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Abstract. In this paper, we consider the lower-bounded k-median prob-
lem (LB k-median) that extends the classical k-median problem. In the
LB k-median, a set of facilities, a set of clients and an integer k are
given. Every facility has its own lower bound on the minimum number
of clients that must be connected to the facility if it is opened. Every
facility-client pair has its connection cost. We want to open at most k
facilities and connect every client to some opened facility, such that the
total connection cost is minimized.

As our main contribution, we study the LB k-median and present our
main bi-criteria approximation algorithm, which, for any given constant
α ∈ [0, 1), outputs a solution that satisfies the lower bound constraints
by a factor of α and has an approximation ratio of 1+α

1−α
ρ, where ρ is the

state-of-art approximation ratio for the k-facility location problem (k-
FL). Then, by extending the main algorithm to several general versions
of the LB k-median, we show the versatility of our algorithm for the LB
k-median. Last, through providing relationships between the constant α
and the approximation ratios, we demonstrate the performances of all
the algorithms for the LB k-median and its generalizations.

Keywords: k-median · Lower bounds · Approximation algorithm ·
Bi-criteria

1 Introduction

The uncapacitated facility location problem (UFL) has numerous applications
in operations management and computer science. In this problem, we are given
a set of facilities and a set of clients. Every facility has an associated opening
cost, and every facility-client pair has an associated connection cost which is
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proportional to the distance between the facility and client. The aim is to open
some facilities and connect every client to an opened facility so as to minimize
the total opening and connection cost. Since the UFL is a well-known NP-hard
problem, researchers pay attention on designing approximation algorithms for it
and its generalizations [3,8,10,12,15,16,18,19]. For a minimization problem, a
λ-approximation algorithm is a polynomial time algorithm which can output a
solution for any instance of the problem, such that the cost of the solution is
within a factor of λ of the cost of an optimal solution. For the UFL, under the
assumption that the connection costs are metric (i.e., the connection costs are
non-negative, symmetric and satisfy the triangle inequality), Li [12] presents the
current best 1.488-approximation algorithm and assume that P�=NP Sviridenko
[16] gives the 1.463-hardness of approximation.

However, in many real-life situations, the facility expects to be connected by
a minimum number of clients for the profitable sake. In fact, the lower-bounded
facility location problem (LBFL) characterizes these scenarios. Besides, the moti-
vation of the lower bound constraints also comes from a data privacy perspective
[1]. Compared with the UFL, in the LBFL, every facility is given an additional
lower bound on the minimum number of clients that must be connected to the
facility if it is opened. The goal is to find some facilities to open and connect every
client to an opened facility without violating any lower bound constraints, such
that the total opening as well as connection cost is minimized. The LBFL is intro-
duced by Guha et al. [7] and Karger and Minkoff [11] simultaneously. Both give
an O(1)-bi-criteria approximation algorithm that approximately subjects to the
lower bound constraints. For the special case of the LBFL where the lower bound
of every facility is the same, by reducing the LBFL to the capacitated facility
location problem (CFL), Svitkina [17] proposes the first true 448-approximation
algorithm. Later, Ahmadian and Swamy [2] improve the approximation ratio to
82.6. For the general case of the LBFL where every facility has its own lower
bound, Li [13] also reduces the LBFL to the CFL and gives the breakthrough
true approximation algorithm which has a ratio of 4000.

When every facility in the UFL does not have an opening cost and the
aim becomes to find at most k facilities to open and connect every client to
some opened facility so as to minimize the sum of connection costs, we get
the classical k-median problem. The k-median is another well-studied NP-hard
problem and has various generalizations. [3–6,9,10,14,18,19]. For the k-median,
under the assumption that the connection costs are metric, Byrka et al. [5]
present the state-of-art (2.675 + ε)-approximation algorithm and assume that
NP�⊆DTIME(nO(log log n)) Jain et al. [9] offer the 1.736-hardness of approxima-
tion. Despite the fact that many meaningful and interesting general versions of
the k-median have been considered in the literatures, to the best of our knowl-
edge, very little work concentrates on studying the k-median with lower bounds.
This situation stimulates us to pay attention on the lower-bounded k-median
problem (LB k-median). Compared with the k-median, the LB k-median has
extra lower bound constraints which need to be respected.
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In this paper, we study the LB k-median and its generalizations. First,
inspired by the previous works of Guha et al. [7] and Karger and Minkoff [11]
on the LBFL, we propose our main O(1)-bi-criteria approximation algorithm for
the LB k-median, which satisfies the lower bound constraints by a factor of some
given constant α ∈ [0, 1) and has an approximation ratio of 1+α

