
Developing Real-Time Smart Industrial
Analytics for Industry 4.0 Applications

Pankesh Patel and Muhammad Intizar Ali

Abstract Industry 4.0 refers to the 4th Industrial Revolution—the recent trend
of automation and data exchange in manufacturing technologies. Traditionally,
Manufacturing Executing System (MES) collects data, and it is only used for
periodic reports giving insight about past events. It does not incorporate real-
time data for up-to-date reports. Production targets are mostly predefined, before
the actual production starts. The different production anomalies are known to
happen in the real world, affecting the predefined production targets. Moreover,
a key challenge faced by industry is to integrate multiple autonomous processes,
machines, and businesses.

A broad objective of our work is to build an integrated view that can make
data available in a unified model to support different stakeholders of a factory
(e.g., factory planners, managers) in decision-making. In this chapter, we focus
on designing an approach for building Industry 4.0 smart services and addressing
real-time data analytics, which can integrate multiple sources of information and
analyze them on the fly. Moreover, we share our experience of applying IoT and
data analytics approach to a traditional manufacturing domain, thus enabling smart
services for Industry 4.0. We also present our key findings and challenges faced
while deploying our solution in real industrial settings. The selected use case studies
demonstrate the use of our approach for building smart Industry 4.0 applications.
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1 Introduction

Industry 4.0 or smart manufacturing brings the 4th Industrial Revolution by
integrating all digitized services and facilitating automation in manufacturing. The
aim of Industry 4.0 is to provide end-to-end connected smart solutions. Cyber
Physical Systems are a key pillar of Industry 4.0 as they provide interconnected
services between physical assets and their computational spaces (Lee et al. 2015).
Industrial data analytics is another important pillar of the Industry 4.0, as it supports
intelligent, automated decision-making. With the recent scientific achievements in
machine learning and deep learning technologies, it is now possible to analyze a
large amount of data and provide actionable insights.

The key goal of this chapter is to demonstrate on how to build smart services for
Industry 4.0 domain that can use data analytics to make intelligent decisions (Lee
et al. 2014). Among the key challenges to build the smart services for Industry 4.0,
the fundamental challenge is lack of real-time analysis. The traditional approach
in Industry 4.0 is to compile historical data and generate reports for decision-
making (Berson and Smith 1997). A common pattern found is that data are stored in
the databases. Then, the stored data are retrieved later to generate periodic reports,
analyzing the insights about past events. This pattern is not able to incorporate real-
time data (e.g., device real-time alarms). An analysis in real time can be a key
to accurately predict at more granular time intervals. Therefore, it is necessary to
set up an Industry 4.0 data collection infrastructure that can provide end-to-end
transparency in real time (e.g., the status of the production in the manufacturing
process), allowing for optimization not only across the factory sites but also in
the entire supply chain. Moreover, the blend of historical data and contextual
data generated by IoT devices can improve the outcomes of decision-making
algorithms (Watson and Wixom 2007). A few middleware solutions have been
proposed (Gao et al. 2017; Intizar et al. 2017) for real-time analytics. However,
the applications of the proposed approaches are missing in the manufacturing
domain (Zhong et al. 2017). Another challenge is lack of interoperability. The
data collection largely is not interconnected. This results into silos of data, making
the interoperability of data very difficult. The complex and heterogeneous nature
of the equipment used in the manufacturing industry sometimes makes it difficult
to get an overall perspective. As the technology advances, the new machines are
often delivered with powerful technologies. For SMEs (small-to-medium-sized
enterprises) with older machines installed at its factory, it can be challenging to
catch up with the complex IT standards that come along. The equipment used in
factories is often based on proprietary software that uses proprietary protocols, and
it is often difficult to update to more modern protocols. This environment makes it
challenging to create solutions that monitor equipment across entire factory floors
and across different factories.

By achieving interoperability, it is possible to build Industry 4.0 smart services,
in which multiple autonomous systems can be capable of exchanging information
on the fly and make automated intelligent decision after analyzing the collected
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Fig. 1 A semantic-enabled platform for Industry 4.0 systems

information. Currently, the business intelligence is mostly limited to a department
level or to a site level at the most. We envision an ecosystem of Industry 4.0
applications, where multiple autonomous systems can share information in real
time and collectively make decisions for the common good (see Fig. 1). Imagine
a scenario of supply chain management, where multiple stakeholders are involved.
An integrated middleware should enable the integration of the systems supported
by multiple stakeholders and optimize manufacturing tasks accordingly. In such
scenarios, a delay in the supply chain must already alert the manager of the shop
floor to optimize manufacturing processes accordingly or a weather calamity event
must automatically trigger actions expecting abruption in manufacturing processes
and consequently a reduction in daily production goals.

