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Abstract. Dividing interaction logs into meaningful segments has been
a core problem in supporting users in search tasks for over 20 years.
Research has brought up many different definitions: from simplistic
mechanical sessions to complex search missions spanning multiple days.
Having meaningful segments is essential for many tasks depending on
context, yet many research projects over the last years still rely on early
proposals. This position paper gives a quick overview of session identi-
fication development and questions the widespread use of the industry
standard.
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1 Introduction

Web usage mining has been around for quite some time now. Since the late 1990s
and early 2000s, researchers have contributed dozens of studies about handling
interaction logs and how to utilize them in their field of research. These early
studies focus on search behaviour, interpreting how users interact with search
systems and what is actually searched for [5,34]. Initial findings gave insight
about average query length, amount of queries and reformulations or the number
of visited result pages.

However, the actual identification of sessions in the interaction logs received
a growing interest. Identifying patterns and segmenting logs into user sessions
has grown to be a focal point, being the foundation for any further analysis or
research [13]. Various methods were tested for finding reasonable session bound-
aries, often applying mechanical cuts like time outs. The most common inac-
tivity time out of 30 min, most likely evolved from the 25.5 min proposed by
[5], is still used today. Later, research interest went from mechanical sessions to
a more intent-oriented approach, acknowledging that finding suitable user con-
text is easier when sessions are logically segmented rather than mechanically.
Therefore, definitions vary from mechanical [5] to logical [17].

Today, most related publications still apply the 30 min inactivity cut as a
foundation. From user modelling to recommendation to personalisation - the
30 min rule seems to be omnipresent. This position paper is part of a dissertation
project researching the impact of different session modelling concepts. A quick
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timeline on the development of session concepts is presented and the solitary use
of a temporal constraint discussed.

2 Literature Review

Session Identification. Early studies identifying sessions as the basic unit of
measurement in interaction logs mostly relied on time gaps to decide if two con-
secutive queries belong to the same session, resulting in mechanically segmented
sessions. [5] were among the first to introduce a temporal constraint. They report
an average time of 9.3 min between interactions, adding 1.5 standard deviations
to propose a temporal inactivity limit of 25.5 min. Other temporal cuts are also
reported: 5 min [33], 15 min [14,15] or even 60 min and longer [3].

Over the years, these time constraints have evolved into a 30 min inactivity
time out. Many works rely exclusively on this arbitrarily set time limit [4,8,21,
24,37], others recognized a need for more evidence, using stopping patterns [39]
or dynamic time thresholds based on visited pages [7,41] and users [27]. After
[35] reported multitasking during search sessions, even identifying interleaving
intents, growing interest was directed to the identification of tasks rather than
mechanical sessions.

Task Identification. Tasks may be similar to sessions, but they move away
from purely mechanical thresholds to logical boundaries. Simple approaches use
lexical similarity between adjacent queries [11] to identify topically related seg-
ments, assuming that queries that do not share any terms with previous ones
indicate a new session [17] (although the sessions are identified with a tempo-
ral constraint in the first place). A prime example of the combination of lexical
similarity and temporal relationship is [9], who use a geometric approach to
calculate similarity between query pairs based on a 24 h temporal limit. Most
approaches still use (mechanical) session-based features to calculate similarity
between queries. Some use sequential patterns [28,30], others employ exter-
nal sources to create a richer semantic context like thesauri [16] or pre-trained
embeddings [10].

Even more advanced is the identification of cross-session tasks, recognizing
the importance of interleaving and multiple tasks throughout the boundaries of
mechanical sessions. [19] identified tasks as just another level of measurement.
They define search sessions as user activity within a fixed time window, search
goals as the atomic information need producing one or more queries and search
missions as the overarching concept, connecting various search goals and there-
fore possibly spanning multiple sessions. This hierarchical point of view works
well for describing user behaviour: visiting an information system in a session,
searching for several goals belonging to one search mission. In [22], this concept
is exploited via hierarchical clustering algorithms based on multiple query fea-
tures. [12] and [13] propose a cascading method for connecting related adjacent
queries by consecutively using lexical and semantic similarity, temporal prox-
imity, search results and context comparison to find logically coherent search
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missions. Other studies compare adjacent queries with binary classifiers [1,20],
use latent structural Support Vector Machines [38] or utilize term and context
embeddings [25,32].

3 Discussion

[40] qualitatively analysed real web sessions, identifying multiple factors as
potential indicators for session boundaries: changing topics or tasks related to
the topic, switching to a different phase of a mission, different environmental
context (i.e. being among people) and the time gap as the traditional measure.
Acknowledging the potential co-existence of these measures strongly supports a
development from mechanical sessions to logically connected segments, possibly
connecting multiple mechanical sessions and tasks. These concepts build upon
each other and should be applied accordingly.

However, sessions identified with temporal boundaries are still widely used.
30 min of inactivity is the industry standard [2], despite clear indicators that
solitary use of time gaps is not reliable [6,10,26]. Many applications using inter-
action logs still exclusively apply the 30 min inactivity time out rule as a foun-
dation for algorithms or analysis. Receiving much attention lately is sequential
user or topic modeling with recurrent neural networks. From predictions about
sequences or session outcomes [36] to session-based or session-aware recommen-
dation [23,29,31], either the 30 min or a slightly changed temporal constraint is
used to detect sessions.

[12] criticized that published studies often do not state how sessions are built.
But what is actually worse is that often mechanical sessions are used even when
the aim of the study strongly suggests logical sessions [12]. Little thought is put
into segmentation. Depending on the application, there are multiple possible
definitions on how to structure a user’s history [18] and the potential impact of
different session models should be more present in research.

4 Conclusion

Algorithms need input data. In Information Retrieval, this input data comes
excessively often in the form of interaction logs. Besides laboratory studies, inter-
action logs represent the main source of information regarding the understanding
of users, their information needs and how they interact with search engines or
information systems.

Although much effort has been put into segmenting logs in a meaningful way,
and although task- and mission-based approaches have received much attention,
many recent studies still apply only temporal constraints. They use mechanical
sessions to model user context in many different ways (i.e. compare the recent
wave of studies using recurrent neural networks). The actual basis for these
algorithms are still sessions identified with a 30 min inactivity time out.

This position paper questions the lack of effort put into the pre-processing of
interaction logs. A significant amount of thought should be put into the input for
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any algorithm. The 30 min inactivity time out might be perfectly fine for most
applications - but arbitrarily and unquestioningly applying it as the basis for
any and all algorithms may lead to wrong conclusions, no matter the algorithm
quality.
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