g = � [ sα ] �M
∗,g∗

.

The detailed proof of this lemma can be found in Makarenko [25].
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Theorem 1. �PFHOL so if and only if �HOL [ so ] .

Proof.

(→) The proof is by contraposition:

Assume �PFHOL so . Then, there exists a PFHOL model M and a variable
assignment g such that � so �M,g = F . By Lemma 1, � so �M,g = � [ so ] �M

∗,g∗ = F .
Hence, �HOL [ so ] .

(←) Analogous to above by contraposition and Lemma 1.

Therefore, the embedding of PFHOL in HOL is sound and complete.
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Abstract. Current supervised learning models cannot generalize well
across domain boundaries, which is a known problem in many applica-
tions, such as robotics or visual classification. Domain adaptation meth-
ods are used to improve these generalization properties. However, these
techniques suffer either from being restricted to a particular task, such
as visual adaptation, require a lot of computational time and data, which
is not always guaranteed, have complex parameterization, or expensive
optimization procedures. In this work, we present an approach that
requires only a well-chosen snapshot of data to find a single domain
invariant subspace. The subspace is calculated in closed form and over-
rides domain structures, which makes it fast and stable in parameteri-
zation. By employing low-rank techniques, we emphasize on descriptive
characteristics of data. The presented idea is evaluated on various domain
adaptation tasks such as text and image classification against state of the
art domain adaptation approaches and achieves remarkable performance
across all tasks.

Keywords: Transfer learning · Domain-adaptation · Single value
decomposition · Nyström approximation · Subspace Override

1 Introduction

Supervised learning and, in particular, classification is an essential task in
machine learning with a broad range of applications. The obtained models are
used to predict the labels of unseen test samples. A basic assumption in super-
vised learning is that the underlying domain or distribution is not changing
between training and test samples. If the domain is changing from one task to a
related but different task, one would like to reuse the available learning model.
Domain differences are quite common in real-world scenarios and, eventually,
lead to substantial performance drops [32].

In image classification, a domain adaptation problem exists when the source
and target data come from different cameras, as shown in Fig. 1. The domain
adaptation problem occurs due to different camera characteristics between train-
ing and evaluation since cameras have different rendering and focus properties.
c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 132–147, 2020.
https://doi.org/10.1007/978-3-030-58285-2_10
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More formally, let Xs = {xi
s}mi=1 ∈ R

d be m source data samples in a d-
dimensional feature space from the source domain distribution p(xs) with labels
Ys = {yi

s}mi=1 ∈ Y = {1, 2, .., C} and let Xt = {xj
t}nj=1 ∈ R

d be n target samples
from the target domain distribution p(xt) with labels Yt = {yj

t }nj=1 ∈ Y. Tra-
ditional machine learning assumes similar distributions, i.e. p(xs) ∼ p(xt), but
domain adaptation assumes different distributions, i.e. p(xs) �= p(xt).

Fig. 1. Objects from different domains [8]

Various domain adaptation techniques have already been proposed, following
different strategies and improving the prediction performance of underlying clas-
sification algorithms in test scenarios [20,32]. State of the art domain adaptation
approaches [7,16,18,31,34] require a large number of source or target samples,
which is indeed a disadvantage of many domain adaptation approaches and is
not guaranteed in restricted environments where labeling is expensive [32]. In
this work, we show that only a well-chosen subset of samples is necessary to
approximate domain structures.

Despite the popularity of kernelized subspace adaptations [15,31,34] or man-
ifold embeddings [7,8,19,31] for domain alignment, it was shown in [2,6] that
least-squares approaches are at least competitive to more complicated settings,
where domain differences are explicitly solved using least-squares to find a com-
mon subspace. Solutions to least-square problems are intuitive and theoretically
justified. However, if both domains do not lie in a common subspace, this tech-
nique fails to transfer knowledge effectively [24]. We address this problem and
evaluate a domain invariant subspace, where both domains are explicitly part of
the target subspace, which neglects the mentioned drawback.

The main contribution of this work is to derive a subspace closed-form solu-
tion of the least-squares domain adaptation problem by finding a suitable domain
invariant projection operator called Subspace Override (SO). The approach con-
structs a target subspace representation for both domains, which transfers target
basis information to source data. We show that a well-chosen snapshot of the
data is sufficient to approximate the domain characteristics by approximating the
optimal solution of the least-squares problem. For the first time in domain adap-
tation, a Nyström approximation is used on subspace domain adaptation. The
resulting method has a better prediction performance with stable parameteriza-
tion and is easy to apply. Further, it is the fastest subspace domain adaptation
algorithm in terms of computational complexity compared to related approaches,
while maintaining its very good performance.
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The rest of the paper is organized as follows: We give an overview of related
work in Sect. 2. The proposed approach is discussed in Sect. 3, followed by an
experimental part in Sect. 4, addressing the classification performance, compu-
tational time and the stability of the approach. The underlying mathematical
concepts can be looked up at Appendix B in [22]. A summary with a discussion
of open issues is provided in the conclusion at the end of the paper. Source
code, including all experiments and plots, is available at https://github.
com/ChristophRaab/nso.

2 Related Work

In general, homogeneous transfer learning [32] or domain adaptation (DA)
approaches, distinguish roughly between the following strategies:

The feature adaptation techniques [32] are trying to find a common latent
subspace for source and target domain to reduce distribution differences, such
that the underlying structure of the data is preserved in the subspace. A baseline
approach for feature adaptation is Transfer Component Analysis (TCA) [19].
TCA finds a suitable subspace transformation called transfer components via
minimizing the Maximum Mean Discrepancy (MMD) in the Reproducing Kernel
Hilbert Space (RKHS). Joint Distribution Adaptation (JDA) [15] also considers
MMD but incorporates class-dependent distributions. These works considered a
subspace projection based on a combined eigendecomposition for both domains,
which fails to include domain-specific attributes into the subspace. The Joint
Geometrical Subspace Alignment (JGSA) [34] tackled this issue by searching
MMD based subspaces for the domains individually. However, these methods
rely on kernels and are not able to explore the full characteristics of the original
feature space and are computationally intensive. Proposed work relies on original
space and uses only a snapshot of data for computational efficiency.

Least-Squares (LS) adaptation is closely related to us, aligning both domains
by finding a solution to the LS problem and use this solution as a feature trans-
formation matrix. The transformation directly modifies the data or finds a sub-
space projection based on the eigenvectors of the domains. Subspace Alignment
(SA) [6] computes a target subspace representation by direct modification of the
correlation matrices of both domains. The Correlation Alignment (CORAL) [26]
technique transfers second-order statistics of the target domain into whitened
source data and project source and target data via principal component analysis
(PCA) into the subspace. The Landmarks Selection-based Subspace Alignment
(LSSA) [1] is a successor of SA and selects only a subset of both domains, which
are near to domain borders to align these borders in the subspace explicitly. How-
ever, LSSA cannot capture the whole domain characteristic, and in supervised
classification problems, the landmark sample is prone to omit class-information.
Our work considers a uniform and class-wise sample strategy to capture the
whole domain.

The work of Shao et al. [25] proposed that least-squares approaches, as above,
are unable for effective adaptation, because the source and target data may lay

https://github.com/ChristophRaab/nso
https://github.com/ChristophRaab/nso
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not in a single subspace. In this work, we override the orthogonal basis of the
source domain with the target one. With this, we model the source subspace
domain as part of the target subspace, and subspace differences do not exist
because both must lie in the same subspace by construction.

The considered domain adaptation methods have approximately a complexity
of O(n2), where n is the highest number of samples concerning target or source.
All these algorithms require some unlabeled test data to be available at training
time. These transfer-solutions cannot be directly used as predictors, but instead,
are wrappers for classification algorithms.

3 Subspace Override

The task of domain adaptation is to align distribution differences with the goal
that underlying statistics will be similar afterward. As in prior work [1,5,6,12,
16,21,25], we assume that similar matrices will lead to similar distributions.
Hence, we strive for aligning the domain data matrices in a suitable subspace
and model the source data to be part of the target data, and therefore it must
be in the same (single) subspace.

To draw both domains closer together, represented by their respective sam-
ples Xs and Xt, consider the following optimization function

argmin
M

||MXs − Xt||2F , (1)

s.t. MMT = I. (2)

The goal is to learn M to adapt Xs to the target domain. Further, we also
make sure that the obtained projection operator is an orthogonal basis. This
formulation has two flaws.

First, if sample sizes of source and target are not the same, i. e. m �= n, the
above formula is invalid. We address the problem by a simple data augmenta-
tion strategy. If m < n, Xs is enriched by sampling new source data from the
estimated Gaussian distribution of Xs and assign random source labels until
m = n. If n < m, source samples are randomly removed until sample sizes are
equal. Hence, from know we assume m = n.

Further, (1) prevents effective domain adaptation, because the transforma-
tion M may project the data in different spaces [25]. However, if we model M to
be directly related to the target domain, the projection operator will be domain
invariant. To get this kind of solution for problem (1), it must be rewritten that
source data is part of the target subspace.

Let us consider the relationship between singular- and eigendecomposition
and rewrite the PCA in terms of SVD. Given a rectangular matrix X ∈ R

n×d

we can rewrite the eigendecomposition to

XTX = (VΣTUT )(UΣVT ) = VΣ2VT , (3)

with Σ ∈ R
n×d as singular values and U ∈ R

n×n are singular vectors of X.
Further, Σ2 = ΣTΣ ∈ R

d×d as eigenvalues and V ∈ R
d×d as eigenvectors of
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XTX. A low rank solution and a reduction of dimensionality is integrated into
the new data matrix by sorting Σ and V in descending order with respect to Σ
and choose only the biggest l eigenvalues and corresponding eigenvectors

Xl = XVl = UlΣlVlTVl = UlΣl ∈ R
n×l, (4)

with Ul ∈ R
n×l and Σl ∈ R

l×l and Vl ∈ R
d×l. Xl is the reduced target

matrix and only the most relevant data w.r.t. to variance is kept. In (3) a linear
covariance or kernel is used, but non-linear kernels like the RBF kernel could be
integrated as well.

With the insights of (3) and (4), we rewrite the optimization problem in (1)
to a low-rank subspace version and state the main optimization problem:

argmin
M

||MUl
sΣ

l
s − Ul

tΣ
l
t||2F , (5)

s.t. MMT = I. (6)

Based on domain relatedness and standardization techniques, we assume that
singular values are similar, i. e. Σl

s � Σl
t and fix them. Naturally, this assumption

does not always hold. See Sect. 3.2 for a discussion. If they are fixed, then the
optimal solution to (5) is easily obtained by solving the linear equation and
obtain the solution M = Ul

tU
l
s
T . By applying M to (5) the source data becomes

Xl
s = MUl

sΣ
l
s = Ul

tU
l
s

T
Ul

sΣ
l
s = Ul

tΣ
l
s ∈ R

n×l (7)

and is used for training an invariant classifier. The resulting model can be eval-
uated on Xl

t = Ul
tΣ

l
t ∈ R

n×l. This overrides the source basis and prevents the
source subspace to be arbitrarily different from the target due to the affilia-
tion to the target space. The solution also fulfills the constrains because M is
an orthogonal matrix due to the orthogonal matrices Ul

t and Ul
s
T . In particu-

lar, (7) projects the source data onto the principal components of the subspace
basis of Xt. If data matrices Xt and Xs are standardized, the geometric inter-
pretation is a rotation of source data w.r.t to angles of the target basis. We call
this procedure Subspace Override (SO).

This procedure requires a complete eigenspectrum and scales to O(n3) in
worst case [33]. Further, all available data is required for this approach. Using
Nyström techniques, we show that only a subset of the data is required, which
simultaneously reduces computational complexity and eliminates the need to
examine all singular values.

3.1 Nyström Extension

For clarity, the following notation will overlap with the previous section but keeps
things simple. We assume the reader is familiar with Nyström SVD techniques.
Otherwise, the reader may consider Appendix B in [22] for an introduction to
the Nyström approximation.
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In short, the Nyström SVD technique is a low-rank approximation which
decomposes a given matrix K ∈ R

n×d into the constitution

K =
[
A B
C F

]
, (8)

with A ∈ R
l×l, B ∈ R

l×(d−l), C ∈ R
(n−l)×l and F ∈ R

(n−l)×(d−l). The matrix A
contains the random samples called the landmark matrix. Given K, the singular
value decomposition A = UΣVT , and C, the full SVD of K is reconstructable,
which is similar to the following approach.

Consider Xs and Xt with the decomposition as in (8). For a Nyström SVD, we
sample from both matrices l rows/columns obtaining landmarks matrices As =
UsΣsVs

T ∈ R
l×l and At = UtΣtVt

T ∈ R
l×l. The target data is projected

into the subspace as in (4) via the Nyström technique (Appendix B in [22]) and
keeps only the most relevant data structures via

X̃l
t = ŨtΣt =

[
Ut

Ût

]
Σt =

[
Ut

CtVtΣ
−1
t

]
Σt ∈ R

n×l. (9)

Analogously, the source data could be approximated by Xl
s = ŨsΣs ∈ R

n×l. The
Nyström technique is also used to approximate the solution to the optimization
problem with M = ŨtŨ−1

s and project the source data into the target subspace
via

X̃l
s = MŨsΣs = ŨtŨ−1

s ŨsΣs = ŨtΣs ∈ R
n×l. (10)

Hence, it is sufficient to only compute a Singular Value Decomposition (SVD) of
At and As instead of Xt and Xs with l � m, d, n and therefore is considerably
lower in computational complexity.

By definition of the Nyström approximation, it is ŨsŨT
s = ŨtŨ−1

t = I and
Ũt is an orthogonal basis. Therefore, the subspace projections are orthogonal
transformations and fulfill the constrains of (5).

Besides small sample requirements, the major advantage of using the approx-
imated low-rank solution in favor of the optimal solution is that singular values
that are closer to zero are set to zero, reducing the noise of the data in the sub-
space. Therefore the approach focuses on intrinsic data characteristics, which
should lead to better classification performance.

Subsequently, this approach is denoted as Nyström Subspace Override
(NSO). The matrix Xl

s is used for training, and Xl
t is used for testing. But uni-

form sampling may not be optimal for Nyström, given a classification task [23].
Therefore, we subsequently integrate class-wise sampling in the following. Pseudo
code shown in Algorithm 1.

3.2 Sampling Strategy

The standard technique to create Nyström landmark matrices is to sample uni-
formly or find clusters in the data [28]. In supervised classification with more
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than two classes, class-wise sampling should be utilized to properly include class-
depending attributes of a matrix into the approximation [23]. However, a decom-
position as in (8), required for Nyström SVD, is intractable with class-wise sam-
pling, because respective matrices are non-square. Let Xs ∈ R

m×d with m �= d
and landmark indices I = {i1, . . . , is} with at least one ij > d and if m > d,
then it is undefined. Therefore, we sample rows class-wise and obtain Ad

s ∈ R
l×d

instead of As ∈ R
l×l, making it possible to sample from the whole range of

source data. The sampling from test data Xt is done uniformly row-wise, because
of missing class information. The resulting singular value decompositions, i. e.
Ad

t = Ud
tΣ

d
tV

d
t
T and Ad

s = Ud
sΣ

d
sV

d
s
T , are utilized for successive Nyström

approximations.
However, the possible numerical range of Σd

(·) and Σ(·) is naturally not the
same, which is easily shown by the Gerschgorin Bound [10] (See Appendix B in
[22] for an introduction). It scales approximated matrices Xl

(·) different by Σd
(·)

and accurate scaling of the singular vectors cannot be guaranteed. Therefore, we
apply a post-processing correction and standardize the approximated matrices
to transform the data back to mean zero and variance one. The singular vectors
also have an approximation error. However, both subspace projections are based
on the same transformation matrix, hence making an identical error, and as a
result, the error should not affect the classification.
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Fig. 2. Process of Nyström Subspace Override with ten landmark samples applied to
Caltech vs Amazon image dataset encoded with surf features as a surface plot. Best
viewed in color.
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The process of Nyström Subspace Override (NSO) is given in Fig. 2. The
first column visualizes the samples of Nyström to create the approximated set
of subspace projection operators. The second column shows the data after the
subspace projection. The similarity in structure but dissimilarity in scaling, as
discussed above, is visible. The last column shows the data after applying post-
correction and leading to a high similarity afterward. The pseudo code of NSO
is shown in Algorithm 1.

Algorithm 1. Nyström Subspace Override
Require: Xs as m sized training; Xt as n sized test set; Y as m sized training label

vector; l as number of landmarks parameter.
Ensure: New Source X̃l

s; new Target X̃l
t;

1: Xs,Ys = augmentation(Xs,Ys,n)
2: � Gaussian sampling or random removal to make Xs equally sized to Xt.
3: Ad

t ,A
d
s ,Ct = decomposition(Xt,Xs,Y,l) � Eq.(8)

4: Σd
s = SV D(Ad

s);
5: Ud

t , Σ
d
t ,V

d
t = SV D(Ad

t );

6: Ũt =
[
Ud

t CtV
d
t Σd

t
−1

]T
� Eq. (9)

7: X̃l
t = ŨtΣ

d
t � Eq. (9)

8: X̃l
s = ŨtΣ

d
s � Eq. (10)

9: X̃l
s, X̃

l
t=standardization(X̃l

s,X̃
l
t) � Effect as in Fig. 2

3.3 Properties of Nyström Subspace Override

The computational complexity of Nysröm Subspace Override (NSO) is composed
of economy-size SVD of landmark matrices Ad

s and Ad
t with complexity O(2l2).

The matrix inversion of diagonal matrix Σd
t

−1
in (9) can be neglected. The

remaining k matrix multiplications are of complexity O(kl2) and are therefore
contributing to the overall complexity of NSO, which is O(l2) with l � n,m, d.
This makes NSO the fastest subspace domain adaptation solution in terms of
computational complexity in comparison to compared methods in Sect. 4.

The out-of-sample extension for unseen target/source samples, e. g. x ∈
R

d, is analog to (9). Based on (4), a subspace projection via (approximated)
right singular vectors is also valid. Hence, a sample can be projected into the
subspace via

xl = xṼT
t = x

[
Vt Σ−1

t UTBt

]
(11)

and be evaluated by an arbitrary classifier learned in the subspace.
The difference between source and target domain after SO, i. e. approxima-

tion error of source by target domain is bounded by

ESO =
∥∥Xl

s − Xl
t

∥∥2

F
<

l+1∑
i=1

(σi(Xs) − σi(Xt))2 < ‖Xs − Xt‖2F . (12)
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where σi(·) is the i-th singular value in descending order of Xs and Xt respec-
tively and 1 < l < min(n, d). The proof can be found in Appendix A. As in prior
LS approaches [1,6,26], we want NSO to minimize the difference between the
source and target data. In Eq. (12) is shown that NSO has a lower norm to the
original data and proves that the matrices are aligned during NSO, making them
numerically more similar. Note that similar matrices not necessarily indicate a
good classification performance in terms of accuracy by an arbitrary classifier in
a domain adaptation setting. The classification performance is evaluated in the
following.

4 Experiments

We follow the experimental design typical for domain adaptation algorithms
[1,3,6,8,14–16,18–20,26,34]. The tests are conducted on the common datasets
Reuters, Newsgroup and Office-Caltech. A crucial characteristic of datasets for
domain adaptation is that domains for training and testing are different but
related, e. g. sharing the same categories. The NSO approach is evaluated against
the common and state of the art domain adaptation methods TCA [19], GFK [8],
JDA [15], SA [6], CORAL [26], EasyTL [30], SCA [7], MEDA [31] and JGSA [34].
We extend the object detection study by also evaluating against deep DA net-
works. We follow [31] and use the Alexnet [11] as the baseline for Deep-Coral
[27], JAN [17], DAN [13] and DDC [29]. The networks are always trained on orig-
inal images. The parameters for the respective method are determined for the
best performance in terms of accuracy via grid search. In the experiments, the
Support Vector Machine (SVM) independent of being a baseline or underlying
classifier for domain adaptation methods uses the RBF-Kernel. All experiments
are done via the standard sampling protocol [17] and use all available source and
target data. We did 20 test runs and summarized the result as mean accuracy.

4.1 Dataset Description

A summary of all datasets is shown in Table 1. Regardless of the dataset, it has
been standardized to standard mean and variance.

Reuters-21578 [3]: A collection of Reuters news-wire articles collected in 1987
as TFIDF features. The three top categories organization (orgs), places and
people are used in our experiment.

To create a transfer problem, a classifier is not tested with the same categories
as it is trained on, e. g. it is trained on some subcategories of organization and
people and tested on others. Six datasets are generated: orgs vs. places, orgs vs.
people, people vs. places, places vs. orgs, people vs. places and places vs. people.
They are two-class problems with the top categories as the positive and negative
class and with subcategories as training and testing examples.

20-Newsgroup [14]: The original collection has approximately 20.000 text doc-
uments from 20 Newsgroups and is nearly equally distributed in 20 subcategories.
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The top four categories are comp, rec, talk and sci, each containing four subcat-
egories. We follow a data sampling scheme introduced by [16] and generate 216
cross domain datasets based on subcategories, which are summarized as mean
over all test runs as comp vs rec, comp vs talk, comp vs sci, rec vs sci, rec vs talk
and sci vs talk.

Caltech-Office (OC) [8]: The first, Caltech (C ), is an extensive dataset of
images and contains 30.607 images within 257 categories. The Office dataset is
a collection of images drawn from three sources, which are from amazon (A),
digital SLR camera (DSLR) and webcam (W). They vary regarding camera, light
situation and size, but ten similar object classes, e. g. computer or printer, are
extracted for a classification task. We use SURF [8] and DeCaf [4] features.

Table 1. Overview of the dataset characteristics containing numbers of samples, fea-
tures and labels.

Dataset Subsets #Samples #Features #Classes

Caltech C 1123 800 (4096) 10

Office A, W, D 1123 800 (4096) 10

Newsgroup Comp, Rec, Sci, Talk 4857, 3967, 3946, 3250 25804 2

Reuters Orgs, People, Places 1237, 1208, 1016 25804 2

4.2 Performance Results

The results are shown per dataset separately. The results on Newsgroup in
Table 2, Reuters in Table 3, OC with Surf features in Table 4, OC with decaf
and deep DA methods in Table 5. Summarizing, our NSO algorithm is basically
the best on Reuters and Newsgroup data. The only competitive algorithm is SA
on Reuters data with similar results to ours. SA is also an LS subspace approach.
However, SA is outperformed by NSO at Newsgroup. NSO demonstrates its use-
fulness for large sparse matrices that are given at these datasets. At the OC-Surf
dataset, the NSO outperforms on many datasets and has the best mean accuracy.
Only at OC-Decaf features, NSO is midfield in performance, but it is still com-
petitive. We assume that the Decaf features are very dense feature matrices in
terms of descriptive information even if the singular values are small. Therefore,
the low-rank approximation is contra-productive.

The intriguing part of this evaluation comes with the cross-task evaluation.
While SA is very good at Reuters and Newsgroup, it has bad performance on
OC datasets. While MEDA and JGSA have poor performance at Reuters and
Newsgroup, they are good at OC datasets. Our NSO approach is in three out
of four tasks the recommendable choice showing convincing task-independent
performance. In Fig. 3, the parameter sensitivity is shown and demonstrates
that the parameterization (number of landmarks) of NSO is stable, simple to
optimize and supports the Nyström error expectation.
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Fig. 3. Relationship between the number of landmarks and mean error on Reuters and
Office-Caltech datasets.

Table 2. Mean accuracy of traditional DA methods on Newsgroup text dataset.

Dataset SVM TCA JDA GFK SA CORAL CGCA SCA EasyTL JGSA MEDA NSO (ours)

Comp vs Rec 77.6 78.9 83.1 75.1 78.5 79.4 84.0 56.1 42.2 88.3 49.1 90.2

Comp vs Sci 71.1 62.0 75.5 64.1 80.2 71.8 73.2 72.4 25.2 78.4 49.2 98.4

Comp vs Talk 84.4 75.0 87.7 83.8 91.1 90.5 87.0 89.5 41.1 91.2 54.4 96.7

Rec vs Sci 69.3 79.6 79.0 64.4 81.1 75.0 74.0 71.4 33.8 80.5 50.0 99.0

Rec vs Talk 74.5 86.6 82.0 72.9 79.7 81.6 77.3 78.3 41.6 80.8 55.0 96.4

Sci vs Talk 70.9 77.6 70.5 64.2 76.0 74.2 69.0 72.2 41.1 77.7 53.7 96.4

Mean 74.6 76.6 79.6 70.7 81.1 78.7 77.4 73.3 37.5 82.8 51.9 96.2

Table 3. Mean accuracy of traditional DA methods on Reuters text dataset.

Dataset SVM TCA JDA GFK SA CORAL CGCA SCA EasyTL JGSA MEDA NSO (ours)

Orgs vs People 78.1 79.5 76.6 75.3 99.9 77.5 78.0 77.8 39.2 76.5 48.0 99.6

People vs Orgs 79.2 82.7 80.0 71.6 99.9 78.2 78.6 79.8 37.9 74.2 47.3 98.5

Orgs vs Place 69.2 72.9 70.0 60.5 97.3 70.3 70.1 69.8 28.9 72.2 43.2 98.6

Place vs Orgs 66.3 71.1 65.6 61.5 97.2 66.5 67.7 65.3 27.0 64.4 41.4 97.2

People vs Place 55.7 57.4 57.0 57.5 97.4 57.8 57.0 57.3 22.4 52.6 40.9 97.4

Place vs People 57.4 48.9 60.7 56.2 97.4 56.3 54.4 58.2 18.3 55.5 38.5 97.4

Mean 67.7 68.7 68.3 63.8 98.1 67.7 67.6 68.0 28.9 65.9 43.2 98.1

Table 4. Mean accuracy of traditional DA on Caltech-Office with surf features.

Dataset SVM TCA JDA GFK SA CORAL CGCA SCA EasyTL JGSA MEDA NSO (ours)

C vs A 53.1 53.9 55.2 41.8 52.2 52.1 54.1 33.1 50.1 51.8 56.5 88.5

C vs W 41.7 42.4 46.8 40.7 18.3 38.6 43.1 24.9 49.5 46.1 53.9 81.0

C vs D 47.8 46.5 49.7 39.5 15.9 36.3 37.6 33.1 48.4 44.6 50.3 79.0

A vs C 41.7 45.4 43.5 39.0 60.0 45.1 44.9 26.3 43.0 39.7 43.9 61.5

A vs W 31.9 37.6 44.4 36.9 29.2 44.4 43.9 27.6 40.7 46.1 53.2 81.0

A vs D 44.6 40.1 31.2 33.1 28.0 39.5 36.3 25.5 38.9 47.8 45.9 79.0

W vs C 21.2 31.2 31.5 27.4 23.2 33.7 33.8 15.6 29.7 30.2 34.2 63.5

W vs A 27.6 34.7 31.7 31.2 29.5 35.9 37.6 21.1 35.2 40.0 42.7 95.8

W vs D 78.3 83.4 92.4 82.8 78.3 86.6 88.5 41.4 77.1 91.1 88.5 79.0

D vs C 26.5 36.2 32.6 27.2 21.9 33.9 35.4 17.2 31.3 30.3 34.8 66.6

D vs A 26.2 37.1 36.7 30.9 26.5 37.7 38.9 17.2 31.9 38.2 40.6 93.1

D vs W 52.5 83.1 88.5 71.9 89.8 84.7 87.1 32.5 69.5 91.5 87.5 83.1

Mean 41.1 47.6 48.7 41.9 39.4 47.4 48.4 26.3 45.4 49.8 52.7 79.3
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Table 5. Mean accuracy of traditional and deep DA on Caltech-Office with Decaf and
original images (Deep Learning approaches), respectively.

Table 6. Mean computational time in seconds of subspace DA methods.

Dataset TCA JDA GFK SA CORAL CGCA SCA JGSA MEDA NSO (ours)

Newsgroup 21.4 4.8 214.4 59.7 705.8 11977.0 59.0 3637.0 3447.0 2.64

Reuters 6.5 1.5 2.6 3.0 15.4 225.6 14.8 122.1 53.2 0.6

CO - Surf 3.2 0.9 0.6 0.7 0.4 6.4 12.2 10.8 6.3 0.2

CO - Decaf 1.8 0.4 1.1 1.3 10.6 99.8 10.3 79.8 45.0 0.2

Overall 8.2 1.9 54.7 16.2 183.1 3077.2 24.1 962.4 887.9 0.9

4.3 Time Results

The mean time results of the subspace DA methods in seconds are shown in
the Table 6. The deep DA methods are not presented as they are unrivaled
to the traditional methods. The experiments shows that our NSO approach
is task-independent, the fastest algorithm. Compared to recent MEDA, JGSA
and CGCA, the NSO approach needs substantially less time. The related SA
approach is also fast, but as theoretically derived, the override of a subspace
basis approximated by Nyström leads to a boost in computational performance.
In summary, the NSO approach is efficient and should be favored with regard to
Green AI.

5 Conclusion

We proposed a low-rank domain approximation algorithm called Nyström Sub-
space Override. It overrides the source basis with the target basis, which is
designed as a domain invariant subspace projection operator. Due to the affilia-
tion of the operator to the target space, we make sure that both domains lie in
the same subspace. It requires only a subset of domain data from both domains
and provides a subspace variant of the domain adaptation-related least-squares
problem. The Nyström based projection, paired with smart class-wise sampling,
showed its reliability and robustness in this study. Validated on common domain
adaptation tasks and data, it showed a convincing performance. Additionally,
NSO has the lowest computational complexity and time consumption compared
to discussed solutions, which makes the approach favorable in the light of Green
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AI. The next steps are a theoretically evaluation of the Nyström approximation
error with the proposed decomposition.
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A Appendix A Proof of Subspace Override Bound

Theorem 1. Given two rectangular matrices Xt,Xs ∈ R
n×d with n, d > 1 and

rank of Xt and Xs > 1. The norm
∥∥Xl

s − Xl
t

∥∥2

F
in the subspace R

l induced by
normalized subspace projector M ∈ R

n×l with MTM = I is bounded by

ESO =
∥∥Xl

s − Xl
t

∥∥2

F
<

l+1∑
i=1

(σi(Xs) − σi(Xt))2 ≤ ‖Xs − Xt‖2F . (13)

Following [9] the squared Frobenius norm of a matrix difference between two
matrices can be bounded by

q∑
i=1

(σi(Xs) − σi(Xt))2 ≤ ‖Xs − Xt‖2F , (14)

where q = min(n, d) and σi(·) is the i-th singular value of the respective matrix
in descending order. However, the subspace matrices Xl

s and Xl
t are a special

case due to the subspace override of the projector M = Ul
tU

l
s
−1, because
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F
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F
− 2Tr(Σl

s

T
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=
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i=1
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i (X

l
s) +
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i=1
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i (X

l
t) − 2
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i=1

(σi(X l
s) · σi(X l

t)) (18)

=
l∑

i=1

(σi(Xl
s) − σi(Xl

t))
2. (19)

The important fact in the right part of Eq. (16) and (17) is that we do not
rely on the bound of the Frobenius inner product as in the proof for Eq. (14)
[9, p. 459], because Ul

t
T
Ul

t = I. Therefore, we can directly compute the Frobe-
nius inner product of the the diagonal matrices Σl

s and Σl
t, which is simply the
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sum of the product of the singular values. Consequently follows for l + 1 and
(σl+1(Xs) − σl+1(Xt))2 �= 0,

∥∥Xl
s − Xl

t

∥∥2

F
<

l+1∑
i=1

(σi(Xs)−σi(Xt))2 <

q∑
i=1

(σi(Xs)−σi(Xt))2 ≤ ‖Xs − Xt‖2F ,

(20)
where again q = min(n, d) and 1 < l < q.

B Appendix B Component Analysis

We inspect the performance contribution of the different parts of the NSO app-
roach. First, the exact solution to the optimization problem is called Subspace
Override (SO). The approximation with uniform sampling is evaluated to study
the impact of class-wise sampling on the performance. To show the efficiency of
the subspace projection in original space, we include a kernelized version where
we approximate the RBF-kernels of Xs and Xt, respectively. The results are
given in Table 7 and show that the Nyström approximation independent of the
sampling strategy yields the best performance. This comes from the approxima-
tion of the subspace projection, where small values are likely to be zero, hence
reducing noise further. The kernelized version is not recommended due to bad
performance. Overall, as proposed, the class-wise NSO is recommended, because
it is slightly better.

Table 7. Component evaluation of NSO in mean accuracy.

Dataset SO NSOuniform NSOclasswise NSOker

Reuters 94.8 97.6 97.6 80.8

Newsgroup 93.0 96.1 97.4 94.3

CO - Surf 79.3 79.1 79.3 56.5

CO - Decaf 79.2 79.4 79.4 76.4

Overall 86.2 88.1 88.4 77.0
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Abstract. Explainable AI has emerged to be a key component for black-
box machine learning approaches in domains with a high demand for
reliability or transparency. Examples are medical assistant systems, and
applications concerned with the General Data Protection Regulation of
the European Union, which features transparency as a cornerstone. Such
demands require the ability to audit the rationale behind a classifier’s
decision. While visualizations are the de facto standard of explanations,
they come short in terms of expressiveness in many ways: They cannot
distinguish between different attribute manifestations of visual features
(e.g. eye open vs. closed), and they cannot accurately describe the influ-
ence of absence of, and relations between features. An alternative would
be more expressive symbolic surrogate models. However, these require
symbolic inputs, which are not readily available in most computer vision
tasks. In this paper we investigate how to overcome this: We use inher-
ent features learned by the network to build a global, expressive, verbal
explanation of the rationale of a feed-forward convolutional deep neural
network (DNN). The semantics of the features are mined by a concept
analysis approach trained on a set of human understandable visual con-
cepts. The explanation is found by an Inductive Logic Programming (ILP)
method and presented as first-order rules. We show that our explanation
is faithful to the original black-box model (The code for our experiments
is available at https://github.com/mc-lovin-mlem/concept-embeddings-
and-ilp/tree/ki2020).

Keywords: Explainable AI · Concept analysis · Concept
embeddings · Inductive Logic Programming

1 Introduction

Machine learning went through several changes of research perspective since its
beginnings more than fifty years ago. Initially, machine learning algorithms were
inspired by human learning [14]. Inductive Logic Programming (ILP) [17] and
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explanation-based generalization [16] were introduced as integrated approaches
which combine reasoning in first-order logic and inductive learning.

With the rise of statistical approaches to machine learning, focus shifted
from human-like learning to optimizing learning for high predictive accuracy.
Deep learning architectures [7] resulted in data-intensive, black-box approaches
with impressive performances in domains such as object recognition, machine
translation, and game playing. However, since machine learning more and more is
moving from the lab to the real world, researchers and practitioners alike realize
that interpretable, human-like approaches to machine learning are necessary
to allow developers as well as end-users to evaluate and understand classifier
decisions or possibly also the learned models themselves.

Consequently there is a growing number of approaches to support explain-
ability of black-box machine learning [1]. Explainable AI (XAI) approaches are
proposed to support developers to recognize oversampling and problems with
data quality such as number of available data, class imbalance, expensive label-
ing, and sampling biases [2,13]. For many application domains, it is a legal as
well as an ethical obligation to make classifier decisions transparent and com-
prehensible to end-users who need to make sense of complex information, for
instance in medical diagnosis, automotive safety, or quality control.

A main focus of research on explanations for image classifications is on visual
explanations, that is, highlighting of relevant pixels such as LRP [23] or showing
relevant areas in the image such as LIME [21]. However, visual explanations can
only show which conjunction of information in an image is relevant. In many
domains, more sophisticated information needs to be taken into account [24]:

– Feature values: highlighting the area of the eye in an image is not helpful
to understand that it is important for the class decision that the lids are
tightened (indicating pain) in contrast to eyes which are wide open (indicating
startle, [29]);

– Quantification: highlighting all blowholes on the supporting parts of a rim
does not make clear that the rim is not a reject because all blowholes are
smaller than 0,5 mm;

– Negation: highlighting the flower in the hand of a person does not transport
the information that this person is not a terrorist because he or she does not
hold a weapon;

– Relations: highlighting all windows in a building cannot help to discriminate
between a tower, where windows are above each other and a bungalow, where
windows are beside each other [19];

– Recursion: highlighting all stones within a circle of stones cannot transport
the information that there must be a sequence of an arbitrary number of
stones with increasing size [20].

Such information can only be expressed in an expressive language, for
instance some subset of first-order logic [18]. In previous work, it has been shown
how ILP can be applied to replace the simple linear model agnostic explanations
of LIME [3,19,20,25]. Alternatively, it is investigated how knowledge can be
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incorporated into deep networks. For example, capsule networks [22] are pro-
posed to model hierarchical relationships and embeddings of knowledge graphs
allow to grasp relationships between entities [8].

In this paper, we investigate how symbolic knowledge can be extracted from
the inner layers of a deep convolutional neural network to uncover and extract
relational information to build an expressive global explanation for the network.
In the following, we first introduce concept embedding analysis (to extract visual
concepts) and ILP (to build the explanation). In Sect. 3, the proposed approach
to model-inherent generation of symbolic relational explanations is presented.
We present a variety of experiments on a new “Picasso” data set of faces with
permuted positions of sub-parts such as eyes, mouth, and nose. We conclude
with an outlook to extend this first, preliminary investigation in the future.

2 Theoretical Background

2.1 Concept Embedding Analysis

To understand the process flow of an algorithm, it is of great value to have access
to interpretable intermediate outputs. The goal of concept embedding analysis
is to answer whether, how well, how, and with what contribution to the reasoning
information about semantic concepts is embedded into the latent spaces (inter-
mediate outputs) of DNNs, and to provide the result in an explainable way.
Focus currently lies on finding embeddings in either the complete output of a
layer (image-level concepts), or single pixels of an activation map of a convo-
lutional DNN (concept segmentation). To answer the whether, one can try to
find a decoder for the information about the concept of interest, the concept
embedding. This means, one is looking for a classifier on the latent space that
can predict the presence of the concept. The performance of the classifier pro-
vides a measure of how well the concept is embedded. For an explainable answer
of how a concept is embedded, the decoder should be easily interpretable. One
constraint to this is introduced by the rich vector space structure of the space of
semantic concepts respectively word vector spaces [15]: The decoder map from
latent to semantic space should preserve at least a similarity measure. For exam-
ple, the encodings of “cat” and “dog” should be quite similar, whereas that of a
“car” should be relatively distant from the two. The methods in literature can
essentially be grouped by their choice of distance measure 〈−, −〉 used on the
latent vector space. A concept embedding classifier Ec predicting the presence
of concept c in the latent space L then is of the form Ec(v) = 〈vc, v〉 > tc for
v ∈ L, where vc ∈ L is the concept vector of the embedding, and tc ∈ R.

Automated concept explanations [6] uses L2 distance as similarity measure.
They discover concepts in an unsupervised fashion by k-means clustering of the
latent space representations of input samples. The concept vectors of the discov-
ered concepts are the cluster centers. In TCAV [11] it is claimed that the mapping
from semantic to latent space should be linear for best interpretability. To achieve
this, they suggest to use linear classifiers as concept embeddings. This means they
try to find a separation hyperplane between the latent space representations of



Expressive Explanations of DNNs by Combining Concept Analysis with ILP 151

positive and negative samples of the concept. A normal vector of the hyperplane
then is their concept vector, and the distance to the hyperplane is used as distance
measure. As method to obtain the embedding they use support vector machines
(SVMs). TCAV further investigated the contribution of concepts to given output
classes by sensitivity analysis. A very similar approach to TCAV, only instead
relying on logistic regression, is followed by Net2Vec [5]. As a regularization, they
add a filter-specific cut-off before the concept embedding analysis to remove noisy
small activations. The advantage of Net2Vec over the SVMs in TCAV is that they
can more easily be used in a convolutional setting: They used a 1× 1-convolution
to do a prediction of the concept for each activation map pixel, providing a seg-
mentation of the concept. This was extended by [26], who suggested to allow larger
convolution windows to ensure that the receptive field of the window can cover the
complete concept. This avoids a focus on local patterns. A measure that can be
applied to concept vectors of the same layer regardless of the analysis method,
is that of completeness suggested in [31]. They try to measure, how much of the
information relevant to the final output of the DNN is covered by a chosen set of
concepts vectors. They also suggested a metric to compare the attribution of each
concept to the completeness score of a set of concepts.

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) [17] is a machine learning technique that
builds a logic theory over positive and negative examples (E+, E−). The exam-
ples consist of symbolic background knowledge (BK) in the form of first-order
logic predicates, e.g. contains(Example, Part), isa(Part, nose). Here the upper
case symbols are variables and the lower case symbol is a constant. The given
BK describes that example Example contains a part Part which is a nose. Based
on the examples, a logic theory can be learned. The hypothesis language of this
theory consists of logic Horn clauses that contain predicates from the BK. We
write the Horn clauses as implication rules, e.g.

face(Example):- contains(Example, Part), isa(Part, nose).

For this work we obey the syntactic rules of the Prolog programming language.
The :- denotes the logic implication (←). We call the part before the implication
the head of a rule and the part after it the body or preconditions of a rule.

We use the framework Aleph [28] for this work since it is a flexible and
adaptive general purpose ILP toolbox. Aleph’s built in algorithm attempts to
induce a logic theory from the given BK to cover as many positive examples
E+ as possible while avoiding covering the negative examples E−. The general
algorithm of Aleph can be summarized as follows [28]:

1. As long as positive examples exist, select one. Otherwise halt.
2. Construct the most-specific clause that entails the selected example and is

within the language constraints.
3. Find a more general clause which is a subset of the current literals in the

clause.
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4. Remove examples covered by the current clause.
5. Repeat from step 1.

3 Explaining a DNN with Concept Localization and ILP

When building explanations for a DNN via approximate rule sets, the underly-
ing logic and predicates of the rules should reflect the capabilities of the model.
For example, spatial relations like top of or right of should be covered, as e.g.
dense layers of a DNN are capable of encoding these. Spatial relations cannot
be represented by current visualization methods for explainable AI, which only
feature predicates of the form contains(Example, Part) and at position(Part,

xy). Rule-based methods like ILP are able to incorporate richer predicates into
the output. However, their input must be symbolic background knowledge about
the training and inference samples which is formulated using these predicates
explicitly. For computer vision tasks with pixel-level input, this encoding of the
background knowledge about samples is not available. To remedy this, we pro-
pose to use existing concept mining techniques for extraction of the required
background knowledge:

1. Associate pre-defined visual semantic concepts with intermediate output of
the DNN. Concepts can be local, like parts and textures, or image-level.

2. Automatically infer the background knowledge about a sample Ex given the
additional concept output, which defines predicates isa(C, concept), and
isa(Ex, C) (image-level) or contains(Ex, C) with at position(C, xy). From
this, spatial relations and negations can be extracted.

3. Given background knowledge for a set of training samples, apply an inductive
logic programming approach to learn an expressive set of rules for the DNN.

The approach presented in this paper differs from the previous work outlined
in [19] by the following main aspects:

– We will find a global verbal explanation for a black-box decision in contrast
to a local explanation.

– We directly make use of information stored in the building blocks of the DNN
instead of relying on the linear surrogate model generated by LIME.

3.1 Enrich DNN Output via Concept Embedding Analysis

We directly built upon the concept detection approach from [5,26], suggesting
some further improvements. Net2Vec bilinearly upscaled the predicted masks
before applying the sigmoid for logistic regression. This overrates the contribu-
tion to the loss by pixels at the edges from positive to negative predicted pixels.
We instead apply upscaling after applying the sigmoid. Instead of the suggested
IoU penalty from [26], we propose a more stable Dice loss to fit the overlap
objective, supported by a small summand of the balanced binary cross-entropy
(bBCE) suggested in Net2Vec to ensure pixel-wise accuracy.
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One major disadvantage of the linear model approaches over the clustering
ones is their instability, i.e. several runs for the same concept yield different
concept vectors. Reasons may be dependence on the outliers of the concept
cluster (SVM); non-unique solutions due to a margin between the clusters; and
inherent variance of the used optimization methods. To decrease dependence on
the training set selection and ordering, and the initialization values, we for now
simply use ensembling. For this we define a hyperplane H as the zero set of the
distance function dH(v) = (v − bH · vH) ◦ vH for the normal vector vH and the
support vector bHvH , bH ∈ R. Then, the zero set of the mean 1

N

∑N
i=1 dHi

of
the distance functions of hyperplanes Hi again defines a hyperplane with

vH = 1
N

∑N
i=1 vHi

and bH = 1
‖vH‖2

1
N

∑N
i=1(bHi

‖vHi
‖2) .

Note, that hyperplanes with longer normal vectors (i.e. higher confidence values)
are overrated in this calculation. To remedy this, concept vectors are normalized
before ensembling, using the property (w − b · v) ◦ v = ‖v‖ · (w − (b‖v‖) v

‖v‖ ) · v
‖v‖

of the distance function for scalar b and vectors v, w.

3.2 Automatic Generation of Symbolic Background Knowledge

The output of the concept analysis step (binary masks indicating the spatial
location of semantic concepts) can be used to build a symbolic global explana-
tion for the behavior of the original black-box model. We obtain the explanation
by finding a first-order logic theory with the ILP approach Aleph (see Sect. 2.2).
Since Aleph needs a set of positive and negative examples (E+, E−), the first
step is to obtain these examples along with their corresponding symbolic back-
ground knowledge (BK). In order to obtain a good approximation of the behav-
ior of the model, we sample N+ binary masks from positively predicted images
and N− binary masks from negatively predicted images that lie close to the
decision boundary of the original black-box model using the concept analysis
model described above. Let M+, M− be the set of positive and negative binary
masks. Let m+ ∈ M+, m− ∈ M− be single masks. Each mask (e.g. m+) consists
of multiple mask layers (e.g. lc ∈ m+, c ∈ C) for the different human under-
standable concepts from the pool of concepts C. These mask layers are sparse
matrices upsampled to the same size as the original images they are masking.
The matrices have the value 1 at all the positions where the concept analysis
model detected the respective concept and 0 at all other positions.

The symbolic explanation of the original model should consist of logic rules
that establish the prototypical constellation of visual parts of an image that
resembles the positive class as seen by the DNN. We therefore need not only the
information about occurrence of certain visual parts in the sampled examples
but also the different relations that hold between the parts. In the next sections
we adhere to the following general workflow:

1. Find positions of visual parts in the examples and name them.
2. Find relations between parts.
3. Build BK with the information from step 1 and 2.
4. Induce a logic theory with Aleph.
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Fig. 1. Potential positions of an object to be only top of, right of, bottom of, or left of
a reference object located in the origin. Also the four overlapping regions are indicated.

Find Visual Parts. One mask layer lc contains possibly multiple contiguous
clusters of concept propositions. Therefore, as a denoising step, we only take
the cluster with the largest area into account. As a proposition for the position
of the concept c in the picture, in this cluster we take the mean point of the
area Amax of 1’s in lc. We therefore find the position pc = (x, y) with x =
(minx(Amax) + maxx(Amax))/2 and y = (miny(Amax) + maxy(Amax))/2. This
procedure can be followed for all masks lc that are contained in all m+ ∈ M+

and m− ∈ M−.

Find Relations Between Parts. By taking relationships between the parts
into account, we strive for more expressive explanations. For this work we limit
ourselves to spatial relationships that hold between the parts that were found
in the previous steps. We assume that pairs of two parts can be in the following
four relationships to each other: left of, right of, top of, bottom of. We declare
part A to be top of part B if the vertical component yA of the position pA is above
yB and the value for the horizontal offset Δx = xA − xB does not diverge from
the value for the vertical offset Δy = yA − yB by more than double. The other
spatial relations can be formalized in an analogous manner. Thus, the relations
that can hold between two parts A and B can be visualized as in Fig. 1.

Inferring Global Symbolic Explanations. After the inference of visual parts
and the relationships that hold between them, we can build the BK needed for
Aleph. Part affiliation to an example can be declared by the contains predicate.
We give all parts a unique name over all examples. Suppose part A is part of a
particular example E and describes the human understandable concept c ∈ C.
Then the example affiliation can be stated by the predicates contains(E, A),
isa(A, c). Likewise for the relations we can use 2-ary predicates that state the
constellation that holds between the parts. When part A is left of part B we
incorporate the predicate left of(A, B) in the BK and likewise for the other
relations. When the BK for the positive and negative examples E+ and E− is
found, we can use Aleph’s induction mechanism to find the set of rules that best
fit the examples. The complete algorithm for the process is stated in Algorithm 1.
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Algorithm 1. Verbal Explanation Generation for DNNs
1: Require: Positive and negative binary masks M+, M−

2: Require: Pool of human understandable concepts C
3: E+ ← {}
4: E− ← {}
5: for each � ∈ {+,−} do
6: for each m� ∈ M� do
7: P ← {}
8: for each lc ∈ m� where c ∈ C do
9: pc ← calculatePartPosition(lc)

10: P ← P ∪ {〈c, pc〉}
11: R ← calculateRelations(P )
12: E� ← E� ∪ 〈P,R〉
13: T ← Aleph(E+, E−)
14: return T

4 Experiments and Results

We conducted a variety of experiments to audit our previously described app-
roach. As a running example we used a DNN which we trained on images from
a generated dataset we dubbed Picasso Dataset. The foundation are images of
human faces we took from the FASSEG dataset [9,10]. The Picasso Dataset con-
tains collage images of faces with the facial features (eyes, mouth, nose) either in
the correct constellation (positive class) or in a mixed-up constellation (negative
class). See Fig. 2 for examples. No distinction is made between originally left and
right eyes.

