
Chapter 5
Fundamentals of Network Densification
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5.1 Introduction to Densification

With applications in all sectors of human activity, wireless communications is
widely regarded as one of the most pervasive technology enablers on the planet.
Starting with Marconi’s first transatlantic transmission in 1899 to the introduction of
worldwide cellular networks in the 1980s and their subsequent evolution from sup-
porting predominantly voice-driven applications to a largely data-driven services,
the past 120 years has seen a remarkable transformation of this technology. More
recent advancements in Internet-enabled computing and communication devices,
primarily smartphones, tablets, wearables, and laptops, have increased mobile data
traffic tremendously. According to the well-known predictions by Cisco [1], there
has been almost 4000-fold growth in the mobile data traffic over the past 10 years
and nearly 400-million-fold growth over the past 15 years. The monthly global
mobile data traffic is estimated to be well over 35 exabytes already [2]. Developing
efficient techniques to cope up with this data deluge is a key challenge faced by the
wireless communications industry today.
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Since history is the best teacher, it will be instructive to understand which
technologies have contributed the most to the increase in wireless network capacity
in the past. For this, we rely on the well-known observations made by Martin
Cooper, Chairman Emeritus of ArrayComm, that for the past 104 years, the number
of conversations (voice or data) that can be carried out in a given area using all the
available radio spectrum has doubled every 2.5 years [3]. This observation is often
termed Cooper’s law. That means there has been a one million fold increase in
“capacity” over the past 45 years. Out of this one million fold increase, almost 1600
times increase is attributed to spectrum reuse (equivalently, denser deployments),
25 times to more spectrum, 5 times to modulation and coding, and 5 times to
frequency division. This fact alone should be sufficient to put the importance of
network densification in perspective.

The performance of a wireless system is primarily measured in terms of the
achievable data rate, which is further linked to three important metrics, namely,
available spectrum, link efficiency, and signal to interference plus noise ratio
(SINR), via the famous Shannon-Hartley theorem. Specifically, the throughput of
a single user in a cellular network can be expressed as [4]

c = m

(
W

n

)
log2 (1 + SINR) , (5.1)

where W denotes the signal bandwidth of the base station (BS), n denotes the
number of user equipment (UE) associated with this BS (that are sharing the same
bandwidth), and hence W/n is the bandwidth available to each UE. Further, m

captures the increase in capacity because of having multiple antennas, e.g., through
supporting simultaneous streams of information. Assuming the densities of BSs and
UEs (equivalently, average number of nodes per unit area) be λ, and λu, respectively,
n would be of the order of λu/λ. From the above discussion, it is evident that the
UE throughput can be increased by increasing either or all of the four parameters:
m, W , SINR, or λ. Here, W can be increased by allocating more spectrum, m can
be increased by adding more antennas at the BS and UE, and λ can be increased
by adding more BSs, which is also known as densification and is the main topic
of this chapter. As noted above already, densification alone has contributed almost
1600-fold increase out of the total one million fold increase in capacity over the past
45 years. This is primarily because the addition of more BSs offloads users from the
existing BSs, thus providing higher resources to each user, which is often termed
the cell splitting gain [5].

Early cellular networks were sparse, and hence densification of these networks
helped them fill coverage holes by increasing the received serving power at UEs.
These BSs providing service to large areas (equivalently, having large coverage
footprints) are called macrocell BSs. In the case of third-generation (3G) cellular
systems, the primary aim of macro BS densification was to increase the transmission
rate in specific areas, for example, macro-BSs deployed in the urban areas [6]. An
effect of increased interference due to the densification of BSs was mitigated using
frequency reuse and sectorized BS technologies. The density of macro-BSs for 3G
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cellular systems was not more than 4–5 BSs/km2. In the fourth-generation (4G)
cellular networks, including long-term evolution-advanced (LTE-A), new types
of BSs, such as micro-cells, pico-cells, and femto-cells, have been deployed for
enabling high-speed data transmission. The targeted density of these new BSs, often
collectively called small cells, is about 8–10 BSs/km2 [6]. The micro-cells and
pico-cells are often deployed by service providers to complement the capacity of
the existing networks, e.g., to enhance the throughput in specific areas in order
to provide in-store services such as in malls and stadiums. On the other hand,
femtocells are deployed directly by the users to improve coverage or capacity in
small areas, such as in a house or in office. In both 3G and 4G cellular systems,
the aim of BS densification was to improve the transmission rate, and the major
challenge was interference mitigation. The Third Generation Partnership Project
(3GPP) 4G LTE networks included small cell technology in their specifications
throughout the second decade of 2000 up to now [7]. Over 14 million small cell BSs
have been deployed worldwide till February 2016, and out of this over 12 million
BSs were residential.

Now coming to the fifth-generation (5G) cellular networks, the key technologies
of 5G are massive multiple-input multiple-output (MIMO) antennas, millimeter
wave communications, and small cells. In massive MIMO, hundreds of antennas
are used for transmitting gigabit-level data traffic. If we constrain the 5G BS power
to about the same as that of 4G BS power, there will be a 10–20-fold reduction in
transmission power per antenna compared to 4G BS power. As a result of this, the
radius of the cell has to be reduced. Systems will also tend to use millimeter-wave
frequencies owing to the availability of hundreds of megahertz bandwidth in these
bands. Given the blockage sensitivity of these frequencies, the transmission range in
such cases would be limited to about 100 m or so [6]. Therefore, it is expected that
5G networks would consist of small cells deployed at a very high density. Despite
that, the interference in these bands remains low and spatially sparse because of
highly directional transmission. This opens up the opportunities to deploy various
types of services all sharing the same band, thus improving spectrum utilization [8].

With this background, we now revisit (5.1) to express the total throughout per
unit area (also termed area spectrum efficiency) as

R ≈ λum

(
W

λu/λ

)
log2 (1 + SINR) ∝ λ. (5.2)

This essentially means that assuming other parameters are not affected with an
increase in λ (an assumption that will be scrutinized in the sequel), densification
can lead to linear increase in the throughput. This solution works up to the current
density of BSs. However, the question is whether this linear relation would remain
valid for infinite densification or whether we have already reached the fundamental
limit to the gains that can be achieved by densification [5]. Answering this question
comprehensively is the main goal of this chapter.
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5.2 General System Model and Performance Metrics

We will start the discussion by describing the general cellular network model
adopted in this chapter. We will also identify the key performance metrics using
which the performance of a cellular network can be quantitatively measured.

Network model We consider a cellular network with multiple BSs and UEs in
which the BSs are located in a 2D space with density λ (i.e., the average number of
BSs in the unit area is λ), and the UEs are spread in a stationary manner with density
λu. The set of BSs is denoted as NB and UEs as NU. Each UE is associated with
one BS, which acts as the serving BS for this user, while the rest of the BSs act as
interferers. All the calculations in this chapter will require us to study the impact of
the network on the performance of a given UE. Without loss of generality, we will
focus on the typical UE that will be placed at the origin.

Channel model Consider an individual BS (let us index it to be the ith BS) located
at xi . The transmit power of this BS is pi . The signal power attenuates according to
a function �(·) termed path-loss function. The received signal power from this BS
at the typical UE is given as

pri = piGi�(‖xi‖)

where Gi is a random variable denoting fading caused by various scatterers and
obstacles present in the transmitter-receiver path. The path-loss function �(·) plays
an important role in determining the average received power and depends on the
propagation environment. If the propagation environment is free space, the path-
loss function is given as the simple power-law relation

�(r) =
(

λs

4πr

)2

∝ r−2,

where λs is the wavelength of the transmitted signal. The above equation is well-
known by the name of Friis transmission equation. While this is conceptually
simple to work with, it is not valid for environments where the propagation medium
consists of blockages, shadowing effects, multiple signal reflections, and scattering.
Therefore, it is desirable to use path-loss models that embody the simplicity of
the Friis equation but capture the effect of the aforementioned propagation effects
reasonably accurately. A widely accepted and used model is the one in which the
distance dependence is generalized to r−α , where α is the path-loss exponent. The
path-loss, thus, is given as

�(r) = Cr−α

where C is a constant termed near-field gain which represents the path-loss at
unit distance. The value of α depends upon the transmission frequency and the
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propagation environment and is generally determined empirically. We would refer to
this path-loss model as the standard path-loss model throughout the chapter. Since
this will be extended further in the chapter to a multi-slope model, we will also refer
to this as a single slope path-loss model wherever necessary.

