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Preface

The 26th International Computing and Combinatorics Conference (COCOON 2020)
was held during August 29–31, 2020. This year, COCOON 2020 was organized as a
fully online conference. COCOON 2020 provided an excellent venue for researchers
working in the area of algorithms, theory of computation, computational complexity,
and combinatorics related to computing. The technical program of the conference
included 54 regular papers selected by the Program Committee from 126 full sub-
missions received in response to the call for papers. Each submission was carefully
reviewed by Program Committee members and/or external reviewers. Some of the
papers were selected for publication in special issues of Theoretical Computer Science
and the Journal of Combinatorial Optimization. It is expected that the journal version
of the papers will appear in a more complete form.

We thank everyone who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review conference papers. We also appreciate the financial sponsorship from
Springer for the Best Paper Award. We would also like to extend special thanks to the
chairs and conference Organizing Committee for their work in making COCOON 2020
a successful event.

August 2020 Donghyun Kim
R. N. Uma

Zhipeng Cai
Dong Hoon Lee
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Subspace Approximation with Outliers

Amit Deshpande1 and Rameshwar Pratap2(B)

1 Microsoft Research, Bengaluru, India
amitdesh@microsoft.com
2 IIT Mandi, Mandi, India
rameshwar@iitmandi.ac.in

Abstract. The subspace approximation problem with outliers, for given
n points in d dimensions x1, x2, . . . , xn ∈ R

d, an integer 1 ≤ k ≤ d, and
an outlier parameter 0 ≤ α ≤ 1, is to find a k-dimensional linear subspace
of Rd that minimizes the sum of squared distances to its nearest (1−α)n
points. More generally, the �p subspace approximation problem with out-
liers minimizes the sum of p-th powers of distances instead of the sum of
squared distances. Even the case of p = 2 or robust PCA is non-trivial,
and previous work requires additional assumptions on the input or gen-
erative models for it. Any multiplicative approximation algorithm for
the subspace approximation problem with outliers must solve the robust
subspace recovery problem, a special case in which the (1−α)n inliers in
the optimal solution are promised to lie exactly on a k-dimensional lin-
ear subspace. However, robust subspace recovery is Small Set Expansion
(SSE)-hard, and known algorithmic results for robust subspace recovery
require strong assumptions on the input, e.g., any d outliers must be
linearly independent.

In this paper, we show how to extend dimension reduction techniques
and bi-criteria approximations based on sampling and coresets to the
problem of subspace approximation with outliers. To get around the
SSE-hardness of robust subspace recovery, we assume that the squared
distance error of the optimal k-dimensional subspace summed over the
optimal (1 − α)n inliers is at least δ times its squared-error summed
over all n points, for some 0 < δ ≤ 1 − α. Under this assump-
tion, we give an efficient algorithm to find a weak coreset or a sub-
set of poly(k/ε) log(1/δ) log log(1/δ) points whose span contains a k-
dimensional subspace that gives a multiplicative (1+ε)-approximation to
the optimal solution. The running time of our algorithm is linear in n and
d. Interestingly, our results hold even when the fraction of outliers α is
large, as long as the obvious condition 0 < δ ≤ 1−α is satisfied. We show
similar results for subspace approximation with �p error or more general
M-estimator loss functions, and also give an additive approximation for
the affine subspace approximation problem.

Full version of paper is available here https://arxiv.org/pdf/2006.16573.pdf.

c© Springer Nature Switzerland AG 2020
D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 1–13, 2020.
https://doi.org/10.1007/978-3-030-58150-3_1
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2 A. Deshpande and R. Pratap

1 Introduction
Finding low-dimensional representations of large, high-dimensional input data
is an important first step for several problems in computational geometry, data
mining, machine learning, and statistics. For given input points x1, x2, . . . , xn ∈
R

d, a positive integer 1 ≤ k ≤ d and 1 ≤ p < ∞, the �p subspace approximation
problem asks to find a k-dimensional linear subspace V of R

d that essentially
minimizes the sum of p-th powers of the distances of all the points to the subspace
V , or to be precise, it minimizes the �p error(

n∑
i=1

d(xi, V )p

)1/p

or equivalently
n∑

i=1

d(xi, V )p.

For p = 2, the optimal subspace is spanned by the top k right singular vectors
of the matrix X ∈ R

n×d formed by x1, x2, . . . , xn as its rows. The optimal solu-
tion for p = 2 can be computed efficiently by the Singular Value Decomposition
(SVD) in time O

(
min{nd2, n2d})

. Liberty’s deterministic matrix sketching [15]
and subsequent work [9] provide a faster, deterministic algorithm that runs in
O (nd · poly(k/ε)) time and gives a multiplicative (1 + ε)-approximation to the
optimum. There is also a long line of work on randomized algorithms [17,19] that
sample a subset of points and output a subspace from their span, giving a mul-
tiplicative (1+ ε)-approximation in running time O(nnz(X))+ (n+d)poly(k/ε),
where nnz(X) is the number of non-zero entries in X. These are especially useful
on sparse data.

For p �= 2, unlike the p = 2 case, we do not know any simple description of the
optimal subspace. For any p ≥ 1, Shyamalkumar and Varadarajan [18] give a (1+
ε)-approximation algorithm that runs in time O

(
nd · exp((k/ε)O(p))

)
. Building

upon this, Deshpande and Varadarajan [4] give a bi-criteria (1+ε)-approximation
by finding a subset of s = (k/ε)O(p) points in time O (nd · poly(k/ε)) such
that their s-dimensional linear span gives a (1 + ε)-approximation to the
optimal k-dimensional subspace. The subset they find is basically a weak
coreset, and projecting onto its span also gives dimension-reduction result
for subspace approximation. Feldman et al. [6] improve the running time to
nd · poly(k/ε) + (n + d) · exp(poly(k/ε)) for p = 1. Feldman and Langberg [5]
extend this result to achieve a running time of nd · poly(k/ε) + exp((k/ε)O(p))
for any p ≥ 1. Clarkson and Woodruff [3] improve this running time to
O(nnz(X) + (n + d) · poly(k/ε) + exp(poly(k/ε))) for any p ∈ [1, 2). The case
p ∈ [1, 2), especially p = 1, is important because the �1 error (i.e., the sum of
distances) is more robust to outliers than the �2 error (i.e., the sum of squared
distances).

We consider the following variant of �p subspace approximation in the pres-
ence of outliers. Given points x1, x2, . . . , xn ∈ R

d, an integer 1 ≤ k ≤ d,
1 ≤ p < ∞, and an outlier parameter 0 ≤ α ≤ 1, find a k-dimensional linear
subspace V that minimizes the sum of p-th powers of distances of the (1 − α)n
points nearest to it. In other words, let Nα(V ) ⊆ [n] consist of the indices of
the nearest (1 − α)n points to V among x1, x2, . . . , xn. We want to minimize∑

i∈Nα(V ) d(xi, V )p.
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The robust subspace recovery problem is a special case in which the optimal
error for the subspace approximation problem with outliers is promised to be
zero, that is, the optimal subspace V is promised to go through some (1 − α)n
points among x1, x2, . . . , xn. Thus, any multiplicative approximation must also
have zero error and recover the optimal subspace. Khachiyan [11] proved that
it is NP-hard to find a (d − 1)-dimensional subspace that contains at least (1 −
ε)(1 − 1/d)n points. Hardt and Moitra [10] study robust subspace recovery and
define an (ε, δ)-Gap-Inlier problem of distinguishing between these two cases:
(a) there exists a subspace of dimension δn containing (1 − ε)δn points and
(b) every subspace of dimension δn contains at most εδn points. They show a
polynomial time reduction from the (ε, δ)-Gap-Small-Subset-Expansion problem
to the (ε, δ)-Gap-Inlier problem. For more on Small Set Expansion conjecture
and its connections to Unique Games, please see [16]. Under a strong assumption
on the data (that requires any d or fewer outliers to be linearly independent),
Hardt and Moitra give an efficient algorithms for finding k-dimensional subspace
containing (1 − k/d)n points. This naturally leaves open the question of finding
other more reasonable approximations to the subspace approximation problem
with outliers.

In recent independent work, Bhaskara and Kumar (see Theorem 12 in [1])
showed that if (ε, δ)-Gap-Small-Subset-Expansion problem is NP-hard, then
there exists an instance of subspace approximation with outliers where the opti-
mal inliers lie on a k-dimensional subspace but it is NP-hard to find even a sub-
space of dimension O(k/

√
ε) that contains all but (1 + δ/4) times more points

than the optimal number of outliers. This showed that even bi-criteria approxi-
mation for subspace recovery is a challenging problem. We compare and contrast
our results with the result of Bhaskara and Kumar [1]. Their algorithm throws
more outlier than the optimal solution, while we don’t throw any extra outlier.
Also, their bi-criteria approximation depends on the “rank-k condition” number
which is a somewhat stronger assumption than ours.

The problem of clustering using points and lines in the presence of outliers
has been studied in special cases of k-median and k-means clustering [2,13],
and points and line clustering [7]. Krishnaswamy et al. [13] give a constant
factor approximation for k-median and k-means clustering with outliers, whereas
Feldman and Schulman give (1 + ε)-approximations for k-median with outliers
and k-line median with outliers that run in time linear in n and d.

Another recent line of research on robust regression considers data coming
from an underlying distribution where a fraction of it is arbitrarily corrupted
[12,14]. The problem we study is different as we do not assume any generative
model for the input.

2 Our Contributions

– We assume that the �p error of the optimal subspace summed over the optimal
(1 − α)n inliers is at least δ times its total �p error summed over all n points,
for some δ > 0. Under this assumption, we give an algorithm to efficiently find
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a subset of poly(pk/ε) · log(1/δ) log log(1/δ) points from x1, x2, . . . , xn such
that the span of this subset contains a k-dimensional linear subspace whose
�p error over its nearest (1−α)n points is within (1+ ε) of the optimum. The
running time of our algorithm is linear in n and d. Note that even for δ as
small as 1/poly(n), our algorithm outputs a fairly small subset of poly(pk/ε) ·
log n log log n points. The running time of our sampling-based algorithm is
linear in n and d.

– Alternatively, the entire span of the above subset is a linear subspace of
dimension poly(pk/ε) · log(1/δ) log log(1/δ) that gives a bi-criteria multiplica-
tive (1 + ε)-approximation to the optimal k-dimensional solution to the �p

subspace approximation problem with outliers. Interestingly, this holds even
when the fraction of outliers α is large, as long as the obvious condition
0 < δ ≤ 1 − α is satisfied.

– Our assumption that the �p error of the optimal subspace summed over the
optimal (1−α)n inliers is at least δ times its total �p error summed over all n
points, for some δ > 0, is more reasonable and realistic than the assumptions
used in previous work on subspace approximation with outliers. Without this
assumption, our problem (even its special case of subspace recovery) is known
to be Small Set Expansion (SSE)-hard [10].

– The technical contribution of our work is in showing that the sampling-based
weak coreset constructions and dimension reduction results for the subspace
approximation problem without outliers [4] also extend to its robust version
for data with outliers. If we know the inlier-outlier partition of the data,
then the result of [4] can easily be extended for the outlier version of the
problem. However, if we don’t know such a partitioning, then a brute-force
approach has to go over all

(
n

(1−α)n

)
subsets and picks the best solution.

This is certainly not an efficient approach as the number of such subsets
is exponential in n. Further, on inputs that satisfy our assumption (stated
above), it is easy to see that solving the subspace approximation problem
without outliers gives a multiplicative 1/δ-approximation to the subspace
approximation problem with outliers. Our contribution lies in showing that
this approximation guarantee can be improved significantly in a small number
of additional sampling steps.

– We show immediate extensions of our results to more general M-estimator
loss functions as previously considered by [3].

– We show that our multiplicative approximation for the linear subspace
approximation problem under �2 error implies an additive approximation for
the affine subspace approximation problem under �2 error. The running time
of this algorithm is also linear in n and d.

3 Warm-Up: Least Squared Error Line Approximation
with Outliers

As a warm-up towards the main proof, we first consider the case k = 1 and p = 2,
that is, for a given 0 < α < 1, we want to find the best line that minimizes
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the sum of squared distances summed over its nearest (1 − α)n points. Let
x1, x2, . . . , xn ∈ R

d be the given points and let l∗ be the optimal line. Let I ⊆ [n]
consist of the indices of the nearest (1 − α)n points to l∗ among x1, x2, . . . , xn.

Our algorithm iteratively builds a subset S ⊆ [n] by starting from S = ∅ and
in each step samples with replacement poly(k/ε) i.i.d. points where each point
xi is picked with probability proportional to its squared distance to the span of
the current subset d(xi, span (S))2. We abuse the notation as span (S) to denote
the linear subspace spanned by {xi : i ∈ S}. These sampled points are added
to S and the sampling algorithm is repeated poly(k/ε) times.

3.1 Additive Approximation

We are looking for a small subset S ⊆ [n] of size poly(1/ε) that contains a close
additive approximation to the optimal subspace over the optimal inliers, that is,
for the projection of l∗ onto span (S) denoted by PS(l∗),

∑
i∈I

d(xi, PS(l∗))2 ≤
∑
i∈I

d(xi, l
∗)2 + ε

n∑
i=1

‖xi‖2 (1)

This immediately implies that there exists a line lS in span (S) such that

∑
i∈Nα(lS)

d(xi, lS)2 ≤
∑
i∈I

d(xi, l
∗)2 + ε

n∑
i=1

‖xi‖2 ,

where Nα(lS) ⊆ [n] consists of the indices of the nearest (1 − α)n points from
x1, x2, . . . , xn to lS .

Given any subset S ⊆ [n], define the set of bad points as a subset of inliers I
whose error w.r.t. PS(l∗) is somewhat larger than their error w.r.t. the optimal
line l∗, that is, B(S) = {i ∈ I : d(xi, PS(l∗))2 > (1 + ε/2) d(xi, l

∗)2} and good
points as G(S) = I \ B(S). The following lemma shows that sampling points
with probability proportional to their squared lengths ‖xi‖2 picks a bad point
from B(S) with probability at least ε/2. Its proof is deferred to the full version.

Lemma 1. If S ⊆ [n] does not satisfy (1), then
∑

i∈B(S) ‖xi‖2 ≥ ε
2

∑n
i=1 ‖xi‖2 .

Below we show that a bad point sampled by squared-length sampling can be
used to get another line closer to the optimal solution by a multiplicative factor,
and repeat this. A proof of the following theorem is deferred to the full version.

Theorem 1. For any given x1, x2, . . . , xn ∈ R
d, let S be an i.i.d. sample of

O
(
(1/ε2) log(1/ε)

)
points picked by squared-length sampling. Let I ⊆ [n] be the

set of optimal (1 − α)n inliers and l∗ be the optimal line that minimizes their
squared distance. Then

∑
i∈I

d(xi, PS(l∗))2 ≤
∑
i∈I

d(xi, l
∗)2 + ε

n∑
i=1

‖xi‖2 , with a constant probability.
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3.2 Multiplicative Approximation

To turn this into a multiplicative (1+ε) guarantee, we need to use this adaptively
by treating the projections of x1, x2, . . . , xn orthogonal to span (S) as our new
points, and repeating the squared length sampling on these new points. Here is
the modified statement of the additive approximation that we need.

Theorem 2. For any given points x1, x2, . . . , xn ∈ R
d and any initial subset S0,

let S be an i.i.d. sample of O
(
(1/ε2) log(1/ε)

)
points sampled with probability

proportional to d(xi, span (S0))2. Let I ⊆ [n] be the set of optimal (1−α)n inliers
and l∗ be the optimal line that minimizes their squared distance. Then, with a
constant probability, we have

∑
i∈I

d(xi, PS∪S0(l
∗))2 ≤

∑
i∈I

d(xi, l
∗)2 + ε

n∑
i=1

d(xi, span (S0))2.

Proof. Similar to the proof of Theorem 1 but using the projections of xi’s orthog-
onal to span (S0) as the point set. In particular, we apply Lemma 1 to the pro-
jections of xi’s orthogonal span (S0) instead of xi’s. Note that Theorem 1 is a
special case with S0 = ∅.

Repeating this squared-distance sampling adaptively for multiple rounds brings
the additive approximation error down exponentially in the number of rounds.
We defer a proof of the following theorem to the full version.

Theorem 3. For any given points x1, x2, . . . , xn ∈ R
d, any initial subset S0 and

positive integer T , let St be an i.i.d. sample of O
(
(1/ε2) log(1/ε) log T

)
points

sampled with probability proportional to d(xi, span (St−1))2, for 1 ≤ t ≤ T . Let
I ⊆ [n] be the set of optimal (1 − α)n inliers and l∗ be the optimal line that
minimizes their squared distance. Then, with a constant probability,

∑
i∈I

d(xi, PS0∪S1∪...∪ST
(l∗))2 ≤ (1 + ε)

∑
i∈I

d(xi, l
∗)2 + εT

n∑
i=1

d(xi, span (S0))2.

Now assume that the optimal inlier error for l∗ is at least δ times its error
over the entire data, that is,

∑
i∈I d(xi, l

∗)2 ≥ δ
∑n

i=1 d(xi, l
∗)2. In that case,

we can show a much stronger multiplicative (1 + ε)-approximation instead of
additive one using similar analysis as of [8]. We defer its proof to the full version
of the paper.

Theorem 4. For any given points x1, x2, . . . , xn ∈ R
d, let I ⊆ [n] be the set of

optimal (1 − α)n inliers and l∗ be the optimal line that minimizes their squared
distance. Suppose

∑
i∈I d(xi, l

∗)2 ≥ δ
∑n

i=1 d(xi, l
∗)2. For any 0 < ε < 1, we

can efficiently find a subset S of size O
(
(1/ε2) log(1/ε) log(1/δ) log log(1/δ)

)
s.t.

∑
i∈I

d(xi, PS(l∗))2 ≤ (1 + ε)
∑
i∈I

d(xi, l
∗)2, with a constant probability.
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4 �p subspace approximation with outliers

Given an instance of k-dimensional subspace approximation with outliers as
points x1, x2, . . . , xn ∈ R

d, a positive integer 1 ≤ k ≤ d, a real number p ≥ 1, and
an outlier parameter 0 < α < 1, let the optimal k-dimensional linear subspace
be V ∗ that minimizes the �p error summed over its nearest (1−α)n points from
x1, x2, . . . , xn. Let I ⊆ [n] denote the subset of indices of these nearest (1 − α)n
points to V ∗. In other words, I = Nα(V ∗) consists of the indices of the optimal
inliers. Given any subset S ⊆ [n], let lS be the line or direction in it that makes
the smallest angle with V ∗, and define the subspace WS as the rotation of V ∗

along this angle so as to contain lS . To be precise, let l∗ be the projection of lS
onto V ∗ and let W ∗ be the orthogonal complement of l∗ in V ∗. Observe that
WS is the k-dimensional linear subspace spanned by lS and W ∗. We say that S
contains a line lS useful for additive approximation if

∑
i∈I

d(xi,WS)p ≤
∑
i∈I

d(xi, V
∗)p + ε

n∑
i=1

‖xi‖p
. (2)

Define the set of bad points as the subset of inliers I whose error w.r.t.
WS is somewhat larger than their error w.r.t. the optimal subspace V ∗, that
is, B(S) = {i ∈ I : d(xi,WS)p > (1 + ε/2) d(xi, V

∗)p} and good points as
G(S) = I \ B(S). The following lemma shows that sampling i-th points with
probability proportional to ‖xi‖p picks a bad point i ∈ B(S) with probability at
least ε/2. A proof of the following lemma is deferred to the full version of the
paper.

Lemma 2. If S ⊆ [n] does not satisfy (2), then
∑

i∈B(S) ‖xi‖p ≥ ε
2

∑n
i=1 ‖xi‖p

.

4.1 Additive Approximation: One Dimension at a Time

Below we show that a bad point i ∈ B(S) can be used to improve WS , or in
other words, span (S ∪ {i}) contains a line lS∪{i} that is much closer to V ∗ than
lS . We defer a proof of the following theorem to the full version of the paper.

Theorem 5. For any given points x1, x2, . . . , xn ∈ R
d, let S be an i.i.d. sample

of O
(
(p2/ε2) log(1/ε)

)
points picked with probabilities proportional to ‖xi‖p. Let

I ⊆ [n] be the set of optimal (1 − α)n inliers and V ∗ be the optimal subspace
that minimizes the �p error over the inliers. Also let WS be defined as in the
beginning of Sect. 4. Then, with a constant probability, we have

∑
i∈I

d(xi,WS)p ≤
∑
i∈I

d(xi, V
∗)p + ε

n∑
i=1

‖xi‖p
.

Note that we can start with any given initial subspace S0 and prove a similar
result for sampling points with probability proportional to d(xi, span (S0))p.
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Theorem 6. For any given points x1, x2, . . . , xn ∈ R
d and an initial subspace

S0, let S be an i.i.d. sample of O
(
(p2/ε2) log(1/ε)

)
points picked with probabil-

ities proportional to d(xi, span (S0))p. Let I ⊆ [n] be the set of optimal (1 − α)n
inliers and V ∗ be the optimal subspace that minimizes the �p error over the
inliers. Also let WS be defined as in the beginning of Sect. 4. Then, with a con-
stant probability, we have

∑
i∈I

d(xi,WS∪S0)
p ≤

∑
i∈I

d(xi, V
∗)p + ε

n∑
i=1

d(xi, span (S0))p.

Proof. Similar to the proof of Theorem 5 above.

Once we have a line lS that is close to V ∗, we can project orthogonal to it and
repeat the sampling again. The caveat is, we do not know lS . One can get around
this by projecting all the points x1, x2, . . . , xn to span (S) of the current sample
S, and repeat.

Theorem 7. For any given points x1, x2, . . . , xn ∈ R
d, let S = S1 ∪ S2 ∪ . . . ∪

Sk be a sample of Õ
(
p2k2/ε2

)
points picked as follows: S1 be an i.i.d. sample

of O
(
(p2k/ε2) log(k/ε)

)
points picked with probability proportional to ‖xi‖p,

S2 be an i.i.d. sample of O
(
(p2k/ε2) log(k/ε)

)
points picked with probability

proportional to d(xi, span (S1))p, and so on.
Let I ⊆ [n] be the set of optimal (1 − α)n inliers and V ∗ be the optimal

subspace that minimizes the �p error over the inliers. Then, with a constant
probability, span (S) contains a k-dimensional subspace VS such that

∑
i∈I

d(xi, VS)p ≤
∑
i∈I

d(xi, V
∗)p + ε

n∑
i=1

‖xi‖p
.

Proof. Similar to the proof of Theorem5, Section 4.2 in [4].

4.2 Multiplicative Approximation

We can convert the above additive approximation into a multiplicative (1 + ε)-
approximation by using this adaptively, treating the projections of x1, x2, . . . , xn

orthogonal to span (S) as our new points, and repeating the sampling. To begin
with, here is the modified statement of the additive approximation that we need.

Theorem 8. For any given points x1, x2, . . . , xn ∈ R
d and any initial subset S0,

let S = S0 ∪S1 ∪ . . .∪Sk be a sample of |S| = Õ(p2k2/ε2) points, where S1 be an
i.i.d. sample of O

(
(p2k/ε2) log(k/ε)

)
points picked with probability proportional

to d(xi, span (S0))p, S2 be an i.i.d. sample of O
(
(p2k/ε2) log(k/ε)

)
points picked

with probability proportional to d(xi, span (S0 ∪ S1))p, and so on. Let I ⊆ [n] be
the set of optimal (1 − α)n inliers and V ∗ be the optimal k-dimensional linear
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subspace that minimized the �p error over the inliers. Then, with a constant
probability, S contains a k-dimensional subspace VS such that

∑
i∈I

d(xi, VS)p ≤
∑
i∈I

d(xi, V
∗)p + ε

n∑
i=1

d(xi, span (S0))p.

Proof. Similar to the proof of Theorem 7 but using the projections of xi orthog-
onal to span (S0) as the point set. Theorem 7 is a special case with S0 = ∅.

Repeating the result of Theorem 8 by sampling adaptively for multiple rounds
brings the additive approximation error down exponentially in the number of
rounds.

Theorem 9. For any given points x1, . . . , xn ∈ R
d and any initial subset S0,

let St be a subset sampled by Theorem 8 after projecting the points orthogonal to
span (S0 ∪ . . . ∪ St−1), for 1 ≤ t ≤ T . Let I ⊆ [n] be the set of optimal (1 − α)n
inliers and V ∗ be the optimal k-dimensional linear subspace that minimizes the
�p error over the inliers. Then, with a constant probability, S = S0∪S1∪ . . .∪ST

of size |S| = Õ
(
(p2k2T log T )/ε2

)
contains a k-dimensional linear subspace VS

s.t.

∑
i∈I

d(xi, VS)p ≤ (1 + ε)
∑
i∈I

d(xi, V
∗)p + εT

n∑
i=1

d(xi, span (S0))p.

Proof. By induction on the number of rounds T and using Theorem 8.

Now assume that the optimal �p error of V ∗ over the optimal inliers I
is at least δ times its error over the entire data, that is,

∑
i∈I d(xi, V

∗)p ≥
δ

∑n
i=1 d(xi, V

∗)p. In that case, we can show a stronger multiplicative (1 + ε)-
approximation instead of additive one. This can be thought of as a weak coreset
extending the previous work on clustering given data using points and lines [7].
A proof of the following theorem is deferred to the full version of the paper.

Theorem 10. For any given points x1, x2, . . . , xn ∈ R
d, let I ⊆ [n] be the set

of optimal (1 − α)n inliers and V ∗ be the optimal k-dimensional linear sub-
space that minimizes their �p error, for 1 ≤ p < ∞. Suppose

∑
i∈I d(xi, V

∗)p ≥
δ

∑n
i=1 d(xi, V

∗)p. Then, for any 0 < ε < 1, we can efficiently find a subset S

of size |S| = Õ
(
(p2k2/ε2) log(1/δ) log log(1/δ)

)
that contains a k-dimensional

linear subspace VS such that∑
i∈I

d(xi, VS)p ≤ (1 + ε)
∑
i∈I

d(xi, V
∗)p, with a constant probability.

5 M-estimator Subspace Approximation with Outliers

�p error or loss function is a special case of M-estimators used in statistics. Gen-
eral M-estimators as loss functions for subspace approximation or clustering have
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been previously studied in [7] for point and line median clustering and in [3] for
robust regression. One way to define robust variants of the subspace approxi-
mation problem is to use more general loss functions that are more resilient to
outliers. Here is one example of a popular M-estimator.

– Huber’s loss function with threshold parameter t

L(x) =

{
x2/2, if |x| < t

t |x| − t2/2, if |x| ≥ t.

The advantage of more general loss functions such as Huber loss is that they
approximate squared-error for the nearer points but approximate �1-error for
faraway points. They combine the smoothness of squared-error with the robust-
ness of �1-error.

Clarkson and Woodruff [3] study the M-estimator variant of subspace approx-
imation defined as follows. Given points x1, x2, . . . , xn ∈ R

d, an integer 1 ≤ k ≤
d, and an M-estimator loss function M : R → R, find a k-dimensional linear
subspace V that minimizes

∑n
i=1 M (d(xi, V )) . Clarkson and Woodruff [3] show

that the adaptive sampling for angle-drop lemma used by [4] to go from a large
multiplicative approximation down to (1+ε)-approximation can also be achieved
by a non-adaptive residual sampling. Here we restate Theorem 45 from [3] using
our notation of subspaces and distances instead of matrix norms.

Theorem 11. (Theorem 45 of [3]) Given x1, x2, . . . , xn ∈ R
d, an integer

1 ≤ k ≤ d, and an M-estimator loss function M(·), let V0 be any lin-
ear subspace such that

∑n
i=1 M(d(xi, V0)) ≤ C

∑n
i=1 M(d(xi, V )), where V

is the k-dimensional linear subspace that minimizes the M-estimator error
for its distances to x1, . . . , xn summed over all the points. Let S ⊆ [n]
be a sample of points, where each i gets picked independently with proba-
bility min{1, C ′ · M(d(xi, V0))/

∑n
i=1 M(d(xi, V0)}, for some constant C ′ =

O
(
Ck3/ε2 log(k/ε)

)
. Then, with a constant probability, we have the following,

where |S| = O
(
Ck3/ε2 log(k/ε)

)
.

n∑
i=1

M(d(xi, span (V0 ∪ S))) ≤ (1 + ε)
n∑

i=1

M(d(xi, V )).

For general loss functions or M-estimators, one can define an analogous vari-
ant of the subspace approximation problem with outliers as follows. Given points
x1, x2, . . . , xn ∈ R

d, an integer 1 ≤ k ≤ d, a monotone M-estimator loss function
M : R≥0 → R≥0, and an outlier parameter 0 ≤ α ≤ 1, find a k-dimensional lin-
ear subspace V that minimizes the sum of M-estimator loss of distances to the
nearest (1 − α)n points. In other words, let Nα(V ) ⊆ [n] consist of the indices
of the nearest (1 − α)n points to V among x1, x2, . . . , xn. We want to find a
k-dimensional linear subspace V that minimizes

∑
i∈Nα(V ) M (d(xi, V )) . This

variant allows us to control the robustness in two ways: explicitly, using the out-
lier parameter in the definition, and implicitly, using an appropriate M-estimator
loss function of our choice.
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We observe that the proof of Theorem 45 in [3] is based on angle-drop lemma
and our arguments in Sect. 4 for subspace approximation with outliers go through
with very little or no change. Thus, we have the following theorem similar to
their dimension reduction for subspace approximation, whose proof is similar to
the proofs of Theorems 41 and 45 in [3].

Theorem 12. For any given points x1, x2, . . . , xn ∈ R
d, let I ⊆ [n] be the

set of optimal (1 − α)n inliers and V ∗ be the optimal k-dimensional linear
subspace that minimizes their M-estimator error

∑
i∈I M(d(xi, V

∗)). Suppose∑
i∈I d(xi, V

∗)p ≥ δ
∑n

i=1 d(xi, V
∗)p. Then, for any 0 < ε < 1, we can effi-

ciently find a subspace V ′ of dimension Õ
(
p2k2/ε2) log(1/δ)

)
such that, with a

constant probability, it contains a k-dimensional linear subspace Ṽ satisfying∑
i∈I

d(xi, Ṽ )p ≤ (1 + ε)
∑
i∈I

d(xi, V
∗)p.

6 Affine Subspace Approximation with Outliers

Given an input data set in a high-dimensional space, affine subspace approxi-
mation asks for an affine subspace that best fits this data. In other words, the
subspace approximation problem with outliers, for a given outlier parameter
0 ≤ α ≤ 1, is to consider all partitions of x1, x2, . . . , xn into (1 − α)n inliers and
the remaining αn outliers, and find the affine subspace with the least squared
error for the inliers over all such partitions. We present our result for affine
subspace approximation problem with outliers, and defer the details to the full
version.

Theorem 13. For any given points x1, x2, . . . , xn ∈ R
d, let I ⊆ [n] be the set of

optimal (1−α)n inliers and V ∗ be the optimal k-dimensional affine subspace that
minimizes their squared distance. Suppose

∑
i∈I d(xi, V

∗)2 ≥ δ
∑n

i=1 d(xi, V
∗)2.

Then, for any 0 < ε < 1, we can efficiently find, in time linear in n and d, a
k-dimensional linear subspace V ′ s.t.∑

i∈I

d(xi, V
′)2 ≤

∑
i∈I

d(xi, V
∗)2 + ε

∑
i∈I

‖xi‖2 , with a constant probability.
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1 Introduction

In 1968, Beineke [1] introduced claw-free graphs as a generalization of line graphs.
Besides that generalization, the interest in studying the class of claw-free graphs
also emerged due to the results showing that some NP-complete problems are
polynomial time solvable in that class of graphs. For example, the maximum
independent set problem is polynomially solvable for claw-free graphs, even on
its weighted version [11].

A considerable amount of literature has been published on claw-free graphs.
For instance, Chudnovsky and Seymour provide a series of seven papers describ-
ing a general structure theorem for that class of graphs, which are sketched in [5].
Some results on domination, Hamiltonian properties, and matchings are found
in [16,18,29], respectively. In the context of parameterized complexity, Cygan
et al. [10] show that finding a minimum dominating set in a claw-free graph is
fixed-parameter tractable. For more on claw-free graphs, we refer to a survey by
Faudree, Flandrin and Ryjáček [12] and references therein.

The aim of our work is to obtain a claw-free graph by a minimum number of
vertex deletions. Given a graph G and a property Π, Lewis and Yannakakis [25]
define a family of vertex deletion problems (Π-Vertex Deletion) whose goal
is finding the minimum number of vertices which must be deleted from G so that
the resulting graph satisfies Π. Throughout this paper we consider the property
Π as belonging to the class of claw-free graphs. For a set S ⊆ V (G), we say that
S is a claw-deletion set of G if G \ S is a claw-free graph.

We say that a class of graphs C is hereditary if, for every graph G ∈ C, every
induced subgraph of G belongs to C. If either the number of graphs in C or
the number of graphs not in C is finite, then C is trivial. A celebrated result of
Lewis and Yannakakis [25] shows that for any hereditary and nontrivial graph
class C, Π-Vertex Deletion is NP-hard for Π being the property of belonging
to C. Therefore, Π-Vertex Deletion is NP-hard when Π is the property of
belonging to the class C of claw-free graphs. Cao et al. [4] obtain several results
when Π is the property of belonging to some particular subclasses of chordal
graphs. They show that transforming a split graph into a unit interval graph with
the minimum number of vertex deletions can be solved in polynomial time. In
contrast, they show that deciding whether a split graph can be transformed into
an interval graph with at most k vertex deletions is NP-complete. Motivated by
the works of Lewis and Yannakakis [25] and Cao et al. [4], since claw-free graphs
is a natural superclass of unit interval graphs, we study vertex deletion problems
associated with eliminating claws. The problems are formally stated below.

Problem 1. Claw-free Vertex Deletion (CFVD)
Instance: A graph G, and k ∈ Z

+.
Question: Does there exist a claw-deletion set S of G with |S| ≤ k?

Problem 2. Weighted Claw-free Vertex Deletion (WCFVD)
Instance: A graph G, a weight function w : V (G) → Z

+, and k ∈ Z
+.

Question: Does there exist a claw-deletion set S of G with
∑

v∈S w(v) ≤ k?
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By Roberts’ characterization of unit interval graphs [27], Claw-free Ver-
tex Deletion on interval graphs is equivalent to the vertex deletion problem
where the input is restricted to the class of interval graphs and the target class
is the class of unit interval graphs, a long standing open problem (see e.g. [4]).
Then, the results by Cao et al. [4] imply that Claw-free Vertex Deletion is
polynomial-time solvable when the input graph is in the class of interval ∩ split
graphs. Moreover, their algorithm could be also generalized to the weighted
version. In this paper, we show that Claw-free Vertex Deletion is NP-
complete when the input graph is in the class of split graphs.

The results by Lund and Yannakakis [26] imply that Claw-free Vertex
Deletion is APX -hard and admits a 4-approximating greedy algorithm. Even
for the weighted case, a pricing primal-dual 4-approximating algorithm is known
for the more general problem of 4-Hitting Set [17]. The CFVD problem is
NP-complete on bipartite graphs [33], and a 3-approximating algorithm is pre-
sented by Kumar et al. in [23] for weighted bipartite graphs. We prove that the
unweighted problem is hard to approximate within any constant factor better
than 2, assuming the Unique Games Conjecture, even for split graphs.

Regarding to parameterized complexity, Claw-free Vertex Deletion
is a particular case of H-free Vertex Deletion, which can be solved in
|V (H)|knO(1) time using the bounded search tree technique. In addition, it can
also be observed that CFVD is a particular case of 4-Hitting Set thus, by
Sunflower lemma, it admits a kernel of size O(k4), and the complexity can be
slightly improved [13]. With respect to width parameterizations, it is well-known
that every optimization problem expressible in LinEMSOL1 can be solved in lin-
ear time on graphs with bounded cliquewidth [6]. Since claws are induced sub-
graphs with constant size, it is easy to see that finding the minimum weighted S
such that G\S is claw-free is LinEMSOL1-expressible. Therefore, WCFVD can
be solved in linear time on graphs with bounded cliquewidth, which includes
trees, block graphs and bounded treewidth graphs. However, the linear-time
algorithms based on the MSOL model-checking framework [7] typically do not
provide useful algorithms in practice since the dependence on the cliquewidth
involves huge multiplicative constants, even when the clique-width is bounded
by two (see [14]). In this work, we provide explicit discrete algorithms to effec-
tively solve WCFVD in linear time in practice on block graphs and bounded
treewidth graphs. Even though forests are particular cases of bounded treewidth
graphs and block graphs, we describe a specialized simpler linear-time algo-
rithm for CFVD on forests. This allows us to determine the exact values of
CFVD for a full k-ary tree T with n vertices. If k = 2, we show that a min-
imum claw-deletion set of T has cardinality (n + 1 − 2(log2(n+1)mod 3))/7, and
(nk − n + 1 − k(logk(nk−n+1)mod 2))/(k2 − 1), otherwise.

This paper is organized as follows. Section 2 is dedicated to show the hard-
ness and inapproximability results. Sections 3, 4, and 5 present results on forests,
block graphs, and bounded treewidth graphs, respectively. Due to space con-
straints, some proofs were omitted.
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Preliminaries. We consider simple and undirected graphs, and we use standard
terminology and notation.

Let T be a tree rooted at r ∈ V (T ) and v ∈ V (T ). We denote by Tv the
subtree of T rooted at v, and by CT (v) the set of children of v in T . For v �= r,
denote by pT (v) the parent of v in T , and by T+

v the subgraph of T induced by
V (Tv) ∪ {pT (v)}. Let T+

r = T and pT (r) = ∅. When T is clear from the context,
we simply write p(v) and C(v).

The block-cutpoint-graph of a graph G is the bipartite graph whose vertex
set consists of the set of cutpoints of G and the set of blocks of G. A cutpoint
is adjacent to a block whenever the cutpoint belongs to the block in G. The
block-cutpoint-graph of a connected graph is a tree and can be computed in
O(|V (G)| + |E(G)|) time [30].

Let G and H be two graphs. We say that G is H-free if G does not contain a
graph isomorphic to H as an induced subgraph. A claw is the complete bipartite
graph K1,3. The class of linear forests is equivalent to that of claw-free forests.
A vertex v in a claw C is a center if dC(v) = 3. The cardinality cdn(G) of
a minimum claw-deletion set in G is the claw-deletion number of G. For our
proofs, it is enough to consider connected graphs, since a minimum (weight)
claw-deletion set of a graph is the union of minimum (weight) claw-deletion sets
of its connected components. For an n-vertex graph G, Williams et al. [32] show
a randomized algorithm for detecting claws in O(nω) time with high probability,
where ω < 2.3728639 is the matrix multiplication exponent [24]. As far as we
know, the best deterministic algorithm for finding claws in a graph G takes
O(nω+1) time [22].

2 Complexity and Approximability Results

The result of Lewis and Yannakakis [25] implies that Claw-free Vertex
Deletion is NP-complete. In this section, we show that the same problem is NP-
complete even when restricted to split graphs, a well known subclass of chordal
graphs. Before the proof, let us recall that the Vertex Cover (VC) problem
consists of, given a graph G and a positive integer k as input, deciding whether
there exists X ⊆ V (G), with |X| ≤ k, such that every edge of G is incident to a
vertex in X.

Theorem 1. Claw-free Vertex Deletion on split graphs is NP-complete.

Proof. Claw-free Vertex Deletion is clearly in NP since claw-free graphs
can be recognized in polynomial time [32]. To show NP-hardness, we employ a
reduction from Vertex Cover on general graphs [15].

Let (G, k) be an instance of vertex cover, where V (G) = {v1, . . . , vn}, and
E(G) = {e1, . . . , em}. Construct a split graph G′ = (C ∪ I, E′) as follows. The
independent set is I = {v′

1, . . . , v
′
n}. The clique C is partitioned into sets Ci,

1 ≤ i ≤ m + 1, each on 2n vertices. Given an enumeration e1, . . . , em of E(G),
if ei = vjv�, make v′

j and v′
� adjacent to every vertex in Ci.

We prove that G has a vertex cover of size at most k if and only if G′ has a
claw-deletion set of size at most k. We present Claim 2 first.
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Claim 2. Every claw in G′ contains exactly two vertices from I.

Proof. Let C ′ be a claw in G′. Since C ′ ∩ C is a clique, |C ′ ∩ C| ≤ 2, thus
|C ′ ∩ I| ≥ 2 and the center of the claw must be in C. On the other hand, by
construction, dI(u) = 2 for every u ∈

⋃m
i=1 Ci. This implies |C ′ ∩ I| ≤ 2. ♦

Suppose that X is a vertex cover of size at most k in G. Then, every edge
of G is incident with a vertex in X. Let ei ∈ E(G) and X ′ = {v′ : v ∈ X}.
By construction, every vertex in Ci is adjacent to a vertex in X ′, therefore
|NG′\X′(Ci) ∩ I| ≤ 1. It follows by Claim 2 that G′ \ X ′ is claw-free.

Now, suppose that S′ is a claw-deletion set of G′ of size at most k. Recall
that |Ci| = 2n, for every 1 ≤ i ≤ m+1. Since |S′| ≤ k, it follows that there exist
wi ∈ Ci \ S′, for every 1 ≤ i ≤ m + 1. Let 1 ≤ i ≤ m and NI(wi) = {u′, v′}.
Note that {u′, v′, wi, wm+1} induces a claw in G′. Since S′ is a claw-deletion set
of G′, we have that S′ ∩ {u′, v′} �= ∅. Let S = {v : v′ ∈ S′ ∩ I}. By construction,
every uv ∈ E(G) is incident with a vertex in S, thus S is a vertex cover of G. �

Theorem 3 provides a lower bound for the approximation factor of CFVD.
For terminology not defined here, we refer to Crescenzi [8].

Theorem 3. Claw-free Vertex Deletion cannot be approximated with 2−
ε ratio for any ε > 0, even on split graphs, unless Unique Games Conjecture
fails.

Proof. The Unique Games Conjecture was introduced by Khot [19] in 2002.
Some hardness results have been proved assuming that conjecture, for instance,
see [20]. Given that Vertex Cover is hard to approximate to within 2 − ε
ratio for any ε > 0 assuming the Unique Games Conjecture [19], we perform an
approximation-preserving reduction from Vertex Cover. Let G be an instance
of Vertex Cover. Let f(G) = G′ where G′ is the instance of Claw-free
Vertex Deletion constructed from G according to the reduction of Theorem 1.
From Theorem 1 we know that G has a vertex cover of size at most k if and only
if G′ has a claw-deletion set of size at most k. Recall that k ≤ n = |V (G)|. Then,
for every instance G of Vertex Cover it holds that optCFVD(G′) = optVC(G).
Now, suppose that S′ is a (2 − ε)-approximate solution of G′ for CFVD. Recall
that |Ci| = 2n, for every 1 ≤ i ≤ m + 1. Since optCFVD(G′) = optVC(G) ≤ n,
it follows that |S′| < 2n, thus, there exists x ∈ Cm+1 \ S′, and w ∈ Ci \ S′, for
every 1 ≤ i ≤ m. Again, let NI(w) = {u′, v′}. Note that {u′, v′, w, x} induces a
claw in G′. Since S′ is a claw-deletion set of G′, we have that S′ ∩ {u′, v′} �= ∅.
Let S = {v : v′ ∈ S′ ∩ I}. By construction, every uv ∈ E(G) is incident to a
vertex in S, and therefore S is a vertex cover of G. Since |S| ≤ |S′| and S′ is a
(2 − ε)-approximate solution of G′, then |S| ≤ |S′| ≤ (2 − ε) · optCFVD(G′) =
(2 − ε) · optVC(G). Therefore, if CFVD admits a (2 − ε)-approximate algorithm
then Vertex Cover also admits a (2−ε)-approximate algorithm, which implies
that the Unique Games Conjecture fails [19]. �
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3 Forests

We propose Algorithm 1 to compute a minimum claw-deletion set S of a rooted
tree T .

Algorithm 1: Claw-Deletion-Set(T , v, p)

Input: A rooted tree T , a vertex v of T , and the parent p of v in T (possibly
empty).

Output: A minimum claw-deletion set S of T+
v , such that: if

cdn(T+
v ) = 1 + cdn(Tv) then p ∈ S; if cdn(T+

v ) = cdn(Tv) and
cdn(Tv) = 1 + cdn(Tv \ {v}) then v ∈ S.

1 if C(v) = ∅ then
2 return ∅
3 else
4 S := ∅
5 foreach u ∈ C(v) do
6 S := S ∪ Claw-Deletion-Set(T, u, v)

7 c := |C(v) \ S|
8 if c ≥ 3 then
9 S := S ∪ {v}

10 else if c = 2 and p �= ∅ and v /∈ S then
11 S := S ∪ {p}
12 return S

Theorem 4. Algorithm1 is correct. Thus, given a forest F , and a positive inte-
ger k, the problem of deciding whether F can be transformed into a linear forest
with at most k vertex deletions can be solved in linear time.

Moreover, based on the algorithm, we have the following results.

Corollary 1. Let T be a full binary tree with n vertices, and t = log2(n +
1)mod 3. Then cdn(T ) = (n + 1 − 2t)/7.

Corollary 2. Let T be a full k-ary tree with n vertices, for k ≥ 3, and t =
logk(nk − n + 1)mod 2. Then cdn(T ) = (nk − n + 1 − kt)/(k2 − 1).

4 Block Graphs

We describe a dynamic programming algorithm to compute the minimum weight
of a claw-deletion set in a weighted connected block graph G. The algorithm to
be presented can be easily modified to compute also a set realizing the minimum.

If the block graph G has no cutpoint, the problem is trivial as G is already
claw-free. Otherwise, let T be the block-cutpoint-tree of the block graph G.
Consider T rooted at some cutpoint r of G, and let v ∈ V (T ). Let Gv the
subgraph of G induced by the blocks in Tv. For v �= r, let G+

v be the subgraph
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of G induced by the blocks in T+
v . If b is a block, let G−

b = Gb \ {pT (b)} (notice
that pT (b) is a cutpoint of G, and it is always defined because r is not a block),
and let s(b) be the sum of weights of the vertices of b that are not cutpoints of
G (s(b) = 0 if there is no such vertex).

We consider three functions to be computed for a vertex v of T that is a
cutpoint of G:

– f1(v): the minimum weight of a claw-deletion set of Gv containing v.
– f2(v): the minimum weight of a claw-deletion set of Gv not containing v.
– For v �= r, f3(v): the minimum weight of a claw-deletion set of G+

v containing
neither v nor all the vertices of pT (v) \ {v} (notice that pT (v) is a block).

The parameter that solves the whole problem is f(r) = min{f1(r), f2(r)}.
We define also three functions to be computed for a vertex b of T that is a

block of G:

– f1(b): the minimum weight of a claw-deletion set of G−
b containing b\{pT (b)}.

– f2(b): the minimum weight of a claw-deletion set of G−
b .

– f3(b): the minimum weight of a claw-deletion set of Gb not containing pT (b).

Notice that f2(b) ≤ f3(b) ≤ f1(b). We compute the functions in a bottom-up
order as follows, where v (resp. b) denotes a vertex of T that is a cutpoint (resp.
block) of G. Notice that the leaves of T are blocks of G.

If C(b) = ∅, then f1(b) = s(b), f2(b) = 0, and f3(b) = 0. Otherwise,

– f1(v) = w(v) +
∑

b∈C(v) f2(b); f1(b) = s(b) +
∑

v∈C(b) f1(v);
– if |C(v)| ≤ 2, then f2(v) =

∑
b∈C(v) f3(b); if |C(v)| ≥ 3, then f2(v) =

minb1,b2∈C(v)(
∑

b∈{b1,b2} f3(b) +
∑

b∈C(v)\{b1,b2} f1(b));
– f2(b) = min{

∑
v∈C(b) min{f1(v), f3(v)}, minv1∈C(b)(s(b) + f2(v1)

+
∑

v∈C(b)\{v1} f1(v))};
– f3(b) =

∑
v∈C(b) min{f1(v), f3(v)};

– if C(v) = {b}, then f3(v) = f3(b);
if |C(v)| ≥ 2, then f3(v) = minb1∈C(v)(f3(b1) +

∑
b∈C(v)\{b1} f1(b)).

The explanation of the correctness of these formulas follows from Theorem 5.

Theorem 5. Let G be a weighted connected block graph which is not complete.
Let T be the block-cutpoint-tree of G, rooted at a cutpoint r. The previous function
f(r) computes correctly the minimum weight of a claw-deletion set of G.

We obtain this result as a corollary.

Corollary 3. Let G be a weighted block graph with n vertices and m edges. The
minimum weight of a claw-deletion set of G can be determined in O(n+m) time.
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5 Graphs of Bounded Treewidth

Next, we present an algorithm able of solving Weighted Claw-free Vertex
Deletion in linear time on graphs with bounded treewidth, which also implies
that we can recognize claw-free graphs in linear time when the input graph has
treewidth bounded by a constant. For definitions of tree decompositions and
treewidth, we refer the reader to [9,21,28].

Graphs of treewidth at most k are called partial k-trees. Some graph classes
with bounded treewidth include: forests (treewidth 1); pseudoforests, cacti, out-
erplanar graphs, and series-parallel graphs (treewidth at most 2); Halin graphs
and Apollonian networks (treewidth at most 3) [2]. In addition, control flow
graphs arising in the compilation of structured programs also have bounded
treewidth (at most 6) [31].

Based on the following results we can assume that we are given a nice tree
decomposition of the input graph G.

Theorem 6. [3] There exists an algorithm that, given a n-vertex graph G and
an integer k, runs in time 2O(k) · n and either outputs that the treewidth of G is
larger than k, or constructs a tree decomposition of G of width at most 5k + 4.

Lemma 1. [21] Given a tree decomposition (T, {Xt}t∈V (T )) of G of width at
most k, one can compute in time O(k2 ·max{|V (T )|, |V (G)|}) a nice tree decom-
position of G of width at most k that has at most O(k · |V (G)|) nodes.

Now we are ready to use a nice tree decomposition in order to obtain a linear-
time algorithm for Weighted Claw-free Vertex Deletion on graphs with
bounded treewidth.

Theorem 7. Weighted Claw-free Vertex Deletion can be solved in lin-
ear time on graphs with bounded treewidth. More precisely, there is a 2O(k2) · n-
time algorithm to solve Weighted Claw-free Vertex Deletion on n-vertex
graphs G with treewidth at most k.

Proof. Let G be a weighted n-vertex graph with tw(G) ≤ k. Given a nice tree
decomposition T = (T, {Xt}t∈V (T )) of G, we describe a procedure that com-
putes the minimum weight of a claw-deletion set of G (cdnw(G)) using dynamic
programming. For a node t of T , let Vt =

⋃
t′∈Tt

Xt′ . First, we will describe what
should be stored in order to index the table. Given a claw-deletion set Ŝ of G,
for any bag Xt there is a partition of Xt into St, At, Bt and Ct where

– St is the set of vertices of Xt that are going to be removed (St = Ŝ ∩ Xt);
– At = {v ∈ Xt \ Ŝ : |NVt\Xt

(v) \ Ŝ| = 0} is the set of non-removed vertices of
Xt that are going to have no neighbor in Vt \ Xt after the removal of Ŝ;

– Bt = {v ∈ Xt \ Ŝ : NVt\Xt
(v) \ Ŝ induces a non-empty clique} is the set of

non-removed vertices of Xt that, after the removal of Ŝ, are going to have
neighbors in Vt \ Xt, but no pair of non-adjacent neighbors;
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– Ct = {v ∈ Xt \ Ŝ : there exist u, u′ ∈ NVt\Xt
(v) \ Ŝ with uu′ /∈ E(G)} is the

set of non-removed vertices of Xt that, after the removal of Ŝ, are going to
have a pair of non-adjacent neighbors in Vt \ Xt.

In addition, the claw-deletion set Ŝ also provides the set Zt = {(x, y) ∈
(Xt \ Ŝ) × (Xt \ Ŝ) : ∃ w ∈ Vt \ (Xt ∪ Ŝ) with xy,wy ∈ E(G) and wx /∈ E(G)}
which consists of ordered pairs of vertices x, y of Xt that, after the removal of
Ŝ, are going to induce a P3 = x, y, w with some w ∈ Vt \ Xt.

Therefore, the recurrence relation of our dynamic programming has the sig-
nature cdnw[t, S,A,B,C,Z], representing the minimum weight of a vertex set
whose removal from G[Vt] leaves a claw-free graph, such that S,A,B,C form a
partition of Xt as previously described, and Z is as previously described too.
The generated table has size 2O(k2) · n.

Function cdnw is computed for every node t ∈ V (T ), for every partition
S ∪ A ∪ B ∪ C of Xt, and for every Z ⊆ Xt × Xt. The algorithm performs
the computations in a bottom-up manner. Let T rooted at r ∈ V (T ). Notice
that Vr = V (G), then cdnw[r, ∅, ∅, ∅, ∅, ∅] is the weight of a minimum weight
claw-deletion set of Gr = G, which solves the whole problem.

We present additional terminology. Let t be a node in T with children t′ and
t′′, and X ⊆ Xt. To specify the sets S,A,B,C and Z on t′ and t′′, we employ
the notation S′, A′, B′, C ′, Z ′ and S′′, A′′, B′′, C ′′, Z ′′, respectively.

We describe the recurrence formulas for the function cdnw defined, based on
the types of nodes in T . Recall that bags of leaves and root in T are empty.

– Leaf node. If t is a leaf node in T , then

cdnw[t, ∅, ∅, ∅, ∅, ∅] = 0. (1)

– Introduce node. Let t be an introduce node with child t′ such that Xt =
Xt′ ∪ {v} for some vertex v /∈ Xt′ . Let S ∪ A ∪ B ∪ C be a partition of Xt,
and Z ⊆ Xt × Xt. The recurrence is given by the following formulas.

• If v ∈ S, then

cdnw[t, S,A,B,C,Z] = cdnw[t′, S \ {v}, A,B,C,Z] + w(v). (2.1)

• If v ∈ A, and NXt\S(v) does not induce a K3, for every (x, y) ∈ Z, vx ∈
E(G) or vy /∈ E(G), NXt

(v) ∩ C = ∅, then define Z ′ as Z = Z ′ ∪ {(v, y) :
y ∈ B ∪ C and vy ∈ E(G)}, and put

cdnw[t, S,A,B,C,Z] = cdnw[t′, S,A \ {v}, B,C, Z ′], (2.2)

Otherwise, put cdnw[t, S,A,B,C,Z] = ∞.
• If v ∈ B ∪ C, then

cdnw[t, S,A,B,C,Z] = ∞. (2.3)
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– Forget node. Consider t a forget node with child t′ such that Xt = Xt′ \{v}
for some vertex v ∈ Xt′ . Let S ∪ A ∪ B ∪ C be a partition of Xt, and Z ⊆
Xt × Xt.

If NA(v) �= ∅, then

cdnw[t, S,A,B,C,Z] = cdnw[t′, S ∪ {v}, A,B,C,Z]. (3.1)

Otherwise, cdnw[t, S,A,B,C,Z] =

min
{
cdnw[t′, S ∪ {v}, A,B,C,Z], cdnw[t′, S,A′, B′, C ′, Z ′]

}
, (3.2)

among every (S,A′, B′, C ′, Z ′) such that:
Z = (Z ′ \ {(x, y) : x = v or y = v}) ∪ {(x, y) ∈ Xt × Xt : xy, vy ∈
E(G) and vx /∈ E(G)},
A = A′ \ NG[v], B = ((B′ \ {b ∈ B′ : (v, b) ∈ Z ′}) ∪ (A′ ∩ NG(v))) \ {v},
C = (C ′ ∪ {b ∈ B′ : (v, b) ∈ Z ′}) \ {v}.

– Join node. Consider t a join node with children t′, t′′ such that Xt = Xt′ =
Xt′′ . Let S ∪A∪B ∪C be a partition of Xt, and Z ⊆ Xt ×Xt. The recursive
formula is given by

cdnw[t, S,A,B,C,Z] =

min
{
cdnw[t′, S′, A′, B′, C ′, Z ′] + cdnw[t′′, S′′, A′′, B′′, C ′′, Z ′′]

}
− w(S), (4)

among every (S′, A′, B′, C ′, Z ′) and (S′′, A′′, B′′, C ′′, Z ′′) such that: S = S′ =
S′′; A = A′ ∩ A′′; B = (A′ ∩ B′′) ∪ (A′′ ∩ B′); C = C ′ ∪ C ′′ ∪ (B′ ∩ B′′);
Z = Z ′ ∪ Z ′′.

We explain the correctness of these formulas. The base case is when t is a
leaf node. In this case Xt = ∅, then all the sets S,A,B,C,Z are empty. The set
Xt = ∅ also implies that G[Vt] is the empty graph, which is claw-free. Hence,
cdnw(G[Vt]) = 0 and Formula (1) holds.

Let t be an introduce node with child t′, and v the vertex introduced at t.
First, suppose that v ∈ S. We assume by inductive hypothesis that G[Vt′ \ Ŝ]
is claw-free. Since v ∈ S ⊆ Ŝ, we obtain that G[Vt \ (Ŝ ∪ {v})] is claw-free.
Then, the weight of a minimum weight claw-deletion set of G[Vt] is increased
by w(v) from the one of G[Vt′ ], stored at cdnw[t′, S′, A′, B′, C ′, Z ′]. Since v ∈ S,
then v /∈ S′ and the sets A′, B′, C ′, Z ′ in node t′ are the same A,B,C,Z of t.
Consequently Formula (2.1) holds.

Now, suppose that v ∈ A ∪ B ∪ C. By definition of tree decomposition,
v /∈ NVt\Xt

(Xt). Then, if v ∈ B ∪C, the partition S ∪A∪B ∪C is not defined as
required, and this justifies Formula (2.3). Thus, let v ∈ A. We have three cases in
which G[Vt \ Ŝ] contains an induced claw: (i) NXt

(v) induces a K3, or (ii) there
exists (x, y) ∈ Z, such that vx /∈ E(G) and vy ∈ E(G), or (iii) there exists c ∈ C
such that cv ∈ E(G). A set Z according to definition of cdnw is obtained by Z ′

together with the pairs (x, y) such that x = v, xy ∈ E(G) and y has at least one
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neighbor in Vt\(Xt∪Ŝ). (Note that v = y is never achieved, since v is an introduce
node and v /∈ NVt\Xt

(Xt)). Then, Z = Z ′ ∪ {(v, y) : y ∈ B ∪ C and vy ∈ E(G)}.
Hence, Formula (2.2) is justified by the negation of each of cases (i), (ii), (iii).

Next, let t be a forget node with child t′. Let v be the vertex forgotten at t.
We consider NA(v) �= ∅ or not. Notice that if NG(v) ∩ A �= ∅ and v /∈ Ŝ, then
we have a contradiction to the definition of A, because some a ∈ A is going to
have a neighbor in Vt \ (Xt ∪ Ŝ). Therefore, if NA(v) �= ∅, v indeed must belong
to Ŝ, then Formula (3.1) holds.

Otherwise, consider that NA(v) = ∅. In this case, either v ∈ Ŝ or v /∈ Ŝ. Then,
we choose the minimum between these two possibilities. If v ∈ Ŝ we obtain the
value stored at cdnw[t′, S ∪{v}, A,B,C,Z]. Otherwise, let v /∈ Ŝ. It follows that,
for some a ∈ A, if va ∈ E(G), then a must now belong to B. Consequently,
A must be A′ \ NG[v]. Let B = {b ∈ B′ : (v, b) ∈ Z ′}. Since v /∈ Ŝ, for every
x ∈ B, x must belong to C. Thus, the set B is given by B′ \ B together with the
vertices from A′ that now belong to B. Recall that v /∈ Xt, then v /∈ B. Hence,
B = ((B′ \B)∪ (A′ ∩NG(v))) \ {v}. Finally, C = (C ′ ∪B) \ {v}. Hence, Formula
(3.2) holds.

To conclude, let t be a join node with children t′ and t′′. Note that the
graphs induced by Vt′ and by Vt′′ can be distinct. Then, we must sum the values
of cdnw in t′ and in t′′ to obtain cdnw in t, and choose the minimum of all of
these possible sums. Finally, we subtract w(S) from the previous result, since
w(S) is counted twice.

By definition of join node, Xt = Xt′ = Xt′′ , then S = S′ = S′′. Let x ∈ Xt.
We have that x ∈ A if and only if |NVt′ \Xt′ (x) \ Ŝ| = |NVt′′ \Xt′′ (x) \ Ŝ| = 0.
Then, A = A′ ∩ A′′.

Notice that x ∈ B if and only if (|NVt′ \Xt′ (v)\Ŝ| = 0 and |NVt′′ \Xt′′ (v)\Ŝ| >

1) or (|NVt′′ \Xt′′ (v) \ Ŝ| = 0 and |NVt′ \Xt′ (v) \ Ŝ| > 1). Consequently x ∈ B if
and only if x ∈ (A′∩B′′)∪(A′′∩B′). This implies that B = (A′∩B′′)∪(A′′∩B′).

Now, x ∈ C if and only if x ∈ C ′ or x ∈ C ′′ or (x ∈ B′ and x ∈ B′′).
(Note that by the definition of tree decomposition, the forgotten nodes in Gt′

and Gt′′ are distinct and therefore the condition x ∈ B′ and x ∈ B′′ is safe).
Consequently, C = C ′ ∪ C ′′ ∪ (B′ ∩ B′′).

Finally, let x, y ∈ Xt. By definition of Z ′, if (x, y) ∈ Z ′, then there exists
w ∈ Vt′ \ (Xt′ ∪ Ŝ) with xy,wy ∈ E(G) and wx /∈ E(G). This implies that
w ∈ Vt \ (Xt ∪ Ŝ) and xy,wy ∈ E(G) and wx /∈ E(G). Hence, (x, y) ∈ Z. By a
similar argument, we conclude that if (x, y) ∈ Z ′′, then (x, y) ∈ Z. This gives
Z = Z ′ ∪ Z ′′, and completes Formula (4).

Since the time to compute each entry of the table is upper bounded by 2O(k2)

and the table has size 2O(k2) · n, the algorithm can be performed in 2O(k2) · n
time. This implies linear-time solvability for graphs with bounded treewidth. �
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Abstract. We obtain a new lower bound for the eternal vertex cover
number of an arbitrary graph G, in terms of the cardinality of a vertex
cover of minimum size in G containing all its cut vertices. The con-
sequences of the lower bound include a quadratic time algorithm for
computing the eternal vertex cover number of chordal graphs.

Keywords: Eternal vertex cover · Lower bound · Chordal graphs

1 Introduction

Eternal vertex cover problem is a dynamic variant of the classical minimum
vertex cover problem [6,11]. It can be described in terms of a multi-round game
played between an attacker and a defender who controls a fixed number of guards.
The rules to play the game with k guards on a graph G are the following.
Initially, the defender chooses an assignment of guards to vertices by placing
the k guards on a subset of vertices of G. The positions of the guards define an
initial configuration. In each round of the game, the attacker attacks an edge
e of her choice. In response, the defender has to reconfigure the guards in such
a way that each guard either moves from its current position to a neighboring
vertex or remains its current position; however making sure that at least one
guard is moved from one endpoint of the attacked edge e to its other endpoint.
(All guards are assumed to move in parallel.) If the defender is not able to
move guards according to these rules, the attacker wins. Otherwise, we say that
the attack in the current round has been successfully defended and the game
proceeds to the next round of attack-defense, considering the resultant positions
of the guards as the new configuration. If the defender can keep on successfully
defending any infinite sequence of attacks, we say that the defender has a defense
strategy on this graph, with k guards. Eternal vertex cover number of a graph
G, denoted by evc(G) is the minimum integer k such that the defender has a
defense strategy on G, with k guards. It is well-known that eternal vertex cover
number of a path on n vertices is n − 1 and that of a cycle on n vertices is �n

2 �
[11].

From the description of the game, it is clear that if both endpoints of an edge
are without guards in some configuration, then an attack on that edge cannot
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be defended. Hence, an implicit requirement is that the positions of guards in
each round must be a vertex cover of the graph. When this game is played
with k-guards, each configuration encountered in the game is equivalent to some
function f from V to {0, 1, 2, . . . , k} such that

∑
v∈V f(v) = k (where, for each

v ∈ V , f(v) will be the number of guards on v). A set of such configurations
C, such that the defender can start with any configuration in C as the initial
configuration and keep moving between configurations in C for defending the
attacks, is called an evc class of G and each configuration in C is an eternal
vertex cover configuration of G. If C is an evc class of G such that the number
of guards in the configurations in C is equal to evc(G), then C is a minimum evc
class of G.

Fomin et al. [6] showed that1 given a graph G and an integer k, checking
if the defender has a defense strategy on G using k guards is NP-hard. They
gave an exact algorithm to compute eternal vertex cover number in 2O(n) time
complexity. The paper also gave an FPT algorithm to check if the defender has
a defense strategy on a graph G using k guards when parameterized by k. The
paper further showed that the problem is in PSPACE; however, it is not known
if the problem is in NP or not for general graphs. It also remains unexplored if
the problem is NP-hard or not, even for bipartite graphs.

Graph parameters like eternal total vertex cover number [1] and eternal dom-
ination number [7–9,12] are also defined in terms of multi-round attack-defense
games on graphs. The way in which these parameters are related to eternal vertex
cover number was explored by Anderson et al. [1] and Klostermeyer and Myn-
hardt [10]. An algorithm for computing eternal domination number of interval
graphs was obtained by Rinemberg and Soulignac [13].

There are two popular versions of the eternal vertex cover problem: the former
in which in any configuration, at most one guard is allowed on a vertex and the
latter in which this restriction is not there. Since the main structural result in
this paper is a lower bound for eternal vertex cover number, we will be assuming
the version of the game in which there is no restriction on the number of guards
allowed on a vertex. It can be easily verified that our proofs work the same way
in the other model of the game as well.

Since any configuration encountered in the game is a vertex cover, it follows
that mvc(G) ≤ evc(G), where mvc(G) denotes the cardinality of a minimum
vertex cover of G. This is the only general lower bound known for the parameter,
so far in literature. The connected vertex cover number of a graph G, denoted by
cvc(G), is the minimum size of a vertex cover S such that the induced subgraph
of G on S is connected. Klostermeyer and Mynhardt [11] showed that for any
graph G, evc(G) ≤ cvc(G) + 1. It follows from this result that for any graph
G, evc(G) ≤ 2mvc(G). Fomin et al. [6] had improved this bound to show that
twice the cardinality of a maximum matching in the graph is an upper bound
to evc(G). From this, a 2-factor approximation algorithm for computing eternal

1 The results in Fomin et al. [6] are given for the variant of the problem in which more
than one guard is allowed to be on a vertex in a configuration. But, the proof can
be easily modified for to work for the other model as well.
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vertex cover number follows. In order to come up with efficient algorithms for
computing eternal vertex cover number of graphs that belong to graph families of
interest, it is critical to improve the lower and upper bounds for the parameter.

In this work, we prove that the size of a minimum sized vertex cover of
G that contains all the cut vertices of G is also a lower bound for evc(G). In
Sect. 2, we show that the difference between the eternal vertex cover number and
the new lower bound is at most one, for chordal graphs, internally triangulated
planar graphs and in general for any graph whose 2-connected blocks are locally
connected. The main structural property used to obtain this bound specifies a
lower bound to the number of guards on each induced subgraph G′ of G that
join at a cut vertex of G, in any eternal vertex cover configuration of G. We
refer to this property as the EVC-Cut-Property (see Definition 4). The improved
lower bound for eternal vertex cover number has many algorithmic consequences,
including a quadratic time algorithm for computing the eternal vertex cover
number of chordal graphs and a PTAS for computing the eternal vertex cover
number of internally triangulated planar graphs. Previously, such results were
known only for biconnected graphs of the respective classes. The improved lower
bound for eternal vertex cover number is obtained by a direct application of the
EVC-Cut-Property. We believe that this property would be useful in general, for
extending lower bound results for the eternal vertex cover number of biconnected
graphs of a graph class of interest to lower bound results that are applicable for
all graphs of the class.

2 A New Lower Bound

Definition 1 (x-components and x-extensions). Let x be a cut vertex in a
graph G and H be a component of G \ x. Let G′ be the induced subgraph of G
on the vertex set V (H) ∪ {x}. Then G′ is called an x-component of G and G is
called an x-extension of G′.

Let G′ be a graph and G be an x-extension of G′ for some x ∈ V (G′). It is
easy to see that in every eternal vertex cover configuration of G at least mvc(G′)
guards are present on V (G′). However, it is interesting to note that it is possible
to have less than evc(G′) guards present on V (G′) in some eternal vertex cover
configurations of G. We discuss an example of this below.

For the graph G′ in Fig. 1(a), it is clear that mvc(G′) = 2. We will show that
on G′, the defender has no defense strategy with less than 4 guards. Suppose, we
play the game on G′ with less than 4 guards. Note that, any vertex cover of G′ of
size at most 3 must contain both v2 and v8. We also know that in any evc class
of G′, there must be a configuration in which v1 is occupied. Further, {v1, v2, v8}
is the only vertex cover of size at most 3 that contains v1. But the configuration
{v1, v2, v8} is not safe because, in order to defend an attack on an edge incident
to v8, the guard on v8 must move and there is no other guard that can move
to v8. Therefore, evc(G′) ≥ 4. It is not difficult to show that evc(G′) = 4 by
maintaining in configurations with v1, v2 and v8 along with one of the degree
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Fig. 1. (a) A graph G′ with evc(G′) = 4. (b) G is a v8- extension of G′. A valid eternal
vertex cover configuration of G with less than evc(G′) guards on V (G′) is indicated
using gray squares.

two vertices. Similar to the case of G′, we can see that evc(G) ≥ 4. It is also
easy to see that the defender has a defense strategy in G with four guards, by
maintaining in configurations where v2 and v8 are occupied along with one of the
degree one vertices and one of the degree two vertices. Thus, evc(G) = 4. It can
be seen that, in the evc class of G that we just described, when v9 is occupied,
there exists less than evc(G′) guards on V (G′) as shown in Fig. 1(b).

Let x be a cut vertex in a graph G. From the description above, it is clear
that though a lower bound for evc(G) can be obtained in terms of the minimum
vertex cover numbers of the x-components of G, it may not be possible to obtain
a non-trivial lower bound for evc(G) in terms of the eternal vertex cover numbers
of the x-components of G. Here, we introduce a new parameter and show that
it is a lower bound for evc(G).

Definition 2. Let G be a graph and X ⊆ V (G). The smallest integer k, such
that G has a vertex cover S of cardinality k with X ⊆ S, is denoted by mvcX(G).

To simplify the expressions that appear later, we introduce the following nota-
tions. For any vertex v ∈ V (G), mvc{v}(G) will be denoted by mvcv(G) and for
any graph G and any set X, the notation X(G) will be used to denote the set
X ∩ V (G).

Definition 3. Let X be the set of cut vertices of a graph G and let x ∈ X. The
set of x-components of G will be denoted as Cx(G). If B is any block of G, then
the set of B-components of G is defined as
CB(G) = {Gi : Gi ∈ Cx(G) for some x ∈ X(B) and Gi edge disjoint with B}.
Definition 4 (EVC-Cut-Property). Let G′ be a graph and let X ′ be the set
of cut vertices of G′. The graph G′ is said to have the EVC-cut-property if for
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every graph G that is an x-extension of G′ for some x ∈ V (G′), it is true that in
each eternal vertex cover configuration of G, at least mvc

X′∪{x}(G′) guards are
present on the vertices of G′, out of which at least mvc

X′∪{x}(G′) − 1 guards are
present on V (G′) \ {x}.
Note 1. For a graph G′ to satisfy the EVC-Cut-Property, it is not necessary that
the vertex x is occupied by a guard in every eternal vertex cover configuration
of an x-extension G of G′. All the mvc

X′∪{x}(G′) (or more) guards could be on
vertices other than x.

Note 2. Definition 4 gives some lower bounds on the number of guards and not
on the number of vertices with guards. Note that, if more than one guard is
allowed on a vertex, then these two numbers could be different.

The following two lemmas are easy to obtain, using a straightforward count-
ing argument.

Lemma 1. Let G be a graph and X be the set of cut vertices of G. For any
x ∈ X,

mvc
X∪{x}(G) = mvc

X
(G) = 1 +

∑

Gi∈Cx(G)

[
mvc

X(Gi)
(Gi) − 1

]
.

Lemma 2. Let G be a graph and X be the set of cut vertices of G. If B is a
block of G and v is any vertex of B such that v /∈ X(B), then

mvc
X∪{v}(G) = mvc

X(B)∪{v}(B) +
∑

Gi∈CB(G)

[
mvc

X(Gi)
(Gi) − 1

]
.

Lemma 3. Every graph satisfies EVC-cut-property.

Proof. The proof is by induction on the number of blocks of the graph. First
consider a graph G′ with a single block. Let x be any vertex of G′ and G be
an x-extension of G′. Let C be an eternal vertex cover configuration of G and
let S be the set of vertices of G on which guards are present in C. Since C is
an eternal vertex cover configuration of G, S must be a vertex cover of G and
S ∩ V (G′) must be a vertex cover of G′. Therefore, |S ∩ V (G′)| ≥ mvc(G′). If
|S ∩ V (G′)| ≥ mvcx(G′), then there are at least mvcx(G′) guards on V (G′) and
at least mvcx(G′)−1 guards on V (G′)\{x}, as we need to prove. Also, it is easy
to see that mvcx(G′) ≤ mvc(G′) + 1. Therefore, we are left with the case when
mvc(G′) = |S ∩ V (G′)| < mvcx(G′) = mvc(G′) + 1. This implies that x /∈ S.
Thus, in the remaining case to be handled, the number of vertices on which
guards are present is exactly mvc(G′) and there is no guard on x.

From this point, let us focus on the number of guards on V (G′) and not just
the number of vertices that are occupied. If there are more than mvc(G′) guards
in V (G′), then the conditions we need to prove are satisfied for the configuration
C. In the remaining case, we have exactly |S ∩ V (G′)| = mvc(G′) guards in
V (G′), with x /∈ S. In this case, we will derive a contradiction.
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Consider an attack on an edge xv incident at x, where v ∈ V (G′). Let C̃ be
the new configuration, after defending this attack and S̃ be the set of vertices
on which guards are present in C̃. In the transition from C to C̃, a guard must
have moved from v to x. Also, x being a cut vertex, no guard can move from
V (G) \ V (G′) to V (G′) \ {x}. Therefore, |S̃ ∩ V (G′)| = |S ∩ V (G′)| = mvc(G′).
But, this is a contradiction because S̃ ∩ V (G′) is a minimum vertex cover of G′

containing x, but we have mvc(G′) < mvcx(G′).
Thus, the lemma holds for all graphs with only one block. Now, as induction

hypothesis, assume that the lemma holds for any graph G′ with at most k blocks.
We need to show that the lemma holds for any graph with k + 1 blocks.

Let G′ be an arbitrary graph with k+1 blocks and let x be an arbitrary vertex
of G′. Let X ′ be the set of cut vertices of G′ and let G be an arbitrary x-extension
of G′. Let C be an arbitrary eternal vertex cover configuration of G and let S be
the set of vertices on which guards are present in C. Let l = mvc

X′∪{x}(G′). We
need to show that there are at least l guards on V (G′) in C and at least l − 1
guards on V (G′) \ {x}. Let t be the number of guards on V (G′) in C. We split
our proof into two cases based on whether x is a cut vertex in G′ or not.
Case 1. x is a cut vertex of G′

In this case, by our induction hypothesis, for each x-component Gi of G′, at
least mvc

X′(Gi)
(Gi) guards are on V (Gi) in the configuration C. There are two

possible sub-cases.

(a) If x is not occupied by a guard in C, then by induction hypothesis, t ≥∑
Gi∈Cx(G′) mvc

X′(Gi)
(Gi). Since Cx(G′) is non-empty, by Lemma 1, it follows

that t ≥ mvcX′∪{x}(G′) = l. Since x is not occupied, the number of guards
on V (G′) \ {x} is t itself, where t ≥ l, as shown.

(b) If x is occupied by a guard in C, still, in order to satisfy the induction
hypothesis for all x-components of G′, the number of guards on V (G′) \ {x}
must be at least

∑
Gi∈Cx(G′)

(
mvc

X′(Gi)
(Gi) − 1

)
. Therefore, by Lemma 1,

it follows that the number of guards on V (G′)\{x} is at least l−1 and t ≥ l.

Case 2. x is not a cut vertex of G′:
Let B be the block of G′ that contains x. By Lemma 2, we have:

l = mvc
X′(B)∪{x}(B) +

∑

Gi∈CB(G′)

(
mvc

X′(Gi)
(Gi) − 1

)
(1)

Before proceeding with the proof, we establish the following claim.

Claim 1 Suppose C ′ is an eternal vertex cover configuration of G. Then the
number of guards on V (G′) \ {x} in configuration C ′ is at least l − 1.

Proof. To count the number of guards on V (G′)\{x}, we count the total number
of guards on the B-components of G′ and the number of guards on the remaining
vertices separately and add them up.
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– First, we will count the total number of guards on the B-components of G′.
For each B-component Gi of G′, let ki = mvc

X′(Gi)
(Gi). For each cut vertex

v ∈ X ′(B), let Cv denote the family of B-components of G′ that intersect at
the cut vertex v and let nv denote |Cv|. Consider a B-component Gi of G′.
By our induction hypothesis, the number of guards on V (Gi) is at least ki
in C ′. Moreover, since Gi is connected to B by a single cut vertex, from the
induction hypothesis it follows that the number of guards on V (Gi) \ B is
at least ki − 1. Note that, for each cut vertex v ∈ X ′(B), the total number
of guards on

⋃
Gi∈Cv

V (Gi) must be at least 1 +
∑

i:Gi∈Cv
(ki − 1), to satisfy

the above requirement. By summing this over all the cut vertices in X ′(B),
the total number of guards on

⋃
Gi∈CB(G′) V (Gi) must be at least |X ′(B)| +

∑
Gi∈CB(G′)

(
mvc

X′(Gi)
(Gi) − 1

)
.

– Now, we will count the number of guards on the remaining vertices. To cover
the edges inside the block B that are not incident at any vertex in X ′(B),
at least mvc(B \ X ′(B)) vertices of B \ X ′(B) are to be occupied in C ′. If x
is occupied in C ′, then at least mvcx(B \ X ′(B)) vertices of B \ X ′(B) are
occupied in C ′. Hence, irrespective of whether x is occupied in C ′ or not, the
number of guards on (V (B) \ X ′(B)) \ {x} is at least mvcx(B \ X ′(B)) − 1.

Therefore, the total number of guards on V (G′)\{x} is at least mvcx(B\X ′(B))−
1 + |X ′(B)| +

∑
Gi∈CB(G′)

(
mvc

X′(Gi)
(Gi) − 1

)
. Since mvcx(B \ X ′(B)) +

|X ′(B)| = mvc
X′(B)∪{x}(B), we can conclude that the number of guards on

V (G′) \ {x} is equal to mvc
X′(B)∪{x}(B) − 1 +

∑
Gi∈CB(G′)

(
mvc

X′(Gi)
(Gi) − 1

)
.

Comparing this expression with Equation (1), we can see that the number of
guards on V (G′) \ {x} is at least l − 1. 
�

Now, we continue with the proof of Lemma 3. There are two possible sub-
cases.

(a) If x is occupied by a guard in C, then by Claim 1, it follows that the number
of guards on V (G′)\{x} is at least l−1 and the number of guards on V (G′)
is at least l, as we require.

(b) If x is not occupied in C, then by Claim 1, t ≥ l − 1. If t ≥ l, we are done.
If t = l − 1, then we will derive a contradiction. Consider an attack on an
edge xu such that u ∈ V (B). While defending this attack, a guard must
move from u to x. Let C̃ be the new configuration in G and let S̃ be the
set of vertices on which guards are present in C̃. Note that no guards from
V (G) \ V (G′) can move to any vertex of V (G′) \ {x} in this transition from
C to C̃, because x is a cut vertex in G. Therefore, in C̃, the total number of
guards on V (G′) \ {x} is less than l − 1, contradicting Claim 1. Therefore,
t = l and the lemma holds for G′.

Thus, by induction, the lemma holds for every graph. 
�
Remark 1. The above lemma holds for both the models of the eternal vertex
cover problem; the first model in which the number of guards permitted on a
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vertex in any configuration is limited to one and the second model, where this
restriction is not there. However, it is possible that, in the second model, the num-
ber of vertices on which guards are present could be smaller than mvc

X∪{x}(G)
in some valid configurations. An example illustrating this subtlety is shown in
Fig. 2. In order to address this subtlety, the proof of Lemma 3 employs a careful
interplay between the two quantities a) the number of guards in a configuration
and b) the number of vertices on which guards are present in a configuration.

Fig. 2. Any vertex cover of the graph in (a) that contains vertex v7 and both the cut
vertices must be of size at least 5. The graph in (b) is a v7-extension of the graph in
(a). Positions of guards in an eternal vertex cover configuration of the graph in (b) are
indicated using gray squares. This is a valid configuration. Note that, only four vertices
of the graph in (a) are occupied in the configuration shown in (b).

Theorem 1. For any connected graph G, evc(G) ≥ mvc
X

(G), where X is the
set of cut vertices of G.

Proof. Let C be an eternal vertex cover configuration of G and S be the set
of all vertices of G containing guards in C. Suppose evc(G) < mvc

X
(G). Then,

there exists a vertex x ∈ X such that x /∈ S. Since every graph satisfies EVC-
cut-property by Lemma 3, for each x-component Gi of G, exactly mvc

X(Gi)
(Gi)

guards are present on V (Gi) \ {x}. Therefore, the total number of guards is at
least

∑
Gi∈Cx(G) mvc

X(Gi)
(Gi). Since there are at least two x-components, by

comparing this expression with the RHS of the equation in Lemma 1, we can
see that the total number of guards is more than mvcX(G). This contradicts our
initial assumption. 
�
Observation 1 Let G be a connected graph and let X be the set of cut ver-
tices of G. If evc(G) = mvc

X
(G), then in every minimum eternal vertex cover

configuration of G, there are guards on each vertex of X.

Proof. For contradiction, assume that there exists a minimum eternal vertex
cover configuration C of G with a cut vertex x unoccupied. Rest of the proof is
exactly the same as in the proof of Theorem 1. 
�
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3 Algorithmic Implications

In this section, we first prove some general implications of Theorem 1, which are
used for deriving algorithmic results for some well-known graph classes.

Definition 5 (Graph class2 F). F is defined as the family of all connected
graphs G satisfying the following property: if X is the set of cut vertices of G
and S is any vertex cover of G with X ⊆ S and |S| = mvc

X
(G), then the induced

subgraph G[S] is connected.

For any graph G and S ⊆ V (G), let evc
S
(G) denote the minimum number k such

that G has an evc class C with k guards in which all vertices of S are occupied in
every configuration of C. For an example, let G be a path on three vertices u,v and
w, in which v is the degree-two vertex. It can be easily seen that evc(G) = 2. Since
{{u,v}, {v,w}} is an evc class of G in which each configuration has v occupied,
evc{v}(G) = 2. Since G has no evc class in which each configuration contains u
and has exactly two vertices, it follows that evc{u}(G) = 3. By Observation 1,
we have the following generalization of Corollary 2 of [3].

Theorem 2. Let G be a graph in F with at least two vertices and X be the
set of cut vertices of G. If for every vertex v ∈ V (G) \ X, mvc

X∪{v}(G) =
mvc

X
(G), then evc(G) = evc

X
(G) = mvc

X
(G). Otherwise, evc(G) = evc

X
(G) =

mvc
X

(G) + 1.

Proof. By Theorem 1, we have mvc
X

(G) ≤ evc(G) and we have evc(G) ≤
evc

X
(G).

– If for every vertex v ∈ V (G)\X, mvc
X∪{v}(G) = mvc

X
(G), then by Lemma 2

of [3], evc
X

(G) = mvc
X

(G) and hence, evc(G) = evc
X

(G) = mvc
X

(G).
– If for some vertex v ∈ V (G)\X, mvc

X∪{v}(G) �= mvc
X

(G), then by Theorem 1
of [3], evc

X
(G) �= mvc

X
(G). Let S be any minimum sized vertex cover of

S that contains all vertices of X. Since S is a connected vertex cover of
G, by a result by Klostermeyer and Mynhardt [11], evc(G) ≤ evc

X
(G) ≤

|S|+1 = mvc
X

(G)+1. Thus, we have mvc
X

(G) < evc(G) = evc
X

(G) = mvc
X

(G) + 1. 
�
The following corollary is a generalization of Remark 3 of [2].

Corollary 1. Let G be a graph in F with at least two vertices and X be the set
of cut vertices of G. Then, evc(G) = min{k : ∀v ∈ V (G), G has a vertex cover
Sv of size k such that X ∪ {v} ⊆ Sv}.
The following result is a generalization of Corollary 3 of [2].

Observation 2 Given a graph G ∈ F and an integer k, deciding whether
evc(G) ≤ k is in NP.

2 Note that the definition of this graph class is more general than the one in [2].
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Proof. Consider any G ∈ F with at least two vertices and let X be
the set of cut vertices of G. By Corollary 1, evc(G) = min{k : ∀v ∈
V (G), G has a vertex coverSv of size k such that X ∪ {v} ⊆ Sv}. To check if
evc(G) ≤ k, the polynomial time verifiable certificate consists of at most |V |
vertex covers of size at most k such that for each vertex v ∈ V , there exists a
vertex cover in the certificate containing all vertices of X ∪ {v}. 
�

3.1 Graphs with Locally Connected Blocks

A graph G is locally connected if for every vertex v of G, its open neighborhood
NG(v) induces a connected subgraph in G [5]. Biconnected chordal graphs and
biconnected internally triangulated graphs are some well-known examples of
locally connected graphs. If every block of a graph G is locally connected, then
every vertex cover of G that contains all its cut vertices is connected. Hence,
G ∈ F and by Theorem 2, we have:

Corollary 2. Let G be a connected graph with at least two vertices, such that
each block of G is locally connected and let X be the set of cut vertices of G. Then,
mvc

X
(G) ≤ evc(G) ≤ mvc

X
(G) + 1. Further, evc(G) = mvc

X
(G) if and only if

for every vertex v ∈ V (G) \ X, mvc
X∪{v}(G) = mvc

X
(G). In particular, these

conclusions hold for chordal graphs and internally triangulated planar graphs
that are connected and have at least two vertices.

3.2 Hereditary Graph Classes

The following theorem is obtained by generalizing Theorem 3 of [3], by applying
Theorem 2.

Theorem 3. Let C be a hereditary graph class such that each biconnected graph
in C is locally connected. If the vertex cover number of any graph in C can be
computed in O(f(n)) time, then the eternal vertex cover number of any graph
G ∈ C can be computed in O(n.f(n)) time.

Proof. Let G be a graph in C. Since each block of G is locally connected, by
Corollary 2, mvc

X
(G) ≤ evc(G) ≤ mvc

X
(G) + 1. Further, by Corollary 2, to

check whether evc(G) = mvc
X

(G), it is enough to decide if for every vertex
v ∈ V \ X, mvc

X∪{v}(G) = mvc
X

(G). Since minimum vertex cover computation
can be done for graphs of C in O(f(n)) time, for a vertex v, checking whether
mvc

X∪{v}(G) = mvc
X

(G), takes only O(f(n)) time. Therefore, checking whether
evc(G) = mvc

X
(G) can be done in O(n.f(n)) time. 
�

3.3 Chordal Graphs

The following theorem is a special case of Theorem 3, using the fact that mini-
mum vertex cover computation can be done for chordal graphs in O(m+n) time
[14], where m is the number of edges and n is the number of vertices of the input
graph. This result is a generalization of a result for biconnected chordal graphs
in [2].
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Theorem 4. Let G be a chordal graph and X be the set of cut vertices of G.
Then, mvc

X
(G) ≤ evc(G) ≤ mvc

X
(G) + 1 and the value of evc(G) can be deter-

mined in O(n2 +mn) time, where m is the number of edges and n is the number
of vertices of the input graph.

3.4 Internally Triangulated Planar Graphs

The following lemma is a generalization of a result in [2] for biconnected inter-
nally triangulated planar graphs.

Lemma 4. Given an internally triangulated planar graph G and an integer k,
deciding whether evc(G) ≤ k is NP-complete.

Proof. Since each block of an internally triangulated planar graph G is locally
connected, every vertex cover S of G that contains all its cut vertices induces a
connected subgraph. Therefore, by Observation 2, deciding whether evc(G) ≤ k
is in NP. Since this decision problem is known to be NP-hard for biconnected
internally triangulated graphs [2], the lemma follows. 
�
The existence of a polynomial time approximation scheme for computing the
eternal vertex cover number of biconnected internally triangulated planar graphs,
given in [2], is generalized by the following result.

Lemma 5. There exists a polynomial time approximation scheme for computing
the eternal vertex cover number of internally triangulated planar graphs.

Proof. Let G be an internally triangulated planar graph. Let X be the set of
cut vertices of G. It is possible to compute X in linear time, using a well-known
depth first search based method. By Corollary 1, evc(G) = max{mvcX∪{v}(G) :
v ∈ V (G)}. It is easy to see that for a vertex v ∈ V (G) \ X, mvcX∪{v}(G) =
|X| + 1 + mvc(G \ (X ∪ {v})). For v ∈ V (G), mvcX∪{v}(G) = mvcX(G) =
|X| + mvc(G \ X). Using the PTAS designed by Baker et al. [4] for computing
the vertex cover number of planar graphs, given any ε > 0, it is possible to
approximate mvc(G \ (X ∪ {v})) within a 1+ε factor, in polynomial time. From
this, a polynomial time approximation scheme for computing evc(G) follows. 
�

4 Conclusion

The main structural property proven in this paper is the EVC-Cut-Property
(Definition 4) which asserts that in any eternal vertex cover configuration of a
graph G, each induced subgraph G′ of G joining at a cut vertex x of G should
have at least as many guards as the size of a minimum sized vertex cover of G′

that contains x and all the cut vertices of G′. Using this property, we obtained a
new lower bound for eternal vertex cover number. We showed that, for any graph
G, mvc

X
(G) ≤ evc(G), where mvc

X
(G) is the size of a vertex cover of minimum

cardinality that contains all the cut vertices of G. It was previously known
that for any biconnected chordal graph G, mvc(G) ≤ evc(G) ≤ mvc(G) + 1
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and deciding the precise value of evc(G) from these two possible values can
be done in polynomial time. Also, it was known that for any chordal graph G,
evc(G) ≤ mvc

X
(G)+1. From the new lower bound, it follows that for any chordal

graph G, mvc
X

(G) ≤ evc(G) ≤ mvc
X

(G) + 1. Further, it follows that deciding
the precise value of eternal vertex cover number of a chordal graph can be done
in polynomial time. For graphs in which every block is locally connected, even
though deciding whether evc(G) ≤ k is NP-hard in general, it holds true that
the eternal vertex cover number can be at most one more than the new lower
bound. In particular, this is true for internally triangulated planar graphs.

Since eternal vertex cover problem is only known to be in PSPACE in general
[6], it is interesting to explore more classes of graphs for which eternal vertex
cover number can be computed in polynomial time or can be approximated with
a better approximation guarantee than the currently known 2-factor approxi-
mation algorithm. We believe that, EVC-Cut-Property is likely to be a useful
tool for generalizing lower bounds obtained for the eternal vertex cover num-
ber of biconnected graphs of graph classes of interest, to obtain results that are
applicable to all graphs that belong to the respective classes.
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Abstract. Let V be a finite set of vertices in the plane and S be a finite
set of polygonal obstacles. We show how to construct a plane 2-spanner
of the visibility graph of V with respect to S. As this graph can have
unbounded degree, we modify it in three easy-to-follow steps, in order
to bound the degree to 7 at the cost of slightly increasing the spanning
ratio to 6.

Keywords: Spanners · Bounded-degree · Polygonal obstacles

1 Introduction

A geometric graph G consists of a finite set of vertices V ∈ R
2 and a finite

set of edges (p, q) ∈ E such that the endpoints p, q ∈ V . Every edge in E is
weighted according to the Euclidean distance, |pq|, between its endpoints. For
any two vertices x and y in G, their distance, dG(x, y) or d(x, y) if the graph
G is clear from the context, is defined as the sum of the Euclidean distance of
each constituent edge in the shortest path between x and y. A t-spanner H of
G is a subgraph of G where for all pairs of vertices in G, dH(x, y) ≤ t · dG(x, y).
The smallest t ≥ 1 for which this property holds, is called the stretch factor
or spanning ratio of H. For a comprehensive overview on spanners, see Bose
and Smid’s survey [9] and Narasimhan and Smid’s book [12]. Since spanners
are subgraphs where all original paths are preserved up to a factor of t, these
graphs have applications in the context of geometric problems, including motion
planning and optimizing network costs and delays. Another important factor
considered when designing spanners is its maximum degree. If a spanner has a
low maximum degree, each node needs to store only a few edges, making the
spanner better suited for practical purposes.

Most research has focussed on designing spanners of the complete graph.
This implicitly assumes that every edge can be used to construct the spanner.
However, unfortunately, in many applications this is not the case. In motion
planning we need to move around physical obstacles and in network design some
connections may not be useable due to an area of high interference between the
endpoints that corrupts the messages. This naturally gives rise to the concept
of obstacles or constraints. Spanners have been studied for the case where these
c© Springer Nature Switzerland AG 2020
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obstacles form a plane set of line segments. It was shown that a number of graphs
that are spanners without obstacles remain spanners in this setting [2,4,5,8]. In
this paper we consider more complex obstacles, namely simple polygons.

Let S be a finite set of simple polygonal obstacles where each corner of each
obstacle is a vertex in V , such that no two obstacles intersect. Throughout this
paper, we assume that each vertex is part of at most one polygonal obstacle and
occurs at most once along its boundary, i.e., the obstacles are vertex-disjoint
simple polygons. Note that V can also contain vertices that do not lie on the
corners of the obstacles. Two vertices are visible to each other if and only if the
line segment connecting them does not properly intersect any obstacles (i.e., the
line segment is allowed to touch obstacles at vertices or coincide with its bound-
ary, but it is not allowed to intersect the interior). The line segment between two
visible points is called a visibility edge. The visibility graph of a given point set
V and a given set of polygonal obstacles S, denoted V is(V, S), is the complete
graph on V excluding all the edges that properly intersect some obstacle. It is a
well-known fact that the visibility graph is connected.

Clarkson [10] was one of the first to study this problem, showing how to
construct a (1 + ε)-spanner of V is(V, S). Modifying this result, Das [11] showed
that it is also possible to construct a spanner of constant spanning ratio and
constant degree. Recently, Bose et al. [4] constructed a 6-spanner of degree 6+c,
where c is the number of line segment obstacles incident to a vertex. In the
process, they also show how to construct a 2-spanner of the visibility graph. We
generalize these results and construct a 6-spanner of degree at most 7 in the
presence of polygonal obstacles, simplifying some of the proofs in the process.
Leading up to this main result, we first construct the polygon-constrained half-
Θ6-graph, denoted G∞, a 2-spanner of the visibility graph of unbounded degree.
We modify this graph in a sequence of three steps, each giving a 6-spanner of
the visibility graph to bound the degree to 15, 10, and finally 7.

Each of these graphs may be of independent interest. Specifically, the graphs
with degree 10 and 15 are constructed by solely removing edges from G∞. Fur-
thermore, in the graph of degree 15 the presence of an edge is determined by the
vertices at its endpoints, whereas for the other two this involves the neighbors
of these vertices. Hence, depending on the network model and communication
cost, one graph may be more easily applicable than another.

2 Preliminaries

Next, we describe how to construct the polygon-constrained half-Θ6-graph, G∞.
Before we can construct this graph, we first partition the plane around for each
vertex u ∈ V into six cones, each with angle θ = π

3 and u as the apex. For ease of
exposition, we assume that the bisector of one cone is a vertical ray going up from
u. We refer to this cone as Cu

0 or C0 when the apex u is clear from the context.
The cones are then numbered in counter-clockwise order (C0, C2, C1, C0, C2, C1)
(see Fig. 1). Cones of the form Ci are called positive cones, whereas cones of the
form Cu

i are negative cones. For any two vertices u and v in V , we have the
property that if v ∈ Cu

i then u ∈ Cv
i .



42 A. van Renssen and G. Wong

C0

C1C2

C1

C0

C2

u

Fig. 1. The cones around u. Fig. 2. The positive cone Cu
i is split

into two subcones and an edge is added
in each.

We are now ready to construct G∞. For every vertex u ∈ V , we consider each
of its positive cones and add a single edge in such a cone. More specifically, we
consider all vertices visible to u that lie in this cone and add an undirected edge
to the vertex whose projection on the bisector of the cone is closest to u. More
precisely, the edge (u, v) is part of G∞ when v is visible to u and |uv′| < |uw′|
for all v �= w, where v′ and w′ are the projections of v and w on the bisector
of the currently considered positive cone of u. For ease of exposition, we assume
that no two vertices lie on a line parallel to one of the cone boundaries and no
three vertices are collinear. This ensures that each vertex lies in a unique cone
of each other vertex and their projected distances are distinct. If a point set is
not in general position, one can rotate it by a small angle such that the resulting
point set is in general position.

Since every vertex is part of at most one obstacle, obstacles can affect the
construction in only a limited number of ways. Cones that are split in two (i.e.,
there are visible vertices on both sides of the obstacle) are considered to be two
subcones of the original cone and we add an edge in each of the two subcones
using the original bisector (see Fig. 2). If a cone is not split, the obstacle only
changes the region of the cone that is visible from u. Since we only consider
visible vertices when adding edges, this is already handled by the construction
method.

We note that the construction described above is similar to that of the con-
strained half-Θ6-graph as defined by Bose et al. [4] for line segment constraints.
In their setting a cone can be split into multiple subcones and in each of the
positive subcones an edge is added. This similarity will form a crucial part of
the planarity proof in the next section.

Before we prove that G∞ is a plane spanner, however, we first state a useful
visibility property that will form a building block for a number of the following
proofs. We note that this property holds for any three points, not just vertices
of the input. Due to space constraints the proof of this and a number of other
results are deferred to the appendix.
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Lemma 1. Let u, v, and w be three points where (w, u) and (u, v) are both
visibility edges and u is not a vertex of any polygonal obstacle P where the open
polygon P ′ intersects �wuv. The area A, bounded by (w, u), (u, v), and a convex
chain formed by visibility edges between w and v inside �wuv, does not contain
any vertices and is not intersected by any obstacles.

For ease of notation, we define the canonical triangle of two vertices u and v
with v ∈ Cu

i , denoted �v
u, to be the equilateral triangle defined by the boundaries

of Cu
i and the line through v perpendicular to the bisector of Cu

i .

3 The Polygon-Constrained-Half-Θ6-Graph

In this section we show that graph G∞ is a plane 2-spanner of the visibility
graph. We first prove it is plane.

Lemma 2. G∞ is a plane graph.

Proof. We prove this lemma by proving that G∞ is a subgraph of the constrained
half-Θ6-graph introduced by Bose et al. [4]. Recall that in their graph the set of
obstacles is a plane set of line segments.

Fig. 3. G∞ is a subgraph of the constrained half-Θ6-graph. Edges coinciding with
obstacle boundaries are drawn as slight arcs for clarity.

Given a set of polygonal obstacles, we convert them into line segments as
follows: Each boundary edge on polygonal obstacle P ∈ S forms a line segment
obstacle li. Since these edges meet only at vertices and no two obstacles intersect,
this gives a plane set of line segments. Recall that the constrained half-Θ6-graph
constructs subcones the same way as G∞ does. This means that when considering
the plane minus the interior of the obstacles in S, the constrained half-Θ6-graphs



44 A. van Renssen and G. Wong

adds the same edges as G∞, while inside P the constrained half-Θ6-graph may
add additional edges (see Fig. 3). Hence, G∞ is a subgraph of the constrained
half-Θ6-graph. Since Bose et al. showed that their graph is plane, it follows that
G∞ is plane as well. �	

Next, we show that G∞ is a 2-spanner of the visibility graph.

Lemma 3. Let u and v be vertices where (u, v) is a visibility edge and v lies in
a positive cone of u. Let a and b be the two corners of �v

u opposite to u and let
m be the midpoint of (a, b). There exists a path from u to v in G∞ such that the
path is at most 2 · |uv| ≥ (

√
3 · cos ∠muv + sin ∠muv) · |uv| in length.

These two lemmas imply the following theorem.

Theorem 1. G∞ is a plane 2-spanner of the visibility graph.

We note that while every vertex in G∞ has at most one edge in every positive
subcone, it can have an unbounded number of edges in its negative subcones. In
the following sections, we proceed to bound the degree of the spanner.

4 Bounding the Degree

In this section, we introduce G15, a subgraph of the polygon-constrained half-
Θ6-graph of maximum degree 15. We obtain G15 from G∞ by, for each vertex,
removing all edges from its negative subcones except for the leftmost (clockwise
extreme from u’s perspective) edge, rightmost (counterclockwise) edge, and the
edge to the closest vertex in that cone (see Fig. 4a). Note that the edge to the
closest vertex may also be the leftmost and/or the rightmost edge.

Fig. 4. Transforming G∞ into G15.

By simply counting the number of subcones (three positive, three negative,
and at most one additional subcone caused by an obstacle), we obtain the desired
degree bound. Furthermore, since G15 is a subgraph of G∞, it is also plane.
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Lemma 4. The degree of each vertex u in G15 is at most 15.

Lemma 5. G15 is plane.

Finally, we look at the spanning ratio of G15. We assume without loss of
generality that we look at two vertices u and v such that v ∈ Cu

0 and u ∈ Cv
0 .

Given vertex u and a negative subcone, we define the canonical sequence of
this subcone as the vertices adjacent to u in G∞ that lie in the subcone in
counterclockwise order (see Fig. 4b). The canonical path of Cu

0 refers to the
path that connects the consecutive vertices in the canonical sequence of Cu

0 .
This definition is not dissimilar to that of Bose et al. [4].

Lemma 6. If vi and vi+1 are consecutive vertices in the canonical sequence of
the negative subcone Cu

0 , then �uvivi+1 is empty.

Lemma 7. G15 contains an edge between every pair of consecutive vertices on
a canonical path.

Proof. We first prove that the edges on the canonical path are in G∞. Let v1 and
v2 be a pair of consecutive vertices in the canonical sequence in Cu

0 . Assume,
without loss of generality, that v2 ∈ Cv1

2 and v1 ∈ Cv2
2 . Let A be the area

bounded by the positive subcones Cv1
0 and Cv2

0 that contain u (see Fig. 5a). Let
A′ be the set of vertices visible to v1 or v2 in A. We first show by contradiction
that A′ = ∅. According to Lemma 6, �uv1v2 is empty and thus does not contain
any vertices. We focus on the part of A to the left of uv1. Consider vertex x ∈ A
to the left of uv1 where x has the smallest interior angle ∠xuv1. Since (u, v1) is
a visibility edge, the edge (u, x) is a visibility edge, as any obstacle blocking it
implies the existence of a vertex with smaller angle. Applying Lemma 1 to xuv1,
there exists a convex chain from v1 to x in �v1xu. The neighbor of v1 in the
convex chain is a closer visible vertex than u in Cv1

0 , contradicting that (u, v1) ∈
G∞. An analogous argument for the region to the right of uv2 contradicts that
(u, v2) ∈ G∞. Therefore, A does not contain any vertices visible to v1 or v2.

Fig. 5. A pair of consecutive vertices v1 and v2 along a canonical path and their
surrounding empty areas.
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Next, let B be the intersection of Cv1
1 and Cv2

2 (see Fig. 5b). Since (v1, v2) is
part of the canonical path of Cu

0 , by Lemma 6, �uv1v2 = ∅. Since B is contained
in �uv1v2, B is also empty.

Finally, let area C be the canonical triangle �v2
v1

(see Fig. 5c). Let C ′ be the
set of visible vertices to v1 and v2 in C. We show that C ′ = ∅, by contradiction.
Since both A and B are empty, the highest vertex x ∈ C will have u as the
closest visible vertex in Cx

0 . This implies that x occurs between v1 and v2 in
the canonical path, contradicting that they are consecutive vertices. Therefore,
C ′ = ∅.

Since A, B, and C are all empty, v2 is the closest vertex of v1 in the subcone
of Cv1

2 that contains it. By Lemma 6 it is visible to v1 and thus, (v1, v2) is an
edge in G∞.

It remains to show that (v1, v2) is preserved in G15. Since �uv1v2 is empty
and G15 is plane (by Lemma 5), v1 is the rightmost vertex in Cv2

2 . Hence, it is
not removed and thus, the canonical path in Cu

0 exists in G15. �	
Now that we know that these canonical paths exist in G15, we can proceed

to prove that it is a spanner.

Lemma 8. G15 is a 3-spanner of G∞.

Since by Lemma 3, G∞ is a 2-spanner of the visibility graph and by Lemma 8,
G15 is a 3-spanner of G∞, we obtain the main result of this section.

Theorem 2. G15 is a plane 6-spanner of the visibility graph of degree at
most 15.

5 Improving the Analysis

Observing that we need to maintain only the canonical paths between vertices,
along with the edge to the closest vertex in each negative subcone for the proof
of Lemma 8 to hold, we reduce the degree as follows. Consider each negative
subcone Cu

i of every vertex u and keep only the edge incident to the closest
vertex (with respect to the projection onto the bisector of the cone) and the
canonical path in Cu

i . We show that the resulting graph, denoted G10, has degree
at most 10. Recall that at most one cone per vertex is split into two subcones and
thus this cone can have two disjoint canonical paths, as we argue in Lemma 11.

As in the previous section, we proceed to prove that G10 is a plane 6-spanner
of the visibility graph of degree 10. Since G10 is a subgraph of G15, it is also plane.
Furthermore, since the canonical path is maintained, the spanning property does
not change.

Lemma 9. G10 is a plane graph.

Lemma 10. G10 is a 3-spanner of G∞.
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It remains to upper bound the maximum degree of G10. We do this by charg-
ing the edges incident to a vertex to its cones. The four part charging scheme
is described below (see Fig. 6). Scenarios A and B handle the edge to the clos-
est vertex, while Scenarios C and D handle the edges along the canonical path.
Hence, the total charge of a vertex is an upper bound on its degree.

Fig. 6. The four scenarios of the charging scheme. The arrows in Scenarios C and D
indicate the cone these edges are charged to.

Scenario A: Edge (u, vi) lies in Cvi
j and vi is the closest vertex of u in Cu

j .
Then (u, vi) is charged to Cvi

j .

Scenario B: Edge (u, vi) lies in Cu
j and vi is the closest vertex of u in Cu

j . Then
(u, vi) is charged in Cu

j .

Scenario C: Edge (vi, vi+1) lies on a canonical path of u, with u ∈ Cvi
j , and

vi+1 ∈ Cvi
j+1. Edge (vi, vi+1) is charged to Cvi

j . Similarly, edge (vi, vi−1) on a
canonical path of u, where vi−1 ∈ Cvi

j−1, is charged to Cvi
j .

Scenario D: Edge (vi, vi+1) lies on a canonical path of u, with u ∈ Cvi
j , and

vi+1 ∈ Cvi
j−1. Edge (vi, vi+1) is charged to Cvi

j+1. Similarly, edge (vi, vi−1) on a
canonical path of u, where vi−1 ∈ Cvi

j+1, is charged to Cvi
j−1.

Lemma 11. The degree of every vertex in G10 is at most 10.

Proof Sketch. Due to space constraints we only sketch this proof. The full proof
can be found in the appendix.

Negative Subcones: Using Lemmas 6 and 7, it can be shown that Scenario B
and D cannot both charge a negative subcone, leading to a total charge of 1 per
negative subcone.

Positive Subcones: In this case, it can be shown that Scenario A and C cannot
both charge a positive subcone. If a cone is not split by an obstacle, this implies
a maximum charge of 2. In the remainder, we show that even when a cone is
split, it still has charge at most 2. Let P be the obstacle that splits a positive
cone Cvi

j into two subcones. Let u be the closest vertex of vi in the right subcone
of Cvi

0 and let u′ be the closest vertex in its left subcone (see Fig. 7).
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Fig. 7. Two positive subcones of vi are each charged for one edge by Scenario C.

By construction, the maximum number of charges from edges fitting Scenario
A stays the same, 1 per subcone. However, for edges from Scenario C, we show
that the maximum charge per subcone reduces to 1. Let pi+1 be the vertex
following vi on the boundary of P on the side of u. Since (u, vi) is an edge of
G∞, pi+1 is further from vi than u is (or equal if pi+1 = u), as otherwise pi+1

would be a closer visible vertex than u, contradicting the existence of (u, vi). For
any vertex vi−1 in Cvi

2 or Cvi
1 , u is not visible since (vi, pi+1) blocks visibility and

therefore (vi−1, vi) cannot be part of the canonical path in Cu
0 . We note that if

u = pi+1, vi−1 may be visible to u, but in this case it lies in a different subcone
of u and hence would also not be part of this canonical path. Hence, vi is the
leftmost vertex of the canonical path of Cu

0 , and using an analogous argument,
vi is the rightmost vertex of the canonical path of Cu′

0 . Therefore, these positive
subcones cannot be charged more than 1 each by Scenario C. Using the fact that
Scenario A and C cannot occur at the same time, we conclude that each positive
cone is charged at most 2, regardless of whether an obstacle splits it.

Thus, each positive cone is charged at most 2 and each negative subcone
is charged at most 1. Since there are 3 positive cones and at most 4 negative
subcones, the total degree bound is 10. �	

Putting the results presented in this section together, we obtain the following
theorem.

Theorem 3. G10 is a plane 6-spanner of the visibility graph of degree at
most 10.

6 Shortcutting to Degree 7

In order to reduce the degree bound from 10 to 7, we ensure that at most 1
edge is charged to each subcone. According to Lemma 11, the negative subcones
and the positive subcones created by splitting a cone into two already have at
most 1 charge. Hence, we only need to reduce the maximum charge of positive
cones that are not split by an obstacle from 2 to 1. The two edges charged to a
positive cone Cv

i come from edges in the adjacent negative subcones Cv
i−1 and
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Cv
i+1 (Scenario C), whereas cone Cv

i itself does not contain any edges. Hence,
in order to reduce the degree from 10 to 7, we need to resolve this situation
whenever it occurs in G10. We do so by performing a transformation described
below when a positive cone is charged twice for Scenario C. The graph resulting
from applying this transformation to every applicable vertex is referred to as G7.

Let u be a vertex in G10 and let v be a vertex on its canonical path (in Cu
i )

whose positive cone is charged twice. Let (x, v) and (v, y) be the edges charged
to Cu

i and assume without loss of generality that x occurs on the canonical path
from u to y (see Fig. 8a). If neither x nor y is the closest vertex in the respective
negative subcone of v that contains them, we remove (v, y) from the graph and
add (x, y) (see Fig. 8b). This reduces the degree of v, but may cause a problem
at x. In order to solve this, we consider the neighbor w of x on the canonical
path of v. Since x is not the closest vertex in v’s subcone, this neighbor exists.
If w ∈ Cx

i and w is not the closest vertex of x in the subcone that contains it,
we remove (x,w) (see Fig. 8c).