Fig. 2. Examples from the Picasso Dataset (left: positive class, right: negative).

In order to not establish a divergence in the image space of the two classes,
the positive and negative classes contain facial features that were cut out of a set
of images from the original FASSEG dataset. As a canvas to include the features,
we took a set of original faces and got rid of the facial features by giving the
complete facial area a similar skin-like texture. Then we included the cut out
facial features onto the original positions of the original features in the faces.

The face images in Fig. 2 show that the resulting dataset is rather con-
structed. This however will suffice for a proof of concept to show that our app-
roach in fact exploits object parts and their relations. In the future we plan on
moving towards more natural datasets.
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4.1 Analyzed DNNs

We evaluated our method on three different architectures from the pytorch
model-zoo1: AlexNet [12], VGG16 [27], and ResNeXt-50 [30]. The convolutional
parts of the networks were initialized with weights pre-trained on the ImageNet
dataset. For fine-tuning the DNNs for the Picasso Dataset task, the output
dimension was reduced to one and the in- and output dimension of the second
to last hidden dense layer was reduced to 512 for AlexNet and VGG16. Then the
dense layers and the last two convolutional layers (AlexNet, VGG16) respectively
bottleneck blocks (ResNeXt) were fine-tuned. The fine-tuning was conducted in
one epoch on a training set of 18,002 generated, 224 × 224-sized picasso sam-
ples with equal distribution of positive and negative class. All models achieved
accuracy greater than 99% on a test set of 999 positive and 999 negative samples.

4.2 Training the Concept Models

In our example we determined the best ensembled detection concept vectors
for the concepts eyes, mouth and nose amongst the considered layers. We
excluded layers with low receptive field, as they are assumed to hold only very
local features (for the layers used see Fig. 3). Convolutional output was only con-
sidered after the activation. For each concept, 452 training/validation, and 48
test picasso samples with segmentation masks were used. The training objective
was: Predict at each activation map pixel whether the kernel window centered
there lies “over” an instance of the concept. Over meant that the fuzzy intersec-
tion of the concept segmentation and the kernel window area exceeds a threshold
(intersection encoding). This fuzzy definition of a box center tackles the problem
of sub-optimal intersections in later layers due to low resolution. Too high val-
ues may lead to elimination of an instance, and thresholds were chosen to avoid
such issues with values 0.5/0.8/0.7 for nose/mouth/eye. We implemented the
encoding via a convolution. As evaluation metric we use set IoU (sIoU) between
the detection masks and the intersection encoded masks as in Net2Vec. On each
dataset and each layer, 15 concept models were trained in three 5-fold-cross-
validation runs with the following settings: Adam optimization with mean best
learning rate of 0.001, a weighting of 5:1 of Dice to bBCE loss, batch size of 8,
and two epochs (all layers showed quick convergence).

Fig. 3. The layer-wise mean set IoU results of the concept analysis runs.

1 https://pytorch.org/docs/stable/torchvision/models.html.

https://pytorch.org/docs/stable/torchvision/models.html
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Results. Our normalized ensembling approach proved valuable as it yielded mean
or slightly better performance compared to the single runs. For the considered
models, meaningful embeddings of all concepts could be found (see Table 1): The
layers all reached sIoU values greater than 0.22 despite of the still seemingly high
influence of sub-optimal resolutions of the activation maps. Figure 4 shows some
exemplary outputs. The concepts were best embedded in earlier layers, while
different concepts did not necessarily share the same layer.

Table 1. Results for ensemble embeddings with set IoU (sIoU), mean cosine distance
to the runs (Cos.d.), and index of conv layer or block (L) (cf. Fig. 3).

Fig. 4. Ensemble embedding outputs of nose (green), mouth (blue), eyes (red). (Color
figure online)

4.3 Example Selection for ILP Training

The goal of the ILP model is to approximate the behavior of the main DNN, i.e.
its decision boundary. For this, few but meaningful training samples and their
DNN output are needed: class-prototypes as well as ones that tightly frame the
DNN decision boundary. From the 1,998 samples in the picasso test set, in total
100 samples were chosen from the DNN test set to train the ILP model. The
DNN confidence score here was used to estimate the proximity of a data point
to the decision boundary. For each class, we selected the 50 samples predicted
to be in this class and with confidence closest to the class boundary of 0.5. In
our setup this provided a wide range of confidence values (including 0 and 1).
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4.4 Finding the Symbolic Explanation

In order to find the background knowledge needed for Aleph to generate the
explanation, we need to extract the information about the facial features and
their constellations from the masks of the samples drawn in the previous step.
Abiding the procedure described in Sect. 3.2, we first find contiguous clusters
in the mask layers to then infer the positional information for them. This is
straight-forward for the nose and the mouth but imposes a problem for the eyes,
since we do not want to have a single position proposal for them in the eye that
produces the biggest cluster in the mask layer. Thus, we allow for the top two
biggest clusters to infer a position. Although we give them unique constants in
the BK, we both give them the type eye ∈ C.

The next step consists of the extraction of the spatial features between the
found parts. Since the relation pair left of/right of as well as top of/bottom of

can be seen as the inverses of the respective other relation, we omit the relations
right of and bottom of in the BK. This is possible, because the Closed World
Assumption holds (Everything that is not stated explicitly is false).

Once the BK is found for all examples, we can let Aleph induce a theory of
logic rules. Consider the induced theory for the trained VGG16 network:

face(F):- contains(F, A), isa(A, nose), contains(F, B), isa(B, mouth),

top of(A, B), contains(F, C), top of(C, A).

The rule explicitly names the required facial concepts nose and mouth and the
fact that the nose has to be above the mouth in order for an image to be a face.
Further there is another unnamed component C required which has to be placed
above the nose. By construction this has to be one of the eyes. The rule makes
sense intuitively as it describes a subset of correct constellations of the features
of a human face.

To further test the fidelity of the generated explanations to the original black-
box network, we calculated several performance metrics for a test set of 1998
test images (999 positive and 999 negative examples). We handled the learned
explanation rules as binary classification model for the test images in BK rep-
resentation. If an image representation is covered by the explanation rules, it
is predicted to be positive, otherwise negative. We now can handle the binary
output of the black-box model as ground truth to our explanation predictions.
The performance metrics together with the induced explanation rules for several
DNN architectures are listed in Table 2. It can be seen that the explanations
stay true to the original black-box model.
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Table 2. Learned rules for different architectures and their fidelity scores (accuracy

and F1 score wrt. to the original model predictions). Learned rules are of common form

face(F):- contains(F, A), isa(A, nose), contains(F, B), isa(B, mouth), distinctPart

Arch. Accuracy F1 Distinct rule part

VGG16 99.60% 99.60% top of(A, B), contains(F, C), top of(C, A)

AlexNet 99.05% 99.04% contains(F, C), left of(C, A), top of(C, B), top of(C, A)

ResNext 99.75% 99.75% top of(A, B), contains(F, C), top of(C, A)

5 Conclusion and Future Work

Within the described simple experiment we showed that expressive, verbal sur-
rogate models with high fidelity can be found for DNNs using the developed
methodology. We suggest that the approach is promising and worth future
research and optimization.

The proposed concept detection approach requires a concept to have little
variance in its size. It should easily extend to a concept with several size cate-
gories (e.g. close by and far away faces) by merging the result for each category.
A next step for the background knowledge extraction would be to extend it to
an arbitrary number of concept occurrences per image, where currently the algo-
rithm assumes a fixed amount (exactly one mouth, one nose, two eyes). This could
e.g. be achieved by allowing a maximum number per sliding window rather than
an exact amount per image. In cases, where the predicates cannot be pre-defined,
one can learn the relations as functions on the DNN output from examples as
demonstrated in [4].

We further did not consider completeness (cf. Sect. 2.1) of the chosen con-
cepts: They may not be well aligned with the decision relevant features used
by the DNN, infringing fidelity of the surrogate model. We suggest two ways to
remedy this: One could rely on (possibly less interpretable) concepts found via
concept mining [6]. Or, since ILP is good at rejecting irrelevant information, one
can start with a much larger set of pre-defined, domain related concepts. We
further assume that best fidelity can only be achieved with the minimal com-
plete sub-set of most decision-relevant concepts, which fosters uniqueness of the
solution. For a decision relevance measure see e.g. [6].

It may be noted that the presented concept analysis approach is not tied
to image classification: As long as the ground truth for concepts in the form of
masks or classification values is available, the method can be applied to any DNN
latent space (imagine e.g. audio, text, or video classification). However, spatial
or temporal positions and relations are currently inferred using the receptive
field information of convolutional DNNs. This restriction may again be resolved
by learning of relations.
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Lastly, in order to examine the understandability of the induced explanation
in a real world scenario, we need to let explanations be evaluated in a human
user study. For this matter, subjective evaluation measures have to be specifically
designed for verbal explanations.
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Abstract. Many problems from industrial applications and AI can be
encoded as Maximum Satisfiability (MaxSAT). Often, it is more desir-
able to produce practicable results in very short time compared to opti-
mal solutions after an arbitrary long computation time. In this paper, we
propose Stable Resolving (SR), a novel randomized local search heuristic
for MaxSAT with that aim. SR works for both weighted and unweighted
instances. Starting from a feasible initial solution, the algorithm repeat-
edly performs the three steps of perturbation, improvements and solution
checking. In the perturbation, the search space is explored at the cost of
possibly worsening the current solution. The local improvements work
by repeatedly flipping signs of variables in over-satisfied clauses. Finally,
the algorithm performs a solution checking in a simulated annealing fash-
ion. We compare our approach to state-of-the-art MaxSAT solvers and
show by numerical experiments on benchmark instances from the annual
MaxSAT competition that SR performs comparable on average and is
even the best solver for particular problem instances.

Keywords: Maximum Satisfiability · MaxSAT · Incomplete solving ·
Randomized algorithm · Local search algorithm · Simulated annealing

1 Introduction

We consider the Constraint Satisfaction Problem of Maximum Satisfiability
(MaxSAT). Many NP-hard optimization problems from applications in indus-
try and AI can be encoded as MaxSAT and existing solution algorithms have
proved to yield results that are competitive to domain specific solvers. The appli-
cations vary from periodic scheduling [15], to causal discovery [18], Bayesian
network structure learning [9], correlation clustering [8], reasoning over bionet-
works [16], probabilistic inference [20] and many more. A MaxSAT encoding
consists a Boolean formula that we assume to be in conjunctive normal form
(CNF) which means that the literals are grouped in clauses where they are con-
nected disjunctively (or) and the clauses are connected conjunctively (and).
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Example. A Boolean formula in CNF: F = (¬x ∨ ¬y) ∧ (¬y ∨ ¬z).
A literal is a variable together with a positive or negative sign. A clause is

satisfied if at least one of its literals has the same sign as the variable in the
solution. We also say the literal is true and denote the number of true literals
in a clause its stability. An unsatisfied clause has a stability of zero. When a
clause has a stability greater than 1, we say that the clause is over-satisfied. A
solution is an assignment of the variables to true or false and is called feasible
if all hard clauses are satisfied. We assume the formula to consist of both hard
clauses and (possibly weighted) soft clauses. The sum of (the weights of) satisfied
soft clauses is the objective function value. Then, the task is to find a feasible
solution maximizing the objective function value.

Example. Let F = H1 ∧ H2 ∧ S1 ∧ S2 ∧ S3 where

H1 : ¬x ∨ ¬y
H2 : ¬y ∨ ¬z
S1 : x weight(S1) = 2
S2 : y weight(S2) = 3
S3 : z weight(S3) = 2

are hard and soft clauses with according weights respectively. Then, the optimal
solution of value 4 is x = z = true and y = false.

Due to its generic form, almost any problem from combinatorial optimization
and many optimization problems in AI can be encoded as MaxSAT and practice
shows that this conversion often works well. In this paper, we propose a novel
heuristic solution approach to the MaxSAT problem called Stable Resolving
(SR). The aim is to solve even large problem instances with millions of clauses
and variables within short time, that is, up to 60 s, to a practicable solution. To
do so, SR repeatedly performs the three steps of perturbation, improvements and
solution checking, starting from an initial feasible solution. In the perturbation,
the search space is explored by satisfaction of randomly picked unsatisfied (soft)
clauses at the cost of other clauses becoming unsatisfied. More precisely, we con-
sider the randomly picked clauses as hard clauses and call a SAT solver on them,
together with the original hard clauses. If other, formerly satisfied soft clauses
become unsatisfied by this perturbation, we write them in a list of unsatisfied
candidate clauses. Then, in the improvement part, a local search technique is
employed that builds on the clauses’ stabilities. Starting with the first member
of the list of unsatisfied candidate clauses, clauses with stability zero are being
satisfied by flipping the sign of a randomly chosen variable. Flipping the sign of
one of its variables increases the clause’s stability by 1 but might cause other
clauses to become unsatisfied. These unsatisfied clauses are added to the (local)
search space and will be tried to be satisfied later. On the other hand, if flipping
a variable’s sign increases other clauses’ stabilities to a number larger 1, that
is, they become over-satisfied, they can have at least one literal falsified with-
out becoming unsatisfied. This falsification can hence satisfy yet other clauses
that contain the same variable with opposite sign and improve the objective
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function again. In this way, the local search space grows until all unsatisfied
clauses have been tried to satisfy. Then, the improvement step ends and if the
objective function value has decreased, the previous solution is restored. Else,
newly unsatisfied clauses are added to the list of unsatisfied candidate clauses.
As candidate clauses are only added when the objective function value increases,
and one candidate is erased when it decreases, this list will eventually be empty.
Then, the solution checking part begins. Here, a worsening of the objective value
is allowed with a probability that decreases during the run of the algorithm.

The outline of the paper will be as follows. After a literature overview over
existing approaches in Sect. 2, we explain the algorithm in detail in Sect. 3. In
Sect. 4, we present and discuss our results on common benchmark instances and
finally give a conclusion and outlook in Sect. 5.

2 Related Work

There are numerous solution approaches for the MaxSAT problem both exact
and heuristic ones. Let us point out the differences between SR and other state-
of-the-art MaxSAT solvers. In the 2019’s MaxSAT competition [1], the solver
Loandra performed best in the incomplete unweighted track. It combines a core-
guided approach for finding a lower bound [7] and a linear algorithm for an upper
bound. As the linear algorithm, the authors use LinSBPS [13] that performs a
neighborhood search in a complete algorithmic setting by repeatedly calling the
SAT Solver glucose [4]. In contrast to LinSPBS, we only call glucose once at
the beginning for an initial solution and for the perturbation of a solution but
not in order to achieve an improvement. Moreover, we do not calculate lower
bounds at all. The local search algorithms MaxRoster (a description can be
found in [5]) which is based on Ramp [14] and SATLike [19] which iteratively
flips the sign of variables that bring the best improvement work differently than
our solver in the respect that they adapt weights of clauses in order to leave
local optima. We, however, perturb a current solution for that purpose and
instead of changing weights. (Max-)WalkSAT and GSAT [23] are local search
approaches similar to SR in the sense that unsatisfied clauses are picked at
random and one of their variables’ sign is flipped. The difference to our approach
is that SR searches a larger neighborhood with a more complex improvement
heuristics based on stabilities. In fact, one can consider SR a large neighborhood
search, as pursued in the OR world (cf. e.g. [21]), with the difference that SR
finds improvements in the neighborhood heuristically and without calling an
exact solver whereas the repair procedure in large neighborhood searches often
involve an exact solver. At the end of each iteration, SR checks the solution in a
simulated annealing fashion. Simulated annealing with reset has been used also
for MaxSAT [10,17]. Finally, let us point out that the splitting of our algorithm
into perturbation, improvement and solution checking was introduced for a state-
of-the-art Maximum Independent Set (MIS) heuristic [3] that in a previous work,
we have been able to extend by a different improvement technique and simulated
annealing solution checking in order to solve MaxSAT instances that have been
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transformed to MIS [22]. In contrast, in this paper we propose an algorithm that
works directly on the Boolean formula.

3 Algorithm

The overall procedure of SR is shown in Algorithm 1. We first apply a SAT-
based preprocessing on the formula. That is, we label the soft clauses meaning
that each soft clause gets an additional variable l and will be considered a hard
clause. In addition, for each label, we introduce a unit soft clause ¬l with the
weight the original soft clause had [6]. For the obtained equivalent formula, we
apply unit clause propagation and bounded variable elimination (cf. e.g. [12])
on the hard clauses, as long as it is possible. Note that the label variables are
excluded from the propagations since these operations are only sound for hard
clauses. Then, for an initial feasible solution the SAT solver glucose [4] is called.

The algorithm then repeatedly executes the three steps of perturbation,
improvement and solution checking.

Algorithm 1. StableResolving()
Preprocess()
CalculateInitialSolution()
while timeout has not been reached do

Perturb()
StableImprove()
CheckSolution()

end

Let us explain the single parts in greater detail. In the perturbation part
shown in Algorithm 2, we explore the search space. More precisely, we first
sample a random number k from the geometric distribution with parameter p
and select k unsatisfied clauses uniformly at random. Then, we call the SAT
solver glucose on all hard clauses and the selected clauses. Additionally, we give
the previous solution as an initial solution to the solver in order to speed up
the computation. If this formula is feasible, we have altered the solution, but
maybe at the cost of a lower objective function value because formerly satisfied
clauses are now unsatisfied. These unsatisfied clauses are added to the back of
a list of candidates that potentially can be satisfied by improvements. We keep
and update this list throughout the algorithm.

Algorithm 2. Perturb()
k = random number where P[k = i] = p(1 − p)i−1

C = set of k unsatisfied clauses picked uniformly at random
Call SAT solver on C and all hard clauses and overwrite the solution
Add newly unsatisfied clauses to the back of candidates
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Example. Consider the example formula F from above. An initial feasible solu-
tion is given by all variables set to false. The perturbation might set k = 1,
choose the unsatisfied clause C = S2 and the SAT solver returns the feasible
solution of y = true and x = z = false. No clause gets unsatisfied by this step.

Remark. In some large instances from industrial applications, sampling a ran-
dom unsatisfied clause is computationally expensive when all clauses are iterated
through in order to detect the unsatisfied ones and sample among them. This
is why we keep a superset of the unsatisfied clauses where every time a clause
gets unsatisfied, it is added to. Moreover, we apply a heuristic in this superset
and sample 1000 clause indices at random and only return if the corresponding
clause indeed is unsatisfied. Only if all 1000 sampled clauses are satisfied, we
iterate through the superset to find the unsatisfied clauses and sample among
them.

Algorithm 3. StableImprove()
while candidates �= ∅ do

C = pop first clause from candidates
Init A = ∅ and C = {C}
while ∃v = variable picked uniformly at random in vars(C) \ A do

Flip sign of v and add v to A
Add newly unsatisfied clauses to C
Stab1→2 = set of clauses whose stability has grown to 2
foreach S ∈ Stab1→2 do

w = variable of second true literal in S
if w is in no clause of stability 1 nor in A then

Flip sign of w and add w to A
end

end

end
if objective function value has decreased then

Revert flips of variables in A
end
else

Add C at the back of candidates
end

end

In the improvement part shown in Algorithm 3, we iteratively pick a variable
uniformly at random of an unsatisfied clause (at first from the candidates and
later from the clauses that have been unsatisfied during this improvement step)
and flip its sign. A flip might lead to other clauses becoming unsatisfied now and
we store them in the set C. Note that also hard clauses can become temporarily
unsatisfied. On the other hand, there might be a set Stab1→2 of clauses whose
stability grows from 1 to 2 which means that there exists now a second true
literal whose variable’s sign can now be flipped without unsatisfying this clause.
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This optimization technique of considering variables in over-satisfied constraints
is well-known in mathematical optimization (cf. e.g. Simplex Method [11]) and
we apply it here as a local improvement heuristics. In our algorithm, the clauses
in Stab1→2 are iterated through and checked for such an improvement. When
no more variables are found that can be flipped, either because C is empty or
all variables from C, denoted vars(C), are flipped already, the improvement step
ends. Either the objective function value has increased, then the now unsatisfied
clauses are added to the candidates, or it has not and the flips, stored in A,
are reverted. Note that the feasible solution remains feasible as the objective
function value cannot increase when hard clauses have become unsatisfied. The
improvement part ends when there are no more candidate clauses.

Remark. In some test instances, the set C monotonously grows and never
shrinks because there are more new unsatisfied clauses than clauses that can
either be satisfied or whose variables have all been considered for an improve-
ment. In order to avoid that we spend too much time in a single local improve-
ment step, we set an iterations limit of 25 for the inner while-loop.

Note that both while-loops terminate. For the outer one, candidate clauses
are only added if the objective function value has increased which cannot be
infinitely often as MaxSAT instances are always bounded. The inner one ends -
besides the iterations limit - when A contains all variables.

Example. Consider the example formula F with solution

(x, y, z) = (false, true, false)

from above. The stabilities of the following steps are illustrated in Fig. 1. S1 is
unsatisfied and might be the first candidate clause (a). Flipping the sign of its

Fig. 1. Stabilities of clauses during an improvement step.
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only variable x unsatisfies H1 because y has been set to true in the perturbation
already (b). Hence, H1 gets added to C and x to A. Flipping the sign of one of
the variables of H1 (the only clause in C) that has not already been flipped (i.e.
that is not in A) means flipping y to false. Note that H2 has now stability 2 and
gets added to Stab1→2 as both variables y and z are false (c). The variable z is
the second true literal that has been true before, so its sign gets flipped because
no further clause is being unsatisfied by that flip. The improvement step ends
with a objective function value that has increased from 3 to 4 (d).

Let us mention that during an improvement step (and after the perturbation),
it is possible that formerly satisfied hard clauses become unsatisfied. Hard clauses
have a weight greater than the sum of the weights of the soft clauses. Therefore,
breaking hard clauses (without satisfying other formerly unsatisfied hard clauses)
worsens the solution. In order to leave local optima, however, a worsening is
possible in our algorithm - with decreasing probability according to the simulated
annealing step, as will be explained in the remainder of this section.

Algorithm 4. CheckSolution()
if objective function value has increased to the best one ever seen then

Save new best solution
end
else if objective function value has decreased then

if number of iterations without improvement has exceeded m then
Restore best solution

end
else

Restore previous solution with probability exp(−prob)
end

end

After the improvements we have arrived in a local optimum. The current
solution might be of smaller objective function value than the previous solu-
tion from before this iteration of Algorithm 1 if the improvements could not
compensate the perturbation. Still, we sometimes allow such a worsening in the
simulated annealing approach shown in Algorithm 4 in order to be able to leave
local optima. More precisely, we restore the previous solution if it had a better
objective function value with a probability growing exponentially with a factor
prob that decreases linearly during the course of the algorithm from 1 to 0 and
represents the temperature of the simulated annealing. If, however, the number
of iterations without an improvement exceeds a parameter m, we reset to the
best solution ever seen. When SR terminates, this best solution is returned.
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4 Experimental Results

We have applied SR to problem instances and compared it to results that are
taken from the 2019’s MaxSAT competition1 [1]. The instances encode various
industrial applications’ and theoretical problems, such as scheduling, fault diag-
nosis, tree-width computation, max clique problems, causal discovery, Ramsey
number approximation and many more. An overview of the competing solvers
can be found in [5]. For all calculations, we set the parameters for the geometric
distribution and maximum steps in SR to p = 0.75 and m = 1000, respectively,
because they yield the best results on average. We performed all computations on
an Intel Core i7-8700K and with a time limit of 60 s. Note that if a solver from [1]
yields worse results on our machine than in the results of the 2019’s MaxSAT
competition where computations were performed on the StarExec Cluster [2],
we include the better results for the analysis here. We mark such solvers with
an asterisk*.

Table 1. Sum of scores by solver on unweighted instances

Loandra LinSBPS 2018 SR SATLike* Open WBO g sls mcs* sls mcs lsu* Open WBO ms

251.7327 238.3298 231.1436 227.4589 204.1828 202.7803 202.7158 190.9274

Table 1 and Table 2 show the sum of scores of the competing solvers on the
unweighted and weighted benchmark instances, respectively, from the incom-
plete track of the MaxSAT competition against the scores of SR. The score of
a solver on an instance is calculated in the following way. Maximizing the sum

Table 2. Sum of scores by solver on weighted instances

Loandra 236.2272

TT Open WBO Inc* 233.4784

LinSBPS2018 231.6581

Open WBO Inc (inc bmo satlike)* 220.3607

Open WBO Inc (inc bmo complete)* 218.6454

SR 213.3262

Open WBO g* 212.1081

SATLike* 210.6802

sls mcs2* 203.1498

Open WBO ms* 194.5451

sls mcs* 191.4503

uwrmaxsat inc* 190.7841

1 We have submitted SR to the 2020’s MaxSAT competition.
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(of weights) of satisfied soft clauses is equivalent to minimizing the sum (of
weights) of unsatisfied soft clauses, which is denoted by the gap. The score of a
solver on an instance is the fraction of the best gap known divided by the gap
of the particular solver. If a solver’s solution violates a hard clause, its score is
zero and its gap infinity.

Example. Consider the example above. In the optimal solution, only S2 is unsat-
isfied which yields the optimal gap of 3. If solver A has achieved this optimum,
solvers B and C satisfy only S2 and not S1 and S3, then their scores are 3/4
while solver A has the maximal score of 1 on this instance.

Fig. 2. Accumulated sum of scores of unweighted instances after 60 s computation time

The score hence reflects the ratio of the achieved result to the optimal (or
best known) one. In Fig. 2 and Fig. 3, we see the accumulated sum of scores of the
single instances, ordered by SR’s scores and grouped by the competing solvers
for the unweighted and weighted instances, respectively. The figures illustrate
that SR (black) has the highest sum of scores on a large subset of instances.
Counting all instances, including those where SR has low scores, we conclude
that SR still has a competitive performance. More precisely, in 210 and 179 of
the 299 unweighted and 297 weighted instances, SR has a score at least the mean
of the other solvers. Furthermore, SR performs especially well on the unweighted
instances, in comparison to the other solvers.

What is more, SR often has the best result among all solvers for particu-
lar instances. We observe that in the unweighted case, SR performs especially
well on instances from atcos, extension enforcement and set covering. In the
weighted case, SR is best on many instances encoding the Minimum Weight
Dominating Set Problem. See Tables 3 and 4 for complete lists of such instances
in the unweighted and weighted case, respectively. For a better comparison, we
include a column showing the gaps of the winning solver Loandra, as well.
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Fig. 3. Accumulated sum of scores of weighted instances after 60 s computation time

Table 3. Gaps of unweighted instances where SR performs best

Benchmark SR Loandra

1 aes/sbox-8.wcnf.gz 443 690

2 atcoss/mesat/atcoss-mesat-04.wcnf.gz 97 Inf

3 atcoss/mesat/atcoss-mesat-05.wcnf.gz 74 Inf

4 atcoss/mesat/atcoss-mesat-10.wcnf.gz 32 40

5 atcoss/mesat/atcoss-mesat-18.wcnf.gz 80 Inf

6 atcoss/sugar/atcoss-sugar-15.wcnf.gz 133 Inf

7 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-1-10-0.wcnf.gz 7 18

8 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-2-10-2.wcnf.gz 12 20

9 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-3-10-1.wcnf.gz 8 9

10 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-3-10-4.wcnf.gz 10 16

11 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-4-10-1.wcnf.gz 7 17

12 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-4-10-2.wcnf.gz 6 13

13 extension-enforcement/extension-enforcement-non-strict-stb-200-0.05-4-10-4.wcnf.gz 8 18

14 min-fill/MinFill-R3-miles1000.wcnf.gz 3634 3755

15 optic/gen-cvc-add7to3-9999.wcnf.gz 197 204

16 pseudoBoolean/garden/normalized-g100x100.opb.msat.wcnf.gz 2163 2526

17 railway-transport/d4.wcnf.gz 8296 8524

18 SeanSafarpour/wb-4m8s1.dimacs.filtered.wcnf.gz 58 282

19 SeanSafarpour/wb-4m8s4.dimacs.filtered.wcnf.gz 220 230

20 set-covering/crafted/scpclr/scpclr13-maxsat.wcnf.gz 27 28

21 set-covering/crafted/scpcyc/scpcyc07-maxsat.wcnf.gz 145 149

22 set-covering/crafted/scpcyc/scpcyc08-maxsat.wcnf.gz 363 390

23 set-covering/crafted/scpcyc/scpcyc09-maxsat.wcnf.gz 835 972

24 set-covering/crafted/scpcyc/scpcyc10-maxsat.wcnf.gz 1967 2242

25 set-covering/crafted/scpcyc/scpcyc11-maxsat.wcnf.gz 4771 5623

26 uaq/uaq-ppr-nr200-nc66-n5-k2-rpp4-ppr12-plb100.wcnf.gz 75 78

27 xai-mindset2/liver-disorder.wcnf.gz 316 318
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Table 4. Gaps of weighted instances where SR performs best

Benchmark SR Loandra

1 causal-discovery/causal-Water-10-1000.wcnf.gz 11339025 16041455

2 causal-discovery/causal-Wdbc-8-569.wcnf.gz 1446339 2541316

3 correlation-clustering/Rounded-CorrelationClustering-Vowel-BINARY-N740-

D0.200.wcnf.gz

120199215 130874895

4 correlation-clustering/Rounded-CorrelationClustering-Vowel-BINARY-N760-

D0.200.wcnf.gz

120800405 132256968

5 drmx-cryptogen/geffe128-7.wcnf.gz 812 846

6 min-width/MinWidthCB-mitdbsample-100-43-1k-5s-2t-5.wcnf.gz 32010 32200

7 min-width/MinWidthCB-mitdbsample-200-64-1k-2s-1t-4.wcnf.gz 76975 78325

8 min-width/MinWidthCB-mitdbsample-300-43-1k-6s-1t-8.wcnf.gz 45780 45825

9 MinimumWeightDominatingSetProblem/delaunay-n24.wcnf.gz 304532225 350820532

10 MinimumWeightDominatingSetProblem/hugebubbles-00020.wcnf.gz 694937186 753286458

11 MinimumWeightDominatingSetProblem/inf-road-usa.wcnf.gz 840126999 903206743

12 MinimumWeightDominatingSetProblem/sc-rel9.wcnf.gz 15590036 16746750

13 MinimumWeightDominatingSetProblem/web-wikipedia2009.wcnf.gz 28120892 37674803

14 pseudoBoolean/miplib/normalized-mps-v2-20-10-p0548.opb.msat.wcnf.gz 12451 25494

15 spot5/log/1401.wcsp.log.wcnf.gz 463106 469110

16 spot5/log/1407.wcsp.log.wcnf.gz 459591 465638

5 Conclusion and Outlook

In this paper, we have proposed a novel local search algorithm for solving large
MaxSAT problems in short time. We could prove by numeric experiments on
benchmark instances encoding problems from combinatorial optimization and
AI that our algorithm yields results that are comparable to and for some problem
families even better than state-of-the-art solvers.

As a possible prospect, we aim at developing more sophisticated improve-
ment methods that take into account not single over-satisfied clauses but sets
of such. Also, we can think of caching unsuccessful local improvements so that
they will never be performed a second time. Finally, we want to analyse the dif-
ferent components of our algorithm by replacing each of the perturbation, stable
improvements and simulated annealing by a naive technique. This will give an
insight into the contribution of each component to the solvers performance.
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Örebro University, Örebro, Sweden
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Abstract. As Europe sees its population aging dramatically, Assisted
Daily Living for the elderly becomes a more and more important and
relevant research topic. The Movecare Project focuses on this topic by
integrating a robotic platform, an IoT system, and an activity center
to provide assistance, suggestions of activities and transparent monitor-
ing to users at home. In this paper, we describe the Virtual Caregiver,
a software component of the Movecare platform, that is responsible for
analyzing the data from the various modules and generating suggestions
tailored to the user’s state and needs. A preliminary study has been
carried on over 2 months with 15 users. This study suggests that the
presence of the Virtual Caregiver encourages people to use the Movecare
platform more consistently, which in turn could result in better monitor-
ing and prevention of cognitive and physical decline.

Keywords: Virtual Caregiver · Assisted Daily Living · Ambient
intelligence

1 Introduction

As the overall population in Europe is aging remarkably [5], developing solutions
allowing users to stay cognitively and physically healthier becomes critical. A
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lack of cognitive and physical stimuli has been shown to encourage the appear-
ance of Mild Cognitive Impairment (MCI), a condition that may later develop
in dementia [12]. The development of the Internet of Things, robotic platforms,
and communication technologies in general offers new possibilities for innova-
tive solutions to provide such stimuli while monitoring the user’s cognitive and
physical state and evolution. This is the goal pursued by the MoveCare project.
However, such systems need to be proactive and encourage the users to interact
with the different tools provided so that they can be monitored efficiently while
being prevented with relevant stimulus.

In this paper, we describe the Virtual Caregiver, a software component of the
MoveCare platform, whose role is to analyze data collected by a monitoring sys-
tem and generate interventions to assist and encourage the user to use the digital
tools part of the MoveCare ecosystem. The remainder of this paper is organized
as follows. Section 2 presents the overall MoveCare project and platform, explain-
ing the interaction between the Virtual Caregiver and the rest of the platform.
Section 3 presents the architecture of the Virtual Caregiver and Sect. 4 presents
a pilot study performed in the context of MoveCare, which allowed us to test the
feasibility and efficiency of the Virtual Caregiver. Finally, Sect. 5 present studies
and systems related to ours, and Sect. 6 concludes this paper with a discussion
of the limitations and opportunities created by our system.

2 The MoveCare project

The MoveCare project is an H2020 European project aiming at creating a com-
plete solution to provide transparent monitoring, assistance and tailored rec-
ommendations to elders at home. The MoveCare platform, presented on Fig. 1,
integrates an activity center, along with a virtual community, an assistive robot
(the Giraff platform1), and environmental sensors and smart objects

In MoveCare, data is collected from three different types of sources: environ-
mental sensors, smart objects and a Community Based Activity Center (CBAC).

The set of environmental sensors include motion sensors in each room of
the user’s house, accelerometers under couches and beds, door sensors, and a
smart scale. Two objects have been “smartified”: a pen, which allows to measure
handwriting-related parameters, and a ball, which is associated to an exergame
on the CBAC to measure the user’s grip force.

The CBAC is an interactive application that can be used from a Tablet or
a TV and allows the user to play to a certain number of games, both cogni-
tive (cards games, pictionary) and physical (exergames) and record their score.
Games can be single or multi-player. In case of multi-player games, a video chat
system allows the players to interact with each other while playing. This video
chat system is also available as an application of its own.

The Virtual Caregiver (VC) gathers data from all the monitoring compo-
nents, analyzes it and provides feedback, assistance, and recommendations.

1 http://www.giraff.org/.

http://www.giraff.org/
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Fig. 1. The Movecare platform

The assistive robot is the main face of the system. It will deliver interven-
tions generated by the VC to the user and interact with them through voice
interaction.

In the remainder of this paper, we will describe the architecture of the Virtual
Caregiver as well as the different algorithms that it encompasses.

3 The Virtual Caregiver

3.1 Overview

The goal of the Virtual Caregiver is to gather all information provided from
the different components in the system and create interventions for the user.
An intervention is defined as a proactive action of the system which aims at
helping the user in their everyday life. Each intervention triggers an action from
the robot and/or a display on the CBAC for the user to read. Interventions are
tailored to the user’s needs and past behaviors and engineered to maintain their
physical, cognitive and social health. Interventions are characterized by the fol-
lowing elements: (a) an intervention code, describing the type of intervention.
(b) a priority, manually defined for each intervention type. Priorities range from
0 (lowest priority) to 7 (highest priority). (c) other data specific to this inter-
vention. The structure of the Virtual Caregiver, presented in Fig. 2, has been
designed around scenarios characterized by their clinical value and interest for
the user.

The movecare modules are separated in two categories: (a) the scenarios
modules, which implement functionalities specific to each scenario, and (b)
the utility modules which implement functionalities used across the different
scenarios.
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Fig. 2. The overall architecture of the Virtual Caregiver

The modules in the VC follow two types of workflows, which differ only by the
way data is received. Workflows are not mutually exclusive and one module can
implement both for different functions. In one case, which we call the Reactive
Workflow, the module receives data from other components (monitoring system,
robot, CBAC) in real-time, analyzes it, and generates an intervention. This is for
instance the case for the analysis of weight in the Weight Monitoring or the User
Location module. In the second case, which is the Periodic Workflow, the module
“wakes up” after a pre-determined amount of time (usually daily or weekly),
collects data from the database, analyzes it, and generates an intervention. This
is for instance the case for the function that reminds the user to measure their
weight in the Weight Monitoring module, or for the whole Reminder module. All
modules send the intervention they generate immediately to the Orchestrator,
who is in charge of timing the actual delivery to the user according context and
pre-defined constraints.

To communicate within the VC and with the other components of the sys-
tem, a set of MQTT2 channels have been implemented. These channels are of a
publish/subscribe type, and allow the VC to receive data from sensors and send
interventions to the rest of the system. Within the VC, one channel has been
implemented to send interventions from the different module to the orchestrator.

In the remainder of this section, we will describe in more details all the
VC modules. We will first focus on the scenarios modules (Sect. 3.2) and then
describe the set of Utility Modules (Sect. 3.3).

2 http://mqtt.org/.

http://mqtt.org/
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3.2 The Scenarios Modules

The scenarios modules implement the functionalities needed by the different sce-
narios. Scenarios have been designed focusing on their interest for the clinical
aspect of the MoveCare project, their interest for the end-user, and their tech-
nical feasibility. Three separate scenarios have been implemented, described in
the following.

Spot Questions. In this scenario, the user is expected to answer several ques-
tions related to their previous activities, the current context (current day, current
month) or an event in the past. This scenario has a high clinical value as it allows
to monitor the user’s cognitive state and to detect changes in the long-term. The
types of spot questions, their purpose, and examples of such questions are pre-
sented in Table 1. The role of the Virtual Caregiver in this scenario is to select
a question to ask according to a predefined frequency decided by the clinical
partners of the projects and presented on Table 2. The delivery of the selected
spot questions is made by the robot, through voice interaction. The robot also
records the user’s answer, transcript to text thanks to a speech-to-text module
and send it to the global database.

Table 1. Type of spot questions

Type of question Aim Examples of questions

Episodic memory Recovery related to
different activities
previously performed by
the user

“To be able to offer you
more varied exercises,
can you tell me if you
played cards in the last
3 days?”

“Do you remember how
much you weighed
yesterday?”

Apathy User’s self-evaluation of
their physical and
cognitive states

“Are you more tired
than usual today?”

“Are you more irritable
than usual?”

Temporal orientation Recovery related to
current time

“What weekday is it
today?”

“Which month is the
current one?”

Confabulation Trigger recovery of
long-term memory

“Do you remember how
you spent the day of
your 25th birthday?”

Do you remember what
you were doing a month
ago at the same time?”
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Table 2. Frequency at which spot questions must be asked

Week 1 1 question per day for 4 consecutive days

Week 2 2 questions days 1 and 3, 1 question day 5

Week 3 4 questions during one randomly selected day

Week 4 1 question per day for 5 consecutive days

The Spot Question module follows the periodic workflow. Algorithm1
presents the general algorithm used by the VC. For space reasons, we did not
detail all of the functions used but only summarized them.

Data: fqcy: representation of Table 2
listAvailableQuestions: the list of available questions allSpotQuestions: the list
of all possible questions
Result: dailySpotQuestions: a list of interventions SQ, corresponding to the

spot questions for the day with the corresponding correct answer (if
any) and the time they should be asked

1 if listAvailableQuestions.length ¡= 3 then
2 listAvailableQuestions = allSpotQuestions ;
3 end
4 nbQuestions = getNumberOfQuestionForCurrentDay();
5 delta = calculateDeltaBetweenQuestions() ;
6 for 0 ≤ i < nbQuestions do
7 question = selectQuestion(listAvailableQuestions) ;
8 answer = retrieveAnswerFromQuestion(question) ;
9 listAvailableQuestions.remove(question) ;

10 dailySpotQuestions.add(question, answer, currentTime + i*delta) ;

11 end
12 return dailySpotQuestions

Algorithm 1: Spot Questions main algorithm. The function getNum-
berOfQuestionForCurrentDay calculates how many spot questions are sup-
posed to be asked on the current day according to the frequency given
in Table 2. The function calculateDeltaBetweenQuestions distributes the
questions evenly during the day and returns the minimum amount of time
between two questions. The function retrieveAnswerFromQuestion retrieves
the expected answer for each spot question and its implementation is tightly
linked to the type of question selected by selectQuestion.

Weight Monitoring. Sudden change of weight is an important indicator of
frailty. For this reason, monitoring the user’s weight variations has a high clinical
value. The role of the VC in this scenario is twofold: it reminds the user to
measure their weight and analyzes the measurement. In case an important change
is detected (i.e., a gain or loss of at least 2% of the previous weight), then an alert
is sent to the clinicians through the Report Generation module (see Sect. 3.3).
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The Weight Monitoring module implements both the reactive and the peri-
odic workflows. The reactive workflow is used when a new measure is received
from the smart scale to analyze it. The periodic workflow is used to remind the
user to measure their weight if they haven’t done so in a week.

Neuropsychological Tests. The user is expected to perform regularly two
neuropsychological tests commonly used to detect early signs of cognitive impair-
ment [9]. The role of the VC in this scenario is to detect when the tests need
to be performed and present them for the user to perform. The Neuropsycho-
logical Tests module implements exclusively the periodic workflow. Algorithm 2
describes the main loop of the module.

Data: deltaTests: the number of days between two sets of tests
Result: Intervention CT to perform neuropsychological tests

1 Module wakes up every day at 01:00am ;
2 latestTests = getDateLatestTestsFromBD() ;
3 if no latestTests or latestTests are more than deltaTests days ago then
4 sendIntervention(CT) ;
5 end
6 sleepUntilNextDay() ;

Algorithm 2: The main loop for the neuropsychological tests.

3.3 The Utility Modules

The utility modules of the Virtual Caregiver implement functionalities that are
not tied to any specific scenario but are of use for various situations and compo-
nents. Five separate utility modules were developed, described in the following
sub-sections.

Reminders. The monitoring of the users is done through three components:
environmental sensors, smart objects and activities played in the CBAC. If the
monitoring through environmental sensors is completely transparent for the user,
they still need to remember to use the Smart Objects and the CBAC. The VC
can detect if they are doing so and remind them if needed through the Reminders
module. The Reminders module uses exclusively the periodic workflow and cre-
ates interventions according to a set of rules and priorities summarized in Table 3.
To avoid overwhelming the users, it has been decided that only one reminder
should be sent per day (if needed). If several reminders were necessary for the
current day, then the reminder with highest priority is sent.

In addition to reminding the user of several elements, this module also pro-
vides “positive feedback”: every three days, a message is sent through the CBAC
with an encouraging message of what the user has been using a lot during this
period of time (e.g., “You have been using your smart pen a lot lately. It’s
important for me to be able to monitor your handwriting. Keep doing it!”).
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Report Generation. The report generation component generates reports to
send weekly to the clinician responsible for the study. These reports contain the
user’s answers to the confabulation questions as well as alerts that might have
been detected during the week. In the pilot study described in Sect. 4, we only
generated upon abnormal weight measurement.

Table 3. Rules and priority for each type of reminders. Priority ranges from 1 (lowest)
to 5 (highest)

Reminder name Context Rule Priority

Grip Force game The Grip Force game is an
activity developed during
the MoveCare project that
aims at monitoring the
user’s grip force, a loss of
grip force being a common
sign of frailty

There is not grip force
data in the DB for the
past 7 days

5

Smart Pen The Smart Pen allows to
monitor changes in
handwriting, which can be
signs of frailty

There is no smart pen
data in the DB for the
past 7 days

1

Cognitive Games Cognitive games in the
CBAC allow to monitor
changes in the user’s
cognitive state

There is no report of
cognitive games played in
the DB for the past 7 days

2

Physical activity Maintaining a good level
of physical activity is
important for pre-frail
users. Physical activity
includes exergames from
the CBAC and going
outdoor

There is no report of
exergames in the DB and
the user has not been
outdoor for the past 3 days

3

Social games Multi-player games in the
CBAC allow the users to
socialize with peers while
playing

There is no report of
multi-player games in the
DB for more than 3 days

4

User Location. Being able to locate the user inside the home is a central
functionality for a system such as the MoveCare platform. This information is
used by the robot to navigate to the user and by the Virtual Caregiver itself to
infer some user’s activity and context. In the MoveCare platform, the Virtual
Caregiver infers the topological position of the user (i.e. the room in which
they currently are) based on motion sensors only. The User Location module
implements the reactive workflow and Algorithm 3 is called each time an event
is received from one of the motion sensors. An event corresponds to the sensor
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turning on or the sensor turning off. The sensors map, i.e., the map between
sensor IDs and the room they are located in, is supposed to be known. We also
assume that one sensor monitors entrances of the user’s apartment. In the case
of the MoveCare platform, this sensor is a contact sensor installed on the main
entrance door. Algorithm 3 can be summarized as follows: each new activation
of a motion sensor in a room where the robot is not moving is added to a list
of past locations and the user is located to the most recent location. When
a sensor turns off, then all the occurrences of locations corresponding to this
sensor are removed from the list. If the user cannot be located in the home (all
the sensors are off), they are either considered outside (if the entrance sensor has
been activated recently) or their position is unknown. This last case can happen
when the user is in a room which is not monitored (for instance the bathroom)
or too still for the sensors to be activated (for instance sitting on a chair).

Data: sensorEvent: event from one sensor, containing the sensor ID and the
value (OFF or ON)

robotPosition: the room in which the robot currently is
robotState: the state of the robot (IDLE, NAVIGATING)
pastLocations: the list of past known locations
latestDoorActivation: timestamp of the latest time the entrance sensor was
activated
Result: userLocation: the room in which the user is present

1 eventLocation = getLocationFromSensorMap(sensorEvent.id) ;
2 if event.value is OFF then
3 pastLocations.removeAll(eventLocation) ;
4 else
5 if robotState is IDLE or robotPosition is not eventLocation then
6 pastLocations.headInsert(eventLocation) ;
7 end

8 end
9 if pastLocations is not empty then

10 return pastLocations.firstElement() ;
11 else
12 if latestDoorActivation ¡ currentTime - 5min then
13 return OUTDOOR ;
14 else
15 return UNKNOWN ;
16 end

17 end

Algorithm 3: The main user location algorithm.

The Orchestrator. At the center of the Virtual Caregiver, the Orchestrator
receives all intervention requests from the different modules and send them to
the other components of the MoveCare system when appropriate. To do so, the
Orchestrator uses a policy, based on rules and temporal constraints, presented
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in Table 4, to detect the appropriate time to send interventions. Rules are either
context-based or ad-hoc.

Table 4. Rules and constraints implemented in the Orchestrator

Number Name Type Description

1 Resting Context-based No intervention is sent if
the user is detected in the
bedroom

2 Night time Ad-Hoc No intervention between
21:00 and 08:00. This rule
has been implemented to
ensure that the user won’t
be disturbed by the robot
while sleeping, should the
context from rule 1 not be
detected properly

3 User at home Context-based No intervention is sent if
the user is OUTDOOR

4 In bathroom Context-based No intervention is sent if
the user is in the bathroom

5 Max. number of
interventions

Ad-hoc There should be a
maximum of 5
interventions per day

6 Min. time
between
interventions

Ad-hoc There should be at least 1
hour between 2
interventions

The orchestrator implements both a reactive and a periodic workflow: Algo-
rithm 4 is called in three cases: (1) when the orchestrator receives an intervention
request from another VC module, (2) when the user’s location is updated from
OUTDOOR to another location in the home, (3) every hour between 08:00 and
21:00.

