
Fuzzy Vault for Behavioral
Authentication System

Md Morshedul Islam(B) and Reihaneh Safavi-Naini

University of Calgary, Calgary, Canada
{mdmorshedul.islam,rei}@ucalgary.ca

Abstract. A fuzzy vault encrypts a message using fuzzy data such as
user’s biometric data as the vault key. Fuzzy vault can be used to pro-
tect users’ cryptographic keys in smart cards and inside applications.
We consider fuzzy vault based on behavioral data. A behavioral profile
of a user consists of a set of features that collectively authenticates the
user. Compared to biometric vault behavioral vault has the advantages
of being revocable and less privacy sensitive. Fuzzy vaults for behavioral
data, however, introduces significant challenges including feature repre-
sentation, and feature matching algorithms that can provide the required
correctness, security, and efficiency. We design and analyze a fuzzy vault
based on the user’s behavioral data that employs a novel soft-decision
decoding algorithm and implement our design for two behavioral authen-
tication (BA) systems. Our approach is general and can be used for other
BA systems. We discuss our results and directions for future research.
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1 Introduction

Fuzzy vault was proposed by Juels and Sudan [12] to encrypt (lock) a sensitive
value into a cryptographic vault such that unlocking needs a decryption key that
is “close” to the encryption key. In a fuzzy vault, the sensitive data (e.g., a
cryptographic key) defines a polynomial f(x) of degree k over a finite field Fq,
that will be evaluated for each element of a “locking” set A ⊂ Fq, to form a
set of “legitimate points”, L = {ai, f(ai) : ai ∈ A}. The set L is then combined
with a set Ch of chaff points that are randomly selected from F

2
q and used to

hide the elements of L in the vault (ciphertext) V = L ∪ Ch. The vault can be
“opened” (and the sensitive message recovered) by using an unlocking set B,
where B has a large overlap with A. Biometric-based fuzzy vault uses a user’s
biometric features for the locking and unlocking sets. Fuzzy vaults have been
implemented using fingerprint, iris, and face data [6,14,15,17,21], and for higher
security, using multimodal biometric systems [13]. Fuzzy vaults have been used
for biometric-based protection of cryptographic keys in smart cards [6] and online
authentication systems [24]. In these applications, the secret key is stored in the
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fuzzy vault and becomes available to the system when the user presents their
correct biometric. Fuzzy vault provides an attractive solution for the protection
of keys in mobile apps and electronic wallets.

Juels et al. proved that recovering the correct polynomial without knowing
the set A, has exponential computation in the number of chaff points. Biometric
implementations of fuzzy vault, however, introduce new attacks due to imperfect
selection of chaff points, and for the attacks on the underlying authentication
systems. Protection against these attacks together with providing efficiency has
been widely studied [6,21,22]. Using biometric-based fuzzy vaults in multiple
applications introduces a new threat: if multiple vaults of the same user are
leaked, the user biometric data will be compromised [19]. This will allow all
the previous vaults to be opened, and also the future usage of the fuzzy vault
for that user becomes insecure. So, it is important to make the bio-data of the
user changeable (revocable). We achieved this goal by using behavioral data and
referred to such vaults as BAVault. A Behavioral Authentication (BA) system [3,
8,10] constructs a profile for the users by identifying and capturing a number of
behavioral features during well-designed activities. A behavioral profile consists
of a set of d features, each represented by a set of n samples, forming a n × d
matrix. A BAVault will use a user’s profile to lock a secret, and its unlocking
algorithm will “match” the profile of a verification claim to unlock the vault.

Advantages of BAVaults compared to biomteric based systems are less link-
ability of behavioral data, revocability by replacing the underlying BA system
with a similar system, and no requirement for additional hardware.

Challenges of Implementing a BAVault. The main challenge of BAVaults is the
high dimensionality of feature data that results in inefficient implementations.
In a BA system, a feature consists of n sample vectors and direct mapping of a
behavioral feature to a finite field results in a high degree extension field (e.g.
in DAC[10] a sample feature vector has dimension 40–120). Generating (chaff
points), locking and unlocking over a field of this size result in an extremely
inefficient system (see Section 4).