Fig. 8. Transforming G10 into G7.

The reasons for these choices are as follows. If an edge (a, b) is part of a
canonical path and b is the closest vertex to a in the negative subcone that
contains it, then this edge is charged twice at a. It is charged once as the edge to
the closest vertex (Scenario B) and once as part of the canonical path (Scenario
C). Hence, we can reduce the charge to a by 1 without changing the graph.

In the case where we end up removing (v, y), we need to ensure that there
still exists a spanning path between u and y (and any vertex following y on the
canonical path). Therefore, we insert the edge (x, y). This comes at the price that
we now need to ensure that the total charge of x does not increase. Fortunately,
this is always possible.

Lemma 12. The degree of every vertex in G7 is at most 7.

Lemma 13. G7 is a 3-spanner of G∞.

It remains to show that G7 is a plane graph.

Lemma 14. G7 is a plane graph.
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Proof. By construction, each transformation performed when converting G10 to
G7 includes the addition of at most one edge (x, y) and the removal of at most two
edges (v, y) and (x,w). By Lemma 9, G10 is a plane graph and thus the removal
of (v, y) and (x,w) does not affect the planarity of G7. It remains to consider
the added edges. Specifically, we need to show that: (x, y) cannot intersect any
edge from G10, (x, y) cannot intersect an obstacle, and (x, y) cannot intersect
another edge added during the construction of G7.

We first prove that the edge (x, y) cannot intersect any edge from G10. Since
x, v, and y are consecutive vertices in the canonical sequence of a negative
subcone of u, according to Lemma 6, �uxv and �uvy are empty. Furthermore,
since the boundary edges of these triangles are edges in G∞, which is plane by
Lemma 2, no edges or obstacles can intersect these edges. Hence, since (x, y)
lies inside the quadrilateral uxvy, edge (u, v) is the only edge that can intersect
(x, y). However, since x and y lie in Cv

i−1 and Cv
i+1, both x and y are closer to u

than v in Cu
i , implying that (u, v) is not part of G10. Therefore, (x, y) does not

intersect any edge from G10.
Next, we show that (x, y) cannot intersect any obstacles. Since by Lemma 6

no obstacles, vertices, or edges can pass through or exist within �uxv and �uvy,
the only obstacles we need to consider are �uxv and �uvy themselves and the
line segment obstacle uv. We note that in all three cases the obstacle splits
the negative cone Cu

i into two subcones, and x and y lie in different negative
subcones and thus on different canonical paths (see Fig. 9). This implies that Cu

i

is not charged twice by the same canonical path and thus, the transformation
to G7 would not add (x, y). Therefore, (x, y) cannot intersect any obstacles.

Fig. 9. The quadrilateral uxvy in G7 where �uvy is an obstacle itself. Cu
0 is split into

two subcones and x and y lie on two different canonical paths.

Finally, we show that the added edge (x, y) cannot intersect another edge
added during the transformation from G10 to G7. We prove this by contradiction.
Let e be an added edge that intersects (x, y). Edge e cannot have x or y as an
endpoint, as this would imply that it does not intersect (x, y). Furthermore, since
by Lemma 6 �uxv and �uvy are empty and e cannot intersect edges (x, v) and
(v, y), as shown above, v is one of the endpoints of e. By construction of G7, e
is added because either x or y has a positive cone charged by two edges from
its adjacent negative subcones (one of which being the edge to v). However, this
contradicts the fact that v lies in their positive cones (Cx

i−1 and Cy
i+1) implied by
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the edge (x, y) being added during the transformation. Therefore, (x, y) cannot
intersect any edge added while constructing G7, completing the proof. �	

We summarize our main result in the following theorem.

Theorem 4. G7 is a plane 6-spanner of the visibility graph of degree at most 7.

7 Conclusion

With the construction of these spanners, future work includes developing routing
algorithms for them. There has been extensive research into routing algorithms,
including routing on the visibility graph in the presence of line segment obsta-
cles [3,6,7]. For polygonal obstacles, Banyassady et al. [1] developed a routing
algorithm on the visibility graph with polygonal obstacles, though this work
requires some additional information to be stored at the vertices.
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Abstract. The end-vertex problem for a search algorithm asks whether
a vertex of the input graph is the last visited vertex of an execution
of that search algorithm. We consider the end-vertex problem restricted
to AT-free bigraphs for various search algorithms: Breadth-First Search
(BFS), Lexicographic Breadth-First Search (LBFS), Depth-First Search
(DFS), and Maximal Neighbourhood Search (MNS). Deciding whether
a vertex of a graph is the end-vertex of any of these search algorithms is
NP-complete in general. We show that we can decide whether a vertex is
an end-vertex of BFS or MNS in polynomial time on AT-free bigraphs.
Additionally, we show that we can decide whether a vertex is an end-
vertex of DFS or LBFS in linear time on AT-free bigraphs; this improves
the LBFS end-vertex complexity on this class of graphs.

Keywords: AT-free bigraph · End-vertex problem · Breadth-first
search · Depth-first search · Lexicographic breadth-first search ·
Maximal neighbourhood search · Proper interval bigraph · Bipartite
permutation graph

1 Introduction

Graph search algorithms are a way to systematically visit the vertices in a graph
and have numerous applications. Well-known search algorithms like Breadth-
First Search (BFS) and Depth-First Search (DFS) have been applied to a wide
range of problems. For example, BFS can be used to check if a graph is bipar-
tite and DFS can be used to find cut-vertices of a graph (see e.g. [4]). Lexico-
graphic Breadth-First Search (LBFS), a variant of breadth-first search with a tie-
breaking rule, is used for recognizing graph classes, computing graph parameters,
and detecting certain graph structures (cf. [9]). Adding a similar tie-breaking
rule to DFS yields Lexicographic Depth-First Search (LDFS), which was shown
to be helpful for computing maximal cardinality matchings on cocomparability
graphs [22]. Maximal Neighbhourhood Search (MNS) is a generalization of both
LBFS and LDFS [12]. The relationship between these search algorithms and
their descriptions are presented in [12].

Rose, Tarjan and Lueker [23] studied the end-vertices of search algorithms.
They showed that if the input graph is chordal (i.e., containing no induced
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Table 1. Known complexity results for the end-vertex problem. An entry “L” indicates
that there is a linear time solution, and an entry “P” indicates that there is a polynomial
time solution. An arrow → indicates that a result has been improved. Bold results are
new.

Class BFS DFS LBFS LDFS MNS MCS

All Graphs NPC NPC NPC NPC NPC [1] NPC [1]
Weakly Chordal NPC [8] NPC NPC [6,11] NPC [8] NPC [1] NPC [6]
Chordal ? NPC ? L [6] L [1] P [6]
Interval L [6] L [1] L [11] L L [1] P
Unit Interval L L [1] L [11] L [1] L [1] L [1]
Split P [8] NPC [8] L [1] L [1] L [1] L [1]
Bipartite NPC [8] NPC [16] NPC [17] ? ? ?
AT-Free Bipartite P L P [17]→L ? P ?

cycle of length ≥ 4) then the last visited vertex of an LBFS is simplicial (i.e.,
its neighbourhood induces a complete subgraph). This result has stimulated
research on last visited vertices of LBFS of various classes of graphs (cf. [2,3,
11,15–17,19]). However, not all simplicial vertices of a chordal graph are LBFS
end-vertices.

Research on end-vertices has expanded to study the complexity of deter-
mining if a vertex is a possible end-vertex of a search. The end-vertices of BFS,
DFS, LBFS, LDFS, MNS, and Maximal Cardinality Search (MCS) have all been
studied on various class graphs (cf. [1,6,8,11,17]). Table 1 shows the known com-
plexity for the end-vertex problem, which is defined formally below.

Call the last visited vertex of a search S of a graph an end-vertex of S of the
graph. We now formally define the end-vertex problem for a search S.

End-Vertex Problem for S:
Instance: A graph G = (V,E), and a vertex t.
Question: Is there an ordering σ : V (G) → {1, . . . , n} generated by S of V such
that σ(t) = n?

The end-vertex problem is NP-complete in general for each of the aforemen-
tioned search algorithms (cf. [1,6,8,11]). On restricted graph classes, character-
izations of end-vertices enable tractable algorithms for the end-vertex problem.
For example, Corneil, Olariu and Stewart [14] proved that the end-vertices of
LBFS of an interval graph are precisely the simplicial and admissible vertices
after establishing that all LBFS end-vertices of AT-free graphs are admissible.
Interval graphs are precisely the graphs which are both chordal and AT-free
(defined in the next section), cf. [21]. End-vertices of LBFS of split graphs,
HHD-free graphs and distance-hereditary graphs also have nice properties, cf.
[8,15,19].

Recently, Gorzny and Huang [17] proved that the LBFS end-vertex problem
remains NP-complete for bigraphs (see also [20]). For the subclass of AT-free
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bigraphs, they [17] obtained a characterization of end-vertices of LBFS using the
notion of eccentricity, which appears in the next section. In this paper, we show
that the BFS and MNS end-vertex problems have polynomial time solutions and
that the DFS end-vertex problem has a linear time solution on AT-free bigraphs.
We also provide a non-trivial linear-time algorithm to determine if a vertex of
an AT-free bigraph is an LBFS end-vertex, which improves the result of [17].

2 Preliminaries

All graphs in this work are simple, finite, and undirected. A graph G is bipartite
if V (G) can be partitioned into two sets X and Y such that all edges of G have
one end-point in X and the other in Y .

The open neighbourhood of a vertex v, denoted N(v), is the set {u ∈
V | (u, v) ∈ E} of vertices adjacent to v. The closed neighbourhood of a vertex,
denoted N [v], is the open neighbourhood of the vertex along with the vertex
itself, i.e. N [v] = N(v) ∪ {v}. If X ⊆ V , then the neighbourhood of the set X,
denoted N(X), is

( ∪v∈X N(v)
) \ X.

We now define the class of AT-free (bipartite) graphs. Let G be a graph and
x, y, z be three vertices of G. If P is a path on G, then V (P ) denotes the set of
vertices of G in P . An (x, y)-path P misses (or avoids) z if V (P ) ∩ N [z] = ∅,
that is, P contains neither z nor a neighbour of z; otherwise the vertex z is said
to intercept (or hit) the path P . The vertex y is in the middle of x, z if some
(x, y)-path misses z and some (y, z)-path misses x. A vertex is called admissible
if it is not in the middle of any two vertices. If each of x, y, z is in the middle
of the two others then x, y, z form an asteroidal triple. A graph which does not
contain an asteroidal triple is called asteroidal triple-free (AT-free). A graph is
an AT-free bigraph if it is bipartite and AT-free.

AT-free bigraphs are a popular class of bipartite graphs and they are exactly
the bipartite permutation graphs [18]. This class is also equivalent to proper
interval bigraphs (see e.g. [5,18]). A strong ordering (σA, σB) of a bipartite graph
G = (A,B,E) consists of an ordering σA of A and an ordering σB of B such
that for all ab, a′b′ ∈ E, where a, a′ ∈ A and b, b′ ∈ B, a <σA a′ and b′ <σB b
implies that ab′ ∈ E and a′b ∈ E. An ordering σA of A has the adjacency
property if, for every b ∈ B, N(b) consists of vertices that are consecutive in σA.
The ordering σA has the enclosure property if, for every pair b, b′ of vertices of
B with N(b) ⊆ N(b′), the vertices of N(b′) \ N(b) appear consecutively in σA,
implying that b is adjacent to the leftmost or rightmost neighbour of b′ in σA. It
was shown that every AT-free bigraph has a strong ordering [24], and moreover,
that every such strong ordering has both the adjacency and enclosure properties
[24]. A strong ordering can be computed in linear time [7].

We use d(x, y) to denote the distance between vertices x, y. The diameter
of G, denoted by diam(G), is the maximum distance of any two vertices. If
d(x, y) = diam(G), then we say that x, y are a diametrical pair. A pair of vertices
(x, y) is said to be a dominating pair of a graph G if the set of all vertices that
intercepts all (x, y)-paths is equal to V (G). When x, y are both diametrical and
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dominating, they are called a diametrical dominating pair. For a vertex w, we
use L�(w) to denote the set of all vertices u with d(u,w) = �. The maximum
value � for which L�(w) 	= ∅ is called the eccentricity of w and is denoted by
eccG(w) (we will drop the subscript when it is clear). When � = ecc(w), the
vertices of L�(w) are called eccentric vertices of w.

Several propositions regarding end-vertices and the structure of AT-free
bigraphs are necessary to simplify many of the proofs in this work.

Proposition 1 ([10,13]). If v is the end-vertex of an LBFS of an AT-free graph
G, then v is admissible and ecc(v) ≥ diam(G) − 1. 
�
Proposition 2 ([13]). Let G be a connected AT-free graph and v be an admis-
sible vertex in G. Suppose that there is an LBFS ordering which begins at v and
ends at w. Then v, w are a dominating pair in G. Moreover, if ecc(v) = diam(G),
then v, w are a diametrical dominating pair. 
�

Let z be a vertex in a graph G and � be a natural number. Note that when G
is bipartite L�(z) is an independent set for each �. We shall use Nz

� (a) to denote
the set of all neighbours of a in L�(z), that is, Nz

� (a) = N(a) ∩ L�(z). It is clear
that if a ∈ L�+1(z) then Nz

� (a) 	= ∅.

Proposition 3 ([17]). Let G be an AT-free bigraph and z be a vertex of G.
Suppose that C is a connected component of G − N [z] and that a, b ∈ L�(z) are
two vertices in C. Then

1. Nz
�−1(a) ⊆ Nz

�−1(b) or Nz
�−1(a) ⊇ Nz

�−1(b);
2. Nz

�+1(a) ⊆ Nz
�+1(b) or Nz

�+1(a) ⊇ Nz
�+1(b);

3. if Nz
�−1(a) � Nz

�−1(b) then Nz
�+1(a) ⊇ Nz

�+1(b);
4. if Nz

�+1(a) � Nz
�+1(b) then Nz

�−1(a) ⊇ Nz
�−1(b). 
�

Suppose that C is a component of G − N [z] and a, b ∈ N(z). It follows from
statement 2 of Proposition 3 that either N(a) ∩ C ⊆ N(b) ∩ C or N(a) ∩ C ⊇
N(b)∩C. In particular, if c ∈ N(z) is a vertex adjacent to the maximum number
of vertices in C, then for any u ∈ L�(z)∩C with � ≥ 2, d(c, u) ≤ �−1. We call C
a deep component of G − N [z] if it contains an eccentric vertex of z. Note that
a deep component of G − N [z] exists if and only if ecc(z) ≥ 2.

Proposition 4 ([17]). Let G be a connected AT-free bigraph and z be a vertex
of G. If ecc(z) ≥ 3, then G − N [z] has at most two deep components. 
�
Proposition 5 ([17]). Let G be a connected AT-free bigraph and v be an admis-
sible vertex with ecc(v) = diam(G)− 1. Suppose that x, y are a diametrical dom-
inating pair. Then v is adjacent to one of x, y. Moreover, there is a shortest
(x, y)-path containing v. 
�

Finally, the LBFS end-vertex characterization on AT-free bigraphs obtained
by [17] follows. It implies a polynomial time solution to the end-vertex problem
for AT-free bigraphs: by testing all candidates for the vertex w, one can deter-
mine whether v is an LBFS end-vertex of G. However, this is not a linear time
solution.
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Theorem 1 ([17]). Let G be a connected AT-free bigraph and v be a vertex of
G. Then v is an end-vertex of an LBFS if and only if there exists a vertex w
such that, for every eccentric vertex u of w, N(u) ⊇ N(v). 
�

3 The BFS End-Vertex Problem for AT-Free Bigraphs

In this section, we show that the BFS end-vertex problem is in P for AT-free
bigraphs. We start by handling some easy cases: we observe that a necessary
condition for BFS end-vertices shown in [8] is sometimes also sufficient for AT-
free bigraphs, and we show that if hanging an AT-free bigraph by a vertex results
in a single deep component, then any vertex in the last level can end the BFS.

Let G = (V,E) be a graph, and let v ∈ V be a vertex. We will define
height(v) to be the largest value h over all vertices w ∈ V \ {v} such that
ecc(w) = d(w, v) = h. If there are no vertices w such that d(w, v) = ecc(w),
define height(v) = ∞; in such a case, v is not a BFS end-vertex.

Definition 1 ([8]). Let G = (V,E) be a graph. We say that a vertex x dominates
a vertex y if N(y) � N(x). For any x ∈ V we denote by Dx the set of vertices
dominated by x. 
�
Theorem 2 ([8]). Let G = (V,E) be a graph, and let t ∈ V be any vertex. A
necessary condition for t to be the last vertex of some BFS ordering σ of G is
that there exists a neighbour x of t such that Dt ⊆ N(x). 
�
Lemma 1 (∗1). Let G = (V,E) be an AT-free bigraph, and v ∈ V . If height(v)
≤ 2, then the condition in Theorem2 is also sufficient for v to be a BFS end-
vertex.

Lemma 2 (∗). Let G = (V,E) be an AT-free bigraph, and v ∈ V where 3 ≤
height(v) < ∞. If there is a vertex w such that d(v, w) = ecc(w) and G − N [w]
has a single deep component, then v is a BFS end-vertex.

We now prove the main result. Let Z(v, w) = {u ∈ Lecc(w)(w) | N(v)∩N(u) =
∅} and let Y (v, w) = {u ∈ Lecc(w)(w) \ {v} | N(v) ∩ N(u) 	= ∅}. For a set
V ′ ⊆ V (G) and vertex x ∈ V (G), we denote d(V ′, x) = miny∈V ′ d(y, x).

Theorem 3. Let G = (V,E) be an AT-free bigraph, and v ∈ V where 3 ≤
height(v) < ∞. Let w ∈ V be such that d(w, v) = ecc(w). The vertex v is a BFS
end-vertex if and only if, either

– G − N [w] has a single deep component; or
– G−N [w] has two deep components C1 and C2, where without loss of generality

v ∈ C1, and there is a set X ⊆ N(w)∩N(C2) such that for each u ∈ Y (v, w),
d(X, v) ≥ d(X,u) and d(X,u′) = ecc(w) − 1 for all u′ ∈ Z(v, w).

1 Statements marked with a ∗ will be shown in the full version of the paper.
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Proof. We first show necessity. Let v be a BFS end-vertex for some BFS ordering
σ; if there are many, choose a BFS ordering ending at v for which d(v, σ(1)) is
maximum. Let w be the first vertex of σ. Necessarily d(w, v) = ecc(w) and by
assumption, d(w, v) ≥ 3.

If v is an LBFS end-vertex, by Theorem 1, there must be an eccentric vertex
u of w such that N(u) ⊇ N(v); in such a case, every vertex of Lecc(w)(w) has a
common neighbour with v, and therefore G − N [w] must have exactly one deep
component and we are done. Therefore, we may assume that v is not an LBFS
end-vertex. By Theorem 1, there must be an eccentric vertex u of w such that
either N(u) � N(v) or N(u) and N(v) are incomparable. If all eccentric vertices
of w are such that N(u) and N(v) are comparable, then it must be the case that
G − N [w] has a single connected component, and we are done.

We may therefore assume there is a vertex u of Lecc(w)(w) such that N(u)
and N(v) are incomparable; u and v must be in different components of G−N [w]
as otherwise we have a contradiction to Proposition 3. By Proposition 4, there
are at most two deep components of G − N [w]. Let C1, C2 be the deep compo-
nents of G − N [w]; without loss of generality, assume that v ∈ C1. Necessarily,
N(C2)∩N(w) intersects every shortest (u,w)-path for every u ∈ Z(v, w); there-
fore d(X,u′) = ecc(w) − 1 for all u′ ∈ Z(v, w). If d(N(C2), v) ≥ d(N(C2), u) for
all u ∈ Y (v, w), then we may take X = N(C2) and there is nothing left to prove.

Suppose to the contrary that for every X ⊆ N(C2) such that d(X,u′) =
ecc(w) − 1 for all u′ ∈ Z(v, w), a shortest (v, w)-path is intersected, but
d(X, v) < d(X, v′) for all u ∈ Y (v, w) for some v′ ∈ Y (z, w). Let X ⊆ N(C2)
be a smallest set that intersects some shortest (u,w)-path for every u ∈ Z(v, w)
and intersects some shortest (v, w)-path is intersected, but no shortest (v′, w)-
path is intersected for some v′ ∈ Y (z, w). Thus there must be a v′ ∈ Y (v, w)
such that X does not separate w and v′. Let pi ∈ Li(w) ∩ P for any shortest
(v, w)-path P ; pi is unique. Similarly, let Qi ∈ Li(w)∩Q for any shortest (v′, w)-
path Q; qi is unique. There must also exist a shortest (v, w)-path P such that
N(qi+1) ∩ {pi} = ∅ as otherwise X intersects a shortest (v′, w)-path (take any
shortest (v, w)-path through X and choose qi+1 instead of pi+1 after the first i
vertices), a contradiction. By Proposition 3, it must therefore be the case that
N(qi) ∩ Li−1(w) � N(pi) ∩ Li−1(w), and in particular, N(v′) � N(v).

Let P be a shortest (v, w)-path such that P ∩ X 	= ∅, and let b ∈ P ∩ N(w).
Among all choices for P , pick P so that the neighbour of w ∈ P appears as left
as possible in σ. Let Q be a shortest (v′, w)-path such that Q ∩ X = ∅, and
let a ∈ Q ∩ N(w); at least one Q must exist since X does separate w and v′.
Among all choices for Q, pick Q so that the neighbour of w ∈ Q appears as left
as possible in σ. There are two cases:

– a <σ b. Then all vertices in Lecc(w)(w) which are distance ecc(w) − 1 away
from a are reached before those at distance ecc(w)−1 away from b by the BFS.
Since X was chosen to be as small as possible, there must be a u ∈ Z(v, w) for
which all shortest (u,w)-paths go through b. Therefore, u will appear after v
in σ, a contradiction.
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– b <σ a. Then all vertices in Lecc(w)(w) which are distance ecc(w) − 1 away
from b are reached before those at distance ecc(w) − 1 away from a by the
BFS. Since X intersects a shortest (v, w)-path, v′ will appear after v in σ, a
contradiction.

For sufficiency, suppose that 3 ≤ height(v) < ∞. If G − N [w] has a single
deep component, we are done by Lemma 2. Otherwise, G − N [w] has two deep
components by Proposition 4; assume without loss of generality that v ∈ C1. If
X does not intersect any shortest (v, w)-path, we can start BFS as follows:
w,X,w′, N(w) \ (X ∪ {w′}), where w′ is any neighbour of c ∈ C1 ∩ L2(w)
where N(c) ∩ L3(w) = L3(w) ∩ C1 (which must exist by Proposition 3). Then
Lecc(w)(w)∩C2 will be visited before any vertices in Lecc(w)(w)∩C1, and those in
Lecc(w)(w)∩C1 can be chosen so that v is last, using the techniques of the proof
of Lemma 2 applied to only C1. If instead X intersects some shortest (v, w)-path
P , then it must intersect a shortest path to w for every vertex in Y (v, w) as
well. Let X be partitioned into disjoint sets X1 ∪ X2 ∪ X3 such that X1 consists
of vertices which only intersect paths from w to Z(v, w), X2 consists of vertices
that only intersect paths from w to Z(v, w) ∪ Y (v, w), and X3 = X \ (X1 ∪ X2).
Then w,X1,X2,X3 is a valid BFS prefix, which can order Lecc(w)(w) such that v
is last: any vertex v′ ∈ C1 ∩Lecc(w)(w) must be such that there is a largest index
i where Pi ∩ P ′

i 	= ∅ for any shortest (v, w)-path P and any shortest (v′, w)-path
P ′; indeed, i = 2 is such an index by definition of X3. Therefore, we can always
choose the vertex on the path P ′ before the vertex P when visiting level i+1. 
�
Corollary 1. The BFS end-vertex problem for AT-free bigraphs is in P.

Proof. We can find a suitable w in polynomial time. We can also compute C1,
C2, where without loss of generality v ∈ C1. In polynomial time, we can see
if w′ ∈ N(w) ∩ N(C2) is on a shortest (x,w)-path for all x ∈ Lecc(w)(w) by
computing dG−{w}(x,w′) and comparing it to d(w, v) − 1. We can iterate over
W = N(w) ∩ N(C2) and add w′ ∈ W if w′ is not on any shortest (v, w)-path.

Now the remaining vertices of W are all on some shortest (v, w)-path. We
claim that we need at most one of these vertices. Suppose to the contrary
that there are two vertices w1, w2 ∈ W such that both w1 and w2 are on
shortest (v, w)-paths P and P ′ respectively. If P = P ′, then we only need
to take whichever vertex in {w1, w2} that intersects more (v′, w)-paths for
v′ ∈ Y (v, w). Suppose instead that P 	= P ′. Consider p2 ∈ P ∩ C1 ∩ L2(w) and
p′
2 ∈ P ′ ∩C1∩L2(w). By Proposition 3, Nw

3 (p2) ⊆ Nw
3 (p′

2) or Nw
3 (p′

2) ⊆ Nw
3 (p2);

we can take P if we are in the former case or P ′ if we are in the latter to get all
vertices in C1∩Lecc(w)(w) which can use either w1 or w2 for a shortest path to w.
Therefore, we need only one additional vertex, which can be found by iterating
over the set to see which covers the most paths to vertices in Y (v, w). 
�

4 The LBFS End-Vertex Problem for AT-Free Bigraphs

Let G be an AT-free bigraph and let v be a vertex of G. Suppose that v is an end-
vertex of LBFS of G. Then by Proposition 1 and Theorem 1, ecc(v) ≥ diam(G)−1
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and there is a vertex w such that for every eccentric vertex u of w, N(u) ⊇ N(v).
When ecc(v) = diam(G), such a vertex w can be chosen to be any vertex with
d(w, v) = ecc(v) as shown in [17]. The following theorem explains how to find
such a vertex w in the case when ecc(v) = diam(G) − 1.

Theorem 4. Let G be a connected AT-free bigraph of diam(G) = k. Suppose
that v with ecc(v) = k − 1 is an end-vertex of LBFS of G. If w is the first vertex
of Lr(v) where r =

⌈
ecc(v)+3

2

⌉
in an LBFS ordering of G that begins at v, then

for every eccentric vertex u of w, N(u) ⊇ N(v).

Proof. Since v is an end-vertex of LBFS, there is an LBFS ordering σ of G with
σ(n) = v (i.e., v is the last vertex in σ). Denote z = σ(1) and s = ecc(z).
Clearly, v ∈ Ls(z). We claim that s ≥ 3. Indeed, the assumption ecc(v) = k − 1
implies immediately that s ≥ 2. Assume that s = 2. Then N(v) ⊆ N(z) and
2 ≤ ecc(v) = k − 1 ≤ 3. If ecc(v) = 2, then N(v) = N(z) and hence for every
eccentric vertex u of z, N(u) ⊆ N(v). Since v is the last vertex in σ, we must
have N(u) = N(v) for every eccentric vertex u of z, which means G is a complete
bigraph and ecc(v) = 2 = k, a contradiction to the assumption ecc(v) = k − 1.

Consider the case ecc(v) = 3. If N(w) ∩ N(v) = ∅ for some eccentric vertex
w of z, then d(v, w) ≥ 4 > 3 = ecc(v), a contradiction. Therefore, it must be
the case that N(u) ∩ N(v) 	= ∅ for every eccentric vertex u of z. Since k =
ecc(v) + 1 = 4, there are two eccentric vertices u,w of z with N(u) ∩ N(w) = ∅.
Since v is an LBFS end-vertex, by Theorem 1, N(w) ⊇ N(v) and N(u) ⊇ N(v).
Pick w′ ∈ N(w) \ N(v) and u′ ∈ N(u) \ N(v), and (w′, u′, v) form an asteroidal
triple in G, contradicting the assumption that G is AT-free. Hence we have
s = ecc(z) ≥ 3.

Let C1, C2, . . . , Cq be the connected components of G − N [z]. Without loss
of generality assume that v ∈ Cq. Let x, y be a diametrical dominating pair in G
which exists according to Proposition 2. By Proposition 5, v is adjacent to one
of x, y. Assume by symmetry that v is adjacent to y. Then y is also in Cq and
d(z, y) = d(z, v) − 1 = ecc(z) − 1 = s − 1.

Note that d(x, y) = k = ecc(v) + 1 ≥ d(v, z) + 1 = s + 1. Every vertex in
N [z]∪Cq is at distance at most s from y and thus x /∈ N [z]∪Cq. Assume without
loss of generality that x ∈ C1. Denote s1 = d(x, z). The existence of an (x, y)-
path of length s1+s−1 (through the vertex z) implies that k = d(x, y) ≤ s1+s−1.
On the other hand, any (x, y)-path through v is of length ≥ s1 + s − 1. Hence
k = d(x, y) = s1 + s − 1.

Consider a shortest (x, y)-path that contains v, which exists according to
Proposition 5. Let P : xx1x2 . . . xk−2vy be such a path. Then P contains a
vertex in N(z) as x and y belong to the different components of G − N [z]. Let
xα ∈ N(z) be the vertex in P with the smallest subscript and let Q be the
subpath xαxα+1 . . . vy of P . Since

s = ecc(z) = d(z, v) ≤ d(xα, v) + 1 = d(xα, y) ≤ ecc(z) = s,

we have d(xα, y) = s, i.e., the length of Q is s. It follows that P does not contain
z and moreover, if Q is replaced by an (xα, y)-path of length s through z then
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Algorithm 1: Linear Time LBFS End-Vertex for AT-Free Bigraphs
Input: An AT-free graph G with vertex v.
Output: A vertex w such that N(u) ⊇ N(v) for every eccentric vertex u

of w in which case v is an end-vertex of G, or else v is not an
end-vertex of LBFS of G.

1 Run LBFS begining at v to find an LBFS ordering τ . Let w1 = τ(n) and

w2 be the first vertex of Lr(v) in τ where r =
⌈
ecc(v)+3

2

⌉

2 Run LBFS begining at w1 to find all eccentric vertices of w1. If
N(u) ⊇ N(v) for all eccentric vertices u of w1, v is an end-vertex of LBFS
of G.

3 Run LBFS begining at w2 to find all eccentric vertices of w2. If
N(u) ⊇ N(v) for all eccentric vertices u of w2, v is an end-vertex of G;
otherwise v is not an end-vertex of LBFS of G.

we obtain another shortest (x, y)-path P ′ containing z but not v. The existence
of the shortest (x, y)-path P ′ (containing z) further implies every vertex in C1

is at distance at most s1 from z. Denote P ′ : xx1x2 . . . xαzy1y2 . . . ys−2y. Note
that xα−1 ∈ N(xα) \ N(y1) and xα ∈ N(xα+1) \ N(y2).

Clearly, s1 ≤ s. Suppose first that s1 = s. Then

r =
⌈

ecc(v) + 3
2

⌉
=

⌈
s1 + s + 1

2

⌉
=

⌈
2s + 1

2

⌉
= s + 1.

Let τ be an LBFS ordering of G that begins at v. Observe that {xα, y1} ⊆
Ls−1(v): by P , we know that d(xα, v) = s − 1, and d(y1, v) = d(y, v1) + 1 =
(d(z, y) − 1) + 1 = ((s − 1) − 1) + 1) = s − 1 as required by P ′. Observe further
that Ls−1(v) ⊆ N(z) ∪ Cq: every vertex in Cq must be hit by P , and therefore
can be distance at most s − 2 away from z; in order for such a vertex to exist,
it must be a neighbour of xα, which means in any case that it is not in Cq.

It follows that the first vertex w of Lr(v) in τ must be in N(z). Since d(w, v) =
s + 1, w is not adjacent to xα+1 (and w is not adjacent to xα as they are both
neighbours of z) and hence is adjacent to xα−1 as P is a dominating path. Now
it is easy to see that the eccentric vertices u of w are all in Cq (as d(w, x) =
s1 − 2 = s − 2 < s + 1 = d(w, v)) and satisfy the property that N(u) ⊇ N(v).

Suppose now that s1 < s. Then

r =
⌈

ecc(v) + 3
2

⌉
=

⌈
s1 + s + 1

2

⌉
≤

⌈
2s

2

⌉
= s.

In the case when s1 = s− 1, w is a vertex adjacent to both xα and y1; note that
d(w, x) = s1 = s− 1 < d(w, v) = s. In the case when s1 ≤ s− 2, w is in Cq; note
that d(w, x) ≤ s − 2 < s = d(w, v). In any case the eccentric vertices u of w are
all in Cq and satisfy the property that N(u) ⊇ N(v). 
�

Algorithm 1 solves the LBFS end-vertex problem for AT-free bigraphs. The
correctness of the algorithm follows from Theorem1, Theorem 4 and the remarks
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prior to Theorem 4. Recall that LBFS can be implemented in linear time [23].
Therefore a desired vertex w (as described in Theorem 1) can be found in linear
time and verifying whether all eccentric vertices u of w satisfy the property that
N(u) ⊇ N(v) can also be done in linear time, the algorithm can be implemented
to run in linear time. Therefore we have the following:

Theorem 5. The LBFS end-vertex problem for AT-free bigraphs can be solved
in linear time. 
�

5 The DFS End-Vertex Problem for AT-Free Bigraphs

In this section we show that we can identify a DFS end-vertex in linear time on
AT-free bigraphs. To do this, we refine the following characterization of (arbi-
trary) DFS end-vertices from [20]. Our refinement allows us to use a strong
ordering to find the required set X.

Theorem 6 ([20]). Let G be a connected graph, and let t be a vertex of G. Then
t is a DFS end-vertex of G if and only if there is X ⊆ V (G) such that NG[t] ⊆ X
and G[X] has a Hamiltonian path with endpoint t. 
�
Corollary 2 (∗). Let (σA, σB) be a strong ordering of an AT-free bigraph. With-
out loss of generality, assume v ∈ A. Let N(v) = 〈bα, . . . , bβ〉 in σB. Vertex v
is a DFS-end vertex if and only if there is a set A′ ⊆ 〈ai, . . . , aj〉 such that
ai ≤σA v ≤σA aj, and G′ = G[A′ ∪ N(v)] is an induced subgraph of G where
|A′| = |N(v)| and G′ has a Hamiltonian path ending at v.

Corollary 3 (∗). The DFS end-vertex problem can be solved in linear time for
AT-free bigraphs.

6 The MNS End-Vertex Problem for AT-free Bigraphs

In this section, we show that the MNS end-vertex problem for AT-free bigraphs
is in P. The characterization of MNS end-vertices on AT-free bigraphs matches
the characterization for MNS end-vertices on chordal graphs [2]. We therefore
require one definition from [2] for the characterization for MNS end-vertices on
AT-free bigraphs. Let G = (V,E) be a graph and x ∈ V . Let C1, . . . , Ck be the
connected components of G(V − N [x]). The substars of x are the elements of
NG(Ci)) for each i.

Theorem 7 (∗). Let G be a connected AT-free bigraph and let x be a vertex of
G. Then the following statements are equivalent: (1) the substars of x are totally
ordered by inclusion; and (2) x is an MNS-end vertex.

Corollary 4. The MNS end-vertex problem for AT-free bigraphs is in P.
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7 Conclusion

We have shown that the end-vertex problem for BFS and MNS have polynomial
time solutions for AT-free bigraphs. We have also demonstrated linear-time solu-
tions for the DFS and LBFS end-vertex problem on AT-free bigraphs. It would
be interesting to determine the complexity of the LDFS and MCS end-vertex
problems on this class of graphs (and bipartite graphs in general). We conjecture
that they can be solved in polynomial time on AT-free bigraphs.
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Abstract. Duplicate detection is the problem of identifying whether a
given item has previously appeared in a (possibly infinite) stream of data,
when only a limited amount of memory is available.

Unfortunately the infinite stream setting is ill-posed, and error rates
of duplicate detection filters turn out to be heavily constrained: con-
sequently they appear to provide no advantage, asymptotically, over a
biased coin toss [8].

In this paper we formalize the sliding window setting introduced by
[12,15], and show that a perfect (zero error) solution can be used up to
a maximal window size wmax. Above this threshold we show that some
existing duplicate detection filters (designed for the non-windowed set-
ting) perform better that those targeting the windowed problem. Finally,
we introduce a “queuing construction” that improves on the performance
of some duplicate detection filters in the windowed setting.

We also analyse the security of our filters in an adversarial setting.

Keywords: Duplicate detection · Streaming algorithms · Sliding
window

1 Introduction

1.1 Motivation

Throughout this paper, we are interested in the following problem:

Definition 1 (Duplicate detection problem over a sliding window,
wDDP). Given a stream En = (e1, e2, . . . , en), a sliding window size w and
a “new” item e�, find whether e� is also present in the last w elements of the
stream, ie., whether e� ∈ {en−w+1, . . . , en}. At every time increment, the new
item is added to the stream, i.e., En+1 = En | e� where | denotes concatenation.

Note that for w = ∞, the problem becomes finding whether an element is a
duplicate amongst all previous stream elements. For simplicity in the notation,
when we refer to ∞DDP we instead write DDP.

c© Springer Nature Switzerland AG 2020
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Instances of the wDDP abound in computer science, with applications to file
system indexation, database queries, network load balancing, network manage-
ment [3], in credit card fraud detection [1], phone calls data mining [2], etc. A
discussion about algorithms on large data streams can be found in [9].

In practice, additional constraints exist that we can capture with the follow-
ing definition:

Definition 2 (wDDP with bounded memory). At every time step n, given
e� and a current state (dependent on history) of at most M bits, solve the wDDP
for En and e�.

A filter attempting to solve the wDDP is called a duplicate detection filter
(DDF). Perfect detection is however not always reachable and it might be more
practical to work on a further relaxation of the problem, allowing for errors.

Approximate duplicate detection has many real-life use cases, and can some-
times play a critical role, for instance in cryptographic schemes where all security
and secrecy fall apart as soon as a random nonce is used twice, such as the ElGa-
mal [6] or ECDSA signatures. Other uses include improvements over caches [10],
duplicate clicks [11], and others.

On a side note, it is clear that the input distribution plays a central role
regarding how efficiently the wDDP can be solved. For instance, some determin-
istic streams may be expressed very compactly (such as the output of a PRNG
with known seed) making the wDDP relatively easy. Information-theoretically,
if the source has U bits of entropy then the situation is equivalent to having an
U -bit, uniformly distributed input. This is the setting we consider here.

As said before, when the window size in wDDP grows infinitely large, it
becomes the following problem: find whether e� ∈ En. Unfortunately any solu-
tion to this problem will necessary encounter a phenomenon called “saturation”
on large enough data streams [8], and when it happens the algorithm performs
no better than at random.

This is problematic on two grounds: it makes the comparison of several algo-
rithms difficult (since they all asymptotically behave in that fashion), and the
unavoidable saturation ruins any particular design’s merits. As such, it is more
interesting to focus on wDDP rather than DDP.

1.2 Contributions

In this paper, we start from a näıve solution for the wDDP to then derive bounds
for when it can be solved within M memory bits, up to a window size wmax,
in constant time. We then introduce a generalization of the näıve solution, and
study its error rate. We show that this construction, which we call Short Hash
Filter (SHF), can push the value wmax further while operating in constant time—
at the cost of some errors.

Unfortunately, for w > wmax the performance of SHF degrades very rapidly.
We therefore turn our attention to existing data structures designed for the
“non-windowed” setting. We show that some of them outperform dedicated data
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structures, including SHF, in the w > wmax regime. However, we exhibit a lower
bound on the error rate of such filters.

We then introduce the “queuing construction”, a black box transformation
of non-windowed data structures into windowed ones, that improves their per-
formance in the wDDP setting. Finally, we provide an analysis of our queueing
construction’s resistance to adversarial streams.

1.3 Related Work

The notion of sliding window was, as far as we know, first introduced in [11]. The
wDDP formulation we rely on is due to [12,15], which also introduce algorithms
for solving the wDDP approximately. To the best of our knowledge, the discrep-
ancy between the wDDP and the DDP and the wDDP has not been studied.
Similarly, the relation between w (the sliding window size), the error rate and
M (the available memory) is not always present in similar papers, one exception
being [12].

The notion of using subfilters, as in the queuing construction, can be found
in the A2 filter’s design [15] and a variation thereof can be found in [13] but
in a different DDP formulation. The A2 is built from two Bloom filters, a con-
struction which we generalize and analyse generically in this paper. Similarly,
the construction in [13] only works with Bloom Filters. Literature review col-
lects the following DDFs [4,5,7,8,12,15], which we will consider in this paper.
The structure proposed in [11] is not designed for wDDP but a variant called
‘landmark’ sliding window, which consists of a zero-resetting of the memory at
some user-defined epochs.

2 Notations and Basic Definitions

We consider an unbounded stream E = (e1, e2, . . . , en, . . . ) of elements from an
alphabet Γ .

We usually consider the situations where the available memory is too small
for perfect detection, i.e., M � |Γ |. Otherwise, if M = |Γ | then the problem
can be solved in constant time without errors [8].

An element ej is a duplicate in E over the sliding window w, and we note
ei ∈w E if there exists j − w ≤ i < j such that ei = ej . Otherwise we note
ei /∈wE, and we say ei is unseen over w. A false positive over w is an element
e/∈wE which is classified as a duplicate, and a false negative is an element e ∈w E
which is classified as unseen.

The filter false positive probability (FPw
i ) is the probability that after i inser-

tions, the unseen element ei /∈wE is a false positive over w. The false positive
rate FPRw

i is the number of false positives divided by the number of unseen
elements in E1. We similarly define the false negative probability FNw

i , and the
false negative rate FNRw

i .

1 We observe that FPRw
n = 1

n

∑n
i=1 FPw

i , and similarly for FNRw
n .
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Remark. For benchmarking, we usually measure the error rate ERw = FPRw +
FNRw, as it allows a practical ranking of the solutions. An error rate of 0 means
a perfect filter, while a filter answering randomly has an error rate of 1. A filter
being always wrong has an error rate of 2.

3 Approximate Solution and SHF

3.1 Optimal and Approximate Optimal wDDF

Theorem 1. For M ≥ w(log2(w)+2 log2(|Γ |)), the wDDP can be solved exactly
(with no errors) in constant time.

Proof. Due to page limit restrictions, all proofs are in Appendix E.

However, this optimal filter requires that the size of Γ is known in advance.
The dependence on log2 |Γ | can be dropped, at the cost of allowing errors.

Theorem 2. Let w ∈ N. Let M � 2w log2 w, then the wDDP can be solved with
almost no error using M memory bits. More precisely, it is possible to create
a filter of M bits with an FN of 0, an FP of 1 − (1 − 1

w2 )w ∼ 1
w , and a time

complexity of O(w).
Using M � 5w log2 w bits of memory, a constant-time filter with the same

error rate can be constructed.
Note that we only consider the false positive probability after the filter has

inserted at least w elements, i.e., once the filter is full and has reached a station-
ary regime.

When log2 |Γ | > 5 log2 w this DDF outperforms the näıve strategy2, both
in terms of time and memory, at the cost of a minimal error. When log2 |Γ | >
2 log2 w, it outperforms the exact solution described sooner in terms of memory.

3.2 Short Hash Filter Algorithm

The approximate filter we described uses hashes of size 2 log2(w) for a given slid-
ing window w. However, this hash size is arbitrary, and while the current hash size
guarantees a very low error rate, it can be changed. More importantly, in some
practical cases the maximal amount of available memory is fixed beforehand.
Fixing the memory is also more practical for benchmarking data structures, as
it gives the guarantee that all filters operate under the same conditions.

This gives us the Short Hash Filter (SHF), described in Algorithm1, in
Appendix A. The implementation relies on a double-ended queue or a ring buffer,
which allows pushing at beginning of a queue and popping at the end in constant
time. A variant is described in Appendix D.

2 The näıve strategy consisting of storing the w elements of the sliding window, requir-
ing w log2 |Γ | bits of memory.
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Fig. 1. Error rates of SHFs for M =
105 bits, for varying window sizes w.

Fig. 2. Error rate (times 100) of DDFs
of 1Mb as a function of stream length.
Hatched area represents over-optimal
(impossible) values.

Error Probabilities. Let w > 0 be a window size and M > 0 the available
memory.

Theorem 3. FNw
SHF = 0 and FPw

SHF = 1 −
(
1 −

√
w2−M/w

)w

.

Saturation. SHF has strictly increasing error probabilities, which reach a thresh-
old of 1/2 for some maximum window size wmax. Beyond this value, these filters
saturate extremely quickly: in other words, most SHF will either have an error
rate of 0 or 1. An illustration of this phenomenon can be seen in Fig. 1, which
shows the error rates for SHF with M = 105, against a uniformly random stream
of 18-bit elements (|Γ | = 218). The benchmark used a finite stream of length 106.

The value wmax can be obtained by solving (numerically) for FPwmax = 1/2
for a given M . Experiments (numerical resolution of FPmax = 1/2 for about
200 different values of M , uniformly distributed on a log scale between 102

and 106) indicate an approximately linear relationship between M and wmax:
wSHF

max = 0.0233M + 186 (r2 = 0.9977).

4 Non-windowed DDFs in a wDDP Setting

4.1 Lower Bound on the Saturation Resistance

As said in the introduction, it has been proven [8] that all filters will reach
saturation on the DDP setting. However, they sometimes prove to be efficient in
some specific wDDP settings. This bound is useful for several reasons, notably
it provides an estimation of how close to optimality existing filters are.

Theorem 4. Let E be a stream of n elements uniformly selected from an alpha-
bet of size |Γ |. For any DDF using M bits of memory, the error probability

EPn = FPn + FNn satisfies EPn ≥ 1 − 1−(1− 1
|Γ | )

M

1−(1− 1
|Γ | )

n for any n > M .
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The asymptotic error probability EP∞ satisfies EP∞ ≥
(
1 − 1

|Γ |
)M

≈ 1 −
M/|Γ |.

Note, as highlighted in the proof, that this bound is not tight : better bounds
may exist, the study of which we leave as an open question for future work.

4.2 Saturation Resistance of DDFs

We now evaluate the saturation rate for several DDFs, in the original DDP set-
ting (without sliding window). Parameters are chosen to yield equivalent memory
footprints and were taken from [8], namely:

– QHT [8], 1 bucket per row, 3 bits per fingerprint;
– SQF [5], 1 bucket per row, r = 2 and r′ = 1;
– Cuckoo Filter [7], cells containing 1 element of 3 bits each;
– Stable Bloom Filter (SBF) [4], 2 bits per cell, 2 hashes, targeted FPR of 0.02.

These filters are run against a stream of uniformly sampled elements from
an alphabet of 226 elements. This results in around 8% duplicates amongst the
150 000 000 elements in the longest stream used. Results are plotted in Fig. 2.

The best results are given by the following filters, in order: QHT, SQF,
Cuckoo and SBF. We also observe that QHT and SQF have error rates rela-
tively close to the lower bound, hence suggesting that these filters are close to
optimality, especially since the lower bound is not tight.

4.3 Performance in wDDP

We now consider the performance of the filters just discussed in the windowed
setting, for which they were not designed. In particular, they cannot adjust their
parameters as a function of w. Remarkably, some of these filters still outperform
dedicated windowed filters for some window sizes at least, as shown in Fig. 3. In
this benchmark, we used the following filters:

– block decaying Bloom Filter3 (b DBF) [12], sliding window of size w
– A2 filter [15], changing subfilter every w/2 insertions
– QHT [8], 1 bucket per row, 3 bits per fingerprint

Nevertheless, we will now discuss the queuing construction, which allow us
to build windowed filters from the DDP filters.

5 Queuing Filters

We now describe the queuing construction, which produces a sliding window
DDF from any DDF. We first give the description of the setup, before studying
the theoretical error rates. A scheme describing our structure is detailed in Fig. 4.

3 Note that by design, a b DBF of 105 bits cannot operate for w > 6000.
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Fig. 3. Error rates for QHT,
b DBF, and A2. While A2
and b DBF were designed and
adjusted to the wDDP, this is
not the case of QHT. Still, QHT
outperforms these filters for some
values of w.

Fig. 4. Architecture of the queuing filter,
which consists of L subfilters Fi, each con-
taining up to c elements. Once the newest
subfilter has inserted c elements in its struc-
ture, the oldest one expires. As such, the lat-
ter is dropped and a new one is created and
put under population at the beginning of the
queue. In this example, the sub-sliding win-
dow of F1 is (em−2, em−3, em−4).

5.1 The Queuing Construction

Principle of Operation. Let F be a DDF. Rather than allocating the whole
memory to F , we will create L copies of F , each using a fraction of the available
memory. Each of these subfilters has a limited timespan, and is allowed up to c
insertions. The subfilters are organised in a queue. When inserting a new element
in the queuing filter, it is inserted in the topmost subfilter of the queue. After c
insertions, a new empty filter is added to the queue, and the oldest subfilter is
popped and erased.

As such, we can consider that each subfilter operates on a sub-sliding window
of size c, which makes the overall construction a DDF operating over a sliding
window of size w = cL.

Insertion and Lookup. The filter returns DUPLICATE if and only if at least one
subfilter does. Insertion is a simple insertion in the topmost subfilter.

Queue Update. After c insertions, the last filter of the queue is dropped, and a
new (empty) filter is appended in front of the queue.

Pseudocode. We give a brief pseudocode for the queuing filter’s functions Lookup
and Insert, as well as a Setup function for initialisation, in Algorithm2, in
Appendix A. We introduced for simplicity a constructor F .Setup that takes as
input an integer M and outputs an initialized empty filter F of size at most M .
Here subfilters is a FIFO that has a pop and push first operations, which
respectively removes the last element in the queue or inserts a new item in first
position.
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5.2 Error Rate Analysis

The queuing filter’s properties can be derived from the subfilters’. False positive
and false negative rates are of particular interest. In this section we consider a
queuing filter Q with L subfilters of type F and capacity c (which means that
the last subfilter is dropped after c insertions).

Remark. By definition, after c insertions the last subfilter is dropped.
Information-theoretically, this means that all the information related to the ele-
ments inserted in that subfilter has been lost, and there are c such elements by
design. Therefore, in the steady-state regime, the queuing filter holds information
about at least c(L − 1) elements (immediately after deleting the last subfilter)
and at most cL elements (immediately before this deletion).

If w < cL, the queuing filter can hold information about more than w
elements.

False Positive Probability

Theorem 5. Let FPw
Q,m be the false positive probability of Q after m > w

insertions, over a sliding window of size w = cL, we have FPw
Q,m = 1 −

(1 − FPF,c)
L−1 (1 − FPF,m mod c) where FPF,m is the false positive probability

of a subfilter F after m insertions.

Remark. In the case w < cL, as mentioned previously, there is a non-zero prob-
ability that e� is in the last subfilter’s memory, despite not belonging to the
sliding window.

Assuming a uniformly random input stream, and writing δ = cL − w, the

probability that e� has occurred in {em−cL, . . . em−w+1} is 1 −
(
1 − 1

|Γ |
)δ

. For
large |Γ | (as is expected to be the case in most applications), this probability is
about δ

|Γ | � 1. Hence, we can neglect the probability that e� is present in the
filter, and we consider the result of Theorem 5 to be a very good approximation
even when w < cL.

False Negative Probability

Theorem 6. Let FNw
Q,m be the false negative probability of Q after m >

w insertions on a sliding window of size w = cL, we have FNw
Q,m =

uL−1
c um mod c where we have introduced the short-hand notation uη = pηFNF,η +

(1 − pη) (1 − FPF,η) where FNF,η (resp. FPF,η) is the false negative probability

(resp. false positive) of the subfilter F after η insertions, and pη =
1−(1− 1

|Γ | )
η

1−(1− 1
|Γ | )

w

≈ η
w .

Remark. As previously, the effect of w < cL is negligible for all practical purposes
and Theorem 6 is considered a good approximation in that regime.
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5.3 FNR and FPR

From the above expressions we can derive relatively compact explicit formulas
for the queuing filter’s FPR and FNR when m = cn for n a positive integer.

Theorem 7. Let FPRw
Q,m be the false positive rate of Q after m = cn > w

insertions on a sliding window of size w = cL, we have FPRw
Q,cn = 1 −

(1−FPF,c)
L−1

c

∑c−1
�=0(1 − FPF,�).

Theorem 8. Let FNRw
Q,m be the false negative rate of Q after m = cn >

w insertions on a sliding window of size w = cL, we have FNRw
Q,cn =

uL−1
c

c

∑c−1
�=0 u�.

As for the probabilities, the expressions derived above for the FNR and FNR
are valid to first order in (w − cL)/|Γ |, i.e. they are good approximations even
when w ≈ cL.

5.4 Optimising Queuing Filters

Let us relax, temporarily, the a priori constraint that w = cL. The parameter L
determines how many subfilters appear in the queuing construction. Summing
up the false positive and false negative rates, we have a total error rate ERw

Q,cn =
1 − αβL−1 + α′β′L−1, where β = 1 − FPF,c, β′ = uc, α = 1

c

∑c−1
�=0 1 − FPF,� and

α′ = 1
c

∑c−1
�=0 u� depend on w, c and the choice of subfilter type F .

Because uη = pηFNF,η + (1 − pη) (1 − FPF,η), differentiating with respect
to L, knowing that w = Lc, and equating the derivative to 0, one can find the
optimal value for L by solving for x, which has been obtained via Mathematica:

− αβ
−1+x

log(β) +
(
β + FNF,c(−1 + x)

)−2+x
x
−x

[
− αβ + FNF,c

(−β(−2 + x) + FNF,c(−1 + x)
)

+
(
α + FNF,c(−1 + x)

) × (
β + FNF,c(−1 + x)

) (
log

(
β + FNF,c(−1 + x)

) − log(x)
) ]

= 0

If numerically solving the equation for individual cases is feasible, it seems
unlikely that a closed-form formula exists.

5.5 Queuing Filters from Existing DDFs

Our queuing construction relies on a choice of subfilters. A first observation is
that we may assume that all subfilters can be instances of a single DDF design
(rather than a combination of different designs).

Indeed, a simple symmetry argument shows that a heterogenous selection of
subfilters is always worse than a homogeneous one: the crux is that all subfilters
play the same role in turn. Therefore we lose nothing by replacing atomically
one subfilter by a more efficient one. Applying this to each subfilter we end with
a homogenous selection.

It remains to decide which subfilter construction to choose. The results of an
experimental comparison of different DDFs (details about the benchmark are
given in Sect. 4.2) are summarized in Fig. 2. It appears that the most efficient
filter (in terms of saturation rate) is the QHT, from [8].
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6 Experiments and Benchmarks

This section provides details and additional information on the benchmarking
experiments run to validate the above analysis. Our code is accessible online4.

Benchmarking Queuing Filters. Applying the queuing construction to DDFs
from the literature, we get new filters which are compared in the wDDP setting.

In Sect. 5.5 we suggested the heuristic that the DDFs with the least saturation
rate in the DDP would yield the best (error-wise) queuing filter for the wDDP.
This heuristic is supported by results, summarized in Fig. 5. For this benchmark
we used the following parameters: uniform stream from an alphabet of size |Γ | =
218, memory size M = 100, 000 bits, sliding window of size w = 10, 000, and we
measure the error rate (sum of FNRw and FPRw).

A surprising observation is that when Lw approaches the size of the stream,
there is a drop in the error. This is an artifact due to the finite size of our
simulations; the stream should be considered infinite, and this drop disappears
as the simulation is run for longer (see Appendix B). This effect also alters the
error rates for smaller window sizes, albeit much less, and we expect that filter
designers care primarily about the small window regime. Nevertheless a complete
understanding of this effect would be of theoretical interest, and we leave the
study of this phenomenon for future work.

The Number of Subfilters. The number of subfilters L is an important parameter
in the queuing construction, as it affects the filter’s error rate in a nontrivial way.
An illustration of this dependence is shown in Fig. 6 which plots the error rate
of a queueing QHT on an uniform stream of alphabet size Γ = 216, with 105

elements in the stream, on various sliding window sizes.
We observe that the optimal value for L does indeed depend on the desired

sliding window. However, other experiments on alphabets of other sizes yield
very similar results, hence validating the observation made in Sect. 5.4 that the
optimal number of subfilters does not depends on the alphabet, at least in first
approximation.

Filters vs Queued Filters. Using the same stream as previously, we can build
queued filters (with an optimal value L for each considered sliding window) and
compare their performances to that of non-modified filters. Results on the QHT
and SQF are shown in Fig. 7, results for the Cuckoo and SBF are shown in
Appendix C.

We observe that queueing filters do not necessarily behave better than their
‘vanilla’ counterparts, especially on large sliding windows. This can be inter-
preted by the fact that the DDPs were optimised for infinite sliding windows, and
as such operate better than their queueing equivalent on large sliding windows.

4 https://github.com/mariuslp/duplicate sliding benchmark.

https://github.com/mariuslp/duplicate_sliding_benchmark
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Fig. 5. Error rate (times 100) of queu-
ing filters as a function of window size,
M = 105, L = 10, |Γ | = 218, on a
stream of size 107.

Fig. 6. Evolution of the error rate of a
queueing QHT as a function of L, for sev-
eral window sizes, with M = 105, |Γ | =
218, on a stream of size 106.

Fig. 7. Comparing performances of QHT and SQF filters, in ‘vanilla’ setting or when
placed in our queueing structure.

7 Adversarial Resistance of Queueing Filters

As DDFs have numerous security applications, we now discuss the queuing con-
struction from an adversarial standpoint. We consider an adversarial game in
which the attacker wants to trigger false positives or false negatives over the
sliding window. One motivation for doing so is causing cache saturation or denial
of service by forcing cache misses, triggering false alarms or crafting fradulent
transactions without triggering fraud detection systems.

To create a realistic adversary model, we assume like in [1] that the adversary
does not have access to the filter’s internal memory. Nonetheless, after every
insertion she knows whether the inserted element was detected as a duplicate
or not.

We first recall the definition of an adversarial game, adapted to our context.

Definition 3. An adversary A feeds data to a sliding window DDF Q, and for
each inserted element, A knows whether Q answers DUPLICATE or UNSEEN,
but has not access to Q’s internal state M. The game has two distinct parts.
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– In the first part, A can feed up to n elements to Q and learns Q’s response
for each insertion.

– In the second part, A sends a unique element e�.

A wins the n-false positive adversarial game (resp. n-false negative adversarial
game) if and only if e� is a false positive (resp. a false negative).

Variants of these games over a sliding window of size w are immediate.

Definition 4 (Adversarial False Positive Resistance). We say that a DDF
F is (p, n)-resistant to adversarial false positives if no polynomial-time proba-
bilistic (PPT) adversary A can win the n−false positive adversarial game with
probability greater than p.

Note that if F is (p, n)-resistant, then it is (p,m)-resistant for all m < n.
We define similarly the notion of being resistant to adversarial false negatives.

Finally, both definitions also make sense in a sliding window context.

Theorem 9 (Bound on false positive resistance). Let Q be a filter of L
subfilters Fi, with c insertions maximum per subfilter, let w be a sliding window.

If F is (p, c)-resistant to adversarial false positive attacks and cL ≤ w, then
Q is (1 − (1 − p)L, w)-resistant to adversarial false positive attacks on a sliding
window of size w.

If cL > w, the adversary has a success probability of at least 1 − (1 − p)L.

Theorem 10 (Bounds on false negative resistance). Let Q be a filter of
L subfilters of kind F , with c insertions maximum per subfilter, and let w be a
sliding window. If F is (p, c)-resistant to adversarial false negative attacks, then
A can win the adversarial game on the sliding window w with probability at least
pL.

Furthermore, for q the lower bound on the false positive probability FPF,c for
a given stream, if w ≤ (L−1)c then Q is (min(1−q, p)L−1p,w)-resistant to false
negative attacks on the sliding window w. On the other hand if w > (L − 1)c
then Q is (max(1 − q, p)L, w)-resistant to false negative attacks on the sliding
window w.

A SHF and Queueing Filter Algorithms

In this appendix, we give the pseudocode of our two structures, which we removed
from the main part of the paper for page limit reasons.
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Algorithm 1. SHF Setup, Lookup and Insert

1: function Setup(M, w) � M is the available memory, w the size of the sliding
window

2: h ← hash function of codomain size � M
2w

− 1
2

log2 w� bits
3: Q ← ∅ � Q is a queue of elements of size h
4: D ← ∅ � D is a dictionary h ⇒ counter (of max value w)

1: function Insert(e)
2: Q.Push Front(h(e))
3: D[h(e)]++
4: if Q.length() > w then
5: h′ ← Q.Pop back()
6: D[h′]--
7: if D[h′] = 0 then
8: Erase key D[h′]

1: function Lookup(e)
2: if D[h(e)] > 0 then
3: return DUPLICATE
4: else
5: return UNSEEN

Algorithm 2. Queuing Filter Setup, Lookup and Insert
1: function Setup(F , M, L, c) � M is the available memory, F the subfilter structure, L

the number of subfilters and c the number of insertions per subfilter

2: subfilters ← ∅
3: counter ← 0
4: m ← �M/L�
5: for i from 0 to L − 1 do

6: subfilters.push first(F .Setup(m))

7: store (subfilters, L, m, counter)

1: function Lookup(e)

2: for i from 0 to L − 1 do
3: if subfilters[i].Lookup(e) then

4: return DUPLICATE
5: return UNSEEN

1: function Insert(e)

2: subfilters[0].Insert(e)
3: counter++

4: if counter == c then
5: subfilters.pop()
6: subfilters.push first(F .Setup(m))

B Effects of the Simulation’s Finiteness

Theoretical results about the queuing construction apply in principle to an infi-
nite stream. However, simulations are necessarily finite, and for very large win-
dows (that are approximately the same size as the whole stream) this causes
interesting artefacts in the error rates.

Note that these effects have very little impact on practical implementations of
queuing filters, since almost all use cases assume a window size much smaller than
the stream (or, equivalently, a very large stream). Nevertheless we illustrate the
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Fig. 8. Error rate for queuing QHT
(L = 10, M = 105, |Γ | = 216) with
streams of size 105 to 108.

Fig. 9. Comparing performances of the
Cuckoo and SBF filters, in ‘vanilla’ setting
or when placed in our queueing structure.

effect of the finite simulation and the parameters affecting it, if only to motivate
a further analytical study of this phenomenon.

Figure 8 measures the error rate as a function of w, for different stream sizes
N . A visible decrease in ER can be found around w ≈ N . While we do not have
any explanation for the difference in the peaks sizes and exact location, we give
the hypothesis that it is related to the choice of |Γ |.

As can be seen on this simulation, there is only disagreement around w ≈
N/L, and increasing N results in a later and smaller peak.

It is also possible to run simulations for different alphabet sizes Γ , which
shows that the peak’s position increases with |Γ |, although the relationship is
not obvious to quantify.

C Filters vs Queued Filters (Complement)

We here run a comparison of the Cuckoo Filter relative to the Queueing Cuckoo
Filter, as well as the SBF relatively to the queueing SBF. The results are given
in Fig. 9.

D Compact Hash Short Filter

Removing the dictionary from the SHF construction yields a more memory-
efficient, but less time-efficient construction, which we dub “compact” short hash
filter (CSHF). The CSHF performs in linear time in w, and is a simple queue,
the only point is that instead of storing e, the filter stores h(e), where h is a
hash function of codomain size �M

w �.
Error Rate. Let w > 0 be a window size and M > 0 the available memory.

Theorem 11. FNw
CSHF = 0 and FPw

CSHF = 1 − (
1 − 2−M/w

)w
.

Proof. This is an immediate adaptation of the proof from Theorem 2. A CSHF
has fingerprints of size h′ = M

w .
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Fig. 10. Error rates of SHFs and CSHFs for M = 105 bits, for varying window sizes w.

Remark: A CSHF of size M on a sliding window w has the same error rate than
an SHF of sliding window w and size 2M + w log2 w.

Saturation. Similarly to SHF, CSHF saturates quickly over a certain wmax. We
compare SHF and CSHF saturations in Fig. 10.

Experimentally, we get wCSHF
max = 0.0627M + 443 (r2 = 0.9981).

E Proofs

In this appendix, we give the proofs of all theorems stated in the paper. For the
sake of convenience, each theorem is restated before giving its proof.

Theorem 1. For M ≥ w(log2(w)+2 log2(|Γ |)), the wDDP can be solved exactly
(with no errors) in constant time.

Proof. We explicitly construct a DDF that performs the detection. Storing all w
elements in the sliding window takes w log2(|Γ |) memory, using a FIFO queue
Q; however lookup has a worst-time complexity of O(w).

We therefore rely on an ancillary data structure for the sake of quickly answer-
ing lookup questions. Namely we use a dictionary D whose keys are elements
from Γ and values are counters.

When an element e is inserted in the DDF, e is stored and D[e] is incremented
(if the key e did not exist in D, it is created first, and D[e] is set to 1). In order to
keep the number of stored elements to w, we discard the oldest element elast in
Q. As we do so, we also decrement D[elast], and if D[elast] = 0 the key is deleted
from D. The whole insertion procedure is therefore performed in constant time.

Lookup of an element e� is simply done by looking whether the key D[e�]
exists, which is done in constant time.

The queue size is w log2 |Γ |, the dictionary size is w(log2 |Γ |+log2 w) (as the
dictionary cannot have more than w keys at the same time, a dictionary key occu-
pies log2 |Γ | bits and a counter cannot go over w, thus being less than log2 w bits
long). Thus a requirement of w(log2(w)+2 log2(|Γ |)) bits for this DDF to work.
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Finally this filter does not make any mistake, as the dictionary D keeps
an exact account of how many times each element is present in the sliding
window. �

Theorem 2. Let w ∈ N. Let M � 2w log2 w, then the wDDP can be solved with
almost no error using M memory bits. More precisely, it is possible to create a
filter of M bits with an FN of 0, an FP of 1 − (1 − 1

w2 )w ∼ 1
w , and a time

complexity of O(w).
Using M � 5w log2 w bits of memory, a constant-time filter with the same

error rate can be constructed.

Proof. Here again we explicitly construct the filters that attain the theorem’s
bounds.

Let h be a hash function with codomain {0, 1}2 log2 w. The birthday theorem
[14] states that for a hash function h over a bits, one must on average collect 2a/2

input-output pairs before obtaining a collision. Therefore 2(2 log2 w)/2 = w hash
values h(ei) can be computed before having a 50% probability of a collision (here,
a collision is when two distinct elements of the stream ei, ej with i �= j, ei �= ej

have the same hash, i.e. h(ei) = h(ej)). The 50% threshold we impose on h is
arbitrary but nonetheless practical.

Let F be the following DDF: the filter’s state consists in a queue of w hashes,
and for each new element e, Detect(e) returns DUPLICATE if h(e) is present in the
queue, UNSEEN otherwise. Insert(e) appends h(e) to the queue before popping
the queue.

There is no false negative, and a false positive only happens if the new element
to be inserted collides with at least one other element, which happens with
probability 1 − (1 − 1

22 log2 w )w = 1 − (1 − 1
w2 )w, hence an FN of 0 and a FP of

1 − (1 − 1
w2 )w. The queue stores w hashes, and as such requires w · 2 log2 w bits

of memory.
Note that this solution has a time complexity of O(w). Using an additional

dictionary, as in the previous proof, but with keys of size 2 log2(w), we get a
filter with an error rate of about 1

w and constant time for insertion and lookup,
using w · 2 log2 w + w · (2 log2(w) + log2(w)) = 5w log2 w bits of memory. �

Theorem 3. FNw
SHF = 0 and FPw

SHF = 1 −
(
1 −

√
w2−M/w

)w

.

Proof. This is an immediate adaptation of the proof from Theorem 2. An SHF
has fingerprints of size h = M

2w − 1
2 log2 w. �

Theorem 4. Let E be a stream of n elements uniformly selected from an alphabet
of size |Γ |. For any DDF using M bits of memory, the error probability EPn =

FPn + FNn satisfies EPn ≥ 1 − 1−(1− 1
|Γ | )

M

1−(1− 1
|Γ | )

n for any n > M .



80 R. Géraud-Stewart et al.

Proof. By definition, a perfect filter has the lowest possible error rate. With M
bits of memory, a perfect filter can store at most M elements in memory [8,
Theorem 2.1]. Up to reordering the stream, without loss of generality because
it is random, we may assume that the filter stores the M last elements of the
stream: any other strategy cannot yield a strictly lower error rate.

If an element is already stored in the filter, then the optimal filter will neces-
sarily answer DUPLICATE. On the other hand, if the element is not in memory,
a perfect filter can choose to answer randomly. Let p be the probability that a
filter answers DUPLICATE when an element is not in memory. An optimal filter
will lower the error rate of any filter using the same strategy with a different
probability.

An unseen element, by definition, will be unseen in the M last elements of
the stream, and hence will not be in the filter’s memory, so the filter will return
UNSEEN with probability 1−p. For this reason, this filter has an FP probability
of p.

On the other hand, a duplicate e� ∈ E is classified as UNSEEN if and only
if it was not seen in the last M elements of the stream, and the filter answers
UNSEEN. Let D be the event “There is at least one duplicate in the stream” and
C be the event “There is a duplicate of e� in the M previous elements of the
stream”. Then e� triggers a false negative with probability

FNn = (1 − Pr[C|D])(1 − p) =

(

1 − Pr[C ∩ D]

Pr[D]

)

(1 − p) =

(

1 − Pr[C]

Pr[D]

)

(1 − p)

FNn =

(

1 − 1 − Pr[C̄]

1 − Pr[D̄]

)

(1 − p) =

⎛

⎜
⎝1 −

1 −
(
1 − 1

|Γ |
)M

1 −
(
1 − 1

|Γ |
)n

⎞

⎟
⎠ (1 − p)

Hence, the error probability of the filter is

EPn = FNn + p =

⎛

⎜
⎝1 −

1 −
(
1 − 1

|Γ |

)M

1 −
(
1 − 1

|Γ |

)n

⎞

⎟
⎠ (1 − p) + p = 1 −

1 −
(
1 − 1

|Γ |

)M

1 −
(
1 − 1

|Γ |

)n (1 − p),

which is minimized when p = 0. �

Theorem 5. Let FPw
Q,m be the false positive probability of Q after m > w

insertions, over a sliding window of size w = cL, we have FPw
Q,m = 1 −

(1 − FPF,c)
L−1 (1 − FPF,m mod c) where FPF,m is the false positive probability

of a subfilter F after m insertions.

Proof. Let E = (e1, . . . , em, . . . ) be a stream and e� /∈wE.
Therefore, e� is a false positive if and only if at least one subquery

Fi.Lookup(e�) returns DUPLICATE. Conversely, e� is not a false positive when
all subqueries Fi.Lookup(e�) return UNSEEN, i.e., when e� is not a false positive
for each subfilter.

Each subfilter has undergone c insertions, except for the first subfilter which
has only undergone m mod c, we immediately get Eq. (E). �
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Theorem 6. Let FNw
Q,m be the false negative probability of Q after m > w inser-

tions on a sliding window of size w = cL, we have FNw
Q,m = uL−1

c um mod c where
we have introduced the short-hand notation uη = pηFNF,η+(1 − pη) (1 − FPF,η)
where FNF,η (resp. FPF,η) is the false negative probability (resp. false positive)

of the subfilter F after η insertions, and pη =
1−(1− 1

|Γ | )
η

1−(1− 1
|Γ | )

w ≈ η
w .

Proof. Let E = (e1, . . . , em, . . . ) be a stream, let w be a sliding window and let
e� ∈w E.

Then e� is a false negative if and only if all subfilters Fi answer
Fi.Detect(e�) = UNSEEN. There can be two cases:

– e� is present in Fi’s sub-sliding window;
– e� is not present in Fi’s sub-sliding window.

In the first case, Fi.Detect(e�) returns UNSEEN if and only if e� is a false negative
for Fi. This happens with probability FNF,c by definition, except for F0, for
which the probability is FNF,m mod c.

In the second case, Fi.Detect(e�) returns UNSEEN if and only if e� is not a
false positive for Fi, which happens with probability 1 − FPF,c, execpt for F0,
for which the probability is 1 − FPF,m mod c.

Finally, each event is weighted by the probability pc that e� is in Fi’s sub-
sliding window:

pc = Pr[e
�

is in Fi sub-sliding window − e
� ∈w E] =

Pr[e� is in Fi sub-sliding window ∩ e� ∈w E]

Pr[e� ∈w E]

=
Pr[e� is in Fi sub-sliding window]

Pr[e� ∈w E]
=

1 − Pr[e� is not in Fi sub-sliding window ]

1 − Pr[e� /∈wE]

pc =
1 −

(
1 − 1

|Γ |
)c

1 −
(
1 − 1

|Γ |
)w

This concludes the proof. �

Theorem 7. Let FPRw
Q,m be the false positive rate of Q after m = cn >

w insertions on a sliding window of size w = cL, we have FPRw
Q,cn = 1 −

(1−FPF,c)
L−1

c

∑c−1
�=0(1 − FPF,�).

Proof.

FPRw
Q,cn =

1
cn

cn∑
k=1

FPw
Q,k =

1
cn

n∑
k=1

c−1∑
�=0

FPw
Q,k+� =

1
c

c−1∑
�=0

FPw
Q,�

=
1
c

c−1∑
�=0

1 − (1 − FPF,c)L−1(1 − FPF , �)

= 1 − 1
c
(1 − FPF,c)L−1

c−1∑
�=0

(1 − FPF,�)

�
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Theorem 8. Let FNRw
Q,m be the false negative rate of Q after m = cn >

w insertions on a sliding window of size w = cL, we have FNRw
Q,cn =

uL−1
c

c

∑c−1
�=0 u�.

Proof.

FNRw
Q,cn =

1
cn

cn∑
k=1

FNw
Q,k =

1
cn

n∑
k=1

c−1∑
�=0

FNw
Q,k+� =

1
c

c−1∑
�=0

FNw
Q,�

=
1
c

c−1∑
�=0

uL−1
c u� =

uL−1
c

c

c−1∑
�=0

u�

�

Theorem 9 (Bound on false positive resistance). Let Q be a filter of L
subfilters Fi, with c insertions maximum per subfilter, let w be a sliding window.

If F is (p, c)-resistant to adversarial false positive attacks and cL ≤ w, then
Q is (1 − (1 − p)L, w)-resistant to adversarial false positive attacks on a sliding
window of size w.

If cL > w, the adversary has a success probability of at least 1 − (1 − p)L.

Proof. If cL ≤ w, then information-theoretically the subfilters only have infor-
mation on elements in the sliding window. The false positive probability for Q
is 1 − (1 − FPF,c)L, which is strictly increasing with FPF,c. Hence, the opti-
mal solution is reached by to maximising the false positive probability in each
subfilter Fi. By hypothesis the latter is bounded above by p after c insertions.

On the other hand, if cL > w then the oldest filter holds information about
elements that are not in the sliding window anymore. Hence, a strategy for the
attacker trying to trigger a false positive on e� could be to make it so these
oldest elements are all equal to e�. Let E be the optimal adversarial stream for
triggering a false positive on the sliding window w with the element e�, when
cL ≤ w. The adversary A can create a new stream E′ = e�|e�| . . . |E where e� is
prepended cL − w times to E.

After w insertions, the last subfilter will answer DUPLICATE with proba-
bility at least p, hence giving a lower bound on A′s success probability. If, for
some reason, the last subfilter answers DUPLICATE with probability less than
p, then the same reasoning as for when cL ≤ w still applies, hence we get the
corresponding lower bound (which is, in this case, an equality). �

Theorem 10 (Bounds on false negative resistance). Let Q be a filter of
L subfilters of kind F , with c insertions maximum per subfilter, and let w be a
sliding window. If F is (p, c)-resistant to adversarial false negative attacks, then
A can win the adversarial game on the sliding window w with probability at least
pL.

Furthermore, for q the lower bound on the false positive probability FPF,c for
a given stream, if w ≤ (L−1)c then Q is (min(1−q, p)L−1p,w)-resistant to false
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negative attacks on the sliding window w. On the other hand if w > (L − 1)c
then Q is (max(1 − q, p)L, w)-resistant to false negative attacks on the sliding
window w.

Proof. Let us first prove that a PPT adversary A can win the game with prob-
ability at least pL. For this, let us consider the adversarial game against the
subfilter F : after c insertions from an adversarial stream Ec, A choses a dupli-
cate e� which will be a false negative with probabiility p. Hence, if A crafts, for
the filter Q, the following adversarial stream E′ = Ec | Ec | · · · | Ec consisting of
L concatenations of the stream Ec, then e� is a false negative for Q if and only
if it is a false negative for all subfilters Fi, hence a success probability for A of
pL.

Now, Let us prove the case where w ≤ (L − 1)c. In this case, at any time,
Q remembers all elements from inside the sliding window. As we have seen in
the previous example, the success probability of A is strictly increasing with the
probability of each subfilter to answer UNSEEN. The probability of a subfilter
to answer UNSEEN is:

– FN′
F,c if e� is in the subfilter’s sub-sliding window;

– 1 − FP′
F,c if e� is not in the subfilter’s sub-sliding window

where FN′ and FP′ are the probabilities of false negative and positives on the
adversarial stream (which may be different from a random uniform stream).

However, since e� is a duplicate, it is in at least one subfilter’s sub-sliding
window. As such, the optimal strategy for A is to maximise the probability of all
subfilters to answer UNSEEN. Now, FN′

F,c is bounded above by p and 1−FP′
F,c

is bounded above by 1−q, so the best strategy is where as many filters as possible
answer UNSEEN with probability max(p, 1 − q), knowing that at least one filter
must contain e� and as such its probability for returning UNSEEN is at most p,
hence the result.

Now, let us consider the case when w > (L − 1)c. We have already
introduce the element e� in the last w elements, and we want to insert it
again. It is possible, for the adversary, to create the following stream E =
(e1, e2, . . . , ec−1, e

�, ec+1, . . . , eLc, eLc+1), and to insert e� afterwards.
When eLc+1 is inserted, all elements (e1, . . . , ec−1, e

�) are dropped as the old-
est subfilter is popped. Hence, in this context e� is not in any subfilter anymore,
so by adapting the previous analysis, A can get a false negative with probability
at most max(1 − q, p)L. �
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1 Introduction

In an election, there are a set of candidates and a set of voters. Each voter has a
preference list of candidates. Given these preference lists, a winner is determined
based on some voting rule, examples of which will be elaborated later.

In the context of election, the bribery problem has received considerable atten-
tion (see, for example, [1,8,9,13,14]). In this problem, there is an attacker who
attempts to manipulate the election by bribing some voters, who will then report
preference lists of the attacker’s choice (rather than the voters’ own preference
lists). Each voter has a price for being bribed, and the attacker has an attack bud-
get for bribing voters. There are two kinds of attackers: constructive vs. destruc-
tive. A constructive attacker attempts to make its designated candidate win an
election, whereas the designated candidate would not win the election should
there be no attacker. In contrast, a destructive attacker attempts to make its
designated candidate lose the election, whereas the designated candidate would
win the election should there be no attacker. The research question is: Given an
attack budget for bribing, whether or not a (constructive or destructive) attacker
can achieve its goal?

In this paper, we initiate the study of a new problem, called the protection
problem, which extends the bribery problem as follows. There are also a set
of candidates, a set of voters, and a bribery attacker. Each voter also has a
preference list of candidates. There is also a voting rule according to which a
winner is determined. Going beyond the bribery problem, the protection problem
further considers a defender, who aims to protect elections from bribery. More
specifically, the defender is given a defense budget and can use the defense budget
to award some of the voters so that they cannot be bribed by the attacker
anymore. This leads to an interesting problem: Given a defense budget, is it
possible to protect an election from an attacker with a given attack budget for
bribing voters (i.e., assuring that the attacker cannot achieve its goal)?

Our Contributions. We introduce the problem of protecting elections from
bribery, namely the protection problem. Given a defense budget for rewarding
some of the voters and an attack budget for bribing some of the rest voters, the
protection problem asks whether or not the defender can protect the election.
We investigate the protection problem against the aforementioned two kinds of
bribery attackers: constructive vs. destructive.

We present a characterization on the computational complexity of the protec-
tion problem (summarized in Table 1 in Sect. 5). The characterization is primar-
ily concerning the voting rule of r-approval, which will be elaborated in Sect. 2.
At a high level, our results can be summarized as follows. (i) The protection prob-
lem is hard and might be much harder than the bribery problem. For example,
the protection problem is Σp

2 -complete in most cases, while the bribery prob-
lem is in NP under the same settings. (ii) The destructive protection problem
(i.e., protecting elections against a destructive attacker) is no harder than the
constructive protection problem (i.e., protecting elections against a constructive
attacker) in all of the settings we considered. In particular, the destructive pro-
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tection problem is Σp
2 -hard only when the voters are weighted and have arbitrary

prices, while the constructive protection problem is Σp
2 -hard even when the vot-

ers are unweighted and have the unit price. (iii) Voter weights and prices have
completely different effects on the computational complexity of the protection
problem. For example, the constructive protection problem is coNP-hard in one
case but is in P in another case.

Related Work. The problem of protecting elections from attacks seemingly
has not received the due attention. Very recently, Yin et al. [19] considered
the problem of defending elections against an attacker who can delete (groups
of) voters. That is, the investigation is in the context of the control problem,
where the attacker attempts to manipulate an election by adding or deleting
some voters. The control problem has been extensively investigated (see, for
example, [4,10–12,19]). Although the control problem is related to the bribery
problem, the means used by the attacker in the control problem (i.e., attacker
adding or deleting some voters) is different from the means used by the attacker
in the bribery problem (i.e., attacker changing the preference lists of the bribed
voters). We investigate the protection problem, which is defined in the context
of the bribery problem rather than the control problem. That is, the problem
we investigate is different from the problem investigated by Yin et al. [19].

The protection problem we study is inspired by the bribery problem. Fal-
iszewski et al. [9] gave the first characterization on the complexity of the
bribery problem, including some dichotomy theorems. In the bribery problem,
the attacker can pay a fixed, but voter-dependent, price to arbitrarily manipu-
late the preference list of a bribed voter. The complexity of the bribery problem
under the scoring rule of r-approval or r-veto for small values of r was addressed
later by Lin [15] and Bredereck and Talmon [2]. There are also studies on mea-
suring the bribery price in different ways (see, e.g., [1,7,13]).

Technically, the protection problem is related to the bi-level optimization
problem, especially the bi-level knapsack problem [3,6,17,18]. In the bi-level
knapsack problem, there is a leader and a follower. The leader makes a decision
first (e.g., packing a subset of items into the knapsack), and then the follower
solves an optimization problem given the leader’s decision (e.g., finding the most
profitable subset of items that have not been packed by the leader). The problem
asks for the decision of the leader such that a certain objective function is opti-
mized (e.g., minimizing the profit of the follower). The protection problem we
study can be formulated as the bi-level problem by letting the defender award
some voters who therefore cannot be bribed by the attacker anymore, and then
the attacker bribes some of the remaining voters as an attempt to manipulate
the election.

2 Problem Definition

Election Model. Consider a set of m candidates C = {c1, c2, . . . , cm} and
a set of n voters V = {v1, v2, . . . , vn}. Each voter vj has a preference list of
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candidates, which is essentially a permutation of candidates, denoted as τj . The
preference of vj is denoted by (cτj(1), cτj(2), . . . , cτj(m)), meaning that vj prefers
candidate cτj(z) to cτj(z+1), where z = 1, 2, . . .. Since τj is a permutation over
{1, 2, . . . ,m}, we denote by τ−1

j the inverse of τj , meaning that τ−1
j (i) is the

position of candidate ci in vector (cτj(1), cτj(2), . . . , cτj(m)).

Voting Rules. In this paper, we focus on the scoring rule (or scoring protocol)
that maps a preference list to a m-vector α = (α1, α2, . . . , αm), where αi ∈ N

is the score assigned to the i-th candidate on the preference list of voter vj and
α1 ≥ α2 ≥ . . . ≥ αm. Given that τj is the preference list of vj , candidate cτj(i)

receives a score of αi from vj . The total score of a candidate is the summation of
the scores it received from the voters. The winner is the candidate that receives
the highest total score. We focus on a single-winner election, meaning that only
one winner is selected. In the case of a tie, a random candidate with the highest
total score is selected. However, our results remain valid for all-natural variation
of selecting a single winner.

We say a scoring rule is non-trivial, if α1 > αm (i.e., not all scores are
the same). There are many (non-trivial) scoring rules, including the popular
r-approval, plurality, veto, Borda count and so on. In the case of r-approval,
α = (1, 1, . . . , 1

︸ ︷︷ ︸

r

, 0, 0, . . . , 0
︸ ︷︷ ︸

m−r

). In the case of plurality, α = (1, 0, . . . , 0). In the case

of veto, α = (1, 1, . . . , 1, 0). It is clear that plurality and veto are special cases of
the scoring rule of r-approval.

Weights of Voters. Voters can have different weights. Let wj ∈ N be the weight
of voter vj . In a weighted election, the total score of a candidate is the weighted
sum of the scores a candidate receives from the voters. For example, candidate
ci receives a score wj · ατ−1

j (i) from voter vj .
By re-indexing all of the candidates, we can set, without loss of generality,

cm as the winner in the absence of bribery.

Adversarial Models. We consider an attacker that does not belong to C ∪ V
but attempts to manipulate the election by bribing some voters. Suppose voter
vj has a bribing price pb

j , meaning that vj , upon receiving a bribery of amount pb
j

from the attacker, will change its preference list to the list given by the attacker.
The attacker has a total budget B. As in the bribery problem, we also consider
two kinds of attackers:

– Constructive attacker: This attacker attempts to make a designated candidate
win the election, meaning that the designated candidate is the only candidate
who gets the highest score.

– Destructive attacker: This attacker attempts to make a designated candidate
lose the election, meaning that there is another candidate that gets a strictly
higher score than the designated candidate does.

Protection. In the protection problem, voter vj , upon receiving an award of
amount pa

j (or awarding price) from the defender, will always report its pref-
erence list faithfully and cannot be bribed. Note that pa

j may have multiple
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interpretations, such as monetary award, economic incentives or the cost of iso-
lating voters from bribery. We say a voter vj is awarded if vj receives an award
of pa

j .

Problem Statement. We formalize our problem as follows.

The constructive protection problem (i.e., protecting elections
against constructive attackers):
Input: A set C of m candidates. A set V of n voters, each with a weight wj ∈
Z>0, a preference list τj , an awarding price of pa

j ∈ Z>0 and a bribing price of
pb

j ∈ Z>0. A scoring rule for selecting a single winner. A defender with a defense
budget F ∈ Z≥0. An attacker with an attack budget B ∈ Z≥0 attempting to
make candidate cm win the election.
Output: Decide whether there exists a VF ⊆ V such that

–
∑

j:vj∈VF
pa

j ≤ F ; and
– for any subset VB ⊆ V \ VF with

∑

j:vj∈VB
pb

j ≤ B, cm does not get a
strictly higher score than any other candidate despite the attacker bribing
the voters belonging to VB (i.e., bribing VB).

The destructive protection problem (i.e., protecting elections against
destructive attackers):
Input: A set C of m candidates. A set V of n voters, each with a weight wj ∈
Z>0, a preference list τj , an awarding price of pa

j ∈ Z>0 and a bribing price of
pb

j ∈ Z>0. A scoring rule for selecting a single winner. Suppose cm is the winner
if no voter is bribed. A defender with a defense budget F ∈ Z≥0. An attacker
with an attack budget B ∈ Z≥0 attempting to make cm lose the election by
making c ∈ C \ {cm} get a strictly higher score than cm does.
Output: Decide if there exists a VF ⊆ V such that

–
∑

j:vj∈VF
pa

j ≤ F ; and
– for any subset VB ⊆ V \ VF such that

∑

j:vj∈VB
pb

j ≤ B, no candidate
c ∈ C\{cm} can get a strictly higher score than cm does despite the attacker
bribing VB .

Further Terminology and Notations. We denote by W (ci) the total score
obtained by candidate ci in the absence of bribery (i.e., no voter is bribed). If
the defender can select VF such that no constructive or destructive attacker can
succeed, we say the defender succeeds. We call our problem as the (constructive
or destructive) weighted-$-protection problem, where “weighted” indicates that
the voters are weighted and “$” indicates that arbitrary awarding and bribing
prices are involved. In addition to investigating the general weighted-$-protection
problem, we also investigate the following special cases of it:
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– the $-protection problem with wj = 1 for each j (i.e., the voters are not
weighted);

– the weighted-protection problem with pa
j = pb

j = 1 for each j (i.e., voters are
associated with the unit awarding price and the unit bribing price);

– the unit-protection problem with wj = pa
j = pb

j = 1 for each j (i.e., voters are
not weighted, and are associated with the unit awarding price and the unit
bribing price).

– the symmetric protection problem with pa
j = pb

j for each j (i.e., the awarding
price and the bribing price are always the same), while noting that different
voters may have different prices.

Please refer to the full version [5] of the paper for all the omitted proofs.

3 The Case of Constantly Many Candidates

3.1 The Weighted-$-Protection Problem

The goal of this subsection is to prove the following theorem.

Theorem 1. For any non-trivial scoring rule, both the constructive and destruc-
tive weighted-$-protection problem, is Σp

2 -complete.

The theorem follows from Lemma 1 and Lemma 2 below, which shows the Σp
2

membership and Σp
2 -hardness, respectively. (see Appendix 7.3 of Chen et al. [5]

for the full proof of Theorem 1).

Lemma 1. For any non-trivial scoring rule, both the constructive and destruc-
tive weighted-$-protection problems are in Σp

2 .

Lemma 2. For any non-trivial scoring rule, both the constructive and destruc-
tive weighted-$-protection problems are both Σp

2 -hard even if there are only m = 2
candidates.

Proof Sketch. The proof of Lemma 2 follows from De-Negre (DNeg) variant of
bi-level knapsack problem, which is proved to be Σp

2 -hard by Caprara et al. [3].
We give a brief explanation. In this De-Negre variant, there are an adversary
and a packer. The adversary has a reserving budget F̄ and the packer has a
packing budget B̄. There is a set of n items, each having a price p̄a

j to the
adversary, a price p̄b

j to the packer, and a weight w̄j = p̄b
j to both the adversary

and the packer. The adversary first reserves a subset of items whose total price
is no more than F̄ . Then the packer solves the knapsack problem with respect
to the remaining items that are not reserved; i.e., the packer will select a subset
of the remaining items whose total price is no more than B̄ but their total
weight is maximized. The De-Negre variant asks if the adversary can reserve a
proper subset of items such that the total weight of the unreserved items that
are selected by the packer is no more than some parameter W . The De-Negre
variant is similar to the weighted-$-protection protection problem, because we
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can view the defender and attacker in the protection problem respectively as
the adversary and packer in the bi-level knapsack problem. In the case of a
single-winner election with m = 2 candidates, the goal of the defender is to
assure that the constructive attacker cannot make the loser get a strictly higher
score than the winner by bribing. This is essentially the same as ensuring that
the constructive attacker cannot bribe a subset of non-awarded voters whose
total weight is higher than a certain threshold, which is the same as the bi-level
knapsack problem. ��

3.2 The Weighted-Protection Problem

This is a special case of the weighted-$-protection problem when pa
j = pb

j = 1.
The following theorem used by Faliszewski et al. [9] was originally proved

for another problem. In our context, F = 0 and thus VF = ∅, it is NP-hard to
decide if the constructive attacker can succeed or, equivalently, if the defender
cannot succeed. Hence, it is coNP-hard to decide if the defender can succeed and
Theorem 2 follows.

Theorem 2 (By Faliszewski et al. [9]). If m is a constant, the construc-
tive weighted-protection problem is coNP-hard for any scoring rule that
α2, α3, . . . , αm are not all equal (i.e., it does not hold that α2 = α3 = . . . = αm).

In contrast, the destructive version is easy. Using the fact that m, the number of
candidates, is a constant, we can prove the following Theorem 3 through suitable
enumerations. (see Appendix 7.4 of Chen et al. [5] for the proof of Theorem 3).

Theorem 3. If m is a constant, then the destructive weighted-protection prob-
lem is in P for any scoring rule.

3.3 The $-Protection Problem

This is the special case of the protection problem with wj = 1 for every j. The
following two theorems illustrate the significant difference (in terms of complex-
ity) between the general problem and its special case with symmetricity (i.e.,
pa

j = pb
j). (see Appendix 7.5 of Chen et al. [5] for the full proof of Theorem 4).

Theorem 4. For constant m and any non-trivial scoring rule, both the con-
structive and destructive $-protection problems are NP-complete.

Theorem 5. For constant m, both destructive and constructive symmetric $-
protection problems are in P for any scoring rule.
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4 The Case of Arbitrarily Many Candidates

4.1 The Case of Constructive Attacker

The following Theorem 6 shows Σp
2 -hardness for the most special cases of the

constructive weighted-$-protection problem, namely wj = pa
j = pb

j = 1 (unit-
protection). It thus implies readily the Σp

2 -hardness for the more general con-
structive $-protection and constructive weighted-protection.

Theorem 6. For arbitrary m, the r-approval constructive unit-protection prob-
lem is Σp

2 -complete.

Membership in Σp
2 follows directly from Lemma 1. To prove Theorem 6, it

suffices to show the following.

Lemma 3. For arbitrary m, the r-approval constructive unit-protection problem
is Σp

2 -hard even if r = 4.

To prove Lemma 3, we reduce from a variant of the ∃∀ 3 dimensional matching
problem (or ∃∀3DM), which is called ∃∀3DM′ and defined below. The classical
∃∀ 3DM is Σp

2 -hard proved by Mcloughlin [16]. By leveraging the proof by
Mcloughlin [16], we can show the Σp

2 -hardness of the ∃∀3DM′ problem.

∃∀3DM′: Given a parameter t, three disjoint sets of elements W , X, Y of the
same cardinality, and two disjoint subsets M1 and M2 of W × X × Y such
that M1 contains each element of W ∪ X ∪ Y at most once. Does there exist
a subset U1 ⊆ M1 such that |U1| = t and for any U2 ⊆ M2, U1 ∪ U2 is not a
perfect matching (where a perfect matching is a subset of triples in which every
element of W ∪ X ∪ Y appears exactly once)?

Proof (Proof of Lemma 3). Given an arbitrary instance of ∃∀ 3DM′, we construct
an instance of the constructive unit-protection problem in r-approval election as
follows. Recall that r = 4 and thus every voter votes for 4 candidates.

Suppose |W | = |X| = |Y | = n, |M1| = m1, |M2| = m2.
There are 3n + 2 key candidates, including:

– 3n key candidates, each corresponding to one distinct element of W ∪ X ∪ Y
and we call them element candidates. The score of every element candidate
is n + ξ;

– one key candidate called leading candidate, whose total score is n+ t+ ξ − 1;
– one key candidate called designated candidate, whose total score is ξ.

Here ξ is some sufficiently large integer, e.g., we can choose ξ = (m1 + m2)n.
Besides key candidates, there are also many dummy candidates, each of score
either 1 or m1 − t + 1. The number of dummy candidates will be determined
later.
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There are m1 + m2(m1 − t + 1) key voters, including:

– m1 key voters, each corresponding to a distinct triple in M1 and we call them
M1-voters. For each (wi, xj , yk) ∈ M1, the corresponding voter votes for the
3 candidates corresponding to elements wi, xj , yk together with the leading
candidate;

– m2 · (m1 − t+1) key voters, each distinct triple in M2 corresponds to exactly
m1−t+1 voters and we call them M2-voters. For every (wi, xj , yk) ∈ M2, each
of its m1 − t+1 corresponding voters vote for the 3 candidates corresponding
to elements wi, xj , yk together with one distinct dummy candidate. Since the
m1 − t + 1 voters are identical, we can view them as m1 − t + 1 copies, i.e.,
every M2-voter has m1 − t + 1 copies.

Besides key voters, there are also sufficiently many dummy voters. Each dummy
voter votes for exactly one key candidate and 3 distinct dummy candidates.
Dummy voters and dummy candidates are used to make sure that the score
of key candidates are exactly as we have described. More precisely, if we only
count the scores of key candidates contributed by key voters, then the element
candidate corresponding to z ∈ W ∪ X ∪ Y has a score of d(z) = d1(z) + (m1 −
t + 1)d2(z) where di(z) is the number of occurrences of z in the triple set Mi for
i = 1, 2, and the leading candidate has a score of m1. Hence, there are exactly
n+ ξ −d(z) dummy voters who vote for the element candidate corresponding to
z, and n + t + ξ − 1 − m1 dummy voters who vote for the leading candidate.

Overall, we create
∑

z∈W∪X∪Y (n + ξ − d(z)) + n + t + ξ − m1 − 1 dummy
voters, and 3

∑

z∈W∪X∪Y (n + ξ − d(z)) + 3(n + t + ξ − m1 − 1) + m2 dummy
candidates.

As the leading candidate is the current winner, the constructive unit-
protection problem asks whether the election can be protected against an
attacker attempting to make the designated candidate win. The defense bud-
get is F = m1 − t and the attack budget is B = n. In the following we show
that the defender succeeds if and only if the given ∃∀ 3DM′ instance admits a
feasible solution U1.

“Yes” Instance of ∃∀ 3DM′ → “Yes” Instance of Constructive Unit-
Protection. Suppose the instance of ∃∀ 3DM′ admits a feasible solution U1, we
show that the answer for constructive unit-protection problem is “Yes”.

Recall that each M1-voter corresponds to a distinct triple (wi, xj , yk) in M1

and votes for 4 candidates – the leading candidate and the three candidates
corresponding to wi, xj , yk. We do not award M1-voters corresponding to the
triples in U1, but award all of the remaining M1-voters. The resulting cost is
exactly F = m1 − t. In what follows we show that after awarding voters this
way, the attacker cannot make the designated candidate win.

Suppose on the contrary, the attacker can make the designated candidate
win by bribing α ≤ t voters among the M1-voters, β ≤ m2 voters among the
M2-voters, and γ dummy voters. We claim that the following inequalities hold:

α + β + γ ≤ n (1a)
4α + 3β + γ ≥ 3n + t (1b)
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Inequality (1a) follows from the fact that the attack budget is n and the attacker
can bribe at most n voters. Inequality (1b) holds because of the following. Given
that a candidate can get at most one score from each voter and that the attacker
can bribe at most n voters, bribing voters can make the designated candidate
obtain a score at most n + ξ. Hence, the score of each key candidate other than
the designated one should be at most n + ξ − 1. Recall that without bribery,
each of the 3n element candidate has a score of n + ξ and the leading candidate
has a score of n + t + ξ − 1. Hence, the attacker should decrease at least 1 score
from each element candidate and t scores from the leading candidate, leading
to a total score of 3n + t. Note that an M1-voter contributes 1 score to 4 key
candidates, therefore it contributes in total a score of 4 to the key candidates.
Similarly an M2-voter contributes a score of 3, and a dummy voter contributes
a score of 1 to the key candidates. Therefore, by bribing (for example) an M1-
voter, the total score of all the element candidates and the leading candidate
can decrease by at most 4. Thus, inequality (1b) holds.

In the following we derive a contradiction based on Inequalities (1a) and (1b).
By plugging γ ≤ n−α−β into Inequality (1b), we have 3α+2β ≥ 2n+ t. Since
β ≤ n−α, we have 3α+2β ≤ α+2n ≤ 2n+ t. Hence, 3α+2β = α+2n = 2n+ t,
and we have α = t and β = n− t. Note that the defender has awarded every M1-
voter except the ones corresponding to U1, where |U1| = t. Hence, every voter
corresponding to the triples in U1 is bribed. Furthermore, as Inequality (1b)
is tight, bribing voters makes the designated candidate have a score of n + ξ,
while making each of the other key candidates have a score of n + ξ − 1. This
means that the score of each element candidate decreases exactly by 1. Hence,
the attacker has selected a subset of M2-voters such that together with the M1-
voters corresponding to triples in U1, these voters contribute exactly a score of
1 to every element candidate. Let U2 be the set of triples to which the bribed
M2-voters correspond, then U1 ∪ U2 forms a 3-dimensional matching, which is a
contradiction to the fact that U1 is a feasible solution to the ∃∀ 3DM′ instance.
Thus, the attacker cannot make the designated candidate win and the answer
for the constructive unit-protection problem is “Yes”.

“No” Instance of ∃∀ 3DM′ → “No” Instance of Constructive Unit-
Protection. Suppose for any U1 ⊆ M1, |U1| = t there exists U2 ∈ M2 such
that U1 ∪ U2 is a perfect matching, we show that the answer to the constructive
unit-protection problem is “No”. Consider an arbitrary set of voters awarded
by the defender. Among the awarded voters, let H be the set of triples that
corresponds to the awarded M1-voters. As |H| ≤ m1 − t, |M1\H| ≥ t. We select
an arbitrary subset H1 ⊆ M1\H such that |H1| = t. There exists some H2 ⊆ M2

such that H1 ∪H2 is a perfect matching, and we let the attacker bribe the set of
voters corresponding to triples in H1 ∪ H2. Note that this is always possible as
every M2-voter has m1 − t+1 copies, so no matter which M2-voters are awarded
the briber can always select one M2-voter corresponding to each triple in H2. It
is easy to see that by bribing these voters, the score of every element candidate
decreases by 1, and the score of the leading voter decreases by t. Meanwhile, let
each bribed voter vote for the designated candidate and three distinct dummy



Computational Complexity Characterization of Protecting Elections 95

candidates, then the designated candidate has a score of n + ξ and becomes a
winner, i.e., the answer to the constructive unit-protection problem is “No”. ��
Remark. The proof of Lemma 3 can be easily modified to prove the Σp

2 -
hardness of r-approval constructive unit-protection problem for any fixed r ≥ 4.
Specifically, we can make the same reduction, and add dummy candidates such
that every voter additionally votes for exactly r − 4 distinct dummy candidates.

4.2 The Case of Destructive Attacker

Theorem 7. Both r-approval destructive weighted-protection and r-approval
(symmetric) $-protection problems are NP-complete.

The proof of Theorem 7 is based on a crucial observation of the equivalence
between the destructive weighted-$-protection problem (under an arbitrary scor-
ing rule) and the minmax vector addition problem we introduce (see Appendix
7.1 in [5]). (See Appendix 7.6 of Chen et al. [5] for the full proof of Theorem 7).

5 Summary of Results

The preceding characterization of the computational complexity of the protec-
tion problem in various settings is summarized in Table 1.

Table 1. Summary of results for single-winner election under the r-approval scoring
rule: “Symmetric” means pa

j = pb
j for every j and “asymmetric” means otherwise;

hardness results that are proved for the case with only two candidates (i.e., m = 2)
are marked with a “�” (Note that when m = 2, the 1-approval rule is the same as the
plurality, veto or Borda scoring rule. It can be shown that with a slight modification,
the hardness results hold for any non-trivial scoring rule); algorithmic results (marked
with a “P”) hold for arbitrary scoring rules; the complexity of the protection problem
against a destructive attacker with wj = pa

j = pb
j = 1 remains open; for most variants of

the protection problem against a constructive attacker, we only provide hardness results
and we do not know yet whether or not they belong to the class of coNP-complete or
Σp

2 -complete proble.

# of candidates Model parameters Destructive attacker Constructive attacker

Constant Weighted, priced, asymmetric Σ
p
2 -complete � (Theorem1) Σ

p
2 -complete � (Theorem1)

Weighted, pa
j = pb

j = 1 P (Theorem3) coNP-hard (Theorem2)

wj = 1, priced, asymmetric NP-complete � (Theorem4) NP-complete � (Theorem4)

wj = 1, priced, symmetric P (Theorem5) P (Theorem5)

wj = 1, pa
j = pb

j = 1 P (Theorem5) P (Theorem5)

Arbitrary Weighted, priced, asymmetric Σ
p
2 -complete � (Theorem1) Σ

p
2 -complete � (Theorem1)

Weighted, pa
j = pb

j = 1 NP-complete (Theorem7) Σ
p
2 -hard (Theorem6)

wj = 1, priced, asymmetric NP-complete (Theorem7) Σ
p
2 -hard (Theorem6)

wj = 1, priced, symmetric NP-complete (Theorem7) Σ
p
2 -hard (Theorem6)

wj = 1, pa
j = pb

j = 1 ? Σ
p
2 -hard (Theorem6)
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We remark three natural open problems for future research. One is the com-
plexity of the destructive protection problem with wj = pa

j = pb
j = 1. It is not

clear whether the problem is in P or is NP-complete. Another is the constructive
protection problem with pa

j = pb
j = 1 and arbitrary voter weights. We only show

its coNP-hardness, it is not clear whether or not this problem is coNP-complete.
The third problem is the complexity of r-approval constructive unit-protection
problem when r = {1, 2, 3} as our hardness proof only holds when r ≥ 4.

6 Conclusion

We introduced the protection problem and characterized its computational com-
plexity. We showed that the problem, in general, is Σp

2 -complete, and identified
settings in which the problem becomes easier. Moreover, we showed the protec-
tion problem in some parameter settings is polynomial-time solvable, suggesting
that these parameter settings can be used for real-work election applications.

In addition to the open problems mentioned in Sect. 5, the following are
also worth investigating. First, our hardness results would motivate the study of
approximation or FPT (fixed parameter tractable) algorithms for the protection
problem. Note that even polynomial time approximation schemes can exist for
Σp

2 -hard problems (see, e.g., By Caparara et al. [3]). It is thus desirable that
a similar result can be obtained for some variants of the protection problem.
Second, how effective is this approach when applied towards the problem of
defending against other types of attackers that can, e.g., add or delete votes?
Third, much research remains to be done in extending the protection problem
to accommodate other scoring rules such as Borda and Copeland.
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14. Knop, D., Koutecký, M., Mnich, M.: Voting and bribing in single-exponential time.
In: Vollmer, H., Vallée, B. (eds.) 34th STACS, STACS 2017. LIPIcs, Hannover,
Germany, 8–11 March 2017, vol. 66, pp. 46:1–46:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017)

15. Lin, A.: The complexity of manipulating k-approval elections. In: Filipe, J., Fred,
A.L.N. (eds.) ICAART 2011 - Proceedings of the 3rd ICAART, Volume 2 - Agents,
Rome, Italy, 28–30 January 2011, pp. 212–218. SciTePress (2011)

16. McLoughlin, A.M.: The complexity of computing the covering radius of a code.
IEEE Trans. Inf. Theory 30(6), 800–804 (1984)

17. Qiu, X., Kern, W.: Improved approximation algorithms for a bilevel knapsack
problem. Theor. Comput. Sci. 595, 120–129 (2015)

18. Wang, Z., Xing, W., Fang, S.: Two-group knapsack game. Theor. Comput. Sci.
411(7–9), 1094–1103 (2010)

19. Yin, Y., Vorobeychik, Y., An, B., Hazon, N.: Optimally protecting elections. In:
Kambhampati, S. (ed.) Proceedings of the 25th IJCAI, IJCAI 2016, New York,
NY, USA, 9–15 July 2016, pp. 538–545. IJCAI/AAAI Press (2016)

https://doi.org/10.1007/s10458-019-09427-9
https://doi.org/10.1007/s10458-019-09403-3
https://doi.org/10.1007/s10458-019-09403-3


Coding with Noiseless Feedback
over the Z-Channel

Christian Deppe1, Vladimir Lebedev2, Georg Maringer1,
and Nikita Polyanskii1(B)

1 Institute for Communications Engineering, Technical University of Munich,
Munich, Germany

{christian.deppe,georg.maringer,nikita.polianskii}@tum.de
2 Kharkevich Institute for Information Transmission Problems,

Russian Academy of Sciences, Moscow, Russia
lebedev37@mail.ru

Abstract. In this paper, we consider encoding strategies for the
Z-channel with noiseless feedback. We analyze the asymptotic case where
the maximal number of errors is proportional to the blocklength, which
goes to infinity. Without feedback, the asymptotic rate of error-correcting
codes for the error fraction τ ≥ 1/4 is known to be zero. It was also proved
that using the feedback a non-zero asymptotic rate can be achieved for
the error fraction τ < 1/2. In this paper, we give an encoding strategy
that achieves the asymptotic rate (1+τ)(1−h(τ/(1+τ))), which is posi-
tive for all τ < 1. Additionally, we state an upper bound on the maximal
asymptotic rate of error-correcting codes for the Z-channel.

Keywords: Coding with feedback · Z channel · Encoding algorithm

1 Introduction

In optical communications and other digital transmission systems the ratio
between probability of errors of type 1 → 0 and 0 → 1 can be large [1]. Practi-
cally, one can assume that only one type of error can occur. These channels are
called asymmetric. This paper addresses the problem of finding coding strategies
for the Z-channel with feedback. The Z-channel depicted in Fig. 1 is of asymmet-
ric nature because it permits an error 1 → 0, whereas it prohibits an error 0 → 1.
Transmission is referred to as being error-free if the output symbol matches the
input symbol of the respective symbol transmission.

We are considering a combinatorial setting in this paper. In this setting,
we limit the fraction of erroneous symbols by τ = t/n, where n denotes the
blocklength and t the maximum number of errors within a block. This is in con-
trast to the probabilistic setting, in which the error probability of the channel
is fixed. Feedback codes achieving the capacity of the Z-channel in the proba-
bilistic setting are considered in [2]. The figure of merit examined in this work
is the maximum asymptotic rate, written as R(τ) and also called capacity error
c© Springer Nature Switzerland AG 2020
D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 98–109, 2020.
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function [3], which we define to be the maximum rate at which information can
be communicated over a channel error-free as the blocklength n goes to infinity
in the aforementioned combinatorial setting.

0 0

1 1

Fig. 1. Z-channel

The problem of finding encoding strategies for the Z-channel using noiseless
feedback is equivalent to a variation of Ulam’s game, the half-lie game. The first
appearance of the half-lie game occurs in [4]. In this game for two players one
player, referred to as Paul, tries to find an element x ∈ M by asking n yes-no
questions which are of the form: Is x ∈ A for some A ⊆ M? The other player,
the responder Carole, is allowed to lie at most t times if the correct answer
to the question is yes. In comparison to the original Ulam game [5], Carole is
not allowed to lie if the correct answer is no. Before Ulam proposed the game
it was already described by Berlekamp [6] and by Renyi [7]. For a survey of
results see [8]. It is known that for fixed t, the cardinality of the maximal set
M is asymptotically 2n+tt!n−t for Paul to win the half-lie game. First this was
shown for t = 1 in [9] and later generalized in [10,11] for arbitrary t. Due to
the equivalence of the half-lie game and the coding problem with feedback for
the Z-channel, the coding problem has been solved for an arbitrary but fixed
number of errors for the asymptotic case when n goes to infinity.

For coding without feedback Bassalygo has shown in [12] that the maximal
asymptotic rate for the Z-channel is equal to the one of the binary symmet-
ric channel (BSC). Notably the results presented there show that the maximum
asymptotic rate is zero for τ ≥ 1/4. It is worth noticing that the maximal asymp-
totic rate of error-correcting codes for the BSC with feedback was completely
characterized by Berlekamp [6] and Zigangirov [13]. Their results show that the
rate is positive for τ < 1/3. For the construction of error correcting codes for
asymmetric channels without feedback we refer to the work of Kløve [14].

By random arguments, it was proved in [15] that R(τ) > 0 for τ < 1/2. In
[16] a feedback strategy based on the rubber method [3] was introduced to find
an encoding strategy achieving a positive asymptotic rate for any τ < 1/2. The
corresponding lower bound on R(τ) is plotted in green on Fig. 2.