An integrated and holistic view of a factory can be established to improve the
decision-making and to reduce the overall complexity. The interlinking includes
the interlinking of diverse data sources such as anomalies in real time (e.g., machine
breakage), the manufacturing execution system (e.g., production data), business pro-
cesses, and so on. Although much of these data are already captured by IT system,
it largely remains inaccessible in an integrated way without investigating manual
effort. Thus, the broad objective of our research is to build an integrated view that
can make data available in a unified model to support different stakeholders of a
factory (e.g., factory planners, managers) in decision-making. Section 3 presents
AI- and semantic-based conceptual framework (named SWeTI Patel et al. 2018) to
achieve this broad objective.
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In this chapter, we focus on designing an approach for building Industry 4.0
smart services and addressing real-time data analytics, which can integrate multiple
sources of information and analyze them on the fly. Moreover, we share our expe-
rience of applying IoT and data analytics approach to a traditional manufacturing
domain, thus enabling smart services for Industry 4.0. Using our open-source
and standards-based approach, autonomous systems could be seamlessly integrated
using semantic technologies. The proposed approach can analyze large amount
of historical manufacturing data by applying machine learning algorithms and
collecting and analyzing sensor data on the fly. It facilitates an integrated view
of information from historical as well as real-time data perspective and facilitates
intelligent decision-making.

We also discuss a real-world production manufacturing use case, provided by a
large manufacturer of bio-medical devices (more details in Sect. 2). We elaborate
our approach to design a real-time data analytic solution based on production
forecasting. The proposed approach uses historical data of production processes
to train ML algorithms for future production goals, which help the manufactures
to set optimal and realistic goals for production. Contrary to traditional machine
learning approach that only considers historical data pattern, the proposed approach
supports a real-time monitoring to detect abnormal events (such as machine
breakages, head count shortages, and unavailability of raw materials). The impact
of these abnormal events is calculated and used to adjust the hourly, daily, and
weekly production targets accordingly. Our proposed approach integrates real-time
monitoring techniques to trigger notifications for taking the remedial actions in real
time.

Outline The remainder of this chapter is structured as follows: In Sect. 2, we take
one real-world Industry 4.0 case study. Section 3 presents our AI- and semantic-
based conceptual framework (named SWeTI Patel et al. 2018) for building smart
services for Industry 4.0. Background and existing approaches to build smart
services for Industry 4.0 are discussed in Sect. 4. We discussed our approach to
address the objective of the case study in Sect. 5, before concluding in Sect. 6.

2 Motivating Use Case: Smart Industrial Analytics

This section presents a production forecasting use case in the Industry 4.0 domain.
We consider a production forecasting of a large medical device manufacturer, which
is one of our industrial partners at the CONFIRM SFI Research Centre for Smart
Manufacturing (https://confirm.ie/). Our industry partner manufactures orthopedic
devices such as knee, hip, and shoulder joint replacements. The organization has
multiple manufacturing units at various geographical locations, across Ireland and
worldwide.

https://confirm.ie/
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Fig. 2 Production process layout, from raw material to a finished product

Figure 2 presents a production process layout. At a manufacturing unit, a typical
line of production at the shop floor is sequential. For simplicity reasons, we present
broad steps of the manufacturing process, however, the actual lines of production
are usually very complex. Figure 2 presents the production process layout steps
from raw material to grinding, from grinding to polishing, and from polishing to
cleaning and packing. A machine is responsible for executing one or more steps of
an operation (e.g., grinding). Each machine has specific characteristics that restrict
a set of products, which can be allocated to it. The manufacturing process is carried
out in a batch processing manner. Each machine can only run one batch at a time.

Due to the sequential production process at the manufacturing unit, any kind
of anomaly at any stage leads to domino effect on subsequence manufacturing
processes. The organization uses an internal Manufacturing Execution System
(MES) to keep track of its daily processes and stores relevant information about
each processing step of each manufacturing process. The collected data are used
to generate periodic reports, summarizing the actual production between requested
time frames. The generated reports are used by factory planners to set future
production targets.

The current system at the company is facing some challenges, which needs to be
addressed to achieve overall goals of the manufacturing company. These goals are to
reach production goal on time to meet the product demand, to reduce manufacturing
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cost, and to maximize utilization of resources. In the following, we present the
challenges that need to be addressed to achieve these objectives:

Real-Time Visibility The existing system collects data, and it is only used for
the generation of periodic reports giving insights about past events. It does not
incorporate real-time data, events for up-to-date reports, and feedback from the
supervisor(s) of shop floor. To address these limitations, the company needs a
system that allows them to capture data in real time from each process and shows the
production targets in real time. If the threshold condition is not met, then deviations
are recorded and supervisors are notified. So, the supervisors can take appropriate
actions to minimize the effect. Moreover, the deviation reasons can be recorded
for future analysis for improvements and production planning. Sections 4.1 and 4.2
present the state-of-the-art tools to address this challenge.