When the orchestrator receives a new intervention, it queues it in a list of
pending interventions. It then selects the intervention with highest priority, and
checks that all the rules from Table 4 apply before actually sending the inter-
vention through MQTT. At the end of the day, the list of pending interventions
is cleared. Since all periodic modules wake up at regular intervals, interventions
that have not been sent will be regenerated the next day.
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Data: requestedIntervention: the intervention requested by one of the VC
modules (when real time),

pendingInterventionList: the list of all pending interventions,
Result: Publishes an intervention on the corresponding MQTT topic if

constraints are met.
1 if intervention not null then
2 pendingInterventionList.add(intervention) ;
3 pendingInterventionList.sortBy(priority) ;

4 end
5 if Rules 1 to 6 are OK then
6 intervention = getFirst() ;
7 publish(intervention) ;
8 pendingInterventionList.remove(intervention) ;

9 end
10 if currentTime > 21:00 then
11 pendingInterventionList.clear() ;
12 end

Algorithm 4: The Orchestrator’s main loop.

4 Pilot Study

The developed system has been tested during a pilot study involving 15 users
for 2 months. Users were situated in Italy (7 users) and Spain (8 users) and
were recruited following interviews from clinicians, which allowed to categorize
them in the pre-frail state. Among these users, 8 of them (4 in Italy and 4
in Spain) have been provided with the full MoveCare platform (environmental
sensors, smart objects, CBAC, and robot) and 7 (3 in Italy and 4 in Spain) have
been equipped with the platform without the robot. This separation allowed us
to test whether the presence of the robot (the “face” of the Virtual Caregiver)
had a positive impact on the use of the monitoring platform (smart objects and
CBAC). Figure 3a shows the number of measurement corresponding to the use
of the CBAC (code ARU), the use of the smart scale (code BWT), the use of
the smart ball (code EXG) and the use of the smart pen (code PEN).

We can see that the presence of a robot systematically increases the use
of the Smart Objects and the CBAC. However, when analyzing the number of
interventions delivered to users with robots compared to number of actual mea-
surements from the same users (Fig. 3b) we can see that the users are interacting
with the monitoring system much more than they are reminded to. This sug-
gest that either the physical presence of the robot, or the few times the robot
actually reminded them to use the object were sufficient to encourage users to
use the monitoring system. This could also result from the fact that users that
have been equipped with a robot are more engaged with the study, and therefore
more likely to use the system.
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5 Related Work

The development of Virtual Caregivers to assist elders at home has been a hot
topic of research for several years now. Early work focused on the development of
robotic platforms capable of assisting the user [11,13] and providing social inter-
action [10,14]. Other studies focused on creating platforms for rehabilitation, in
which robots can help the patient train specific tasks [6,8]. These systems are
focused on user’s assistance and do not consider user monitoring.

With the recent booming of the Internet of Things and Ambient Sensing,
many systems have been developed to monitor elders in Smart Homes and assess
their cognitive and physical states, promoting independent living. Work as early
as the one presented in [15] acknowledge the added value of monitoring users
to provide better care and allow them to stay at home. Since, many studies
relied on IoT and ambient intelligent systems to recognize user’s patterns [1],
activities [4] and habits [2].

When combining the monitoring and assistive aspects of elderly care at home,
some systems preferred the use of “ambient actions” (actions to devices con-
nected to the system) [16] or favored the use of Smart TVs [3,7].

(a) Number of measurements recorded
during the study for groups of users
with and without a robot. ARU corre-
sponds to the activities in the CBAC
(all types of activities), BWT is the
weight measurement, EXG is the use
of the smart ball and PEN is the use of
the smart pen.

(b) Number of interventions reminding
the users to use a certain component
and number of actual use of this com-
ponent. ARU corresponds to the activ-
ities in the CBAC (all types of activi-
ties), BWT is the weight measurement,
EXG is the use of the smart ball and
PEN is the use of the smart pen. I X
correspond to the intervention remind-
ing the user to use X.

Fig. 3. Results of the pilot study
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6 Conclusion

In this paper, we presented the Virtual Caregiver, a software component that
analyzes data gathered from a monitoring system and generates interventions,
with the goal of monitoring and assisting the user of the system. The VC uses
context elements and constraints to decide when to send an intervention, thus
providing assistance in an non-intrusive way. The system has been implemented
and tested during a pilot study involving 15 users over 2 months, and results
suggest that such a proactive component is beneficial for the system as a whole.
Indeed, users equipped with the robot (which acted as the face of the Virtual
Caregiver and delivered interventions) were more engaged with the platform as
a whole. The main limitation of this study is in its size. The number of users
and the duration of the study does not allow us to strongly conclude whether
the presence of the system was beneficial overall to the users. Longer and big-
ger studies would be required. However, the results are encouraging and open
a lot of possibilities for future improvement. The main line of future work con-
cerns long-term analysis of the user’s cognitive and physical state. In the current
implementation of the Virtual Caregiver, only short term analysis was used to
detect interventions. Some trend and pattern detection have been performed
during the project after the end of the pilot, but were not considered during
the pilot. Identifying trends and patterns in the user’s state as the system runs
would allow for more tailored recommendations.
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Abstract. In multiagent organizations, the coordination of problem-
solving capabilities builds the foundation for processing complex tasks.
Roles provide a structured approach to consolidate task-processing
responsibilities. However, designing roles remains a challenge since role
configurations affect individual and team performance. On the one hand,
roles can be specialized on certain tasks to allow for efficient problem
solving. On the other hand, this reduces task processing flexibility in case
of disturbances. As agents gain experience knowledge by enacting certain
roles, switching roles becomes difficult and requires training. Hence, this
paper explores the effects of different role designs on learning agents at
runtime. We utilize an adaptive Belief-Desire-Intention agent architec-
ture combined with a reinforcement learning approach to model expe-
rience knowledge, task-processing improvement, and decision-making in
a stochastic environment. The model is evaluated using an emergency
response simulation in which agents manage fire departments for which
they configure and control emergency operations. The results show that
specialized agents learn to process their assigned tasks more efficient than
generalized agents.

Keywords: Adaptive agents · Role design · Reinforcement learning ·
Multiagent systems

1 Introduction

In modern organizations, the automation of processes and distribution of knowl-
edge is rising. For instance in the context of an “Industry 4.0” setting where
autonomous Cyber-Physical-Systems (CPS) control processes by a decentral-
ized decision-making. From an artificial intelligence perspective, these CPS are
modeled by virtual representatives in form of intelligent agents. In order to enact
according to organizational goals, these agents have to be part of the organiza-
tional structure as well. That is, agents adopt predefined roles and act according
to their definition. Roles define, on the one hand, the responsibility of a role

c© Springer Nature Switzerland AG 2020
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owner for various tasks and, on the other hand, the expected behavior towards
other members of the organization to perform these tasks [5,12]. In addition,
the execution of a role requires certain capabilities for processing the tasks in
the area of responsibility. The application of these capabilities can be improved
upon multiple execution, i.e., learning by collecting information about the envi-
ronment and its change [24]. Reinforcement learning approaches allow agents
to learn from their experience to decide which action should be selected in a
specific situation. As learning applications arise, the organizational structure in
general and the role design in particular must take into account the behavior
and effects of learning systems. Especially since roles specifically define an agents
responsibilities and therefore its abilities of gaining experience to learn from.

Hence, this paper analyses the effects of role design on agent learning. In
theory, specialization allows for a more efficient gain of experience because the
agent responsibilities are focused on a narrow task set [12]. Contrastingly, cross-
training agents to process various tasks increases robustness and scalability
[7,12]. In this paper we extend a Belief-Desire-Intention (BDI) agent architec-
ture by a reinforcement learning approach to improve action execution in a given
situation. The agent learns a policy to process different kind of task types. Since
BDI plans consists of a finite set of actions, the policy provides an action selec-
tion function for a given state. In order to evaluate different role designs, an
emergency response environment is utilize in which agents control fire depart-
ments and allocate resources to emergencies. As an example for dynamic envi-
ronments, emergency response requires adaptation to changing environmental
situations and therefore suits for a demanding learning application.

The remainder of this paper is structured as follows. Section 2 introduces
organizational structures and different approaches for designing roles as well
as presents current research on assigning roles in multiagent systems. Section
3 is divided into Sect. 3.1 and Sect. 3.2. In Sect. 3.1 the overall adaptive agent
framework is presented to give a broader outlook role adaptation. Section 3.2
introduces the BDI learning model. Section 4.1 describes the emergency response
framework and environment as well as Sect. 4.2 shows and analyses the simula-
tion results for different role designs. Section 5 concludes this article.

2 Foundations and Challenges of Role Design

From an artificial intelligence perspective, distributed task processing is a
key functionality of multiagent systems (MAS) due to their intelligent and
autonomous behavior. MAS organizations support successful coordination of
problem solving capabilities [4,6] and provide a rigid structure to reduce com-
plexity in coordination [21]. MAS organizations are defined as “complex entities
where a multitude of agents interact, within a structured environment aiming
at some global purpose” [4, p. 4]. Designing collaborative structures for efficient
and effective teamwork is a core challenge in designing MAS [7]. A common
approach is to encapsulate task processing responsibilities in roles. Hence, roles
define expected behavior for processing certain tasks [3,7,11,12]. Organizational
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research distinguishes between roles and role enactment [5]. As a consequence,
agents need to be aware of organizational structures and their roles which they
are enacting. When agents decide which action to perform next, their behav-
ior need to be aligned with organizational structures and goals. In multiagent
organizations, the main purpose of an agent is enacting its role(s).

In organizational research, role configurations can be categorized by two
dimensions, namely generalist or specialist configurations. Completely special-
ized roles are defined by their limited set of responsibilities for task-processing
[12]. Generalist role configurations (cross-training) allows for a more robust con-
figuration in which members of the organization share responsibilities and capa-
bilities [2]. According to Ferber, the performance of an agent organization is
dependent on the degree of specialization and redundancy [7]. Hence, he distin-
guishes four different types of organizational role design [7]: (1) not redundant
hyper specialized organizations in which each agent is specialized on one task
and each task can be performed by one agent only, (2) redundant specialized
organizations in which each agent is specialized on one task but each task can
be solved by several agents, (3) redundant generalized organization in which
every agent can solve all types of tasks and each task can be solved by every
agent, and (4) not redundant generalized organization in which an agent is able
to perform all kind of tasks but each task can be processed by exactly one agent.
However, type (4) is special configuration in which only one totipotent agent
operates [7].

On the one hand, sharing problem-solving capabilities increases the robust-
ness of the work process against disturbances. For instance, if an agent becomes
unavailable, tasks can be reassigned to other team members (organizational types
(2) and (3)). Furthermore, cross-training allows for better task processing scal-
ability and workload balancing which is necessary if some types of tasks occur
more frequently (type (3)). On the other hand, sharing of the entire knowledge
among all team members results in an increased amount of information that
needs to be processed by each agent individually. By specialization on specific
tasks team members can focus on their specific expertise which reduces the load
of information being processed (type (1) & (2)). However, this potentially makes
the team as a system more fragile as it lacks the required redundancy of knowl-
edge to avoid conflicts and failures.

Besides the role design itself, role allocation also addresses the issue of spe-
cialization and generalization indirectly. In role allocation, there is a finite set of
roles R and a finite set of agents Ag to which resources have to be assigned to.
Therefore an allocation function a : R × Ag → (R,Ag) defines the assignment
of a role to an agent. Campbell and Wu provide an overview of role allocation
problem formalizations and solutions in their overview article [1]. They present
three different formalizations in form of the iterative Optimal Assigning Prob-
lem (OAP) [9,10], the Extended Generalized Assigning Problem (E-GAP) [20]
as well as Role-based Markov Team Decision Problem (RMTDP) [15]. In the
OAP approach, a finite set of roles is allocated to agents but each agent can
only enact one role. In order to allow for multi role allocation, the E-GAP app-
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roach allocates severals roles to an agent. In their papers, Nair et al. utilize MDP
to search for a role allocation policy in a multiagent team [14,15]. They utilize
role taking and role execution actions to optimize team work for BDI agents and
learn a policy for role taking and execution.

However, role allocation problems and formalizations rely on previously
defined roles. That is, true specialization is only possible if individual roles are
specialized on tasks beforehand. Otherwise this would be a specialization of
agents to certain roles but not on tasks itself. Moreover, role allocation is mostly
determined based on fixed capability and fixed cost functions for enacting roles.

3 Adaptive Organizational Agent Model

In dynamic environments agents need to adapt their decision-making to situ-
ational changes. Hence, Sect. 3.1 introduces an adaptive agent framework for
adapting organizational structures in multiagent systems to increase perfor-
mance. The framework builds the foundation and the overall objective for ana-
lyzing role designs for learning agents. Section 3.2 describes the learning BDI
agent architecture in detail.

3.1 Adaptive MAS Framework

The vision of adaptive agent organizations is to allow multiagent teams to
dynamically adapt their structure based on current workload at runtime. Hence,
an adaptation framework is introduced and Fig. 1 provides an overview of its
components. The framework consists of three different components: (1) organiza-
tional structure, (2) performance measurement, and (3) adaptation mechanisms.
The basis builds an organizational structure which provides definitions for roles,
tasks, and communication. According to this structure, agents adopt roles to pro-
cess tasks. In this framework, agents are modeled by a Belief-Desire-Intention
architecture (cf. Sect. 3.2). The selection of utilizing BDI is driven by two main
advantages: (1) handling multiple goals and (2) its intentionality. Participating
in an organization requires the consideration of various point of views and aims
of different actors. Furthermore, the special feature of directed adaptation lies
in intentional situation evaluation of individual agents.

The performance model provides key figures to evaluate the agents’ current
effectivity and efficiency. These measures can either be referring to individual
performance or team performance as a whole. Potential performance indicators
could be the mean task processing durations or as in a reinforcement learning
the reward obtained from the environment. Based on their performance and
workload, the adaptation of the organizational structure can be initiated. This
framework manipulates organizational structures mainly by their role definitions.
That is, role designs directly influence task responsibilities and therefore task
processing as well. For instance, if the certain tasks may occur unforeseen, single
agents can be overloaded by their workload. In this case other agents can support
by adopting their current role(s). The adaptation of the organizational structures
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Fig. 1. Adaptive agent framework

should increase the team and individual performance. Therefore, it requires a
detailed evaluation of the current workforce to anticipate future behavior.

In previous research we could show that the role design itself has a signifi-
cant influence on the team performance [18,26,27]. In the experiments, special-
ized teams and the adaptation to specialized teams are processing tasks more
effective and efficient. However, enacting roles facilitates the generation of expe-
rience knowledge and agents improve their skills by processing tasks more often.
Especially in dynamic environments untrained agents suffer from the lack of
experience because task processing requirements may change rapidly over time.
Hence, the next Sect. 3.2 extends previous research by introducing a learning
component to a BDI agent model to accommodate for experience and improving
skills in a stochastic environment. Hence, analyzing the interdependency of role
design and learning behavior is a the next step towards the goal of adaptive
multiagent organizations.

3.2 Learning BDI Model

Belief-Desire-Intention agents are well-known for their rational decision-making
[29]. Each agent is driven by three different mental states, i.e., its beliefs B, its
desires D, and intentions I. Beliefs store knowledge about the current situation,
desires store goals it can attempt to achieve and the intentions connect goals
its has committed to achieve with actual plans. Due to their architecture, BDI
agents are suitable for handling multiple or conflicting goals [16,25]. Figure 2
shows the learning BDI model at the center and its dynamic environment at
the top. For describing the basic BDI architecture we utilize the formalization
for the discourse agent by Timm [25] and extend previous defined knowledge
distribution approaches [19] by a learning approach. The core of the agent model
is its localstate L which includes the set of its beliefs B, desires D, and intentions
I as well as the set of plans Plan. Plans are based on the total set of actions Act
of the agent. Hence, each plan definition uses a (sub-)set of Act. The localstate is
initialized with l0. In order to reason about its environment, the agent has a see-
function which converts the environment to a perception (see : Env → Perc).
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Based on the perception, the localstate is then being revised by reflect : L ×
Perc → L∗. decide is a deliberation function which transforms the localstate to
an action plan (decide : L → L) and execute executes a single action from an
action plan (execute : L → Act).

Due to the organizational context, the environment of an agent consists of
multiple tasks. Which task an agent can perceive is defined by its role definition.
The task processing is model as a stochastic process in form of a Markov Decision
Process (MDP). A Markov Decision Process is a tuple of 〈S,A, T,R〉 where S is a
finite set of states, A is a finite set of actions, T is a transition model T : S × A →
S, and R is a reward function r: S × A → R [23]. MDP represent probabilistic
state transitions based on predefined actions. For executing an action, a reward is
being obtained from the following state. Hence, each state of the MDP represents
an individual state of a task. The actions allowed within the MDP are represented
by the actions available for a particular plan. The transition model represents
the dynamic environment. Individual tasks are represented by individual MDPs.

Fig. 2. BDI decision-making process

In this context, we utilize BDI agents for a task driven decision-making. That
is, each agent chooses their actions based on its current task. Hence, the agent
has a plan for each type of task it is responsible for. In this model, plans are
represented by a set of actions, functions for its status and action selection.
Furthermore, each plan has ϕpre and ϕpost to represent pre- and post-condition
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of a plan corresponding to the STRIPS1 notation [8]. In order to solve a task
the agent can perform actions in the environment.

To chose an action in a given state, a policy π : S → A maps a single state to
an action. In literature, different learning approaches are applied to BDI agents
dealing with stochastic environments [13,17,23,28]. Hence, π implements the
action selection function in a plan. ϕpre and ϕpost are modeled by start and
goal states of the MDP and are determined by the beliefs of the agent. The set
of actions which the agent can perform are determined by each plan. To learn
a policy for action selection the Q-learning algorithm is used. Q-learning is a
model free approach and is common in reinforcement learning applications [24].
Q-learning models the quality of state-action-pairs (S and A) by a real valued
function Q : S × A → R. Q-values are updated according to Eq. 1 in which α
represents the learning rate, γ defines the discount factor, and r represents the
reward the agent achieves [22].

Qk+1(st, at) = Q(st, at) + α(rt + γmaxQk(st+1, at+1) − Qk(st, at)) (1)

For adapting organizational structures (cf. adaptation mechanism Sect. 3.1),
i.e, to specialize or to cross-train agents, an adaptation function adapt for
task-related knowledge is introduced. The function modifies an agent’s set of
actions by adding or removing actions. Given sets of actions to add (Actiadd) or
remove (Actiremove) for agent i, the agent’s adaptation operations for task-related
knowledge are defined as: add : Acti

′ = Acti ∪ Actiadd and remove : Acti
′ =

Acti \ Actiremove. This adaptation affects the available actions for the plans and
to specialize an agent, all actions referring to a particular task types can be
removed. On the other hand, adding actions extends an agent’s capabilities. This
representation of adaptation allows for enacting according to role designs and
runtime adaptation. That is, the desire for processing the kind of task remains
but without the necessary action repertoire no intention can be instantiated.

4 Emergency Response Simulation

In order to test the adaptive agent model, a dynamic resource allocation problem
is utilized in an emergency response environment. In this scenario, agents have
to coordinate and allocate rescue units of fire departments. Hence, agents learn
to assign a set of resources R (vehicles and fire station operators) to a set of
emergencies E. The next Sections provide an overview of the simulation model
(Sect. 4.1) as well as simulation experiments and results (Sect. 4.2).

4.1 Emergency Response Scenario

This scenario model distinguishes between emergencies E, stations S, vehicles
V , and operators O. Each station has a finite set of vehicles and a finite set of
1 Stanford Research Institute Problem Solver.
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operators. Each operator has individual qualifications and each vehicle has a list
of required qualifications for an emergency. In this specific simulation setup each
agent is controlling a station and needs to assign vehicles to operations. Each
individual operation corresponds to an emergency. Figure 3 gives an overview
of the mentioned concepts on the left side and shows a part of the environment
on the right side. The scenario environment is represented by realistic map data
which is provided by OpenStreetMap2 to allow for a more detailed and complex
model of emergency operations.

Fig. 3. Simulation entity model (left) and environmental setting (right)

As described in Sect. 3, each emergency is modeled as a stochastic process and
is categorized as small, medium, or big. If an emergency is not handled correctly,
its state, i.e., category changes which is defined by the transition probabilities.
For instance a small emergency would evolve into a medium one. If an emer-
gency occurs, the agent selects suitable vehicles based on the policy and defines
an operation. The action an agent can take in this environment is defined by
configuring and starting operations. Each operation is defined by its vehicles in a
vector representation, e.g., the vector <2, 3, 2> describes sending two vehicles of
type A, three type B, and two type C vehicles. Hence, the learning task is to find
a suitable operation configuration for a given emergency. The optimal configura-
tion consists of the minimal set of vehicles to finish the emergency. Sending too
many vehicles will also finish the task but is rewarded less due to the over use
of resources. In contrast, sending not enough units results in negative rewards
since the emergency task escalates.

4.2 Simulation Configuration and Results

For evaluation purposes, the simulation environment is configured as follows.
Each agent controls a fire station containing three different types of vehicles,
namely: heavy rescue vehicles, water tenders, and fire trucks with turntable
ladder. The station has a total of 15 vehicles (five vehicles of each type).

2 https://www.openstreetmap.de/.

https://www.openstreetmap.de/


198 L. Reuter et al.

A fire station is responsible for three different types of emergencies: (1) fire,
(2) transporting dangerous goods, and (3) technical support. Each type of emer-
gency requires a different operation configuration, for instance a small fire can
be extinguished by two water tenders, a fire truck with turntable ladder, and a
heavy rescue vehicle which corresponds to an action vector of <2, 1, 1>. The
other small types of emergencies require operations such <1, 2, 1> and <1, 1,
2> respectively. Medium tasks require operations such as: <4, 2, 2>, <2, 4, 2>,
and <2, 2, 4>. Large emergency operations consists of: <5, 4, 4>, <4, 5, 4>,
and <4, 4, 5>. The types of emergencies, the type of vehicles, and the configura-
tion of operations are inspired by the requirements and classifications for german
fire departments and operations. For simplicity purposes we neglected the staff
allocation problem in this scenario. Hence, a vehicle in an operation has always
the right amount of operators with the necessary qualifications.

In order to test the effects of specializing agents, roles are defined based on
the three emergency types. Specialized agents are responsible for exactly one
type and a generalized agent is able to process all kind of emergencies. Hence,
the learning task is scaled based on the responsibilities of each agent.

The reward for the learning task is specified based on the required vehicles
and the vehicles provided within the operation. The maximum reward is 500 for
sending the minimal required amount. Sending not enough vehicles or the wrong
type results in a linear negative reward from zero and for each vehicle missing
or wrong type of −20. Sending too many vehicles reduces the maximum reward
by 20 for each unnecessary or wrong vehicle. Equation 2 models the rewards for
an action A and the amount of arrived vehicles in a State S (Narrived ∈ N) as
well as the amount of required vehicles in S (Nreq ∈ N).

Reward(A,S) =

⎧
⎪⎨

⎪⎩

500 Nreq = Narrived

500 − 20 ∗ (Narrived − Nreq) Nreq < Narrived

0 − 20 ∗ (Nreq − Narrived) Nreq > Narrived

(2)

At the beginning of each simulation, the Q values are initialized with random
values. To explore the environment an ε-greedy strategy is utilized. ε defines the
probability at which the highest Q-Value from the table is used or a random
action is applied to explore the environment.

For evaluating the effects of specialization on agent learning, a sensitivity
analysis is conducted. The sensitivity analysis considers the ε parameter (interval
[0.5; 0.9]), the learning rate (interval [0.5; 1.0]), the discount factor (interval
[0.5; 1.0]) as well as the role design in the spectrum of specialization and full
generalization. Each simulation consists of 1000 individual learning episodes and
each configuration has been run 10 times. In this evaluation, we investigate
two scenarios: (1) learning specialist vs. learning generalist role designs and (2)
adaptation performance of learning agents in a modified environment.

Specialist Versus Generalists. In Fig. 4 the mean rewards for the specialist
and generalist role designs are shown. The runs were executed using a linear
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Fig. 4. Rewards: (a) mean rewards specialists and (b) mean rewards generalists

increasing ε value starting at 0.5 and a learning rate of 0.9 to allow for an
exploration of the environment at the beginning. The discount factor is set to
1. In these specific runs, emergencies of all categories are equally distributed.
Specialist role configurations are achieving the maximum reward faster than
generalist structures because the training of generalists is delayed by the change
between different task types.

In Fig. 5 shows the difference between specialist and generalist mean rewards
from Fig. 4. The dotted blue line shows the mean value of the difference (49,
24). This shows an advantage in reward for specialist roles. The dotted red line
describes a linear regression model of the difference data which also indicates
specialist efficiency. It confirms the hypothesis that specialist are reaching the
maximum reward faster since they gain more experience. Running a t-test shows
that specialist and generalist mean rewards are significantly distinct (p-value =
0.006827). Then the average reward normalizes as both generalists and specialists
reach the maximum reward amount.
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Adaptation of Task Requirements. In this context, the dynamics of a sys-
tem is defined not only by the stochastic change of states but also by the change
of task requirements. Hence, in order to demonstrate and analyze learning in
dynamic environments, the requirements for accomplishing a small emergency
task are modified. By this modification an agent need to send resources as it
would for a medium operation. For instance, one could argue that strong wind
would spread a fire much faster so one would need more units to fight the fire.
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Fig. 6. Adaptation performance

In this experiment a total of 700 emergencies have to be operated. After a
learning period of 500 emergencies, the requirements for a successful operation
are changed. Figure 6 shows the mean rewards of generalist and specialist role
designs. For comparing the recovery performance for the two role designs a linear
regression is conducted. The resulting linear models shows a stronger recovery
for specialist roles (linear models: Regspec = 0.46 ∗ x + 226.40 and Reggen =
0.44 ∗ x + 203.99). The linear regression shows almost equivalent gradients but
the intercept for generalist role designs is lower. This indicates a higher impact
of dynamic environment on generalist roles in comparison to specialized ones. A
T-test reveals a significant distinction of the test series with a p-value of 0.0057.
Overall, specialized role designs allow for a more efficient learning than generalist
role designs in this experimental setting.

5 Conclusions

Task processing in dynamic environments is a major challenge for designing mul-
tiagent systems. This paper addresses the challenge by analyzing learning agents
in organizational structures and the impact of specializing agents on learning
performance. Hence, we extend a Belief-Desire-Intention agent architecture with
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a Q-learning approach to learn action selection for agent plans to incorporate
experience and environmental feedback into task-related knowledge. Different
role designs are tested using an emergency response simulation environment
in which agents control fire departments and assign rescue units to emergency
operations.

The two main conclusions from the simulation experiments are that (1) spe-
cialist roles gain maximum reward values faster than generalist ones and conse-
quently (2) specialized agents recover more efficient from environmental changes.
These observation refer to the average reward gained trough various learning
episodes. However, these first tests are limited to the simulation scenario and
its structure but allow for first quantifications of learning costs which build the
basis for adapting agent roles at runtime. In future research, a continuation of
the adaptive agent framework is planned in which these findings can be com-
plemented with an optimization approach. The adaptation aims at balancing
specialist role designs for allowing more efficient adaptation to changing envi-
ronments with a cross-training approach to accommodate for robustness.
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Abstract. Descriptor revision by Hansson is a framework for address-
ing the problem of belief change. In descriptor revision, different kinds of
change processes are dealt with in a joint framework. Individual change
requirements are qualified by specific success conditions expressed by a
belief descriptor, and belief descriptors can be combined by logical con-
nectives. This is in contrast to the currently dominating AGM paradigm
shaped by Alchourrón, Gärdenfors, and Makinson, where different kinds
of changes, like a revision or a contraction, are dealt with separately.
In this article, we investigate the realisation of descriptor revision for
a conditional logic while restricting descriptors to the conjunction of
literal descriptors. We apply the principle of conditional preservation
developed by Kern-Isberner to descriptor revision for conditionals, show
how descriptor revision for conditionals under these restrictions can be
characterised by a constraint satisfaction problem, and implement it
using constraint logic programming. Since our conditional logic sub-
sumes propositional logic, our approach also realises descriptor revision
for propositional logic.

1 Introduction

The work by Alchourrón, Gärdenfors, and Makinson [1] (AGM) and its suc-
cessors have shaped the currently dominating paradigm for belief change. By
AGM, mainly three main kinds of belief changes are subject of interest: revision
(incorporating new beliefs into an agent’s belief state while maintaining consis-
tency), contraction (removing beliefs from the agent’s belief state), and expan-
sion (incorporating new beliefs into an agent’s belief state without maintaining
consistency). The most prominent difference between these kinds of changes is
their success condition. The approach to the problem of belief change by AGM is
top-down, starting from the axiomatisation of each of the three kinds of changes
and then investigating the representational issues through representation theo-
rems.

In the last 20 years, the AGM theory has been extended into several directions
and has been deeply investigated. This gives new insights on the requirements
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of representation and conceptual problems of (AGM) belief change. In partic-
ular, for Hansson [16], the requirement of epistemic states for iterative belief
change [8], the central role of conditionals in belief change and non-monotonic
logic [23,24] and problems like the non-finite representability of the result of a
contraction [14] or concerns about the “select-and-intersect” approach of AGM
[16] were a motivation to design a new framework for belief change. Descrip-
tor revision by Hansson [10] follows the top-down approach to belief change,
but, in contrast to the AGM paradigm, in descriptor revision, different kinds of
changes are expressible in one joint framework. For this, Hansson introduced a
language for success conditions, called belief descriptors. Through belief descrip-
tors, success conditions become an explicit part of the change process, instead of
hiding them in distinct kinds of operations having different success conditions.
This allows to express and analyse change processes that go beyond the classical
AGM operations, e.g., a change process where a contraction of a belief α and
a revision by β appear at the same time. Descriptor revision has been broadly
investigated by Hansson [11–16], but did not gain as much attention as AGM
[26]. In particular, to the best of our knowledge, until now, no approach to the
realisation of descriptor revision is available.

In this article, we investigate descriptor revision for a conditional logic while
using ordinal conditional functions [25], also called ranking functions, as repre-
sentation for epistemic states. We outline how to instantiate the framework of
descriptor revision for this logic and design an approach for its realisation. Fur-
thermore, for descriptor revision we use and adapt the sophisticated principle
of conditional preservation by Kern-Isberner [18,19] for ranking functions. In
summary, the main contributions of this article are:

– Introduction of conditional descriptor revision, which introduces the principle
of conditional preservation to the framework of descriptor revision.

– A sound and complete characterisation of conditional descriptor revision for
elementary descriptors by a constraint satisfaction problem.

– Implementation of elementary descriptor revision using constraint logic pro-
gramming and by employing the developed characterisation.

The article is organised as follows. In Sect. 2, we present logical preliminaries.
We recall descriptors and descriptor revision in Sect. 3. Section 4 introduces our
framework of conditional descriptor revision. Section 5 develops a characterisa-
tion of conditional descriptor revision for elementary descriptors by a constraint
satisfaction problem. The implementation of this approach is sketched in Sect. 6.
We conclude and point out future work in Sect. 7.

2 Logical Preliminaries

Let Σ be a propositional signature (non-empty finite set of propositional vari-
ables) and Lprop the propositional language over Σ. With upper case letters
A,B,C, . . ., we denote formulas in Lprop and with lower case letters a, b, c, . . .
propositional variables from Σ. We allow the typical abbreviation A → B for
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¬A ∨ B, abbreviate A ∧ B by AB and write A for ¬A. With �, we denote a
propositional tautology and with ⊥ a propositional falsum. The set of proposi-
tional interpretations Ω = P(Σ), also called set of worlds, is identified with the
set of corresponding complete conjunctions over Σ, where P(·) is the powerset
operator. Propositional entailment is denoted by |= , the set of models of A
with Mod(A), and Cn(A) = {B | A |= B} is the deductive closure of A. For
a set X, we define Cn(X) = {B | X |= B} and say X is deductively closed
if X = Cn(X). In the context of belief change, a deductively closed set is also
called a belief set.

A function κ : Ω → N such that κ−1(0) �= ∅ is a called a ordinal condi-
tional function (OCF), also called a ranking function [25]. It expresses degrees
of implausibility of interpretations. This is lifted to propositional formulas A by
defining κ(A) := min{κ(ω) | ω |= A}, where min ∅ = ∞, yielding a function
κ : L → N ∪ {∞} which specifies a degree of implausibility for each formula.
With Mod(κ) = {ω | κ(ω) = 0} we denote the minimal interpretations with
respect to κ, and Bel (κ) denotes the theory of propositional formulas that hold
in all ω ∈ Mod(κ).

Over Σ and Lprop, we define the set of conditionals Lcond = {(B|A) | A,B ∈
L}. A conditional (B|A) formalizes “if A then usually B” and establishes a plau-
sible connection between the antecedent A and the consequent B. Conditionals
with tautological antecedents are taken as plausible statements about the world.
Because conditionals go well beyond classical logic, they require a richer setting
for their semantics than classical logic. Following De Finetti [9], a conditional
(B|A) can be verified (falsified) by a possible world ω iff ω |= AB (ω |= AB).
If ω �|= A, then we say the conditional is not applicable to ω.

Ranking functions serve here as interpretations in a model theory for a con-
ditional logic. We say a conditional (B|A) is accepted in a ranking function
κ, written as κ |= (B|A), iff κ(AB) < κ(AB), i.e., iff the verification AB
of the conditional is more plausible than its falsification AB. For a proposi-
tional formula A, we define κ |= A if κ |= (A|�), i.e., iff κ(A) < κ(A)
or equivalently iff κ(A) > 0, since at least one of κ(A), κ(A) must be 0 due to
κ−1(0) �= ∅. The models of a conditional (B|A) are the set of all ranking functions
accepting (B|A), i.e. Mod((B1|A1)) = {κ | κ |= (B|A)}. A conditional (B1|A1)
entails (B2|A2), written (B1|A1) |= (B2|A2), if Mod((B1|A1)) ⊆ Mod((B2|A2))
holds. Furthermore, we define the set of consequences for X ⊆ Lcond by
Cn(X) = {(B|A) | X |= (B|A)}. As usual, X ⊆ Lcond is called deductively
closed if X = Cn(X). This ranking function based semantics can be mapped to,
and can also be obtained from, other semantics of conditionals [4].

Example 1 (adapted [5]). Let Σ = {p, b, f} with p meaning “penguin”, b “bird”
and f “able to fly”. “Birds normally fly” is modelled with the conditional r1 =
(f |b), “penguins normally do not fly” with r2 = (f |p), and “penguins are normally
birds” with r3 = (b|p). Consider the ranking function κp from Table 1, which
will act as our running example for the following sections (where we will also
elaborate the other ranking function and conditionals shown in Table 1). Table 1
also contains the verifying and falsifying interpretations of the conditional (f |p).
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The ranking function κp accepts all conditionals in Rpen = {r1, r2, r3}, i.e. κp |=
ri for all 1 � i � 3. For example, κ |= r1 because κ(bf) = 0 < 1 = κ(bf) holds.
For the rest of the article, we will assume that the ranking function κp is the
initial belief state representing the beliefs about penguins, flying, and birds of
our agent.

Table 1. Verifying (v) and falsifying (f) interpretations for the conditionals (p|b), (f |p),
and (f |p), and the ranking functions for the running penguin example.

ω Conditionals Belief states
(p|b) (f |p) (f |p) κp(ω) κ◦

p(ω)

b f p v v f 2 1
b f p f 0 2
b f p v f v 1 1
b f p f 1 3
bf p v f 4 3
bf p 0 0
b f p f v 2 2
b f p 0 0

3 Descriptors and Descriptor Revision

The main building blocks of descriptor revision are belief descriptors, which
provide a language for expressing membership constraints for a belief set.

Definition 1 (Descriptor [15]). Let L be a logical language. For any sentence
ϕ ∈ L the expression Bϕ is an atomic descriptor (over L). Any connection of
atomic descriptors with disjunction, conjunction and negation is called a molec-
ular descriptor (over L). A composite descriptor (over L) is a set of molecular
descriptors (over L).

As stated by Hansson [15], composite descriptors are just denoted as descrip-
tors. A molecular descriptor of the form Bϕ or ¬Bϕ is called a literal descriptor.
An elementary descriptor is a set of literal descriptors (and therefore a descrip-
tor).

Definition 2 (Descriptor Semantics [15]). An atomic descriptor Bϕ holds
in a belief set X, written X � Bϕ, if ϕ ∈ X. This is lifted to molecular descrip-
tors truth-functionally. A descriptor Ψ holds in X, likewise written X � Ψ , if
X � α holds for every molecular descriptor α ∈ Ψ .

For an example of descriptors, consider the following example.
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Example 2. Assume that Lab is the propositional language over Σ = {a, b} and
X = Cn(a ∨ b). Then, ¬Ba expresses that a is not part of the belief set,
whereas B¬a states that the formula ¬a is part of the belief set, e.g. X � ¬Ba
and X �� B¬a. Likewise, Ba ∨ Bb expresses that a or b is believed, whereas
B(a ∨ b) states that the formula a ∨ b is believed, e.g. X � B(a ∨ b) and
X �� Ba ∨ Bb.

For the setting of belief change, we assume that every agent is equipped with a
belief state, also called epistemic state, which contains all information necessary
for performing belief change operations. We denote belief states by K,K1,K2, . . .
following the notion of Hansson [15]. General descriptor revision does not specify
what a belief state is, but assumes that a belief set Bel (K) is immanent for
every epistemic state K. To make descriptors compatible with belief states, we
naturally lift the semantics to belief states, i.e. K � Ψ if Bel (K) � Ψ .

Example 3 (Continued). Assume ranking functions as a representation of
belief states. Let κp be the belief state from Table 1 and let Ψ =
{Bp, B(b → f), ¬Bbf} be an elementary descriptor. The descriptor Ψ expresses
belief in p (it is not a penguin) and b → f (a bird flies) and not believing bf (it is
a non-flying bird). The immanent belief set of κp is Bel (κp) = Cn(p ∧ (b → f)).
The descriptor Ψ holds in κp , i.e. κp � Ψ , since p ∈ Bel (κp), b → f ∈ Bel (κp)
and bf /∈ Bel (κp).

AGM theory [1] focuses on properties of revision (or contraction) operations
by examining the interconnection between prior belief state, new information
and posterior belief state of a change. Descriptor revision examines the inter-
connection between prior belief state and posterior belief states that satisfy a
particular descriptor. Let KK denote the set of all reasonable conceivable suc-
cessor belief states for a belief state K. A descriptor revision by a descriptor Ψ
is the process of choosing a state K ′ from KK such that K ′ � Ψ . We abstract
from the internal process of how KK is obtained and define descriptor revision1

as follows.

Definition 3. (Descriptor Revision, Adapted [15]). Let K be a belief state,
KK a set of belief states and C : P(KK) → KK be a choice function. Then the
change from K to K◦ = K ◦ Ψ is called a descriptor revision by Ψ realised by
C over KK if the following holds:

K ◦ Ψ = C( {K ′ ∈ KK | K ′ � Ψ} ) (1)

We say that the change from K to K◦ is a descriptor revision (by Ψ), if C and
KK (and Ψ) exist such that the change from K to K◦ is realised by C over KK .
We also say K◦ is the result of the descriptor revision of K (by Ψ under KK).

1 In the original framework by Hansson this is much more elaborated. By the ter-
minology of Hansson, here we present a form of local deterministic monoselective
descriptor revision [15]. Moreover, we primarily focus on one change, while Hansson
designs the framework for change operators.
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Descriptors allow to express a variety of different success conditions, e.g.

{Bϕ} Revision by ϕ
{¬Bϕ} Contraction by ϕ (also called revocation [16])
{¬Bϕ,¬B¬ϕ} Giving up the judgement on ϕ (also called ignoration [5]).

Additionally, Hansson provides the following examples [16]:

{Bϕ1, . . . ,Bϕn} Package revision by {ϕ1, . . . , ϕn}
{¬Bϕ,Bψ} Replacement of ϕ by ψ
{Bϕ1 ∨ . . . ∨ Bϕn} Choice revision by {ϕ1, . . . , ϕn}
{Bϕ ∨ B¬ϕ} Making up one’s mind about ϕ.

Note that all given examples, except for choice revision and “making up one’s
mind”, are elementary descriptors. In particular, elementary descriptor revision
subsumes operations of AGM, and, furthermore, also allows to express changes
which lead to a revision and a contraction at the same time. For a concrete
example, we continue our running example.

Example 4 (Continued). Let κp and κ◦
p be as in Table 1, let Kκp

be the set of all
ranking functions, let C be a choice function such that C(X) = κ◦

p if κ◦
p ∈ X, and

let Ψ = {Bb ∨ Bp, ¬Bbf} be a descriptor. The descriptor Ψ expresses posterior
belief in b or belief in p and disbelief in bf . In particular, ¬Bbf expresses a
contraction with bf (it is a flying bird), but for Bb ∨ Bp (it is not a bird or
it is a penguin), there is no straight counterpart in the AGM framework. Note
that we have Bel

(
κ◦
p

)
= Cn(b ∧ p), and thus, it holds that b ∈ Bel

(
κ◦
p

)
and

bf /∈ Bel
(
κ◦
p

)
, and therefore, the descriptor Ψ holds in κ◦

p . Thus, the change
from κp to κ◦

p is a descriptor revision by Ψ realised by C over Kκp
.

4 Conditional Descriptor Revision

We instantiate descriptor revision for the case in which the underlying logic is
the conditional logic Lcond and ranking functions serve as a representation for
epistemic states. Furthermore, we adapt the principle of conditional preservation
by Kern-Isberner [18] to the requirements of descriptor revision.

4.1 Adaptions for Conditionals in Lcond

In the formal framework of descriptor revision by Hansson, as recalled in Sect. 3,
semantics of a descriptor refer to a belief set, containing formulas of the under-
lying logic. Thus, when using the logic Lcond, we need to refer to the set of
conditionals accepted by a ranking function κ when choosing ranking functions
as representations for epistemic states. However, the belief set Bel (κ) of a rank-
ing function κ is a set of propositional beliefs, i.e. Bel (κ) ⊆ Lprop. We define the
set of conditional beliefs for a ranking function κ as follows:

Belcond (κ) = { (B|A) | κ |= (B|A) }
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Clearly, the set Belcond (κ) is a deductively closed set for every ranking function
κ and therefore a belief set. Descriptors and descriptor revision for Lcond then
refer to the set of conditional beliefs Belcond (κ), and their formal definition can
be easily obtained by correspondingly modifying Definitions 1, 2 and 3.

Note that the conditional logic Lcond embeds the propositional logic Lprop,
hence every proposition A ∈ Lprop can be represented by (A|�). Moreover, the
definition of Belcond (κ) ensures compatibility of propositional beliefs with the
conditional beliefs, i.e. {(A|�) | A ∈ Bel (K)} ⊆ Belcond (K). Thus, our app-
roach to descriptor revision by conditionals, presented in the following, subsumes
descriptor revision for propositions.

4.2 Conditional Preservation

When an agent performs a belief change, the change might not only affect explicit
beliefs, but also implicit beliefs. Boutilier proposed that belief change should
also minimize the effect on conditional beliefs [6]. Kern-Isberner introduced the
principle of conditional preservation (PCP) and gave a thorough axiomatisation
of PCP [17,18] in a very general manner.

Note that the principle of conditional preservation is usually defined as a
property of a change by a set of conditionals R. However, when having a descrip-
tor revision, the underlying change framework and its parameters and capabili-
ties might be hidden. Thus, we abstract from the assumption that the change is
done by a set of conditionals R, and just state that a change satisfies PCP with
respect to a set of conditionals R. This allows us to say that a change satisfies
the principle of conditional preservation without assuming the involvement of
specific parameters in the underlying change framework. In the following, we
present our relaxed variant of the principle of conditional preservation for the
special case of ranking functions.

Definition 4. (PCP for OCF Changes, Adapted [20]). A change of a
ranking function κ to a ranking function κ◦ fulfils the principle of conditional
preservation with respect to the conditionals R = {(B1|A1), . . . , (Bn|An)}, if
for every two multisets of propositional interpretations Ω1 = {ω1, . . . , ωm} and
Ω2 = {ω′

1, . . . , ω
′
m} with the same cardinality m such that the multisets Ω1 and

Ω2 contain the same number of interpretations which verify, respectively falsify,
each conditional (Bi|Ai) in R, the ranking functions κ and κ◦ are balanced in
the following way:

m∑

i=1

κ(ωi) −
m∑

i=1

κ(ω′
i) =

m∑

i=1

κ◦(ωi) −
m∑

i=1

κ◦(ω′
i) (2)

Example 5 (Continued). Assume our agent lives in Antarctica and she starts
to question her beliefs about penguins and birds. The only birds she sees in
Antarctica are penguins, and moreover, she observes, through her window, a
lot of penguins jumping off a cliff, and thus, flying for a moment. Her belief
state is changing from κp to κ◦

p from Table 1. Consider now the conditional
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(p|b) expressing that birds are usually penguins, the conditional (f |p) expressing
that penguins usually fly, and the conditional (f |p) expressing that penguins
usually don’t fly. The change from κp to κ◦

p satisfies the principle of conditional
preservation with respect to the conditionals in R = {(p|b), (f |p), (f |p)}. For
instance, the two multisets Ω1 = {bfp, b fp} and Ω2 = {bfp, bfp}, containing
for every conditional in R the same number of verifying and falsifying worlds,
and their values under κp and κ◦

p are balanced according to Eq. (2), i.e.

κp(bfp) + κp(b fp) − κp(bfp) − κp(bfp) = 2 + 2 − 1 − 4 = −1
= 1 + 2 − 1 − 3 = κ◦

p(bfp) + κ◦
p(b fp) − κ◦

p(bfp) − κ◦
p(bfp).

The definition of the principle of conditional preservation, as given in Defi-
nition 4, does not require information about the success condition of a change.
Thus, the notion of the principle of conditional preservation is directly available
for descriptor revision of conditionals when we provide a set of conditionals. A
natural choice are the conditionals appearing in a descriptor Ψ . For a descriptor
Ψ over Lcond, we define the set of conditionals in Ψ , denoted by cond(Ψ), as
follows:

– for Ψ = ∅ let cond(Ψ) = ∅,
– for Ψ = {B(B|A)} let cond(Ψ) = {(B|A)},
– for Ψ = {α, β, . . .} let cond(Ψ) = cond({α}) ∪ cond({β, . . .}),
– for Ψ = {α ∨ β} let cond(Ψ) = cond({α}) ∪ cond({β}),
– for Ψ = {α ∧ β} let cond(Ψ) = cond({α}) ∪ cond({β}), and
– for Ψ = {¬α} let cond(Ψ) = cond({α}).

In the following, we use a central characterisation [19,20] of the principle of
conditional preservation to obtain a characterisation of the principle of condi-
tional preservation for descriptor revisions.

Proposition 1. (PCP for Descriptor Revision, Adapted [20]). Let Ψ be
a descriptor over Lcond and cond(Ψ) = { (B1|A1), . . . , (Bn|An) } be the set of
conditionals in Ψ , and let κ◦ be the result of the descriptor revision of κ by Ψ .
Then this change satisfies the principle of conditional preservation with respect
to the conditionals in cond(Ψ) if and only if there are integers2 κ0, γ

+
i , γ−

i ∈ Z,
1 � i � n, such that:

κ◦(ω) = κ0 + κ(ω) +
∑

1�i�n
ω |= AiBi

γ+
i +

∑

1�i�n
ω |= Ai∧¬Bi

γ−
i (3)

The proof of Proposition 1 is directly obtainable from a proof given by Kern-
Isberner [19, Theorem 4.6.1], since no specific information on the success condi-
tion for the conditionals in the descriptor was used in Proposition 1. The idea
underlying Proposition 1 is that interpretations that are verifying and falsifying

2 As noted by Kern-Isberner [20], all κ0, γ
+
i , γ−

i can be rational, but κ◦ has to satisfy
the requirements for OCF, in particular, all κ◦(ω) must be non-negative integers.
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the same conditionals are treated in the same way. Thus, for every conditional
(Bi|Ai) ∈ cond(Ψ), the two constants γ+

i and γ−
i handle how interpretations are

shifted over the change process. The constant κ0 acts as a normalizer, ensuring
that κ◦ is indeed a ranking function, i.e. there is at least one world ω such that
κ◦(ω) = 0.

Example 6 (Continued). Consider the change from κp to κ◦
p , both given in

Table 1. As shown in Example 5, this change satisfies the principle of conditional
preservation with respect to the conditionals in R = {(p|b), (f |p), (f |p)}. Indeed,
as stated in Proposition 1, we can obtain κ◦

p from κp via Eq. (3) by choosing
κ0 = 0, γ+

1 = 0, γ−
1 = −1, γ+

2 = 0, γ−
2 = 2, γ+

3 = 0, and γ−
3 = 0.