1.1 Our Contribution

In this paper, we develop new encoding algorithms for the Z-channel with feed-
back. In particular, we provide a family of error-correcting codes with the asymp-
totic rate (1+ τ)(1−h(τ/(1+ τ))), which is positive for any τ < 1 and improves
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the result from [16] in all but countable number of points. The corresponding
lower bound on R(τ) is shown in blue in Fig. 2. Additionally, we prove an upper
bound on R(τ), which is depicted as the dashed line.

1.2 Outline

The remainder of the paper is organized as follows. In Sect. 2, we formally define
the problem of coding with feedback over the Z-channel and introduce some
auxiliary terminology. In Sect. 3, we provide our encoding algorithm achieving a
positive asymptotic rate for any fraction of errors τ < 1, which gives rise to our
main result, Theorem 1. An upper bound on the asymptotic rate is proposed in
Sect. 4. Finally, Sect. 5 concludes the paper.
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Fig. 2. Asymptotic rate of error-correcting codes for the Z-channel with noiseless
feedback.

2 Coding with Feedback

A transmission scheme with feedback enables the sender to choose his encoding
strategy in a way that makes use of the knowledge about previously received
symbols at the receiver. This is shown in Fig. 3. Let M denote the set of possible
messages. The sender chooses one of them, say m, which he wants to send to the
receiver.
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An encoding algorithm for a feedback channel of blocklength n is composed
of a set of functions

ci : M × {0, 1}i−1 → {0, 1}, i ∈ {1, . . . , n}.

The encoding algorithm is then constructed as

c(m, yn−1) = ((c1(m), c2(m, y1), . . . , cn(m, yn−1)), (1)

where yk := (y1, . . . , yk) with yi being the ith received symbol. Moreover, the set
of possible values for the received symbol yi conditioned on ci is defined by the
channel, in our case the Z-channel depicted in Fig. 1.

Suppose that at most t errors occur within a block of length n. For m ∈ M,
we define the set of output sequences for an encoding strategy by

Yn
t (m) := {yn ∈ {0, 1}n : yi ≤ ci(m, yi−1), dH(yn, c(m, yn−1) ≤ t} ,

where dH(a, b) denotes the Hamming distance between the sequences a and b.
Additionally, we denote the Hamming weight of a sequence a by wH(a).

SENDER CHANNEL RECEIVER� �

�
feedback

noise

�

Fig. 3. Channel with feedback

Definition 1. An encoding strategy (1) is called successful if
Yn

t (m1) ∩ Yn
t (m2) = ∅ for all m1,m2 ∈ M with m1 	= m2.

Definition 2. Let M(n, t) denote the maximum number of messages in M for
which there exists a successful encoding strategy. Such a strategy is said to be
optimal.

Definition 3. For any τ with 0 ≤ τ ≤ 1, we define the maximal asymptotic
rate of an optimal encoding strategy to be

R(τ) := lim sup
n→∞

log2(M(n, 
τn�))
n

.
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3 Lower Bound on R(τ )

In this section we give a successful encoding strategy for the Z-channel, achieving
an asymptotic rate R(τ) for any τ < 1. This gives a lower bound on the maximal
asymptotic rate of the Z-channel.

Theorem 1. For any τ , 0 ≤ τ ≤ 1, we have

R(τ) ≥ R(τ) := (1 + τ) − (1 + τ) log(1 + τ) + τ log τ.

At the start of the message transmission the receiver only knows the set
of possible messages M. The sender chooses a message m ∈ M. The goal of
an encoding strategy is to reduce the number of possible messages from the
receiver’s viewpoint until only one message m is left. The encoding algorithm
we provide divides the number of channel uses n into subblocks. Therefore, the
encoding procedure is potentially divided into several steps. We denote the set
of possible messages from the receiver’s perspective after the ith step as Mi+1

with Mi+1 = |Mi+1|, the number of remaining channel uses as ni+1 and the
maximal number of possible errors ti+1.

In the following the algorithm depicted in Fig. 4 is described. At every step,
the sender (as well as the receiver) checks the following two properties

ti = 0 (2)

and
|Mi| ≤ ni − ti + 1. (3)

Depending on which of them hold the sender chooses one out of three algorithms
for encoding. If both conditions (2)–(3) do not hold, then the sender makes use of
Partitioning Algorithm. This strategy tries to limit the set of possible messages
by dividing the message space into subsets and sending the index of the subset
containing the message. After this subblock transmission the sender and the
receiver examine the conditions (2)–(3) and check whether the encoding and
decoding strategies have to be adjusted for the remainder of the block.

If the property (2) is failed and the property (3) holds, then the sender uses
the Weight Algorithm for information transmission in the remaining channel
uses.

If the condition (2) is true, then the sender applies the Uncoded Algorithm
for information transmission in the remaining channel uses. Below we describe
the three algorithms required for our encoding strategy.

Partitioning Algorithm: This algorithm relies on the specific choice of positive
integers δ and p with δ > p. We partition the message space before the ith step
Mi into

(
δ
p

)
subsets Mi,k of almost equal sizes

Mi =
(δ

p)⋃

k=1

Mi,k.
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Initialisation: i = 0,
M0 = |M|, t0 = t, n0 = n

Message m ∈ M
number of errors ≤ t

blocklength n

ti = 0?

Mi ≤
ni−ti+1?

Uncoded
Algorithm

Weight
Algorithm

Partitioning Algorithm
ni+1 ← ni − δ
ti+1 ← ti − ei

Mi+1 ←
⌈

Mi

(δ
p)

⌉
δ−p+ei

ei

)
i ← i + 1

No

Yes

No

Yes

Fig. 4. Encoding algorithm for transmission over the Z-channel

The size of each group is either
⌈
Mi/

(
δ
p

)⌉
, or

⌊
Mi/

(
δ
p

)⌋
. The exact way in which

the message space is to be partitioned is to be agreed between the sender and
the receiver before the data transmission. Then the sender finds the index of the
group containing the message and transmit this index using a subblock of length
δ containing p ones. In this way the receiver can determine the number of errors
inflicted by the channel within this subblock by counting the number of ones.
There are p + 1 possible cases depending on the number of errors ei within the
respective subblock of the ith step.

If ei = p errors occur, the message space consistent with the outcome of the
channel is not changed and the receiver obtains the information that Mi+1 =
Mi, ni+1 = ni − δ and ti+1 = ti − p.

When ei < p errors occur, there are
(
δ−p+ei

ei

)
subsets of messages Mi,k that

are consistent with the outcome of the Z-channel. Mi+1 is then equal to the
union of these subsets. Therefore, the set of possible messages in accordance
with the received δ symbols is reduced and we have Mi+1 ≤

⌈
Mi/

(
δ
p

)⌉ (
δ−p+ei

ei

)
.

Moreover, the receiver and the sender obtain ni+1 = ni − δ and ti+1 = ti − ei.

Weight Algorithm: The sender would like to transmit a message m′ out of
a given set M′ using the channel n′ times. We order the messages within this
set by enumerating them: M′ = {m0,m1, . . . ,m|M′|−1}. The message m′ then
corresponds to one of the indices, say k. The sender transmits the symbol 1 over
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the channel until it has been received exactly k times. This happens at some
point if a sufficient amount of channel uses is considered because the number
of errors is limited. We denote this limit as t′. After that, the sender transmits
0-symbols which cannot be disturbed by the Z-channel. The receiver finds the
Hamming weight w of the received sequence and outputs the message mw. This
strategy is successful, i.e., mk = mw, if |M′| ≤ n′ − t′ + 1.

Uncoded Algorithm: We denote the ordered set of possible messages as M′ =
{m0,m1, . . . ,m|M′|−1}. The senders task is to send one of the messages, say mk

to the receiver by using the channel n′ times. In order to do so, it sends the
(standard) binary representation of the index k over the channel. This strategy
is successful if the sender is allowed to use the channel at least 
log2 M′� times.

Now we prove that for any proper choice of integers δ, p, k and t and real
ε > 0, the sender can have the message set M of size at least

⌈(
δ
p

)

ε

⌉
(1 − ε)k

(
δ
p

)k

(
δk−pk+t+p

t+p

) − 1

for n =
⌈(

δ
p

)
/ε

⌉
+ δk channel uses, having at most t errors. More formally, it is

shown in Lemma 1, which we prove in the full version of the paper [17].

Lemma 1. Let δ and p be positive integers such that p < δ and let t ≥ 0. Let
ε > 0 be fixed such that

γe := (1 − ε)

(
δ
p

)

(
δ−p+e

e

) > 1, ∀e ∈ {0, . . . , p − 1}.

We define γp := 1, M0 :=
⌈(

δ
p

)
/ε

⌉
and the set

S(k,t,p) :=

{

(k0, k1, . . . , kp) ∈ N
p+1
0 :

p∑

i=0

ki = k,

p∑

i=0

iki ≤ t + p

}

.

Then for any non-negative integers t and k such that δk ≥ t, we have

M(M0 + δk, t) ≥
⌊

M0 min
S(k,t,p)

p∏

e=0

γke
e

⌋

. (4)

In particular, it follows that

M(M0 + δk, t) ≥ M0

(1 − ε)k
(

δ
p

)k

(
δk−pk+t+p

t+p

) − 1. (5)

Remark 1. The set S(k,t,p) includes (k, 0, . . . , 0). Thus, the minimization in (4)
is well defined.
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Proof of Theorem 1. Let us fix some positive τ < 1. For any εR > 0 and small
enough ετ > 0, we shall prove the existence of a code of an arbitrary large
blocklength and code rate at least R(τ)−εR capable of correcting τ −ετ fraction
of errors.

In what follows, we vary positive integers k and δ with k > δ. Define t =

τkδ�, p = δ(1/2 + τ/2)�, M0 = 
(δ

p

)
/ε� and n = M0 + δk, where the real

parameter ε is fixed and satisfies

0 <ε <
1 − τ

2
≤ 1 − p/δ,

0 <R(τ) + log(1 − ε) − 3ετ . (6)

Let δ0 be such that for any δ ≥ δ0(ετ , τ) and k ≥ δ, we have
(

δ

p

)
≥ 2δ(h( 1+τ

2 )−ετ) (7)

and (
δk − pk + t + p

t + p

)
≤ 2δk 1+τ

2 (h( 2τ
1+τ )+ετ), (8)

where the binary entropy function h(x) := −x log(x) − (1 − x) log(1 − x). To
prove the existence of such δ0, we note that

lim
δ→∞

p

δ
= lim

δ→∞
δ(1/2 + τ/2)�

δ
=

1 + τ

2
,

and for k ≥ δ,

lim
δ→∞

t + p

δk − pk + t + p
=

2τ

1 + τ
,

and for any integers u > v ≥ 1, the binomial coefficient
(
u
v

)
satisfies

√
u

8v(u − v)
2uh(v/u) ≤

(
u

v

)
≤

√
u

2πv(u − v)
2uh(v/u). (9)

Then we take k0 = k0(δ, τ, ετ ) such that for any k ≥ k0, the fraction of errors

t

n
=

t

M0 + δk
≥ τ − ετ

and the blocklength
n = M0 + δk ≤ δk(1 + ετ )

and
(1 − ε)k

(
δ
p

)k

(
δk−pk+t+p

t+p

) ≥ 2.
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The latter can be achieved because of the choice of ε in (6) and large enough δ
in (7)–(8). By Lemma 1, there exists a feedback error-correcting code of block-
length n = M0 + δk and of size

M ≥ M0

(1 − ε)k
(

δ
p

)k

(
δk−pk+t+p

t+p

) − 1 ≥
(1 − ε)k

(
δ
p

)k

2
(
δk−pk+t+p

t+p

) , (10)

capable of correcting t errors when transmitted through the Z-channel. Thus,
combining (7)–(10) yields

R(τ − ετ ) ≥ log M

M0 + δk

≥
k log(1 − ε) + δk

(
h

(
1+τ
2

) − ετ − 1+τ
2 h

(
2τ
1+τ

)
− ετ

)
− 1

δk(1 + ετ )

= (1 + τ) log
(

2
1 + τ

)
+ τ log τ − εR,

where
εR ≤ − log(1 − ε) + 3ετ +

1
δk

.

As ε and ετ can be taken as small as needed and δ and k can be arbitrary large,
the statement of Theorem 1 follows. �

4 Upper Bound on R(τ )

In this section we establish an upper bound on the rate R(τ). This upper bound is
close to our lower bound for small values of τ . We make use of an approach similar
to the one in [11]. We take an encoding strategy and consider only messages
m ∈ M such that any output sequence in Yn

t (m) has a relatively large Hamming
weight. For those messages, it is possible to derive a good lower bound on the
size of Yn

t (m). The upper bound on the set of possible messages is then obtained
by a sphere-packing argument.

Theorem 2. For any τ , 0 < τ < 1, we have

R(τ) ≤ R(τ) := min
0≤τ ′≤τ

max
0≤r≤1,

h(v)≤1−vh
(
min

(
τ−τ′

v(1−τ′) , 12

))
r,

where v = v(r, τ ′) is a real number such that 0 ≤ v ≤ 1/2 and h(v)(1 − τ ′) = r.

Proof. We fix τ and τ ′ fulfilling the inequalities 0 ≤ τ ′ < τ ≤ 1 and define
t := τn and t′ := τ ′n. Denote R(τ) by r. Next we fix some ε > 0. We define
v ∈ [0, 1/2] as the unique real number that satisfies h(v)(1 − τ ′) = r − ε. We
define the set of output sequences of the encoding strategy when the encoder
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would like to transmit the message m and the channel output is zero for the first
t′ symbols to be

Yn
t,t′(m) := {yn ∈ Yn

t (m) : yi = 0 for i ∈ [t′]}.

For any real v with 0 ≤ v ≤ 1, let W (n, t′, v) denote the set of all binary words
xn that have xi = 0 for all i ≤ t′ and the Hamming weight at most v(n − t′).
For n → ∞, we have that the cardinality of W (n, t′, v − ε) is

|W (n, t′, v − ε)| =
(v−ε)(n−t′)∑

i=0

(
n − t′

i

)
≤ 2(n−t′)(h(v−ε)+o(1)),

where we make use of the inequality (9). Thus, there is a large enough n0 so
that |W (n, t′, v − ε)| is at most 2(n−t′)h(v)−1 for any n ≥ n0. By Definition 3,
there exists a sufficiently large integer n > n0 such that we have an encoding
function (1) for a set of messages M with |M| ≥ 2n(r−ε). For simplicity of
notation, we assume that (n − t′)(v − ε) is an integer and equal to n′. Define
the set of good messages, written as Mgood, that consists of m ∈ M such that
the Hamming weight of any yn ∈ Yn

t,t′(m) is at least n′. Since n ≥ n0, we
obtain that |Mgood| ≥ |M| − 2(n−t′)h(v)−1 ≥ 2(n−t′)h(v)−1, where we used the
fact h(v)(1 − τ ′) = r − ε. Now we prove that for any message m ∈ Mgood, the
size of Yn

t,t′(m) is uniformly bounded from below as follows

|Yn
t,t′(m)| ≥ max

0≤t̂≤min(t−t′,n′)

(
n′

t̂

)
.

Let
(
[a]
b

)
denote the set of all possible subsets of [a] of size b. To show the

above inequality, take an arbitrary t̂ with 0 ≤ t̂ ≤ min(t − t′, n′) and define the
mapping φ :

([n′]
t̂

) → Yn
t,t′(m) that takes an arbitrary subset {i1, . . . , it̂} ∈ ([n′]

t̂

)

with 1 ≤ i1 < i2 < . . . < it̂ ≤ n′ and outputs yn ∈ {0, 1}n defined as

yi :=

⎧
⎪⎨

⎪⎩

0 for i ∈ [t′],
ci(m, yi−1) for i ∈ J,

1 − ci(m, yi−1) o/w,

where J :=
t̂⋃

k=0

[jk + 1, jk+1 − 1], j0 := t′, jt̂+1 := n + 1 and for k ∈ [t̂], jk is

the smallest j so that the Hamming weight wH(yj−1, cj(m, yj−1)) = ik. One
can easily see that this yn belongs to Yn

t,t′(m) and for distinct {i1, . . . , it̂} 	=
{s1, . . . , st̂}, the outputs φ({i1, . . . , it̂}) and φ({s1, . . . , st̂) are different. As the
sets of output sequences are mutually disjoint, we conclude with

|Mgood| max
0≤t̂≤min(t−t′,n′)

(
n′

t̂

)
≤ 2n−t′

.
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As n can be taken arbitrary large, letting n → ∞ yields

(n − t′)h(v) + n′h
(

min
(

t − t′

n′ ,
1
2

))
+ o(n) ≤ n − t′.

Recall that n′ = (n − t′)(v − ε). Since the above inequality is true for any ε > 0,
we have

h(v) ≤ 1 − vh

(
min

(
τ − τ ′

v(1 − τ ′)
,
1
2

))
.

�

5 Conclusion

In this paper, we discussed a new family of error-correcting codes for the Z-
channel with noiseless feedback in the combinatorial setting. By providing an
explicit construction, we showed that the maximal asymptotic rate R(τ) is pos-
itive for any τ < 1. We believe that the lower bound on R(τ) presented in
Theorem 1 is tight for all τ . Another natural question to ask is whether the
channel capacity (probabilistic setting) of the Z-channel can be achieved by the
same encoding algorithm.
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Abstract. In this paper, we introduce a new problem of finding an
upward drawing of a given plane graph γ with a set P of paths so that
each path in the set is drawn as a poly-line that is monotone in the
y-coordinate. We present a sufficient condition for an instance (γ, P) to
admit such an upward drawing. We also present a linear-time algorithm
to construct such a drawing, which is straight-line for a simple graph, or
poly-line otherwise. Our results imply that every 1-plane graph admits
an upward drawing.

1 Introduction

Upward planar drawings of digraphs are well studied problem in Graph Draw-
ing [3]. In an upward planar drawing of a directed graph, no two edges cross and
each edge is a curve monotonically increasing in the vertical direction. It was
shown that an upward planar graph (i.e., a graph that admits an upward planar
drawing) is a subgraph of a planar st-graph and admits a straight-line upward
planar drawing [4,13], although some digraphs may require exponential area [3].
Testing upward planarity of a digraph is NP-complete [10]; a polynomial-time
algorithm is available for an embedded triconnected digraph [2].

Upward embeddings and orientations of undirected planar graphs were stud-
ied in [6]. Computing bimodal and acyclic orientations of mixed graphs (i.e.,
graphs with undirected and directed edges) is known to be NP-complete [14],
and upward planarity testing for embedded mixed graph is NP-hard [5]. Upward
planarity can be tested in cubic time for mixed outerplane graphs, and linear-
time for special classes of mixed plane triangulations [8].

A monotone drawing is a straight-line drawing such that for every pair of
vertices there exists a path that monotonically increases with respect to some
direction. In an upward drawing, each directed path is monotone, and such paths
are monotone with respect to the same (vertical) line, while in a monotone
drawing, each monotone path is monotone with respect to a different line in
general. Algorithms for constructing planar monotone drawings of trees and
biconnected planar graphs are presented [1].

Research supported by ARC Discovery Project. For omitted proofs, see [12].
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In this paper, we introduce a new problem of finding an upward drawing of a
given plane graph γ together with a set P of paths so that each path in the set is
drawn as a poly-line that is monotone in the y-coordinate. Let γ = (V,E, F ) be
a plane graph and D be an upward drawing of γ. We call D monotonic to a path
P of (V,E) if D is upward in the y-coordinate and the drawing induced by path
P is y-monotone. We call D monotonic to a set of paths P if D is monotonic to
each path in P. More specifically, we initiate the following problem.

Path-monotonic Upward Drawing
Input: A connected plane graph γ, a set P of paths of length at least 2 and two
outer vertices s and t.
Output: An (s, t)-upward drawing of γ that is monotonic to P.

We present a sufficient condition for an instance (γ,P) to admit an (s, t)-
upward drawing of γ that is monotonic to P for any two outer vertices s, t �∈
Vinl(P) (see Theorem 1). We also present a linear-time algorithm to construct
such a drawing, which is straight-line for a simple graph, or poly-line otherwise.

Then we apply the result to a problem of finding an upward drawing of a
non-planar embedding of a graph (Theorem2), and prove that every 1-plane
graph (i.e., a graph embedded with at most one crossing per edge) admits an
(s, t)-upward poly-line drawing (Corollary 1). Note that there is a 1-plane graph
that admits no straight-line drawing [17], and there is a 2-plane graph with three
edges that admits no upward drawing.

Figure 1(a) shows an instance (γ,P) with P = {P1 = (v6, u1, v2), P2 =
(v1, u1, v5), P3 = (v3, u2, v4), P4 = (v3, u3, u4, v9), P5 = (v11, u5, u4, v8), P6 =
(v10, u5, u3, v7), P7 = (v10, u6, u4, v7), P8 = (v12, u7, v14), P9 = (v10, u7, v13)}.
Figure 1(b) shows an (s, t)-upward drawing monotonic to P such that each path
is drawn as a poly-line monotone in the y-coordinate for s = v5 and t = v8.
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Fig. 1. (a) plane graph γ with a path set P and a cycle set C, where the edges in
paths in P (resp., cycles C) are depicted with black thick lines (resp., gray thick lines),
and the vertices in Vinl (resp., Vend and V \ Vinl ∪ Vend) are depicted with white circles
(resp., gray circles and white squares); (b) (s = v5, t = v8)-upward poly-line drawing
monotonic to P.
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2 Preliminaries

Graphs. In this paper, a graph stands for an undirected multiple graph without
self-loops. A graph with no multiple edges is called simple. Given a graph G =
(V,E), the vertex and edge sets are denoted by V (G) and E(G), respectively.

A path P that visits vertices v1, v2, . . . , vk+1 in this order is denoted by
P = (v1, v2, . . . , vk+1), where vertices v1 and vk+1 are called the end-vertices.
Paths and cycles are simple unless otherwise stated.

A path with end-vertices u, v ∈ V is called a u, v-path. A u, v-path that is
a subpath of a path P is called the sub-u, v-path of P . Denote the set of end-
vertices (resp., internal vertices) of all paths in a set P of paths by Vend(P)
(resp., Vinl(P)), which is written as Vend(P ) (resp., Vinl(P )) for P = {P}.

Let G be a graph with a vertex set V with n = |V | and an edge set E, and
NG(v) denote the set of neighbors of a vertex v in G. Let X be a subset of V ,
and G[X] denote the subgraph of G induced by the vertices in X. We denote by
NG(X) the set of neighbors of X; i.e., NG(X) = ∪v∈XNG(v) \ X. A connected
component H of G may be denoted with the vertex subset V (H) for simplicity.

For two distinct vertices a, b ∈ V , a bijection ρ : V → {1, 2, . . . , n} is called an
st-numbering if ρ(a) = 1, ρ(b) = n, and each vertex v ∈ V \{a, b} has a neighbor
v′ ∈ NG(v) with ρ(v′) < ρ(v) and a neighbor v′′ ∈ NG(v) with ρ(v) < ρ(v′′). It
is possible to find an st-numbering of a given graph with designated vertices a
and b (if one exists) in linear time using depth-first search [7,16]. A biconnected
graph admits an st-numbering for any specified vertices a and b.

Digraphs. Let G = (V,E) be a digraph. The indegree (resp., outdegree) of a
vertex v ∈ V in G is defined to be the number of edges whose head is v (resp.,
whose tail is v). A source (resp., sink ) is defined to be a vertex of indegree (resp.,
outdegree) 0. When G has no directed cycle, it is called acyclic. A digraph with
n vertices is acyclic if and only if it admits a topological ordering, i.e., a bijection
τ : V → {1, 2, . . . , n} such that τ(u) < τ(v) for any directed edge (u, v).

We define an orientation of a graph G = (V,E) to be a digraph ˜G = (V, ˜E)
obtained from the graph by replacing each edge uv in G with one of the directed
edge (u, v) or (v, u). A bipolar orientation (or st-orientation) of a graph is defined
to be an acyclic digraph with a single source s and a single sink t [9,15], where
we call such a bipolar orientation an (s, t)-orientation. A graph has a bipolar
orientation if and only if it admits an st-numbering. Figure 1(b) illustrates an
(s, t)-orientation for s = v5 and t = v8.

Lemma 1. For any vertices s and t in a biconnected graph G possibly with
multiple edges, an (s, t)-orientation ˜G of G can be constructed in linear time.

We call an orientation ˜G of G compatible to a set P of paths in G if each
path in P is directed from one end-vertex to the other in ˜G. The orientation in
Fig. 1(b) is compatible to the path set P.

Embeddings. An embedding Γ of a graph (or a digraph) G = (V,E) is a
representation of G (possibly with multiple edges) in the plane, where each
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vertex in V is a point and each edge e ∈ E is a curve (a Jordan arc) between the
points representing its end-vertices. We say that two edges cross if they have a
point in common, called a crossing, other than their endpoints.

To avoid pathological cases, standard non-degeneracy conditions apply: (i)
no edge contains any vertex other than its endpoints; (ii) no edge crosses itself;
(iii) no two edges meet tangentially; and (iv) two edges cross at most one point,
and two crossing edges share no end-vertex (where two edges may share the two
end-vertices). In this paper, we allow three or more edges to share the same
crossing. An edge that does not cross any other edge is called crossing-free.

Let Γ be an embedding of a graph (or digraph) G = (V,E). We call Γ a
poly-line drawing if each edge e ∈ E is drawn as a sequence of line segments.
The point where two consecutive line segments meet is called a bend. We call a
poly-line drawing a straight-line drawing if it has no bend.

We call a curve in the xy-plane y-monotone if the y-coordinate of the points
in the curve increases from one end of the curve to the other. We call Γ an
upward drawing if (i) there is a direction d to be defined as the y-coordinate
such that the curve for each edge e ∈ E is y-monotone; and (ii) when G is a
digraph, the head of e has a larger y-coordinate than that of the tail of e.

For two vertices s, t ∈ V , we call Γ an (s, t)-upward drawing if Γ is upward in
the y-coordinate and the y-coordinate of s (resp., t) in Γ is uniquely minimum
(resp., maximum) among the y-coordinates of vertices in Γ . Figure 1(b) shows
an example of an (s, t)-upward poly-line drawing with s = v5 and t = v8.

Plane Graphs. An embedding of a graph G with no crossing is called a plane
graph and is denoted by a tuple (V,E, F ) of a set V of vertices, a set E of edges
and a set F of faces. We call a plane graph pseudo-simple if it has no pair of
multiple edges e and e′ such that the cycle formed by e and e′ encloses no vertex.

Let γ = (V,E, F ) be a plane graph. We say that two paths P and P ′ in γ
intersect if they are edge-disjoint and share a common internal vertex w, and the
edges uw and wv in P and u′w and wv′ in P ′ incident to w appear alternately
around w (i.e., in one of the orderings u, u′, v, v′ and u, v′, v, u′).

Let C be a cycle in γ. Define Venc(C; γ), Eenc(C; γ) and Fenc(C; γ) to be
the sets of vertices v ∈ V \ V (C), edges e ∈ E \ E(C) and inner faces f ∈ F
that are enclosed by C. The interior subgraph γ[C]enc induced from γ by C is
defined to be the plane graph (V (C)∪Venc(C; γ), E(C)∪Eenc(C; γ), Fenc(C; γ)∪
{fC}), where fC denotes the new outer face whose facial cycle is C. The exterior
subgraph induced from γ by C is defined to be the plane graph (V \Venc(C; γ), E\
Eenc(C; γ), F ∪ {fC} \ Fenc(C; γ)), where fC denotes the new inner face whose
facial cycle is C. Note that when γ is biconnected, the graph γ[C]enc remains
biconnected, since every two vertices u, v ∈ V \ Venc(C; γ) have two internally
disjoint paths without using edges in Eenc(C; γ).

We say that two cycles C and C ′ in γ intersect if Fenc(C; γ) \ Fenc(C ′; γ) �=
∅ �= Fenc(C ′; γ) \ Fenc(C; γ). Let C be a set of cycles in γ. We call C inclusive
if no two cycles in C intersect. When C is inclusive, the inclusion-forest of C is
defined to be a forest I = (C, E) of a disjoint union of rooted trees such that (i)
the cycles in C are regarded as the vertices of I; and (ii) a cycle C is an ancestor
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of a cycle C ′ in I if and only if Fenc(C ′; γ) ⊆ Fenc(C; γ). Let I(C) denote the
inclusion-forest of C.

An st-planar graph is defined to be a bipolar orientation of a plane graph for
which both the source and the sink of the orientation are on the outer face of
the graph. A directed acyclic graph G has an upward planar drawing if and only
if G is a subgraph of an st-planar graph [4,13]. Every st-planar graph can have
a dominance drawing [3], in which for every two vertices u and v there exists
a path from u to v if and only if both coordinates of u are smaller than the
corresponding coordinates of v. The following result is known.

Lemma 2. [3] (i) Every simple st-planar graph admits an upward straight-line
drawing;
(ii) Every st-planar graph with multiple edges admits an upward poly-line draw-
ing, where each multiple edge has at most one bend; and
(iii) Such a drawing in (i) and (ii) can be constructed in linear time.

We see that (ii) follows from (i) by subdividing each multiple directed edge
(u, v) into a directed path (u,w, v) with a new vertex w to obtain a simple
st-planar graph. Figure 1(b) illustrates an example of an st-planar graph.

3 Path-Monotonic Upward Drawing

When a plane graph γ has a pair of multiple edges e and e′ that encloses no
vertex in the interior, we can ignore one of these edges (say e′) to find an upward
drawing of γ, because we can draw e′ along the drawing of e in any upward
drawing of the resulting plane graph. In what follows, we assume that a given
plane graph is pseudo-simple.

We say that two paths P and P ′ in a plane graph γ are 1-independent if they
intersect at a common internal vertex and have no other common vertex; or they
have no common vertex that is an internal vertex of one of them (where they
may share at most two vertices that are end-vertices to both paths). We call a
set P of paths in γ 1-independent if any two paths in P are 1-independent.

In this paper, we present a sufficient condition for an instance (γ,P) to
admit an (s, t)-upward drawing of γ that is monotonic to P for any two outer
vertices s, t �∈ Vinl(P). We also present a linear-time algorithm to construct such
a drawing. The main contribution of this paper is summarized in the following
main theorem.

Theorem 1. Let γ = (G = (V,E), F ) be a pseudo-simple connected plane graph
and P be a set of paths of length at least 2 in G, where Vinl denotes the set of
internal vertices in paths in P. If the following conditions hold, then any pair
of outer vertices s, t �∈ Vinl admits an (s, t)-upward (straight-line, if γ is simple)
drawing D monotonic to P, which can be computed in linear time:
(i) P is 1-independent; and
(ii) There is no pair of a path P ∈ P and a cycle K with |V (K) \ Vinl| ≤ 1
such that K encloses an end-vertex of P and the internal vertices of P and the
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vertices in V (K) ∩ Vinl belong to the same component of the subgraph G[Vinl]
induced from G by Vinl.

We assume that the boundary of γ forms a cycle Co such that V (Co)∩Vinl =
∅; if necessary, add two new outer edges es,t and e′

s,t joining the two outer vertices
s and t to form a new outer facial cycle Co of length 2. In what follows, we assume
that the boundary of a given connected planar graph γ forms a cycle.

We prove Theorem 1 by showing that every instance satisfying the condi-
tions of the theorem admits an (s, t)-orientation compatible to P, which implies
that the instance admits an (s, t)-upward straight-line (resp., poly-line) drawing
monotonic to P by Lemma 2. To prove the existence of such an (s, t)-orientation
compatible to P, we show that Theorem 1 is reduced to the following case.

Lemma 3. Let γ = (G = (V,E), F ) be a pseudo-simple connected plane graph
and P be a set of paths of length at least 2 in G, where Vinl denotes the set of
internal vertices in paths in P. If the following conditions hold, then any pair
of outer vertices s, t �∈ Vinl admits an (s, t)-orientation γ̃ of γ compatible to P,
which can be computed in linear time:

(i) P is 1-independent; and
(ii) For the set {Vi ⊆ Vinl | i = 1, 2, . . . , p} of components in G[Vinl] and

the partition {Pi | i = 1, 2, . . . , p} of P such that Vinl(Pi) ⊆ Vi, there exists
an inclusive set C = {C1, C2, . . . , Cp} of edge-disjoint cycles such that, for each
i = 1, 2, . . . , p, Vi ⊆ Venc(Ci; γ) and Vend(Pi) ⊆ V (Ci) ⊆ V \ Vinl.

The instance in Fig. 1(a) has three components V1 = {u1, u2}, V2 =
{u3, u4, u5, u6} and V3 = {u7} in G[Vinl]. The instance admits a cycle set
C = {C1 = (v1, v2, w4, v3, v4, v5, v6), C2 = (v3, v7, v8, v9, w5, v10, v11, w6), C3 =
(v10, v12, v13, v14)}, which satisfies the condition of Lemma 3. Figure 1(b) illus-
trates an (s, t)-orientation γ̃ of γ in Fig. 1(a) that is compatible to P.

We prove in Sect. 5 that a given instance of Theorem 1 can be augmented to
a plane graph so that the condition of Lemma3 is satisfied.

4 Bipolar Orientation on Plane Graphs

This section presents several properties on bipolar orientations in plane graphs,
which will be the basis to our proof of Lemma3. Let g : V → R be a vertex-
weight function in a graph G = (V,E), where R denote the set of real numbers.
We say that g is bipolar (or (a, b)-bipolar) to a subgraph G′ = (V ′, E′) of G
if (i) g(u) �= g(v) for the end-vertices u and v of each edge e = uv ∈ E′; (ii)
V ′ contains a vertex pair (a, b) such that g(a) < g(v) < g(b) for all vertices
v ∈ V ′ \ {a, b}; and (iii) each vertex v ∈ V ′ \ {a, b} has a neighbor u ∈ NG′(v)
with g(u) < g(v) and a neighbor w ∈ NG′(v) with g(v) < g(w).

Observe that an (a, b)-bipolar function g to a graph G is essentially equivalent
to an st-numbering of G in the sense that it admits an st-numbering σ : V (G) →
{1, 2, . . . , |V (G)|} of G such that σ(a) = 1, σ(b) = |V (G)| and σ(u) < σ(v) holds
for any pair of vertices u, v ∈ V with g(u) < g(v). We observe that any bipolar
function in a plane graph is bipolar to every cycle in the next lemma.
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Fig. 2. (a) mesh graph η2 = (C2, P2) induced from the instance γ in Fig. 1(a) with cycle
C2; an instance satisfying the condition of Lemma 3: (b) (s2 = v11, t2 = v8)-orientation

σ̃(μ2) of the split mesh graph σ(μ2); (c) sun augmentation γ∗.

Lemma 4. For a biconnected graph G = (V,E), let g : V → R be a function
(s, t)-bipolar to G. If G admits a plane graph γ = (V,E, F ), then the boundary
of each face f ∈ F forms a cycle Cf and g is bipolar to Cf .

The next lemma states that a bipolar orientation of a plane graph can be
obtained from bipolar orientations of the interior and exterior subgraphs of a
cycle.

Lemma 5. For a biconnected plane graph γ = (V,E, F ) and a cycle C of the
graph (V,E), let γC (resp., γC) denote the interior (resp., exterior) subgraph of
γ by C. For two outer vertices s and t of γ, let γ̃C be an (s, t)-orientation of γC .
Then the orientation ˜C restricted from γ̃C to C is an (a, b)-orientation of C for
some a, b ∈ V (C), and for any (a, b)-orientation γ̃C of γC , the orientation γ̃ of
γ obtained by combining γ̃C and γ̃C is an (s, t)-orientation of γ.

We now examine a special type of instances of Lemma 3.

Mesh Graph. A mesh graph is defined to be a pair μ = (γ,P) of a biconnected
plane graph γ = (V,E, F ) and a 1-independent set P of paths in the graph
(V,E) such that (i) γ consists of an outer facial cycle C and the paths in P; and
(ii) each path P ∈ P ends with vertices in C and has no internal vertex from C,
where V = V (C) ∪ ⋃

P∈P V (P ) and E = E(C) ∪ ⋃

P∈P E(P ). We may denote
a mesh graph (γ,P) with an outer facial cycle C by μ = (C,P). Figure 2(a)
illustrates an example of a mesh graph.

Let μ = (γ = (V,E, F ),P) be a mesh graph with an outer facial cycle C.
To find an orientation of μ compatible to P, we treat each u, v-path P ∈ P as
a single edge eP = uv, which we call the split edge of P . The split mesh graph
is defined to be the graph σ(μ) obtained from μ by replacing each path P ∈ P
with the split edge eP ; i.e., σ(μ) = (V (C), E(C) ∪ {eP | P ∈ P}).

Let ˜σ(μ) be an orientation of the split mesh graph σ(μ). We say that ˜σ(μ)
induces an orientation μ̃ of μ if each u, v-path P ∈ P is directed from u to v

in μ̃ when eP is a directed edge (u, v) in ˜σ(μ). Clearly μ̃ is compatible to P.
Figure 2(b) illustrates an (s, t)-orientation of the split mesh graph.
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The next lemma states that an (s, t)-orientation of a mesh graph compatible
to P can be obtained by computing an (s, t)-orientation of the split mesh graph.

Lemma 6. For a mesh graph μ and an (s, t)-orientation ˜σ(μ) of the split mesh
graph σ(μ), the orientation μ̃ of μ induced by ˜σ(μ) is an (s, t)-orientation of μ.

5 Coating and Confiner

To prove that Theorem 1 implies Lemma 3, this section gives a characterization
of a plane graph that can be augmented to a plane graph such that specified
vertices are contained in some cycles. Let γ = (G = (V,E), F ) be a plane graph.

We call an inclusive set C = {C1, C2, . . . , Cp} of edge-disjoint cycles in γ
a coating of a family X = {X1,X2, . . . , Xp} of subsets of V if for each i =
1, 2, . . . , p, V (Ci) ∩ X = ∅ and Venc(Ci; γ) ⊇ Xi. We say that a coating C =
{C1, C2, . . . , Cp} of X covers a given family {Y1, Y2, . . . , Yp} of vertices if V (Ci) ⊇
Yi for each i = 1, 2, . . . , p.

For disjoint subsets S, T ⊆ V in γ such that the subgraph G[S] induced by
S is connected, we call a cycle K of G an (S, T )-confiner if |V (K) \ S| ≤ 1 and
the interior vertex set Venc(K; γ) of K contains some vertex t ∈ T .

A plane augmentation of a plane graph γ = (V,E, F ) is defined to be a plane
embedding γ∗ = (V ∗, E∗, F ∗) of a supergraph (V ∗, E∗) of (V,E) such that the
embedding obtained from γ∗ by removing the additional vertices in V ∗ \ V and
edges in E∗ \ E is equal to the original embedding γ.

Sun Augmentation. Let γ = (V,E, F ) be a pseudo-simple connected plane
graph such that the outer boundary is a cycle. We introduce sun augmentation,
a method of augmenting γ into a pseudo-simple biconnected plane graph by
adding new vertices and edges in the interior of some inner faces of γ.

For an inner face f ∈ F , let Wf = (v1, v2, . . . , vp) denote the sequence of
vertices that appear along the boundary in the clockwise order, where p ≥ 3
since γ is pseudo-simple. For each inner face f ∈ F :

(i) create a new cycle C∗
f = (v′

1, v
′
2, . . . , v

′
p) with p new vertices v′

i, i = 1, 2, . . . , p
in the interior of f so that the facial cycle of f encloses C∗

f ; and
(ii) join each vertex vi, i = 1, 2, . . . , p with v′

i and v′
i+1 with new edges e′

i = viv
′
i

and e′′
i = viv

′
i+1, where we regard v′

p+1 as v′
1; We call the new face whose

set consists of the p new edges e′
i, i = 1, 2, . . . , p a core face and call a vertex

along a core face a core vertex.

Figure 2(c) illustrates how the sun augmentation γ∗ is constructed.
The next lemma characterizes when a plane graph with two vertex subsets X

and Y can be augmented such that a set of cycles contains vertices in Y without
visiting any vertex in X.

Lemma 7. For a pseudo-simple connected plane graph γ = (G = (V,E), F )
such that the boundary forms a cycle Co and a subset X ⊆ V \V (Co), let {Xi ⊆
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X | i = 1, 2, . . . , p} denote the set of components in G[X] and Yi ⊆ NG(Xi),
i = 1, 2, . . . , p be subsets of V , where possibly Yi ∩ Yj �= ∅ for some i �= j.

Then γ contains no (Xi, Yi)-confiner for any i = 1, 2, . . . , p if and only
if the sun augmentation γ∗ = (V ∗, E∗, F ∗) of γ contains a coating C of
{X1,X2, . . . , Xp} that covers {Y1, Y2, . . . , Yp}. Moreover the following can be
computed in linear time: (i) Testing whether γ contains an (Xi, Yi)-confiner
for some i = 1, 2, . . . , p; and (ii) Finding a coating C of {X1,X2, . . . , Xp}
that covers {Y1, Y2, . . . , Yp} in γ∗ when γ contains no (Xi, Yi)-confiner for any
i = 1, 2, . . . , p.

We show how the assumption in Lemma 3 is derived from the assumption
of Theorem 1 using Lemma 7. Let {Vi ⊆ Vinl | i = 1, 2, . . . , p} denote the set of
components in G[Vinl] and Pi, i = 1, 2, . . . , p denote the partition of P such that
Vinl(Pi) ⊆ Vi. We apply Lemma 7 to the plane graph γ in Theorem 1 by setting
X := Vinl, Xi := Vi and Yi := Vend(Pi), i = 1, 2, . . . , p. Note that X ⊆ V \V (Co).
We show from the assumption in Theorem 1 that γ has no (Xi, Yi)-confiner for
any i = 1, 2, . . . , p.

To derive a contradiction, assume that γ has an (Xi, Yi)-confiner K for some
i ∈ {1, 2, . . . , p}, where Venc(K; γ) of K contains an end-vertex y ∈ Yi = Vend(Pi)
of some path P ∈ Pi. Since |K| ≥ 2 and |K \ Xi| ≤ 1, K contains a vertex
v ∈ K ∩ Xi. Now vertex v and the internal vertices of P belong to the same
component G[Xi] = G[Vi] of G[X] in γ. This contradicts the assumption in
Theorem 1. Hence the condition of Lemma 7 holds and the sun augmentation
γ∗ of γ admits a coating C = {C1, C2, . . . , Cp} of {Xi = Vi | i = 1, 2, . . . , p}
that covers {Yi = Vend(Pi) | i = 1, 2, . . . , p}. We see that such a set C of cycles
satisfies the condition of Lemma 3.

6 Algorithmic Proof

This section presents an algorithmic proof to Lemma 3.
For a pseudo-simple biconnected plane graph γ = (V,E, F ) and a 1-

independent set P of paths of length at least 2, we are given a partition
{Pi | i = 1, 2, . . . , p} of P and an inclusive set C = {C1, C2, . . . , Cp} of edge-
disjoint cycles that satisfy the condition of Lemma3. For the instance (γ,P, C) in
Fig. 1(a), we obtain P1 = {P1, P2, P3}, P2 = {P4, P5, P6, P7}, P3 = {P8, P9} and
C = {C1 = (v1, v2, w4, v3, v4, v5, v6), C2 = (v3, v7, v8, v9, w5, v10, v11, w6), C3 =
(v10, v12, v13, v14)}.

Let I = (C, E) denote the inclusion-forest of C, and Ch(C) denote the set of
child cycles C ′ of each cycle C ∈ C in I, where the cycle C is called the parent
cycle of each cycle C ′ ∈ Ch(C). We call a cycle C ∈ C that has no parent cycle
a root cycle in C, and let Crt denote the set of root cycles in C. For a notational
simplicity, we assume that the indexing of C1, C2, . . . , Cp satisfies i < j when Ci

is the parent cycle of Cj .
Based on the inclusion-forest I, we first decompose the entire plane graph γ

into plane subgraphs γi, i = 0, 1, . . . , p as follows. Define γ0 to be the plane graph
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γ − ∪C∈Crt(Venc(C; γ) ∪ Eenc(C; γ)) obtained from γ by removing the vertices
and edges in the interior of root cycles C ∈ Crt. For each i = 1, 2, . . . , p, define
γi to be the plane graph γ[Ci]enc − ∪C∈Ch(Ci)(Venc(C; γ) ∪ Eenc(C; γ)) obtained
from the interior subgraph γ[Ci]enc by removing the vertices and edges in the
interior of child cycles C of Ci.

For each cycle Ci, i = 1, 2, . . . , p, we consider the mesh graph μi = (Ci,Pi),
where μi is a plane subgraph of γi. For each inner face f of μi, we consider the
interior subgraph γi[Cf ]enc of the facial cycle Cf of f in γi, where we call an inner
face f of μi trivial if Cf encloses nothing in γi; i.e., Venc(Cf ; γi)∪Eenc(Cf ; γi) = ∅.
Let F (μi) denote the set of non-trivial inner faces f of μi.

We determine orientations of subgraphs γi by an induction on i = 0, 1, . . . , p.
For specified outer vertices s, t ∈ V (Co) \ Vinl, compute an (s, t)-orientation γ̃0
of γ0 using Lemma 1. Consider the plane subgraph γi with i ≥ 1, where we
assume that a bipolar orientation γ̃j of γj has been obtained for all j < i. Let
k denote the index of the parent cycle Ck of Ci or k = 0 if Ci is a root cycle,
where a bipolar orientation γ̃k of γk has been obtained. In γ̃k, cycle Ci forms an
inner facial cycle and the orientation restricted to the facial cycle Ci is a bipolar
orientation, which is an (si, ti)-orientation ˜Ci for some vertices si, ti ∈ V (Ci) by
Lemma 4. We determine an (si, ti)-orientation of γi as follows:
Step (a): Compute an (si, ti)-orientation μ̃i of the mesh graph μi = (Ci,Pi);
Step (b): Extend the orientation μ̃i to the interior subgraph γi[Cf ]enc of each
non-trivial inner face f ∈ F (μi).
At Step (a), we compute an (si, ti)-orientation σ̃(μi) of the split mesh graph
σ(μi) to obtain an (si, ti)-orientation μ̃i using Lemma 6. For Step (b), we observe
that orientation μ̃i is (sf , tf )-bipolar to the facial cycle Cf of f for some ver-

tices sf , tf ∈ V (Cf ) by Lemma 4. We compute an (sf , tf )-orientation ˜γi[Cf ]enc
of the interior subgraph γi[Cf ]enc induced from γi by Cf using Lemma 1. An
(si, ti)-orientation of γi is obtained from the (si, ti)-orientation μ̃i and (sf , tf )-

orientations ˜γi[Cf ]enc for all inner faces f ∈ F (μi).
We repeat the above procedure until i = p. Finally construct an orientation

γ̃ of γ by combining bipolar orientations γ̃i of γi, i = 0, 1, . . . , p. By Lemma 5,
γ̃ is an (s, t)-orientation, which is compatible to P by the construction of γ̃.
This proves the correctness of our algorithm for computing an (s, t)-orientation
γ̃ compatible to P.

The inclusion-forest of an inclusive set C of edge-disjoint cycles can be con-
structed in linear time [11]. Constructing all plane subgraphs γi and face sets
F (μi), i = 1, 2, . . . , p can be done in linear time, since we can find them such
that each edge in γ is scanned a constant number of times. We see that a bipolar
orientation of mesh graph μi or subgraph γi can be computed in time linear
to the size of the graph by Lemmas 1 and 6. The total size of these graphs μi,
i = 1, 2, . . . , p and γi, i = 0, 1, . . . , p is bounded by the size of input graph γ.
Therefore the algorithm can be executed in linear time. This proves Lemma 3.

Figure 3 shows an execution of the algorithm applied to the instance (γ,P, C)
in Fig. 1(a). Figures 3(b), (c) and (f) show mesh graphs μ1, μ2 and μ3,
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Fig. 3. (a) An (s = v5, t = v7)-orientation γ̃0 of γ0; (b) Mesh graph μ1 = (C1, P1),
where C1 is directed as an (s1 = v5, t1 = v1)-orientation; (c) Mesh graph μ2 = (C2, P2),
where C2 is directed as an (s2 = v11, t2 = v8)-orientation; (d) Subgraph γ1 with an
(s1, t1)-orientation μ̃1 of μ1; (e) Subgraph γ2 with an (s2, t2)-orientation μ̃2 of μ2; (f)
Mesh graph μ3 = (C3, P3), where C3 is directed as an (s3 = v10, t3 = v13)-orientation;
(e) Subgraph γ3 with an (s3, t3)-orientation μ̃3 of μ3.

respectively for the instance in Fig. 1(a), where Crt = {C1, C2}, Ch(C1) = ∅,
Ch(C2) = {C3}, F (μ1) = {f1} (Cf1 = (v5, u1, v2, w4, v3, u2, v4)), F (μ2) =
{f2, f3} (Cf2 = (v10, u5, u4, u6), Cf3 = (v10, u6, u4, v9, w5)), F (μ3) = {f4}
(Cf4 = (v12, v13, v14)). Figures 3(a), (d), (e) and (g) show subgraphs γ0, γ1,
γ2 and γ3, respectively for the instance in Fig. 1(a). Figure 1(b) shows an (s, t)-
orientation of the instance γ in Fig. 1(a).

7 Upward Drawing of a Non-planar Embedding

Let Γ be a non-planar embedding of a graph G, and E∗ denote the set of crossing
edges. We define a crossing-set to be a maximal subset E′ ⊆ E∗ such that every
two edges e, e′ ∈ E′ admit a sequence of edges e1, e2, . . . , ep, where e1 = e,
ep = e′ and edges ei and ei+1 cross for each i = 1, 2, . . . , p − 1. Observe that E∗

is partitioned into disjoint crossing-sets E∗
1 , E∗

2 , . . . , E∗
p .

Let E∗
i be a crossing-set, and Γ [E∗

i ] denote the plane graph induced from Γ
by the edges in E∗

i , where Γ [E∗
i ] is connected. We call E∗

i outer if the end-vertices
of edges in E∗

i appear as outer vertices along the boundary of Γ [E∗
i ].

We apply Lemma 3 to the problem of finding an upward drawing of a non-
planar embedding of a graph, and prove the following results.
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Theorem 2. Let Γ be a non-planar embedding of a graph G such that each
crossing-set is outer, and let nc denote the number of crossings in Γ . Then for
any pair of outer vertices s and t in Γ , there is an (s, t)-upward drawing of Γ ,
and an upward poly-line drawing of Γ with O(n + nc) bends can be constructed
in O(n + nc) time and space, where n = |V (G)|.

Thomassen [17] showed that there are two forbidden subgraphs for a 1-plane
graph (i.e., graph can be embedded at most one crossing per edge) to admit a
straight-line drawing. Theorem2 implies the following.

Corollary 1. Every 1-plane graph admits an (s, t)-upward poly-line drawing for
any outer vertices s and t, where each edge has at most one bend. Such a drawing
can be constructed in linear time.
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Abstract. We propose a conceptually simple, yet very effective exten-
sion of the highly popular Contraction Hierarchies (CH) speedup tech-
nique improving query times for shortest paths in road networks by one
order of magnitude with very modest space overhead. Using our scheme
we are able to answer queries on continental-sized road networks with
more than half a billion edges in the microseconds range on standard
workstation hardware. Previous approaches that are considerably faster
than CH were only for shortest path distance queries (recovering the
actual path required additional effort and space) or suffered from humon-
gous space consumption hindering their practicality for large real-world
road networks. Our approach can be interpreted as a seamless interpo-
lation between Contraction Hierarchies and Hub Labels.

Keywords: Route planning · Contraction hierarchies · Hub labelling

1 Introduction

Computing the optimal path between given source and destination in a road
network is not only the crucial primitive for well-known web-based or mobile
navigation applications, but also the foundation of many more complex prob-
lems in transportation, logistics, or facility location. Without any preprocessing,
Dijkstra’s algorithm and slight variations of it are still considered state-of-the-
art. Yet, with response times in the range of seconds on a country-sized network
of around 20 million nodes, Dijkstra’s variants are neither an option for web-
services nor as subroutine in logistics applications.

This need for fast distance and shortest path queries in road networks has
spurred astonishing progress in that area within the last 10–15 years. Here,
the key idea is to first invest some time in a preprocessing phase computing
auxiliary information about the network such that subsequent queries can be
answered orders of magnitudes faster than plain Dijkstra’s algorithm without
compromising optimality of the result.
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Amongst the first breakthrough results are techniques like reach [13], highway
hierarchies [17] or arc flags [8]. All these techniques are based on a very aggres-
sive pruning of the Dijkstra search space. Probably the most frequently used
graph search pruning techniques in practice (e.g., used at Google or the Open
Source Routing Machine OSRM [16]) are contraction hierarchies (CH) [12]. CH
preprocessing on a country-sized network can typically be performed in few min-
utes and produces compact auxiliary information that allow path queries to be
answered below one millisecond instead of seconds for Dijkstra’s algorithm – an
improvement of three orders of magnitude. But even faster techniques have been
developed, if the main focus is on computing distances rather than the actual
paths. Transit nodes [4,6,7] and hub-labels [2,3,14] allow for the exact answering
of distance queries within few microseconds – another three orders of magnitudes
faster. These methods abandon the paradigm of pruning the graph search and
reduce the distance computation to few lookups in cleverly constructed distance
arrays and tables – hence they are also sometimes called distance oracles. In
practice, these approaches are often less attractive, though, due to their space
consumption and their focus on distance queries. If the actual path is to be
recovered, some additional time and space has to be invested.

The goal of this work is to bridge the gap between the ultrafast distance
oracles and the slower pruned graph search based methods. In particular, we are
interested in methods that have very small space overhead (compared to the size
of the original network itself) and allow the easy retrieval of the optimal path
like the methods based on pruned graph search. Yet, we want at least one order
of magnitude speedup compared to approaches like CH.

1.1 Related Work

The idea of reach [13] is to associate with each edge e the length of the longest
optimal path where e appears somewhere ‘close to the middle’. Then during Dijk-
stra search from s to t edges of small reach can be discarded as long as source and
target are far away from the current node under consideration. Combined with
other ideas this allows for query times in the milliseconds range for country-sized
road networks. Contraction Hierarchies [12] are created by repeated removal of
nodes and inserting appropriate shortcut edges not to affect distances within the
network. Which node to remove next is typically guided by some local heuristic
(e.g. minimizing the number of inserted shortcuts), Making use of the shortcuts
and the contraction order allows for query times around one millisecond. We
will explain CH in more detail in Sect. 2. Highway Hierarchies [17] and Highway
node routing [19] are based on similar ideas, but superseded by CH. CH has also
been combined with other techniques, e.g., with arc flags in [9].

One of the first lookup based techniques was transit node routing. Here the
idea is to identify a small set T of important nodes in the network, such that
every ‘long’ optimal path contains at least one of these so-called transit nodes.
In a preprocessing step, all pairwise distances between nodes in T are computed
and stored, and for each node v in the network, all transit nodes encountered
first on an optimal path starting from v are determined and stored (with their
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distance to v) as its access nodes A(v). For a query from s to t, one first has to
decide whether the result will be a ‘long’ path. If so, the optimal distance can be
determined by inspecting the (typically very small) access node sets A(s) and
A(t) and their respective precomputed distances. If not, some backup scheme
(e.g. CH) has to be used to determine the distance between s and t. Early incar-
nations of transit node routing like [7] employed a geometric notion of ‘long’,
later, more efficient incarnations like [4] use more sophisticated notions which
also required clever data structures (locality filters) to decide whether a query is
‘long’. In any case, for ‘long’ paths it is not obvious at all how to not only return
distances but actual paths without incurring a considerable overhead in time
and space. Furthermore, there is the oddity that ‘long’ distances are typically
returned much faster than ‘short’ distances via the local backup scheme. Nev-
ertheless, for random source target queries, one can expect query times in the
microseconds range. The other lookup based technique of hub labels (HL) [2] will
be explained in more detail in Sect. 2. It also offers query times in the microsec-
onds range but also at the cost of a very high space consumption and distance-
only results. There has been considerable work on improving HL. For example,
in [11], the authors have studied compression schemes to decrease the massive
space requirements. In [15] different (hierarchical) HL construction schemes were
discussed and evaluated (also on other graphs than road networks) and consid-
erable improvements could be shown. Work along these lines is orthogonal to
our results, though, as it could well be integrated with our scheme. See [5] for a
comprehensive survey on the topic of route planning in transportation networks.

1.2 Contribution and Outline

In this paper we present a very simple and almost seamless interpolation between
hub labels and contraction hierarchies. Depending on the additional space avail-
able, our scheme behaves more like hub labels (very fast, considerable space
overhead) or more like contraction hierarchies (slower, little space overhead).
Investing less space than that used by the original road network, we still obtain
one order of magnitude of speedup compared to CH for continental-sized road
networks with more than half a billion edges. Our scheme not only outputs
distances but also paths in compressed CH representation. After recapitulating
basics of CH as well as a CH-based HL, we show how to combine HL and CH to
obtain a fast, space efficient, and extremely simple query scheme. We conclude
with an experimental evaluation on continental-sized real-world road networks.

2 Preliminaries: Contraction Hierarchies and Hub Labels

Contraction Hierarchies. The contraction hierarchies approach [12] computes
an overlay graph in which so-called shortcut edges span large sections of shortest
paths. This reduces the hop length of optimal paths and therefore allows a variant
of Dijkstra’s algorithm to answer queries more efficiently.

The preprocessing is based on the so-called node contraction operation. Here,
a node v as well as its adjacent edges are removed from the graph. In order not
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to affect shortest path distances between the remaining nodes, shortcut edges
are inserted between neighbors u,w of v, if and only if uvw was a shortest path
(which can easily be checked via a Dijkstra run). The cost of the new shortcut
edge (u,w) is set to the summed costs of (u, v) and (v, w). During preprocessing
all nodes are contracted in some order. The level of a node is the rank of a
node in this order. In practice, simultaneous contraction of non-adjacent nodes
is highly recommended, hence many nodes might have the same level.

Having contracted all nodes, the new graph G+(V,E+) contains all original
nodes and edges of G and additionally all shortcuts inserted during the contrac-
tion process. An edge e = (v, w) – original or shortcut – is called upward, if the
level of v is smaller than that of w, and downwards otherwise. By construction,
the following holds: For every pair of nodes s, t ∈ V , there exists a shortest
path in G+ composed of a sequence of upward edges followed by a sequence of
downwards edges. This property allows to search for the optimal path with a
bidirectional Dijkstra only considering upward edges in the search starting at s,
and only downwards edges in the reverse search starting in t. This reduces the
search space significantly and allows for query answering within the millisecond
range compared to seconds for Dijkstra. Note that bidirectional Dijkstra search
immediately yields a compact, compressed representation of the optimal path,
which can be easily decompressed to the desired level by recursively replacing
shortcuts by the edges they replaced during the contraction phase.

CH-Based Hub Labels. Hub Labelling [10] is a scheme to answer shortest
path distance queries which differs fundamentally from graph search based meth-
ods. Here the idea is to compute for every v ∈ V a label L(v) such that for given
s, t ∈ V the distance between s and t can be determined by just inspecting
the labels L(s) and L(t). All the labels are constructed in a preprocessing step
(based on the graph G), later on, G can even be thrown away. There are different
approaches to compute such labels; we will be concerned with labels that work
well for road networks and are based on CH, following the ideas in [3]. The labels
we are constructing have the following form:

L(v) = {(w, d(v, w)) : w ∈ H(v)}

We call H(v) a set of hubs – important nodes – for v. The hubs must be chosen
such that for any s and t, the shortest path from s to t intersects L(s) ∩L(t). If
such labels have been computed, the computation of the shortest path distance
between s and t boils down to determining the node w ∈ L(s)∩L(t) minimizing
the distance sum. With the entries of a label stored in lexicographic order, this
can be done very cache-efficiently in time O(|L(s)| + |L(t)|).

Given a precomputed CH, there is an easy way of constructing such labels:
run an upward Dijkstra from each node v and let the label L(v) be the settled
nodes with their respective distances. Clearly, this yields valid labels since CH
answers queries exactly. The drawback is the space consumption; depending on
the metric and the CH construction, one can expect labels consisting of several
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hundred node-distance pairs (even after a possible pruning step). Still, a distance
query can then be answered in the microseconds range.

3 CH∼HL: Interpolating Between HL and CH

Starting point of our hybrid approach is a rather unclever way of answering
source target queries when a CH is precomputed. For a query from s to t we
proceed as follows: start an upward Dijkstra from s and construct a valid hub
label L(s) by collecting all nodes visited with their respective distances and
sorting them lexicographically. Analogously, we construct the label L(t). Then
we use L(s) and L(t) to answer the shortest path distance query as usual. Clearly,
nobody would use such an approach since it includes the same effort as a regular
CH query answering (and even more). One important observation also made use
of in the HL construction in [3] makes this unclever approach valuable, though:
The hub label of a node v can also be constructed by considering all outgoing
edges (v, w) to higher-level nodes w and taking the union of all their hub labels,
where d(v, w) is added to all distances in the hub label of w, and the obvious
labels for v and its higher-level neighbors. See Fig. 1, left, for an example.

Lw2 = {(w2, 0), (w23, 96), (w24, 422), (w30, 4321)}

v

w1

w2

w3

Lw1 = {(w1, 0), (w23, 100), (w24, 432), (w30, 321)}

Lw3 = {(w3, 0), (w20, 55), (w23, 119), (w27, 432), }

3

13

27 Lv =
{((w1, 27), w23, 127), (w24, 459), (w30, 348} ∪
{(w2, 13), (w23, 109), (w24, 435), (w30, 4334)} ∪
{(w3, 3), (w20, 58), (w23, 122), (w27, 435)} ∪ {(v, 0)}
= {(v, 0), (w1, 27), (w2, 13), (w3, 3),
(w20, 58), (w23, 109), ((w24, 435), (w27, 435), (w30, 348)}

Fig. 1. L(v) can be constructed from higher adjacent nodes w1, w2, w3 by offsetting
their labels and pruning.

So assuming we have – in a preprocessing stage – precomputed hub labels
for all nodes of level L or higher, we modify our unclever approach by stopping
the upward search as soon as we have reached nodes at level at least L. For
sufficiently small L, the upward searches abort very quickly. Using the explored
upward graphs we construct the hub labels for s and t in a top-down fashion
using the above observation.

Why is there hope that this approach is efficient with respect to both query
time as well as space consumption? In Fig. 2 we see a histogram of the CH level
distribution for the European road network (see Table 2 for the characteristics
of this dataset). The maximum CH level here is 485, but more than 50% of the
nodes have level 0, 30% of all nodes have level 1, and less than 1% of all nodes
have level more than 20. This means setting L = 20 would require computation
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of hub labels only for less than 1/100th of all nodes, which is beneficial in terms
of space consumption as well as of preprocessing time. Still, the upward searches
are limited up to level 20 instead of 485.

The choice of L can be interpreted as an interpolation parameter between
CH and HL. For L = 0 (hub labels for all nodes) we have pure HL, for L = ∞
(no hub labels at all), we have pure CH. L hence can be chosen based on the
available space for precomputed hub labels and desired query times.

Fig. 2. Node level distribution for CH of Europe. y-coordinate (logarithmic scale!)
denotes fraction of nodes having level ≥ x.
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label(a)={(a,0), (e,1), (g,6), (h,1), (i,3)}
label(b)={(b,0), (e,1), (g,6), (h,3), (i,1)}
label(c)={(c,0), (f,1), (g,6), (h,3), (i,1)}
label(d)={(d,0), (f,1), (g,6), (h,1), (i,3)}
label(e)={(e,0), (g,5), (h,2), (i,2)}
label(f)={(f,0), (g,5), (h,2), (i,2)}
label(g)={(g,0), (h,5), (i,5)}
label(h)={(h,0), (i,4)}
label(i)={(i,0)}

Fig. 3. Toy graph with CH shortcuts and hub labels constructed

Our approach is best explained using an example. Consider the toy graph in
Fig. 3, right, with all the original edges drawn in black. Contracting the nodes
in their alphabetical order yields the shortcuts in blue and red with respective
weights. Note, that one can simultaneously contract nodes a, b, c, d in a first
round of contraction, assigning them a level of 1, then nodes e, f in the second
round (assigning them a level of 2). The remaining nodes are contracted one by
one, so we obtain level(g) = 3, level(h) = 4 and level(i) = 5. A CH search from
d to b would explore in the upward search from node d the nodes h, f, g, i
with distances 1, 1, 6, 3 and in the upward search from b the nodes e, i, g, h
with distances 1, 1, 6, 3. Nodes h, g, i are settled from both sides with h and i
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having the smallest summed distances. Observe that neither of the two upward
searches considers nodes a and c. On a larger scale this is what makes CH search
considerably more effective than ordinary Dijkstra search. On the right of Fig. 3,
we see hub labels constructed based on this CH. A HL query from c to h can be
answered by inspecting the labels for c and h and determining the common hub
with minimal added distances, which in this case would be h itself.

Already in this example it becomes obvious that storing labels for all nodes
in the graph becomes quite space intensive. So in our CH∼HLapproach we only
store labels at nodes with a level at least L, e.g. only for nodes with level at least
2, that is for nodes e, f, g, h, and i. Then for a query, we first perform upward
searches from both sides but only until reaching nodes of level at least 2. For a
query from c to a, that would result in nodes f and i settled with distance 1 from
c. The labels {(f, 0), (g, 5), (h, 2), (i, 2)} for f and {(i, 0)} are combined with the
respective distance offset of 1 to the label {(c, 0), (f, 1), (g, 6), (h, 3), (i, 1)} for c
(which – no surprise is exactly the same label as if we had stored it as hub label
right from the beginning). Similarly we combine the labels of nodes h and e that
are at distance 1 from a to the label {(a, 0), (e, 1), (g, 6), (h, 1), (i, 3)} for a. We
use these labels to answer the query from c to a. This hybrid approach can also
be understood as deferring part of the label construction to query time hence
saving a considerable amount of space and preprocessing time, yet still being
faster than a CH search.

Augmenting Hub Labels for Path Recovery. Another, maybe even more
serious disadvantage of lookup-based schemes like HL or transit node routing
apart from excessive space consumption is the fact that as such they can only
answer distance queries and recovering the actual optimal path requires addi-
tional effort. In case of CH-based hub labels, there is a very straightforward
modification to allow also for easy path recovery, though, which might be folk-
lore, but we were not able to find this simple idea stated or used explicitly in a
paper, so we include it here for completeness.

If we construct the label of a node v as the (possibly pruned) search space of a
CH upward search starting in v, we can augment each pair (w, dv(w)) by a third
component denoting the predecessor predv(w) of w in the upward search from v,
i.e., the label is now (w, dv(w), predv(w)). If w was in the upward search space
of v and hence in the label of v, predv(w) is as well. Alternatively we can also
store the predecessor edge (predv(w), w). When answering a query using these
augmented labels, we also immediately get a compressed path representation
like in the CH scheme. The compressed representation can be collected by a
linear scan over the two labels, decompression cost depends on the desired level
of decompression, see [12].

4 Implementation and Experimental Evaluation

The implementation of CH, CH-based HL and our hybrid scheme CH∼HLis in
C++ (using g++ Version 8.3.0) and executed on Ubuntu 19.04. We used two
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machines, one server with an intel Xeon E5-2650v4/768 GB RAM, and a work-
station with an AMD Threadripper 1950x/128 GB RAM. While the former has
much more RAM and allows to compute also very space consuming accelera-
tion structures, the latter can be considered commodity hardware (cost of less
than 2,000 USD). Preprocessing was multithreaded but we always report CPU
time multiplied with the number of used cores, since both HL as well as CH
constructions scale extremely well with the number of cores. For benchmarking
the road networks of all continents (except Australia and Antarctica as they are
very small) as well as a smaller road network of Germany were extracted from
OpenStreetMap [1]. We included all segments with the highway key and values
as stated in Table 1 with their respective speeds to calculate travel times unless
an explicit maxspeed tag was present.

Table 1. Road categories and respective speeds for reproducibility.

Type Speed [km/h] Type Speed [km/h]

motorway 130 motorway link 70

primary 100 primary link 70

secondary 80 secondary link 70

tertiary 70 tertiary link 70

trunk 130 trunk link 80

unclassified 50 residential 45

living street 5 road 50

service 30 turning circle 50

Table 2. Datasets used for benchmarking.

Nodes Edges CH edges RAM Max CH

RAM Level

Germany 28M 57M 45M 5 GB 300

Africa 128M 264M 251M 24 GB 280

Asia 253M 517M 468M 47 GB 531

Europe 273M 547M 468M 49 GB 485

N.America 234M 476M 404M 42 GB 464

S.America 62M 129M 123M 12 GB 331

CH was built using the standard approach in [12], always contracting inde-
pendent sets of nodes with low edge difference. The resulting augmented graph
characteristics can be found in Table 2. For example, the road network of Europe
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consists of around 273 million nodes and 574 million edges. The CH construction
adds 468 million shortcuts edges and yields a maximum CH level of 485. In RAM
this graph uses 49 GB including additional information like longitude, latitude,
road types, maximum speeds, etc. CH construction time never exceded one hour
on either machine.

The important characteristics for our CH∼HLscheme are space requirement
and query time. Setting the level L determines how to interpolate between con-
traction hierarchy and hub labels. For L = 0, we essentially have pure HL, for
L = ∞, we obtain the original CH scheme. In Table 3 we investigate the trade-off
between query time and space consumption for South America, choosing values
for L between 0 and 64. Query times are averaged over 1000 random source-
target queries (for Dijkstra’s algorithm only 100 queries).

Table 3. Detailed analysis; trade-off; up search, label construction, HL query, South
America. Server.

L

0 1 2 4 8 16 32 64

Space 221GB 124 GB 74 GB 36GB 12 GB 4 GB 0.8 GB 0.1 GB

# cores × time 685m 456 m 290 m 186m 97 m 48 m 17 m 3 m

Dijkstra (in µs) 11, 011, 372

CH (in µs) 795

HL (in µs) 4.5

CHHL-L (in µs) 10.6 17.0 27.3 39.1 46.1 76.9 236.5 880.1

Up-search (in µs) 0.0 1.0 1.1 1.4 1.8 3.4 8.2 40.8

# labels collected 2 3 5 7 14 31 105 445

Plain Dijkstra on this network takes around 11 s, a CH query can be answered
in less than a millisecond, about 4 orders of magnitude faster. HL can provide
an answer in less than 5 ms, yet the space consumption of 221 GB is quite pro-
hibitive (note that we did not apply any compression schemes as in [11]). Looking
at our hybrid approach for varying values of L, we see that for L = 0 we have
a query time overhead compared to pure HL of a factor of 2 due to initializing
and managing the upward search and label merging (even though it never really
comes into effect). With growing L the space consumption as well as prepro-
cessing times naturally decrease rapidly, e.g. for L = 8 we only need 12 GB of
additional space (compare that to 12 GB already necessary to store the graph
including CH) and can complete the preprocessing in 1.5 core hours. The query
time of 46µs is about a factor of 10 worse than pure HL, yet more than 17 times
faster than pure CH. Of these 46µs, only a small fraction is required by the
upward searches, most time is spent on the collection and merging of precom-
puted labels. Naturally, the further the upward search procedes, the more labels
are there to collect. In this case, on average 14 labels (that is 7 times more than
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for the hub label scheme) have to be fetched. This alone already accounts for
more than 30µs, the remaining time is spent in the merging process. For L = 64,
query times for our hybrid approach exceed those of pure CH, so larger choices
for L are not considered.

South America was the smallest continental road network considered, for
the larger ones, even our server hardware is not sufficient to compute the full
hub label set. In Table 4 we compare our hybrid approach with other common
speed-up techniques. Since the underlying road networks (in particular the edge
weight generation) and the respective CH construction are not the same for the
reported measurements, we normalized them according to the speedup compared
to a pure CH query. This is along the lines of the comparison in [4] but focuses
more on the comparison to CH, as this seems to be the currently most widely
used technique in practice. Unfortunately we were not able to obtain permission
to use the widely benchmarked PTV-DIMACS Europe graph. In Table 4 we state
for each alternative speedup technique whether path recovery is easily possible,
the preprocessing times (in work per node), the space overhead as well as the
speedup compared to pure CH. For example, CH-based transit node routing
mentioned in the related works section, has no easy way of recovering paths
(for long distance queries), uses around 66µs of work per node and induces an
overhead of 147 bytes/node. Query times are 75.2 faster than pure CH queries.
For our approach we picked a few seemingly interesting choices for L and report
the results for the network of Europe as well as that of Germany. For example, for
the large Europe data set, when spending 159bytes/node (comparable to what
CH-TNR requires), we can obtain a speedup of 47.7 compared to CH, yet have
the ability to easily report compressed path representations. A possible sweetspot
is L = 22, where only 33bytes/node are required as additional space (including
predecessor information for path retrieval), and we still can achieve a speedup of
20. Choosing L > 56 does not seem to be worthwhile due to almost non-existant
speedup. For the Germany network, (which is more comparable in size to the
networks most other schemes were benchmarked for), the sweetspot could be seen
around L = 14, where we still achieve a speedup of almost 15, while spending only
46bytes/node of additional space. Note that the absolute work/node numbers for
preprocessing only indicate a magnitude since the preprocessing was conducted
on vastly different machines.

Finally, in Table 5 we present results for all larger continents with – in our
opinion sweetspot choices for L. For all of them, spending a fraction of the space
necessary to store the network itself (see Table 2), we achieve query times of
less or around 100µs even for continents having more than half a billion edges.
CH queries are more in the milliseconds, Dijkstra queries almost in the minutes
range for such large datasets. Preprocessing in any case could be performed in
less than 2 h on the workstation, in fact extracting the respective graphs from
OpenStreetMap took longer.
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Table 4. Comparison of speed-up schemes in terms of path recovery capability,
preprocessing time and space, and speedup vs. CH.

Method From Easy path
recovery

Preprocessing Query

#cores ×
time/node

Bytes/node Speed-up
factor vs CH

CH [12] Yes 37 1.0

Grid-TNR [7] No 4,000µs 21 3.9

HH-TNR-eco [18] No 83µs 120 22.4

HH-TNR-gen [18] No 250µs 247 57.2

TNR+AF [9] No 763µs 321 129.4

HL local [2] No 320µs 1221 223.6

HL global [2] No 560µs 1269 464.1

HL-0 local [3] No 120µs 1341 183.5

HL-i global [3] No 14,880µs 1041 502.0

CH-TNR [4] No 66µs 147 75.2

CHHL-EUR-10 NEW Yes 73µs 159 47.7

CHHL-EUR-14 NEW Yes 52µs 92 34.6

CHHL-EUR-22 NEW Yes 31µs 33 20.6

CHHL-EUR-32 NEW Yes 19µs 12 9.9

CHHL-EUR-40 NEW Yes 14µs 6 6.0

CHHL-EUR-56 NEW Yes 8µs 2 2.2

CHHL-GER-10 NEW Yes 21µs 99 21.0

CHHL-GER-14 NEW Yes 13µs 46 14.7

CHHL-GER-22 NEW Yes 7µs 15 8.2

CHHL-GER-32 NEW Yes 4µs 4 3.7

Table 5. Reasonable choices for L for different continental road networks. Space
includes full graph information and CH.Workstation.

L Total space Query Dijk Query CH Query CHHL

Germany 10 7.8 GB 9 s 585µs 28µs

Africa 9 35 GB 56 s 601µs 49µs

Asia 19 57 GB 35 s 1,546µs 117µs

Europe 18 58 GB 38 s 2,170µs 82µs

N.America 14 55 GB 31 s 1,644µs 54µs

S.America 12 18 GB 11 s 798µs 52µs
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5 Discussion and Future Work

We have presented a conceptually very simple seamless interpolation between
CH and HL allowing for speedup of CH depending on the available space. There
are many avenues of future work in that direction. For example we have not con-
sidered more refined HL constructions as proposed, e.g., in [15] or applicability
to non-road networks. In fact since we only perform CH for the lowest levels,
our hybrid technique might be applicable also for cases where CH is not really
competetive. Furthermore, we completely ignored existing work on hub label
compression [11], mainly to keep the presentation as simple as possible. Both
compression as well as HL tuning are orthogonal to our approach, though, and
can be employed to lower L without increasing space consumption too much.
Combinations of different speed-up technique have been explored before, our
proposed scheme seems extremely organic and conceptually simple in compar-
ison. Maybe its biggest advantage is simplicity: With implementations of CH
and CH-based hub labels in place, we only require little extra code: the upward
search can essentially be taken from the CH queries, the label merging from
the hub label construction. Compared to maybe its closest competitor in terms
of space/query-time tradeoff, CH-TNR, our scheme has a natural possibility
to return (compressed) path representations and for larger networks does not
exhibit the quadratic growth of the |T | × |T | distance table. Another important
tuning measure could be to deliberately choose the memory layout such that
fewer memory accesses are necessary to collect the precomputed labels.
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Abstract. Given a polygonal domain, we devise a fully dynamic algo-
rithm for maintaining the visibility polygon of any query point, i.e., as
the polygonal domain is modified with vertex insertions and deletions to
its obstacles, we update the visibility polygon of any query point. After
preprocessing the initial input polygonal domain to build a few data
structures, our dynamic algorithm takes O(k(lg |V PP′(q)|)+(lg n′)2 +h)
(resp. O(k(lg n′)2+(lg |V PP′(q)|)+h)) worst-case time to update the vis-
ibility polygon V PP′(q) of a query point q when any vertex v is inserted
to (resp. deleted from) any obstacle of the current polygonal domain P ′.
Here, n′ is the number of vertices in P ′, h is the number of obstacles in
P ′, V PP′(q) is the visibility polygon of q in P ′ (|V PP′(q)| is the number
of vertices of V PP′(q)), and k is the number of combinatorial changes in
V PP′(q) due to the insertion (resp. deletion) of v.

1 Introduction

The polygonal domain comprises of a set of pairwise-disjoint simple polygons
(obstacles) in the plane. We assume the obstacles in the polygonal domain are
placed in a large bounding box. For any polygonal domain P, the free space
F(P) is the closure of the bounding box without the union of the interior of all
the obstacles in P. Any two points p, q ∈ F(P) are visible whenever the open
line segment between p and q lies entirely in F(P). For a point q ∈ F(P), the
visibility polygon of q, denoted by V PP(q), is the maximal set of points in the
plane visible to q among obstacles in P. (When P is clear from the context,
the visibility polygon of q is denoted by V P (q).) The visibility polygon query
problem seeks to preprocess the given polygonal domain P so that to efficiently
compute V PP(q) for any query point q located in F(P). Computing visibility
polygons is a fundamental problem in computational geometry, and it is studied
extensively.

1.1 Previous Work

In the following, n denotes the number of vertices defining the input simple
polygon or polygonal domain, and h is the number of obstacles in the given
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polygonal domain. The problem of computing the visibility polygon of a point
in a simple polygon was first attempted by Davis and Benedikt in [11], and
they presented an O(n2) time algorithm. Later, both ElGindy and Avis [12],
and Lee [26], presented O(n) time algorithms for the same problem. Joe and
Simpson [21] corrected a flaw in [12,26], and devised an O(n) time algorithm
that correctly handles winding in the simple polygon. For a simple polygon with
holes, both Suri and O’ Rourke [31], and Asano [3] presented O(n lg n) time
algorithms, and Heffernan and Mitchell [17] gave a O(n + h lg h) time solution.
The visibility polygon computation among convex sets was considered by Ghosh
in [13].

For both the simple polygon as well as the polygonal domain, the pre-
vious works considered the visibility polygon query problem. Bose et al. [6]
gave an algorithm to preprocess the given simple polygon in O(n3 lg n) time,
build data structures of size O(n3), and answer any visibility polygon query in
O(lg n + |V P (q)|) time. Later, Aronov et al. [2] devised an algorithm for the
same problem with preprocessing time O(n2 lg n), space O(n2), and query time
O(lg2 n+|V P (q)|). Zarei and Ghodsi [32] presents an algorithm that preprocesses
the given polygonal domain in O(n3 lg n) time to build data structures of size
O(n3), and answers each visibility polygon query in O((1 + h′) lg n + |V P (q)|)
time, where h′ = min(h, |V P (q)|). The algorithm by Inkulu and Kapoor [18] pre-
processes the input polygonal domain in O(n2 lg n) time, builds data structures
of size O(n2), and answers visibility polygon query in O(min(h, |V P (q)|)(lg n)2 +
h + |V P (q)|) time. This paper also presented another algorithm with prepro-
cessing time O(T + |V G| + n lg n), space O(min(|V G|, hn) + n), and query time
O(|V P (q)| lg n + h). Here, |V G| denotes the number of edges in the visibility
graph, and T is the time to triangulate the free space of the given polygonal
domain. Baygi and Ghodsi [5] constructed a data structure of size O(n2) in
O(n2 lg n) time, and their algorithm answers any visibility polygon query in
O(|V P (q)| + lg n) time. Lu et al. [27] presented an algorithm to compute a data
structure of size O(n2) in O(n2 lg n) time, which helps in answering any visibil-
ity polygon query in O(|V P (q)| + (lg n)2 + h lg(n/h)) time. Chen and Wang [8]
gave an algorithm that preprocesses the polygonal domain in O(n+h2 lg h) time
to construct data structures of size O(n + h2), so that to answer any visibility
polygon query in O(|V P (q)| lg n) time. The query version of visibility polygon
computation in the polygonal domain comprising of convex obstacles was given
by Pocchiola and Vegter [29]. Their algorithm computes the visibility polygon of
any query point in O(|V P (q)| lg n) time by preprocessing the convex polygonal
domain in O(n lg n) time and building data structures of size O(n). Algorithms
for computing visibility graphs were given in [15]. Ghosh [14] details a number
of algorithms for visibility in plane.

In the context of visibility polygons, the main advantage in having dynamic
algorithms is to update the visibility polygon efficiently (that is, with respect to
update time) as compared to computing the entire visibility polygon from scratch
using traditional algorithms. In doing this, the algorithm specifically exploits the
recent changes that occurred to the polygonal domain; based on these changes,
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the current visibility polygon is locally modified. A dynamic algorithm is said to
be incremental if it updates the visibility polygon of the given point efficiently
whenever a new vertex is inserted to any of the obstacles of the current polyg-
onal domain. Similarly, an algorithm is decremental if it efficiently updates the
visibility polygon of the given point whenever a vertex of any of the obstacles of
the current polygonal domain is deleted. If the dynamic algorithm is both incre-
mental as well as decremental, then it is termed a fully dynamic algorithm. Both
Inkulu and Nitish [19], and Inkulu et al. [20] devised fully dynamic algorithms for
maintaining the visibility polygon of a query point in a dynamic simple polygon.
Choudhury and Inkulu [9] devised a fully dynamic algorithm for maintaining the
visibility graph of a dynamic simple polygon. The visibility in the context of a
moving observer was studied in [1,7].

1.2 Our Results

In this paper, a fully dynamic algorithm for computing the visibility polygon of
any query point q among a set of dynamic polygonal obstacles is proposed, i.e.,
the visibility polygon of q is updated whenever any vertex is inserted to any of the
obstacles, or any vertex is deleted from any of the obstacles. Let V PP′(q) be the
visibility polygon of a query point q in the current polygonal domain P ′. Also,
let n′ be the number of vertices in P ′. When any vertex v is inserted to any of
the obstacles of P ′, our algorithm takes O(k(lg |V PP′(q)|) + (lg n′)2 + h) time to
update the visibility polygon of q. Here, k is the number of combinatorial changes
in V PP′(q) due to the insertion of v. In the case of deletion of any vertex v of any
of the obstacles of P ′, the V PP′(q) is updated in O(k(lg n′)2 + (lg |V PP′(q)|) + h)
time. Here, k is the number of combinatorial changes in V PP′(q) due to the
deletion of v. Our output-sensitive visibility polygon query algorithm computes
V PP′(q) for any query point in O(|V PP′(q)|(lg n′)2 + h) time. The data struc-
tures constructed as part of answering the visibility polygon query algorithm
facilitate in efficiently updating V PP′(q) as the polygonal domain changes. We
preprocess the initial input polygonal domain P in O(n(lg n)2 + h(lg h)1+ ε)
time, and construct data structures of size O(n). Here, n is the number of ver-
tices of P, h is the number of polygonal obstacles in P, and ε > 0 is a small
positive constant (resulting from triangulating the free space of P using the
algorithm in [4]). To our knowledge, this is the first algorithm for maintaining
the visibility polygon of any given point in the dynamic polygonal domain. This
algorithm obviates computing the visibility polygon of a given point from scratch
whenever the polygon domain is modified with a vertex insertion or with a vertex
deletion.

1.3 Terminology

We denote the initial input polygonal domain with P, the number of vertices
of P with n, and the number of obstacles in P with h. We use P ′ to denote
the polygonal domain just before inserting (resp. deleting) a vertex, and P ′′

to denote the polygonal domain just after inserting (resp. deleting) a vertex.
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Also, n′ denotes the number of P ′, and h is the number of obstacles in P. It is
assumed that every new vertex is added between two successive vertices of an
obstacle. Whenever a new vertex v is inserted between two adjacent vertices vi

and vi+1 in polygonal domain P ′, it is assumed that two new edges are added
to P ′: one between vertices v and vi, and the other between vertices v and vi+1.
Similarly, in the case of deletion of a vertex v, it is assumed that after deleting
v from P ′ which is adjacent to vertices vi and vi+1 in P ′, a new edge is inserted
between vertices vi and vi+1. After adding (resp. deleting) any vertex to (resp.
from) any obstacle O in the current polygonal domain, our algorithm assumes
O continues to be a simple polygon. Further, newly inserted vertex in P ′′ is
assumed to be contained in the bounding box of P. The visibility polygon of q
in any polygonal domain P ′′′ is denoted by V PP′′′(q). For any simple polygon P ,
the boundary of P is denoted by bd(P ). Unless specified otherwise, the boundary
of any simple polygon is assumed to be traversed in counter-clockwise order. It
is assumed that all the angles are measured in counter-clockwise direction from
the positive horizontal (x-)axis. A vertex v of the polygonal domain is said to be
a visible vertex to q whenever v is visible from query point q. As in [22,23,25], we
decompose the free space F(P) of the input polygonal domain P into corridors
and junctions.

Let r′ and r′′ be two rays with origin at p. Let uv1 and uv2 be the unit
vectors along the rays r′ and r′′ respectively. A cone Cp(r′, r′′) is the set of
points defined by rays r′ and r′′ such that a point p′ ∈ Cp(r′, r′′) if and only if
p′ can be expressed as a convex combination of the vectors uv1 and uv2 with
positive coefficients. When the rays are evident from the context, we denote the
cone with Cp. A cone Cp is called a visibility cone whenever Cp contains at least
one point in F(P) that is visible from p. For any cone Cp(ri, rj), among rays ri

and rj , the ray that makes lesser angle with the positive x-axis at p is the left
ray of Cp and the other ray is the right ray of Cp. For any cone, throughout the
paper, we assume the counter-clockwise angle between the left ray of Cp and
the right ray of Cp is less than π. We use vertex to denote any endpoint of any
edge of the polygonal domain, and we use node to denote any tree node in data
structures that we construct.

The preprocessing algorithm and the data structures are detailed in Sect. 2.
Section 3 detail the dynamic algorithms. The output-sensitive visibility polygon
query algorithm is given in Sect. 4.

2 Preprocessing Algorithm and Data Structures

We first preprocess the input polygonal domain P. As described above, we parti-
tion the free space F(P) of P into O(h) corridors and junctions, using algorithms
in [22,23,25]. To efficiently compute tangents to dynamic sides of corridors, for
each side S of every corridor, we construct a hull tree corresponding to S using
the algorithm in [28,30]. For locating any vertex that is inserted to (resp. deleted
from) any obstacle, and for locating query points, we compute a point location
data structure for the corridor structure using the algorithm in [16]. In addition,
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as in [18], for every corridor C, we construct a set PC of simple polygons corre-
sponding to corridor C. One of the simple polygons in PC , denoted with P4(C),
is the corridor C itself. This polygon helps in determining vertices of C that
are visible to q when q is located in C. If q is not located in C, the other three
simple polygons in PC , denoted by P1(S1), P2(S1), P3(S2), each corresponding
to a side of C, together help in determining vertices of C that are visible to q.
In specific, two of these simple polygons P1(S1), P2(S1) correspond to one side
S1 of C, and P3(S2) correspond to the other side S2 of C. As an obstacle in
the polygonal domain gets modified, the corresponding corridor is also modified
accordingly. Whenever a side S of any corridor C changes, we make the changes
to P4(C) as well as to the simple polygons in PC that correspond to side S. In
the query phase, using the algorithm in [20], we compute visible vertices and
constructed vertices (refer to [14]) in these dynamic simple polygons. As part
of preprocessing required for the algorithm in [20], for every corridor C, each of
the four simple polygons in PC are further processed in linear time to construct
data structures as required by the algorithm in [20].
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C6

vc1 vc2

vc
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(C3, vc1) (C5, vc2)
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Fig. 1. Illustrating visibility tree, V CCl , and SCtitj data structures.

Our query algorithm, detailed in Sect. 4, constructs visibility trees TV ISB
P′(q)

and TV ISU
P′(q) for the input query point q. The visibility polygon of q is

determined from the information stored at the nodes of these trees, and our
dynamic algorithms update visibility trees as and when the current polygon
domain is modified with vertex insertions and deletions. Our algorithms for
updating the visibility polygon of a point q ∈ F(P ′) assume the visibility trees
TV ISB

P′(q), TV ISU
P′(q) corresponding to q among obstacles in P ′ are accessible.

The visibility trees were first defined in [24]. We modify visibility tree structures
from [24] so that they are helpful in the dynamic polygonal domain. For every
corridor C that has at least one point on the boundary of C that is visible to q,
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there exists at least one node in these trees that corresponds to C. Any node t in
either of these trees corresponds to a corridor Ct. With t, we store a pointer to
Ct, a visibility cone vct (with its apex at q), and two red-black balanced binary
search trees (refer [10]), denoted with RBT t

L, RBT t
R. Refer to Fig. 1. The RBT t

L

(resp. RBT t
R) at node t stores every (constructed) vertex v′ of V PP′(q) that

belongs to the left (resp. right) side of corridor C whenever v′ lies in vct. With
each point p in both of these RBTs, we store the angle ray qp makes at q. If a
point p is stored in TV ISB

P′(q) (resp. TV ISU
P′(q)) then the line segment qp is

guaranteed to intersect B (resp. U). For any point p located on the boundary of
an obstacle, and for p visible to q, the sequence of corridors intersected by the
line segment qp is said to be the corridor sequence of qp. We note that for any
two points p′, p′′ in a corridor C, with both p′ and p′′ visible to q, the corridor
sequence of qp′ is not necessarily same as the corridor sequence of qp′′. Hence,
in any visibility tree of q, there could be more than one node that corresponds
to any corridor. However, any (constructed) vertex of V PP′(q) (or, any vertex
of P ′) appears at most once in any of the RBTs stored at the nodes of these
visibility trees. For any two nodes t′, t′′ of any visibility tree, for any point p′

stored in either RBT t′
L or RBT t′

R , and for any point p′′ stored in either RBT t′′
L

or RBT t′′
R , the corridor sequence of qp′ is not equal to the corridor sequence of

qp′′.
For every corridor C ′, the list of visibility cones that intersect C ′ are stored

in a red-black tree, named V CC′ . In specific, the visibility cones in V CC′ are
stored in sorted order with respect to angle left bounding ray of each cone in
V CC′ makes at q. In addition, with each visibility cone vc in V CC′ , we store
the pointer to a node in a visibility tree that saved a visible point belonging to
bd(C ′) ∩ vc. (Refer to Fig. 1.) If no such visible point exists, then the pointer
to a node in the visibility tree that represents the corridor nearest to p along
qp, where p ∈ C ′ ∩ vc, is stored with vc. Whenever a vertex v is inserted (resp.
deleted) to (resp. from) C ′, by searching in V CC′ , we determine the visibility
cone in which we need to update the visibility polygon of q.

Let t′ be any node in either of the visibility trees of q. And, let t′′ be any child
of t′. Also, let C ′, C ′′ be the corridors associated to t′, t′′ respectively. We note
that it is not necessary for corridors C ′ and C ′′ to be adjacent in the corridor
subdivision of F(P ′). If C ′ and C ′′ are not adjacent, then there exists a unique
sequence of corridors between C ′ and C ′′ and, this sequence of corridors is stored
in a list SCt′t′′ . The list SCt′t′′ is associated with the edge t′t′′ of the visibility
tree. (Refer to Fig. 1.) Note that if C ′ and C ′′ are adjacent in the corridor
subdivision of F(P ′), then the list SCtt′ would be empty. With every corridor
C ∈ SCt′t′′ , we store a pointer to the node in visibility tree that corresponding
to visibility cone vct′

. In addition, the pointer stored with vct′
in V CC points to

the node t′.

3 Maintaining the Visibility Polygon of Any Query Point

Let P ′ be the polygonal domain just before inserting (resp. deleting) v to (resp.
from) the boundary of an obstacle. Also, let vi and vi+1 be the vertices between
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which v is located. We first describe parts that are common to both the insertion
and deletion algorithms. Using point location data structure, we determine the
corridor C in which v is located. If v is inserted to an obstacle in P ′, then we
insert v at its corresponding position into at most three simple polygons in PC .
If v is deleted from an obstacle in P ′, then for every simple polygon P ∈ PC ,
we delete v from P if v ∈ P . Then, for each simple polygon in PC that got
modified, we update the preprocessed data structures needed for determining
visibility in dynamic simple polygons [20] Using the algorithm in [16] for ray-
shooting in dynamic simple polygons, we determine whether v is visible to q
among obstacles in P ′. This is accomplished using simple polygons in PC : if
q ∈ C, the ray-shooting query with ray qv is performed in P4(C); otherwise,
if v belongs to a side S1 (resp. S2) of a corridor C ′(�= C), we query with ray
qv in each simple polygon in PC′ that correspond to side S1 (resp. S2). From
the correctness of characterizations in [18], it is immediate that we correctly
determine whether v is visible to q. If v is found to be not visible to q, then
V PP′(q) does not change. In this case, we only update the preprocessed data
structures for hull trees of sides of corridor C, as well as the data structures
for dynamic point location. We note that all the updations of preprocessed data
structures can be accomplished in O((lg n)2) time.

Consider the case when v is visible to q. In this case, the insertion of v
(resp. deletion of v) may cause the deletion of (resp. insertion of) some vertices
from (resp. to) the current visibility polygon V PP′(q). For every two vertices
v′, v′′ ∈ {v, vi, vi+1}, we determine the (smaller) angle between rays qv′ and qv′′.
Among these three possible cones, we find the cone vcm with the maximum cone
angle. The visible vertices belonging to vcm are the potential candidates to be
deleted (resp. inserted) from (resp. to) V PP′(q) in the insertion (resp. deletion)
algorithm. Let BCq

be the lower bounding edge of corridor Cq containing q.
Without loss of generality, suppose vcm intersects BCq

. Noting that v ∈ C, by
searching in V CC , we determine the visibility cone vc in which qv lies. Let t′ be
the node saved with vc in V CC , and let C ′ be the corridor referred by t′. In the
following subsections, we describe the insertion and deletion algorithms.

3.1 Insertion of a Vertex

If C ′ is same as C (to remind, v is in corridor C), then v is inserted to RBT t′
L

(resp. RBT t′
R ) of node t′ if v is located on the left (resp. right) side of C ′. In the

other sub-case, C ′ is not the same as C. This indicates there is no node present
in TV ISB

P′(q) that corresponds to C and vc, i.e., before the insertion of v, there
was no point of bd(C) ∩ vc is visible to q. Let t′l, t

′
r be the left and right children

of t′ respectively. A new node t′′ is inserted as a left (resp. right) child of t′, if v is
located on the left (resp. right) side of C, and the parent of t′l (resp. t′r) is changed
to t′′. The visibility cone vc′ associated with t′′ is same as the visibility cone vc
associated with node t′. Without loss of generality, suppose t′′ is inserted as the
left child of t′. Let C ′′ be the corridor associated to node t′l. The sequence of
corridors SCt′t′

l
associated to edge t′t′l is splitted into two sequences: the corridor

sequence between C ′ to C along visibility cone vc is associated to edge t′t′′, and
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the corridor sequence between C and C ′′ along the visibility cone vc is saved
with edge t′′t′l. In addition, for each corridor C ′′′ in SCt′′t′

l
, the pointer stored

with visibility cone vc in V CC′′′ is modified so that it points to node t′′.
Suppose the rays bounding vcm are qvi and qvi+1. Then, every vertex of

V PP′(q) continues to be visible to q. Hence, there is no vertex to be deleted
from V PP′(q). However, since v is visible to q, we need to insert v into a RBT of
TV ISB

P′(q). When v is located on the left (resp. right) side of C, if C ′ is same as
C, then v will be inserted to RBT t′

L (resp. RBT t′
R ); otherwise, if C ′ is not same

as C, then vertex v will be inserted to RBT t′′
L (resp. RBT t′′

R ).

Observation 1. Let P ′ be the current polygonal domain. Let V PP′(q) be the
visibility polygon of a point q ∈ P ′. Whenever a new vertex v is inserted to an
obstacle of P ′, the set of vertices of V PP′(q) that get hidden due to the insertion
of v are contiguous along the boundary of V PP′(q). In specific, vertices stored
in any red-black tree of any visibility tree hidden due to the insertion of v are
contiguous at the leaves. (The proof is provided in the full version.)

Suppose the rays bounding vcm are qvi+1 and qv. In this case, due to the
insertion of v, some vertices of V PP′(q) may become not visible to q. To deter-
mine these vertices, we do the depth-first traversal of TV ISB

P′(q), starting from
t′ if C ′ is same as C; otherwise, we do the depth-first traversal of TV ISB

P′(q),
starting from node t′′. Let α1 and α2 be the angles made by rays qvi+1 and qv,
respectively at q. Also, let α1 < α2. For every red-black tree T at every node t
encountered in this traversal, we search in T to find the contiguous list of vertices
such that each vertex in that list lies in the cone vcm. By Observation 1, all the
vertices belonging to this list are the ones that needed to be removed from T .
Hence, we remove each vertex v′ in this list from T , as v′ is no more visible to
q. Let Ct be the corridor referred by node t. During traversal, if visibility cone
vct associated with node t is found to be lying completely inside vcm, we delete
the node corresponding to visibility cone vct in V CCt .

The handling of the last case in which the vcm is bounded by rays qvi and
qv is analogous to the case in which vcm is bounded by rays qvi+1 and qv.

3.2 Deletion of a Vertex

Suppose the rays bounding vcm are qvi and qvi+1. The deletion of v does not
change the visibility of any vertex belonging to P ′. Hence, there is no vertex
needs to be added to V PP′(q). However, since v is no more visible to q, we need
to delete v from node t′ of TV ISB

P′(q). The vertex v will be deleted from RBT t′
L

(resp. RBT t′
R ) if it is located on the left (resp. right) side of C. We determine

whether vertices vi and vi+1 are visible to q. If any of them is not visible to q,
then using the algorithm in [20] for dynamic simple polygons, with cone vcm,
we determine the endpoints of constructed edges (refer to [14]) that incident to
edge vivi+1. In addition, we insert these endpoints into RBTLt′

(resp. RBT t′
R )

if they are located on the left (resp. right) side of C.
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Suppose the rays bounding vcm are qvi+1 and qv. In this case, due to the
deletion of v, some new vertices of P ′ may become visible to q. As in the above
case, v is deleted from RBT t′

L (resp. RBT t′
R ) if it is located on the left (resp. right)

side of C. Now, to determine vertices that become visible due to the deletion
of v, we invoke the query algorithm described in Sect. 4 with vcm ∩ vc as the
visibility cone and q as the query point. Let vc′ be the visibility cone vcm ∩ vc.
Let vc′

l (resp. vc′
r) be the left (resp. right) bounding ray of vc′. Also, let C be

the set comprising of corridors such that the path in Gd from a node of Gd that
corresponds to R to the node of Gd that corresponds to Cq. Given C and vc′,
our query algorithm determines all the vertices on the sides of corridors in C
that are visible to q. (Refer to Sect. 4.)

Let T ′ be the tree returned by the query algorithm, and Tt′ be the subtree
rooted at t′ in TV ISB

P′(q). (Note that t′ is the node from which v is deleted.)
For any corridor Ci, let V CCi

(resp. V C ′
Ci

) be the red-black tree storing the
pointers to the nodes belonging to Tt′ (resp. T ′). Without loss of generality,
suppose vertex v is deleted from the left side of corridor C. Let rrvc be the right
bounding ray of visibility cone vc. For every node t′′ in T ′, if the right bounding
ray of its visibility cone is vc′

r, we replace it with the ray rrvc. In addition, we
make similar changes in V C ′

C′′ corresponding to the corridor C ′′ referred by t′′.
Further, every vertex belonging to T ′ is added to TV ISB

P′(q). To accomplish
this, we traverse the trees T ′ and Tt′ in the breadth-first order. For every node
t′′ that we encounter in the breadth-first traversal of T ′, we search in V CCt′′

to find a visibility cone which is lying entirely inside the visibility cone vct′′
. If

such a cone exists, it indicates that node t′′ is present in Tt′ . In this case, by
traversing Tt′ in breadth-first order, we locate t′′ in Tt′ . Significantly, for every
t′′, breadth-first traversal of Tt′ starts from the node where the traversal in that
tree was stopped in the previous search. The red-black trees stored at the node
t′′ in T ′ are merged with the red-black trees stored at the node found by the
breadth-first traversal in Tt′ .

In the other sub-case, if node t′′ is not present in Tt′ , it indicates that before
deletion, the corridor represented by this node had no visible vertex on either of
its sides in visibility cone vc. Due to the deletion of v, some portion of bd(Ct′′)
became visible. Hence, t′′ is inserted in Tt′ such that the parent of t′′ in Tt′ is
same as the parent of t′′ in T ′. At the end, for every corridor Ci, we merge V C ′

Ci

with V CCi
.

The handling of the last case in which the vcm is bounded by rays qvi and
qv is analogous to the case in which vcm is bounded by qvi+1 and qv.

4 Determining the Visibility Polygon of a Query Point

Let P ′ be the current polygonal domain. In the query phase, for any query
point q ∈ F(P ′), we compute V PP′(q). We modify the algorithm for answering
visibility polygon queries in [18], so that this algorithm accommodates dynamic
obstacles. First, we determine all the sides of the corridors, each of which has
at least one point visible from q. We store the (constructed) vertices of the
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visibility polygon in two visibility trees, denoted by TV ISB
P′(q) and TV ISU

P′(q).
The visibility tree structures are described in Sect. 2. For convenience, in the
query algorithm, at every node in both of these visibility trees, we save an
additional cone, named auxiliary visibility cone. The auxiliary visibility cone
vct

aux defined at a node t indicates that there is an obstacle O ∈ P ′ such that (i)
p ∈ bd(O)∩vct

aux, and (ii) p is visible to q. (The specific use of auxiliary visibility
cones is described in the subsections below.) As in [18], for each such side S,
the query algorithm computes all the vertices of S visible to q. To construct
these trees, we use a stack. This stack contains objects which are yet to be
processed by the algorithm. Each object obj in stack is represented by a tuple
[lrvc, rrvc, ptrl, ptrr, ptrt]. Here, lrvc (resp. rrvc) is the left (resp. right) bounding
ray of the visibility cone vc; ptrl (resp. ptrr) is a pointer to the first unexplored
corridor in the corridor sequence of line segment qp′ (resp. qp′′), where p′ (resp.
p′′) is the point at which lrvc (resp. rrvc) strikes an obstacle O ∈ P ′ or the
bounding box; and, ptrt is a pointer to the node in a visibility tree that was
created at the time of initialization of obj.

First, using the point location data structure, we determine the corridor Cq

containing q. Let BCq
(resp. UCq

) be the lower (resp. upper) bounding edge of
Cq. Using the hull trees, we find the points of tangency on both the sides of
Cq. Note that there can be at most two points of tangency on each side. For
any point of tangency p which is lying on the left (resp. right) side of Cq, if the
ray qp intersects BCq

then point p is known as pB
l (resp. pB

r ), and if the ray qp
intersects UCq

then point p is known as pU
l (resp. pU

r ).
If the visibility cone (pB

l , pB
r ) (resp. (pU

l , pU
r )) exists, then we create a node

tB (resp. tU ) as root node of TV ISB
P′(q) (resp. TV ISU

P′(q)). The node tB (resp.
tU ) refers to corridor Cq, and the visibility cone (pB

l , pB
r ) (resp. (pU

l , pU
r )) is

associated with tB. Also we initialize objB (resp. objU ) that corresponds to tB

(resp. tU ). And, objU , followed by objB , are pushed onto the stack.
The visible vertices in corridors other than corridor Cq are determined by pro-

cessing objects in the stack. Let obj = [lrvc, rrvc, ptrl, ptrr, ptrt] be the object
popped from the stack. Let CSl and CSr be the corridor sequences of line seg-
ments lrvc and lrvc respectively. When both ptrl and ptrr refer to the same
corridor C ′, starting from C ′ in CSl and CSr, we find the last common corridor
C ′′ that occurs in both CSl and CSr. For every corridor Ci between C ′ and C ′′

in CSl (or, CSr), a node t′ associated with ptrt and vc is inserted to V CCi
, and

Ci saves a pointer to t′. (This denotes the visibility of corridor Ci is hindered
by the corridor corresponding to the node pointed by ptrt.) Let Cl (resp. Cr) be
the corridor after C ′′ in CSl (resp. CSr).

When the corridor Cl referred by ptrl is different from the corridor Cr referred
by ptrr, it is immediate that there is an obstacle O that separates Cl from Cr.
We find a tangent qpr to the right side of Cl from q and a tangent qpl to left
side of Cr from q. We insert one node tl as the left child of t which refers to
Cl, and another node tr as the right child of t which refers to Cr. For every
corridor C ′′′ in the sequence of corridors from C ′ to C ′′, C ′′′ together with a
pointer to V CC′′′ is associated to both the edges ttl and ttr. We also associate
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visibility cone (lrvc, qpr) (resp. (qpl, rrvc)) with tl (resp. tr). A node t′ (resp.
t′′) with ptrtl (resp. ptrtr ) and the visibility cone (lrvc, qpr) (resp. (qpl, rrvc)) is
inserted to V CCl

(resp. V CCr
). In addition, an auxiliary visibility cone (qpr, qpl)

is stored at node t. We initialize objl (resp. objr) that corresponds to tl (resp.
tr). And, objr is pushed onto the stack followed by objl.

If no corridor exists after C ′′ in CSl, then we determine the point p at which
ray lrvc strikes an obstacle. Let Cp be the corridor in which p is located. We
find the point of tangency pl from q to the left side of Cp, using the hull tree
corresponding to that side. One new node is inserted as left child tl of t that
correspond to Cp and vc. A node t′ with ptrtl and vc is inserted to V CCp

. We
initialize an object obj that corresponds to tl and push that object onto the
stack. For every corridor C ′′′ in the sequence of corridors from C ′ to C ′′, C ′′′

together with a pointer to V CC′′′ is associated to edge ttl. When tangent to the
left side of Cp does not exist, no object is pushed onto the stack. The algorithm
for handling when there is no corridor after C ′′ in CSr is analogous.

As in [18], we traverse each of the visibility trees in depth-first order. At every
node t, for each side S of Ct, we determine vertices of V PP′(q) that belong to
S ∩ vct, by applying the algorithm in [20] to each simple polygon in PCt

that
corresponds to S, with q and vct as the additional two parameters. In addition,
we store visible vertices on the left side (resp. right side) of Ct in RBT t

L (resp.
RBT t

R). We determine all the vertices of Sr (resp. Sl) that are visible from q and
located in cone vct

aux, by applying the algorithm in [20] to each simple polygon
in PCl

that corresponds to Sr (resp. Sl), with q and vct
aux as the additional two

parameters. In addition, we store these visible vertices in RBT tl
R (resp. RBT tr

L ).
To construct V PP′(q), we traverse both the visibility trees in depth-first

order. First we traverse TV ISB
P′(q) followed by TV ISU

P′(q). At every node t
encountered during the traversal, we traverse the leaf nodes of RBT t

L in left to
right order and output the respective points stored at them. Then, we recursively
traverse the left subtree of t, followed by the right subtree of t. After that,
we traverse the leaf nodes of RBT t

R in the right to left order and output the
respective points stored at them.

Theorem 1. Given a polygonal domain P defined with h obstacles and n ver-
tices, we preprocess P in O(n(lg n)2 + h(lg h)1+ε) time to construct data struc-
tures of size O(n) so that (i) whenever a vertex v is inserted to the current
polygonal domain P ′, the algorithm updates the visibility polygon V PP ′(q) of a
query point q in O(k(lg |V PP ′(q)|) + (lg n′)2 + h) time, (ii) whenever a vertex
v is deleted from the current polygonal domain P ′, the algorithm updates the
visibility polygon V PP′(q) of a query point q in O(k(lg n′)2 + (lg |V PP′(q)|) + h)
time, and (iii) whenever a query point q is given, algorithm outputs the visibility
polygon in the current polygonal domain in O(|V PP′(q)|(lg n′)2 + h) time. Here
ε is a small positive constant resulting from the triangulation of the free space
F(P) using the algorithm in [4], k is the number of combinatorial changes in
V PP ′(q) due to the insertion or deletion of v, and n′ is the number of vertices
of P ′. (The proof is provided in the full version.)
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Abstract. Incomplete data has been wildly viewed in many real appli-
cations. In practical, data is often partial complete, it means that the
whole part of data is incomplete but there exist special complete parts
of data which can still support answering related queries. However, as
far as we know, there are only few works focusing on managing partial
complete data. Therefore, efficient methods for representing partial com-
plete data and deciding which queries can be answered over the complete
parts are seriously needed. The completeness reasoning problem, TC-QC
(Table Completeness to Query Completeness), has been recognized as
an important fundamental problem in managing partial complete data.
Given completeness statements of data, the goal of the TC-QC prob-
lem is to determine whether the result of a special query Q is complete,
that is to reason query completeness based on given data completeness.
Previous works show that the TC-QC problem is NP-hard even for con-
junctive queries, and a natural and interesting question is whether or not
TC-QC can be solved efficiently by parameterized algorithms.

The paper investigates the parameterized complexity of completeness
reasoning for conjunctive queries. We show that, if the query complete-
ness size or the table completeness size is considered as a parameter,
then the parameterized TC-QC problem for conjunctive queries is para-
NP-complete. These results strongly indicate that no fixed-parameter
tractable algorithms exist for the TC-QC problems parameterized by
the above two parameters. Thus, more special cases of TC-QC defined
by different constraints are studied. It is shown that, when the constraints
about query structures like degree, tree-width and number of variables
are considered, the parameterized TC-QC problems are still intractable.
On the positive side, we show that, if each data completeness statement
has a constant size bound, the parameterized TC-QC problem defined by
the query completeness size can be solved by a fixed-parameter tractable
algorithm.

1 Introduction

In many real applications, it usually suffers from the problem of owning only
incomplete data and having no abilities of returning complete results required
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by computing tasks (e.g. [3,5,8,10–12,15]). Therefore, research topics related
with incomplete data are interesting and well motivated.

