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Abstract. In this paper, we introduce a new problem of finding an
upward drawing of a given plane graph γ with a set P of paths so that
each path in the set is drawn as a poly-line that is monotone in the
y-coordinate. We present a sufficient condition for an instance (γ, P) to
admit such an upward drawing. We also present a linear-time algorithm
to construct such a drawing, which is straight-line for a simple graph, or
poly-line otherwise. Our results imply that every 1-plane graph admits
an upward drawing.

1 Introduction

Upward planar drawings of digraphs are well studied problem in Graph Draw-
ing [3]. In an upward planar drawing of a directed graph, no two edges cross and
each edge is a curve monotonically increasing in the vertical direction. It was
shown that an upward planar graph (i.e., a graph that admits an upward planar
drawing) is a subgraph of a planar st-graph and admits a straight-line upward
planar drawing [4,13], although some digraphs may require exponential area [3].
Testing upward planarity of a digraph is NP-complete [10]; a polynomial-time
algorithm is available for an embedded triconnected digraph [2].

Upward embeddings and orientations of undirected planar graphs were stud-
ied in [6]. Computing bimodal and acyclic orientations of mixed graphs (i.e.,
graphs with undirected and directed edges) is known to be NP-complete [14],
and upward planarity testing for embedded mixed graph is NP-hard [5]. Upward
planarity can be tested in cubic time for mixed outerplane graphs, and linear-
time for special classes of mixed plane triangulations [8].

A monotone drawing is a straight-line drawing such that for every pair of
vertices there exists a path that monotonically increases with respect to some
direction. In an upward drawing, each directed path is monotone, and such paths
are monotone with respect to the same (vertical) line, while in a monotone
drawing, each monotone path is monotone with respect to a different line in
general. Algorithms for constructing planar monotone drawings of trees and
biconnected planar graphs are presented [1].
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In this paper, we introduce a new problem of finding an upward drawing of a
given plane graph γ together with a set P of paths so that each path in the set is
drawn as a poly-line that is monotone in the y-coordinate. Let γ = (V,E, F ) be
a plane graph and D be an upward drawing of γ. We call D monotonic to a path
P of (V,E) if D is upward in the y-coordinate and the drawing induced by path
P is y-monotone. We call D monotonic to a set of paths P if D is monotonic to
each path in P. More specifically, we initiate the following problem.

Path-monotonic Upward Drawing
Input: A connected plane graph γ, a set P of paths of length at least 2 and two
outer vertices s and t.
Output: An (s, t)-upward drawing of γ that is monotonic to P.

We present a sufficient condition for an instance (γ,P) to admit an (s, t)-
upward drawing of γ that is monotonic to P for any two outer vertices s, t �∈
Vinl(P) (see Theorem 1). We also present a linear-time algorithm to construct
such a drawing, which is straight-line for a simple graph, or poly-line otherwise.

Then we apply the result to a problem of finding an upward drawing of a
non-planar embedding of a graph (Theorem2), and prove that every 1-plane
graph (i.e., a graph embedded with at most one crossing per edge) admits an
(s, t)-upward poly-line drawing (Corollary 1). Note that there is a 1-plane graph
that admits no straight-line drawing [17], and there is a 2-plane graph with three
edges that admits no upward drawing.

Figure 1(a) shows an instance (γ,P) with P = {P1 = (v6, u1, v2), P2 =
(v1, u1, v5), P3 = (v3, u2, v4), P4 = (v3, u3, u4, v9), P5 = (v11, u5, u4, v8), P6 =
(v10, u5, u3, v7), P7 = (v10, u6, u4, v7), P8 = (v12, u7, v14), P9 = (v10, u7, v13)}.
Figure 1(b) shows an (s, t)-upward drawing monotonic to P such that each path
is drawn as a poly-line monotone in the y-coordinate for s = v5 and t = v8.
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Fig. 1. (a) plane graph γ with a path set P and a cycle set C, where the edges in
paths in P (resp., cycles C) are depicted with black thick lines (resp., gray thick lines),
and the vertices in Vinl (resp., Vend and V \ Vinl ∪ Vend) are depicted with white circles
(resp., gray circles and white squares); (b) (s = v5, t = v8)-upward poly-line drawing
monotonic to P.
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2 Preliminaries

Graphs. In this paper, a graph stands for an undirected multiple graph without
self-loops. A graph with no multiple edges is called simple. Given a graph G =
(V,E), the vertex and edge sets are denoted by V (G) and E(G), respectively.