Anomalies at Runtime The production targets are set, before the actual production
starts. More specifically, the planners largely define production goals based on
the plant’s current capacity of producing the number of units, supply and demand
consideration, and consideration of past events or situations. The different anomalies
are known to happen in the real world. For instance, the anomalies such as machine
breakage, raw material low supply due to some external events (e.g., logistics delay,
supplier or distributor issues), manpower shortage, quality issues such as scrap
and rework. These are not considered during the goal settings, thus affecting the
overall production targets. To address this limitation, a company would need a set
of tools (state of the art presented in Sect. 4.2) to monitor, detect, and report events.
To detect an event, different thresholds based on historical data analysis and domain
knowledge from staff members of the organizations are implemented.

Interoperability Data collected at each process (e.g., grinding, polishing, cleaning,
and packaging) are not interconnected and interoperable, resulting into silos of
information for each process. This largely occurs because the company is using
different systems, supplied by different vendors, each has its own data collection
software, different communication protocols as well as different data format and
files. To ensure accurate prediction, the company would need to integrate data from
all relevant processes. Semantic Web approaches discussed in Sect. 4.3 can play a
role to achieve this objective.

Self-Configuration Due to the advancement in technologies, the manufacturers
may be interested in self-adaptive approaches, which can automatically adjust goals
and targets based on current processes. An ideal scenario is to develop a system that
can automatically reduce daily production targets according to unexpected events
such as machine failure (Wang et al. 2016). This approach would ensure a maximum
utilization of available resources.

To address the objectives, such as mentioned above, the next section presents our
AI- and semantic-based conceptual framework (named SWeTI Patel et al. 2018) for
building smart services for Industry 4.0.
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Fig. 3 A layered view of SWeTI platform

3 SWeTI: A Semantic Web of Things Platform for Building
Industry 4.0 Smart Services

This section presents a layered architecture of SWeTI platform briefly (Patel et al.
2018). Figure 3 presents an architecture. It begins with the data processing pipeline
at the machine level and moves toward intelligent autonomous applications.

Device Layer The shop floor at a factory hosts various industrial devices (e.g.,
pumps, motors, PLCs, industrial robots) and smart devices (e.g., mobile phones,
smartwatches) that enhance human–machine interactions. From a connectivity
viewpoint, they could be devices with legacy communication protocols or IoT
standard protocols (e.g., OPC-UA, BLE, MQTT).

Edge Layer It transforms raw data generated at the device layer into information.
Typically, powerful gateway devices are deployed at this layer. The gateway
devices implement various edge analytics techniques such as data aggregation, data
filteration, and data cleansing to further refine acquired data (some of the edge
analytics tools are presented in Sect. 4).

Cyber Layer It acts as a distributed information hub, preparing a ground for
specific data analytics. Diverse information could be collected from different players
of a supply chain (e.g., logistics, distributors, suppliers), industrial machines on
factory floors from edge devices. The information is pushed to form a linked
network of information (Linked Data1). Linked data are a natural fit for the
connected data as they provide abstraction on top of a distributed set of information.

1https://bit.ly/29YZz5b.

https://bit.ly/29YZz5b
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Data Analytic Layer The massive amount of data collected at the cyber layer
creates an opportunity to apply industrial analytics, leveraging AI techniques. The
aim is to identify an invisible relationship among data and enhance Industry 4.0
applications for better decision-making. The industrial analytics algorithms can be
on premise (state of the art presented in Sect. 4.2) or cloud based (state of the art
presented in Sect. 4.1).

Application Layer This layer builds meaningful and customized application on
top of data and services exposed by the data analytic layer. In recent years, a wide
variety of Industry 4.0 applications are demonstrated. For instance, developers can
create digital twin by combining data from the data analytic layer and functionality
exposed by an industrial machine. GE digital has demonstrated an advanced digital
twin.2 The customer can ask questions related to the machine’s performance
and potential issues through a natural language interface and receive the answers.
Moreover, a manufacturer can interact with the digital twin through Microsoft
HoloLense,3 an augmented reality (AR) device, and the manufacturer can have
a 3D view of an industrial asset to analyze its internal parts.

4 Related Work

This section presents existing approaches to implement the use case, presented in
Sect. 2. The existing approaches are largely divided into three categories: (1) cloud-
based approaches (Sect. 4.1), (2) open-source tools to develop an infrastructure
that enables real-time analytics (Sect. 4.2), and (3) Semantic Web technologies to
achieve the interoperability among industrial devices (Sect. 4.3).