In fact, the study of incomplete data can be traced back to the times when
the relational data model is proposed [4]. By the traditional works in the area of
data and knowledge management, a popular and reasonable way is to utilize two
kinds of assumptions for handling incomplete data, which are the open world
assumption (OWA for short) and the closed world assumption (CWA for short).
Within this framework, data in the applications should be clarified to be in the
OWA or CWA beforehand. For the OWA, the owned data is assumed to be a
subset (maybe proper subset) of the truth data, and those tuples in the truth
data but not included in the owned data are missing; while, for the CWA, it
is assumed that there are no missing tuples, but missing values in a tuple is
allowed, which are usually represented by null values.

However, neither of them satisfies the requirements of describing incomplete
data in real applications, since those two assumptions are only proper for the
extreme cases like data is totally complete or any tuples can be missing. In
practical, we are usually facing partial complete data, which means that the
whole part of data maybe incomplete but there exist special complete parts of
data which can still support answering related queries.

Example 1. Suppose we have the following database weather(city, year, temp)
containing the average temperature records of two cities Beijing and Shanghai
between 2011 and 2015.

〈true weather〉
city year temp

Shanghai 2011 15.7 ℃
Shanghai 2012 15.3 ℃
Shanghai 2013 15.6 ℃
Shanghai 2014 15.1 ℃
Shanghai 2015 15.5 ℃
Beijing 2011 12.3 ℃
Beijing 2012 12.7 ℃
Beijing 2013 12.1 ℃
Beijing 2014 11.9 ℃
Beijing 2015 12.5 ℃

=⇒

〈owned weather〉
city year temp

Shanghai 2011 15.7 ℃
Shanghai 2012 15.3 ℃
Shanghai 2014 15.1 ℃
Beijing 2011 12.3 ℃
Beijing 2012 12.7 ℃
Beijing 2013 12.1 ℃
Beijing 2014 11.9 ℃
Beijing 2015 12.5 ℃

Let the database weather be obtained by integrating two databases weatherBJ
and weatherSH. In addition, we know that weatherBJ includes the average tem-
perature records of every year from 2011 to 2015, but weatherSH is incomplete.
After integrating the two databases, the owned weather as shown above is
obtained. Because of the incompleteness of weatherSH, compared with the true
weather, there lacks two tuples for the city Shanghai. When utilizing the tradi-
tional method, it is obvious that we can only clarity weather is in OWA. Then,
when requiring the average temperature of Shanghai of 2013, it will be warned
that the result is incomplete base on the knowledge that weather is in OWA.
However, in this case, the result of the query “select the temperature record of
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Beijing in 2013 ” will be determined to be incomplete also. That is just the case
of partial complete data, for which traditional methods lose the opportunities
to answer queries over incomplete data. Obviously, more sophisticated solution
should have the ability to confirm the completeness of the query when meeting
the above cases. ��

To handle the above example, we need at least two kinds of mechanisms
of managing partial incomplete data. One is to provide methods for expressing
statements like “the part of data related with Beijing is complete in weather”,
and the other one is to support efficient reasoning the completeness of queries
based on the completeness statements of data.

For the data completeness statements, since it does not work by using tra-
ditional methods, the concept of partial completeness is proposed in [9], and
based on a more general and formal definition, in [14], table completeness and
query completeness are introduced to satisfy the requirements of describe par-
tial complete data. The table and query completeness statements can express
the semantics like “some special parts of the data is complete” and “the result
of some given query is complete” respectively. Then, for providing the ability of
completeness reasoning, the TC-QC problem is formally defined in [14], whose
intuitive aim is to determine whether the result of some query is complete based
on the fact that some parts of the data are complete. Obviously, TC-QC is a
fundamental problem of managing partial complete data.

In [14], the computational complexities of the TC-QC problem have been
studied in the aspect of classical complexities. It has shown that the complexities
of TC-QC ranges from PTime to Πp

2 -complete when considering different query
fragments. On the positive side, [13] shows that when considering only very sim-
ple table completeness statements, the TC-QC problem can be solved efficiently.
Observing the above results, it is rather needed to provide more fine-grained
complexity results for the TC-QC problem and seek for efficient algorithms for
practical settings. Therefore, an interesting and natural research issue is to study
the parameterized complexities of the TC-QC problem.

The paper investigates the parameterized complexity of completeness reason-
ing for conjunctive queries. We show that, if the query completeness size or the
table completeness size is considered as a parameter, then the parameterized TC-
QC problem for conjunctive queries is para-NP-complete. These results strongly
indicate that the TC-QC problems parameterized by the above two parameters
do not admit fixed-parameter tractable algorithms. Thus, more special cases of
TC-QC defined by different constraints are studied. It is shown that, when the
constraints about query structures like degree, tree-width and number of vari-
ables are considered, the parameterized TC-QC problems are still intractable.
On the positive side, we show that, if each data completeness statement has a
constant size bound, the parameterized TC-QC problem defined by the query
completeness size can be solved by a fixed-parameter tractable algorithm.

The paper is organized as follows. Section 2 contains the necessary defini-
tions. In Sect. 3, the complexities of two typical parameterized TC-QC problems
are introduced. Section 4 introduces a deterministic algorithm for TC-QC and
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identified a tractable case by considering more constraints. Section 5 contains
the complexity results of special parameterized TC-QC problems under several
important constraints, and Sect. 6 is the conclusion.

2 Preliminaries

In this part, we will introduce the fundamental concepts and basic definitions
about completeness reasoning and parameterized complexity.

The Relational Model. The relational database model assumes that the data
are stored in relations or tables. The columns of a relation are attributes, and
the rows are called tuples. For each attribute A, there is an associated domain
dom(A) of values. For each tuple t, let t[A] represents the value of t in the column
A, and we have t[A] ∈ dom(A). A database D is composed of a set of relations,
denoted by D = {R1, . . . , Rm}. The scheme of a relation R, denoted by sch(R),
is the set of attribute (or column) names, and the number of attributes (or the
arity of R) is denoted by arity(R).

Conjunctive Queries. A conjunctive query Q can be represented by

Q(x1, . . . , xk) : −R1(t1), R2(t2), . . . , Rl(tl).

Usually, the left-hand side of Q is called the head, and the right-hand side is
called the body. Here, each ti is a tuple of variables, every Ri is a relation in the
database and is not necessarily distinct from the others, and each xj in the head
must occur in the body of Q. Assuming there are n variables totally in Q, the
semantics of Q can be explained by the following expression.

Q(D) = {(x1, . . . , xk) | ∃y1 . . . ∃yn−k R1(t1) ∧ · · · ∧ Rl(tl)}

To be convenient, the above conjunctive query is also represented by

Q(t) = Q(x1, . . . , xk) = R1(t1) ∧ R2(t2) ∧ · · · ∧ Rl(tl).

The Incomplete Data Model. The incomplete data (or incompleteness) is an old
enough concept related to important issues such as data quality in database and
knowledge management areas. Generally, it can be defined based on tuples and
values. This paper only considers the tuple based incomplete data, and focuses on
the partial complete data model. An incomplete (or partial complete) database,
denoted by D, is a pair of databases 〈Do,Dc〉. Here, Do and Dc have the same
schemes, and D must satisfies Do ⊆ Dc. Intuitively, Dc is the truth database
which contains all tuples, and Do is the database owned by users which may
miss tuples from Dc. Usually, in real applications, users only own Do which is
incomplete, and the tuples in Dc \ Do are missed.

The Table Completeness. Intuitively, the table completeness statements are pro-
posed for describing which part of tuples in the data are not missed (complete).



How Hard Is Completeness Reasoning for Conjunctive Queries? 153

The following definitions are oriented from [14], and only conjunctive queries are
considered here.

Let G be a condition expression represented by a set of terms like Ri(ti),
x = y and x = c, where Ri is a relation, x and y are variables, and c is a
constant. Given an incomplete database D = 〈Do,Dc〉, a table completeness
statement Compl(R(x); G) is satisfied by D, denoted by D |= Compl(R(x); G),
if and only if QR(x);G(Dc) ⊆ R(Do), where QR(x);G is a conjunctive query
defined by Q(x) :−R(x), G. Given a set Σ of table completeness statements,
D |= Σ means that there is D |= σ for every σ ∈ Σ. In the following parts, we
will use the TC to represent the table completeness for short, and qσ to represent
the associated query QR(x;G) of σ.

Example 2. Continued with Example 1, the completeness knowledge “the records
related with Beijing is complete” about the data can be represented by the TC
statement σ = Compl(whether(x, y, z); x = ‘Beijing’). ��

The Query Completeness. The query completeness (QC for short) statements
are used to claim the query result is complete. According to [14], for a query Q,
the QC statement Compl(Q) is satisfied by an incomplete database D, denoted
by D |= Compl(Q), if and only if Q(Do) = Q(Dc). It means, even if Do misses
some unknown tuples from Dc, the query result Q(Do) is still complete and has
quality guarantees. If ϕ = Compl(Q) is a QC statement, we use qϕ to represent
the associated query Q.

Completeness Reasoning. Based on TC and QC statements, we can define the
TC-QC problem for reasoning query completeness from table completes. Assum-
ing that Σ is a set of TC statements and ϕ is a QC statement, Σ |= ϕ means
that for any D satisfying D |= Σ, there must be D |= ϕ.

Definition 1 (The TC-QC Problem). Given a set Σ of TC statements, and
a QC statement ϕ, the TC-QC problem is to determine whether or not Σ |= ϕ.

TC-QC is a fundamental and key problem in managing incompleteness. A typical
usage can be explained by the following example.

Example 3. Continued with Example 1 and 2, let Σ = {σ} where σ is defined in
Example 2. Let us consider the query used in Example 1, it can be represented
by Q(x, y, z) : −whether(‘Beijing’, 2013, z). In this case, solving the instance
〈Σ,ϕ = Compl(Q)〉 of TC-QC problem will determine that Σ |= ϕ, which
suggest us that the result of query Q is complete. ��

Fundamental Parameterized Complexity. A parameterized problem can be rep-
resented by the form (I, k), where I is the input and k is an integer parameter.
For example, a typical parameterized version of the classical Clique problem is
represented by (G, k), where G is the graph and k is the clique size.

A parameterized problem is fixed-parameter tractable (fpt for short) if there
is an algorithm that determines whether the answer of I is ‘yes’ within time
f(k) ·poly(n), where f : N → N is a computable function and n is the input size.
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More details about the fpt-reduction and the parameterized complexity
classes including para-NP, XP, W[1] and so on can be found in [7].

3 Parameterized Complexities by Limiting Input Sizes

First, we will consider the most restricted parameters, input sizes. Since most of
other effective parameterization methods often choose parameters limited by the
input sizes, constructing parameterized complexities and fpt-algorithms results
for input sizes parameters will give further directions for them.

According to Definition 1, a TC-QC instance is composed of two inputs, the
TC set Σ and the QC ϕ. Naturally, we consider two parameters, and formalize
the following two parameterized problems. Here, m = |ϕ| is the size of the input
QC ϕ, and n = |Σ| is the size of the input TC set Σ. Here, it should be noticed
that |Σ| is the size of information needed to represent all TCs in Σ, but not the
number of TCs in Σ. For the later one, we will use #|Σ| instead.

The p-TC-QC-m Problem parameter: m = |ϕ|
input: the TC set Σ, the QC ϕ.
problem: determine whether or not Σ |= ϕ.

The p-TC-QC-n Problem parameter: n = |Σ|
input: the TC set Σ, the QC ϕ.
problem: determine whether or not Σ |= ϕ.

3.1 The p-TC-QC-m Problem

The following theorem shows that the p-TC-QC-m problem has high parame-
terized complexities, and is not fixed-parameter-tractable unless P = NP.

Theorem 1. The p-TC-QC-m problem is para-NP-complete.

Since p-TC-QC-m is hard, a possible and natural idea is to consider special
cases that TC statements are limited. However, if the parameter |Σ| is fixed,
the problem will become trivial to be fixed-parameter-tractable which has a
O(mm) time algorithm. The parameter |Σ| is affected by both the number of TC
statements and the size of single TC statement. If the number of TC statements
#|Σ| is fixed, we have the following result.

Corollary 1. Even if there are only fixed number of TC statements, that is
#|TC| is a constant, the p-TC-QC-m problem is still para-NP-complete.

When considering fixed database scheme, we have the following result.

Corollary 2. Even if only fixed database scheme is considered, the p-TC-QC-m
problem is still para-NP-complete. Even if there are only 6 tables and the maxi-
mum arity is bounded by 3, the p-TC-QC-m problem is still para-NP-complete.
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3.2 The p-TC-QC-n Problem

In this part, we will show that, when we have limited TC size, the p-TC-QC-n
problem is also para-NP-complete, still fixed parameter intractable.

Theorem 2. The p-TC-QC-n problem is para-NP-complete.

Proof. The details are omitted. ��
Again, by observing the reduction used in the proof of Theorem2 carefully,

we can obtain parameterized complexity results for more special cases for which
the reduction used in Theorem 2 still works.

Corollary 3. Even if there are only fixed number of TC statements, that is
#|TC| is a constant, the p-TC-QC-n problem is still para-NP-complete.

When considering fixed database scheme, we have the following result.

Corollary 4. Even if only fixed database scheme is considered, the p-TC-QC-n
problem is still para-NP-complete. Even if there are only 6 tables and the maxi-
mum arity is bounded by 3, the p-TC-QC-n problem is still para-NP-complete.

4 A Tractable Case by Limiting TC Length

In this part, based on introducing a deterministic algorithm for the TC-QC
problem, a fixed-parameter tractable case for parameterized TC-QC with fixed
TC length is identified.

4.1 A Deterministic Algorithm for the TC-QC Problem

In this part, after introducing some key concepts, a deterministic algorithm for
the TC-QC problem will be introduced, which is the fundamental of understand-
ing the tractable case.

Unfolding Queries. First, the concept of unfolding queries and an important
lemma by [14] are introduced, which can be utilized to determine whether Σ |= ϕ
more conveniently by avoiding to check each possible model or build a minimal-
model like theory for the TC-QC problem.

Given a conjunctive query Q(t) = R1(t1)∧R2(t2)∧· · ·∧Rl(tl), the unfolding
query Q w.r.t. Σ, denoted by QΣ , is defined as follows:

QΣ =
∧

i∈[1,l]

(
Ri(ti) ∧

∨

σ∈Σ,σ=Compl(Ri(tσ);Gσ)

(
Gσ ∧ (ti = tσ)

))
.
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Example 4. Let Q be the query Q(x) = R(x, y)∧S(y, z), and the TC statements
are as follows.

σ1 = Compl(R(a, b); S(a, 1))
σ2 = Compl(R(a, b); S(b, c))
σ3 = Compl(S(a, b); R(a, c))

Then, the unfolding query QΣ is

QΣ(x) =
(

R(x, y) ∧ (
S(x, 1) ∨ S(y, c1)

)) ∧(
S(y, z) ∧ R(y, c2)

)
.

Then, we have the following useful result.

Lemma 1 [14]. Given a set Σ of TC statements and a QC statement ϕ =
Compl(Q) satisfying that Q is a conjunctive query, Σ |= ϕ if and only if Q ⊆
QΣ.

Two Challenges of TC-QC. Based on Lemma 1, the idea of the proposed
algorithm is naturally to design efficient algorithms for the TC-QC problem
based on efficient query containment testing algorithms.

However, to achieve and implement such an idea, there are still two chal-
lenges. (1) It is well known that general conjunctive query containment is still
NP-complete, but there are still opportunities based on the fact that many spe-
cial tractable cases for the query containment problem have been developed. (2)
The unfolding query QΣ is not a conjunctive query, and just a monotone query,
even not a union of conjunctive queries.

Query Containment and Evaluation. To face the first challenge, we will
reduce query containment to query evaluation problem. Given a conjunctive
query q, there is an equivalent tableau expression. As shown in [1], a tableau
representation is in the form (T, u), which is composed of the tableau T and the
summary u of the query. Here, T is a set of tables whose values are constants in
domain or variables, u is a tuple of constants and variables. The only constriction
is that the variables in u must occur in T.

Example 5. Let q be the conjunctive query

Q(x, y) : −R(x, z), S(z, 1), S(z, y).

The tableau form (T, u) can be represented by

TR

x z ,

TS

z 1
z y and u : (x, y) .

Then, we have the following celebrating result.

Lemma 2 [2]. Given two conjunctive queries q and q′, let (T, u) be the equiva-
lent tableau query of q, then q ⊆ q′ iff u ∈ q′(T).
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Disjunction-Eliminated Queries. To face the second challenge, an important
concept utilized here is disjunction-eliminated queries. Observing the structure
of QΣ , suppose for each

∨
operation used there is only one σ related with Ri,

the query QΣ will become a conjunctive query which is easier to handle than
a general QΣ . Thus, the intuitive idea of disjunction-eliminated queries is to
build related conjunctive queries with QΣ by choosing one from all possible TC
statements for each

∨
operation. The set of all possible disjunction-eliminated

queries related with QΣ is represented by [[QΣ ]].

Example 6. Continue with Example 4, the [[QΣ ]] includes the following two
queries.

q1(x) =
(
R(x, y) ∧ S(x, 1)

) ∧ (
S(y, z) ∧ R(y, c2)

)

q2(x) =
(
R(x, y) ∧ S(y, c1)

) ∧ (
S(y, z) ∧ R(y, c2)

)

Theorem 3. Given Σ and conjunctive queries Q and q, q ⊆ QΣ if and only if
there is some q′ ∈ [[QΣ ]] satisfying q ⊆ q′.

Fig. 1. The CR-FixedTCS Algorithm
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The CR-FixedTCS Algorithm. Combining the techniques introduced above,
the CR-FixedTCS (Completeness Reasoning for Fixed TC Size) algorithm is intro-
duced, whose main idea is first making a reduction from TC-QC to query con-
tainment, and then utilizing the principles in Theorem3 to determine the con-
tainment of queries. The details of CR-FixedTCS are shown in Fig. 1.

The main procedures of CR-FixedTCS can be summarized as follows.

(1) The unfolding query QΣ is built based on Σ and ϕ (line 1–2).
(2) Then, the query set [[QΣ ]] is constructed by removing

∨
operations from

QΣ (line 5–13). The queries in [[QΣ ]] are generated in a bread-first way and
maintained in SQ. There are L rounds of generating quereis in total. Before
the ith round, the queries in SQ are obtained by removing all first i − 1

∨

operations from QΣ . In the ith round, for each query q ∈ SQ, there are |Ui|
TC statements related with

∨
i, q will be transferred to |Ui| queries obtained

by replacing
∨

i with all possible conditions related with TC statements in
Ui (line 11).

(3) Finally, for each query q ∈ [[QΣ ]], using the corresponding tableau (T, u) of
Q, the answer of query containment can be determined by checking whether
or not u ∈ q′(T) (line 14–17).

The correctness of the CR-FixedTCS algorithm can be obtained easily by
considering Theorem 3 and the definition of [[QΣ ]]. To be convenient, its time
cost can be represented by O(|[[QΣ ]]| · cost(Q, [[QΣ ]])), where |[[QΣ ]]| is the size of
[[QΣ ]] and cost(Q, [[QΣ ]]) is the evaluation cost of queries in [[QΣ ]] on TQ.

4.2 Parameterzied Complexities of TC-QC with Fixed TC Length

In this part, the special cases of TC-QC problems with fixed TC length are
considered. For the p-TC-QC-m problem, it is shown to be fixed-parameter
tractable, that is in FPT, but the p-TC-QC-n problem is still para-NP-complete.

p-TC-QC-m with Fixed TC Length. Observing the CR-FixedTCS algo-
rithm, a rough analysis can not guarantee that p-TC-QC-m with fixed TC length
can be fixed-parameter tractable. Obviously, the set [[QΣ ]] is dependent on all
possible disjunction-eliminated operations. For each

∨
in QΣ , all related TC

statements will be utilized, and the size |[[QΣ ]]| can be bounded by (#|Σ|)m.
Here, m is the QC statement size |ϕ| which is an upper bound of |Q|, and #|TC|
is the number of TC statements in Σ. Since the length of single TC statement is
fixed, in the worst case, #|Σ| can be Θ(|x|). Therefore, the bound of |[[QΣ ]]| can
be O(|x|m) which is not allowed in the definition of fixed-parameter tractable
algorithms.

However, two isomorphic TC statements should be considered as one same
TC statement. Intuitively, they contain the same semantics and will produce
equivalent queries in [[QΣ ]].

Definition 2 (isomorphic TC statements). Two TC statements σ1 and σ2

are isomorphic, if and only if there is an isomorphism between qσ1 and qσ2 .



How Hard Is Completeness Reasoning for Conjunctive Queries? 159

Here, an isomorphism is a bijection mapping f between the variables of qσ1 and
qσ2 such that a query term Ri(x) is in the body of qσ1 iff the query term Ri(f(x))
is in the body of qσ2 , and the head part is also hold under f .

In fact, the fail of analysis discussed above is oriented from calculating many
times for redundant TC statements. Based on a more careful analysis of the
bound for non-redundant |[[QΣ ]]| and a preprocessing algorithm for Σ, we can
prove the following result.

Theorem 4 (Fixed TC Length). If there is a constant c such that for each
σ ∈ Σ we have |σ| ≤ c, the p-TC-QC-m problem is fixed-parameter tractable.

p-TC-QC-n with Fixed TC Length. For the p-TC-QC-n problem, even if
only TC statements with fixed length are allowed, it is still para-NP-complete.
It should be noticed that even if the size of input TC statement sets is treated
as the parameter, the constraint that each single TC has fixed length is still
interesting, since the fact #|Σ| can also affect the parameter.

Corollary 5. Even if only fixed-length TC statements are allowed, the p-TC-
QC-n problem is still para-NP-complete.

5 Parameterized Complexities by Constraints of Queries

In this part, several query related constraints are considered, and the parame-
terized complexity results of TC-QC are introduced.

p-TC-QC-m with Query Constraints. To consider more structural con-
straints of the associated queries further, a popular way is to focus on the
underlying graph GQ of Q. GQ can be obtained by treating variables and con-
stants appearing in Q as vertices and adding edges between two vertices when
they appear in the same subquery in Q. Then, the constraints are defined on
GQ, which require GQ to have bounded degree or bounded tree-width (see [6]
for details). Intuitively, the above constraints do not allow Q to have complex
structures. However, we obtain the following negative results.

Theorem 5. Even when only QC statements satisfying that the underlying
graphs of the queries are either of bounded degree or of bounded tree-width are
allowed, the p-TC-QC-m problem is still para-NP-complete.

Another interesting constraints is the number of variables used in the queries.

Theorem 6. Suppose there exists a constant c, such that the number of variables
used in qϕ is bounded by c, in this case, the p-TC-QC-m problem is still para-
NP-complete.
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p-TC-QC-n with Query Constraints. For the p-TC-QC-n problem, when
queries with degree constraints are considered, we have the following result.

Theorem 7. Even when only QC statements satisfying that the underlying
graphs of the queries are of bounded degree are allowed, the p-TC-QC-n problem
is still para-NP-complete.

Considering the constraint that only fixed number of variables are used in ϕ,
we have the following result.

Theorem 8. Suppose there exists a constant c, such that the number of variables
used in Q = qϕ is bounded by c, the p-TC-QC-n problem is W[1]-hard.

6 Conclusion

In this paper, to exploit the idea of reasoning completeness for incomplete data,
the TC-QC problem is studied from the parameterized complexity view. More-
over, we showed that the parameterized TC-QC problems defined by input sizes
are para-NP-complete, even when considering several typical constraints, the
special cases obtained are still para-NP-complete. By limiting the TC length, an
important tractable case is identified and an fpt-algorithm is designed.
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Abstract. We study the problem of Imbalance parameterized by the
twin cover of a graph. We show that Imbalance is XP parameterized by
twin cover, and FPT when parameterized by the twin cover and the size
of the largest clique outside the twin cover. In contrast, we introduce a
notion of succinct representations of graphs in terms of their twin cover
and demonstrate that Imbalance is NP-hard in the setting of succinct
representations, even for graphs that have a twin cover of size one.
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1 Introduction

Graph layout problems are combinatorial optimization problems where the
objective is to find a permutation of the vertex set that optimizes some function
of interest. In this paper we focus on the problem of determining the imbalance
of a graph G. Given a permutation π of V, we define the left and right neighbor-
hood of a vertex, NL(v) and NR(v), to be the set of vertices in the neighborhood
of v that were placed before and after v in π. The imbalance of v is defined as the
absolute difference between these quantities, that is,

∣
∣|NL(v)|− |NR(v)|

∣
∣ and the

imbalance of the graph G with respect to π is simply the sum of the imbalances
of the individual vertices. The imbalance of G is the minimum imbalance of G

over all orderings of V, and an ordering yielding this imbalance is called an opti-
mal ordering1 The problem was introduced by [2], and finds several applications,
especially in graph drawing [8,9,13–15].

Imbalance is known to be NP-complete for several special classes of graphs,
including bipartite graphs of maximum degree six [2] and for graphs of degree at
most four [10]. Further, the problem is known to be FPT when parameterized
by imbalance [11], vertex cover [5], neighborhood diversity [1], and the combined
parameter treewidth and maximum degree [11]. Recently, it was claimed that

1 We refer the reader to the preliminaries for formal definitions of the terminology
that we use in this section.
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imbalance is also FPT when parameterized by twin cover [7], which is a sub-
stantial improvement over the vertex cover parameter. We mention briefly here
that a vertex cover of a graph G is a subset S ⊆ V(G) such that G \ S is an
independent set, and a twin cover of a graph is a subset T ⊆ V(G) such that
the connected components of G \ T consist of vertices which are true twins—in
particular, note that each connected component induces a clique, and further, all
vertices have the same neighborhood in the cover T . The method employed in [7]
to obtain an FPT algorithm for Imbalance parameterized by twin cover relies
on a structural lemma which, roughly speaking, states that there exist optimal
orderings where any maximal collection of true twins appear together. Based
on this, it is claimed that the cliques of G \ S can be contracted into singleton
vertices to obtain an equivalent instance H. By observing that the twin cover
of G is a vertex cover of H, we may now use the FPT algorithm for Imbal-
ance parameterized by vertex cover to obtain an imbalance-optimal ordering
for H, and the contracted vertices can be “expanded back in place” to recover
an optimal ordering for G.

Although the structural lemma is powerful, unfortunately, we are unable to
verify the safety of the contraction step based on it. We note that the graph H

has lost information about the sizes of the individual cliques from G, and the
ILP formulation is blind to the distinctions between vertices that correspond to
cliques of different sizes. Consider, for example, an instance with a twin cover
of size one—the reduced instance is a star and any layout of H that distributes
the leaves of the star almost equally around the center would have the same
imbalance, and these are indeed all the optimal layouts of H. On the other
hand, several of these layouts could have different imbalances when considered
in the context of G. A natural fix to this issue is to mimic the ILP formulation
directly for the graph H, and taking advantage of the structural lemma to come
up with an appropriate set of variables that correspond to cliques of a fixed size.
Unfortunately, this leads us to a situation where the number of variables is a
function of the sizes of the cliques, and only yields an algorithm that is FPT
in the size of the twin cover and the size of the largest clique outside the twin
cover.

Our Contributions. With the premise that there is more to the twin cover
parameterization for Imbalance, the focus of this paper is on the complexity of
Imbalance parameterized by twin cover. We demonstrate that the problem is
in XP when parameterized by twin cover (Theorem2), and FPT when param-
eterized by the twin cover and the size of the largest clique. The first result is
based on a slightly non-trivial dynamic programming algorithm, which can be
thought of as a generalization of the classic dynamic programming routine for
the Partition problem, in which we are given n numbers and the question is if
they can be partitioned into two groups of equal sum. Indeed, the approach is
inspired by the fact that the problem of finding the optimal layout for graphs
that have a twin cover of size one is essentially equivalent to the Partition prob-
lem. However, generalizing to larger-sized twin covers involves accounting for
several details and we also discuss why the natural brute-force approaches to an
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XP algorithm end up failing. The second result is based on the ILP formula-
tion that we alluded to earlier. We mention here that we rely crucially on the
structural result of [7] for arguing the correctness of our algorithmic approaches.

We also propose a natural notion of a succinct representation for graphs with
bounded twin covers. Note that such graphs can be specified completely by the
adjacency matrix of the twin cover and for each clique outside the twin cover, its
size and its neighborhood in the twin cover. In contrast to the algorithmic results
above, the resemblance to Partition leads us to the interesting observation that
the problem of Imbalance is NP-hard even for graphs that have a twin cover
of size one in the succinct setting. This is formalized in Theorem 1. We find it
particularly interesting that Imbalance is a problem for which the choice of
representation leads to a stark difference in the complexity of the problem.

We note here that several FPT algorithms for other problems parameter-
ized by twin cover remain FPT in a “strongly polynomial” sense and can be
easily adapted to the setting of succinct input. For example, the algorithm for
Equitable Coloring [6] relies on reducing the problem to a maximum flow
formulation where the sizes of the cliques outside the twin cover feature as capac-
ities in the flow network, and this approach remains efficient for succinct input
since the maximum flow can be found in strongly polynomial time. Similarly,
the problems of PreColoring Extension, Chromatic Number, MaxCut,
and Feedback Vertex Set as proposed by Ganian [6] can be easily adapted
to being strongly polynomial in our succinct representation.

This paper is organized as follows. We begin by describing the notation and
terminology that is the most relevant to our discussions in the next section, and
refer the reader to [3] for background on the parameterized complexity framework
and to [4] for a survey of graph layout problems. We then establish the para-NP-
hardness of Imbalance parameterized by twin cover in the setting of succinct
representations in Sect. 3. The XP algorithm when parameterized by the twin
cover is described in Sect. 4, respectively. Due to lack of space, we state some
results without proof—these are marked by � and the proofs are provided in a
full version [12] of this paper. The FPT algorithm in the combined parameter
of twin cover and largest clique size is based on an ILP approach and is also
defered to the full version.

2 Preliminaries

We use G = (V,E) to denote an undirected, simple graph unless mentioned
otherwise, and we will typically use n and m to denote |V | and |E|, respectively.
The neighborhood of a vertex v ∈ V is given by N(v) := {u | (u, v) ∈ E}. The
closed neighborhood of a vertex v is given by N[v] := N(v) ∪ {v}. Likewise, the
open and closed neighborhoods of a set S ⊆ V are defined as: N(S) := {v | v /∈
S and ∃u ∈ S such that (u, v) ∈ E} and N[S] := N(S) ∪ S, respectively. A subset
Y ⊆ V is said to be a set of true twins in G if for every pair of vertices u, v in Y,
N[u] = N[v].
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Let S(V) denote the set of all orderings of V(G), and let σ be an arbitrary
but fixed ordering of V(G). For 1 � i � n, the ith vertex in the ordering is
denoted by σ(i). The relation <σ is defined as u <σ v if and only if u precedes
v in the ordering σ. We also define the left neighborhood and right neighborhood
of a vertex v in the natural way:

NL(v,σ) = {u | u ∈ N(v) and u <σ v} and NR(v,σ) = {u | u ∈ N(v) and v <σ u}.

We also use p(v,σ) and q(v,σ) to denote the sizes of NL(v,σ) and NR(v,σ),
respectively, and we refer to these numbers as the predecessors and the successors
of v with respect to σ. If the permutation σ is clear from the context, we use the
terms predecessors and successors without qualifying for σ.

An ordering σ of V is said to be a clean ordering if for every inclusion-wise
maximal subset Y ⊆ V that forms a set of true twins in G, the vertices of Y

appear consecutively in σ, i.e., Y contains all vertices in V that lie between the
smallest and largest elements of Y (with respect to <σ).

Imbalance. The imbalance of a vertex v with respect to an ordering σ of V is
denoted I(v,σ), and is defined as the absolute difference between the predecessors
and the successors of v, that is, I(v,σ) = |p(v,σ)−q(v,σ)|. The imbalance of an
ordering σ, denoted I(σ), is the total imbalance of all the vertices with respect to
σ, and the imbalance of the graph G is minimum imbalance over all permutations
of V:

I(G) = min
σ∈S(V)

I(σ), where I(σ) =
∑

v∈V

I(v,σ).

An ordering σ of V is said to be an imbalance optimal ordering if I(σ) = I(G).
We recall the following fact from [7].

Lemma 1 ([7]). There exists a clean imbalance optimal ordering.

Twin Cover. A subset S ⊆ V is called a twin cover if for every component X of
G \ S, the vertices of X form a set of true twins in G. In other words, for every
component X of G \ S, the vertices of X form a clique such that for every pair
of vertices u, v in V(X), N(u) ∩ S = N(v) ∩ S. Henceforth, we will refer to the
maximal cliques, or equivalently the components, of G\S as simply the ‘cliques’
of G \ S for the sake of simplicity. We also say that S ⊆ V is an �-bounded twin
cover if it is a twin cover such that every clique in G \ S has at most � vertices.

Note that the imbalance of a layout does not change if the positions of any
pair of true twins are exchanged. Therefore, the following is an immediate con-
sequence of Lemma 1.

Corollary 1. Let G be a graph and let S ⊆ V(G) be a twin cover of G. Then,
there exists an imbalance optimal ordering of G where the vertices of every clique
in G \ S appear consecutively.
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For further discussion, a clean ordering in the context of a graph G given with
a twin cover S is understood to be an ordering in which the vertices of every
clique of G\S appear consecutively. Further, we also abuse language slightly and
use the term “cliques” to always refer to the maximal cliques of G \ S, unless
mentioned otherwise.

For a graph G with twin cover S, we define the type of a vertex v in G \ S

as N(v) ∩ S, and the type of a clique C in G \ S as the type of any arbitrarily
chosen vertex in C. Observe that all vertices of any clique C ∈ G \ S have the
same type, and therefore the notion of the type of a clique is well-defined. Note
that G is completely specified once the structure of a twin cover S and the sizes
and types of all the cliques in G \ S are given.

In particular, given G := (H, {(�i,Si) | 1 � i � r}), where each Si is a subset
of V(H), the graph G associated with G is defined in the following natural way.
The vertex set of G is given by V(G) := S∪C1 ∪ · · ·Ci ∪ · · ·∪Cr, where |Ci| = �i

for all i ∈ [r] and |S| = |V(H)|. Now, identify the vertices of S with V(H) via an
arbitrary but fixed mapping f, and define the set of edges as follows. For any
pair of vertices u, v ∈ S, we have (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H).
Further, we induce a clique on each Ci, and finally, for any clique Ci and a vertex
v ∈ S we add edges between v and every vertex of Ci if and only if f(v) ∈ Si.
We say that G provides a succinct representation based on a twin cover. For
brevity, we will usually refer to G as a succinct representation of G. For further
discussion,we use the same notation to refer to both a vertex in V(H) and its
preimage (under the function f) in S, i.e., for any w in V(H), we refer to f−1(w)
in S as w for the sake of simplicity.

We now introduce the natural computational question associated with
Imbalance. Given a graph G = (V,E), a twin cover S ⊆ V of size at most
k, and a target t, determine if I(G) � t. Unless mentioned otherwise2, our focus
will be on Imbalance parameterized by k, the size of the twin cover. For the
most part, we assume that the input graph G is specified in the standard way, i.e,
by its adjacency matrix or adjacency list. If, on the other hand, G is specified by
a succinct representation in terms of its twin cover, then we say that the input
is succinct, and if this is the scenario we are in, we state it explicitly.

3 Weak Para-NP-Hardness

In this section, we establish the NP-hardness of Imbalance when the input is
succinct, even for graphs that have a twin cover of size one. This can be inter-
preted as a “weak” para-NP-hardness result for Imbalance when parameterized
by twin cover.

Theorem 1 (�). For succinct input, Imbalance is NP-hard even for graphs
that have a twin cover of size one.

We establish this result by a reduction from the Partition problem, which
is well-known to be weakly NP-hard. Recall that the input to Partition is a
2 We also consider the parameter (k + �) when we are given a �-bounded twin cover.
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set of positive integers {a1, . . . ,ar}, and the question is if there exists a subset
S ⊂ [r] such that

∑
i∈S ai =

∑
i/∈S ai. An intuitive visual for graphs that have a

twin cover of size one is to imagine that we have balls suspended from a single
point of varying weights, proportional to the sizes of the cliques, and a layout
that optimizes the imbalance is faced with the task of distributing these balls
on either side of the suspension point so that the total weight on either side is
equally distributed.

To formalize this idea, we first argue a lower bound for the imbalance of any
graph that has a twin cover of size one. To begin with, consider the function
γ(�) := ��2/2	. We define the intrinsic imbalance of a clique C on � vertices as
γ(�). For a graph G given by G := (H, {(�i,Si) | 1 � i � r}), define ι(G) :=
γ(�1) + · · · + γ(�r). Our first claim is the following.

Proposition 1 (�). Let G be given by G = (H, {(�i,Si) | 1 � i � r}). Then,
I(G) � ι(G).

The following observation is based on the fact that if a graph has a twin cover
of size one, then in any layout, the imbalance of odd-sized cliques is one more
than their intrinsic imbalance, and the imbalance of even-sized cliques is equal
to their intrinsic imbalance, and this is true for any clean ordering, irrespective
of where the cliques are placed in the layout relative to the twin cover vertex.

Proposition 2 (�). Let G be a connected graph given by G = (H, {(�i,Si) | 1 �
i � r}) where H = {v}. Then I(G) � ι(G) +

∑r
i=1(�i mod 2).

We have the following straightforward consequence of Proposition 2.

Corollary 2. Let G be a connected graph given by G = (H, {(�i,Si) | 1 � i � r})
where H = {v}. Then I(G) = ι(G) +

∑r
i=1(�i mod 2) + I(v).

We are now ready to describe the reduction from Partition.

Proof (Proof of Theorem 1). Given an instance P := {a1, . . . ,ar} of Partition,
let GP be given by G(P) = (H, {(�i,Si) | 1 � i � r}), which in turn is defined as
follows: H = {v}, �i = ai for all i ∈ [r], and Si = {v} for all i ∈ [r].
The instance of Imbalance is now given by (GP,S = {v}, t), where t =
ι(GP) +

∑r
i=1(ai mod 2)). This completes the construction. We defer the proof

of equivalence to the full version of this paper. 
�

4 An XP Algorithm

In this section, our goal is to demonstrate an XP algorithm for Imbalance
parameterized by twin cover when the entire input is given explicitly in the stan-
dard form. Throughout, we use G to denote the graph given as input, S ⊆ V(G)
denotes a twin cover of size k, and the question is if G admits a layout whose
imbalance is at most t. We denote the cliques of G \ S by C1, . . . ,Cr, and we let
�i denote the number of vertices in Ci. We also use � to denote max{�1, . . . , �r}.
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To begin with, let us consider some natural brute-force approaches, described
informally, that will eventually motivate the definitions that we will encounter
later. Assuming we are dealing with a Yes-instance, let σ� denote a clean order-
ing of V(G) whose imbalance is at most t.

We briefly mention here that the natural brute-force approaches to the prob-
lem do not lead to XP running times. For example, guessing the relative order
of the twin cover vertices and trying all possibilities of “final locations” for the
cliques outside S requires examining O((k + 1)r) possibilities. Attempting to
club together cliques that have the same neighborhood does not work because it
fails to capture important information about clique sizes. Refining the notion of
type to account for sizes again makes the approach too expensive. Attempting
to threshold the sizes of the cliques at some function of k and working with a
more nuanced notion of type3 also turns out to be insufficient since we remain in
the dark about the imbalance information of the twin cover vertices. For a more
detailed discussion of each of these approaches and the motivation for our DP
algorithm and it’s relationship to the Subset Sum problem, we refer the reader
to Sect. 3 in the full version of this paper.

Before describing our DP table and the associated recurrence, we first intro-
duce some definitions. A clique C in G\S is said to be a large clique if |V(C)| > k,
and is said to be a small clique otherwise. Further, a clique C ∈ G \ S is even
(respectively, odd) if it has an even (respectively, odd) number of vertices. Recall
that the intrinsic imbalance of a clique on � vertices is γ(�). We now introduce
two related notions. The total imbalance and excess imbalance of a clique C on
� vertices with respect to a layout σ is given by, respectively:

γ�(C,σ) =
∑

v∈C

I(v,σ) and γ+(C,σ) = γ�(C,σ) − γ(�).

We now claim that the excess imbalance of any large clique is a function of
its parity, type, and location in the layout σ, and in particular, it is independent
of its size.

Lemma 2 (�). Let G be a graph and let S ⊆ V(G) be a twin cover of G of size
k. Further, let C be a large clique in G \ S of type T ⊆ S. For any layout σ we
have:

γ+(C,σ) =

{
�δ(C,σ)2

2 	 if C is an even clique,
�δ(C,σ)2

2  if C is an odd clique,

where δ(C,σ) = |NL(v,σ) ∩ S| − |NR(v,σ) ∩ S|, for any v ∈ C.

Corollary 3. Let G be a graph and let S ⊆ V(G) be a twin cover of G of size
k. Further, let Ci and Cj be large cliques in G \ S that have the same parity
and type. If σ is a layout that places Ci and Cj in the same location, then
γ+(Ci) = γ+(Cj).

3 i.e, using explicit sizes up to a threshold, and declaring all other cliques as large—an
idea that we does play a role in our DP algorithm.
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Proof. The claim follows from the fact that δ(Ci,σ) = δ(Cj,σ) when Ci and
Cj are large cliques with the same type and that share the same location in
the layout σ. Further, γ+(Ci,σ) = γ+(Cj,σ) since Ci and Cj have the same
parity. 
�
Let us now formalize the notion of ‘location’ in an ordering of vertices in G. Let
σ be an arbitrary but fixed ordering. We say that a vertex v in G \ S is placed
at the location |σ<v ∩S|+ 1, where σ<v := {w | w <σ v}. If σ is a clean ordering,
we also say that a clique C ∈ G \ S is placed at the location |σ<v ∩ S|+ 1, where
v is an arbitrarily chosen vertex of C. Note that since σ is a clean ordering, for
any clique C ∈ G \ S, all its vertices are placed at the same location. Therefore
the notion of the location of a clique is well-defined. Intuitively, the location of
a clique tells us where it lies in the layout relative to the twin cover vertices. In
particular, cliques that are placed at location 1 < i � k lie between the (i− 1)th

and the ith twin cover vertex; with cliques at locations 1 and k+ 1 being placed
to the left of the first twin cover vertex and to the right of the last twin cover
vertex, respectively.

Let C :=
(

2S × {0}× [k]
)

∪
(

2S × {1}× {e,o}
)

. A class is a triplet (T ,b, j) ∈ C.
Recall that the type of a clique C is given by N(C) ∩ S. Let T ⊆ S be arbitrary
but fixed, and let C be a clique of type T . Then, the class of the clique C is given
by:

– (T , 1,o) if C is a large odd clique.
– (T , 1, e) if C is a large even clique.
– (T , 0, j) if C is a small clique on j vertices.

We will typically use ν to denote an element of C.
We now turn to the notion of specifications, which capture the “demand” that

we may make for the number and the total sizes of the cliques of a particular
class at a particular location. Formally, a specification is a map from C × [k+ 1]
to [n] ∪ {0}. We relate specifications to layouts in the following definitions.

– Given a specification α, we say that a layout σ respects α in count if, for
each location j ∈ [k + 1] and for every class ν ∈ C, the number of cliques of
class ν in location j according to σ is α(ν, j).

– Given a specification β, we say that a layout σ respects β in size if, for each
location j ∈ [k+ 1] and for every class ν ∈ C, the total size of cliques of class
ν in location j according to σ is β(ν, j).

We say that two layouts σ and π are similar with respect to S if the layouts
are identical when projected on the vertices of S. Our first observation is that
the notion of specifications is sufficiently rich in the context of imbalance in
the following sense: for an arbitrary but fixed pair of specifications (α,β), all
similar layouts that respect α in size and β in count have the same imbalance.
We formalize this claim below.
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Lemma 3 (�). Let G be a graph and let S be a twin cover of G of size k. Also,
let α and β be two specification functions for G and let σ and π be two clean
layouts of G that are similar with respect to S. If σ and π both respect α in count
and β in size, then I(σ) = I(π).

Based on the proof of Lemma 3, we have the following lemma.

Lemma 4 (�). Let G be a graph and let S be a twin cover of G of size k. Also,
let α and β be two specification functions for G. Let π be an ordering of the
vertices of S. For any layout σ of the vertices of G that respects α in count and
β in size, and which is consistent with π when restricted to S, its imbalance can
be computed in time O(g(k) · k · nO(1)).

Our next claim is that the number of specification functions is bounded by a
function that is XP in k. More specifically, we have the following.

Proposition 3. Let G be a graph and let S be a twin cover of G of size k.
Then, the number of specification functions is bounded by (n + 1)g(k), where
g(k) = (2k · (k + 2)) × (k + 1).

Proof. This follows from the fact that the number of possible classes is at most
(2k · (k + 2)), and that the number of functions from a domain with a elements
to a range with b elements is ba. 
�
We are now finally ready to present our dynamic programming algorithm. For
any pair of specifications (α,β), we say that a layout respects (α,β) if it respects
α in count and β in size. Recall that the cliques of G \ S were denoted by
C1, . . . ,Cr. For j ∈ [r], let Hj denote the graph G[S∪C1∪ . . .∪Cj]. Now consider
the following dynamic programming table, where α and β are specifications and
q ∈ [r]:

T(α,β,q) =

{
1 if there exists a layout σ of Hq that respects (α,β),
0 otherwise.

Before describing the recurrence for Tπ(α,β,q), we informally allude to why
this is useful to compute. To check if G admits a layout of imbalance at most t,
our algorithm proceeds as follows. For all specification pairs (α,β), we check if
T(α,β, r) = 1. For all the instances where the entries are one, we compute the
imbalance of any layout that respects (α,β) based on Lemma 3, by trying all
possible choices for the ordering of twin cover vertices. If we ever encounter an
imbalance value that is at most t then we abort and return Yes, otherwise we
return No after all choices of π and the corresponding specification pairs have
been exhaustively examined.

We now turn to the computation of the DP table T. For the base case, we
have q = 1, and it is easy to see that there are exactly (k + 1) choices—one for
each possible location—of pairs of specifications (α,β) for which Tπ(α,β,q) = 1.
For the sake of exposition, we explicitly describe these pairs. Recall that the size
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of C1 is given by �1, suppose the class of C1 is C�. Then consider the specification
function pairs (αi,βi)i∈[k+1] defined as follows:

αi(C, j) =

{
1 if j = i and C = C�,
0 otherwise,

and

βi(C, j) =

{
�1 if j = i and C = C�,
0 otherwise.

This motivates the definition of T for the base case:

T(α,β, 1) =

⎧
⎪⎨

⎪⎩

1 if there exists i ∈ [k + 1] such that
α = αi and β = βi

0 otherwise.

Before proceeding to the recurrence, let us introduce a definition that will make
the recurrence simpler to describe. We say that a clique C of size � whose class is
C is an overfit for a location j ∈ [k+ 1] with respect to the pair of specifications
(α,β) if:

– α(C, j) = 0, i.e, there is no “demand” for a clique of class C at location j; or
– β(C, j) < �, i.e, the total sizes of the cliques of class C that are expected at

location j is smaller than the size of C.

We now turn to the recurrence for T(α,β,q) for some q ∈ [r]. Let the class of
the clique Cq be C�. Define the following auxiliary specifications for i ∈ [k + 1],
which, intuitively speaking, capture the subproblems of interest if the clique Cq

were to be placed at location i:

αi(C, j) =

{
α(C, j) − 1 if j = i and C = C�,
α(C, j) otherwise,

and

βi(C, j) =

{
βi(C, j) − �q if j = i and C = C�,
βi(C, j) otherwise.

Let B ⊆ [k + 1] be the set of all locations for which Cq is not an overfit with
respect to (α,β). Then, we have: T(α,β,q) = ∨i∈BT(αi,βi,q − 1).

The discussions above lead us to the main result of this section.

Theorem 2 (�). Imbalance is in XP when parameterized by twin cover.



172 N. Misra and H. Mittal

5 Concluding Remarks

We investigated the complexity of Imbalance parameterized by twin cover. We
demonstrated that that the problem is XP by a dynamic programming approach,
and that it is FPT when parameterized by twin cover as well as the size of the
largest clique in the graph when the twin cover is removed. It is also easy to
see that the problem is FPT when parameterized by the twin cover and the
number of cliques outside the twin cover, by simply restricting our attention to
clean orderings and trying all possible permutations of the cliques and guessing
where the twin cover vertices ‘fit’ among them. This leads us to conclude that
the tractable cases are, roughly speaking, when there are a small number of large
cliques or a large number of small cliques, and the interesting cases lie in the
middle of this spectrum. The most evident open question that emerges from our
discussions is the issue of whether Imbalance is FPT when parameterized by
twin cover.

We also introduced a notion of succinct representations of graphs in terms
of their twin cover. It would be interesting to revisit problems which are FPT
in twin cover but with a “pseudo-polynomial” running time in the setting of
succinct input as described here. In particular, from the work of Ganian [6],
there are already some problems whose stated algorithms are not efficient in
the succinct setting. For example, the algorithm for Boxicity relies on the
fact that the edges within the clique are irrelevant, based on which we may
obtain an equivalent instance for which the twin cover becomes a vertex cover.
It would be an interesting direction of future work to examine which of these
problems remain FPT with a strongly polynomial running time when we work
with succinct representations. Our work here demonstrates that Imbalance is
already one problem for which the representation has a non-trivial influence on
the complexity.

References

1. Bakken, O.R.: Arrangement problems parameterized neighbourhood diversity.
Master’s thesis, University of Bergen (2003)

2. Biedl, T.C., Chan, T.M., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced
vertex-orderings of graphs. Discret. Appl. Math. 148(1), 27–48 (2005)

3. Cygan, M.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21275-3

4. Dı́az, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACM Comput.
Surv. 34(3), 313–356 (2002)

5. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

6. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4 21

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/978-3-642-28050-4_21


Imbalance Parameterized by Twin Cover Revisited 173

7. Gorzny, J., Buss, J.F.: Imbalance, cutwidth, and the structure of optimal orderings.
In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp.
219–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4 18

8. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996). https://doi.org/10.1007/BF02086606

9. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applica-
tions in graph drawing problems. Theoret. Comput. Sci. 172(1–2), 175–193 (1997)
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Abstract. Solomon and Elkin [10] constructed a shortcutting scheme
for weighted trees which results in a 1-spanner for the tree metric induced
by the input tree. The spanner has logarithmic lightness, logarithmic
diameter, a linear number of edges and bounded degree (provided the
input tree has bounded degree). This spanner has been applied in a series
of papers devoted to designing bounded degree, low-diameter, low-weight
(1 + ε)-spanners in Euclidean and doubling metrics. In this paper, we
present a simple local routing algorithm for this tree metric spanner.
The algorithm has a routing ratio of 1, is guaranteed to terminate after
O(log n) hops and requires O(Δ logn) bits of storage per vertex where Δ
is the maximum degree of the tree on which the spanner is constructed.

Keywords: Local routing · Spanners · Weighted trees · Doubling
metrics

1 Introduction

Let T be a weighted tree. The tree metric induced by T , denoted MT , is the
complete graph on the vertices of T where the weight of each edge (u, v) is the
weight of the path connecting u and v in T . For t ≥ 1, a t-spanner for a metric
(V, d) is a subgraph H of the complete graph on V such that every pair of distinct
points u, v ∈ V is connected by a path in H of total weight at most t ·d(u, v). We
refer to such paths as t-spanner paths. A t-spanner has diameter Λ if every pair of
points is connected by a t-spanner path consisting of at most Λ edges. Typically,
t-spanners are designed to be sparse, often with a linear number of edges. The
lightness of a graph is the ratio of its weight to the weight of its minimum
spanning tree. Solomon and Elkin [10] define a 1-spanner for tree metrics. Given
an n vertex weighted tree of maximum degree Δ, the 1-spanner has O(n) edges,
O(log n) diameter, O(log n) lightness and maximum degree bounded by Δ+k (k
is an adjustable parameter considered to be a constant for our purposes). While
being an interesting construction in its own right, this tree metric 1-spanner has
been used in a series of papers as a tool for reducing the diameter of various
Euclidean and doubling metric spanner constructions [2,6,8,10,11].

Once a spanner has been constructed, it becomes important to find these
short paths efficiently. A local routing algorithm for a weighted graph G is a
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method by which a message can be sent from any vertex in G to a given destina-
tion vertex. The successor to each vertex u on the path traversed by the routing
algorithm must be determined using only knowledge of the destination vertex,
the neighbourhood of u and possibly some extra information stored at u. The
efficiency of a routing algorithm is measured by the distance a message needs
to travel through a network before reaching its destination as well as by the
storage requirements for each vertex. There is a great deal of work on local rout-
ing algorithms in the literature. The difficulty of designing a good local routing
algorithm clearly depends on properties of the underlying network. Some authors
have designed algorithms for very general classes of networks. For example, the
algorithm of Chan et al. [7] works in any network although its quality depends
on the induced doubling dimension. Many authors have focused on highly effi-
cient algorithms for specific classes of networks. For example, there has been a
line of research into routing algorithms for various classes of planar graphs [4,5].
Support for efficient local routing algorithms is a desirable feature in a spanner
and in some recent papers, researchers have designed spanners which simulta-
neously achieve support for efficient local routing with other properties. See, for
example, the work of Ashvinkumar et al. [3].

There appears to be little work in the literature in designing spanners which
achieve both support for local routing as well as low diameter. Given a spanner
with diameter Λ, it is natural to require that a local routing algorithm on this
spanner match this diameter, i.e., the algorithm should be guaranteed to termi-
nate after at most Λ hops. Abraham and Malkhi [1] give a construction, for any
ε > 0, of a (1 + ε)-spanner for points in two dimensional Euclidean space with
an accompanying routing algorithm. The diameter of the routing algorithm is
O(D) with high probability where D is the quotient of the largest and small-
est inter-point distances. The routing algorithm has routing ratio O(log n), with
high probability, for n points on a uniform grid.

In this paper, we demonstrate that the 1-spanner construction of Solomon
and Elkin [10] supports a local routing algorithm with O(log n) diameter in the
worst case.

2 The Model

A local routing algorithm for a weighted graph G is a distributed algorithm in
which each vertex is an independent processor. At the beginning of a round,
a node may find that it has received a message. If a message is received, the
algorithm decides to which neighbour the message should be forwarded. The
following information is available to each vertex v in G:

1. A header contained in the message.
2. The label of v as well as labels of neighbouring vertices.

The message header stores the label of the destination vertex as well as other
information if required by the routing algorithm. The labels are used not only
as unique identifiers of vertices but may also store additional information if
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required. The labels of vertices are computed in a pre-processing step before the
algorithm is run. Our model does not consider the running time of computation
performed at each vertex in each round and so we do not specify the type of data
structure used for headers and labels. The routing decision made at each vertex
is deterministic. A routing algorithm is evaluated on the basis of the following
quality measures.

– Routing Ratio. Given two vertices u, v of G, let dG(u, v) denote the shortest
path distance from u to v and let droute(u, v) denote the total length of the
path traversed by the routing algorithm when routing from u to v. The routing
ratio is defined to be maxu,v∈V

{
droute(u,v)
dG(u,v)

}
.

– Diameter. A routing algorithm is said to have diameter Λ if a message is
guaranteed to reach its destination after traversing at most Λ edges.

– Storage. A bound on the number of bits stored at vertices and in message
headers.

3 Local Routing in Tree Metrics

3.1 The Spanner

In this subsection we describe the tree metric 1-spanner construction of Solomon
and Elkin [10].

We first define some notation used in this section. T will denote a weighted,
rooted tree and wt(T ) will denote its weight. Given a graph G, V (G) and E(G)
denote its vertex and edge sets respectively. The root of T is denoted rt(T )
and ch(v) denotes the number of children of v. As in the notation of [10], the
children of a vertex v are denoted c1(v), ..., cch(v)(v) and p(v) denotes the parent
of a vertex v. The lowest common ancestor of two vertices u, v ∈ V (T ) will be
denoted by lca(u, v). Given u, v ∈ V (T ), P (u, v) denotes the unique path from
u to v in T . Given v ∈ V (T ), Tv will denote the subtree of T rooted at v.

The shortcutting procedure selects a constant number of cut vertices in the
tree whose removal results in a forest of trees which are at most a constant
fraction of the size of the input tree. The spanner is obtained by building the
complete graph on these cut vertices and recursively applying the procedure to
all subtrees obtained by removing the cut vertices. The original construction
appearing due to Solomon and Elkin [10] actually builds a low diameter spanner
on the cut vertices rather than the complete graph. Since we consider the number
of cut vertices to be constant in the size of the input tree, we use the complete
graph as it is easier to work with for the purposes of our routing algorithm.

We first outline the method by which the cut vertices are selected. We assume
that among all subtrees rooted at children of a vertex v, the subtree rooted at
the leftmost vertex is the largest. That is, |Tc1(v)| ≥ |Tci(v)|, for all i > 1.

For an integer d, we call a vertex v d-balanced if |Tc1(v)| ≤ |T | − d. We label
an edge (u, v) of T as leftmost if u = c1(v) or v = c1(u). Let P (v) denote the
path of maximum length from v to some descendant of v which includes only
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leftmost edges. We say the last vertex on P (v) is the leftmost vertex in Tv and
we denote it by l(v). We define l(T ) := l(rt(T )). The construction we describe
involves taking subtrees of an input tree. These subtrees inherit the ‘leftmost’
labelling of the input tree so it may be the case that l(T ) = rt(T ). If there is a d-
balanced vertex along P (v), we denote the first such vertex by bd(v). Otherwise,
bd(v) = NULL.

Given a rooted tree T and a positive integer d, we define a set of vertices
CV (T, d) as follows. Set v := rt(T ). If bd(v) = NULL, CV (T, d) is defined to
be ∅. Otherwise,

CV (T, d) := {bd(v)} ∪
⎛
⎝

ch(bd(v))⋃
i=1

CV (Tci(bd(v)), d)

⎞
⎠ .

Let k be a positive integer. We define a set of vertices

CT :=

{
V (T ) if k ≥ n/2 − 1,

CV (T, d) ∪ {l(T ), rt(T )} otherwise.

where d := n/k. (See Fig. 1 for an example.) The spanner is constructed via
the following recursive procedure which takes as input a tree T and an integer
parameter k ≥ 0. Initialize the spanner as G = T . Compute the set CT , with
respect to k, and add the edges of the complete graph on CT to G. Denote by
T \CT the forest obtained by removing the vertices in CT , along with all incident
edges, from T . Recursively run the algorithm on all trees in the forest T \ CT

and add the resulting edges to G. Note that the parameter k is passed down to
recursive calls of the algorithm while the parameter d is recomputed based on
the size of the subtree on which the algorithm is called. The following lemmas
are established by Solomon and Elkin [10]:

Lemma 1. For k > 2, the set CT contains at most k + 1 vertices.

Lemma 2. Each tree in the forest T \ CT has size at most 2n/k.

In particular, Lemma2 implies that the recursion depth of the spanner con-
struction algorithm is O(log n).

Solomon and Elkin [10] show that the graph resulting from a slightly more
eloborate version of this shortcutting scheme has weight O(log n) · wt(T ). Their
scheme differs from what we have presented in that instead of building the
complete graph on the set of cut vertices CT , they build a certain 1-spanner with
O(k) edges and diameter O(α(k)) where α is the inverse Ackermann function.
Since we consider the parameter k to be constant, this modification does not
affect the weight bound of the construction.

Theorem 1. Let T be a weighted rooted tree and let k be a positive integer,
k < n/2−1. The graph G obtained by applying the algorithm described above to T
using the parameter k is a 1-spanner for the tree metric induced by T . Moreover,
G has diameter bounded by O(log n), weight bounded by O(log n) · wt(T ) and
maximum degree bounded by Δ + O(k) where Δ is the maximum degree of T .
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Fig. 1. A depiction of the set CT for a tree with n = 17 vertices and the parameter k
set to k = 5. The vertices of CT are inside the dashed circles. The vertices and edges
of the forest T \ CT are shown in bold.

Let G be the spanner resulting from running the algorithm described above
on some tree T with respect to the parameter k. We define canonical subtrees
of T with respect to k to be the subtrees computed during the course of the
construction of G. Canonical subtrees are defined recursively as follows. As a
base for the recursive definition, the input tree T is considered to be a canonical
subtree with respect to T and k. Suppose T ′ is a canonical subtree with respect
to T and k. Then each tree in the forest T ′ \ CT ′ is a canonical subtree with
respect to T and k. We speak of canonical subtrees without reference to the
parameters T and k when they are clear from context. Given a vertex v of T , we
denote by T v the canonical subtree for which v ∈ CTv . When a canonical subtree
T ′ is small enough, CT ′ = V (T ′) and so it is clear that CTv is well defined for
each v ∈ V (T ). We say that T v is the canonical subtree of v and that v is a cut
vertex of T v.

We establish some technical properties of canonical subtrees which will be of
use in the following section. We reword statement 4 in Corollary 2.17 from the
paper of Solomon and Elkin [10] in Lemma 3.

Lemma 3. Let T ′ be a canonical subtree of T and let T ′′ be the canonical subtree
such that T ′ ∈ T ′′ \CT ′′ . There are at most two edges in T with one endpoint in
T ′ and the other outside T ′. Moreover, any vertex of T ′ incident with a vertex
outside T ′ must be rt(T ′) or l(T ′).

In the spanner, a vertex u is connected to all vertices in CTu . The following
lemmas ensure that in the routing algorithm described in the next section, under
certain conditions, it is safe to make a ‘greedy’ choice from a subset of vertices
in CTu .
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Lemma 4. Let T ′ and T ′′ be canonical subtrees such that T ′′ ∈ T ′ \CT ′ and let
v be some vertex of T ′′. Let X be the set of vertices in CT ′ which are ancestors
of v. Let x be the element of X deepest in T and let x′ be the child of x which is
an ancestor of v. Then x′ = rt(T ′′) (See Fig. 2).

Fig. 2. Lemma 4. The set X consists of the red vertices. (Color figure online)

Lemma 5. Let u and v be vertices in G such that v is not a vertex of Tu. Let
X be the set of vertices in CTu which are ancestors of v. Suppose X �= ∅ and
let x be the last vertex on the path from u to v which is contained in Tu. Then
x ∈ X. Moreover, x is the deepest vertex in X (See Fig. 3).

Lemma 6. Let u and v be vertices of T such that u is a descendant of v and
T v is contained in Tu. Let T ′ be the canonical subtree in the forest Tu \ CTu

which contains v and let X be the set of vertices in CTu which are descendants
of v and ancestors of u. Let x be the element of X which is highest in T . Then
either rt(T ′) or l(T ′) is the parent of x (See Fig. 4).

3.2 Routing Algorithm

In this section, we describe a local routing algorithm for the spanner defined
above. Throughout what follows, let G denote the graph obtained when the
algorithm of the previous section is applied to a weighted, rooted tree T using
a parameter k ≥ 2. We first define the labels label(v) for vertices v ∈ V (G). We
make use of the interval labelling scheme of Santaro and Khatib [9]. Let rank(v)
denote the rank of v in a post-order traversal of T . We define

L(v) := min{rank(w) : w ∈ V (Tv)}.
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Fig. 3. Lemma5. The set X consists of the red vertices. (Color figure online)

Fig. 4. Lemma6. The set X consists of the red vertices. (Color figure online)

We define the label of v to be label(v) = [L(v), rank(v)]. The observation used in
the routing algorithm of Santaro and Khatib [9] is that a vertex w is a descendant
of v if and only if rank(w) ∈ [L(v), rank(v)]. Note that the label of each vertex
can be computed in linear time in a single traversal of the tree.

Lemma 7. In the labelling scheme outlined above, each vertex of G stores
O((Δ + k) log n) bits of information.

Proof. Since G has n vertices, for each v ∈ V (G), rank(v) and L(v) are both
integers in the interval [1, ..., n] and therefore require O(log n) bits to be repre-
sented. By Theorem 1, each vertex of G has at most Δ + O(1) neighbours in G.
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Then, for any v ∈ V (G), we require O((Δ + k) log n) bits to store rank(w) and
L(w) for each neighbour w of v. �	

For this routing algorithm, no auxiliary data structure is required at each
vertex and so the total storage requirement per vertex is O((Δ + k) log n) bits.

For convenience of analysis, in each case we specify two routing steps. For
ease of exposition, we consider a vertex u to be both a descendant and ancestor
of itself.

Given a current vertex u and a destination vertex v, the algorithm executes
the routing steps of one of the cases defined below:

Case 0: If v is a neighbour of u, route to v.

Case 1: u is an ancestor of v in T . Let X be the set of vertices in CTu which
are ancestors of v. Let x be the deepest element of X. Route first to x and
then to the child of x which is an ancestor of u.

Case 2: u is a descendant of v in T . Let X be the set of vertices in CTu

which are descendants of v and ancestors of u. Let x be the highest vertex in
X. Route first to X and then to its parent.

Case 3: u is not an ancestor or descendant of v. Let X be the set of vertices
in CTu which are ancestors of v and not ancestors of u. If X �= ∅, we define
x to be the deepest vertex in X and define x′ to be the child of x which is
an ancestor of v. Let Y be the set of vertices in CTu which are ancestors of u
but not ancestors of v. We define y to be the highest vertex in Y .

Case 3 a): X is empty. Route first to y and then to the parent of y.

Case 3 b): X is non-empty. Route first to x and then to x′.

The routing algorithm uses a greedy strategy. Given the destination vertex and
neighbours due to tree edges and shortcuts, the algorithm simply selects the
edge that appears to make the most progress. It is not obvious that this strategy
gives the desired O(log n) diameter of the routing algorithm. Indeed, this bound
would not hold if the shortcuts were arbitrary edges and hinges on the particular
structure of the 1-spanner.

The arguments we make in our analysis will make use of certain integer
sequences we assign to vertices of G. Note that these sequences are used only
for the analysis of the algorithm and are not part of the labelling scheme. We
define a unique integer sequence for each canonical subtree computed during the
course of the spanner construction. Each vertex v will be assigned the sequence
corresponding to the tree T v.

The integer sequence for each canonical subtree is defined recursively as fol-
lows. The input tree T is given the empty sequence. Suppose T ′ is a canonical
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subtree which has already been associated with some sequence S. Consider the
forest T ′ \ CT ′ = {T1, ..., Tp}. Each tree Tj ∈ T ′ \ CT ′ is associated with the
sequence obtained by appending j to S. It is clear that every vertex of T appears
in CT ′ for exactly one canonical subtree T ′. Let Sv denote the sequence assigned
to the vertex v. We refer to Sv as the canonical sequence of v.

Observe that if for two vertices u, v ∈ V (G) we have that Su = Sv, by def-
inition of the spanner construction algorithm, u and v must be cut vertices of
the same canonical subtree of T and are therefore connected by an edge in G.
The routing algorithm works by choosing a successor vertex so as to incremen-
tally transform the canonical sequence of the current vertex into the canonical
sequence of the destination vertex.

Lemma 8. Let u and v be vertices of G such that u is an ancestor of v. Consider
the two vertices visited after executing the routing steps of Case 1 when routing
from u to v. These vertices are on the path from u to v in T . Moreover, these
vertices are visited in the order they appear on this path.

Lemma 9. Let u and v be vertices of G such that u is a descendant of v. Con-
sider the two vertices visited after executing the routing steps of Case 2 when
routing from u to v. These vertices are on the path from u to v in T . Moreover,
these vertices are visited in the order they appear on this path.

Lemma 8 and Lemma 9 are immediate from the definition of the routing steps.

Lemma 10. Let u and v be vertices of G such that u is not an ancestor or a
descendant of v. Suppose the set X, as defined in Case 3 of the routing algorithm,
is empty. Consider the vertices visited after executing Case 3 a) of the routing
algorithm. These vertices are on the path from u to the v. Moreover, these vertices
are visited by the routing algorithm in the order they appear on this path.

Proof. Let w1 be the first vertex visited in Case 3 a) and let w2 be the second.
Then w1 is the vertex y and w2 is its parent. Since y is, by definition, not an
ancestor of v, it lies on the path from u to lca(u, v). Since w2 is the parent of y,
it is clearly the next vertex on P (u, lca(u, v)). �	
Lemma 11. Let u and v be vertices of G such that u is not an ancestor or
descendant of v. Suppose the set X, as defined in Case 3 of the routing algo-
rithm, is non-empty. Consider the vertices visited after executing Case 3 b) of the
routing algorithm. These vertices are on the path from lca(u, v) to v. Moreover,
these vertices are visited in the order they appear on this path.

Proof. Let w1 be the first vertex visited in Case 3 b) and let w2 be the second. w1

is an ancestor of v which is not an ancestor of u. It follows that w1 is a descendant
of lca(u, v). By definition of Case 3 b), w2 is the child of w1 which is an ancestor
of v. It is clear that w2 is the successor to w1 on the path P (lca(u, v), v). The
lemma follows. �	

Lemmas 8, 9, 10 and 11 imply the following:
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Lemma 12. Let u and v be vertices of G and let P (u, v) = (u = x1, ..., xp = v).
Suppose the routing steps of a single case of the routing algorithm are executed
and vertices w1 and w2 are visited. Then there are indices 1 ≤ i1 ≤ i2 ≤ p such
that w1 = xi1 and w2 = xi2 .

Using Lemma 12, we can show the routing algorithm has a routing ratio of
1.

Theorem 2. Let u and v be vertices of G. Let δT (u, v) denote the length of the
path from u to v in T . The routing algorithm described above is guaranteed to
terminate after a finite number of steps and the length of the path traversed is
exactly δT (u, v).

We now argue that the routing algorithm is guaranteed to terminate after
traversing O(log n) edges. To that end, we prove the following lemma.

Lemma 13. Let u and v be vertices of T such that u is either an ancestor or a
descendant of v. Let u′ be the vertex reached after executing the routing steps of
either Case 1 or Case 2 when routing from u to v. Then the following statements
hold:

1. If Su is a prefix of Sv, then |Su′ | > |Su|. Moreover, either Su′ = Sv or S′
u is

a prefix of Sv.
2. If Sv is a prefix of Su, then |Su′ | < |Su|. Moreover, either Su′ = Sv or Sv is

a prefix of Su′ .
3. Suppose Su and Sv share a common prefix S of length m < min{|Su|, |Sv|}.

Then |Su′ | < |Su|. Moreover, either Su′ = S or S is a prefix of Su′

Proof. We begin with the first statement. Suppose Su is a prefix of Sv. Then
Tu contains T v. Let T ′ be the canonical subtree in the forest Tu \ CTu which
contains T v. By definition, the canonical sequence of any cut vertex of T ′ can
be obtained by appending some integer to Su. Since T v is contained in T ′, the
canonical sequence associated to T ′ is a prefix of Sv. Then it is sufficient to show
that u′ ∈ CT ′ . Suppose u is an ancestor of v so that the algorithm executes the
routing steps of Case 1. Recall that in Case 1 the set X is defined as the set
of vertices in CTu which are ancestors of v and the vertex x is defined as the
deepest vertex in X. Then by definition of Case 1, u′ is the child of x which is
an ancestor of v. By Lemma 4, u′ = rt(T ′). Since rt(T ′) ∈ CT ′ , the statement
of the lemma follows in this case. Now suppose u is a descendant of v so that
the algorithm executes the routing steps of Case 2. Recall that in Case 2, X is
defined to be the set of vertices in CTu which are descendants of v and ancestors
of u and x is defined to be the highest vertex in X. By definition of Case 2, the
algorithm routes to x and then to the parent of x. Then u′ is the parent of x. By
Lemma 6, u′ ∈ {l(T ′), rt(T ′)}. Since {l(T ′), rt(T ′)} ⊆ CT ′ , the first statement of
the lemma holds in this case.

We now address the second and third statements of the lemma. Suppose Su is
not a prefix of Sv. Let S be the longest common prefix of Su and Sv. Then either
S = Sv or S is a prefix of Sv. Let T ′′ be the canonical subtree corresponding to
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the canonical sequence S. Observe that T ′′ contains Tu. Let T ′ be the canonical
subtree such that Tu ∈ T ′ \ CT ′ . Then either T ′′ = T ′ or T ′′ contains T ′. Note
that the canonical sequence of any cut vertex of T ′ is a prefix of Su. Moreover,
for any canonical sequence S′ of a cut vertex in T ′, either S = S′ or S is a prefix
of S′. We claim that u′ ∈ CT ′ . When Sv is a prefix of Su, we see this implies the
second statement. When Su and Sv share a prefix of length m < min{|Su|, |Sv|},
we see that our claim implies the third statement.

We now prove the claim. Suppose that u is an ancestor of v so that the
algorithm executes the routing steps of Case 1. Let X and x be as defined in
Case 1. Then u′ is the child of x which is an ancestor of v. By Lemma 5, x is
the last vertex on the path from u to v which is contained in T . Since x is an
ancestor of v and u′ is both a child of x and ancestor of v, it is clear that u′ is
the next vertex on P (u, v). Since u is a vertex outside T ′ connected to a vertex
in Tu, we see that u′ ∈ CT ′ and so the claim holds in this case. Suppose now
that u is a descendant of v so that the algorithm executes the routing steps of
Case 2. Let X and x be as defined in Case 2. Note that since u is a descendant
of v, rt(Tu) must also be a descendant of v. Then rt(Tu) ∈ X. Since rt(Tu)
must be the highest vertex in X, we see that x = rt(Tu). Since the parent of
rt(Tu) is clearly a member of CT ′ , the claim holds. This completes the proof of
the lemma. �	

Note that if u is an ancestor (resp. descendant) of v, then by Lemma 12 the
vertex reached after executing the steps of Case 1 (resp. Case 2) will also be an
ancestor (resp. descendant) of v.

Lemma 14. Suppose u and v in G are such that u is an ancestor or descendant
of v in T . Then, when routing from u to v, the routing algorithm reaches v after
traversing O(log n) edges.

Consider the case where u is neither an ancestor nor a descendant of v. The
following lemma shows that in this case, the algorithm either routes to a vertex
on the path P (lca(u, v), v) or it follows the routing steps that would be executed
if the algorithm were routing from u to lca(u, v).

Lemma 15. Let u and v be vertices of G such that lca(u, v) /∈ {u, v}. Suppose
that the set X as defined in Case 3 is empty so that the algorithm executes the
routing steps of Case 3 a) when routing from u to v. The same steps would be
performed when routing from u to lca(u, v).

Using Lemmas 14 and 15, we establish our main result.

Theorem 3. Let u and v be vertices in G. The routing algorithm reaches v
when routing from u after traversing at most O(log n) edges.

4 Conclusion

We have shown that a simplified version of the logarithmic diameter tree metric
1-spanner of Solomon and Elkin [10] supports a local routing algorithm of routing
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ratio 1 and logarithmic diameter. The shortcutting scheme of Solomon an Elkin
has proven to be a powerful tool for the design of low weight, low diameter
spanners. We believe our result will be of interest to researchers seeking to design
high quality networks for the purpose of local routing.
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Abstract. In this paper, we improve the method of specification mining
based on deep learning proposed in [16]. In that neural network model,
we find that if the length of a single trace exceeds 25 and the number
of the tracking methods exceeds 15, the Fmeasure output of the original
model will decrease significantly. Accordingly, we propose a new model
with attention mechanism to solve the forgetting problem of the original
model for long sequence learning. First of all, test cases are used to gener-
ate as many as possible program traces, each of which covers a complete
execution path. The trace set is then used for training a language model
based on Recurrent Neural Networks (RNN) and attention mechanism.
From these trajectories, a Prefix Tree Acceptor (PTA) is built and fea-
tures are extracted using the new proposed model. Then, these features
are used by clustering algorithms to merge similar states in the PTA
to build multiple finite automata. Finally, a heuristic algorithm is used
to evaluate the quality of these automata and select the one with the
highest Fmeasure as the final specification automaton.

Keywords: Specification mining · Deep learning · Trace · Attention ·
Finite state automata

1 Introduction

A system engineering activity requires a specification, which is a description of
the goals to be achieved by the system. System specifications are at the core of
all projects. As Brian Kerninghan puts it, “There are no errors without spec-
ifications, only ‘surprise’.” With software maintenance, specifications are also
extremely important. Well-defined software specifications enable programmers
to better understand software systems, thereby saving maintenance costs. How-
ever, many software lack software specifications for various reasons. Accordingly,
Specification Mining was proposed and widely studied. Mined specifications can
assist program debugging, and even developing verification tools to automati-
cally find program errors to promote the correctness of systems.

Although software specification is very important, the cost of writing specifi-
cations is very high since it requires a lot of manpower and material resources. In
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addition, there are special requirements for the professional skills of developers.
And some legacy software does not have specification documents, which makes
software reuse extremely difficult. Recently, many automated techniques have
been proposed to mine a variety of specifications, such as finite state automata
(FSA), temporal rules, sequence diagram, value-based invariants and so on. How-
ever, standard mining needs to further improve the accuracy of mining. The term
specification mining first proposed by Ammons et al. “It is a machine learning
method that specifies the formal specification of the protocol that code must fol-
low when interacting with an application.” Shoham et al. first tried using static
analysis to mine client timing APIs [29]. They proposed a new method to imple-
ment client-side mining based on a static analysis of the time series API specifi-
cation, providing inter-process analysis on a composite domain, which abstracts
the aliasing and sequence of events for each object.

Traditional machine learning algorithms are dependent on the manual extrac-
tion of features [2]. Accordingly, there is a bottleneck of feature extraction in
conventional-machine-learning-based image recognition, speech recognition [27]
and natural language processing. The method based on fully connected neural
network [9,30] also has drawbacks, such as too many parameters, inability to use
time series information in the data and so on. As more effective recurrent neu-
ral network structures have been proposed, the ability of deep neural networks
to express temporal and semantic information in data has been fully utilized,
and has been used in machine learning, language recognition, language models,
machine translation, and timing analysis. In terms of breakthrough, theoreti-
cally, the recurrent neural network can support sequences with arbitrary length.
However, in a practical training process, if the sequence is too long, it will lead to
gradient dissipation [31] and gradient explosion during optimization. Further, the
expanded feed-forward neural network will take up too much memory, so a max-
imum length is generally specified in practice. When the sequence length exceeds
the specified length, the sequence is truncated. Recurrent neural networks can
make better use of information that traditional neural network structures cannot
model, but at the same time, this also brings a grand challenge: the long-term
dependence problem. In some circumstances, the model only needs short-term
information to perform the current task. The RNN architecture of Long Short-
Term Memory (LSTM) [11] is designed to solve this problem. A time-expanded
view of LSTM is shown in Fig. 1. In many tasks, recurrent neural networks with
LSTM structure perform better than standard recurrent neural networks.

In order to select only some key information for processing and improve the
efficiency of the neural network [6], a technique named Attention Mechanism
has been proposed to allow a model to focus only on important information and
fully learn and absorb it. It is not a complete model and can be used in any
sequence model. The Attention Mechanism is selective (selected by the calcu-
lated similarity weights) to focus on relevant contents of an input while ignoring
other contents [18]. Many tasks are benefited from this technique. On one hand,
it can make the results more accurate. On the other hand, it is able to solve the
problem of excessive computational complexity. A general Attention structure



188 Z. Cao and N. Zhang

Fig. 1. A time-expanded view of LSTM

[1] has been designed in Tensorflow so that simple time series models can use the
Attention Mechanism. The entire model can better focus on the step that con-
tributes the most. To some extent it solves the problem of insufficient memory
in the time series model. The Attention Mechanism is widely used in Natural
Language Generation (NLG) [24], Question Answering System (QA) [13], Dia-
logue System [4,7], Multimedia Description (MD) [26], Text Classification [21],
Recommendation Systems [15], Sentiment Analysis [23] and other tasks.

In this paper, we improve the Deep Specification Mining (DSM) method
proposed in [16] and put forward a new model with Attention Mechanism to
solve the forgetting problem of the original model for long sequence learning.
The contributions of the paper are four-fold: (1) In the case where the length
of a single trace exceeds 25 and the number of the tracking methods exceeds
15, the Fmeasure output of the original model decreases significantly. We use the
Attention Mechanism [5,28] to alleviate the poor performance of RNN in long
sequences; (2) The DSM clustering algorithm is extended to optimize time and
accuracy while the stability of the algorithm operation is also improved; (3) The
method of extracting traces has been implemented in Python; (4) A new model
is proposed, which is suitable to mine specifications from both long and short
traces.

The rest of the paper is organized as follows: In the next section, our improved
method of specification mining is elaborated, including test case generation,
improvements in deep learning model and the procedure of specification mining.
In Sect. 3, some relative experiments using our method are carried out and a
comparison result is given in detail. In Sect. 4, conclusions are drawn.
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2 Deep Specification Mining with Attention

In order to address the problem that the mining effect of the original model [16]
on long traces is obviously reduced, we propose a new deep learning model. In
our model, the improvement can be summarized as the following four points.

(1) We automatically generate test cases for considered methods. After input a
test case, use a system method in Python to track and obtain a running trace
of a program. Record all the running traces of target methods as subsequent
training data set.

(2) We increase the number of types of clustering algorithms to make the model
more stable and reliable. In our work, nine clustering algorithms are used
while in the original method in [16] two clustering algorithms are employed,
and then the best clustering result is chosen as the final result. Compared
to the Kmeans algorithm, the MiniBatchKmeans [22] algorithm can sig-
nificantly reduce the calculation time without affecting accuracy when the
amount of data is too large.

(3) In order to solve the problem of the sudden decline in the mining effect of
the original model in long traces, we employ the Attention Mechanism. After
integrating the Attention Mechanism with the model, intermediate results
of a certain step can be weighted and summed up, thereby alleviating the
forgetting problem of the RNN language model.

(4) The model with the Attention Mechanism and the original model are inte-
grated together so that the mined features are suitable for both short and
long traces. We use two weighting methods for model fusion [17], and the
final results are better than the original model.

2.1 Test Case Generation

We use the sys.settrace method in Python to track program execution, then use
the frame.fcode.Coname method to filter the traces to make them only consist
of the methods we concern. Since the method call tracking is global, we can add
and delete the methods to be tracked according to our needs and concerns. We
develop a lightweight program to track execution traces of programs, and record
them as a data set required for training. Compared with other frameworks that
generate traces, our method is light weight, high flexibility, and easy to achieve.
However, the disadvantage is that some information on program execution can-
not be obtained, such as changes of variable values, and invariants [25] during
program running. But since our specification mining framework does not use
information other than method call sequences during program running, the dis-
advantage can be ignored. Further, conventional methods of tracking objects are
based on C, C++, Java and other programming languages while our lightweight
framework first provides code tracking for Python language. An example of a
code execution sequence is given as follows.

Example 1. 〈START〉 ZipOutputStream putNextEntry putNextEntry putNex-
tEntry closeEntry closeEntry close 〈END〉.
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2.2 Improvement in Deep Learning Models

We propose a char-rnn with Attention Mechanism learning model named ADSM
on the basis of the predecessors. In 2014, Bahdanau etc. first proposed the
Attention Mechanism [3]. They proposed the most classic Attention structure
for machine translation, and visually showed the alignment effect of Attention
with the target language, explaining what the deep model has learned. There
are four main reasons why the Attention Mechanism has developed so rapidly:

(1) The use of Attention in tasks such as Question Answering (QA), Sentiment
Analysis (SA), POS Tagging, Parsing and Dialogue, has achieved the results
achieved by current SOTA models.

(2) Besides improving the effect, it can also improve the interpretability of neu-
ral networks [32], which is also one of the shortcomings of neural networks.

(3) It can overcome the loss of information and insufficient memory caused by
RNN when the input is too long. Of course, you can also use the memory
network and neural Turing machine to solve these two problems.

(4) It can reduce computation overhead because RNN is difficult to process in
parallel, and selective focus based on attention can solve this problem to a
certain extent.

2.3 Specification Mining

In this processing step, the input of our method is a group of execution traces
used as a training data set, and the output is a specification expressed as a
finite state automaton. The construction of an automaton includes several steps:
Model Training, Trace Sampling, PTA Construction, Feature Extraction, State
Merging, and Excellent Model Selection.

First of all, our proposed deep learning model is trained by the trace set
obtained in the previous step, and then features are defined and specified for the
trace set. Then, a heuristic method is used to select a subset of representative
traces that can represent the total set of traces well. This subset can help us save
computing time and computing power. Further, a prefix tree acceptor is built
from this subset, and the trained model is then used to extract and calculate
feature values of states in the prefix tree acceptor. Moreover, nine clustering
algorithms in machine learning are employed to merge similar states in the prefix
tree acceptor, and multiple Finite State Automata (FSA) [12] are generated by
tuning parameter values. Finally, a heuristic method is used to evaluate these
automaton and the one with the best evaluation result is selected as the final
output.

The framework of our method is shown in Fig. 2, in which the technique of
model fusion is employed. There are many ways to fuse models. In this paper,
we adopt two modes of model fusion: mean value mode and square mode. Mean
value method is that the probability of the next method to appear is predicted
to be the average of the probability calculated by Char-rnn and the probability
calculated by Char-rnn with Attention. Square method is that the probability
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of the next method to appear is predicted to be the square root of the sum
of the squared probability calculated by Char-rnn and the squared probability
calculated by Char-rnn with Attention.

Fig. 2. The framework of specification mining based on model fusion

Model Training. The deep learning model based on a char-rnn1 with Attention
[5] we proposed is trained by a collection of traces. Our method can effectively
alleviate the problem that the experimental effect becomes worse as the length
of a trace increases. In general, the Attention Mechanism is to focus attention on
important points and ignore other unimportant factors. According to different
application scenarios, Attention is classified into Spatial Attention and Temporal
Attention. The former is often used for image processing while the latter for
natural language processing. The principle of the Attention Mechanism is to
calculate the degree of matching between the current input sequence and the
output vector. The higher the degree of matching is, the higher the relative
score of the Attention point is.

Unfortunately, the current invocation of a program method is only related
to some of the most recently called methods, and not to the methods that were
called too long before the current method. Therefore, we propose a model fusion
method. In the process of feature extraction, both the short trace segment feature
information and the long trace segment feature information can be included.

Since the next execution of our program is only related to the previous pro-
gram execution process, our approach is only to wrap an Attention structure
outside the unidirectionally propagated Recurrent Neural Network neurons. The
essence of the Attention Mechanism is a weighted sum operation of the output

1 https://github.com/karpathy/char-rnn.

https://github.com/karpathy/char-rnn
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Fig. 3. Char-rnn model with Attention. (ZOS: ZipOutputStream, pNE: putNextEntry,
cE: closeEntry)

of the previous Recurrent Neural Network neuron, so that the current step pro-
cessing uses the output information of all previous steps (See Fig. 3). Recurrent
Neural Network’s poor memory has been alleviated to some extent.

Trace Sampling. Our trace set contains a large number of training samples,
which contains a lot of redundant data. This redundant data can cause expensive
computational costs. And data redundancy can easily result in an imbalance of
training data [19], and a serious shadow on the impact of results. We select a
subset that can represent the entire training set according to the same heuristic
algorithm in [16].

PTA Construction. We build a Prefix Tree Acceptor (PTA) [8] from the
sampled subset of traces. A PTA is a tree-like finite state automaton as shown
in Fig. 4. Each path in the PTA from the initial state to a final state (double-
circled node) denotes a sampled trace. After building the PTA, we calculate and
predict values of two kinds of features given in the step of Feature Extraction
using the trained language model.

Feature Extraction. The aim of training model is to extract features. During
feature extraction, we care about two kinds of data features: (1) State calling

Fig. 4. An example of prefix tree acceptor
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sequence contained before reaching the current state: it captures sequence infor-
mation before the current state. Set the value of the method that has appeared
before to 1, and the value that has not appeared to 0; (2) Probability of the
next possible method call after reaching the current state: it uses the trained
Recurrent Neural Network model to predict the probability of the next upcom-
ing state, and take the state with the highest probability as the next upcoming
method.

State Merging. In our method, nine clustering algorithms from the Sklearn
library [14] are employed: (1) kmeans (2) hierarchical (3) hierarchicalComplete
(4) affinityPropagation (5) hierarchicalAverage (6) Birch (7) hierarchicalSingle
(8) MeanShift (9) MiniBatchKMeans. In order to select the best performing
model, we set the number of clusters as a model parameter. The number of clus-
ters for each algorithm is set to numCluster−1, with a total of 9×(numCluster−1)
FSA. In our experiment, the value of numCluster is set to 20, so there will be
totally 9 × 19 FSA generated. Then, we use a heuristic algorithm to pick the
best FSA.

Excellent Model Selection. We select the optimal FSA according to a heuris-
tic algorithm. This algorithm uses an index named Fmeasure to evaluate the
quality of a model. The value of Fmeasure index for an FSA can be calculated by
means of Eq. (1), which is the harmonic mean of prediction accuracy (Precision)
and acceptance rate of the automaton (Recall). Precision of an inferred FSA is
the percentage of sentences accepted by its corresponding ground truth model
among the ones that are generated by that FSA. Recall of an inferred FSA is
the percentage of sentences accepted by itself among the ones that are generated
by the corresponding ground truth model [20]. Figure 5 shows the final result of
model selection of AVL Tree.

Fmeasure =
2 × (Precision × Recall)

Precision + Recall
(1)

3 Experimental Results

3.1 DataSet

In our experiments, we select 11 target library classes as the benchmark to
evaluate the effectiveness of our proposed approach on short traces. Table 1 shows
further details of the selected library classes execution traces. In addition, we
have added two datasets of long traces: AVL Tree and RedBlackTree. These
datasets are created using Pyhton programs. These datasets perform poorly on
the original model [16]. We improve the model by adding Attention Mechanism
in it. The overall prediction accuracy based on long traces has been greatly
improved. Then we adopt the idea of model fusion to make our model have a
good performance on both long and short trace datasets. The length of single
traces in AVL Tree and RedBlackTree datasets is larger than 200.
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Fig. 5. AVL Tree specification

Table 1. The detailed description of DataSets

Target library class Nums Generated test cases Recorded method calls

ArrayList 18 42865 22996

HashMap 11 53396 67942

Hashtable 8 79403 89811

LinkedList 7 13731 4847

NFST 5 158998 95149

Signatrue 5 79096 205386

Socket 21 80035 130876

StringTokenizer 5 148648 336924

StackAr 7 549648 132826

ZipOutputStream 5 162971 43626

AVL 19 1000 314899

MyStack 5 1000 19714

RedBlackTree 16 1000 210188

3.2 Experimental Settings

We set the number of test inputs to 1000. The average length of the traces
generated is larger than 200.

Dropout settings. The dropout deep learning model was proposed by Hinton
to prevent overfitting in 2012 [10]. When a complex feed-forward neural network
is trained on a small data set, it is easy to cause overfitting. In order to prevent
overfitting, the performance of the neural network can be improved by preventing
the cooperation of feature detectors. We add Dropout between every two layers
of LSTM [18] in the deep learning model with a ratio of 0.5.

Attention needs to look back several steps. Parameter attnlength denotes the
maximum look-back length. If the sequence is not long, the value of attnlength
is the sequence length. But the training target in our method is a set of program
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Table 2. The comparison between DSM model and ADSM∗ model (F: Fmeasure, P:
Precision, R: Recall)

Library class DSM ADSM ADSM-mean ADSM-Sqrt

F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

HashMap 86.71 100 100 100 100 100 100 100 100 100

ArrayList 22.21 72.72 95 82.38 77.19 95.21 85.26 81.11 95.49 87.71

RedBlackTree 89.2 96.77 100 98.36 96.77 100 98.36 93.75 100 96.77

Hashtable 79.92 100 99.49 99.74 100 99.49 99.74 100 99.49 99.75

LinkedList 30.98 95.23 100 97.56 95.23 100 97.56 95.24 99.76 97.45

MyStack 100 100 100 100 100 100 100 100 100 100

NFST 77.52 92.31 96.33 94.27 92.31 97.15 94.67 94.12 98.5 96.26

Signature 100 100 100 100 100 100 100 100 100 100

Socket 54.24 94.38 100 97.1 96.55 99.61 98.05 96.27 100 98.1

StackAr 74.38 96.05 99.98 97.98 98.64 99.98 99.31 96.28 100 97.99

StringTokenizer 100 93.33 100 97.11 100 100 100 100 100 100

ZOS 88.82 100 100 100 100 100 100 100 100 100

AVL 90.41 100 100 100 97.06 100 98.51 94.29 100 97.06

execution traces and a large value of attnlength will worsen the final result, so
we need to set the value of attnlength to an experimental value.

3.3 ADSM∗ Versus DSM

In the experiments, we compare the effectiveness of our proposed model with
the previous Deep Specification Mining (DSM) [16] work proposed by David Lo
et al. The comparison result is shown in Table 2.

4 Conclusions and Future Work

Specification helps people develop, understand and maintain software. In this
paper, we propose the ADSM∗ models. Compared with the previous DSM [16]
model, our model employs the Attention Mechanism to solve the forgetting prob-
lem of the original model for long sequence learning. Then combined with the
previous method, the technique of model fusion is used to improve the experi-
mental results on the basis of the original model. In our method, we add more
clustering algorithms and expand from the original two algorithms to nine algo-
rithms to improve the stability and robustness of the model operation. We use
Python language to write a lightweight method to track code execution traces.
In order to cover execution paths of the target code as many as possible, we
have written a large number of test cases. Then a representative trace subset is
selected to build a Prefix Tree Acceptor (PTA), and clustering algorithms are
used to merge similar state nodes in the PTA to construct multiple FSAs. The
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optimal FSA is selected according to Fmeasure and outputted as the final model.
The results of the ADSM are on average greater than 0.95.

In the future, it is planned to add invariants [25] and parameters to the
model in our method to further improve the effectiveness of the model. We can
also use adversarial text generation techniques [33] to further improve the anti-
interference and ability to prevent attacks of the model.
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Abstract. In a graph G, two spanning trees T1 and T2 are rooted at the
same vertex r. If for every v ∈ V (G) the paths from v to the root r in
T1 and T2 are internally vertex-disjoint, they are independent spanning
trees (ISTs). ISTs have numerous applications, such as secure message
distribution and fault-tolerant broadcasting. The alternating group net-
work ANn (n stands for the dimension) is a subclass of Cayley graphs,
and the approach of constructing ISTs in ANn has not been proposed
until now. In this paper, we propose a recursive algorithm for construct-
ing ISTs in ANn. The algorithm is a top-down approach, and the parent
of one node in an IST is not determined by any rule. The correctness of
the algorithm is verified, and the time complexity is analyzed. We use
PHP to implement the algorithm and test cases from AN3 to AN10. The
testing results show that all trees are ISTs in all cases. We conclude that
our algorithm is not only correct but also efficient.

Keywords: Independent spanning trees · Alternating group networks ·
Triangle breadth-first search · Interconnection networks · Cayley graph

1 Introduction

In a graph G, two spanning trees T1 and T2 are rooted at the same vertex
r. If for every v ∈ V (G) the paths from v to the root r in T1 and T2 are
internally vertex-disjoint, they are independent spanning trees (ISTs). The ISTs
problem is appealing and has attracted considerable attention. It can be applied
in many research fields, such as secure message distribution [2,15], fault-tolerant
broadcasting [2], and pattern derivation in mitochondrial DNA sequences [14].

Accordingly, how to construct ISTs in graphs is worth studying. For a k-
connected graph, Zehavi and Itai have presented how to construct k ISTs [20].
The conjecture is correct in k-connected graphs with k ≤ 4 [5,6,9], but it has not
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been solved for k ≥ 5. However, it is so difficult to find ISTs in arbitrary graphs
that researchers have changed to study the ISTs problems on interconnection
networks over the past decade.

The IST problem has been solved on several interconnection networks, includ-
ing locally twisted cubes [3,8,13], hypercubes [16,17], folded hypercubes [18], and
bubble-sort networks [10,11]. However, the algorithm for constructing ISTs in
alternating group networks has not been proposed up to now. In this paper, we
focus on alternating group networks.

A class of graphs called group graphs or Cayley graphs are crucial for the
design and analysis of interconnection networks for parallel and distributed com-
puting. [1,4,7,12]. The alternating group network ANn (n stands for the dimen-
sion) were proposed by Youhu in 1998 [19]. The alternating group networks are
Cayley graphs and vertex symmetric. According to [21], n − 1 vertex-disjoint
paths exist between any two vertices of ANn. In this paper, we propose a recur-
sive algorithm for constructing n− 1 ISTs in ANn. The remainder of this paper
is arranged as follows: Sect. 2 preliminaries; Sect. 3 algorithm; Sect. 4 testing and
analysis; and Sect. 5 conclusion.

2 Preliminaries

An alternating group network ANn is defined to be a Cayley graph G = G(V,E)
in an alternating group An, where V is the set of all even permutations of
〈n〉 = {1, 2, . . . , n} and E consists of symmetric edges (u, v) such that any two
distinct permutations u and v are linked through an edge if and only if one can
be reached from the other by three operations such as left child, right child, and
friend. Suppose that n � 3, the alternating group network ANn has the vertex
set of even permutations from {1, 2, . . . , n}; two vertices [a1, a2, a3, . . . , an] and
[b1, b2, b3, . . . , bn] are adjacent if one of the following three conditions is satisfied.

– The first condition is a1 = b3, a2 = b1, a3 = b2 and aj = bj for 4 ≤ j ≤ n. As
illustrated in Fig. 1(a), node b is the left child of node a.

– The second condition is a1 = b2, a2 = b3, a3 = b1 and aj = bj for 4 ≤ j ≤ n.
As presented in Fig. 1(b), node b is the right child of node a.

– The third condition is that there exists i ∈ {4, 5, . . . , n} such that a1 =
b2, a2 = b1, a3 = bi, ai = b3, and aj = bj for j ∈ {4, 5, ..., n}\{i}. As shown in
Fig. 1(c), node b is friend i of node a.

a1   a2   a3   a4 … an

b1   b2   b3   b4 … bn
(a) Left child of node a.

a1   a2   a3   a4 … an

b1   b2   b3   b4 … bn
(b) Right child of node a.

a1   a2   a3   a4 … ai … an

b1   b2   b3   b4 … bi … bn
(c) Friend i of node a.

Fig. 1. Three operations in alternating group networks.

AN3 and AN4 are shown in Fig. 2 and Fig. 3.
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123

312231

Fig. 2. AN3.

14234213

2143

2314 3124

1234

3412

1342 41322431

4321

3241

Fig. 3. AN4.

3 Algorithm

Firstly, we introduce basic notations:

– the root: node 123456 . . . n is chosen as the root of all ISTs;
– cluster A: a set of nodes, and their last symbol is A;
– the root cluster: the set of nodes, and their last symbol is the same with the

root’s last symbol. In ANn, the root cluster is cluster n;
– trunk: a set of nodes with the same last symbols created by createTrunk

function;
– the origin: the starting node of a trunk;
– Tn

j : the jth IST of ANn, and the last symbol of its trunk whose is j;
– tid: the last symbol of the origin, and it is j in Tn

j .

We can divide ANn into n objects of ANn−1, and classify every node into a
cluster by its last symbol. Thus, there are n clusters in ANn. For example, we
can divide AN4 into four objects of AN3. There are four clusters in AN4, as
shown in Fig. 4.

14234213

2143

2314 3124

1234

3412

1342 41322431

4321

3241

Fig. 4. Four clusters of AN4.
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Root
123456…n

Friend n
Tree 3 origin
21n456…3

Left child
231456…n

Right child
312456…n

Friend 5
215436…n

Friend (n – 1)
21(n-1)456…3n

…Friend 6
216453…n

Tree 1 origin
32n456…1

Tree 2 origin
13n456…2

Tree (n – 1) origin
12n456…3(n-1)

Tree 6 origin
12n453…6

Tree 5 origin
12n436…5

…

Fig. 5. Origins.

We can transform every node in ANn−1 into a node in ANn if we append one
symbol n in the nth position. We can use the property to construct the ISTs of
ANn from ANn−1. There are n − 1 edges and n − 1 nodes adjacent to the root
in ANn. Of the n− 1 nodes, n− 2 nodes can be transformed from ANn−1 if we
append one symbol n in the nth position, but the friend n is a new node. The
n − 2 nodes use their new edge incident to a node, namely an origin and the
friend n itself is an origin, too. The origins are used to create trunks to traverse
other clusters. The idea is presented in Fig. 5. The white nodes in the center
are transformed from some node in ANn−1 if we append a symbol n in the last
position. The root’s child 1 in ANn takes its new edge to create the origin of Tn

1 .
The root’s child 2 in ANn takes its new edges to create the origin of Tn

2 . The
root in ANn takes its new edge to create the origin of Tn

3 . The root’s friends 5
to n − 1 in ANn take their new edges to create the origins of Tn

5 to Tn
n−1. T

n
4

does not execute any createTrunk function; hence, it has no origin.

3.1 Recursive Algorithm

Algorithm 1 use the following global variables.

– tary: a two-dimensional array storing the trees in this iteration;
tary[tid][node] is node’s parent. Every tree includes all nodes. If the node
is not traversed, its value is 0, namely tary[tid][node] = 0;

– ptary: an array storing the trees in the previous iteration;
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– edge: an array storing all direct edges.
edge[from][to]=1 represents the edge from→to unused;
edge[from][to]=0 represents the edge from→to used.

Construct the ISTs ofAN3 by Hands. AN3 is a triangle, where there are
two ISTs. We can construct those ISTs by hand as illustrated in Fig. 6.

Fig. 6. ISTs in AN3 and all paths.

Duplicate Previous Trees. tary is stored in ptary at the end in each iteration
so that the ISTs in this iteration can be reused in the next iteration. In the
starting of each iteration, the algorithm will duplicate the previous ISTs to tary.
Table 1 displays the relation of a tree in this iteration and the mapping tree in
the previous iteration. Accordingly, Tn

1 comes from Tn−1
1 and Tn

n−1 comes from
Tn−1
3 . Tn

3 is a totally new tree, and it does not duplicate any previous tree.

Create an OriginSet. An OriginSet is an array storing the origins. We create
the origins from the root. In AN4, we create three origins, namely 3241, 1342,
and 2143 to create trunks, as presented in Fig. 7.

Fig. 7. Origins (nodes with dark brown outlines) in AN4.
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Algorithm 1: Recursive Algorithm

Input : n � the dimension n of ANn

Output: the ISTs from AN3 to ANn

1 for dim = 3; dim ≤ n; dim = dim + 1 do
2 if dim == 3 then
3 Construct the ISTs of AN3 by hand;

4 else if dim ≥ 4 then
5 Duplicate previous trees in the previous iteration to the trees in this

iteration;
6 Create an OriginSet; � an array storing origins
7 for every origin in the OriginSet do
8 Execute CreateTrunk function; � (1)

9 // Create branches
10 if dim == 4 then
11 // AN4 executes createBranch function three times.
12 for i = 0; i < 3; i = i + 1 do
13 for j = 1; j ≤ dim − 1; j = j + 1 do
14 if i == 0 then
15 createBranch(tary, j, edge, true, n);

16 else
17 createBranch(tary, j, edge, false, n);

18 else if dim ≥ 5 then
19 // Every tree executes createBranch function four times.
20 for i = 0; i < 4; i = i + 1 do
21 for j = 1; j ≤ dim − 1; j = j + 1 do
22 if i == 0 then
23 createBranch(tary, j, edge, true, n);

24 else
25 createBranch(tary, j, edge, false, n);

26 createBranch(tary, 3, edge, true, n); � (2)

27 ptary = tary; � tary must be stored to use in next iteration.

28 /* Comments:
29 (1) T4 executes a createBranch function to produce neighbors along the root

cluster, T4 first appears in AN5, and it duplicates T 4
3 to tary[4].

30 (2) Compared with other trees, T3 executes createBranch function one more
time to traverse the root cluster. */

Table 1. The mapping of tid in this iteration and tid in the previous iteration.

Tree id 1 2 3 4 5 6 . . . n − 1

Previous tree id 1 2 No previous tid, a new tree 4 5 6 . . . 3
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3.2 CreatTrunk Function

We create a trunk from an origin through a triangle breadth-first search (TBFS)
traversal. However, the TBFS traversal just only traverses nodes whose the last
symbol is the same with that of the origin.

BFS Order. In the createTrunk function, each node in tkQue will traverse all
unvisited nodes adjacent to it in this order:

1. left child; 2. right child; 3. friends 4, 5, 6 . . . , n − 1.

MBFS Traversal. Because ANn is symmetric, some child c of one node v may
be traversed by another node w earlier. In such case, we should transfer c’s parent
from w to v. For instance, the graph presented in Fig. 8(a) occurs. We set the
edge (marked blue X) from used to unused and use another edge (marked blue
arrow) to traverse c. Hence, the triangle shape is retained. Figure 8(b) illustrates
this idea.

c
w

v

(a) BFS

w
v c

(b) TBFS

Fig. 8. BFS and TBFS processes. (Color figure online)

Basic functions:

– function leftchild( parent): returns the left child of parent;
– function rightchild( parent): returns the right child of parent;
– function getFriend( parent, p): returns the friend p of parent by swapping

first and second symbols, as well as the third and the pth (p �= 1, 2, 3) symbols
of parent.

In Fig. 9, the trunk nodes of T 5
1 are indicated by ellipses with blue borders.

3.3 createBranch Function

The createBranch function is used to traverse all unvisited nodes in one step
each time from a tree after the createTrunk function. For instance, the branch
nodes of T 5

1 in the first, second, and third executions of createBranch functions
are indicated by ellipses with brown, gold, and gray borders in Fig. 9.
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Function createTrunk(tary, tid, edge, origin)
Input : tary, tid, seed, origin
Output: the trunk of tary[tid]

1 tkQue = array(origin); � Put origin into tkQue.
2 for j = 0; j < |tkQue|; j = j + 1 do
3 v = tkQue[j]; � tkQue’s (j + 1)th element
4 lch = leftchild(v); rch = rightchild(v);
5 // left or right children unvisited
6 if (tary[tid][lch] == 0 and edge[v][lch] == 1) or (tary[tid][rch] == 0 and

edge[v][rch] == 1) then
7 if lch has been visited then
8 remove lch from tkQue; edge[tree[tid][lch]][lch] = 1; � (4)

9 if rch has been visited then
10 remove rch from tkQue; edge[tree[tid][rch]][rch] = 1; � (4)

11 // visit left child
12 tary[tid][lch] = v; tkQue[] = lch; edge[v][lch] = 0; � (1)(2)(3)
13 // visit right child
14 tary[tid][rch] = v; tkQue[] = rch; edge[v][rch] = 0; � (1)(2)(3)

15 // traverse friend 4 to |origin| − 1
16 for i = 4; i ≤ |origin| − 1; i = i + 1 do
17 fd = getFriend(v, i);
18 if tary[tid][fd] == 0 and edge[v][fd] == 1 then
19 tary[tid][fd] = v; � (1)
20 edge[v][fd] = 0; � (2)
21 tkQue[] = fd; � (3)

22 // (1) Set its the parent.
23 // (2) Set the edge used (from 1 to 0).
24 // (3) Put it into tkQue.
25 // (4) Set the edge from its parent to itself unused (from 0 to 1).

Fig. 9. Trunk nodes (blue border) of T 5
1 after createTrunk function. Branch nodes

(brown, gold, and gray border) of T 5
1 after createBranch function. (Color figure online)
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Function createBranch(tary, tid, edge, first, n)
Input : tary, tid, edge, first, n
Output: nodes can be visited by tary[tid] in a step

1 // global represents global variable
2 global bQ; � a two-dimensional array storing nodes traversed by Ttid not to
3 � traverse all nodes in it next time
4 global bQIx; � the starting position in bQ[tid] each time
5 if first == true then
6 // first execution
7 for each node v in tary[tid] do
8 // Only Tn

4 is permitted to traverse from the root cluster.
9 if v has parent and ( ( tid �= 4 and v’s last symbol �= n) or tid == 4)

then
10 // visit the left child
11 if tary[tid][lch] == 0 and edge[v][lch] == 1 then
12 tary[tid][lch] = v; bQ[tid][] = lch; edge[v][lch] = 0; � (1)(2)(3)

13 // visit the right child
14 if tary[tid][rch] == 0 and edge[v][rch] == 1 then
15 tary[tid][rch] = v; bQ[tid][] = rch; edge[v][rch] = 0; � (1)(2)(3)

16 // traverse friend 4 to n
17 for i = 4; i ≤ n; i = i + 1 do
18 fd = getFriend(v, i);
19 if tary[tid][fd] == 0 and edge[v][fd] == 1 then
20 tary[tid][fd]=v; edge[v][fd]=0; bQ[tid][] = fd; � (1)(2)(3)

21 else
22 qsize = count( bQ[tid] ); � current size of bQ[tid]
23 // New element will be put into bQ[tid], but will be utilized in next

execution.
24 for y = bQIx[tid]; y < qsize; y = y + 1 do
25 v = bQ[tid][y];
26 // visit the left child
27 if tary[tid][lch] == 0 and edge[v][lch] == 1 then
28 tary[tid][lch] = v; bQ[tid][] = lch; edge[v][lch] = 0; � (1)(2)(3)

29 // visit the right child
30 if tary[tid][rch] == 0 and edge[v][rch] == 1 then
31 tary[tid][rch] = v; bQ[tid][] = rch; edge[v][rch] = 0; � (1)(2)(3)

32 for i = 4; i ≤ n; i = i + 1 do
33 fd = getFriend(v, i );
34 if tary[tid][fd] == 0 and edge[v][fd] == 1 then
35 tary[tid][fd] = v; edge[v][fd] = 0; bQ[tid][] = fd; � (1)(2)(3)

36 bQIx[tid] = y; � the position for next execution

37 // (1) Set its parent.
38 // (2) Set the edge used (from 1 to 0).
39 // (3) Put it into bQ[tid].
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3.4 Path Composition

Finally, the outcome paths from the root to other nodes produced by the algo-
rithm contain the trunk part and the branch part, as illustrated in Fig. 10. There
are origins in trunks of trees except for T4. Because T4 done not execute any
createTrunk function, it appends the last symbol of the root to its previous tree
as its trunk.

Root
Left child,

Right child,
Friend 5 … (n-1)

of Root
Trunk  Origin Branch

Root Trunk Friend n
of Root

Trunk  Root Branch

T3: Branch

T4:

Ti:
i = 1, 2, 5, 6, … , n-1

Fig. 10. Path composition.

4 Testing and Analysis

We use PHP to implement the algorithm and draw ISTs in Graphviz. The cases
tested are AN3 to AN10. We test whether all paths in all trees are inner vertex-
disjoint. The results prove that all paths in all trees are internally vertex-disjoint
in all cases. The algorithm is correct. Since the algorithm traverse every node
and every directed edge once, we summarize the numbers of nodes and directed
edges from AN3 to ANn to get the time complexity of ANn. The number of
nodes in ANn is n!

2 and the number of directed edges in ANn is n!
2 × (n − 1).

The time complexity is O(n × (n!2 + n!
2 × (n − 1))) = O(n2 × n!).

5 Conclusion

In this paper, we propose a recursive algorithm for constructing ISTs in alter-
nating group networks. The algorithm is a top-down approach, and the parent
of one node in an IST is not determined by any rule. The correctness of the algo-
rithm is verified, and the time complexity is analyzed. We use PHP to implement
the algorithm and test different cases from AN3 to AN10. The results prove that
all trees of all cases are ISTs. We conclude that our algorithm is not only correct
but also efficient. We hope the algorithm can bring some new ideas to the IST
problem domain.
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Abstract. In the k-Center problem, we are given a graph G = (V, E)
with positive edge weights and an integer k and the goal is to select k
center vertices C ⊆ V such that the maximum distance from any vertex
to the closest center vertex is minimized. On general graphs, the problem
is NP-hard and cannot be approximated within a factor less than 2.