SINR model Let us denote the BS that serves the typical UE by index 0. Hence,
the received power from this BS at the typical UE is denoted by S = pr0. If the UE
density is finite, it is possible that some BSs do not have any associated UEs because
of which they can suspend their downlink transmission in order to avoid interference
to the other UEs. Let NaB denote the set of all active BSs. Let the active BS density
be λa, which is essentially equal to the density of the transmitting BSs. If the UE
density is infinite, or significantly larger than BS density, or it scales with the BS
density as network densifies, all BSs will be considered active, i.e., NaB = NB all
the time. The interference power I at the typical UE is given as

I =
∑

i �=0, i∈ NaB

pri .

The signal to noise power ratio (SNR) is the ratio of serving signal power to the
noise power, which is given as

SNR = pr0

σ 2 ,

where σ 2 is the noise power. Similarly, the SINR at the UE is given as

SINR = S

σ 2 + I
.

In scenarios where thermal noise is negligible compared to the interference power,
SIR (signal to interference ratio) is useful to consider, which can be defined as

SIR = S

I
.

Performance metrics We will consider the following three metrics for evaluating
the performance of the cellular network:

1. Coverage probability: Let γs be the SINR threshold required at the typical user
for successful transmission. The coverage probability of the typical UE is defined
as

pc = P (SINR > γs) , (5.3)

which denotes the probability that the typical UE can achieve the target SINR
γs. Coverage probability can also be thought as the complementary cumulative
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distribution function (CCDF) of the SINR. In scenarios where thermal noise is
negligible, the coverage probability can also be defined in terms of SIR as

pcI = P (SIR > γs) . (5.4)

2. Potential throughput (PT): The potential throughput of the cellular network is
defined as

τ = λapc(λ, α) × log(1 + γs). (5.5)

Note that the potential throughput denotes the average number of bits transmitted
successfully per unit area. While neglecting thermal noise, the potential through-
put is defined as

τI = λapcI(λ, α) × log(1 + γs). (5.6)

3. Area spectral efficiency (ASE): The ASE of the network is defined as

A = λaE
[
log(1 + γs)1 (SINR > γs)

]
(5.7)

The ASE denotes the theoretical upper limits on the number of bits that can be
transmitted successfully per unit area. Its unit is bps/Hz/m2.

The above metrics naturally depend on the BS density λ. Our goal is to investigate
the exact behavior as a function of different environments and system parameters.

5.3 Densification in the Conventional Scenario

We will first discuss the effect of network densification under the conventional
assumptions of cellular networks [9] which are as follows:

1. Standard path-loss model is assumed with path-loss exponent α > 2

�(r) = Cr−α.

All links are assumed to undergo Rayleigh fading, i.e., G ∼ exp(1).
2. All BSs are assumed to be homogeneous, i.e. they belong to the same class in

terms of key parameters, such as the transmit power.
3. UEs are assumed to have significantly larger density than BSs and their density

scales with the BS density as the network densifies. We also assume that BSs
have full buffer and are always ready to transmit. Therefore, all BSs are active all
the time, i.e., λa = λ.

4. BSs and UEs are at the same height.
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5. All BSs are assumed to be deployed according to a stationary Poisson point
process (PPP) in 2D space [10].

Under the above assumptions, the SINR coverage probability of a typical UE is
given as [10]

pc(λ, α) = πλ

∫ ∞

0
exp

(
−πλv(1 + ρ(γs, α)) − γsσ

2vα/2/p
)
dv

= π

∫ ∞

0
exp

(
−πv(1 + ρ(γs, α)) − γsσ

2vα/2λ−α/2/p
)
dv, (5.8)

where

ρ(γ, α) = γ 2/α

∫ ∞

γ −2/α

1

1 + uα/2 du. (5.9)

For α = 4, ρ(γ, α) = √
γ arctan

√
γ . For α = 2, ρ(γ, α) = ∞. In general,

ρ(γ, α) is monotonic decreasing function of α. The SIR coverage probability can
be obtained from (5.8) as

pcI(λ, α) = 1

1 + ρ(γs, α)
. (5.10)

5.3.1 Impact of Densification

It is evident from (5.10) that the SIR distribution is invariant of the BS density λ.
Figure 5.1 shows the impact of densification on SIR coverage probability, where the
same behavior can be observed. This invariance can be understood with the help of
the following example.

Example 1 Consider a cellular network in 2D space with BS density λ. At the
typical UE (placed at the origin), the SIR is equal to γ with the serving signal power
S and the sum interference I . Suppose the network is densified m times resulting in
a BS density of λ′ = mλ. As a result, all the BSs will statistically move closer to
the origin by a factor of

√
m. Therefore, the new serving power will be equivalent

in distribution to

S′ = p0‖x′
0‖−α = p0m

α/2‖x0‖−α = mα/2S.

Similarly, the sum interference would be equivalent in distribution to

I ′ =
∑

i

pi‖x′
i‖−α =

∑
i

pim
α/2‖xi‖−α = mα/2I.
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The new SIR is

SIR′ = S′

I ′ = mα/2S

mα/2I
= γ

which has the same form and hence the same distribution as before.

The SINR distribution follows the same behavior as the SIR distribution, except
at low BS density. At a lower value of λ, the serving BS, as well as the interfering
BSs, is very far from the typical UE. In this case, the interference is negligible
compared to noise, which is termed the noise-limited scenario. As the network
densifies (λ → ∞), the serving BS statistically comes closer to the UE and therefore
pc increases monotonically as can be seen from (5.8) and Fig. 5.1. At large λ, the
SINR coverage probability approaches

lim
λ→∞ pc(λ, α) = pcI.

As the BS density λ reaches the critical BS density λ1, the noise can be neglected
(interference-limited scenario, i.e., σ 2 ≈ 0) and pc ≈ pcI. This critical density
depends on the noise power and the BS transmit power. With further increase in
the BS density, the densification no longer improves the SINR of a typical UE
as the increase in interference power is counterbalanced by the increase in signal
power. This observation that SINR in an interference-limited cellular network does
not depend on the BS density is often referred to as the SINR invariance in cellular
networks.

The network densification reduces the user load on each BS without affecting the
SINR characteristics. So the network can achieve an approximately linear increase
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Fig. 5.1 Impact of the BS density on the SINR and SIR coverage probability for a cellular network
with the single slope path-loss with C = 10−4 and α = 3. Here, γs = 1. It can be observed that
the SIR distribution is invariant to the BS density
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Fig. 5.2 Impact of the BS density on the potential throughput for a cellular network with single
slope path-loss with C = 10−4 and α = 3. Here, γs = 1. The potential throughput grows linearly
with the BS densification owing to the SIR invariance observed in Fig. 5.1

in the achievable data rate with the increase in BS density (see Fig. 5.2). As noted
before, this gain is termed cell splitting gain in the literature. It can be verified
using (5.6) and (5.7) that when the SINR invariance property holds, the potential
throughput and ASE exhibit linear relation with BS density in the following way:

τ = λ
log(1 + γs)

1 + ρ(γs, α)
∝ λ

A = λE
[
log(1 + γs)1 (SINR > γs)

] ∝ λ.