4.1 Cloud Manufacturing

To realize the use case mentioned in Sect. 2, different cloud vendors (such as
Microsoft Azure, AWS, Google, IBM) provide cloud-based services. A common
approach, adopted by cloud, is to ingest data from an IoT device to cloud
infrastructure. Then, all processing takes place on top of the ingested data, and
appropriate decisions are made. The cloud-based approaches provide a set of
services to implement industrial analytics solutions. The following present some
of the cloud vendors and describe the services offered by them to implement smart
industrial analytics:

2https://youtu.be/2dCz3oL2rTw.
3https://www.microsoft.com/en-us/hololens.

https://youtu.be/2dCz3oL2rTw
https://www.microsoft.com/en-us/hololens
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• Microsoft Azure.4 It provides storage services (e.g., data lake) to store
structured and unstructured data. Moreover, its streaming service allows the users
to ingest data into the cloud from industrial devices. This service is supported by
an analytic service to analyze the streaming data and to derive insight out of
the streaming data. The analytic service component interfaces data visualization
services to implement analytic dashboard, machine learning service to make
predictions, and data lake services to store big data in various data formats.

• Siemens Offers MindSphere.5 It is an Industrial Internet of Things/Industry
4.0 solution, hosted on AWS. Using this service, the users can connect various
industrial devices. MindSphere provides marketplace of preconfigured industrial
analytics solutions, using which the users can quickly prototype a solution.

• GE Offers Predix.6 It is a cloud-based Industry 4.0 solution with a preconfig-
ured industrial analytics solution (in form of preconfigured apps and machine
learning solutions such as predictive maintenance). Moreover, Predix offers
an operating system for Industry 4.0 devices that let manufacturers deploy
intelligent algorithms at the edge.

Shortcomings of CloudManufacturing The cloud-based approaches keep indus-
trial analytics solutions largely at a center (Patel et al. 2017, 2018). Thus, it is
easy for maintenance. Moreover, it provides tools and technologies that reduce
the application development efforts. However, it is not suitable for some of
these Industrial Internet of Things applications. In the following, we present the
shortcoming of cloud approaches:

• The cloud approaches rely on the constant Internet connectivity among Industry
4.0 devices and Cloud services. The Internet connectivity may not remain
consistent, due to several reasons such as the manufacturing unit setup at remote
places or at the area where enough infrastructure for the Internet is not available.
Imagine a scenario, where an oil and gas unit is located at the seashore. Even if
we accept the fact that the technologies advancements can address the Internet
connectivity issues, there will always be concerns related to security and sharing
data to the third-party cloud vendors.

• A “development environment” of a cloud vendor can be very specific to a plat-
form, because each cloud platform brings its own platform-specific environment.
This could be a problem when a developer wants to migrate a solution from one
cloud provider to the other cloud provider. For instance, the developer may want
to migrate his/her solution from Microsoft Azure IoT hub solution to AWS IoT
solution. He/she may have to make changes in the cloud-based configuration and
perhaps changes in the application’s front-end code as well.

4https://azure.microsoft.com/en-us/industries/discrete-manufacturing/.
5https://siemens.mindsphere.io/.
6https://www.predix.io/catalog/services/.

https://azure.microsoft.com/en-us/industries/discrete-manufacturing/
https://siemens.mindsphere.io/
https://www.predix.io/catalog/services/
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• The innovation path may depend on “cloud vendor specific” offering. For
instance, a manufacturer may not be able to customize certain cloud-specific
features in a certain way if a cloud vendor is not offering that feature.

A common practice of cloud manufacturing is that developer uses the on-
premise tools and technologies (mentioned in Sect. 4.2) for initial prototyping of
the solution. Then, the solutions are deployed in the cloud for better scalability,
when there is an increase of customer base.

4.2 On-premise and Open-Source Approaches

A common pattern found in this approach is that sensor data are collected using
Industry 4.0 standards such as OPC-UA, Modbus, MQTT, BLE. The collected
data are sent to the more powerful devices such as gateway, which are responsible
to aggregate data or to send control signals back to the devices. Moreover, the
processed data are pushed to powerful servers, where the data are analyzed.
Various machine learning algorithms are used to make predictions. A set of open-
source technologies from the Eclipse foundations have been released to build such
on-premise systems for Industry 4.0. In the following, we present some of the open-
source tools to build on-premise solutions. Table 1 summarizes all these tools and
technologies.

Table 1 Summary: open-source tools to build on-premise Industry 4.0 applications

Tools Description Layer

Ditto It is a platform for building a digital twin. A digital twin is a
virtual representation of its physical industrial asset (e.g.,
electric motor). The Ditto provides HTTP APIs to access
industrial asset. Using Ditto platform, the developers do not
need to know how or where the Industrial assets are
connected, thus it simplifies the development of digital twins

Cloud, edge

Kura It is a platform for building Industry 4.0 gateway devices. It
implements the remote management of gateway devices,
deployed in the factory. It provides various APIs that allow
the developers to build and deploy customized logic at the
gateway devices

Gateway

HONO It provides service interfaces for connecting Industry 4.0
devices to a back end. It provides interfaces to interact with
the devices in a uniform way regardless of the device
communication protocol

Gateway, edge

Kapua It is an open-source cloud platform to manage and integrate
devices and their data.