Our Work. In BA systems, a feature corresponds to a probability distribution.
We represent a feature with its first and the second moments (mean and vari-
ance). We use the samples in the profile and the verification claim to construct
estimates of these moments. The task of feature matching is to decide if the two
pairs of estimates correspond to the same underlying distribution. This allows us
to represent a feature as a tuple of two elements of Fq, and will result in a vault
that is as efficient as a fingerprint vault (i.e. using a field extension of degree 2 or
3) [6,17,21]. It, however, requires a well-designed decoding approach to reduce
the error in matching. A major challenge in using this compact representation is
generating chaff points. In a BAVault, a feature is mapped to a point (ai, f(ai)),
where ai is obtained from the mean and variance of the feature. A chaff point is
of the form (ai, āi) where ai represents the mean and variance of a hypothetical
distribution, and āi �= f(ai). The value of ai in chaff point must be chosen such
that its corresponding distribution will be distinguishable for the distributions of
all features using the chosen statistical tests. Additionally, the set of chaff points
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should not “separable” from the set of vault points (ai, f(ai) which correspond
to true features.

Figures 1a and 1b are the block diagrams of the proposed locking and unlock-
ing algorithms of the BAVault, respectively. The algorithms follow the structure
of biometric vault (e.g., Fig. 2 in [21]), with the new components indicated with
dashed lines. In a BAVault, the secret message is first encoded using Cyclic
Redundancy Check (CRC) and used to define a polynomial f(x). The features
are preprocessed using a random projection (RP) algorithm that transforms the
feature set into a smaller set of features, each a random linear combination
of the original features. Each projected feature is then represented by a pair
ai = (μi, σ

2
i ) of the mean and variance of the transformed feature which will

be used as the evaluation points for f(x). A chaff point (ai, āi) is generated
through a multi-step process such that ai corresponds to a hypothetical dis-
tribution with mean and variance (μ, σ2), which is not “close” to real feature
where closeness is measured by using statistical tests for mean (tTest [16]) and
variance (fTest [9]). The unlocking algorithm is a novel soft-decision decoding
algorithm (details is in Sect. 4).

We evaluate the security of the vault in protecting, (i) the secret message,
and (ii) the privacy of the profile. We consider the following attacks that have
been used to evaluate the security of biometric vault systems: (i) chaff point
recovery attack that uses uneven distribution of vault points in the vault space
allowing the attacker to infer the correct feature points, (ii) using multiple vaults
with the same user profile that allows the attacker to recover the true features
by comparing the set of vault points, and (iii) impersonation through mimicry
attack against the underlying BA system.

BAVault Implementation and Experiments. We implemented and evaluated our
design on two BA systems. The first system is Touchalytics [8] that uses touch
behavior such as up-down and left-right scrolling to verify the user’s identity. The
second system, DAC (Draw A Circle) [10], is a challenge and response system
that verifies the users’ identity using their behavior in drawing challenge circles.
We designed a feature-based verification algorithm and tuned the parameters
to ensure a lower error rate. The collected data was also used to implement
and evaluate the BAVault. We used the published data for Touchalytics, and
collected new data for the redesigned DAC. Through extensive experiments, we
show that (i) both BAVaults have acceptable error rate; (ii) a random invalid
claim can recover a very small number of legitimate points, while a mimicry
attack can recover more feature points. However, in both cases, the recovered
features are not sufficient to unlock the vault. We also show that RP prevents
the multi-vault attack, and ensures that in a compromised vault user’s profile
will not be leaked. We estimate the number of polynomials that a brute force
attacker must check to achieve success. The secret message sizes in Touchalytics
and DAC based BAV ault are 192–208 bits and 448–480 bits, respectively.

Ethics Approval. We obtained ethics approval from the Research Ethics Board of
our institution and performed our experiments in accordance with ethics guide-
lines governing user personal data privacy and security.
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Paper Organization. Section 2 is background and related works. Section 3 defines
BAVault and Sect. 4 gives the design of our BAVault. Section 5 is implementation
and experimental results and Sect. 6 concludes the paper.

2 Preliminaries and Related Works

We recall definitions and results that are used in the remainder of the paper.

BA System. A BA system constructs a behavioral profile for a user, which con-
sists of a set of features measurements, and uses it to verify verification request,
a second set of measurements of the features. A BA profile X = (F1, F2, · · · , Fd)
consists of d features, and can also be represented by a set {xi, i = 1, · · · , n} of
n vectors of dimension d over Rd. The set {xi,j , i = 1, · · · , n} grips n samples of
a feature Fj , represents intrinsic behavioral characteristics of a user.