4.3 Descriptor Revision with Conditional Preservation

The principle of conditional preservation is a powerful basic principle of belief
change and it is natural to demand satisfaction of this principle. The principle
demands a specific relation between the conditionals in the prior belief state K,
the conditionals in the posterior state K◦ and the conditionals in the descriptor
Ψ . Remember that by Definition 3, a descriptor revision from K to K◦ is deter-
mined by a choice function C, the descriptor Ψ and the set KK such that Eq. (1)
holds, but none of these components allow to express a direct relation between
K, K◦ and Ψ . Thus, there is no possibility to express conditional preservation
by the means of descriptor revision. The principle of conditional preservation is
somewhat orthogonal to descriptor revision, which gives rationale to the follow-
ing definition of conditional descriptor revision.

Definition 5 (Conditional Descriptor Revision). Let κ be a ranking func-
tion. A descriptor revision of κ to κ◦ by a descriptor Ψ over Lcond (realised by
C over Kκ) is called a conditional descriptor revision of κ to κ◦ by Ψ (realised
by C over Kκ) if the change from κ to κ◦ satisfies the principle of conditional
preservation with respect to cond(Ψ).

In Definition 5, we choose ranking functions as representations for belief states,
but note that the principle of conditional preservation also applies to other rep-
resentations [19]. Thus, for other kinds of representations of belief states one
might give a definition of conditional descriptor revision similar to the one given
here. However, for the rest of the article, we focus on ranking functions. More-
over, we assume Kκ to be the set of all ranking functions, i.e. when revising by
a descriptor over Ψ , we choose over the set of all ranking functions.

Example 7 (Continued). Consider κp to κ◦
Ψ given in Table 1. The change from

κp to κ◦
Ψ is a conditional descriptor revision by Ψ = {B(p|b),¬B(f |p),¬B(f |p)}.

Note that cond(Ψ) = {(p|b), (f |p), (f |p)}, and therefore, as stated in Example 5,
the change from κp to κ◦

Ψ satisfies the principle of conditional preservation with
respect to cond(Ψ). Note that Ψ holds in κ◦

p , i.e. κ◦
p � Ψ . In particular, it is the

case that κ◦
p � ¬B(f |p), which is equivalent to κ◦

p �|= (f |p), i.e. κ◦
p(fp) �< κ◦

p(fp).
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5 Characterisation of Conditional Descriptor Revision
with Elementary Descriptors by CSPs

The arithmetic nature of ranking functions and the characterisation of the prin-
ciple of conditional preservation by Proposition 1 allow us to give a constraint,
expressing the success condition of a literal descriptor.

Definition 6. (Constraint for Literal Descriptors, CRD(κ, α, Ψ)). Let κ be
a ranking function, let Ψ = {α1, . . . , αm} be an elementary descriptor over Lcond

with cond(Ψ) = {(B1|A1), . . . , (Bn|An)}, and let α be a literal descriptor in Ψ .
The constraint for α in κ under Ψ , denoted by CRD(κ, α, Ψ), on the constraint
variables γ+

1 , γ−
1 , . . . , γ+

n , γ−
n ranging over Z, is given for a positive literal α =

B(Bi|Ai) descriptor by

γ−
i − γ+

i > ( min
ω�AiBi

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j )

− ( min
ω�AiB̄i

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j ) for i = 1, . . . , n

(4)

and for a negative literal descriptor α = ¬B(Bi|Ai) by

γ−
i − γ+

i � ( min
ω�AiBi

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j )

− ( min
ω�AiB̄i

κ(ω) +
∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j ) for i = 1, . . . , n.

(5)

The rationale for Definition 6 is that a positive literal descriptor {B(B|A)} holds
in the posterior state κ◦ if (B|A) is accepted by κ◦, more formally κ◦ |= (B|A),
i.e. κ◦(AB) < κ◦(AB). Likewise, a negative literal descriptor {¬B(B|A)} cor-
responds to κ◦ �|= (B|A), i.e. κ◦(AB) � κ◦(AB). Combining all the constraints
obtained for each literal descriptor in Ψ yields a constraint satisfaction problem.

Definition 7. (CSP for Elementary Descriptors, CRD(κ, Ψ)). Let κ be
a ranking function and Ψ be an elementary belief descriptor with cond(Ψ) =
{(A1|B1), . . . , (An|Bn)}. The constraint satisfaction problem for κ and Ψ , on the
constraint variables γ+

1 , γ−
1 , . . . , γ+

n , γ−
n ranging over Z, denoted by CRD(κ, Ψ),

is given by the conjunction of the constraints CRD(κ, α, Ψ) for each α ∈ Ψ .

With Sol(CRD(κ, Ψ)), we denote the solutions of the constraint satisfaction
problem CRD(κ, Ψ). Each solution �γ = 〈γ+

1 , γ−
1 , . . . , γ+

n , γ−
n 〉 ∈ Sol(CRD(κ, Ψ))

induces a unique ranking function κ�γ obtained from Eq. (3) in Theorem 1 by
choosing κ0 as the smallest integer such that the equation yields a ranking func-
tion, i.e., there is a propositional interpretation ω ∈ Ω such that κ�γ(ω) = 0 and
for all ω ∈ Ω the value κ�γ(ω) is a non-negative integer.
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Example 8 (Continued). Consider κp from Table 1 and the elementary descrip-
tor Ψ = {B(p|b),¬B(f |p),¬B(f |p)}. The CSP CRD(κ, Ψ) is given by:

CRD(κp ,B(p|b), Ψ) : γ−
1 − γ+

1 >min{κp(bfp) + γ+
2 +γ−

3 , κp(bfp) + γ+
3 + γ−

2 }
−min{κp(bfp), κp(bfp))}

CRD(κp ,¬B(f |p), Ψ) : γ−
2 − γ+

2 �min{κp(bfp) + γ+
1 + γ−

3 , κp(bfp) + γ−
3 }

−min{κp(bfp) + γ+
1 + γ+

3 , κp(b fp)) + γ+
3 }

CRD(κp ,¬B(f |p), Ψ) : γ−
3 − γ+

3 �min{κp(bfp) + γ+
1 + γ−

2 , κp(b fp) + γ−
2 }

−min{κp(bfp) + γ+
1 + γ+

2 , κp(bfp)) + γ+
2 }

The vector �γ = 〈γ+
1 , γ−

1 , γ+
2 , γ−

2 , γ+
3 , γ−

3 〉 with γ+
1 = 0, γ−

1 = −1, γ+
2 = 0, γ−

2 = 2,
γ+
3 = 0, and γ−

3 = 0 is a solution of Sol(CRD(κp , Ψ)), i.e. �γ ∈ Sol(CRD(κp , Ψ)).
We obtain the ranking function κ◦

p = κ�γ given in Table 1.

We examine whether our approach is sound and complete with respect to
conditional descriptor revision.

Theorem 1. (Soundness of CRD(κ, Ψ)). Let κ be an ordinal conditional rank-
ing function, Ψ be an elementary belief descriptor, and let �γ ∈ Sol(CRD(κ, Ψ)).
Then, the change from κ to κ�γ is a conditional descriptor revision by Ψ (over
all ranking functions).

Note that a ranking function κ◦ is a c-representation [19] for a set of conditionals
R if and only if κ◦ is the result of a conditional descriptor revision starting form
a ranking function κ such that κ(ω) = 0 for every ω ∈ Ω with a descriptor
Ψ = {B(B|A) | (B|A) ∈ R}. The construction of a c-representation can be
characterised by a constraint-satisfaction problem similar to the one given in
Definition 7 [3,19]. The soundness proof transfers to a proof of Theorem 1.

Theorem 2. (Completeness of CRD(κ, Ψ)). Let Ψ be an elementary belief
descriptor and κ, κ◦ be ordinal conditional functions. If the change from κ to κ◦

is a conditional descriptor revision by Ψ (over all ranking functions), then there
exists a vector �γ ∈ Sol(CRD(κ, Ψ)) such that κ◦ = κ�γ .

Proof (Sketch). Because of Proposition 1, there exists κ0 and �γ = 〈γ+
1 , γ−

1 , . . .〉
such that the ranking function κ◦ is representable as stated in Eq. (3). Therefore,
we have κ◦ = κ�γ . It remains to show that �γ ∈ Sol(CRD(κ, Ψ)). Note that by our
assumptions κ◦ � α holds for each α ∈ Ψ . Suppose that α is a positive literal
descriptor, i.e. α = B(B|A), and thus, κ◦(AB) < κ◦(AB). By employing Eq. (3),
we obtain Eq. (4) from κ◦(AB) < κ◦(AB) by algebraic transformations [19]. In
an analogue way, one can obtain Eq. (5) from a negative literal descriptor. Note
that these are exactly the inequalities in CRD(κ, Ψ). Therefore, the vector �γ is
a solution for Sol(CRD(κ, Ψ)).
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6 Implementation by ChangeOCF

We implemented descriptor revision for conditionals and elementary descriptors
under the principle of conditional preservation. Given a ranking function κ and
an elementary descriptor Ψ , our system, called ChangeOCF, calculates a list
of possible outcomes of a revision of κ with Ψ . To calculate the possible out-
comes of the revision, ChangeOCF uses a constraint system based on CRD(κ, Ψ)
introduced in Sect. 5. Following the Propositions 1 and 2, the solutions of this
constraint system correspond to the outcomes of a conditional descriptor revi-
sion. A straightforward approach would be to solve CRD(κ, Ψ) for the given κ
and Ψ . Then, for each �γ ∈ Sol(CRD(Ψ)) the corresponding ranking function κ�γ

is calculated.
In general, Sol(CRD(Ψ)) may contain infinite elements, but there is only a

finite number of equivalence classes with respect to the acceptance of condi-
tionals. Therefore, it is possible to restrict the set of solutions to finitely many
without losing interesting results. To do this, we used an approach inspired by
maximal impacts for c-representations [3] that addresses a similar problem for
the enumeration of c-representations. The idea of maximal impacts is to add
explicit bounds for the value of each γ+

i , γ−
i . This reduces the set of possible

solutions to a finite set, without losing equivalent solutions when choosing the
bounds appropriately. ChangeOCF limits the value of γ+

1 , γ−
1 , . . . , γ+

n , γ−
n to an

individual finite domain by extending the constraint system CRD(κ, Ψ) with con-
straints umin−

i � γ−
i � umax−

i and umin+
i � γ+

i � umax+
i for 1 � i � n. We

denote this extended constraint system by CR�u
D(κ, Ψ) with �u = 〈umin−

1 , umax−
1 ,

umin+
1 , umax+

1 , . . . , umax+
n 〉. Like for c-representations [21], it is an open problem

which values for �u guarantee that a representative for each equivalence class of
solutions with respect to the acceptance of conditionals is found for a given κ
and Ψ .

The implementation of ChangeOCF is build upon by InfOCF-Lib [22], a
Java library for reasoning with conditionals and ranking functions. InfOCF-Lib
calculates the c-representations of a conditional knowledge base by solving a
constraint system similar to CR�u

D(κ, Ψ). The interface of ChangeOCF is imple-
mented in Java. To solve CR�u

D(κ, Ψ), we use SICStus Prolog and its constraint
logic programming library for finite domains [7]. The Prolog implementation is
an adaption of the implementation of InfOCF [2] to the more general case of
belief change.

Example 9 (Continued). Consider again the descriptor revision of κp from
Table 1 with the elementary descriptor Ψ = {B(p|b),¬B(f |p),¬B(f |p)}. The
corresponding constraint satisfaction problem CR�u

D(κ, Ψ) is given by the con-
junction of CRD(κ, Ψ) from Example 8 with the following constraints:

umin−
1 � γ−

1 � umax−
1 umin−

2 � γ−
2 � umax−

1 umin−
3 � γ−

3 � umax−
3

umin+
1 � γ+

1 � umax+
1 umin+

2 � γ+
2 � umax+

1 umin+
3 � γ+

3 � umax+
3
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If we choose for example �u = 〈−2, 0, 0, 2,−1, 1,−1, 1, 0, 0, 0, 0〉, there are nine
solutions to CR�u

D(κ, Ψ). One of the solutions is �γ = 〈0, 2,−1, 0, 0, 0〉, which cor-
responds to κ�γ = κ◦

p from Table 1.

7 Summary and Future Work

In this article, we investigated descriptor revision for a conditional logic and
its realisation. We defined elementary descriptors, a large fragment of the full
descriptor language, allowing to express a multitude of different kinds of change
processes. In particular, elementary descriptors cover the success conditions of
AGM revision and AGM contraction. We introduced conditional descriptor revi-
sion, which is an extension of descriptor revision for conditionals obeying the
principle of conditional preservation by Kern-Isberner. We gave a characterisa-
tion by a constraint satisfaction problem and an implementation of conditional
descriptor revision with elementary descriptors was presented.

For future work, we plan to give a characterisation of conditional descriptor
revision with descriptors with disjunction. This requires a more fine-grained
handling of the interaction of the constraints, and might require transformations
of a descriptor into a normal form. Another open problem is the determination
of maximal impacts for the constraint problem such that all solutions up to
equivalence with respect to acceptance of conditionals are captured.
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Abstract. Multi-agent path finding with continuous movements and time
(denoted MAPFR ) is addressed. The task is to navigate agents that move
smoothly between predefined positions to their individual goals so that they do
not collide. Recently a novel solving approach for obtaining makespan optimal
solutions called SMT-CBSR based on satisfiability modulo theories (SMT) has
been introduced. We extend the approach further towards the sum-of-costs objec-
tive which is a more challenging case in the yes/no SMT environment due to
more complex calculation of the objective. The new algorithm combines col-
lision resolution known from conflict-based search (CBS) with previous genera-
tion of incomplete SAT encodings on top of a novel scheme for selecting decision
variables in a potentially uncountable search space. We experimentally compare
SMT-CBSR and previous CCBS (continuous conflict-based search) algorithm for
MAPFR .

Keywords: Path finding · Multiple agents · Robotic agents · Logic reasoning ·
Satisfiability modulo theory · Sum-of-costs optimality

1 Introduction

In multi-agent path finding (MAPF) [6,15,24–27,30,37] the task is to navigate agents
from given starting positions to given individual goals. The problem takes place in an
undirected graph G = (V, E) where agents from set A = {a1,a2, ...,ak} are placed in
vertices with at most one agent per vertex. The navigation task can be then expressed
formally as transforming an initial configuration of agents α0: A →V to a goal config-
uration α+: A →V using instantaneous movements across edges assuming no collision
occurs.

To reflect various aspects of real-life applications, variants of MAPF have been
introduced such as those considering kinematic constraints [9], large agents [17], gen-
eralized costs of actions [36], or deadlines [19] - see [18,28] for more variants. Par-
ticularly in this work we are dealing with an extension of MAPF introduced only
recently [1,33] that considers continuous movements and time (MAPFR ). Agents move
smoothly along predefined curves interconnecting predefined positions placed arbitrar-
ily in some continuous space. It is natural in MAPFR to assume geometric agents of
c© Springer Nature Switzerland AG 2020
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various shapes that occupy certain volume in the space - circles in the 2D space, poly-
gons, spheres in the 3D space etc. In contrast to MAPF, where the collision is defined as
the simultaneous occupation of a vertex or an edge by two agents, collisions are defined
as any spatial overlap of agents’ bodies in MAPFR .

The motivation behind introducing MAPFR is the need to construct more realistic
paths in many applications such as controlling fleets of robots or aerial drones [7,10]
where continuous reasoning is closer to the reality than the standard MAPF.

The contribution of this paper consists in generalizing the previous makespan opti-
mal approach for MAPFR [31,33] that uses satisfiability modulo theory (SMT) rea-
soning [5,20] for the sum-of-costs objective. The SMT paradigm constructs decision
procedures for various complex logic theories by decomposing the decision problem
into the propositional part having arbitrary Boolean structure and the complex theory
part that is restricted on the conjunctive fragment. Our SMT-based algorithm called
SMT-CBSR combines the Conflict-based Search (CBS) algorithm [8,25] with previ-
ous algorithms for solving the standard MAPF using incomplete encodings [32] and
continuous reasoning.

1.1 Previous Work

Using reductions of planning problems to propositional satisfiability has been coined in
the SATPlan algorithm and its variants [11–14]. Here we are trying to apply a similar
idea in the context of MAPFR . So far MAPFR has been solved by a modified version
of CBS that tries to solve MAPF lazily by adding collision avoidance constraints on
demand. The adaptation of CBS for MAPFR consists in implementing continuous col-
lision detection while the high-level framework of the algorithm remains the same as
demonstrated in the CCBS algorithm [1] (continuous conflict-based search).

We follow the idea of CBS too but instead of searching the tree of possible colli-
sion eliminations at the high-level we encode the requirement of having collision free
paths as a propositional formula [4] and leave it to the SAT solver as done in [34].
We construct the formula lazily by adding collision elimination refinements following
[32] where the lazy construction of incomplete encodings has been suggested for the
standard MAPF within the algorithm called SMT-CBS. SMT-CBS works with propo-
sitional variables indexed by agent a, vertex v, and time step t with the meaning that if
the variable is TRUE a in v at time step t. In MAPFR we however face major technical
difficulty that we do not know necessary decision (propositional) variables in advance
and due to continuous time we cannot enumerate them all. Hence we need to select
from a potentially uncountable space those variables that are sufficient for finding the
solution.

The previous application of SMT in MAPFR [33] focused on the makespan opti-
mal solutions where the shortest duration of the plan is required. The sum-of-costs is
another important objective used in the context of MAPF [26,36]. Calculated as the
summation over all agents of times they spend moving before arriving to the goal. Due
to its more complex calculation, the sum-of-costs objective is more challenging to be
integrated in the SMT-based solving framework.
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1.2 MAPF with Continuous Movements and Time

We use the definition of MAPF with continuous movements and time denoted MAPFR

from [1]. MAPFR shares components with the standard MAPF: undirected graph G=
(V, E), set of agents A= {a1,a2, ...,ak}, and the initial and goal configuration of agents:
α0 : A →V and α+ : A →V . A simple 2D variant of MAPFR is as follows:

Definition 1. (MAPFR ) Multi-agent path finding with continuous time and space is
a 5-tuple ΣR = (G = (V, E), A, α0, α+, ρ) where G, A, α0, α+ are from the standard
MAPF and ρ determines continuous extensions:

• ρ.x(v),ρ.y(v) for v ∈V represent the position of vertex v in the 2D plane
• ρ.speed(a) for a ∈ A determines constant speed of agent a
• ρ.radius(a) for a ∈ A determines the radius of agent a; we assume that agents are
circular discs with omni-directional ability of movements.

For simplicity we assume circular agents with constant speed and instant accel-
eration. The major difference from the standard MAPF where agents move instantly
between vertices (disappears in the source and appears in the target instantly) is that
smooth continuous movement between a pair of vertices (positions) along the straight
line interconnecting them takes place in MAPFR . Hence we need to be aware of the
presence of agents at some point in the 2D plane at any time.

Collisions may occur between agents in MAPFR due to their volume; that is, they
collide whenever their bodies overlap. In contrast to MAPF, collisions in MAPFR may
occur not only in a single vertex or edge being shared by colliding agents but also
on pairs of edges (lines interconnecting vertices) that are too close to each other and
simultaneously traversed by large agents.

A solution to given MAPFR ΣR is a collection of temporal plans for individual
agents π = [π(a1), π(a2), ..., π(ak)] that are mutually collision-free. A temporal plan
for agent a ∈ A is a sequence π(a) = [((α0(a), α1(a)), [t0(a), t1(a))); ((α1(a),α2(a)),
[t1(a), t2(a))); ...; ((αm(a)−1(a), αm(a)(a)), [tm(a)−1(a), tm(a)(a)))] where m(a) is the
length of individual temporal plan and each pair (αi(a),αi+1(a)), [ti(a), ti+1(a))) cor-
responds to traversal event between a pair of vertices αi(a) and αi+1(a) starting at time
ti(a) and finished at ti+1(a).

It holds that ti(a)< ti+1(a) for i= 0,1, ...,m(a)−1. Moreover consecutive events in
the individual temporal plan must correspond to edge traversals or waiting actions, that
is: {αi(a), αi+1(a)} ∈ E or αi(a) = αi+1(a); and times must reflect the speed of agents
for non-wait actions.

The duration of individual temporal plan π(a) is called an individual makespan;
denoted µ(π(a)) = tm(a). The overall makespan of π is defined as maxki=1{µ(π(ai))}.
The individual makespan is sometimes called an individual cost. A sum-of-cost for
given temporal plan π(a) is defined as ∑k

i=1 µ(π(ai)) An example of MAPFR and
makespan/sum-of-costs optimal solution is shown in Fig. 1.

Through straightforward reduction of MAPF to MAPFR it can be observed that
finding a makespan or sum-of-costs optimal solution with continuous time is an NP-
hard problem [22,38].
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Fig. 1. An example of MAPFR instance with two agents. A feasible makespan sub-optimal solu-
tion π (makespan µ(π) = 2.0) and makespan optimal solution π∗ (makespan µ(π∗) = 1.980) are
shown.

2 Solving MAPF with Continuous Time

Let us recall CCBS [1], a variant of CBS [25] modified for MAPFR . The idea of CBS
algorithms is to resolve conflicts lazily.

2.1 Conflict-Based Search

The high-level of CCBS searches a constraint tree (CT) using a priority queue ordered
according to the sum-of-costs in the breadth first manner. CT is a binary tree where
each node N contains a set of collision avoidance constraints N.cons - a set of triples
(ai, (u, v), [t0, t+)) forbidding agent ai to start smooth traversal of edge {u, v} (line) at
any time between [t0, t+), a solution N.π - a set of k individual temporal plans, and the
sum-of-costs N.ξ of N.π.

The low-level in CCBS associated with node N searches for individual temporal
plan with respect to set of constraints N.cons. For given agent ai, this is the standard
single source shortest path search from α0(ai) to α+(ai) that at time t cannot start to
traverse any {(u, v)∈E | (ai, (u, v), [t0, t+))∈N.cons ∧ t ∈ [t0, t+)}. Various intelligent
single source shortest path algorithms such as SIPP [21] can be used here.
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Algorithm 1: CCBS algorithm for solving MAPFR for the sum-of-costs objec-
tive.
1 CBSR (ΣR = (G= (V,E),A,α0,α+,ρ))
2 R.cons ← /0
3 R.π ← {shortest temporal plan from α0(ai) to α+(ai) | i= 1,2, ...,k}
4 R.ξ ← ∑k

i=1 µ(N.π(ai))
5 OPEN ← /0
6 insert R into OPEN

7 while OPEN �= /0 do
8 N ← minξ(OPEN)
9 remove-Minξ(OPEN)

10 collisions ← validate-Plans(N.π)
11 if collisions= /0 then
12 return N.π

13 let (mi ×mj) ∈ collisions where mi = (ai,(ui,vi), [t0i , t
+
i )) and

mj = (a j,(u j,v j), [t0j , t
+
j ))

14 ([τ0
i ,τ

+
i ); [τ

0
j ,τ

+
j )) ← resolve-Collision(mi,mj)

15 for each m ∈ {(mi, [τ0
i ,τ

+
i )),(mj, [τ0

j ,τ
+
j ))} do

16 let ((a,(u,v), [t0, t+)), [τ0,τ+)) = m
17 N′.cons ← N.cons∪{(a,(u,v), [τ0,τ+))}
18 N′.π ← N.π
19 update(a, N′.π, N′.cons)
20 N′.ξ ← ∑k

i=1 µ(N
′.π(ai))

21 insert N′ into OPEN

CCBS stores nodes of CT into priority queue OPEN sorted according to the ascend-
ing makespan. At each step CBS takes node N with the lowest makespan from OPEN

and checks if N.π represents non-colliding temporal plans. If there is no collision, the
algorithms returns valid solution N.π. Otherwise the search branches by creating a new
pair of nodes in CT - successors of N. Assume that a collision occurred between ai
traversing (ui, vi) during [t0i , t

+
i ) and a j traversing (u j, v j) during [t0j , t

+
j ). This colli-

sion can be avoided if either agent ai or agent a j waits after the other agent passes. We
can calculate for ai so called maximum unsafe interval [τ0

i , τ+i ) such that whenever ai
starts to traverse (ui, vi) at some time t ∈ [τ0

i , τ+i ) it ends up colliding with a j assuming
a j did not try to avoid the collision. Hence ai should wait until τ+i to tightly avoid the
collision with a j. Similarly we can calculate maximum unsafe interval for a j: [τ0

j , τ+j ).
These two options correspond to new successor nodes of N: N1 and N2 that inherit
set of constraints from N as follows: N1.cons = N.cons ∪ {(ai,(ui, vi), [τ0

i ,τ
+
i ))} and

N2.cons = N.cons ∪ {(a j,(u j,v j), [τ0
j ,τ

+
j ))}. N1.π and N1.π inherits plans from N.π

except those for agents ai and a j respectively that are recalculated with respect to the
constraints. After this N1 and N2 are inserted into OPEN.
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2.2 A Satisfiability Modulo Theory Approach

A recent algorithm called SMT-CBSR [33] rephrases CCBS as problem solving in
satisfiability modulo theories (SMT) [5,35]. The basic use of SMT divides the satis-
fiability problem in some complex theory T into a propositional part that keeps the
Boolean structure of the problem and a simplified procedure DECIDET that decides
fragment of T restricted on conjunctive formulae. A general T -formula Γ being decided
for satisfiability is transformed to a propositional skeleton by replacing its atoms with
propositional variables. The standard SAT solver then decides what variables should
be assigned TRUE in order to satisfy the skeleton - these variables tells what atoms
hold in Γ. DECIDET then checks if the conjunction of atoms assigned TRUE is valid
with respect to axioms of T . If so then satisfying assignment is returned. Otherwise a
conflict from DECIDET (often called a lemma) is reported back to the SAT solver and
the skeleton is extended with new constraints resolving the conflict. More generally not
only new constraints are added to resolve the conflict but also new atoms can be added
to Γ.

T will be represented by a theory with axioms describing movement rules of
MAPFR ; a theory we will denote TMAPFR . DECIDEMAPFR can be naturally represented
by the plan validation procedure from CCBS (validate-Plans).

2.3 RDD: Real Decision Diagram

The key question in the propositional logic-based approach is what will be the decision
variables. In the standard MAPF, time expansion of G for every time step can be done
resulting in a multi-value decision diagram (MDD) [34] representing possible positions
of agents at any time step. Since MAPFR is no longer discrete we cannot afford to
use a decision variable for every time moment. We show how to restrict the decision
variables on finitely many important moments only without compromising soundness
nor optimality of the approach.

Analogously to MDD, we introduce real decision diagram (RDD). RDDi defines for
agent ai its space-time positions and possible movements. Formally, RDDi is a directed
graph (Xi, Ei) where Xi consists of pairs (u, t) with u ∈ V and t ∈ R

+
0 is time and Ei

consists of directed edges of the form ((u, tu);(v, tv)). Edge ((u, tu);(v, tv)) correspond
to agent’s movement from u to v started at tu and finished at tv. Waiting in u is possible
by introducing edge ((u, tu);(v, t ′u)). Pair (α0(ai), 0) ∈ Xi indicates start and (α+(ai), t)
for some t corresponds to reaching the goal position.

RDDs for individual agents are constructed with respect to collision avoidance con-
straints. If there is no collision avoidance constraint then RDDi simply corresponds to a
shortest temporal plan for agent ai. But if a collision avoidance constraint is present, say
(ai,(u,v), [τ0,τ+)), and we are considering movement starting in u at t that interferes
with the constraint, then we need to generate a node into RDDi that allows agent to wait
until the unsafe interval passes by, that is node (u,τ+) and edge ((u,τ+);(u,τ+)) are
added.

Similarly for wait constraints (ai,(u,u), [τ0,τ+)) that forbid waiting in u during
[τ0,τ+). In such a case, we need to anticipate the constraint before entering u, that
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is we can wait until τ+ − tx in the source vertex before entering u where tx is the time
needed to traverse the edge towards u.

The process of building RDDs is formalized is described in details in [33]. An exam-
ple of RDDs is shown in Fig. 2.
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Fig. 2. Real decision diagrams (RDDs) for agents a1 and a2 from MAPFR from Fig. 1. Decisions
corresponding to shortest paths for agents a1 and a2 moving diagonally towards their goals are
shown: a1 : 1 → 4, a2 : 2 → 3 (left). This however results in a collision whose resolution is
either waiting for agent a1 in vertex 1 from 0.000 until 0.566 or waiting for agent a2 in vertex 2
from 0.000 until 0.566; reflected in the next RDDs (right). Mutex is depicted using dotted line
connecting arcs form RDD1 and RDD2.

2.4 SAT Encoding from RDD

We introduce a decision variable for each node and edge [RDD1, ...,RDDk]; RDDi =
(Xi, Ei): we have variable X t

u(ai) for each (u, t) ∈ Xi and E tu, tv
u,v (ai) for each directed

edge ((u, tu);(v, tv)) ∈ Ei. The meaning of variables is that X t
u(ai) is TRUE if and only

if agent ai appears in u at time t and similarly for edges: E tu,tv
u,v (ai) is TRUE if and only

if ai moves from u to v starting at time tu and finishing at tv.
MAPFR rules are encoded on top of these variables so that eventually we want

to obtain formula F (µ) that encodes existence of a solution of makespan µ to given
MAPFR . We need to encode that agents do not skip but move along edges, do not
disappear or appear from nowhere etc. We show below constraints stating that if agent
ai appears in vertex u at time step tu then it has to leave through exactly one edge
connected to u (constraint (2) although Pseudo-Boolean can be encoded using purely
propositional means):

X tu
u (ai) ⇒

∨

(v,tv) | ((u,tu),(v,tv))∈Ei

E tu,tv
u,v (ai), (1)
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∑
(v,tv) | ((u,tu),(v,tv))∈Ei

E tu,tv
u,v (ai) ≤ 1 (2)

E tu,tv
u,v (ai) ⇒ X tv

v (ai) (3)

Analogously to (2) we have constraint allowing a vertex to accept at most one agent
through incoming edges; plus we need to enforce agents starting in α0 and finishing in
α+. Let us summarize soundness of the encoding in the following proposition (proof
omitted).

Proposition 1. Any satisfying assignment of F (µ) correspond to valid individual tem-
poral plans for ΣR whose makespans are at most µ.

We a-priori do not add constraints for eliminating collisions; these are added lazily
after assignment/solution validation. Hence, F (µ) constitutes an incomplete model for
ΣR : ΣR is solvable within makespan µ thenF (µ) is satisfiable. The opposite implication
does not hold since satisfying assignment of F (µ) may lead to a collision.

From the perspective of SMT, the propositional level does not understand geo-
metric properties of agents so cannot know what simultaneous variable assignments
are invalid. This information is only available at the level of theory T = MAPFR

through DECIDEMAPFR . We also leave the bounding of the sum-of-costs at the level
of DECIDEMAPFR .

2.5 Lazy Encoding of Mutex Refinements and Sum-of-Costs Bounds

The SMT-based algorithm itself is divided into two procedures: SMT-CBSR represent-
ing the main loop (Algorithm 2) and SMT-CBS-FixedR solving the input MAPFR for
a fixed maximum makespan µ and sum-of-costs ξ (Algorithm 3).

Procedures encode-Basic and augment-Basic in Algorithm 3 build formula F (µ)
according to given RDDs and the set of collected collision avoidance constraints. New
collisions are resolved lazily by adding mutexes (disjunctive constraints). A collision is
avoided in the same way as in CCBS; that is, one of the colliding agent waits. Collision
eliminations are tried until a valid solution is obtained or until a failure for current µ
and ξ which means to try bigger makespan and sum-of-costs.

For resolving a collision we need to: (1) eliminate simultaneous execution of col-
liding movements and (2) augment the formula to enable avoidance (waiting). Assume
a collision between agents ai traversing (ui, vi) during [t0i , t

+
i ) and a j traversing (u j, v j)

during [t0j , t
+
j ) which corresponds to variables E t0i ,t

+
i

ui,vi (ai) and E
t0j ,t

+
j

u j ,v j (a j). The colli-
sion can be eliminated by adding the following mutex (disjunction) to the formula:

¬E t0i ,t
+
i

ui,vi (ai) ∨ ¬E t0j ,t
+
j

u j ,v j (a j). Satisfying assignments of the next F (µ) can no longer lead
to this collision. Next, the formula is augmented according to new RDDs that reflect the
collision - decision variables and respective constraints are added.

After resolving all collisions we check whether the sum-of-costs bound is satisfied
by plan π. This can be done easily by checking if X tu

u (ai) variables across all agents
together yield higher cost than ξ or not. If cost bound ξ is exceeded then corresponding
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nogood is recorded and added to F (µ) and the algorithm continues by searching for a
new satisfying assignment to F (µ). The nogood says that X tu

u (ai) variables that jointly
exceed ξ cannot be simultaneously set to TRUE.

Algorithm 2: High-level of SMT-CBSR for the sum-of-costs objective.

1 SMT-CBSR (ΣR = (G= (V,E),A,α0,α+,ρ))
2 constraints ← /0
3 π ← {π∗(ai) a shortest temporal plan from α0(ai) to α+(ai) | i= 1,2, ...,k}
4 µ ← maxki=1 µ(π(ai)); ξ ← ∑k

i=1 µ(π(ai))
5 while TRUE do
6 (π,constraints,µnext ,ξnext) ← SMT-CBS-FixedR (ΣR , constraints, µ, ξ)
7 if π �= UNSAT then
8 return π

9 µ ← µnext ; ξ ← ξnext

The set of pairs of collision avoidance constraints is propagated across entire exe-
cution of the algorithm. Constraints originating from a single collision are grouped in
pairs so that it is possible to introduce mutexes for colliding movements discovered in
previous steps.

Algorithm 2 shows the main loop of SMT-CBSR . The algorithm checks if there is
a solution for ΣR of makespan µ and sum-of-costs ξ. It starts at the lower bound for µ
and ξ obtained as the duration of the longest from shortest individual temporal plans
ignoring other agents and the sum of these lengths respectively.

Then µ and ξ are iteratively increased in the main loop following the style of SAT-
Plan [14]. The algorithm relies on the fact that the solvability of MAPFR w.r.t. cumu-
lative objective like the sum-of-costs or makespan behaves as a non decreasing func-
tion. Hence trying increasing makespan and sum-of-costs eventually leads to finding
the optimum provided we do not skip any relevant value.

We need to ensure important property in the makespan/sum-of-costs increasing
scheme: any solution of sum-of-costs ξ has the makespan of at most µ. The next sum-of-
costs to try is be obtained by taking the current sum-of-costs plus the smallest duration
of the continuing movement (lines 17–27 of Algorithm 3).

The following proposition is a direct consequence of soundness of CCBS and
soundness of the encoding (Proposition 1) and soundness of the makespan/sum-of-costs
increasing scheme (proof omitted).

Proposition 2. The SMT-CBSR algorithm returns sum-of-costs optimal solution for
any solvable MAPFR instance ΣR .
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Algorithm 3: Low-level of SMT-CBSR

1 SMT-CBS-FixedR (ΣR , cons, µ, ξ)
2 RDD ← build-RDDs(ΣR , cons, µ); F (µ) ← encode-Basic(RDD,ΣR ,cons,µ)
3 while TRUE do
4 assignment ← consult-SAT-Solver(F (µ))
5 if assignment �=UNSAT then
6 π ← extract-Solution(assignment)
7 collisions ← validate-Plans(π)
8 if collisions= /0 then
9 while TRUE do

10 nogoods ← validate-Cost(π, ξ)
11 if nogoods= /0 then
12 return (π, /0,UNDEF,UNDEF)

13 F (µ) ← F (µ)∪noogoods
14 assignment ← consult-SAT-Solver(F (µ))
15 if assignment =UNSAT then
16 (µnext ,ξnext) ← calc-Next-Bounds(µ,ξ,cons,RDD)
17 return (UNSAT, cons, µnext , ξnext )

18 π ← extract-Solution(assignment)

19 else
20 for each (mi ×mj) ∈ collisions where mi = (ai,(ui,vi), [t0i , t

+
i )) and

mj = (a j,(u j,v j), [t0j , t
+
j )) do

21 F (µ)←F (µ)∧(¬E t0i ,t
+
i

ui,vi (ai)∨¬E t0j ,t
+
j

u j ,v j (a j))
22 ([τ0

i ,τ
+
i ); [τ

0
j ,τ

+
j )) ← resolve-Collision(mi,mj)

23 cons ← cons∪{[(ai,(ui,vi), [τ0
i ,τ

+
i )); (a j,(u j,v j), [τ0

j ,τ
+
j ))]}

24 RDD ←build-RDDs(ΣR , cons, µ); F (µ) ← augment-Basic(RDD,ΣR ,cons)

25 else
26 (µnext ,ξnext) ← calc-Next-Bounds(µ,ξ,cons,RDD)
27 return (UNSAT, cons, µnext , ξnext )

3 Experimental Evaluation

We implemented SMT-CBSR in C++ to evaluate its performance and compared it with
CCBS1. SMT-CBSR was implemented on top of Glucose 4 SAT solver [2] which ranks
among the best SAT solvers according to recent SAT solver competitions [3]. The solver
is consulted in the incremental mode if the formula is extended with new clauses. In case
of CCBS, we used the existing C++ implementation [1].

1 To enable reproducibility of presented results we will provide complete source code of our
solvers on the author’s website.
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3.1 Benchmarks and Setup

SMT-CBSR and CCBS were tested on benchmarks from the movinai.com collection
[29]. We tested algorithms on three categories of benchmarks:

(i) small empty grids (presented representative benchmark empty-16-16),
(ii) medium sized grids with regular obstacles (presented maze-32-32-4),

(iii) large game maps (presented ost003d).

In each benchmark, we interconnected cells using the 2K-neighborhood [23] for
K = 3,4,5 - the same style of generating benchmarks as used in [1] (K = 2 corresponds
to MAPF hence omitted). Instances consisting of k agents were generated by taking first
k agents from random scenario files accompanying each benchmark on movinai.com.
Having 25 scenarios for each benchmarks this yields to 25 instances per number of
agents.
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Fig. 3. Comparison of SMT-CBSR and CCBS on empty-16-16.

Part of the results obtained in our experimentation is presented in this section2.
For each presented benchmark we show success rate as a function of the number of
agents. That is, we calculate the ratio out of 25 instances per number of agents where
the tested algorithm finished under the timeout of 120 s. In addition to this, we also show
concrete runtimes sorted in the ascending order. Results for one selected representative
benchmark from each category are shown in Figs. 3, 4, and 5.

The observable trend is that the difficulty of the problem increases with increasing
size of the K−neighborhood with notable exception of maze-32-32-4 for K = 4 and
K = 5 which turned out to be easier than K = 3 for SMT-CBSR .

Throughout all benchmarks SMT-CBSR tends to outperform CCBS. The domi-
nance of SMT-CBSR is most visible in medium sized benchmarks. CCBS is, on the
other hand, faster in instances containing few agents. The gap between SMT-CBSR

and CCBS is smallest in large maps where SMT-CBSR struggles with relatively big
overhead caused by the big size of the map (the encoding is proportionally big). Here
SMT-CBSR wins only in hard cases.

2 All experiments were run on a system with Ryzen 7 3.0 GHz, 16 GB RAM, under Ubuntu
Linux 18.
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Fig. 4. Comparison of SMT-CBSR and CCBS on maze-32-32-4.

4 Discussion and Conclusion

We extended the approach based on satisfiability modulo theories (SMT) for solving
MAPFR from the makespan objective towards the sum-of-costs objective. Our app-
roach builds on the idea of treating constraints lazily as suggested in the CBS algorithm
but instead of branching the search after encountering a conflict we refine the propo-
sitional model with the conflict elimination disjunctive constraint as it has been done
in previous application of SMT in the standard MAPF. Bounding the sum-of-costs is
done in similar lazy way through introducing nogoods incrementally. If it is detected
that a conflict free solution exceeds given cost bound then decisions that jointly induce
cost greater than given bound are forbidden via a nogood (that is, at least one of these
decisions must not be taken).
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Fig. 5. Comparison of SMT-CBSR and CCBS on ost003d.

We compared SMT-CBSR with CCBS [1], currently the only alternative algorithm
for MAPFR that modifies the standard CBS algorithm, on a number of benchmarks. The
outcome of our comparison is that SMT-CBSR performs well against CCBS. The best
results SMT-CBSR are observable on medium sized benchmarks with regular obstacles.
We attribute the better runtime results of SMT-CBSR to more efficient handling of
disjunctive conflicts in the underlying SAT solver through propagation, clause learning,
and other mechanisms. On the other hand SMT-CBSR is less efficient on large instances
with few agents.
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We plan to extend the RDD generation scheme to directional agents where we need
to add the third dimension in addition to space (vertices) and time: direction (angle).
The work on MAPFR could be further developed into multi-robot motion planning in
continuous configuration spaces [16].
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Abstract. This paper summarizes results on embedding ontologies
expressed in the ALC description logic into a real-valued vector space,
comprising restricted existential and universal quantifiers, as well as con-
cept negation and concept disjunction. The main result states that an
ALC ontology is satisfiable in the classical sense iff it is satisfiable by
a partial faithful geometric model based on cones. The line of work to
which we contribute aims to integrate knowledge representation tech-
niques and machine learning. The new cone-model of ALC proposed in
this work gives rise to conic optimization techniques for machine learn-
ing, extending previous approaches by its ability to model full ALC.

This is an extended abstract of the paper “Cone Semantics for Logics
with Negation” to be published in the proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI 2020).

1 Introduction

This extended abstract reports on results related to the general framework of
cone-based semantics as developed in [15]. The framework relies on the idea
of embedding ontologies into low-dimensional continuous vector spaces. This
idea goes back to the idea of embedding words into low-dimensional continuous
vector spaces which has been implemented successfully in various algorithms
with various applications in the realm of information retrieval [6,12,16]. However,
these approaches are insensitive to the relational structure of documents. The
embedding idea was pushed further (see, e.g., [3,14] and, for an overview, [17])
in order to design embeddings of knowledge graphs or embeddings of ontologies
consisting of axioms in some (expressive) logic [8,10,13].

The main aim of our framework is to find embeddings of ontologies that give
a better compromise between the geometrical models that can be constructed
by means of learning and the (expressivity and consistency) demands of ontolo-
gies. Convex cones are an ideal data structure for such embeddings, as they
combine two desirable properties: On the one hand, computational feasibility is
ensured by convexity (see work on convex or conic optimization, e.g., [4] as well
as work on conceptual spaces [5]). And on the other hand, sufficient expressivity
is ensured by conicity; cones have a well-defined polarity operation that behaves
c© Springer Nature Switzerland AG 2020
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236 Ö. L. Özçep et al.

as a negation operator, in fact as an orthonegation operator [7,9]. Arbitrary
convex sets do not provide a well-defined negation operation (convex sets are
closed under intersection but not under set-complement or set-union.) The main
result of [15] states that an ontology defined over the description logic ALC [1],
which provides full concept negation, is satisfiable in a classical sense iff it is
satisfiable by a geometric model that interprets all concept descriptions as axis-
aligned cones, for short al-cones. And one can even ensure that the embedding
is faithful: The cone-based geometric models used in [15] are partial and thus
allow some uncertainty to be retained, i.e., if x is only known to be a member
of the union of two atomic concepts, then our partial model will not commit to
saying to which atomic concept x belongs. A faithful partial model will represent
exactly those axioms derivable from the ontology.

2 Embedding ALC Ontologies with Al-Cones

The core of our cone-based semantics evolves around the notion of the polarity
operator, which is defined for arbitrary convex cones X, i.e. sets fulfilling: If
v, w ∈ X, then also λv + μw ∈ X for all λ, μ ≥ 0. The polar cone X◦ for X is
defined for Euclidean spaces with a scalar (dot) product 〈·, ·〉 as follows:

X◦ = {v ∈ R
n | ∀w ∈ X : 〈v, w〉 ≤ 0}

The use of the polarity operation for concept negation ¬ is motivated by the
idea of providing an operator that always maps a concept to a disjoint concept
such that the disjoint concept is maximally so w.r.t. the underlying similarity
structure 〈·, ·〉 (see also Farkas’ classical lemma on polarity).

Interpreting set intersection as concept-conjunction � and using de Morgan’s
rule to define concept-disjunction 	 one already has the main ingredients to
interpret arbitrary Boolean ALC concepts. But, as arbitrary cones do not fulfil
the distributivity property of ALC concepts w.r.t. � and 	 (Fig. 1, lhs), our
embeddings are constrained to axis-aligned cones, for short al-cones:

X is al-cone :⇔ X = X1 × · · · × Xn,Xi ∈ {R,R+,R−, {0}}

As a simple example for embedding (Boolean) ALC ontologies we consider
the case of all concept descriptions over two atomic symbols A,B (Fig. 1, rhs). In
the al-cone embedding of Fig. 1 the A is interpreted by the left upper quadrant
and B by the right upper quadrant. This induces uniquely the positions of all
other hyperoctants corresponding to the other boolean concepts.

One can check that the concepts are associated with appropriate al-cones.
For example, the negation ¬A of A is indeed the polar cone of the quadrant of A.
Similarly, consider B �¬A, which is interpreted as the positive x-axis R+ ×{0}.

The example demonstrates also the partiality of al-cone models. Consider,
e.g., the difference between a2 and a3 in the geometric model on the rhs of Fig. 1.
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A

B

C

C � (A � B) = C
�=

(C � A) � (C � B)={0}
x-axis = A �↔ B

y-axis = A ↔ B

BA

¬B ¬A

B � ¬AA � ¬B

A
�

B
¬A

�
¬B

⊥

A � B

¬A � ¬B

�

A � ¬B B � ¬A

a2

a3

Fig. 1. Counterexample distributivity (lhs) and example al-cone model (rhs)

The individual a3 is completely identified w.r.t. the given concepts A,B: it lies
in the extension of B and in the extension of ¬A. For a2 we “only” know that
it must be an B, but we do not know whether it is also an A.

Using the construction idea of the example one can prove that a Boolean ALC
ontology is classically satisfiable iff it satisfiable by an al-cone based model. And
one can guarentee faithfulness: The geometric model encodes all and only the
information of the ontology. Using some more thoughts on how to deal with rela-
tions (roles) one can generalize the result to hold for arbitrary ALC ontologies.

Proposition 1. ALC ontologies are classically satisfiable iff they are satisfiable
by a faithful geometric model on some R

n using sets of the form b1 × · · · × bn
with bi ∈ {{0},R+,R−,R}.
This result has important consequences for possible supervised learning algo-
rithms relying on al-cone based geometric models (such as the prototypical multi-
labelling algorithm described in [11]): If the algorithm is not able to find a model
fitting the training data, this is due to a small feature dimension n chosen in the
beginning or due to inconsistencies of the ontology. The inconsistency cannot be
due to the fact that concepts are represented as al-cones.

3 Conclusion and Outlook

By interpreting negation as a polarity operator it is possible to find embeddings
of ALC ontologies that interpret all concepts as axis-aligned cones. This result
adds an interesting alternative to embeddings considered so far.

In [15] we only consider the case where the logic (ALC) has been specified
beforehand, not the case of investigating logics induced by the intersection and
polarity operators for arbitrary cones. In ongoing work we are investigating non-
distributive logics suitable for arbitrary cones. These logics are extensions of
so-called orthologics [7]—which describe lattices equipped with an orthonega-
tion. We are able to identify non-trivial rules (weakenings of orthomodularity, a
property used for minimal quantum logic [2]) that are fulfilled by cones.
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Abstract. The Databionic swarm (DBS) is a flexible and robust clustering frame-
work that consists of three independent modules: swarm-based projection, high-
dimensional data visualization, and representation guided clustering. The first
module is the parameter-free projection method Pswarm, which exploits concepts
of self-organization and emergence, game theory, and swarm intelligence. The
second module is a parameter-free high-dimensional data visualization technique
called topographic map. It uses the generalized U-matrix, which enables to esti-
mate first, if any cluster tendency exists and second, the estimation of the number
of clusters. The third module offers a clustering method that can be verified by the
visualization and vice versa. Benchmarkingw.r.t. conventional algorithms demon-
strated that DBS can outperform them. Several applications showed that cluster
structures provided by DBS are meaningful. This article is an abstract of Swarm
Intelligence for Self-Organized Clustering [1].