Cloud, analytics

Unide Unide stands for “Understand Industry Devices.” It is a
Production Performance Management Protocol (PPMP),
which is a lightweight server–client implementation using
REST APIs and JSON

Edge
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Ditto7 It is an IoT technology to build “digital twin,” which is a virtual representa-
tion of its real-world counterpart. For instance, a digital twin of an electric motor in
a smart factory can collect data from a physical motor. The user can interact with the
digital twin to know the current status of the motor. Eclipse Ditto provides high-level
APIs, connecting devices to the back end and implementing business application on
top of the high-level APIs.

Kura8 It is a software platform (runs on the edge devices) for building IoT
gateways. Eclipse Kura provides several services. These services include (1) I/O
services to connect and access sensors and resource constrained devices such as
microcontrollers, (2) Data services to store and forward the telemetry data collected
by the sensors, (3) Cloud services to push data to cloud servers such as AWS and
Azure, and (4) Kura wire services to customize logic on gateway devices. All these
services are exposed by Web service interface.

HONO9 HONO is an open-source remote service interface for connecting IoT
devices to back-end services. It is a quite active project in the community with a
lot of documentations and examples. The goal of HONO is to provide a platform
to interact with devices regardless of communication protocols. The community
has developed solutions for HTTP, MQTT, AMQP, and Kura. Moreover, it allows
developers to plug custom device protocols, thus it does not limit the Industry
4.0 developers to only supported protocols. On top of Eclipse HONO, it provides
a uniform interface to interact with underlying IoT devices regardless of the
communication protocols they implement. HONO supports scalable and secure
ingestion of sensor data, and its command control API allows to send and receive
command message.

Unide10 Unide stands for “Understand Industry Devices.” It is a Production
Performance Management Protocol (PPMP),11 , which is a lightweight server–client
implementation using REST APIs and JSON. Unide provides tools for the validation
of PPMP messages and for visualization and persisting of PPMP data. It provides
the public REST API with the purpose of receiving measurement and message data
from machine. To validate PPMP messages, Unide offers a validator that compares
the payload you send to the given JSON-schema. By sending HTTP-POST requests
to the validator endpoint, you receive a message confirming whether the PPMP
message is correctly written according to the specification.

Kapua12 The goal of the Kapua project is to provide an open-source cloud-based
IoT integration platform. The Kapua is a platform to integrate data from various IoT

7https://www.eclipse.org/ditto/.
8https://www.eclipse.org/kura/.
9https://www.eclipse.org/hono/.
10https://www.eclipse.org/unide/.
11https://www.eclipse.org/unide/specification/.
12https://www.eclipse.org/kapua/.

https://www.eclipse.org/ditto/
https://www.eclipse.org/kura/
https://www.eclipse.org/hono/
https://www.eclipse.org/unide/
https://www.eclipse.org/unide/specification/
https://www.eclipse.org/kapua/
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devices. The Kapua provides a comprehensive management of IoT devices. The
management services include the connectivity to IoT devices supporting different
ingestion mechanisms, device configuration remotely, application development on
top of the Kapua APIs, controlling the device remotely using appropriate access
mechanisms, and sending device updates. The Kapua tools can be combined
with the Kura project to develop an end-to-end Industry 4.0 solution. This would
accelerate community-driven open-source implementation and avoid proprietary
vendor lock-in.

We continue leveraging our IoT tools to implement the discussed application:
IoTSuite (Chauhan et al. 2016), a tool suite to develop IoT application rapidly;
SWoTSuite, a tool suite to implement Semantic Web of Things applications; and a
middleware (Alie et al. 2017) for real-time analytics to implement essential Industry
4.0 components. In the following, we present them briefly:

IoTSuite13 The objective of this programming framework is to make the applica-
tion development easy by hiding IoT development-related complexity. It provides
high-level and platform independent programming abstractions and specification.
The developer specifies high-level specification, which is parsed by IoTSuite
to generate the platform-specific code. The high-level specification includes the
specification about sensing, actuating, and computational components as well as
the device properties. The developers do not need to concern about the platform
and runtime-specific aspect of development. More specifically, the following key
characteristics of this tool suite make it suitable for building real-time industrial
analytics.

• The current version of IoTSuite generates code in C, Python, Java, Android, and
Node.js. The code generator is flexible to generate IoT framework in a new
programming language. The developers just need to write a small plug-in to
generate IoT framework code in new programming language. IoTSuite has been
tested on devices such as Raspberry PI, ABB’s RIO 600, Arduino, and Android
smartphones.

• The current version of IoTSuite plugs MQTT, WebSocket runtime. However, the
integration of a new runtime is easy. The IoTSuite simply exposes well-defined
interfaces (Soukaras et al. 2015) to integrate a new runtime. The developers
simply implement runtime-specific interfaces to plug a target runtime system.