Matching Algorithm. A matching algorithm M(X,Y) compares verification data
Y with the stored profile X of the claimed user u, and returns 1 (accept),
or 0 (reject). Feature-based matching algorithms [3,10] compare each feature
in the profile against the corresponding feature in the claim, and produces
a matching score that will be compared against a predefined threshold to
accept or reject the claim. A BA system has (δ1, δ2)-correctness, if it satisfies
Pr[M(X,Y) = 0 | u = v] ≤ δ1 &Pr[M(X,Y) = 1 | u �= v] ≤ δ2. False Accep-
tance Rate (FAR) and False Rejection Rate (FRR) are used to estimate the
value of δ1 and δ2, respectively. One can combine two parameters into a single
one, δE Equal Error Rate (EER), where FAR and FRR are equal. BA systems
may use vector-based matching algorithm [8] too. For the BAVault, we need to
use feature-based matching.

Attacks on BA Systems. Attacks on BA systems aim to fool the matching algo-
rithm to accept the verification data of an invalid user. In a mimicry attack
[25] the attacker attempts to mimic a user u by learning and mimicking u’s
behavior. An impersonation attack may use mimicry to claim a victim’s iden-
tity. The success of this attack depends on the design of the BA system and the
choice of features. We do not consider network-based attacks where the attacker
eavesdrops communication of the valid user and uses their data as the verifi-
cation data in an attacked session. Such attacks can be prevented by securing
the communication channel using protocols such as Transport Layer Security
(TLS) [18].

Random Projection (RP). RP is a distance preserving transformation that
projects vectors in a high-dimensional space to a lower-dimensional space using a
random projection matrix. The projection matrix Rt×d, t < d, projects a vector
x ∈ R

d to a vector x′ = Rx, x′ ∈ R
t, and (approximately) preserves the relative

Euclidean distances between the vectors in the projected space. Elements of
R are sampled from a standard normal distribution N(0, 1) (see Lemma 1.3
of [23]). For faster computation we use discretized form of N(0, 1) given by
Pr(x = +1) = 1

2φ , P r(x = +0) = 1− 1
φ , P r(x = −1) = 1

2φ . Distance preserving
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property of the resulting RP is shown in [1] for φ = 3. It was shown in [20] that
applying RP in the BA system will maintain correctness property of the system,
and will also provide privacy for the profile.

Definition 1 (Fuzzy Vault [12]). A fuzzy vault VA is specified by a 4-tuple
of parameters (Fq, r, t, k) and works as follows.

1. To encrypt a uniformly random secret message m = (m0 · · · mk) ∈ F
k+1
q , a

polynomial f(x) of degree k is constructed: f(x) =
∑k

i=0 mix
i.

2. The polynomial is then evaluated on a set of points A = {ai ∈ Fq : i =
1, · · · , t}, called the locking set. The set L = {(ai, f(ai)) ∈ F

2
q : i = 1, · · · , t}

forms the set of legitimate points in the vault.
3. To hide L, a random set of r − t chaff points Ch = {(ai, āi) ∈ F

2
q : i =

1, .., r − t} are selected with the property that āi �= f(ai), to get spurious
polynomials.

4. The fuzzy vault is obtained by permuting the elements of VA = L ∪ Ch, and
is published together with the parameters (Fq, r, t, k).

5. To unlock VA (decrypt the secret) using an unlocking set B, a decoding algo-
rithm is used to find the best estimate of the legitimate points, which will be
used to recover the message.

The output of the decoding algorithm may contain legitimate and chaff points.
To recover m, one can use Reed-Solomon (RS) decoder to correct the errors in
the recovered set [12], or append a CRC to the secret message and use the pair
(m,CRC(m)) in f(x). The CRC will be used to identify the correct polynomial
[17,21,22]. We will use this latter method that results in better error recovery.

Attacks on Fuzzy Vaults. Attacks can be grouped into, (i) algebraic attacks, and
(ii) implementation attacks. In an algebraic attack, also called brute force attack,
an attacker examines all candidate polynomials to find f(x). In implementation
attacks, the weaknesses of the vault implementation are used to recover the secret
message. Lemma 1 of [6] gives the relation between the success probability of
brute force attack and the number of spurious polynomials that the attacker must
examine in biometric fuzzy vaults. In CRC-based biometric fuzzy vault, a brute
force attacker must check on average

(
r

k+1

)(
t

k+1

)−1
polynomials [6]. Chang et al.

[5] showed how to distinguish chaff points if they are not evenly distributed in
vault space. Scheirer et al. [19] considered a number of attack scenarios including
multiple vaults attack where the attacker knows multiple vaults (different m)
with the same user biometric. This will allow the attacker to relate the data from
different vaults to recover the secret. They also considered the loss of biometric
privacy if the attacker learns the secret of a published vault.