Typical applications of the k-Center problem can be found in logis-
tics or urban planning and hence, it is natural to study the problem on
transportation networks. Such networks are often characterized as graphs
that are (almost) planar or have low doubling dimension, highway dimen-
sion or skeleton dimension. It was shown by Feldmann and Marx that
k-Center is W[1]-hard on planar graphs of constant doubling dimension
when parameterized by the number of centers k, the highway dimension
hd and the pathwidth pw [11]. We extend their result and show that
even if we additionally parameterize by the skeleton dimension κ, the k-
Center problem remains W[1]-hard. Moreover, we prove that under the
Exponential Time Hypothesis there is no exact algorithm for k-Center
that has runtime f(k, hd, pw, κ) · |V |o(pw+κ+

√
k+hd) for any computable

function f .

Keywords: k-Center · Skeleton dimension · Parameterized complexity

1 Introduction

The k-Center problem consists of the following task: Given a graph G = (V,E)
with positive edge weights � : E → Q

+ and some k ∈ N, choose k center vertices
C ⊆ V that minimize the maximum distance from any vertex of the graph to
the closest center. Formally, if the shortest path distances in G are given by
dist : V 2 → Q

+ and Br(v) = {w ∈ V | dist(v, w) ≤ r} denotes the ball of radius
r around v, we aim for a solution C ⊆ V of size |C| ≤ k that has minimum cost,
which is the smallest radius r ≥ 0 such that V =

⋃
v∈C Br(v).

On general graphs, the k-Center problem is NP-complete [15], as well as on
planar graphs [14] and geometric graphs using L1-, L2- or L∞-distances [9]. On
the positive side there is a general 2-approximation algorithm by Hochbaum and
Shmoys [12], i.e. an efficient algorithm that computes a solution which deviates
from the optimum at most by a factor of 2. This factor is tight, as for any ε > 0,
c© Springer Nature Switzerland AG 2020
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it is NP-hard to compute a (2− ε)-approximation, even when considering planar
graphs [14] or graphs with L1- or L∞-distances [9].

However, common applications of the k-Center problem arise in domains
like logistics or urban planning. For instance, one might want to place a lim-
ited number of warehouses, hospitals or police stations on a map such that the
distance from any point to the closest facility is minimized. Hence, it is natural
to study the problem on transportation networks. Common characterizations of
such networks are graphs that are planar or have low doubling dimension, high-
way dimension or skeleton dimension. For formal definitions of these parameters,
see Sect. 2. Usually, it is assumed that in transportation networks the mentioned
parameters are bounded by O(polylog|V |) or O(

√|V |). It was shown that on
graphs of maximum degree Δ and highway dimension hd, the skeleton dimension
is at most (Δ+1) ·hd [13]. The relationship between highway dimension hd and
skeleton dimension κ was also evaluated experimentally on several real-world
road networks and it turned out that κ � hd [5]. Moreover, it was conjectured
that on road networks the skeleton dimension is a constant whereas the highway
dimension grows faster than O(polylog|V |).

Still, a low highway dimension or skeleton dimension does not suffice to
overcome the general inapproximability bound of k-Center. In particular, it
was shown that for any ε > 0, there is no (2 − ε)-approximation algorithm
for graphs of highway dimension hd ∈ O(log2 |V |) [10] or skeleton dimension
κ ∈ O(log2 |V |) [4], unless P = NP.

Apart from approximation, a common way of dealing with NP-hard problems
is the use of fixed-parameter algorithms. Such an algorithm computes an exact
solution in time f(p) ·nO(1), where f is a computable function and p a parameter
of the problem instance which is independent of the problem size n. In other
words, if a problem admits a fixed-parameter algorithm, the complexity of the
problem can be captured through some parameter p. If this is the case, we
call the problem fixed-parameter tractable (FPT). A natural parameter for k-
Center is the number of center vertices k. However, it was shown that in
general, k-Center is W[2]-hard for parameter k, and hence it is not fixed-
parameter tractable unless W[2] = FPT [8]. Feldmann and Marx studied the
fixed-parameter tractability of k-Center on transportation networks [11]. They
showed that k-Center is W[1]-hard even if the input is restricted to planar
graphs of constant doubling dimension and the parameter is a combination of k,
the highway dimension hd and the pathwidth pw. Moreover, they proved that
under the Exponential Time Hypothesis (ETH) there is no exact algorithm with
runtime f(k, pw, hd)·|V |o(pw+

√
k+hd). In the present paper we extend their result

and show that one can additionally parameterize by the skeleton dimension κ
without affecting W[1]-hardness. Formally, we show the following theorem.

Theorem 1. On planar graphs of constant doubling dimension, the k-Center
problem is W [1]-hard for the combined parameter (k, pw, hd, κ) where pw is the
pathwidth, hd the highway dimension and κ the skeleton dimension of the input
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graph. Assuming ETH there is no f(k, pw, hd, κ) · |V |o(pw+κ+
√

k+hd) time algo-
rithm1 for any computable function f .

The reduction of Feldmann and Marx produces a graph where the maximum
degree Δ can be quadratic in the input size. As we have Δ ≤ κ, it does not imply
any hardness for the skeleton dimension. Our new construction yields a graph
of constant maximum degree, which enables us to bound the skeleton dimension
as well as the highway dimension and the pathwidth.

The results reported by Blum and Storandt [5] indicate that in real-world
road networks, the skeleton dimension κ is significantly smaller than the high-
way dimension, which motivates the use of κ as a parameter. Note that in gen-
eral, the parameters pw, hd and κ are incomparable [4]. Still, our main result
shows that combining all these parameters and the number of centers k does not
allow a fixed-parameter algorithm unless FPT = W[1]. However, for the com-
bined parameters (k, hd) [10] and (k, κ) [11], the existence of a fixed-parameter
approximation algorithm was shown, i.e. an approximation algorithm with run-
time f(p) · nO(1) for parameter p. Theorem 1 indicates that apart from approxi-
mation there is not much hope for efficient algorithms.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. Addition modulo 4 is denoted by �. For
(a, b), (a′, b′) ∈ N let (a, b) ≤ (a′, b′) iff a < a′ or a = a′ and b ≤ b′.

In a graph G = (V,E) we denote the shortest s-t path by π(s, t) and the
length of a path P by |P |. The concatenation of two paths P and P ′ is denoted
by P ◦ P ′.

A graph G is planar if it can be embedded into the plane without crossing
edges, and d-doubling if for any r > 0, any ball B2r(v) of radius 2r in G is
contained in the union of d balls of radius r. If d is the smallest integer such that
G is d-doubling, the graph G has doubling dimension log2 d.

For the highway dimension several slightly different definitions can be found
in the literature [1–3]. Here we use the one given in [3].

Definition 1. The highway dimension of a graph G is the smallest integer hd
such that for any radius r and any vertex v there is a hitting set S ⊆ B4r(v) of
size hd for the set of all shortest paths π satisfying |π| > r and π ⊆ B4r(v).

To define the skeleton dimension, which was introduced in [13], we need to
consider the geometric realization G̃ of a graph G. Intuitively, G̃ is a continuous
version of G where every edge is subdivided into infinitely many infinitely short
edges. For a vertex s ∈ V , let Ts be the shortest path tree of s. We assume that in
G every shortest path is unique, which can be achieved e.g. by slightly perturbing
the edge weights, and it follows that Ts is also unique. The skeleton T ∗

s is defined
as the subtree of T̃s induced by all v ∈ Ṽ , for which there is some vertex w such
that v is contained in π(s, w) and moreover, we have dist(s, v) ≤ 2 · dist(v, w).
1 Here o(pw+κ+

√
k + hd) stands for g(pw+κ+

√
k + hd) where g is a function with

g(x) ∈ o(x).
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Definition 2. For a skeleton T ∗
s = (V ∗, E∗) and a radius r > 0, let Cutr

s = {v ∈
V ∗ | dist(s, v) = r}. The skeleton dimension of a graph G is κ = maxs,r |Cutr

s|.
We assume that the reader is familiar with the notion of pathwidth. A formal

definition can be found, e.g. in [6].

3 The Reduction

Following the idea of Feldmann and Marx [11], who showed that on planar
graphs of constant doubling dimension, k-Center is W [1]-hard for parameter
(k, pw, hd), we present a reduction from the Grid Tiling with Inequality
(GT≤) problem. This problem asks the following question: Given χ2 sets Si,j ⊆
[n]2 of pairs of integers, where (i, j) ∈ [χ]2, is it possible to choose one pair
si,j ∈ Si,j from every set, such that

– if si,j = (a, b) and si+1,j = (a′, b′) we have a ≤ a′, and
– if si,j = (a, b) and si,j+1 = (a′, b′) we have b ≤ b′.

It is known that the GT≤ problem is W [1]-hard for parameter χ and, unless the
Exponential Time Hypothesis (ETH) fails, it has no f(χ) · no(χ) time algorithm
for any computable f [7].

3.1 The Reduction of Feldmann and Marx

In [11] the following graph HI is constructed from an instance I of GT≤. For
any of the χ2 sets Si,j , the graph HI contains a gadget Hi,j that consists of a
cycle Oi,j = v1v2 . . . v16n2+4v1 and five additional vertices x1

i,j , x
2
i,j , x

3
i,j , x

4
i,j and

yi,j . Every edge contained in some cycle Oi,j has unit length and every vertex
yi,j is connected to Oi,j via edges to v1, v4n2+2, v8n2+3 and v12n2+4, which all
have length 2n2 +1. Moreover, for every pair (a, b) ∈ Si,j and τ = (a− 1) ·n+ b,
the gadget Hi,j contains the four edges

– {x1
i,j , vτ} of length 2n2 − a

n+1 ,
– {x2

i,j , vτ+4n2+1} of length 2n2 + b
n+1 − 1,

– {x3
i,j , vτ+8n2+2} of length 2n2 + a

n+1 − 1, and
– {x4

i,j , vτ+12n2+3} of length 2n2 − b
n+1 .

Finally, the individual gadgets are connected in a grid-like fashion, which
means that there is a path from x2

i,j to x4
i,j+1 and from x3

i,j to x1
i+1,j . Each of

these paths has length 1 and consists of n + 2 edges of length 1
n+2 .

Feldmann and Marx showed that the given GT≤ instance I has a solution
if and only if the k-Center problem in the graph HI has a solution of cost
2n2 using k = 5χ2 centers. Moreover, the graph HI is planar and has doubling
dimension O(1), highway dimension O(χ2) and pathwidth O(χ). Observe that
the degree of any vertex xh

i,j is |Si,j |. This means that the skeleton dimension of
HI might be as large as Ω(n2), as the maximum degree of HI is a lower bound
on its skeleton dimension. We show now how to construct a graph GI that
resembles HI , but has skeleton dimension O(χ) and fulfills the other mentioned
properties.
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yi,j

z1i,j z2i,j

z3i,jz4i,j

x1
i,j

x2
i,j

x3
i,j

x4
i,j

ρ1b

u1
b

ψ2
(a,b)

ψ′2
(a,b)

v2(a,b)

(a) A gadget Gi,j .

G1,1

Gχ,χ

(b) The graph GI .

Fig. 1. A single gadget Gi,j and the whole graph GI .

3.2 Our Construction

We assume that in the given GT≤-instance, for all (i, j) ∈ [χ]2 and every b ∈ [n],
there is some a ∈ [n] such that (a, b) ∈ Si,j . This is a valid assumption, as from
an instance I of ordinary GT≤, we can construct the following instance I ′. For
i ∈ [χ−1] and j ∈ [χ] we add the pairs {(n + χ − i, b) | b ∈ [n]} to Si,j . Moreover,
we add the pairs {(0, b) | b ∈ [n]} to every Sχ,j . It can be easily verified that I
has a solution if and only if I ′ has a solution.

Given a GT≤-instance I we construct the following graph GI (cf. Fig. 1).
Like in [11], we create a gadget Gi,j for every set Si,j . Any Gi,j contains a
cycle Oi,j , which initially consists of four edges that have length 2n+2 + 1/n.
Denote the four vertices of the cycle Oi,j by z1i,j , . . . , z

4
i,j and for h ∈ [4] let

Oh
i,j = π

(
zh
i,j , z

h�1
i,j

)
. Now, for any pair (a, b) ∈ Si,j and any h ∈ [4] we insert

a vertex vh
(a,b) into the path Oh

i,j and place it such that its distance to zh
i,j is

d(a,b) = 2b − 1 + a
n .

It follows that the distance between vh
(a,b) and vh�1

(a,b) is 2n+2 + 1/n. Moreover,

for (a′, b′) ≤ (a, b), the distance from vh
(a′,b′) to vh

(a,b) is 2b − 2b′
+ (a−a′)/n.

Additionally, for any pair (a, b) ∈ Si,j and any h ∈ [4],, we insert two vertices
ψh
(a,b) and ψ′h

(a,b) into the path Oh
i,j such that their distance from vh

(a,b) is 2n+1

and 2n+1 + 1/n, respectively. This implies that dist
(
ψ′h
(a,b), v

h�1
(a,b)

)
= 2n+1 and

dist
(
ψh
(a,b), v

h�1
(a,b)

)
= 2n+1 + 1/n.

Any gadget Gi,j also contains a central vertex yi,j that is connected to each
zh
i,j through an edge of length 2n+1+1. Finally, we add four vertices x1

i,j , . . . , x
4
i,j

to every gadget Gi,j , through which we will connect the individual gadgets. For
(a, b) ∈ Si,j and h ∈ [4] denote the distance between vh

(a,b) and xh
i,j by dh

(a,b). The
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idea of our reduction is that we attach every xh
i,j to the cycle Oi,j such that for

every pair (a, b) ∈ Si,j and h ∈ {1, 3}, the distance dh
(a,b) reflects the value of b,

whereas for h ∈ {2, 4}, the distance dh
(a,b) reflects the value of a.

For the latter, we simply add an edge between x2
i,j and the vertex v2

(a∗,b∗)

where (a∗, b∗) = min Si,j .2 The length of this edge is chosen as

d2(a∗,b∗) = 2n + 1 + d(a∗,b∗) = 2n + 2b∗
+

a∗

n
.

Similarly we add an edge between x4
i,j and v4

(a∗,b∗) and set its length to

d4(a∗,b∗) = 2n+1 − d(a∗,b∗) = 2n+1 + 1 − 2b∗ − a∗

n
.

It follows that for all (a, b) ∈ Si,j we have

d2(a,b) = d2(a∗,b∗) + d(a,b) − d(a∗,b∗) = 2n + 2b +
a

n
and

d4(a,b) = d4(a∗,b∗) + d(a∗,b∗) − d(a,b) = 2n+1 + 1 − 2b − a

n
.

Attaching x1
i,j and x3

i,j to Gi,j is slightly more elaborate. We want to ensure
that for any two pairs (a, b), (a, b′) ∈ Si,j that agree on the first component, we
have d1(a,b) = d1(a,b′). For that purpose, we add a path U1

i,j = u1
1 . . . u1

n and set
the length of every edge {u1

λ, u1
λ+1} to 2λ. Moreover, we add the edge {u1

n, x1
i,j}

of length 2n. For every b ∈ [n], consider the vertex v1
(a∗,b) that is furthest from

z1i,j . We call it also the b-portal ρ1b . We attach it to u1
b through an edge of

length 2b − a∗
/n, the so called b-portal edge. It follows that for (a, b) ∈ Si,j we

have dist(v1
(a,b), u

1
b) = 2b − a∗

/n + d(a∗,b) − d(a,b) = 2b − a/n and dist(u1
b , x

1
i,j) =

∑n
λ=b 2λ = 2n+1 − 2b, and hence we have

d1(a,b) = 2n+1 − a

n
.

Similarly we proceed with the vertices contained in O3
i,j . We add a path

U3
i,j = u3

1 . . . u3
n, set the length of every edge {u3

λ, u3
λ+1} to 2λ and add the edge

{u3
n, x3

i,j} of length 2n. For b ∈ [n] we use the vertex v3
(a∗,b) that is closest to z3i,j

as the b-portal ρ3b and attach it to u3
b trough a portal edge of length 2b −1+a∗

/n.
It follows that

d3(a,b) = 2n+1 − 1 +
a

n
.

To complete the construction, we connect the individual gadgets in a grid-like
fashion. For i ∈ [n − 1] we connect x3

i,j and x1
i+1,j through a path Pi,j of length

1 that consists of (n + 1) edges of length 1/(n+1) each. Moreover, for j ∈ [n − 1]
we connect x2

i,j and x4
i,j+1 through a path P ′

i,j = w1 . . . wn where w1 = x4
i,j+1

and wn = x4
i,j . We set the length of every edge {wλ+1, wλ} to 2λ which implies

that |P ′
i,j | = 2n − 2. The resulting graph GI can be constructed in polynomial

time from the given GT≤-instance I.
2 here the minimum is taken w.r.t the lexical order as defined in the preliminaries.
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ρ1b

u1
bu1

1
u1

n

v1(a,b)

x1
i,j

(a) The shortest path tree of a vertex v1(a,b).

ρ1b

u1
bu1

1
u1

n

x1
i,j

(b) The shortest path tree of a vertex u1
b .

Fig. 2. Illustration of the shortest path structure as shown in Lemma 1.

3.3 Graph Properties

We now formulate some basic properties of GI that will be useful to prove the
correctness of our reduction and to obtain bounds on several graph parameters.
We first observe that all shortest paths between the cycle Oi,j and a path Uh

i,j

have a certain structure (cf. Fig. 2).

Lemma 1. Let a, b, b′ ∈ [n] and h ∈ {1, 3}. For β ∈ [n] denote the path
π

(
vh
(a,b), ρ

h
β

)
◦

{
ρh

β , uh
β

}
◦ π

(
uh

β , uh
b′

)
by Pβ.

(a) If b′ ≥ b, the shortest path from vh
(a,b) to uh

b′ is Pb.
(b) If b′ < b, the shortest path from vh

(a,b) to uh
b′ is Pb′ .

Moreover, it holds that for any vertex v of the graph GI , there is some central
vertex yi,j not too far away.

Lemma 2. For every vertex v ∈ V , we have min(i,j) dist(v, yi,j) ≤ 2n+2 +2n+1.

3.4 Correctness of the Reduction

We show now that the GT≤-instance I has a solution if and only if the k-
Center instance GI has a solution of cost at most 2n+1 for k = 5χ2 centers.

Lemma 3. A solution for the GT≤-instance I implies a solution for the k-
Center instance GI of cost at most 2n+1.

Proof (Proof sketch). For (i, j) ∈ [n]2 let si,j be the pair from Si,j that is chosen
in a solution of I. For the k-Center instance GI , we choose a center set C of
size 5χ2 by selecting from every gadget Gi,j the central vertex yi,j and the four
vertices v1

si,j
, . . . , v4

si,j
. It can be shown that every gadget Gi,j is contained in

the balls of radius 2n+1 around yi,j and v1
si,j

, . . . , v4
si,j

.
Consider now a path Pi,j , which connects x3

i,j and x1
i+1,j , and let si,j = (a, b)

and si+1,j = (a′, b′). It holds that a ≤ a′. From Gi,j and Gi+1,j we have chosen
a center v3

(a,b) and v1
(a′,b′), respectively, which have distance

d3(a,b) + |Pi,j | + d1(a′,b′) = 2n+1 − 1 +
a

n
+ 1 + 2n+1 − a′

n
= 2n+2 +

a − a′

n
≤ 2n+2
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from each other. Hence, Pi,j can be covered with two balls of radius 2n+1 around
v3
(a,b) and v1

(a′,b′). Similarly one can show that every path P ′
i,j is also covered

through the chosen center set. 	

It can also be shown that every solution for GI of cost at most 2n+1 contains

four equidistant vertices v1
(a,b), . . . , v

4
(a,b) from every Gi,j , which yield a solution

for I. We obtain the following lemma, and hence, our reduction is correct.

Lemma 4. A solution for the k-Center instance GI of cost at most 2n+1

implies a solution for the GT≤-instance I.

4 Bounds on Graph Parameters

In this section we show bounds on the doubling dimension, the highway dimen-
sion, the skeleton dimension and the pathwidth of the graph GI , which imply
Theorem 1. We first observe that GI is planar and has constant doubling dimen-
sion. We omit a formal proof, but one can proceed similarly to [11].

Lemma 5. The graph GI is planar and has constant doubling dimension.

We next bound the highway dimension of GI .

Lemma 6. The graph GI has highway dimension hd ∈ O(χ2).

Proof. For any radius r > 0 we specify a set Hr such that every shortest path
π satisfying |π| > r intersects Hr and moreover, for every vertex v ∈ V we
have |Hr ∩ B4r(v)| ∈ O(χ2). Let X = {yi,j , x

h
i,j , z

h
i,j | (i, j) ∈ [χ]2, h ∈ [4]}.

For r ≥ 2n+2 we choose Hr = X. We have |Hr| = 9χ2 and hence for every
vertex v ∈ V we have |Hr ∩ B4r(v)| ∈ O(χ2). We show now that any shortest
path of length more than r intersects Hr. Clearly, all shortest paths that are
not completely contained within one single gadget are hit by Hr as all xh

i,j are
contained in Hr and the paths Pi,j and P ′

i,j between the individual gadgets have
length at most 2n − 2. Consider some gadget Gi,j . All edges of the cycle Oi,j

have length at least 1/n and for any h ∈ [4] we have dist(zh
i,j , z

h�1
i,j ) = 2n+2 + 1/n.

Hence, any subpath of Oi,j that has length at least 2n+2 intersects Hr. Moreover,
for h ∈ {1, 3}, the path Uh

i,j has length 2n − 2.
It remains to consider some shortest path π(s, t) where s ∈ Oi,j and t ∈ Uh

i,j .
Let t = uh

b . According to Lemma 1, the shortest path π(s, t) traverses exactly
one portal edge {ρh

β , uh
β} where β ∈ [b]. This means that dist(s, t) = dist(s, ρh

β)+
dist(ρh

β , uh
b ) ≤ dist(s, ρh

β) + 2b. The vertex s is contained in the shortest path
π(zh

i,j , ρ
h
β) or in π(ρh

β , zh�1
i,j ). In the first case we have dist(s, ρh

β) < dist(zh
i,j , ρ

h
β) ≤

2β . This implies that dist(s, t) < 2β + 2b ≤ 2n+1. In the second case we have
dist(s, ρh

β) ≤ 2n+2 − 2β and moreover Lemma 1 implies that β = b. Hence we
obtain dist(s, t) ≤ 2n+2 − 2β + 2β = 2n+2. This means that every shortest path
of length more than r ≥ 2n+2 is hit by Hr.
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Let now r < 2n+2. For a shortest path p = v1 . . . vν and q > 0 let p〈q〉 be a
q-cover of p, i.e. we have p〈q〉 ⊆ {v1, . . . , vν} such that any subpath of p that has
length at least q contains some node from p〈q〉. We consider q-covers p〈q〉 that
are constructed greedily, i.e. we start with p〈q〉 = {v1} and iteratively add the
closest vertex that has distance at least q. For (i, j) ∈ [χ]2 let

Xi,j =
⋃

h∈[4]

Oh
i,j

〈r/4〉 ∪
⋃

h∈{1,3}
Uh

i,j

〈r/4〉 ∪ {
u1

n, u3
n

} ∪ P
〈r/4〉
i,j ∪ P ′

i,j
〈r/4〉

and choose Hr = X ∪ ⋃
(i,j)∈[χ]2 Xi,j . Consider some shortest path π(s, t) that

has length more than r. Clearly, π(s, t) is hit by Hr if it contains some node from
X or it is a subpath of some cycle Oi,j , some path Uh

i,j or some path Pi,j or P ′
i,j .

It remains to be shown that π(s, t) is also hit by Hr if s ∈ Oi,j and t ∈ Uh
i,j . Let

t = uh
b . Lemma 1 implies that π(s, t) consists of a subpath p of Oi,j , a portal edge

{ρh
β , uh

β} and a subpath p′ of Uh
i,j . Assume that π(s, t) is not hit by Hr. By the

choice of Xi,j we have |p| < r/4 and |p′| < r/4. This means that dist(ρh
β , uh

β) > r/2.
By construction of the graph GI we have dist(ρh

β , uh
β) ≤ 2β and hence 2β > r/2.

As we have uh
β ∈ Xi,j , it holds that β ∈ {1, n} and moreover it follows from the

choice of Uh
i,j

〈r/4〉, that dist(uh
β−1, u

h
β) ≤ r/4. However, by construction of GI we

have dist(uh
β−1, u

h
β) = 2β−1, which implies 2β ≤ r/2, a contradiction to 2β > r/2.

This means that every shortest path of length more than r is hit by Hr.
Finally we have to show that for every vertex v ∈ V we have |Hr ∩B4r(v)| ∈

O(χ2). As for the r/4-cover of some shortest path p we have |B4r(v) ∩ p〈r/4〉| ∈
O(1), it follows that for every (i, j) ∈ [χ]2 we have |B4r(v) ∩ Xi,j | ∈ O(1).
Moreover there are χ2 different sets Xi,j and we have |X| = 9χ2, which implies
|Hr ∩ B4r(v)| ∈ O(χ2). 	


Observe, that for any graph G of highway dimension hd and maximum degree
Δ, an upper bound of (Δ + 1)hd on the skeleton dimension of G follows [13]. As
the graph GI has maximum degree Δ = 4, it follows that the skeleton dimension
of GI is bounded by O(χ2).

However, with some more effort, we can show a stronger bound of O(χ). To
this end we can bound the size of a skeleton within a single gadget. For simplicity,
in the following we confuse a graph G and its geometric realization G̃.

Lemma 7. For any (i, j) ∈ [χ]2 and any vertex s contained in Gi,j, the subtree
of the skeleton T ∗

s induced by the vertices of Gi,j is the union of a constant
number of paths.

We will also use the following lemma, which was shown in [5].

Lemma 8. Consider vertices u, v, w ∈ V such that v is contained in π (u,w).
If w is contained in the skeleton of u, it is also contained in the skeleton of v.

Moreover we can show that every cut in any skeleton of GI intersects at most
O(χ) different gadgets and connecting paths between two gadgets.
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Lemma 9. For every vertex s ∈ V and every radius r > 0, Cutr
s intersects

O(χ) gadgets Gi,j and O(χ) paths Pi,j and P ′
i,j.

Proof. It can be shown that for any (i, j) ∈ [χ]2, we have dist(yi,j , yi+1,j) =
2n+3 + 4 + 2/n and dist(yi,j , yi,j+1) = 2n+3 + 3 + 2/n. This means that for any
(i, j), (i′, j′) ∈ [χ]2 we have

dist(yi,j , yi′,j′) = |i − i′| · (2n+3 + 4 + 2/n) + |j − j′| · (2n+3 + 3 + 2/n). (1)

Let r > 0, s ∈ V and consider a vertex v ∈ Cutr
s. It holds that dist(s, v) = r.

According to Lemma 2 there are two central vertices yi,j and yi′,j′ satisfying
dist(s, yi,j) ≤ 2n+2 + 2n+1 and dist(v, yi′,j′) ≤ 2n+2 + 2n+1. Using the triangle
inequality we obtain that dist(yi,j , yi′,j′) ∈ [r−, r+] where r− = r−(2n+3+2n+2)
and r+ = r+2n+3 +2n+2. Moreover, the ball around yi′,j′ of radius 2n+2 +2n+1

intersects O(1) gadgets Gi′′,j′′ and O(1) paths Pi′′,j′′ and P ′
i′′,j′′ . This means

that any bound on the size of the set Y = {yi′,j′ | dist(yi,j , yi′,j′) ∈ [r−, r+]}
yields a bound on the number of gadgets and paths intersecting Cutr

s.
Consider now a vertex yi′,j′ ∈ Y . Assume that i′ ≥ i and consider some

i∗ ≥ i′ + 4. It follows from Eq. (1) and dist(yi,j , yi′,j′) ≥ r− that

dist(yi,j , yi∗,j′) ≥ dist(yi,j , yi′,j′) + 4 · (2n+3 + 4 + 2/n) > r+.

This means that yi∗,j′ ∈ Y and it follows that for any j′ ∈ [χ] we have |{i∗ ≥ i |
yi∗,j′ ∈ Y }| ≤ 3. Similarly we can show that |{i∗ ≤ i | yi∗,j′ ∈ Y }| ≤ 3 for any
j′ ∈ [χ] . This implies |Y | ∈ O(χ), which completes the proof. 	


Combining Lemmas 7 to 9, we obtain that the skeleton dimension of GI is
bounded by O(χ).

Lemma 10. The graph GI has skeleton dimension κ ∈ O(χ).

Proof. Let s ∈ V, r > 0 and consider Cutr
s. Any vertex v ∈ Cutr

s is either
contained in some gadget Gi,j or some connecting path Pi,j or P ′

i,j .
We start with bounding the number of vertices that are contained in Cutr

s

and some Pi,j or P ′
i,j . For any (i, j) ∈ [χ]2 we have |Cutr

s ∩ Pi,j | ≤ 2 as Pi,j

contains at most two distinct vertices that have the same distance from s. For
the same reason we have |Cutr

s ∩ P ′
i,j | ≤ 2. Hence Lemma 9 implies that the size

of Cutr
s ∩ {Pi,j , P

′
i,j | (i, j) ∈ [χ]2} is bounded by O(χ).

Consider now some gadget Gi,j . We show that |Cutr
s ∩ Gi,j | ∈ O(1). If s is

contained in Gi,j this follows immediately from Lemma 7, as Cutr
s intersects any

path in T ∗
s at most twice. If s is not contained in Gi,j , Lemma 8 implies that

Cutr
s ∩ Gi,j is a subset of

{
Cutr(h)

xh
i,j

| h ∈ [4] and r(h) = r − dist(s, xh
i,j)

}
∩ Gi,j .

Observe that every xh
i,j is contained in Gi,j , which means that |Cutr(h)

xh
i,j

∩Gi,j | ∈
O(1). This means that the size of Cutr

s∩{Gi,j | (i, j) ∈ [χ]2} is bounded by O(χ).
Hence we have |Cutr

s| ∈ O(χ) and it follows that GI has skeleton dimension
κ ∈ O(χ). 	
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Finally we bound the pathwidth of the graph GI .

Lemma 11. The graph GI has pathwidth pw ∈ O(χ).

Proof. Consider the graph ĜI that arises when we contract all vertices of degree
2 except the vertices xh

i,j . It suffices to show that ĜI has pathwidth at most O(χ).
For (i, j) ∈ [χ]2 denote the gadget Gi,j and the cycle Oi,j after the contraction by
Ĝi,j and Ôi,j , respectively. We first construct a path decomposition of constant
width for every Ĝi,j . To this end, consider the cycle Ôi,j , which (as every cycle)
has a path decomposition where every bag has size at most 3. For h ∈ {1, 3}
and b ∈ [n], add uh

b to every bag containing the portal ρh
b . Finally, add yi,j and

x1
i,j , . . . , x

4
i,j to every bag. This yields a tree decomposition of Ĝi,j which has

constant width.
We now combine the path decompositions of the gadgets Ĝi,j to a path

decomposition of ĜI . For (i, j) ∈ [χ]2, consider the path decomposition of Ĝi,j

and add the vertices {x1
i′,j′ , . . . x4

i′,j′ | 1 ≤ (i′ − i) · χ + (j′ − j) ≤ χ} to every
bag. According to Fig. 1, these are the vertices xh

i′,j′ of the χ gadgets after Ĝi,j

when considering the gadgets row-wise from left to right. Denote the resulting
path decomposition by P(i−1)·χ+j . We can observe, that its width is bounded
O(1) + 4χ. Concatenating all these path decompositions as P1P2 . . . Pχ2 then
yields a path decomposition of ĜI of width O(1) + 4χ, which concludes the
proof. 	


5 Conclusion

The properties shown in the previous section now imply Theorem1. As the GT≤
problem is W [1]-hard for parameter χ and we have k = 5χ2, hd ∈ O(χ2), κ ∈
O(χ) and pw ∈ O(χ), it follows that on planar graphs of constant doubling
dimension, k-Center is W [1]-hard for parameter (k, pw, hd, κ). Assuming ETH
there is no f(χ) · no(χ) time algorithm for GT≤ and hence, k-Center has no
f(k, hd, pw, κ) · |V |o(pw+κ+

√
k+h) time algorithm unless ETH fails.

It follows that on planar graphs of constant doubling dimension, k-
Center has no fixed-parameter algorithm for parameter (k, pw, hd, κ) unless
FPT = W[1]. Moreover, it was shown that k-Center has no efficient (2 − ε)-
approximation algorithm for graphs of highway dimension hd ∈ O(log2 |V |) [10]
or skeleton dimension κ ∈ O(log2 |V |) [4].

Still, combining the paradigms of approximation and fixed-parameter algo-
rithms allows one to compute a (2 − ε) approximation for k-Center on trans-
portation networks. For instance, there is a 3/2-approximation algorithm that
has runtime 2O(k·hd log hd) · nO(1) for highway dimension hd [10] and a (1 + ε)-
approximation algorithm with runtime (kk/εO(k·d))·nO(1) for doubling dimension
d [11]. As the doubling dimension is bounded by O(κ), the latter result implies
a (1 + ε)-approximation algorithm that has runtime (kk/εO(k·κ)) · nO(1).

On the negative side, there is no (2 − ε)-approximation algorithm with run-
time f(k) · nO(1) for any ε > 0 and computable f unless W[2] = FPT [11].
It remains open, to what extent the previously mentioned algorithms can be
improved.
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Abstract. A Universal TSP tour on a metric space is a total order
defined over all points in the space, such that an approximate traveling
salesman tour on any finite subset can be found by visiting each point
of the subset in the induced order. The performance of a UTSP tour is
evaluated by comparing the worst-case ratio of the length of the induced
tour to the length of the optimal TSP tour over all subsets of size n. This
problem has attracted significant interest over the past thirty years, espe-
cially in the case where the locations are points in the Euclidean plane.

For points in the plane Platzman and Bartholdi [J. ACM, 36(4):719–
737, 1989] achieved a competitive ratio of O(log n) using an ordering
derived from the Sierpinski curve. We introduce the notion of hierar-
chical orderings which captures all the commonly discussed orderings for
the UTSP, including those derived from the Sierpinski, Hilbert, Lebesgue
and Peano curves.

Our main result is a lower bound of Ω(log n) on the competitive
ratio of any Universal TSP tour using hierachical orderings. This is an
improvement for this setting on the best known lower bound for Univer-

sal TSP on the plane for arbitrary orderings of Ω
(

6
√

log n
log log n

)
due to

Hajiaghayi et al. [Proc. of SODA, 649–658, 2006].

1 Introduction

The traveling salesman problem (TSP) is one of the most studied problems in
theoretical computer science. For a given set of locations and their pairwise
distances the TSP is to find the shortest tour visiting all locations. In the case
when the locations are points in R

2 with their Euclidean distances this problem
is known as the Planar TSP.

The universal traveling salesman problem (UTSP) is to define a total order
over a metric space, such that an approximate traveling salesman tour on any
finite subset can be found by visiting each point of the subset in the induced
order. Such a total order is known as a UTSP tour. In the plane the total order
is generally chosen according to some space-filling curve, such as the Hilbert
curve (for an example see Fig. 1). The primary advantage of the UTSP as a
TSP heuristic is its simplicity and speed, once a total order has been chosen,
employing it only requires sorting. The performance of a UTSP tour on a set
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of points is given by the ratio between the length of the tour produced by the
UTSP and length of the optimal TSP solution on those points. The competitive
ratio of a UTSP tour is the worst case ratio on any set of size n. It is convenient
to consider the unit square [0, 1]2 rather than the entire plane R

2, a convention
we will follow.

Fig. 1. The UTSP tour induced by the Hilbert space-filling curve.

It is known in the planar case there exist orderings of the unit square such
that the competitive ratio is bounded by O(log n), where n is the size of the set
of points we are to visit with the tour [16]. The known orderings are all of the
type we call hierarchical. At a very high level, a hierarchical ordering divides the
plane into “fat” convex regions of equal measure, orders the regions to provide a
partial ordering on the points, and then recurses on each piece until the ordering
is total. We show for any such hierarchical ordering and all large n, there exists
a set of points of size n such that the competitive ratio is Ω(log n).

Our approach employs the probabilistic method. We draw a random line
through the unit square and show there is a high probability that some points
spaced (approximately) evenly along the line will be ordered by the UTSP sub-
stantially differently to the order they appear along the line. Hence the UTSP
tour will backtrack over itself many times, while the TSP tour will not.

While our restriction to hierarchical orderings initially seems very restrictive
it covers all the orderings typically used in the UTSP and similar applications.
Non-hierarchical orderings (such as the lexographical ordering) have very poor
locality, making them unsuitable for the UTSP. This is discussed further in the
conclusion.

1.1 Prior Work

The TSP is known to be NP-complete [13], even when restricted to the Euclidean
plane [15]. A celebrated algorithm of Christofides [6] gives a 1.5-approximate
solution to the TSP for general metric spaces, which remains the best upper
bound in this setting. When restricted to a Euclidean metric Arora [1] gives a
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polynomial time approximation scheme (PTAS). Interestingly, the metric TSP
cannot be approximated within a factor of 123

122 unless P = NP [14]; in contrast
to the PTAS available for the Euclidean TSP this suggests the metric TSP is a
fundamentally more difficult problem.

The UTSP problem was formally introduced by Platzman and Bartholdi
[16] in 1989, in response to a need for faster performing TSP algorithms. The
motivating application involved a food delivery service whose subset of clients
requiring delivery changed every day, requiring the delivery tour to be efficiently
re-calculated. Platzman and Bartholdi used the ordering induced by the Sier-
pinski space-filling curve, and proved the competitive ratio for this ordering was
O(log n). They further conjectured that the bound could be tightened to O(1)
by improving the analysis.

This was refuted later the same year in a note by Bertsimas and Grigni [3],
who provided Ω(log n) examples for the orderings induced by the Sierpinksi,
Hilbert and zig-zag curves. In their lower bound examples Bertsimas and Grigni
carefully place a line across the unit square, and points evenly along the line,
such that the UTSP must backtrack repeatedly over itself. They demonstrate
this pattern can be found recursively on any section of the line so long as there
are enough points on that section to form a backtrack, which leads to a Ω(log n)
sum. This approach has inspired Hajiaghayi et al. [11] and our own lower bound.

The first general lower bound for all total orderings of the plane was provided
by Hajiaghayi et al. [11] who considered points on a grid-graph to show a lower

bound of Ω
(

6

√
log n

log log n

)
. Hajiaghayi et al. adapt the method of Bertsimas and

Grigni and place points along a line. To overcome not knowing the ordering in
advance they employ the probabilistic method and show the expected backtracks
along a random line are logarithmic. However the increased complexity of bound-
ing the expectation in this setting results in losing some tightness in the lower
bound. Hajiaghayi et al. further conjecture their method could be improved to
provide a tight lower bound of Ω(log n).

The UTSP has also been defined on a finite metric space with m elements,
instead of Euclidean space. In this setting the UTSP problem is to find a master
tour of the m elements, which induces a total order. Competitive ratios in this
model are generally described in terms of m, the size of the metric space, rather
than n, the number of points in the tour, which can be significant if n � m, as
in the case of the Euclidean plane.

The first upper bound in the finite metric space setting is due to Jia et al. [12],
who showed a competitive ratio of O

(
log4 m

log log m

)
. An elegant construction of

Schalekamp and Schmoys [17] shows the UTSP has O(1) competitive ratio on
tree metrics and therefore, using Bartal’s tree embedding [2,8], an expected
O(log m) performance on finite metric spaces. The current best known determin-
istic upper bound in this setting is O(log2 m), which follows from the well-padded
tree cover of Gupta et al. [10].

For lower bounds in finite metric spaces Gorodezky et al. [9] construct a
set with competitive ratio Ω(log m) by taking points from a random walk on
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a Ramanujan graph. Bhalgat et al. [4] show the same bound with a simpler
construction using two random walks; their construction has some nice additional
properties.

A recent result of Christodoulou and Sgouritsa [5] provides an ordering of the
m×m grid-graph with competitive ratio O

(
log m

log log m

)
, disproving a conjecture of

Bertsimas and Grigni [3]. Their result is interesting in the context of the UTSP
on finite metric spaces, but as their bound depends on m it cannot be extended to
the Euclidean plane. The generalized Lebesgue orderings used by Christodoulou
and Sgouritsa are a grid-specific version of a hierarchical ordering.

2 Preliminaries and Notation

Given �, a total ordering of [0, 1]2, and S = {s1, . . . , sn} ⊂ [0, 1]2 labeled such
that s1 � · · · � sn, we define the performance of � on S and the optimal TSP
value for S to be:

– utsp�(S) =
∑n

i=1 d(si, si+1),
– tsp(S) = minπ∈Sn

∑n
i=1 d(sπ(i), sπ(i+1)),

where sn+1 = s1, and Sn is the symmetric group of order n. Namely, utsp�(S)
is the cost of visiting S in the order dictated by �, while tsp(S) is the optimal
cost of visiting S.

The competitive ratio of �, as function of the number of points we are to
visit, is

ρ�(n) = sup
S⊂[0,1]2

|S|≤n

utsp�(S)
tsp(S)

.

Throughout this paper we will be working with decompositions into nicely
behaved pieces. To quantify niceness we adapt the concept of α-fatness commonly
used in computational geometry (for example by [7]).

Definition 1. Let R be a convex region in R
2, rin be the radius of the largest

ball contained by R and rout be the radius of the smallest ball containing R. We
say R is α-fat if rin

rout
≥ α.

Our result concerns the performance of a certain class of total orderings that
we call hierarchical. These are orderings that can be constructed by partitioning
the unit square into k nice regions, recursively ordering each region and then
concatenating these partial orderings to get a total ordering of the whole unit
square.

Such a construction leads to a natural hierarchical decomposition of the unit
square: Level 0 is made up of a single region, the whole unit square; whereas in
general level i in the decomposition is made up of ki regions. Let us denote the
regions in level i with Qi. Figure 1 shows the order of the third level regions of
the decomposition associated with Hilbert’s space filling curve.
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Definition 2. An ordering � is hierarchical if, for some fixed constants k and
α, it can be constructed by recursively partitioning into regions such that for all
regions R ∈ Qj at level j we have:

1. R is convex,
2. area(R) = 1/kj, and
3. R is α-fat

It is worth noting that while seemingly restrictive at first sight, most classical
orderings of the unit square such as the Hilbert, Peano, Sierpinski and Lebesgue
space filling curves fall within this framework.

Our main result is a lower bound argument that shows that for any ordering
constructed in this fashion there is a family of point sets for which the approxi-
mation ratio is at least logarithmic on the number of points.

Throughout the paper we will make use of some properties of the perimeter
of the regions in the decomposition that stem from our convexity and α-fatness
assumptions. Our first observation is that the perimeter is a polygon.

Observation 1. For any Q ∈ Qi, the perimeter of Q is polygon made up of
straight edges, one of each region neighboring Q.

Proof. Let T be a region neighboring Q. Since both T and Q are convex, it
follows that T and Q meet along a straight line segment.

Our second observation roughly states that up to α factors, the perimeter of
such a region is similar to the perimeter of a ball with equal measure.

Observation 2. For any region Q ∈ Qi, its perimeter P must be proportional
to k− i

2 ; more precisely,

2α
√

πk− i
2 ≤ P ≤ 2α−1

√
πk− i

2 . (1)

Proof. Let rin be the radius of the largest ball enclosed in Q and rout be the
radius of the smallest ball enclosing Q. By α-fatness we have rin ≥ αrout.

The inner ball must have area no greater than Q, hence πr2in ≤ k−i and so
rin ≤ (πki)− 1

2 . Similarly the outer ball must have area no less than Q and so
rout ≥ (πki)− 1

2 .
The circumference of the inner ball is 2πrin ≥ 2π(αrout) ≥ α(2

√
πk− i

2 ). The
circumference of the outer ball is 2πrout ≤ 2π(α−1rin) ≤ α−1(2

√
πk− i

k ). The
perimeter of Q is, by convexity, bounded by the perimeters of the inner and
outer balls, and hence must be between 2α

√
πk− i

2 and 2α−1
√

πk− i
2 .

We say Q ∈ Qi is an inner region if it does not touch the boundary of its
parent; namely, if all its neighbors are siblings regions in the decomposition. The
following lemma shows that for large enough k, every region has a child that is
an inner region.

Lemma 1. If k > 16
α4 then every region T in the decomposition has at least one

child region Q that is an inner region.
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T

Fig. 2. All the non-inner children of T must fit inside a strip (denoted in gray) of width
2

α
√

π

√
1

kj+1 around the border of T which is not large enough to accommodate all the

children of T . Hence T have an inner child.

Proof. Let T ∈ Qj

and R =
{
R ∈ Qj+1 | R is a child of T and R touches the boundaryof T

}
.

Recall that each R ∈ R has area(R) = 1
kj+1 and, because the region is fat, there

exists a ball of area 1
α2kj+1 enclosing R. Therefore, as exemplified in Fig. 2, there

must be a strip of width 2
α

√
π

√
1

kj+1 around the boundary of T that contains all
the regions in R.

Now by Observation 2, T ’s perimeter cannot be larger than 2
√

πα−1k− j
2 .

Hence all of R must be contained in a strip of area less than 4
α2

1
kj

√
k
. It follows

that |R| ≤ 4
√

k
α2 , and thus if k > 16

α4 then |R| < k and so there must exist at least
one child of T that does not touch its boundary.

Notice that the requirement that k is large is not a restrictive one. Given
a decomposition with k ≤ 16

α4 we can instead take a decomposition which has
a single level for multiple levels of our original decomposition. For example a
decomposition with k = 4 could be turned into one with k = 256 by merging
four levels, which would accommodate α = 0.5. Since k and α are constants,
this is always achievable by merging a constant number of levels, so it does not
impact our argument.

Our lower bound construction makes use of some properties of random lines
intersecting the unit square. Let us denote with L the set of all lines which
intersect the unit square. As Fig. 3 shows, a line � ∈ L is uniquely determined
by the angle it makes with respect to the x-axis, and its x-intercept or similarly
its y-intercept. We define a procedure Λ for sampling a line � ∈ L as follows:
Pick uniformly at random β ∈ [0, π), consider the β-angled projection of [0, 1] on
the x and y axes and pick an intercept uniformly at random within the shorter
projection of the two; in other words, if β ∈ [

π
4 , 3π

4

]
then we pick an intercept

along the x-axis, and if β /∈ [
π
4 , 3π

4

]
then we pick an intercept along the y-axis.

Note that even though the probability distribution over lines is not uniform, the
probability densities of any two lines in L differ by at most a factor of 2 since
the length of the smaller projection is always in the range [1, 2].
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�

b

β

�

b

β

Fig. 3. The space L of lines intersecting the unit square is sampled by uniformly picking
an angle β ∈ [0, π) and an x-axis (or y-axis) intercept b in the β-angle projection of
the square to the x-axis (y-axis).

3 Logarithmic Lower Bound

In this section we prove that any hierarchical ordering as in Definition 2 must
have asymptotic approximation ratio that grows logarithmically with the cardi-
nality of the set we are to visit.

Theorem 1. For any hierarchical ordering � of [0, 1]2, we have ρ�(n) =
Ω(log n).

The key ingredient in our proof of this Theorem is the existence of a prob-
ability distribution over families of subsets S1, S2, . . . ⊂ [0, 1]2 of size ki such
that:

1. tsp(Si) = O(1), and
2. E[utsp�(Si)] = Ω(i).

Defining this distribution is exceedingly simple: Pick a random line � accord-
ingly to the sampling procedure Λ, and construct Si by picking one representative
point on � from each region in Qi that � intersects; that is, one point from each
region in the ith level of the hierarchical decomposition associated with �.

Our goal for the rest of the section is to prove the two properties stated
above.

Lemma 2. For any � and any line � ∈ L, E[tsp(Si) | �] = O(1).

Proof. The cost of the optimal travelling salesman tour of any number of points
in one dimension is upper bounded by twice the distance between the smallest
and largest points, since there is a tour that visits each point in ascending order,
then returns to the start.

Since the points of Si lie on the intersection of � and [0, 1]2, tsp(Si) ≤ 2
√

2.

In order to prove the second property we need to first establish a few key
facts and definitions about the random process for constructing the Si sets. Let
A,B,C ∈ Qj be regions at level j ≤ i of the decomposition. We say these regions
form an out-of-order triplet with respect to a line � ∈ L if:
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1. A, B, and C have the same parent region in the decomposition,
2. � cuts through A, B, and C in that order (or the reverse order), and
3. either B � A,C or A,C � B

If B is the central part of some out-of-order triplet (A,B,C), we define its
share χ(B) to be ‖� ∩ B‖, otherwise, χ(B) = 0. Figure 4 provides a pictorial
representation of the share of a region.

A

B

C

�

Fig. 4. An out-of-order triplet (A, B, C) induces a share χ(B) shown by the thick line
segment.

Our first observation is that these shares provide a lower bound on the cost
of the universal tour on Si.

Lemma 3. For any given � ∈ L and its associated set Si we have

utsp�(Si) ≥
∑
j≤i

∑
Q∈Qj

χ(Q).

Proof. Let (A,B,C) be an out-of-order triplet at level j ≤ i whose parent is
T . Assume without loss of generality that B � A,C (the case A,C � B is
symmetric). Thus there must exist a ∈ Si ∩ A, b ∈ Si ∩ B, and c ∈ Si ∩ C such
that b � a, c. This in turn means that we must have two points u, v ∈ Si∩(T \B)
that are consecutive in � such that �[u, v] cuts through B. We charge χ(B) to
the segment �[u, v] of the utsp� solution.

Note that the segment �[u, v] can only be charged by other children of T ,
which by definition are all disjoint, so the total charge to the segment cannot
exceed ‖�[u, v]‖. Thus the lemma follows.

We will show that, under expectation, � cuts through a substantial number
of out-of-order triplets, each with a substantial share. But first, we need to
introduce a few concepts.

Let Q be a region at level j that does not touch the boundary of its parent
region; by Lemma 1 we can assume without loss of generality that there are
at least kj−1 such regions. Recall that by Observation 1, Q can only meet its
neighbours along straight line segments. Call these the edges of Q. Note that Q
can have at most k − 1 edges, since Q shares edges only with its siblings. Let P
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be the perimeter of Q. Call an edge short if its length is less than α
10kP and long

otherwise. It follows that the total length of short edges is at most α
10P . Call the

angle1 between a pair of edges wide if it is greater than π − δ, where δ = α
5 and

narrow otherwise; recall that since α ≤ 1, this means that δ ≤ 1/5.
We will now introduce the concept of a meta-edge of Q. Let e be an edge

of Q. The meta-edge ê induced by e consists of all the edges that form a wide
angle with e and e itself. Note that the edges in ê form a contiguous section of
the Q’s boundary about e.

Define W (ê), the width of ê, to be the distance between the first and last
endpoints in ê. Define H(ê), the height of ê, to be the maximum distance between
a point on any edge in ê and the line connecting the first and last endpoints of
ê. Define θ(ê), the angle of ê, to be the angle between the first and last edges in
ê. Finally, define L(ê), the length of ê, to be the sum of the lengths of the edges
in ê. Figure 5 exemplifies these concepts.

Observe that because all edges that make up ê form a wide angle with e, it
must be the case that θ ≥ π−2δ. Note that for a meta-edge with a given length,
its height is maximized and its width minimized when it forms an isosceles
triangle. Therefore,

H ≤ L

2
sin

(
π − θ

2

)
≤ L

2
sin δ ≤ Lδ

2
, and (2)

W ≥ L sin
(

θ

2

)
≥ L sin

(π

2
− δ

)
≥ L sin

(π

6

)
≥ L

2
. (3)

θ

W

H
L

Fig. 5. A meta-edge with height H, width W and angle θ and L the length of the solid
chain.

Call a set of three edges of Q a fat triad for Q if each edge is long and the
angle between any pair of the edges is narrow. First we will show that every
inner region admits a fat triad and then we will show that this leads to having
a large share value. Due to space constraints the proofs of Lemmas 4 and 5 are
deferred to the Appendix.

Lemma 4. Every inner region Q ∈ Qi has a fat triad.

Lemma 5. If Q ∈ Qj is an inner region, then E[χ(Q)] = Ω(k−j).
1 The angle between a pair of edges is the angle at which the lines going through them

meet.
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We have all the tools to show that the expected value of the universal TSP
tour on Si is at least Ω(i).

Lemma 6. For any �, E[utsp�(Si)] = Ω(i).

Proof. By Lemma 3 we know that the sum of the χ-values are a lower bound:

E[utsp�(Si)] ≥
∑
j≤i

∑
Q∈Qj

E[χ(Q)].

By Lemma 5, we know that every inner region Q ∈ Qj has E[χ(Q)] =
Ω(k−j). If k > 16

α4 then, by Lemma 1, every region in the previous level of
the decomposition has at least one child that is an inner region. Therefore, we
must have kj−1 inner regions in Qj , so

∑
Q∈Qj

E[χ(Q)] = Ω(1), and the lemma
follows.

Everything is in place to give the proof of Theorem 1.

Proof (Proof of Theorem 1). Let Ŝi be a Si such that utsp�(Ŝi) ≥ E[utsp�(Si)].
By Lemma 6, it follows that utsp�(Ŝi) = Ω(i). On the other hand, by Lemma 2,
we know that tsp(Ŝi) = O(1). Finally, the cardinality of Ŝi is trivially bounded
by ki, so

ρ�(ki) ≥ utsp�(Ŝi)
tsp(Ŝi)

= Ω(i).

Since this holds for all i, in general we have

ρ�(n) = Ω(log n).

4 Conclusion

We have demonstrated that hierarchical orderings of the plane cannot achieve
a competitive ratio better than the O(log n) proved by Platzman and Bartholdi
when they introduced the UTSP problem. Included in our definition of hierar-
chical are the requirements that the regions are of equal measure, are convex
and are α-fat. While these restrictions initially appear restrictive they cover all
the orderings typically used for the UTSP. We conclude by examining examine
each of these assumptions in more detail and discuss how they could potentially
be relaxed.

The requirement that the regions are of equal measure is used to simplify
the presentation of our arguments and could be relaxed to require regions of
measure within some constant factor. The only change this would make to our
proofs is to include the constant factor in various expressions, which would not
change the asymptotic bound.

Similarly, the requirement that the regions are convex does not seem to be
integral to our methods. Since each region is α-fat it must contain a disk which
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covers most of its area, and must fit within an outer disk. Hence it must consist
of a fat, convex core (which can create the jumps required for the lower bound)
and a non-convex border area. Intuitievely, having a non-convex border area
can only increase the cost, since a line can intersect a region multiple times. By
placing a point on the line each time the line intersects a region, that region can
create additional jumps with itself, as in Fig. 6.

p q

R

Fig. 6. If � intersects a region R more than once, it will cause a jump by itself from p
to q.

The requirement that the regions are α-fat, however, is integral to our concep-
tion of a hierarchical ordering and new ideas are needed to lift this requirement.
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Abstract. A recent breakthrough by Ambainis, Balodis, Iraids, Kokai-
nis, Prūsis and Vihrovs (SODA’19) showed how to construct faster quan-
tum algorithms for the Traveling Salesman Problem and a few other
NP-hard problems by combining in a novel way quantum search with
classical dynamic programming. In this paper, we show how to apply
this approach to the minimum Steiner tree problem, a well-known NP-
hard problem, and construct the first quantum algorithm that solves this
problem faster than the best known classical algorithms. More precisely,
the complexity of our quantum algorithm is O(1.812kpoly(n)), where n
denotes the number of vertices in the graph and k denotes the num-
ber of terminals. In comparison, the best known classical algorithm has
complexity O(2kpoly(n)).

1 Introduction

Background: Quantum Speedup of Dynamic Programming Algorithms. The cel-
ebrated quantum algorithm by Grover [10] for quantum search (Grover search)
gives a quadratic speed up over classical algorithms for the unstructured search
problem [3,10]. Its generalization, quantum amplitude amplification [4,15], is
also useful to speed up classical algorithms. For many problems, however, Grover
search or quantum amplitude amplification does not immediately give a speedup.
A simple example is the Traveling Salesman Problem (TSP). The trivial brute-
force algorithm for the TSP has running time O(n!), where n denote the number
of vertices of the graph. While Grover search can be applied to improve this com-
plexity to O(

√
n!), the well-known classical algorithm by Held and Karp [11],

based on dynamic programming, already solves the TSP in O∗(2n) time,1 which
is significantly better than that quantum speedup.

Recently, Ambainis, Balodis, Iraids, Kokainis, Prūsis and Vihrovs [1] devel-
oped a breakthrough approach to achieve quantum speedups for several fun-
damental NP-hard problems, by combining in a clever way Grover search and
(classical) dynamic programming. For the TSP, in particular, they obtained a

1 In this paper the O∗ notation hides polynomial factors in n.
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O∗(1.728n)-time quantum algorithm, which outperforms the O∗(2n)-time clas-
sical algorithm mentioned above. They also constructed similar quantum algo-
rithms, faster than the best known classical algorithms, for a few other NP-hard
problems: checking the existence of a path in an hypercube (and several similar
vertex ordering problems), computing the graph bandwidth, the minimum set
cover problem and the feedback arc set problem.

While the approach from [1] has the potential to lead to speed-ups for other
hard problems, it cannot be applied to any computational problem. The app-
roach (currently) works only for computational problems that can be expressed
with dynamic programming using a recurrence relation of a simple form. An
important question is to identify which other problems can be sped-up in the
quantum setting by this approach, i.e., identify which other problems admit this
formulation.

In this paper we show that another fundamental NP-hard problem, the Min-
imum Steiner Tree Problem, can be sped up by such a combination of Grover
search and dynamic programming.

The Minimum Steiner Tree Problem. Given an undirected weighted graph G =
(V,E,w) and a subset of terminals K ⊆ V , a Steiner tree is a subtree of G that
connects all vertices in K. Below, we will write n = |V | and k = |K|. The task
of finding a Steiner tree of minimum total weight is called the Minimum Steiner
Tree problem (MST problem). This problem is NP-hard [13]. Note that for fixed
constant k, this problem can be solved in polynomial time, which means that
the MST problem is fixed parameter tractable [5,8].

The MST problem has applications to solve problems such as power supply
network, communication network and facility location problem [12]. Since all
these problems need to be solved in practice, designing algorithms as fast as
possible for the MST problem is of fundamental importance.

A naive way to solve the MST problem is to compute all possible trees. Since
the number of all trees in the graph G = (V,E) can be as large as O(2|E|),
this is extremely inefficient. The Dreyfus-Wagner algorithm [6] is a well-known
algorithm based on dynamic programming for solving the MST problem in time
O∗(3k). This algorithm has been the fastest algorithm for decades. Fuchs, Kern
and Wang [9] finally improved this complexity to O∗(2.684k), and Mölle, Richter
and Rossmanith [14] further improved it to O((2 + δ)knf(δ−1)) for any constant
δ > 0. For a graph with a restricted weight range, Björklund, Husfeldt, Kaski
and Koivisto have proposed an O∗(2k) algorithm using subset convolution and
Möbius inversion [2]. The main tool in all these algorithms [2,9,14] is dynamic
programming.

Our Results. Our main result is the following theorem (see also Table 1).

Theorem 1. There exists a quantum algorithm that solves with high probability
the Minimum Steiner Tree problem in time O∗(1.812k), where k denotes the size
of the terminal set.
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The quantum algorithm of Theorem 1 is the first quantum algorithm that
solves the MST problem faster than the best known classical algorithms.

Our approach is conceptually similar to the approach introduced in [1]: we
combine Grover search and (classical) dynamic programming. All the difficulty is
to find the appropriate dynamic programming formulation of the MST problem.
The dynamic programming formulation used in the Dreyfus and Wagner algo-
rithm [6] cannot be used since that characterisation of minimum Steiner trees
is not suitable for Grover search. Instead, we rely on another characterization
introduced by Fuchs, Kern and Wang [9]. More precisely, Ref. [9] introduced,
for any r ≥ 2 the concept of “r-split” of a graph and showed how to use it to
derive a dynamic programming formulation that decomposes the computation
of a minimum Steiner trees into several parts. By considering the case r = 3, i.e.,
decomposing trees into three parts, they obtained their O∗(2.684k)-time algo-
rithm. In Sect. 3.2 we show how to derive another recurrence relation (Eq. (2)).
Interestingly, we use a 2-split to derive this relation, and not a 3-split as in [9]
(it seems that a 3-split only gives worse complexity in the quantum setting). We
then show in Sect. 4 how to use Grover search to compute efficiently a minimum
Steiner tree using Eq. (2). This is done by applying Grover search recursively
several times with different size parameters.

Table 1. Comparison of the algorithms for the Minimum Steiner Tree problem. Here
n denotes the number of nodes in the graph and k denotes the size of the terminal set.

Algorithm Complexity Classical or quantum

Dreyfus and Wagner [6] O∗(3k) Classical

Fuchs et al. [9] O∗(2.684k) Classical

Mölle et al. [14] O((2 + δ)knf(δ−1)) Classical

Björklund et al. [2] O∗(2k) [for restricted weights] Classical

This paper O∗(1.812k ) Quantum

2 Preliminaries

General Notation. We denote H the binary entropy function, defined as H(α) =
−α log α − (1 − α) log(1 − α) for any α ∈ [0, 1].

Graph-Theoretic Notation. In this paper we consider undirected weighted graphs
G = (V,E,w) with weight function w : E → R

+, where R
+ denotes the set of

positive real numbers. Given a subset E′ ⊆ E of edges, we write V (E′) ⊆ V the
set of vertices induced by E′, and write w(E′) =

∑
e∈E′ w(e). Given a tree T of

G, i.e., a subgraph of G isomorphic to a tree, we often identify T with its edge
set. In particular, we write its total weight w(T ).
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(a) (b)

Fig. 1. (a) An example of a graph G = (V, E, w). The graph is unweighted, i.e., w(e) =
1 for all e ∈ E. Circled nodes represent the nodes in the terminal set K and rectangular
nodes represent the nodes in V \ K. The red dotted edges show the minimum Steiner
tree T . In this case we have WG(K) = 14. (b) The tree T extracted from (a). (Color
figure online)

Minimum Steiner Trees. Given an undirected weighted graph G = (V,E,w) and
a subset of vertices K ⊆ V , usually referred to as terminals, a Steiner tree is a
tree of G that spans K (i.e., connects all vertices in K). A Steiner tree T is a
minimum Steiner tree (MST) if its total edge weight w(T ) is the minimum among
all Steiner trees for K. Note that all leaves of a Steiner tree T are necessarily
vertices in K. We denote WG(K) the weight of an MST. Figure 1 shows an
example. The Minimum Steiner Tree Problem (MST problem) asks, given G and
K, to compute WG(K) and output an MST. In this paper we write n = |V | and
k = |K|. When describing algorithms for the MST problem, we often describe
explicitly only the computation of WG(K). For all the (classical and quantum)
algorithms for the MST problem described in this paper, which are all based
on dynamic programming, an MST can be obtained from the computation of
WG(K) simply by keeping record of the intermediate steps of the computation.

Graph Contraction. For a graph G = (V,E,w) and a subset of vertices A ⊆ V ,
a graph contraction G/A is a graph which is obtained by removing all edges
between vertices in A, replacing all vertices in A with one new vertex vA, and
replacing each edge e ∈ E with one endpoint u outside A and the other endpoint
in A by an edge between u and vA of weight w(e). If a vertex u ∈ V is incident
to multiple edges e1, e2, ..., es ∈ E with the other endpoint in A, then the graph
G/A has an edge (u, vA) with a weight mins

i=1 w(ei) instead of having s edges
between u and vA.

Quantum Algorithm for Minimum Finding. The quantum algorithm for min-
inum finding by Dürr and Høyer [7], referred to as “D-H algorithm” in this paper,
is a quantum algorithm for finding the minimum in an (unsorted) database that
is based on Grover’s quantum search algorithm [10]. More precisely, the D-H
algorithm is given as input quantum access to N elements a1, ..., aN from an
ordered set, i.e., the algorithm has access to a quantum oracle that maps the
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quantum state |i〉|0〉 to the quantum state |i〉|ai〉, for any i ∈ {1, . . . , N}. The
algorithm outputs with high probability (i.e., probability at least 1−1/poly(N))
the value min{ai|i = 1, ..., N} using only O(

√
N) calls to the oracle. This gives

a quadratic speedup with respect to classical algorithms for minimum finding.

3 Building Blocks from Prior Work

In this section we describe results from prior works that will be used to build
our quantum algorithm.

3.1 The Dreyfus-Wagner Algorithm

The Dreyfus-Wagner algorithm [6], referred to as “D-W algorithm” in this paper,
solves the MST problem in time O∗(3k) by using dynamic programming. The
result from [6] that we will need in this paper is not the final algorithm, but
rather the following technical result.

Theorem 2 ([6]). For any value α ∈ (0, 1/2], all the weights WG(X) for all the
sets X ⊆ K such that |X| ≤ α|K| can be computed in time O∗ (

2(H(α)+α)k
)
.

For completeness we give below an overview of the proof of Theorem 2. The
key observation is as follows. Assume that we have an MST T for X ∪{q} where
X ⊆ K, q ∈ K\X. If q is a leaf of T , then there is a vertex p ∈ V (T ) such that
there is a shortest path Pqp that connects q and p in T , and p has more than
two neighbors in T (otherwise, T is a path and we decompose T into two paths).
Hence, we have T = Pqp ∪T ′ where T ′ is an MST for X ∪{p}. Note that p might
not be a terminal, i.e., possibly p /∈ K. After removing Pqp from T , p splits the
remaining component T ′ into two edge disjoint subtrees, i.e., for some nontrivial
subset X ′ ⊆ X, MSTs T ′

1 for X ′ ∪ {p} and T ′
2 for (X\X ′) ∪ {p}, we have the

decomposition T ′ = T ′
1 ∪ T ′

2. This holds in both cases p ∈ K and p /∈ K, and
even when q is not a leaf of T (in this case, we take p = q and Pqp = ∅). This
implies that an MST T for X ∪ {q} can be computed from the MSTs T ′ for
X ′ ∪ {p} and the shortest paths Ppq for all p ∈ V and X ′ ⊆ X.

We thus obtain the following recursion:

WG(X ∪ {q}) = min
p∈V

X′⊂X

{dG(q, p) + WG(X ′ ∪ {p}) + WG((X\X ′) ∪ {p})} (1)

where dG(q, p) is the weight of a shortest path Pqp (shortest paths of all pairs of
vertices can be computed in poly(n) time). See Fig. 2 for an illustration of the
decomposition.

Using this recursion, weights of MSTs for all subsets of terminals X ⊆ K
with size |X| ≤ αk can be computed in time

O∗
(

αk∑

i=0

(
k
i

)

2i

)

,



Quantum Speedup for the Minimum Steiner Tree Problem 239

where
(
k
i

)
represents the number of sets X ⊂ K with |X| = i and 2i repre-

sents the number of sets X ′ ⊂ X. As claimed in Theorem 2, for α ≤ 1/2, this
complexity is upper bounded by O∗ (

2(H(α)+α)k
)

where H is the binary entropy
function.

q

p

a b c

d e f g h i j k l m

Fig. 2. An illustration for Dreyfus-Wagner decomposition for the tree in Fig. 1. The
MST T for X ∪ {q} is decomposed into three parts: a black solid path Pqp, an MST
T ′
1 for X ′ ∪ {p} with blue dashed edges, an MST T ′

2 for (X\X ′) ∪ {p} with red dotted
edges. In this case we have X = {d, e, f, g, h, i, j, k, l, m} and X ′ = {j, k, l, m}. (Color
figure online)

3.2 The Algorithm by Fuchs, Kern and Wang

Fuchs, Kern and Wang [9] have improved the D-W algorithm by dividing the
algorithm into two parts: a dynamic programming part and a part which merges
subtrees. In this paper we will not use directly this improved algorithm. Instead,
we will use the main technique introduced in [9] to obtain another recurrence
relation on which our quantum algorithm will be based.

The central idea that we need is the concept of “r-split” of an MST. This
concept was introduced in [9] for any value r ≥ 2 and used with r = 3 to construct
their O∗(2.684k)-time algorithm for the MST problem. For our purpose, on the
other hand, we will need the version with r = 2, which we define below.

Definition 1. Let T be an MST for the terminal set K. A 2-split of T is an edge
disjoint partition T = T1 ∪ E′ such that T1 is a subtree of T and the subgraph
induced by the edge subset E′ is a subforest of T . We also use the following
notation.

A := V (T1) ∩ V (E′)
K1 := K ∩ V (T1)\A

K2 := K ∩ V (E′)\A

We call A the set of split nodes. When T and E′ are both nonempty, we have
A = ∅ since T is a tree.
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⊕

a

b

c d e

f g h i j k l m n o

a

c v{b,d} e

f g h i j k l m n o

(a) (b)

(c) (d)

(e) (f)

(g)

the graph G/{b, d}the graph G

Fig. 3. An example of 2-split T = T1 ∪ E′. In this graph we have the terminal set
K = {a, f, g, h, i, j, k, l, m, n, o}, K1 = {f, g, h, i, j}, and A = {b, d}. (a): The red
dotted edges show the tree T1 and the blue dashed edges show the forest E′. (b): The
contracted graph G/{b, d}. (c): Graph G containing the tree of (a). (d): Graph G/{b, d}
containing the tree of (b). (e): The tree induced by red dotted edges in graph G. (f): The
tree induced by blue dashed edges in graph G/{b, d}. (g): The minimum Steiner tree.
This is obtained by merging the tree with red dotted edges of (e) extracted from G and
the tree with blue dashed edges of (f) extracted from G/{b, d}. (Color figure online)
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We use the following two results from [9] (see also Fig. 3 for an illustration).

Lemma 1 ([9]). Let T be an MST for the terminal set K. For any 2-split T =
T1 ∪ E′, the following two properties hold:

• In the graph G, the tree T1 is an MST for K1 ∪ A;
• In the graph G/A, the subgraph E′/A (i.e., the result of contracting A in the
subgraph of G induced by E′) is an MST for K2 ∪{vA} where vA denotes the
added vertex introduced in G/A during the contraction.

Theorem 3 ([9]). Let T be an MST for the terminal set K. For any η > 0 and
any 0 < α ≤ 1

2 , there exists a 2-split T = T1 ∪ E′ such that the following two
conditions hold:

• (α − η)k ≤ |K1| ≤ (α + η)k;
• and |A| ≤ �log (1/η)�.

By Lemma 1 and Theorem 3, we obtain the following recursion for any η > 0
and any 0 < α ≤ 1

2 :

WG(K) = min
K1⊆K

|K1|=(α±η)k

min
A⊆V

|A|≤	log(1/η)


{
WG(K1 ∪ A) + WG/A(K2 ∪ {vA})

}
, (2)

where K2 is defined from K and A as K2 = K\(K1∪A). In Eq. (2) the shorthand
“|K1| = (α ± η)k” means (α − η)k ≤ |K1| ≤ (α + η)k and WG/A(K2 ∪ {vA}) is
the weight of an MST for K2 ∪ {vA} in the graph G/A.

4 Quantum Algorithm for the MST

In this section we present our quantum algorithm for the MST. The main idea
is to recursively apply the D-H algorithm on Eq. (2).

4.1 Our Quantum Algorithm

Algorithm 1 shows our quantum algorithm, which consists of a classical part
(Step 1) and a quantum part (Step 2). It uses two parameters β ∈ (0, 1/2] and
ε ∈ (0, 1). The value of β will be set in the analysis of Sect. 4.2, and ε will be a
very small constant.

At Step 1, the algorithm computes the values of WG(X ∪ A) and WG/A(X ∪
{vA}) for all X ⊆ K such that |X| ≤ ((1−β)/4+15ε)k and all A ⊆ V such that
|A| ≤ �log(1/ε)�. (Remember the definition of vA in Lemma 1). This is done
classically, using the D-W algorithm.

At Step 2, we use D-H algorithm on Eq. (2), three times recursively, to com-
pute a minimum Steiner tree for K. Let us now describe more precisely how
Step 2 is implemented. The three levels of application of the D-H algorithm in
our algorithm use Eq. (2) in a slightly different way:
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Algorithm 1. Quantum algorithm for the Minimum Steiner Tree

input: a graph G = (V, E, w) and a subset of vertices K ⊆ V
parameters: two constants β ∈ (0, 1/2] and ε ∈ (0, 1)
output: a minimum Steiner tree for K in G.

1. For all X ⊆ K such that |X| ≤ ((1 − β)/4 + 15ε)k and all A ⊆ V such that
|A| ≤ �log(1/ε)�, compute the values of WG(X∪A) and WG/A(X∪{vA}) classically
using the D-W algorithm.

2. Apply the D-H algorithm to Eq. (2) three times recursively. In the last recursive
call, directly use the values computed at Step 1.

– Level 1: D-H algorithm over Eq. (2) with parameters α = 1/2 and η = ε.
This implements a search over all K1 ⊂ K such that |K1| = (12 ± ε)k and
all A ⊆ V such that |A| ≤ �log(1/ε)�. This requires procedures computing
WG(K1 ∪ A) and WG/A(K2 ∪ {vA}), where K2 = K\(K1 ∪ A). These two
procedures are implemented at Level 2.

– Level 2: D-H algorithm over each of the following two formulas, which are
obtained using Eq. (2) with parameters α = 1/2 and η = ε.

WG(K1 ∪ A) =

min
K2⊆K1∪A

|K2|=( 1
4±O(ε))k

min
A′⊆V

|A′|≤	log(1/ε)


{
WG(K2 ∪ A′) + WG/A′(K3 ∪ {vA′})

}
,

where K3 = (K1 ∪ A)\(K2 ∪ A′).

WG/A(K2 ∪ {vA}) =
min

K4⊆K2∪{vA}
|K4|=( 1

4 ±O(ε))k

min
A′⊆V

|A′|≤�log(1/ε)�

{
WG/A(K4 ∪ A′) + W(G/A)/A′(K5 ∪ {vA′})

}
,

where K5 = (K2 ∪{vA})\(K4 ∪A′). This requires procedures computing the
four quantities

WG(K2 ∪ A′), WG/A′(K3 ∪ {vA′}), WG/A(K4 ∪ A′), W(G/A)/A′(K5 ∪ {vA′}).

These four procedures are implemented at Level 3.
– Level 3: D-H algorithm over each of the four corresponding formulas, which

are obtained from Eq. (2), with parameter α = β, α = (1 − β), α = β and
α = (1 − β), respectively, for some β ∈ (0, 1/2], and parameter η = ε. For
example, the first formula, which corresponds to the computation of the term
WG(K2 ∪ A′), is:

WG(K2 ∪ A′) =

min
K6⊆K2∪A′

|K6|=( β
4 ±O(ε))k

min
A′′⊆V

|A′′|≤�log(1/ε)�

{
WG(K6 ∪ A′′) + WG/A′′(K7 ∪ {vA′′})

}
,
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WG(K2 ∪ A′) =

min
K6⊆K2∪A′

|K6|=( β
4 ±O(ε))k

min
A′′⊆V

|A′′|≤	log(1/ε)


{
WG(K6 ∪ A′′) + WG/A′′(K7 ∪ {vA′′})

}
,

where K7 = (K2 ∪ A′)\(K6 ∪ A′′). This time, the quantities WG(K6 ∪ A′′)
and WG/A′′(K7 ∪ {vA′′}) in this formula (and similarly for the other three
formulas) can be obtained directly from the values computed at Step 1 of the
algorithm.2

4.2 Running Time

The parameter ε is a small constant. To simplify the analysis below we introduce
the following notation: the symbol Ô hides all factors that are polynomial in n
and also all factors of the form 2O(εk).

Analysis of the Classical Part. Note that constructing the contracted graphs
G/A can be done in polynomial time.

By using Theorem 2, the complexity of the classical part of the algorithm is

Ô
((

k
(1 − β)k/4

)

2(1−β)k/4

)

= Ô
(
2(H( 1−β

4 )+ 1−β
4 )k

)
. (3)

The Quantum Part. At step 2 of our algorithm, we apply the D-H algorithm
in three levels. The size of the search space of the D-H algorithm executed at
Level 1 is

Ô
((

k
k/2

))

. (4)

The size of the search space of each of the two executions of the D-H algorithm
at Level 2 is

Ô
((

k/2
k/4

))

. (5)

The size of the search space of each of the four executions of the D-H algorithm
at Level 3 is

Ô
((

k/4
βk/4

))

, (6)

respectively. The complexity of the quantum part of this algorithm is thus

Ô
(√(

k
k/2

)(
k/2
k/4

)(
k/4
βk/4

))

. (7)

2 Indeed, it is easy to check that all the O(ε) terms in the above analysis are actually
upper bounded by 15ε.
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Analysis of the Parameter β. Using Stirling’s Formula, the classical and quantum
parts of the complexity (Eqs. (3) and (7)) can be respectively expressed as

Ô
(
2(H( 1−β

4 )+ 1−β
4 )k

)
and Ô

(
2

1
2 ( 3

2+
H(β)

4 )k
)

. (8)

Since the complexity is minimized when the complexities of the classical and
quantum parts equal, we can optimize the parameter β by solving the following
equation:

H

(
1 − β

4

)

+
1 − β

4
=

1
2

(
3
2

+
H(β)

4

)

. (9)

0 0.28 0.5
0

0.5

0.86

1

β ∈ (0, 1
2
]

f
(β

)
of

O∗ (
2f

( β
)k
)

the left side of Eq.(9)
the right side of Eq.(9)

Fig. 4. Running time of our algorithm.

Numerical calculation show that the solution of this equation is β ≈ 0.28325,
which gives total running time Ô(ck) for c = 1.8118... (see also Fig. 4). By taking
an appropriately small choice of ε, we thus obtain running time O∗(1.812k), as
claimed in Theorem 1.

Remark 1. Introducing additional parameters in level 1 or level 2 of Step 2
(instead of using α = 1/2) does not improve the running time. Modifying the
number of levels (e.g., using two levels, or four levels) also leads to a worse
complexity.
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Abstract. Secret sharing provides a means to distribute shares of a
secret such that any authorized subset of shares, specified by an access
structure, can be pooled together to recompute the secret. The standard
secret sharing model requires public access structures, which violates
privacy and facilitates the adversary by revealing the high-value targets.
In this paper, we address this shortcoming by introducing hidden access
structures, which remain secret until some authorized subset of parties
collaborate. The central piece of this work is the construction of a set-

system H with strictly greater than exp

(
c
1.5(log h)2

log log h

)
subsets of a set

of h elements. Our set-system H is defined over Zm, where m is a non-
prime-power, such that the size of each set in H is divisible by m but
the sizes of their pairwise intersections are not divisible by m, unless one
set is a subset of another. We derive a vector family V from H such that
superset-subset relationships in H are represented by inner products in
V. We use V to “encode” any access structure and thereby develop the
first access structure hiding secret sharing scheme. The information rate
(secret-size/maximum-share-size) of our scheme is 1/2. For a setting with
� parties, our scheme supports 2� out of the 22

�−O(log �)
possible access

structures. The scheme assumes semi-honest polynomial-time parties,
and its security relies on the Generalized Diffie-Hellman assumption.

Keywords: Computational secret sharing · Hidden access structures ·
Computational hiding · Computational secrecy · Extremal set theory.

1 Introduction

A secret sharing scheme [4,9,13] is a method by which a dealer, holding a secret
string, distributes strings, called shares, to parties such that authorized subsets
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of parties, specified by a public access structure, can reconstruct the secret.
Secret sharing is a foundational tool with many applications in cryptography,
distributed computing and secure storage. The extensive survey by Beimel [2]
gives a review of the notable results in the area.

Motivation. Existing secret sharing model requires the access structure to be
known to the parties. Since secret reconstruction requires shares of any autho-
rized subset, from the access structure, having a public access structure reveals
the high-value targets, which can lead to compromised security in the presence
of malicious parties. Having a public access structure also implies that some
parties must publicly consent to the fact that they themselves are not trusted.

Need for Hidden Access Structures: Consider a scenario where Alice calls her
lawyer to dictate her will/testament. She instructs that each of her 15 family
members should receive a valid “share” of the will. In addition, the shares should
be indistinguishable from each other in terms of size and entropy. She also insists
that in order to reconstruct her will, {Bob, Tom, Catherine} or {Bob, Cristine,
Keri, Roger} or {Rob, Eve} must be part of the collaborating set. But, Alice
does not want to be in the bad books of her other, less trusted family members.
So, she demands that the shares of her will and the procedure to reconstruct it
back from the shares must not reveal her “trust structures”, until after the will
is successfully reconstructed. This problem can be generalized to secret sharing,
but with hidden access structures, which remain secret until some authorized
subset of parties collaborate.

Superpolynomial Size Set-Systems and Efficient Cryptography: In this paper, we
demonstrate that set-systems with specific intersections can be used to enhance
existing cryptographic protocols, particularly the ones meant for distributed
security. In order to minimize the computational cost of cryptographic proto-
cols, it is desirable that parameters such as exponents, moduli and dimensions
do not grow too big. For a set-system whose size is superpolynomial in the num-
ber of elements over which it is defined, achieving a large enough size requires
smaller modulus and fewer number of elements, which translates into smaller
dimensions, exponents and moduli for its cryptographic applications.

Our Contributions. We bolster the privacy guarantees of secret sharing by
introducing hidden access structures, which remain unknown until some autho-
rized subset of parties collaborate. We develop the first access structure hiding
(computational) secret sharing scheme. As the basis of our scheme, we construct
a novel set-system, which is defined by the following theorem.

Theorem 1. Let {αi}r
i=1, be r > 1 positive integers, and m =

∏r
i=1 pαi

i be
a positive integer with r different prime divisors: p1, . . . , pr. Then there exists
c = c(m) > 0, such that for every integer h > 0, there exists an explicitly
constructible non-uniform1 set-system H over a universe of h elements such
that the following conditions hold:

1 all member sets do not have equal size.
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1. |H| > exp
(

c
1.5(log h)r

(log log h)r−1

)

,

2. ∀H ∈ H : |H| = 0 mod m,
3. ∀G,H ∈ H, where G �= H : if H ⊂ G or G ⊂ H, then |G ∩ H| = 0 mod m,

else |G ∩ H| �= 0 mod m,
4. ∀G,H ∈ H, where G �= H and ∀i ∈ {1, . . . , r} : |G ∩ H| ∈ {0, 1} mod pαi

i .

(Recall that a mod m denotes the smallest non-negative b = a mod m.) In
secret sharing, the family of minimal authorized subsets Γ0 ∈ Γ , corresponding
to an access structure Γ , is defined as the collection of the minimal sets in Γ .
Therefore, Γ0 forms the basis of Γ . Note that Conditions 2 and 3 of Theorem 1
define the superset-subset relations in the set-system H. We derive a family
of vectors V ∈ (Zm)h from our set-system H, that captures the superset-subset
relations in H as (vector) inner products in V. This capability allows us to capture
“information” about any minimal authorized subset A ∈ Γ0 in the form of an
inner product, enabling efficient testing of whether a given subset of parties B is
a superset of A or not. Since Γ is monotone, B ⊇ A, for some A ∈ Γ0, implies
that B ∈ Γ , i.e., B is an authorized subset of parties. Similarly, B �⊇ A, for
all A ∈ Γ0, implies that B /∈ Γ , i.e., B is not an authorized subset of parties.
We use our novel set-system and vector family to construct the first access
structure hiding (computational) secret sharing scheme. We assume semi-honest
polynomial-time parties, and reduce the security and privacy guarantees of our
scheme to the Generalized Diffie-Hellman assumption [14]. The maximum share
size for our scheme is ≈ 2|k|, where |k| is the length of the secret.

Organization. The rest of this paper is organized as follows: we recall the
pertinent background and results in Sect. 2. Section 3 formally defines access
structure hiding computational secret sharing. We present the construction of
our set-systems and vector families in Sect. 4, and use them to develop the first
access structure hiding computational secret sharing scheme in Sect. 5. We finish
by describing two open problems.

2 Preliminaries

We begin by recalling an informal definition of the Generalized Diffie-Hellman
(GDH) assumption [14]. For a formal definition, see [3]. For a positive integer n,
we define [n] := {1, . . . , n}.

Definition 1 (GDH Assumption: Informal). Let {a1, a2, . . . , an} be a set of
n different integers. Given a group G and an element g ∈ G, it is hard to compute
g

∏
i∈[n] ai for an algorithm that can query g

∏
i∈I ai for any proper subset I � [n].

Definition 2 (Dirichlet’s Theorem (1837)). For all coprime integers a and
q, there are infinitely many primes, p, of the form p = a mod q.

Definition 3 (Euler’s Theorem). Let y be a positive integer and Z∗
y denote

the multiplicative group mod y. Then for every integer c that is coprime to y, it
holds that: cϕ(y) = 1 mod y, where ϕ(y) = |Z∗

y| denotes Euler’s totient function.
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Definition 4 (Hadamard/Schur product). For any two vectors u,v ∈ Rn,
their Hadamard/Schur product, denoted by u ◦ v, is a vector in the same linear
space whose i-th element is defined as: (u ◦ v)[i] = u[i] · v[i], for all i ∈ [n].

Definition 5 (Negligible Function). For security parameter ω, a function
ε(ω) is called negligible if for all c > 0 there exists a ω0 such that ε(ω) < 1/ωc

for all ω > ω0.

Definition 6 (Computational Indistinguishability [6]). Let X = {Xω}ω∈N

and Y = {Yω}ω∈N be ensembles, where Xω’s and Yω’s are probability distri-
butions over {0, 1}κ(ω) for some polynomial κ(ω). We say that {Xω}ω∈N and
{Yω}ω∈N are polynomially/computationally indistinguishable if the following
holds for every (probabilistic) polynomial-time algorithm D and all ω ∈ N:

∣
∣
∣Pr[t ← Xω : D(t) = 1] − Pr[t ← Yω : D(t) = 1]

∣
∣
∣ ≤ ε(ω),

where ε is a negligible function.

Definition 7 (Access Structure). Let P = {P1, . . . , P�} be a set of parties.
A collection Γ ⊆ 2P is monotone if A ∈ Γ and A ⊆ B imply that B ∈ Γ . An
access structure Γ ⊆ 2P is a monotone collection of non-empty subsets of P.
Sets in Γ are called authorized, and sets not in Γ are called unauthorized.

If Γ consists of all subsets of P with size greater than or equal to a fixed
threshold t (1 ≤ t ≤ �), then Γ is called a t-threshold access structure.

Definition 8 (Minimal Authorized Subset). For an access structure Γ , a
family of minimal authorized subsets Γ0 ∈ Γ is defined as:

Γ0 = {A ∈ Γ : B �⊂ A for all B ∈ Γ \ {A}}.

Definition 9 (Computational Secret Sharing [11]). A computational secret
sharing scheme with respect to an access structure Γ , a security parameter ω, a
set of � polynomial-time parties P = {P1, . . . , P�}, and a set of secrets K, consists
of a pair of polynomial-time algorithms, (Share,Recon), where:

– Share is a randomized algorithm that gets a secret k ∈ K and access structure
Γ as inputs, and outputs � shares, {Π(k)

1 , . . . ,Π(k)
� }, of k,

– Recon is a deterministic algorithm that gets as input the shares of a subset
A ⊆ P, denoted by {Π(k)

i }i∈A, and outputs a string in K,

such that, the following two requirements are satisfied:

1. Perfect Correctness: for all secrets k ∈ K and every authorized subset A ∈ Γ ,
it holds that: Pr[Recon({Π(k)

i }i∈A,A) = k] = 1,
2. Computational Secrecy: for every unauthorized subset B /∈ Γ and all different

secrets k1, k2 ∈ K, it holds that the distributions {Π(k1)
i }i∈B and {Π(k2)

i }i∈B
are computationally indistinguishable (with respect to ω).

Remark 1 (Perfect Secrecy). If ∀k1, k2 ∈ K with k1 �= k2, the distributions
{Π(k1)

i }i∈B and {Π(k2)
i }i∈B are identical, then the scheme is called a perfect

secret sharing scheme.
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2.1 Set Systems with Restricted Intersections

The problem of constructing set systems under certain intersection restrictions
and bounding their size has a central place in Extremal Set Theory. We shall
not give a full account of such problems, but only touch upon the results that
are particularly relevant to our set-system and its construction. For a broader
account, we refer the interested reader to the survey by Frankl and Tokushige [5].

Lemma 1 ([8]). Let m =
∏r

i=1 pαi
i be a positive integer with r > 1 different

prime divisors. Then there exists an explicitly constructible polynomial Q with n
variables and degree O(n1/r), which is equal to 0 on z = (1, 1, . . . , 1) ∈ {0, 1}n

but is nonzero mod m on all other z ∈ {0, 1}n. Furthermore, ∀z ∈ {0, 1}n and
∀i ∈ {1, . . . , r}, it holds that: Q(z) ∈ {0, 1} mod pαi

i .

Theorem 2 ([8]). Let m be a positive integer, and suppose that m has r > 1
different prime divisors: m =

∏r
i=1 pαi

i . Then there exists c = c(m) > 0, such
that for every integer h > 0, there exists an explicitly constructible uniform
set-system H over a universe of h elements such that:

1. |H| ≥ exp

(

c
(log h)r

(log log h)r−1

)

,

2. ∀H ∈ H : |H| = 0 mod m,
3. ∀G,H ∈ H, G �= H : |G ∩ H| �= 0 mod m.

3 Access Structure Hiding Computational Secret Sharing

In this section, we give a formal definition of an access structure hiding compu-
tational secret sharing scheme.

Definition 10. An access structure hiding computational secret sharing scheme
with respect to an access structure Γ , a set of � polynomial-time parties P =
{P1, . . . , P�}, a set of secrets K and a security parameter ω, consists of two pairs
of polynomial-time algorithms, (HsGen, HsVer) and (Share, Recon), where
(Share, Recon) are the same as defined in the definition of computational secret
sharing (see Definition 9), and (HsGen, HsVer) are defined as:

– HsGen is a randomized algorithm that gets P and Γ as inputs, and outputs �

access structure tokens {�
(Γ )
1 , . . . , �

(Γ )
� },

– HsVer is a deterministic algorithm that gets as input the access structure
tokens of a subset A ⊆ P, denoted by {�

(Γ )
i }i∈A, and outputs b ∈ {0, 1},

such that, the following three requirements are satisfied:

1. Perfect Completeness: every authorized subset of parties A ∈ Γ can identify
itself to be a member of the access structure Γ , i.e., formally, it holds that:
Pr[HsVer({�

(Γ )
i }i∈A) = 1] = 1,
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2. Perfect Soundness: every unauthorized subset of parties B /∈ Γ can identify
itself to be outside of the access structure Γ , i.e., formally, it holds that:
Pr[HsVer({�

(Γ )
i }i∈B) = 0] = 1,

3. Computational Hiding: for all access structures Γ, Γ ′ ⊆ 2P , where Γ �= Γ ′,
and each subset of parties B /∈ Γ, Γ ′ that is unauthorized in both Γ and Γ ′,
it holds that:

∣
∣
∣Pr[Γ | {�

(Γ )
i }i∈B, {Π(k)

i }i∈B] − Pr[Γ ′ | {�
(Γ )
i }i∈B, {Π(k)

i }i∈B]
∣
∣
∣ ≤ ε(ω),

where ε is a negligible function and {Π(k)
i }i∈B denotes the subset of shares of

a secret k, that belong to the parties in B, and are generated by Share with
respect to the access structure Γ .

4 Novel Set-Systems and Vector Families

In this section, we construct our novel set-systems and vector families. The
following notations are frequently used throughout this section.

– We denote the coefficient of xk in the power series for f(x) by [xk] : f(x),
– Let L be an ordered list of a finite number of different symbols, and u ∈ Le

be a string comprised of e ∈ N different symbols from L. We define � to
represent string membership, i.e., j �u denotes that the string u contains the
jth symbol from the ordered list L.

4.1 Set System Construction

In this section, we provide the proof for Theorem 1 by giving an explicit con-
struction of the set-system H defined in it.

Proof (Theorem 1). We use the polynomial Q defined in Lemma 1 to construct
our set-system. We begin by recalling the following property of Q:

Q(z) = 0 mod m ⇐⇒ z1 = z2 = · · · = zn = 1, (4.1)

where z = (z1, z2, . . . zn) ∈ {0, 1}n. We know from Lemma 1 that Q has degree
d = O(n1/r), and can be written as:

Q(z1, z2, . . . , zn) =
∑

i1,i2,...,il

ai1,i2,...,il
zi1zi2 . . . zil

,

where 0 ≤ l ≤ d, and ai1,i2,...,il
∈ Z with 1 ≤ i1 < i2 < · · · < il ≤ n. Reducing

that modulo m, we get:

Q̃(z1, z2, . . . , zn) =
∑

i1,i2,...,il

ãi1,i2,...,il
zi1zi2 . . . zil

, (4.2)
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where ãi1,i2,...,il
= ai1,i2,...,il

mod m. Let L = (0, 1, . . . , n − 1) be an ordered list
of n symbols. Define a characteristic function ψ : {0, 1, . . . , n−1}n → {0, 1}n as:

ψ(u)[j] :=

{
1 if j � u

0 otherwise,
(4.3)

where 1 ≤ j ≤ n and ψ(u)[j] denotes the jth bit of ψ(u) ∈ {0, 1}n. If a string
u ∈ {0, 1, . . . , n − 1}n, defined over the symbols in L, contains the jth symbol
from the ordered list L, then ψ(u)[j] = 1, else ψ(u)[j] = 0. Define a comparison
function δ(x, y) : {0, 1} × {0, 1} → {0, 1} as:

δ(u, v) := ¬(u ⊕ v), (4.4)

where ¬ and ⊕ denote negation and XOR, respectively. Hence, δ(u, v) = 1 if u =
v, else δ(u, v) = 0. Let A = (ax,y) be a nn ×nn matrix (x, y ∈ {0, 1, . . . , n−1}n).
For x′ = ψ(x) and y′ = ψ(y), define each entry ax,y as:

ax,y = Q̃(δ(x′
1, y

′
1), δ(x

′
2, y

′
2), . . . , δ(x

′
n, y′

n)) mod m, (4.5)

where Q̃(·) is the polynomial defined in Eq. 4.2, and x′
j , y

′
j denote the jth bit

of the binary bit strings x′, y′ ∈ {0, 1}n. It follows from Eq. 4.3, Eq. 4.4 and
Eq. 4.5 that if ax,y = Q̃(1, 1, . . . , 1) = 0 mod m, then either x = y or ∀j ∈ [n]
it holds that y′

j = x′
j , i.e., x and y are comprised of the same symbols. In both

cases, we say that x and y “cover” each other, and denote it by xΥy. We know
from Eq. 4.2 that the polynomial Q̃(z) can be defined as a sum of monomials
zi1zi2 . . . zil

(l ≤ d), where each monomial zi1zi2 . . . zil
occurs with multiplicity

ãi1,i2,...,il
in the sum. Therefore, since matrix A is generated via Q̃, it follows

from Eq. 4.2 that A can be defined as the sum of matrices Bi1,i2,...,il
, whose

entries are defined as:

bi1,i2,...,il
x,y = δ(x′

i1 , y
′
i1)δ(x

′
i2 , y

′
i2) . . . δ(x′

il
, y′

il
). (4.6)

Hence, it follows from Eq. 4.2, Eq. 4.5 and Eq. 4.6, that A can be written as:

A =
∑

i1,i2,...,il

ãi1,i2,...,il
Bi1,i2,...,il

, (4.7)

where ãi1,i2,...,il
is the multiplicity with which the matrix Bi1,i2,...,il

occurs in the
sum. Next, we analyze the matrices A and Bi1,i2,...,il

. In particular, we count
the number of 0 entries in A and the number of 1 entries in Bi1,i2,...,il

.

Analysis of the Matrices. We begin by counting the total number of entries
ax,y ∈ A that are equal to 0, which translates into counting the number of
x, y ∈ {0, 1, . . . , n − 1}n such that xΥy.

Let S be a set of n different symbols. Let unique symbol weight (USW)
denote the number of different symbols in a string, i.e., USW(x) =w(ψ(x)),
where w(·) denotes the Hamming weight. To form a string x of length n such
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that USW(x) = k, for a fixed k ≤ n, the first step is to select k distinct symbols
si1 , si2 . . . , sik

from S. We know from Rosen [12] (Section 2.4.2), that the number
of onto functions from a set of n elements to a set of k elements is given by k!

{
n
k

}
,

where
{

n
k

}
denotes Stirling number of the second kind (see Graham et al. [7],

p. 257). Hence, k!
{

n
k

}
is the total number of strings of length n, that contain

exactly the selected k-out-of-n symbols: si1 , si2 . . . , sik
.

Let Nk denote the total number of different x ∈ {0, 1, . . . , n − 1}n such that
USW(x) = k. We know that for a fixed set of k-out-of-n symbols, the number
strings x ∈ {0, 1, . . . , n − 1}n satisfying USW(x) = k is k!

{
n
k

}
. Accounting for

the number of ways one can choose k-out-of-n symbols, we get: Nk =
(
n
k

)
k!

{
n
k

}
.

We know that for each k, there are Nk rows in matrix A that “cover” exactly
k!

{
n
k

}
entries. Hence, from Eq. 4.5, the number of ax,y = 0 mod m entries in A

is:

S(n) =
n∑

k=1

Nk · k!
{

n

k

}

=
n∑

k=1

(
n

k

)

k!
{

n

k

}

k!
{

n

k

}

. (4.8)

We recall the following well known identities involving the first-order Eulerian
numbers (see Graham et al. [7], p. 267) and Stirling numbers of the second kind:

�!
{

n

�

}

=
n∑

k=0

〈
n

k

〉(
k

n − �

)

; (n − �)!
{

n

n − �

}

=
n∑

k=0

〈
n

k

〉(
k

�

)

,

where
〈

n
k

〉
denotes the first-order Eulerian number, which gives the total number

of permutations π1, π2, . . . , πn with k ascents, i.e., k places where πt < πt+1.
Therefore, Eq. 4.8 can be rewritten as:

S(n) =
n∑

k=0

(
n

k

)

k!
{

n

k

}

k!
{

n

k

}

=
n∑

k=0

(
n

k

)

k!
{

n

k

} n∑

j=0

〈
n

j

〉(
j

n − k

)

= n!
n∑

k=0

{
n

k

}
⎛

⎝
n∑

j=0

〈
n

j

〉(
j

n − k

)
⎞

⎠ 1
(n − k)!

.

Thus, the exponential generating function for S(n) comes out to be:

∑

n≥0

S(n)
xn

n!
=

∑

n≥0

n∑

k=0

{
n

k

}

xk

⎛

⎝
n∑

j=0

〈
n

j

〉(
j

n − k

)
⎞

⎠ xn−k

(n − k)!
.

Recall the following definition of Touchard polynomial (Jacques Touchard
(1939)):

Tn(x) =
n∑

k=0

{
n

k

}

xk.
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We write S(n) as:

S(n) = n![xn] : (Tn(x)Pn(x)), (4.9)

where the second polynomial, Pn(x), is defined via convolution as:

Pn(x) =
n∑

k=0

⎛

⎝
n∑

j=0

〈
n

j

〉(
j

k

)
⎞

⎠ xk

k!
=

n∑

k=0

(n − k)!
k!

{
n

n − k

}

xk.

Observe that all diagonal entries ax,x in matrix A are 0, and A is symmetric
across its diagonal.

Lemma 2. Let the term B-entries denote the entries bi1,i2,...,il
x,y ∈ Bi1,i2,...,il

that
are equal to 1. Then the following holds for B-entries:

1. ∀x ∈ {0, 1, . . . , n − 1}n, each entry ax,x ∈ A has the same number of B-
entries, bi1,i2,...,il

x,x = 1, and this number is divisible by m,
2. for each pair x, y (x, y ∈ {0, 1, . . . , n − 1}n), the total number of B-entries,

bi1,i2,...,il
x,y = 1, corresponding to ax,y ∈ A, is divisible by m iff xΥy, else not.

Proof. We know from Eq. 4.6 that except for the B-entries, all other entries in
matrices Bi1,i2,...,il

are equal to 0. Hence, it follows from Eq. 4.7 that each entry
ax,y ∈ A is simply the total number of B-entries, bi1,i2,...,il

x,y = 1. It further follows
from Eq. 4.5 and Eq. 4.1 that for all x, we get ax,x = Q̃(1, 1, . . . , 1) = 0 mod m,
i.e., for all x, the total number of B-entries, bi1,i2,...,il

x,x = 1, is divisible by m.
Furthermore, it follows from Eq. 4.6 that because x = x, all entries bi1,i2,...,il

x,x

are indeed B-entries and all cells ax,x have the same number of corresponding
B-entries, bi1,i2,...,il

x,x = 1. Finally, it follows from Eq. 4.5 and Eq. 4.1 that for
all pairs (x, y), where x �= y, the total number of B-entries, bi1,i2,...,il

x,y = 1, is:
ax,y = Q̃(1, 1, . . . , 1) = 0 mod m if xΥy, and ax,y �= 0 mod m otherwise. �

By taking all ax,y = 0 mod m (∀x, y ∈ {0, 1, . . . , n − 1}n) entries of A to
denote sets with the corresponding B-entries, bi1,i2,...,il

x,y = 1, as the elements in
those sets leads to a set-system H, that satisfies Conditions 2 and 3 of Theorem 1.
The number of elements, h, over which H is defined is:

h = Q̃(n, n, . . . , n) =
∑

l≤d

∑
ãi1,i2,...,il

nl ≤ (m − 1)
∑

l≤d

(
n

l

)

nl

< (m − 1)
∑

l≤d

n2l/l! < 2(m − 1)n2d/d!,

assuming n ≥ 2d. For the sake of convenience, we assume n > 2. From Eq. 4.9,
it is easy to verify that the following holds for n > 2:

|H| = S(n) > n1.5n. (4.10)
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We know from [8] that for r > 1,m =
∏r

i=1 pαi
i , d = O(n1/r), c = c(m) > 0 and

h < 2(m − 1)n2d/d!, the following relation holds:

nn ≥ exp
(

c
(log h)r

(log log h)r−1

)

.

Therefore, the following can be derived from Eq. 4.10 and elementary estimations
for binomial coefficients:

|H| > exp
(

c
1.5(log h)r

(log log h)r−1

)

.

Since m ≥ 6 and r ≥ 2, the size of our set-system H is strictly greater than

exp
(

c
1.5(log h)2

log log h

)

. Condition 4 of Theorem 1 follows directly from Lemma 1.

It is easy to verify that the total number of B-entries corresponding to each
cell (x, y), where x �= y and for which ax,y = 0 mod m, is not same. Moreover,
since all bi1,i2,...,il

x,x entries are indeed B-entries, it holds that ax,y < ax,x for all
x �= y. Hence, the sets in H do not have the same size, making H a non-uniform
set-system. This completes the proof of Theorem 1. �

4.2 Covering Vector Families

Definition 11 (Covering Vectors). Let m,h > 0 be positive integers, S ⊆
Zm \ {0}, and w(·) and 〈·, ·〉 denote Hamming weight and inner product, respec-
tively. We say that a subset V = {vi}N

i=1 of vectors in (Zm)h forms an S-covering
family of vectors if the following two conditions are satisfied:

– ∀i ∈ [N ], it holds that: 〈vi,vi〉 = 0 mod m,
– ∀i, j ∈ [N ], where i �= j, it holds that:

〈vi,vj〉 mod m =

{
0 if w(vi ◦ vj mod m) = 0 mod m

∈ S otherwise,

where ◦ denotes Hadamard/Schur product (see Definition 4).

Recall from Theorem 1 that h,m are positive integers, with m =
∏r

i=1 pαi
i

having r > 1 different prime divisors. Further, recall Condition 4 of Theorem 1,
which implies that the sizes of the pairwise intersections of the sets in H occupy
at most 2r − 1 residue classes modulo m. If each set Hi ∈ H is represented by
a representative vector vi ∈ (Zm)h, then for the resulting subset V of vectors in
(Zm)h, the following result follows from Theorem 1.

Corollary 1 (to Theorem 1) For the set-system H defined in Theorem 1, if
each set Hi ∈ H is represented by a unique representative vector vi ∈ (Zm)h,
then for a set S of size 2r − 1, the set of vectors V = {vi}N

i=1, formed by the
representative vectors of all sets in H, forms an S-covering family such that N >

exp
(

c
1.5(log h)r

(log log h)r−1

)

and ∀i, j ∈ [N ] it holds that 〈vi, vj〉 = |Hi∩Hj |( mod m).
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5 Our Scheme

In Sect. 5.1, we introduce an algorithm to encode and identify hidden access
structures, that remain unknown unless some authorized subset of parties col-
laborate. Followed by that, in Sect. 5.2, we extend that algorithm into an access
structure hiding computational secret sharing scheme. We assume semi-honest
polynomial-time parties, which try to gain additional information while correctly
following the protocols. The following notations are frequently used from hereon.

– If each party Pi holds a value xi, then for any subset of parties A, {xi}i∈A
denotes the set of all xi values that belong to the parties Pi ∈ A,

–
∏

i∈A xi and
∑

i∈A xi respectively denote the product and sum of all values
from the set {xi}i∈A,

– large prime refers to a prime number of size equal to or greater than the
minimum size recommended by NIST for primes [1].

5.1 Access Structure Encoding Scheme (ASES)

In this section, we describe our scheme to encode and identify hidden access
structures. Let P = {P1, . . . , P�} be a set of � polynomial-time parties and
Ω ∈ Γ0 be any minimal authorized subset (see Definition 8). Hence, each party
Pi ∈ P can be identified as Pi ∈ Ω or Pi ∈ P \Ω. We divide the scheme into two
parts: setup and encoding.

Setup. The scheme is initialized as follows:

1. For η � �, generate a set of distinct large primes, {p1, p2, . . . , pη}. Generate
a prime q = u

∏η
i=1 pi + 1, where u is an integer. We know from Dirichlet’s

Theorem (see Definition 2) that there are infinitely many such primes q.
Generating q in this manner ensures hardness of the discrete log problem
in Zq [10], which, by extension translates into hardness of the Generalized
Diffie-Hellman assumption in Zq.

2. Let w =
∏η

i=1 pi and m = ϕ(q). Then, it follows from q = u
∏η

i=1 pi + 1 that
w|ϕ(q), where ϕ denotes Euler’s totient function (see Definition 3). Hence,
the following holds for primes βd and positive integers αd:

m = w ·
∏

d≥1

βαd

d =
η∏

i=1

pi ·
∏

d≥1

βαd

d .

Let r = d + η denote the total number of prime factors of m.
3. Construct a set-system H modulo m (as defined by Theorem 1). Let V ∈

(Zm)h denote the covering vectors family (as defined by Corollary 1) repre-
senting H such that each vector vi ∈ V represents a unique set Hi ∈ H.

4. Randomly sample H ∈ H. Let v ∈ V be the representative vector for H. We
call v and H the access structure vector and access structure set, respectively.
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Distributing Access Structures. Following procedure “encodes” the access
structure Γ that originates from Ω, and outputs � access structure tokens.

1. For each party Pi ∈ Ω, randomly select a unique vector vi
$←− V, such that,

〈v,vi〉 �= 0 mod m (i.e., H �⊆ Hi and Hi �⊆ H) and v =
∑

i∈Ω vi mod m.
Compute the identifier for party Pi as: xi = 〈v,vi〉 mod m.

2. For each party Pe ∈ P \Ω, select a unique covering party Pi ∈ Ω. Let Hi ∈ H
be the set represented by Pi’s covering vector, vi ∈ V. Randomly sample
Hj ∈ H, such that, Hi ⊂ Hj . Let vj ∈ V be the covering vector representing
Hj .

3. Compute ve ∈ V such that: ve + vi = vj mod m. Verify that 〈v,ve〉 �=
0 mod m, which translates into H �⊆ He,He �⊆ H, for He ∈ H represented by
ve. If these requirements do not hold, go back to Step 2.

4. Compute the identifier for party Pe as: xe = 〈v,ve〉 mod m. Generating iden-
tifiers in this manner for parties Pe ∈ P \ Ω ensures that they are “covered”
by the identifiers of parties in Ω. Since each party Pi ∈ Ω can “cover” at most
one party Pe ∈ P \ Ω, our scheme requires that |P| ≤ 2 · |Ω|.

5. Each party Pz ∈ P receives an access structure token t
(Γ )
z = μxz mod q, where

μ
$←− Z∗

q \ {1}.

In case of an identifier collision, i.e., xi = xj , where xj is the identifier of another
party Pj ∈ P, re-generate the identifier for either Pi or Pj . Recall from Corol-
lary 1 that 〈v,vi〉 occupies ≤ 2r −1 residue classes mod m. Therefore, the prob-
ability of an identifier collision is ≈ 1/(2r − 1)2, which may be non-negligible.
The set of parameters {m, q,H,V, μ} defines an ASES instance. Since our scheme
works with a minimal authorized subset, the set of identifiers, {xz}z∈P , repre-
sents 2� out of the 22�−O(log �)

possible access structures.

Access Structure Identification. Theorem 3 proves that any authorized sub-
set of parties A ∈ Γ can use its set of access structure tokens, {t

(Γ )
i }i∈A, to

identify itself as a member of the access structure Γ .

Theorem 3. Every authorized subset A ∈ Γ can identify itself as a member of
the access structure Γ by verifying that:

∏
i∈A t

(Γ )
i = 1 mod q.

Proof. Recall that for any authorized subset A ∈ Γ , it holds that the set HA ∈
H, represented by

∑
i∈A vi = vA, is a superset of the access structure set H ∈ H,

i.e., H ⊆ HA. Hence, from Theorem 1 and Corollary 1, it follows that: 〈v,vA〉 =
0 mod m = y · m = y · ϕ(q), where y is a positive integer. This translates into
μ〈v,vA〉 = 1 mod q (using Euler’s theorem). Hence, the following holds for all
authorized subsets A ∈ Γ :

∏

i∈A
t
(Γ )
i =

∏

i∈A
μxi = μ

〈

v,
∑

i∈A
vi

〉

= μ〈v,vA〉 = μy·ϕ(q) = 1 mod q.

�
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Perfect Soundness and Computational Hiding.

Theorem 4. Every unauthorized subset B /∈ Γ can identify itself to be out-
side Γ by using its set of access structure tokens, {t

(Γ )
i }i∈B, to verify that:

∏
i∈B t

(Γ )
i �= 1 mod q. Given that the Generalized Diffie-Hellman problem is hard,

the following holds for all unauthorized subsets B /∈ Γ and all access structures
Γ ′ ⊆ 2P , where Γ �= Γ ′ and B /∈ Γ ′:

∣
∣
∣Pr[Γ | {t(Γ )

i }i∈B] − Pr[Γ ′ | {t(Γ )
i }i∈B]

∣
∣
∣ ≤ ε(ω),

where ω = |P \ B| is the security parameter and ε is a negligible function.