SWoTSuite14 It is a framework intended to build cross-domain IoT applications
by leveraging semantic technologies to achieve interoperability among hetero-
geneous IoT systems. The SWoTSuite reasoning mechanism over semantically
annotated IoT data generates user suggestions. The framework applies Linked
Open Data (LOD), Linked Open Vocabularies (LOV), and Linked Open Service

13https://github.com/pankeshpatel/IoTSuite/wiki.
14https://github.com/pankeshpatel/SWoTSuite.

https://github.com/pankeshpatel/IoTSuite/wiki
https://github.com/pankeshpatel/SWoTSuite
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(LOS) to achieve interoperability and derive meaningful knowledge from annotated
data (Gyrard et al. 2016).

ACEIS15 It contains a set of tools, designed for IoT data analytics. It leverages
Semantic Web technologies to build various components including one each for
integration on the fly, event detection, and streaming data discovery (Gao et al.
2017).

4.3 Semantic Web Technologies for Industry 4.0

This section presents Semantic Web tools and technologies to achieve interoper-
ability among Industry 4.0 devices. In the following, we present Semantic Web
components that can be used to implement the use case, mentioned in Sect. 2.

Data Ingestion Data ingestion is a process of getting data into an analytic platform.
It ingests sensor data for further processing and device description for discovery.
The data collection could be in various semantic formats such as JSON, EXI, XML.

Data Representation A common data representation format such as RDF could
be used for data exchange among industrial devices. The work (Grangel-González
et al. 2016) notes several benefits of employing RDF as data representation format
for Industry 4.0.: first, various data serialization formats are generated easily and
transmitted. Second, the data representation can be generated on the fly from the
data stored in relational database or other data representation formats. This is very
important aspect, because this flexibility enables data sharing among legacy systems
and new systems. Third, SPARQL (a W3C standard for an RDF query) can be used
on top of RDF data. This would make data available through a standard interface.
However, Industry 4.0 devices such as PLCs may not have enough processing power
to process RDF data.

The work (Su et al. 2015) emphasizes adding semantic technologies on devices
and evaluates several different formats for representing sensor measurements
and device properties in terms of energy efficiency for data communication and
processing. The evaluation conducted by (Su et al. 2012) finds that JSON for Linked
Data (JSON-LD16) and Entity Notation (EN) are compact as well as lightweight data
representations. Many non-RDF lightweight emerging standards are available for
representing industrial devices and sensor measurements in the domain of Industry
4.0. In the following, we present some of the Industry 4.0 standards for representing
data from industrial devices.

15https://github.com/CityPulse/Stream-Discovery-and-Integration-Middleware.
16http://json-ld.org/.

https://github.com/CityPulse/Stream-Discovery-and-Integration-Middleware
http://json-ld.org/
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• OPC Unified Architecture (OPC-UA).17 It is a machine-to-machine Industry
4.0 protocol. It integrates an information model for information integration.
Using OPC-UA information model, the complex data can be modeled.

• Production Performance Management Protocol (PPMP).18 It can be chal-
lenging for SMEs to catch up with the complex IT standards such as OPC-UA
that come along. To address these challenges and requirements in Industry
4.0, PPMP is designed. It specifies a format that allows capturing data for
performance analysis of production facilities. It is structured into three payload
formats: measurement payload, message payload, and process payload. The
measurement payload contains measurements from machines (e.g., temperature,
vibrations of a machine). The message payload contains alerts sent by a machine.
A process message consists of information (e.g., tightening process with all their
characterizing data), which is needed to describe and analyze it. The Eclipse
Unide aims to provide sample implementations and further development of
PPMP in and with the Eclipse Open Source community.

Data Transformation This component is responsible for transforming various
formats to standardized format. It enables reasoning of sensor data in a uniform
way. For instance, the work by Su et al. (2014) transforms Sensor Markup
Language (SenML)19 to RDF. SenML is an industry-driven lightweight solution
for representing sensor measurements, accepted by many industrial vendors. Eclipse
Unide presents an open-source implementation that transforms PRC7000 format to
PPMP format using Apache Camel, Which is a versatile open-source integration
framework.

Data Storage and Processing This component is responsible for storing and
processing data. Broadly, there are two approaches: first, the use of cloud for
processing. Second, edge computing that stores process data locally. The RDF
storage on resource-constrained devices may not possible due to the textual
representation of RDF. To address this problem, formats such as Binary XML and
EXI are promising compact representation, proposed by W3C. The work (Le-Phuoc
et al. 2010) proposes “RDF on the Go” that offers a full-fledged RDF storage for
Android devices. Similarly, MicroJena and MobileRDF20 present an approach to
store and query RDF data locally.

Reasoning at Edge To derive new knowledge, it is necessary to push reasoning
on the edge. However, existing reasoning tools such as RacerPro, Jena, Fact++,
Pellet cannot be used for edge devices, due to their high computation cost. The
work (d’Aquin et al. 2010) demonstrates reasoning engines require several hundred
KBs of memory to process one RDF triple. Thus, technically it is possible to port

17https://opcfoundation.org/about/opc-technologies/opc-ua/.
18https://www.eclipse.org/unide/.
19https://tools.ietf.org/html/draft-jennings-senml-10.
20http://www.hedenus.de/rdf/.