The scaling results in this section are derived based on the assumption that the
BSs in the 2D space are distributed according to a homogeneous PPP. However,
the real BS deployment is not completely random (nor is it completely regular).
Recent studies [11, 12] have shown that a large variety of BS deployment including
lattice deployments and hexagonal grid-based deployments have almost similar SIR
statistics to that of Poisson deployment, but with a small fixed SIR shift. Moreover,
it is known that if all the links in the network undergo significant shadowing that
is independent of each other, the network appear Poissonian to the typical UE even
if the actual locations are more regular, or even modeled using deterministic grids
[13, 14]. Therefore, the results derived in this section are either directly applicable
or can be easily modified to apply to more generic scenarios.

Getting back to our main question, the discussion in this section indicates that
densifying the network infinitely would keep on increasing the network throughout
indefinitely because densification does not impact the coverage probability (equiv-
alently because of the SINR invariance). As indicated above already, the SINR
invariance property holds for more general setups as well. These include different
BS layouts, fading/shadowing assumptions, presence of multiple antennas [15],
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distribution of antenna azimuths, and the effect of horizontal sectorization [16], to
name a few. In fact, this property is even valid for the multi-tier networks [17].
Specifically, for an interference-limited open access network multi-tier network,
adding more tiers or BSs does not affect the SINR distribution at the typical UE.
That all being said, it is still important to keep in mind that the SINR invariance
property may not universally hold because of which jumping to the conclusion
that the network throughput will always increase linearly with the addition of BSs
may be naïve. At the very least, such statements must be qualified with appropriate
assumptions, as we demonstrate next.

5.3.2 Effect of the Dual-Slope Path-Loss Model

In this subsection, we revisit our path-loss assumption to understand its impact on
SINR invariance and linear scaling of throughput. The standard path-loss model
adopted thus far is widely used by researchers as well as in industry; however, it
may not be suitable and valid for modern dense networks [5]. When the distance
between BS and UE becomes smaller, the relation of the path-loss with distance
may change resulting in the change of path-loss exponent itself. As discussed in
detail in [5], the region around a BS can be divided into three regions from the
perspective of path-loss modeling:

1. Ground Fresnel region: This region is located near the ground surface beyond
a significant distance from the transmitter. In this region, the direct and ground
reflected rays undergo destructive interference resulting in path-loss exponent
close to α = 4.

2. Large-scale interference region: This region lies beyond a certain distance from
the transmitter away from the ground surface. In this region, signals coming from
various paths can also add constructively resulting in a lower path-loss exponent
(α ≈ 2).

3. Small-scale interference region: This region lies around the transmitter up
to some finite distance. Due to the absence of obstacles and additional power
received from the reflected paths, the path-loss exponent in this region may
decrease below free space path-loss exponent of α = 2.

When the link distance between a UE and a BS is small, the UE will be inside
the path-loss subduction region of the BS where the path-loss exponent becomes
smaller than 2. Having different values of the path-loss exponent in different regions
will lead to path-loss exhibiting different slopes in these regions. Such path-loss
models are termed multi-slope path-loss models in the literature [18]. Given their
versatility, e.g., in modeling both indoor and outdoor propagation environments,
they have been extensively used in 3GPP standards as well. As an aside for now, note
that a probabilistic version of such models has also been proposed and validated for
blockage sensitive communications including communications at the millimeter-
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wave frequencies. In these models, links follow different slopes according to a
probability distribution that depends on the link distance [19].

A specific example of the multi-slope models is the dual-slope model which is
simple yet powerful enough to capture the effects of path-loss exponent reduction.
Let the path-loss subduction region be represented by the ball of radius Rc around
the receiver where Rc is termed the corner distance. The dual-slope (power-law)
path-loss function is defined as

�(r) =
{

C0r
−α0, if r ≤ Rc

C1r
−α1, if r > Rc

. (5.11)

Therefore, the space around the receiver is divided into two regions. For BSs lying
inside the first region R1 (i.e., r ≤ Rc), the path-loss exponent is α0. The path-loss
exponent is α1 for BSs lying in the second region R2. We consider that α0 ≤ α1.
Here, C1 is chosen such that the path-loss function is continuous at the boundary
between these two regions.

To investigate how the dual-slope path-loss model can affect the scaling laws of
densification, we will consider the same assumptions as taken in this section (except
of course that we will consider a dual-slope path-loss model instead of the standard
path-loss model used thus far). Consider again the typical UE at the origin. BSs will
be located in either of two different regions R1 and R2. Signals from the BSs inside
the ball of radius Rc will undergo lower attenuation compared to the BS outside the
ball. The average number of BSs in these two regions will be dependent on the BS
density, which will eventually impact the coverage probability.

At low BS density λ → 0, all BSs will lie in region R2. Therefore, signals from
each of the BSs will undergo attenuation according to path-loss exponent α1. Hence,
the SIR coverage probability of the network would be equal to pcI(γs, α1) as defined
in (5.10). Since the noise would be dominant, the SINR coverage probability will
be zero. As BS density increases, initially all BSs would still be located in region
R2. The system will behave exactly like the system with single slope path-loss, and
SIR coverage would be invariant of the BS density. However, the SINR coverage
would increase with BS density until λ1 beyond which it would be equal to the SIR
coverage probability.

As BS density approaches a critical density λ3, a few BSs will statistically come
closer to the typical UE and would lie in R1. The serving BS would be one of these
BSs as it is the closest BS to the typical UE. At this stage, if the BS density is further
increased m times, serving power S will increase by a factor of mα0 , whereas the
interfering power I will increase by a factor of mα1 (see Example 1). Here, for the
sake of argument we assumed that most of the dominant interferers lie in R2. Hence,
the SIR would decrease by a factor of mα1−α0 .

As the BS density increases further, another critical density λ2 approaches where
most dominating interfering BSs would lie in the region R1. At this stage signals
from most of the BSs will undergo attenuation according to path-loss exponent α0.
Hence, the SIR coverage probability of the network would be equal to pcI(γs, α0). If
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Fig. 5.3 Impact of the BS densification on the SINR and potential throughput under the dual-slope
path-loss model with Rc = 100 m, C0 = 10−7, α0 = 0.8, 1.5, 2.2 and α1 = 3.3. Dashed lines
represent respective metrics in the absence of noise

the BS density is further increased m times, serving power S and interfering power I

both will increase by a factor of mα0 and SIR would again become invariant of λ. At
very high density λ → ∞, the SIR and SINR coverage probability of the network
would be equal to pcI(γs, α0).

The critical densities λ3 and λ2 at which transition from one region to another
region occurs depend on the corner distance Rc. The same behavior of the coverage
probability with the BS density is also evident in Fig. 5.3.

Clearly, the SINR invariance property no longer holds under the dual-slope path-
loss model due to the aforementioned reasons. Another interesting observation one
may have is that at very high density, the SINR coverage probability of the network
would be equal to pcI(γs, α0), which can be zero depending on the value of α0. It
was shown in [18] that under the dual-slope path-loss model, the SIR and SINR
coverage probability of a two-dimensional cellular network goes to zero as λ → ∞
when α0 ≤ 2. This indicates that the ultra-densification of a network can be harmful
to the coverage performance. It was also shown that under the dual-slope model, as
λ → ∞, the potential throughput τ exhibits the following scaling law:

1. τ grows linearly with λ if α0 > 2,

2. τ grows sublinearly with rate λ

(
2− 2

α0

)
if 1 < α0 < 2,

3. τ decays to zero if α0 < 1.