Keywords: Cluster analysis · Swarm intelligence · Self-organization ·
Emergence · Dimensionality reduction

1 Introduction

The term knowledge discovery refers to the general process of finding valid, novel,
potentially useful, and understandable patterns in data [2]. Here, the focus lies on data-
driven methods that find specific patterns in data. These patterns identify homogeneous
groups of objects if the objects are heterogonous between the groups or so-called clusters
[3]. In this sense, cluster analysis can be seen as one step in the knowledge discovery
process, and the clusters are often specified as “natural” clusters [4, 5]. The question
that arises is how to recognize structures that define clusters in high-dimensional data
without prior assumptions because clustering algorithms most-often use a global objec-
tive function that implicitly assumes specific cluster structures in data [4–8]. Moreover,
cluster analysis has two additional challenges. For the clustering process, a wide variety
of indices have been proposed to find the optimal number of clusters [9] and one of many
statistical approaches has to be selected to test for the clustering tendency or so-called
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clusterability [10, 11]. After an extensive review of algorithms of behavior-based sys-
tems in unsupervised machine learning performed in [1], two interesting concepts are
addressed, which are called self-organization and swarm intelligence. Additionally, two
missing links are identified: emergence [12, 13] and game theory [14].

The irreducible structures of high-dimensional data can emerge through self-
organization in a phenomenon called emergence. Exploiting the Nash equilibrium con-
cept from game theory [15] through the use of a swarm of intelligent agents, the data-
driven approach presented in this work can outperform the optimization of a global
objective function in the tasks of clustering and discover new knowledge. This is demon-
strated using a collection of datasets offering a variety of real-world challenges, such as
outliers or density vs. distance-defined clusters [16].

2 Databionic Swarm (DBS)

ThealgorithmsofDBSconsists of threemodules: focusingprojectionwithPswarm, visu-
alization via a topographic map of projected points and clustering. Focusing projection
methods first adapt to global structures, and as time progresses, structure preservation
shifts from global optimization to the preservation of local neighbor-hoods. Projections
of this type (e.g.,NerV,CCA,ESOM, t-SNE) usually require parameters to be set because
this phase, which is also called the learning phase, requires an annealing scheme. This
task is challenging if no prior knowledge about the data exists.

In contrast to all other conventional projection methods, Pswarm neither does have
any global objective function nor requires any input parameters other than the data set
of interest. In this case, Euclidean distances are used in the input space. Alternatively, a
user may also provide Pswarmwith a matrix defined in terms of a particular dissimilarity
measure, which is typically a distance but may also be a non-metric measure.

The intelligent agents of Pswarm, called DataBots [17], operate on a toroid grid,
where positions are coded into polar coordinates to allow for the precise definition of
their movement, neighborhood function, and annealing scheme. The size of the grid and,
in contrast to other focusing projection methods, the annealing scheme is data-driven.
During learning, each agent moves across the grid or stays in its current position in the
search for the most potent scent emitted by other DataBots. Hence, agents search for
other agents carrying data with themost similar features to themselves with a data-driven
decreasing search radius. The movement of every agent is modeled using a game-theory
approach, and the radius decreases only if a Nash equilibrium is found [15]. After the
self-organization of agents is finished, the output of the Pswarm algorithm is a scatter
plot of projected points.

The goal of this scatter plot is a visualization of distance and density-based structures,
which is often used in cluster analysis [6, 18–20]. However, it is stated by the Johnson–
Lindenstrauss lemma [21] that the two-dimensional similarities in the scatter plot cannot
coercively represent high-dimensional structures. For example, similar data points can
bemapped onto far-separated points, or a pair of closely neighboring positions represents
a pair of distant data points.

Therefore, the generalized U-matrix [22, 23] is exploited on this projection in the
second step using emergence through an unsupervised artificial neural network called
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a simplified (because parameter-free) emergent self-organizing map. The generalized
U-matrix generates the visualization of a topographic map with hypsometric tints, which
can be vividly described as a virtual 3D landscape with a specific color scale chosen
with an algorithm defining the contour lines [24]. The topographic map addresses the
central problem in clustering, i.e., the correct estimation of the number of clusters. It
allows the assessment of the number of clusters [24] by inspecting the 3D landscape.
The color scale and contour lines imitate valleys, ridges, and basins: blue colors indicate
small distances (sea level), green and brown colors indicate middle distances (low hills),
and shades of gray and white indicate vast distances (high mountains covered with
snow and ice). Valleys and basins represent clusters, and the watersheds of hills and
mountains represent the borders between clusters. In this 3D landscape, the borders of
the visualization are cyclically connected with a periodicity defined by two parameters
(L, C). One example of a topographic map can be found on GitHub (https://github.com/
Mthrun/DatabionicSwarm).

The semi-automated clustering is performed by calculating the shortest paths [25]
of the Delaunay graph between all projected points weighted with high-dimensional
distances. This is possible because it was shown that the U-matrix is an approximation
of the abstract U-matrix [26], which is based on Voronoi cells. Voronoi cells define a
Delaunay graph where the edges between every projected point are weighted by the
high-dimensional distances of the corresponding data points.

The clustering approach itself involves one of two choices. For each choice, a den-
drogram can be visualized, which shows the ultrametric portion of the distance used is
visualized (c.f. [27]). Large changes in fusion levels of the ultrametric portion of the
distance indicate the best cut, but the resulting clustering should always be evaluated by
the topographic map.

2.1 Open Source Access

There is a general need for open-source implementations in swarm intelligence
algorithms [28]. Thus, DBS is available as the R package “DatabionicSwarm” on
CRAN (https://CRAN.R-project.org/package=DatabionicSwarm). Datasets are avail-
able in [16]. The top 50 clustering algorithms are summarized in the R package “FCPS”
on CRAN (https://CRAN.R-project.org/package=FCPS). A small subset of algorithms
was selected for benchmarking in [1] because the implicit assumptions were known for
this subset in literature.

3 Conclusion

By exploiting the missing links between swarm-based algorithms and emergence as well
as game theory, the main advantage of DBS is its robustness regarding very different
types of distance and density-based structures of clusters. As a technique that uses swarm
intelligence, DBS clustering is more robust with respect to outliers than conventional
algorithms. DBS enables even a non-professional in the field of data mining to integrate
its algorithms for visualization and/or clustering in their knowledge discovery process
because no prior knowledge about the data is required, and no implicit assumptions
about the data are made.

https://github.com/Mthrun/DatabionicSwarm
https://CRAN.R-project.org/package%3dDatabionicSwarm
https://CRAN.R-project.org/package%3dFCPS
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Abstract. The purpose of image restoration is to recover the original
state of damaged images. To mitigate the disadvantages of the manual
image restoration process such as the high time consumption, we present
interactive Deep Image Prior by extending Deep Image Prior with
a user interface to an interactive process with the human in the loop.
In this process, a human can iteratively embed knowledge to provide
guidance and control for the automated inpainting process.

Our evaluation shows that, even with very little human guidance, our
interactive approach has a restoration performance on par or superior to
other methods. Meanwhile, very positive results of our user study suggest
that learning systems with the human-in-the-loop positively contribute
to user satisfaction.

Keywords: Interactive machine learning · Image inpainting ·
Computer Vision

1 Problem and Challenges

Image inpainting is a process that fills missing sections in images, such that the
restored images are visually plausible. In order to distinguish from the general
image inpainting tasks, we consider image restoration of damaged or corrupted
art works in this paper.

A typical scenario for image restoration is heritage protection. The Dunhuang
grottoes dataset [7] of damaged murals from the Mogao Grottoes which we use in
our work is a popular example for both heritage protection and image restoration
[5]. Traditionally, the restoration requires a professional to paint manually, which
requires much experience and effort.

In order to quickly and reliably restore digital copies of historical artifacts,
numerous automated frameworks have been proposed for this digital image

We submit this paper as an abstract paper. The original paper was published as a
conference paper in IUI’20 [1]
T. Weber and Z. Han—The first two authors contributed equally to this research.
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restoration in the recent years. The inpainting frameworks proposed by prior
works can be categorized into two main classes: exemplar-based [2] and learning-
based methods [4]. Those frameworks offer a digital restoration process which
showed decent results for many image inpainting tasks while being significantly
less time-intensive. However, exemplar-based methods have trouble in recover-
ing complex images, since they only copy existing patches from the same image.
And while Deep Learning (DL) works well when trained on a large dataset,
DL-based approaches severely suffer from over-fitting when only a small train-
ing set is available. The fact that such datasets are rarely available prevents
learning-based methods from being adopted into many domains.

2 Approach

When missing image features are obvious from semantic but not structural con-
text, humans can easily deduce these missing features than many algorithms. To
incorporate human knowledge in image restoration and improve the restoration
quality, we present interactive Deep Image Prior (iDIP), a collaborative, inter-
active image restoration system which enables humans to iteractively guide and
correct an automated restoration process.

Fig. 1. Left to right: the damaged image from the
Mogao Grotto dataset [7], a mask specifying dam-
aged regions, and a restoration by iDIP.

Fig. 2. iDIP performs an ini-
tial restoration using DIP and
then cycles through interac-
tive inpainting phases.

iDIP restores images by alternately and iteratively exploiting the image prior
and human knowledge. The underlying algorithm updates the image iteratively,
incrementally, and focused onto specific masked regions (see Fig. 1). Refinement
by the user can come in two forms: First, the user can edit the mask and therefore
direct the DIP to include or exclude specific regions in the restoration process.
Second, the user can paint onto the current increment to provide information
that may not be restorable by structural information alone. This may for example
be features that can be deduced from image semantics. Blending hand painted
image features into the structure of the original image can be hard though. With
the collaborative approach, this can be left to the DIP algorithm.

The results of the human involvement are fed back into the DIP system which
continues training – and therefore refinement of the image prior – until the next
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increment is reached. The human is in control of how many training iterations
should be performed for the next increment, giving more control and making
degradation due to overfitting less likely.

Figure 2 visualizes the stages of iDIP:

1. To provide some base information, the first increment x0 is given without the
user refining it.

2. From then on the user always receives the current increment xn restored by
iDIP.

3. In the following painting phase, the user paints onto the image xn to refine
it, yielding the refined image x′

n.
4. The refined image x′

n is fed back to the DIP algorithm for another training
phase where a set number of training iterations are applied.

5. After training, the system generates the next increment xn+1 from the further
trained generator. At this point the process starts anew.

With the iterative nature we intend for DIP and human knowledge to jointly
boost each other. Besides, this approach should also give users greater control
on the output: by trial-and-error they can determine what impact their actions
have to better gauge their actions for the next increment.

3 Results and Conclusion

To compare the reconstructed image to the baselines we used established mea-
sures for the comparison of images: We compute the Dissimilarity Structural Sim-
ilarity Index Measure (DSSIM) [6] and the Local Mean Squared Error (LMSE)
[3] between the restored and ground truth images (Table 1).

Table 1. Results for the restoration metrics. Lower values are better. Significance levels
for comparison to iDIP using Mann-Whitney-U test.

Metrics/Methods EdgeConnect PartialConv PatchMatch PatchOffset DIP iDIP

LMSE 629.65*** 2550.02*** 185.68 558.05*** 214.23 207.37

DSSIM 0.2803*** 0.2816*** 0.2423 0.2247* 0.2228 0.2227

While significant improvement would have been more desirable, we see these
results as an indicator that our approach achieves at least performance on par
with these baselines regarding the objective measures. These results look promis-
ing, indicating that added interactivity is a positive influence on image restora-
tion. Consequently we decided to conduct a user study with two goals: to evalu-
ate the subjective quality of our image reconstruction as described below and to
receive feedback on the overall usability of the tool and method. For the details
of user study, we refer to our original papers [1].

In this paper we have described iDIP, our Human-in-the-Loop framework
for interactive image restoration. This framework allows users to interactively
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contribute their knowledge to a DIP-based image restoration process such that
both image prior and human knowledge are used as a collaborative iML system.
We have outlined our implementation of this system as well as how we evaluated
whether the interactive approach improves output quality and how it is per-
ceived by users. Our experiments show that the interactivity positively affects
the output quality as iDIP is on par with or better than the five state of the art
baselines.
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Abstract. Future intelligent autonomous systems (IAS) are inevitably
deciding on moral and legal questions, e.g. in self-driving cars, health care
or human-machine collaboration. As decision processes in most mod-
ern sub-symbolic IAS are hidden, the simple political plea for trans-
parency, accountability and governance falls short. A sound ecosystem
of trust requires ways for IAS to autonomously justify their actions, that
is, to learn giving and taking reasons for their decisions. Building on
social reasoning models in moral psychology and legal philosophy such
an idea of »Reasonable Machines« requires novel, hybrid reasoning
tools, ethico-legal ontologies and associated argumentation technology.
Enabling machines to normative communication creates trust and opens
new dimensions of AI application and human-machine interaction.

Keywords: Trusthworthy and explainable AI · Ethico-legal
governors · Social reasoning model · Pluralistic and expressive
normative reasoning

1 Introduction

Intelligent autonomous systems (IASs) are rapidly entering applications in indus-
try, military, finance, governance, administration, healthcare, etc., leading to
a historical transition period with unprecedented dynamics of innovation and
change, and with unpredictable outcomes. Politics, regulatory bodies, indeed
society as a whole, are challenged not only with keeping pace with these poten-
tially disruptive developments, but also with staying ahead and wisely guiding
the transition. Fostering positive impacts, while preventing negative side effects,
is a balanced vision shared within most of the numerous ethical guidelines of the
last years on trustworthy AI, including the European Commission’s most recent
White Paper on AI [6], proposing the creation of an “ecosystem of excellence” in
combination with an “ecosystem of trust”.

We think that real “Trustworthy AI by Design” demands IASs, which are
able to give and take reasons for their decisions to act. Such »Reasonable
Machines« require novel, hybrid reasoning tools, upper ethico-legal ontologies
c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 251–258, 2020.
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and associated argumentation technology to be utilised in practice for assess-
ing, justifying and controlling (externally and internally) the behaviour of IASs
with respect to explicitly encoded legal and ethical regulation. We envision this
technology to be integrated with an on-demand, cloud-based workbench for plu-
ralistic, expressive regulatory reasoning. This would foster knowledge transfer
with industry, research, and educational institutions, it would enable access to
critical AI infrastructure at scale with little risk and minimal costs, and, in the
long run, it could support dynamic adjustments of regulating code for IASs in
the cloud via politically and socially legitimated processes.

Paper structure: Sect. 2 formulates objectives for Reasonable Machines,
and Sect. 3 provides models for them building on moral psychology and legal
philosophy. Section 4 outlines modular steps for research and implementation of
Reasonable Machines; this leverages own prior work such as the LogiKEy
methodology and framework for designing normative theories for ethical and
legal reasoning [4], which needs to be combined and extended with an upper-
level value ontology [17] and further domain-level regulatory theories for the
assessment and explanation of ethical and legal conflicts and decisions in IASs.

2 Reasonable Machines: Objectives

The need for some form of “moral machines” [22] is no science fiction scenario
at all. With the rise of autonomous systems in all fields of life including highly
complex and ethically critical applications like self-driving cars, weapon systems,
healthcare assistance in triage and pandemic plans, predictive policing, legal
judgement supports or credit scoring tools, involved AI systems are inevitably
confronted with, and deciding on, moral and legal questions. One core problem
with ethical and legal accountability or even governance of autonomous systems
is the hidden decision process (black box) in modern (sub-symbolic) AI tech-
nologies, which hinders transparency as well as direct intervention. The simple
plea for transparency disregards technological realities or even restrains much
needed further developments.1

Inspired by moral psychology and cognitive science, we envision the solu-
tion in the development of independent, symbolic logic based safety-harnesses
in future AI systems [9]. Such “ethico-legal governors” encapsulate and interact
with black box AI systems, and they will use symbolic AI techniques in order to

1 While interpreting, modeling and explaining the inner functioning of black box AI
systems is relevant also with respect to our Reasonable Machines vision, such
research alone cannot completely solve the trust and control challenge. Sub-symbolic
AI black box systems (e.g. neural architectures) are suffering from various issues
(including adversarial attacks and influence of bias in data) which cannot be easily
eliminated by interpreting, modeling and explaining them. Offline, forensic processes
are then required such that the whole enterprise of turning black box AI systems
into fully trustworthy AI systems becomes a challenging multi-step engineering pro-
cess, and such an approach is significantly further complicated when online learning
capabilities are additionally foreseen.
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search for possible justifications, i.e. reasons, for their decisions and (intended)
actions with regard to some formally encoded ethico-legal theories defined by
regulating bodies. The symbolic justifications computed at this abstract level
thus provide a basis for generating explanations about why a decision/action
(proposed by an AI black box system) is ethico-legally legitimate and compliant
with respect to the encoded ethico-legal regulation.

Such an approach is complementary to, and as an additional measure more
promising than, explaining the inner (mis-)functioning of the black box AI sys-
tem itself. Symbolic justifications in turn enable the development of further
means towards a meaningful and robust control and towards human-understand-
able explanation and human-machine interaction. The Reasonable Machines
idea outlines a genuine approach of trustworthiness by design proposing, in psy-
chological terminology [14], a slow, rational (i.e. symbolic) “System 2” layer in
responsible IASs to justify and control their fast, “intuitive”, but opaque (sub-
symbolic), “System 1” layer computations.

Reasonable Machines research aims at analyzing and constructing ways
how intelligent machines could socially justify their actions at abstract level, i.e.
give and take moral and legal reasons for their decisions to act. Reason is based
on reasons. This is true as much for artificial as for human intelligent agents.
The “practical reasonableness” of intelligent agents depends on their moral abil-
ities to communicate socially acceptable reasons for their behavior [11]. Thus,
the exploration of methods and tools enabling machines to generate normative
reasons (which may be independent of underlying black box architectures and
opaque algorithms) smoothes the way for more comprehensive artificial moral
agency and new dimensions of human-machine communication.

The core objectives of Reasonable Machines technology are:

– enabling argument-based explanations & justifications of IAS decisions,
– enabling ethico-legal reasoning about, and public critique of, IAS decisions,
– facilitating political and legal governance of IAS decision making,
– evolving ethico-legal agency and communicative capacity of IASs,
– enabling trustworthy human-interaction by normative communication,
– fostering development of novel neuro-symbolic AI architectures.

3 Artificial Social Reasoning Model (aSRM)

The black box governance problem has an interesting parallel in human decision
making. Most actual models in moral psychology consider emotional intuition
to be the (or at least one) initial driving force of human action which is only
afterwards (or with a second significantly slower system) rationalized with rea-
sons [12,14]. Within a social framework of giving and taking reasons (e.g. moral
convention or a legal system) the initial motivation of a single human agent
could be ignored if his actions and his post-hoc reasoning comply with given
social (moral or legal) standards [16]. Communicating reasons within such a
post-hoc “Social Reasoning Model” (SRM) is not superfluous, but essential, as
only they guarantee the coherence of a moral or legal order in an increasingly
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pluralistic world. The remaining difference is the relative independence of ratio-
nal reasoning from the motivational impulse to act. Even so, in the long run the
inner-subjective or social feedback loop with rational reasons might also change
the agents’ motivational (emotional) disposition.

This post-hoc SRM is transferable to AI decision processes as “artificial Social
Reasoning Model” (aSRM). The black box of an opaque AI system functions
like an AI intuition. Following the SRM model, transparency is not needed as
long as the system generates post-hoc reasons for its action. Moral and legal
accountability and governance could instead be enabled through symbolic or
sub-symbolic aSRMs.

A symbolic solution would try to reconstruct (or justify with an alternative
argument) the intuitive decision of the black box with deontic logical reasoning
applying moral or legal standards. A pluralistic, expressive “normative reasoning
infrastructure”, such as LogiKEy [4], should e.g. be able to support this process.

A sub-symbolic solution could create an independent (second) neural network
to produce reasons for the output of the (first) decision network (e.g. autonomous
driving control). Of course, the structure of this “reasoning net” process is again
hidden. Yet, if the outcoming reasons coherently comply with prescribed social
and ethico-legal standards the lack of transparency in the second black box
constitutes less of a problem.

Robust solutions for aSRMs could even seek to integrate and align these
two options. Moreover, in both scenarios the introduced feedback loop of giving
and taking reasons could be integrated as learning environment (self-supervised
learning) for the initial, intuitive layer of autonomous decision making, with the
eventual effect that differences at both layers may gradually dissolve.

Allowing various kinds of reasons, SRMs & aSRMs advance normative plural-
ism and may integrate different (machine-)ethical traditions: deontological, con-
sequentialist and virtue ethics. “Reasonable pluralism” in recent moral and polit-
ical philosophy defines reasonableness by meta-level procedures like “reflective
equilibrium” and “overlapping consensus” [20] or “rational discourse” [11]. Con-
temporary legal philosophy and theory has enfolded how law could act as demo-
cratic real-world implementation of these meta-procedures, structuring public
deliberation and argumentation over conflicting reasons [1,15]. Constructing a
pluralist aSRM substantially widens the mostly consequentialist contemporary
approaches [5,9] to machine ethics and moral IAS.

4 Reasonable Machines: Implementation

The implementation of Reasonable Machines requires expertise from differ-
ent areas: pluralistic normative reasoning, formal ethics and legal theory, expres-
sive ontologies and semantic web taxonomies, human-computer interaction, rule-
based systems, automated theorem proving, argumentation technology, neural
architectures and machine learning. Acknowledging the complexity of each field,
Reasonable Machines research should complement top-down construction of
responsible machine architecture with bottom-up developments starting from
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existing works in different domains. More concretely, we propose a modular and
stepwise implementation of our research scheme based on the following modules:

M1: Responsible Machine Architecture. The vision of an aSRM and its
parallel to human SRM needs to be further explored to guide and refine the over-
all architectural design of Reasonable Machines based on respective system
components responsible for generating justifications, for conducting compliance
checks and for governing the action executions of an IAS.

M2: Ethico-Legal Ontologies. Ethico-legal ontologies constitute a core ingre-
dient to enable the computation, assessment and communication of aSRM-based
rational justifications in the envisioned ethico-legal governance components for
IASs, and they are also key for black box independent user-explanations in form
of rational arguments. We propose the development of expressive ethico-legal
upper-level ontologies to guide and connect the encoding of concrete ethico-legal
domain-level theories (regulatory codes) [8,13]. Moreover, we propose the con-
crete regulatory codes to be complemented with an abstract ethico-legal value
ontology, for example, as “discoursive grammar” of justification [17].

M3: Symbolic Reasoning Tools. For the implementation of pluralistic,
expressive and paradox-free normative reasoning at the upper-level, the LogiKEy
framework [4] can e.g. be adapted and further advanced. LogiKEy works with
shallow semantical embeddings (SSEs) of (combinations of) non-classical logics
in classical higher-order logic (HOL). HOL thereby serves as a meta-logic, rich
enough to support the encoding of a plurality of “object logics” (e.g. conditional,
deontic or epistemic logics and combinations thereof). The embedded “object
logics” are used for the iterative, experimental encoding of normative theories.
This generic approach shall ideally be integrated with specialized solutions based
e.g. on semantic web reasoning, logic programming, answer set programming,
and with formalized argumentation for ethical [21] or legal [3] systems design.

M4: Interpretable AI Systems. Sub-symbolic solutions to SRM-based
accountability and governance challenge could develop a hidden reasoning net,
which might be trained with legal and ethical use-cases. Moreover, techniques
in “explainable AI” [10] have to be assessed and, if possible, integrated with the
symbolic aSRM tools to be developed in M3 in order to provide guidance to
their computations and search processes. The more information can be obtained
about the particular information bits that trigger the decisions of the black box
systems we want to govern, the easier the corresponding reasoning tasks, i.e. the
search for justifications, should become in the associated, symbolic aSRM tool.

M5: Human-Machine Communication and Interaction. The intended
aSRM-based justifications generated by the tools developed in M3 and M4
require arguments and rational explanation which are understandable for differ-
ent AI ecosystems [19], including human users, collect decision scenarios between
machines and independent verification tools. Here, the development of respec-
tive techniques could build on argumentation theory in combination with recent
advances towards a computational hermeneutics [7]. An overarching objective
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of Reasonable Machines is to contribute to trustful and fruitful interaction
between human and IASs.

M6: Cloud-based Reasoning Workbench. To facilitate access to the pro-
posed knowledge representation and reasoning solutions, and also to host the
ethico-legal theories, a cloud-based reasoning workbench should be implemented.
This workbench would (i) integrate the bottom-up construed components and
tools from M2-M5 and (ii) implement instances of the top-down governance
architecture(s) developed in M1 based on (i). This cloud-based solution could
be developed in combination with, or as an alternative to, more independent
solutions based e.g. on agent-based development frameworks [23].

M7: Use Cases and Empirical Studies. The overall system framework needs
to be adequately prepared to support changing use cases and empirical studies.
Concrete use cases with high ethical and legal potential must be defined and
employed to guide the research and development work, as for example the rep-
resentative issue on self-driving cars [5]. Empirical studies should support and
inform the constructive development process. For testing the ethico-legal value
ontology in M2, for example, we could try to demonstrate that it can make sense
out of the rich MIT Moral Machine experiment data [2]. When its architecture
evolves, it would be highly valuable to design a genuine aSRM experiment.

5 Conclusion

The Reasonable Machines vision and research requires the integration of
heterogeneous and interdisciplinary expertise to be fruitfully implemented.
The cloud-based framework we envision would ideally be widely available and
reusable, and it could become part of related, bigger initiatives towards the
sharing of critical AI infrastructure (such as the claire-ai.org vision towards a
CERN for AI). The implementation of the depicted program requires substan-
tial resources and investment in foundational AI research and in practical system
development, but it reflects the urgent and timely need for the development of
trustworthy AI technology.

The possible outreach of the Reasonable Machines idea is even far beyond
an ecosystem of trust. To enable machines to give normative reasons for their
decisions and actions means to capacitate them of communicative action [11],
or at least to engage in constitutive communication of social systems [18]. The
capacity to give and take reasons is a crucial step towards fully autonomous
normative (moral and legal) agency. Moreover, our research, in the long run,
paves way for interesting further studies and experiments on integrated neuro-
symbolic AI architectures and on the emergence of patterns of self-reflection in
intelligent autonomous machines.
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Abstract. Humans are capable of recognizing intentions by solely
observing another agent’s actions. Hence, in a cooperative planning task,
i.e., where all agents aim for all other agents to reach their respective
goals, to some extend communication or a central planning instance are
not necessary. In epistemic planning a recent research line investigates
multi-agent planning problems (MAPF) with goal uncertainty. In this
paper, we propose and analyze a round-based variation of this problem,
where each agent moves or waits in each round. We show that simple
heuristics from cognition can outperform in some cases an adapted for-
mal approach on computation time and solve some new instances in some
cases. Implications are discussed.

1 Introduction

Autonomous aircraft towing [6], airport ground traffic [5], and robots in ware-
houses [12] require the interaction of multiple agents acting in the same environ-
ment. But how good can agents reach their goal, if they have no direct commu-
nication about their goals and actions? Analyzing this problem allows to learn
about how much intention can be recognized by an agent’s action and when some
form of coordination by communication is required. Let us consider a warehouse
as an example. The warehouse is represented by a grid graph G = (V,E) (see,
Fig. 1). The vertices are the corridors and the edges describe how they are con-
nected with each other. Located in the warehouse are robots, which we call agents
A = {a0, a1, ..., am}. They all have a distinct position and there can never be more
than one agent on the same vertex. In each round R = {0, 1, ..., n} each agent
can stay at its vertex or move at most to the next one. They move in a specific
move order MO = (ao, a1, ..., am), ai ∈ A which describes the order in which
the agents can make actions after each other in each round. Since the shelves are
so narrow, no agent can move into a corridor in which another agent is located,
therefore the agents are able to block each others paths. Every agent has a set of
corridors it is responsible for. Let β : A → 2V be the function which maps the
agents to their possible goals. In our example the red robot has the set of items
β(Red Robot) = {cables, toys}. It might be going to either one of those corridors,
c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 259–266, 2020.
https://doi.org/10.1007/978-3-030-58285-2_21
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Fig. 1. A sample representation of the warehouse as a graph. The vertices are the cor-
ridors of the warehouse. The two agents are represented as red and blue robots (Color
figure online).

but in reality there is always only one goal an agent wants to reach, which we will
call α∗(i) ∈ β(i), the “true goal”. On the other hand, we will call goals that will not
be pursued by i :“false goals”. Furthermore, let B ⊆ V be the set of all goals of all
agents. How solutions to this problem can be found when no direct communication
between the agents is allowed has been already investigated.A generalization of the
well known multi-agent path finding problem, where multiple agents are located on
the same problem instance trying to reach their destinations, has been investigated
[9]. Instead of having a stream of tasks in a life-long environment [7], this analysis
focuses on a one-shot framework, i.e., where goals do not change over time. The
analysis is based on the general problem of Distributed MAPF, where each agent
plans to solve the instance itself, planning also actions of the other agents, instead of
having a central entity to solve the instance.Optimally eager agents [2], i.e., agents
that always plan to act first whenever this results in a shortest execution path,
can solve any solvable MAPF instance, perhaps replanning when other agents do
something unanticipated. Conservative eager agents, i.e., agents that always plan
to act first and only replan their actions from the already executed execution for-
ward, can solve anyMAPF instance given the instance is solvable. In the first case,
the agents have to solve NP-complete problems, in the second case, they may have
to remember exponentially many moves. A further generailzation of this frame-
work is MAPF with Destination Uncertainty (MAPF/DU), where one drops the
assumption that the goal configuration is common knowledge between the agents.
Instead of having only one goal, each agent is assigned a set of goals it might reach,
but only one of those goals is the agent’s true destination. By having this kind of
uncertainty, the execution plans are no longer linear sequences, but they have to be
branching plans. Agents branch on their real goals and make perspective shifts in
order to generate plans for the other agents. A crucial concpet for understanding
the structure of these branching plans are stepping stones, which are states where
an agent can move towards its goal without other agents having to move, not block-
ing the further success of the plan. Utilizing these stepping stones, pne can show
that when agents are conservative and optimally eager, then they will solve every
instance, given it is solvable, with an execution length polynomially bounded. The
computational complexity of generating such plans is PSPACE-complete problem,
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however. The problem we consider differs from the previous scenario. It is round
based, i.e., in each round any agent can perform one or none action at all. This
variant allows the agents to interpret each others actions and to adapt to it respec-
tively, something which is has not been utilized in the MAPF/DU approach (but
cf. [8]).

2 Outline of a Heuristic Agent

Let us stick to the warehouse example. How can an agent in the warehouse
know where the other agents goal is? Let us take a look at how a human would
approach this situation: Since the only clues we are given is the position and the
movement of the other agents, we can use a form of Theory of Mind reasoning
to interpret the other agents actions. Theory of Mind has been introduced by a
heuristic agent’s ability to represent and reason about another agent’s state of
mind [10], being now in the research focus of AI and Cognitive Science [1,11].
We will now outline, based on the introduced problem instance, rational and
plausible mechanisms that a typical cognitive reasoning agent, i.e., an agent
that has a form of symbolic representation and reasons about it, may employ.

2.1 Movement and Waiting

In each round the agent moves either towards its goal, or towards an escape (see
Subsect. 2.2) by using Dijkstras-Algorithm [3] to calculate the path. An agent can
either move one vertex per round or it does not move at all. Introducing the pos-
sibility of waiting is a crucial action of this agent. One can surely imagine a lot
of scenarios where waiting for a robot in the warehouse to pass, before using the
corridor it came from, can be beneficial for the success of the plan. But what can
we interpret about the direction they came from? Since the agents are moving
(or not moving) across G, we can use this information and make estimates about
the agents true goal. For example: If the red robot is moving away from the toys

(a) An instance at some time t (b) The instance with a t′ > t

Fig. 2. A possible instance from the perspective of the red agent (the red circle).
Notice that the possible goal (the white rhombus at the top left vertex) of the blue
agent (blue rhombus) in 2a disappears in 2b, because the red agent ignored the goal
as a possible destination (Color figure online).
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section in the warehouse, we can assume that toys might not be the item the robot
is going to retrieve for the order. We can therefore “ignore” toys from its list of
possible items until it begins to move back to them. An agent ai ignores the goal
k of another agent aj , if aj moved away from this specific goal (see Fig. 2) or ai is
interpreting aj as waiting. What might be a suitable place for the agent to wait
(a so called “Escape”), will be discussed in the next section.

2.2 Escaping

(a) An instance at some time t (b) The instance with a t′ > t

Fig. 3. A possible instance from the perspective of the red agent (the red circle). The
vertices suitable for an escape are marked in green. Notice that this set does change
over time, depending on the movement of an agent and its perspective. (Color figure
online)

Just waiting alone might not be enough, since standing in the way of another
robot and doing nothing seems not to be very productive. In order for the waiting
to be useful, a suitable place needs to be found. An agent ai knows the possible
goals of all agents and it can therefore calculate πaj ,k(t) = (v0, v1, ..., k), where
k ∈ β(aj) is the k-th goal of agent aj . πaj ,k(t) is called a “goal path”. An escape
is a vertex which is not a part of any goal path of any agent that is not waiting. In
our example a suitable escape (the green vertices in Fig. 3) might be a corridor
which is not assigned to any robot at the moment. Since agents know the goals of
each other, it is somewhat possible for them to predict their movement across the
graph. In order to avoid agents blocking each other, an early escape mechanism
is needed. By looking at an agent’s movement, some goals can be ignored. If two
paths of different agents collide, which means that there is least one vertex on
both paths, one of them will try to escape the colliding path beforehand. An
agent ai is checking whether or not there are conflicting paths between it and
another agent aj that is not being ignored by ai. If no conflict between the paths
of the agents is found, they will pursue their true goal path without having to
move out of the way. If there is at least one conflicting path between two agents,
however, they will check if one of them is closer to an escape. The one who is
closest will then proceed to move to said escape. If both agents have the same
distance to the nearest escape, the agent earlier in the move order will move
to its escape. Note that vertices suitable for an escape will change over time
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depending on the waiting or movements of the agents. This can lead to agents
blocking a real goal path. In reality, two agents might be next to each other,
blocking each others paths, waiting for something to happen. When this occurs,
the first agent to notice the other agent waiting will move to a neighboring
vertex. We will call this an immediate escape. If an agent manages to reach its
true goal it will immediately stop and present a success statement. This is the
only form of direct communication that is allowed between the agents, otherwise
it would be impossible to determine whether an agent is waiting on a false goal
or if it has already reached its goal.

2.3 A Runtime Estimation

The agent will either pursue its goal path, escape immediately, or it will do a
planned escape. Since the latter one is the most complex in terms of time, we will
estimate its time complexity. The agent checks for every agent ai ∈ A if there is a
conflict. Because B ⊆ V there can be at most |V | goals and therefore at most |V |
paths to the goals. Since the paths are calculated using the Dijkstra-Algorithm
[3], they will not contain any cycles and are therefore at most |V − 1| long. All
vertices are then compared to the own goal path which, as mentioned before,
is also at most |V | long. Hence checking for a conflict has a time complexity
of O(|V |3). The agent then searches the graph for a suitable escape. It iterates
over all vertices and all paths and compares them to each other, resulting in it
being in O(|V |3). It then iterates through the previously calculated escapes and
determines which one is the closest (has the shortest path) to an escape for the
agents. This is again in O(|V |3). So every round and every agent has to solve a
problem in O(|A| ∗ |V |3).

3 Evaluation
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Fig. 4. Average solution time required by the heuristic agent and implicit planner
(Color figure online).
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Table 1. Comparison between the heuristic agent and the implicitly coordinated plan-
ner.

2 Agents 3 Agents 4 Agents 5 Agents

Heu. Impl. Heu. Impl. Heu. Impl. Heu. Impl.

Average solution rate of

the resp. models

95.6% 99.2% 91.6% 99.5% 89.7% N/A 81.3% N/A

Proportion of solved to

total no. of models

19242
20125

19958
20125

13837
15103

14348
15103

7179
8000 N/A 6505

8000 N/A

Average time 2.0 ms 48.4 ms 6.8 ms 49841.3 ms 19.7 ms N/A 37.3 ms N/A

Median time 1 ms 25 ms 5 ms 860 ms 15 ms N/A 29 ms N/A

In this section, we present a comparison of the heuristic agent with the implicitly
coordinated planner [9]. We generated1 test instances by creating an n × n,
n ∈ {3, 4, 5} grid-graph and randomly assigning m ∈ {2, 3} agents with k ∈
{2, 3} and goals on the grid. Afterwards some vertices were deleted from the
grid. For every combination of those values, instances were created (including
duplicates), resulting in N = 35, 228 instances including unsolvable instances.
Both approaches were tested on the same problem instances, measuring the time
the agents needed to reach their respective goals and their total solution rate
(see Table 1). Since the runtime of the implicitly coordinated planner was by an
order of magnitude slower, only the heuristic agent was able to solve additional
16000 instances with m ∈ {4, 5} agents, n ∈ {4, 5} grid size, and k ∈ {2, 3} goals.
Figure 4 shows the average amount of time needed for solvable instances only.
Noticeable is the large average solution time at about 13 and 20 vertices. With
a higher number of agents, both approaches require a higher and higher time for
solving the instances. Table 1 demonstrates that there is an inverse correlation
between the solution rate and the number of agents.

4 Conclusion

Given the right instances, the heuristic agent we developed is able to solve
instances by an order of magnitude faster than the implicitly coordinated app-
roach. But as any heuristic based approach, there are some instances that cannot
be solved by our approach. Our approach uses just a few heuristics and is in line
with other efficient heuristic approaches (e.g., [4]) that were able, for decision-
making, to outperform complex algorithms. The implicitly coordinated planner,
in contrast to our presented approach, was not designed to work in a round-based
framework, it did not take into account past observations (but cf. [8]), and its
main intention was to provide a method that is provably complete and correct.

1 The implementation and a more in-depth explanation of the benchmark set and
generated data can be found at: https://github.com/Grintel/Cognitive-MAPFDU.

https://github.com/Grintel/Cognitive-MAPFDU
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Nevertheless, it is an interesting comparison since it is the only MAPF plan-
ner around that deals with goal uncertatinty. We are looking forward to apply
similar heuristics in an asynchronous setting as this planner does. Refining the
success conditions of the agents and a more sophisticated searching of escapes
may increase the performance more. Additionally, by extending the implicitly
coordinating planner with the new heuristic approach a hybrid system could be
built, leading to a significant speed-up.

Acknowledgements. This paper was supported by DFG grants RA 1934/9-1, RA
1934/4-1, and RA 1934/3-1.
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Abstract. In the financial sector, a reliable forecast the future financial
performance of a company is of great importance for investors’ invest-
ment decisions. In this paper we compare long-term short-term memory
(LSTM) networks to temporal convolution network (TCNs) in the pre-
diction of future earnings per share (EPS). The experimental analysis
is based on quarterly financial reporting data and daily stock market
returns. For a broad sample of US firms, we find that both LSTMs out-
perform the naive persistent model with up to 30.0% more accurate pre-
dictions, while TCNs achieve and an improvement of 30.8%. Both types
of networks are at least as accurate as analysts and exceed them by up to
12.2% (LSTM) and 13.2% (TCN).

Keywords: Finance · Earnings prediction · EPS forecasts · Long
short term memory · Temporal convolutional network.

1 Introduction

Investors rely first and foremost on earnings predictions when making investment
decisions, e.g., buy, hold, or sell a firm’s shares. Besides using own projections,
they heavily rely on earnings forecasts provided by financial analysts. Conse-
quently, forecasting earnings is one of the main tasks of financial analysts work-
ing at major financial institutions, e.g., broker firms. Analysts invest significant
resources to provide accurate forecasts. However, forecasting is a difficult under-
taking as numerous factors have an influence on the prediction performance.
In this paper, we predict publicly listed US firms’ quarterly earnings per share
with state-of-the-art techniques from the field of deep neural networks based on
companies’ time series data.

We structure the remainder of this paper as follows. In Sect. 2, we present
related work on prediction of financial data. The base time series model and
quality measures are introduced in Sect. 3. We describe the data preprocessing
process in Sect. 4. Objective of our work is to compare LSTM networks with
TCNs, which will be introduced in Sect. 5. Section 6 presents the experimental
analysis, and Sect. 7 draws conclusions.
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2 Related Work

Analyst forecasts are often used to benchmark the accuracy of earnings pre-
dictions obtained from models. However, due to recent regulation on financial
analysts working conditions, e.g., limiting the private access to management,
a drop in analyst coverage has been observed [1]. Automated earnings predic-
tion models supported by artificial intelligence may fill this gap. While there is
already significant work on predictions of stock market price and returns (which
is an aggregate of several factors such as firm-, industry-, country-level variables)
using neural networks [7], empirical evidence is missing whether artificial intel-
ligence can provide meaningful earnings forecasts as a direct measure of firm
success.

Some evidence exists that fraud, e.g., illegal manipulation of earnings, can
be predicted using machine learning [4]. In their study, Bao et al. (2020) find
that ensemble learning with raw accounting numbers has predictive power for
future fraud cases. Their approach outperforms logistic regression models based
on financial ratios commonly used by prior research [6] as well as a support-
vector-machine model [5], where a financial kernel maps raw accounting numbers
into a set of financial ratios. Yet, the prediction of restatements is relatively
less challenging as it is a binary decision tree (future restatement vs. no future
restatement). To the contrary, predicting future earnings is more challenging
as all discrete values are theoretically possible and information from multiple
sources, e.g., financial statements, stock market data, have to be considered.

To our knowledge, no study has yet predicted future earnings using artificial
intelligence. Closest to this study is the work of Ball and Ghysels (2018) [3].
They use a mixed data sampling regression method (but no neural networks)
to predict future earnings and find that their predictions beat analysts’ predic-
tions in certain cases, e.g., when the firm size is smaller and analysts’ forecast
dispersion is high.

3 Time Series Model

The goal in data-driven prediction based on time series is to find a function φ
that yields a future value y based on the data of the past β time steps x =
(qt−β+1, . . . , qt) (Fig. 1). In this paper, the time-span between two time steps is
3 months. A non-perfect predictor φ̂(x) = ŷ can be evaluated using the mean
squared error (MSE) to the real value y.

To evaluate our model we compare it with the persistent model and the
analysts forecast. The persistence model is a simple baseline that uses the current
value as a prediction for the next time step. For each model the MSE is calculated.
Therefore, larger deviations are more punished than smaller ones.

Since the difficulty of forecasting the given data varies greatly over time and
between different companies, the error value in itself is not meaningful. Therefore
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. . . qt−3 qt−2 qt−1 qt qt+1 qt+2 qt+3 . . .

t

τ = 1β = 3

x y
φ

Fig. 1. Illustration of time series model for prediction of earnings of a company with
quarterly reports qt at time step t. We seek a mapping φ from pattern x of earning
data of the past to label y of the predicted earning for the future t = t+τ . The window
size β describes the time span of considered past earnings.

we use a relative comparison between the different models, namely the skill score
(SS) [12]:

SSMSE = 1 − MSE(m)
MSE(base)

, (1)

where MSE(m) is MSE of the own model m (LSTM, TCN) and MSE(base) is the
MSE of the comparison model: persistent model1 pa or analyst forecast a. The
model under consideration is better (worse) than the reference model if the skill
score is greater (less) than 0 [12].

4 Data Preprocessing

As input data, we use accounting data (e.g., total assets and cost of goods
sold) from Computstat Quarterly as well as daily stock market price and
return data from CRSP (Daily Shares) as these are the most commonly used
databases in accounting and finance research. At first both datasets Comput-
stat Quarterly and Daily Shares are reduced to the most important param-
eters2 per time-step and firm. Different value ranges of individual parameters x
are “normalized” and scaled using the total assets atq:

x′ =
x

max{1, atq} (2)

and studentized:
z′
i =

zi − z√
1
n

∑
i(zi − z)2

, (3)

where z is the mean of zi. Outliers of eps which are partially erroneous are
removed by using the first (last) percentile as minimum (maximum). We create
1 For the comparisons only data points are used for which analyst forecasts exist.
2 The following parameters of the data records are used. The parameters in brack-

ets are only used for the assignment and selection of the samples. Comput-
stat Quarterly: (cusip, fpedats, ffi5, ffi10, ffi12, ffi48, financialfirm,
EPS Mean Analyst), rdq, epsfiq, atq, revtq, nopiq, xoprq, apq, gdwlq, rectq, xrdq,
cogsq, rcpq, ceqq, niq, oiadpq, oibdpq, dpq, ppentq, piq, txtq, gdwlq, xrdq, rcpq
Daily Shares: (cusip, date), ret, prc, vol, shrout, vwretd.
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company samples of a given window size (number of quarters). Smaller data gaps
a filled using linear interpolation, while samples with larger gaps are rejected.
The quarterly data are merged with the corresponding daily stock data Daily
Shares, which are also being studentized.

5 Deep Neural Networks

An LSTM network [9] belongs to the family of recurrent neural networks. It
employs backward connections, which allow saving information in time. LSTM

cells internally consists of three gates: forget, input, and output gates, see Fig. 2.
An LSTM cell employs internal states h and s propagated through time. Yellow
boxes represent ANN layers, orange circles represent element wise operations.
Input xt is concatenated with ht−1 and fed to the forget, input, and output gates.
The forget gate determines which information should be forgotten, the input
gate specifies to which amount the new input data is taken into account, and
the output gate state specifies the information to output based on the internal
state. With these functional components, an LSTM is well suited for time series
data. LSTM networks have successfully been applied to numerous domains, e.g.,
for wind power prediction [13] and for speech recognition [8].

A TCN [2] is a special kind of convolutional neural network [10]. While con-
volutional neural networks are primarily used for classification tasks in image,
text or speech, TCNs can be applied to time series data. TCNs extend their
counterparts by causal convolutions and dilated convolutions. The TCN has a
one-dimensional time series input. Causal convolutions only use the current and
past information for each filter. The dilation defines the distance between the
used input data elements of each filter. An example for both concepts is visu-
alized in Fig. 3 with a dilated causal convolution with kernel size k = 2 and
dilations 1, 2, 4. In our experiments we increase d exponentially, i.e. di = 2i and
select an appropriate number of layers to cover the given time span. TCNs also
find numerous applications, e.g., in satellite image time series classification [11].

LSTM

xt

ht−1 ht

forget gate input gate output gate

[·, ·]

σ

×

ct

ft

σ tanh

×

+

it

s̃t

σ

×

tanh

ot

st−1 st

Fig. 2. Illustration of LSTM cell

d = 1

d = 2

d = 4

Input

Output

x7x6x5x4x3x2x1x0

y7y6y5y4y3y2y1y0

t

Fig. 3. Dilated causal convolution
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6 Experimental Analysis

For our experiments we employed two datasets: A for the choice of a proper
architecture and parameters and B for the final experiment with the selected
best architecture. The training set of A includes all samples whose predicted
EPS values lie in the period 2012 to end of 2016. The last 10% of the training
set is used for validation only. The test set is in the following half year after the
training, so it is independent and has no unfair knowledge. For data set B, the
period is extended by half a year, so that its test data have not been seen before.

Each model is trained with a batch size 1024 for 1000 epochs and a dropout
rate of 0.3 for each intermediate layer and the recurrent edges of an LSTM layer.
Dense layers apply tanh as activation function, except for the last layer using a
linear one. The window size of Computstat Quarterly and Daily Shares
is set to 20, i.e., the last 20 quarters of earning reports and the last 20 daily
stock market returns form a pattern. The model is optimized using Adam and
MSE as loss. Each epoch’s best model w.r.t. validation error is used for testing.
Each experiment is repeated five times. Statistics include mean and standard
deviation.

Furthermore, we have experimentally selected the best architectures as rep-
resentatives for LSTM and TCN (Fig. 4). Computstat Quarterly and Daily
Shares are used as input (green). The dimensions are given in parentheses.
Since the shares data is put into a dense layer (D), the time input 20 × 22 is
flattened to 220. After a few layers the two inputs are joined by a merge layer.
For the TCN 32 filters and a kernel size of 3 were used. The last dense layer with
only one neuron outputs the predicted EPS value.

quarters (20,19) LSTM (20,76) LSTM (38)

D (220)D (440)D (660)shares (220)

merge D (19) D (8) D (1)

(a) LSTM architecture

quarters (20,19) TCN (f=32, k=3) D (38)

D (220)D (440)D (660)shares (220)

merge D (19) D (8) D (1)

(b) TCN architecture

Fig. 4. Visualization of selected LSTM and TCN architectures (Color figure online).

As financial and non-financial companies show a significantly different behav-
ior in many regards, we analyze the prediction in independent experiments.
Table 1 compares the prediction performance with three different sets of compa-
nies: all companies (all), no financial companies (nofin), only financial companies
(onlyfin). The data sets without financial firms usually give the best results. The
worst results are achieved when only financial companies are taken into account.
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Table 1. Selected architectures and parameters for three groups of companies: financial
(onlyfin), non-financial (nofin), and all.

We test the best model an independent dataset B. Table 2 shows the results
of the bests configurations of Table 1. The results for the non-financial companies
are similar to the results observed before with an MSE that is 12–13% better
than the analysts’ predictions. The predictions for all companies are slightly
better, but worse than on dataset A.

Table 2. Results on dataset B of optimal architectures and parameters grouped by
financial sector affiliation.