1−αρ, where ρ is
the current best approximation ratio for the k-facility location problem (k-FL).
The key idea behind the main algorithm relies on an observation that construct-
ing and solving a new instance of the k-FL instead of the original instance of
the LB k-median can easily obtain a solution respects the cardinality constraint,
and then trying to guarantee every facility is connected by a certain amount of
clients can give us a bi-criteria solution. Second, we extend the main algorithm
to several generalizations of the LB k-median, including the lower-bounded k-
facility location problem (LB k-FL), the lower-bounded knapsack median prob-
lem (LB knapsack median) and the prize-collecting lower-bounded k-median
problem (PLB k-median). The algorithms for these generalizations involve con-
structing and solving new instances of the k-FL, the knapsack facility location
problem (knapsack FL) and the prize-collecting k-facility location problem (P
k-FL), respectively. Last but not least, we give the relationships between the
given constant α and the approximation ratios of all the algorithms to demon-
strate their performances. Particularly, we show that our algorithm for the LB
k-median can give a nice approximation ratio while violating the lower bound
constraints within an acceptable range.

The remainder of our paper is structured as follows. Section 2 presents our
main O(1)-bi-criteria approximation algorithm for the LB k-median. Section 3
extends the main algorithm to several general versions of the LB k-median.
Section 4 demonstrates the performances of our algorithms. Due to space con-
straint, all proofs are removed but will further appear in a full version of this
paper.

2 The Lower-Bounded k-median Problem

In this section, we present an O(1)-bi-criteria approximation algorithm for the
LB k-median. Subsection 2.1 describes the LB k-median and the relevant k-FL
along with their integer programs. Subsection 2.2 presents our main algorithm
for the LB k-median and its analysis.

2.1 Preliminaries for the LB k-median

In the LB k-median, we are given a set of facilities F , a set of clients D and
an integer k. Every facility i ∈ F has an associated lower bound Li on the
minimum number of clients in D that must be connected to the facility if it is
opened. Every facility-client pair (i, j), where i ∈ F and j ∈ D, has an associated
connection cost cij which is proportional to the distance between facility i and
client j. Under the assumption that the connection costs are metric, the goal
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is to find at most k facilities to open and connect every client to some opened
facility, such that the total connection cost is minimized.

The LB k-median can be formulated as the following integer program:

min
∑

i∈F

∑

j∈D
cijxij (1)

s. t.
∑

i∈F
xij ≥ 1, ∀j ∈ D, (2)

xij ≤ yi, ∀i ∈ F , j ∈ D, (3)
∑

j∈D
xij ≥ Liyi, ∀i ∈ F , (4)

∑

i∈F
yi ≤ k, (5)

xij ∈ {0, 1}, ∀i ∈ F , j ∈ D, (6)
yi ∈ {0, 1}, ∀i ∈ F . (7)

In program (1–7), there are two types of variables ({xij}i∈F,j∈D, {yi}i∈F ). The
variable xij indicates whether client j is connected to facility i for any facility-
client pair (i, j) where i ∈ F and j ∈ D. The variable yi indicates whether
facility i is opened for any facility i ∈ F . The objective function describes the
total connection cost. The constraints (2) say that every client j ∈ D must be
connected to some facility. The constraints (3) state that if a client j is connected
to some facility i ∈ F , then the facility must be opened. The constraints (4)
guarantee that the lower bound of any opened facility cannot be violated. The
constraint (5) shows that the number of opened facilities can not exceed k.