A path P that visits vertices v1, v2, . . . , vk+1 in this order is denoted by
P = (v1, v2, . . . , vk+1), where vertices v1 and vk+1 are called the end-vertices.
Paths and cycles are simple unless otherwise stated.

A path with end-vertices u, v ∈ V is called a u, v-path. A u, v-path that is
a subpath of a path P is called the sub-u, v-path of P . Denote the set of end-
vertices (resp., internal vertices) of all paths in a set P of paths by Vend(P)
(resp., Vinl(P)), which is written as Vend(P ) (resp., Vinl(P )) for P = {P}.

Let G be a graph with a vertex set V with n = |V | and an edge set E, and
NG(v) denote the set of neighbors of a vertex v in G. Let X be a subset of V ,
and G[X] denote the subgraph of G induced by the vertices in X. We denote by
NG(X) the set of neighbors of X; i.e., NG(X) = ∪v∈XNG(v) \ X. A connected
component H of G may be denoted with the vertex subset V (H) for simplicity.

For two distinct vertices a, b ∈ V , a bijection ρ : V → {1, 2, . . . , n} is called an
st-numbering if ρ(a) = 1, ρ(b) = n, and each vertex v ∈ V \{a, b} has a neighbor
v′ ∈ NG(v) with ρ(v′) < ρ(v) and a neighbor v′′ ∈ NG(v) with ρ(v) < ρ(v′′). It
is possible to find an st-numbering of a given graph with designated vertices a
and b (if one exists) in linear time using depth-first search [7,16]. A biconnected
graph admits an st-numbering for any specified vertices a and b.

Digraphs. Let G = (V,E) be a digraph. The indegree (resp., outdegree) of a
vertex v ∈ V in G is defined to be the number of edges whose head is v (resp.,
whose tail is v). A source (resp., sink ) is defined to be a vertex of indegree (resp.,
outdegree) 0. When G has no directed cycle, it is called acyclic. A digraph with
n vertices is acyclic if and only if it admits a topological ordering, i.e., a bijection
τ : V → {1, 2, . . . , n} such that τ(u) < τ(v) for any directed edge (u, v).

We define an orientation of a graph G = (V,E) to be a digraph ˜G = (V, ˜E)
obtained from the graph by replacing each edge uv in G with one of the directed
edge (u, v) or (v, u). A bipolar orientation (or st-orientation) of a graph is defined
to be an acyclic digraph with a single source s and a single sink t [9,15], where
we call such a bipolar orientation an (s, t)-orientation. A graph has a bipolar
orientation if and only if it admits an st-numbering. Figure 1(b) illustrates an
(s, t)-orientation for s = v5 and t = v8.

Lemma 1. For any vertices s and t in a biconnected graph G possibly with
multiple edges, an (s, t)-orientation ˜G of G can be constructed in linear time.

We call an orientation ˜G of G compatible to a set P of paths in G if each
path in P is directed from one end-vertex to the other in ˜G. The orientation in
Fig. 1(b) is compatible to the path set P.

Embeddings. An embedding Γ of a graph (or a digraph) G = (V,E) is a
representation of G (possibly with multiple edges) in the plane, where each
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vertex in V is a point and each edge e ∈ E is a curve (a Jordan arc) between the
points representing its end-vertices. We say that two edges cross if they have a
point in common, called a crossing, other than their endpoints.

To avoid pathological cases, standard non-degeneracy conditions apply: (i)
no edge contains any vertex other than its endpoints; (ii) no edge crosses itself;
(iii) no two edges meet tangentially; and (iv) two edges cross at most one point,
and two crossing edges share no end-vertex (where two edges may share the two
end-vertices). In this paper, we allow three or more edges to share the same
crossing. An edge that does not cross any other edge is called crossing-free.

Let Γ be an embedding of a graph (or digraph) G = (V,E). We call Γ a
poly-line drawing if each edge e ∈ E is drawn as a sequence of line segments.
The point where two consecutive line segments meet is called a bend. We call a
poly-line drawing a straight-line drawing if it has no bend.

We call a curve in the xy-plane y-monotone if the y-coordinate of the points
in the curve increases from one end of the curve to the other. We call Γ an
upward drawing if (i) there is a direction d to be defined as the y-coordinate
such that the curve for each edge e ∈ E is y-monotone; and (ii) when G is a
digraph, the head of e has a larger y-coordinate than that of the tail of e.