These results suggest that LSTM networks and TCNs are indeed able to pro-
vide meaningful earnings predictions. Even after acknowledging for the variation
across the repetitions (e.g., standard errors based on three repetitions), the range
of significance (e.g., mean estimate plus/minus standard error) is well above zero
in all cases. This is remarkable, as we only used widely available public data on
companies such as balance sheet information and stock market price and return
data. Hence, we can conclude that our networks outperform both the persis-
tent model and the mean forecast of financial analysts based on a subsample of
non-financial firms (e.g., manufacturing firms).

7 Conclusion

Our experimental analysis has shown that LSTM networks and TCNs are pow-
erful models in the application of earnings prediction. We base our prediction
models on quarterly accounting data such as cost of goods sold and total assets
as well as stock market price and return data. Using these widely available time
series data, the persistent model was significantly outperformed. The LSTMs
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performed slightly better in our analysis using the same set of variables. In
the future, we will extend the experimental analysis to further data sets and
integrate further domain knowledge to improve the financial predictions. Our
findings are relevant to both broker firms and investors. Broker firms may want
to consider developing LSTM networks and TCN to supplement their analysts’
forecast. Investors could build up their own forecast models using artificial intel-
ligence, particularly when there are no forecasts available from financial analysts,
which became a more urgent issue recently due to the drop in analyst coverage
induced by regulation.
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Abstract. A crucial part of recommender systems is to model the user’s
preference based on her previous interactions. Different neural networks
(e.g., Recurrent Neural Networks), that predict the next item solely
based on the sequence of interactions have been successfully applied to
sequential recommendation. Recently, BERT4Rec has been proposed,
which adapts the BERT architecture based on the Transformer model
and training methods used in the Neural Language Modeling commu-
nity to this task. However, BERT4Rec still only relies on item identi-
fiers to model the user preference, ignoring other sources of informa-
tion. Therefore, as a first step to include additional information, we pro-
pose KeBERT4Rec, a modification of BERT4Rec, which utilizes keyword
descriptions of items. We compare two variants for adding keywords to
the model on two datasets, a Movielens dataset and a dataset of an
online fashion store. First results show that both versions of our model
improves the sequential recommending task compared to BERT4Rec.

Keywords: Sequential recommendation · Bidirectional Transformer ·
Item recommendation

1 Introduction

The knowledge of a user’s preferences is of great interest for a recommender
system. With explicit information about the user’s interest often missing, the
only clue is the history of previous interactions. To model the preference based
on a sequence of historic interactions a number of neural network architectures
have been developed, for example, Recurrent Neural Networks (RNNs) [5] or
Convolutional Neural Networks (CNNs) [8]. Most of the methods so far model
the sequence unidirectional, only taking the previous interactions into account
at each step. The recently introduced BERT4Rec method [7] overcomes this
limitation by using a bidirectional Transformer [2], allowing it to take context
from both sides into account. To build a sequential representation the model
relies only on the item identifiers. Other information, like keywords describing
items, although available, is not used, but could improve the recommendation
of next items in the sequence. For example, if a user has viewed the movie “The
Lion King”, the information that the item is an “animation”, a “musical” and
c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 275–282, 2020.
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(not only) for “children”, would be helpful to recommend the next item, because
it is more likely that she might be interested in “The Jungle Book” than in “IT”.
Similar, the information that someone clicked on a page showing some “running
shoe”, is quite useful for recommending other items of interest.

Previous work has shown that including additional information of items in
models like RNNs or CNNs can improve the performance of the recommendation
model (e.g., [4,10]). Therefore, as a first step to include additional information
into the new state-of-the-art model BERT4Rec, we introduce KeBERT4Rec,
a modification, that allows to add keywords describing items (e.g., genres of
a movie). To that end, we modify the representation of the sequence items
encoded by the Transformer. We evaluate our approach on a Movielens dataset,
and a new dataset created from real-world clickstreams of a big online fashion
store. The two main contributions of this paper are: 1) We propose two different
approaches to include keyword descriptions into the sequential recommendation
model BERT4Rec. 2) We compare the two options on two real-world datasets.
First results on both datasets show, that our approach of integrating keywords
improves the sequential recommendation task.

The remainder of this paper is structured as follows: In Sect. 2 we define the
task, followed by a description of our approach in Sect. 3. After reviewing related
work in Sect. 4, we describe our datasets, and evaluation setup, and report our
results in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Problem Setting

In this paper we tackle the problem of recommending an item for a user based
on her previous sequence of interactions (i.e., previous rated movies or previ-
ous clicks in an online shop). Following [2], we denote the set of users with
U = {u1, u2, . . . , u|U|}, the set of items with V = {v1, v2, . . . , v|V|} and the list of
interactions of user u ∈ U with Su = {vu

1 , vu
2 . . . , vu

nu
}, where user u has inter-

acted with item vu
t ∈ V at the relative time step t. Additionally, we have for

every item v ∈ V a set of keywords Kv = {k1, k2, . . . , k|Kv|} describing each item
v. We denote with K the set of all possible keywords. The recommendation task
is now to predict, given the history Su with the additional meta information Kvu

t

for every vu
t ∈ Su, the next item vu

nu+1 in the sequence of the user’s interaction.

3 KeBERT4Rec

Our model builds upon the sequential recommendation model BERT4Rec [7],
that transfers the idea of the deep bidirectional self-attention model BERT [2],
which is used for language modeling, to the sequential recommendation task.
The modified model is shown in Fig. 1, which consists of three different layers,
like BERT4Rec: (i) an embedding layer, that learns a representation of the inputs
(i.e., identifier and keywords), and is fed to (ii) a Transformer layer, that consists
of L Transformer blocks (see [11] for more details) and (iii) a projection layer,
that projects the learned hidden representation by the previous layer to the item
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Fig. 1. Model architecture of KeBERT4Rec. In contrast to BERT4Rec, we add an
embedding for the keywords of the items and replace the projection layer with a linear
layer.

space for prediction using a softmax layer. The Cloze task [9] is used for train-
ing, where the model has to predict randomly masked items in the interaction
sequence. For evaluation the item to be predicted will be masked. To include
keyword descriptions of items as an additional input, we make the following two
modifications to the BERT4Rec model:

Embedding Layer: The embedding layer of BERT4Rec, which has a size of
d, consists of two different embeddings: (i) an embedding EV ∈ R

|V|×d of the
item identifier and (ii) an auxiliary embedding EP ∈ R

N×d for the position
of the items in the sequence, to encode the position for the Transformer blocks,
where N is the configurable maximum input sequence length. For every sequence
step t, the item embedding et = vtEV of item vt and the positional embedding
pt = tEP , the sum h0

t = et + pt is used as input for the Transformer layer.
Following this idea, we add an additional embedding kt of the keywords Kvt

of
item vt as summand: h̄0

t = et + pt + kt. We propose two different methods to
embed multiple keywords into kt: (i) KEm merges all keywords of item vt into
a super keyword Ku

vt

∗ and than embeds this using EK∗ ∈ R
|K∗|×d, where K∗ is

the set of all possible keyword combinations. (ii) KEl encodes the categories as
a multi-hot vector, which is scaled to the embedding size d using a linear layer.
The keyword descriptions are masked accordingly while training and evaluation.

Projection Layer: Given the last hidden state of the L-th Transformer layer hL
t

of the masked item vt at time step t, BERT4Rec uses a linear layer and the item
embedding EV for projection: o = σ(hL

t W )E�
V (bias omitted for readability),

where W ∈ R
|V|×d is the weight matrix of the linear layer and σ the GELU

activation function [3]. To remove the coupling of the item embedding with the
projection layer, we only use a linear layer with parameter matrix W̄ ∈ R

d×|V|

for projection, o = hL
t W̄ , which is also in line with the original BERT model [2].

4 Related Work

Different neural network architectures have been introduced to model the
user’s interactions for sequential recommendation. These architectures include
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Table 1. Statistics of the two preprocessed datasets ML-20m and Fashion.

Dataset |U| |V| |K| #Interactions Avg.length Density

ML-20m 138,493 26,744 20 20 m 144,4 0,54%

Fashion 47,158 63,706 301 1.2 m 24.4 0.02%

CNNs [8], RNNs [5], recurrent CNNs [12] and self-attention networks [6].
Recently, [7] introduced BERT4Rec, that adapts the BERT [2] model based
on bidirectional Transformers [11], that are currently one of the state-of-the-art
architectures for modeling sequences in Natural Language Processing, to the
sequential recommendation task. Their method outperforms previous work on
four datasets.

Also, modifications to these different neural networks have been proposed
to include additional information. For example, [10] adapts CNNs to add tex-
tual descriptions of the items using 3D convolutions, or [4] extended the work
of [5] by parallel encoding different features (e.g., title, identifier) using differ-
ent RNNs to improve the recommendation task. A uni-directional Transformer
model, that integrates sparse item features, has been presented in [1] to improve
the Clickthrough-Rate of an e-commerce online shop.

Instead of using unidirectional models like RNNs, we extend the current
state-of-the-art bidirectional model BERT4Rec for sequence recommendation by
adding keyword descriptions available for each item into the model. In contrast
to [1], we use a bidirectional instead of a unidirectional Transformer and evaluate
two different approaches of incorporating item keyword information.

5 Experiments

In this section we introduce the datasets and the setup used in our experiments.
At last, we present the results of our evaluation.

5.1 Experimental Setup

Datasets: We evaluate our model on two datasets. As an established dataset
for sequential recommendation we use the ML-20m1 dataset. ML-20m contains
movie ratings from an online platform for movie recommendation. We utilize
the list of genres of each movie as keyword descriptions. To create interaction
sequences, we apply the same preprocess steps as [7]. Our second dataset is from
a big online fashion store (Fashion), which consists of user interactions with
store pages over the duration of two days. For this dataset we have keywords
assigned to each page (e.g., “training pants”). We removed all technical pages
(e.g., account pages) and keep only interactions with pages showing one or mul-
tiple items. Furthermore, we drop sequences with less than 5 and more than

1 https://grouplens.org/datasets/movielens/20m/.

https://grouplens.org/datasets/movielens/20m/
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(a) Session lengths. (b) Number of item interactions.

Fig. 2. Different frequency distributions for the Fashion dataset.

200 interactions. The resulting frequency distribution of the session length is
displayed in Fig. 2a. We observe very few long sessions and an average session
length of 24.4 clicks. In Fig. 2b we show the frequency distribution of clicks per
items. With most items being rarely visited and only a few frequent items, we
only observe a density (avg. number of unique items rated/clicked per user) of
0.02%. In contrast, ML-20m has more ratings per user, but fewer items, so the
overall density is a bit higher. Also, a movie can only appear once in a sequence
while a page can be visited repeatedly in the Fashion dataset. This happens
often, as we treat all paginations of a page as one single page.

Statistics about the two preprocessed datasets are reported in Table 1.

Evaluation Setup: To show that KeBERT4Rec improves the recommendations
with the inclusion of keyword descriptions, we compare it with BERT4Rec. For
both datasets we used the hyper-parameters reported in [7], and for comparison
of the approaches we used the same hyper-parameters for every model.2 We
apply the same evaluation protocol as [7] (i.e., leave-one-out evaluation; for more
details see [7]) and we use the evaluation metrics Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG) at various cut-off values k. We apply the
Student’s t-test to test the statistical significance difference between the results.

Baselines: We also report two baselines in our evaluation: (i) Most-Popular
(POP), which recommends items just based on their popularity in the interac-
tions, and (ii) Last-Item (LI), which recommends the previous last item in the
sequence. This baseline is only applicable for the Fashion dataset.

5.2 Results

Table 2 shows the recommendation results on our two evaluation datasets.3

As expected, the performance of POP is far below all other methods on both
2 We only adapted the batch size to our hardware restrictions and increased the num-

ber of epochs for training, because first experiments indicated that our models need
more training time. Our code is available at https://dmir.org/KeBERT4Rec.

3 We train all models on the ML-20m for 200 epochs. Our numbers for BERT4Rec are
better than the ones reported in [7], as they train shorter.

https://dmir.org/KeBERT4Rec
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Table 2. Results of the two baselines, BERT4Rec and our two versions of KeBERT4Rec
on the two evaluation datasets. Both variants of KeBERT4Rec are significantly better
than BERT4Rec (α ≤ 0.01). KEl marked with * is significant better than KEm with
α ≤ 0.01 and + with α ≤ 0.05.

Dataset Metric POP Bert4Rec KEm KEl

ML-20m HR@1 0.022 0.528 0.536 0.542*

HR@5 0.081 0.871 0.876 0.877+

HR@10 0.138 0.943 0.946 0.945

NDCG@5 0.051 0.715 0.722 0.725*

NDCG@10 0.070 0.739 0.745 0.747*

Fashion (LI: 0.294) HR@1 0.029 0.476 0.642 0.648+

HR@5 0.066 0.700 0.824 0.823

HR@10 0.089 0.795 0.871 0.871

NDCG@5 0.048 0.048 0.741 0.743*

NDCG@10 0.056 0.625 0.757 0.759+

datasets. The other baseline LI recommends on average about 29% correct on the
Fashion dataset. The high HR can be explained by pagination inside the shop.
BERT4Rec outperforms the two baselines on Fashion and POP on ML-20m.
Both versions of our model KeBERT4Rec achieve better results than BERT4Rec
on both datasets, for example, increasing the HR@1 from 0.528 to 0.542 on ML-
20m and from 0.476 to 0.648 on Fashion. This proves that including keyword
descriptions of items with KeBERT4Rec can improve the sequential recommen-
dation. Moreover, we observe a larger gain on all metrics on the Fashion dataset
compared to the ML-20m dataset (on average about 22% vs. 1%). The keywords
in the Fashion dataset might be more distinctive, as there are about six times
more keywords relative to the number of items. When comparing the variants
KEm and KEl, we observe, that KEl outperforms KEm significantly (only at a
level of 0.05 for HR@5) on the ML-20m dataset, except for HR@10, where the
difference is not significant. On the Fashion dataset, KEl is only significantly
better than KEm regarding NDCG@5 (α-level 0.01) and NDCG@5 and HR@1
(α-level 0.05), but regarding the other metrics there is no significant difference.

6 Conclusion

In this paper we introduced KeBERT4Rec, an extension based on BERT4Rec,
that includes additional keyword descriptions of items as a first step to integrate
additional information about items into BERT4Rec. We evaluated two different
approaches to include keywords into the model and compared these with the
BERT4Rec model on two datasets. Our evaluation shows that both versions
lead to significant improved results in next item recommendation, demonstrating
that the inclusion of additional information about the items is a promising way
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of improvement. To better understand and improve the model further analysis
of the results is needed, especially analyzing the keyword distributions. There
are also more options we would like to explore for embedding keywords (e.g., a
pre-trained BERT). Data about the items (e.g., title) could also be embedded,
requiring an adaption of the proposed model.
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Abstract. Different approaches have been investigated for the modelling
of real-world situations, especially in the medical field, many of which are
based on probabilities or other numerical parameters. In this paper, we
show how real world situations from the biomedical domain can be con-
veniently modelled with qualitative conditionals by presenting three case
studies: modelling the classification of certain mammals, modelling infec-
tions with the malaria pathogen, and predicting the outcome of chronic
myeloid leukaemia. We demonstrate that the knowledge to be modelled
can be expressed directly and declaratively using qualitative conditional
logic. For instance, it is straightforward to handle exceptions to a gen-
eral rule as conditionals support nonmonotonic reasoning. Each of the
knowledge bases is evaluated with example queries and with respect to
different inference mechanisms that have been proposed for conditional
knowledge, including p-entailment, system Z, and various inference rela-
tions based on c-representations. Comparing the obtained inference results
with the answers expected from human experts demonstrates the feasibil-
ity of the modelling approach and also provides an empirical evaluation
of the employed nonmonotonic inference relations in realistic application
scenarios.

Keywords: Conditional · Nonmonotonic reasoning · Biomedical
domain

1 Introduction

While there are different systems that use symbolic reasoning in the medical
domain (e.g. MYCIN [4] or ADA [15]), many approaches in the biomedical field
deal with statistical and probabilistic methods [17,21]. In this paper, we present
and evaluate three conditional knowledge bases from the biomedical domain
that demonstrate the applicability of qualitative conditional logic to real-world
situations. The main contributions of this short paper are:

– Demonstration of the applicability of conditionals to real-world examples.
– Three case studies modelling biomedical knowledge with conditional logic (clas-

sification of mammals, malaria infections, and chronic myeloid leukaemia).
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– Empirical evaluation and comparison of established inference methods in
biomedical applications (p-entailment; system Z; skeptical, weakly skeptical,
and credulous c-inference over all and over minimal c-representations).

2 Background: Reasoning with Conditionals

Let L be a propositional language over a finite signature Σ. We write AB for
A ∧ B for formulas A,B ∈ L. We denote the set of all interpretations over
L as Ω. For ω ∈ Ω, ω |= A means that A ∈ L holds in ω. We define the
set (L | L) = {(B|A) | A,B ∈ L} of conditionals over L. The intuition of a
conditional (B|A) is that if A holds then usually B holds, too. As semantics for
conditionals, we use functions κ : Ω → N such that κ(ω) = 0 for at least one
ω ∈ Ω, called ordinal conditional functions (OCF) [19]. They express degrees
of plausibility of possible worlds where a lower degree denotes “less surprising”.
Each κ uniquely extends to a function mapping sentences to N ∪ {∞} given by
κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An OCF κ accepts a conditional
(B|A), written κ |= (B|A), if κ(AB) < κ(AB). A finite set R ⊆ (L|L) of
conditionals is called a knowledge base. An OCF κ accepts R if κ accepts all
conditionals in R, and R is consistent if an OCF accepting R exists [7].

There are different answers to the question of what a conditional knowledge
base entails. We consider three common approaches to inference with condition-
als here: p-entailment [7], system Z [18], and c-inference [2]. For a knowledge base
R, (B|A) is a system Z inference if the (uniquely determined) Pareto-minimal
OCF accepting R accepts (B|A). For a knowledge base R, (B|A) is a skepti-
cal (resp. credulous) c-inference [2] if every (resp. at least one) c-representation
[12] of R accepts (B|A), and it is a weakly skeptical c-inference if at least one
c-representation of R accepts (B|A) and no c-representation of R accepts (B|A)
[1]. Variations of c-inference do not take all but only minimal ranking functions
with respect to different notions of minimality (cw min, sum min, ind min) into
account [1].

3 Modelled Scenarios

Mammals can be divided into three major groups depending on their mode
of reproduction. Most mammals are placentals. Approximately 95% of all mam-
malian species belong to this group. Their embryos are nourished by complex
placentas and are born after a relatively long gestation period. Therefore, their
offspring is well-developed at birth [11]. Another group of mammals are marsu-
pials. The marsupials’ offspring is born in a very early, embryo-like state. After-
wards it is carried in a marsupium where it matures. Most marsupials do not
develop a complex placenta [16]. The third group of mammals are monotremes.
In contrast to the two other groups, monotremes are not viviparous but lay eggs.
Hence, they do not have a placenta. Platypuses belong to this group of mammals
[9]. For modelling the mammal’s modes of reproduction, we use the signature
Σ = {m, v, c, e, k}. The variable m is true if the animal is a mammal, e if it



Modelling and Reasoning in Biomedical Applications 285

is a marsupial, and k if it is a monotreme. The variable v expresses that the
animal is viviparous, and c that the animal has a placenta. The knowledge base
KBmammal contains the conditionals:

(v|m) Mammals are usually viviparous.
(c|m) Mammals usually have a placenta.
(m|e) Marsupials are mammals.
(¬c|e) Marsupials usually do not have placentas.
(m|k) Monotremes are mammals.
(¬v¬c|k) Monotremes are neither viviparous nor have a placenta.

To test this knowledge base, we apply different inference modes to queries
and compare the resulting answers to the answers a human expert would give.
The first query is “Are marsupials viviparous?”, i.e. does KBmammal entail (v|e).
The second query is “Do marsupials have a placenta?”, i.e. does KBmammal entail
(c|e). The answers to these queries with respect to different inference methods
are displayed in the upper part of Table 1.

While every mode of c-inference answers the query (v|e) as expected, p-
entailment and system Z yield non-plausible results. This is due to the effect that
is described as drowning problem in literature [3]. The three different notions of
minimality for c-representations all yield a single ranking function for KBmammal;
therefore, the results for skeptical, weakly skeptical, and credulous c-inference
over the minimal c-representations coincide. Both queries were answered in less
than a second for each of the inference types by InfOCF-Lib [14] on a usual home
computer1. Note that the knowledge base KBmammal can be easily extended. We
have different versions of this knowledge base that contain more information
about different groups of animals and their properties. The largest knowledge
base contains 24 conditionals and 21 propositional variables. However, reason-
ing with larger knowledge bases takes more computational effort. Skeptical c-
inference over all c-representations for an extended knowledge base with eleven
variables and twelve conditionals takes more than 30 min with the current version
of InfOCF-Lib while system Z takes only two seconds.

Malaria tropica is a widespread and life-threatening disease in Sub-Saharan
Africa. It is caused by an infection with the single-celled parasite Plasmodium
falciparum. This malaria pathogen is transmitted by Anopheles mosquitoes [20].
But not everyone infected with P. falciparum gets seriously sick with malaria:
Some humans carry a hereditary form of the haemoglobin gene called sickle cell
allele. Two copies of this defect gene cause a malformation of the red blood
cells and sickle cell anaemia in humans, whereas one copy does not affect the
function of red blood cells. However, humans carrying one copy of the sickle cell
gene usually do not get seriously sick with malaria despite being infected with the
malaria pathogen, thus having a survival advantage against malaria fatality over
humans with normal haemoglobin [5]. Different approaches have been developed
to protect humans from malaria. The two most important strategies to prevent
1 The queries were answered on a computer with an Intel Core i5 Processor at 2.3 GHz

and 8 GB RAM.
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malaria are the avoidance of mosquito bites and therefore infections (exposure
prophylaxis) and the use of medication to control the spread of the malaria
pathogen inside the body after an infection (chemoprophylaxis). Humans who
are treated with chemoprophylaxis usually do not get seriously sick with malaria
even if infected. An exception to this rule are infections with a malaria pathogen
that is resistant against the used chemoprophylaxis [13].

For modelling the situation for a patient infected with the malaria pathogen,
we use the signature Σ = {m, s, p, r} with the following semantic. The variable
m is true if the patient gets sick with malaria. The variable s expresses that
the patient has the sickle cell allele. A chemoprophylaxis is modelled by p and
an infection with a resistant malaria pathogen is modelled by r. As we assume
that the patient is already infected with the malaria pathogen, we do not have
to introduce a variable for this. The knowledge base KBmalaria contains:

(¬s|	) Patients usually do not have the sickle cell allele.
(m|¬s) Infected patients without the sickle cell allele usually get sick.
(¬m|s) Infected patients with the sickle cell allele usually do not get sick.
(¬m|p) Infected patients with a chemoprophylaxis usually do not get sick.
(m|pr) Patients with a chemoprophylaxis that are infected with a resis-

tant malaria pathogen usually get sick.

We evaluated the knowledge base with the following queries among others.

(m|	) Does a patient (infected with malaria) usually get sick?
(m|rp) Does a patient who got a chemoprophylaxis but is infected with a resis-

tant malaria pathogen usually get sick?
(m|rsp) Does a patient who got a chemoprophylaxis, is infected with a resistant

malaria pathogen, and has the sickle cell allele usually get sick?

The first query should be answered with yes as patients usually do not have the
sickle cell allele and therefore get sick with malaria. The second query should be
answered with yes as well, as this conditional is in the knowledge base. The last
query is most interesting, as it includes two reasons not to get malaria (i.e., the
sickle cell allele and the chemoprophylaxis) of which the chemoprophylaxis is not
applicable in this situation as the malaria pathogen is resistant. The plausible
answer is yes because the patient has the sickle cell allele while the chemopro-
phylaxis does not help against the resistant malaria pathogen. Comparing the
second and the third query also shows that non-monotonic reasoning is covered
by conditionals: As we add s to our query, we cannot infer m any more.

The answers of different inference methods to these queries are displayed in
the middle part of Table 1. For (m|	) and (m|rp), all inference modes yield the
expected answer. For (m|rsp), both system Z and credulous c-inference over all
c-representations yield implausible answers. All minimal c-representions coincide
and yield the expected answer.
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Table 1. Results of queries to knowledge bases with different inference types

Query Inf. Mode c-inference p-entailment System Z Expert opinion

all cw min sum min ind min

KBmammal (v|e) sk. yes yes yes yes no no yes

ws. yes yes yes yes

cr. yes yes yes yes

(c|e) sk. no no no no no no no

ws. no no no no

cr. no no no no

KBmalaria (m|�) sk. yes yes yes yes yes yes yes

ws. yes yes yes yes

cr. yes yes yes yes

(m|rp) sk. yes yes yes yes yes yes yes

ws. yes yes yes yes

cr. yes yes yes yes

(m|rsp) sk. no no no no no yes no

ws no no no no

cr yes no no no

KBCML (g|c) sk. yes yes yes yes no yes yes

ws. yes yes yes yes

cr. yes yes yes yes

(g|a) sk. no no no no no no no

ws. no no no no

cr. no no no no

(g|am) sk. yes yes yes yes no no yes

ws. yes yes yes yes

cr. yes yes yes yes

(g|amr) sk. no no no no no no no

ws. no no no no

cr. no no no no

Chronic Myeloid Leukemia (CML) is one of the four common forms of
leukaemia and is caused by a specific genetic defect in a single cell. In most
cases of CML, it is a translocation between chromosomes 9 and 22. Part of the
BCR gene from chromosome 22 is fused with the ABL gene on chromosome 9.
The resulting fusion gene BCR-ABL leads to an uncontrolled proliferation of the
affected cell. The use of targeted medication allows treatment of CML caused
by a BCR-ABL translocation and results in improved long-term survival rates
[10]. Approximately 5% of the CML cases are atypical CML (aCML), which
is not caused by a BCR-ABL translocation. The recommended treatment for
aCML is a hematopoetic stem cell transplantation (HSCT) which is associated
with severe side effects [8], e.g. the Graft-versus-Host-Disease (GvHD), a reac-
tion where the transplanted immune cells recognise the tissues of the recipient
as foreign. While the patient can benefit from a mild form of GvHD, a severe
form of GvHD is likely to cause heavy organ damage or the patient’s death. A
severe form of GvHD occurs only in about 10% of all HSCTs [6].

For modelling this knowledge about CML, we use Σ = {c, a, b, g,m, r}. The
variable c indicates that the patient has CML, and a indicates that the patient
has aCML. The variable b is true if the patient has the BCR-ABL translocation.
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The variable g models that the patient has a good chance to survive the CML.
The variable m means that the patient gets a HSCT, r that the patient suffers
from severe GvHD. The knowledge base KBCML contains:

(b|c) CML is usually caused by a BCR-ABL translocation.
(g|b) Patients with a BCR-ABL translocation usually have good sur-

vival chances.
(c|a) aCML is a form of CML.
(¬b|a) aCML usually coincides with no BCR-ABL translocation.
(g|m) Patients getting a HSCT usually have good survival chances.
(¬g|mr) Patients getting a HSCT and suffering from severe GvHD usually

have poor survival chances.

This knowledge base was evaluated with the following queries:

(g|c) Has a patient with CML good chances to survive?
(g|a) Has a patient with aCML good chances to survive?
(g|am) Has a patient with aCML who gets a HSCT good chances to survive?
(g|amr) Has a patient with aCML who gets a HSCT and suffers from severe

GvHD good chances to survive?

The first query checks if conditionals are combined to answer a query. We expect
this conditional to be answered with yes. The other queries verify that exceptions
and exceptions of exceptions are handled as expected. An expert’s answer to (g|a)
would be no, to (g|am) yes, and to (g|amr) no again. The answers of different
inference methods to these queries are displayed in the lower part of Table 1.
While the different types of c-inference yield plausible results, p-entailment and
system Z do not always provide the expected answer. P-entailment cannot derive
the first queried conditional as it does not handle combinations of plausible
conditionals well.

4 Conclusions and Further Work

We demonstrated how knowledge from different biomedical scenarios can be
expressed directly and declaratively using qualitative conditional logic. We devel-
oped knowledge bases for the classification of mammals, for malaria infections,
and for the outcome of CML, and evaluated them by answering queries with
respect to different reasoning methods. While p-entailment, system Z, and credu-
lous c-inference over all c-representations yield implausible results in some cases,
the results of skeptical and weakly skeptical c-inference (over all and over mini-
mal c-representations) coincided with the answers human experts would give. In
all three case studies, using only minimal c-representations was a proper substi-
tute for skeptical and weakly skeptical c-inference over all c-representations.

In future work, we will extend our case studies and address the reasoning
and the computational aspects when using larger signatures and knowledge bases
containing more conditionals. We will also broaden our case studies by modelling
further applications scenarios, in particular from the medical domain.
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Abstract. We advocate the use of conformal prediction (CP) to enhance
rule-based multi-label classification (MLC). In particular, we highlight
the mutual benefit of CP and rule learning: Rules have the ability to
provide natural (non-)conformity scores, which are required by CP, while
CP suggests a way to calibrate the assessment of candidate rules, thereby
supporting better predictions and more elaborate decision making. We
illustrate the potential usefulness of calibrated conformity scores in a
case study on lazy multi-label rule learning.

1 Introduction

The setting of multi-label classification (MLC), which generalizes standard
multi-class classification by relaxing the assumption of mutual exclusiveness of
classes, has received a lot of attention in machine learning, and various methods
for tackling this problem have been proposed in the literature [15]. A rule-based
approach to MLC is appealing and comes with a number of interesting properties.
For example, rules are potentially interpretable and can provide explanations of
a prediction [7]. Moreover, due to their local nature, rule-based predictors are
very expressive and can adapt to local properties of the data in a flexible way.

In the context of MLC, the local nature of rules may also cause difficul-
ties, however. In particular, due to the imbalance between positive and negative
labels, which is typical for MLC, “good” rules with positive predictions that can
stand up to negative rules are difficult to find. Here, we advocate the combina-
tion of multi-label rule learning with conformal prediction (CP) to mitigate this
problem.

2 Multilabel Classification

Let X denote an instance space, and let L = {λk}K
k=1 be a finite set of class labels.

We assume that an instance x ∈ X is (probabilistically) associated with a subset
of labels Λ = Λ(x) ∈ 2L; this subset is often called the set of relevant (positive)
labels, while the complement L \ Λ is considered as irrelevant (negative) for x.
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We identify a set Λ of relevant labels with a binary vector y = (y1, . . . , yK),
where yk = �λk ∈ Λ�.1 By Y = {0, 1}K we denote the set of possible labelings.

Given training data D = {(xn,yn)}N
n=1 ⊂ X ×Y, the goal in MLC is to learn

a predictive model in the form of a multilabel classifier h, which is a mapping
X−→Y that assigns a (predicted) label subset to each instance x ∈ X . Thus, the
output of a classifier h is a vector of predictions h(x) = (h1(x), . . . , hK(x)) ∈
{0, 1}K , also denoted as ŷ = (ŷ1, . . . , ŷK). For measuring the (generalization)
performance of such a model, a large spectrum of loss functions or perfor-
mance metrics have been proposed in the literature, including the Hamming
loss �H(y, ŷ) ..= 1

K

∑K
k=1 �yk �= ŷk� and the F1-measure [4].

3 Conformal Prediction

Conformal prediction [3,6,12,13] is a framework for reliable prediction that is
rooted in classical frequentist statistics and hypothesis testing. Given a sequence
of training observations (x1, y1), (x2, y2), . . . , (xN , yN ), (xN+1, •) and a new
query xN+1 with unknown outcome yN+1, the basic idea is to hypothetically
replace • by each candidate, i.e., to test the hypothesis yN+1 = y for all y ∈ Y.
Only those outcomes y for which this hypothesis can be rejected at a predefined
level of confidence are excluded, while those for which the hypothesis cannot be
rejected are collected to form the prediction set or prediction region Y ⊆ Y. By
construction, the set-valued prediction Y = Y (xn+1) is guaranteed to cover the
true outcome yN+1 with a pre-specified probability of 1 − ε (for example 95%).

Hypothesis testing is done in a nonparametric way: Consider any “nonconfor-
mity” function f : X ×Y −→ R that assigns scores α = f(x, y) to input/output
tuples; the latter can be interpreted as a measure of “strangeness” of the pat-
tern (x, y), i.e., the higher the score, the less the data point (x, y) conforms to
what one would expect to observe. Applying this function to the sequence of
observations, with a specific (though hypothetical) choice of y = yN+1, yields a
sequence of scores α1, α2, . . . , αN , αN+1, where αi = f(xi, yi). Denote by σ the
permutation of {1, . . . , N +1} that sorts the scores in increasing order, i.e., such
that ασ(1) ≤ . . . ≤ ασ(N+1). Under the assumption that the hypothetical choice
of yN+1 is in agreement with the true data-generating process, and that this pro-
cess has the property of exchangeability (which is weaker than the assumption of
independence and essentially means that the order of observations is irrelevant),
every permutation σ has the same probability of occurrence. Consequently, the
probability that αN+1 is among the ε % highest nonconformity scores should be
low. This notion can be captured by the p-values associated with the candidate y,
defined as

p(y) ..=
#{i |αi ≥ αN+1}

N + 1
(1)

According to what we said, the probability that p(y) < ε (i.e., αN+1 is among
the ε% highest α-values) is upper-bounded by ε. Thus, the hypothesis yN+1 = y
can be rejected for those candidates y for which p(y) < ε.
1 �·� is the indicator function, i.e., �A� = 1 if the predicate A is true and = 0 otherwise.
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Conformal prediction as outlined above realizes transductive inference,
although inductive variants also exist [9], where the nonconformity scores in (1)
are produced on a training resp. validation data set. The error bounds are valid
and well calibrated by construction, regardless of the nonconformity function f .
However, the choice of this function has an important influence on the efficiency
of conformal prediction, that is, the size of prediction regions: The more suitably
the nonconformity function is chosen, the smaller these sets will be.

4 Conformal Rule-Based MLC

A rule-based classifier in the context of MLC is understood as a collection
R = {r1, . . . , rM} of individual rules rm, where each rule rm : Hm ← Bm

is characterized by a head Hm and a body Bm. Roughly speaking, the rule head
makes an assertion about the relevance of the labels λk, while the rule body
specifies conditions under which this assertion is valid. It typically appears in
the form of a logical predicate that specifies conditions on a query instance x,
for example a logical conjunction of restrictions on some of the features (e.g., a
numerical value must lie in a certain interval).

4.1 Lazy Rule Learning

Here, we consider a lazy approach to multi-label rule learning, in which, instead
of (eagerly) inducing a complete model R from the training data D, a single
rule rq : Hq ← Bq is induced at prediction time [1,5]. This rule is specifically
tailored to a query instance xq, for which a prediction is sought. More concretely,
considering a binary relevance approach, a separate rule rq,k : Hq,k ← Bq,k is
constructed for each label λk ∈ L. The rule head is of the form ŷk = 0 or ŷk = 1.
In the first case, the rule is a negative rule that predicts λk to be irrelevant, in
the second case a positive rule that predicts λk to be relevant.

The local nature of rules has advantages but may also cause difficulties,
especially in the context of MLC, where the data is highly imbalanced. In many
cases, only a tiny fraction of the labels is relevant (positive), while the majority is
irrelevant (negative). In general, this makes it difficult to find a “good” rule with
positive predictions in its head, where the quality of a rule is typically measured
in terms of two criteria, namely support (the body should be general enough
so as to cover many instances) and confidence (the covered instances should
belong to the same class). On the contrary, the learner has a strong incentive to
make negative predictions, especially for loss functions such as Hamming. For
example, the default rule with empty body, which predicts all labels to be always
negative, will often have a very low Hamming loss, because most labels will be
negative in the test examples. At the same time, this rule has a large support.
When learning a single rule, as opposed to a complete model with many rules,
that single rule must at least be better than the default rule—which is difficult
for positive rules, as these normally have a small support.
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4.2 Conformity of Positive and Negative Predictions

In general, the evaluation of negative rules is systematically better than the
evaluation of positive rules. This is a motivation for the use of conformal predic-
tion, which, if applied in a per-class manner, could “calibrate” the evaluations.
More specifically, for a query instance xq and a label λk ∈ L, we propose the
conformity (instead of non-conformity) score

c(xq, yk) ..= max
r∈C(xq,yk)

eval(r) , (2)

where yk ∈ {0, 1}, C(xq, yk) is a set of candidate rules that cover xq and predict
yk for the label λk, and eval is an evaluation measure informing about the quality
of the rule r. As already said, such measures typically depend on the confidence
and the support of the rule. In our illustration below, we shall use the lower
confidence bound p̂ − √

1/n, where n is the number of examples covered by the
rule and p̂ the fraction of examples with the predicted label [2], though any other
measure could be used as well. Practically, it might be difficult to determine the
maximum in (2) exactly, as an exhaustive search of the candidate set C(xq, yk)
might be infeasible. Instead, greedy search techniques are often used to find an
approximately optimal rule.

The measure (2) appears to be a very natural measure of conformity: The
conformity of yk for xq is high if a high-quality rule can be found that predicts yk.
A measure of plausibility of this label is then given by

q(xq, yk) = 1 − p(xq, yk) =
#

{
(x, y) ∈ D | y = yk, c(xq, yk) > c(x, y)

}

#
{
(x, y) ∈ D | y = yk

} , (3)

where D is the training data and c(x, y) the conformity of the training example
(x, y) determined in a leave-one-out manner (i.e., the quality of the best rule
for (x, y) found in D \ {(x, y)}). In other words, if q(xq, 1) = α, it means that
the quality of the best positive rule for xq is better than the quality of 100α%
of the rules found for the truly positive examples in the training data, and the
same interpretation applies to q(xq, 0). Consequently, only low values close to 0
provide real evidence against a certain prediction. For example, if q(xq, 1) = 0.2,
it means that the positive rule found for xq is still better than 20% of the rules
for the truly positive examples in the training data. In the spirit of hypothesis
testing, one would “reject” the positive class only if q(xq, 1) < t for some critical
threshold t such as t = 0.1 or t = 0.05, and similarly for the negative class.

As an illustration, Fig. 1 shows the distribution of positive and negative con-
formity scores (2) and calibrated plausibilities (3) for the first label in the emo-
tions data (on a randomly chosen training set of size 400), a common benchmark
data set with 596 examples, 72 attributes, and 6 labels [14]. Here, simple rules in
the form of Parzen windows [11] have been learned, searching the space of such
rules in a greedy, bottom-up manner (starting with a small window around xq

and successively increasing its size). As expected, the positive examples tend to
have a higher positive than negative plausibility, and vice versa for the negative
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Fig. 1. Positive and negative conformity scores (2) and calibrated plausibilities (3) for
the first label in the emotions data. Positive examples are plotted as red, negative
examples as blue points. (Color figure online)

examples. Moreover, the sum of the two scores tends to be upper-bounded by 1
and sometimes takes values closer to 0, suggesting higher certainty in the true
label in some cases and less in others, again confirming the appropriateness of
the conformity measure (2).

4.3 Prediction and Decision Making

Given a query xq, the degrees q(xq, 1) and q(xq, 0) provide useful information
about the plausibility of the positive and negative class, respectively, and hence
a suitable basis for prediction and decision making. The arguably most obvious
idea is to compare the two degrees and predict the label with higher plausibility,
i.e., positive if q(xq, 1) ≥ q(xq, 0) and negative otherwise. Yet, since MLC losses
are not necessarily symmetric, and the class distribution is imbalanced, one may
also think of a more general decision rule of the form

ŷk =
�
q(xq, 1) ≥ θ · q(xq, 0)

�
, (4)

where θ > 0 is a parameter. Figure 2 (top) shows the average test performance2

on the emotions data in terms of the Hamming loss and (micro) F1-measure. As
can be seen, by tuning the threshold θ, the performance can indeed be optimized,
although θ = 1 is already close to optimal, confirming that the scores (3) are
already well calibrated.

Recalling that conformal prediction is actually conceived for set-valued pre-
diction, one may also think of using the two plausibilities to support more sophis-
ticated decision making. One example is multi-label classification with (partial)
abstention, where the learner is allowed to abstain on those labels on which it is
not certain enough [8]. A natural reason to abstain, for example, is a low sup-
port for both options: max{q(xq, 0), q(xq, 1)} ≤ θ, where θ is again a threshold.
The effectiveness of such an approach is shown by the accuracy-rejection curves
in Fig. 2 (bottom), which depict the average Hamming loss and F1-measure on

2 50 random splits into 400 training examples and 196 test examples.
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Fig. 2. Top: Hamming loss and F-measure on the emotions data, depending on the
threshold θ in the decision rule (4). Bottom: Accuracy-rejection curves for Hamming
loss and F1-measure on the same data.

those parts of the test data on which the learner does not abstain. The curves
show a drastic increase in performance with an increasing amount of abstention
(i.e., increasing θ), suggesting that the learner is indeed abstaining on the right
labels, namely those that are most uncertain3.

5 Conclusion and Outlook

The purpose of this paper is to highlight the potential usefulness of combining
multi-label (rule) learning with conformal prediction. On the one side, rules
provide a natural means for producing conformity scores of candidate labelings,
very much like nearest neighbor methods, which are commonly used for CP [10].
On the other side, CP allows for producing meaningful and better calibrated
measures of support in favor or label relevance, thus providing the basis for
improved prediction, especially in advanced settings like MLC with abstention.

Exploiting the potential of this approach requires answers to a multitude of
questions. One important building block, for example, is the class of candidate
rules C(xq, y) and the search in this class. Lazy rule learning as well as ensemble
methods appear to be appealing in this regard. Moreover, to capture correlations
and dependencies between different labels, the approach should be generalized
toward the learning of rules with multi-label heads, predicting complete label
combinations instead of individual labels.

3 Note that the accuracy-rejection curve for random abstention is flat.
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Abstract. The performance of a constraint problem can often be
improved by converting a subproblem into a single regular constraint.
We describe a new approach to optimize constraint satisfaction (opti-
mization) problems using constraint transformations from different kinds
of global constraints to regular constraints, and their combination. Our
transformation approach has two aims: 1. to remove redundancy origi-
nating from semantically overlapping constraints over shared variables
and 2. to remove origins of backtracks in the search during the solution
process. Based on the case study of the Warehouse Location Problem we
show that our new approach yields a significant speed-up.

Keywords: Constraint programming · CSP · Refinement ·
Optimizations · Regular membership constraint · Warehouse Location
Problem

1 Introduction

Since the search space of constraint satisfaction problems CSPs, and conse-
quently also the solution time, is very big, we are always interested in a speed-up
of the solution process. There are various ways to describe a CSP in practice
and consequently, the problem can be modeled by different combinations of con-
straints, which results in differences in resolution speed and behavior.

Hence, the diversity of models and constraints for a given CSP offers us an
opportunity to improve the problem solving process by using another model in
which a subset of constraints is replaced with a constraint which combines the
original ones but offers a faster solution process [1,6–8]. In contrast to [1], which
exploit the tabular constraint, our approach is based on the transformation of
constraints into semantically equivalent regular constraints [7].

The solution speed and behavior of a CSP depends amongst other things on
the number of backtracks in the depth-first search of the solution process and
redundancy in the propagation of constraints. We developed a new approach for
the optimization of CSPs, where singleton constraints or sets of constraints are
c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 297–304, 2020.
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substituted by regular constraints which are combined and minimized. The aim
of this CSP reformulation is on the one hand to reduce slowing-down redundancy
in constraints over shared variables and on the other hand to remove origins of
backtracks in the search.

2 Preliminaries

In the following, we presuppose the notions of a deterministic finite automaton
(DFA), directed acyclic graphs (DAGs), their minimization and intersection, see
e.g.[5]. Furthermore, we consider CSPs, CSOPs, and regular constraints defined
below. For the propagation algorithm of the regular constraint see [9].

CSP [3]. A constraint satisfaction problem (CSP) is defined as a 3-tuple P =
(X,D,C) with X = {x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} a set
of finite domains, where Di is the domain of xi, and C = {c1, . . . , cm} a set of
primitive or global constraints covering between one and all variables of X.

CSOP [11]. A constraint satisfaction optimization problem (CSOP) Popt =
(X,D,C, f) is defined as a CSP with an optimization function f that maps
each solution to a numerical value to be minimized or maximized, respectively.

Regular Constraint [11, Chapter 6]. Let M = (Q, Σ, δ, q0, F ) be a DFA,
let X = {x1, . . . , xn} be a set of variables with domains D = {D1,D2, . . . , Dn},
∀i ∈ {1, . . . , n} : Di ⊆ Σ. The regular constraint is defined as: regular(X,M) =
{(w1, . . . , wn) | ∀i ∈ {1, . . . , n} : wi ∈ Di, (w1w2 . . . wn) ∈ L(M)}.

3 Transformations of Global Constraints to Regular
Constraints

Special transformations from several global constraints like globalCardinality,
count, stretch and table constraints into regular constraints were already shown
in previous work [7]. We introduce new transformations for sum, scalar, and
ifThen constraints. First, we briefly explain our regularization procedure, before
we show how such regularizations can improve the solution process of CSPs.

3.1 The Transformation Process

For the transformation of a constraint c into a regular constraint creg, we create
a deterministic finite automaton (DFA) M which accepts a language L which is
equivalent to the set of solutions of the original constraint c.

The Scalar and the Sum Constraint. The scalar constraint scalar(X,C,⊕, r)
takes an array of variables X = [x1, ..., xn], an array of corresponding integer
coefficients C = [c1, ..., cn], a relation ⊕ ∈ {≤, <,=, >,≥, �=} and a result vari-
able r as input. Its successful propagation ensures that the scalar product of X
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and C is in relation ⊕ to the result r. For the reformulation of the scalar con-
straint we follow the idea of [12], where the DAG substitution of the knapsack
problem is shown.

The sum constraint sum(X,⊕, r), where X = [x1, ..., xn] is an array of vari-
ables, ⊕ ∈ {≤, <,=, >,≥, �=} is a relation symbol and r is a result variable, can
be interpreted as a special version of the scalar constraint, such that all coeffi-
cients ci are equal to 1. Thus, we can use the same transformation as before.

The IfThen Constraint. The constraint ifThen(cif , cthen) takes two constraints
cif and cthen as input and guarantees that, if the first constraint cif is satisfied,
also the second constraint cthen is fulfilled. At the moment, we only consider
ifThen constraints, where the variables of both involved constraints are disjoint
(scope(cif ) ∩ scope(cthen) = ∅). Furthermore, we expect that for both constraints
(cif and cthen) transformations into regular constraints (crif and crthen

) exist. Let
be Mif the DAG used in crif and Mthen the DAG used in crthen

.

MifThen = (Mif ◦ Mthen) ∨ (M¬if ◦ Mall) (1)

Equation 1 shows how an ifThen automaton can be created by the use of the
(DAG) automaton functions complement, concatenation and union. The result-
ing DAG MifThen accepts input words w = w1w2 such that either w1 is accepted
by Mif and the remaining w2 by Mthen or w1 is not in the language of Mif and
w2 is any word of length l, where l is the length of the accepted words of the then
automaton Mthen. The constraint regular((scope(cif ) ∪ scope(cthen)),MifThen)
can be used as a replacement for the constraint ifThen(cif , cthen).

3.2 The Benefit of Regularization

The transformation of constraints into regular constraints allows us to apply
automaton methods like intersection and minimization, and this, furthermore,
allows us to combine constraints which cover similar sets of variables. The algo-
rithms from [1,8] can be used for the detection of parts in the CSP, which can be
combined to a regular constraint. The combination of constraints is explained in
[8], see the following two examples for clarification how they can reduce unwanted
redundancy (Example 1) and origins of backtracks (Example 2).

Example 1. Figure 1 shows an example, where two automatons are intersected,
such that the number of transitions is reduced. This yields an increase of the
propagation speed of the CSP. Let M1 and M2 be two DAGs used in two regular
constraints cr1 and cr2 which represent the two constraints c1 = (a �= b) ∧
(a, b, c ∈ {1, 2}) and c2 = (b �= c) ∧ (a, b, c ∈ {1, 2}). The necessary time to
propagate the regular constraint depends primarily on the number of transitions
in the used automaton [9], where transitions with k values count k times.

M1 and M2 have together 12 transitions, where six of them must be removed
to find a solution. The intersected DAG M3 has only 6 transitions and only
three of them must be removed to find a solution (a singleton path from the
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start state to the final state). One reason for the reduction is, that we could
reduce the unwanted redundancy, that both automatons M1 and M2 contain
the path (0, 1, 0) and (1, 0, 1). In the combined automaton M3 these paths must
be considered only once.