3 BAVault

A BAVault uses a (δ1, δ2)-correct BA system (see Sect. 2) and profile data X of
the BA system to lock the vault. The BAVault will open only by using the veri-
fication data Y of the BA system of the same user. The feature-based matching
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algorithm of the BA system employs a similarity function Sim (., .) to decide if
two sets of samples have the same underlying distribution and output a confi-
dence value pi,j . A larger pi,j corresponds to higher confidence about the “same-
ness” of the distributions of the two sets. BAVault uses Sim (., .) function to
measure the similarity of elements of B and VA.

Definition 2. A BAVault is defined by the tuple (Fq, r, t, k, aux), where the
first four parameters are the same as Definition 1, and aux is the auxiliary
data that can be provided with the vault. BAVault has a pair of algorithms
(VLock,VUnLock) to lock and unlock the vault.

1. VLock works the same as Steps 1–4 in Definition 1 using the profile data X.
Locking algorithm uses the feature set of X to construct the legitimate point
set for the secret value m ∈ F

k+1
q . We use A, L, and Ch to denote the locking

set, sets of legitimate points and chaff points, respectively. Points in Ch must
each, (i) have a minimum “distance” from any legitimate point (to remain
distinguishable by the BA matching algorithm), and (ii) should not satisfy the
polynomial f(x).

2. VUnLock has a soft-decision decoding algorithm CGen which uses the
Sim (., .) function of the BA system to construct a r × t confidence matrix
[pi,j ], that will be used to recover the f(x).

(Δ1,Δ2)-correctness: Consider a (δ1, δ2)-BA system that uses a feature match-
ing function Sim (., .), a matching algorithm M(., .). Let X and Y be two BA
profiles (or claims). For a uniformly distributed secret m, a BAVault VA ←
VLock(X,m) is (Δ1,Δ2)-correct if the conditions: (i) Pr[VUnLock(VA,Y) �=
m|M(X,Y) = 1] ≤ Δ1, and (ii) Pr[VUnLock(VA,Y) = m|M(X,Y) = 0] ≤
Δ2 hold. The correctness property1 of the BAVault is also referred to as Δ1-FRR
and Δ2-FAR.

Security. We evaluate the security of a BAVault in (a) protecting the secret m,
and (b) ensuring the privacy of X. Following Kirckoff’s principle, we assume the
details of the vault system is public. For (a) we consider a number of attacks,
including when the attacker has access to multiple vaults. To evaluate (b), we
assume the attacker knows a vault VA and its corresponding message m.

Attacker strategies. For (a), that is message recovery, we consider (i) algebraic
attacks, and (ii) system (implementation) attacks, including attacks that exploit
non-uniform distribution of vault points, attack using multiple vaults of the same
user, and using impersonation attack on the BA system. For (b), that is profile
privacy, the attacker knows the secret message of a published vault that allows
them to find the points in the vault that correspond to true features.

1 We used FAR and FRR to evaluate BAVault correctness.
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4 A Secure BAVault

Let the locking and unlocking sets be of the same size, that is |A| = |B|. Figure 1a
and 1b are the block diagrams of the BAVault locking and unlocking algorithms.
They are shown in the Appendix, Algorithm 1 and Algorithm 2.

4.1 Locking

The locking algorithm takes m and X and does the following.

Message m. The message is appended with a CRC (preprocessing) and is used
to construct the polynomial f(x).

Profile Data. The profile X will be transformed to X′ = RX by using an RP
(preprocessing). Because of the distance-preserving property of RP, the relative
distances among profile vectors will be maintained and so the correctness of the
feature matching algorithm will not be affected. Assuming that the distribution
of the features Fi in the profile are normal2, the distribution of the projected
features F ′

i will also be normal. We thus represent F ′
i with its mean and variance,

ai = (μi, σ
2
i ). To map (μi, σ

2
i ) to an element of Fq (locking set generation), we

write μi and σ2
i as binary strings, and concatenate them. The number of binary

digits for each component is determined by the required correctness parameters
(Δ1,Δ2), and will determine the finite field size. The set A consists of Fq values
of all transformed features. The mapping of (μi, σ

2
i ) to an element of Fq is one-

to-one and invertible. The polynomial f(x) is then evaluated on elements of
A = {ai}t

i=1 to form the legitimate points set L = {(ai, f(ai)) ∈ F
2
q}t

i=1.
Generating chaff point needs feature similarity evaluation. A feature simi-
larity function SimMV(., .) measures the closeness (sameness) of two distributions
whose estimated3 means and variances are ai = (μi, σ

2
i ) and bj = (μj , σ

2
j ),

respectively. The function uses (i) tTest- test for the sameness of μi and μj ,
and (ii) fTest- test for the sameness of σ2

i and σ2
j , to obtain two confidence

values pm
i,j and pv

i,j , respectively, and combines them by a metadata analyzer
FMethod [4] (Fisher’s method) to obtain a final confidence value.