For two vertices s, t ∈ V , we call Γ an (s, t)-upward drawing if Γ is upward in
the y-coordinate and the y-coordinate of s (resp., t) in Γ is uniquely minimum
(resp., maximum) among the y-coordinates of vertices in Γ . Figure 1(b) shows
an example of an (s, t)-upward poly-line drawing with s = v5 and t = v8.

Plane Graphs. An embedding of a graph G with no crossing is called a plane
graph and is denoted by a tuple (V,E, F ) of a set V of vertices, a set E of edges
and a set F of faces. We call a plane graph pseudo-simple if it has no pair of
multiple edges e and e′ such that the cycle formed by e and e′ encloses no vertex.

Let γ = (V,E, F ) be a plane graph. We say that two paths P and P ′ in γ
intersect if they are edge-disjoint and share a common internal vertex w, and the
edges uw and wv in P and u′w and wv′ in P ′ incident to w appear alternately
around w (i.e., in one of the orderings u, u′, v, v′ and u, v′, v, u′).

Let C be a cycle in γ. Define Venc(C; γ), Eenc(C; γ) and Fenc(C; γ) to be
the sets of vertices v ∈ V \ V (C), edges e ∈ E \ E(C) and inner faces f ∈ F
that are enclosed by C. The interior subgraph γ[C]enc induced from γ by C is
defined to be the plane graph (V (C)∪Venc(C; γ), E(C)∪Eenc(C; γ), Fenc(C; γ)∪
{fC}), where fC denotes the new outer face whose facial cycle is C. The exterior
subgraph induced from γ by C is defined to be the plane graph (V \Venc(C; γ), E\
Eenc(C; γ), F ∪ {fC} \ Fenc(C; γ)), where fC denotes the new inner face whose
facial cycle is C. Note that when γ is biconnected, the graph γ[C]enc remains
biconnected, since every two vertices u, v ∈ V \ Venc(C; γ) have two internally
disjoint paths without using edges in Eenc(C; γ).

We say that two cycles C and C ′ in γ intersect if Fenc(C; γ) \ Fenc(C ′; γ) �=
∅ �= Fenc(C ′; γ) \ Fenc(C; γ). Let C be a set of cycles in γ. We call C inclusive
if no two cycles in C intersect. When C is inclusive, the inclusion-forest of C is
defined to be a forest I = (C, E) of a disjoint union of rooted trees such that (i)
the cycles in C are regarded as the vertices of I; and (ii) a cycle C is an ancestor
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of a cycle C ′ in I if and only if Fenc(C ′; γ) ⊆ Fenc(C; γ). Let I(C) denote the
inclusion-forest of C.

An st-planar graph is defined to be a bipolar orientation of a plane graph for
which both the source and the sink of the orientation are on the outer face of
the graph. A directed acyclic graph G has an upward planar drawing if and only
if G is a subgraph of an st-planar graph [4,13]. Every st-planar graph can have
a dominance drawing [3], in which for every two vertices u and v there exists
a path from u to v if and only if both coordinates of u are smaller than the
corresponding coordinates of v. The following result is known.

Lemma 2. [3] (i) Every simple st-planar graph admits an upward straight-line
drawing;
(ii) Every st-planar graph with multiple edges admits an upward poly-line draw-
ing, where each multiple edge has at most one bend; and
(iii) Such a drawing in (i) and (ii) can be constructed in linear time.

We see that (ii) follows from (i) by subdividing each multiple directed edge
(u, v) into a directed path (u,w, v) with a new vertex w to obtain a simple
st-planar graph. Figure 1(b) illustrates an example of an st-planar graph.

3 Path-Monotonic Upward Drawing

When a plane graph γ has a pair of multiple edges e and e′ that encloses no
vertex in the interior, we can ignore one of these edges (say e′) to find an upward
drawing of γ, because we can draw e′ along the drawing of e in any upward
drawing of the resulting plane graph. In what follows, we assume that a given
plane graph is pseudo-simple.

We say that two paths P and P ′ in a plane graph γ are 1-independent if they
intersect at a common internal vertex and have no other common vertex; or they
have no common vertex that is an internal vertex of one of them (where they
may share at most two vertices that are end-vertices to both paths). We call a
set P of paths in γ 1-independent if any two paths in P are 1-independent.

