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1  Introduction

Banco Chinchorro coral reef was declared a Biosphere Reserve in 1996 by the 
Mexican government to protect its biodiversity and ecosystem processes and to 
manage its natural resources (INE, 2000). This ecological system is located in the 
northern sector of the Mesoamerican Barrier Reef System and, at 40.7 km long and 
18  km wide, is considered to be one of the largest platform coral reefs in the 
Caribbean Sea (Acosta-González, Rodríguez-Zaragoza, Hernández-Landa, & 
Arias-González, 2013; Jordán & Martín, 1987). The reef has high biodiversity due 
to its notable habitat heterogeneity, integrated into surrounding coral reefs are 
developments of spurs-and-groove habitats, wide stretches of seagrass and algae 
beds, coral reef patches, and small areas of mangrove (Acosta-González et al., 2013).

However, the reef has historically been exploited by artisanal fishers (>40 years), 
whose main target species are spiny lobster (Panulirus argus), queen conch snail 
(Lobatus gigas), and several fish species (Sosa-Cordero, 2003). As a consequence 
of this intensive period of harvest, L. gigas and P. argus are currently considered to 
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be over-exploited resources (Cala de la Hera, de Jesús-Navarrete, Oliva-Rivera, & 
Ocaña-Borrego, 2012; de Jesús-Navarrete, Medina-Quej, & Oliva-Rivera, 2003; De 
Jesús-Navarrete & Valencia-Hernández, 2013; Sosa-Cordero, 2003). In order that 
these stocks may recover, the Mexican government has established minimum 
extraction sizes and bans for the fishing cooperatives on the exploitation of L. gigas 
and P. argus (de Jesús-Navarrete et  al., 2003; Rodríguez-Zaragoza et al., 2016). 
However, poaching activity has caused the situation to reach a critical state, nega-
tively affecting the livelihoods of legal fishers (de Jesús-Navarrete et  al., 2003). 
While the bans have been implemented, the exploitation of reef fish of the 
Serranidae, Lutjanidae, and Haemulidae families on Banco Chinchorro has 
increased considerably, impacting ecosystem functioning and properties (resis-
tance) (Rodríguez-Zaragoza et al., 2016). An additional perturbation is the intro-
duction and rapid spread of the alien lionfish Pterois volitans (Ortiz et al., 2015) 
since its presence may decrease the overall biodiversity of coral reefs and lead to 
phase-shift transitions from corals to fleshy macroalgae (Albins & Hixon, 2013).

Studies regarding fishing activities have mainly focused on the exploitation of 
P. argus and L. gigas using classical population analysis (de Jesús-Navarrete et al., 
2003; Sosa-Cordero, 2003). Some spatially-explicit predictions and habitat classifi-
cation models have shown that fish diversity hotspots are highly correlated with 
reefscapes composed of an aggregation of coral colonies with seagrass beds 
(Acosta-González et  al., 2013). Besides, qualitative and quantitative ecosystem 
models have been built for analyzing management strategies in Banco Chinchorro 
from an ecosystem perspective. Rodríguez-Zaragoza et al., (2016) built several sta-
tionary trophic models to analyze the multispecies fishery, the structure, trophic 
functioning, and ecosystem growth and development of five subsystems at Banco 
Chinchorro reef. Their outcomes showed that, as a consequence of the ecological 
heterogeneity of this coral reef, a subsystem-level management strategy needs to be 
designed, particularly because different species or functional groups exhibit a 
greater sensitivity to human interventions depending on which area they inhabit.