Contrary to the conclusions drawn in Sect. 5.3.1, a blind densification of the
network may not provide gains proportional to the deployment cost and may in
fact be even harmful. Apart from the analytical work, it has also been observed
by various empirical studies that densification may cause the network throughput to
fall and even crash [20]. With these seemingly conflicting conclusions, it is clear that
one needs a more careful look at potential factors that may impact the densification
gain, which is the topic of the next section.
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5.4 Factors Affecting the Densification Gain

In the last section, we saw that adopting a more realistic path-loss model, such as the
dual-slope model, changed the conclusions of the densification gain significantly.
The naïve assumption that densification can infinitely increase the potential through-
put and ASE is clearly not valid. In fact, densification may cause throughput to fall
and even crash if done beyond a limit. Apart from path-loss model, there are many
other factors that affect the scaling behavior of the performance with densification.
In this section, we discuss some of these factors in detail.

5.4.1 Path-Loss Models

We have already seen how incorporating two slopes in the path-loss model disrupts
the scaling of system performance with densification. There exist other realistic
path-loss models suitable for various propagation environment which are discussed
below.

Multi-slope Path-Loss Model

The dual-slope model can be extended to a general N -slope path-loss to include
propagation environments where more than two path-loss subduction regions exist
[21]. The N -slope path-loss is defined as

�(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�0(r) = C0r
−α0 if r ∈ [0 = R0, R1)

· · ·
�n(r) = Cnr

−αn if r ∈ [Rn,Rn+1)

· · ·
�N−1(r) = CN−1r

−αN−1 if r ∈ [RN−1, RN = ∞)

(5.12)

Here, C0 = 1 is the near-field gain and Cn = ∏n
i=1 R

αi−αi−1
i to ensure that path-

loss is continuous at the boundaries of the adjacent regions. Also, 0 = R0 < R1 <

· · · < RN = ∞ are corner distances and 0 ≤ α0 ≤ α1 ≤ · · · ≤ αN−1 are
path-loss exponents for N regions. We assume that αN−1 > 2 to ensure that the
sum interference at finite BS density is bounded. We do not require any additional
conditions on any other path-loss exponents as the number of BSs lying in all other
regions is almost surely finite and, hence, the interference is also almost surely finite.
When N = 2, this model reduces to the special case of the dual-slope path-loss
model (5.11).

As described earlier, the SIR and SINR invariance properties no longer hold
for multi-slope models. Initially, SINR improves with densification before the BS
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density hits the critical density λ1 after which the network becomes interference
limited. After this, SINR and SIR coverage probability become the same. As
λ → ∞, the coverage probability approach pcI(α0) which depends only on the
value of α0 regardless of the number of slopes. Therefore, asymptotic behavior of
coverage and potential throughput is exactly the same as the one described above
for the dual-slope model.

Probabilistic Two-Regime Model

Given the increasing relevance of millimeter wave communications in cellular
networks, it is important to carefully incorporate the blockage sensitivity of these
frequencies in the propagation models. In the context of this discussion, it is
important to distinguish the line-of-sight (LOS) and non-LOS (NLOS) links as they
differ significantly in their propagation characteristics. To model such propagation, a
probabilistic two-regime model has been proposed [19, 22] where a link can be LOS
or NLOS randomly according to a probability distribution pL. This LOS probability
pL depends on the link distance. If the link between a transmitter and a receiver
located at a distance of r is LOS, it follows the following path-loss model:

�L(r) = CLr−αL ,

whereas a NLOS link suffers with the following path-loss

�N(r) = CNr−αN .

The complete model is given as

�(r) =
{

�L(r) = CLr−αL with probability pL(r)

�N(r) = CNr−αN with probability 1 − pL(r)
.

There are two distinguishing properties of these model compared to the two-slope
model:

1. The two regimes in this model are probabilistic and can overlap in space, while
two regions in the two-slope model are deterministic and mutually exclusive.

2. There is no continuity condition on gains CL and CN. LOS and NLOS links can
have different gains event at the unit distance [23].

Throughout this discussion, we assume that each UE is associated with the BS
providing the smallest path-loss.

The behavior of SIR and SINR coverage probability with densification under
the two-regime model is similar to the two-slope model with some differences.
At the low BS density, all BSs will be NLOS. Therefore, signals from each of
the BSs will undergo attenuation according to path-loss exponent αN. Hence, the
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Fig. 5.4 Impact of the BS densification on the potential throughput under the probabilistic two-
regime model with αL = 1.5, 2.2, αN = 3.3, CL = 10−6 and CN = 10−7. Here, the LOS
probability model is assumed to be exponential i.e. pL(r) = exp (−βr) with β = 1/144 m−1.
Dashed lines represent respective metrics in the absence of noise

SIR coverage probability of the network would be constant at pcI(γs, αN). Since
the noise would be dominant, SINR coverage probability will increase with BS
density. As the BS density increases, a few BSs will become LOS to the typical
UE. The serving BS would most likely be one of these BSs. Since the gain of the
LOS link is more than the NLOS link, SIR coverage probability would improve.
At this stage, if the BS density is further increased, the probability of the serving
BS to be LOS increases, and hence the SIR coverage probability improves. After
a critical density of BSs, further increase in the BS density causes interfering BSs
to become LOS also. This increases the interference severely causing SIR to go
down. As the BS density increase further, most dominating interfering BSs would
become LOS. At this stage, signals from most of the BSs will undergo attenuation
according to path-loss exponent αL. Hence, the SIR coverage probability of the
network would approach pcI(γs, αL) and becomes constant at this level. The above
discussion indicates the existence of an optimal density λopt of that BSs that would
maximize the coverage probability (see Fig. 5.4). Densification beyond this optimal
density would hurt SIR and even makes it fall to zero if αL < 2.

The SIR degradation also impacts the throughput scaling. For some values of
αL < 2 and γs, the densification beyond λopt may reduce the potential throughput
(see Fig. 5.4). Asymptotic scaling of potential throughput with densification is the
same as scaling under multi-slope model with α0 = αL.

General Multi-regime Multi-slope Probabilistic Path-Loss Model

The multi-slope path-loss model and the probabilistic path-loss model can be
combined into a general multi-regime multi-slope path-loss model which is defined
as [24, 25]
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�(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1(r) =
{

�1L(r), with probability p1L(r)

�1N(r), with probability (1 − p1L(r))
if 0 ≤ r ≤ R1

�2(r) =
{

�2L(r), with probability p2L(r)

�2N(r), with probability (1 − p2L(r))
if R1 ≤ r ≤ R2

...
...

�m(r) =
{

�mL(r), with probability pmL(r)

�mN(r), with probability (1 − pmL(r))
if r > Rm−1

(5.13)

where �iL(r) and �iN(r) are the path-loss functions for the LOS and NLOS links,
respectively, in ith region. PiL(r) is the ith piece LOS probability function. �iL(r)

and �iN(r) are given as

�iL(r) = CiLr−αiL, (5.14)

�iN(r) = CiNr−αiN . (5.15)

where the parameters can be chosen to match the empirical data. This model is
consistent with the ones adopted in 3GPP simulations. We discuss two special cases
of this model which are mentioned in 3GPP documents and have been used in 3GPP
simulations to evaluate the performance of cellular networks.

3GPP-Model-1

First, we consider a 3GPP model given as [26]

�n(r) =
{

CLr−αL with probability pL(r)

CNr−αN with probability (1 − pL(r))
. (5.16)

with linear LOS probability function [27],

pL(r) =
{

1 − r/D when 0 ≤ r ≤ D

0 when r > d1
.

Note that the model given in (5.16) is the special case of (5.13) where m =
2, �1L(r) = �2L(r) = CLr−αL , �1N(r) = �2N(r) = CNr−αN , p1L(r) = 1 − r

D

and p2L(r) = 0. This model was proposed for dense small cell networks.
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3GPP-Model-2

The second model considered here is proposed in [26]. This model has the same
path-loss function as (5.16) but with an exponential LOS probability function:

pL(r) =
{

1 − 5 exp (−D1/r) when 0 ≤ r ≤ D

5 exp (−r/D2) when r > D
,

where D = D1/ ln(10). This model is the special case of (5.13) where m =
2, �1L(r) = �2L(r) = CLr−αL , �1N(r) = �2N(r) = CNr−αN , p1L(r) =
1 − 5 exp(−D1/r), and p2L(r) = 5 exp(−r/D2).