In this paper, we present a sufficient condition for an instance (γ,P) to
admit an (s, t)-upward drawing of γ that is monotonic to P for any two outer
vertices s, t �∈ Vinl(P). We also present a linear-time algorithm to construct such
a drawing. The main contribution of this paper is summarized in the following
main theorem.

Theorem 1. Let γ = (G = (V,E), F ) be a pseudo-simple connected plane graph
and P be a set of paths of length at least 2 in G, where Vinl denotes the set of
internal vertices in paths in P. If the following conditions hold, then any pair
of outer vertices s, t �∈ Vinl admits an (s, t)-upward (straight-line, if γ is simple)
drawing D monotonic to P, which can be computed in linear time:
(i) P is 1-independent; and
(ii) There is no pair of a path P ∈ P and a cycle K with |V (K) \ Vinl| ≤ 1
such that K encloses an end-vertex of P and the internal vertices of P and the



Path-Monotonic Upward Drawings of Graphs 115

vertices in V (K) ∩ Vinl belong to the same component of the subgraph G[Vinl]
induced from G by Vinl.

We assume that the boundary of γ forms a cycle Co such that V (Co)∩Vinl =
∅; if necessary, add two new outer edges es,t and e′

s,t joining the two outer vertices
s and t to form a new outer facial cycle Co of length 2. In what follows, we assume
that the boundary of a given connected planar graph γ forms a cycle.

We prove Theorem 1 by showing that every instance satisfying the condi-
tions of the theorem admits an (s, t)-orientation compatible to P, which implies
that the instance admits an (s, t)-upward straight-line (resp., poly-line) drawing
monotonic to P by Lemma 2. To prove the existence of such an (s, t)-orientation
compatible to P, we show that Theorem 1 is reduced to the following case.

Lemma 3. Let γ = (G = (V,E), F ) be a pseudo-simple connected plane graph
and P be a set of paths of length at least 2 in G, where Vinl denotes the set of
internal vertices in paths in P. If the following conditions hold, then any pair
of outer vertices s, t �∈ Vinl admits an (s, t)-orientation γ̃ of γ compatible to P,
which can be computed in linear time:

(i) P is 1-independent; and
(ii) For the set {Vi ⊆ Vinl | i = 1, 2, . . . , p} of components in G[Vinl] and

the partition {Pi | i = 1, 2, . . . , p} of P such that Vinl(Pi) ⊆ Vi, there exists
an inclusive set C = {C1, C2, . . . , Cp} of edge-disjoint cycles such that, for each
i = 1, 2, . . . , p, Vi ⊆ Venc(Ci; γ) and Vend(Pi) ⊆ V (Ci) ⊆ V \ Vinl.

The instance in Fig. 1(a) has three components V1 = {u1, u2}, V2 =
{u3, u4, u5, u6} and V3 = {u7} in G[Vinl]. The instance admits a cycle set
C = {C1 = (v1, v2, w4, v3, v4, v5, v6), C2 = (v3, v7, v8, v9, w5, v10, v11, w6), C3 =
(v10, v12, v13, v14)}, which satisfies the condition of Lemma 3. Figure 1(b) illus-
trates an (s, t)-orientation γ̃ of γ in Fig. 1(a) that is compatible to P.

We prove in Sect. 5 that a given instance of Theorem 1 can be augmented to
a plane graph so that the condition of Lemma3 is satisfied.

4 Bipolar Orientation on Plane Graphs

This section presents several properties on bipolar orientations in plane graphs,
which will be the basis to our proof of Lemma3. Let g : V → R be a vertex-
weight function in a graph G = (V,E), where R denote the set of real numbers.
We say that g is bipolar (or (a, b)-bipolar) to a subgraph G′ = (V ′, E′) of G
if (i) g(u) �= g(v) for the end-vertices u and v of each edge e = uv ∈ E′; (ii)
V ′ contains a vertex pair (a, b) such that g(a) < g(v) < g(b) for all vertices
v ∈ V ′ \ {a, b}; and (iii) each vertex v ∈ V ′ \ {a, b} has a neighbor u ∈ NG′(v)
with g(u) < g(v) and a neighbor w ∈ NG′(v) with g(v) < g(w).