Nowadays, the Ecosystem-Based Fisheries Management (EBFM) is a widely 
recognized and accepted analytical strategy to assess multispecies fisheries (Pikitch 
et  al., 2004), incorporating the needs of the authorities, fishers, tourism service 
operators, and others involved, and ensuring the implementation of a holistically 
sustainable co-management strategy (Ortiz et  al., 2013, 2015). Ecosystem mass- 
balance models may be considered as complementary tools for studies of popula-
tion dynamics. These models can be constructed using the program 
EcopathWithEcosim (EwE) (Christensen & Walters, 2004), integrating fishing 
activities, diet matrices, and network analysis. EwE incorporating the Ecospace 
routine has frequently been used to build spatially-explicit models based on multi- 
trophic relationships, assessing the possible effects of applying different manage-
ment strategies in marine ecosystems (i.e. Walters, Christensen, & Pauly, 1997; 
Walter, Pauly, Christensen, & Kitchell, 1999; Ortiz and Wolff, 2002; Ortiz, 
Avendaño, Berrios & Campos 2009; Ortiz, Avendaño, Cantillañez, Berrios & 
Campos, 2010; Romagnonia, Mackinsonb, Hong & Eikeset 2015; Alexander, 
Meyjes & Heymans 2016). Nevertheless, few Ecospace models have been built 
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specifically for coral reefs (Gribble, 2005; Okey et al., 2004; Varkey, Ainsworth, & 
Pitcher, 2012). Recognizing that Ecospace models enable the propagation of higher-
order effects as a response to fishing activities to be assessed across spatial scales 
within marine ecosystems, the main objective of this chapter was to build a mass-
balance model using EwE that incorporates the spatial heterogeneity of the coral 
reef at Banco Chinchorro Biosphere Reserve. To achieve this the five subsystems or 
habitat types previously described were considered (Rodríguez-Zaragoza et al., 
2016), permitting us to assess: (1) biomass distribution and determination of the 
macroscopic properties of the whole ecological system; (2) spatial changes as 
responses to the eventual application of different fishing scenarios on commercially 
interesting species; and (3) the species or functional groups that are most impacted 
by different spatially-explicit management scenarios.

Banco Chinchorro is a coral reef with an ovoid shape (43.2 km long x 18.0 km 
wide) and platform type, located off the south-west coast of Yucatán Peninsula and 
separated from the continent by a channel 30.8 km wide and ≈500 m deep (INE, 
2000; Vega-Zepeda, Hernández-Arana, & Carricart-Ganivet, 2007) (Fig. 1a). This 
coral reef has a lagoon with an area >500 km2 and depths varying between 1 and 
9 m, surrounded by a semi-continuous barrier reef (~115 km in perimeter), where 
the seawater is oligotrophic with average surface water temperatures that range 
between 27 and 29 °C, while salinity varies from 36.6‰ to 36.9‰ (INE, 2000). 
More details regarding the environmental features of this coral reef are described in 
Ortiz et al. (2015) and Rodríguez-Zaragoza et al., (2016).

2  Modeling Strategy and Assumptions

EcopathWithEcosim (EwE) was initially based on the Polovina (1984) approach, 
which estimates the biomass and food consumption of several functional groups 
within an ecosystem. Subsequently, Christensen and Pauly (1992) and Walters et al. 
(1997) made some extensions to EwE, increasing its capabilities to allow simula-
tions of temporal (i.e. Ecosim) and spatial (i.e. Ecospace) dynamics. EwE permits 
steady-state ecosystem models to be assessed in terms of matter/energy flow at a 
particular time, whereas the Ecospace routine provides temporal dynamic simula-
tions of Ecopath, where biomass (B) and consumption (Q) dynamics are evaluated 
in spatial and temporal dimensions, this means that they vary within the spatial 
coordinates x, y, and over time (Fig. 1b). For more details of Ecospace theoretical 
framework see Box 1. Moreover, EwE also includes a network analysis feature 
called Ascendency (Ulanowicz, 1986, 1997), which allows us to estimate macro-
scopic properties, such as growth, organization, development, and the “ecosystem 
health.” In this context, an ecosystem would be considered healthy if it is sustain-
able because it keeps its organization and processes over time, and is resilient 
against disturbances (Costanza, Mageau, & Norton, 1998). For more details about 
Ascendency see chapter “Macroscopic Properties and Keystone Species Complexes 
in Kelp Forest Ecosystems Along the North-Central Chilean Coast.”