Figure 5.5 shows the behavior of potential throughput with densification under
the two 3GPP path-loss models. The key observations can be summarized as
follows. When the network is sparse, the potential throughput quickly increases
with BS density. This is due to the fact that the network is noise-limited, and thus
adding more BSs immensely benefits the throughput. When the network reaches the
practical density (as expected in 4G/5G systems), the scaling trend of the potential
throughput is very interesting. Initially throughput exhibits a slowing-down in the
rate of growth or even a decrease due to the fast decrease of the coverage probability.
As BS density further increases, the growth rate of the throughput picks up. This
is because the coverage probability remains almost constant in this region (but
at a much lower value than before). The behavior of the throughput depends on
the characteristics of the LOS and the NLOS path-loss. The larger the difference
between the LOS and the NLOS path-loss exponents, the more the throughput
suffers in transition region due to more drastic transition of interference from the
NLOS transmission to the LOS transmission. This asymptotic behavior is similar to
what is seen in the previous models.

10-6 10-5 10-4 10-3

BS density ( )

10-7

10-6

10-5

10-4

10-3

P
o

te
n

ti
al

 T
h

ro
u

g
h

p
u

t

:  
L
=1.5

I
: 

L
=1.5

:  
L
=2.5

I
: 

L
=2.5

10-6 10-5 10-4 10-3

BS density ( )

10-7

10-6

10-5

10-4

10-3

P
o

te
n

ti
al

 T
h

ro
u

g
h

p
u

t

:  
L
=1.5

I
: 

L
=1.5

:  
L
=2.5

I
: 

L
=2.5

Fig. 5.5 The impact of the BS densification on the potential throughput under the 3GPP-Model-1
and 3GPP-Model-2 with αL = 1.5, 2.5, αN = 3.75, CL = 10−10.38+3αL and CN = 10−14.54+3αN .
Additionally, for 3GPP-Model-1, D = 300 m and for 3GPP-Model-2, D1 = 156 m and D2 =
30 m. Here, γs = 1. Dashed lines represent respective metrics in the absence of noise



146 A. K. Gupta et al.

10-6 10-5 10-4 10-3

BS density ( )

0

0.1

0.2

0.3

0.4

0.5
C

o
ve

ra
g

e 
P

ro
b

ab
ili

ty

p
c
  with H= 3m

p
cI

 with H= 3m

p
c
  with H=10m

p
cI

 with H=10m

10-6 10-5 10-4 10-3

BS density ( )

10-7

10-6

10-5

10-4

10-3

P
o

te
n

ti
al

 T
h

ro
u

g
h

p
u

t

  with H= 3m

I
 with H= 3m

  with H=10m

I
 with H=10m

Fig. 5.6 Impact of the BS density on the coverage probability and potential throughput for a
cellular network with height difference of H under the single slope path-loss with C = 10−4

and α = 3. Here, γs = 1. It can be observed that the SIR distribution is invariant to the BS density.
Dashed lines represent respective metrics in the absence of noise

5.4.2 Height Difference Between BS and UE Antennas

In deriving the scaling behavior of densification until now, we have assumed that
the height of the BSs and UEs are the same. In a practical scenario, there may be
some height difference H between the heights of the BSs and UEs. Figure 5.6 shows
how SINR and throughput scales with density when H is 3m and 10m. The path-
loss model assumed for these plots is the standard single slope path-loss model.
We observe that at large density, both the SIR coverage probability and the potential
throughput decrease and eventually crash to zero even for path-loss exponent α > 2.
This is in contrast with results obtained for the scenario with zero height difference
(see Figs. 5.1 and 5.2), where throughput was observed to grow linearly with the BS
density for the same value of the path-loss exponent. This can be understood by the
following example.

Example 2 Consider a 2D cellular network where BSs have height H and UEs
are at the ground level. Consider the ith BS at a 2D distance (i.e., distance along
the ground) ri from the typical UE. Hence, the 3D distance between the two is√

r2
i + H 2. The average receiver power at the UE from this BS is pC(r2

i + H 2)−α .
Hence, the SIR is given as

SIR = (r2
0 + H 2)

−α/2

∑
i (r2

i + H 2)
−α/2 .

Note that a densification by a factor of m is statistically equivalent to reduction in all
2D distances by a factor

√
m. The new SIR at the typical UE would be equivalent

in distribution to
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SIR′ = ((r0/
√

m)2 + H 2)
−α

∑
i ((ri/

√
m)2 + H 2)

−α

= ((r0)
2 + mH 2)

−α

∑
i ((ri)2 + mH 2)

−α
.

If H = 0, the above would be equal to the original SIR itself. However, when H is
non-zero, for large m,

SIR′ ≈ (mH 2)
−α

∑
i (mH 2)

−α
= 1∑

i 1
→ 0

as there are many BSs around the UE at distance H for large m.

As we increase the BS density, BSs statistically comes closer to the typical UE. If
there is a height difference between a BS and the UE, the 3D distance between them
cannot go to zero even if the BS density goes to infinity. In fact, the distance between
the BS and UE will be lower bounded by the difference in their heights. Therefore
the signal power from each BS cannot be larger than pH−α . Consequently, at a large
density, signal power from each of the serving BSs and each interfering BS would
approach this value and result in zero coverage probability. As a result, potential
throughput and ASE would also fall to zero. One way to avoid ASE crash is by
avoiding the cap on the signal power of the serving BSs, which can be done by
deploying BSs at the same height as UE. If that is not possible, reducing the antenna
height of BS to that of UE antenna height can delay this crash, but cannot completely
avoid it.

5.4.3 Scaling of the UE Density

While showing the SINR invariance for single slope path-loss model, we have
assumed that the UE density is significantly larger than the BSs or scales with
network densification so that all BSs are active all the time. In practice, the UE
density is finite. As the BS density reaches the UE density level, some BSs will not
have any UEs to serve and can hence be put into idle mode to avoid interfering with
the UEs of the other cells and reduce their energy consumption. This will naturally
affect the interference distribution and hence the system throughput.

We will continue to use the PPP assumption for the BS deployment here to
provide insights into the performance trends under finite UE density. In particular,
assume that the BSs are deployed according to a homogeneous PPP with density λ.
The typical UE is associated with the closest BS. The rest of the BSs are interfering.
It was shown in [28] that the probability that a typical BS is turned-on (which is
equal to the probability that a typical BS has at least one UE in its cell) is given as
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pon = 1 − 3.53.5
(

3.5 + λu

λ

)−3.5

.

Hence, the active BS density is given as λa = λpon. It can be quickly verified that

pon → 0 and λa → λu as λ → ∞. (5.17)

Equation (5.8) can be modified to get the SINR coverage probability for the finite
UE density scenario as

pc(λ, α) = πλ

∫ ∞

0
exp

(
−πλv(1 + ponρ(γs, α)) − γsσ

2vα/2/p
)
dv

= π

∫ ∞

0
exp

(
−πv(1 + ponρ(γs, α)) − γsσ

2vα/2λ−α/2/p
)
dv,

(5.18)

and the SIR coverage probability is given as

pcI = 1

1 + ponρ(γs, α)
. (5.19)

The expression (5.18) indicates that the distribution of distance from the serving
BS is the same as in the case with infinite UE density. This is because the typical
UE still connects to the closest BS from the original PPP. However, compared to
the infinite UE density case, the interfering BS density reduces to λa when the UE
density is finite and therefore the aggregate interference is less.