Observe that an (a, b)-bipolar function g to a graph G is essentially equivalent
to an st-numbering of G in the sense that it admits an st-numbering σ : V (G) →
{1, 2, . . . , |V (G)|} of G such that σ(a) = 1, σ(b) = |V (G)| and σ(u) < σ(v) holds
for any pair of vertices u, v ∈ V with g(u) < g(v). We observe that any bipolar
function in a plane graph is bipolar to every cycle in the next lemma.
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Fig. 2. (a) mesh graph η2 = (C2, P2) induced from the instance γ in Fig. 1(a) with cycle
C2; an instance satisfying the condition of Lemma 3: (b) (s2 = v11, t2 = v8)-orientation

σ̃(μ2) of the split mesh graph σ(μ2); (c) sun augmentation γ∗.

Lemma 4. For a biconnected graph G = (V,E), let g : V → R be a function
(s, t)-bipolar to G. If G admits a plane graph γ = (V,E, F ), then the boundary
of each face f ∈ F forms a cycle Cf and g is bipolar to Cf .

The next lemma states that a bipolar orientation of a plane graph can be
obtained from bipolar orientations of the interior and exterior subgraphs of a
cycle.

Lemma 5. For a biconnected plane graph γ = (V,E, F ) and a cycle C of the
graph (V,E), let γC (resp., γC) denote the interior (resp., exterior) subgraph of
γ by C. For two outer vertices s and t of γ, let γ̃C be an (s, t)-orientation of γC .
Then the orientation ˜C restricted from γ̃C to C is an (a, b)-orientation of C for
some a, b ∈ V (C), and for any (a, b)-orientation γ̃C of γC , the orientation γ̃ of
γ obtained by combining γ̃C and γ̃C is an (s, t)-orientation of γ.

We now examine a special type of instances of Lemma 3.

Mesh Graph. A mesh graph is defined to be a pair μ = (γ,P) of a biconnected
plane graph γ = (V,E, F ) and a 1-independent set P of paths in the graph
(V,E) such that (i) γ consists of an outer facial cycle C and the paths in P; and
(ii) each path P ∈ P ends with vertices in C and has no internal vertex from C,
where V = V (C) ∪ ⋃

P∈P V (P ) and E = E(C) ∪ ⋃

P∈P E(P ). We may denote
a mesh graph (γ,P) with an outer facial cycle C by μ = (C,P). Figure 2(a)
illustrates an example of a mesh graph.

Let μ = (γ = (V,E, F ),P) be a mesh graph with an outer facial cycle C.
To find an orientation of μ compatible to P, we treat each u, v-path P ∈ P as
a single edge eP = uv, which we call the split edge of P . The split mesh graph
is defined to be the graph σ(μ) obtained from μ by replacing each path P ∈ P
with the split edge eP ; i.e., σ(μ) = (V (C), E(C) ∪ {eP | P ∈ P}).

Let ˜σ(μ) be an orientation of the split mesh graph σ(μ). We say that ˜σ(μ)
induces an orientation μ̃ of μ if each u, v-path P ∈ P is directed from u to v

in μ̃ when eP is a directed edge (u, v) in ˜σ(μ). Clearly μ̃ is compatible to P.
Figure 2(b) illustrates an (s, t)-orientation of the split mesh graph.
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The next lemma states that an (s, t)-orientation of a mesh graph compatible
to P can be obtained by computing an (s, t)-orientation of the split mesh graph.

Lemma 6. For a mesh graph μ and an (s, t)-orientation ˜σ(μ) of the split mesh
graph σ(μ), the orientation μ̃ of μ induced by ˜σ(μ) is an (s, t)-orientation of μ.

5 Coating and Confiner

To prove that Theorem 1 implies Lemma 3, this section gives a characterization
of a plane graph that can be augmented to a plane graph such that specified
vertices are contained in some cycles. Let γ = (G = (V,E), F ) be a plane graph.

We call an inclusive set C = {C1, C2, . . . , Cp} of edge-disjoint cycles in γ
a coating of a family X = {X1,X2, . . . , Xp} of subsets of V if for each i =
1, 2, . . . , p, V (Ci) ∩ X = ∅ and Venc(Ci; γ) ⊇ Xi. We say that a coating C =
{C1, C2, . . . , Cp} of X covers a given family {Y1, Y2, . . . , Yp} of vertices if V (Ci) ⊇
Yi for each i = 1, 2, . . . , p.

For disjoint subsets S, T ⊆ V in γ such that the subgraph G[S] induced by
S is connected, we call a cycle K of G an (S, T )-confiner if |V (K) \ S| ≤ 1 and
the interior vertex set Venc(K; γ) of K contains some vertex t ∈ T .