Available Chaff Points. Chaff points of the form (ai, āi) must be chosen such that
(i) ai does not correspond to the parameters of a distribution that is close to the
distributions of the true features, and (ii) āi �= f(ai). For given ranges R1, R2

of mean and variance, each a subinterval of R, we first find DF the number of
distinct variances in R2 that can be distinguished using fTest test. For this, we
start with the lowest value of the variance R2, σ2

0 , and find smallest σ2
1 for which

SimMV(a0, a1) = 0 for a chosen significance value α. That is the variance test will
consider σ2

1 not similar to σ2
0 . We repeat this starting from σ2

1 , and continue until
the next σ2

i is outside the upper limit of the range R2. For each found value of
σ2

i , we find DT,i, the number of distinguishable means using a similar approach
(now using tTest) within the range R1. This gives an estimate of the number
of available X-coordinates for chaff points.
2 This is true for features of BA systems that have been used in our experiments.
3 From the corresponding sample sets.
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Fig. 1. Block diagram of BAVault (a) locking and, (b) unlocking.

Lemma 1. The available X-coordinate for chaff points is upper bounded by
QX =

∑
σ2
i ∈DF

|DT,i|.

Generating Chaff Points. To provide even distribution for vault points, we use
algorithm ChaffGen (see Algorithm 3 in Appendix) for chaff point generation.
It divides F

2
q into ν2 subareas and attempts to put almost the same number

of vault points in each subarea. The algorithm generates random chaff points
(ai, āi) (that satisfy, ai distinguishable from all feature values, and āi �= f(ai)),
and place them in ν if they satisfy the bound on corresponding subarea, and
reject otherwise. The algorithm first obtains an estimate of the vault size r by
taking into account the required security against brute force attack, determines
r/ν2, the number of allowable points in a subarea. It then obtains the number
of chaff points in a subarea by subtracting the number of true feature points in
a subarea from r/ν2. To evaluate ChaffGen, we used Kolmogorov-Smirnov (KS)
test [11] to estimate the uniformity of vault points, and also the distribution of
their X-coordinates. The vault VA is obtained by permuting the points in each
subarea.

4.2 Unlocking

The unlocking algorithm takes a VA and the verification data Y of a user as
input. It uses the published helper data (aux) to generate R that is used to
transform Y, resulting in the unlocking set B.

Soft Decision Decoding CGen. For an unlocking set B, we find a matching
subset of VA in two steps: (i) a feature matching algorithm FMatch, and (ii)
a set matching algorithm SMatch. Feature matching FMatch uses SimMV(., .) to
construct an r × t matrix ConF = [Pi,j ] of confidence values, by comparing each
element of B against each element of VA. The set matching algorithm finds
a subset of VA that is the best match. We define the best matching subset of
the vault points as a subset that maximizes the total confidence value. The set
matching SMatch must find a subset of r columns of ConF, and in each column
chooses exactly one element, such that no two elements are in the same row. We
formulate this as a Linear Assignment Problem (LAP) [2] by augmenting ConF
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to ˆConF, a r×r square matrix with zeros in all new entries. LAP is a fundamental
combinatorial optimization problem that minimizes the total cost of assigning
agents to tasks when all agent-task pairs are possible but have different costs.
There are efficient algorithms for solving the LAP. The output of CGen is a set
C (see Algorithm 4 in Appendix).

Theorem 1. Algorithm CGen outputs a set C that has the highest total confi-
dence of matching B, in O(r3) number of steps.

The final step is the polynomial reconstruction from C, and uses the CRC
of the secret message to recover the correct polynomial.

4.3 Security Analysis

Message recovery by brute force attack needs searching among at least
ψ
3 qk−t(r/t)t spurious polynomials for every ψ > 0 with probability 1 − ψ (see
Lemma 1 of [6]) that go through t vault points, or

(
r

k+1

)(
t

k+1

)−1
polynomials

that go through k + 1 vault points. The chaff points generation algorithm will
ensure the chaff points are evenly distributed and cannot be distinguished from
true feature points.