Note from (5.17) and (5.19) that as λ → ∞, pcI → 1. This is due to the fact
that as the network densifies, the serving BS comes statistically closer to the UE
while interfering BS density remains constant at λu. This indicates that the SINR
invariance does not hold here and densification can in fact improve coverage gains.
However, as we will see next, the throughput tells a very different story. For finite
UE density case, the potential throughput is given as

τ = λa log(1 + γs)pc(γs, α).

Note the scaling term λa instead of λ owing to the fact that the number of
transmissions is equal to the number of active BSs. As the network is densified, the
coverage probability increases, but the τ is still upper bounded by λu log(1 + γs).
Once the throughput approaches this value, further densification will not give any
gains [29]. The same behavior can be observed in the simulation results shown in
Fig. 5.7.

Apart from the theoretical bounds on achievable rate, the assumption of finite
UE density also raises some practical issues, e.g., loss of multi-user diversity [7].
At large BS density, there would be only one UE in the cell of each active BS.
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Fig. 5.7 Scaling of the coverage probability and potential throughput with the BS density for a
cellular network with the fixed UE density of 200 UE/km2, under the single slope path-loss. Here,
γs = 1, C = 10−4 and the path-loss exponent values are taken as α = 2.2 and 3. Dashed lines
represent respective metrics in the absence of noise

Therefore, BSs lose the opportunity to select the best UE among all connected UEs,
which can reduce the practical gains achievable via densification [30].

5.4.4 Traffic Characteristics

The UE density represents the average active traffic load in the network. We
have seen in the previous subsection that this average active traffic load has a
significant impact on the densification gain. Apart from the average characteristics,
instantaneous traffic patterns will naturally have an impact on the densification
conclusions as well.

The activity time of a BS depends on the traffic pattern of the UEs served by it. In
case of bursty traffic, or when the traffic is sparsely distributed over space, many BSs
will not have any traffic requests in their queue. This can reduce the sum interference
significantly even when the BS density is high. When there are few active UEs in
any BS cell, the downlink and uplink traffic demands become highly dynamic in that
cell [7]. As another consequence, the ratio of downlink and uplink traffic becomes
highly asymmetric over the space. In such scenario, the same division of resources
between uplink and downlink for each cell may lead to inefficient utilization of
available resources. To tackle such traffic, dynamic time-division duplex (TDD) has
emerged as a promising technology for ultra-dense networks. Dynamic TDD can be
seen as a hybrid technology between the conventional half-duplex and the emerging
full duplex networks. In dynamic TDD, each BS has the flexibility to choose a
custom division of resources between downlink and uplink to match the traffic
demands in its cell. However, since the resource division is no longer synchronized
among neighboring cells, the communication suffers from cross-link interference.
For example, the uplink transmission in a cell may face strong interference from



150 A. K. Gupta et al.

the downlink transmission occurring in the neighboring cell which may degrade the
reception significantly.

Since uplink and downlink interference distributions are very different from
each other, they can affect the densification gains. As network densifies, downlink
interference can severely degrade uplink performance and may render uplink
communication unusable. It has also been shown that Dynamic TDD can give
significant gains when the mean number of uplink (or downlink) UEs per active
BS is less than 1 [31]. This scenario can occur when the uplink/downlink traffic
is asymmetric and the network density reaches the UE density. This performance
can be improved with the help of interference cancellation and UE power boosting.
However, at high network density, the implementation of these schemes may require
large overhead, which can eat away all the gains.

5.4.5 Blockages

Blockages can affect both the serving and interfering links, especially at very high
transmission frequencies, such as millimeter waves. The impact of blockages can be
modeled using the probabilistic two regime (LOS/NLOS) model discussed already
in Sect. 5.4.1. Therefore, there exists an optimal BS density at which coverage
probability is maximized. This optimal density λa ensures that there is a significant
probability of having one LOS serving BS while restricting the probability of
having a LOS interfering BS. Therefore, λa depends on the blockage probability.
As blockage probability increases, adequate densification is required to increase the
probability of getting at least one BS as LOS which can act as the serving BS [32].
The readers are advised to refer to Sect. 5.4.1 for a more detailed discussion.

5.4.6 Deployment

Most of the existing literature focusing on densification gains considers BS deploy-
ment in 2D space. However, in cities (especially, dense downtown areas), BSs are
also deployed in the vertical direction, for example, one at each floor of the building.
These BSs mainly include user-installed small cells. A user located in the middle
floor of a tall building in such an urban environment would see an appreciable
number of BSs in every direction. This would seem like a 3D deployment of BSs to
these users. Moreover, the increasing maturity of unmanned aerial vehicle (UAV)-
assisted communication networks also increases the relevance of 3D networks [33].
Naturally, 3D deployments will have an impact on the densification gains of cellular
networks.

The work [34] discussed scaling of densification for general BS deployment in
d dimension. For a general d-D network, the required condition for the bounded
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interference (in almost sure sense) is α > d. If the path-loss exponent α ≤ d,
the coverage probability and throughput are both 0. Under the dual-slope path-loss
model, the SIR and SINR coverage probability of a general d−D system go to zero
as λ → ∞ for α0 ≤ d. As λ → ∞, the potential throughput τ exhibit the following
scaling behavior:

1. τ grows linearly with λ if α0 > d,

2. τ grows sublinearly with rate λ

(
2− d

α0

)
if d

2 < α0 < d,
3. τ decays to zero if α0 < d

2 .

For the 3D scenario, the critical value of α0 is 3. In other words, pc goes to
zero for α0 ≤ 3 as BS density goes to infinity. Potential throughput goes to zero if
α0 < 1.5. When 1.5 < α0 < 3, densification gives sublinear gains to the potential
throughput. It is very common for the path-loss exponent of short range systems to
be less than these α0 values, so this is seemingly an important concern for future
ultra-dense networks. Figure 5.8 shows the behavior of the coverage probability and
potential throughput for a 3D BS deployment with the network density.

5.4.7 Directional Communication

The use of multiple antennas can help improve the performance of wireless systems
by providing directionality gains. Directional communication increases the serving
power and reduces the aggregate interference. For higher frequencies such as
the millimeter waves, directional communication is essential to facilitate reliable
communication owing to high propagation losses. As the directionality can improve
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Fig. 5.8 Impact of the BS densification on the SINR and potential throughput for a 3D BS
deployment. The path-loss is dual-slope with Rc = 100 m, C0 = 10−7, α0 = 1.2, 2.3, 3.3,
and α1 = 4.95. Dashed lines represent respective metrics in the absence of noise. The behavior
is similar to that observed for 2D deployments; however, the critical values of parameters have
changed. Dashed lines represent respective metrics in the absence of noise
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SINR coverage, network densification gains would increase especially at high
densities [35]. Although the introduced directional gain doesn’t change the inherent
behavior of the scaling laws under densification, it can delay the potential SINR and
throughput crashes.

5.4.8 Association Criterion

For systems under single-slope path-loss, we have considered the association crite-
rion that a UE is associated with the BS which provides the highest average received
power. There are other association criteria that can be used based on the design
objective. One such example is the instantaneous signal power-based association
which includes the random fading into consideration while selecting the serving BS.
Figure 5.9 shows the comparison of these two association criteria. Instantaneous
criterion provides a certain gain to SIR coverage probability. However, at lower
density, this gain is not visible in SINR coverage probability. As network densifies,
the association criterion needs to be carefully selected.