A plane augmentation of a plane graph γ = (V,E, F ) is defined to be a plane
embedding γ∗ = (V ∗, E∗, F ∗) of a supergraph (V ∗, E∗) of (V,E) such that the
embedding obtained from γ∗ by removing the additional vertices in V ∗ \ V and
edges in E∗ \ E is equal to the original embedding γ.

Sun Augmentation. Let γ = (V,E, F ) be a pseudo-simple connected plane
graph such that the outer boundary is a cycle. We introduce sun augmentation,
a method of augmenting γ into a pseudo-simple biconnected plane graph by
adding new vertices and edges in the interior of some inner faces of γ.

For an inner face f ∈ F , let Wf = (v1, v2, . . . , vp) denote the sequence of
vertices that appear along the boundary in the clockwise order, where p ≥ 3
since γ is pseudo-simple. For each inner face f ∈ F :

(i) create a new cycle C∗
f = (v′

1, v
′
2, . . . , v

′
p) with p new vertices v′

i, i = 1, 2, . . . , p
in the interior of f so that the facial cycle of f encloses C∗

f ; and
(ii) join each vertex vi, i = 1, 2, . . . , p with v′

i and v′
i+1 with new edges e′

i = viv
′
i

and e′′
i = viv

′
i+1, where we regard v′

p+1 as v′
1; We call the new face whose

set consists of the p new edges e′
i, i = 1, 2, . . . , p a core face and call a vertex

along a core face a core vertex.

Figure 2(c) illustrates how the sun augmentation γ∗ is constructed.
The next lemma characterizes when a plane graph with two vertex subsets X

and Y can be augmented such that a set of cycles contains vertices in Y without
visiting any vertex in X.

Lemma 7. For a pseudo-simple connected plane graph γ = (G = (V,E), F )
such that the boundary forms a cycle Co and a subset X ⊆ V \V (Co), let {Xi ⊆
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X | i = 1, 2, . . . , p} denote the set of components in G[X] and Yi ⊆ NG(Xi),
i = 1, 2, . . . , p be subsets of V , where possibly Yi ∩ Yj �= ∅ for some i �= j.

Then γ contains no (Xi, Yi)-confiner for any i = 1, 2, . . . , p if and only
if the sun augmentation γ∗ = (V ∗, E∗, F ∗) of γ contains a coating C of
{X1,X2, . . . , Xp} that covers {Y1, Y2, . . . , Yp}. Moreover the following can be
computed in linear time: (i) Testing whether γ contains an (Xi, Yi)-confiner
for some i = 1, 2, . . . , p; and (ii) Finding a coating C of {X1,X2, . . . , Xp}
that covers {Y1, Y2, . . . , Yp} in γ∗ when γ contains no (Xi, Yi)-confiner for any
i = 1, 2, . . . , p.

We show how the assumption in Lemma 3 is derived from the assumption
of Theorem 1 using Lemma 7. Let {Vi ⊆ Vinl | i = 1, 2, . . . , p} denote the set of
components in G[Vinl] and Pi, i = 1, 2, . . . , p denote the partition of P such that
Vinl(Pi) ⊆ Vi. We apply Lemma 7 to the plane graph γ in Theorem 1 by setting
X := Vinl, Xi := Vi and Yi := Vend(Pi), i = 1, 2, . . . , p. Note that X ⊆ V \V (Co).
We show from the assumption in Theorem 1 that γ has no (Xi, Yi)-confiner for
any i = 1, 2, . . . , p.

To derive a contradiction, assume that γ has an (Xi, Yi)-confiner K for some
i ∈ {1, 2, . . . , p}, where Venc(K; γ) of K contains an end-vertex y ∈ Yi = Vend(Pi)
of some path P ∈ Pi. Since |K| ≥ 2 and |K \ Xi| ≤ 1, K contains a vertex
v ∈ K ∩ Xi. Now vertex v and the internal vertices of P belong to the same
component G[Xi] = G[Vi] of G[X] in γ. This contradicts the assumption in
Theorem 1. Hence the condition of Lemma 7 holds and the sun augmentation
γ∗ of γ admits a coating C = {C1, C2, . . . , Cp} of {Xi = Vi | i = 1, 2, . . . , p}
that covers {Yi = Vend(Pi) | i = 1, 2, . . . , p}. We see that such a set C of cycles
satisfies the condition of Lemma 3.