Consequently, a CSP P with two regular constraints cr1 and cr2 based on M1

and M2 can be remodeled by substituting cr1 and cr2 with a regular constraint
regular({a, b, c},M3), where we receive a semantically equivalent CSP P ′ which
can propagate and solve faster.
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Fig. 1. The DAGs of Examples 1 and 2.

Example 2. Consider a CSP P = (X,D,C), where X = {x1, x2, x3},D = {D1,
D2,D3|D1 = {0, 1, 2},D2 = D3 = {0, 1}} and C = {c1, c2, c3}, with c1 = (x1 �=
x2), c2 = (x1 �= x3) and c3 = (x2 �= x3). Some search strategies set x1 to
value 0 or 1, which cannot satisfy the CSP, so backtracking is necessary. If the
well-known alldifferent constraint is used, then no backtracking is necessary. But
what happens if we change c1 to x1 > x2? It is no longer obvious that we can
substitute c1, c2 and c3 with an alldifferent constraint. But we still have the
situation that common search strategies assign 1 to x1, so that backtracking is
necessary again. But, the constraints c1, c2 and c3 can be substituted by one
regular constraint cr = {{x1, x2, x3},M4} which removes backtracking from the
search. The DAG M4 is created by the intersection of the three automatons of
the regular representations of c1, c2 and c3.

4 The Warehouse Location Problem

Now, we present an example to underline the benefits of our approach. We
consider the Warehouse Location Problem (WLP) from the CSPlib [4]. We show
an intuitive model of the problem and present experimental results.
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4.1 Modeling the Warehouse Location Problem

The aim of the Warehouse Location Problem is to find a cheapest assignment of
stores to warehouses with restricted capacities. Each store must be supplied by
exactly one open warehouse. Each open warehouse has the same maintenance
cost, and the supply cost to a store depends on the warehouse (e.g. distance,
usually given as matrix M).

We consider n warehouses, s stores, fixed costs fc per used warehouse, a sup-
ply cost matrix M = Intn×s and the capacity vector c = [c1, ..., cn] as explained
in [4]. We use the following CSOP P to describe the problem: P = (X,D,C, f),
where X = Xws ∪ Xwc ∪ Xsc ∪ {xtc}, D = Dws ∪ Dwc ∪ Dsc ∪ {Dtc},
C = Cscalar ∪ Ccounts ∪ Ccountw ∪ CifThen ∪ {csum} and f = minimize(xtc).

The variables Xws = {xws
i,j | i ∈ {1, ..., n}, j ∈ {1, ..., s}} are binary variables

with Dws = {Dws
i,j = {0, 1}| i ∈ {1, ..., n}, j ∈ {1, ..., s}}, and represent, whether

a warehouse i supplies a store j (xws
i,j = 1) or not (xws

i,j = 0).
Each binary variable xwc

i ∈ Xwc, ∀i ∈ {1, ..., w} with domain Dwc
i =

{0, fc} ∈ Dwc describes the costs for warehouse i, whether it is used (xwc
i = fc)

or not (xwc
i = 0). Each variable xsc

i ∈ Xsc, ∀i ∈ {1, ..., s} with domain
Dsc

i = {Mi,∗} ∈ Dsc describes the cost of a store based on the information by
which warehouse it is supplied. For example, if store i is supplied by warehouse j
then xsc

i is instantiated by Mi,j . The variable xtc with domain Dtc = {0, ...,∞}
describes the total costs for supplying all stores. The goal is it to minimize these
costs (f = minimize(xtc)). The constraints C of P are defined as follow:

Cscalar = {cscalarj = scalar(xws
∗,j ,M∗,j ,=, xsc

j ) |∀j ∈ {1, ..., s}}
Ccounts = {ccountsj = count(1, {xws

∗,j},=, 1) |∀j ∈ {1, ..., s}}
Ccountw = {ccountwi = count(0, {xws

i,∗},≥, (s − ci)) |∀i ∈ {1, ..., n}}
CifThen = {cifThen

i = ifThen(sum(xws
i,∗ , �=, 0), (xwc

i = fc)) |∀i ∈ {1, ..., n}}
csum = sum((Xsc ∪ Xwc),=, xtc)

The constraints in Cscalar guarantee that each xsc
j represents the cost of store

j from warehouse supply. The constraints in Ccounts guarantee that each store
is supplied by exactly one warehouse. The constraints in Ccountw guarantee that
each warehouse i supplies at maximum as many stores as its capacity ci allows.
The constraints in CifThen set the costs xwc

i of a warehouse i either to the fixed
cost value fc or to zero. The csum constraint models the total cost variable xtc

to be the sum of the costs of all warehouses (Xwc) and all stores (Xsc).
There are two notable overlaps in the constraints of the CSP: First, every

cscalarj constraint has n overlapping variables with the corresponding ccountsj

constraint; second, every ccountwi constraint has s overlapping variables with the
corresponding cifThen

i constraint. These overlapping constraints are both: candi-
dates for unwanted redundancy and candidates for being origins of backtracks.
Using our approach, we substituted each pair of overlapping constraints with
regular constraints by intersecting the concerning DAGs. The detection of over-
lapping constraints can be done using the algorithms presented in [1,8].
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4.2 Experimental Results

For the benchmark suite from [4] we computed the different instances of the WLP
with different capacity vectors (ci = (i ∗ 10, i ∗ 10, ..., i ∗ 10) ∀i ∈ {1, ..., 5}).
The algorithms are implemented in Java under JDK version 1.8.0 191 and Choco
Solver version 4.0.4 [10]. We used the DowOverWDeg search strategy which is
explained in [2] and used as default search strategy in the Choco Solver.

We run all instances in different versions: Original : The CSOP is solved as
modeled in Sect. 4.1. IfCountInt : Each cifThen

i constraint and each ccountwi con-
straint were transformed and pairwise intersected. ScalarCountInt : Each cscalarj

Table 1. Speed-ups of the WLP using our new regularization approach.

Problem Original Scalar Count Inter. Full Intersection

Name Cap. t in s t in s Imp in % t in s Imp in %

cap101 10 1,800.292 7.669 99.574 2.601 99.856

cap131 10 1,800.288 249.089 86.164 20.649 98.853

cap44 10 1,800.275 2.594 99.856 1.493 99.917

cap63 10 1,800.280 6.980 99.612 5.890 99.673

cap71 10 1,800.276 4.193 99.767 854.154 52.554

cap101 20 1,800.278 17.115 99.049 4.124 99.771

cap131 20 1,800.292 313.592 82.581 24.235 98.654

cap44 20 1,800.280 3.300 99.817 5.186 99.712

cap63 20 1,800.279 3.221 99.821 18.230 98.987

cap71 20 1,232.520 0.001 99.999 0.001 99.999

cap101 30 1,800.288 23.806 98.678 4.815 99.733

cap131 30 1,800.291 298.942 83.395 18.827 98.954

cap44 30 1,764.474 0.001 99.999 0.001 99.999

cap63 30 1,800.275 3.271 99.818 5.138 99.715

cap71 30 635.064 0.001 99.999 0.001 99.999

cap101 40 1,800.283 25.243 98.598 3.771 99.791

cap131 40 1,800.291 310.353 82.761 19.582 98.912

cap44 40 1,800.275 2.625 99.854 3.018 99.832

cap63 40 1,800.275 2.766 99.846 3.790 99.789

cap71 40 561.218 0.001 99.999 0.001 99.999

cap101 50 1,800.273 24.575 98.635 3.704 99.794

cap131 50 1,800.294 346.415 80.758 16.629 99.076

cap44 50 1,800.276 1.975 99.890 3.295 99.817

cap63 50 1,800.280 2.773 99.846 2.681 99.851

cap71 50 552.281 0.001 99.999 0.001 99.999

A. i. in % 96.333 97.730
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constraint and each ccountsj constraint were transformed and pairwise intersected.
FullInt : Both transformations from IfCountInt and ScalarCountInt are consid-
ered together.

Our test series figured out a small worsening of in average −0.146% for the
IfCountInt approach. The versions ScalarCountInt and FullInt illustrate the
advantages of our approach. It leads in average to a decrease of the optimization
variable by 9.304% respectively 15.619%, by no worsening of one of the problem
instances. Table 1 shows the real power of our approach. It shows for the versions
ScalarCountInt and FullInt, resp. how much time is needed (in seconds) and
saved (in percentage) to get a result which is at least as good as the result
of the original model. We see significant time savings. Both approaches need
approximately 97% less time than the original model to get the same results.
Also note, all problems could find an adequate solution in at least half the time
as the original approach.

5 Conclusion and Future Work

We presented a new way to optimize CSPs/CSOP by transformations from dif-
ferent kinds of constraints into regular constraints. By the use of intersection and
minimization methods on the DAGs of regular constraints, new, more effective
regular constraints can be created, which, in most cases, improve the solution
speed of CSPs significantly. The existing list of transformations [7] was expanded
and the use of the new transformations explained. We evaluated our approach
by a benchmark suite based on the common Warehouse Location Problem [4].
The results show that our approach is appropriate for the optimization of a
constraint network in short time.

In contrast to the tabulation approach presented in [1], our method does
not have a strict threshold of 10,000 solutions per regularization process, as
[1] have it for the tabulation process. For example, the Ccountw constraint for
50 stores with different capacities (10, 20, 30, 40, 50) can be created in less
than one second and contains in all scenarios more than 1010 solutions. Future
work includes a comparison and potentially an integration with work, e.g. the
tabulation transformation of CSPs from [1].
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Abstract. Knowledge graphs, which model relationships between enti-
ties, provide a rich and structured source of information. Currently,
search engines aim to enrich their search results by structured sum-
maries, e.g., obtained from knowledge graphs, that provide further infor-
mation on the entity of interest. While single entity summaries are avail-
able already, summaries on the relations between multiple entities have
not been studied in detail so far. Such queries can be understood as a
pathfinding problem. However, the large size of public knowledge graphs,
such as Wikidata, as well as the large indegree of its major entities, and
the problem of concept drift impose major challenges for standard search
algorithms in this context.

In this paper, we propose a bidirectional pathfinding approach for
directed knowledge graphs that uses the semantic distance between entity
labels, which is approximated using word vectors, as a search heuristics
in a parameterized A*-like evaluation function in order to find mean-
ingful paths between two entities fast. We evaluate our approach using
different parameters against a set of selected within- and cross-domain
queries. The results indicate that our approach generally needs to explore
fewer entities compared to its uninformed counterpart and qualitatively
yields more meaningful paths.

Keywords: Knowledge graphs · Word embeddings · Pathfinding

1 Introduction

Modern web search engines aim to extend their core functionality by providing
key information relevant to a queried entity in a structured way alongside with
the ranked web pages. To do so, search engine providers leverage additional
data sources that characterize the information of entities and the relationships
among them. Google introduced the concept of a Knowledge Graph (KG) in their
blog [11] as a tool for enhancing their search engine via three main features: the
disambiguation of entities, the generation of summaries for entities, and the
provision of links to related entities. The latter two are displayed as a knowledge
panel [12] next to the vertical list of ranked web pages. Indeed, KGs provide the
necessary information to construct knowledge panels, however, these panels are

c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 305–312, 2020.
https://doi.org/10.1007/978-3-030-58285-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58285-2_27&domain=pdf
http://orcid.org/0000-0002-6747-5524
http://orcid.org/0000-0001-6816-8393
http://orcid.org/0000-0002-5074-3254
https://doi.org/10.1007/978-3-030-58285-2_27


306 L. Martin et al.

only constructed for queries that focus on a single entity. While such panels can
meet the information need related to directly adjacent entities, e.g., ‘inhabitants
of Elva’, a city in Estonia, they do not cover relationships between non-adjacent
entities, e.g., ‘Elva’ and ‘Europe’. However, the latter, so far unaddressed use
case of multiple entities is a typical information need expressed by users.

Answering such dual-entity queries can be understood as pathfinding in KGs,
e.g., the relationship between Elva and Europe is represented as the path(s) that
exist between the KG entities ‘Elva’ and ‘Europe’. Although pathfinding in gen-
eral graphs is well studied [3], finding paths in KGs remains a non-trivial prob-
lem, given that paths should be found fast and yield a meaningful explanation of
the entities’ relationship, i.e., shorter paths are not necessarily more meaningful.
The semantic focus of the query is left – a problem known as concept drift [4]
– when a search algorithm decides to explore non-meaningful paths. In addi-
tion, general KGs, such as DBpedia [1] or Wikidata [13], comprise many entities
and relationships yielding a large search space, i.e., the work in [9] observed
that popular KGs comprise up to 18 million entities and that the approximate
in-/outdegree of an entity ranges from 10/40 to 10/100.

The key challenge is the design of an appropriate search heuristics and the
choice of an accompanying search algorithm suited for this particular use case
where meaningful paths must be found fast in a large graph. In this paper, we
thus investigate the following research question: “Does a bidirectional search
algorithm using the semantic distance as a search heuristics lead to meaningful
paths in KGs fast?”

2 Foundations

The central problem tackled in this paper is finding a path between the two
entities vsource and vtarget in a KG = (V,E), as usual. As there does not exist a
formal definition of a KG [5], we utilize the characterization of [8], according to
which a KG encodes entities of the real world (nodes) and their relations (edges)
taken from various domains in a graph representation. A schema, which links
entities to classes and properties, may provide further type information.

A best-first search guided by an appropriate search heuristics is key to per-
form pathfinding in large KGs in a reasonable amount of time. We propose to use
the semantic distance between the labels of entities as a search heuristics. Word
embedding toolkits like word2vec [7] and fastText (FT) [2] produce vector rep-
resentations of words in a metric space by training a model using a large textual
corpus. In the remainder of this paper, we approximate the semantic distance
of two KG entities v1 and v2 using the cosine distance d(v1, v2) = 1 − cos(θ),
where θ is the angle between the word vectors of the corresponding entity labels.
The cosine distance is derived from the cosine similarity cos(θ) = v1·v2

||v1|| · ||v2|| , a
standard measure used in information retrieval and natural language process-
ing [6].
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Algorithm 1. Our bidirectional pathfinding algorithm.
Require: vsource, vtarget ∈ Knowledge Graph

procedure FindPath(vsource, vtarget)
priorityqueue ← 〈vsource, vtarget〉
reachablesource ← {vsource}
reachabletarget ← {vtarget}
while priorityqueue �= ∅ do

entity ← dequeue(priorityqueue)
if entity ∈ (reachablesource ∩ reachabletarget) then

return reconstructPath(vsource, entity, vtarget)
end if
nextEntities ← getAdjacentEntities(entity)
priorityqueue ← enqueueAll(priorityqueue, nextEntities)
if entity ∈ reachablesource then

reachablesource ← reachablesource ∪ nextEntities
else if entity ∈ reachabletarget then

reachabletarget ← reachabletarget ∪ nextEntities
end if

end while
end procedure

3 Concept

Our bidirectional A*-like search algorithm (see Algorithm 1) is capable of finding
direct paths, i.e., from vsource to vtarget and vice versa, and paths where one
entity is reachable from both vsource and vtarget. A shared priority queue ensures
that the least costly path is explored next.

Word embeddings, used as our search heuristics, allow to estimate the seman-
tic distance using the cosine distance of vector representations of words, i.e.,
entity labels. Named entities like people and geographic points of interest account
for a significant part of all encoded entities and pose a problem for traditional
word embedding models that can only produce word vectors for words present
in their training data. The ability to reliably compute the semantic distance
between all entities is essential for our use case, because missing semantic dis-
tances lead to a biased path selection. Modern word embedding models provide
additional functionalities, such as producing word vectors for unknown words,
e.g., the herein employed FT model achieves this by computing word vectors
based on vectors of substrings. In particular, we utilize the pre-trained English
word vectors cc.en.300.bin as provided by FT.

Our approach is based on the assumptions that the semantic distance varies
between adjacent entities and that entities in proximity show a lower semantic
distance on average. Figure 1 shows the distribution of the semantic distance
for a selection of sample entities. Note that the semantic distance is broadly
distributed indicating that some neighboring entities are indeed more worth-
while to pursue than others. For example, the adjacent entities of ‘river’ include
‘watercourse’ with a semantic distance of 0.45, ‘Template:Infobox river’ with a



308 L. Martin et al.

Fig. 1. Distribution of the semantic distance among the Wikidata entities reachable
via a single non-reflexive outgoing edge; outdegree of an entity provided in parenthesis.

semantic distance of 0.91, and ‘Explanatory Dictionary of the Living Great Rus-
sian Language’ with a semantic distance of 0.98. Note that FT yields a higher
semantic distance for less related entities, supporting our assumption for adja-
cent entities.

In the following, we consider paths meaningful that minimize the average
semantic distance to the target, i.e., preventing concept drift. Hence, inspired by
a general A* evaluation function, the function f(p) = g(p) + h(p) denotes the
costs of a path p with length n as follows:

g(p) := α · d(p[1..n−1], vtarget) + β · n

h(p) := γ · d(vn, vtarget)

where p = 〈v1, v2, . . . , vn〉
and p[i..j] is the sub-path 〈vi, . . . , vj〉

Formula d(p[1..n−1], vtarget) calculates the average of the semantic distances
between each entity on the path – excluding the last one – and the target entity.
Formula d(vn, vtarget) estimates the semantic distance between the last entity
and the target entity. Note that this approach is a heuristic adaptation of the A*
idea. The algorithm does not minimize the sum of the distances but focuses on
the distance of all nodes on the path to the target node. The evaluation function
is parameterized over variables α, β, and γ to enable component-based weight
adjustments. Due to missing benchmarks for pathfinding in KGs, no parameter
fitting could be performed. In the following, we explore the four sample evalua-
tion function configurations:

1. Uninformed (α = γ = 0, β = 1) neglects the semantic distances and only
considers the prior path length, thus representing a baseline.

2. Semantics-Only (α = γ = 1, β = 0) ignores the path length and only consid-
ers the semantic distances.

3. Greedy (α = β = 0, γ = 1) does not consider prior path length and aver-
age semantic path costs, and estimates the remaining path costs using the
semantic distance of the last entity to vtarget.
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4. Balanced (α = γ = 1, β = 0.5) takes semantic distances and path length into
account; β < 1 reduces the impact of path length on the overall costs.

4 Evaluation

Since there does not exist a standard benchmark for evaluating the performance
of pathfinding in the Wikidata KG, we conduct a preliminary evaluation of
the configurations above using a small handmade selection of diverse queries.
This benchmark contains within- and cross-domain queries to observe how our
approach performs in different search scenarios. Since the employed Wikidata
SPARQL interface yields a timeout for many entities in our test set when request-
ing their incoming edges, this evaluation considers only outgoing edges.

Table 1 summarizes our results. First note that every query can be answered
by at least one configuration that considers the semantic distance. With only a
single unanswered query, the configurations Uninformed and Balanced yield the
best coverage of the query set. However, the Balanced configuration needs to
explore less entities to find a path and is also faster on average when excluding
the outlier query from ‘France’ to ‘air pollution’, for which 270 entities had to
be explored to find a path. Note that we forcefully stop a search that exceeds
the limit of 500 explored entities. Despite the additional time necessary to prop-
erly enqueue elements into the priority queue, the runtime performance of any
informed configuration is better than the uninformed configuration on average
when ignoring forcefully stopped searches. In general, note that every configura-
tion requires more time and has to visit more nodes in order to find a path for a
cross-domain query compared to within-domain queries on average. Interestingly,
despite having the most unanswered queries, only the configuration Semantics-
Only found a path for the cross-domain query ‘Bamberg, computer science’.
Observe that this path spans 19 entities in total and could performance-wise
not have been found by an uninformed search approach. Hence, the semantic
distance appears to be a viable search heuristics to find paths in a large KG fast.

We conduct a qualitative analysis to assess the meaningfulness of the paths
found by our configurations. The benchmark results show that our informed con-
figurations can find useful paths, e.g., ‘Elva’ → ‘Estonia’ → ‘Europe’ and ‘pasta’
← ‘flour’ ← ‘pizza’. However, especially configurations that consider the path
length find paths where the shared entity is an encyclopedia; the meaningful-
ness of such entities is debatable. Nevertheless, meaningfulness of paths strongly
depends on an underlying definition, which is a subjective quality and may vary
between different use cases. Hence, a ground truth, e.g., obtained from a user
study, is necessary to properly assess the quality of found paths. From our point
of view, the meaningfulness of the paths found using an informed configuration
is mixed but promising considering that no parameter fitting has been done yet.

Note that the number of samples is way too small to draw a meaningful
conclusion but suffices to motivate further investigation.
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ü
re

r
(Q

5
5
8
0
),

L
e
o
n
a
rd

o
d
a

V
in

c
i
(Q

7
6
2
)

3
♦

7
4

7
1

c
≥

5
0
0

c
≥

5
0
0

3
♦

1
9

3
0

c
o
m

p
u
te

r
sc

ie
n
c
e

(Q
2
1
1
9
8
),

m
a
th

e
m

a
ti
c
s

(Q
3
9
5
)

3
♦

2
1

1
9

4
♣

4
7

c
≥

5
0
0

3
♠

1
9

1
9

p
a
st
a

(Q
1
7
8
),

p
iz
z
a

(Q
1
7
7
)

3
♦

3
1

3
4

3
♣

7
9

3
♣

9
1
0

3
♣

8
1
0

ri
v
e
r

(Q
4
0
2
2
),

o
c
e
a
n

(Q
9
4
3
0
)

3
♦

2
7

2
4

5
♣

9
1
3

5
♣

1
0

1
2

3
♦

2
1

3
1

L
u
d
w
ig

v
.
B
e
e
th

o
v
e
n

(Q
2
5
5
),

W
o
lf
g
a
n
g

A
.
M

o
z
a
rt

(Q
2
5
4
)
2

♦
3
4

3
3

2
♦

2
7

2
♦

2
3

2
♦

2
6

C
ro

ss
-D

o
m
a
in

L
e
o
n
a
rd

o
d
a

V
in

c
i
(Q

7
6
2
),

It
a
ly

(Q
3
8
)

3
♦
1
1
7

1
1
0

3
♣

3
1
5

3
♣

3
6

3
♣

3
1
3

B
a
m
b
e
rg

(Q
3
9
3
6
),

c
o
m

p
u
te

r
sc

ie
n
c
e

(Q
2
1
1
9
8
)

c
≥

5
0
0

1
9

♦
2
9

4
3

c
≥

5
0
0

c
≥

5
0
0

a
ir

p
o
ll
u
ti
o
n

(Q
1
3
1
1
2
3
),

F
ra

n
c
e

(Q
1
4
2
)

4
♦
2
6
0

8
3
8

c
≥

5
0
0

4
♣

4
5

4
♣
2
7
0
2
3
1
2

L
o
k
i
(Q

1
3
3
1
4
7
),

B
ib

le
(Q

1
8
4
5
)

3
♦
1
0
8

7
0

c
≥

5
0
0

c
≥

5
0
0

3
♣

8
1
0

a
n
im

a
l
(Q

7
2
9
),

b
u
il
d
in

g
(Q

4
1
1
7
6
)

4
♦
2
1
2

1
6
1

c
≥

5
0
0

1
6

♣
5
4
1
3
4
3

♠
6

5

w
o
o
d

(Q
2
8
7
),

m
u
si
c

(Q
6
3
8
)

3
♦

3
6

2
6

c
≥

5
0
0

1
1

♣
2
9

3
3

3
♦

3
2

3
0



Fast Pathfinding in Knowledge Graphs Using Word Embeddings 311

5 Conclusions

In this paper, we proposed the use of the semantic distance approximated using
word embeddings as a heuristics to guide search in a KG. The introduced bidi-
rectional A*-like search algorithm employs a parameterized evaluation function
that considers path length and semantic distances.

For further optimization, we plan to explore which evaluation function con-
figuration yields the best results with respect to a larger benchmark. Here, we
assume that the semantic distance between vsource and vtarget entity can be
used as a decision criterion to allow for a query dependent parameter selection.
Dropping unpromising paths from the path queue in a beam search fashion may
enable to handle entities with many incoming/outgoing edges. A performance
increase may also be achieved by using a manually trained FT model tailored to
a particular domain, in contrast to the currently used pre-trained model. Fur-
thermore, we want to extend our approach to also consider edge labels in the
evaluation function and lift the support from dual-entity queries to multi-entity
queries. Enriching our purely semantic heuristics with information on the graph’s
local structure, e.g., using RDF2Vec [10], is also worth to explore.
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Abstract. In this work, we propose a new approach to automatically
predict the locations of visual dermoscopic attributes for Task 2 of the
ISIC 2018 Challenge. Our method is based on the Attention U-Net with
multi-scale images as input. We apply a new strategy based on transfer
learning, i.e., training the deep network for feature extraction by adapt-
ing the weights of the network trained for segmentation. Our tests show
that, first, the proposed algorithm is on par or outperforms the best
ISIC 2018 architectures (LeHealth and NMN) in the extraction of two
visual features. Secondly, it uses only 1/30 of the training parameters;
we observed less computation and memory requirements, which are par-
ticularly useful for future implementations on mobile devices. Finally,
our approach generates visually explainable behaviour with uncertainty
estimations to help doctors in diagnosis and treatment decisions.

Keywords: Skin lesion · Diagnose features · Attention U-Net

1 Introduction

Skin cancer is one of the most frequently occurring diseases with more than one
million positive diagnoses in the United States each year. The most dangerous
type of skin cancer is the melanoma, causing over 9,000 deaths, and 76,380 new
cases according to the American Cancer Society per year [12]. While melanoma
at an early stage can be treated successfully, it still demands rigorous manual
evaluations by the dermatologist for several skin lesion patterns. Hence, partly
automatizing skin cancer detection plays an important role in the early diagnosis
of skin cancer.

In recent years, the International Skin Imaging Collaboration (ISIC) [4] orga-
nizes competitions to seek the best algorithm that can diagnose melanoma auto-
matically. Our work utilized the ISIC challenge data in 2018, which was com-
posed of 3 subtasks. The first task was to segment the lesion and skin boundaries,
next was the lesion attribute detection to predict the positions of five skin lesion
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U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 313–319, 2020.
https://doi.org/10.1007/978-3-030-58285-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58285-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-58285-2_28


314 D. M. H. Nguyen et al.

attributes as a negative network, pigment network, milia-like cysts, streaks, and
globules [4] (Fig. 2). The last task was the classification of images as melanoma,
basal cell carcinoma, melanocytic nevus, actinic keratosis, benign keratosis, vas-
cular lesion, and dermatofibroma. While image classification (Task 3) can be seen
as a black box, the segmentation (Task 1) and lesion detection (Task 2) steps give
visual feedback of known features that doctors can visually inspect and evaluate.
In particular, the lesion attribute detection supports doctors to identify whether
a lesion is benign or malignant. These visual features are described as a global
distribution spanning over a massive area, or a local distribution in a small area,
or multiple spots in the lesion. Therefore, the automatic detection and visual-
ization of skin lesion attributes are critical and can be of tremendous support
to doctors when diagnosing melanoma in an early phase while explaining the
machine learning decisions.

In this paper, we propose a visually explainable learning system with uncer-
tainty estimations for Task 2 of the ISIC Challenge 2018. Our approach adheres
to the mental model of the doctor by leveraging the predictive power of deep
learning approaches to reduce the bias of a doctor for lesion classification.

2 Related Works and Our Contribution

Several methods have been proposed for the extraction of features of skin lesions,
all based on variants of the convolutional neural networks (CNN) such as Xcep-
tionNet [3], ResNet [6], U-Net [11]. However, unlike Task 1 and Task 3, the
best performance in feature extraction (Task 2) was very low. The highest score
(Jaccard index) was just above 30% compared to over 80% mean accuracy and
88% J-index in Task 1 and Task 3, respectively. The reasons behind are the lack
of annotated data, imbalanced datasets, and complex structures with varying
appearances per patient. To deal with these issues, most of the approaches uti-
lized the transfer learning strategy and fine-tuned large pre-trained deep learning
models; afterwards, stacking the networks into an ensemble to make final predic-
tions. For instance, the second-ranked team (LeHealth) [14] adapted the ResNet
architecture for PSPNet [13] to simultaneously predict the positions of five lesion
attributes. The best method (NMN) [8] constructed an ensemble network based
on five baseline architectures: Densenet169 [7], two versions of ResNet [6], Xcep-
tion [3], and DeepLab-v3 [2], each predicting the position of a separate attribute.
Unlike those works, we propose a new strategy for predicting the five skin lesion
attributes based on a single variant of the U-Net called Attention U-Net [9],
which has consistently shown to improve the performance of the U-Net architec-
ture across different datasets.

In particular, our new approach differs from previous work in two aspects.
First, instead of using existing models such as ResNet or XceptionNet, which
were trained on a huge dataset like ImageNet [5] to initialize network parameters,
we present a novel approach for training the Attention U-Net based on a transfer
learning that first trains on the Task 1 (image boundary segmentation) and then
uses the trained weights as initialization for Task 2 (lesion attributes prediction).
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This idea is motivated by the key point that most of the lesion structures are
located inside the lesion boundary, so initializing weights in this manner can be
considered as a step to reduce the impact of the surrounding foreground–thus,
the model can converge faster. Besides, by employing only the Attention U-Net
architecture, we can downgrade the amount of memory for storing models on
each device, which allows us to train the network without the difficulty of finding
compatible devices.

Secondly, we utilize multi-scale images as a sequence of inputs rather than
a single image, as conventional approaches do. This exploits the intermediate
feature representations better. Experimental results on the ISIC 2018 challenge
dataset show that our proposed method outperforms the second-ranked team
(LeHealth) [14] and attains a close margin with the best team (NMN), thereby
producing a much better performance-explainability trade-off that can be eval-
uated by doctors in future experiments.

3 Method

There are two principal ways to detect lesion attributes. The first one tries to
train a network that can predict all five attributes together, while the second
type focuses on training separate networks for each type of lesion attribute. In
this work, we apply the second strategy for two main reasons. The first reason
is to avoid the negative impact of the class imbalance in the dataset, while the
second reason is that this approach leads to an uncertainty property whereby
a pixel can be assigned to several classes with different probabilities depending
on the input images. In those cases, the doctor can examine them carefully and
make a final decision by visualizing the corresponding regions.

Datasets: We used two datasets downloaded from the ISIC 2018 challenge
website (https://challenge2018.isic-archive.com/). The first dataset (for Task 1)
includes 2594 images with corresponding ground-truth mask images for segmen-
tation. A mask image is a 2-color image, black/white, whose resolution matches
with the corresponding sample image, where pixels associated to a positive case
are marked white. The second dataset (for Task 2) comprises of 2594 images with
12,970 ground-truth masks (one separate mask for each attribute). However,
since most of the attributes do not appear together in an image, the correspond-
ing masks are empty (all black) for the absent attributes. Table 1 represents
in detail a distribution for each attribute, where the highest-occurring attribute
are the pigment network and milia-like cysts with 58.7% and 26.3%, respectively.
Streaks is the lowest-occurring attribute, with 2.9%. This imbalance makes the
prediction task more complicated, that is a trained network will be severely
biased towards the attributes with a lot of training data points as compared to
attributes with fewer samples. This challenge motivated our choice to employ a
separate model for each attribute prediction.

Network Architecture: The proposed method to predict masks for segmen-
tation and for the five lesion attributes is illustrated in Fig. 1, where the main
component is the Attention U-Net [9] with multi-scale images as input.

https://challenge2018.isic-archive.com/
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Table 1. Distribution of mask images

Lesion
attributes

Pigment
network

Globules Milia-like
cysts

Negative
network

Streaks Total
images

Mask
count

1522 602 681 189 100 2594

Rate 58.7% 23.2% 26.3% 7.3% 2.9% 100%

Fig. 1. Our proposed architecture with three blocks of Attention U-net.

The Attention U-Net is a modified version of U-Net [11], which has been
proven to be very effective on small datasets. In particular, Attention U-net is
equipped with Attention Gates (AG), which are used to recognize relevant spa-
tial information from low-level features and passed to the decoding path. For
each input feature map xL at layer L, AG provides an attention coefficients α
to transform the input feature map xL to an output of semantical features x̂L,
defined as: x̂L = xL � α, where � denotes the element-wise product operator;
α is the attention coefficient to identify salient image regions and prune fea-
ture responses to preserve only the activations relevant to the specific task. By
leveraging AG, Attention U-Net focuses on target structures without additional
supervision, thus enabling us to avoid an external object localization model.

We utilize a sequence of three images with different resolutions 180 × 180,
256×256, and 450×450 as the input of the three distinct Attention U-Nets. Such
inputs are also referred to as the “Pyramid” feature [1], whereby the strength
lies in the ability to search objects faster using a coarse-to-fine strategy, thus
enabling the network to exploit more information of objects via the multiple
resolution levels. Finally, we concatenate the feature vectors from the multi-
scale images and pass them to a fully-connected layer before the final prediction
layer. Pixel-level output is thresholded at 0.5 for black/white discrimination.
The loss function is defined as the complement of the Jaccard index:
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L = 1 −
∑

ytruth ypredict∑
y2
truth +

∑
y2
predict −

∑
ytruth ypredict + α

(1)

where ypredict and ytruth are the predicted pixel vector and its corresponding
ground truth, and α = 1e − 05 is a smoothing value to avoid divisions by zero.

Transfer Learning from Segmentation Task: While most recent works
commonly initialized the parameters of their networks by transfer learning from
ImageNet [5], we approach in a novel way through learning directly from the
segmentation task. Specifically, we randomly sampled 70% of the total 2594
images of Task 1 as the training set, with the remaining 30% as the held-out set.
For each image in the training set, we applied a pre-processing step to center the
data by subtracting the mean per channel and constructing multi-scale versions
with three corresponding sizes: 180×180, 256 × 256, and 450×450. At the next
step, these images were fed into our architecture, as described in Sect. 3. We
trained the proposed framework for 40 epochs with earlystopping. A Jaccard
index score of about 76% was obtained on the test set of 780 images–closely
matching the baseline results on the leaderboards from ISIC 2018 Task 11.

Lesion Attributes Detection: Given the trained segmentation network, we
clone it into five new instances, one for each lesion attribute, thus each ini-
tialized with the segmentation task parameters. In other words, we model the
prediction problem as five independent binary segmentation problems. Besides
the advantages of avoiding the data imbalance problem (Table 1) and producing
an uncertainty score; by further examination of the data, we discovered that
most of the lesion attributes were located near the lesion boundary. Therefore,
initializing weights from the segmentation network can be considered as a con-
sequential preprocessing step to lessen the effect of the surrounding foreground.
Consequently, the supporting model can predict more precisely the positions of
lesion attributes.

4 Experiments and Results

During experiments, we build models with the Keras framework and using the
AMSGrad optimisation algorithm [10] with a learning rate and weight decay
of approximately 10−4. A five-fold cross-validation scheme was applied for each
lesion structure, with 60 epochs for each fold, then we computed the expected
performance based on out-of-sample tests on the networks. To be consistent with
the standard requirements of the ISIC challenge, we use the Jaccard index as
the main score.

Figure 2 shows sample results in the detection of the globules lesion attribute.
We compare our cross-validation results with the two top methods: NMN’s

method [8] and LeHealth’s method (see Table 2). Our average Jaccard index
result is 0.278, which is 0.002 more compared to LeHealth’s method and 0.029 less
than the best approach. Nevertheless, our method surpasses both competitors in

1 https://challenge2018.isic-archive.com/leaderboards/.

https://challenge2018.isic-archive.com/leaderboards/


318 D. M. H. Nguyen et al.

Fig. 2. Results for Globules where the blue regions indicate the ground-truth labels
and the red regions indicate our visual predictions/explanations, respectively. (Color
figure online)

Table 2. Comparing our results that uses network initialization from the segmentation
network against the NMN and LeHealth team based on the Jaccard Index. The best-
performing scores are in bold.

Method Pigment

network

Globules Milia-like cysts Negative

network

Streaks Average

Our method 0.535 0.312 0.162 0.187 0.197 0.278

Our method (without transfer) 0.493 0.221 0.145 0.156 0.118 0.227

NMN’s method 0.544 0.252 0.165 0.285 0.123 0.307

LeHealth’s method 0.482 0.239 0.132 0.225 0.145 0.276

two categories out of the five: globules and streaks. Furthermore, the experiment
results prove the effectiveness of our transfer learning strategy as it improves
the performance of all attributes; especially for the classes with the least data:
Streaks (7.9%) and Negative Network (3.1%). Also, this approach improves our
performance score from 0.227 to 0.278.

We quantify the computation and memory requirements. As a rough estima-
tion, in our method each attention U-Net requires about 2320k parameters for
each class. Hence, in total we trained approximately 2320k × 5 = 11600k, which
is below 12 million parameters. On the other hand, ResNet [6] (the network
architecture used by the winning team NWN) typically requires about 60344k
parameters for a single class; hence 60344k × 5 = 301721k, which is more than
300 million parameters for five classes.

5 Conclusion

In this work, we proposed a novel approach for skin attributes detection based on
Attention U-net with multi-scale image inputs. While our network only requires
a small number of parameters compared to other state-of-the-art methods, it
achieves performance on par or better compared to the best approaches for
some classes. This advantage benefits from our effective transfer learning tactic
that leverages the segmentation network as initialization. In term of the social
impact, our system can contribute as a visually explainable system to doctors
for the early diagnosis and treatment of skin cancer.
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Abstract. Deep learning is moving more and more from the cloud towards the
edge. Therefore, embedded devices are needed that are reasonably cheap, energy-
efficient and fast enough. In this paper we evaluate the performance and energy
consumption of popular, off-the-shelf commercial devices for deep learning infer-
encing. We compare the Intel Neural Compute Stick 2, the Google Coral Edge
TPU and the Nvidia Jetson Nano with the Raspberry Pi 4 for their suitability as a
central controller in an autonomous vehicle for the formula student driverless.

Keywords: Object detection · Deep learning accelerator · Benchmark · Edge
computing

1 Introduction

Deep learning has advanced the state of the art in many disciplines like object detection
[1], or natural language understanding [2]. While most of the well-known deep learning
solutions are running in the cloud on large server farms, thewish for doing the inferencing
directly on edge devices grows stronger [3]. One reason for that is data protection of
sensible data. Another one can be latency. Our goal is similar to [4]. We want to build
a platform based on open source software and low cost hardware (<1.000 e as a target
price) that is able to perform the tasks of the formula student driverless, but under
adapted settings, since our prototyping hardware is only about 40× 30× 25 cm (length,
width, height) in size. Therefore, we are testing with lower distances between pylons
and smaller track sizes. In this paper, we are reporting about the evaluation of suitable
hardware for accelerating the inferencing of the deep neural network for object detection
of the pylons that delimit the track in an edge computing scenario. The rest of the paper
is organized as follows. We first report about related work in the formula student, deep
learning accelerator and benchmarking area. Then we introduce our test setup, before
reporting about the result. We end with a discussion and conclusion.

2 Related Work

One major task for competing in the formula student driverless is the recognition of the
pylons that delimit the track [5]. The TUVienna uses a ZED stereo camera together with

© Springer Nature Switzerland AG 2020
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a LIDAR for that [5], a Chinese team uses a similar combination, but does not report
on the camera model [6]. The ETH Zurich, who won the first German competition in
2017 are using three cameras and a LIDAR [7]. All have a similar design, but we are
trying to achieve the goals with low cost hardware such as a Raspberry Pi 4 (RPi 4)
instead of high-end industrial PCs and an Arduino Mega as motion controller instead of
an expensive embedded board.

Looking at commercial, low-cost off-the-shelf hardware for deep learning the RPi4
is certainly interesting due to its low price point and good CPU performance. Despite its
improved CPU speed in v4 with its ARM Cortex A72 cores instead of the previous A53
cores, it is still only achieving 2.5 to 7.7 fps for deep learning inferencing [8]. Bahl et al.
achieve not even 2 fps with the RPi4, whereas their implementation on anAltera Cyclone
V5CSXC6FPGAachieves 7 fps at 100MHz. In general, this could be sped up by offload-
ing to the GPU [9, 10], but its VideoCore GPU is not supported by popular deep learn-
ing frameworks yet. The Nvidia Jetson Nano is an alternative with a CUDA compatible
GPU that is supported and has a reasonable price [11], but it consumes significantlymore
power than a RPi4 and cannot be powered by a USB power bank. [4] are using it never-
theless in their car and power it by a 5000mAh7.2VNi-MHbatterywith banana 4.0 con-
nector that needs to be transformed both regarding current and plug. The Jetson TX2 is
slightlymore efficient and has a 77%better performance [11], but is also nearly five times
more expensive. Recently, the successor of the Jetson TX2 called Jetson Xavier NX was
released, which is claimed to be 10 times faster than the TX2, but is still too expensive
for us with it’s 400 USD price point [12].

To speed up inferencing for deep learning compared to CPUs and GPUs, custom
application-specific integrated circuits (ASICs), such as Google’s tensor processing unit
(TPU) are suggested [3] as well as field-programmable gate arrays (FPGAs) [13] due to
their performance and energy-efficiency [14]. The Google Coral Edge TPU and Intels
Neural Compute Stick (NCS) both come with a USB interface to plug them to any
compatible computer [15]. The NCS was found to perform on par with the Nvidia TX1
(8 fps) and increased the performance of an Odroid XU4 by more than 400% [16].
However, accuracy also dropped around 2% points from around 60% mean average
precision (mAP) when running the KITTI and LPS2017 validation datasets on the NCS
instead of a PC [17].

Field-programmable gate array (FPGA)-based DNN accelerators are interesting
since they can provide fast computation while maintaining re-configurability [3]. How-
ever, [18] found that the Xilinx ZC706 FPGA they tested performed poor in both perfor-
mance and energy efficiency compared to an Nvidia Jetson TX1. In special settings and
high optimization effort, they can however outperform ASICs like the NCS [19]. Hegde
and Kapre also mention an important additional aspect. The GPU-based solution was
“effortless to use” whereas the other alternatives suffered from a “high barrier to setup”
or were “hard to program” [18]. This is also a relevant issue for the aforementioned
USB accelerators. “Executing a model in the Edge TPU requires a prior translation (re-
compilation) of the TFLite model by means of the Edge TPU Compiler, that maps each
TFLite operator to an available operator in the device; if the original operator is not
compatible with the TPU, it is mapped to the CPU” [15]. For the NCS, the procedure is
similar, but the Intel Model Optimizer is used instead, which is part of the OpenVINO
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SDK [20]. Both devices are not able to run arbitrary models, but require certain prereq-
uisites like quantization of parameters, so that only two out of six models of the MLperf
benchmark could be run [15]. Libutti et al. found that the Coral was between three and
seven times faster than the NCS 2 and at the same time 4–7 times more energy-efficient
[15]. The NCS 2 does also require a larger idle power with 1.5 W compared to 1.0 W
for the Coral. That led in our setup to the fact, that the NCS2 did not start properly with
the battery attached and even had problems with our standard 5 V 3A power supply. We
had to order a 5.1 V power supply to get it running with the RPi 4, whereas the Coral
had no problems with both the USB powerbank and the standard power supply. Libutti
et al. also observed a difference in accuracy of the inferences. The NCS 2 achieved
73.7% versus 70.6% attained by the Edge TPU on MobileNet v1. For InceptionV1, the
accuracy decreased from 69% to 65.9% in average [15].

ShiDianNao [21] is another customASICwith a focus on efficient memory access in
order to reduce latency and energy consumption for embedded devices [22]. Although
it exhibits superior performance compared to CPUs and GPUs for CNN inferencing
and is at the same time very energy-efficient, it is not further considered here due to its
lacking commercial availability. With neuromorphic hardware, an even better efficiency
is possible [23], but at the cost of accuracy.

3 Test Setup

For our tests, we used the RPi4 as a single board computer (SBC) and connected the
cameras and USB-based accelerators to its USB 3.1 ports. For comparison, we also ran
the tests on theGPUof theNvidia JetsonNano. As a camera,we startedwith theOrbbec
Astra, an RGB-D camera with a resolution of 640 × 480 pixels at 30 fps (frames per
second). Our first tests suggested that the accelerators would be able to evaluate more
than 30 fps. Therefore, we included a Logitech Brio camera to find the upper limit. It
can deliver up to 90 fps for resolutions up to 1280× 720 and 30 fps up to 4 k resolution.
However, we’ve used it with 640 × 480 pixels resolution as the Orbbec Astra. The
inferencing was run on the CPU of the RPi4 or on either the Intel Neural Compute
Stick 2 (NCS2) or the Google Coral Edge TPU (Coral). For energy measurements,
we’ve used a UM34 USB meter as power meter. It can be simply plugged between the
camera and RPi4 or between the accelerator and RPi4 or between the RPi 4 and the
power supply to measure the energy of a single device or the whole system.

On the software side, we’ve used Raspian Buster with kernel 4.19, CMake 3.14.4 and
python 3.7.3. For accessing the camera, OpenCV version 4.1.2-openvino was installed.

For running the inferencing on the models on the CPU or Coral, Tensorflow Lite
(TFlite) 2.1.0 was used. For the NCS2, we used OpenVINO version 2020.1.

We’ve used SSD MobileNet v2 as a basis for object detection. However, we could
not simply use the same version in each scenario. For the test on the CPU, we used the
pre-trained model from the Tensorflow model zoo in version “quantized coco”, which
is also one of the fastest models according to the table with 29 ms inferencing time1.
We’ve converted it to be used with Tensorflow lite, which is known to be better suited

1 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_
model_zoo.md.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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for SBCs like the RPi 4. For usage on the Google Coral stick, we had to convert it again.
The same applies to the NCS2. We’ve used a version of SSDMobileNet v2 prepared by
Intel2, but still had to run it through Intel’s model optimizer tool before it was running on
the NCS2 and this was everything, but a straight forward process. Interestingly, we also
had problems with running the original model on the Nvidia Jetson Nano. Therefore,
we chose the ssdtf_fp16 model from the Nvidia website3 for this case.

The power meter measures voltage and current with three valid digits each. These
are multiplied and accumulated in a 2 Hz cycle. The resulting power average for a 60 s
interval therefore delivers a power measurement with two valid digits.

The Python time function is used to measure the execution times. Each measurement
happened under the same conditions. Wi-Fi was activated and connected and a VNC
connection to our PC is active. The camera always pointed at the same unchanged
background4. The FPS were determined without simultaneous current measurement.
Eachmeasurement tookoneminute, afterwhich the averageoutput powerwas calculated.
The accuracy was calculated as mean average precision (mAP) against our own dataset.

4 Results

Performance measurements show, that the RPi 4 achieves not even four frames per
second (fps) without an accelerator (see Fig. 1), which is only suitable to reliably steer
the formula student car at low speeds. The car should see the situation at least once every
meter which means it can drive with maximum speed of 13 km/h. The NCS 2 is more
than five times faster than the RPi 4 and achieves 20 fps, whereas the Coral is obviously
limited by the frame rate of the camera at slightly more than 29 fps when using the
Orbbec Astra. Using the Logitech Brio instead, all systems perform better. The NCS2
achieves 23 fps, a the Coral 45 fps in normal mode and even 54.74 fps in high power
mode. The performance of the Nivdia Jetson Nano was surprisingly bad, reaching only
15.90 fps with the Brio, which is equal to 57 km/h.

Regarding energy, the differences seem rather small, but could still make a difference
for a certain combination of battery, board, camera and accelerator (see Fig. 2). The
most energy saving version is the RPi 4 with the Brio camera that consumes a total
of 6.5 W. The NCS2 needs 7.3 W altogether, whereas the combination of RPi 4, Brio
and Coral accelerator uses 7.0 and 7.1 in normal and high power mode respectively.
The Jetson Nano needs the most energy with a total of 9.0 W. Interestingly, the Orbbec
camera increases the total power consumption only by 0.1 W compared to the Brio
when used with the RPi 4 alone, although the measurement of the camera alone showed
a difference of 0.4 W between the Brio and the Orbbec. Together with the NCS2 or
Coral, the difference between the Brio and the Orbbec is 0.8 W.

2 https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Conv
ert_Model_From_TensorFlow.html.

3 https://ngc.nvidia.com/catalog/models/nvidia:ssdtf_fp16.
4 Previous measurements have shown that the type of background and the number of detected
objects has no measurable influence on the operating time and energy consumption. We’ve
published our dataset on https://github.com/iisys-hof/formula-student-dataset.

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html
https://ngc.nvidia.com/catalog/models/nvidia:ssdtf_fp16
https://github.com/iisys-hof/formula-student-dataset
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Table 1. Accuracy of object detection with the different deep learning accelerators

RPi only
INT8

RPi only
FP32

RPi +
NCS2
FP32

RPi + Coral
INT8

Jetson Nano
FP16

mAP 0.1891 0.2530 0.2459 0.2248 0.1988

Fig. 1. Performance measurements for Raspberry Pi 4 with various deep learning accelerators

Fig. 2. Energy measurements for Raspberry Pi 4 with various deep learning accelerators

The energy consumption however reveals large differences, when looking at the
energy in relation to the frame rate. The Jetson Nano seems even less attractive in this
scenario compared to the Coral and the NCS2.