For millimeter wave systems, an appropriate path-loss model to consider is
the probabilistic LOS/NLOS regime model discussed in Sect. 5.4.1. As has been
done for the other path-loss models until now, one possible association criterion
is to select the closest BS. Figure 5.10 presents scaling results under closest
distance-based association compared to the highest average received power-based
association. We can observe here that at moderate density of BSs, the distance-based
association degrades SINR coverage probability significantly. We also observe that
there may not be any optimal BS density which maximizes SIR unlike the case
where received power-based association is applied.
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Fig. 5.9 Impact of different association criteria on the densification gain for a cellular network
under single slope path-loss model with C = 10−4 and α =3. Here, γs =1. Dashed lines represent
respective metrics in the absence of noise
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Fig. 5.10 Impact of the implementation of different association criteria on the densification gain
for a cellular network under the probabilistic two-regime path-loss model with αL = 1.5, αN = 3.3,
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5.4.9 Access Restrictions in Multi-tier Networks

As discussed in Sect. 5.1, early deployments of cellular networks involved carefully
planned set of large tower-mounted macrocells. As the data demand increased, both
service providers and end users have started deploying small BSs, typically in the
form of micro-, pico-, and femto-cells, which may share the same spectrum. Each of
the tiers is distinguished by its transmit power, BS density, transmission techniques,
height, and deployment. Such network consisting of multiple classes (tiers) of BSs
is known as a heterogeneous network (HetNet) [17, 36]. In the presence of other BS
tiers, a cellular network will suffer from additional interference created by their
transmissions. Oftentimes, however, UEs of a cellular network may be allowed
to connect and use the services of small cells, which can provide additional gain.
Whether or not a UE is allowed to connect to small cells (some of which may be
owned by the other users) is determined by the access strategy [28].

In open access, a UE with subscription to the considered network is allowed to
connect to any of the tiers without any restriction. On the other hand, in a closed
access strategy, the UE is allowed to connect only to a selected tiers. This access
method is mainly used in private infrastructures, e.g., to provide services to its
members in a private club. Closed access strategies are often inspired by finite
backhaul capacity, security concerns, and the need to reduce the number of hand-
offs experienced by UEs as well as the associated signaling overhead.

In both the access schemes, the subscribed tier and all the other tiers will cause
interference to the typical UE as they all use the same spectrum. However, in open
access, the associated BS is the best BS among BSs of all tiers for this UE. On the
other hand, in closed access, the associated BS is the best BS among all the BSs of
the tiers that the UE is subscribed to. It is indeed possible in this case that there is
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a BS in another tier than can provide better service to the UE, but the UE may be
restricted to access it. Therefore, closed access by design leads to a lower coverage
probability in this setting. To understand the behavior, we go back to the simple
model. Let us assume a K tier network with BSs of each tier deployed according to
an independent PPP. For simplicity, we will take identical tiers, however each having
different BS density λi . Consider a UE of the first network. Denote the set of tiers
that allow connection to this UE by I. Suppose the combined density of the tiers that
it can connect to is μ1 = ∑

I λi while the combined density of tiers closed to this
UE is μ2 = ∑

[1:K]\I λi . Let use consider single slope path-loss propagation with
α path-loss exponent. Under the above assumptions, the SINR coverage probability
of a typical UE is given as [37]

pc(λ, α) = πμ1

∫ ∞

0
exp

(
−πv(μ1 + μ1ρ(γs, α) + μ2β(α)) − γsσ

2vα/2/p
)
dv

(5.20)

where

ρ(γ, α) = γ 2/α

∫ ∞

γ −2/α

1

1 + uα/2 du, β(α) = γ
2/α
s

∫ ∞

0

1

1 + uα/2 . (5.21)

For α = 4, ρ(γ, α) = √
γ arctan

√
γ and β(α) = √

γπ/2. For α = 2, ρ(γ, α) =
β(α) = ∞. The SIR coverage probability of the typical UE is

pcI(λ, α) = 1

1 + ρ(γs, α) + μ2/μ1β(α)
(5.22)

In symmetrical networks where each tier densifies equally (λi = λ ∀i), the closed
and open access coverage probability are given as

pcI,closed(λ, α) = 1

1 + ρ(γs, α) + (K − 1)β(α)
≤ 1

1 + Kρ(γs, α)

pcI,open(λ, α) = 1

1 + ρ(γs, α)

Closed access can reduce the coverage by factor ≈ K as seen in Fig. 5.11. However,
in both cases, SIR coverage probability is independent of λ.

In asymmetric networks where one tier has higher density than the other, closed
access can severely affect the performance of the latter network. Observe the factor
μ2/μ1 in (5.22). If μ1 is fixed, densification of the second network can drastically
decrease coverage probability of the first tier under closed access scheme. However,
under open access, coverage probability does not depend on this densification. To
show this, we consider a two-tier network where the density of the first network is
fixed at 30 BS km2. We densify the second network and the behavior of pc and τ is
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Fig. 5.11 Scaling of the
coverage probability with
network densification for a
two-tier cellular network with
different access restrictions.
Both networks have the same
BS density while
densification. The path-loss
model is taken as the single
slope path-loss with
C = 10−4 and α = 3. Here,
γs = 1
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Fig. 5.12 Impact of the BS densification of the second tier on the coverage probability and
potential throughput of the first tier in a two-tier asymmetric cellular network with different access
restrictions. First tier is fixed density at 30BS/km2, while the second tier’s BS density is varied.
The path-loss model is taken as the single slope path-loss with C = 10−4 and α = 3. Here, γs = 1.
Dashed lines represent respective metrics in the absence of noise

shown in Fig. 5.12. In open access, the SIR is invariant to the network density for
both the tiers. In closed access, densification of the second tier will cause the first
tier’s coverage to fall to zero. This is due to the fact that densification of the second
tier will increase the interference, while the serving power depends on the first tier’s
BS density which is fixed. However, the coverage probability of the second tier
increases with its densification.

The potential throughput of the first tier remains constant in open access, while it
falls to zero in the closed access. However, the throughput of the second tier linearly
increases with densification in both access schemes.

This discussion indicates that some tiers are closed for access to some UEs;
the densification of one tier can severely affect the other tiers. Therefore, it is
important to coordinate the densification of different tiers to ensure reasonable
network performance.
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5.5 Densification in Modern Networks

In the last section, we described different factors that affect how network per-
formance scales with density and observed their individual impact. In modern
networks, many of these factors simultaneously impact the system performance
because of which their interplay will decide the asymptotic behavior, which may
depart from the scaling performance studied for each factor separately in the
previous section. To understand this, let us take a simple example. We observed that
a non-zero height difference between the BS and UE could result in zero coverage
probability as the network is densified. We also observed that coverage can increase
to 1 by densification if the UE density is finite. Clearly, these two factors counter
each other, and their cumulative effect depends upon the operational scenarios. This
also makes it interesting to investigate the scaling behavior of a network with non-
zero height difference and finite UE density, which we do next. For simplicity, we
assume the single slope model. Initially, when density is low, the distances along
the ground between the typical UE and different BSs will be large compared to the
height difference because of which the height can be ignored. When the BS density
increases, the SIR remains invariant. As BS density becomes of the order of the UE
density, many BSs will start to go in the idle mode (because they do not have any
UEs to serve). This reduces the sum interference which increases the SIR coverage
probability. At further densification, the number of active BSs becomes constant at
λu, and hence the potential throughput approaches a constant.

As the BS density approaches ∞, the height difference between the BS and the
UE starts showing its effect. In particular, each UE has its serving BS right next to
it because of which the serving power approaches a constant value given the lower
bound on the path-loss. In addition, since the UE density is finite, the interference
statistics would not change with BS densification after BS density gets high enough.
This is because each active interfering BS will be located right next to the UE it is
serving, and therefore, the point process of the interfering BSs will converge to the
point process of the UEs (excluding of course the typical UE). Therefore, the SIR
distribution becomes invariant to any further densification. This is contrary to the
behavior with finite UE density and zero height difference where SIR coverage
probability increases to 1 or under non-zero height difference with infinite UE
density where the SIR coverage probability decreases to 0. The potential throughput
also remains constant owing to the fact that both the SIR coverage and the active BS
density are fixed.