Macroscopic Network Properties and Spatially-Explicit Dynamic Model of the Banco…
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Fig. 1 (a) Study area at Banco Chinchorro Biosphere Reserve, Mexico. (b) Trophic model for Banco 
Chinchorro. Vertical position approximates trophic level. The circle size is proportional to the com-
partment (species and functional groups) biomass ( g wet weight [ww] m−2). The connections repre-
sent the flow of matter among compartments. The number in circle corresponds to the species or 
functional groups (for details see Table 1). (c) Spatial basemap constructed through Ecospace routine 
of EwE, showing the five different subsystems, and (d) Spatial fishing effort scenarios simulated by 
Ecospace. (In the subsystem Cueva Tiburones: fishing on Spiny lobster; in La Caldera: fishing on S. 
barracuda, E. striatus, M. bonaci, L. analis, BPCF, L. maximus, BCF; in La Baliza: fishing on S. 
barracuda, E. striatus, M. bonaci, L. griseus, L. analis, BPCF, L. maximus, BCF, Spiny lobster, 
Queen conch; in El Colorado: fishing on S. barracuda, E. striatus, M. bonaci, PF, L. griseus, L. ana-
lis, L. maximus, BCF, Spiny lobster; in El Chankay: fishing on E. striatus, M. bonaci, L. maximus)
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Fig. 1 (continued)

Box 1 Ecospace Theoretical Framework
The Ecospace is a spatially-explicit routine of EcopathWithEcosim program 
that permits us to define rectangular grids of spatial cells. In this case, the 
space, time, and state of variables are considered discrete by using the Eulerian 
approach that considers movement as flow of organisms among fixed cells. 
The immigration rate by cell is assumed to consist of four emigration flows 
from the surroundings cells. The emigration flows are represented as instanta-
neous movement rates (mi) x biomass (Bi) in each cell as follows:

 
B m Bi i x y i x y� �� � � �, ,  (1)

where (x,y) represents cell row and column.
Likewise, fishing mortality (Fi) can be spatially represented by using a 

gravity function incorporated into Ecospace, by which the proportion of total 
effort allocated to each cell is considered to be proportional to the sum over 
groups of biomass multiplied by catchability and market price of the com-
mercial species or functional groups, all is integrated by following algorithm:
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(2)

where Gkc is weighted attractiveness of cell c to fleet k; Okc = 1 if cell c is 
open to the fleet and 0 if it is closed to fishing; Ukc = 1 if it was specified that 
gear k can harvest and 0 otherwise; pki is the relative price assigned for spe-
cies or functional group i by fleet k fisheries; qki is the catchability of com-
partment i by fleet k; Bic is the biomass of species or group i in cell c; and Ckc 
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Table 1 Parameter values entered (standard) and estimated (in bold) by EcopathWithEcosim for 
the mass-balanced model of Chinchorro Bank coral reef (Mexico). TL trophic level, Ca catches, B 
biomass [g wet weight (ww)], P/B production/biomass ratio [year−1], Q/B consumption/biomass 
ratio [year−1], EE ecotrophic efficiency [dimensionless], GE gross efficiency [dimensionless], NE 
net efficiency [dimensionless], R/AS respiration/assimilation rate [dimensionless], R/B respiration/
biomass rate [year−1], and P/R production/respiration rate [dimensionless]