6 Algorithmic Proof

This section presents an algorithmic proof to Lemma 3.
For a pseudo-simple biconnected plane graph γ = (V,E, F ) and a 1-

independent set P of paths of length at least 2, we are given a partition
{Pi | i = 1, 2, . . . , p} of P and an inclusive set C = {C1, C2, . . . , Cp} of edge-
disjoint cycles that satisfy the condition of Lemma3. For the instance (γ,P, C) in
Fig. 1(a), we obtain P1 = {P1, P2, P3}, P2 = {P4, P5, P6, P7}, P3 = {P8, P9} and
C = {C1 = (v1, v2, w4, v3, v4, v5, v6), C2 = (v3, v7, v8, v9, w5, v10, v11, w6), C3 =
(v10, v12, v13, v14)}.

Let I = (C, E) denote the inclusion-forest of C, and Ch(C) denote the set of
child cycles C ′ of each cycle C ∈ C in I, where the cycle C is called the parent
cycle of each cycle C ′ ∈ Ch(C). We call a cycle C ∈ C that has no parent cycle
a root cycle in C, and let Crt denote the set of root cycles in C. For a notational
simplicity, we assume that the indexing of C1, C2, . . . , Cp satisfies i < j when Ci

is the parent cycle of Cj .
Based on the inclusion-forest I, we first decompose the entire plane graph γ

into plane subgraphs γi, i = 0, 1, . . . , p as follows. Define γ0 to be the plane graph
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γ − ∪C∈Crt(Venc(C; γ) ∪ Eenc(C; γ)) obtained from γ by removing the vertices
and edges in the interior of root cycles C ∈ Crt. For each i = 1, 2, . . . , p, define
γi to be the plane graph γ[Ci]enc − ∪C∈Ch(Ci)(Venc(C; γ) ∪ Eenc(C; γ)) obtained
from the interior subgraph γ[Ci]enc by removing the vertices and edges in the
interior of child cycles C of Ci.

For each cycle Ci, i = 1, 2, . . . , p, we consider the mesh graph μi = (Ci,Pi),
where μi is a plane subgraph of γi. For each inner face f of μi, we consider the
interior subgraph γi[Cf ]enc of the facial cycle Cf of f in γi, where we call an inner
face f of μi trivial if Cf encloses nothing in γi; i.e., Venc(Cf ; γi)∪Eenc(Cf ; γi) = ∅.
Let F (μi) denote the set of non-trivial inner faces f of μi.

We determine orientations of subgraphs γi by an induction on i = 0, 1, . . . , p.
For specified outer vertices s, t ∈ V (Co) \ Vinl, compute an (s, t)-orientation γ̃0
of γ0 using Lemma 1. Consider the plane subgraph γi with i ≥ 1, where we
assume that a bipolar orientation γ̃j of γj has been obtained for all j < i. Let
k denote the index of the parent cycle Ck of Ci or k = 0 if Ci is a root cycle,
where a bipolar orientation γ̃k of γk has been obtained. In γ̃k, cycle Ci forms an
inner facial cycle and the orientation restricted to the facial cycle Ci is a bipolar
orientation, which is an (si, ti)-orientation ˜Ci for some vertices si, ti ∈ V (Ci) by
Lemma 4. We determine an (si, ti)-orientation of γi as follows:
Step (a): Compute an (si, ti)-orientation μ̃i of the mesh graph μi = (Ci,Pi);
Step (b): Extend the orientation μ̃i to the interior subgraph γi[Cf ]enc of each
non-trivial inner face f ∈ F (μi).
At Step (a), we compute an (si, ti)-orientation σ̃(μi) of the split mesh graph
σ(μi) to obtain an (si, ti)-orientation μ̃i using Lemma 6. For Step (b), we observe
that orientation μ̃i is (sf , tf )-bipolar to the facial cycle Cf of f for some ver-

tices sf , tf ∈ V (Cf ) by Lemma 4. We compute an (sf , tf )-orientation ˜γi[Cf ]enc
of the interior subgraph γi[Cf ]enc induced from γi by Cf using Lemma 1. An
(si, ti)-orientation of γi is obtained from the (si, ti)-orientation μ̃i and (sf , tf )-

orientations ˜γi[Cf ]enc for all inner faces f ∈ F (μi).
We repeat the above procedure until i = p. Finally construct an orientation

γ̃ of γ by combining bipolar orientations γ̃i of γi, i = 0, 1, . . . , p. By Lemma 5,
γ̃ is an (s, t)-orientation, which is compatible to P by the construction of γ̃.
This proves the correctness of our algorithm for computing an (s, t)-orientation
γ̃ compatible to P.