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.eclipse.org/unide/
https://tools.ietf.org/html/draft-jennings-senml-10
http://www.hedenus.de/rdf/
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a reasoner on device with some code-level modification, a reasoning engine can
consume a huge amount of resources (Tai et al. 2015).

5 Our Approach and Implementation

This section presents our approach to achieve the objectives of the case study,
described in Sect. 2. In the following, we present various data analytics steps,
performed on industrial data.

5.1 Data Ingestion

This is an entry point of getting data into the platform. This module has two major
roles to play: first, scale to meet the demand of diverse data sources including
relational/non-relational database as well as real-time data. Second, move data as
fast as possible to the next module for further processing. This module collects
data in various formats (e.g., JSON, RDF, XML), discussed in Sect. 4.3. We use
Apache Kafka21 for data ingestion service. Kafka provides a set of standard
connectors22 to query the relevant databases directly, following traditional ETL
(Extract–Transform–Load) pattern as well as connectors to ingest real-time data
that exhibit a number of interaction patterns such as request–response (Berners-Lee
et al. 2001), publish–subscribe (Eugster et al. 2003), and streaming (Aggarwal et al.
2006). Depending on the nature of the underlying information source and the data
policy, this module performs either a full ETL on the whole dataset or partial data
are acquired using an on-demand ETL policy.

5.2 Data Pre-processing

As a first step, we identified the relevant variables that are important for production
forecasting and selected a set of dependent and independent variables. The extracted
data spanned over the last three years. Table 2 describes the selected variables,
which are collected at each manufacturing step. For the purposes of our analysis,
we considered three independent variables, namely (1) Scrap: the number of
units scrapped during production, (2) Rework: the number of units sent back for
reworking, and (3) Lead time: the overall time it takes for a container to be processed
between the first and last operations. We use query-based approach to extract data,

21https://kafka.apache.org/.
22https://www.confluent.io/connectors/.

https://kafka.apache.org/
https://www.confluent.io/connectors/
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Table 2 Selected variables for production forecasting

Variables Description

Scrap It is a number of units scrapped during the manufacturing
process

Rework It is a number of units (in a given container) that are sent back
for reprocessing through a manufacturing operation step

Lead time It is a total time of a manufacturing process, from process
start to finish, including any queue times

Operation process time It is an actual processing time of a container, including
container on-hold time

Operation queue time It is an actual queued time of a container, before entering the
next operation step

Machine uptime It indicates a time during the manufacturing process a
machine is in a productive state

NCR occurrences It is an event, when a container is non-conforming

Containers on hold It is a state of the manufacturing process when a container is
placed “on-hold,” requiring further investigation

Sample tests failed It indicates a number of samples, pulled for test purposes for
the quality control, that have failed an inspection step

in such a way that any future versions of the database can be easily linked to our
tool.

We analyzed the extracted data manually and ensured that the prepared data are
properly cleaned and free of any missing values or any discrepancies. Figure 4
presents a snapshot of collected data. This process was the most time-consuming
part. We leverage a variety of tools for data cleansing including anomaly detection,
handling incomplete and noisy data, identifying any missing values, contradictory
and out of range values, and an automated features extraction tool to identify
relevant features before applying to the next step, discussed in Sect. 5.3.

5.3 Machine Learning Algorithms for Prediction

We applied regression-based ML algorithms over collected data to identify the best
performing algorithms. We used models such as Multiple Linear Regression, Sup-
port Vector Regression, Decision Tree Regression, and Random Forest Regression.
The models were trained using 80% training dataset, and 20% validation dataset
was used for testing.
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Fig. 4 Data collection from MES before data pre-processing step

Figure 5a–d presents the results of our evaluation of the four, respectively. The
results demonstrate a comparison between the actual value (as a blue line) and
predicted value (as an orange line) for the number of units manufactured during 6
months. We employed Root Mean Square Error (RMSE) mechanism to evaluate the
accuracy of an algorithm. This mechanism helped us to select a most appropriate
algorithm for our use case. RMSE shows how close a trained model is to a set
of actual points. This is calculated by taking the distances from the points to the
regression lines and squaring them before taking the root for the final value. The
smaller RMSE indicates a best fit. Table 3 presents the results of RMSE value of
each regression ML algorithm. As we can see that, Random Forest model shows the
smallest RMSE value.
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Table 3 RMSE scores for
different regression models

Regression types RMSE

Multiple linear 467.89

Support vector 587.84

Decision tree 434.54

Random forest (n = 20)∗ 312.37
∗The most accurate algorithm with
lowest RMSE score

5.4 Real-Time Event Monitoring and Notification

The limitation of the existing system at the factory is that there was lack of tools to
visual data in real time, to set production targets for the supervisors, and to record
events that could affect the overall production and their causation. To address the
limitation, we have developed a set of tools. To detect events, we set different
thresholds based on historical data analysis and domain knowledge from staff
members of the organization.