Species and 
functional 
groups TL Ca B P/B Q/B EE GE NE

R/
AS R/B P/R

1. Sphyraena 
barracuda

3.88 0.1950 1.05 0.25 4.00 0.74 0.06 0.08 0.92 2.95 0.08

2. Epinephelus 
striatus

3.53 0.0530 0.63 1.32 4.70 0.24 0.28 0.35 0.65 2.44 0.54

3. Mycteroperca 
bonaci

4.25 0.0430 0.70 0.37 3.40 0.17 0.11 0.14 0.86 2.35 0.16

4. Piscivorous 
fish

3.38 0.0002 7.91 1.16 13.20 0.25 0.09 0.11 0.89 9.40 0.12

5. Lutjanus 
griseus

3.47 0.0140 0.70 0.54 9.10 0.96 0.06 0.07 0.93 6.74 0.08

6. Lutjanus 
analis

3.37 0.4640 0.88 0.58 5.20 0.91 0.11 0.14 0.86 3.58 0.16

7. Zooplankton 
feeders (ZF)

3.00 5.80 2.50 14.06 0.92 0.18 0.22 0.78 8.75 0.29

8. Benthic- 
pelagic 
carnivorous fish 
(BPCF)

3.53 0.0050 19.20 0.26 8.39 0.98 0.03 0.04 0.96 6.45 0.04

9. 
Lachnolaimus 
maximus

3.06 0.0580 1.21 0.56 4.78 0.97 0.12 0.15 0.85 3.26 0.17

10. Benthic 
carnivorous fish 
(BCF)

3.12 0.0450 37.60 2.30 9.98 0.99 0.23 0.29 0.71 5.68 0.40

11. Omnivorous 
fish (OF)

2.55 8.54 1.88 38.35 0.93 0.05 0.06 0.95 36.47 0.05

12. Herbivorous 
fish (HF)

2.04 57.70 1.49 24.49 0.97 0.06 0.07 0.94 23.00 0.06

13. Spiny 
Lobster

2.73 0.7340 4.10 1.10 7.40 0.97 0.15 0.15 0.85 6.30 0.17

14. Large 
benthic 
epifauna (LBE)

2.59 50.20 2.10 7.50 0.94 0.28 0.35 0.65 3.90 0.54

15. Small 
benthic 
epifauna (SBE)

2.05 114.80 6.95 40.85 0.88 0.17 0.18 0.83 33.90 0.21

16. Sea urchins 2.32 36.00 1.10 3.80 0.93 0.29 0.36 0.64 1.94 0.57
17. Queen 
conch

2.00 0.0890 18.90 1.64 14.00 0.25 0.12 0.15 0.85 9.56 0.17

(continued)

F. A. Rodríguez-Zaragoza and M. Ortiz



169

2.1  Data Sources, Model Compartments, and Dynamic 
Simulations

A global trophic model was constructed of the whole Banco Chinchorro coral reef 
with compartments representing species and functional groups following the crite-
ria established by Rodríguez-Zaragoza et al. (2016). The functional fish groups 
were characterized as benthic-pelagic carnivorous fishes, piscivorous fishes, ben-
thic carnivorous fishes, zooplankton feeders, omnivorous fishes, and herbivorous 

Table 1 (continued)

Species and 
functional 
groups TL Ca B P/B Q/B EE GE NE

R/
AS R/B P/R

18. Zooplankton 2.00 4.45 40.00 165.00 0.95 0.24 0.30 0.70 92.00 0.43
19. Soft corals 2.09 50.80 1.09 9.00 0.96 0.12 0.14 0.88 7.91 0.14
20. Sponges 2.00 102.50 1.40 5.20 0.93 0.27 0.34 0.66 2.76 0.51
21. Stony corals 2.00 54.40 1.09 9.00 0.97 0.12 0.13 0.88 7.91 0.14
22. Benthic 
autotrophs (BA)

1.00 4992.98 13.25 0.04

23. Symbiotic 
algae

1.00 54.11 10.20 0.66

24. 
Phytoplankton

1.00 2.10 1185.00 0.51

25. Detritus 1.00 118.00 0.07

is the relative cost of fishing in cell c by gear k. Finally, the spatial simulation 
searches for a moving equilibrium for the biomass of each compartment 
based on the following function:

 
B W B W Bi t t i t i t i t i e�� � � � � � � � � �� � � �� ��� 1

 
(3)

where Bi(t+∆t) is the biomass of the compartment i moving toward an equi-
librium along the time; Bi(t) is the biomass of the compartment i at the initial 
time of simulation; Bi(e) is the biomass of the compartment i at equilibrium; 
and Wi(t) is the exponential weight for the compartment i and assumes the fol-
lowing behavior:

 
W ei t

Z E ti i

� �
� �� ��� �

 
(4)

where Zi is the total instantaneous mortality rate for the compartment i and 
Ei is the total instantaneous emigration rate. For more details on Ecospace 
framework see Walter et al. (1999).
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fishes. Other functional groups were the large benthic epifauna, sea urchins, soft 
corals, small benthic epifauna, zooplankton, stony corals, sponges, benthic auto-
trophs, symbiotic algae (Symbiodinium spp.), phytoplankton, and detritus. The spe-
cies were selected for their economic importance: the queen conch snail L. gigas, 
the spiny lobster P. argus, and the reef fish Mycteroperca bonaci, Sphyraena bar-
racuda, Epinephelus striatus, Lutjanus griseus, Lutjanus analis, and Lachnolaimus 
maximus. (For more details of the species, functional groups, and sampling proce-
dures in the current study, please see Rodríguez-Zaragoza et al. (2016).

During the balancing process, the model was checked based on the following six 
guidelines proposed by Heymans et al. (2016): (1) The Ecotrophic Efficiency (EE) 
of all compartments had to be <1.0 (Ricker, 1968), (2) the Gross Efficiency (GE) of 
all compartments had to be <0.3 (Christensen & Pauly, 1993). If any inconsistencies 
were detected, the average biomass was modified within the confidence limits (±1 
standard deviation), (3) the Net Efficiency of all compartments had to be >GE, (4) 
the Respiration/Assimilation (R/AS) had to be <1.0, (5) the Respiration/Biomass 
(R/B) values for fishes had to be 1–10 year−1 or, for groups with higher turnover, 
50–100 year−1, and (6) Production/Respiration (P/R) had to be <1.0 (Table 1).

The Ecospace simulations were performed using EwE software v. 6.4.1. Dispersal 
rates ranged from 300 km year-1 for fishes to 1.0 km year-1 for species that lived in 
only one subsystem and for sessile organisms, set based on personal observations 
made during fieldwork and from the range given by Ortiz et al. (2010) and Varkey 
et al. (2012). The relative dispersal values in poor habitats (i.e. unsuitable for the 
taxa) were the highest (factor = 10) for mobile consumers, such as most species and 
functional groups of fish, medium (factor = 5–8) for spiny lobster, large benthic 
epifauna, small benthic epifauna, zooplankton, and phytoplankton, and lowest (fac-
tor = 2–4) for slow and sessile species or functional groups. Relative vulnerability 
to predation in poor habitats ranged from 2.0 for top predators (e.g. S. barracuda 
and M. bonaci) to 100.0 for the species and functional groups of lower trophic lev-
els. Relative feeding rate in poor habitats ranged from 1.0 for top predators, plank-
ton and detritus, to 0.01–0.02 for slow motion and sessile organisms. For all other 
components an intermediate value (0.5) was used. The spatial distribution of each 
subsystem in the study area is shown in Fig. 1c. Several fishery scenarios were eval-
uated over a five-year period, where only the impact on the four most important 
species was considered in terms of catch and demand (spiny lobster, queen conch, 
S. barracuda, and L. analis). Spatially- explicit simulations were performed consid-
ering exclusive harvest from each subsystem, as well as simultaneous harvests in all 
subsystems (Fig. 1d). Ecospace simulations were conducted based on three flow 
controls (i.e. different vulnerabilities, (vij)) that affect the energy transfer rate 
between two compartments. The following flow controls were used: bottom-up (v = 
1.0), mixed (v = 3.0), and top-down (v = 5.0). This approach was used because of the 
lack of the fishery data’s time- series, making it is impossible to calibrate the EwW 
model. Market prices and operational costs were not included in the spatial 
simulations.