Multi-vault Attack. Consider two vaults V i
A and V j

A for a profile X. Using two
different random matrices Ri and Rj ensures that the projected profiles X′

i =
RiX and X′

j = RjX are independent and will not leak any information about X.
Impersonation (mimicry) attack on the underlying BA system will also break the
BAVault. This is similar to the attack on the biometric-based vault. A careful
selection of the behavioral features will protect against this attack.
Profile privacy requires profile data to be protected even if the attacker knows
the secret message of a vault. Using m and the vault, an attacker will only be
able to recover the projected profile X′. However, as shown in [20], recovering
X from X′ using the minimum-norm solution to R, which is the best-known
estimator of X from X′, cannot recover the original X.

5 BAVault Implementation

We implemented and evaluated our proposed BAVault using Touchalytics [8]
and DAC [10] data.

Touchalytics uses users’ touch data (up-down and left-right scrolling) when
interacting with an app, and uses a vector-based matching algorithm to achieve
an EER of less than 3.0%. The system uses 30 behavioral features and data from
41 users.

DAC uses the behavioral features of users that are collected while drawing
random challenge circles that are presented to them, to verify their verification
claims. We extended DAC [10] and added a new set of features. This results in
65 features and reduces the EER of DAC from 5.0% to 1.05%.
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Experiment Setup. We downloaded and cleaned4 Touchalytics data before
using them. There are 41 profiles and 41 valid verification claims. For DAC, we
collected data from 199 Amazon Mechanical Turks (AMT). Suitability of AMT
for cognitive behavioral experiments has been confirmed in [7]. After removing
outlier data (around 2.66%), we obtained 195 profiles and 891 valid verification
claims (each Turk had multiple verification attempts).

To obtain reliable features distributions from the collected data, we combined
all user data, shuffled them, and divided them into two halves: the first half was
used for vault locking and the second half was used for vault unlocking. Every
profile (unlocking claim) has 93–615 vectors of dimension 30 in Touchalytics
BAVault, and 40–120 vectors of dimension 65 in DAC BAVault. Against each
vault, there were one valid unlock attempt and 5 invalids unlock attempts from
5 randomly chosen users. The locking and unlocking of Touchalytics and DAC
based BAVault takes (10.78 and 1.66 seconds) and (26.89 and 3.37 seconds),
respectively, on a desktop that uses Intel Core(TM)i5-2400 CPU (3.10 GHz),
8 GB RAM.

Feature Encoding. For RP, the dimension of projected spaces for Touchalytics
and DAC are t = 25 and t = 45, respectively. We generated R from the dis-
crete distribution uses in [1] and normalized profile data after RP. To measure
distinctiveness and normality of BA features we used SimMV(., .) function, and
Chi-square goodness-of-fit test. Touchalytics and DAC profiles had 97.37% and
92.81% distinct features before RP, and 99.82% and 97.73%, after RP, respec-
tively. The normality test results for the two systems before and after RP are
2.32% and 53.4%, and 65.56%, 54.83%, respectively. EER of both BA systems
after RP remained almost the same; 1.20% in Touchalytics and 4.66% in DAC.

To encode (μ, σ2) as an element of Fq, we remove the decimal points of μi

and σ2
i , take the three most significant digits of each, and concatenate them. For

σ2 we only consider two digits because the first digit after the decimal place is
always zero. In Touchalytics profiles all ai ∈ A are in the range [15400, 84600],
and in DAC profiles they are in [15000, 80500]. We bring all the data to the
range [0,65535] by subtracting the lowest value, and cutting off all the values
above 655355 and then represented them as a binary string in F216 .

Generate Chaff Points. We estimated QX for both BAVaults. The mean and
variance range for the features in Touchalytics is between [230.0, 820.0] and
[1.02, 52.02], respectively. For DAC, the corresponding values are [108.0, 875.0]
and [1.02, 98.02], respectively. For Ni = Nj = 300 (average samples in a features)
in Touchalytics BAVault, DF allows 24 distinct σ2, and for each σ2

i ∈ DF the size
of all DT are 1896, 884, · · · , 42, respectively. In DAC BAVault for Ni = Nj = 80
the set size |DF | = 21 and all |DT | are 2464, 1039, · · · , 33, respectively.