When every facility i ∈ F in the LB k-median has an associated opening cost
fi instead of the lower bound Li and the aim becomes to find at most k facilities
to open and connect every client to some opened facility so as to minimize the
sum of opening costs as well as connection costs, we get the k-FL. By introducing
the same variables ({xij}i∈F,j∈D, {yi}i∈F ), as in the integer program (1–7), the
k-FL can be formulated as the following integer program:

min
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cijxij (8)

s. t.
∑

i∈F
xij ≥ 1, ∀j ∈ D, (9)

xij ≤ yi, ∀i ∈ F , j ∈ D, (10)
∑

i∈F
yi ≤ k, (11)

xij ∈ {0, 1}, ∀i ∈ F , j ∈ D, (12)
yi ∈ {0, 1}, ∀i ∈ F . (13)
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In program (8–13), the objective function consists of opening costs and connec-
tion costs.

Note that we have the following observation.

Lemma 1. From program (1–7) and program (8–13), it is clear that with the
same inputs of F , D and k, any feasible solution for the LB k-median is also a
feasible solution for the k-FL.

2.2 Algorithm for the LB k-median

For the LB k-median, we propose a bi-criteria approximation algorithm, that, for
any given constant α ∈ [0, 1), outputs a solution in which every opened facility
i is connected by at least αLi clients and has a constant approximation ratio of
1+α
1−αρ, where ρ is the current best approximation ratio for the k-FL. Our main
algorithm for the LB k-median consists of three steps. First of all, from the
instance IN of the LB k-median, we construct a new instance IN ′ of the k-FL.
Secondly, we apply existing approximation algorithm for the k-FL to solve the
instance IN ′ and obtain a solution (S′, σ′) where S′ is the set of opened facilities
and σ′ : D → S′ is the corresponding connections of clients in D to facilities in
S′. Finally, we continually close some facility in S′ and reconnect its clients to
obtain a new solution (S, σ) which connects at least αLi clients to every opened
facility i ∈ S.

For any facility i ∈ F , denote Di as the set of closest Li clients to it in D.
Now we are ready to present our main algorithm.

Algorithm 1

Step 1 Construct a new instance of the k-FL.
For the instance IN = (F ,D, k, {Li}i∈F , {cij}i∈F,j∈D) of the LB k-
median, pick a constant α ∈ [0, 1), get rid of the lower bounds {Li}i∈F
from IN and

set fi :=
2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain a new instance IN ′ = (F ,D, k, {fi}i∈F , {cij}i∈F,j∈D)
of the k-FL.

Step 2 Solve the instance of the k-FL.
Solve new instance IN ′ with the current best ρ-approximation algorithm
for the k-FL (see [19]), where ρ = 2 +

√
3 + ε, and obtain a feasible

solution (S′, σ′), where S′ is the set of opened facilities and σ′ : D → S′

is a function that maps every client j ∈ D to the closest facility in S′.
For any client j ∈ D, let σ′(j) denote its closest facility in S′.

Step 3 Construct a solution for the LB k-median.
Step 3.1 Initialization.

At the very begining, set S := S′ and σ(j) := σ′(j) for any j ∈ D, define
li := |j ∈ D : σ(j) = i| for any i ∈ F and Sd := {i ∈ S : li < αLi}.
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Step 3.2 Close facilities and reconnect clients.
While Sd �= ∅ do

Arbitrarily choose some facility i ∈ Sd and close it. For every client
j with σ(j) = i, reconnect it to its closest facility i′ in S \ {i} and
update σ(j) := i′. Update S := S \{i}. Update li for any facility i ∈ F
and Sd.

Output solution (S, σ).

Algorithm 1 provides a solution (S, σ), where S is the set of opened facilities
and σ : D → S denotes the corresponding connections between clients in D and
facilities in S, for the LB k-median. For any client j ∈ D, let σ(j) denote the
facility which is connected by j in solution (S, σ).

The following theorem presents our main result for the LB k-median.

Theorem 1. Algorithm1 is a bi-criteria approximation algorithm for the LB
k-median that produces a solution (S, σ), which connects at least αLi clients to
every opened facility i ∈ S, and has an approximation ratio of 1+α

1−αρ where α is
a given constant in interval [0, 1) and ρ is the current best approximation ratio
of 2 +

√
3 + ε for the k-FL.

Because of Step 3.2 in Algorithm 1, it is not hard to see that

|j ∈ D : σ(j) = i| = li ≥ αLi for any i ∈ S,

which means the solution (S, σ) connects at least αLi clients to every opened
facility i ∈ S. The remainder of this section will put focus on analyzing the
approximation ratio of our algorithm for the LB k-median.