Proof. It follows from the ASES procedure that for all unauthorized subsets
B /∈ Γ , it holds that the set HB ∈ H, represented by

∑
i∈B vi = vB, cannot be

a superset or subset of the access structure set H ∈ H. Hence, it follows from
Theorem 1 and Corollary 1 that: 〈v,vB〉 �= 0 mod m, which translates into the
following relation by Euler’s theorem (since m = ϕ(q) and μ

$←− Z∗
q \ {1}) :

∏

i∈B
t
(Γ )
i =

∏

i∈B
μxi = μ

〈

v,
∑

i∈B
vi

〉

= μ〈v,vB〉 �= 1 mod q.

Hence, any unauthorized subset B /∈ Γ can identify itself as not being a part
of the access structure Γ by simply multiplying its access structure tokens,
{t

(Γ )
i }i∈B. The security parameter ω = |P \ B| accounts for this minimum infor-

mation that is available to any unauthorized subset B /∈ Γ .
If some unauthorized subset B /∈ Γ has non-negligible advantage in distin-

guishing access structure Γ from any other Γ ′ ⊆ 2P , where Γ �= Γ ′ and B /∈ Γ ′,
then the following must hold for some non-negligible function χ:

∣
∣
∣Pr[Γ | {t(Γ )

i }i∈B] − Pr[Γ ′ | {t(Γ )
i }i∈B]

∣
∣
∣ ≥ χ(ω), (5.1)

Let g ∈ Z∗
q be a generator of Z∗

q (recall that Z∗
q is a cyclic group). We know

that the setup procedure used to generate q ensures that: |Z∗
q | = ϕ(q) � |P|.

Hence, given that g is a generator of Z∗
q , it follows that for each identifier xi,

there exists some ai ∈ Z such that: μxi = gai mod q. Therefore, by extension,
it follows that for all sets B, there exists set(s) of n different integers IB =
{a1, . . . , an}, where n = |B|, such that μ

∑
i∈B xi = g

∏n
i=1 ai mod q. Hence, it

holds that:
∏

i∈B μxi = g
∏n

i=1 ai mod q.
We know that each unauthorized subset B /∈ Γ has at least one proper

superset A � B, such that A ∈ Γ . Since g is a generator of Z∗
q , there exists

set(s) of n′ different integers IA = IB ∪ {an+1, . . . , an′}, where n′ = |A|, such
that the following holds:

∏
i∈A μxi = g

∏n′
i=1 ai mod q.

We know that in order to satisfy Eq. 5.1, B must gain some non-negligible
information about g

∏n′
i=1 ai in Z∗

q . We also know that B can compute g
∏n

i=1 ai mod
q. Hence, it follows directly from Definition 1 that gaining any non-negligible
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information about g
∏n′

i=1 ai from g
∏n

i=1 ai in Z∗
q requires solving the Generalized

Diffie-Hellman (GDH) problem. Therefore, Eq. 5.1 cannot hold given that the
GDH assumption holds. Hence, the advantage of B /∈ Γ must be negligible in
the security parameter ω. �

5.2 Building the Full Scheme

The following procedure allows an honest dealer to employ the ASES scheme
and realize an access structure hiding computational secret sharing scheme.

1. Perform ASES to generate access structure tokens t
(Γ )
z = μxz mod q, for each

party Pz ∈ P.
2. Follow Step 1 of the setup procedure of ASES to generate a suitable prime

q′.
3. Generate a set-system H′ modulo m′ (as defined by Theorem 1), where m′ =

ϕ(q′). Let V ′ denote the covering vector family (as defined by Corollary 1)
that is formed by the representative vectors vi ∈ V for the sets Hi ∈ H.

4. Generate the secret that needs to be shared: k
$←− Z∗

q′ , and randomly sample
|Ω| integers, {bi}|Ω|

i=1, such that:
∏|Ω|

i=1 bi = k mod q′.

5. Generate γ
$←− Z∗

q′\{1}. For each party Pj ∈ P\Ω, employ ASES with param-
eters {m′, q′,H′,V ′, γ} to generate identifier yj ∈ Zm, and access structure
token: s

(k)
j = γyj mod q′. Party Pj receives s

(k)
j as its share.

6. The share for each party Pi ∈ Ω is generated as: s
(k)
i = (bi ·γyi) mod q′. Each

party Pz ∈ P receives < access structure token, share > pair: (t(Γ )
z , s

(k)
z ).

Completeness, Soundness, Correctness, Secrecy and Hiding: We prove
that our access structure hiding computational secret sharing scheme satisfies
the completeness, soundness, correctness, hiding and secrecy requirements out-
lined by the definition of Access Structure Hiding Computational Secret Sharing
(see Definition 10). Since independent iterations of ASES are used to gener-
ate the access structure tokens and shares, perfect completeness follows directly
from Theorem 3. Similarly, perfect soundness and computational hiding follow
directly from Theorem 4. Hence, we move on to proving perfect correctness and
computational secrecy.

Perfect Correctness: It follows directly from Theorem 3 that for all authorized
subsets A ∈ Γ , it holds that:

∏
i∈A γyi = 1 mod q′. Hence, any A ∈ Γ can

reconstruct the secret, k, by combining its shares as:
∏

i∈A
s
(k)
i mod q′ = 1 ·

∏

y∈Ω

by mod q′ = k, (using
∏

i∈A
γyi = 1 mod q′).

Since each party Pz ∈ P receives two elements, s
(k)
i and t

(Γ )
i , both of which have

(almost) the same size as the secret, the information rate of our scheme is ≈ 1/2.
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Computational Secrecy: Since independent iterations of ASES are used to gener-
ate the sets {t

(Γ )
z }z∈P and {s

(k)
z }z∈P , computational indistinguishability (w.r.t.

security parameter ω = |P \ B|) of all different access structures Γ, Γ ′ ⊆ 2P , for
all unauthorized subsets B /∈ Γ, Γ ′ follows directly from Theorem 4, i.e., it holds
that:

∣
∣
∣Pr[Γ | {t(Γ )

i }i∈B, {s
(k)
i }i∈B] − Pr[Γ ′ | {t(Γ )

i }i∈B, {s
(k)
i }i∈B]

∣
∣
∣ ≤ ε(ω).

Theorem 5. Given that GDH problem is hard, it holds for every unauthorized
subset B /∈ Γ and all different secrets k1, k2 ∈ K that the distributions {s

(k1)
i }i∈B

and {s
(k2)
i }i∈B are computationally indistinguishable w.r.t. the security parame-

ter ω = |P \ B|.

Proof. Since the set {bi}|Ω|
i=1 is generated randomly, secrecy of the bi values fol-

lows from one-time pad. Moving on to the secrecy of γyi values: since γ(�= 1)
is a random element from Z∗

q′ , there exists a generator g of Z∗
q′ (note that Z∗

q′

is a cyclic group) such that for each identifier, yi, generated by the ASES pro-
cedure, there exists an ai ∈ Z such that: γyi = gai mod q′. By extension, there
exists set(s) of n different integers IB = {a1, . . . , an}, where n = |B|, such that:∏

i∈B γyi = g
∏n

i=1 ai mod q′. We know that each unauthorized subset B /∈ Γ has
at least one proper superset A � B, such that A ∈ Γ . Since g is a generator of
Z∗

q′ , there exists set(s) of n′ different integers IA = IB ∪ {an+1, . . . , an′}, where

n′ = |A|, such that:
∏

i∈A γyi = g
∏n′

i=1 ai mod q′. It follows from Definition 1 that

in order to gain any non-negligible information about g
∏n′

i=1 ai from g
∏n

i=1 ai , in
Z∗

q′ , B must solve the GDH problem. Therefore, for every unauthorized subset
B /∈ Γ , computational indistinguishability of {s

(k1)
i }i∈B and {s

(k2)
i }i∈B w.r.t. the

security parameter ω follows directly from the GDH assumption. �

Open Problems. Our access structure hiding secret sharing scheme requires
that |P| ≤ 2|Ω|, where Ω ∈ Γ0 is any minimal authorized subset. It is worth
exploring whether this restriction can be further relaxed, or removed. Another
interesting problem is defining and constructing set-systems and vector families
that can support simultaneous encoding of multiple minimal authorized subsets.
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Abstract. We consider several variants of a car-sharing problem. Given
are a number of requests each consisting of a pick-up location and a drop-
off location, a number of cars, and nonnegative, symmetric travel times
that satisfy the triangle inequality. Each request needs to be served by
a car, which means that a car must first visit the pick-up location of
the request, and then visit the drop-off location of the request. Each
car can serve two requests. One problem is to serve all requests with
the minimum total travel time (called CSsum), and the other problem
is to serve all requests with the minimum total latency (called CSlat).
We also study the special case where the pick-up and drop-off location
of a request coincide. We propose two basic algorithms, called the match
and assign algorithm and the transportation algorithm. We show that
the best of the resulting two solutions is a 2-approximation for CSsum

(and a 7/5-approximation for its special case), and a 5/3-approximation
for CSlat (and a 3/2-approximation for its special case); these ratios are
better than the ratios of the individual algorithms. Finally, we indicate
how our algorithms can be applied to more general settings where each
car can serve more than two requests, or where cars have distinct speeds.

Keywords: Car-sharing · Approximation algorithms · Matching

1 Introduction

We investigate the following car-sharing problem: there are n cars (or servers),
with car k stationed at location dk (1 ≤ k ≤ n), and there are 2n requests, each
request i consisting of a pick-up location si and a drop-off location ti (1 ≤ i ≤
2n). Between every pair of locations x and y, a number w(x, y) is given; these
numbers can be interpreted as the distance between locations x and y or the time
needed to travel between x and y. These distances, or times, are non-negative,
symmetric, and satisfy the triangle inequality. Each request needs to be served
by a car, which means that a car must first visit the pick-up location, and then
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visit the drop-off location. The car sharing problem is to assign all requests to
the cars such that each car serves exactly two requests while minimizing total
travel time, and/or while minimizing total waiting time (called total latency),
incurred by customers that submitted the requests. Let us elaborate on these
two objectives.

– Minimize total travel time. The total travel time is the travel time each
car drives to serve its requests, summed over the cars. From the company or
drivers’ perspective, this is important since this objective reflects minimizing
costs while serving all requests. From a societal point of view, this objective
also helps to reduce emissions. We use CSsum to refer to the car-sharing
problem with the objective to minimize total travel time. The special case of
CSsum where the pick-up and drop-off location is identical for each request,
is denoted by CSsum,s=t.

– Minimize total latency. The total latency represents the sum of the travel
times needed for each individual customer to arrive at her/his drop-off loca-
tion, summed over the customers. From the customers’ perspective, this is
important because it helps customers to reach their destinations as soon as
possible. We use CSlat to refer to the car-sharing problem with the objective
to minimize total latency. The special case of CSlat where the pick-up and
drop-off location is identical for each request, is denoted by CSlat,s=t.

Motivation. Consider a working day morning. A large number of requests, each
consisting of a pick-up and a drop-off location has been submitted by the cus-
tomers. The car-sharing company has to assign these requests to available cars.
In many practical situations, each request is allowed to occupy at most two
seats in a car (see Uber [1]). Thus, in a regular car where at most four seats are
available, at most two requests can be combined. Since the company knows the
location of the available cars, an instance of our problem arises.

Another application can be found in the area of collective transport for spe-
cific groups of people. For instance, the company Transvision [2] organizes collec-
tive transport by collecting all requests in a particular region of the Netherlands,
combines them, and offers them to regular transport companies. In their setting
customers must make their request the evening before the day of the actual
transport; the number of requests for a day often exceeds 5.000. However, in this
application, it is true that a car may pick up more than two requests (we come
back to this issue in Sect. 5).

The problems CSsum,s=t and CSlat,s=t are natural special cases of CSsum

and CSlat respectively, and can be used to model situations where items have
to be delivered to clients (whose location is known and fixed). For instance, one
can imagine a retailer sending out trucks to satisfy clients’ demand where each
truck is used to satisfy two clients.

Related Work. In the literature, car-sharing systems are increasingly stud-
ied. Agatz et al. [3] consider the problem of matching cars and customers in
real-time with the aim to minimize the total number of vehicle-miles driven.
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Stiglic et al. [9] show that a small increase in the flexibility of either the cars
or the customers can significantly increase the performance of a dynamic car-
sharing system. Furthermore, Wang et al. [10] introduce the notion of stability
for a car sharing system and they present methods to establish stable or nearly
stable solutions. More recently, Ashlagi et al. [4] study the problem of matching
requests to cars that arrive online and need to be assigned after at most a pre-
specified number of time periods. Every pair of requests that is matched yields a
profit and the goal of the car sharing system is to match requests with maximum
total profit.

Bei and Zhang [5] introduce CSsum, and give a 2.5-approximation algorithm
for it. In fact, both CSsum and CSlat are a special case of the so-called two-to-
one assignment problem (2-1-AP) investigated by Goossens et al. [7]. Given a
set G of n green elements, and a set R of 2n red elements, we call a triple a set
of three elements that consist of a single green element and two red elements;
further, there is a cost-coefficient for each triple. The 2-1-AP problem is to
find a collection of triples covering each element exactly once, while the sum
of the corresponding cost-coefficients is minimized. In the context of our car
sharing problem, the green elements represent the cars, and the red elements
represent the requests. For the special case of 2-1-AP where the cost of each
triple (i, j, k) is defined as the sum of the three corresponding distances, i.e.,
cost(i, j, k) = dij + djk + dki, that satisfy the triangle inequality, Goossens et
al. [7] give an algorithm with approximation ratio 4/3. The definition of the
cost-coefficients in CSsum, as well as in CSlat differs from this expression; we
refer to Sect. 2 for a precise definition.

Our Results. We formulate and analyze three polynomial-time approximation
algorithms for our car-sharing problems: a match and assign algorithm MA, a
transportation algorithm TA, and a combined algorithm CA which runs MA
and TA, and then outputs the best of the two solutions. These algorithms are
extended versions of algorithms in [7] using as additional input a parameter
α ∈ {1, 2} and a vector v ∈ {u, μ}; for their precise description, we refer to
Sect. 3. All of them run in time O(n3). Here, we establish their worst-case ratio’s
(see Williamson and Shmoys [11] for appropriate terminology).

Table 1. Overview of our results

Problem MA(1, u) MA(2, μ) TA(1) TA(2) CA(1, u) CA(2, μ)

CSsum 2∗ (Lemma 5) 3 3∗ (Lemma 6) 4 2∗ (Theorem1) 3

CSsum,s=t 3/2∗ 3/2 3∗ 4 7/5∗ 10/7

CSlat 4 2∗ 3 2∗ 3 5/3 (Theorem2)

CSlat,s=t 2 2∗ 2 2∗ 8/5 3/2∗

For all four problems, we show how the above mentioned algorithms behave
with respect to their worst-case ratios. Notice that for CSsum,s=t, CSlat and
CSlat,s=t, the worst-case ratio of the combined algorithm CA is strictly better
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than each of the two worst-case ratios of the algorithms CA consists of. An
overview of all our results is shown in Table 1; u and μ are defined in Sect. 2; an
“∗” means that the corresponding worst-case ratio is tight; results not attributed
to a specific Lemma or Theorem are proven in [8].

The two problems CSsum and CSlat only differ in their objectives, i.e., any-
thing that is a feasible solution in CSsum is also a feasible solution in CSlat

and vice versa. A similar statement can be made for CSsum,s=t and CSlat,s=t.
Hence, we can use a two-criteria approach to judge a solution; more concretely,
we call an algorithm a (ρ, ϕ)-approximation algorithm if the cost of its solu-
tion is at most ρ times the cost of an optimal solution to CSsum, and at most
ϕ times the cost of an optimal solution of CSlat. Therefore, CA(1, u) is a (2,
3)-approximation (resp. (75 , 8

5 )-approximation) algorithm and CA(2, μ) is a (4,
5
3 )-approximation (resp. (107 , 3

2 )-approximation) algorithm. Notice that, from a
worst-case perspective, none of these two algorithms dominates the other.

2 Preliminaries

Notation. We consider a setting with n cars, denoted by D = {1, 2, ..., n},
with car k at location dk (k ∈ D). There are 2n requests R = {1, 2, ..., 2n},
where request i is specified by the pick-up location si and the drop-off loca-
tion ti (i ∈ R). The distance (or cost, or travel time) between location x1

and x2 is denoted by w(x1, x2). We assume here that distances w(x1, x2)
are non-negative, symmetric, and satisfy the triangle inequality. Furthermore,
we extend the notation of distance between two locations to the distance of
a path: w(x1, x2, ..., xk) =

∑k−1
i=1 w(xi, xi+1). We want to find an allocation

M = {(k,Rk) : k ∈ D,Rk ⊆ R}, where |Rk| = 2 and R1, R2, .., Rn are pair-
wise disjoint; the set Rk contains the two requests that are assigned to car k.
For each car k ∈ D and (k,Rk) ∈ M where Rk contains request i and request j,
i.e., Rk = {i, j}, we denote the travel time of serving the requests in Rk by:

cost(k, {i, j}) ≡min{w(dk, si, sj , ti, tj), w(dk, si, sj , tj , ti), w(dk, si, ti, sj , tj),
w(dk, sj , si, ti, tj), w(dk, sj , si, tj , ti), w(dk, sj , tj , si, ti)}.

(1)
Notice that the six terms in (1) correspond to all distinct ways of visiting the
locations si, sj , ti and tj where si is visited before ti and sj is visited before
tj . We view cost(k, {i, j}) as consisting of two parts: one term expressing the
travel time between dk and the first pick-up location si or sj ; and another term
capturing the travel time from the first pick-up location to the last drop-off
location. For convenience, we give a definition of the latter quantity.

uij ≡ min{w(si, sj , ti, tj), w(si, sj , tj , ti), w(si, ti, sj , tj)}
for each i, j ∈ R × R, i �= j.

(2)

Notice that the uij ’s are not necessarily symmetric. For CSsum,s=t, uij ≡
w(si, sj). Using (1) and (2), the travel time needed to serve requests in Rk =
{i, j} (k ∈ D) is then given by:
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cost(k, {i, j}) = min{w(dk, si) + uij , w(dk, sj) + uji}. (3)

We denote the travel time of an allocation M by:

cost(M) =
∑

(k,Rk)∈M

cost(k,Rk). (4)

In CSsum and CSsum,s=t, the goal is to find an allocation M that minimizes
cost(M).

Let us now consider CSlat. Here, we focus on the waiting time as perceived
by an individual customer, from the moment the car leaves its location until the
moment the customer reaches its drop-off location. More formally, we denote the
latency of serving requests in Rk = {i, j} by:

wait(k, {i, j}) ≡ min
{w(dk, si, sj , ti) + w(dk, si, sj , ti, tj), w(dk, si, sj , tj) + w(dk, si, sj , tj , ti),
w(dk, si, ti) + w(dk, si, ti, sj , tj), w(dk, sj , si, ti) + w(dk, sj , si, ti, tj),
w(dk, sj , si, tj) + w(dk, sj , si, tj , ti), w(dk, sj , tj) + w(dk, sj , tj , si, ti)}.

(5)
Again, the six terms in (5) correspond to all distinct ways of visiting the locations
si, sj , ti and tj where si is visited before ti and sj is visited before tj . We view
wait(k,Rk) as consisting of two parts: one term expressing the waiting time
between dk and the first pick-up location si or sj ; and another term capturing
the waiting time from the first pick-up location to the last drop-off location. For
convenience, we give a definition of the latter quantity.

μij ≡ min{w(si, sj , ti) + w(si, sj , ti, tj), w(si, sj , tj) + w(si, sj , tj , ti),
w(si, ti) + w(si, ti, sj , tj)} for each i, j ∈ R × R, i �= j.

(6)

Notice that the μij ’s are not necessarily symmetric. For CSlat,s=t, μij ≡
w(si, sj). Using (5) and (6), the latency needed to serve requests in Rk = {i, j}
(k ∈ D) is then given by:

wait(k, {i, j}) = min{2w(dk, si) + μij , 2w(dk, sj) + μji}. (7)

We denote the latency of an allocation M by:

wait(M) =
∑

(k,Rk)∈M

wait(k,Rk). (8)

Thus, in CSlat and CSlat,s=t, the goal is to find an allocation M that minimizes
wait(M).

A natural variant of the latency objective is one where the latency is counted
with respect to the pick-up location as opposed to the drop-off location in CSlat.
Clearly, then the drop-off location becomes irrelevant, and in fact our approxi-
mation results for CSlat,s=t become valid for this variant.
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Remark. Bei and Zhang [5] prove that the special car-sharing problem, i.e.,
CSsum,s=t is NP-hard. Their proof can also be used to prove that CSlat,s=t is
NP-hard. In fact, we point out that the arguments presented in Goossens et
al. [7] allow to establish the APX-hardness of these two problems.

Paper Outline. In Sect. 3, we present two kinds of algorithms, i.e., the match
and assignment algorithm and the transportation algorithm. In Sect. 4, we prove
the approximation ratios. Section 5 concludes the paper.

3 Algorithms

We give three polynomial-time approximation algorithms for our car-sharing
problems. In Sect. 3.1 we describe the match and assign algorithm MA(α, v),
and in Sect. 3.2 we describe the transportation algorithm TA(α). As described
before, the third algorithm, CA(α, v), simply runs MA(α, v) and TA(α), and
then outputs the best of the two solutions. Let α ∈ {1, 2} be the coefficient that
weighs the travel time between the car location and the first pick-up location,
and let v ∈ {u, μ} (where u is defined in (2), and μ is defined in (6)).

3.1 The Match and Assign Algorithm

The match-and-assign algorithm MA(α, v) goes through two steps: in the first
step, the algorithm pairs the requests based on their combined serving cost, and
in the second step, the algorithm assigns the request-pairs to the cars.

Algorithm 1. Match-and-assign algorithm (MA(α, v))
1: Input : non-negative weighted graph G = (V, E, w), requests R = {i = (si, ti) : 1 ≤

i ≤ m, si, ti ∈ V }, cars D = {k : 1 ≤ k ≤ n, dk ∈ V }, α ∈ {1, 2} and v ∈ {u, μ}.
2: Output : An allocation MA = {(k, {i, j}) : k ∈ D, i, j ∈ R}.
3: For i, j ∈ R do
4: v1({i, j}) ≡ vij+vji

2

5: end for
6: Let G1 ≡ (R, v1) be the complete weighted graph where an edge between vertex

i ∈ R and vertex j ∈ R has weight v1(i, j).
7: Find a minimum weight perfect matching M1 in G1 ≡ (R, v1) with weight v1(M1).
8: For k ∈ D and {i, j} ∈ M1 with vij ≥ vji do

9: v2(k, {i, j}) ≡ min{αw(dk, si) +
vij−vji

2
, αw(dk, sj) − vij−vji

2
}

10: end for
11: Let G2 ≡ (D∪M1, v2) be the complete bipartite graph with left vertex-set D, right

vertex-set M1 and edges with weight v2(k, {i, j}) for k ∈ D, and {i, j} ∈ M1.
12: Find a minimum weight perfect matching M2 in G2 ≡ (D ∪ M1, v2) with weight

v2(M2).
13: Output allocation MA = M2.

The key characteristics of algorithm MA(α, v) are found in lines 4 and 9
where the costs of the first and second step are defined. A resulting quantity is
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v1(M1) + v2(M2); we now prove two lemma’s concerning this quantity, which
will be of use in Sect. 4.

Lemma 1. For each α ∈ {1, 2} and v ∈ {u, μ}, we have:

v1(M1) + v2(M2) =
∑

(k,{i,j})∈M2

min{αw(dk, si) + vij , αw(dk, sj) + vji}.

The proof can be found in [8].

Lemma 2. For α ∈ {1, 2}, v ∈ {u, μ}, and for each allocation M , we have:

v1(M1) + v2(M2) ≤ 1
2

∑

(k,{i,j})∈M

(α(w(dk, si) + w(dk, sj)) + vij + vji).

Proof. For an allocation M , let MR = {Rk : (k,Rk) ∈ M}. Observe that

v1(M1) ≤
∑

{i,j}∈MR

vij + vji

2
, (9)

since M1 is a minimum weight perfect matching in G1 ≡ (R, v1).
We claim that

v2(M2) ≤ 1
2

∑

(k,{i,j})∈M

α(w(dk, si) + w(dk, sj)). (10)

When summing (9) and (10), the lemma follows.
Hence, it remains to prove (10). Consider an allocation M , and consider the

matching M1 found in the first step of MA. Based on M and M1, we construct the
graph G′ = (R∪D,M1 ∪{({i, k}, {j, k}) : (k, {i, j}) ∈ M}). Note that every ver-
tex in graph G′ has degree 2. Thus, we can partition G′ into a set of disjoint cycles
called C; each cycle c ∈ C can be written as c = (i1, j1, k1, i2, j2, k2, ...., kh, i1),
where {is, js} ∈ M1, (ks, {js, is+1}) ∈ M for 1 ≤ s < h and (kh, {jh, i1}) ∈ M .
Consider now, for each cycle c ∈ C, the following two matchings called M c

� and
M c

r :

– M c
� = {({i1, j1}, k1), ({i2, j2}, k2), ..., ({ih, jh}, kh)},

– M c
r = {(k1, {i2, j2}), (k2, {i3, j3}), ..., (kh, {i1, j1})}.

Obviously, both M� ≡ ⋃
c∈C M c

� , and Mr ≡ ⋃
c∈C M c

r are a perfect matching in
G2 = (D ∪ M1, v2). Given the definition of v2(k, {i, j}) (see line 9 of Algorithm
MA), we derive for each pair of requests {i, j} and two cars a, b: v2(a, {i, j}) +
v2(b, {i, j}) ≤ αw(da, si)+

vij−vji

2 +αw(db, sj)− vij−vji

2 = α(w(da, si)+w(db, sj)).
Similarly, it follows that: v2(a, {i, j}) + v2(b, {i, j}) ≤ α(w(da, sj) + w(db, si)).
Thus, for each c ∈ C:

∑

(k,{i,j})∈Mc
�

v2(k, {i, j})+
∑

(k,{i,j})∈Mc
r

v2(k, {i, j}) ≤
∑

{i,k},{j,k}∈c
(k,{i,j})∈M

α(w(dk, si)+w(dk, sj)).

(11)
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Note that M2 is a minimum weight perfect matching in G2 = (D ∪ M1, v2),
and both M� and Mr are a perfect matching in G2 = (D ∪ M1, v2). Thus:

v2(M2) ≤
∑

c∈C

min{v2(M c
� ), v2(M c

r )}

≤ 1
2

∑

c∈C

(
∑

(k,{i,j})∈Mc
�

v2(k, {i, j}) +
∑

(k,{i,j})∈Mc
r

v2(k, {i, j}))

≤ 1
2

∑

(k,{i,j})∈M

α(w(dk, si) + w(dk, sj)).

The last inequality follows from (11), and hence (10) is proven. �	

3.2 The Transportation Algorithm

In this section, we present the transportation algorithm. The idea of the algo-
rithm is to replace each car k ∈ D by 2 virtual cars called γ(k) and δ(k), resulting
in two car sets Γ = {γ(1), ..., γ(n)} and Δ = {δ(1), ..., δ(n)}. Next we assign the
requests to the 2n cars using a particular definition of the costs; a solution is
found by letting car k ∈ D serve the requests assigned to car γ(k) and δ(k).

Algorithm 2. Transportation algorithm (TA(α))
1: Input : non-negative weighted graph G = (V, E, w), requests R = {i = (si, ti) :

1 ≤ i ≤ m, si, ti ∈ V }, cars D = {k : 1 ≤ k ≤ n, dk ∈ V }, two virtual car sets
Γ = {γ(1), ..., γ(n)}, and Δ = {δ(1), ..., δ(n)}, and α ∈ {1, 2}.

2: Output : An allocation TA = {(k, {i, j}) : k ∈ D, i, j ∈ R}.
3: For k ∈ D, i ∈ R do
4: v3(γ(k), i) = αw(dk, si, ti) + w(ti, dk)
5: v3(δ(k), i) = w(dk, si, ti)
6: end for
7: Let G3 ≡ (Γ ∪Δ∪R, v3) be the complete bipartite graph with left vertex-set Γ ∪Δ,

right vertex-set R, and edges with weight v3(x, i) for x ∈ Γ ∪ Δ and i ∈ R.
8: Find a minimum weight perfect matching M3 in G3 ≡ (Γ ∪ Δ ∪ R, v3) with weight

v3(M3).
9: Output allocation TA = M4 ≡ {(k, {i, j}) : (γ(k), i), (δ(k), j) ∈ M3, k ∈ D}.

The crucial points of algorithm TA(α) are found in lines 4 and 5 where the
costs of assigning a request are defined; a resulting quantity is v3(M3). We now
prove two lemma’s concerning this quantity v3(M3), which will be of use in
Sect. 4.

Lemma 3. For each α ∈ {1, 2}, we have:

v3(M3) =
∑

(k,{i,j})∈M4

min{αw(dk, si, ti) + w(ti, dk, sj , tj), αw(dk, sj , tj) + w(tj , dk, si, ti)}.
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This lemma follows directly from the definition of the costs in lines 4 and 5
of TA.

Lemma 4. For α ∈ {1, 2} and for each allocation M , we have:

v3(M3) ≤
∑

(k,{i,j})∈M

min{αw(dk, si, ti) + w(ti, dk, sj , tj), αw(dk, sj , tj) + w(tj , dk, si, ti)}.

This lemma is obvious since M3 is a minimum weight perfect matching.

Remark. Both MA(α, v) and TA(α) runs in time O(n3) since a minimum
matching M in a weighted graph of n vertices can be found in time O(n3) [6].

4 Approximation Results

In this section, we analyze the combined algorithm CA(α, v), i.e., the best of
the two algorithms MA(α, v) and TA(α), for CSsum and CSlat. We denote the
allocation by the match and assign algorithm MA(α, v) (resp. the transportation
algorithm TA(α)) by MA (resp. TA). We denote an optimal allocation of a
specific problem by M∗ = {(k,R∗

k) : k ∈ D} with R∗
k = {i, j} (i, j ∈ R).

Let M∗
R = {R∗

k : (k,R∗
k) ∈ M∗} denote the pairs of requests in M∗. With a

slight abuse of notation, we use CA(I) to denote the allocation found by CA for
instance I.

4.1 Approximation Results for CSsum

We first establish the worst-case ratios of MA(1, u) and TA(1), and next prove
that CA(1, u) is a 2-approximation algorithm.

Lemma 5. MA(1, u) is a 2-approximation algorithm for CSsum.

Proof. We assume wlog that, for each (k, {i, j}) ∈ M∗, cost(k, {i, j}) =
w(dk, si) + uij . We have:

cost(MA(1, u)) = v1(M1) + v2(M2) (by (3), (4)) and Lemma 1)

≤ 1
2

∑

(k,{i,j})∈M∗
(w(dk, si) + w(dk, sj) + uij + uji) (by Lemma 2)

≤ 1
2

∑

(k,{i,j})∈M∗
(2w(dk, si) + 4uij)

≤ 1
2

∑

(k,{i,j})∈M∗
4cost(k, {i, j}) (by cost(k, {i, j}) = w(dk, si) + uij)

= 2 cost(M∗).

(12)

The second inequality follows from the triangle inequality, w(si, sj) ≤ uij , and
uji ≤ 2uij for each request pair {i, j} ∈ R2; the corresponding proof can be
found in [8]. �	
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Notice that the statement in Lemma 5 is actually tight by the instance
depicted in Fig. 1.

Lemma 6. TA(1) is a 3-approximation algorithm for CSsum.

The proof can be found in [8].

Theorem 1. CA(1, u) is a 2-approximation algorithm for CSsum. Moreover,
there exists an instance I for which cost(CA(I)) = 2 cost(M∗(I)).

Proof. It is obvious that, as cost(CA(1, u)) = min{cost(MA(1, u)),cost(TA(1))},
Lemma’s 5 and 6 imply that CA(1, u) is a 2-approximation algorithm for CSsum.
We now provide an instance for which this ratio is achieved. Consider the
instance I depicted in Fig. 1. This instance has n = 2 with D = {1, 2} and
R = {1, 2, 3, 4}. Locations corresponding to distinct vertices in Fig. 1 are at dis-
tance 1. Observe that an optimal solution is M∗(I) = {(k1, {1, 3}), (k2, {2, 4})}
with cost(M∗(I)) = 2. Note that M∗

R = {{1, 3}, {2, 4}}. Let us now analyse the
performance of MA(1, u) and TA(1) on instance I.

{k1, k2, s1, s2}

{s3, t1, t3} {s4, t2, t4}

1 1

1

Fig. 1. A worst-case instance for the combined algorithm CA(1, u) of CSsum.

Based on the uij values as defined in (3), MA(1, u) can find, in the first
step, matching M1 = {{1, 2}, {3, 4}} with v1(M1) = 3. Then, no matter how
the second step matches the pairs to cars (since two cars stay at the same
location), the total cost of MA(1, u) will be 4. TA(1) can assign request 1
to car γ(1), and request 2 to car δ(1), and similarly, request 3 to car γ(2),
and request 4 to car δ(2). Note that v3({(k1, 1), (k1, 2), (k2, 3), (k2, 4)}) =
v3({(k1, 1), (k1, 3), (k2, 2), (k2, 4)}) = 6. Thus the total cost of TA(1) is 4.

To summarize, the instance in Fig. 1 is a worst-case instance for the combined
algorithm CA(1, u). �	

4.2 Approximation Results for CSlat

For CSlat, we analyze algorithm CA(2, μ), which outputs the best of the two
solutions, MA(2, μ) and TA(2).
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Lemma 7. For each (k, {i, j}) ∈ D × R2, 2w(dk, si) + 2w(dk, sj) + μij +
μji + min{2w(dk, si, ti) + w(ti, dk, sj , tj), 2w(dk, sj , tj) + w(tj , dk, si, ti)} ≤
min{8w(dk, si) + 5μij , 8w(dk, sj) + 5μji}.

The proof can be found in [8].

Theorem 2. CA(2, μ) is a 5/3-approximation algorithm for CSlat.

Proof. Based on Lemma 2 and Lemma 4, we have 2(v1(M1) + v2(M2)) +
v3(M3) ≤ ∑

(k,{i,j})∈M∗(2w(dk, si)+2w(dk, sj)+μij +μji +min{2w(dk, si, ti)+
w(ti, dk, sj , tj), 2w(dk, sj , tj) + w(tj , dk, si, ti)}). By Lemma 7, 2(v1(M1) +
v2(M2)) + v3(M3) ≤ ∑

(k,{i,j})∈M∗ min{8w(dk, si) + 5μij , 8w(dk, sj) + 5μji}.
Hence we have:

3wait(CA(2, μ)) ≤ 2wait(MA(2, μ)) + wait(TA(2))
≤ 2(v1(M1) + v2(M2)) + v3(M3) (by lemma 1 and 3)

≤
∑

(k,{i,j})∈M∗
min{8w(dk, si) + 5μij , 8w(dk, sj) + 5μji}

≤
∑

(k,{i,j})∈M∗
5min{2w(dk, si) + μij , 2w(dk, sj) + μji}

= 5 wait(M∗).

�	

5 Conclusions

We have analyzed two algorithms for four different versions of a car sharing
problem. One algorithm, called match and assign, first matches the requests
into pairs, and then assigns the pairs to the cars. Another algorithm, called
transportation assigns two requests to each car. These two algorithms emphasize
different ingredients of the total cost and the total latency. Accordingly, we have
proved that (for most problem variants) the worst-case ratio of the algorithm
defined by the best of the two corresponding solutions is strictly better than the
worst-case ratios of the individual algorithms.

We point out that the algorithms can be generalized to handle a variety of sit-
uations. We now list these situations, and shortly comment on the corresponding
worst-case behavior.

Generalized car-sharing problem: |R| = a ·n. In this situation, a ·n requests
are given, and each car can serve a requests, a ≥ 2. We can extend algorithm
TA for the resulting problem by replacing a single car by a cars, and use an
appropriately defined cost between a request in R and a car. We obtain that
the extended TA algorithm is a (2a − 1)-approximation for CSsum and an
a-approximation for CSlat, generalizing our results for a = 2. We refer to [8]
for the proofs.
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Related car-sharing problem: different speed. In this situation, we allow
that cars have different speeds. Indeed, let car k have speed pk for each k ∈ D.
We denote the travel time of serving requests in Rk by cost(k,Rk)/pk and the
travel time of an allocation M by

∑
(k,Rk)∈M cost(k,Rk)/pk. Analogously,

we can adapt the latency of serving requests in Rk and the latency of an
allocation M . Although it is unclear how to generalize algorithm MA, we
can still use algorithm TA(α) in this situation. By defining v3(k, i) in terms
of the cost above, we get the worst-case ratios of TA(α) as shown in Table 1.

Car redundancy or deficiency: 2|D| > |R| or 2|D| < |R|. We shortly sketch
how to modify TA(α) for this situation. For the problem with 2|D| > |R|,
by adding a number of dummy requests Rd with |Rd| = 2n − |R|, where the
distance between any two requests in Rd is 0, the distance between a request
in Rd and R is a large constant, and the distance between a request in Rd

and a car in D is 0, an instance of our problem arises. For the problem with
2|D| < |R|, by adding a number of dummy cars Dd with |Dd| = �|R|/2� − n,
where the distance between a car in Dd and a request in R is 0, an instance
of our problem arises. We claim that minor modifications of the proofs for
TA imply that TA(1) is a 3-approximation algorithm for CSsum, and TA(2)
is a 2-approximation algorithm for CSlat, On the other hand, it is not clear
how to generalize MA(α, v) for this situation.
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Abstract. The classical Erdös-Gallai theorem kicked off the study of
graph realizability by characterizing degree sequences. We extend this
line of research by investigating realizability of directed acyclic graphs
(DAGs) given both a local constraint via degree sequences and a global
constraint via a sequence of reachability values (number of nodes reach-
able from a given node). We show that, without degree constraints, DAG
reachability realization is solvable in linear time, whereas it is strongly
NP-complete given upper bounds on in-degree or out-degree. After defin-
ing a suitable notion of bicriteria approximation based on consistency,
we give two approximation algorithms achieving O(log n)-reachability
consistency and O(log n)-degree consistency; the first, randomized, uses
LP (Linear Program) rounding, while the second, deterministic, employs
a k-set packing heuristic. We end with two conjectures that we hope
motivate further study of realizability with reachability constraints.

Keywords: Reachability sequences · Graph realization · Bicriteria
approximation · Strong NP-completeness

1 Introduction

Given a property P , the Graph Realization problem asks whether there exists a
graph that satisfies the property P . Starting with the Erdös-Gallai paper [10] on
degree sequences [18,21] many other properties have been considered in the liter-
ature ranging from eccentricities [6,25] to connectivity and flow [11,12]. The best
studied among these remain extensions of realization given degree sequences [1,4]
and variants focusing on different subclasses of graphs [7,8,19,20,26]. In addition
to their theoretical significance, realization questions occur naturally in numer-
ous application contexts, including network design [12], social networks [5,28],
DNA sequencing [29], enumerating chemical compounds [2], and phylogeny and
evolutionary tree reconstruction [17,30].
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We consider the realization problem on digraphs: we are given as input a
sequence of tuples (ri, I(i),O(i)), where ri is the reachability value1, I(i) the
in-degree and O(i) the out-degree of each node i, 1 ≤ i ≤ n; and we wish to
determine the existence of a digraph such that each node has the prescribed
reachability value and the prescribed in-degree and out-degree. This formulation
extends the local properties considered by degree sequences to global properties
captured by the reachability sequence. Like all realization problems this has
connections [1] to the graph isomorphism problem and graph canonization.

The study of reachability sequences has applications in several contexts. In
the scientific context, reachability and degree constraints can reflect measure-
ments obtained from naturally occurring networks with the aim being to gener-
ate a model that explains the measurements. Alternatively, from an engineering
perspective, the goal may be to find an implementation satisfying the desired
properties as specified by the reachability sequences. As an example scenario,
consider the spread of a malicious virus in a network. Perhaps the first step to
preventing the spread of this disease may be to understand the reach of infected
nodes (using reachability values) before controlling the spread by disconnecting
infected nodes from neighbors (using degree information). Alternatively, the goal
may be to construct resilient networks that restrict the spread of the virus.

1.1 Our Contributions

We characterize the complexity of the realizability of acyclic digraphs as sum-
marized in Table 1. Instead of referring to bounded vs. unbounded in-degree, we
simply talk about trees vs. DAGs since trees are DAGs with in-degree bounded
by one and they capture the essential behavior of bounded in-degree digraphs.
This usage makes the exposition of the hardness results more natural.

Table 1. Reachability realization for unbounded out-degree DAGs is linear time. The
other three cases are strongly NP-complete with bicriteria approximation algorithms
achieving an approximation factor of (O(log n), O(log n)).

Out-degree bounded Out-degree unbounded

In-Degree Bounded (Trees) (O(log n), O(log n)) (O(log n), O(log n))

Unbounded (DAGs) (O(log n), O(log n)) Linear-time

• In Sect. 3 we give linear time verifiable, necessary and sufficient conditions,
for realizing unbounded out-degree DAGs (Theorem 1).

• We define a notion of bicriteria approximation in Sect. 2 and give two algo-
rithms in Sect. 4 to solve the reachability realization problem, both achieving
an (O(log n), O(log n))-approximation.

1 The reachability value of a node is the number of nodes reachable from that node.
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– Theorem 3: Randomized LP rounding algorithm that runs in time O(n
37
18 )

if that the matrix multiplication exponent ω ≈ 2 and its dual α ≈ 1 [23].
– Theorem 5: Deterministic algorithm using k-set packing heuristics [13,22]

that runs in nO(k3) time.
• In Sect. 5 we prove the strong NP-completeness of reachability realization

when there are degree constraints. This includes one of our most techni-
cally involved results, a reduction from a generalized version of 3-Partition
to show the strong NP-completeness of reachability realization when both
in-degree and out-degree are bounded (Theorem 6). We also give simpler
reductions from 3-Partition for reachability realization when only one of
in-degree or out-degree is bounded (Theorems 7, 8).

Both approximation algorithms work in the presence of non-uniform degree
bounds, that is, each degree might be a different value. On the other hand, our
hardness results, except Theorem 8, prove that reachability realization problems
are strongly NP-complete even when the degree bounds are uniform. In particu-
lar, we note that the Theorems 6 and 7 which have uniform degree bounds rely
on having the in-degree bounded while in Theorem 8, where only the out-degree
is bounded, we are only able to show hardness in the non-uniform case.

2 Preliminaries

Let n denote the length of the given reachability sequence and V the set of nodes
in the corresponding graph, so that |V | = n. For node i in graph G we let C(i)
denote the set of children of i, i.e., C(i) = {j|(i, j) ∈ G}. The out-degree of i,
OG(i) is the number of its children, i.e., |C(i)|; the in-degree of node i in graph
G, IG(i) is the number of nodes with arcs directed into i. The reachability value of
node u is the number of nodes it can reach: ru = |{v : ∃ path from u to v ∈ G}|.
If the graph is a tree the reachability value ri can be recursively defined as
1 +

∑
j∈C(i) rj . A rooted tree with out-degree upper bounded by k is called a

k-ary tree otherwise they are general trees. Full trees are k-ary trees where
every out-degree is either k or 0. A complete k-ary tree is a k-ary tree with
every level except possibly the last filled and all nodes in the last level filled from
the left. The unique reachability sequence of such trees is denoted by T c

k (n).
We now define the appropriate notions for the purpose of approximation.

We say that a graph G is δ-in-degree consistent with graph H if they have
the same set of nodes and if for all nodes i the following holds: IH(i) ≤ IG(i) ≤
δ · IH(i). Here in-degree can be replaced with out-degree to get δ-out-degree
consistency. If a graph G is both in-degree and out-degree consistent with graph
H, then we say it is δ-degree-consistent. For ρ-reachability consistency we
generalize the idea of reachability to get a similar notion of approximation as
degree consistency. Given a tree we say that it is ρ-reachability consistent if for
all nodes i the following holds: ai ≤ 1 +

∑
j∈C(i) aj ≤ ρ · ai, where ai is the

reachability label on node i in the approximate solution. The above notion of
approximation can be extended to DAGs by replacing the inequality constraint
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with ai ≤ OG(i) + maxj∈C(i) aj ≤ ρ · ai. Finally, we utilize the language of
bicriteria optimization (see [9,27]) to say that G (ρ, δ)-approximates graph H
if it is ρ-reachability consistent with the reachability sequence of H and it is
δ-degree consistent with H. This captures the intuition that G approximately
matches both the structure of G and its reachability sequence.

3 Linear Time Algorithm for DAGs

We show that there exist polynomial-time verifiable, necessary and sufficient con-
ditions that characterize reachability sequences of unbounded out-degree DAGs.
This is reminiscent of conditions for the reconstruction of graphs given degree
sequences (see [10]). However it is in contrast to the hardness result of degree
realization for DAGs [8,20]. The inequalities in this section are deceptively sim-
ple considering the hardness results we prove in Sect. 5. Readers fond of puzzles
are invited to prove the inequalities in Theorem 1 themselves before reading on.

Theorem 1 (DAG reachability). Given a sequence of natural numbers
{r1, r2, . . . , rn} in non-decreasing order there exists a DAG for which the given
sequence is the sequence of the reachability sizes of the DAG iff ri ≤ i for all i.

Proof. In a DAG, nodes can only reach nodes with a strictly lower reachability
otherwise its reachability would increase to a higher value causing a contradic-
tion. Since there are at most i − 1 nodes of lower reachability than ri, it can
reach at most i nodes including itself. Hence ri ≤ i is a necessary condition.
Next, for all i, connect i to the first ri − 1 nodes. Observe that, excluding itself,
i cannot reach more than ri − 1 nodes since every node j it connects to can only
connect to a node k with k < j but i is already connected to k. Hence it can
reach exactly ri nodes and the inequality is also a sufficient condition. ��

4 Approximation Algorithms

We present two approximation algorithms that are ρ-reachability consistent and
δ-degree consistent with ρ = δ = O(log n) given the reachability sequence along
with the degree sequence. Thus the (ρ, δ)-approximation factor for our algo-
rithms comes out to be (O(log n), O(log n)). The randomized algorithm runs in
O(nω+max{ 1

18 ,ω−2, 1−α
2 }) time as detailed in Sect. 4.1 while the deterministic algo-

rithm runs in nO(k3) time as we detail in Sect. 4.2. We compare further trade-offs
between the two algorithms in Sect. 4.3 including the motivation for the more
technically involved deterministic algorithm. While the exposition for both the
algorithms addresses details using the full k-ary tree case, the results extend to
all acyclic digraph cases in a straightforward manner by replacing reachability
and degree consistency conditions for trees with that of DAGs.
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4.1 LP Based Randomized Rounding (LPRR) Algorithm

The intuition behind the LPRR algorithm is to model the desired graph G as a
collection of flows. Between every pair of nodes ri and rj with ri > rj we assume
a flow fij on each edge out of i and into j. We have three constraints for each
node: the sum of flows into it is I(i) (in-degree requirement), the sum of flows
out of it is OG(i) (out-degree requirement), and that the reachability consistency
conditions are satisfied. Further, there cannot be an edge (fij must be 0) from
node i to node j if node i has a smaller reachability value than node j.

The existence of G guarantees that the LP is feasible. After solving for a
feasible set of fij values we round each edge ij to 1 with probability fij indepen-
dently 24 ln n times. Each time an edge is rounded to 1 it is added to the solution
(initialized to a graph with all nodes in V but no edges). We then argue that the
resulting structure satisfies the approximate reachability and degree consistency
requirements with high probability using concentration bounds.

min 1

s. t.
∑

j

fji = I(i) ∀i, In-degree requirement

∑

j

fij = OG(i) ∀i, Out-degree requirement

ri = 1 +
∑

j

fij · rj ∀i, Reachability consistency

fij = 0 ∀i, j s.t. ri ≤ rj Acyclicity

In particular, the following multiplicative form of the Chernoff bound is used.

Theorem 2. Let X =
∑n

i=1 Xi, where Xi are independent Bernoulli trials with
Pr [Xi = 1] = pi ∀ 1 ≤ i ≤ n and let μ = E [X] =

∑n
i=1 pi. Then, for 0 < ε < 1

Pr [|X − μ| ≥ ε] ≤ 2e−με2/3 (1)

Theorem 3 (LPRR). Given a reachability sequence for a full k-ary tree, T ,
there exists a randomized O(nω+max{ 1

18 ,ω−2, 1−α
2 })-time algorithm that constructs

a DAG that is an (O(log n), O(log n))-approximation to T .

Proof. Analysis of running time: Clearly the bottleneck here is the LP solver
and the state of the art solver runs in O(nω+max{ 1

18 ,ω−2, 1−α
2 }) time [23] where ω

is the best known matrix multiplication exponent [24] and α is its dual. Further,
under the common belief that ω ≈ 2 and α ≈ 1, our algorithm runs in O(n

37
18 ).

Proof of Correctness: First, observe that vertex i has a total flow of I(i)
coming into it. So in one rounding the expected in-degree will be I(i) and after
24 ln n roundings the expected in-degree value will be μ1 = 24 ln n · I(i). Invoking
Chernoff bound with ε = 1/2 we get that the probability that the node’s in-degree
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lies outside the range [μ1/2, 3μ1/2] is at most 2/n2. Similarly, we get the expected
out-degree to be μ2 = 24 ln n · OG(i) and the probability that the out-degree of
any node lies outside the range [μ2/2, 3μ2/2] is at most 2/n2. Further for any node
i, the reachability 1+

∑
j fij ·rj will have expected value μ3 = 24 ln n ·ri and the

probability that it lies outside the range [μ3/2, 3μ3/2] is at most 2/n2. Applying the
union bound over the 3n constraints in the LP, the probability that any of them
lies outside their prescribed range is at most 3n · 2

n2 = o(1) as n goes to infinity.
Thus with high probability after rounding, all of the quantities are within their
prescribed ranges, i.e., the degree and reachability consistency are guaranteed
to be within a logarithmic factor giving us the required (ρ, δ)-approximation. ��

4.2 k-set Packing Based Deterministic Algorithm

We give the intuition behind the algorithm, DSHS (Deterministic Sieving using
Hurkens-Schrijver) before presenting the technical details. DSHS runs in two
(essentially independent) sieving phases, each phase taking O(log n) rounds: The
MatchChildren phase matches each node (other than the leaves) with a (valid)
set of children. The MatchParent phase matches each node (other than the root)
with a parent.2 Each phase starts with the entire set of candidate nodes and in
each round sets up a (k + 1)-set packing problem. The problem of k-set packing
is to find the largest disjoint sub-collection of a given collection of sets each
of cardinality k. The (approximate) solution to this problem sieves or reduces
the candidate set by a constant factor, allowing each phase to finish in O(log n)
rounds. Putting the results from the two phases together we get the desired (ρ, δ)-
approximation factor. We use the following improvement of Hurkens-Schrijver’s
algorithm [22]. Note that a smaller ε can improve the approximation but comes
at the cost of a worse running time.

Theorem 4 (Theorem 5, Furer-Yu [13]; with ε = 1
3). The (k+1)-Set Pack-

ing problem can be approximated to a factor 3
k+3 in deterministic time nO(k3).

Theorem 5 (DSHS). Given a reachability sequence {r1, r2, . . . , rn} for a full
k-ary tree, T , there exists a deterministic nO(k3)-time algorithm that constructs
a DAG that is an (O(log n), O(log n))-approximation to T .

Proof. DSHS (Deterministic Sieving using Hurkens-Schrijver): We ini-
tialize using an empty DAG with all the n nodes and no edges.

Phase MatchChildren: Initialize C1 to be the set of all candidate nodes: nodes
other than leaves (which have value 1). In round t the universe consists of Ct

along with an entire set of V . Note that this has cardinality |Ct|+ |V | and is not
the same as Ct ∪ V . We create a collection of all possible (k + 1)-sets with each
set consisting of an element i from Ct and k elements, j1, j2, . . . , jk from V such
that ri = 1 + rj1 + rj2 + . . . + rjk

. Note that each (k + 1)-set is a possible match
for i to its children. The existence of T guarantees that the optimal solution
to this (k + 1)-Set Packing problem has size |Ct| – namely the sub-collection
2 The root will have value n and leaves will have value 1.
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consisting of each candidate node and its k children in T . Invoking the Hurkens-
Schrijver approximation algorithm from the above theorem we are guaranteed
to find a collection of sets that is at least (3/(k + 2)) · |Ct|. We use this sub-
collection of sets to augment our solution DAG with the corresponding arcs from
the node i to each of its children (j1, j2, . . . , jk) for each set. We also remove the
corresponding candidate nodes i from Ct to get Ct+1. Phase MatchChildren ends
when the candidate set Ct becomes empty.

Phase MatchParent: Initialize P1 to be the set of all candidate nodes: nodes
other than leaves. In round t the universe consists of Pt along with an entire set
of V . Note that this has cardinality |Pt| + |V | and is not the same as Pt ∪ V .
We create a collection of all possible (k + 1)-sets with each set consisting of
one element, i from Pt and k elements from V , of which one, j is the parent
and the remaining k − 1 nodes j1, j2, . . . , jk−1 are siblings of i such that rj =
1 + ri + rj1 + rj2 + . . . + rjk−1 . Note that each (k + 1)-set is a possible match
for i to its parent j. The existence of T guarantees that the optimal solution
to this (k + 1)-Set Packing problem has size |Pt| – namely the sub-collection
consisting of each candidate node and its parent and siblings in T . Invoking
the Hurkens-Schrijver approximation algorithm from the above theorem we are
guaranteed to find a collection of sets that is at least (3/(k+2))·|Pt|. We use this
sub-collection of sets to augment our solution DAG with the corresponding arcs
from the node j to i and to each of its k−1 siblings for each set. We also remove
the corresponding candidate nodes, i from Pt to get Pt+1. Phase MatchParent
ends when the candidate set Pt becomes empty.

Analysis of Running Time: The bottleneck step is running the Hurkens-
Schrijver approximation algorithm for set-packing which takes nO(k3) time. Each
of the two phases takes a logarithmic number of rounds, log k+2

k−1
n to be precise,

which is absorbed into the total nO(k3)-time since the big-O is in the exponent.

Proof of Correctness: Note that after phase MatchChildren every eligible node
is matched to exactly k children satisfying the reachability consistency condition
exactly. However, some nodes may not have parents and some may have too many
parents. Still every node is guaranteed to get at most one parent per round and
so no node has more than O(log n) parents at the end of Phase MatchChildren.
Similarly, after phase MatchParent every eligible node has at least one parent.
However some parents may get too many children. Yet, in each round a parent
gets at most k children and so no node gets more than O(k log n) children. Thus
at the end of the two phases we are guaranteed O(log n)-degree consistency. Now
observe that in each round of either phase, each node i either gets a valid set of k
children, that is children j1, j2, . . . jk such that ri = 1+rj1 +rj2 + . . .+rjk

, or no
children at all; and we know that at the end of Phase MatchChildren every node
other than leaves gets at least one valid set of children. Hence, we are guaranteed
an O(log n)-reachability consistent solution. Thus the solution DAG at the end
of both phases is an (ρ, δ)-approximation to T . ��
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4.3 Trade-Offs Between the Two Approximation Algorithms

The major trade-off between the DSHS and LPRR algorithms is the running
time; while DSHS runs in nO(k3), the LPRR algorithm is independent of k and
runs in O(nω). Hence, unlike the deterministic algorithm, the randomized algo-
rithm can be used even when k is a function of n. We also note that LPRR can
be derandomized using the method of conditional probability [3]. While these
might suggest that the more complex and technically involved DSHS algorithm is
inferior, that is not the case. The LPRR algorithm results in more complex solu-
tions, in particular, LPRR may return digraphs with multi-edges while DSHS
is guaranteed to return simple digraphs. Also, the multi-edges provide a tighter
concentration of reachability consistency, albeit away from the reachability val-
ues, which may be a desirable property in applications where certainty is more
important than consistency. While that is an important application, it is more
common to require simple digraphs which the randomized algorithm cannot
guarantee. This motivates the more technically involved DSHS algorithm.

5 Strong NP-completeness Results

When the in-degrees and/or the out-degrees are constrained by the degree
sequence we prove strong NP-completeness [15] using pseudo-polynomial trans-
formations [16]. The reductions embed an instance of problems like 3-Partition
between two consecutive levels of a tree. We first present the proof for the full
k-ary tree realization problem (all in-degrees 1 or 0 and all out-degrees k or 0)
in Sect. 5.1 which illustrates all the technicalities involved. We give a simpler
reduction (in Sect. 5.2) to prove that realization of general trees (no out-degree
bound) is also strongly NP-complete. In Sect. 5.3 we give a reduction to prove
strong NP-completeness when there is only an out-degree bound.

5.1 Hardness of Realization for Full k-ary Trees

We prove hardness of the realization problem for full k-ary trees by reduction
from the K-PwT problem, which we show to be strongly NP-complete via an
involved series of reductions in the full version. Since K-PwT is strongly NP-
complete we can reduce from a subclass, Πp, such that the largest number in the
instance is polynomially bounded, formally, Max[I] ≤ p(Length[I]), ∀I ∈ Πp.

Problem 1 (K-PwT). Given a set X with |X| = Km, K ≥ 2, sizes s : X �→ Z
+

and a target vector B = (b1, . . . , bm) ∈ N
m, can X be partitioned into m disjoint

sets A1, A2, . . . , Am, such that, |Ai| = k and
∑

a∈Ai
s(a) = bi, for 1 ≤ i ≤ m?

Theorem 6 (Full k-ary tree). It is strongly NP-complete to determine the
existence of a full k-ary tree whose reachability sequence equals a given sequence.

Proof. The problem is clearly in NP since a tree acts as a certificate. Set k = K
and define a number M which is a power of K, is much greater in magnitude
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than any of the other numbers in the problem, and is polynomially bounded by
the maximum integer in the K-PwT instance (Eq. 2). We also define m′ and
m′′ such that m + m′ and m + m′′ are powers of K (Eq. 3).

M1 = max
({s(xi)|xi ∈ X} ∪ {bi|bi ∈ B})

;M2 = KmM1;M = K�logk M2� (2)

m′ = Kd − Km, m′′ = Kd−1 − m = m′/K, where d = logK(Km)� (3)

We make the sequence S = C ∪ P ∪ G ∪ D using four “component” sequences:
the “child component” C = C ′ ∪ C ′′, the “parent component” P = P ′ ∪ P ′′, the
“ancestor component” G and the “descendant component” D.

The “child component” C is the union of the C ′ and C ′′ while the “parent
component” P is the union of the P ′ and P ′′. C ′ is in one-to-one correspondence
with the set X, using the sizes of elements from X with M added to them while
P ′ is in one-to-one-correspondence with B with changes to accommodate those
made to sizes of elements of X while making C ′. The sets C ′′ and P ′′ ensure
that the cardinality of C and P respectively are a power of K.

We construct the “ancestor component” in “levels”. The lowest level ld−2

is constructed from P , by arbitrarily taking blocks of K elements, adding
them all up and incrementing the result by one. Formally, order the ele-
ments in P arbitrarily as P1, P2, . . . , PKd−1 and let ld−2 = {ld−2,i | ld−2,i =
1 +

∑K
j=1 P(i−1)K+j , 1 ≤ i ≤ Kd−2}. Other levels ld−i are constructed in a sim-

ilarly from levels ld−i+1. This is continued until l0 which has only one element
since |P | is a power of K and the size of each level above reduces by a factor
of K. The element in l0 would be the largest number in the final instance. The
“descendant component” is constructed using reachability sequences of complete
trees on the elements ci ∈ C. For each such ci, we make a complete k-ary tree
on ci nodes and use its reachability sequence T c

k (ci). The descendant component
is then D =

⋃
i T c

k (ci). Since each ci ∈ C has the form Kx + 1, T c
k (ci) will also

be full trees.

C ′ =
{
K(s(x) + M) + 1

∣
∣ x ∈ X

}
, C ′′ =

{
m′times

︷ ︸︸ ︷
KM + 1, . . . , KM + 1

}
(4)

P ′ =
{
K(bi + KM + 1)

∣
∣ bi ∈ B

}
, P ′′ =

{
m′′times

︷ ︸︸ ︷
K2M + K, . . . , K2M + K)

}
(5)

G =
d−2⋃

i=0

li, where “levels” li are defined in text; D =
Kd
⋃

i=1

T c
k (ci), ∀ci ∈ C (6)

Constructing S takes polynomial time as elements in P and C are derived
directly from the K-PwT instance, there are a logarithmic number of levels
each computed in polynomial time, and the polynomial number of trees in D
each be computed in linear time. All that remains is to prove that the reduction
is valid.

By construction, elements in G and P will form a partial full k-ary tree with
the elements in P as the “leaves”, elements in C and D will make a forest with
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elements from C as roots of the trees in the forest, and C ′′ can be arbitrarily
partitioned to connect to P ′′ elements. If there is a partition of X, we can
partition C ′ accordingly to complete the tree.

To prove that a full k-ary tree implies a partition it is sufficient to prove that
in any tree the set of children of P ′ is equal to C ′, that is, the nodes of P ′ and
C ′ occur in consecutive levels in any tree. The node in l0 is the largest and will
necessarily have to be the root. This will be followed by the nodes from l1 since
no other nodes are large enough to reach those in l0 (given the out-degree bound
of k). Continuing the argument, li ∈ G will always appear in consecutive levels
in any tree and that P will follow below G. Since the in-degree is 1 no node from
p ∈ P will be a child of any p′ ∈ P . Further, nodes in D will all be less than
M/K in value and hence k of them will not be enough to reach nodes in P thus
necessitating that all children of nodes of P come from C. We note that nodes
from C ′ can not be children of nodes from P ′′ and so the set of children of P ′′

have to be C ′′. Since a value of the order of KM has to be reached for nodes
in P ′ and all nodes in C ′ are of the order of M , all the nodes from C ′ will be
used. Thus any tree will have nodes from P ′ and C ′ in consecutive levels and
therefore have a partition. This proves NP-completeness and as the maximum
integer used is polynomially bounded it also proves strong NP-completeness. ��

5.2 Hardness of Realization for General Trees

Theorem 7 (General Trees). It is strongly NP-complete to realize a general
tree given a reachability sequence.

Proof. This problem is in NP as a tree acts as a certificate and all that remains
is give a reduction from 3-Partition.

Problem 2 (3-Partition). Given a set A, a target B and a size function s : A →
Z+ such that |A| = 3m and B/4 < s(ai) < B/2 ∀ai ∈ A, can A be partitioned
into m disjoint sets A1, A2, . . . , Am, such that for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B?

Since this problem is strongly NP-complete [14], for the reduction, we use an
instance of 3-Partition wherein the numbers are polynomially bounded in the
input length. The notation [n] is used for the set consisting of the first n natural
numbers. The constructed instance is as follows:

S = {m(B + 1) + 1} ∪ {B + 1, . . . m times . . . , B + 1} ∪
( m⋃

i=1

[s(ai)]
)

This construction is clearly polynomial time, all that remains is to show that
this is valid reduction. In an abuse of notation the reachability size is often used
to refer to the node with that reachability size.

In any potential tree, then the m(B + 1) + 1 node is forced to be the root
as it cannot be the child of any node. Further, it will have m children, all the
B + 1 nodes as they cannot be the children of any other node. Considering the
remaining nodes in a bottom up fashion, we see that a fixed structure is enforced
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on all these nodes due to the in-degree constraint in rooted trees. Any 2 node
can only have a 1 as it’s child, exhausting all 1’s and leaving only 2’s to be
single children of 3’s and only 3’s as children for 4’s and so on. By construction,
there are exactly as many nodes of size s − 1 as there are nodes of size s for
all s < B + 1 and hence they all get exhausted. This enforces that each node
labelled s(ai) is a root of a path consisting of nodes with sub-tree sizes [s(ai)].

These restrictions are always present and a tree can be realized iff the paths
rooted at s(ai) can be correctly made children of the B +1 nodes. This happens
iff there is a partition of the 3-Partition instance; if there is no partition then
the paths cannot be joined to the partial tree above it to form a single tree. ��

5.3 Hardness of Realization with Out-Degree Constraints

Theorem 8 (Bounded out-degree). It is strongly NP-complete to realize an
acyclic graph given a reachability sequence and out-degree constraints.

Proof. We reduce from 3-Partition, again using an instance with the maximum
number polynomially bounded in the length of the problem. Let si := s(ai)
and M := mB2 and note that M is much bigger than every number in the
3-Partition instance and that the

∑
i si = mB. Let the reachability sequence

S := Ss ∪Sb ∪Sa where Ss = {Msi}, Sb be a multiset with m copies of MB +1,
and S1 be a multiset of mB − |A| copies of 1. Let the out-degree constraint for
MB + 1 nodes be equal to three and for the si nodes be equal to si.

To achieve out-degree constraints, each of the si nodes will need to pick up
si −1 ones exhausting nodes in S1. For the MB+1 nodes to achieve their degree
requirement they’ll have to pick up exactly three nodes from Ss set which will
be possible iff there is a valid partition of the 3-Partition instance. ��

6 Conclusion

In this paper we initiate the study of the realization problem for DAGs and
rooted directed trees given a reachability sequence. We provide a linear time
algorithm for DAGs with unbounded out-degrees and show hardness results for
variants when we are also given a degree sequence bounding the in-degree and/or
out-degree. We define a notion of bicriteria approximation based on reachability
and degree consistency and give two (O(log n), O(log n))-approximation algo-
rithms for all of these problems. We conclude with two intriguing conjectures:

• Given a uniform out-degree bound and a reachability sequence the DAG
realizability problem is solvable in poly-time.

• The general digraph realizability problem given a reachability sequence (with
or without degree sequences) is strongly NP-complete.
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Abstract. In this paper we initiate study of the computational power
of adaptive and non-adaptive monotone decision trees - decision trees
where each query is a monotone function on the input bits. In the most
general setting, the monotone decision tree height (or size) can be viewed
as a measure of non-monotonicity of a given Boolean function. We also
study the restriction of the model by restricting (in terms of circuit
complexity) the monotone functions that can be queried at each node.
This naturally leads to complexity classes of the form DT(mon-C) for any
circuit complexity class C, where the height of the tree is O(log n), and
the query functions can be computed by monotone circuits in class C. In
the above context, we prove the following characterizations and bounds.
– We show that the decision tree height can be exactly characterized

(both in the adaptive and non-adaptive versions of the model) in
terms of the alternation (alt(f)) of a function (defined as the maxi-
mum number of times that the function value changes, in any chain
in the Boolean lattice). We also characterize the non-adaptive deci-
sion tree height with a natural generalization of certification com-
plexity of a function. We also show upper bounds and characteriza-
tions for non-deterministic and randomized variants of the monotone
decision trees in terms of alt(f).

– We show that DT(mon-C) = C when C contains monotone circuits
for the threshold functions. For AC0, we show that any function in
AC0 can be computed by a sub-linear height monotone decision tree
with queries having monotone AC0 circuits.

– To explore the logarithmic height case - DT(mon-AC0) - we show
that for any f (on n bits) in DT(mon-AC0), and for any constant
0 < ε ≤ 1, there is an AC0 circuit for f with O(nε) negation gates.
In contrast, it can be derived from [14] that for every f ∈ AC0 with
alt(f) = Ω(n), and for every ε > 0, any AC0 circuit computing it
with O(nε) negations will need at least 1

ε
depth.

En route the main results, as a tool, we study the monotone variant of the
decision list model, and prove corresponding characterizations in terms of
alt(f) and also derive as a consequence that DT(mon-C) = DL(mon-C) if
C has appropriate closure properties (where DL(mon-C) is defined similar
to DT(mon-C) but for decision lists).

c© Springer Nature Switzerland AG 2020
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1 Introduction

The decision tree model is a fundamental abstraction that captures computation
appearing in various scenarios - ranging from query based decision making pro-
cedures to learning algorithms for Boolean functions. The model represents the
algorithmic steps in order to compute a Boolean function f : {0, 1}n → {0, 1},
as a sequence of branching operations based on queries to the input bits and
the branching depends on the result of the query. It is quite natural to view the
branching as a rooted tree where the leaves of the tree are labelled with 0 or 1
to represent value of the function if the computation reaches that leaf.

The simplest form studied is when the queries are directly to bits of the input
[7,11] - and hence the nodes of a decision tree (except for leaves) are labelled with
input variables which it queries. For a Boolean function f , the (deterministic)
decision tree complexity, DT(f), is the minimum height of any decision tree
computing f . By height, we always refer to the maximum number of internal
nodes in a path from root to a leaf. The size of the decision tree, which is defined
as the number of leaves in the tree is an independently interesting measure of
complexity of f , and indeed, since the tree is binary, the size cannot be more
than exponential in DT(f). Generalizations of the model of decision trees in the
algorithmic setting have been studied - like randomized and quantum decision
trees (see [7]). Decision trees can be adaptive and non-adaptive depending on
whether, in the algorithm, the next query depends on the Boolean result of
the previous queries or not. In the interpretation of the tree, this translates to
whether the tree queries the same variable at all nodes in the same level.

The (adaptive) decision tree height, DT(f) is related to many fundamental
complexity measures of Boolean functions. It is known to be polynomially related
to degree of f over R, block sensitivity, certificate complexity (see survey [7])
and with the recent resolution of sensitivity conjecture, even to sensitivity of the
Boolean function f . Non-adaptive decision trees are not as powerful.

An important generalization of the decision tree model is by allowing stronger
queries than the individual bit queries. One of the well-studied models in this
direction is that of parity decision trees where each query is a parity of a subset
of input bits [12]. Each node in the tree is associated with a subset S ⊆ [n]1 and
the query to the input at the node is the function ⊕i∈Sxi, where xi stands for
the ith bit of x. The model of parity decision trees received a lot of attention
due to its connection to a special case of log-rank conjecture known as the XOR-
log-rank conjecture [19]. The conjecture, in particular, implies that the non-
adaptive (DTna

⊕ (f)) and adaptive (DT⊕(f)) parity decision complexity measures
of functions are not polynomially related in general2.

Other well-studied generalizations of the standard decision tree model include
linear decision trees [8,16,18] (where each node queries a linear function of the
1 We denote the set {1, 2, . . . n} by [n].
2 If supp(f) = {S ⊆ [n] | f̂(S) �= 0}, sps(f) = |supp(f)| and fdim(f) = dim(supp(f)),
then by [19], log sps(f)/2 ≤ DT⊕(f) ≤ fdim(f) = DTna

⊕(f) [9,15]. The XOR-logrank
conjecture [19] states that DT⊕(f) ≤ poly (log sps(f)), and ∃f for which fdim(f) and
log(sps(f)) are exponentially far apart.
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form
∑

i αixi + β > 0) and algebraic decision trees [2,3,17] (where each node
queries the sign of a polynomial evaluation of degree at most d in terms of
the input variable). Polynomial size linear decision trees can compute knapsack
problem which is NP-complete and the above studies prove exponential size lower
bounds for explicit languages. Ben-Asher and Newman [1], studied the decision
trees when conjunction and disjunction of variables are allowed as queries on
the internal nodes and showed lower bounds for the height of such decision trees
required to compute the threshold function (Thk

n).

Our Results: We initiate the study of a new generalization of the decision
tree model based on allowing more general queries. The most general version
of our model allows the algorithm to query arbitrary monotone functions3 on
the input. We define the deterministic monotone decision tree complexity of a
function f , denoted by DTm(f) to be the minimum height of any decision tree
with monotone queries at each node, that computes f . When the decision tree
is non-adaptive we denote it by DTna

m (f).

DTm and DTna
m as Measures of Non-monotonicity: Monotone decision tree

complexity measures can also be interpreted as a measure of non-monotonicity
of the function f . Our first result is an exact characterization of this measure
in terms of a well-studied measure of non-monotonicity called alternation. For
x �= y ∈ {0, 1}n, we say x ≺ y if ∀i ∈ [n], xi ≤ yi. A chain X on {0, 1}n

is a sequence 〈x(1), x(2), . . . , x(�−1), x(�)〉 such that ∀i ∈ [�], x(i) ∈ {0, 1}n and
x(1) ≺ x(2) ≺ . . . ≺ x(�). Alternation of f for a chain X , denoted as alt(f,X ) is
the number of times the value of f changes in the chain. We define alternation of a
function f as: alt(f) := maxchainX alt(f,X ). Our first main result is the following
connection between the monotone decision tree height and the alternation of the
function in the case of adaptive and non-adaptive setting. They are exponentially
far apart similar to what is conjectured in the case of parity decision trees.

Theorem 1. For any Boolean function f , DTm(f) = �log(alt(f) + 1), and
DTna

m (f) = alt(f).

En route to proving the above theorem, we also relate a similar generalization
of a well-studied computational model called decision lists (see Sect. 2 for a
definition). If DLm(f) stands for the minimum length of any monotone decision
list computing a Boolean function f , then we show that, DLm(f) = alt(f) + 1.
We also provide a natural generalization of certificate complexity of a Boolean
function, denoted by Cm (and its non-adaptive version denoted by Cna

m ) and
show that for every function f , Cna

m (f) = DTna
m (f) (proof deferred to the full

version of this paper).

Non-deterministic & Randomized Monotone Decision Trees: We study
non-deterministic & randomized monotone decision trees (see Sect. 5) and con-
sider variants of the definitions, and show equivalences and bounds. In particular,
we show constant upper bounds for the height of non-deterministic monotone
3 Indeed, even though the queries are restricted to monotone functions on inputs, the
model is universal, since in normal decision trees, the queries are already monotone.
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decision trees (Theorem 7) and show characterizations for the height of the ran-
domized version in terms of deterministic monotone decision trees (Theorem 8).

Power of Restricted Query Functions: While the above models provide a
measure of non-monotonicity, one of the main drawbacks of the above decision
tree model is that, the computational model is not succinctly representable. It is
natural to see if we can restrict the query functions to circuit complexity classes
which allow succinct representation for functions. An immediate direction is to
understand the power of the model if the query functions are restricted to circuit
complexity classes; studied in Sect. 6. More formally, we define DT(mon-C) to be
the class of functions that can be computed by monotone decision trees of height
O(log n) where each query function has a monotone circuit in C, or equivalently
all the queries belong to mon-C.

To justify the bound of O(log n) on the height of monotone decision trees,
we show that if we allow the upper bound on height to be asymptotically
different from Θ(log n), then the class of functions computed by the model
will be different from C4. More precisely, if DTd(n) denotes the class of func-
tions computed by monotone decision trees of height at most d(n) (thus
DT(mon-C) ≡ DTO(log n)(mon-C)), then we show that, for any g(n) = o(log n),
and h(n) = ω(log n), DTg(n)(mon-C) � C and DTh(n)(mon-C) � C. This justifies
the question of DT(mon-C) vs C. We prove:

Theorem 2. For any circuit complexity class C such that mon-TC0 ⊆ mon-C,
DT(mon-C) = C.

Hence, in particular, DT(mon-TC0) = TC0. The situation when C does not
contain TC0 is less understood. We start by arguing that all functions in AC0 can
be computed by monotone decision trees in sub-linear height. More specifically;
For any constant r, AC0 ⊆ DTd(n)(mon-AC0) where d(n) = Ω

(
n

logr n

)
(see

Theorem 10). It is natural to ask whether the sub-linear height can be improved
further. In particular, whether DT(mon-AC0) is equal to AC0 or not. Towards
this, by using a technique from [14], we first show a negation limited circuit for
functions in DT(mon-AC0):

Theorem 3. If a Boolean function f on n variables is in DT(mon-AC0), then
for a constant ε ∈ (0, 1], there is an AC0 circuit for f with O(nε) negation gates.

In a tight contrast, it can be derived using [14] that if f ∈ AC0 with alt(f) =
Ω(n), then any AC0 circuit computing it with O(nε) negations will have depth
at least 1

ε (see Theorem 11). Thus, an asymptotic improvement to this, with
respect to the number of negations, will imply DT(mon-AC0) �= AC0.

En route these main results, we also note that the analogously defined class
of functions DL(mon-C) for decision lists (defined in Sect. 2) is exactly equal

4 It is assumed that in C, all the circuits are polynomial sized, and that there is atleast
one function with Ω(n) alternation.
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to DT(mon-C). Defining RDT(mon-C) similar to DT(mon-C) but for random-
ized decision trees, we show RDT(mon-C) = DT(mon-C) = DL(mon-C) = C if
mon-TC0 ⊆ mon-C, and DL(mon-AC0) = DT(mon-AC0) ⊆ RDT(mon-AC0) ⊆
AC0.

2 Preliminaries

In this section, we define the basic terms and notation. Unless mentioned oth-
erwise, Boolean functions discussed in this paper are from {0, 1}n to {0, 1}. For
definitions of circuits, circuit complexity classes and monotone functions, we
refer the reader to [11]. For any circuit complexity class C, we define mon-C as
the class of functions which can be computed by using monotone circuits in C.

A monotone decision tree T is a rooted directed binary tree. Each of its leaves
is labelled by a 0 or 1, each internal vertex/node v is labelled by a monotone
function fv : {0, 1}n → {0, 1}. Each internal node has two outgoing edges, one
labelled by 0 and another by 1. A computation of T on input x ∈ {0, 1}n is the
path from the root to one of the leaves L that in each of the internal vertices v
follows the edge that has label equal to the value of fv(x). Label of the leaf that
is reached by the path is the output of the computation. The tree T computes
the function f : {0, 1}n → {0, 1} if and only if on each input x ∈ {0, 1}n the
output of T is equal to f(x). Monotone decision tree complexity of f is the
minimum height (max. no. of internal nodes in path from root to any leaf) of
such a tree computing f . We denote this value by DTm(f).

The monotone decision list model, denoted by L = (f1, c1)(f2, c2) . . . (fk, ck)
is a series of tuples (fi, ci) where each fi is a monotone function on n variables,
and each ci is a Boolean constant 0 or 1. Here, each (fi, ci) is called as a node;
fi the query function of that node and ci the value of the node. The last query
fk may be often assumed to be the constant function 1 w.l.o.g. An input x ∈
{0, 1}n is said to activate the node (fi, ci) if fi(x) = 1 and ∀j < i, fj(x) = 0.
Here L is said to represent/compute the following Boolean function fL defined
as: fL(x) = ci, where x activates the ith node of L. The monotone decision
list complexity of a Boolean function f , denote by DLm(f), is the minimum
size/length (i.e, number of nodes) of a monotone decision list computing it.
By simple modifications, we can derive that the monotone decision lists can be
assumed to have certain properties : (1) Alternating Constants: We can convert a
decision list L to an L′ computing the same function where the constants ci’s are
alternating between 0 and 1. (2) Forward Firing: By forward firing, we mean that
on any input x ∈ {0, 1}n, if certain query of a decision list passes (evaluates to
1), then so do all the queries that follow it. We denote DL(mon-C) as the class of
functions which can be computed by a decision list of polynomial length where
all the query functions belong to mon-C.

A version of decision list that has been considered in the literature is when
we allow the query functions to be just ∧ of variables; called monotone term
decision lists [10]. When the query functions are allowed to be general (non-
monotone) terms, then they are called term decision lists [6] and the class of
functions computed by TDLs of size at most poly(n) is denoted by TDL.
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Recalling the definition of alternation of a function from the introduction,
we state the following characterization of Boolean functions originally proved
in [4]. For any f : {0, 1}n → {0, 1} there exists k = alt(f) monotone functions
f1, . . . , fk each from {0, 1}n to {0, 1} such that f(x) = ⊕k

i=1fi if f(0n) = 0 and
f(x) = ¬ ⊕k

i=1 fi if f(0n) = 1.

3 Monotone Decomposition of Boolean Functions

Motivated by the characterization stated in previous section we define a mono-
tone decomposition of a Boolean function as follows: For any Boolean function
f : {0, 1}n → {0, 1}, the monotone decomposition of f is a minimal set of mono-
tone functions M = {f1, f2, . . . fk} such that f = ⊕i∈[k]fi where k is said to
be the size/length of the decomposition. We call each fi to be the monotone
components in the decomposition. We define two constraints on the such mono-
tone decompositions: (1) Implication property: There exists an ordering of M such
that ∀i ∈ [k − 1], fi =⇒ fi+1 holds. In this case, the decompositions are called
boundary decompositions and the fis are called boundary functions. (2) Optimal-
ity Property: If the set M is also of minimum size monotone decomposition of f
then we term it as alternation decomposition of the function f .

For a given function, even the alternation decomposition of f need not be
unique. When all chains in the Boolean hypercube have the same alternation,
then the decomposition can be proved to be unique.

We now state this as the following lemma (from [4]) bringing out the extra
properties that we need - the proof follows easily from the proof in [4].

Lemma 1. For any Boolean function f : {0, 1}n → {0, 1} there is a mono-
tone decomposition with implication and optimality properties of length alt(f) (if
f(0n) = 0) and length alt(f) + 1 (if f(0n) = 1).

Constraints on Monotone Components: We continue the study in this
section by imposing complexity constraints on the function f . A natural ques-
tion to ask is if the monotone components of f in its monotone decomposition
are necessarily harder than f in terms of circuit complexity classes. We first
answer this question for classes that contain monotone circuits for the threshold
functions. In this case, we show that we can always find a monotone decomposi-
tion where the component functions are in mon-C. The proof details are deferred
to full version.

Lemma 2. If mon-TC0 ⊆ mon-C, then for any f computed by a circuit in the
class C, there is a monotone decomposition f1 ⊕f2 ⊕ . . .⊕f2n+1 with implication
property such that each fi is in mon-C.
By the above Lemma, for any f ∈ TC0 we have given a decomposition into
2n + 1 monotone TC0 functions. However, the monotone decomposition can be
far from having the optimality property. If the function has uniform alternation
among all chains of length n+1, then this can be improved to alt(f) keeping the
complexity of the monotone components to be within TC0 (See full version).
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4 Adaptive & Non-adaptive Monotone Decision Trees

In this section, we prove the characterization for adaptive and non-adaptive
monotone decision tree heights in terms of alternation of the function.

Adaptive Decision Trees: We will now prove the main theorem of this section
which characterizes DTm(f) (and en route DLm(f) too) in terms of alt(f).

Theorem 4. For any Boolean function f , DTm(f) = �log(alt(f) + 1).
Proof. We first establish a relation between DLm(f) and DTm(f).

Lemma 3. DTm(f) = �log DLm(f).
We only outline the idea5 here: To go from a decision list to a decision tree - it
is easy to convert the decision list into normal form such that ∃i such that for
every x ∈ {0, 1}n, fj(x) = 1 if j ≥ i and 0 otherwise. The monotone decision tree
then is designed to find this i by a binary search by querying the monotone func-
tions. The other direction DLm(f) ≤ 2DTm(f) uses an idea due to [5] which was
introduced for converting general decision trees to term decision lists. Observe
that if all the queries of the decision tree pass on an input, the output will be
the label of the rightmost leaf, say c. Thus, we would have (A, c), where A is
the ∧ of all queries that lead to the rightmost leaf. Extending this, we construct
a monotone decision list with number of nodes same as the no. of leaves in the
decision tree.
Thus, it suffices to prove that DLm(f) = alt(f) + 1, which we do below:

DLm(f) ≤ alt(f) + 1: First suppose f(0n) = 0. Then by Lemma 1 there are
k = alt(f) many monotone functions such that f = f1 ⊕ f2 ⊕ · · · ⊕ fk, and
∀i, fi =⇒ fi+1. It can be shown easily that the monotone decision list
(f1, 0)(f2, 1)(f3, 0)(f4, 1) . . . (1, 0) or (f1, 1)(f2, 0)(f3, 1)(f4, 0) . . . (1, 0) com-
putes f , when k is even or odd respectively. On the other hand, if f(0n) = 1,
we have f = f1 ⊕ f2 ⊕ · · · ⊕ fk ⊕ 1, which gives the monotone decision
lists (f1, 1)(f2, 0) . . . (1, 1) or (f1, 0)(f2, 1) . . . (1, 1) computing f depending
on whether k is even or odd respectively.

DLm(f) ≥ alt(f) + 1: We claim that if a Boolean function f on n variables can
be computed by a monotone decision list L = (f1, c1)(f2, c2) . . . (f�, c�) of
length �, we have alt(f) ≤ �−1. To show this, it suffices to argue that for any
chain 〈x(1), x(2), . . . , x(s)〉 in the Boolean hypercube, where 1 ≤ s ≤ n + 1;
the number of alternations of the function f along the chain is at most � − 1.
Consider the sequence S of length s where for 1 ≤ i ≤ s, the integer S[i] is the
index of the node activated on inputting x(i) to L. So note that 1 ≤ S[i] ≤ �
for every i. By definition of the activated node, observe that for any 1 ≤ i < s,
fS[i](x(i)) = 1, which implies fS[i](x(i+1)) = 1 too, since x(i) ≺ x(i+1). So, the
node that x(i+1) activates cannot be after fS[i]. That is, S[i + 1] ≤ S[i] for

5 Using the same constructions, we also observe that DT(mon-C) = DL(mon-C) for
any circuit complexity class C with appropriate closure properties.
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all 1 ≤ i < s. If two consecutive elements in chain activate the same node, L
outputs the same value on these assignments and hence there is no alternation
at that point of the chain. So the number of alternations is upper bounded
by the number pairs S[i], S[i + 1] such that S[i] �= S[i + 1]. Since 1 ≤ S[i] ≤ �
and S[i] ≥ S[i + 1] for all i, we get alt(f) ≤ � − 1.

Constructing Adaptive MDTs from Negation Limited Circuits: The
above theorem provides a characterization for decision tree height in terms of
alternation alt(f) of the Boolean function. A classical result by Markov [13],
implies that any Boolean function can be computed by Boolean circuits that
use at most �log(alt(f)+1) many negation gates. Since the number of negation
gates in the circuit can be logarithmically smaller, this can give shallow decision
trees. By a bottom-up query based evaluations of monotone sub-circuits of the
given circuit, we derive the following theorem (details deferred to full version).

Theorem 5. Let f be a Boolean function computed by a circuit C using k nega-
tions. Then there is a monotone decision tree of height k + 1 computing f .

Non-Adaptive Monotone Decision Trees: We first establish a relation
between the non-adaptive monotone decision tree and alternation:

Theorem 6. For any Boolean function, alt(f) = k if and only if f can be
computed by a non-adaptive monotone decision tree of height k.

We refer the reader to the full version of this paper for a detailed argument.
To outline the idea used there; for the forward implication we use Lemma1
to design the decision tree. For the reverse implication, since the tree is non-
adaptive, the query function at each level of the decision tree will be the same.
Using this fact, we argue that any chain must have alternation at most k with
respect to f .

We now discuss a characterization of non-adaptive monotone decision tree
complexity through a generalization of certificate complexity of the function.

Definition 1 (Monotone Certificate Complexity). For an input x ∈
{0, 1}n of a Boolean function f , we call a set Sx = {f1, f2 . . . fk} of monotone
Boolean functions on n variables as a monotone certificate (set) if for any input
y ∈ {0, 1}n, we have that [∀k

i=1 fi(y) = fi(x)] ⇒ [f(y) = f(x)]. The monotone
certificate complexity of x, denoted Cm(f, x) is defined as the minimum size |Sx|
of a monotone certificate Sx of x. The monotone certificate complexity of the
function f itself is defined as Cm(f) := maxx{Cm(f, x)}.

Interestingly, there is a constant upper bound of the size monotone certificate
set for any function f . We show that, Cm(f) ≤ 2 (proof given only in full version).
If the monotone certificate sets are restrained to be the same for all inputs, we
call such a measure as the non-adaptive monotone certificate complexity of the
function f , denoted by Cna

m (f). We show that Cna
m (f) = DTna

m (f) by using the
above definition and defer these easy details to the full version of the paper.
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5 Non-deterministic and Randomized MDTs

Inspired by the definitions of a non-deterministic decision tree and certificate
complexity of a Boolean function, we study a non-deterministic variants of mono-
tone decision trees as well. We define6 a non-deterministic monotone decision tree
as a tree where there can be single or multiple outgoing edges at each internal
node, and each edge in the tree is labelled by a monotone function or the nega-
tion of a monotone function, and the leaves are labelled 0 or 1. An input is said
to be accepted if there is at least one path from the root to a leaf labelled 1 along
which all the functions appearing as labels on the edges evaluate to 1. Analogous
to the normal monotone decision trees, we prove (details in full version) a bound
on the height and the size as the complexity measures of the non-deterministic
monotone decision tree (height denoted by DTn

m(f)).

Theorem 7. For any Boolean function f , DTn
m(f) ≤ 2 and size of the optimal

non-deterministic monotone decision tree is � alt(f)
2 .

We also study randomized monotone decision trees. In this model, monotone
query nodes in the decision tree, random bit choices are also allowed at the
internal nodes of the tree and each of the random choice nodes also has two
outgoing edges to children one with labelled 0 and the other labelled 1. We
say the tree computes a Boolean function f if for any input x, the probability
(over the choice of the settings for the random bit choices in the tree) of the
computation reaching a leaf with label f(x) is atleast 2

3 . By DTr
m(f), we denote

the minimum height of a RMDT computing a Boolean function f . The following
theorem implies that randomization does not help when the monotone queries
are unrestricted. The proof is deferred to the full version due to space constraints.

Theorem 8. For any Boolean function f , DTr
m(f) = DTm(f).

We also study a more powerful variant of the randomized model where each
node is allowed to have a multi-set of w monotone functions associated with it
(which we call the query set) and on an input x to the decision tree, at each
node, one of the query functions is chosen uniformly at random from the cor-
responding query set. Again, we say that the tree computes a Boolean function
f if for any input x, the probability of the computation reaching a leaf with
label f(x) is atleast 2

3 . We denote by DTR,w
m (f), the minimum height of such a

randomized decision tree that computes f . It can be observed that any RMDT
can be implemented in this model as well with query sets of size 2 at each node:
a monotone query fi being replaced with the query set {fi, fi}, and a node with
a random bit choice by the query set {0,1}. This gives DTR,w

m (f) ≤ DTr
m(f),

∀w ≥ 2. For the other direction, the following is shown (details in full version).

Theorem 9. For any function f , DTr
m(f) ≤ (1 + k).DTR,w

m (f), where w = 2k.

6 In the full version of this paper, we define another natural variant of non-
determinism, and show its equivalence to this model.
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6 Monotone Decision Trees with Query Restrictions

In this section, we study the power of monotone decision trees under restricted
query functions. Recall that DT(mon-C) is the class of functions that admit
decision trees of height O(log n), where n is the number of variables and the
query functions are from mon-C. We first justify our reason to consider the height
O(log n). By a counting argument, we can derive that for any h = ω(log n), there
is a function f on n variables that has a decision tree of height h with query
functions computed by monotone polynomial sized circuits, but f cannot be
computed by a polynomial size circuit. In contrast, for any h = o(log n), if a
function f ∈ C on n variables has alternation Ω(n), then f does not have a
decision tree of height h, with query functions computable by monotone circuits
in C. With this background, we study DT(mon-C) as defined above.

Deterministic MDTs with Query Restrictions: DT(mon-C) vs C: As men-
tioned in the introduction, we ask : How much can monotone decision tree com-
putation, with query functions computable by monotone circuits in the class C,
simulate general computation in the class C. In this direction, we first show that
DT(mon-C) ⊆ C when C has reasonable closure properties.

Lemma 4. For a circuit complexity class C closed under ¬,∧,∨, DT(mon-C) ⊆
C.
Proof. As we have already established that DT(mon-C) = DL(mon-C) in
the construction in Lemma 3, it suffices to show that DL(mon-C) ⊆ C. Let
the Boolean function f belong to DL(mon-C) via the decision list L =
(f1, c1)(f2, c2) . . . (fk, ck) where k = poly(n); and each query function fi has
a (monotone) circuit Ci from the class C. Using the normal form for the decision
lists (see full version) for circuit classes with the above property, we will assume
that the ci’s are alternating; and the query functions fi are forward firing, i.e
f1 ⇒ f2 ⇒ · · · ⇒ fk. As we can always (choose to) prepend a (0, 0) node at the
beginning, or append a (1, 1) node at the end of L while still maintaining the
normal form and the function it computes; w.l.o.g we may assume that k is even
and c1 = 0. Due to the alternating constants property, this means c2i = 1 and
c2i−1 = 0.

We will now show that the Boolean function g := f1f2 ∨ f3f4 · · · ∨ fk−1fk

is equivalent to f . To observe this, we will argue that for any input x, g(x)
is equal to the output of L on x. Suppose x activates an even indexed node,
say (f2i, c2i). By definition of activated node, it means that f2i(x) = 1 and
f2i−1(x) = 0, which means that the term f2i−1f2i in g evaluates to 1 for x.
Thus, g(x) = 1 = c2i = f(x). A similar argument can be made when x activates
an odd indexed node (say (2i−1)th) in L to show that g(x) = 0 = c2i−1 = f(x).
Finally, we note that because of the closure properties of C, the expression g
(equivalent to f) can be converted to a circuit in C. ��

If the class C is rich enough to include monotone circuits for the thresh-
old functions, for example say the class TC0 itself, then we can actually prove
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equality: Note that the Monotone Decomposition given in Lemma 2 can be easily
transformed into a MDL with the same functions being queries. Thus, we get C ⊆
DL(mon-C), which when combined with the fact that DT(mon-C) = DL(mon-C)
(see proof of Lemma 3) and Lemma 4 completes the proof of Theorem 2.

Monotone Decision Trees and AC0: We now address the question AC0 vs
DT(mon-AC0). We know that DT(mon-AC0) = DL(mon-AC0) is contained in
AC0 by Lemma 4. An interesting challenge is to prove or disprove the reverse
containment. It is easy to show that DT(mon-AC0) is indeed more powerful
than polynomial sized term decision lists, which is a strict subset of AC0 (proof
deferred to full version). Towards comparing the class with AC0, using the above
discussion, for any g(n) = o(log n), and h(n) = ω(log n), DTg(n)(mon-AC0) �

AC0 and DTh(n)(mon-AC0) � AC0. In contrast to this, we show that the whole
of AC0 can be computed by monotone decision trees with sub-linear height. By
using a theorem due to Santha and Wilson (See Theorem 4.1 of [14]), which
reduces the number of negations in the circuit to n

logr n , and then applying The-
orem 5, we show:

Theorem 10. ∀ constant r, AC0 ⊆ DTd(n)(mon-AC0) where d(n) = Ω
(

n
logr n

)
.

We now prove Theorem 3 from the introduction. That is, for any f : {0, 1}n →
{0, 1} in DT(mon-AC0), and for any constant 0 < ε ≤ 1, there is an AC0 circuit
for f with O(nε) negation gates.

Proof of Theorem 3 (Towards DL(mon-AC0) �⊆ AC0): Supposing f ∈
DL(mon-AC0), by the construction given in the proof of Lemma4, we can write
f = f1f2 ∨ f3f4 ∨ . . . f�−1f�, where � = O(nk) for some constant k. In addition,
all the fi’s have monotone AC0 circuits and ∀i ∈ [� − 1], fi =⇒ fi+1. Thus,
it suffices to produce fi for every i ∈ [�] which is odd, from f1, . . . fn, using a
constant depth polynomial size circuit that uses O(nε) negations. Indeed, the
trivial circuit uses � = O(nk) negations.

The main observation is that the bits (the outputs of fi where i is odd)
we need to invert are already in sorted order, since ∀i, fi =⇒ fi+1. Let this
bit-string be s = 0j1m−j , where m := ��/2. We need to output s = 1j0m−j .

We now use a construction due to [14] where we divide s into t = nε con-
tiguous blocks B1B2 . . . Bt each of length p := m/nε = O(nk−ε). Observe that
the negation of block Bi is of the form 1p or 0p or 1j0p−j for some 0 ≤ j ≤ p,
based on whether Bi witnesses switching from 0s to 1s in s. As proved in [14]
(Theorem 3.6 in [14]), this can be implemented using an iterative construction
which uses only O(nε) negations. In the proof of Theorem 3.6 in [14], the authors
also observe, this part of their construction uses only unbounded ∧ and ∨ gates
and hence works for AC0. In contrast, we show a depth lower bound for circuits
that use O(nε) negations, and computes functions in AC0 with high alternation.

Theorem 11. For every f ∈ AC0 with alt(f) = Ω(n), and for every ε > 0, any
AC0 circuit computing it with O(nε) negations will have depth at least 1

ε
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The above Theorem can be derived from the results of [14] (Theorem 3.2 of [14],
and verifying that their proof works for single bit output functions also).

Randomized MDTs with Query Restrictions: Similar to the deterministic
case, when the height is restricted to O(log n), we can define RDT(mon-C) for
a circuit complexity class C. We show, by carefully using threshold to compute
the probability bounds, RDT(mon-C) = C, if mon-TC0 ⊆ mon-C. By using a
carefully constructed normal form for randomized monotone decision trees we
also show RDT(mon-AC0) ⊆ AC0.
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Abstract. In the 90’s Clark, Colbourn and Johnson wrote a seminal
paper, where they proved that maximum clique can be solved in polyno-
mial time in unit disk graphs. Since then, the complexity of maximum
clique in intersection graphs of (unit) d-dimensional balls has been inves-
tigated. For ball graphs, the problem is NP-hard, as shown by Bonamy et
al. (FOCS ’18). They also gave an efficient polynomial time approxima-
tion scheme (EPTAS) for disk graphs, however the complexity of maxi-
mum clique in this setting remains unknown. In this paper, we show the
existence of a polynomial time algorithm for solving maximum clique
in a geometric superclass of unit disk graphs. Moreover, we give partial
results toward obtaining an EPTAS for intersection graphs of convex
pseudo-disks.

Keywords: Pseudo-disks · Line transversals · Intersection graphs

1 Introduction

In an intersection graph, every vertex can be represented as a set, such that
two vertices are adjacent if and only if the corresponding sets intersect. In most
settings, those sets are geometric objects, lying in a Euclidean space of dimen-
sion d. Due to their interesting structural properties, the intersection graphs
of d-dimensional balls, called d-ball graphs, have been extensively studied. For
dimensions 1, 2 and 3, the d-ball graphs are called interval graphs, disk graphs
and ball graphs, respectively. If all d-balls have the same radius, their intersection
graphs are referred to as unit d-ball graphs. The study of these classes has many
applications ranging from resource allocation to telecommunications [1,8,14].

Many problems that are NP-hard for general graphs remain NP-hard for
d-ball graphs, with fixed d ≥ 2. Even for unit disk graphs, most problems are
still NP-hard. A famous exception to this rule is the problem of computing a
maximum clique, which can be done in polynomial time in unit disk graphs
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as proved by Clark, Colbourn and Johnson [6]. Their algorithm requires the
position of the unit disks to be given, but a robust version of their algorithm,
which does not require this condition, was found by Raghavan and Spinrad [13].
This is a nontrivial matter as Kang and Müller have shown that the recognition
of unit d-ball graphs is NP-hard, and even ∃R-hard, for any fixed d ≥ 2 [12].

Finding the complexity of computing a maximum clique in general disk
graphs (with arbitrary radii) is a longstanding open problem. However in 2017,
Bonnet et al. found a subexponential algorithm and a quasi polynomial time
approximation scheme (QPTAS) for maximum clique on disk graphs [4]. The
following year, Bonamy et al. extended the result to unit ball graphs, and gave
a randomised EPTAS for both settings [3]. The current state-of-the-art about
the complexity of computing a maximum clique in d-ball graphs is summarised
in Table 1.

Table 1. Complexity of computing a maximum clique on d-ball graphs

unit d-ball graphs general d-ball graphs

d = 1 linear [2] polynomial [10]

d = 2 polynomial [6] Unknown but EPTAS [3,4]

d = 3 Unknown but EPTAS [3] NP-hard [3]

d = 4 NP-hard [3] NP-hard [3]

Bonamy et al. show that the existence of an EPTAS follows from the fact
that: For any graph G that is a disk graph or a unit ball graph, the disjoint
union of two odd cycles is a forbidden induced subgraph in the complement
of G. Surprisingly, the proofs for disk graphs on one hand and unit ball graphs
on the other hand are not related. Bonamy et al. ask whether there is a natural
explanation of this common property. They say that such an explanation could
be to show the existence of a geometric superclass of disk graphs and unit ball
graphs, for which there exists an EPTAS for solving maximum clique.

By looking at Table 1, a pattern seems to emerge: The complexity of com-
puting a maximum clique on (d−1)-ball graphs and unit d-ball graphs might be
related. We extend the question of Bonamy et al. and ask for a geometric inter-
section graphs class that contains all interval graphs and all unit disk graphs,
for which maximum clique can be solved in polynomial time. Recall that finding
the complexity of maximum clique in disk graphs is still open. Therefore a sec-
ond motivation for our question is that showing the existence of polynomial time
algorithms for geometric superclasses of unit disk graphs, may help to determine
the complexity of maximum clique in disk graphs.

We introduce a class of geometric intersection graphs which contains all inter-
val graphs and all unit disk graphs, for which we show that maximum clique can
be solved efficiently. Furthermore, the definition of our class generalises to any
dimension, i.e. for any fixed d ≥ 2 we give a class of geometric intersection graphs
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that contains all (d − 1)-ball graphs and all unit d-ball graphs. We conjecture
that for d = 3, there exists an EPTAS for computing a maximum clique in the
corresponding class. It is necessary that these superclasses be defined as classes
of geometric intersection graphs. Indeed, it must be if we want to understand
better the reason why efficient algorithms exist for both settings. For instance,
taking the union of interval graphs and unit disk graphs would not give any
insight, since it is a priori not defined by intersection graphs of some geometric
objects.

In order to define the class, we first introduce the concept of d-pancakes. A
2-pancake is defined as the union of all unit disks whose centres lie on a line
segment s, with s itself lying on the x-axis. An example is depicted in Fig. 1.
This is definition is equivalent to the Minkowski sum of a unit disk centred at
the origin and a line segment on the x-axis, where the Minkowski sum of two
sets A,B is equal to {a+ b | a ∈ A, b ∈ B}. Similarly a 3-pancake is the union of
all unit balls whose centres lie on a disk D, with D lying on the xy-plane. More
generally, we have:

Fig. 1. The union of the unit disks centred at points of s is a 2-pancake.

Definition 1. A d-pancake is a d-dimensional geometric object. Let us denote
by {ξ1, ξ2, . . . , ξd} the canonical basis of R

d. A d-pancake is defined as the
Minkowski sum of the unit d-ball centred at the origin and a (d − 1)-ball in
the hyperspace induced by {ξ1, ξ2, . . . , ξd−1}.

We denote by Πd the class of intersection graphs of some finite collection of
d-pancakes and unit d-balls. In this paper, we give a polynomial time algorithm
for solving maximum clique in Π2: the intersection graphs class of unit disks and
2-pancakes. This is to put in contrast with the fact that computing a maximum
clique in intersection graphs of unit disks and axis-parallel rectangles (instead
of 2-pancakes) is NP-hard and even APX-hard, as shown together with Bonnet
and Miltzow [5], even though maximum clique can be solved in polynomial time
in axis-parallel rectangle graphs [11].

Relatedly, it would be interesting to generalise the existence of an EPTAS for
maximum clique to superclasses of disk graphs. This was achieved with Bonnet
and Miltzow for intersection graphs of homothets of a fixed bounded centrally
symmetric convex set [5]. In this paper, we aim at generalising further to inter-
section graphs of convex pseudo-disks, for which we conjecture the existence of
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an EPTAS, and give partial results towards proving it. The proof of these par-
tial results relies on geometric permutations of line transversals. We do a case
analysis on the existence of certain geometric permutations, and show that some
convex pseudo-disks must intersect. Holmsen and Wenger have written a survey
on geometric transversals [15]. The results that are related to line transversals
are either of Hadwiger-type, concerned with the conditions of existence of line
transversals, or about the maximum number of geometric permutations of line
transversals. To the best of our knowledge, we do not know of any result that
uses geometric permutations of line transversals to show something else. We
consider this tool, together with the polynomial time algorithm for computing
a maximum clique in Π2, to be our main contributions.

2 Preliminaries

2.1 Graph Notations

Let G be a simple graph. We say that two vertices are adjacent if there is
an edge between them, otherwise they are independent. For a vertex v, N (v)
denotes its neighbourhood, i.e. the set of vertices adjacent to v. We denote by
ω(G), α(G), and χ(G) the clique number, the independence number and the
chromatic number of G, respectively.

We denote by V (G) the vertex set of G. Let H be a subgraph of G. We
denote by G \ H the subgraph induced by V (G) \ V (H). We denote by G the
complement of G, which is the graph with the same vertex set, but where edges
and non-edges are interchanged. A bipartite graph is graph whose vertex set can
be partitioned into two independent sets. A graph is cobipartite if its complement
is a bipartite graph.

We denote by iocp(G) the induced odd cycle packing number of G, i.e. the
maximum number of vertex-disjoint induced odd cycles (for each cycle the only
edges are the ones making the cycle), such that there is no edge between two
vertices of different cycles.

2.2 Geometric Notations

Throughout the paper we only consider Euclidean spaces with the Euclidean
distance. Let p and p′ be two points in R

d. We denote by (p, p′) the line going
through them, and by [p, p′] the line segment with endpoints p and p′. We denote
by d(p, p′) the distance between them. For any fixed d, we denote by O the origin
in R

d. When d = 2, we denote by Ox and Oy the x and y-axis, respectively. For
d = 3, we denote by xOy the xy-plane. We usually denote a d-pancake by P d.
As a reminder, a 2-pancake is the Minkowski sum of the unit disk centred at the
origin O and a line segment lying on the axis Ox.

Definition 2. Let {Si}1≤i≤n be a family of subsets of R
d. We denote the

intersection graph of {Si} by G({Si}). It is the graph whose vertex set is
{Si | 1 ≤ i ≤ n} and where there is an edge between two vertices if and only if
the corresponding sets intersect.
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Definition 3. In R
2 we denote by D(c, ρ) a closed disk centred at c with radius

ρ. Let D = D(c, ρ) and D′ = D(c′, ρ′) be two intersecting disks. We call lens
induced by D and D′ the surface D ∩ D′. We call half-lenses the two closed
regions obtained by dividing the lens along the line (c, c′).

For any x1 ≤ x2, we denote by P 2(x1, x2) the 2-pancake that is the Minkowski
sum of the unit disk centred at O and the line segment with endpoints x1 and x2.
Therefore we have P 2(x1, x2) =

⋃
x1≤x′≤x2

D((x′, 0), 1). Behind the definition of
the d-pancakes is the idea that they should be the most similar possible to unit
d-balls. In particular 2-pancakes should behave as much as possible like unit
disks. This is perfectly illustrated when the intersection of a 2-pancake and a
unit disk is a lens, as the intersection of two unit disks would be.

Definition 4. Let {P 2
j }1≤j≤n be a set of 2-pancakes. For any unit disk D, we

denote by L(D, {P 2
j }), or simply by L(D) when there is no risk of confusion, the

set of 2-pancakes in {P 2
j } whose intersection with D is a lens.

Let D denote D(c, 1) for some point c. Remark that if a 2-pancake P 2(x1, x2)
for some x1 ≤ x2 is in L(D), then the intersection between D and P 2(x1, x2)
is equal to D ∩ D((x1, 0), 1) or D ∩ D((x2, 0), 1). We make an abuse of notation
and denote by d(D, P 2(x1, x2)) the smallest distance between c and a point
in the line segment [x1, x2]. Observe that if the intersection between D and
P 2(x1, x2) is equal to D ∩ D((x1, 0), 1), then d(D, P 2(x1, x2)) = d(c, (x1, 0)),
and otherwise d(D, P 2(x1, x2)) = d(c, (x2, 0)). The following observation gives a
characterisation of when the intersection between a unit disk and a 2-pancake is
a lens.

Observation 1. Let D((cx, cy), 1) be a unit disk intersecting with a 2-pancake
P 2(x1, x2). Their intersection is a lens if and only if (cx ≤ x1 or cx ≥ x2) and
the interior of D((cx, cy), 1) does not contain any point in {(x1,±1), (x2,±1)}.

The observation follows immediately from the fact that the intersection is a
lens if and only if D((cx, cy), 1) does not contain a point in the open line segment
between the points (x1,−1) and (x2,−1), nor in the open line segment between
the points (x1, 1) and (x2, 1).

3 Results

We answer in Sect. 4 the 2-dimensional version of the question asked by Bonamy
et al. [3]: We present a polynomial time algorithm for computing a maximum
clique in a geometric superclass of interval graphs and unit disk graphs.

Theorem 1. There exists a polynomial time algorithm for computing a maxi-
mum clique on Π2, even without a representation.

Kang and Müller have shown that for any fixed d ≥ 2, the recognition of unit
d-ball graphs is NP-hard, and even ∃R-hard [12]. We conjecture that it is also
hard to test whether a graph is in Πd for any fixed d ≥ 3, and prove it for d = 2.
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Theorem 2. Testing whether a graph is in Π2 is NP-hard, and even ∃R-hard.
The proof of Theorem 2 figures in the full version of the paper [9]. It imme-

diately implies that given a graph G in Π2, finding a representation of G with
2-pancakes and unit disks is NP-hard. Therefore having a robust algorithm as
defined in [13] is of interest. The algorithm of Theorem 1 takes any abstract
graph as input, and outputs a maximum clique or a certificate that the graph is
not in Π2.

For d = 3, we conjecture the following:

Conjecture 1. There exists an integer K such that for any graph G in Π3, we
have iocp(G) ≤ K.

We show in the full version of the paper [9] that this would be sufficient to
obtain an EPTAS.

Theorem 3. If Conjecture 1 holds, there exists a randomised EPTAS for com-
puting a maximum clique in Π3, even without a representation.

By construction the class Πd contains all (d − 1)-ball graphs and all unit
d-ball graphs. Indeed a (d − 1)-ball graph can be realised by replacing in a
representation each (d − 1)-ball by a d-pancake. In addition to this property, we
want fast algorithms for maximum clique on Πd. The definition of Πd may seem
unnecessarily complicated. The most surprising part of the definition is probably
the fact that we use d-pancakes instead of simply using (d − 1)-balls restricted
to be in the same hyperspace of Rd. However, we show in the full version of the
paper [9] that our arguments for proving fast algorithms would not hold with
this definition.

We give partial results toward showing the existence of an EPTAS for maxi-
mum clique on intersection graphs of convex pseudo-disks. We say that a graph
is a convex pseudo-disk graph if it is the intersection graph of convex sets in the
plane such that the boundaries of every pair intersect at most twice. We denote
by G the intersection class of convex pseudo-disk graphs. A structural property
used to show the existence of an EPTAS for disk graphs is that for any disk
graph G, iocp(G) ≤ 1. The proof of Bonnet et al. relies heavily on the fact that
disks have centres [4]. However, convex pseudo-disks do not, therefore adapting
the proof in this new setting does not seem easy. While we were not able to
extend this structural result to the class G, we show a weaker property: The
complement of a triangle and an odd cycle is a forbidden induced subgraph in G.
We write “complement of a triangle” to make the connection with iocp clear,
but remark that actually the complement of a triangle is an independent set of
three vertices. Below we state this property more explicitly.

Theorem 4. Let G be in G. If there exists an independent set of size 3, denoted
by H, in G, and if for any u ∈ H and v ∈ G \ H, {u, v} is an edge of G, then
G \ H is cobipartite.

Note that a cobipartite graph is not the complement of an odd cycle. Given
the three pairwise non-intersecting convex pseudo-disks in H, we give a geometric
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characterisation of the two independent sets in the complement of G \ H. We
conjecture that Theorem 4 is true even when H is the complement of any odd-
cycle, which implies:

Conjecture 2. For any convex pseudo-disk graph G, we have iocp(G) ≤ 1.