The inclusion-forest of an inclusive set C of edge-disjoint cycles can be con-
structed in linear time [11]. Constructing all plane subgraphs γi and face sets
F (μi), i = 1, 2, . . . , p can be done in linear time, since we can find them such
that each edge in γ is scanned a constant number of times. We see that a bipolar
orientation of mesh graph μi or subgraph γi can be computed in time linear
to the size of the graph by Lemmas 1 and 6. The total size of these graphs μi,
i = 1, 2, . . . , p and γi, i = 0, 1, . . . , p is bounded by the size of input graph γ.
Therefore the algorithm can be executed in linear time. This proves Lemma 3.

Figure 3 shows an execution of the algorithm applied to the instance (γ,P, C)
in Fig. 1(a). Figures 3(b), (c) and (f) show mesh graphs μ1, μ2 and μ3,
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Fig. 3. (a) An (s = v5, t = v7)-orientation γ̃0 of γ0; (b) Mesh graph μ1 = (C1, P1),
where C1 is directed as an (s1 = v5, t1 = v1)-orientation; (c) Mesh graph μ2 = (C2, P2),
where C2 is directed as an (s2 = v11, t2 = v8)-orientation; (d) Subgraph γ1 with an
(s1, t1)-orientation μ̃1 of μ1; (e) Subgraph γ2 with an (s2, t2)-orientation μ̃2 of μ2; (f)
Mesh graph μ3 = (C3, P3), where C3 is directed as an (s3 = v10, t3 = v13)-orientation;
(e) Subgraph γ3 with an (s3, t3)-orientation μ̃3 of μ3.

respectively for the instance in Fig. 1(a), where Crt = {C1, C2}, Ch(C1) = ∅,
Ch(C2) = {C3}, F (μ1) = {f1} (Cf1 = (v5, u1, v2, w4, v3, u2, v4)), F (μ2) =
{f2, f3} (Cf2 = (v10, u5, u4, u6), Cf3 = (v10, u6, u4, v9, w5)), F (μ3) = {f4}
(Cf4 = (v12, v13, v14)). Figures 3(a), (d), (e) and (g) show subgraphs γ0, γ1,
γ2 and γ3, respectively for the instance in Fig. 1(a). Figure 1(b) shows an (s, t)-
orientation of the instance γ in Fig. 1(a).

7 Upward Drawing of a Non-planar Embedding

Let Γ be a non-planar embedding of a graph G, and E∗ denote the set of crossing
edges. We define a crossing-set to be a maximal subset E′ ⊆ E∗ such that every
two edges e, e′ ∈ E′ admit a sequence of edges e1, e2, . . . , ep, where e1 = e,
ep = e′ and edges ei and ei+1 cross for each i = 1, 2, . . . , p − 1. Observe that E∗

is partitioned into disjoint crossing-sets E∗
1 , E∗

2 , . . . , E∗
p .

Let E∗
i be a crossing-set, and Γ [E∗

i ] denote the plane graph induced from Γ
by the edges in E∗

i , where Γ [E∗
i ] is connected. We call E∗

i outer if the end-vertices
of edges in E∗

i appear as outer vertices along the boundary of Γ [E∗
i ].

We apply Lemma 3 to the problem of finding an upward drawing of a non-
planar embedding of a graph, and prove the following results.
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Theorem 2. Let Γ be a non-planar embedding of a graph G such that each
crossing-set is outer, and let nc denote the number of crossings in Γ . Then for
any pair of outer vertices s and t in Γ , there is an (s, t)-upward drawing of Γ ,
and an upward poly-line drawing of Γ with O(n + nc) bends can be constructed
in O(n + nc) time and space, where n = |V (G)|.

Thomassen [17] showed that there are two forbidden subgraphs for a 1-plane
graph (i.e., graph can be embedded at most one crossing per edge) to admit a
straight-line drawing. Theorem2 implies the following.

Corollary 1. Every 1-plane graph admits an (s, t)-upward poly-line drawing for
any outer vertices s and t, where each edge has at most one bend. Such a drawing
can be constructed in linear time.
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