Suppose that (S∗, σ∗) is the optimal solution for the instance IN of the LB
k-median, where S∗ is the optimal set of opened facilities and σ∗ : D → S∗

denotes the optimal corresponding connections. Let OPTlk be the total cost of
the solution (S∗, σ∗) for IN , i.e., OPTlk =

∑
j∈D cσ∗(j)j . For every client j ∈ D,

denote σ∗(j) as the facility which is connected by j in solution (S∗, σ∗). In order
to provide the approximation ratio of Algorithm1, the following lemmas are
essential.

Lemma 2. The total cost of the solution (S′, σ′) for the instance IN ′ of the
k-FL is within a factor of 1+α

1−αρ of the total cost of the optimal solution (S∗, σ∗)
for the instance IN of the LB k-median, i.e.,

∑

i∈S′
fi +

∑

j∈D
cσ′(j)j ≤ 1 + α

1 − α
ρ · OPTlk,

where α ∈ [0, 1) and ρ = 2 +
√

3 + ε.

Lemma 3. The total cost of the solution (S, σ) for the instance IN of the LB
k-median is no more than the total cost of the solution (S′, σ′) for the instance
IN ′ of the k-FL, i.e.,

∑

j∈D
cσ(j)j ≤

∑

i∈S′
fi +

∑

j∈D
cσ′(j)j .
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Integrating Lemma 2 with Lemma 3 implies the approximation ratio of Algo-
rithm1.

3 Generalizations of the Lower-Bounded k-median
Problem

In this section, by extending our main algorithm to several more general versions
of the LB k-median, we show the versatility of Algorithm 1. Subsection 3.1, 3.2
and 3.3 present algorithms for the LB k-FL, LB knapsack median and PLB k-
median through altering only the first step, the first two steps and all the steps
in Algorithm 1, respectively.

3.1 The Lower-Bounded k-facility Location Problem

Compared with the LB k-median, in the LB k-FL, every facility i ∈ F is given
an additional opening cost fi. The aim is to open at most k facilities and connect
every client to some opened facility, such that the total opening and connection
cost is minimized.

The algorithm for the LB k-FL is obtained by only modifying the first step
in Algorithm 1 slightly.

Algorithm 2

Step 1 Construct a new instance of the k-FL.
For the instance IN = (F ,D, k, {Li}i∈F , {fi}i∈F , {cij}i∈F,j∈D) of the
LB k-FL, pick a constant α ∈ [0, 1), get rid of the lower bounds {Li}i∈F
from IN and

set f ′
i := fi +

2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain a new instance IN ′ = (F ,D, k, {f ′
i}i∈F , {cij}i∈F,j∈D)

of the k-FL.
Step 2 Solve the instance of the k-FL.

Same as Step 2 in Algorithm1. Solve new instance IN ′ with the current
best ρ-approximation algorithm for the k-FL (see [19]), where ρ = 2 +√

3 + ε, and obtain a feasible solution (S′, σ′).
Step 3 Construct a solution for the LB k-FL.

Same as Step 3 in Algorithm1. At the end of this step, output solution
(S, σ).

The following theorem offers the result for the LB k-median.

Theorem 2. Algorithm2 is a bi-criteria approximation algorithm for the LB
k-FL that produces a solution (S, σ), which connects at least αLi clients to every
opened facility i ∈ S, and has an approximation ratio of 1+α

1−αρ where α ∈ [0, 1)
and ρ = 2 +

√
3 + ε.

We skip the proof of this theorem since it is similar to the one for the LB
k-median.
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3.2 The Lower-Bounded Knapsack Median Problem

Compared with the LB k-median, in the LB knapsack median, the cardinality
constraint is replaced with a knapsack constraint. More specifically, we are given
some budget B instead of the integer k. Every facility i ∈ F has a weight wi.
We want to open a subset S ⊆ F of facilities which subjects to

∑
i∈S wi ≤ B,

and connect every client to some opened facility, so as to minimize the total
connection cost.

The algorithm for the LB knapsack median is offered by changing the first
two steps in Algorithm 1.