To distribute vault points evenly, we divided the range of both X and Y -
axis of both vaults into equal size segments which produce ν2 = 25 subareas. We
4 We replace ‘NaN’ and ‘Infinity’ by zero and dropped the ‘doc id’, ‘phone id’, and

‘change of finger orientation’ columns.
5 In Touchalytics there are around 3.70% of ai that are out of the range [0, 65535]

and in DAC it is only 0.32%. This rounding slightly affects BAVault correctness.
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Fig. 2. The distribution of recovered legitimate points for both valid and invalid claims
for the different number of chaff points. Figure (a) for Touchalytics based BAVault and
(b) for DAC based BAVault.

chose |V | =125–325 for Touchalytics and |V | =145–345 for DAC based BAVault.
ChaffGen algorithm counts the number of legitimate points in each subarea and
added random points to each subarea when possible, taking into account the total
vault size |V |. The KS-test gives average confidence value for the uniformity of
Touchalytics and DAC based BAVault as 0.69 and 0.66, respectively. The average
confidence values of KS-test for uniformity of X-components of the two vaults
are 0.89 and 0.78, respectively.

Recovering Legitimate Points. The CGen algorithm of the BAVault outputs
a set C ⊂ VA that has t̂ ≤ t legitimate points out of t recovered points. The
value of t̂ depends on the unlocking claim. In our experiments, we added 100–300
chaff points to each vault. This number can be increased at the cost of increased
encoding and decoding time. Figure 2 is the recovered legitimate points in a Box-
plot for both valid and invalid claims. The valid and invalid claims can recover
15–22 and 0–3 (Touchalytics) and 33–41 and 7–20 (DAC), legitimate points.
A valid user may not be able to recover all legitimate points because of the
variability of the user’s behavior, and an attacker may be able to recover some
of the legitimate points of a target vault by using attacker’s profile and public
data R. The Box-plots show that the gap between the first quartile corresponding
to the valid claims and the third quartile corresponding to the invalid claims is
large and both BAVaults work correctly. The gap increases with the number of
chaff points.

BAVault Correctness and Security. Table 1 summarizes correctness and
security of the two BAVaults. The values are inline with existing fuzzy vault
systems. The degree of the polynomials in Touchalytics and DAC based
BAVaults are 12–13, and 28–30 respectively, resulting in FAR and FRR to be
0.0% and 2.43%, and 2.56% and 4.65%, respectively. The secret sizes in the two
cases are 192–208 bits, and 448–480 bits, respectively. For a valid polynomial
that goes through t or k + 1 valid vault points, the brute force attacker will
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Table 1. Both vaults ensure sufficient correctness and security. For its higher number
of features, DAC based BAVault allows larger secret size than Touchalytics based
BAVault.

Touchalytics DAC

FAR degree of f(x) :

k = 12-13

0.0% degree of f(x) :

k = 28-30

0.0%-2.56%

FRR 0.0%-2.43% 3.89%-4.65%

Size of m (bits) 192-208 448-480

fcand(x)(CRC) 254 − 258 2101 − 2110

Spurious polynomials 220-226 241 − 256

need to check 220-226 and 241-256 spurious polynomials, or 254-258 and 2101-2110

candidate polynomials in both BAVaults, respectively.

Multi-vault security. Two vaults of a user will have two different vault point sets.
To investigate possible residual relation between the two vaults that share true
features, we used a modification of CGen algorithm which takes V i

A and V j
A and

matches each X-element of the first set against all X-elements of the second set,
and returns a subset C that has the highest total confidence value. This recovers
only 3.0% and 7.0% legitimate points in Touchalytics and DAC based BAVault,
respectively.

Protection Against Impersonation Attack. We considered a pair of profiles Xi

and Xj , that have 5.0%–16.0% overlapping features (e.g. from a mimicry attack).
We then used Xi to construct a BAVaultand used Xj to recover the legitimate
points from the vault. This can recover around 2.0%–9.0% more legitimate points
compared to an invalid claim. This is, however, not sufficient to open the vault.

6 Concluding Remarks

BAVault offers significant advantages over biometric-based fuzzy vaults. We out-
lined challenges of implementing an efficient and secure BAVault, proposed a
design that addresses these challenges, and validated our design analytically and
experimentally. Our work can be extended to use higher-order statistics for rep-
resenting features. Another direction is to employ ranked assignment problem to
use the top t highest ranking sets to improve reliability.
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A Appendix

Algorithm 1: VA ← VLock(X,m)
1: Construct a polynomial. For a secret message m, appends CRC to m to obtain

m′ = [m0, m1, · · · , mk] ∈ F
k+1
q ; define f(x) =

∑k
i=0 mix

i.
2: Profile projection. Use RP to transform X ∈ R

n×d to X′ ∈ R
n×t (t ≤ d). The

random seed that is used to generate R is the helper data (aux).
3: Locking set generation. Each feature F ′

i ⊂ X′ will be represented by its mean and
variance, (μi, σ

2
i ), and encoded to ai ∈ Fq to form a set A = {ai}t

i=1.
4: Polynomial evaluation. The polynomial f(x) is evaluated on the elements of A to

obtain the set of legitimate points L = {(ai, f(ai)) ∈ F
2
q}t

i=1.
5: Chaff point generation. Generate Ch = {(ai, āi) ∈ F

2
q, i = 1, · · · , r − t, āi �= f(ai)}

by using ChaffGen algorithm, taking into account t points in L, and polynomial
f(x). Chaff points must satisfy the required properties.