Finally, we need to look at the accuracy of the different candidates. One could naively
expect that the accuracy is only depending on the network architecture, but the different
transformation steps necessary to get the networks running on the accelerators lead to
significant differences (see Table 1). The highest accuracy can be achieved on the RPi 4
with FP32. The NCS2 is very close to that. The Coral uses INT8 only and therefore falls
behind in this category with 0.02 mAP less than the NCS2. The Jetson Nano performed
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worst with another drop of 0.025 mAP compared to the Coral, although it is using FP16.
For our use case, however, we found that to be sufficient, since the pylons that are not
recognized on one frame are usually recognized on the next.

5 Discussion and Conclusion

We’ve evaluated the inferencing speed and energy consumption of SSD MobileNet v2
pretrained with the COCO dataset on various hardware for an autonomous car.We found
that the Raspberry Pi 4 is too slow for our use case with not even 4 fps, whereas the
Google Coral Edge TPU performed best with nearly 55 fps. The Intel Neural Compute
Stick 2 reached 23 fps, which could be sufficient for many use cases. The Nvidia Jetson
Nano fell behind in our tests with only 16 fps. We expected it however to be the easiest
device to use, since in theory it should be enough to switch a parameter in the Tensorflow
runtime to let the network run on the GPU instead of the CPU. However, it turned out
to be equally hard to get the model running on the Jetson Nano as it was on the Coral
and the NCS2. It looks differently if we take the price into account. In this relation,
the Jetson Nano is the cheapest solution if you consider the RPi 4 with 4 GB RAM as
a fair comparison to the Jetson Nano that also comes with 4 GB RAM. However, the
difference is not huge (120 e to 155 e for RPi 4 + Coral).

Summed up, the largest disappointment was the effort necessary to get the models
running on the accelerators and the limitation regarding which models were suitable
which we already encountered with the Jetson Nano for speech recognition [25].
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Abstract. We consider the problem of learning to choose from a given
set of objects, where each object is represented by a feature vector. Tra-
ditional approaches in choice modelling are mainly based on learning a
latent, real-valued utility function, thereby inducing a linear order on
choice alternatives. While this approach is suitable for discrete (top-1)
choices, it is not straightforward how to use it for subset choices. Instead
of mapping choice alternatives to the real number line, we propose to
embed them into a higher-dimensional utility space, in which we identify
choice sets with Pareto-optimal points. To this end, we propose a learn-
ing algorithm that minimizes a differentiable loss function suitable for
this task. We demonstrate the feasibility of learning a Pareto-embedding
on a suite of benchmark datasets.

Keywords: Choice function · Pareto-embedding · Generalized utility

1 Introduction

The quest for understanding and modeling human decision making has a long
history in various scientific disciplines, including economics and psychology [4].
Starting with the seminal work by Arrow [1], choice functions have been analyzed
as a key concept of a formal theory of choice. In simple terms, a decision maker
is confronted with a (possibly varying) set of alternatives and the choices made
are observed. The ultimate goal is to explain and predict the choice behavior.

In machine learning, the task of “learning to choose” is part of the broader
field of preference learning, which attracted increased attention in recent years
[5]. The task for a learner is to observe choices from multiple sets of objects,
and to produce a function which maps from candidate sets to choice sets. An
important special case is the setting in which the decision maker only chooses one
object from each given set, which is known as discrete choice. A popular strategy
to tackle the learning problem is to posit that the choice probabilities depend
on an underlying real-valued utility function of the decision maker. Under this
assumption, learning can be accomplished by identifying the parameters of such
a function. The more general problem of predicting choices in the form of subsets
of objects has been considered only very recently [2,11]. Extending the approach
based on utility functions toward this setting turns out to be non-trivial. Either
one faces combinatorial problems calculating the probabilities for many subsets
[2], or has to resort to thresholding techniques [11].
c© Springer Nature Switzerland AG 2020
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We propose to solve this problem by embedding the objects in a higher-
dimensional utility space, in which subset choices are naturally identified by
Pareto-optimal points (Sect. 3). To learn a suitable embedding function, we
devise a differentiable loss function tailored to this task. We then utilize the
loss function as part of a deep learning pipeline to investigate the feasibility of
learning such a Pareto-embedding (Sect. 4).

2 Modeling Choice

We proceed from a reference set of objects (choice alternatives) X ⊂ IRd, which,
for ease of exposition, is assumed to be finite. Each x ∈ X is represented as
a vector of real-valued features (x1, . . . , xd). We call a finite subset of objects
Q ⊆ X a choice task and allow the size |Q| ∈ IN to vary across tasks. For each
choice task Q = {x1, . . . ,xm}, we assume that a preference is expressed in terms
of a choice set C ⊆ Q. A useful representation of a choice set is in terms of a
binary vector c ∈ {0, 1}m, where ci = 1 if xi ∈ C and ci = 0 if xi �∈ C.

One of the first approaches to explaining choices was to assume that a decision
maker can assign a (latent) utility to each of the choice alternatives. Formally,
we represent such a utility function as a function X → IR from the space of
objects to the real numbers. Based on these utilities, a rational decision maker
will always pick the alternative with the highest utility, i. e., the top-1 object. To
explain variability in choices, noise can be added to the utilities, which results
in what is called a random utility model [7,8,12].

At first glance, it may appear that this approach can easily be generalized
to modeling subset choices: Instead of only selecting the top-1 object, one could
consider to select the top-k objects, where 1 ≤ k ≤ |Q|. One major drawback
of this approach is that the subset size is predetermined to be k, so it is not
possible to produce subsets of varying size. Another possibility is to specify a
threshold for the utilities, and to include all objects with a utility higher than
the threshold in the choice set [11]. While this allows for the prediction of subsets
of arbitrary size, the decision of whether to include an object in the choice set
is now completely independent of all the other objects.

As we shall see in the next section, there is a natural way to define subset
choices, if we embed the objects in a higher-dimensional utility space.

3 Pareto-Embeddings

The basic idea of a Pareto-embedding is illustrated in Fig. 1. On the left side, we
depict the original set of objects in the object space X . The function ϕ : X → Z
maps each point into a new embedding space Z ⊆ IRd′

. This space can be thought
of as a higher-dimensional utility space, i. e., each dimension corresponds to the
utility on a certain aspect or criterion. As we can see, the choice set C forms
what is called a Pareto-set in this new space, i. e., the set of points that are not
dominated by any other point.
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Fig. 1. A Pareto-embedding ϕ(·) maps a given set of objects Q into a higher-
dimensional space Z. The Pareto-optimal points in this space we define to be the
choice set C.

More formally, let Q = {x1, . . . ,xm} ⊆ X be the original set of objects and
Z = ϕ(Q) = {z1, . . . ,zm} = {ϕ(x1), . . . , ϕ(xm)} the corresponding points in the
embedding space. A point zi in the embedding space is dominated by another
point zj if zi,k ≤ zj,k for all k ∈ [d′] and zi,k < zj,k for at least one such k. Then,
a point zi is called Pareto-optimal (with respect to Z), if it is not dominated by
any other point zj ∈ Z, 1 ≤ j �= i ≤ m. We denote by Pϕ(Q) ⊆ Q the subset of
points that are Pareto-optimal in Q under the mapping ϕ, i.e., the points xi ∈ Q
such that ϕ(xi) not dominated by any point in {ϕ(x1), . . . , ϕ(xm)}.

It is interesting to note that the traditional one-dimensional utility always
imposes a total order relation on the available objects, whereas the Pareto-
embedding generalizes this to a partial order. Therefore, richer preference struc-
tures with multiple layers of incomparability can be modeled.

Given a set of observed choices D = {(Qn, Cn)}N
n=1 as training data, where

Qn ⊆ X is a choice task and Cn ⊆ Qn the subset of objects selected, we are
interested in learning a Pareto-embedding ϕ coherent with this data in the sense
that Cn ≈ Pϕ(Qn) for all n ∈ [N ]. Obviously, a function of that kind can then
also be used for predictive purposes, i.e., to predict the choice for a new choice
task. To induce ϕ from D, we devise a general-purpose loss function, which can
be used with any end-to-end trainable model, and hence should be differentiable
almost everywhere.

The loss function we propose consists of several components, which we intro-
duce step by step. Consider a choice C in a choice task Q, and denote by
c ∈ {0, 1}|Q| the vector encoding of C, i.e., ci = 1 if xi ∈ C and ci = 0 otherwise.
In order to accomplish C = Pϕ(Q), the first constraint to be fulfilled by ϕ is
to ensure that each point xj ∈ C will have an image in the embedding space
which is Pareto-optimal in Z. Consider Fig. 2a, where the point in blue depicts
the image zj = (zj,1, . . . , zj,d′) of xj . The loss needs to penalize all points dom-
inating zj (shown in red). Formally, the first part of the loss function is defined
as follows:

LPO(Z, c) =
∑

1≤i�=j≤|Z|
max

(
0, cj · min

1≤k≤d′
(1 + zi,k − zj,k)

)
(1)
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Fig. 2. Visualization of the effect of the loss terms LPO and LDOM in Z space. (Color
figure online)

We project the points towards the blue region using the minimum term and
penalize them in proportion from their distance to the boundary. Note that, to
enforce a margin effect, we already penalize non-dominating points close to the
boundary. This corresponds to using a hinge loss upper bound on the 0/1-binary
loss, which is 1 if zi dominates zj and 0 otherwise.

Similarly, we define a loss that penalizes the embedding of a point xi ∈ Q\C
so that xi is not dominated:

LDOM(Z, c) =
|Z|∑

i=1

(1 − ci)min
j �=i

( d′∑

k=1

max
(
0, 1 + zi,k − zj,k

))
(2)

The minimum selects the point which is closest to dominating zi, while the inner
sum penalizes all dimensions in which this point is not yet better than zi.

With these two terms, we can ensure that if the loss is 0, we have a valid
Pareto-embedding of the points. Furthermore, we add two more terms that are
useful. To preserve as much of the original structure present in the object space
X , we use multidimensional scaling (MDS) [9]. It ensures that objects close to
each other in the object space X will also be close in the embedding space Z. In
addition, all the losses so far are shift-invariant in the embedding space. To make
the solution identifiable, we regularize the mapped points towards 0 using an L2

loss. We define the complete Pareto-embedding loss as a convex combination

L(Q,Z, c) = α1LPO(Z, c) + α2LDOM(Z, c) + α3LMDS(Q,Z) + α4

|Z|∑

i=1

‖zi‖2

with weights α1, α2, α3, α4 ≥ 0 such that α1 + α2 + α3 + α4 = 1. These weights
can be treated as hyperparameters of the learning algorithm. Given a space Φ
of embedding functions, this algorithm seeks to find a minimizer

ϕ∗ ∈ argmin
ϕ∈Φ

N∑

n=1

L
(
Qn, Pϕ(Qn), cn

)

of the overall loss on the training data D.
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Fig. 3. Architecture of our approach. Each object is passed through a (deep) multi-
layer perceptron followed by a linear output layer to produce the embedding. The
Pareto-optimal points are selected to obtain a prediction C.

4 Empirical Evaluation

As for the space of embedding functions, any model class amenable to training
by gradient descent can in principle be used. Here, as a proof of concept, we use
a simple fully connected multi-layer perceptron as a learner. The architecture
is depicted in Fig. 3. We take each object xi for 1 ≤ i ≤ |Q| of the task Q
and pass it through the (deep) multi-layer perceptron. Rectified linear units are
used here as the nonlinearities. Batch normalization [6] is applied after each
layer to speed up and stabilize training. In the final layer, we pass the output
of the multi-layer perceptron through a linear layer with d′ outputs. After the
same network (using weight sharing) was applied to all objects in Q, we end up
with the transformed set Z. To obtain the final prediction, we take the set Z
and compute the corresponding Pareto-set. The network can be trained using
standard backpropagation of the loss.

To ascertain the feasibility of learning a Pareto-embedding from data, we
evaluate our approach on a suite of benchmark problems from the field of multi-
criteria optimization. We use the well-known DTLZ test suite by Deb et al.
[3] and the ZDT test suite by Zitzler et al. [13], containing datasets of varying
difficulty. Adding a simple two-dimensional two parabola (TP) dataset, we end
up with 14 benchmark problems in total. We generate 40 960 object sets of size
10 with 6 features each for every problem. Exceptions are the TP dataset with
only 2 features and the ZDT5 dataset, which has 35 binary features by definition.
For the DTLZ problems, we set the dimensionality of the underlying objective
space to 5.

We evaluate our approach on every problem by 5 repetitions of a Monte Carlo
cross validation with a 90/10% split into training and test data. The remaining
instances are split into 1/9 validation instances and 8/9 training instances. We
use the validation set to jointly optimize the hyperparameters of the learner,
which are (a) the loss weights α1, α2, α3, α4, (b) the maximum learning rate of
the cyclical learning rate scheduler, and (c) the number of hidden units and
layers, using 60 iterations of Bayesian optimization. The neural network was
trained for 500 epochs. The number of embedding dimensions d′ we set to 2,
since this allows us to move from a total order (only one utility dimension) to a
partial order.
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Fig. 4. Results of the empirical evaluation. The bars show the average performance
in terms of A-mean across the 5 outer splits. The sticks show the estimated standard
deviation.

Finally, we need a suitable metric to compare the ground truth subsets to the
predicted ones. Since the shape of the Pareto-sets has an impact on how many
points end up in the chosen subset, we have varying levels of positives across
the datasets. Therefore, we choose a metric that is unbiased with respect to the
prevalence of positives and well-suited for problems with class imbalance, called
the A-mean [10], the arithmetic mean of the true positive and true negative rate.

The results are shown in Fig. 4. For five of the problems, the embedding
approach is able to achieve an average A-mean of over 90%, indicating that for
these problems we often identify the choice set correctly. This is important, as
it shows that the loss function is able to steer the model parameters towards
a valid Pareto-embedding. For comparison, a random selection in which each
object is included in the choice set with a fixed probability (independently of
the others) achieves an average A-mean of 50%. Thus, it is apparent that our
learner is performing better than random guessing on all datasets. We also did
an ablation experiment, where we removed the MDS term from the loss function
and repeated the complete training procedure (including optimization of all the
other hyperparameters). This resulted in a significant decrease in performance,
showing that the MDS term is not only useful to preserve distances, but adds a
helpful inductive bias.

5 Conclusion and Outlook

We proposed a novel way to tackle the problem of learning choice functions.
Viewing it as an embedding problem and transforming the given objects into a
utility space of more than one dimension, subset choice are naturally identified
by the criterion of Pareto-optimality. To learn an embedding from a given set
of observed choices as training data, we developed a suitable loss function that
penalizes violations of the Pareto condition. Encouraged by the promising first
results on benchmark problems, we are now looking forward to a more extensive
empirical evaluation and applications to real-world choice problems.
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Abstract. Speech-based robot instruction is a promising field in private
households and in small and medium-sized enterprises. It facilitates the
use of robot systems for experts as well as non-experts, especially while
the user executes other tasks. Besides possible verbal ambiguities and
uncertainties it has to be considered that the user may have no knowl-
edge about the robot’s capabilities. This can lead to faulty performances
or even damage beyond repair which leads to a loss of trust in the robot.
We present a framework, which validates verbally instructed, force-based
robot motions using a physics simulation. This prevents faulty perfor-
mances and allows a generation of motions even with exceptional out-
comes. As a proof of concept the framework is applied to a household
use-case and the results are discussed.

Keywords: Robotics · Natural language instruction · Validation

1 Introduction

One long term goal in current robotic research is the development of robot
systems which have approximately the same cognitive, communicational, and
handling abilities as humans. As part of this ongoing development, application
domains for robot systems shall be expanded from industrial settings with sepa-
rated working cells, fixed object positions, and preprogrammed motions towards
a flexible usage in small or medium-sized enterprises or private households.

Speech-based instruction has been part of the research community for a few
decades [8], which resulted in approaches reaching from pre-defined commands
[3] to natural language based instructions [16] and spoken instructions [9]. Sim-
ulating robot motions as part of a reasoning process has also been investigated
extensively, which led to comprehensive frameworks like openEASE [1].

Normally, motion parameters that lead to a successful manipulation regard-
ing common sense, are derived from the simulation results. If no valid motion
parameters are found, the motion is cancelled to omit faulty robot performances.
As discussed in [7] preventing failures and showing the incapabilities of the used

c© Springer Nature Switzerland AG 2020
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system is necessary to keep the users’ trust in the system. In some cases, motions
that seem unsuccessful regarding common sense may be still adequate in a spe-
cific situation.

Thus, the scientific contribution of this paper is an approach to verbally
instructing force-based robot motions even with exceptional outcomes. Here,
exceptional means that the result of the motion differs from its common result,
i.e. an object falls over during shoving. Instructed force-based motions are sim-
ulated considering the accuracy of sensors and evaluated based on motion- and
situation-specific knowledge. In the case of an exceptional outcome, the user is
informed on occurring faults and asked if the motion should still be performed.
Thus, an instruction of motions with such outcomes is also possible.

The remainder of this paper is structured as follows: Related work regard-
ing reasoning about robot motions is presented (Sect. 2). The main part of this
paper will cover the components of the presented approach (Sect. 3). Finally, the
framework is applied to a household use-case as a proof of concept (Sect. 4), the
scientific contribution is summarized and directions for future work are high-
lighted (Sect. 5).

2 Related Work

While performing and reasoning about the result of robot motions is the focus of
this paper, a brief overview is given and the works closest to ours are discussed
in more detail.

Approaches for reasoning about the outcome of robot motions can be divided
into the three categories: Non-simulating [2,15], partly-simulating [5,12] and
fully-simulating reasoning [6,13]. While the computational effort increases from
non-simulating to fully-simulating, the accuracy normally decreases, because
dynamic information about the workspace is estimated or not available. The
first category contains approaches that do not use a physics simulation at all.
Examples are symbolic reasoning [2] or approaches where a risk assessment based
on sensor values is performed before a motion is executed [15].

Partly simulating a motion - a so called projection or imagination - during
motion planning is a trade-off between the extremes regarding computational
effort and accuracy. Here, a physics simulation is often used for computing col-
lisions or check the stability of a build construct [12]. Nevertheless, as stated by
[4], a limitation of this approach is that a successful plan depends highly on a
correct belief state, which becomes more accurate in a complete simulation.

Besides approaches using simulations apart from the actual application in
form of a test framework [5] or gaining user information [10], others use sim-
ulations on-line. The approaches of [13] and [6] are closest to ours. In [13]
object parameters are monitored during the simulation and evaluated afterwards.
Besides simulating the complete motion and logging parameters, [6] augments
the simulation by defining environment objects as graph-like structures to even
simulate the deformation or breaking of objects. Uncertainties regarding object
transformations are also considered. The main difference to our approach is, that
we focus on force-based motions and add a feedback component for the user.
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3 Framework

In this section, we discuss the components of our framework in detail (see Fig. 1).
Definitions necessary for a better understanding of each component are given,
the simulation component and the interpreter are discussed, and the Parameter-
of-Interest-Map is described.

Fig. 1. System overview. An instruction is transformed into a robot motion by the
Spiro framework [17], which is then simulated. Workspace parameters are logged and
transformed into a result log by the interpreter.

3.1 Definitions

Each object state s is defined by dynamic properties s = {x, q, v, ω, f, τ}, where
x ∈ IR3 is the objects position, q ∈ IH its orientation, v ∈ IR3 its linear velocity,
ω ∈ IR3 its angular velocity, f ∈ IR3 forces applied to it and τ ∈ IR3 momentums
applied to it. In the case of fixed objects, only f and τ change over time. The
world state w(t) at any time t ∈ IR+

0 is then defined by w(t) = {s0, . . . , sn−1, t},
where n ∈ IN+ is the number of objects in the workspace.

Besides gravity, we assume that the robot arm movement is the main source
of forces and momentums in the workspace. This movement is generated by
transforming spoken instructions via the concept of Combined Verbalized Effects
[17]. Verbs are connected to so called Manipulation or Skill Primitives (MP)
[11] that connect the concept of Hybrid Motions with tool commands and stop
criteria. The concept of hybrid motions allows a definition of robot motions via
position and sensor target values for each degree of freedom. We consider sensor
values to be forces and torques. Thus, force-guided motions (scratching, wiping)
and force-guarded motions (touching) can be realized.

Solving perception errors emerging from the accuracy of hardware used or
environment conditions is still part of the current research [14]. In our case we
model possible inaccuracies via defining a tolerance for an objects position and
rotation instead of using a crisp transformation, which is then sampled in later
steps. This simulates object detection errors as well as robot inaccuracies.
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3.2 Parameters of Interest Map

A Parameters of Interest Map (POI-Map) holds the desired object parameters
for the robot, the workpiece and the remaining objects in a scene for a robot
motion. For each object state si, its parameters can either be limited via thresh-
olds, e.g. fmin < f ≤ fmax, or set as insignificant if they are of no interest in the
current setting. The POI-Map then serves as a look-up-table for the interpreter
component (Sect. 3.4) in a later step.

3.3 Simulation

To gain information about the dynamics while a motion is simulated, we imple-
mented a simulation based on the Bullet Physics Engine1. Inputs are a workspace
configuration, i.e. the set of objects, a data base storing the static object infor-
mation, e.g. inertia tensors, and a set of motion commands. Controlling the robot
is implemented via a torque control. The necessary joint torques are computed
at each simulation step via extracting the position and force information for the
robots Tool Center Point (TCP) from the current MP and transforming them
to appropriate joint torques. The complete simulation is then run several times
with varying initial object transformations to simulate the inaccuracy of the sys-
tem. After every simulation step the world state w(t) is logged in a parameter
log LP . An alternative would be to log state parameters only if a deviation in
accompanying POI values take place. In most cases, this would result in a smaller
amount of data, but it can also lead to data loss if the threshold for identifying
a deviation is set too high. A maximum duration for the motion is also passed
to the simulation in order to prevent infinite loops.

3.4 Interpreter

The interpreter evaluates LP regarding the POI-Map to find critical parameter
values, i.e. values which extend the thresholds. For each entry in LP , its validity
is checked regarding the POI-Map thresholds. If thresholds are exceeded, the
simulation run is tagged as unsuccessful and critical values are stored in a result
log LR along with their timestamps and object IDs. The overall probability of
success ps ∈ [0, 1] is then computed as the rate of successful to unsuccessful
simulation runs. If ps = 1 the instruction is accepted and the motion parameters
are sent to the real world robot. If pmin < ps < 1, pmin ∈ [0, 1], the user is
informed that the logged deviation may occur. If ps < pmin the user is informed
that there is a high risk that the logged deviation occurs. In both cases the user
is asked whether the motion should still be performed. Thus, even motions with
exceptional goals can be instructed as well.

1 https://github.com/bulletphysics/bullet3.

https://github.com/bulletphysics/bullet3
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4 Experiment

As a proof of concept, the framework is evaluated by the household use-case
shoving with two objects. The framework is used with varying sensor accuracies
to gain information about their impact on the resulting motion, and the results
are compared to their real-word motions to investigate the simulation’s validity.

4.1 Experiment Set-Up

A user plans to make a cake and is currently mixing ingredients in front of
the robot. While stirring, the user instructs the robot: ‘Can you shove the obji
towards me?’. Where obji = {cocoabox,milkbox}. A shoving motion is automat-
ically initialized, consisting of approaching the object beneath the z-coordinate
of its centroid, which usually results in a robust shoving motion. The motion is
simulated n = 9 times and the minimum success rate is set to pmin = 80%.

The robot arm used in this example is a Franka Emika Panda2. The POI-
Map is set up indirectly through the shoving motion, i.e. translation into the
y-direction, limited by a force that prevents damage of the box. The work-piece
orientation is restricted by a threshold that ensures that it does not fall over
during the manipulation. The remaining object states are tagged as insignificant.
The sensor inaccuracy is modelled by varying the initial box centroid z- and y-
coordinates by adding combinations of the accuracy ε ∈ [.1 mm, . . . , 1 mm] in
the y- and z-direction to it. The experiment was performed on a PC with the
following specification: Intel Core i7-6700HQ processor and an NVIDIA GeForce
GTX 960M graphics card (Fig. 2).

(a) Real world use-case (b) Simulated use-case.

Fig. 2. Investigated household use-case with a milkbox (shoving an object).

2 https://www.franka.de/de/.

https://www.franka.de/de/
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4.2 Experimental Results

Insights on the computational effort are gained by measuring the time for each
simulation step for a step size dstep and the overall duration of each simulation
run. Overall a single simulation step with 1 ms without sub steps took 0.086
ms and a whole simulation run (simulation + torque computation + logging +
interpreting) took about 909 ms for a motion that takes 13.39 s in real life. Thus,
an acceleration by a factor of about 14 is possible in this use-case, which is an
adequate time to inform the user about the outcome of the motion.

The success rates for the two use-cases can be seen in Table 1. In the milk
box case an accuracy of 1 mm leads to a successful execution in all runs. The
success rate decreases to by 12% for 2–8 mm and drops to 77% for 9 and 10 mm.
In this case the user would be informed that something may go wrong if the
given accuracy is below 1 mm. In the cocoa box case a success rate of 55% is
reached for all accuracies.

We also executed the two motions on a real life robot arm3. The results are
similar to our simulations, which leads us to the conclusion that our system is
able to estimate the outcome of a robot motion.

Table 1. Success rates Rmilk and Rcocoa for the sensor accuracies ε.

ε [mm] 1 2 3 4 5 6 7 8 9 10

Rmilk [%] 100 88 88 88 88 88 88 88 77 77

Rcocoa [%] 55 55 55 55 55 55 55 55 55 55

5 Conclusion

In this paper an approach is presented which deals with the scientific question
if and to what extent is it possible to validate force-based robot motions using
a physics-based simulation. Software components for simulating, logging and
interpreting logged object states are discussed and the system is evaluated by
pushing manipulations in a household use case. Thus, the scientific contribution
is an approach that allows an risk assessment of force-based motions as well as
the execution of motions with exceptional outcomes.

Future directions could be to extend the approach to more object types, such
as soft bodies or fluids as well as filling the POI-Maps more automatically.

Acknowledgements. This work has partly been supported by Deutsche Forschungs-
gemeinschaft (DFG) under grant agreement He2696-18.

3 https://www.ai3.uni-bayreuth.de/de/team/kim-woelfel/.
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Abstract. Classifying stress in firefighters poses challenges, such as
accurate personalized labeling, unobtrusive recording, and training of
adequate models. Acquisition of labeled data and verification in cage
mazes or during hot trainings is time consuming. Virtual Reality (VR)
and Internet of Things (IoT) wearables provide new opportunities to
create better stressors for firefighter missions through an immersive sim-
ulation. In this demo, we present a VR-based setup that enables to
simulate firefighter missions to trigger and more easily record specific
stress levels. The goal is to create labeled datasets for personalized mul-
tilevel stress detection models that include multiple biosignals, such as
heart rate variability from electrocardiographic RR intervals. The multi-
level stress setups can be configured, consisting of different levels of men-
tal stressors. The demo shows how we established the recording of a
baseline and virtual missions with varying challenge levels to create a
personalized stress calibration.

Keywords: Virtual Reality · Machine learning · Dataset · Stress ·
Interactive experience · Biosignal processing · Internet of Things ·
Wearables

1 Introduction

Stress is the difficulty of organisms to maintain homeostasis under stimuli
that causes an imbalance in the autonomic nervous system. This fight-or-flight
response involves many biosignals including changes in heart rate variability

This research was co-funded by the Bavarian Ministry of Economic Affairs, Regional
Development and Energy, project Dependable AI, IBM Deutschland GmbH, and IBM
Research, and was carried out within the Center for AI jointly founded by IBM and
fortiss.
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(HRV) [6]. Reduced HRV shows an impaired regulatory capacity, stress, anxiety,
or other health problems. Stress reduces the ability to make rational decisions
if it exceeds a particular individual threshold, thus stressed workers are more
likely to have accidents [5]. Early and reliable detection of stress helps to bet-
ter manage team performance and health. Smoke divers in a firefighter mission,
in particular, are susceptible to acute stress, and monitoring mental stress can
prevent injuries and even death.

Building good models for stress classification based on real-world data cap-
tured in cage-maze sessions or “hot” training missions, where firefighters have
to extinguish real fires are challenging. In these scenarios, firefighters are only
stressed during a short time and only inaccurate labels can be acquired [6]. For
these reasons, we suggest an approach based on VR and IoT to allow the acqui-
sition of firefighter stress data with optimal labeling while providing a good level
of immersion and realistic experience.

2 Related Work

With the advantages of eliciting a sense of presence [9] and grading the inten-
sity of the stimulus by needs, VR has the potential to induce real physiological
and emotional reactions. Social evaluative stress (TSST [3]) can be effectively
induced in a virtual environment leading to stress reactions on several physiolog-
ical measures [14]. Virtual reality exposure therapy has a large effect on affective
domains [7]. Thus it is a relevant approach for anxiety-related treatments like
anxiety disorder and post-traumatic stress disorder (PTSD) [1][10]. Models to
distinguish and classify physical and mental stress using HRV analysis with low-
cost wearables [8] were tested on 100 “Smoke divers” during their certification in
a cage maze. Using unsupervised classification Oskooei [6] confirmed that 90%
of the firefighters were mentally stressed. Our incentive is to bring this scenario
into a controlled laboratory environment through VR technology, for accurate
and robust labeling and sensor data recordings.

Furthermore, two public datasets SWELL [4] and WESAD [11] had been
used for validation of stress monitoring methods. The SWELL dataset includes
biosignals (e.g. ECG and EDA) from 25 subjects during office work, while the
WESAD dataset was conducted with 15 subjects exposed to TSST [3]. Different
from this previous work and datasets, we aim to study model generalizability on
one specific subject under different physiological or physical conditions.

3 Concept and Implementation

We suggest a system to simulate firefighter missions to trigger and record spe-
cific stress levels. It can create labeled datasets for personalized multilevel stress
detection models based on (a) biosignals such as HRV; (b) multi-level stress con-
figurations (different levels of mental and physical stressors); (c) fully immersive
VR experience; (d) automatic capturing and recording of labeled data. Different
from existing datasets, our novel system aims at recording a baseline and virtual
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missions with varying challenge levels to create a personalized stress calibration
and detection by combining biosignals and VR-tracking data.

3.1 Data Acquisition System

Fig. 1. System block diagram

In our demo we base our implementa-
tion on an extensible RESTful web ser-
vices architecture (Fig. 1), which consists
of 6 software modules: (a) The firefighter
sever is a nodeJS application that acts as
a communication and orchestration hub;
(b) VR Data Acquisition platform gathers
real-time biosignal data using a Biosignal-
splux sensor set1, consisting of ECG, EDA,
EMG, EEG, RESP, ACC and TMP sen-
sors and VR-tracking data directly from
Unity3D2. After synchronization, the col-
lected data is sent to a firefighter server
with a POST request; (c) Monitoring
Dashboard is a web application that displays the acquired biosignals from the
subjects or participants in the VR experience. (d) Destress Server is a Python3
module that uses a stress classifier using the trained models from [8]; (e) a Mon-
goDB database permanently stores data from all sensors.

To train and build better stress classification ML models, test subjects will
also be exposed to mental exercises/games while on a bicycle home trainer.
Initial results using a linear support vector machine (SVM) model, detected
stress 87.3% of the time (sensitivity) and the relax state 80.5% of the time
(specificity), resulting in an F-score of 82% [12].

3.2 Mission Simulation in VR

A firefighter mission simulation in VR developed with Unity3D puts the par-
ticipant into different states of mental stress. Unlike common methods we do
not equalize cognitive load with mental stress, such as using math questions,
memorizing tasks, and the Stroop Color Word Test [2].

We realized the zero-stress state through a VR relaxation room with the 4-7-8
breathing technique [13]. To enable low to high-stress states, we implemented
an apartment with 5 different rooms with configurable stressors that range from
navigating inside an unknown environment with configurable visibility through
thick dark smoke, disturbing sound effects and noises from victims, fire, breath-
ing and communication system, time pressure by a limited amount of air for
the life-saving respirator, to tasks such as rescuing a number of victims, extin-
guishing a fire, finding and turning off a gas tank, opening a water valve and

1 https://biosignalsplux.com.
2 https://unity.com.

https://biosignalsplux.com
https://unity.com
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windows. Throughout the VR experience, we simulate a communication system
with a firefighter commander to give guidance during the simulation through
audio instructions.

Fig. 2. VR simulation: (a) navigation concept; (b) one of the rescue tasks; (c) hardware
(HTC Vive Pro Eye VR Headset and biosignalsplux); (d) stress monitoring dashboard

The navigation through the apartment is realized by physically walking from
one room to the other inside a tracking space. We have developed an approach to
map the limited VR tracking space (5× 5 m) to a larger virtual space. A system
of unnoticeable portals hidden inside doors had been implemented to redirect
the participant from the edge of the tracking space back into the center as shown
in Fig. 2(a).

4 Conclusion and Outlook

In this paper, we have presented a scaleable system for capturing reliable data
about stress based on IoT and VR. We created a simulation to directly trigger
different mental stress levels in VR with the capability to walk physically through
the virtual environment. Moreover, it provides the opportunity to capture a
baseline and a stress resilience parameter to allow a full personalization of stress
classification. We are aiming to use the system to generate multiple datasets that
will be made publicly available for researchers interested in building machine
learning models for stress detection and management.

We analyze the strength and weaknesses of VR stress triggers and will com-
pare them with physical stress triggering systems like cage maze or “hot pots”
training locations where firefighters are exposed to fire with all senses (i.e smoke,
extensive heat, sound, haptics for a backdraft). With the acquired data we can
start to discuss the tradeoff between good labels and large volumes of data and
gentle stress amplitudes vs. bad labels, little data but very strong stress triggers.
Eventually, we will have to test the quality of the models in actual missions and
build systems that continue to learn while on active duty to provide the best
possible results.
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Abstract. As individual sub-fields of AI become more developed, it
becomes increasingly important to study their integration into complex
systems. In this paper, we provide a first look at the AI Domain Defi-
nition Language (AIDDL) as an attempt to provide a common ground
for modeling problems, data, solutions, and their integration across all
branches of AI in a common language. We look at three examples of how
automated planning can be integrated with learning and reasoning.

1 Introduction

Many possibilities arise when combining the strengths of different AI methods.
Automated planning, for instance, has been combined with machine learning or
reasoning in various ways for mutual benefit [3,7,13]. However in most existing
studies, the way the different models are combined highly depends on the prob-
lem at hand and cannot be generalized to other domains. In this work, we present
the AI Domain Definition Language (AIDDL) and framework (available under
www.aiddl.org), which aim at allowing AI system developers to easily integrate
different AI models. AIDDL is domain-agnostic, flexible, and extendable, mak-
ing it usable for a any type of problem. Using AIDDL, the integration of the
different AI models is moved from implementation to model level. This means
that integrated AI systems can be described independent of any programming
language. This allows to easily exchange algorithms and solutions for individual
sub-problem, which makes studying alternative combinations of solution easy.
Thus, creating and maintaining AI systems will become easier as the developer
can model interactions between the system’s component without having to worry
about implementation details.

In this paper, we give an overview of the AIDDL framework which is com-
posed of the AI Domain Definition Language (AIDDL), a core library (AIDDL
Core), definitions and implementations of common AI algorithms (AIDDL Com-
mon), and a library of examples of integrated AI (AIDDL Examples).

2 The Language

The language is used to specify types (e.g., Planning Problem, Plan, Deci-
sion Tree, Supervised Learning Problem), data (instance of planning problem,
c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 348–352, 2020.
https://doi.org/10.1007/978-3-030-58285-2_33
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instance of decision tree), functionalities (e.g., planner, decision tree learner),
and requests (functionality calls and control flow).

Each AIDDL file starts with a module entry which states the self-reference
(i.e., the term a module uses to refer to itself) and the module’s URI. An entry
generically specifies data as a tuple composed of type, name, and value. The
following grammar defines the language:

<AiddlFile> :: <Module> (<Entry>)*
<Module> :: "(#mod" <Symbolic> <Symbolic> ")"
<Entry> :: "("<Term> <Term> <Term>")"
<Term> :: <Numerical> | <Collection> | <Tuple> | <Symbolic> | <String>

| <Variable> | <Reference> | <KeyValue>
<Numerical> :: <Integer> | <Rational> | <Real> | <Infinity>
<Collection> :: <List> | <Set>
<List> :: "[" <Term>* "]"
<Set> :: "{" <Term>* "}"
<Tuple> :: "(" <Term>* ")"
<Reference> :: <Term>"@"<Term> | "$"<Term>
<KeyValue> :: <Term>":"<Term>
<Symbolic> :: (("a"-"z"|"A"-"Z"|"#")("a"-"z"|"A"-"Z"|"0"-"9"|"_"|"."|"-"|"’")*)

|"+"|"-"|"/"|"*"|"&"|"|"|"!"|"="|"<"|">"|"=>"|"<=>"|"^"|"!="|"<="|">="
<String> :: "\"" [~\"]* "\""
<Variable> :: <NamedVariable> | "_"
<NamedVariable> :: ?(("a"-"z"|"A"-"Z")("a"-"z"|"A"-"Z"|"0"-"9"|"_"|"."|"-"|"’")*)
<Integer> :: ["-"]("0"|"1"-"9")("0"-"9"]*
<Rational> :: ["-"]("0"|"1"-"9")("0"-"9")* "/" ("1"-"9"("0"-"9")*)
<Real> :: ["-"] ("0"|"1"-"9")("0"-"9")* "." ("0"-"9")+
<Infinity> :: ["+"|"-"]"INF"

3 AIDDL Core

The AIDDL Core is a library that makes AIDDL available for use with any of
the supported programming languages1. It provides a parser to load AIDDL files
as modules into an AIDDL container. It also includes an implementation of the
evaluator (also used as type checker) and request handler.

Evaluator. The evaluator is a component of the AIDDL Core that recursively
evaluates terms that can be interpreted as functions. All such terms are tuples
and the first term of the tuple is a symbolic URI of the function. As an exam-
ple, (org.aiddl.eval.numerical.add 23) is evaluated to 5. Namespaces are used to
shorten overly long names. One of the default namespaces allows writing the
above example as (+23). The evaluator can be used to test if the value of an
entry satisfies the stated type. It is also used to perform basic operations on
data, e.g., to evaluate branching or loop conditions in requests or filtering lists
or sets without having to implement a functionality.

Request Handler. Requests are AIDDL terms that allow to compose func-
tionality in an imperative fashion. Unlike the strictly functional interpretation
of the evaluator, requests require to specify where the result of function calls is
stored (i.e., the name of entries to direct the output to). Any evaluator term that

1 Currently Java. A Python Core is a work in progress.
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appears in a request will be evaluated (as explained above) before the request
is handled. This is often convenient for evaluating conditions. All examples pre-
sented in this paper were implemented using requests.

4 AIDDL Common

AIDDL Common consists of two elements: a library of type and functionality
definitions, and a library of implementations. Type definitions are written in
AIDDL and cover common AI problems and data types (e.g., planning/learning
problems, learning data, graphs). Functionalities are defined for solvers of these
common problems. Second, AIDDL Common. The library of implementations
provides implementations of common AI functionalities and some commonly
used data structures (such as graphs and matrices). These can be used as building
blocks for setting up and testing integrated AI systems. Currently, the common
library contains support for heuristic state-space planning [9] with fast forward
[12] and causal graph [11] heuristics, decision tree learning and classification
[14], basic Prolog reasoning [1], as well as basic graph algorithms and domain
independent implementations of graph-based and tree-based search.

5 AIDDL Examples

AIDDL Examples refers to a growing collection of implementations of integrated
AI systems. All three examples described below directly use components offered
by the Common library. The resulting projects are compact and mainly consists
of an AIDDL file that describes how components are combined via requests,
initial data, and a few additional functionalities specific to the example. All
examples are available open source at www.aiddl.org where a visualization of
the integration can be found as well. The main point of these examples is not
in the novelty of the integration they present, but that they are all realized in a
common language and re-use common components.

Planning for Learning. Data is often difficult to acquire and data acquisi-
tion may require going through a complex process such as sending a robot to
collect samples. In this example an automated planner is used to gather data
from various locations for a machine learning system. Until the machine learning
model performs well enough on a cross-validation, we generate data goals, plan
to collect data, execute the plan, extract data, and then perform n-fold cross-
validation. Similar integrations can be found in the literature [10,15,19]. For a
more recent review see [13].

Learning for Planning. In this example we use learning for planning. Specifi-
cally, we start with an incomplete planning domain, generate data from executed
actions and observed state transitions, and then learn new operators. If the prob-
lem cannot be solved a random action is chosen as an experiment. Otherwise we
execute the next action of the plan. In either case, we execute the action, observe
the outcome and generate data. Next, we try to learn a model that predicts the

www.aiddl.org


The AI Domain Definition Language (AIDDL) for Integrated Systems 351

effects of actions on states. The resulting model is used to create operators for
an updated planning domain. Once the domain is updated, we attempt to plan
again and continue. This example can be seen as an extension of active learning
[17]. Active learning uses queries to ask for specific instances of data to improve
the performance of learning. Other ways of integrating planning and learning
include learning heuristics for the search space of a planner [16], learning control
knowledge to guide planning search [3], or configuring portfolio-based planning
approaches [7].

Planning and Goal Reasoning. Our third example integrates automated
planning with a form of goal reasoning. Here, we consider a planner that may
be presented with a goal that it does not support directly. In case this happens,
we call a reasoner to derive a goal that the planner can handle. As an example,
consider that a planner may have a set of locations {l1, . . . , ln} and is presented
with a goal to go to the location kitchen. We have a knowledge base of sub-class
relations and instance relations and want to determine if any of the li locations
known to the planner is a kitchen. This example can be seen as a form of goal
reasoning [18] in form of goal transformation [4].

6 Related Work

Research on automated planning has lead to many changes and variations of
the Planning Domain Definition Language (PDDL) [2,5,6,8] to consider, e.g.,
time, resources, or continuous change. The basic language, however, is designed
to express planning problems. In this work we take a step back and suggest
a domain definition language that can be extended to include any existing AI
problem and also define how these problems are solved. Unlike languages such
as Prolog, we do not assume anything about how problems are solved.

7 Conclusion

We proposed AIDDL as a language and framework to allow model-based integra-
tion of AI approaches across various domains. We discussed three examples that
integrate planning with learning and reasoning by using our framework. This
way of performing AI integration allows the resulting systems to benefit from a
large body of existing implementations across all branches of AI. We also argue
that a common domain definition language for AI allows to perform integration
as done in this paper with minimal overhead. The first version of the AIDDL
framework is available now and we plan to release new features as they become
stable. If you are reading this paper and made it this far, we hope we spiked
your curiosity. Feel free to contact us if you have any further questions, a use
case, or would like to hook up your AI tools to the AIDDL Framework available
under www.aiddl.org.

www.aiddl.org
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Abstract. In this paper, we combine the theory of probability aggre-
gation with the theory of meta-induction and show that this allows for
optimal predictions under expert advice. The full paper to this contri-
bution is published as [3].

Keywords: Meta-induction · Probability aggregation · Brier score

1 Introduction

Probability aggregation is an expansion of the theory of judgment aggregation
and addresses the question of how to aggregate probability distributions. In past,
research in this field centred around the disciplines of economics and political
science, law, and philosophy [4]. Recently, however, increasing work stems also
from computer science and artificial intelligence [5].

We suggest to interpret the weights in characterisation results of linear prob-
ability aggregation (cf. Section 2) in a success-based way. By cashing out results
on no-regret methods for prediction under expert advice of the field of online
machine learning (cf. Section 3) we show that fixing the parameters in a success-
based way allows for optimal probability aggregation (cf. Section 4).

2 Linear Probability Aggregation

The theory of probability aggregation deals with the problem of how to aggregate
a set of probability distributions. Abstractly speaking, the question is how to
characterise a probability aggregation rule f which takes as input a set of n prob-
ability distributions P1, . . . , Pn and generates as output a/the aggregated prob-
ability distribution Paggr = f(P1, . . . , Pn). So-called “linear probability aggre-
gation rules” have the following form of a weighted arithmetic mean:

Paggr =
n∑

i=1

wi · Pi where wi ≥ 0 and w1 + · · · + wn = 1 (AM)

Different interpretations of the weights allow for different specifications. Here
we want to argue for interpreting the weights in a regret-based way, because such
an interpretation allows for optimal probability aggregation.
c© Springer Nature Switzerland AG 2020
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3 Optimality in an Expert Advice Setting

In online machine learning, regret bounds of methods for predictions under
expert advice are studied [2]. The idea is to consider a series of events (E)
whose outcomes (valt(E)) have to be predicted by so-called experts or candi-
date methods (P1,t, . . . , Pn,t of n candidate methods). Given these predictions,
the task is to construct a meta-inductive prediction method Pmi,t that uses the
candidate method’s forecast as input and aims at optimality by approaching the
predictive success of the best expert [6, 7].

We assume that all the mentioned values are within the unit interval. Then
we define Pmi,t by keeping track of the success rate s of a candidate method
i via summing up its score (which is 1 minus the loss l of i’s prediction—l is
within [0, 1] and convex) up to round t and then take the average. Afterwards,
we define weights w via cutting off and normalisation [6, Sect. 1 and Sect. 7]:

si,t =

t∑
u=1

1 − l(Pi,u, valu(E))

t
wi,t =

max(0, si,t − smi,t)
n∑

j=1

max(0, sj,t − smi,t)

If Pmi outperforms all other methods, averaging applies, so the weights are
always positive and sum up to 1. Based on this, we can define a weighted-average
meta-inductive method (MI) as a linear combination [2, 6, Sect. 2.1 resp. Sect. 7]:

Pmi,t+1 =
n∑

i=1

wi,t · Pi,t+1 (MI)

Regarding the success rate of (MI) one can prove the following bound with
respect to the success rates of the candidate methods [2, 6, Sect. 2. 1f resp. 7]:

Theorem 1. Given the loss function l is convex it holds:

si,t − smi,t ≤
√

n/t ∀i ∈ {1, . . . , n}, so lim
t→∞max(s1,t, . . . , sn,t) − smi,t ≤ 0

This theorem shows that (MI) is a no-regret method, and that its success rate
converges to or outperforms that of the best performing candidate method.

4 Optimal Probability Aggregation

In probabilistic prediction games, each candidate method identifies the predicted
real value with its credence of the predicted event. We expand the framework
from above: Now it contains a series of events represented by random variables
E1,E2, . . . within a space of discrete, mutually disjoint, and exhaustive values
v1, . . . , vk. In order to indicate which value a random variable took on at a spe-
cific round, we assume a valuation function val to be given by valt(vm) = 1 if the
value of Et is vm and valt(vm) = 0 otherwise. Predictions are the credences of n
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candidate methods for each event variable Et in the series, represented by prob-
ability distributions P1, . . . ,Pn such that

∑k
m=1 Pi,t(vm) = 1 andPi,t(vm) ≥ 0.

The probabilistic meta-inductive method Pmi is also represented by a probability
distribution. In order to define it, we average the success-rates for the individual
values of the value space. Let us first define such an average loss measure lav:

lavi,t =

k∑
m=1

l(Pi,t(vm), valt(vm))

k

Note that if l is the quadratic loss function, then lav is the Brier score for a
particular round [1]. The general Brier score can be calculated then by summing
up all the scores up to round t and dividing them by t (that is the per round
loss averaged over all values of the value space). Now we can define a measure
for average success savi,t in analogy to s (simply replace l by lav in the definition
of si,t above). Likewise, we define weights wav

i,t for the probabilistic predictions
(simply replace s by sav in the definition of wi,t above). Finally, we define the
meta-inductive method for weighted average probability aggregation based on
these weights in accordance with (AM): Pmi,t+1 =

∑n
i=1 w

av
i,t · Pi,t+1. Since we

assumed that l is convex, also lav is convex. To recognize this, we just have to
hint to the mathematical fact that if the loss function l is convex with respect to
all values of the value space, then also averaging among the losses with respect to
all values of the value space is convex. Since the definition of Pmi is an instance
of (MI), and since lav used to determine the weights wav is convex, we can
transfer the no-regregt optimality result of Pmi to Pmi straightforwardly:

Theorem 2. Given the loss function l is convex it holds:

savi,t − savmi,t ≤
√

n/t ∀i ∈ {1, . . . , n}, so lim
t→∞max(sav1,t, . . . , s

av
n,t) − savmi,t ≤ 0

To conclude: Success-based weighting allows for optimal probability aggregation.
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