Algorithm 3

Step 1 Construct a new instance of the knapsack FL.
For the instance IN = (F ,D, B, {Li}i∈F , {wi}i∈F , {cij}i∈F,j∈D) of the
LB knapsack median, pick a constant α ∈ [0, 1), get rid of the lower
bounds {Li}i∈F from IN and

set fi :=
2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain instance IN ′ = (F ,D, B, {fi}i∈F , {wi}i∈F ,
{cij}i∈F,j∈D) of the knapsack FL.

Step 2 Solve the instance of the knapsack FL.
Solve new instance IN ′ with the current best η-approximation algorithm
for the knapsack FL (see [4]), where η = 17.46 + ε, and obtain a feasible
solution (S′, σ′).

Step 3 Construct a solution for the LB knapsack median.
Same as Step 3 in Algorithm1. At the end of this step, output solution
(S, σ).

The following theorem gives the result for the LB knapsack median.

Theorem 3. Algorithm3 is a bi-criteria approximation algorithm for the LB
knapsack median that produces a solution (S, σ), which connects at least αLi

clients to every opened facility i ∈ S, and has an approximation ratio of 1+α
1−αη

where α ∈ [0, 1) and η = 17.46 + ε.

We skip the proof of this theorem since it is analogous to the one for the LB
k-median.

3.3 The Prize-Collecting Lower-Bounded k-median Problem

Compared with the LB k-median, in the PLB k-median, every client j ∈ D is
given an additional penalty cost pj . Our goal is to select at most k facilities to
open, connect a portion of the clients and penalize the rest of them, so as to
minimize the sum of opening, connection and penalty costs.

The algorithm for the PLB k-median is given by transforming all the steps
in Algorithm 1.
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Algorithm 4

Step 1 Construct a new instance of the P k-FL.
For the instance IN = (F ,D, k, {Li}i∈F , {pj}j∈D, {cij}i∈F,j∈D) of the
PLB k-median, pick a constant α ∈ [0, 1), get rid of the lower bounds
{Li}i∈F from IN and

set fi :=
1 + α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain instance IN ′ = (F ,D, k, {fi}i∈F , {pj}j∈D,
{cij}i∈F,j∈D) of the P k-FL.

Step 2 Solve the instance of the P k-FL.
Solve new instance IN ′ with the current best θ-approximation algorithm
for the P k-FL (see [18]), where θ = 2 +

√
3 + ε, and obtain a feasible

solution (S′, P ′, σ′), where S′ is the set of opened facilities, P ′ is the set
of penalized clients and σ′ : D \ P ′ → S′ is a function that maps every
client j ∈ D \ P ′ to the closest facility in S′. For any client j ∈ D \ P ′,
let σ′(j) denote its closest facility in S′. For any client j ∈ P ′, define its
σ′(j) := ip where ip is a dummy facility for penalizing.

Step 3 Construct a solution for the PLB k-median.
Step 3.1 Initialization.

At the very begining, set S := S′, P := P ′ and σ(j) := σ′(j) for any
j ∈ D, define Ti := {j ∈ D : σ(j) = i}, li := |Ti| and Pi := {j ∈ D : j ∈
Di, σ(j) = ip} for any i ∈ F . Define Sd := {i ∈ S : li < αLi}.

Step 3.2 Close facilities and reconnect clients.
While Sd �= ∅ do

Arbitrarily choose some facility i ∈ Sd. There are two possible cases.
Case 1. |Ti| + |Pi| < αLi.
In this case, close facility i. For every client j ∈ Ti, reconnect it
to its closest facility i′ ∈ S \ {i} and update σ(j) := i′. Update
S := S \ {i}. Update Ti, li for any facility i ∈ F and Sd.
Case 2. |Ti| + |Pi| ≥ αLi.
In this case, for every client j ∈ Pi, connect it to its closest facility
i′ ∈ S and update σ(j) := i′. Update P := P \ Pi. Then, update
Pi, Ti as well as li for any facility i ∈ F , also update Sd.

Output solution (S, P, σ).

The following theorem provides the result for the PLB k-median.

Theorem 4. Algorithm4 is a bi-criteria approximation algorithm for the PLB
k-median that produces a solution (S, P, σ), which connects at least αLi clients
to every opened facility i ∈ S, and has an approximation ratio of 2θ

1−α where
α ∈ [0, 1) and θ = 2 +

√
3 + ε.
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Fig. 1. Relationships between the constant α and approximation ratios.