If Conjecture 2 holds, it is straightforward to obtain an EPTAS for maximum
clique in convex pseudo-disks graphs, by using the techniques of Bonamy et
al. [3].

4 Computing a Maximum Clique on Π2 in Polynomial
Time

In this section we prove Theorem 1. Due to space constraint, we only give here a
polynomial algorithm that needs a representation of the graph. The additional
lemmas giving a robust version of the algorithm are in the full version of the
paper [9]. The idea of the algorithm is similar to the one of Clark, Colbourn
and Johnson [6]. We prove that if u and v are the most distant vertices in a
maximum clique, then N (u) ∩ N (v) is cobipartite.

In their proof, Clark, Colbourn and Johnson use the following fact: if c and
c′ are two points at distance ρ, then the diameter of the half-lenses induced by
D(c, ρ) and D(c′, ρ) is equal to ρ. We prove here a similar result.

Lemma 1. Let c and c′ be two points at distance ρ, and let be ρ′ ≥ ρ. Then the
diameter of the half-lenses induced by D(c, ρ) and D(c′, ρ′) is at most ρ′.

Proof. First note that if ρ′ > 2ρ then the half-lenses are half-disks of D(c, ρ).
The diameter of these half-disks is equal to 2ρ, which is smaller than ρ′. Let us
now assume that we have ρ′ ≤ 2ρ. The boundary of the lens induced by D(c, ρ)
and D(c′, ρ′) consists of two arcs. The line (c, c′) intersects exactly once with
each arc. One of these two intersections is c′, we denote by c′′ the other. Let
us consider the disk D(c′′, ρ′). Note that it contains the disk D(c, ρ). Therefore
the lens induced by D(c, ρ) and D(c′, ρ′) is contained in the lens induced by
D(c′′, ρ′) and D(c′, ρ′), whose half-lenses have diameter ρ′. The claim follows
from the fact that the half-lenses of the first lens are contained in the ones of the
second lens. ��

Before stating the next lemma, we introduce the following definition:

Definition 5. Let {Si}1≤i≤n and {S′
j}1≤j≤n′ be two families of sets in R

2. We
say that {Si} and {S′

j} fully intersect if for all i ≤ n and j ≤ n the intersection
between Si and S′

j is not empty.

Lemma 2. Let D := D(c, 1) be a unit disk and let P 2 := P 2(x1, x2) be in L(D).
Let {Di} be a set of unit disks that fully intersect with {D, P 2}, such that for
any Di we have d(D,Di) ≤ d(D, P 2). Moreover if P 2 is in L(Di) we require
d(Di, P

2) ≤ d(D, P 2). Also let {P 2
j } be a set of 2-pancakes that fully intersect

with {D, P 2}, such that for any P 2
j in {P 2

j }∩L(D), we have d(D, P 2
j ) ≤ d(D, P 2).

Then G({Di} ∪ {P 2
j }) is cobipartite.
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Proof. The proof is illustrated in Fig. 2. Without loss of generality, let us assume
that the intersection between D and P 2 is equal to D ∩ D((x1, 0), 1). Remember
that by definition we have x1 ≤ x2. Let P 2(x′

1, x
′
2) be a 2-pancake in {P 2

j }.
As it is intersecting with P 2, we have x′

2 ≥ x1 − 2. Assume by contradiction
that we have x′

1 > x1. Then with Observation 1, we have that P 2(x′
1, x

′
2) is in

L(D) and d(D, P 2(x′
1, x

′
2)) > d(D, P 2), which is impossible. Therefore we have

x′
1 ≤ x1, and so P 2(x′

1, x
′
2) must contain D((x′, 0), 1) for some x′ satisfying

x1 − 2 ≤ x′ ≤ x1. As the line segment [(x1 − 2, 0), (x1, 0)] has length 2, the
2-pancakes in {P 2

j } pairwise intersect.
We denote by ρ the distance d(D, P 2). Let D(ci, 1) be a unit disk in {Di}.

By assumption, ci is in D(c, ρ) ∩ D((x1, 0), 2). We then denote by R the lens
that is induced by D(c, ρ) and D((x1, 0), 2). We cut the lens into two parts with
the line (c, (x1, 0)), and denote by R1 the half-lens that is not below this line,
and by R2 the half-lens that is not above it. With Lemma 1, we obtain that the
diameter of R1 and R2 is at most 2. Let us assume without loss of generality
that c is not below Ox. We denote by X1 the set of unit disks in {Di} whose
centre is in R1. We denote by X2 the union of {P 2

j } and of the set of unit
disks in {Di} whose centre is in R2. Since the diameter of R1 is 2, any pair of
unit disks in X1 intersect, therefore G(X1) is a complete graph. To show that
G(X2) is a complete graph too, it remains to show that any unit disk D(ci, 1)
in X2 and any 2-pancake P 2(x′

1, x
′
2) in {P 2

j } intersect. We denote by P 2
+ the

following convex shape: ∪x′
1≤x≤x′

2
D((x, 0), 2). Note that the fact that D(ci, 1)

and P 2(x′
1, x

′
2) intersect is equivalent to having ci in P 2

+. Let us consider the
horizontal line going through c, and let us denote by c′ the left intersection with
the circle centred at (x1, 0) with radius 2. We also denote by r2 the extremity of
R that is in R2.

Let us assume by contradiction that ci is above the line segment [c, c′]. As
by assumption ci is in R2, it implies that the x-coordinate of ci is smaller than
the one of c. Therefore P 2 is in L(Di) and d(Di, P

2) > d(D, P 2), which is
impossible by assumption. Let us denote by R2,− the subset of R2 that is not
above the line segment [c, c′]. To prove that D(ci, 1) and P 2(x′

1, x
′
2) intersect,

it suffices to show that P 2
+ contains R2,−. As shown above, P 2(x′

1, x
′
2) contains

D((x′, 0), 1) for some x′ satisfying x1−2 ≤ x′ ≤ x1. This implies that P 2
+ contains

D((x1 − 2, 0), 2) ∩ D((x1, 0), 2), and in particular contains x1. Moreover as c is
not below Ox, r2 is also in D((x1 − 2, 0), 2) ∩ D((x1, 0), 2). As P 2 intersects D,
P 2
+ contains c. Let us assume by contradiction that P 2

+ does not contain c′. Then
x′
2 must be smaller than the x-coordinate of c′, because otherwise the distance

d((x′
2, 0), c′) would be at most d((x1, 0), c′), which is equal to 2. But then if P 2

+

does not contain c′, then it does not contain c either, which is a contradiction.
We have proved that P 2

+ contains the points x1, c, c′ and r2. By convexity, and
using the fact that two circles intersect at most twice, we obtain that R2,− is
contained in P 2

+. This shows that any two elements in X2 intersect, which implies
that G(X2) is a complete graph. Finally, as X1 ∪ X2 = {Di} ∪ {P 2

j }, we obtain
that G({Di} ∪ {P 2

j }) can be partitioned into two cliques, i.e. it is cobipartite. ��
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(x1, 0)

(x1 − 2, 0)

cc′

r2

R1

R2

D

P 2

••

••

•

Fig. 2. Illustration of the proof of Lemma 2

Lemma 3. Let D := D(c, 1) and D′ := D(c′, 1) be two intersecting unit disks.
Let {Di} be a set of unit disks that fully intersect with {D,D′}, such that for
each unit disk Di we have d(D,Di) ≤ d(D,D′) and d(D′,Di) ≤ d(D,D′). Also let
{P 2

j } be a set of 2-pancakes that fully intersect with {D,D′}, such that for any P 2
j

in {P 2
j }∩L(D), we have d(D, P 2

j ) ≤ d(D,D′), and for any P 2
j in {P 2

j }∩L(D′),
we have d(D′, P 2

j ) ≤ d(D,D′). Then G({Di} ∪ {P 2
j }) is cobipartite.

The proof of Lemma 3 figures in the full version of the paper [9]. Note that
Lemma 2 and Lemma 3 give a polynomial time algorithm for maximum clique
on Π2 when a representation is given. First compute a maximum clique that
contains only 2-pancakes, which can be done in polynomial time since the inter-
section graph of a set of 2-pancakes is an interval graph [10]. Then for each unit
disk D, compute a maximum clique which contains exactly one unit disk, D, and
an arbitrary number of 2-pancakes. Because finding out whether a unit disk and
a 2-pancake intersect takes constant time, computing such a maximum clique
can be done in polynomial time. Note that if a maximum clique contains at least
two unit disks, then in quadratic time we can find in this maximum clique either
a pair of unit disks or a unit disk and a 2-pancake whose intersection is a lens,
such that the conditions of Lemma 2 or of Lemma 3 are satisfied. By applying
the corresponding lemma, we know that we are computing a maximum clique in
a cobipartite graph, which is the same as computing a maximum independent
set in a bipartite graph. As this can be done in polynomial time [7], we can
compute a maximum clique on Π2 in polynomial time when the representation
is given.

5 Intersection Graphs of Convex Pseudo-disks

In this section we are interested in computing a maximum clique in intersection
graphs of convex pseudo-disks. Due to space constraint, some of the lemmas that
imply Theorem 4 are proven only in the full version of the paper [9]. Our proof
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relies on line transversal and their geometric permutations on the three convex
pseudo-disks that form a triangle in the complement, denoted by D1, D2 and
D3. As there are only three sets, the geometric permutation of a line transversal
is given simply by stating which set is the second one intersected.

Definition 6. A line transversal � is a line that goes through the three convex
pseudo-disks D1, D2 and D3. We call (convex pseudo-)disk in the middle of a
line transversal the convex pseudo-disk it intersects in second position.

For sake of readability, we from now on omit to mention that a disk in the
middle is a convex pseudo-disk, and simply refer to it as disk in the middle.
We are going to conduct a case analysis depending on the number of convex
pseudo-disks being the disk in the middle for some line transversal. When there
exists no line transversal, we can prove a stronger statement.

Lemma 4. If there is no line transversal through a family of convex sets F ,
then for any pair of convex sets {C1, C2} that fully intersects with F , C1 and C2

intersect.

Proof. Let us prove the contrapositive. Assume that C1 and C2 do not intersect,
therefore there exists a separating line. As all sets in F intersect C1 and C2, they
also intersect the separating line, which is thus a line transversal of F . ��

Using the notation of Theorem 4, Lemma 4 immediately implies that if there
is no line transversal through the sets representing H, then G \ H is a clique,
which is an even stronger statement than required.

The following lemma is the key-tool used in our proofs. It is illustrated in
Fig. 3. Let D1, D2 and D3 be three convex pseudo-disks that do not pairwise
intersect.

p′
1

p′
3

p′
2 p2

p3p1• ••

•

• •

Fig. 3. Illustration of Lemma 5. The triangles p1p2p3 and p′
1p

′
2p

′
3 intersect.

Lemma 5. Assume that D1 nor D3 is the disk in the middle of a line transver-
sal. Let pi and p′

i be in Di, 1 ≤ i ≤ 3. For sake of simplicity, assume that the
line (p1, p3) is horizontal. If at least one of p′

1, p
′
3 is above this line, and D2 is

below it, then the triangles p1p2p3 and p′
1p

′
2p

′
3 intersect.
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Proof. Suppose by contradiction that the two triangles do not intersect. Thus
there is a separating line �. The separating line intersects with [pi, p′

i], 1 ≤ i ≤ 3,
and by convexity it is a line transversal of {D1,D2,D3}. By assumption, its
intersection with D2 is below the line (p1, p3). However, as one of p′

1, p
′
3 is above

(p1, p3), the part of � between D1 and D3 is also above (p1, p3). This implies that
either D1 or D3 is the disk in the middle of �, which is a contradiction. Remark
the lemma can be generalised to any convex set {D1,D2,D3}, since we did not
use the fact that they are pseudo-disks. ��

Let {D′
j} be a set of convex pseudo-disks that fully intersect with

{D1,D2,D3}.

Lemma 6. If there exists one convex pseudo-disk Di ∈ {D1,D2,D3} such that
the disk in the middle of all line transversals of {D1,D2,D3} is Di, then G({D′

j})
is cobipartite.

Proof. Without loss of generality, let us assume that the disk in the middle of
all line transversals is D2. Let � be a line transversal, that we will assume to
be horizontal. Let D′ be a convex pseudo-disk intersecting pairwise with D1, D2

and D3. We denote by p′
1 a point in D′ ∩ D1 and by p′

3 a point in D′ ∩ D3. If the
line segment [p′

1, p
′
3] intersect D2, we have the following: Since D′ and D2 are

pseudo-disks, then D′ must either contain all the part of D2 that is above or the
one that is below the line (p′

1, p
′
3). We will partition the convex pseudo-disks in

{D′
j} in four sets depending on the line segment [p′

1, p
′
3].

1. [p′
1, p

′
3] is above D2,

2. [p′
1, p

′
3] intersects D2 and D′ contains all the part of D2 above it,

3. [p′
1, p

′
3] is below D2,

4. [p′
1, p

′
3] intersects D2 and D′ contains all the part of D2 below it.

We are going to show that the set X1 ⊆ {D′
j} of convex pseudo-disks in case

1 or 2 all pairwise intersect. By symmetry, the same holds for the set X2 ⊆ {D′
j}

of convex pseudo-disks in cases 3 and 4, and thus the claim will follow.
Let us suppose that we have two convex pseudo-disks D′ and D′′ in case

1. Let us suppose by contradiction that they do not intersect. Without loss of
generality, let us assume that p′

1 is above [p′′
1 , p′′

3 ]. We can then apply Lemma 5
to show that D′ and D′′ intersect, which is a contradiction.

Let us assume that D′ and D′′ are in case 2. If the line segments [p′
1, p

′
3] and

[p′′
1 , p′′

3 ] intersect then it is done by convexity. Therefore we can assume without
loss of generality that [p′

1, p
′
3] ∩ D2 is above [p′′

1 , p′′
3 ] ∩ D2. Hence both D′ and D′′

contain [p′
1, p

′
3] ∩ D2, which shows that they intersect.

Finally, let us assume without loss of generality that D′ is in case 1 and D′′ is
in case 2. Suppose by contradiction that D′ and D′′ do not intersect. Therefore
by convexity the line segments [p′

1, p
′
3] and [p′′

1 , p′′
3 ] do not intersect. We deduce

that [p′
1, p

′
3] is above [p′′

1 , p′′
3 ] ∩ D2. Let p′

2 be a point in D′ ∩ D2. By assumption
p′
2 cannot be above [p′′

1 , p′′
3 ], otherwise it would also be in D′′. As there is no line

transversal having D1 or D3 as disk in the middle, we apply Lemma 5 to show
that D′ and D′′ intersect, which concludes the proof. ��
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Notice that Lemma 6 implies Theorem 4 when it is assumed that in a repre-
sentation of H, there is only one geometric permutation of the line transversals.
The cases when there are two or three geometric permutations are more techni-
cal, and are proven in the full version of the paper [9].
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1 Malmö University, Malmö, Sweden
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4 Universitat Politècnica de Catalunya, Barcelona, Spain
carlos.seara@upc.edu

5 University of Gdańsk, Gdańsk, Poland
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[0, 180◦), obtaining the directions for the tour to be the shortest one over
all tours, where n is the number of vertices, r is the number of reflex ver-
tices, and G ≤ r is the maximum number of gates of the polygon used
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1 Introduction

Arguably, problems concerning visibility and motion planning in polygonal envi-
ronments are among the most well-studied in computational geometry. A prob-
lem that encompasses both the visibility and motion planing aspects is that of
computing a shortest watchman tour in an environment, i.e., the shortest closed
tour that sees the complete free-space of the environment. This problem has
been shown NP-hard [6,9] and even Ω(log n)-inapproximable [18] for polygons
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with holes having a total of n segments. Chin and Ntafos [6] showed a linear time
algorithm to compute a shortest watchman tour in a simple rectilinear polygon.
Then, after a few false starts [7,12,28,29], Tan et al. [30] proved an O(n4) time
algorithm for computing a shortest watchman tour through a given boundary
point in an arbitrary simple polygon, the so-called fixed watchman tour. Carls-
son et al. [4] showed how to generalize algorithms for a shortest fixed watchman
tour to compute a shortest watchman tour in a simple polygon without any pre-
specified point to pass through, a floating watchman tour, using quadratic factor
overhead. Tan [27] improved this to a linear factor overhead, thus establishing an
O(n5) time algorithm for this case. Dror et al. [8] improved this to O(n3 log n)
time for the fixed case and thus O(n4 log n) time for the floating case.

As for visibility, many different definitions have been considered [3]. Standard
visibility means that two points see each other if the line segment connecting
them does not intersect the exterior of the environment free space. R-visibility
requires the axis parallel rectangle spanning the two points not to intersect
the exterior of the environment free space. In this work, we consider monotone
visibility, where two points θ-see each other if there is a path Π connecting the
two points such that Π is monotone w.r.t. direction θ and Π does not intersect
the exterior of the environment free space.

Visibility plays a central role in diverse advanced application areas, for exam-
ple, in surveillance, computer graphics, sensor placement, and motion planning
as well as in wireless communication. Our particular monotone visibility model
has practical applications in material processing and manufacturing.

1.1 Our Results and Background

We present an O(nrG) time algorithm for computing and maintaining a shortest
(floating) watchman tour that sees a simple polygon under monotone visibility
in direction θ, while θ varies in [0, 180◦), obtaining the directions for the tour
to be the shortest one over all tours, where n is the number of vertices, r is
the number of reflex vertices, and G is the maximum number of gates of the
polygon used at any time in the algorithm; see Sect. 2 for a formal definition. In
particular, we have G ≤ r in all cases.

The problem of computing a shortest watchman tour for a given polygon,
under rotated monotone visibility, is related to a variety of problems concern-
ing the concept of “oriented” kernels in polygons, which has already attracted
attention in the literature. In particular, for a given set O of predefined direc-
tions, Schuierer et al. [24] provided an algorithm to compute the O-Kernel of
a simple polygon. Next, Schuierer and Wood [25] introduced the concept of the
external O-Kernel of a polygon, in order to compute the O-Kernel of a simple
polygon with holes. In addition, when restricted to O = {0◦, 90◦}, Gewali [10]
described a linear-time algorithm for orthogonal polygons without holes, and
a quadratic one for orthogonal polygons with holes, whereas Palios [23] gave an
output-sensitive algorithm for that problem in orthogonal polygons with holes.
More recently, Orden et al. [22] presented algorithms for computing the orienta-
tions θ (in [−90◦, 90◦)) such that the {0◦}-Kernelθ(P) of a simple (or orthogonal)
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polygon P: is not empty, has maximum/minimum area or maximum/minimum
perimeter. Finally, the issue of computing the orientation θ that minimizes some
parameter for a given problem instance has been recently studied in [1,2,21].

Section 2 contains preliminary results and an overview of the linear-time algo-
rithm for computing a shortest watchman tour in rectilinear polygons, being the
basis for our approach. In Sect. 3, we present our algorithm and prove its cor-
rectness. Finally, in Sect. 4, we analyze the running time of the algorithm and
conclude the presentation in Sect. 5.

2 Preliminaries

Let θ be a direction, specified using its angle to the x-axis, and let P be a simple
polygon having n edges. A path Π inside P is monotone w.r.t.@ direction θ or
θ-monotone if and only if the intersection between any line parallel to direction
θ and Π is a connected set. In standard visibility, two points p and q in P see
each other if and only if the line segment between p and q does not intersect
the exterior of P. In θ-monotone visibility, two points p and q θ-see each other
if and only if there is a θ-monotone path between p and q not intersecting the
exterior of P.

Let v be a reflex vertex of P incident to the boundary edge e. If we extend e
maximally inside P, we obtain a line segment ē collinear with e, and we can
associate the direction to ē being the same as that of e as we traverse the
boundary of P in counterclockwise order; see Fig. 1(a). Thus, any reflex vertex
is adjacent to two extensions in P. Any directed segment in P intersecting the
interior of P and connecting two boundary points of P is called a cut of P. Thus,
an extension ē is a cut in P. A cut c partitions P into two components, L(c),
the component locally to the left of c according to its direction, and R(c), the
component locally to the right of c according to its direction.

Fig. 1. (a) T must have a point in L(ē1) (marked gray) to see u. (b) Dominant exten-
sions (gates) are marked with blue and red, the remaining extensions are black. (Color
figure online)

Consider a closed tour T inside P. Chin and Ntafos [6,7] argue for standard
visibility that in order for T to see the whole polygon P, it is sufficient for T to
see the vertices of P, and therefore, it is sufficient for T to have a point in L(ē)
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for every extension ē in P, i.e., to intersect the left of any extension in P; see
again Fig. 1(a).

For monotone visibility in direction θ, we introduce the following definitions.
Consider a reflex vertex v of P and let l be the directed line with angle θ to
the x-axis passing through v. If the two boundary edges incident to v lie on
the same side of l, let s be the maximal segment collinear to l inside P that
passes through v. The segment s passes through v and partitions P into three
components incident to v. Two components PL and PR have v as a convex vertex
and the third component has s as a boundary edge; PR is the first subpolygon
traversed by the counterclockwise traversal of P starting at v, whereas PL is
the other component having v as convex vertex. The problem thus reduces to
obtaining the shortest tour that intersect the left of a given set of cuts.

Now, we can argue similarly for monotone visibility in direction θ as in the
standard visibility case. Assume the tour T has points in PR. Unless T inter-
sects s, T cannot see any points in PL. Similarly, if T has points in PL, then
T cannot see any points in PR, unless it intersects s. To mimic the standard
visibility situation, we introduce two cuts cf and cb incident to v, where cf is the
portion of s bounding PR, and cb is the portion of s bounding PL. Specifically, the
cut cf is directed away from v and we call it a forward θ-cut, and symmetrically,
the cut cb is directed towards v and we call it a backward θ-cut; see Fig. 1(b).

We also color the θ-cuts and their associated reflex vertices. A θ-cut is red,
if the boundary edges incident to the associated vertex v both lie locally to the
right of the directed line l defined above. The vertex v is thus called a red vertex.
Analogously, a θ-cut is blue, if the boundary edges incident to the associated
vertex v both lie locally to the left of the directed line l, and v is called a blue
vertex. Other reflex vertices are not colored as they do not break monotonicity
w.r.t.@ direction θ and are therefore not used; see Fig. 1(b).

Similarly to the standard visibility case, we define the region L(c) for a θ-
cut c to be the part of the polygon P locally to the left of c according to its
direction, and R(c) to be the part of the polygon P locally to the right of c. We
claim the following lemma that corresponds to the standard visibility case [7];
its correctness follows from the definition of the θ-cut.

Lemma 1. A tour T in P is a watchman tour under monotone visibility in
direction θ if and only if it intersects the region L(c), for every θ-cut c in P.

The lemma allows us to use the algorithm of Chin and Ntafos [6] for comput-
ing the shortest watchman tour under θ-monotone visibility, since it computes
the shortest tour that intersect the left of a set of cuts. The algorithm works
roughly as follows. First, it identifies the proper set of cuts inside the polygon.
Second, it reduces the shortest tour problem to a shortest path problem in a
triangulated two-manifold, computes the shortest path, and transforms the path
to a tour in the original polygon. Since all θ-cuts are parallel line segments, we
can do the first step in O(n) time using the algorithm by Chazelle [5] that par-
titions a simple polygon into O(n) visibility trapezoids by introducing parallel
line segments at reflex vertices in the polygon.
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Similarly as for standard visibility, we define domination between cuts. Given
two θ-cuts c and c′, we say that c dominates c′ if L(c) ⊂ L(c′). We call c
a dominating θ-cut or gate, if c is not dominated by any other θ-cut in P. We refer
to the issuing reflex vertex of a gate as the gate vertex , whereas the edge touched
by the other endpoint of the gate is called the gate edge. Carlsson et al. [4] show
how to compute the dominating cuts in P in linear time, given the complete
set of cuts ordered along the boundary, in standard visibility. Their method
transfers directly to the case of monotone visibility in direction θ, since given
the trapezoidation of the polygon, the ordering can be obtained by a traversal of
the boundary, ordering the forward θ-cuts and the backward θ-cuts separately,
and then merging these two sets of θ-cuts. The process thus takes linear time.

In the algorithm, we establish gates as explained above and remove the por-
tions of the polygon that lie locally to the left of them, resulting in the poly-
gon P′(θ); see Fig. 2(a). The optimal tour will only reflect on the gates in P to
see everything on the other side of them, so it is completely contained in P′(θ).
We then triangulate P′(θ) and establish a constant-size subset V of vertices such
that the optimum tour must pass through at least one of them; see Sect. 4. In the
next step, we compute for each vertex v in V, a triangulated two-manifold Hv(θ)
(see Sect. 2.1) such that the shortest path from v to its image v′ in Hv(θ) cor-
responds to the shortest watchman tour in P that passes through v. We then
establish the shortest path S(v, v′) in Hv(θ), for each v in V, pick the shortest
of these paths, and finally transform it back to the polygon P′(θ). The whole
computation can be done in O(n) time [6].

2.1 The Two-Manifold

In our approach, we extensively exploit the concept of the two-manifold used in
the algorithm by Chin and Ntafos [6]. We therefore provide some more details.

Without loss of generality assume that θ = 0◦. Consider the dominant exten-
sions (or gates in our case) in P. Chin and Ntafos [6,7] prove that an optimal
watchman tour will never intersect the interior of any region L(c) for any dom-
inant extension c. Thus, we define P′ = P′(0◦) def= (P \ ⋃

c∈G L(c))∗, where G
is the set of dominant extensions and S∗ denotes the closure of a set S. (We
take the closure to include the boundary points of P′. ) The dominant extensions
(gates) of P are now part of the boundary of P′, and so we refer to them as
the essential edges of P′. The polygon P′ is triangulated and, given a vertex v,
P′ is then unrolled from v to v′ using the essential edges as mirrors giving Hv

(= Hv(0◦)) , where v′ is the image of v, as follows. The counterclockwise traver-
sal of the boundary of P′ starting at v encounters the incident triangles from
the triangulation in order along the edges and vertices of the traversal. When
reaching an essential edge, we reflect all subsequent triangles using the essential
edge as mirror. As the traversal continues, we repeat this step until the traver-
sal reaches the vertex v again. In the two-manifold, the second instance of the
vertex v is called the image of v and denoted v′. Between the vertex v and the
first essential edge, subsequent consecutive pairs of essential edges, and between
the final essential edge and v′, we perform a standard breadth-first-search to
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keep those triangles of the triangulation that form a path between the mirroring
segments in Hv (see Fig. 2), as this will aid the shortest path finding algorithm
in later steps [11,17]. The size of Hv is linear, because each triangle from the
triangulation of P′ is used at most six times in the construction of Hv, once
for each side of the triangle and once for each vertex of the triangle, since each
boundary edge and vertex is passed only once as we perform the traversal of P′.

From Heron [13], we know that the shortest path between two points that
also touches a line (with both points on the same side of the line) makes perfect
reflection on the line; see Fig. 2(b, c). Thus, the shortest path in Hv between v
and its image v′ corresponds exactly to the shortest watchman tour in P that
passes through v as the path is folded back along the gates in P. Computing the
shortest path in a triangulated simple polygon can be done in linear time [11,17],
and since Hv consists of a linear number of connected triangles, computing the
path takes O(n) time. Folding back the path to obtain the tour also takes O(n)
time by traversing the path and computing the points of intersection between
the path and the triangle sides corresponding to gates in P.

Fig. 2. (a, b) The polygon P′(0◦) with the distinguished vertex v that acts as starting
point for the unrolling process resulting in the two-manifold Hv(0

◦). (c) The resulting
shortest watchman tour in P.

3 The Algorithm

Given that we can compute the shortest watchman tour under monotone visibil-
ity in a specific direction θ in linear time, our objective is to find the direction θ
for which the length of a shortest watchman tour under monotone visibility in
this direction is minimal. Let T (θ) denote a shortest watchman tour under mono-
tone visibility in direction θ. The idea of the algorithm is to compute the tour
T (0◦), and then rotate the direction θ from 0◦ to 180◦, updating T (θ) as the
rotation proceeds.

Consider the tour T (θ) for a fixed direction θ and let G(θ) be the set of
gates visited by T (θ). Treat T (θ) as a (weakly simple) polygon and divide the
vertex set of T (θ) into two types. The stable vertices of T (θ) coincide with reflex
vertices of P, even if they sometimes correspond to convex vertices in T (θ); see
Fig. 2(c). The moving vertices of T (θ) are the reflections on the gates in G(θ).
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We partition T (θ) into subpaths going from one stable vertex to the next one
in counterclockwise order along T (θ). Any such path is either a line segment
between stable vertices of T (θ) or it is a path that starts at a stable vertex,
passes a consecutive sequence of moving vertices, and finishes then again at
a stable vertex. We call such a subpath a maximal moving subpath of T (θ). Any
maximal moving subpath of T (θ) has the following property.

Lemma 2. A maximal moving subpath C(θ) of T (θ) has at most three moving
vertices and they touch gates in order having alternating colors.

Proof. Let v be the stable vertex at the first endpoint of C(θ). Let S(v, v′) be
the shortest path between v and its image v′ in the two-manifold Hv(θ). The
moving vertices of C(θ) correspond to consecutive crossings of gates by S(v, v′)
in Hv(θ) without touching a stable vertex. Since all gates are parallel, when
following S(v, v′), no two consecutive gates in Hv(θ) can have the same color
without S(v, v′) (and thus T (θ)) touching a stable vertex, otherwise one of them
dominates the other, contradicting that they are both gates. Thus, the sequence
of consecutive gates in Hv(θ) is color alternating. Next, it is clear that the
sequence of gates cannot consist of more than three gates, since four or more
would mean that T (θ) is self intersecting and thus could be shortened [6,7]. ��

Given T (θ) and the set of gates G(θ), assume we increase the rotation to
θ + ε to obtain the tour T (θ + ε) and the set of gates G(θ + ε); we refer to such
a rotation as an ε-rotation. We say that T (θ) and T (θ + ε) are close if each of
the following properties hold:

1. The stable vertices of T (θ) and T (θ + ε) are the same.
2. The gate vertices for the gates in G(θ) and G(θ + ε) in P are the same.
3. For any pair of gates >∈ G(θ) and gε ∈ G(θ + ε) with the same gate vertex,

they also have the same gate edge.
4. For any pair of gates >∈ G(θ) and gε ∈ G(θ+ε) with the same gate vertex v>,

if T (θ) touches v>, then T (θ + ε) also touches v>, and if T (θ) touches the
other endpoint of ¿, then T (θ + ε) also touches the other end point of gε.

We claim the following lemma. Its proof basically makes an analysis of the cases
based on the number of moving vertices, at most three, in a maximal moving
subpath; each case leads to a trigonometric formula.

Lemma 3. If T (θ) and T (θ + ε) are close, then ‖T (θ + ε)‖ = ‖T (θ)‖ +
∑|G(θ)|

k=1 fk(ε), where

fk(ε) =

√
a2
k,0 + ak,1 tan ε + ak,2 tan2 ε

1 + ak,3 tan ε + ak,4 tan2 ε
−ak,0 +

√
a2
k,5 + ak,6 tan ε + ak,7 tan2 ε

1 + ak,8 tan ε + ak,9 tan2 ε
−ak,5

+

√
a2
k,10 + ak,11 tan ε + ak,12 tan2 ε + ak,13 tan3 ε + ak,14 tan4 ε

1 + ak,15 tan ε + ak,16 tan2 ε + ak,17 tan3 ε + ak,18 tan4 ε
− ak,10

+

√√√√a2
k,19 +

∑14
i=1 ak,19+i tani ε

1 +
∑14

i=1 ak,33+i tani ε
− ak,19,
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for some constants ak,0, . . . , ak,47, 1 ≤ k ≤ |G(θ)|, only depending on the stable
vertices, the gate vertices, the gate edges, and the angle θ.

By Lemma 3, as long as T (θ) maintains the closeness properties in a small
neighborhood, θ + ε of θ, with ε > 0, the length function ‖T (θ)‖ is smooth
(continuous and differentiable), and we can obtain the angles of minima for
‖T (θ)‖ using standard analytic methods. The function consists of O(|G(θ)|)
terms, requiring us to test O(|G(θ)|) potential solutions, thus taking O(|G(θ)|)
time.

However, when the closeness properties do not hold, at least one of the follow-
ing changes occur: the current set of stable vertices of T (θ) changes, the current
set of gate vertices changes, some gate in the current set G(θ) changes its gate
edge, or the tour T (θ) reaches or leaves an endpoint of a gate. We call the angles
where such changes occur events and present them in further detail next.

3.1 Events

In general, we have two types of events: those defined by the vertices of the
polygon (or pairs of them), and those defined by the stable and moving vertices
of the current tour. We further subdivide them into the following six types.

Validity event: a new gate arises or an old gate disappears. This happens when
the gate becomes collinear to a polygon edge adjacent to the gate vertex.

Domination event: a gate “changes gate vertex”, i.e., a cut c issued from
a vertex v, previously dominated by a gate g with gate vertex v′, becomes
collinear to g, v and v′ have the same color, and as the rotation proceeds,
v becomes the new gate vertex.

Jumping event: the endpoint of a gate g on the gate edge, reaches a reflex
vertex of P issuing a cut of different color to that of g.

Passing event: the endpoint of a gate on the gate edge, reaches an uncolored
reflex vertex or a convex vertex of P.

Bending event: a maximal moving subpath of T (θ) reaches or leaves a reflex
vertex of P′(θ).

Cuddle event: a moving vertex of the tour reaches or leaves a gate endpoint.

Lemma 4. The set of events is complete.

Proof. Consider the four properties necessary for two tours T (θ) and T (θ + ε)
to be close. We take the contrapositive for each property and show that the only
cases when these can occur is if one of the listed events occurs for T (θ).
The Current Set of Stable Vertices of T (θ) Changes. Since the only part of T (θ)
that changes under ε-rotation are the maximal moving subpaths, a stable vertex
can never be directly exchanged for another vertex. Therefore, the only other
possibilities are that a stable vertex is either added to or removed from T (θ),
but these are exactly the bending events.
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The Current Set of Gate Vertices Changes. There are three possibilities that
this can happen. First, a gate vertex is exchanged for another gate vertex. In
order for this to happen, there must be some angle when a gate is collinear to
a θ-cut of some other reflex vertex with the same color. These are exactly the
domination events. The two other possibilities are that a gate is either added to
or removed from G(θ), but these are exactly the validity events.
Some Gate in the Current Set G(θ) Changes Gate Edge. For this to happen,
the endpoint of the gate opposite the gate vertex must lie at a vertex of the
polygon. If this vertex is reflex and has the same color as the current gate, we
have a domination event. If the vertex is reflex but has the opposite color of the
gate, by definition, we have a jumping event. If the vertex is either reflex but
uncolored or convex, then we have exactly a passing event. Since vertices can be
of no other types, these three event types cover this case.
The Tour T (θ) Reaches or Leaves an Endpoint of a Gate. This is exactly the
definition of the cuddle events.
Thus, the six event types completely cover all the cases. ��
The reason for defining six types of events is that our algorithm will handle each
of them slightly differently, as is explained in the next section.

3.2 Handling Events

The algorithm maintains, for a given angle θ, the following information: T (θ),
G(θ), Hv(θ) for a reflex vertex v coinciding with a stable vertex of T (θ), the
change function ‖T (θ + ε)‖ = ‖T (θ)‖ +

∑
1≤k≤|G(θ)| fk(ε) (a function of ε), for

each gate in G(θ), the visibility polygon of the gate vertex (for standard visibility,
not monotone visibility), and a priority queue Q maintaining O(|G(θ)|) angles
of future potential events, a constant number for each gate. We next present
how each event is handled during the running of the algorithm as the direction
θ rotates from 0◦ to 180◦.

ALGORITHM
LetTopt←T (0◦), θ←0◦, compute the event angles (c.f. validity event routine
below), insert them in Q, and repeat the following steps while θ<180◦.
Step 1. Get the next event angle θ from the priority queue Q.
Step 2. Depending on the event type, perform one of the following routines.

Validity event routine. For each such event:
1. Compute the gates G(θ) and the optimal tour T (θ) for direction θ in O(n)

time as explained in Sect. 2.1.
2. Empty the priority queue Q.
3. For each segment s of the shortest path in Hv(θ) that crosses a gate, we

establish the shortest path from the endpoints of the gate to the endpoints
of s, and associate the reflex vertices on those paths that are closest to
the endpoints of s (at most four). We can quickly test (in O(|G(θ)|) total
time) whether any such vertex crosses s during the subsequent rotation
and establish at what rotation angle this happens, i.e., the potential next
bending and cuddle events. Insert each of the two events per gate in Q.
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4. For each of the gates in G(θ), compute the standard visibility polygon
for the gate vertex and obtain the next passing event, jumping event,
domination event, and validity event (if they exist) by traversing the
boundary of the visibility polygon starting from the angle θ from the
gate vertex. This takes O(n) time per gate. Insert each of the four events
per gate in Q. This takes a total of O(n|G(θ)|) time for all the gates.

5. Look at the next angle θ′ in Q. Compute the change function ‖T (θ + ε)‖
and the best local angle θ + ε, for ε > 0, such that θ < θ + ε ≤ θ′. If
‖T (θ + ε)‖ < Topt, then update Topt. This takes O(|G(θ)|) time, since
the change function has O(|G(θ)|) terms, each being the square root of
rational polynomials of degree at most 14; see Lemma 3.

The time complexity is O(n|G(θ)|) for this case.

Domination event routine. For each such event:
1. Update the set of gates in G(θ) by exchanging one gate for a collinear

gate with different gate vertex. This takes constant time.
2. Remove the events in Q associated to the old gate. This takes O(|G(θ)|)

time by a traversal of Q.
3. For the new gate vertex, compute the visibility polygon around the gate

vertex, and obtain the next passing event, jumping event domination
event, and validity event (if they exist) by traversing the boundary of the
visibility polygon starting from the angle θ from the gate vertex. Insert
each of the four events in Q. This takes O(n) time.

4. Perform Step 5 as for validity events.
The time complexity is O(n) for this case.

Jumping event routine. For each such event:
1. Since the set of gate vertices does not change, only update the gate edge

and then recompute the tour obtaining the next jump event by continuing
the traversal of the boundary of the visibility polygon starting from the
angle θ from the gate vertex. Add it to Q. This takes O(n) time.

2. Perform Step 5 as for validity events.

Passing event routine. For each such event:
1. Update the change function ‖T (θ + ε)‖ with the appropriate term con-

sisting of the square root of rational polynomials of degree at most 14.
This takes O(|G(θ)|) time.

2. Perform Step 5 as for validity events.

Bending event routine. Here, neither the set of gate vertices nor the set of
gate edges change, so we proceed as in Steps 3 and 5 for validity events. The
time complexity is O(|G(θ)|).

Cuddle event routine. Handled as bending events.
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4 Analysis

The correctness of our algorithm follows directly from Lemmas 3 and 4. To ana-
lyze the time complexity, define G

def= max0◦≤θ<180◦ |G(θ)|. We note that the
number of validity events is 2r and take O(nG) time each, the number of domi-
nation and jumping events is O(rG) and take O(n) time each, and the number of
passing, bending, and cuddling events is O(nr) (since they each associate a ver-
tex, either of the tour or of the polygon, with a reflex vertex of the polygon) and
take O(G) time each. Thus, the complexity of our algorithm is O(nrG).

It remains to prove that for a fixed angle θ, we can quickly, in linear time,
obtain a constant sized set V of polygon vertices so that S(v, v′) from v to its
image v′ in Hv(θ) corresponds to a shortest watchman tour in P, for some v ∈ V.
If P′(θ) has two essential edges (corresponding to gates in P) with the same color,
we know from the proof of Lemma 2 that the highest reflex vertex along a path
between the gates in a coordinate system where the gates are parallel to the
x-axis must be touched by the tour, otherwise it is not shortest. Since there are
two paths between those gates, we obtain a set V of two vertices in this case. If
P′(θ) has one red and one blue essential edge, a shortest tour either touches one
of the edge endpoints or it can be slid along the essential edge until it touches a
reflex vertex in the polygon. We obtain such a reflex vertex by computing S(p, p′)
for each essential edge endpoint p and following S(p, p′) to the last vertex before
it intersects the first gate in Hp(θ). We thus obtain a set V of at most eight
vertices, four essential edge endpoints and four vertices obtained from Hp(θ).
We have shown the following theorem.

Theorem 1. The presented algorithm computes the minimum length shortest
(floating) watchman tour under monotone visibility in direction θ over all 0◦ ≤
θ < 180◦ in a simple polygon in O(nrG) time and O(nG) storage, where n is the
number of vertices, r is the number of reflex vertices, and G ≤ r is the maximum
number of gates of the polygon used at any time in the algorithm.

5 Conclusions

Observe that our approach can also be used to obtain optimal tours for other
parameters which are dependent on the rotation angle θ, e.g., the longest of all
shortest watchman tours, the one with smallest or largest area, etc. All we need
is to adapt Lemma 3 for the specific problem.

An interesting extension of our problem is to minimize the longest out of
multiple tours that together see a polygon under rotated monotone visibil-
ity. For standard visibility the problem is known to be NP-hard even for two
tours [19] and efficient constant factor approximation algorithms also exist for
this case [20].
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Abstract. We study a problem arising in statistical analysis called the
minimum bottleneck generalized matching problem that involves breaking
up a population into blocks in order to carry out generalizable statistical
analyses of randomized experiments. At a high level the problem is to find
a clustering of the population such that each part is at least a given size
and has at least a given number of elements from each treatment class (so
that the experiments are statistically significant), and that all elements
within a block are as similar as possible (to improve the accuracy of the
analysis).

More formally, given a metric space (V, d), a treatment partition T =
{T1, . . . , Tk} of V , and a target cardinality vector (b0, b1, . . . , bk) ∈ Zk+1

+

such that b0 ≥
∑k

j=1 bj . The objective is to find a partition M1, . . . , M�

of V minimizing the maximum diameter of any part such that for each
part we have |Mi| ≥ b0 and |Mi ∩ Tj | ≥ bj for all j = 1, . . . , k.

Our main contribution is to provide a tight 2-approximation for the
problem. We also show how to modify the algorithm to get the same
approximation ratio for the more general problem of finding a partition
where each part spans a given matroid.

1 Introduction

In Social Science and related fields, designing experiments on a sample of the
population so that the insights obtained from the experiments can be general-
ized to the whole population is a major challenge. Statistical techniques such
as blocking, are used for designing sound experiments. Given a population the
objective is to break it up into homogeneous blocks of at least a given minimum
size and then randomly assign elements within blocks to treatment and control
groups. It is important that these blocks are large enough (so that the results are
statistically significant) and homogeneous (so that there are no hidden variables
that could explain variabilities between treatment and control outcomes). While
the concept of blocking and randomized experiments goes back to the seminal
work of Fischer [5], the design of efficient algorithms for blocking has attracted
the attention of the Statistics community [7,8,18] in more recent times. Indeed,
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D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 324–334, 2020.
https://doi.org/10.1007/978-3-030-58150-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58150-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-58150-3_26


Tight Approximation for the Minimum Bottleneck 325

the efficiency of the blocking algorithm used and the quality of the blockings
found are crucial in the context of A/B testing in online advertising platforms
where treatment effects on advertisers are typically small [13] yet very econom-
ically relevant due to the large scale of these platforms.

The work of Higgins et al. [8] is particularly relevant to our paper. The
authors cast the problem of finding a good blocking as an optimization problem,
which they call minimum threshold blocking : Given a metric space (V, d) and a
cardinality lower bound b, the objective is to partition V so that each part has
cardinality at least b and the maximum diameter of any one part is minimized.
Here V is the population that we want to block and d a distance function cap-
turing how similar any two elements in V are (low distance implying similarity).
They showed that the problem admits a 4-approximation and that it is NP -hard
to approximate within 2 − ε.

While designing experiments that use a good blocking structure is highly
desirable, sometimes the treatment partition is already given to us, either
because someone else performed the experiment, because the sample size is small,
or because the dissimilarity function was not fully available at the time the exper-
iment was run. In these situations, when analyzing the experimental results, we
still want to partition our population so that each part is as homogeneous as
possible, and each part gets enough representatives from each treatment class.
Sävje et al. call this problem the minimum bottleneck generalized matching1

and show how to generalize the 4-approximation of Higgins et al. [8] to get a
4-approximation for this more general problem.

In the Computer Science community, the problem of clustering points to
minimize the maximum radius of the clusters such that each cluster has at least
a given number of points has been studied by Aggarwal et al. [1] in the context
of anonymity preserving clustering. This is identical to the minimum threshold
blocking problem except that we need to minimize the maximum cluster radius
rather than the maximum cluster diameter. The authors call this problem r-
gather and they give an optimal 2-approximation algorithm that in term gener-
alizes the classical 2-approximation for k-center of Hochbaum and Shmoys [9].
Although the radius and diameter objectives are not equivalent, it is known how
to modify the algorithm for r-gather to minimize the diameters of the clusters
rather than the radii [11]. Enforcing the treatment partition constraints on the
clusters, however, cannot be reduced to the r-gather problem.

Our main contribution is a 2-approximation algorithm for the minimum bot-
tleneck generalized matching problem, which matches the hardness of approxi-
mation of Higgins et al. [8] for the special case of minimum threshold blocking.
We also extend our 2-approximation algorithm to handle more complex con-
straints that go beyond the treatment partition constraints and involve finding
a partition whose parts span a given matroid [17].

1 Matching here refers to the concept in Statistics. It should not be confused with the
traditional concept from Graph Theory.



326 J. Mestre and N. E. S. Moses

1.1 Related Work

The problem of clustering points in a metric space has been studied extensively
in Algorithm Theory. Many objectives have been proposed such as k-center [6,9]
where we want to minimize the maximum radius of the clusters, k-median [15]
where we want to minimize the sum of the cluster radii, and k-means [16] where
we want to minimize the total intra-cluster variance.

In addition to different objectives, researchers have proposed side constraints
to the clustering problem such as allowing the algorithm to leave a small set of
outliers unclustered [3], imposing capacity constraints [12] or anonymity con-
straints [1] on the clusters, or a matroid constraint on the set of centers we can
pick [20].

To the best of our knowledge, none of these works deals with the bottleneck
generalized matching problem of Sävje et al. [19]. The most closely related work
that we are aware is the work of Li et al. [14] on �-diversity clustering: Here they
want a clustering such that each cluster has at least � points, and all of its points
come from different treatment classes and the goal is to minimize the maximum
radius of any cluster. Our cluster constraints are in a sense complementary;
namely, instead of upper bounding how many points we need from a treatment
class, we want to get at least a prescribed number.

2 Formal Problem Definition and Notation

The input of the minimum bottleneck generalized matching problem is a metric
space (V, d), a treatment partition T = {T1, T2, . . . , Tk} of V , and a target
cardinality vector (b0, b1, b2, . . . , bk) ∈ Zk+1

+ such that bi ≤ |Ti| for all i and
b0 ≥

∑k
j=1 bj . The distance function d : V ×V → R is non-negative, symmetric,

and obeys the triangle inequality.
Our ultimate goal is to compute a partition M = {M1,M2, . . .} of V . A

partition is said to be feasible if for all M ∈ M we have |M | ≥ b0 and |M ∩Tj | ≥
bj for all j ∈ [k]. Here [k] is a short hand notation for the set {1, . . . , k}. Later
we will use [0, . . . , k] to denote the set {0, 1, . . . , k}.

We define the cost of a partition M to be the maximum diameter2 among
parts M ∈ M:

cost(M) = max
M∈M

max
u,v∈M

d(u, v) .

The goal of the minimum bottleneck generalized matching problem is to find a
feasible partition M with minimum cost. Our main result is a 2-approximation
algorithm for this problem. The approach is based on ideas from an algorithm
of Aggarwal et al. [1] for the r-gather problem, where they only have a lower
bound on the size of the cluster, but no treatment partition constraints.

2 The diameter is defined as the maximum distance between nodes in a set.
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3 Minimum Bottleneck Generalized Matching

In this section we prove that there is a 2-approximation for our problem.

Theorem 1. There is a polynomial time 2-approximation algorithm for the
minimum bottleneck generalized matching problem.

Let opt be the cost of the optimal solution. Suppose that we had a polynomial
time routine parametrized by a scalar g such that:

– if g ≥ opt the routine returns a solution with cost ≤ 2g, and
– if g < opt the routine either reports “failure” or returns a solution with cost

≤ 2g.

We can use this parametrized routine to design a polynomial time 2-
approximation algorithm as follows. For each pair u, v ∈ V , run the routine
with g = d(u, v) and return the best solution found.

Note that one of these choices of g must equal opt, so for that choice we are
guaranteed a solution with cost 2opt. Returning the best solution found can only
yield a better result. Therefore, the correctness of the 2-approximation hinges
on the existence of the parametrized routine. The rest of this section is devoted
to developing this routine.

3.1 Description of the Parametrized routine

Our routine attempts to build a feasible solution of cost at most 2g in three
steps. First we pick a set of centers. Second, we build, if possible, a partial
cluster around each of the centers that fulfills the treatment partition cardinality
constraints. Third, we augment this partial solution by assigning the remaining
points to a nearby cluster. Only the second step may not be possible to be carried
out, in which case we declare “failure”.

Finding centers. The first step of the parametrized routine is to select a set of
centers c1, . . . , c� such that every element in V has a center at distance at most
g and the distance between two centers is greater than g. More formally, the
centers have the following two properties

1. mini∈[�] d(u, ci) ≤ g for all u ∈ V , and
2. d(ci, ci′) > g for all i, i′ ∈ [�] where i �= i′.

We can compute such a set of centers using the iterative approach of Hochbaum
and Shmoys [9]: Iteratively pick an arbitrary element v of V , declare v to be a
center and remove from V all elements at distance at most g from v. The process
ends when all elements of V have been removed.
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Finding a partial solution. The second step is to construct a partial partition3

{M1, . . . ,M�} of V such that for each i ∈ [�] we have the following three prop-
erties:

1. |Mi| = b0,
2. |Mi ∩ Tj | ≥ bj for each j ∈ [k], and
3. d(v, ci) ≤ g for all v ∈ Mi.

We can find such a partial partition, if one exists, by solving a maximum flow
problem in a layered directed graph depicted in Fig. 1 and described below.
The vertex set of the network flow instance is as follows:

– In the first layer, we have the source s by itself.
– In the second layer, we have k + 1 dummy vertices for each center; namely,

we have a vertex aj
i for each i ∈ [�] and j ∈ [0, . . . , k].

– The third layer contains the ground set V .
– Finally, in the fourth layer, we only have the sink t.

The layers are connected as follows:

– For all i ∈ [�], the source s is connected to a0
i with an edge with capacity

b0 −
∑k

j=1 bj .
– For all i ∈ [�] and j ∈ [k], the source s is connected aj

i with an edge with
capacity bj .

– Each a0
i is connected to each v ∈ V with an edge without capacity if d(ci, v) ≤

g.
– Each aj

i is connected to each v ∈ Tj with an edge without capacity if d(ci, v) ≤
g.

– Finally, each v ∈ V is connected to t with an edge with capacity 1.

We solve this problem using any of the traditional combinatorial algorithms [2]
for maximum s-t flow. These algorithms return an integral flow that obeys the
capacity constraints and sends the maximum amount of flow from s to t. If
the value of the maximum flow is less that b0 · � then the parametrized routine
declares “failure”. Otherwise, we create a partial partition by setting Mi to be
the set of nodes v ∈ V such that there exists a unit of flow going from some aj

i

to v.

Augmenting the Partial Solution. The third and final step is to augment our
partial solution by adding every vertex v not assigned so far to one of the parts
Mi such that d(v, ci) ≤ g. Notice that because of the way the centers were
constructed in the first step, we are always able to identify such a center.

If the algorithm does not declare failure in the second step, it returns the
augmented solution from the third step that forms a full partition of V .

3 A partial partition of V is a partition of a subset of V .
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Fig. 1. Maximum flow instance for step two of the parametrized routine. In this exam-
ple � = 2, k = 2, T1 = {v1, v2, v3}, and T2 = {v4, v5, v6}.

3.2 Correctness of the Parametrized Routine

If the routine does not fail, it returns a feasible partition {M1, . . . ,M�} where
ci ∈ Mi for each i ∈ [�]. This is because the centers are more than g apart
from one another and we only assign to Mi that are at distance at most g to ci.
Furthermore, for any two vertices u, v ∈ Mi we have d(u, v) ≤ d(u, ci)+d(ci, v) ≤
2g, so the solution has cost at most 2g as desired.

If the routine fails, we need to argue that g < opt. We prove the contraposi-
tive: If g ≥ opt then the routine does not fail. This boils down to arguing that
the network flow problem defined in the second step of the routine is feasible.
To that end, consider an optimal solution O = {O1, O2, . . .}. Recall that any
two centers in c1, . . . , c� are at distance strictly greater than g ≥ opt from one
another. It follows that they must lie in different sets in the optimal solution.
Assume, without loss of generality, that ci ∈ Oi. We build a flow as follows.
For each j = 1, . . . , k, pick bj elements v ∈ Oi ∩ Tj and push one unit of flow
along the path 〈s, aj

i , v, t〉; finally pick any b0 −
∑k

j=1 bj elements v ∈ Oi that
were not chosen so far and push one unit of flow along the path 〈s, a0

i , v, t〉. (The
existence of the elements is guaranteed by the feasibility of O.) The resulting
flow is feasible and has value b0 · � as needed.

3.3 Time Complexity and Implementation Details

The most expensive step of the parametrized routine is the computation of the
maximum flow. An alternative to computing a flow would be build a bipartite
graph where s and t are removed and the aj

i vertex is replaced with bj copies
for j ∈ [k] and b0 −

∑k
j=1 bj copies for j = 0. The objective in this new graph
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is to find a maximum cardinality matching (matching in the standard Graph-
theoretic sense). Using the Hopcroft-Karp algorithm [10], this can be done in
O(n2.5) time where n = |V |.

In principle this would have to be repeated for each possible choice of g
of which there are O(n2) many. However, one can perform binary search on
the candidate values of g until we find the smallest value of g for which the
parametrized routine does not fail, which only adds a O(log n) factor to the
O(n2.5) running time.

4 Generalization to Matroid Constraints

In this section we explore a generalization of the basic setting that involves a
richer set of constraints on each part that involves matroids.

Before we proceed any further, it is worth recalling some basic terminology
from Matroid Theory [17]. A subset system is a pair (V,E) where E is a collection
subsets of V such that for all A ∈ E and A′ ⊂ A we have A′ ∈ E. A subset
system is a matroid if for all A,B ∈ E such that |A| < |B|, there exists x ∈ B\A
such that A+x ∈ E. The rank function associated with an independence system
E is rankA = maxB⊆A:B∈E |B|, that is, the rank of A is the cardinality of the
largest independent subset of A. Finally, a set A is said to span the matroid if
rank(A) = rank(E).

For our generalization, instead of a target partition and a cardinality vector
like we had before, we are given a matroid (V,E) defined by the ground set V
that we are to partition and an independence system E.

The objective is to compute a partition M = {M1,M2, . . .} of V such that
Mi spans (V,E) for all i ∈ [�] and the maximum diameter of any one part is
minimized:

cost(M) = max
M∈M

max
u,v∈M

d(u, v).

As we shall see in Lemma 1, the constraints of the standard bottleneck gen-
eralized matching problem can be achieved with a carefully designed matroid
system, so this new problem is a strict generalization of the former. For exam-
ple, if each element in the ground set is associated with an edge in some auxiliary
graph, then we could ask that each cluster forms a connect subgraph using a
graphic matroid. We call this new problem the minimum bottleneck generalized
matching problem with a matroid constraint.

Lemma 1. Let (V,E) be a subset system where A ∈ E if and only if∑
i max(|A ∩ Ti| − bi, 0) ≤ b0 −

∑
i bi. Then (V,E) is a matroid and A ∈ E

is maximal if and only if |A| = b0 and |A ∩ Ti| ≥ bi for all i.
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Proof. For any A ∈ E, we have

|A| =
∑

i

|A ∩ Ti|

=
∑

i

(|A ∩ Ti| − bi) +
∑

i

bi

≤
∑

i

max(|A ∩ Ti| − bi, 0) +
∑

i

bi

≤ b0 −
∑

i

bi +
∑

i

bi

= b0

Thus, |A| ≤ b0 for all A ∈ E. Furthermore, for any A ∈ E if |A| = b0 all
inequalities are strict, so bi ≥ |A ∩ Ti| for all i. On the other hand, for any
A ∈ E if |A| < b0 then the subset is clearly not maximal.

To see why the system is a matroid, let A,B ∈ E such that |A| < |B|. If∑
i max(|A∩Ti| − bi, 0) < b0 −

∑
i bi then for any x ∈ B \A we have A+x ∈ E.

Otherwise, since |A| < |B|, there must exist i such that |A ∩ Ti| < bi and
|A ∩ Ti| < |B ∩ Ti| in which case for any x ∈ B ∩ Ti \ A we have A + x ∈ E. ��

To solve the problem we proceed as before, by designing a routine that is
parametrized by a scalar g. If g ≥ opt, the routine returns a feasible solution
with cost 2g, or if g < opt either returns a “failure” message or a solution with
cost 2g.

We can use this routine in the same way as we did in the previous problem
to get a 2-approximation by guessing the value of opt and running the routine
on each choice.

4.1 Parametrized Routine

The first and third steps remain the same as before: In the first step we compute
a set of centers c1, . . . , c� such that every element in V has a center at distance at
most g and the distance between centers is strictly greater than g; while in the
third step we augment the partial partition found in the modified second step.
The key difference is how we find the partial solution that satisfies the matroid
constraints in the second step.

Modified second step. The new second step involves solving a matroid intersec-
tion problem defined by two matroids (V ′, E′

1) and (V ′, E′
2).

The ground set of the matroids V ′ contains � copies of each element in V ,
more formally,

V ′ =
{
vi : for all v ∈ V, i ∈ [�]

}
.

The independence system of the first matroid enforces that the i-th copy of the
element chosen is independent in the input matroid

E′
1 =

{
X ⊆ V ′ :

{
v : vi ∈ X

}
∈ E for all i ∈ [�]

}
.
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The independence system of the second matroid enforces that we select at most
one copy of each element

E′
2 =

{
X ⊆ V ′ :

∣
∣
{
vi : i ∈ [�]

}
∩ X

∣
∣ ≤ 1 for all v ∈ V

}

We use a matroid intersection algorithm to find a maximum cardinality set X in
E′

1 ∩ E′
2. If |X| < rank(V,E) · �, then we declare “failure”. Otherwise, we create

a partial partition with parts Mi =
{
v ∈ V : vi ∈ X

}
for each i ∈ [�]. At this

point each part spans the input matroid (V,E), however, there are elements that
may not have been assigned. We assign each of these remaining elements v ∈ V
to a part Mj such that d(v, cj) ≤ g. Such a center is guaranteed to exist due to
the way the centers are selected.

4.2 Correctness

The correctness of the new parametrized routine is similar to that of the old rou-
tine. If the routine returns a partition {M1, . . . ,M�} then it satisfies the matroid
spanning requirements; indeed, the partial partition {M ′

1, . . . ,M
′
�} already has

the spanning property, namely M ′
i ∈ E and |M ′

i | = rank(V,E), so M ′
i spans

(V,E), and therefore so does Mi. Furthermore, the diameter of any part is at
most 2g since for any two u, v ∈ Mi we have d(u, v) ≤ d(u, ci) + d(ci, v) ≤ 2g.

Finally, we argue that if g ≥ opt then the parametrized routine never fails.
Let O = {O1, O2, . . .} be an optimal solution. Recall that any two centers indeed
c1, . . . , c� are at distance strictly greater than g ≥ opt from one another. It follows
that they must lie in different parts in the optimal solution. Assume, without loss
of generality, that ci ∈ Oi. Let M ′

i ⊆ Oi be a maximum cardinality independent
set. Because Oi spans (V,E), it must be the case that |M ′

i | = rank(V,E). Let
X = ∪i∈[�]

{
vi : v ∈ M ′

i

}
be a subset of the ground set of the matroid intersection

instance (V ′, E′
1 ∩ E′

2) defined in step two of the parametrized routine. Notice
that X ∈ E′

1 because each M ′
i ∈ E and X ∈ E′

2 because the sets {M ′
1, . . . ,M

′
�}

are disjoint.

4.3 Time Complexity

Using the matroid intersection algorithm of Cunningham [4] we can find the
needed maximum cardinality in (V ′, E′

1 ∩ E′
2) in O(r1.5n′) calls to an inde-

pendence oracle for the underlying matroids, where r is the maximum size
of the common independent set and n′ = |V ′|. In our case, r = O(n),
n′ = O(�n) = O(n2), and we can test independence in the matroids by using
an oracle for the input matroid (V,E). Therefore, the running time is O(n3.5Q),
where Q is the time it takes to test independence in (V,E).

As described in the previous section, we can implement the 2-approximation
algorithm so as to perform O(log n) calls to the parametrized routine. Therefore,
the overall running time is O(n3.5Q log n).
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5 Conclusion

In this paper we developed a tight 2-approximation algorithm for the minimum
threshold generalized matching problem and showed that our approach can be
generalized to tackle a more general version of the problem involving finding a
partition whose parts span a given matroid. Our hope is that better approxima-
tions can lead to better statistical analyses.

Acknowledgement. We would like to thank Jasjeet Sekhon for early discussions on
minimum bottleneck generalized matching.
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Abstract. In this paper we study the approximability of the Maxi-
mum Happy Set problem (MaxHS) and the computational complexity
of MaxHS on graph classes: For an undirected graph G = (V, E) and a
subset S ⊆ V of vertices, a vertex v is happy if v and all its neighbors are
in S; otherwise unhappy. Given an undirected graph G = (V, E) and an
integer k, the goal of MaxHS is to find a subset S ⊆ V of k vertices such
that the number of happy vertices is maximized. MaxHS is known to be
NP-hard. In this paper, we design a (2Δ + 1)-approximation algorithm
for MaxHS on graphs with maximum degree Δ. Next, we show that the
approximation ratio can be improved to Δ if the input is a connected
graph and its maximum degree Δ is a constant. Then, we show that
MaxHS can be solved in polynomial time if the input graph is restricted
to proper interval graphs, or block graphs. We prove nevertheless that
MaxHS remains NP-hard even for bipartite graphs or for cubic graphs.

1 Introduction

Homophily is the principle that in social networks people are more likely to
connect with people sharing similar interests with them. Easley and Klein-
berg [15] mentioned that homophily is one of the most basic laws governing
the structure of social networks and it provides us with a first, fundamental
illustration of how a network’s surrounding contexts can drive the formation of
its links. Then, motivated by a study of algorithmic aspects of the homophily
laws in social networks, Zhang and Li [28] introduced an optimization prob-
lem in terms of graph coloring, called the Maximum Happy Vertices problem
(MaxHV). MaxHV has attracted growing attention and thus there is a large lit-
erature [1–3,13,21,27–29].

1.1 Our Problem and Contributions

Very recently, we formulated the happy problem motivated by the homophily
laws as a “vertex-subset” problem [4]: For an undirected graph G = (V,E)
c© Springer Nature Switzerland AG 2020
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and a subset S ⊆ V of vertices, a vertex v is happy if v and all its neighbors
are in S. Given an undirected graph G = (V,E) and an integer k, the goal of
the Maximum Happy Set problem (MaxHS) is to find a subset S ⊆ V of k
vertices such that the number of happy vertices is maximized. In [4] we showed
that there are fixed-parameter algorithms for MaxHS when parameterized by the
tree-width, the clique-width plus k, the neighborhood diversity, or the twin-cover
number. On the other hand, MaxHS is W[1]-hard when parameterized by k even
for split graphs.

In this paper we focus on the approximability of MaxHS and the compu-
tational complexity of MaxHS on several graph classes such as proper interval
graphs, block graphs, bipartite graphs, and graphs with bounded degrees. Our
main results are summarized as follows:

1. There is a simple (2Δ + 1)-approximation algorithm for MaxHS on graphs
with maximum degree Δ.

2. There is a Δ-approximation algorithm for MaxHS on connected graphs with
maximum degree Δ if Δ is a constant.

3. MaxHS can be solved in polynomial time if the input graph is restricted to
proper interval graphs, or block graphs (while MaxHS is NP-hard for chordal
graphs).

4. MaxHS is NP-hard even for bipartite graphs.
5. MaxHS is NP-hard even for cubic (i.e., 3-regular) graphs.

We remark that split graphs, proper interval graphs, and block graphs are impor-
tant subclasses of chordal graphs and the third positive result is in contrast to
the W[1]-hardness of MaxHS on split graphs. Also, remark that the treewidth
of any graph with maximum degree two is at most two and thus MaxHS can be
solved in polynomial time for graphs of the maximum degree two [4]. Due to
space constraints, some results and proofs are omitted.

1.2 Related Work

In [28], an “edge-variant” of MaxHS is also considered: For an undirected graph
G = (V,E) and a subset S ⊆ V of vertices, an edge is happy if its both endpoints
are in S; otherwise unhappy. Given an undirected graph and an integer k, the goal
of Maximum Edge Happy Set problem (MaxEHS) is to find a subset S ⊆ V
of k vertices such that the number of happy edges is maximized. Actually, how-
ever, MaxEHS is identical to the Densest k-Subgraph problem (DkS), which
is defined as a problem of finding a subgraph of the given graph with exactly
k vertices such that the number of edges in the subgraph is maximized. There-
fore, MaxEHS is generally NP-hard since it is a generalization of the Maximum
Clique problem [18]. Moreover, it is NP-complete even to decide if there exists a
solution with at least k1+ε happy edges for any positive constant ε [5]. In [17] it is
shown that MaxEHS is NP-hard for graphs whose maximum degree is three. The
problem MaxEHS is NP-hard even for very restricted classes of graphs, such as
chordal graphs, comparability graphs, triangle-free graphs and bipartite graphs
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with maximum degree three [14,17]. Fortunately, MaxEHS is solvable in polyno-
mial time on graphs whose maximum degree is two, cographs, split graphs, and
k-trees [14]. Interestingly, the complexity of MaxEHS on (proper) interval graphs
and on planar graphs remains open. Still, it is known that there is a PTAS for
MaxEHS on interval graphs [23].

Kortsarz and Peleg proposed an O(n0.3885)-approximation algorithm for Max-
EHS on n-vertex graphs [20]. Then, Feige, Kortsarz, and Peleg gave an O(nδ)-
approximation algorithm for some δ < 1/3 [16]. Bhaskara et al. proposed an
O(n1/4+ε)-approximation nO(1/ε)-time algorithm for any ε > 0 [6]. On the other
hand, there are inapproximability results of MaxEHS under several assumptions
[11,19,22]. However, it remains open whether there is a constant factor approx-
imation algorithm for MaxEHS.

In [9], Broersma, Golovach, and Patel proved that for an n-vertex graph G
with the clique-width cw(G), MaxEHS can be solved in time kO(cw(G)) × n, but
it cannot be solved in time 2o(cw(G) log k) × nO(1) unless the ETH fails. Bourgeois
et al. gave FPT algorithms for MaxEHS parameterized by treewidth and vertex
cover number, respectively [8]. Moreover, several exact algorithms are proposed
[7,12]. So far many researchers have investigated the edge variant MaxEHS, while
there are few previous results for MaxHS.

2 Preliminaries

Let G = (V,E) be an undirected graph, where V and E denote the set of vertices
and the set of edges, respectively. V (G) and E(G) also denote the vertex set and
the edge set of G, respectively. Throughout the paper, let n = |V | and m = |E|
for any given graph. We denote an edge with endpoints u and v by {u, v}.
The set of vertices adjacent to a vertex v in G, i.e., the open neighborhood of
v is denoted by N(v) = {u ∈ V | {u, v} ∈ E}. Similarly, let N(S) = {u ∈
V \ S | v ∈ S, {u, v} ∈ E} be the open neighborhood of a subset S of vertices.
The closed neighborhood of v (S, resp.) is denoted by N [v] (N [S], resp.), i.e.,
N [v] = {v} ∪ N(v) (N [S] = S ∪ N(S), resp.). The degree of v is denoted by
deg(v) = |N(v)|. Let Δ(G) and δ(G) (or simply Δ and δ) be the maximum and
the minimum degrees of G, respectively.

A graph H is a subgraph of a graph G = (V,E) if V (H) ⊆ V and E(H) ⊆ E.
For a subset of vertices U ⊆ V , let G[U ] be the subgraph of G induced by U .
For a subset C of V (G), if every pair of two vertices in C is adjacent in G[C],
then G[C] is called a clique and also C is called a clique set. In the following we
often use C and G[C] (i.e., clique set and clique) without distinction. A complete
bipartite graph (V ∪ U,E) is a bipartite graph such that for every two vertices
v ∈ V and u ∈ U {v, u} is an edge in E.

A graph is r-regular if the degree deg(v) of every vertex v is exactly r ≥ 0.
A 3-regular graph is often called a cubic graph. A chord of a cycle is an edge
between two vertices of the cycle that is not an edge of the cycle. A graph G is
chordal if each cycle in G of length at least 4 has at least one chord. A graph
G = (V,E) is an interval graph if the following two conditions are satisfied for
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a collection I of intervals on the real line, and I is called interval model of G:
(i) There is a one-to-one correspondence between V and I, and (ii) for a pair of
vertices u, v ∈ V and their corresponding two intervals Iu, Iv ∈ I, Iu ∩ Iv �= ∅ if
and only if {u, v} ∈ E. A proper interval graph is an interval graph that has an
interval model in which no interval properly contains another. A block in a graph
is a maximal connected subgraph with no cut-vertex, i.e., a maximal 2-connected
subgraph. A graph is called a block graph if every block is a clique.

For a subset S ⊂ V of the vertices, the cut (S, V \S) is the set of all edges in
G with one endpoint in S and the other in V \ S; these edges are said to be cut
by (S, V \ S). A cut (S, V \ S) is called a bisection of G if |S| − |V \ S| ≤ 1. A
minimum bisection of G is a bisection with minimum cardinality. The cardinality
of the minimum bisection is also known as a bisection width of G.

For an undirected graph G = (V,E) and the subset S ⊆ V of vertices, a
vertex v is happy if N [v] ⊆ S; otherwise, i.e., if N [v] �⊆ S, then v is unhappy. Let
#h(S) and #u(S) denote the number of happy and unhappy vertices in a subset
S of vertices, respectively. From the definitions, |S| = #h(S)+#u(S) holds. The
Maximum Happy Set problem (MaxHS) is formally defined as follows:

Maximum Happy Set problem (MaxHS)
Input: An undirected graph G = (V,E) and an integer k.
Goal: Find a subset S ⊆ V of k vertices such that the number #h(S) of

happy vertices is maximized.

An algorithm ALG is called a σ-approximation algorithm and ALG’s approx-
imation ratio is σ if OPT (G)/ALG(G) ≤ σ holds for every input G, where
ALG(G) and OPT (G) are the numbers of happy vertices in subsets of vertices
obtained by ALG and an optimal algorithm, respectively.

In [4], the following tractability and intractability are shown for MaxHS:

Theorem 1 ([4]). The problem MaxHS can be solved in polynomial time for
graphs with constant-bounded treewidth such as trees, cactus graphs, series-
parallel graphs, outerplanar graphs, and graphs with the maximum degree two.

Theorem 2 ([4]). The problem MaxHS is W[1]-hard when parameterized by k
even for split graphs.

3 Approximation Algorithm

In this section, we study the approximability of MaxHS and propose a Δ-
approximation algorithm if the input is a connected graph and its maximum
degree Δ is a constant. Before describing our Δ-approximation algorithm, how-
ever, we will take a look at the most natural greedy strategy as a warm-up.
Then, we show that the approximation ratio of the greedy algorithm is 2Δ + 1,
and the analysis of the approximation ratio is asymptotically tight in Sect. 3.1.
The Δ-approximation algorithm is provided in Sect. 3.2.



Graph Classes and Approximability of the Happy Set Problem 339

3.1 Greedy (2Δ + 1)-Approximation Algorithm for General Graphs

Consider a graph G with maximum degree Δ, an arbitrary vertex v, and its (at
most) Δ neighbor vertices. If we select v and all its neighbors into a solution set
S, then those 1 + Δ vertices make at least one vertex happy. This observation
develops the following algorithm, named Greedy-Pick: (Step 1) Pick a vertex v
such that the number of its neighbors which are not yet in S is minimum among
all the vertices. (Step 2(i)) If |N [v] \ S| ≤ k − |S|, then add N [v] to S (i.e.,
update S = S ∪ N [v]) and go back to Step 1. (Step 2(ii)) Otherwise, add an
arbitrary set of k−|S| vertices to |S|, and finally output S. Note that the running
time of Greedy-Pick is clearly polynomial. We can show that the approximation
ratio of Greedy-Pick is 2Δ + 1, and the analysis of the approximation ratio is
asymptotically tight.

Theorem 3. The approximation ratio of Greedy-Pick is 2Δ+1 for graphs with
maximum degree Δ.

Remark 1. There exists a bad example for which the number of happy vertices
by an optimal algorithm is 2Δ − 4 times of the one by Greedy-Pick, where Δ
is the maximum degree of an input graph although details are omitted here.

3.2 Δ-Approximation Algorithm for Connected Graphs

In this subsection, we assume that the input is restricted to connected graphs
whose maximum degree is a constant. Then, we propose a more sophisticated
algorithm than Greedy-Pick, named ALGp, where p is a prescribed parameter
integer and it is given later. The basic strategy of ALGp is as follows: ALGp first
enumerates all the vertex-sets of size exactly p. Let Up = {U | U ⊆ V, |U | = p}.
Then, consider a subset U ∈ Up and its closed neighborhood N [U ]. ALGp handles
the following two cases. (i) First suppose that |N [U ]| > k holds for every U ∈ Up.
This implies that the number #h(S∗) of happy vertices in an optimal solution
S∗ is less than p. Therefore, ALGp tries to find a solution of size less than p. From
the assumption that p is a constant, ALGp could output an optimal solution in
polynomial time. (ii) Next suppose that |N [U ′]| ≤ k holds for some U ′ ∈ Up.
Then, ALGp works almost the same way as Greedy-Pick.

Here is a detailed description of ALGp.

Algorithm ALGp

Input: A connected graph G = (V,E) and an integer k < |V |.
Output: A subset S ⊂ V of k vertices.
Step 1. Construct Up = {U | U ⊆ V, |U | = p} and W<p = {W | W ⊆

V, |W | ≤ p − 1}.
Step 2. (i) If |N [U ]| > k holds for every subset U ∈ Up, then find S1 =

N [argmaxW∈W<p,|N [W ]|≤k#h(W )], set k′ = k − |S1|, and goto Step 4.
(ii) Otherwise, find S1 = N [argminU∈Up

|N [U ]|], set k′ = k − |S1|, and
goto Step 3.
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Step 3. If there exists a vertex v ∈ S1 satisfying k′ ≥ |N [v] \ S1|, then
update S1 = S1 ∪ N [v] and k′ = k′ − |N [v] \ S1|. Repeat this step if
such a vertex exists.

Step 4. Pick an arbitrary set S2 of k′ vertices from V \ S1 and output
S = S1 ∪ S2.

On the performance of ALGp, we show the next theorem.

Theorem 4. For a connected graph G = (V,E) with the maximum degree Δ,
ALGp is a ((1+ 1

p )Δ−1)-approximation algorithm which runs in O(pΔ|V |p) time.

Proof. We first bound the running time of ALGp. Step 1 takes O(|V |p) time. In
Step 2, for each set U in Up ∪W<p, we need to obtain N [U ] which takes O(pΔ)
time. While obtaining N [U ], we can also calculate #h(U). Since the number
of vertex subsets in Up ∪ W<p is O(|V |p), the total time needed for Step 2 is
O(pΔ|V |p). As for Step 3, we obtain N [v] \ S1 for every v ∈ S1 in O(|V | + |E|)
time at the first iteration of this step. At the second and the later iteration, we
can maintain these information by removing one vertex and adding its adjacent
vertices, taking O(|V | + |E|) time during this step in an amortized sense. In
addition, at each execution of Step 3, O(|V |)-time is needed to find a vertex
satisfying the condition. Since the number of iterations of Step 3 is at most
O(|V |), the total time of Step 3 is O(|V |2). Clearly Step 4 can be done in
O(|V |) time. In summary, the total running time of ALGp is O(pΔ|V |p) since
p ≥ 2.

In the following, we analyze the approximation ratio of ALGp. For Step 2,
we first consider the case that |N [U ]| > k holds for every U ∈ Up. This condition
implies that the number #h(S∗) of happy vertices in an optimal solution S∗

is less than p. Assume that {v1, v2, . . . , vq} for some q < p are happy in S∗.
Since S∗ ⊇ N [{v1, v2, . . . , vq}], it holds that |N [{v1, v2, . . . , vq}]| ≤ k. The set
{v1, v2, . . . , vq} clearly belongs to W<p, so that this set is tested when obtaining
S1. Hence ALGp outputs it or another subset of vertices having the same number
of happy vertices, i.e., ALGp outputs an optimal solution in this case.

Let us proceed to the case that it holds |N [U ′]| ≤ k for some U ′ ∈ Up in
Step 2(ii). The following arguments give the approximation ratio of ALGp:

– ALGp selects at most (p + i)(Δ − 1) + Δ vertices to make p + i vertices happy
among them in the output for an integer i;

– the integer i is maximized by repeating Step 3;
– ALGp wastes at most Δ − 2 vertices in Step 4, i.e., they are all unhappy; and

hence
– the number k of the output (solution) size is bounded above by (p + i)(Δ −

1) + Δ, which is an upper bound of the optimal number of happy vertices.

In this case, #h(S1) ≥ p holds since ALGp finds N [U ′] or a better set of
smaller size than k as S1 in Step 2. Here we observe that |S1| ≤ (Δ − 1)p + 2
holds as follows. Consider a set P of p vertices v1, v2, . . . , vp, which forms a path
〈v1, v2, . . . , vp〉 in G, where this path must not be simple here. Since P ∈ Up,
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N [P ] is a candidate of S1. It holds that |N [P ]| ≤ p+(Δ−1) ·2+(Δ−2)(p−2),
where the second term (Δ − 1) · 2 of the right-hand side represents an upper
bound of |(N [v1] ∪ N [vp]) \ {v2, vp−1}|, and the third term (Δ − 2)(p − 2) is also
an upper bound of |N [{v2, . . . , vp−1}]\P |. Since S1 has the minimum size among
N [U ]’s for U ∈ Up, the following inequality holds:

|S1| ≤ |N [P ]| ≤ p + (Δ − 1) · 2 + (Δ − 2)(p − 2) = (Δ − 1)p + 2

Note that an optimal solution need not be connected, while ALGp has a vertex
subset which includes a connected subgraph in its output.

In Step 3, if v ∈ S1 and |N [v] \ S1| ≥ Δ implying |N [v] \ S1| = |N(v)| = Δ
since Δ is the maximum degree of a vertex, then v is not happy in S1 and
N(v) ∩ S1 = ∅. Thus, removing v from S1 does not decrease the number of
happy vertices in S1, that is, #h(S1 \ {v}) = #h(S1), contradicting the choice
of S1 which must have the minimum size among N [U ]’s for U ∈ Up. Note that
the condition |N [v] \ S1| = Δ + 1 means that v �∈ S1, which contradicts the
assumption v ∈ S1. Hence, the number of vertices N [v] \ S1 added to S1 is at
most Δ−1 for one execution of this step. Thus, in total, at most i(Δ−1) vertices
are added to S1 in this step, where i is the number of the iterations of this step.
In other words, i is (at least) the number of happy vertices newly added to S1.
So far, the number #h(S1) of happy vertices in S1 has increased to (at least)
p + i from p obtained in Step 2.

Step 4 does not make any vertex happy. However, we know that |S2| ≤ Δ−2
by the terminating condition of Step 3.

Finally, we analyze the approximation ratio. The number of happy vertices
by ALGp is at least p + i. On the other hand, the total number k of vertices is
represented by k2 + k3 + k4, where k2, k3, and k4 are the numbers of vertices
added to the solution in Steps 2, 3, and 4, respectively. By the above argument,
it hold k2 ≤ (Δ − 1)p + 2, k3 ≤ i(Δ − 1), and k4 ≤ Δ − 2, which yields that

k = k2 + k3 + k4

≤ ((Δ − 1)p + 2) + i(Δ − 1) + (Δ − 2) = (p + i)(Δ − 1) + Δ.

Since k is a trivial upper bound of the size of happy vertices, the approximation
ratio of ALGp is at most

k

p + i
≤ (p + i)(Δ − 1) + Δ

p + i
≤

(
1 +

1
p

)
Δ − 1.

��
By the above theorem, one can see that there is a trade-off between the

approximation ratio and the running time of ALGp. In particular, ALGp is an
O(Δ2|V |Δ)-time Δ-approximation algorithm by setting p = Δ.

Corollary 1. If the maximum degree Δ of the input connected graph G = (V,E)
is a constant, then ALGΔ−1 runs in O(Δ2|V |Δ)-time, i.e., polynomial time and
the approximation ratio of ALGΔ−1 is Δ.
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4 Complexity for Graph Classes

4.1 Block Graphs

In this subsection we show that MaxHS can be solved in polynomial time if
the input graph is restricted to block graphs. Recall that a block is a maximal
connected subgraph without a cut-vertex and a block graph is a graph whose
blocks are all cliques. Note that by the maximality of blocks, two different blocks
of a graph overlap in at most one vertex, which is thus a cut-vertex of G. Also,
note that the class of block graphs is equivalent to the class of diamond-free
chordal graphs and thus block graphs include no induced cycle of length more
than three. The interaction between blocks and cut-vertices can be represented
by a special graph [26]: Suppose that a graph G = (V,E) consists of β blocks,
B1 through Bβ and also G has γ cut-vertices, c1 through cγ . The block-cutpoint
graph of a graph G is a bipartite graph T in which one partite set consists of the
cut-vertices ci’s of G, 1 ≤ i ≤ γ, and the other has a vertex bj for each block Bj

of G, 1 ≤ j ≤ β. The block-cutpoint graph T includes {ci, bj} as an edge of T if
and only if the cut-vertex cj is in Bi.

If G is a connected block graph, then its block-cutpoint graph T is a tree,
whose leaves are blocks of G. In the following, a cut-vertex ci and a vertex bj

in T are called a cut-node and a block-node, respectively. Note that blocks can
be found using the depth-first search, and thus the block-cutpoint tree T can be
computed in O(|V |+ |E|) time [24]. For the tree T , we distinguish one arbitrary
block-node as a root of T . This introduces a parent-child relation in T .

Algorithm. The following is an outline of our algorithm, which is based on the
dynamic programming (DP) approach: (Step 1) Given a block graph G = (V,E)
as input, we first compute the weighted block-cutpoint tree T = (VT , ET , w)
where VT , ET , and w are the node set, the edge set, and a node-weight function
such that w : VT → Z+, respectively. (Step 2) Next, to simplify the DP-based
algorithm, we remove every 0-weight node from T by contracting the 0-weight
node and one of its neighbors and obtain the modified block-cutpoint tree, say,
T ′. (Step 3) Then, we find an optimal solution by using the tree representation
T ′. As an example, see Fig. 1. If the block-cutpoint tree of G is given as input,
then the DP-based algorithm gives us the following theorem:

Theorem 5. The problem MaxHS on block graphs can be solved in time
O(k2|V |) for the input graph G = (V,E) and the integer k.

4.2 Proper Interval Graphs

As shown in [4], MaxHS remains NP-hard even for split graphs, which immedi-
ately implies that MaxHS is NP-hard even for chordal graphs. In this subsection
we show that MaxHS can be solved in polynomial time if the input graph is
restricted to proper interval graphs, one of the important subclasses of chordal
graphs. Note that the treewidth (or pathwidth) of a proper interval graph is
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Fig. 1. (a) Block graph G given as input, (b) weighted block-cutpoint tree T of G,
(c) modified block-cutpoint tree T ′, and (d) relabeled tree T ′′ with root t11 (which is
originally b5 in T ′)

equal to the size of the maximum clique in the graph, and thus generally the
treewidth is not constant-bounded.

The following is an outline of our algorithm, which is based on the DP app-
roach again: (Step 1) Given a proper interval graph G = (V,E) as input, we
first compute the path representation of the proper interval graph in polynomial
time by using a modification of Maximum Cardinality Search [25] and, for exam-
ple, Prime’s algorithm. (Step 2) Then we find an optimal solution by following
the path representation of G computed in Step 1. We can show the following
theorem if the path representation of G is given as input:

Theorem 6. The problem MaxHS on proper interval graphs can be solved in
time O(k|V |) for the input graph G = (V,E) and the integer k.

4.3 Bipartite Graphs

In this subsection we show the NP-hardness of MaxHS on bipartite graphs:

Theorem 7. The problem MaxHS on bipartite graphs is NP-hard.

Proof (sketch). We will reduce the general MaxHS to MaxHS on bipartite graphs;
given a graph G = (V,E) and an integer k, we transform G to a bipartite graph
G′ = (V ′, E′) and an integer k′, respectively. Assume that |V | = n and n is
even. Let V = {v1, v2, . . . , vn} be n vertices in the original graph G. Then, for
each i = 1, 2, . . . , n, we construct a complete bipartite graph G′

i = (V ′
i , E′

i) of 4n
vertices, one partite set has 2n vertices, ai,1 through ai,2n, and the other partite
set has 2n vertices, bi,1 through bi,2n. Moreover, the constructed graph G′ has
two edges {ai,2n, bj,1} and {bi,1, aj,2n} if and only if the original graph G has
an edge {vi, vj}. Figure 2 illustrates G′

i = (V ′
i , E′

i) and G′
j = (V ′

j , E′
j). The total

number of vertices in the reduced graph G′ is 4n2. Finally, we set k′ = 4kn.
This completes the reduction, which can be done in polynomial time. One can
see that the constructed graph G′ is bipartite.

We can show that the original G has a subset S ⊆ V of k vertices such that
the number of unhappy vertices in S is at most 	 (or equivalently the number
of happy vertices is at least k − 	) if and only if the constructed graph G′ has a
subset S′ ⊆ V ′ of 4kn vertices such that the number of unhappy vertices in S′

is at most 2	 (or equivalently the number of happy vertices is at least 4kn− 2	).
We can assume that 	 ≤ k ≤ n − 1 is satisfied and thus 2	 ≤ 2n − 2. ��
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Fig. 2. G′
i = (V ′

i , E′
i) and G′

j = (V ′
j , E′

j) Fig. 3. ith vertex gadget G′
i

4.4 Cubic Graphs

In this subsection, we show the intractability of MaxHS on cubic graphs; while
MaxHS can be solved in polynomial time for graphs of the maximum degree
two [4]. We prove its NP-hardness by reducing the following Minimum Bisec-
tion problem (MinBis) on cubic (i.e., 3-regular) graphs to MaxHS on cubic
graphs: Given an undirected graph G = (V,E) such that |V | is even, the goal of
MinBis is to find a minimum bisection (S, V \ S) of G, i.e., a cut (S, V \ S) with
|S| = |V \ S| and the bisection width. It is known [10] that MinBis is NP-hard
for r-regular graphs having the even number of vertices, r ≥ 3.

Theorem 8. The problem MaxHS on cubic graphs is NP-hard.

Proof (sketch). Consider an input cubic graph G = (V,E) of MinBis with |V | = n
vertices. Suppose that n is even. Also, suppose that the bisection width of G is
b. Then, we construct an instance pair, a cubic graph G′ = (V ′, E′) and an
integer k, of MaxHS. Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Since
G is a cubic graphs, m = 3n/2 holds. The graph G′ consists of n subgraphs
G′

1 = (V ′
1 , E

′
1) through G′

n = (V ′
n, E′

n), which are associated with n vertices,
v1 through vn. We call G′

i the ith vertex gadget, which is illustrated in Fig. 3.
For each i ∈ {1, . . . , n}, the ith vertex gadget G′

i has 6n + 3 vertices, i.e., V ′
i =

{vi,1, vi,2, vi,3}∪⋃n
j=1 (Ui,1,j ∪ Ui,2,j ∪ Ui,3,j), where every Ui,1,j (Ui,2,j or Ui,3,j)

consists of two vertices for each j. We call three vertices {vi,1, vi,2, vi,3} outer
vertices, and the remaining 6n vertices inner vertices in the ith vertex gadget.
Also, G′

i has 9n + 3 edges, called new edges. Then, three edges incident to vi in
the original cubic graph G are replaced with three edges, called old edges, where
exactly one edge is incident to one vertex of {vi,1, vi,2, vi,3} in the ith vertex
gadget. This completes the construction from G to G′. One sees that the total
number of vertices is 6n2 + 3n. Finally, we set k = (6n2 + 3n)/2. This reduction
can be done in polynomial time.

It can be shown that the bisection width of G is (at most) b if and only if G′

has a subset S′ ⊆ V ′ of k = (6n2+3n)/2 vertices such that the number of happy
vertices is (at least) #h(S′) = (6n2 + 3n)/2 − b, or equivalently, the number of
unhappy vertices in S is at most #u(S′) = b in the selected subset S′ as the
solution of MaxHS. ��
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5 Conclusion

We studied the approximability and the computational complexity of MaxHS. To
this end, we designed approximation algorithms and DP-based exact algorithms
for several subclasses of chordal graphs. Furthermore, we showed NP-hardness for
restricted graph classes. One of the further researches is to design a good approx-
imation algorithm for disconnected graphs, since the proposed Δ-approximation
algorithm works only for connected graphs. Extending the algorithm for proper
interval graphs to cope with interval graphs is another interesting topic.
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Abstract. Our paper is motivated by the search for combinatorial
and, in particular, primal-dual approximation algorithms for higher-
connectivity survivable network design problems (SND). The best
known approximation algorithm for SND is Jain’s powerful but “non-
combinatorial” iterative LP-rounding technique, which yields factor 2.
In contrast, known combinatorial algorithms are based on multi-phase
primal-dual approaches that increase the connectivity in each phase,
thereby naturally leading to a factor depending (logarithmically) on
the maximum connectivity requirement. Williamson raised the question
if there are single-phase primal-dual algorithms for such problems. A
single-phase primal-dual algorithm could potentially be key to a primal-
dual constant-factor approximation algorithm for SND. Whether such an
algorithm exists is an important open problem (Shmoys and Williamson).

In this paper, we make a first, small step related to these questions.
We show that there is a primal-dual algorithm for the minimum 2-edge-
connected spanning subgraph problem (2ECSS) that requires only a sin-
gle growing phase and that is therefore the first such algorithm for any
higher-connectivity problem. The algorithm yields approximation fac-
tor 3, which matches the factor of the best known (two-phase) primal-
dual approximation algorithms for 2ECSS. Moreover, we believe that
our algorithm is more natural and conceptually simpler than the known
primal-dual algorithms for 2ECSS. It can be implemented without data
structures more sophisticated than binary heaps and graphs, and without
graph algorithms beyond depth-first search.

1 Introduction

An undirected multigraph G = (V,E) with n := |V |,m := |E|,m ≥ n, is
2-edge-connected if for every edge e ∈ E the graph G − e := (V,E \ {e}) is
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connected. The minimum 2-edge-connected spanning subgraph problem (2ECSS)
is defined as follows: Given a 2-edge-connected undirected multigraph G = (V,E)
with edge costs c : E → R≥0, find an edge subset E′ ⊆ E of minimum cost
c(E′) :=

∑
e∈E′ c(e) such that G′ = (V,E′) is 2-edge-connected. Any edge of G

may only be used once in G′. 2ECSS is a fundamental NP-hard network design
problem that arises naturally in the planning of infrastructure where one wants
to guarantee a basic fault tolerance.

2ECSS belongs to the general class of survivable network design problems
(SND) where we demand certain edge-connectivity requirements for subsets of
nodes. The k-survivable network design problem (kSND) is a special case where
k represents the maximum requirement. The problem kECSS is a special case
of kSND where all node subsets have an identical requirement of k.

Motivation for This Work. Jain’s powerful iterative LP-rounding technique [6]
gives a 2-approximation for general SND. While this is a very strong result when
we aim at optimizing the approximation factor, it requires to iteratively solve the
underlying LP relaxation. It is therefore often desirable to design combinatorial
approximation algorithms when we take into account not only the worst-case
approximation factor but also simplicity, implementability, and running time.
In particular, primal-dual algorithms have the advantage of being combinatorial
and additionally providing a per-instance factor (beyond the worst-case factor)
by comparing the approximate (primal) solution to the computed dual solution.
The known combinatorial algorithms for kSND are based on the primal-dual
paradigm and achieve a factor of O(log k). Obtaining a constant-factor (in par-
ticular, matching Jain’s factor 2) primal-dual approximation algorithm for a
survivable network design problem is an important open problem in approxi-
mation algorithms (see, e.g., open problem no. 4 in the text book by Shmoys
and Williamson [14]). The logarithmic factor of the primal-dual algorithms for
kSND is closely related to the fact that these algorithms require k phases to
gradually satisfy these connectivity requirements: in phase i, we lose a factor of
O(1/(k− i+1)) in the approximation factor. It is therefore a natural attempt to
attack the above open problem by designing a single-phase algorithm, that is,
an algorithm that requires only a single growing phase instead of k many. Yet,
even the various known primal-dual algorithms for the special case of 2ECSS
require two growing phases. A related open question by Williamson [12] is if it
is possible “to design a single-phase algorithm for some class of edge-covering
problems”. This work is therefore motivated by the following research question.

Is there a single-phase primal-dual approximation algorithm for kSND?

We remark that there is a combinatorial 2-approximation algorithm for
kECSS [8] and a simple combinatorial 3-approximation algorithm for
2ECSS [7]. However, these algorithms are not primal-dual. Moreover, the 2-
approximation [8] is based on weighted matroid intersection, which is intimately
related to the uniform connectivity requirements in kECSS. It therefore seems
hard to generalize it to kSND. The second algorithm for 2ECSS follows a two-
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phase approach. To the best of our knowledge, the primal-dual paradigm is the
only known combinatorial approach for kSND.

Our Contribution. In this paper, we make a (small) first step addressing the
above open questions. We provide the first example of a primal-dual algorithm
for some higher-connectivity network design problem, namely 2ECSS, that grows
the solution in a single phase. Our algorithm has an approximation factor of 3.
While this does not match the best known factor of 2 in general, it does match the
factor of the best known (two-phase) primal-dual approximation algorithms. We
hope that our work helps to obtain single-phase or even constant-factor primal-
dual approximation algorithms for more general connectivity requirements. For
example, it is straight-forward to obtain a single-phase primal-dual algorithm for
2SND that generalizes both our 3-approximation algorithm for 2ECSS as well
as the 2-approximation algorithm for constrained forest problems by Goemans
and Williamson [5]. However, we know neither the factor of this algorithm nor
if it can be generalized to kSND.

Besides requiring only a single growing phase, our algorithm is also arguably
simpler and more natural than other primal-dual algorithms for 2ECSS. It main-
tains a spanning forest starting with an empty edge set. In each iteration, a new
edge incident to a leaf is selected in a natural greedy manner and added to the
forest. If this produces a cycle, this cycle is contracted. This growing phase ends
when the graph has been contracted into a single node. A subsequent cleanup
step removes redundant edges in reverse order of their addition.

From an algorithmic perspective the (to our best knowledge) new conceptual
idea is to create cycles already in the first (and only) growing phase. We contract
these cycles on the fly to maintain a forest structure. From a technical viewpoint,
this requires to grow the solution only at the leaves of the current solution.

Our algorithm requires only trivial data structures (arrays, lists, graphs, and
optionally binary heaps) and no graph algorithms beyond depth-first search. It
runs in O(min{nm,m+n2 log n}) time (which is slightly slower than the fastest
two-phase primal-dual algorithm) while requiring only O(m) space.

Related Work. In contrast to our paper, most existing work focuses on the
classical goals of improving the approximation factor or the running time. Below,
we give an overview over the quite extensive results. Although some algorithms
mentioned below are designed for kECSS or kSND, we describe the results when
restricting to 2ECSS.

The first approximation algorithms [1,7] for 2ECSS compute a minimum
spanning tree in G and augment it to become 2-edge-connected. Their factor 3 is
based on a 2-approximation for the latter (weighted tree augmentation) problem.
The algorithm of [1] runs in O(n2) time and that of [7] in O(m + n log n).

In [8], a 2-approximation algorithm for kECSS is obtained by reducing the
problem to a weighted matroid intersection problem that can be solved in time
O(n(m + n log n) log n) [2]. The 2-approximation algorithm for SND in [6] is
based on iterative rounding of solutions to a linear programming formulation
that we will see in a later section. On the negative side, no algorithm with factor
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less than 2 is known, and, unless P=NP, there cannot be a polynomial-time
approximation with factor better than roughly 1 + 1

300 [10].
Besides the algorithms mentioned above, there is a separate history of apply-

ing the primal-dual method. The basic idea of a primal-dual algorithm is that
a feasible solution to the dual of the aforementioned linear program is com-
puted and is exploited to compute an approximate primal solution. There are
several primal-dual 3-approximation algorithms [3,4,9,11,13] with the best run-
ning time being O(n2 + n

√
m log log n). All algorithms grow a solution in two

phases: they first obtain a spanning tree, and then augment that tree to be 2-
edge-connected. In the end, unnecessary edges are deleted in a cleanup phase to
obtain minimality.

Preliminaries. A graph G is a pair (V,E) with node set V and edge set E. We
always consider graphs to be undirected multigraphs. As we allow parallel edges,
we identify edges by their names, not by their incident nodes. For each e ∈ E, let
V (e) := {v, w} ⊆ V be the two nodes incident to e. We may describe subgraphs
of G simply by their (inducing) edge subset H ⊆ E. By V (H) :=

⋃
e∈H V (e)

we denote the set of nodes spanned by the edges of H. For each v ∈ V (H), let
δH(v) := {e ∈ H | v ∈ V (e)} be the edges incident to v. For any S � V (H), let
δH(S) := {e ∈ H | V (e) = {u, v}, u ∈ S, v /∈ S}. The degree degH(v) := |δH(v)|
of v ∈ V in H is the number of incident edges of v in H.

A path P of length k ≥ 0 is a subgraph with P = {e1, . . . , ek} such that
there is an orientation of its edges where the head of ei coincides with the tail
of ei+1 for i < k. In such an orientation, let u be the tail of e1 and v the head
of ek. We call u and v the endpoints of P , and P a u-v-path (or, equivalently,
a path between u and v). Observe that our definition of paths allows nodes but
not edges to repeat (due to set notation). A path P is simple if and only if
degP (v) ≤ 2 for all v ∈ P . For a simple u-v-path P , we call V (P ) \ {u, v} the
inner nodes of P . We call a path closed if both endpoints coincide (i.e., if it is
a u-v-path with u = v), and open otherwise. A cycle is a closed path of length
at least 2. We say two paths P1, P2 are disjoint if and only if P1 ∩ P2 = ∅, i.e.,
they do not share a common edge (they may share nodes). A forest is a graph
without cycles.

Let G′ = (V ′, E′) be a 2-edge-connected graph. An edge e ∈ E′ is essential in
G′ if and only if G′ −e = (V ′, E′ \{e}) is not 2-edge-connected; it is nonessential
otherwise. G′ is minimal 2-edge-connected if and only if all e ∈ E′ are essential.
An ear is a simple path P of length at least 1 such that E′\P is 2-edge-connected.

For any function f : A → B and any A′ ⊆ A, we denote by f(A′) := {f(a) |
a ∈ A′} the image of A′ under f (unless otherwise stated). We also define
f−1(b) := {a ∈ A | f(a) = b}.

Organization of the Paper. In Sect. 2, we will describe the algorithm combina-
torially and state our main theorem. We will then analyse the algorithm (in
particular, show the approximation factor) in Sect. 3.
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2 Algorithm

Let G′ = (V ′, E′) be a graph and let F = (V ′, EF ) be a (spanning) subforest in
G′. For e ∈ E′ \ EF , let �e ∈ {0, 1, 2} denote the number of leaves v in F (that
is, degF (v) ≤ 1) incident to e.

Algorithm 1: Approximation algorithm for 2ECSS
1 graph G′ = (V ′, E′) with edge costs c′ := c as a copy of G = (V, E)
2 solution T := ∅

3 forest F := (V ′, ∅)

4 while F is not a single node do // grow phase

5 Simultaneously decrease the cost c′(e) for each edge e ∈ E′ \ EF at speed
�e until some edge, say ẽ, gets cost 0

6 Add ẽ to F and to T
7 if ẽ closes a cycle Q in F then contract Q in F and in G′

8 forall e ∈ T in reverse order of addition do // cleanup phase

9 if T − e is 2-edge-connected then remove e from T

Our algorithm is outlined in Algorithm1. Given a graph G = (V,E) with
cost function c : E → R≥0, the main grow phase selects edges T ⊆ E such that
T is spanning and 2-edge-connected, but not necessarily minimal. The central
idea of the grow phase is to maintain a forest F and, in contrast to several
other primal-dual approaches, to only grow the solution with edges that are
currently attached to nodes of degree ≤ 1 in F .1 (Note that �e = 0 for any
edge e not incident on a leaf in F and thus the cost of e is not decreased in the
current iteration.) Afterwards, a cleanup phase removes nonessential edges from
T , checking them in reverse order of their addition, to obtain the final solution.
This is analogous to the clean-up phase in known primal-dual algorithms for
network design problems.

Theorem 1. There is a single-phase primal-dual 3-approximation algorithm for
2ECSS that runs in O(min{nm,m + n2 log n}) time and O(m) space.

3 Analysis

In this section, we provide a proof of our main result stated in Theorem1. The
analysis of the time and space requirements is deferred to the full version. In
what follows, we prove the approximation factor 3.

1 This is a key difference to the second phase suggested in [9], which on first sight
looks somewhat similar (but leads to very different proof strategies).



352 S. Beyer et al.

Outline of the Analysis. On a high level, our analysis follows the standard steps
for analyzing primal-dual algorithms. A key step in the analysis of [5] is to prove
a purely graph-theoretical property concerning the average degree of certain
node subsets in a forest. In contrast, our purely graph-theoretical property (of
partial solutions constructed during the algorithm) is the leaf-degree property : it
bounds the sum of degrees (w.r.t. the final solution computed by the algorithm)
of leaves in the current forest F by a multiple of the number of certain leaves
in F .

Let us describe the main steps in more detail. Algorithm 1 computes an
approximate solution without any reference to a linear program. Section 3.1 con-
sists in re-interpreting the algorithm as a primal-dual algorithm: we state the
standard ILP formulation for 2ECSS along with its dual relaxation, and describe
how Algorithm 1 can be seen as an algorithm computing an integral primal solu-
tion to this LP along with an implicit fractional dual feasible solution.

As common in the analysis of primal-dual algorithms, we bound the primal
solution value by a multiple of the dual solution value. Section 3.2 consists in
reducing this task to proving our leaf-degree property.

Section 3.3 is dedicated to prove the leaf-degree property. We restate this
property independent of the algorithm, that is, as a general property of sub-
forests in minimal 2-edge-connected graphs. Its proof is inductive over the ear
decomposition of the 2-edge-connected graph and employs a careful charging
scheme over the sequence of ears. Unfortunately, the charging scheme is quite
technical and the specific leaf-degree property that we prove, is somewhat tai-
lored to our algorithm. However, we expect that more general variants of this
property would arise in potential generalizations of our algorithm. We feel that,
regarding potential generalizations to higher connectivity requirements, it would
be crucial to substantially simplify this proof and remove its reliance on ear
decompositions, which would not be directly applicable to more general connec-
tivity requirements. We therefore believe that proving this and related general-
ized degree properties might be of independent algorithmic or graph-theoretical
interest.

Terminology and Basic Properties. We call the iterations within the phases of
Algorithm 1 grow steps and cleanup steps, respectively. In a grow step, a cycle
may be contracted and some edges become incident to the contracted node. As
we identify edges by their names, the names of these edges are retained although
their incident nodes change.

Let E′ and EF be the edge set of G′ and F , respectively. During the algorithm
we have the following invariants: both G′ and F use the common node set V ′ that
describes a partition of V ; we consider T to form a subgraph of G; each edge in
EF represents an edge of T that is not part of a cycle in G; we have EF ⊆ E′ ⊆ E.

Initially, each node of V forms an individual partition set, i.e., |V ′| = |V |,
and EF = ∅. We merge partition sets (nodes of V ′, cf. line 7) when we contract
a cycle, i.e., when the corresponding nodes in V induce a 2-edge-connected sub-
graph in T . Arising self-loops are removed both from G′ and F . The grow phase
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terminates once |V ′| = 1, i.e., all nodes of V are in a common 2-edge-connected
component.

Observe that for an edge e ∈ E′, we naturally define V (e) ⊆ V as its incident
nodes in original G, and V ′(e) ⊆ V ′ as its incident nodes in G′ and F .

Let L := {v ∈ V ′ | degF (v) ≤ 1} be the set of leaves (including isolated
nodes) in F . For any edge e ∈ E′, let �e := |V ′(e) ∩ L| ∈ {0, 1, 2} be the number
of incident nodes of e that are leaves in F . An edge e ∈ E′ is eligible if e /∈ EF

and �e ≥ 1. Let Δ(e) := c′(e)
�e

for eligible edges e ∈ E′. Now line 5 can be
described as: (1) find the minimum (w.r.t. Δ) eligible edge ẽ ∈ E, (2) for each
eligible edge e, decrease c′(e) by �eΔ(ẽ). For convenience, we denote Δ(ẽ) by Δ̃.

3.1 Reformulation as Primal-Dual Algorithm

Let S := 2V \ {∅, V } and Se := {S ∈ S | e ∈ δG(S)} for any e ∈ E. We
analyze the approximation factor using the primal-dual method. Hence consider
the basic integer program for 2ECSS:

minimize
∑

e∈E

c(e)xe (1)

∑

e∈δG(S)

xe ≥ 2 ∀S ∈ S (2)

xe ∈ {0, 1} ∀e ∈ E. (3)

For its linear relaxation, (3) is substituted by 0 ≤ xe ≤ 1 for every e ∈ E. The
bound xe ≤ 1 is important since edge duplications are forbidden. Its dual is

maximize 2
∑

S∈S
yS −

∑

e∈E

ze (4)

∑

S∈Se

yS − ze ≤ c(e) ∀e ∈ E (5)

yS ≥ 0 ∀S ∈ S (6)
ze ≥ 0 ∀e ∈ E. (7)

We show that Algorithm 1 implicitly constructs a solution (ȳ, z̄) to the dual
program. Let (ȳi, z̄i) denote this dual solution computed after the i-th grow
step. Initially, we have the dual solution (ȳ0, z̄0) = 0. Following this notion, let
F i = (V i, EF i) be the forest after the i-th grow step, Li := {v ∈ V i | degF i(v) ≤
1}, and �i

e := |V i(e) ∩ Li| for each e ∈ E′. For any node v ∈ V i, let Si(v) be the
corresponding node subset of V after the i-th grow step.

Lemma 1. The grow phase constructs a feasible solution to the dual problem
implicitly as follows. We have, for each i ≥ 0 and v ∈ V i,

ȳi+1
Si(v) :=

{
ȳi

Si(v) + Δ̃ if v ∈ Li

ȳi
Si(v) otherwise,

z̄i+1
e :=

{
z̄i

e + Δ̃ if v ∈ Li and e ∈ δF i(v)
z̄i

e otherwise.
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Before giving the detailed proof, we want to emphasize two facts in the above
lemma that may not be evident on first sight: Firstly, the node subset for the
update of ȳ does not change: we set ȳi+1

Si(v), not ȳi+1
Si+1(v). Consequently, a possible

contraction does not have any influence on this value. Secondly, z̄ changes only
if v is a leaf and e is already in the forest.

Proof (Lemma 1). Let c̄i be c′ after the i-th grow step. We show for each i ≥
0 that (ȳi, z̄i) satisfies (a) c̄i(e) = c(e) − ∑

S∈Se
ȳi

S + z̄i
e and (b) c̄i(e) ≥ 0.

This proves the claim since (a) connects the algorithm values c̄i(e) to a variable
assignment of (5), in particular, c̄i(e) matches the right-hand side minus the
left-hand side of (5), and (b) shows that this variable assignment is a feasible
solution to (5). For i = 0, (a) and (b) hold, since (ȳ0, z̄0) = 0 matches the
initialization c̄0 := c. Now consider any i > 0. Note that this is trivial for the
cases with c̄i+1(e) = c̄i(e).

(a) Consider v ∈ Li and any e ∈ δG(Si(v)). By ȳi+1
Si(v) = ȳi

Si(v) + Δ̃, the

left-hand side of (5) becomes
∑

S∈Se
ȳi

S − z̄i
e =

∑
S∈Se

ȳi+1
S − z̄i

e − Δ̃. By the
definition of z̄i+1

e , this coincides with
∑

S∈Se
ȳi+1

S − z̄i+1
e if e ∈ δF (v), and with

∑
S∈Se

ȳi+1
S − z̄i+1

e − Δ̃ otherwise. This change is reflected exactly by c̄i+1(e) :=
c̄i(e) − �i

eΔ̃ (that is, decreasing c′ by Δ̃ for each leaf incident to e in F ) if and
only if e is eligible.

(b) Assume by contradiction that there is an e ∈ E with c̄i(e) ≥ 0 and
c̄i+1(e) < 0. Note that c̄i(ẽ) = �i

ẽΔ̃. By c̄i+1(e) := c̄i(e) − �i
eΔ̃ < 0 we get

c̄i(e) < �i
eΔ̃, which contradicts the choice of ẽ. 
�

3.2 Reducing a Primal-Dual Relation to the Leaf-Degree Property

Before we state the leaf-degree property in Lemma 3, we observe (in Lemma 2)
a necessary prerequisite that explains why the cleanup phase has to remove
nonessential edges in reverse order. Then, under the assumption the leaf-degree
property has been proven, we can show the approximation factor in Lemma4.

Let T̄ be the solution edges remaining after the cleanup phase. Let (V i, T̄ i)
be the graph on nodes V i that consists of all edges in T̄ without self-loops. In
other words, T̄ i ⊆ T̄ are the edges corresponding to T̄ when mapped into the
node partition defined by F i.

Lemma 2. For each i, every edge e ∈ T̄ i \ EF i is essential in (V i, T̄ i ∪ EF i).

Proof. First observe that for a cycle Q in a 2-edge-connected graph H, an edge
e /∈ Q is essential in H if and only if e is essential in H after contracting Q. The
claim holds trivially for the single-node forest (i.e., after the last grow step).
Assume by contradiction that there is an i with an edge e ∈ T̄ i \ EF i that is
nonessential in (V i, T̄ i ∪ EF i).

First consider the case that ẽ with ẽ = e is chosen in the (i + 1)-th grow
step. Obviously, e is still nonessential in (V i, T̄ i ∪ EF i ∪ {ẽ}). If ẽ does not close
a cycle, we have V i+1 = V i, T̄ i+1 = T̄ i, and EF i+1 = EF i ∪ {ẽ}. If ẽ closes



Simple Primal-Dual Algorithm for 2ECSS 355

a cycle, the edge e is not affected by the contraction (otherwise it would never
become part of the solution). In both cases, the edge e remains nonessential in
(V i+1, T̄ i+1 ∪ EF i+1). Overall, edge e will remain nonessential until it is chosen
in a grow step.