6: The vault. Permute the elements of VA = L ∪ Ch to obtain VA.

Algorithm 2: {m,⊥} ← VUnLock(VA,Y)
1: Claim projection. The claim Y will be transformed to Y′, using R that can be

reconstructed using aux.
2: Unlocking set generation. Each sample set F ′

j ∈ Y′ will be summarized to a pair
bj = (μj , σ

2
j ) ∈ R

2; the set of t pairs will form the set B = {bj}t
j=1.

3: Recovering the legitimate points. The soft-decision decoding algorithm CGen recov-
ers the legitimate points from VA. The algorithm CGen(VA, B) has two steps: Step
1: FMatch uses SimMV(., .) for each pair of elements of B and VA; Step 2: SMatch uses
an optimization algorithm to find the “best” matching subset C ⊂ VA.

4: Recover the secret. A candidate polynomial fcand(x) =
∑k

i=0 m∗
i xi of degree k is

constructed from k +1 points of C. If the coefficients of fcand(x) do not satisfy the
CRC, fcand(x) is rejected, and a new set is chosen. The process will be repeated
until m is found, or ⊥ is outputted, indicating no polynomial was found.
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Algorithm 3: VA ← ChaffGen(Fq, L, r)

INPUT/OUTPUT:
F
2
q: Vault space

L: Legitimate points set
r: Total vault points
VA: A set of r points.

1: Divide F
2
q in ν2 subareas

2: |νmax| = � r
ν2 	

� max allowable-points in a subarea
3: for each νi do
4: |νi| ← number of (ai, f(ai)) ∈ L
5: if |νi| < |νmax| then

6: w(νi) = [ 1
ν2 (1 − |νi|

|νmax| )]
� calculate the weight

7: else
8: w(νi) = 0
9: end if

10: end for

11: for each k ≤ r − |L| do
� for each chaff point

12: pick a νi based on w(νi)
13: choose ai for νi from X-axis of VA

where ∀bj ∈ VA, SimMV(ai, bj) = 0
� X-component of the chaff point

14: choose āi for νi from Y -axis of VA

where āi �= f(ai)
� Y -component of the chaff point

15: Ch ← {(ai, āi)}
� add chaff point in Ch

16: Update VA ← L ∪ Ch
17: |νi| ← |νi| + 1

18: w(νi) = [ 1
ν2 (1 − |νi|

|νmax| )]
� update weight

19: end for
20: return VA

Algorithm 4: C ← CGen(VA, B)

INPUT/ OUTPUT:
VA = {(a1, a

∗
1), .., (ar, a

∗
r)}

B = {b1, b2, · · · , bt}
C ⊂ VA: t pairs of points

1: ConF = FMatch(VA, B)
2: Φ = SMatch(ConF)
3: for each i ≤ r do
4: for each j ≤ t do
5: if Φ[i, j] = 1 then
6: C ← (ai, a

∗
i )

7: end if
8: end for
9: end for

10: return C
//Pseudocode of FMatch

11: move ∀ai ∈ Fq to ai = (μi, σ
2
i ) ∈ R

2

12: for each ai ∈ VA do
13: for each bj ∈ B do
14: pm

i,j ← tTest(μi, μj);
μi ∈ ai and μj ∈ bj

15: pv
i,j ← fTest(σ2

i , σ2
j );

σ2
i ∈ ai and σ2

j ∈ bj

16: pi,j ← FMethod(pm
i,j , p

v
i,j)

17: ConF[i, j] ← pi,j

18: end for
19: end for
20: return ConF

//Pseudocode of SMatch
21: add r − t pseudo points

B̂ = {b1, b2, · · · , bt, b̂t+1, · · · , b̂r}
22: for each i ≤ r do
23: for each j ≤ r do
24: if j > t then
25: ¯ConF[i, j] ← 0
26: else
27: ¯ConF[i, j] ← ConF[i, j]
28: end if
29: end for
30: end for
31: Φ ← LAP( ¯ConF)

� assign 1 for optimal subset or 0
32: return Φ
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