The proof of this theorem is more intricate than the one for the LB k-median,
since every client has an alternative decision in the PLB k-median, which is to be
penalized. Suppose that (S∗, P ∗, σ∗) is the optimal solution for the instance IN
of the PLB k-median. Let OPTplk be the total cost of the solution (S∗, P ∗, σ∗) for
the instance IN . From Algorithm 4, it is clear that the solution (S, P, σ) connects
at least αLi clients to every opened facility i ∈ S. We need the following lemmas
to achieve the approximation ratio of our algorithm for the PLB k-median.

Lemma 4. The total cost of the solution (S′, P ′, σ′) for the instance IN ′ of
the P k-FL is within a factor of 2θ

1−α of the total cost of the optimal solution
(S∗, P ∗, σ∗) for the instance IN of the PLB k-median, i.e.,

∑

i∈S′
fi +

∑

j∈D\P ′
cσ′(j)j +

∑

j∈P ′
pj ≤ 2θ

1 − α
· OPTplk,

where α ∈ [0, 1) and θ = 2 +
√

3 + ε.

Lemma 5. The total cost of the solution (S, P, σ) for the instance IN of the
PLB-k-median is no more than the total cost of the solution (S′, P ′, σ′) for the
instance IN ′ of the P k-FL, i.e.,

∑

j∈D\P

cσ(j)j +
∑

j∈P

pj ≤
∑

i∈S′
fi +

∑

j∈D\P ′
cσ′(j)j +

∑

j∈P ′
pj .

Combining Lemma 4 and Lemma 5 implies the approximation ratio of Algo-
rithm4.

4 Performances Evaluation of the Algorithms

In this section, through providing the relationships between the given constant
α ∈ [0, 1) and the approximation ratios, we demonstrate the performances of
Algorithm 1–4.
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Fig. 2. Relationships between the constant α and approximation ratios. Zoom in on
approximation ratios smaller than 100.

It is worth mentioning that, combining the idea behind Algorithm1 and the
significant first true 4000-approximation algorithm of Li [13] for the LBFL, we
strongly believe that there exists O(1)-approximation algorithm for the LB k-
median which does not violate any lower bound. Unfortunately, the true approxi-
mation algorithm for the LB k-median cannot be practical, since the approxima-
tion ratio of it is likely no less than the one for the LBFL. Li [13] also states that
even with more in-depth consideration, it is hard to reduce the approximation
ratio for the LBFL to below 100 by using the same method.

Now, we want to demonstrate that our Algorithm1 for the LB k-median
can offer an obviously better approximation ratio while slightly violating the
lower bound constraints. In Fig. 1, we show the relationships between constant
α ∈ [0, 1) and the approximation ratios of Algorithm1–4. Note that the approxi-
mation ratios grow slowly and steadily at first, but after the constant α exceeds
0.9 the approximation ratios begin to increase in a steep way. From Fig. 1, it is
clear that when α = 0.9 (i.e., when the algorithm outputs a solution that 90% of
the lower bound requirement of the opened facility is satisfied), the approxima-
tion ratio of Algorithm1 for the LB k-median is significantly better than 4000.
Figure 2 zooms in on approximation ratios smaller than 100. As we can see, when
Algorithm 1 outputs a solution for the LB k-median with an approximation ratio
of 100, the solution can satisfy the majority (i.e., more than 90%) of the lower
bound requirement of any opened facility. In some real-world applications, it
would be advisable to choose our algorithm, which has a preferable approxima-
tion ratio and violates the lower bound constraints within an acceptable range
(i.e., violates no more than 10 % of the lower bound requirements).

Additionally, Fig.1 and Fig. 2 show that Algorithm 2 performs as same as
Algorithm 1 and Algorithm 4 is almost as well as Algorithm 1. Among our algo-
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rithms, Algorithm 3 has the worst performance. From Fig. 1, when α = 0.9,
the approximation ratio of Algorithm3 for the LB knapsack median is visibly
greater than the ratios of other algorithms. From Fig. 2, when Algorithm 3 out-
puts a solution with a ratio of 100, the solution can only guarantee to satisfy
about 70% of the lower bound requirement of any opened facility.
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