F. A. Rodríguez-Zaragoza and M. Ortiz
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3  Macroscopic Network Properties and Dynamic-Spatial 
Model Responses

The functional groups of benthic autotrophs (BA), small benthic epifauna (SBE), 
and sponges comprised of the highest biomass of the entire Banco Chinchorro reef 
(Table 1). The high biomass magnitude for BA has been reported previously for 
other Mexican coral reefs (Acosta-González et al., 2013; Arias-González, González- 
Gándara, Cabrera, & Christensen, 2011; Arias-González, Nuñez-Lara, González- 
Salas, & Galzin, 2004). The size of the autotroph biomass has been conjectured to 
be a consequence of the lower herbivore pressure exerted by sea urchins, the impact 
of fishing on large herbivores and the increase in sediments and nutrients from run-
off in the seawater (Hughes, 1994; Jackson et al., 2001; Hughes et al., 2003; Fung, 
Seymour & Johnson, 2011; Arias-González et  al., 2017). Similarly, the BA 
accounted for the highest values of Total System Throughput (TST) and Ascendency 
(A). However, the fish M. bonaci presented the lowest percentage of Average Mutual 
Information (AMI), which accounts for the complexity in the entire system (Table 2).

Regarding ecosystem growth and development, the size of the TST for Banco 
Chinchorro reef was higher than those reported for other coral reef systems, such as 
those in the Indo-Pacific (Arias-González, Delesalle, Salvat, & Galzin, 1997; Arias- 

Table 2 Network flow indices 
for the ecological system of 
Banco Chinchorro coral reef 
(Mexico) after steady-state 
mass trophic model by 
EcopathWithEcosim. The 
units are given in g wet weight 
(g ww) and Flowbit is the 
product of flow 
(g ww m−2 year−1) and bits

Network flow indices

Total system throughput (TST) 
(g ww m−2 year−1)

144,980.70

Ascendency (A) (g ww m−2 year−1* 
bits)

184,988.00

Overhead (Ov) (g ww m−2 year−1*bits) 119,299.50
Development capacity (C) 
(g ww m−2 year−1*bits)

304,287.40

Average mutual information (AMI) 
(dimensionless)

1.28

M. bonaci is accounting for the lowest 
% of AMI

0.000037

Pathway redundancy (of internal flows 
of Overhead) (%)

44.54

A/C (%) 40.69
Ov/C (%) 59.31
Finn’s cycling index (FCI) (%) 0.32
Finn’s mean path length (FPL) 
(dimensionless)

2.09

Food web connectance (FWC) 
(dimensionless)

0.25

Omnivory Index (OI) (dimensionless) 0.11
Mean trophic level of the catch 
(dimensionless)

3.09

Macroscopic Network Properties and Spatially-Explicit Dynamic Model of the Banco…
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González & Morand, 2006; Liu et al., 2009), Eastern Tropical Pacific (Okey et al., 
2004), and the Caribbean Sea (Arias-González et al., 2004; Opitz, 1996; Rodríguez- 
Zaragoza, 2007). However, our results were similar to those described for the 
Mahahual and Yuyum reefs located off the Mexican Caribbean coast (facing Banco 
Chinchorro) (Rodríguez-Zaragoza, 2007) (Table 2). The high biomass of the BA 
could explain the large size of TST.  The Ascendency, Overhead, Development 
Capacity, A/C, and Ov/C ratios indicated that Banco Chinchorro reef would be a 
more developed, organized, and healthy ecological system compared to other 
coastal ecosystems (Baird and Ulanowicz, 1993; Wolff, 1994; Heymans and Baird, 
2000; Wolff et al., 2000; Ortiz & Wolff, 2002; Arias-González et al., 2004, 2011; 
Arias-González & Morand, 2006; Ortiz, 2008; Cáceres et  al., 2016; Ortiz et  al., 
2010, 2015, 2016), but also that this system was less resistant to perturbations. The 
latter factor could be explained by the lower harvest pressure exerted on this 
ecosystem.