The above discussion necessitates the study involving the interplay of all the
factors to understand the exact behavior of a cellular network’s performance under
densification. In this section, we will consider some case studies where two or more
than two factors are considered together.
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5.5.1 Finite UE Density Under Multi-slope Path-Loss

We saw that under the single slope path-loss (α > 2), with finite UE density,
the coverage probability approaches 1. On the other hand, under the multi-slope
path-loss with infinite UE density, the coverage probability approaches a constant
(may go to zero if α0 < 2). Similarly, for the first case, the potential throughput
approaches the constant value, whereas for the second case, the potential throughput
increases linearly if α0 > 2, sublinearly if 1 ≤ α0 < 2 or even go to zero if α0 < 1.

When the UE density is finite, we observe a hybrid behavior under multi-slope
path-loss model, as shown in the Fig. 5.13. With densification, the SIR coverage
probability first decreases as interference from the BSs inside the corner distance
becomes dominant. After the BS density supersedes the UE density, the interference
remains bounded, while the serving power increases. This results in coverage
probability becoming 1. The potential throughput, therefore, also increases as pc
increases, and then it approaches λu log(1 + γs) asymptotically. This indicates that
the densification beyond a point is not beneficial as the throughput gets saturated.
Similar behavior is also observed for probabilistic two regime models and the two
3GPP models discussed earlier in the chapter [38].

5.5.2 Height Difference Between BS and UE Under
Multi-slope Path-Loss

Figure 5.14 shows the behavior of network’s performance under multi-slope path-
loss when there is difference between the heights of the BS and UE antennas. We
observe that height difference can result in a severe coverage and throughput crash.
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Fig. 5.13 Scaling of the coverage probability and potential throughput under multi-slope path-
loss model when the UE density is fixed at 200 UE/km2. Here, the path-loss model is taken as the
dual-slope path-loss with Rc = 100 m, C0 = 10−7, α0 = 0.8, 2.2 and α1 = 3.3. γs = 1. Dashed
lines represent respective metrics in the absence of noise
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Fig. 5.14 Scaling of the coverage probability and potential throughput under multi-slope path-loss
model when there is a height difference of H = 10 m between the BS and UE antennas. Here, the
path-loss model is taken as the dual-slope path-loss with Rc = 100 m, C0 = 10−7, α0 = 0.8, 2.2,
and α1 = 3.3. γs = 1. Dashed lines represent respective metrics in the absence of noise

Similar behavior is also seen under the probabilistic path-loss model, such as the
3GPP-Model-1 [39, 40].

5.5.3 Fixed UE Density with Non-zero Height Difference
Under Multi-slope and Probabilistic Path-Loss

A network with fixed UE density and non-zero height difference between BSs and
UE was studied in [41] under the probabilistic path-loss model, namely, 3GPP-
Model-2. When the BS density is increased, SIR coverage pcI first increases as the
serving BS will be LOS with an increasing probability. Then at further densification,
pcI decreases as interferers start becoming LOS. As the BS density approaches the
UE density, many of the BSs will be inactive, and this puts an upper bound on the
interference. The serving power, however, increases with the BS density. Therefore,
pcI increases again. When we further densify, after a certain density λ′, the serving
power gets bounded owing to the fact that the serving BS distance cannot be smaller
than the height difference H . The total interference is already bounded. This leads
to a constant SIR coverage which may not be 1 and will be invariant of the further
densification. The SINR decreases due to the non-zero BS-to-UE antenna height
difference H , while it increases due to the BS idleness. This means that the two
effects counterbalance each other to some extent. As the active BS density is also
bounded, the potential throughput also becomes constant after a certain BS density
λ′. Any network densification beyond such a level of BS density is a waste of both
money and energy.

Note that in the above discussion, the UE density is finite. If the UE density
is infinite (or if it scales with the BS density), the network capacity crashes as
discussed before. However, this crash can be avoided if the number of active BSs
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can be bounded. Instead of serving all users, a fraction of users can be served which
will limit the total number of active BSs and hence the interference. This will lead
to the similar asymptotic behavior as observed with the finite UE density.

5.5.4 Access Restrictions with Finite UE Density

We now consider a HetNet with two tiers and a finite UE density. Since there are
two tiers, we assume that there are equal number of UEs subscribed to each tier. Our
aim here is to evaluate the impact of access restriction on coverage and throughput
of two tiers. In open access, UEs can connect to any network. Depending on the
actual number of UEs associated with each tier, we evaluate the active BS density
of that tier. In closed access, the UE can only connect to their own tier; therefore
active density of BSs will depend on their UE density only. We first consider the
case where both tiers densify equally. The results are shown in Fig. 5.15. For both
open and closed access, coverage and throughput follow the same trend as observed
in the single tier case with finite UE density. However, as also discussed earlier,
closed access can reduce the coverage compared to the open access.

In asymmetric networks where one tier has higher density than the other, closed
access can severely affect the performance of the latter network. The results are
shown in Fig. 5.16. We consider that the first-tier density is fixed while the second
tier densifies. The coverage in open access increases to 1 with densification of the
second tier. This is due to the fact that densification of the second tier will cause
most UEs to associate with the second tier. The first tier will only get those UEs
which have better serving power from the first tier than the potential serving power
of the highly dense second tier. The interference on the other hand remains bounded
due to the limit on the total number of active BSs.
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Fig. 5.15 Impact of densification under open and closed access for a two-tier network with the
equal scaling of BS density for both tiers (μ1 = μ2 = λ) and fixed UE density 200 UE/km2. The
path-loss model is taken as the single slope path-loss with C = 10−4 and α = 3. Here, γs = 1.
Dashed lines represent respective metrics in the absence of noise
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Fig. 5.16 Impact of the BS densification of the second tier on the coverage probability and
potential throughput of the first tier in a two-tier asymmetric cellular network with different access
restrictions. First tier has the fixed density μ1 = 30BS/km2, while the second tier’s BS density (μ2)
is varied. The path-loss model is taken as the single slope path-loss with C = 10−4 and α = 3.
Here, γs = 1

Under closed access, the densification of the second tier drastically decreases
coverage probability of the first tier. This is due to the fact that densification of
the second tier will increase the interference, while the serving power depends on
the first tier’s BS density which is fixed. However, the coverage probability of the
second tier increases with its densification.

The potential throughput of the first tier goes to zero in open access owing to the
fact that the number of UEs associating with the first tier decreases. The potential
throughput of the first tier also falls to zero in the closed access, but its fall is
earlier than the one observed in open-access scenario, and it saturates afterward.
However, the throughput of the second tier linearly increases with densification
before saturating in the end, for both access mechanisms.

5.6 Conclusions

Having provided a comprehensive account of the densification gains in a variety
of operational scenarios, we get back to the question that we asked early in the
chapter: Is densification the key to the future gains in cellular networks?. As is the
case with many questions in practice, unfortunately, the answer is: it depends. In
particular, we have seen that while densification helps in many scenarios, it can
also cause the SINR and throughput crash in some other scenarios. There are far
many important factors that affect the conclusion significantly and may result in
drastically different scaling results. Some of these major factors are the path-loss
models, the height difference, and scaling of the UE density with the BS density.
At the same time, some factors, such as the fading distribution and directionality,
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may not have as drastic of an impact on the eventual conclusions, especially for
the asymptotic results. In practical systems, many of these factors impact system
performance simultaneously because of which it is important to understand the
interplay between these factors and how they jointly impact the performance. In
order to provide key insights about these interplays, we included some important
case studies in which two or more such factors were considered jointly. However,
the eventual conclusions on the scaling of the network performance still remains
highly dependent on the system configuration. This again highlights the importance
of using accurate models and operational regimes for the performance analysis of
cellular networks.
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