The major benefit of real-time analytics is to support a detection of events.
An event can be defined in various ways, such as continuously looking for the
occurrence of any predefined pattern or continuously monitoring the streaming
data values and trigger an event whenever a pre-specified threshold for the values
is breached. This module implements a real-time event detection mechanism for
streaming data. A set of predefined thresholds are used for production data for
granular time interval. We use the live production data to monitor real-time events
and then continuously analyzed and matched values of the production data by
comparing the values against the predefined thresholds. We reported an event
whenever the values observed from the live data streams go beyond the defined
threshold values. We also introduce a buffering mechanism, which ensures that
events are generated only when the live production data deviate beyond the threshold
by a certain margin, e.g., ±5% of daily average production.

We developed a set of tools to monitor, detect, and report events. In the following,
we present each module in detail:

Real-Time Analytic Module The first goal of a real-time analytics module is to
capture data in real time and visualize them on a dashboard. The second goal is to
set realistic production target and use these thresholds for deviation detection. The
third goal is to alert supervisors at a factory when a processing step deviates from a
predefined target. If the threshold condition is not met, then deviated containers are
recorded and notifications are sent to supervisors.

Target Definition and Threshold Setting The objective of this module is to alert
users when a processing step deviates from a predefined target. To achieve this
objective, we defined a realistic target and use it as threshold for deviation detection.
We used parts per minute (PPM) to define as a target for each type of product.
However, we leveraged the outcomes of historical analysis and used the predicated
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values automatically to define targets. We also provided a web interface to allow
shift supervisor to set goals of each shift manually and to log the reasons if a target
is increased or decreased from suggested target.

Event Detection and Event Logging In order to provide a mechanism for event
detection, we build a tool to log all detected events. The UI in the tool, lets
supervisors to input why deviations happened are provided by the supervisors.
These reasons can provide later on an additional information for the historical
analysis model. This additional column perhaps helps the prediction model more
precise. We used the following notations for event detection:

• P: It is a process that is defined as a set of work-flow steps. Each P is assigned
with a target T.

• R = {r1, r2, . . . , rn} is a set of reasons that are either defined by users or detected
automatically by the system. Each reason ri can have a positive or negative
effect on target T. Let f (ri, T ) be the effect value that ri produces on T, where
f (ri , T ) > 0 (f (ri , T ) < 0) represents a positive (negative) effect.

Given a target T and a set of reasons R. Assume that each reason in R holds a
different level of effect on the overall target, i.e., some reasons can adversely affect
the overall target more or less compared to another. Hence, different weights are
added to each reason. Any R can have either a positive or a negative effect on T,
which can be calculated based on the following formula:

f(R,T) =
∑n

i=1 wif (ri , T )
∑n

i=1 Wi

> 0 (or < 0),

where w1, . . . , wn are the weights of the contributions of reasons r1, . . . , rn,
respectively.

Alerting and Notification This module is responsible for the generation of notifi-
cation whenever an event is detected. Upon the detection of an event, this module
triggers an action for the detected event. The action can be either a notification, an
alarm, an alert or even an email to the relevant person who can take appropriate
action. We implemented two types of notification delivery methods: first, an alert
system was integrated within the dashboard. The factory supervisor was able to
monitor the real-time progress of the production by following a visual interface
installed at the shop floor. Second, a system-generated email is sent to the selected
managers whenever there are any unexpected events.
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5.5 Capacity Planning Tool for Production Forecasting

We developed a capacity planning tool facilitating the factory managers to set long-
term production targets. Figure 6 shows the production forecasting results, where
the blue line is an actual production and red line indicates the predicted values.
Moreover, this tool lets the managers to adjust the values of different dependent
variables to perform what-if analysis. Historical data analysis provides an estimated
value for each of the days as auto-filled value that can be changed by the manager
to see an impact of the change.

Fig. 6 An interface for accumulative capacity planning using production forecasting
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6 Conclusion and Future Work

In this chapter, we presented an approach for event detection for smart manufac-
turing in real time. We presented a use case for the application of data analytics
in the context of smart manufacturing. We reviewed the existing practices and
solutions supported by the industry and discussed the key challenges faced while
designing Industry 4.0 applications. We presented detailed components of our
proposed approach, which can collect, integrate, and analyze historical as well as
real-time data. We showcase the practical use of our approach by showing how an
industry’s use case was implemented using our proposed solution.

The proposed approach has been successfully deployed at a manufacturing unit
as a prototype. We consider it as the first step for the organization toward building
a larger vision of Industry 4.0. We plan to extend this deployment for all processes
within the factory and design more business intelligence tools. Particularly, we will
focus on the integration of multiple autonomous systems and show the integration
and analytics of data collected from disperse autonomous systems for the supply
chain management and manufacturing processes optimization.
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