With regard to the food web structure, Finn’s cycling index (FCI), Finn’s mean 
path length (FPL), and food web connectance (FWC) were calculated for Banco 
Chinchorro reef and were higher than those described for some Mexican Caribbean 
coastal reefs (Rodríguez-Zaragoza, 2007). Nevertheless, the system omnivory index 
(OI) for the system revealed similar magnitudes compared to models constructed 
for other coral reefs ecosystems (Arias-González & Morand, 2006), coastal lagoons 
(Vega-Cendejas & Arreguín-Sánchez, 2001), and benthic communities of temperate 
systems (Ortiz, 2008; Ortiz et al., 2010; Taylor, Wolff, Mendo, & Yamashiro, 2008). 
The impact of fishing on the network showed that the mean trophic level of catch in 
this study was similar to those described for other coral reefs (Arias-González et al., 
2004; Liu et al., 2009; Rodríguez-Zaragoza, 2007) and mainly indicated exploita-
tion of organisms from high and intermediate trophic levels. This outcome suggests 
that the fisheries of Banco Chinchorro reef have not yet generated severe distur-
bance to the ecosystem, such as would be the case should there be fishing down the 
food web process, which occurs when there is a considerable reduction in the popu-
lation size of the large predatory fishes at the top of the food webs, as has been 
observed in other marine ecosystems (González, Torruco-Gomez, Liceaga-Correa, 
& Ordaz, 2003; Pauly, Christensen, Dalsgaard, Froese, & Torres, 1998).

The spatially dynamic simulations showed quite similar qualitative and quantita-
tive patterns of direct and indirect effects on the remaining compartments using 
mixed and top-down flow control mechanisms. Conversely, the magnitude of 
changes using bottom-up flow control was markedly lower. According to the fishing 
model scenarios, the subsystems Cueva Tiburones, La Caldera, and El Chankay 
propagated the highest effects on the other components in the system, thus the har-
vest trajectory in these areas should be monitored. Likewise, fishing simultaneously 
in the five subsystems would not spread the greatest impact across the entire ecosys-
tem; therefore, a harvest rotation policy would not be advisable (Fig. 2). It is rele-
vant here to indicate that the validity of these findings is difficult to evaluate because 
only a few Ecospace models have been constructed for cross-checking between 
observed and predicted results. Despite this limitation, the dynamic model pre-
sented in the current study should be considered as a general (qualitative) strategy 
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for examining the consequences of spatially-explicit fishing pressure, which could 
be useful for the design of sustainable multispecies fisheries management (Pauly 
et al., 2002), particularly considering that protected marine areas could restore the 
populations and ecological networks of adjacent highly exploited systems (Arias- 
González et al., 2004).

Although we are well aware that the quantitative trophic model constructed and 
analyzed in this study was a partial representation of the overall trophic makeup and 
interactions underlying the dynamics within the Banco Chinchorro reef ecosystem, 
such limitations are common in any type of model and independent of the model´s 
degree of complexity (Levins, 1966; Ortiz and Levins, 2011, 2017). In the current 
model, the following constraints were identified: (1) system complexity was reduced 
concerning the composition of several functional groups, although the most abun-
dant species were considered; (2) regardless of the inherent well-known limitations 
and shortcomings of the Ecopath and Ecosim theoretical frameworks (Christensen 
& Walters, 2004), and recognizing that ecological processes occur in changing envi-
ronments (Levins, 1968), the constructed model and its spatially-explicit  simulations 
represented underlying system processes only when considering their short-term or 
transient dynamics (Ortiz, 2018; Ortiz et al., 2013, 2015, 2017).

Fig. 2 Spatially-explicit propagation of direct and indirect effects after 5  years of simulation 
under six harvest scenarios using Ecospace routine of EwE in each subsystem. All simulations 
were done using bottom-up (v = 1.0), mixed (v = 3.0), and top-down (v = 5.0) flow control 
mechanism
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