Now consider the case that e itself is chosen in the (i+1)-th grow step. Since
e is nonessential in (V i, T̄ i ∪ EF i ∪ {e}), it is nonessential in the corresponding
cleanup step and removed in the cleanup phase. In other words, e /∈ T̄ , thus
e /∈ T̄ i, a contradiction. 
�

We partition Li into the set Li
0 := {v ∈ Li | degF i(v) = 0} of isolated

nodes in F i, the set Li
1 := {v ∈ Li | degF i(v) = 1, δF i(v) ⊆ T̄ i} of degree-

1 nodes in F i incident to an edge in the contracted solution T̄ i, and the set
Li
2 := {v ∈ Li | degF i(v) = 1, δF i(v) ∩ T̄ i = ∅} of the degree-1 nodes in F i

incident to an edge in Ei \ T̄ i, i.e., not being in the contracted solution.

Lemma 3 (Leaf-Degree Property). We have
∑

v∈Li degT̄ i(v) ≤ 3(|Li| +
|Li

0|) + |Li
1|.

Lemma 4. The solution obtained by Algorithm1 costs at most three times the
optimum cost.

This result is tight, as can be seen in Fig. 1.

Proof. Let (ȳ, z̄) be the dual solution Algorithm1 produces implicitly, as
described by Lemma 1, with dual solution value B. On the other hand, T̄ is
called our primal solution. Note that for all edges e ∈ T̄ , we have c′(e) = 0, i.e.,
their constraints (5) are tight. Hence we can rewrite our primal solution value

c(T̄ ) =
∑

e∈T̄

c(e) =
∑

e∈T̄

( ∑

S∈Se

ȳS − z̄e

)
=

∑

S∈S
degT̄ (S)ȳS −

∑

e∈T̄

z̄e.

We prove a 3-approximation by showing that c(T̄ ) ≤ 3B, i.e.,
∑

S∈S
degT̄ (S)ȳS −

∑

e∈T̄

z̄e ≤ 3
( ∑

S∈S
2ȳS −

∑

e∈E

z̄e

)
,

or equivalently
∑

S∈S
degT̄ (S)ȳS ≤ 6

∑

S∈S
ȳS − 2

∑

e∈T̄

z̄e − 3
∑

e∈E\T̄

z̄e. (8)

Observe that (8) trivially holds initially since all values (ȳ0, z̄0) are zero. We
show that (8) holds after each grow step. Assume it holds for (ȳi, z̄i). We look at
the increase of the left-hand side and right-hand side of (8) when adding an edge
to F i. By Lemma 1, we have ȳi+1

Si(v) = ȳi
Si(v) + Δ̃ for all v ∈ Li and z̄i+1

e = z̄i
e + Δ̃

for all e ∈ δF (Li
1 ∪ Li

2). Hence it remains to show that
∑

v∈Li

degT̄ i(v)Δ̃ ≤ 6
∑

v∈Li

Δ̃ − 2
∑

v∈Li
1

Δ̃ − 3
∑

v∈Li
2

Δ̃
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. . .
k many ∑

v∈L degE′(v) = 8k

|L0| = 1, |L1| = 2k, |L2| = 0

3 (|L|+ |L0|) + |L1| = 8k + 6

Fig. 1. An example showing tightness for the approximation factor as well as for the
leaf-degree property. For the approximation factor, consider all thick edges’ costs to
be 0, all solid thin edges’ costs 1, and all dashed edges’ costs 1 + ε for an arbitrary
small ε > 0. The algorithm’s solution consists of all solid edges of total cost 3k. The
optimum solution is the Hamiltonian cycle consisting of all dashed edges, all thick edges,
and two solid thin edges to connect the center node. Its total cost is k + 1 + (k − 1)ε.
The factor 3k

k+1+(k−1)ε)
approaches 3 for k → ∞. For the leaf-degree property, all edges

are in E, thick edges in F � E, solid edges in E′
� E.

holds. After dividing by Δ̃ and since |Li| = |Li
0|+ |Li

1|+ |Li
2|, the right-hand side

simplifies to 6|Li| − 2|Li
1| − 3|Li

2| = 6|Li
0| + 4|Li

1| + 3|Li
2| = 3(|Li| + |Li

0|) + |Li
1|,

i.e., we have Lemma 3. 
�

3.3 Proof of the Leaf-Degree Property

This section is dedicated to show the following theorem. The theorem is a refor-
mulation of Lemma 3 in terms that are totally independent of the setting and
notation used in the previous section.

Theorem 2 (Reformulation of Lemma 3). Let G = (V,E) be a 2-edge-
connected graph and E′ a minimal 2-edge-connected spanning subgraph in G.
Let F ⊆ E be an edge set describing a (not necessarily spanning) forest in G
such that each edge e ∈ E′ \ F is essential in E′ ∪ F . Let L0 := V \ V (F ),
L1 := {v ∈ V (F ) | degF (v) = 1, δF (v) ⊆ E′}, L2 := {v ∈ V (F ) | degF (v) =
1, δF (v) ∩ E′ = ∅}, and L := L0 ∪ L1 ∪ L2.

Then we have
∑

v∈L degE′(v) ≤ 3 (|L| + |L0|) + |L1|.
Figure 1 illustrates an asymptotically tight example. Throughout this section,
we will use the following convention: We call the nodes in L leaves; they are
either L1 ∪ L2, degree-1 nodes in F , or L0, isolated nodes w.r.t. F . This is quite
natural since E and E′ do not contain any degree-1 nodes. For any subforest
F ′ ⊆ F , let L(F ′) := L ∩ V (F ′). We use the term component for a connected
component in F since E and E′ consist of one connected component only. Hence
these two terms are reasonable only in the context of F .

We consider an ear decomposition of E′, that is, we consider an ordered
partition of E′ into disjoint edge sets O0, O1, . . . where O0 is a simple cycle and
where Ot for t ≥ 1 is a simple u-v-path with V (Ot)∩⋃t−1

i=0 V (Oi) = {u, v}. Such
an ear decomposition exists since E′ is 2-edge-connected. Note that every ear
Ot has at least one inner node since it would otherwise only consist of a single



Simple Primal-Dual Algorithm for 2ECSS 357

unexplored

explored E′
t

ai

bi Ot
πi

general setting

ai

bi

situation E

ai

bi

situation U

ai

bi

situation D

Fig. 2. Illustration of the general setting for an ear Ot and a πi ∈ Π with θ(bi) = t,
and examples of situations E, U, and D. Thick edges are in F , rectangular nodes in L.

edge which would be nonessential in E′. Let E′
t :=

⋃t−1
i=0 Oi be the subgraph of

E′ that contains of the first t ears of the ear sequence.
We interpret the ear decomposition as a sequential procedure. We say Ot

is added to E′
t at time t. For t2 > t1 ≥ 1, the ear Ot1 appears earlier than

Ot2 , and Ot2 appears later than Ot1 . At any time t, we call a node v explored
if v ∈ V (E′

t), otherwise it is unexplored ; we call a component discovered if it
contains an explored node, otherwise it is undiscovered. Observe that the inner
nodes v of Ot are not yet explored at time t. We define θ(v) := t as the time
when v will become explored. Clearly, we have θ(v) := 0 for all nodes v ∈ O0.

The basic idea of our proof is to use the ear sequence to keep track (over
time t) of degE′

t
(v) for v ∈ L via a charging argument. Consider any t ≥ 1. An

inner (and thus unexplored) node of Ot might be in L. Every such leaf has a
degree of 2 in E′

t+1. However, the endpoints of Ot may be explored leaves whose
degrees increase in E′

t+1. We tackle this problem by assigning this increase to
other leaves and making sure that the total assignment to each leaf is bounded.

Let Π be the set of all edges in E′ that are incident to a leaf that is simulta-
neously an endpoint of some ear Ot. We denote the edges in Π by π1, . . . , π|Π|
in increasing time of their ears, i.e., for πi ∈ Ot, πj ∈ Ot′ with i < j we have
t ≤ t′. We say i is the index of edge πi ∈ Π. To be able to refer to the nodes
V (πi) =: {ai, bi} by index, we define ai as the endpoint and bi as the inner
node of the ear containing πi. Note that there might be distinct πi, πj ∈ Π with
θ(bi) = θ(bj) if both ai and aj are leaves (with possibly even bi = bj). By Ci we
denote the component that contains bi.

For any index i, we may have: situation E if πi is an element of F , situation U
if πi /∈ F and Ci is undiscovered, and situation D if πi /∈ F and Ci is discovered,
c.f. Fig. 2.

We will assign the degree increments of ai to other leaves by some charging
scheme χ, which is the sum of several distinct charging schemes. The precise
definition of these (sub)schemes is subtle and necessarily intertwined with the
analysis of the schemes’ central properties. Thus we will concisely define them
only within the proofs of Lemmata 5 and 6 below. We call a leaf charged due to
a specific situation if that situation applied at the time when the increment was
assigned to the leaf. Let χE, χU, χD : L → N be the overall charges (on a leaf)
due to situation E, U, D, respectively. The leaf-degree property will follow by
observing that no leaf is charged too often by these different chargings.
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Lemma 5. We can establish a charging scheme χE such that we guarantee
χE(v) ≤ 1 if v ∈ L1 and χE(v) = 0 if v ∈ L0 ∪ L2.

Proof. Consider situation E occurring for index i. By πi ∈ F , we have ai ∈ L1

(and thus χE(ai) = 0 if ai ∈ L0 ∪ L2). Assume situation E occurs for another
index j = i such that ai = aj . This yields πi, πj ∈ F which contradicts that ai

is a leaf. Hence the claim follows by setting χE(ai) = 1. 
�
Lemma 6. We can establish charging schemes χU, χD such that we guarantee
χU(v) + χD(v) ≤ 2 if v ∈ L0 and χU(v) + χD(v) ≤ 1 if v ∈ L1 ∪ L2.

Proof (Sketch). The proof of this lemma is rather technical and can be found in
the full version. It mainly exploits the finding of contradictions to the fact that
each edge e ∈ E′ \ F is essential in E′ ∪ F . Two mappings can be established:
first an injective mapping (based on induction) from edges πi in situation D
to leaves, and second an ‘almost injective’ (relaxing the mappings to L0 nodes
slightly) mapping from edges πi in situation U to remaining leaves. For the
latter, we establish an algorithm that hops through components. We show that
this algorithm identifies suitable distinct leaves. The charging schemes χU, χD

with the desired properties follow from these mappings. 
�
Proof (Theorem 2). Let v ∈ L be any leaf. The charging of v during the whole
process is χ(v) := 2+χE(v)+χU(v)+χD(v) where the 2 comes from an implicit
charging of the degree of v when v is discovered. By Lemmata 5 and 6, we obtain
χ(v) ≤ 4 for v ∈ L0, χ(v) ≤ 4 for v ∈ L1, and χ(v) ≤ 3 for v ∈ L2. This yields∑

v∈L degE′(v) ≤ 4|L0| + 4|L1| + 3|L2| ≤ 3(|L| + |L0|) + |L1|. 
�
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Abstract. Gerke et al. (2019) introduced Netflix Games and proved
that every such game has a pure strategy Nash equilibrium. In this paper,
we explore the uniqueness of pure strategy Nash equilibria in Netflix
Games. Let G = (V, E) be a graph and κ : V → Z≥0 a function, and
call the pair (G, κ) a weighted graph. A spanning subgraph H of (G, κ)
is called a DP -Nash subgraph if H is bipartite with partite sets D, P
called the D-set and P -set of H, respectively, such that no vertex of P
is isolated and for every x ∈ D, dH(x) = min{dG(x), κ(x)}. We prove
that whether (G, κ) has a unique DP -Nash subgraph can be decided in
polynomial time. We also show that when κ(v) = k ∈ Z≥0 for every
v ∈ V , the problem of deciding whether (G, κ) has a unique D-set is
polynomial time solvable for k = 0 and 1, and co-NP-complete for k ≥ 2.

1 Introduction

In this paper, all graphs are undirected, finite, without loops or parallel edges.
Let G = (V,E) be a graph and κ : V → Z≥0 a function. For v ∈ V, we will call
κ(v) the weight of v and the pair (G,κ) a weighted graph. A spanning subgraph
H of (G,κ) is called a DP -Nash subgraph if H is bipartite with partite sets D
and P called the D-set and P -set of H, respectively, such that no vertex of P
is isolated and for every x ∈ D, dH(x) = min{dG(x), κ(x)}, where dH(x) and
dG(x) are the degrees of x in H and G, respectively. Since H is a bipartite graph,
we will write it as the triple (D,P ;E′), where D,P are D-set and P -set of H,
respectively, and E′ is the edge set of H. A vertex set B is a D-set of (G,κ) if
(G,κ) has a DP -Nash subgraph in which B is the D-set. Gerke et al. [6] proved
the following:
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Theorem 1. Every weighted graph (G,κ) has a DP -Nash subgraph.

Theorem 1 implies that every weighted graph has a D-set.
Let us consider a few examples of DP -Nash subgraphs and D-sets. If κ(x) = 0

for every x ∈ V then there is only one DP -Nash subgraph with D-set V and
empty P -set. If κ(x) = 1 for every x ∈ V then every DP -Nash subgraph is a
spanning vertex-disjoint collection of stars, each with at least two vertices. If
κ(x) = dG(x) for every x ∈ V then the D-set of each DP -Nash subgraph of
(G,κ) is a maximal independent set of G. It is well-known that a vertex set is
maximal independent if and only if it is independent dominating. Since finding
both maximum size independent set and minimum size independent dominating
set are both NP-hard [2], so are the problems of finding a D-set of maximum and
minimum size. For more information on complexity of independent domination,
see [7].

The notion of a D-set is not directly related to the Capacitated Domina-
tion problem where the number of vertices which a vertex can dominate does
not exceed its weight (capacity) [3,10]. D-sets provide what one can call exact
capacitated domination, not studied in the literature yet, as far as we know.

Theorem 1 means that all Netflix Games introduced in [6] have pure strategy
Nash equilibria; see Sect. 2 for a brief discussion of Netflix Games and their
relation to DP -Nash subgraphs and D-sets in weighted graphs. As explained in
Sect. 2, there are two natural problems of interest in economics.

DP -Nash Subgraph Uniqueness: decide whether a weighted graph has a
unique DP -Nash subgraph, and

D-set Uniqueness: decide whether a weighted graph has a unique D-set.
While the problems are clearly related, we show that their time complexities

are not unless P=co-NP: DP -Nash Subgraph Uniqueness is polynomial-time
solvable and D-set Uniqueness is co-NP-complete. In fact, for D-set Unique-
ness we prove the following complexity dichotomy when κ(x) = k for every ver-
tex x ∈ V, where k is a non-negative integer. If k ≥ 2 then D-set Uniqueness is
co-NP-complete and if k ∈ {0, 1} then D-set Uniqueness is in P. We note that
the proof of Theorem 1 in [6] implies that constructing a DP -Nash subgraph
and, thus, a D-set in every weighted graph is polynomial-time solvable.

Preliminaries are given in Sect. 3. To obtain the above polynomial-time com-
plexity results for DP -Nash Subgraph Uniqueness and D-set Uniqueness,
we first prove in Sect. 4 a charaterization of weighted graphs with unique D-sets,
which we believe is of interest in its own right. In Sect. 5, we show that DP -Nash
Subgraph Uniqueness is in P. In Sect. 6 we prove the above-mentioned com-
plexity dichotomy for D-set Uniqueness.1 We conclude the paper in Sect. 7.

2 Motivation

There are many economic situations that are collectively referred to as combina-
torial assignment problems. The first systematic approach to issues of this type
1 It is somewhat interesting that despite the characterization for D-set Uniqueness,

the problem is co-NP-complete.
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was by Gale and Shapley [4] who studied ‘matching’ in marriage markets. They
imagined a group of n women and another group of n men, where everyone wants
to be matched with one member of the opposite sex. The problem of finding an
assignment that leaves everyone ‘content’ is difficult since there are n! possible
assignments and individuals have preferences. Gale and Shapley proposed a solu-
tion. They called an assignment between women and men stable if there does
not exist a woman-man pair (call them Ann and Barry) such that: 1) Ann is
not paired with Barry, 2) Ann prefers Barry to her match, and 3) Barry prefers
Ann to his match. Gale and Shapley’s ‘deferred acceptance algorithm’ confirms
that a stable match always exists. Variants and extensions of the algorithm have
been applied to a wide variety of assignment problems in economics including
college admissions, the market for kidney donors, and refugee resettlement (see
[15] for a survey).2

The assignment problem that motivates our study arises in the provision
of local public goods. The story is as follows. There is a society of individuals
arranged in a social network modelled as a graph where vertices represent indi-
viduals and edges capture friendships. There is a desirable product, say access
to Netflix or Microsoft Office, that is available for purchase. While the product
can be shared upon purchase, an owner may only share access with a limited
number of friends. Individual preferences are such that it is always better to
have access than not, but, since access is costly each individual prefers that a
friend purchases and shares their access than vice versa. This describes the Net-
flix Games of Gerke et al. [6].3 For a given Netflix game, a D-set lists those who
purchase the product in equilibrium, while a DP -Nash subgraph lists those who
purchase (the D-set), those who free-ride (the P -set), and exactly who in D each
individual in P receives an offer of access from (the edge set).4 Netflix Games
generalise the models of local public goods without weight constraints, see [1,5],
for which the stable outcomes correspond to maximal independent sets.

The rationale for a detailed focus on what weighted graphs (G,κ) admit a
unique DP -Nash subgraph and/or a unique D-set is that economic models with
a unique equilibrium are as rare as they are useful. Uniqueness is rare due to the
mathematical structure of economic models (formally, the best-response map
of Nash [13,14] rarely admits only one fixed point). Uniqueness is useful as (i)
it saves the analyst from an ‘equilibrium selection’ headache - justifying why

2 Lloyd Shapley and Alvin Roth received the 2012 Nobel Memorial Prize in Economics
for their work in this area. (David Gale died in 2007.)

3 Vertices being constrained in the number of neighbours they may share with seems
well-suited to applications. In Netflix Games sharing bestows a benefit on neigh-
bours, but this need not be the case. Gutin et al. [8] add constrained sharing to
the Susceptible-Infected-Removed (SIR) model of disease transmission of Kermack
and McKendrick [11]. Gutin et al. interpret constrained sharing as ‘social distancing’
restrictions imposed on a population and document how the reach of an epidemic is
curtailed when such measures are in place.

4 One example from Gerke et al. was of a group of individuals who each want to attend
an event and can ride-share to get to it. Every individual will be assigned as either
a Driver or a Passenger, hence the labels D and P.



Uniqueness of DP -Nash Subgraphs and D-sets 363

one equilibrium is more likely to emerge than another, and (ii) allows those who
study game-design to be confident in generating a particular outcome (since only
one outcome is stable). It is for this reason that models with unique equilibria
are so highly coveted (see for example the model of currency attacks in [12]), and
why we believe the study of conditions under which unique DP -Nash subgraphs
and D-sets exist will be of great interest to the economics community.

3 Preliminaries

In the rest of the paper, we will often write G instead of (G,κ) when the weight
function κ is clear from the context. We will often omit the subscript G in NG(x)
and dG(x) when the graph G under consideration is clear from the context. We
will often shorten the term DP -Nash subgraph to Nash subgraph.

In the rest of this section, we provide two simple assumptions for the rest of
the paper which will allow us to simplify some of our proofs. In both assumptions,
(G,κ) is a weighted graph.

Assumption 1: For all u ∈ V we have κ(u) ≤ d(u).
Assumption 1 does not change the set of DP -Nash subgraphs of any

weighted graph as if κ(u) > d(u) we may let κ(u) = d(u) without changing
min{κ(u), d(u)}. Due to this assumption, we can simplify the definition of a
DP -Nash subgraph of a weighted graph (G,κ). A spanning subgraph H of G
is called a DP -Nash subgraph if H is bipartite with partite sets D,P called the
D-set and P -set of H, respectively, such that no vertex of P is isolated and
for every x ∈ D, dH(x) = κ(x). Note that Assumption 1 may not hold for a
subgraph of (G,κ) if the subgraph uses the same weight function κ restricted to
its vertices.

Assumption 2: If uv is an edge in G, then κ(u) > 0 or κ(v) > 0.
This assumption does not change our problem due to the following:

Proposition 1. Let G∗ be obtained from G by deleting all edges uv with κ(u) =
κ(v) = 0. Then (D,P ;E′) is a Nash subgraph of (G,κ) if and only if (D,P ;E′)
is a Nash subgraph of (G∗, κ).

Proof. Let uv be any edge in G with κ(u) = κ(v) = 0 and let (D,P ;E′) be a
Nash subgraph of (G,κ). Note that uv �∈ E′ as if u ∈ D then E′ contains no
edge incident with u and if v ∈ D then E′ contains no edge incident with v and
if u, v ∈ P then E′ does not contain the edge uv. This implies (D,P ;E′) is a
Nash subgraph of (G∗, κ).

Conversely if (D,P ;E′) is a Nash subgraph of (G∗, κ) then (D,P ;E′) is a
Nash subgraph of (G,κ) as both graphs have the same weight function and G∗

is a spanning subgraph of G. ��

4 Characterisation of Weighted Graphs with Unique
D-set

We begin this section by introducing some definitions and additional nota-
tion. For a set F of edges of a graph H and a vertex x of H, NF (x) =
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{y ∈ V (H)|xy ∈ F} and dF (x) = |NF (x)|. For a vertex set Q of a graph
H, NH(Q) =

⋃
x∈Q NH(x). Define X(G,κ), Y (G,κ) and Z(G,κ) as follows.

If (G,κ) is clear from the context these sets will be denoted by X, Y and Z,
respectively.

X = X(G,κ) := {x | κ(x) = d(x)}
Y = Y (G,κ) := N(X) \ X
Z = Z(G,κ) := V (G) \ (X ∪ Y )

Lemma 1. Let u ∈ V (G) and let X = X(G,κ). If |NG(u)∩X| ≤ κ(u) then there
exists a Nash subgraph (D,P ;E) of (G,κ) where u ∈ D and NG(u) ∩ X ⊆ P .
Furthermore, if |NG(u)∩X| < κ(u) and w ∈ NG(u)\X then there exists a Nash
subgraph (D,P ;E) of (G,κ) where u ∈ D and {w} ∪ (NG(u) ∩ X) ⊆ P .

Proof. Let u ∈ V (G) such that |NG(u)∩X| ≤ κ(u). Recall that by Assumption 1
we have κ(v) ≤ dG(v) for all v ∈ V (G). Let E∗ denote an arbitrary set of κ(u)
edges incident with u, such that NG(u) ∩ X ⊆ NE∗(u). Let T ′ = NE∗(u),
G′ = G \ ({u} ∪ T ′) and (P ′,D′;E′) a Nash subgraph of G′, which exists by
Theorem 1. Let P = P ′ ∪ T ′ and let D = D′ ∪ {u}.

Initially let Ê = E′ ∪E∗. Clearly every vertex in P has at least one edge into
D. Now let v ∈ D be arbitrary. If dÊ(v) �= κ(v) (recall that κ(v) ≤ dG(v)) then
we observe that v ∈ D′ and

dÊ(v) = dE′(v) = min{dG′(v), κ(v)} < κ(v).

Since v either has no edge to u or does not lie in X, observe that we can add
κ(v) − dG′(v) edges to Ê between v and T ′ resulting in dÊ(v) = κ(v). After
doing the above for every x ∈ D we obtain a Nash subgraph (D,P ; Ê) of G with
the desired properties. This completes our proof of the case |NG(u)∩X| ≤ κ(u).
The same proof can be used for the case |NG(u) ∩ X| < κ(u) if we choose E∗

such that w ∈ T ′. ��
Lemma 2. If X ∪ Z is not an independent set in (G,κ), then there exist DP -
Nash subgraphs of G with different D-sets. If X ∪ Z is an independent set in G
then there exists a DP -Nash subgraph (D,P ;E′) of (G,κ) where D = X ∪ Z
and P = Y .

Proof. First assume that X ∪ Z is not independent in G and that uv is an edge
where u, v ∈ X ∪ Z. By the definition of Z we have that u, v ∈ X or u, v ∈ Z.

First consider the case when u, v ∈ X. Note that |NG(u)∩X| ≤ d(u) = κ(u),
which by Lemma 1 implies that there is a Nash subgraph (D′, P ′;E′) in G where
u ∈ D′ and v ∈ P ′. Analogously, we can obtain a Nash subgraph (D′′, P ′′;E′′)
in G where v ∈ D′′ and u ∈ P ′′, which implies that there exist Nash subgraphs
of G with different D-sets, as desired.

We now consider the case when u, v ∈ Z. As uv is an edge in G we may
without loss of generality assume that κ(v) ≥ 1 (by Assumption 2). As |NG(v)∩
X| = 0 < κ(v), Lemma 1 implies that there is a Nash subgraph (D′, P ′;E′) in
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G where v ∈ D′ and u ∈ P ′. As |NG(u) ∩ X| = 0 ≤ κ(u), Lemma 1 implies that
there is a Nash subgraph (D′′, P ′′;E′′) in G where u ∈ D′′. As there exist Nash
subgraphs where u ∈ P ′ and where u ∈ D′′, we are done in this case.

Now let X ∪ Z be independent in G and let P = Y and D = X ∪ Z. Let E′

contain all edges between X and Y as well as any κ(z) edges from z to P for
all z ∈ Z. As Y = N(X) \ X we conclude that (D,P ;E′) is a Nash subgraph of
(G,κ). ��

To state our characterisation result for weighted graphs possessing a unique
D-set, we need some additional definitions and two properties.

Given a weight κ on a graph G, for any subset U ⊆ V (G) let Uκ denote a set
of vertices obtained from U by replacing each vertex, u ∈ U , by its κ(u) copies.
Note that if κ(u) = 0 then the vertex u is not in Uκ and |Uκ| =

∑
u∈U κ(u).

Given a weighted graph (G,κ), let Gaux be a bipartite graph with partite
sets R′ = X ∪ Z and Y ′ = Y κ. For a vertex y ∈ Y, there is an edge from a copy
of y to r ∈ R′ in Gaux if and only if there is an edge from y to r in G.

Let Y κ>0 ⊆ Y consist of all vertices y ∈ Y with κ(y) > 0. For every set
∅ �= W ⊆ Y κ>0 let

L(W ) = {x ∈ X ∪ Z | |N(x) ∩ W | > d(x) − κ(x)}.

We now define the properties M∗(G,κ) and O∗(G,κ):

M∗(G,κ) holds if for every set ∅ �= W ⊆ Y κ>0 there is no matching from L(W )
to Wκ of size |L(W )| in Gaux.

O∗(G,κ) holds if for every set ∅ �= W ⊆ Y κ>0 we have |L(W )| > |Wκ|.

Theorem 2. If X ∪ Z is not independent in G then (G,κ) has at least two
different D-sets. If X∪Z is independent in G then the following three statements
are equivalent:

(a) G has a unique D-set;
(b) M∗(G,κ) holds;
(c) O∗(G,κ) holds.

Proof. The case of X ∪ Z being not independent follows from Lemma 2. We
will therefore assume that X ∪ Z is independent in G and prove the rest of the
theorem by showing that (a) ⇒ (b) ⇒ (c) ⇒ (a). The following three claims
complete the proof.

Claim A: (a) ⇒ (b).
Proof of Claim A: Suppose that (a) holds but (b) does not. As (b) is false,

M∗(G,κ) does not hold, which implies that there exists a ∅ �= W ⊆ Y κ>0 such
that there is a matching, M , from L(W ) to Wκ of size |L(W )| in Gaux.

Let D1 = W , P1 = L(W ) and G2 = G − (P1 ∪ D1). Let (D2, P2;E′
2) be a

DP -Nash subgraph of G2, which exists by Theorem 1. We will now prove the
following six subclaims.

Subclaim A.1: For every y ∈ Y, we have |N(y) ∩ X| ≥ κ(y) + 1.
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Proof of Subclaim A.1: Assume that Subclaim A.1 is false and there exists
a vertex y ∈ Y such that |N(y) ∩ X| ≤ κ(y). By Lemma 1, there exists a Nash
subgraph (D′, P ′;E′) in G where y ∈ D′. By Lemma 2, there exists a Nash
subgraph (D′′, P ′′;E′′) in G where y ∈ P ′′ (as P ′′ = Y ). Therefore (a) is false,
a contradiction. �

Sublaim A.2: If u ∈ D1 = W then N(u) ∩ X ⊆ P1. Furthermore, |N(u) ∩
P1| ≥ κ(u) + 1.

Proof of Subclaim A.2: Let u ∈ D1 (and therefore u ∈ W ) be arbitrary and
let r ∈ N(u) ∩ X be arbitrary. We will show that r ∈ P1, which will prove
the first part of the claim. As r ∈ X we have dG(r) = κ(r). This implies that
|N(r) ∩ W | ≥ 1 > 0 = dG(r) − κ(r). Hence, r ∈ L(W ) = P1 as desired.

We now prove the second part of Subclaim A.2. Since u ∈ Y, Subclaim A.1
implies that |N(u) ∩ X| ≥ κ(u) + 1. As every vertex in N(u) ∩ X also belongs
to P1, we have |N(u) ∩ P1| ≥ κ(u) + 1. �

Subclaim A.3: There exists a Nash subgraph (D1, P1;E′
1) of G[D1 ∪ P1].

Proof of Subclaim A.3: P1 and D1 were defined earlier so we will now define
E′

1. Let all edges of the matching M belong to E′
1. That is if u′v ∈ M and

u′ ∈ V (Gaux) is a copy of u ∈ V (G), then add the edge uv to E′
1. We note that

every vertex in P1 is incident to exactly one of the edges added so far and every
vertex u ∈ D1 is incident to at most κ(u) such edges. By Subclaim A.2 we can
add further edges between P1 and D1 such that every vertex u ∈ D1 is incident
with exactly κ(u) edges from E′

1. �
Subclaim A.4: Every u ∈ (X ∪ Z) \ L(W ) has at least κ(u) neighbours in

Y \ W .
Proof of Subclaim A.4: As u �∈ L(W ) we have that |NG(u)∩W | ≤ d(u)−κ(u).

This implies that |NG(u)\W | ≥ κ(u). As X ∪Z is independent this implies that
u has at least κ(u) neighbours in Y \ W, as desired. �

Recall that (D2, P2;E′
2) is a Nash subgraph of G2 and by Subclaim A.3,

(D1, P1;E′
1) is a DP -Nash subgraph of G[D1 ∪ P1].

Subclaim A.5: There exists a Nash subgraph (P1∪P2,D1∪D2, E
′
1∪E′

2∪E∗)
of G for some E∗.

Proof of Subclaim A.5: Let P = P1 ∪ P2, D = D1 ∪ D2 and E′ = E′
1 ∪ E′

2.
Clearly every vertex in P is incident with an edge in E′.

First consider a vertex u ∈ D1. By Subclaim A.2, u has at least κ(u) + 1
neighbours in P1 in G. Therefore, by Subclaim A.3, u is incident with exactly
κ(u) edges of E′

1 and so also with κ(u) edges of E′.
Now consider u ∈ D2. Note that u is incident with min{κ(u), dG2(u)} edges

of E′
2. If u ∈ X ∪ Z \ L(W ) then by Subclaim A.4, min{κ(u), dG2(u)} = κ(u)

implying that u is incident with exactly κ(u) edges of E′ as desired. We may
therefore assume that u �∈ X ∪ Z \ L(W ), which implies that u ∈ Y \ W .
By Subclaim A.1, u has at least κ(u) + 1 neighbours in X in G. Therefore,
dG2(u) + |N(u) ∩ P1| ≥ κ(u) + 1 (as every edge from u to X is counted in the
sum on the left hand side of the inequality). Thus, if min{κ(u), dG2(u)} < κ(u),
then we can add edges from u to P1 to E′ until u is incident with exactly κ(u)
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edges of E′. Continuing the above process for all u and letting E∗ be the added
edges, we obtain the claimed result. �

Subclaim A.6: Claim A holds.
Proof of Subclaim A.6: By Lemma 2 there exists a DP -Nash subgraph,

(D,P,E′), with D = X ∪ Z and P = Y . By Subclaim A.5, there exists a
DP -Nash subgraph of G where some vertices of Y belong to D, contradicting
the fact that (a) holds. This completes the proof of Subclaim A.6, and therefore
also of Claim A. �

Claim B: (b) ⇒ (c).
Proof of Claim B: Suppose that (b) holds but (c) does not. As (c) does not

hold there exists a ∅ �= W ⊆ Y κ>0 such that |L(W )| ≤ |W |. Assume that W is
chosen such that |W | is minimum possible with this property. As (b) holds there
is no matching between Wκ and L(W ) in Gaux saturating every vertex of L(W ).
By Hall’s Theorem, this implies that there exists a set S ⊆ L(W ) such that
|NGaux(S)| < |S|. Note that NG(S) ⊆ W such that NGaux(S) contains exactly
the copies of NG(S). Note that |NG(S)| ≤ |NGaux(S)| < |S| as W ⊆ Y κ>0. Let
W ′ = W \ NG(S).

By definition we have

L(W ′) = {x ∈ X ∪ Z | |NG(x) ∩ W ′| > d(x) − κ(x)}.

We will now prove the following subclaim.
Subclaim B.1: L(W ′) ⊆ L(W ) \ S.
Proof of Subclaim B.1: Let u ∈ L(W ′) be arbitrary and note that |NG(u) ∩

W | ≥ |NG(u) ∩ W ′| > d(u) − κ(u). This implies that u ∈ L(W ).
We will now show that u �∈ S. If u ∈ S, then N(u) ⊆ N(S), so u has no

neighbours in W ′ = W \N(S). Therefore, |NG(u)∩W ′| = 0, and as we assumed
that d(v) ≥ κ(v) for all v ∈ V (G), the following holds

|NG(u) ∩ W ′| = 0 ≤ d(u) − κ(u).

Therefore, u �∈ L(W ′), a contradiction. This implies that u �∈ S and therefore
L(W ′) ⊆ L(W ) \ S. �

By Subclaim B.1, we have that |L(W ′)| ≤ |L(W )|−|S| < |L(W )|−|NG(S)| =
|W ′|. This contradicts the minimality of |W |, and therefore completes the proof
of Claim B.

Claim C: (c) ⇒ (a).
Proof of Claim C: Suppose that (c) holds but (a) does not. By Lemma 2 and

the fact that (a) does not hold, there exists a Nash subgraph (D,P ;E′) of G
such that D �= X ∪ Z.

If Y κ>0 ⊆ P , then no vertex of X ∪ Z can belong to P as it would have no
edge to D (as X ∪ Z is independent). Therefore, X ∪ Z ⊆ D in this case. Due
to the definition of X (and Y ) and the fact that X ⊆ D, we have that Y ⊆ P ,
which implies that D = X ∪ Z and Y = P , which is a contradiction to our
assumption that D �= X ∪ Z.

So we may assume that Y κ>0 �⊆ P . This implies that Y κ>0 ∩ D �= ∅. Let
W = Y κ>0 ∩ D. We now prove the following subclaim.
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Subclaim C.1: L(W ) ⊆ P .
Proof of Subclaim C.1: Let w ∈ L(W ) be arbitrary. Hence, |NG(w) ∩ W | >

d(w) − κ(w). If w ∈ D, then w has at least κ(w) neighbours in P in G. By the
above it has at least d(w) − κ(w) + 1 neighbours in W ⊆ D, contradicting the
fact that w has d(w) neighbours. This implies that w �∈ D. Therefore, w ∈ P
and as w ∈ L(W ) is arbitrary, we must have L(W ) ⊆ P . �

We now return to the proof of Claim C. Recall that X ∪ Z is independent
and L(W ) ⊆ X ∪ W and every vertex in P has at least one edge to D in E′. By
Subclaim C.1, L(W ) ⊆ P , which implies that there are at least |L(W )| edges
from L(W ) to W , as W = Y κ>0 ∩ D. As there are at most θ =

∑
w∈W κ(w)

edges from W to L(W ) we must have |L(W )| ≤ θ =
∑

w∈W κ(w) = |Wκ|.
The above is a contradiction to (c). This completes the proof of Claim C and

therefore also of the theorem. ��
We immediately have the following:

Corollary 1. All Nash subgraphs of (G,κ) have the same D-set if and only if
X ∪ Z is independent in G and O∗(G,κ) holds.

Note that if κ(x) = 0 for all x ∈ G then X = V (G) and Y = ∅. In this case
O∗(G,κ) vacuously holds and there is a unique Nash subgraph of (G,κ) with
D-set V and empty P -set.

5 Complexity of Uniqueness of Nash Subgraph

Theorem 3. DP -Nash Subgraph Uniqueness is in P.

Proof. Let (G,κ) be a weighted graph, and let X = X(G,κ), Y = Y (G,κ) and
Z = Z(G,κ) be as defined in the previous section. If X ∪ Z is not independent
then there exist distinct Nash subgraphs in (G,κ) by Lemma 2. So we may
assume that X ∪ Z is independent. By Lemma 2 there exists a Nash subgraph
(D,P ;E′) in G where D = X ∪ Z and P = Y .

If Z �= ∅, then let z ∈ Z be arbitrary. In E′ we may pick any κ(z) edges out
of z, as every vertex in Y has an edge to X in E′. As d(z) > κ(z) we note that
by picking different edges incident with z we get distinct Nash subgraphs of G.
We may therefore assume that Z = ∅.

Recall the definition of Gaux, which has partite sets R′ = X and Y ′ = Y κ

(as Z = ∅).
We will now prove the following two claims which complete the proof of the

theorem since the existence of a matching in Gaux − x saturating its partite set
Y ′ can be decided in polynomial time for every x ∈ X.

Claim A: If for every x ∈ X there exists a matching in Gaux − x saturating
Y ′ then there is only one Nash subgraph in G.

Proof of Claim A: We will first show that if the statement of Claim A holds
then O∗(G,κ) holds. Suppose that O∗(G,κ) does not hold. This implies that
there is a set ∅ �= W ⊆ Y κ>0 such that |L(W )| ≤ |Wκ|. Note that, as Z = ∅, we



Uniqueness of DP -Nash Subgraphs and D-sets 369

have L(W ) = NG(W )∩X. As W �= ∅ and W ⊆ Y , we have that NG(W )∩X �= ∅.
Let x ∈ NG(W ) ∩ X be arbitrary. Now the following holds.

|(NG(W ) ∩ X) \ {x}| = |L(W )| − 1 ≤ |Wκ| − 1 < |Wκ|

This implies that there cannot be a matching in Gaux − x saturating Y ′, a
contradiction. Thus, O∗(G,κ) must hold. By Corollary 1 we have that all Nash
subgraphs must therefore have the same D-set. By Lemma 2 we have that all
Nash subgraphs (D,P ;E′) must therefore have D = X and P = Y . By the
definition of X we note that E′ must contain exactly the edges between X and
Y , and therefore there is a unique Nash subgraph in G. �

Claim B: If for some x ∈ X there is no matching in Gaux −x saturating Y ′,
then there are at least two distinct Nash subgraphs in G.

Proof of Claim B: Let x ∈ X be defined as in the statement of Claim B. By
Hall’s Theorem there exists a set S′ ⊆ Y ′ such that |NGaux(S′) \ {x}| < |S′|.
Let S ⊆ Y be the set of vertices for which there is a copy in S′. Note that
(NG(S)∩X)\{x} = NGaux(S′)\{x} and |S′| ≤ |Sκ|, which implies the following.

|NG(S) ∩ X| ≤ |(NG(S) ∩ X) \ {x}| + 1 = |NGaux(S′) \ {x}| + 1
< |S′| + 1 ≤ |Sκ| + 1.

As all terms above are integers, this implies that |NG(S)∩X| ≤ |Sκ|. As L(S) =
NG(S) ∩ X by the definition of L(S), we note that |L(S)| ≤ |Sκ| and therefore
O∗(G,κ) does not hold, which by Corollary 1 implies that there are distinct
Nash subgraphs in G (even with distinct D-sets). This completes the proof of
Claim B and therefore also of the theorem. ��

6 Complexity of Uniqueness of D-set

If Z = ∅ then G has a unique D-set if and only if D has a unique Nash subgraph
(this follows from the proof of Theorem 3). Thus, if Z = ∅ then by Theorem 3
it is polynomial to decide whether G has a unique D-set.

However, as we can see below, in general, it is co-NP-complete to decide
whether a weighted graph (G,κ) has a unique D-set (the D-set Uniqueness
problem). To refine this result, we consider the case when κ(v) = k for every
v ∈ V (G). We observed in Sect. 1 that if k = 0 then V (G) is the only D-set
in G. The next theorem shows that D-set Uniqueness remains in P when
k = 1. However, Theorem 5 shows that for k ≥ 2, D-set Uniqueness is co-NP-
complete.

Theorem 4. Let (G,κ) be a weighted graph and let κ(x) = 1 for all x ∈ V (G).
Let X = {x | dG(x) = 1}, Y = N(X) and Z = V (G) \ (X ∪ Y ). Then all
DP -Nash subgraphs have the same D-set if and only if X ∪ Z is independent
and |NG(y) ∩ X| ≥ 2 for all y ∈ Y . In particular, D-set Uniqueness is in P
in this case.
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Proof. If X ∪ Z is not independent then we are done by Lemma 2, so assume
that X ∪ Z is independent. By Lemma 2, there exists a DP -Nash subgraph,
(D,P ;E′), such that Y = P . If |NG(y) ∩ X| < 2 for some y ∈ Y , then by
Lemma 1 there exists a DP -Nash subgraph, (D′, P ′;E′′), of G, where y ∈ D′.
This implies that there exists DP -Nash subgraphs where y belongs to its D-set
and where y belongs to its P -set, as desired.

We now assume that X ∪Z is independent and |NG(y)∩X| ≥ 2 for all y ∈ Y .
We will prove that all DP -Nash subgraphs have the same D-set in (G,κ) and
we will do this by proving that O∗(G,κ) holds, which by Corollary 1 implies the
desired result.

Recall that O∗(G,κ) holds if for every set ∅ �= W ⊆ Y we have |L(W )| > |W |
(as Y κ>0 = Y and Wκ = W ). Let W be arbitrary such that ∅ �= W ⊆ Y . By
the definition of L(W ), we have that |L(W )| ≥ |N(W ) ∩ X|. As no vertex
in X has edges to more than one vertex in Y (as dG(x) = 1) we have that
|N(W ) ∩ X| =

∑
w∈W |N(w) ∩ X| ≥ 2|W |. Therefore, we have

|L(W )| ≥ |N(W ) ∩ X| ≥ 2|W | > |W |.

implying that O∗(G,κ) holds, as desired. ��
The following result is proved by reductions from 3-SAT. This reduction is

direct for the case of k = 2, where for an instance I of 3-SAT formula, we can
construct a weighted graph (G,κ) such that κ(x) = 2 for every vertex x of G
and (G,κ) at least two D-sets if and only if I is satisfiable. In the case of k ≥ 3,
we first trivially reduce from 3-SAT to k-out-of-(k + 2)-SAT, where a CNF
formula F has k +2 literals in every clause and F is satisfied if and only if there
is a truth assignment which satisfies at least k literals in every clause. Then we
reduce from k-out-of-(k + 2)-SAT to the complement of D-set Uniqueness.
While the main proof structure is similar in both cases, the constructions of
(G,κ) are different. The full proof can be found in [9].

Theorem 5. Let k ≥ 2 be an integer. D-set Uniqueness is co-NP-complete
for weighted graphs (G,κ) with κ(x) = k for all x ∈ V (G).

7 Conclusions

We have proved that Uniqueness D-set is co-NP-complete. It is not hard to
solve this problem in time O∗(2n), where O∗ hides not only coefficients, but also
polynomials in n. Indeed, we can consider every non-empty subset S of V (G)
in turn and check whether S is the D-set of a Nash subgraph of (G,κ) using
network flows. Conditional on the Strong Exponential Time Hypothesis holding,
one can show that there exists a δ > 0 such that Uniqueness D-set cannot be
solved in time-O∗(2nδ). A natural open question is to compute a maximum such
value δ.

Consider a weighted graph (K3n, κ), where n ≥ 1 and κ(v) = 2 for every
v ∈ V (K3n). Observe that every p-size subset of V (K3n) for n ≤ p ≤ 3n − 2 is
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a D-set. Thus, a weighted graph can have an exponential number of D-sets and
hence of Nash subgraphs. This leads to the following open questions: (a) What
is the complexity of counting all Nash subgraphs of a weighted graph? (b) Is
there an O∗(dp(G,κ))-time algorithm to generate all Nash subgraphs of (G,κ),
where dp(G,κ) is the number of Nash subgraphs in (G,κ)?
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7014-00037B of Independent Research Fund Denmark.
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Abstract. A graph is a pairwise compatibility graph (PCG) if it can
be represented by an edge weighted tree whose set of leaves is the set of
vertices of the graph, and there is an edge between two vertices in the
graph if and only if the distance between them in the tree is within a given
interval. Enumerating all minimal non-PCGs (each of whose induced
subgraphs is a PCG) with a given number of vertices is a challenging
task, since it involves a large number of “configurations” that need to
be inspected, an infinite search space of weights, and the construction of
finite size evidence that a graph is not a PCG. We handle the problem of
a large number of configurations by first screening graphs that are PCGs
by using a heuristic PCG generator, and then constructing configurations
that show some graphs to be PCGs. Finally, we generated configurations
by excluding those configurations which cannot be used to show that a
given graph is a PCG. To deal with the difficulty of infinite search space
and construction of finite size evidence, we use linear programming (LP)
formulations whose solutions serve as finite size evidence. We enumerated
all minimal non-PCGs with nine vertices, the smallest integer for which
minimal non-PCGs are unknown. We prove that there are exactly 1,494
minimal non-PCGs with nine vertices and provide evidence for each of
them.

Keywords: Pairwise compatibility graph · Branch-and-bound
algorithm · Linear programming

1 Introduction

A graph is called a pairwise compatibility graph (PCG) if there exists an edge
weighted tree called a witness tree, whose set of leaves is the set of vertices of the
graph, such that there is an edge between two vertices in the graph if and only
if the distance between them in the tree is within a given interval. PCGs are an
interesting class of graphs that have applications in the field of computational
biology. For example, Kearney et al. [10] pointed out that PCGs are useful in
studying the evolutionary relationship between a set of organisms. Durocher
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et al. [8] noted that the results of Kearney et al. [10] imply that a polynomial-
time algorithm that can determine if a given graph is a PCG or not leads to a
polynomial-time algorithm for solving the well-known maximum clique problem
for certain graph classes. It is believed that the problem of confirming if a graph
is a PCG or not is NP-hard [7,8].

Related Work: Kearney et al. [10] conjectured that every graph with n ≥ 1
vertices is a PCG, however, Yanhaona et al. [14] and Durocher et al. [8] inde-
pendently refuted the conjecture by proving that there are some graphs that are
non-PCG, and Baiocchi et al. [3] uncovered several classes of graphs that are not
PCG, in particular, the wheel graphs with n ≥ 9 vertices. Calamoneri et al. [5]
showed that every graph with n ≤ 7 vertices is a PCG and Calamoneri et al. [4]
proved that any induced subgraph of a PCG is a PCG. For each PCG there
exists a witness tree each of whose non-leaf vertices are of degree, [5,6]. Xiao
and Nagamochi [13] proved that a graph is a PCG if and only if every bicon-
nected component of the graph is a PCG. Calamoneri et al. [6] showed that a
graph G with a pair of non-adjacent vertices u and v that have the same set of
neighbors is a PCG if and only if the subgraph of G induced by V (G) \ {u} is a
PCG. Azam et al. [1] proved that there are exactly seven non-PCGs with eight
vertices. Note that all non-PCGs with eight vertices are minimal non-PCGs i.e.,
a non-PCG each of whose induced subgraphs is a PCG, since every graph with
at most seven vertices is known to be a PCG [5].

Difficulties: For a graph with n ≥ 1 vertices, a configuration is defined to be a
tuple that consists of the graph, a tree with n leaves, a correspondence between
the vertices in the graph and the leaves in the tree, and a bi-partition of all
pairs of non-adjacent vertices in the graph. We call a configuration plausible
if there exist a weight function and a closed interval such that the tree in the
configuration is a witness of the graph, and one bi-partition class contains the
pairs of non-adjacent vertices in the graph whose distance in the tree is to the
left of the interval, and the other bi-partition class to the right. Observe that to
show that a graph with n ≥ 1 vertices is not a PCG it is necessary to exclude
all configurations with the graph and real valued weight functions. This leads to
the following three difficulties in enumerating all PCGs with a given number of
vertices:

(i) Large number of configurations: Although the numbers of graphs, trees, cor-
respondences, and bi-partitions are finite, the total number of configurations
increases exponentially with the increase in n. For instance, when n is 7, 8
and 9 there are approximately 2×1011, 4×1014, and 3×1018 configurations,
respectively.

(ii) Infinite search space: There exists an infinite space of possible assignments
of weights that needs to be excluded to confirm that a graph is not a PCG
for a fixed configuration.

(iii) Finite size evidence: When a graph is a PCG then its witness tree is evidence
to this. However, when a graph is not a PCG, then due to the infinite search
space of edge weights it is a challenging task to construct finite size evidence
that shows that a given graph is not a PCG.
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These difficulties eventually necessitate a non-trivial method that can efficiently
handle the problem of large number of configurations, infinite search space, and
construction of finite size evidence to prove that a graph is not a PCG.

Our Contribution: In this paper, we propose a method to enumerate all min-
imal non-PCGs with a given number of vertices. Our method consists of two
main phases: (I) Graph screening; and (II) Constructing evidence based on lin-
ear programming (LP). The aim of (I) is to remove some graphs for which we
do not need to further inspect configurations, to handle the difficulty (i), the
large number of configurations. To achieve this, in phase (I) we use two meth-
ods: (I-1) A PCG generator; and (I-2) Constructing plausible configurations. In
(I-1), we heuristically generate all PCGs for a given weighted tree taking into
account the tree symmetries to avoid repeatedly generating the same PCGs. In
(I-2), we try to construct a plausible configuration with weights bounded from
above, using a set of linear inequalities.

In phase (II), for each graph that is left after phase (I), we construct finite size
evidence whether the graph is a PCG or not. Recall that a large number of con-
figurations poses a difficulty, and therefore we only consider those configurations
that satisfy a certain necessary condition to be plausible, detailed in Sect. 4.1.
We call such configurations essential. This phase consists of two sub-phases: (II-
1) Enumerating essential configurations; and (II-2) Solving configuration-based
linear programs (LPs). In (II-1), we design a branch-and-bound algorithm to
enumerate all essential configurations. In (II-2) to handle difficulties (ii) and
(iii), we test each of the enumerated essential configurations in (II-1) by means
of solving a linear program which is feasible if and only if the given configura-
tion is plausible. As a definite proof to the infeasibility of the linear program,
we use another linear program based on Gale’s theorem [9, Theorem 2.8] which
is feasible if and only if the first one is not. Thus, we get finite size evidence as
proof that the graph is a PCG or not.

The rest of the paper is organized as follows: We discuss some basic notions
in Sect. 2. We give a detailed explanation of phases (I) and (II) of our method
in Sects. 3 and 4, respectively. Experimental results are given in Sect. 5, and we
conclude the paper and discuss future directions in Sect. 6.

2 Basic Notions

For a non-empty set S and an integer h ∈ [0, |S|], we denote by
(
S
h

)
the family

of all subsets of S of size h. Let S be a set and K = {0, 1, . . . , k} for some
k ≤ |S| − 1, we define a k-coloring of S to be a function λ : S → K. Let Λk(S)
denote the set of k-colorings of a set S.

Let G be a graph with n ≥ 1 vertices. We denote by V (G) the vertex set of
G, by E(G) the edge set of G and by E(G) the set

(
V (G)

2

)
\ E(G) of pairs of

non-adjacent vertices. We denote by G[X] the induced subgraph of G defined
by the subset X ⊆ V (G).

Let T be a tree. We denote by L(T ) the set of leaves in T . We define a
leaf-edge in T to be an edge incident to a leaf in T . For any two distinct vertices
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u, v ∈ V (T ), let PT (u, v) denote the unique simple path between them in T and
denote by ET (u, v) the set of edges in PT (u, v). For a subset X ⊆ L(T ), we define
the tree contraction T 〈X〉 of T due to X to be the tree with leaf set X obtained
by: removing those vertices in T that are not contained in any path connecting
two vertices in X; and contracting all degree 2 vertices then created. We define
a binary tree to be a tree whose all non-leaf vertices have degree exactly 3. For
an integer n ≥ 1, we denote by Tn a maximal set of mutually non-isomorphic
binary trees with n leaves.

For an edge weighted tree T with weight w and vertices u, v ∈ V (T ), we
define the distance dT,w(u, v) between u and v in T to be

∑
e∈ET (u,v) w(e). For

two integers dmin, dmax ∈ R+, we define PCG(T,w, dmin, dmax) to be the graph
G with vertex set L(T ) and edge set {uv | dmin ≤ dT,w(u, v) ≤ dmax}, in which
case we denote G = PCG(T,w, dmin, dmax), and call T a witness tree of G. We
define a minimal non-pairwise compatibility graph (MNPCG for short) to be a
non-PCG each of whose induced proper subgraphs is a PCG.

For an integer n ≥ 1, we denote by Gn a maximal set of mutually non-
isomorphic connected graphs with n vertices. For a graph G ∈ Gn and a binary
tree T ∈ Tn, we denote by Σ(G,T ) the set of bijections from V (G) to L(T ).
For G ∈ Gn, T ∈ Tn, σ ∈ Σ(G,T ), weight w and reals dmin, dmax ∈ R+, observe
that there exists a bi-partition of E(G) such that the pairs of leaves correspond-
ing to one partition class have distance strictly less than dmin, while the oth-
ers have distance strictly greater than dmax. Therefore there exists a 2-coloring
λ ∈ Λ2(E(G)) such that for each pair uv ∈ E(G) it holds that λ(uv) = 0 if
dT,w(σ(u), σ(v)) < dmin and λ(uv) = 1 if dT,w(σ(u), σ(v)) > dmax. For a graph
G ∈ Gn, we define a configuration of G to be a tuple (G,T, σ, λ) for some binary
tree T ∈ Tn, bijection σ ∈ Σ(G,T ) and 2-coloring λ ∈ Λ2(E(G)). Note that for
a given graph G ∈ Gn, there are n!2|E(G)||Tn| configurations. For a graph G, we
define a plausible configuration to be a configuration (G,T, σ, λ) such that:

(i) G is isomorphic to PCG(T,w, dmin, dmax), for some w, dmin and dmax, with
isomorphism σ; and

(ii) for each pair uv ∈ E(G) it holds that dT,w(σ(u), σ(v)) < dmin if λ(uv) = 0
and dT,w(σ(u), σ(v)) > dmax if λ(uv) = 1.

Clearly it holds that a graph G is a PCG if and only if there exists a plausible
configuration (G,T, σ, λ), and we say that G is a PCG due to the configuration
(G,T, σ, λ).

Let (G,T, σ, λ) be a configuration, Z � V (G) and R = {σ(z) | z ∈ Z}. For
the restriction σ′ of σ on Z, and the restriction λ′ of λ on the set E(G[Z]),
we define a subconfiguration of (G,T, σ, λ) induced by Z to be the configuration
(G[Z], T 〈R〉, σ′, λ′). By the known fact that a graph is a PCG if and only if each
of its induced subgraphs is a PCG [4], it follows that a configuration is plausible
if and only if all of its subconfigurations are plausible. We call an implausible
configuration a minimal implausible configuration (MIC for short) each of whose
subconfigurations is plausible, where we denote an MIC with a graph of four
vertices by MIC4. We define an MIC4-free configuration to be a configuration
with no subconfiguration that is MIC4.
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3 Graph Screening

In this section, we describe phase (I) of our enumeration approach, where in
order to reduce our computational effort, we try to collect as many as possible
graphs that are PCGs. In Sect. 3.1, we describe (I-1) a PCG generator that for
a fixed tree randomly assigns edge weights and generates PCGs for which the
tree is a witness tree, but takes into account certain symmetries on the tree so
as to avoid unnecessary duplication. In Sect. 3.2, we describe (I-2) where we try
to construct a plausible configuration to show that a given graph is a PCG by
solving a system of linear inequalities.

3.1 PCG Generator

We present a PCG generator to heuristically generate as many as possible PCGs
with n ≥ 3 vertices for which a given binary tree T is a witness tree. This PCG
generator is based on two main ideas which are discussed below.

First, to avoid the repeated generation of the same PCGs, for a given binary
tree T with n leaves, we assign edge-weights w by restricting the weights of
some leaf-edges that can be mapped to each other under some tree automor-
phism. More precisely, for two leaf-edges e and e′ incident with leaves u and u′,
respectively, such that there exists an automorphism that maps u′ to u, we add
the constraint w(e′) ≤ w(e).

The second idea is to efficiently generate all PCGs with a fixed witness tree
and weight assignment. By Calamoneri et al. [6], it is sufficient to consider pos-
itive integer weights w instead of real. Thus we have the following observation.

Observation 1. For each PCG(T,w, dmin, dmax) with positive integer valued w,
it holds that PCG(T,w, dmin, dmax) = PCG(T,w, x − 0.5, y + 0.5) such that x =
min{dT,w(a, b) | a, b ∈ L(T ), dmin ≤ dT,w(a, b) ≤ dmax} and y = max{dT,w(a, b) |
a, b ∈ L(T ), dmin ≤ dT,w(a, b) ≤ dmax}.

From Observation 1 it follows that for a binary tree T and a positive inte-
ger valued weight assignment w, it is sufficient to use only a finite number of
pairs (dmin, dmax) to generate all PCGs with witness tree T and weight w as
PCG(T,w, dmin, dmax). Thus, in our PCG generator, based on Observation 1 we
generate all PCGs with witness tree T and a positive integer weight assignment
w by fixing x and y from the set {dT,w(a, b) | a, b ∈ L(T )}.

For a tree T ∈ Tn and a leaf-edge e = uv ∈ E(T ) with leaf u, we define
equivalent edge class C(e;T ) to be the set of leaf-edges such that for each u′v′ ∈
C(e;T ) with leaf u′ there exists an automorphism ψ of T such that ψ(u′) = u
holds. We next give the main steps of our PCG generator to generate PCGs for
each tree T ∈ Tn:

(i) Randomly assign weights from a closed interval to the non-leaf-edges;
(ii) For each leaf-edge e ∈ E(T ) and a given subset S ⊆ C(e;T ), randomly

assign weight w in a closed interval to e such that w(e′) ≤ w(e) holds for
each e′ ∈ S; and
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(iii) For each pair of integers x, y ∈ {dT,w(a, b) | a, b ∈ L(T )} with x ≤ y,
construct the PCG graph PCG(T,w, x − 0.5, y + 0.5). Observe that the
number of edges in PCG(T,w, x − 0.5, y + 0.5) is equal to the size of
{a, b ∈ L(T ) | dT,w(a, b) ∈ [x, y]}, that is known before the generation
of PCG(T,w, x−0.5, y +0.5). By using this observation, we do not generate
PCGs of m edges if we know that we have already enumerated all PCGs
with m edges in Gn to avoid the generation of unnecessary PCGs.

3.2 Constructing Plausible Configurations

For a graph and a tree, in method (I-2) we try to calculate an edge weight
assignment and two reals bounded above by some value, such that the graph is
isomorphic to the PCG due to the tree, weight assignment and interval bounded
by reals. In other words, we try to construct a configuration with the given
graph and tree such that the graph is a PCG due to the configuration, i.e., the
configuration is plausible. More precisely, for a graph G, a tree T and a real
α ≥ 0, we construct a PCG(T,w, dmin, dmax) with w, dmin, dmax bounded above
by α, and try to confirm if there exist a bijection σ between vertex set of G and
the leaf set of T and a 2-coloring λ over the set of non-adjacent pairs in G such
that:

(i) for each edge in G it holds that the distance between their corresponding
leaves under σ is in the interval [dmin, dmax]; and

(ii) the pairs of leaves corresponding to the pairs of non-adjacent vertices under
σ with color 0 have distance strictly less than dmin and the others have
distance strictly greater than dmax.

To achieve this, for G,T , and α, we use an integer linear program,
ILPsuff(G,T, α) proposed by Azam et al. [2]. For a graph G with n vertices
and a binary tree T with n leaves, ILPsuff(G,T, α) has O(n2) binary variables,
O(n) continuous variables, and O(n4) constraints. In addition to a weight w,
reals dmin and dmax that are bounded above by α, ILPsuff(G,T, α) tries to find
a mapping σ and a 2-coloring λ that satisfy (i) and (ii). This linear program
ILPsuff(G,T, α) is always feasible and the mapping σ is an isomorphism between
G and PCG(T,w, dmin, dmax) if σ is a bijection. The mapping σ is a bijection
if the objective value of ILPsuff(G,T, α) is 0, and hence we get a configura-
tion (G,T, σ, λ) due to which G is a PCG. However, if the objective value of
ILPsuff(G,T, α) is greater than 0, then we cannot draw any conclusion as to
whether G is a PCG or not. Therefore, having a solution to ILPsuff(G,T, α)
with objective value 0 is a sufficient condition for G to be a PCG.

4 Constructing Evidence Based on LP

In this section, we give details on phase (II), namely, how to prove that a graph
is a PCG if it has not been so detected by the methods in phase (I), and con-
structing finite evidence if it is not a PCG by using essential configurations.
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In Sect. 4.1, we give a branch-and-bound algorithm to phase (II-1) enumerat-
ing essential configurations for a given graph, and in Sect. 4.2 we describe our
configuration-based linear programs used in phase (II-2) to provide finite size
evidence to the fact of a given graph being a PCG or not.

4.1 Enumerating Essential Configurations

In phase (II-1), for a fixed graph, we generate a set of configurations that sat-
isfy a necessary condition to be plausible. As a necessary condition, we use the
absence of an MIC4 subconfiguration, since MIC4 configurations can be rec-
ognized efficiently [2]. Hence, we enumerate all MIC4-free configurations with
a fixed bijection, since by relying on vertex labeling of the graph and trees,
we can always fix a bijection. To achieve this, for a given graph, we propose a
branch-and-bound algorithm to enumerate all pairs of trees and 2-colorings that
correspond to MIC4-free configurations with a fixed bijection. We call such a
pair of tree and 2-coloring a feasible pair.

We first give an informal intuition of our branch-and-bound algorithm. To
search all pairs recursively, we start with a binary tree with two leaves and a
2-coloring such that no color has been assigned to non-adjacent pairs. If all non-
adjacent pairs that are leaves in the current tree have been assigned a color,
then for each edge xy in the current tree, we extend the current tree by adding
a new vertex z subdividing xy, and a new leaf � adjacent to z. Otherwise, for
a non-adjacent pair that has not been assigned a color, we extend the current
2-coloring into two colorings that have color 0 or 1 for this uncolored pair. We
call these extension operations the tree extension operation and the coloring
extension operation.

We bound the current branch if the current pair of tree and 2-coloring cannot
be extended to a feasible pair. To efficiently perform this procedure, we use a
characterization by Azam et al. [2], to test the existence of an MIC4.

To perform our algorithm systematically, we fix the vertex set of a graph G
with n vertices to be {v1, v2, . . . , vn} and generate feasible pairs that correspond
to MIC4-free configurations with a fixed identity bijection. As the root of our
branching procedure, we start with X = {v1, v2}, the unique tree with a single
edge {v1v2} and a 2-coloring that is currently not defined on any pair of non-
adjacent vertices that are in X. Next, we discuss the tree extension and the
coloring extension operations in more detail below.

Tree Extension Operation: Assume that all pairs of non-adjacent vertices
that are in X with |X| = k are colored. Then we perform the tree extension
operation for each edge xy in the current tree in increasing order of the label
of y, by adding a new degree-three vertex z = vn+k−2+1 that subdivides the
edge xy, and a new leaf � = vk+1 incident to z. Note that at any stage of the
algorithm it holds that X = {v1, v2, . . . , vk} for some k ∈ [2, n]. As a result of
the tree extension operation on the current tree, we get a unique tree with leaf
set X ∪ {vk+1}. We call such a tree an extended tree of the current tree. An
illustration of the tree extension operation is given in Fig. 1(a)-(b). We argue
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(a)

(b)

x y

x y
z

j < k – 1,
vjvk E(G),
E and C  

(c) (d)

h = 0 h = 1

j := j + 1
  h = 0 h = 1 h = 0 h = 1

…a = 2 a = n + k – 2

j = k – 1,
vjvk E(G),
E and C  

j := 1, 
k := k + 1
 

Fig. 1. (a)-(b) An example of the tree extension operation. (a) A tree T ; (b) The
extended tree T ′ of T obtained by adding a new vertex z and a new leaf � by subdivid-
ing edge xy ∈ E(T ); (c)-(d) An illustration of the branching procedure for a subproblem
S(E; C, j, k) with vjvk ∈ E(G), edge set E and coloring C; (c) Two branches obtained
when j < k − 1 by applying the coloring extension operation; and (d) The branches
obtained when j = k − 1 by applying the tree extension and coloring extension opera-
tions for each edge xva ∈ E, a ∈ [2, k] ∪ [n + 1, n + k − 2].

that our branching procedure generates all trees that have the leaf set V (G) by
the following lemma.

Lemma 1. For any binary tree T with |L(T )| ≥ 3 there exists a tree H with
L(H) � L(T ) and |L(T )| = |L(H)| + 1 such that T is an extended tree of H.

Proof. Let z� ∈ E(T ) be a leaf-edge such that z and � are non-leaf and leaf
vertices, respectively. There always exists such an edge z� since |L(T )| ≥ 3.
Let x and y denote the neighbors of z other than �. Then by applying the
tree extension operation on the tree H such that V (H) = V (T ) \ {z, �} and
E(H) = (E(T ) \ {z�, yz, xz}) ∪ {xy}, we get T , from which the claim follows. 
�

Coloring Extension Operation: Notice that, for an integer k ∈ [2, n], due
to the systematic selection of vertices it follows that the set of uncolored pairs
are vjvk, j ≤ k − 1. After assigning a color to the vertex pair vjvk, j < k, we
consider the next pair uv to color to be the pair vj+1vk if j < k − 1 and v1vk+1

otherwise (if j = k − 1). For any pair j, k with j < k, we define Aj,k to be the
set consisting of all those pairs that are already considered for coloring. Thus it
holds that vcvd ∈ Aj,k for all c, d such that c < d ≤ k − 1, and j is the smallest
integer for which we have vj+1vk ∈ Aj,k. This implies that for any pair j, k with
j < k, we can uniquely determine the set of colored vertex pairs as the pair of
non-adjacent vertices that are in Aj,k.

Subproblem and Recursion: Let k ∈ [2, n] be an integer. We formalize a
subproblem and recursive relations for our algorithm to enumerate MIC4-free
configurations. For a pair of integers j and k with j < k and the set Y =
E(G) ∩ Aj,k of colored pairs, we represent a 2-coloring λ : Y → {0, 1} by a set
C = {(c, d;λ(vcvd)) | vcvd ∈ Y }∪{(c, d; 2) | vcvd ∈ E(G)}). Thus, we represent a
pair (T, λ) of a tree T with edge set E and a current coloring λ by the pair (E,C)
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of sets. Finally, we define a subproblem S(E;C, i, j) to be the set of all possible
feasible pairs that can be extended from the current pair (E,C). Observe that
S({v1, v2}; ∅, 1, 2) is the required set of all feasible pairs of trees and 2-colorings.
Furthermore, for j < k with k ∈ [3, n], z = vn+k+2−1 and � = vk+1, we have the
following recursion

S(E;C, j, k)=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(E;C, j+1, k), j <k−1, vjvk ∈E(G),⋃

xva∈E

S((E\{xva})∪{xz, vaz, �z};C, 1, k+1), j =k−1, vjvk ∈E(G),
⋃

h=0,1

S(E;C∪{(j, k;h)}, j+1, k), j <k−1, vjvk ∈E(G),

⋃

xva∈E,h=0,1

S((E\{xva})∪{xz, vaz, �z};C∪{(j, k;h)}, 1, k+1), j =k−1, vjvk ∈E(G).

(1)

An illustration of the recursion for the case when vjvk ∈ E(G) in Eq. (1) is given
in Fig. 1(c)-(d).

Bounding Procedure: Let k ≥ 4 be an integer. We bound a subproblem
S(P ;C, j, k) if the current pair of tree T and coloring λ cannot be extended to a
feasible pair. To perform this bounding operation, we need to check if there exists
a subset Z ⊆ {v1, v2, . . . , vk} of size 4 such that for each pair of non-adjacent
vertices that are in Z, the current coloring λ is defined and the configuration
induced by Z is implausible. To efficiently verify this, we use a characterization
of MIC4 given by Azam et al. [2]. However, to use this method, for each subset
Z = {vh, vk, vi, vj} such that h < i ≤ j − 1, we need to find two pairs of vertices
in Z such that each pair has a common neighbor in the tree contraction T 〈Z〉.
For this purpose we use Lemma 2.

Lemma 2. Let T be a tree with |L(T )| ≥ 4 and Z ⊆ L(T ) be with |Z| = 4.
Let a1, b1, a2, b2 ∈ Z be such that the vertex sets of PT (a1, b1) and PT (a2, b2)
are disjoint. Then for each i = 1, 2, the pair ai and bi have a common neighbor
in T 〈Z〉.

Proof. Since PT (a1, b1) and PT (a2, b2) are disjoint, there exist two unique non-
leaf vertices c, d ∈ V (T ) such that c ∈ V (PT (a1, b1)), d ∈ V (PT (a2, b2)) and
V (PT (c, d)) � V (PT (a1, b2)). Then to obtain the tree contraction T 〈Z〉, we first
remove those vertices in T that are not contained in any path connecting two
vertices in Z. That is, we recursively remove all leaves from L(T ) \ Z. This
implies that all non-leaf vertices in V (T ) except c and d are of degree 2 after
the removal of all leaves. Thus, by removing all those vertices of degree 2 to get
T 〈Z〉, we can see that c is the common neighbor of a1, b1 and d is the common
neighbor of a2, b2, from which the claim follows. 
�



On the Enumeration of Minimal Non-pairwise Compatibility Graphs 381

4.2 Configuration-Based LPs

We use linear programming formulations to handle the difficulty of the infinite
search space, and the construction of finite size evidence. For a configuration
(G,T, σ, λ) we solve the formulation L(G,T, σ, λ) proposed by Azam et al. [1].
For a graph with n vertices and a binary tree T with n leaves, the formulation
L(G,T, σ, λ) has O(n) variables and O(n2) constraints. The formulation has a
solution w, dmin and dmax if and only if the configuration is plausible. Note that
instead of trying all possible real weights to confirm if a graph is a PCG or not due
to the given configuration, it suffices to solve this single formulation. Finally, to
get a definite proof for the implausibility of a configuration (G,T, σ, λ), Azam et
al. [1] introduced another formulation, D(G,T, σ, λ). For a graph with n vertices
and a binary tree T with n leaves, D(G,T, σ, λ) has O(n2) variables and O(n)
constraints. The linear program D(G,T, σ, λ) is formulated in such a way that
it admits a solution if and only if L(G,T, σ, λ) does not, based on the following
theorem due to Gale [9].

Theorem 1 ([9, Theorem 2.8]). For A ∈ Rm×n, b ∈ Rm, let x ∈ Rn and
y ∈ Rm be variables. Then either “Ax ≤ b” or “A�y ≥ 0, b�y < 0” has a
non-negative solution.

Hence, the solution of D(G,T, σ, λ) will serve as a finite size evidence to show
that G is not a PCG due to (G,T, σ, λ).

5 Experimental Results and Discussion

We present experimental results of our proposed enumeration method to enu-
merate all MNPCGs with nine vertices executed in phases (I) and (II). We
performed all experiments on a PC with Intel(R) Xeon(R) E5-1600v3 processor
running at 3.00 GHz, 64 GB of memory, and Windows 7. We solved the ILPsuff

and configuration-based LPs L and D by using the IBM ILOG CPLEX 12.8 solver
as integer linear programming (ILP) to avoid any possible numerical errors in
solving the formulations by the solver.

There are 261,080 non-isomorphic connected graphs with nine vertices, avail-
able at [12], and six binary trees with nine leaves, which are not difficult to obtain
by pen and paper. We used the NAUTY [11] software to generate canonical forms
of graphs for easy comparison during the generation of PCGs. As a preprocess-
ing step, we removed all graphs that are non-biconnected or contain a pair of
non-adjacent vertices that have the same set of neighbors, since known results
described in Sect. 1 tell us that any such graph cannot be an MNPCG [4,13], as
well as those graphs that are a supergraph of a known MNPCG [1].

We ran the graph generation phase (I-1) for ten days, after which we were
left with 7,108 graphs. Next, for each of these graphs we checked the sufficient
condition for a graph to be a PCG in phase (I-2) by setting an upper limit on
edge weights to be α = 300 and limiting the execution time of the CPLEX solver
to 60 s, which identified 4,603 graphs to be PCGs in 18 days, and then setting the
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(a) (c) (d)(b)

Fig. 2. An illustration of three MNPCGs with nine vertices. (a) An MNPCG with the
minimum number of 16 edges; (b) An MNPCG with 19 edges; (c) An MNPCGs with
22 edges; and (d) An MNPCG with maximum number of 27 edges.

time limit to 300 s, which identified another 583 graphs to be PCGs in 14 days.
Therefore, after finishing phase (I) in 42 days, we were left with 1,922 graphs for
which we sought definite proof in phase (II).

Finally, we executed phase (II) to get definite proof for each of the 1,922
graphs left after our preprocessing step and phase (I). Phase (II) took 46 days
of computation to complete, and it detected that 428 graphs among the 1,922
graphs were PCGs. Hence, we conclude that there are 1,494 MNPCGs with nine
vertices, and we were able to enumerate all PCGs with nine vertices in 88 days.
An illustration of four of the graphs proven to be MNPCGs is given in Fig. 2.
We summarize our findings in the following Theorem.

Theorem 2. For nine vertices and β edges, there are exactly 4, 35, 152, 289,
371, 337, 192, 85, 23, 5 and 1 MNPCGs if β = 16, 17, . . . , 25, and 27, respec-
tively, and no MNPCG otherwise.

We give a computational proof of Theorem2 by providing for each graph G
the solution of linear program D(G,T, I, λ) from phase (II-2) for each MIC4-free
configuration (G,T, I, λ), obtained in phase (II-1), if any exists, at https://www-
or.amp.i.kyoto-u.ac.jp/∼azam/MNPCG 9.

6 Conclusion

We proposed a two-phase method to enumerate all MNPCGs with a given num-
ber of vertices. In phase (I), we handled the difficulty of a large number of
configurations by designing a PCG generator taking into account tree automor-
phisms and then constructing plausible configurations to prove a graph to be a
PCG. In phase (II), we enumerated all MIC4-free configurations by designing a
branch-and-bound algorithm and used linear programming formulations to han-
dle the difficulty of infinite search space of weight assignment and construction
of finite size evidence. By using this method we proved that there are exactly
1,494 MNPCGs with nine vertices.

Open Problems and Future Directions: The wheel graph, known to be
an MNPCG on n ≥ 9 vertices [3] is one of the sparsest graphs verified by our

https://www-or.amp.i.kyoto-u.ac.jp/~azam/MNPCG_9
https://www-or.amp.i.kyoto-u.ac.jp/~azam/MNPCG_9
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algorithm. It is an interesting question what is the minimum and maximum
number of edges in an MNPCG with n vertices.

In addition, sample illustrations in Fig. 2 of the MNPCGs discovered through
this work, as well as those shown by Azam et al. [1] on eight vertices, Durocher
et al. [8] and Baiocchi et al. [3] indicate that MNPCGs tend to be symmetric. It
would be interesting to uncover a relationship between the symmetry of a graph
and its membership in the class of PCG graphs.

Finally, since there are 11,716,571 connected graphs on ten vertices [12], it
would be very interesting to either devise a different enumeration approach, or
improve the individual phases of our method, in order to efficiently enumerate
all MNPCGs with ten vertices.
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Abstract. In this paper, we give a constructive proof of the fact that
the treewidth of a graph is at most its divisorial gonality. The proof
gives a polynomial time algorithm to construct a tree decomposition of
width at most k, when an effective divisor of degree k that reaches all
vertices is given. We also give a similar result for two related notions:
stable divisorial gonality and stable gonality.

1 Introduction

In this paper, we investigate the relation between well-studied graph parameters:
treewidth and divisorial gonality. In particular, we give a constructive proof that
the treewidth of a graph is at most its divisorial gonality.

Treewidth is a graph parameter with a long history. Its first appearance
was under the name of dimension, in 1972, by Bertele and Briochi [4]. It was
rediscovered several times since, under different names (see e.g. [5]). Robertson
and Seymour introduced the notions of treewidth and tree decompositions in
their fundamental work on graph minors; these notions became the dominant
terminology.

The notion of divisorial gonality finds its origin in algebraic geometry. Baker
and Norine [2] developed a divisor theory on graphs in analogy with divisor the-
ory on curves, proving a Riemann–Roch theorem for graphs. The graph analog
of gonality for curves was introduced by Baker [1]. To distinguish it from other
notions of gonality (which we discuss briefly in Sect. 5), we denote the version we
study by divisorial gonality. Divisorial gonality can be described in terms of a

This research was initiated at the Sandpiles and Chip Firing Workshop, held November
25–26, 2019 at the Centre for Complex Systems Studies, Utrecht University.
J. van Dobben de Bruyn—Supported by NWO grant 613.009.127.

c© Springer Nature Switzerland AG 2020
D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 384–396, 2020.
https://doi.org/10.1007/978-3-030-58150-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58150-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-58150-3_31


Constructing Tree Decompositions of Graphs with Bounded Gonality 385

chip firing game. A placement of k chips on the vertices of a graph (where vertices
can have 0 or more chips) is called an effective divisor of degree k. Under certain
rules (see Sect. 2), sets of vertices can fire, causing some of the chips to move to
different vertices. The divisorial gonality of a graph is the minimum degree of
an effective divisor such that for each vertex v, there is a firing sequence ending
with a configuration with at least one chip at v.

The treewidth of a graph is never larger than its divisorial gonality1. A
non-constructive proof of this fact was given by van Dobben de Bruyn and
Gijswijt [10]. Their proof is based on the characterization of treewidth in terms
of brambles, due to Seymour and Thomas [13]. In this paper, we give a con-
structive proof of the same fact. We formulate our proof in terms of a search
game characterization of treewidth, but with small modifications, we can also
obtain a corresponding tree decomposition. The proof also yields a polynomial
time algorithm that, when given an effective divisor of degree k, constructs a
search strategy with at most k + 1 searchers and a tree decomposition of width
at most k of the input graph.

This paper is organized as follows. Some preliminaries are given in Sect. 2. In
Sect. 3, we prove the main result with help of a characterization of treewidth in
terms of a search game and discuss that we also can obtain a tree decomposition
of width equal to the degree of a given effective divisor that reaches all vertices.
An example is given in Sect. 4. In Sect. 5, we give constructive proofs that bound
the treewidth of a graph in terms of two related other notions of gonality.

2 Preliminaries

2.1 Graphs

In this paper, all graphs are assumed to be finite. We allow multiple edges, but no
loops. Let G = (V,E) be a graph. For disjoint U,W ⊆ V we denote by E(U,W )
the set of edges with one end in U and one end in W , and use the shorthand
δ(U) = E(U, V \U). The degree of a vertex v ∈ V is deg(v) = |δ({v})|, and given
v ∈ U ⊆ V we denote by outdegU (v) = |E({v}, V \ U)| the number of edges
from v to V \ U . By N(U) we denote the set of vertices in V \ U that have a
neighbor in U . The Laplacian of G is the matrix Q(G) ∈ RV ×V given by

Quv =

{
deg(u) if u = v,

−|E({u}, {v})| otherwise.

2.2 Divisors and Gonality

Let G = (V,E) be a connected graph with Laplacian matrix Q = Q(G). A divisor
on G is an integer vector D ∈ ZV . The degree of D is deg(D) =

∑
v∈V D(v). We

say that a divisor D is effective if D ≥ 0, i.e., D(v) ≥ 0 for all v ∈ V .
1 Conversely, graphs of treewidth 2 can have arbitrarily high divisorial gonality, which

can be seen by considering ‘chains of circuits’. See for instance [7,11].
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The divisorial gonality can be defined in a number of equivalent ways. Most
intuitive is the definition in terms of a chip firing game. An effective divisor D
can be viewed as a chip configuration with D(v) chips on vertex v. If U ⊂ V
is such that outdegU (v) ≤ D(v) for every v ∈ U (i.e., each vertex has at least
as many chips as it has edges to vertices outside U), then we say that U can be
fired. If this is the case, then firing U means that every vertex in U gives chips
to each of its neighbors outside U , one chip for every edge connecting to that
neighbor. The resulting chip configuration is the divisor D′ = D − Q1U . The
assumption outdegU (v) ≤ D(v) guarantees that the number of chips on each
vertex remains nonnegative, i.e. that D′ is effective. Now, the divisorial gonality
of a graph is the minimum number k such that there is a starting configuration
(divisor) with k chips, such that for each vertex x ∈ V there is a sequence of
sets we can fire such that x receives a chip.

We now give the more formal definition, that is needed in our proofs. Two
divisors D and D′ are equivalent (notation: D ∼ D′) if D′ = D − Qx for some
x ∈ ZV . Note that equivalent divisors have the same degree since QT1 = 0. If
D and D′ are equivalent, then, since the null space of Q consists of all scalar
multiples of 1, D′ = D − Qx has a unique solution x ∈ ZV that is nonnegative
and has xv = 0 for at least one vertex v. We denote this x by script(D,D′)
and write dist(D,D′) = max{xv : v ∈ V }. Note that if t = dist(D,D′),
then script(D′,D) = t1 − x and thus dist(D′,D) = dist(D,D′). If D,D′,D′′

are pairwise equivalent, then we have the triangle inequality dist(D,D′′) ≤
dist(D,D′)+dist(D′,D′′) as script(D,D′′) = script(D,D′)+script(D′,D′′)−c1
for some nonnegative integer c.

Let D be a divisor. If D is equivalent to an effective divisor, then we define

rank(D) = max{k ∈ Z≥0 : D − E is equivalent to an effective divisor
for every effective divisor E of degree at most k}.

If D is not equivalent to an effective divisor, we set rank(D) = −1. The divisorial
gonality of a graph G is defined as

dgon(G) = min{deg(D) : rank(D) ≥ 1}.

In the remainder of the paper, we will only consider effective divisors. If we
can go from D to D′ by sequentially firing a number of subsets, then clearly
D ∼ D′. The converse is also true (part (i) of the next lemma) as was shown in
[10, Lemma 1.3]. (The proof can also be found in [6].).

Lemma 1. Let D and D′ be equivalent effective divisors.

(i) There is a unique increasing chain ∅ � U1 ⊆ U2 ⊆ · · · ⊆ Ut � V of subsets
on which we can fire in sequence to obtain D′ from D. That is, setting
D0 = D and Di = Di−1 − Q1Ui

for i = 1, . . . , t we have Dt = D′ and Di is
effective for all i = 0, . . . , t.

(ii) We have t = dist(D,D′) ≤ deg(D) · |V |.
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We see that the two definitions of divisiorial gonality are equivalent. Lemma 1
shows that we even can require the sets of vertices that are fired to be increasing.

For a given vertex q, a divisor D ≥ 0 is called q-reduced if there is no
nonempty set U ⊆ V \ {q} such that D − Q1U ≥ 0.

Lemma 2 ([2, Proposition 3.1]). Let D be an effective divisor and let q be a
vertex. There is a unique q-reduced divisor equivalent to D.

Let D be an effective divisor and let Dq be the q-reduced divisor equivalent to
D. Suppose that D 	= Dq. By Lemma 1 we obtain Dq from D by firing on a
chain of sets U1 ⊆ · · · ⊆ Ut and, conversely, we obtain D from Dq by firing on
the complements of Ut, . . . , U1. Since Dq is q-reduced, it follows that q is in the
complement of Ut, and hence q 	∈ U1. It follows that x = script(D,Dq) satisfies
xq = 0 and Dq(q) ≥ D(q). In particular, a divisor D has positive rank if and
only if for every q ∈ V the q-reduced divisor equivalent to D has at least one
chip on vertex q.

Given an effective divisor D and a vertex q, Dhar’s algorithm [9] finds in
polynomial time a nonempty subset U ⊆ V \ {q} on which we can fire, or
concludes that D is q-reduced.

Algorithm 1: Dhar’s burning algorithm
Input : Divisor D ≥ 0 on G and vertex q.
Output: Nonempty subset U ⊆ V (G) \ {q} s.t. D − Q1U ≥ 0 or U = ∅ if none

exists.
U ← V \ {q};
while outdegU (v) > D(v) for some v ∈ U do

U ← U \ {v}
end
return U

Lemma 3. Dhar’s algorithm is correct, and the output is the unique inclusion-
wise maximal subset U ⊆ V \ {q} that can be fired.

Proof. The set returned by Algorithm 1 can be fired, as it satisfies the require-
ment outdegU (v) ≤ D(v) for every v ∈ U . To complete the proof it therefore
suffices to show that U contains every subset W ⊆ V \ {q} that can be fired.

Let W ⊆ V \{q} be any such subset. At the start of the algorithm U = V \{q}
contains W . While U ⊇ W , we have outdegU (v) ≤ outdegW (v) ≤ D(v) for any
v ∈ W , so the algorithm never removes a vertex v ∈ W from U . ��

Note: in particular, Lemma 3 shows that the output of Algorithm 1 does not
depend on the order in which vertices are selected for removal.

If throughout the algorithm we keep for every vertex v the number
outdegU (v) and a list of vertices for which outdegU (v) > D(v), then we need
only O(|E|) updates, and we can implement the algorithm to run in time O(|E|).



388 H. L. Bodlaender et al.

Lemma 4. Let D be an effective divisor on the graph G = (V,E), let q ∈ V ,
and let Dq be the q-reduced divisor equivalent to D. Let U be the set returned
by Dhar’s algorithm when applied to D and q, and suppose that U 	= ∅. Let
D′ = D − Q1U . Then dist(D′,Dq) = dist(D,Dq) − 1.

Proof. Let x = script(D,Dq). Since Dq is q-reduced, we have xq = 0. On the
other hand, since D 	= Dq (as we can fire on U), the number t = max{xv : v ∈ V }
is positive. Let W = {v ∈ V : xv = t}. By Lemma 1, we can fire on W , so by
Lemma 3 we have W ⊆ U .

Let x′ = script(D′,Dq) and let t′ = max{x′
v : v ∈ V }. As Dq is q-reduced,

we have x′
q = 0. Since there is a unique nonnegative y ∈ ZV with yq = 0 and

Dq = D − Qy, and we have D − Qx = Dq = (D − Q1U ) − Qx′, it follows that
x = x′ +1U . Since U ⊇ W , it follows that x−1W ≥ x′, and hence t−1 ≥ t′. We
find that dist(D′,Dq) ≤ dist(D,Dq) − 1. Since dist(D,D′) = 1, equality follows
by the triangle inequality. ��
Since dist(D,Dq) ≤ deg(D) · |V (G)|, we can find a q-reduced divisor equivalent
to D using no more than deg(D) · |V | applications of Dhar’s algorithm.

2.3 Treewidth and Tree Decompositions

The notions of treewidth and tree decomposition were introduced by Robertson
and Seymour [12] in their fundamental work on graph minors.

Let G = (V,E) be a graph, let T = (I, F ) be a tree, and let Xi ⊆ V be a set
of vertices (called bags) associated to i for every node i ∈ I. The pair (T, (Xi)i∈I)
is a tree decomposition of G if it satisfies the following conditions:

1.
⋃

i∈I Xi = V ;
2. for all e = vw ∈ E, there is an i ∈ I with v, w ∈ Xi;
3. for all v ∈ V , the set of nodes Iv = {i ∈ I | v ∈ Xi} is connected (it induces

a subtree of T ).

The width of the tree decomposition is maxi∈I |Xi| − 1. The treewidth of a G is
the minimum width of a tree decomposition of G. Note that the treewidth of a
multigraph is equal to the treewidth of the underlying simple graph.

There are several notions that are equivalent to treewidth. We will use a
notion that is based on a Cops and Robbers game, introduced by Seymour and
Thomas [13]. Here, a number of searchers need to catch a fugitive. Searchers
can move from a vertex in the graph to a ‘helicopter’, or from a helicopter to
any vertex in the graph. Between moves of searchers, the fugitive can move with
infinite speed in the graph, but may not move over or to vertices with a searcher.
The fugitive is captured when a searcher moves to the vertex with the fugitive,
and there is no other vertex without a searcher that the fugitive can move to.
The location of the fugitive is known to the searchers at all times. We say that k
searchers can capture a fugitive in a graph G, if there is a strategy for k searchers
on G that guarantees that the fugitive is captured. In the initial configuration,
the fugitive can choose a vertex, and all searchers are in a helicopter. A search
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strategy is monotone if it is never possible for the fugitive to move to a vertex
that had been unreachable before. In particular, in a monotone search strategy,
there is never a path without searchers from the location of the fugitive to a
vertex previously occupied by a searcher.

Theorem 1 (Seymour and Thomas [13]). Let G be a graph and k a positive
integer. The following statements are equivalent.

1. The treewidth of G is at most k.
2. k + 1 searchers can capture a fugitive in G.
3. k + 1 searchers can capture a fugitive in G with a monotone search strategy.

3 Construction of a Search Strategy

In this section, we present a polynomial time algorithm that, given an effective
divisor D of degree k as input, constructs a monotone search strategy with k +1
searchers to capture the fugitive.

We start by providing a way to encode monotone search strategies. Let G be
a graph. For X ⊆ V (G), the vertex set of a component of G − X is called an
X-flap. A position is a pair (X,R), where X ⊆ V (G) and R is a union2 of X-
flaps (we allow R = ∅). The set X represents the vertices occupied by searchers,
and the fugitive can move freely within some X-flap contained in R (if R = ∅,
then the fugitive has been captured). In a monotone search strategy, the fugitive
will remain confined to R, so placing searchers on vertices other than R is of
no use. Therefore, it suffices to consider three types of moves for the searchers:
(a) remove searchers that are not necessary to confine the fugitive to R; (b) add
searchers to R; (c) if R consists of more than one X-flap, restrict attention to the
X-flap Ri ⊂ R containing the fugitive. This leads us to the following definition.

Definition 1. Let G be a graph and let k be a positive integer. A monotone
search strategy (MSS) with k searchers for G is a directed tree T = (P, F ) where
P is a set of positions with |X| ≤ k for every (X,R) ∈ P, and the following hold:

(i) The root of T is (∅, V ).
(ii) If (X,R) is a leaf of T , then R = ∅.
(iii) Let (X,R) be a non-leaf of T . Then R 	= ∅ and there is a set X ′ ⊆ X ∪ R

such that exactly one of the following applies:
(a) X ′ ⊂ X and position (X ′, R) is the unique out-neighbor of (X,R).
(b) X ′ ⊃ X and position (X ′, R′) is the unique out-neighbor of (X,R), where

R′ = R \ X ′.
(c) X ′ = X and the out-neighbors of (X,R) are the positions

(X,R1), . . . , (X,Rt) where t ≥ 2 and R1, . . . , Rt are the X-flaps contained
in R.

2 Here we deviate from the definition of position as stated in [13] in that we allow R
to consist of zero X-flaps or more than one X-flap.
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If condition (ii) does not necessarily hold, we say that T is a partial MSS. Note
that we do not consider the root node to be a leaf even if it has degree 1.

It is clear that if T is an MSS for k searchers, then, as the name suggests, k
searchers can capture the fugitive, the fugitive can never reach a vertex that it
could not reach before, and a searcher is never placed on a vertex from which a
searcher was previously removed.

Lemma 5. Let G be a graph on n vertices and let T be a (partial) MSS with k
searchers for G. Then T has no more than n2 + 1 nodes.

Proof. For any position (X,R), define f(X,R) = |R|(|X|+|R|). For any leaf node
(X,R) we have f(X,R) ≥ 0. For any non-leaf node (X,R), the value f(X,R) is
at least the sum of the values of its children plus the number of children. Indeed,
in case (a) and (b) we have f(X,R) ≥ f(X ′, R′) + 1, and in case (c) we have
f(X,R) ≥ f(X,R1)+ · · ·+ f(X,Rk)+k as can be easily verified. It follows that
f(X,R) is an upper bound on the number of descendants of (X,R) in T . Since
every non-root node is a descendant of the root, it follows that the total number
of nodes is at most 1 + f(∅, V ) = 1 + n2. ��

In the construction of an MSS we will use the following lemma.

Lemma 6. Let R be an X-flap. Let D be a positive rank effective divisor such
that X ⊆ supp(D) and R ∩ supp(D) = ∅. Then we can find in polynomial time
an effective divisor D′ ∼ D such that X ⊆ supp(D′), R ∩ supp(D′) = ∅, and
such that from D′ we can fire a subset U with U ∩ R = ∅ and U ∩ X 	= ∅.
Proof. Let q ∈ R. Let U be the set found by Dhar’s algorithm. Since R is
connected and U does not contain R, it follows that U ∩ R = ∅ (otherwise
outdegU (r) ≥ 1 > D(r) for some r ∈ U ∩ R). If U ∩ X is nonempty, we set
D′ = D and we are done. Otherwise, we set D ← D − 1U . Then X ⊆ supp(D),
R ∩ supp(D) = ∅ and we iterate. We must finish in no more than deg(D) · |V |
iterations by Lemma 1 and Lemma 4. Hence, we can find the required D′ and
U in time |E(G)| · |V (G)|deg(D). ��

Construction of a Monotone Search Strategy. Let G be a connected graph and
let D be an effective divisor on G of positive rank. Let k = deg(D). We will
construct an MSS for k+1 searchers on G. We do this by keeping a partial MSS,
starting with only the root node (∅, V ) and an edge to the node (X,V \ X),
where X = supp(D). Then, we iteratively grow T at the leaves (X,R) with
R 	= ∅ until T is an MSS. At each step, we also keep, for every leaf (X,R) of T ,
an effective divisor D′ ∼ D such that X ⊆ supp(D′) and R ∩ supp(D′) = ∅. We
now describe the iterative procedure.

While T has a leaf (X,R) with R 	= ∅, let D′ be the divisor associated to
(X,R) and perform one of the following steps.

I. If R consists of multiple X-flaps R1, . . . , Rt, then we add nodes
(X,R1), . . . , (X,Rt) as children of (X,R) and associate D′ to each. Iterate.
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II. If X ′ = N(R) is a strict subset of X, then add the node (X ′, R) as a child
of (X,R), associate D′ to this node and iterate.

III. The remaining case is that N(R) = X and R is a single X-flap. By Lemma 6
we can find an effective divisor D′′ ∼ D′ such that X ⊆ supp(D′′), R ∩
supp(D′′) = ∅ and from D′′ we can fire on a set U such that U ∩R = ∅ and
U ∩ X 	= ∅. We set U ∩ X = {s1, s2, . . . , st}. That we can fire on U implies
that

D′′(si) ≥ |N(si) ∩ R| for i = 1, . . . , t. (1)

For i = 1, . . . , t we define positions (Xi, Ri) and (X ′
i, Ri) as follows:

Xi = X ′
i−1 ∪ (N(si) ∩ R), Ri = R \ Xi, and X ′

i = Xi \ {si},

where we set X ′
0 = X. Using (1) and the fact that X ′

0 ⊆ supp(D′′), it
is easy to check that |X ′

i| ≤ k and |Xi| ≤ k + 1 for every i. Since every
edge in δ(R) has at least one endpoint in every X ′

i, it follows that indeed
Ri is a union of X ′

i-flaps (and of Xi-flaps). We add the path (X,R) →
(X1, R1) → (X ′

1, R1) → · · · → (X ′
t, Rt) to T (it may happen that (Xi, Ri) =

(X ′
i−1, Ri−1) in which case we leave out one of the two). We associate

D′′ − Q1U to the leaf (X ′
t, Rt).

By Lemma 5, we are done in at most |V (G)|2 steps. This completes the
construction. By combining the construction described above with that of the
lemma below, we obtain Theorem 2. Note that so far only a non-constructive
proof that the divisorial gonality of a graph is an upper bound for the treewidth
was known [10]. See [6] for the proof of the next lemma.

Lemma 7. Let T ′ = (P, F ) be a monotone search strategy for k searchers in
the connected graph G and let T be the undirected tree obtained by ignoring the
orientation of edges in T ′. Then (T, {X}(X,R)∈P) is a tree decomposition of G
of width at most k − 1.

Theorem 2. There is a polynomial time algorithm that, when given a graph G
and an effective divisor of degree k, finds a tree decomposition of G of width at
most k.

4 An Example

We apply the constructions of the previous section to a relatively small example.
Let G be the graph as in Fig. 1. Let D be the divisor on G that has value 3
on vertex a and value 0 elsewhere. If we follow the construction of Sect. 3, we
will end up with the monotone search strategy found in Fig. 2. We start with
the root node (X,R) with X = ∅ and R = V and connect it to the node
(supp(D), V \ supp(D)). The three ways of growing the tree (steps I, II, III) are
indicated in the picture. The four occurrences of step III are explained below.

For compactness of notation, we write the divisors as a formal sum. For
instance, if D′ has 2 chips on b and 1 chip on g, we write D′ = 2b + g.
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a

b c

d e f g

Fig. 1. An example graph G. It has divisorial gonality equal to 3.

Fig. 2. The monotone search strategy obtained from G with divisor D = 3a. Each
node shows the corresponding pair (X,R) with the root being (∅, {a, b, c, d, e, f, g}).
The labels I–III refer to the steps in the construction.

(1) Divisor D′ is equal to 3a. We fire the set {a} and obtain the new divisor
a + b + c.

(2) Divisor D′ is equal to a + b + c. We fire the set {a, b, c, e, f, g} and obtain
the new divisor a + c + d.

(3) Divisor D′ is equal to a + b + c. We fire the set {a, c} and obtain the new
divisor 2b + g.

(4) Divisor D′ is equal to 2b + g. We fire the set {a, b, c, d, g} and obtain the
new divisor e + 2f .

5 Other Notions of Gonality

5.1 Stable Divisorial Gonality

The stable divisorial gonality of a graph G is the minimum of dgon(H) over all
subdivisions H of G (i.e., graphs H that can be obtained by subdividing zero or
more edges of G). The bound for divisorial gonality can easily be transferred to
one for stable divisorial gonality. If G is simple, then the treewidth of G equals
the treewidth of any of its subdivisions. (This is well known.) If G is not simple,
then either the treewidth of G equals the treewidth of all its subdivisions, or G
is obtained by adding parallel edges to a forest (i.e., the treewidth of G equals
1), and we subdivide at least one of these parallel edges (thus creating a graph
with a cycle; the treewidth will be equal to 2 in this case.) In the latter case,
the (stable) divisorial gonality will be at least two. Thus, we have the following
easy corollary.
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Corollary 1. The treewidth of a graph G is at most the stable divisorial gonality
of G.

Standard treewidth techniques allow us to transform a tree decomposition
of a subdivision of G into a tree decomposition of G of the same width. (For
each subdivided edge {v, w} replace each occurrence of a vertex representing a
subdivision of this edge by v in each bag.)

5.2 Stable Gonality

Related to (stable) divisiorial gonality is the notion of stable gonality ; see [8].
This notion is defined using finite harmonic morphisms to trees.

Let G and H be undirected nonempty graphs. We allow G and H to have
parallel edges but not loops. A graph homomorphism from G to H is a map
f : V (G)∪E(G) → V (H)∪E(H) that maps vertices to vertices, edges to edges,
and preserves incidences of vertices and edges:

– f(V (G)) ⊆ V (H),
– if e is an edge between vertices u and v, then f(e) is an edge between f(u)

and f(v).

A finite morphism from G to H (notation: f : G → H) is graph homomorphism
f from G to H together with an index function rf : E(G) → Z>0.

A finite morphism f : G → H with index function rf is harmonic if for every
vertex v ∈ V (G), there is a constant mf (v) such that for each edge e ∈ E(H)
incident to f(v), we have ∑

e′ incident to v;f(e′)=e

rf (e′) = mf (v)

If H is connected and |E(G)| ≥ 1, then there is a positive integer deg(f), the
degree of f , such that for all vertices w ∈ V (H) and edges e ∈ E(H), we have

deg(f) =
∑

v∈V (G);f(v)=w

mf (v) =
∑

e′∈E(G);f(e′)=e

rf (e′);

see [14, Lemma 2.12] and [3, Lemma 2.3]. In particular, f is surjective in this
case.

A refinement of a graph G is a graph G′ that can be obtained from G by
zero or more of the following two operations: subdivide an edge; add a leaf (i.e.,
add one new vertex and an edge from that vertex to an existing vertex).

The stable gonality of a connected non-empty graph G is the minimum degree
of a finite harmonic morphism of a refinement of G to a tree.

Lemma 8. Let G be an undirected connected graph without loops and at least
one edge. Given a tree T and a finite harmonic morphism f : G → T of degree k,
a tree decomposition of G of width at most k can be constructed in O(k2|V (G)|)
time.
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Before proving the lemma, we make some simple observations. Recall that
indices rf (e) are positive integers. We thus have for each edge e ∈ E(T ):

|{e′ ∈ E(G) | f(e′) = e}| ≤
∑

e′∈E(G);f(e′)=e

rf (e′) = deg(f).

Since G is connected and has at least one edge, it follows that mf (v) ≥ 1 for
every v ∈ V (G). Hence, for each vertex i ∈ V (T ):

|{v ∈ V (G) | f(v) = i}| ≤
∑

v∈V (G);f(v)=i

mf (v) = deg(f).

Proof (of Lemma 8). We build a tree decomposition of G in the following way.
For each edge e ∈ E(T ), we have that |{e′ ∈ E(G) | f(e′) = e}| ≤ k. Call
this number �(e). We subdivide e precisely �(e) times; that is, we add �(e) new
vertices on this edge. Let T ′ be the tree that is obtained in this way.

To the nodes i of T ′, we associate sets Xi in the following way. If i is a node
of T (i.e., not a node resulting from the subdivisions), then Xi = f−1(i), i.e., all
vertices mapped by the morphism to i. By the observation above, we have that
|Xi| ≤ deg(f) = k.

Consider an edge {i, j} in T . Write k′ = �({i, j}). Recall that there are k′ ≤ k
edges of G that are mapped to {i, j}. Suppose these are e1 = {v1, w1}, . . . , ek′ =
{vk′ , wk′} with f(v1) = f(v2) = · · · = f(vk′) = i and f(w1) = f(w2) = · · · =
f(wk′) = j. Let i1, i2, . . . , ik′ be the subdivision nodes of the edge {i, j}, with i1
incident to i and ik′ incident to j. Set Xir = {vs | r ≤ s ≤ k′} ∪ {wt | 1 ≤ t ≤ r}
for r ∈ {1, . . . , k′}. The construction is illustrated in Fig. 3. We claim that this
yields a tree decomposition of G of width at most k.

Fig. 3. Example of a step in the proof of Lemma 8. Here k′ = 4. Left: four edges are
mapped to the edge {i, j} by the finite harmonic morphism. Right: the corresponding
bags in the tree decomposition.

For all edges {v, w} ∈ E(G), we have {f(v), f(w)} ∈ E(T ). Suppose without
loss of generality that f(v) has the role of i, f(v) the role of j, v = vr and w = wr

in the construction above. Then v, w ∈ Xir .
Finally, for all v ∈ V , the sets Xi to which v belongs are the following: v is

in Xf(v), and for each edge incident to f(v) ∈ T , v is in zero or more successive
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bags of subdivision nodes of this edge, with the first one (if existing), incident
to f(v). Thus, the bags to which v belongs form a connected subtree.

The first condition of tree decompositions follows from the second and the
fact that G is connected. Hence T ′, with bags as defined above, yields a tree
decomposition of G.

Finally, note that each set Xi is of size at most k + 1: vertices in T have a
bag of size k and subdivision vertices have a bag of size k′ + 1 ≤ k + 1. So, we
have a tree decomposition of G of width at most k.

It is straightforward to see that the construction in the proof can be carried
out in O(k2|V (G)|) time. (Use that |V (T )| ≤ |V (G)|, since f is surjective.) ��
Theorem 3. Let G be an undirected connected graph without loops. Suppose that
G has stable gonality k. Then G has treewidth at most k. Given a refinement G′ of
G and a finite harmonic morphism f : G′ → T of degree k, a tree decomposition
of G of width at most k can be constructed in O(k2|V (G′)|) time.

Proof. The degenerate case that G has no edges must be handled separately;
here we have that the treewidth of G is 0, which is equal to its stable gonality.

Suppose G has at least one edge. By Lemma 8, we obtain a tree-
decomposition of G′ of width k in O(k2|V (G′)|) time. Standard treewidth tech-
niques allow us to transform a tree decomposition of a refinement of G into a
tree decomposition of G of the same or smaller width. Added leaves can just
be removed from all bags where they occur. For each subdivided edge {v, w},
replace each occurrence of a vertex representing a subdivision of this edge by v
in each bag. ��
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Abstract. The election control problem through social influence asks
to find a set of nodes in a social network of voters to be the starters of a
political campaign aiming at supporting a given target candidate. Voters
reached by the campaign change their opinions on the candidates. The
goal is to shape the diffusion of the campaign in such a way that the
chances of victory of the target candidate are maximized. Previous work
shows that the problem can be approximated within a constant factor
in several models of information diffusion and voting systems, assuming
that the controller, i.e., the external agent that starts the campaign, has
full knowledge of the preferences of voters. However this information is
not always available since some voters might not reveal it. Herein we
relax this assumption by considering that each voter is associated with a
probability distribution over the candidates. We propose two models in
which, when an electoral campaign reaches a voter, this latter modifies its
probability distribution according to the amount of influence it received
from its neighbors in the network. We then study the election control
problem through social influence on the new models: In the first model,
under the Gap-ETH, election control cannot be approximated within a
factor better than 1/no(1), where n is the number of voters; in the second
model, which is a slight relaxation of the first one, the problem admits
a constant factor approximation algorithm.

Keywords: Computational social choice · Election control · Influence
Maximization · Social influence

1 Introduction

Social media play a fundamental role in everyone’s life providing information,
entertainment, and learning. Many social media users prefer to access social
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network platforms such as Facebook or Twitter before news websites as they
provide faster means for information diffusion [15]. As a consequence, online
social networks are also exploited as a tool to alter users’ opinions. The extent
to which the opinions of an individual are conditioned by social interactions is
called social influence. It has been observed that social influence starting from
a small set of individuals may generate a cascade effect that allows to reach
a large part of the network. Recently, this capability has been used to affect
the outcome of political elections. There exists evidence of political intervention
which shows the effect of social media manipulation on the elections outcome,
e.g., by spreading fake news [17]. A real-life example is in the 2016 US election
where a study showed that on average 92% of people remembered pro-Trump
fake news and 23% of them remembered pro-Clinton fake news [2]. Several other
cases have been studied [4,10,12,19].

There exists a wide literature about manipulation of voting systems; we point
the reader to a recent survey [9]. Despite that, only few studies focus on the
problem of controlling the outcome of political elections through the spread
of information in social networks. The election control problem [20] consists in
selecting a set of nodes of a network to be the starters of a diffusion with the aim
of maximizing the chances for a target candidate to win an election. In particular,
in the constructive election control problem, the goal is to maximize the Margin
of Victory (MoV) of the target candidate on its most critical opponent, i.e., the
difference of votes (or score, depending on the voting system) between the two
candidates after the effect of social influence. A variation of the problem, known
as destructive election control, aims at making a target candidate lose. Both
problems have been originally analyzed under the Independent Cascade Model
(ICM) [11], and considering plurality voting ; approximation and hardness-of-
approximation results are provided [20]. Corò et al. [6,7] analyzed the problem
in arbitrary scoring rules voting systems under the Linear Threshold Model
(LTM) [11], providing constant factor approximation algorithms. It has been
later shown that it is NP -hard to find any constant factor approximation in the
multi-winner scenario [1].

Faliszewski et al. [8] examine bribery in an opinion diffusion process with
voter clusters: each node is a cluster of voters, represented as a weight, with a
specific list of candidates; there is an edge between two nodes if they differ by the
ordering of a single pair of adjacent candidates. The authors show that making a
specific candidate win in their model is NP -hard and fixed-parameter tractable
with respect to the number of candidates. Bredereck et al. [5] studied the prob-
lem of manipulating diffusion on social networks, though not specifically in the
context of elections. They show that identifying successful manipulation via brib-
ing, adding/deleting edges, or controlling the order of asynchronous updates are
all computationally hard problems. A similar approach is taken by Apt et al. [3],
where the authors introduce a threshold model for social networks in order to
characterize the role of social influence in the global adoption of a commercial
product.
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In all previous works it is assumed that the controller knows the preference
list of each voter. However, this assumption is not always satisfied in realistic
scenarios as voters may not reveal their preferences to the controller. Herein,
in Sect. 2, we introduce two new models, Probabilistic Linear Threshold Rank-
ing (PLTR) and Relaxed-PLTR (R-PLTR), that encompass scenarios where the
preference lists of the voters are not fully revealed. Specifically, we use an uncer-
tain model in which the controller only knows, for each voter, a probability
distribution over the candidates. In fact, in applied scenarios, the probability
distribution could be inferred by analyzing previous social activity of the vot-
ers, e.g., re-tweets or likes of politically oriented posts. We envision that some
given focused news about a target candidate spread through the network as a
message. We model such a diffusion via the LTM [11]. The message will have an
impact on the opinions of voters who received it from their neighbors, leading
to a potential change of their vote if the neighbors exercise a strong influence on
them. With this intuition in mind, in our models, the probability distribution
of the voters reached by the message is updated as a function of the degree of
influence that the senders of the message have on them. The rationale is that the
controller, without knowing the exact preference list which is kept hidden, can
just update its estimation on it by considering the mutual degree of influence
among voters. We acknowledge that our models do not cover all scenarios that
can arise in election control, e.g., messages about multiple candidates. However
they represent a first step towards modeling uncertainty.

We study on our models both the constructive and destructive election con-
trol problems. We show in Sect. 3 that the election control problem in PLTR is
at least as hard to approximate as the Densest-k-Subgraph problem. In Sect. 4,
instead, we provide an algorithm that guarantees a constant factor approxima-
tion to the election control problem in R-PLTR. In the relaxed model, R-PLTR,
also “partially-influenced” nodes change their probability distribution. Although
this simple modification is enough to make the problem substantially easier,
preliminary experimental results (available in the full version) show that the
hardness of approximation for PLTR is purely theoretical and is due to hard
instances in the reduction.

2 Influence Models and Problem Statement

Background. Influence Maximization is the problem of finding a subset of the
most influential users in a social network with the aim of maximizing the spread
of information given a particular diffusion model. In this work, we focus on the
diffusion model known as Linear Threshold Model (LTM) [11]. Given a graph
G = (V,E), each edge (u, v) ∈ E has a weight buv ∈ [0, 1], each node v ∈ V has
a threshold tv ∈ [0, 1] sampled uniformly at random and independently from the
others, and the sum of the weights of the incoming edges of v is

∑
(u,v)∈E buv ≤ 1.

Each node can be either active or inactive. Let A0 be a set of initially active
nodes and At be the set of nodes active at time t. A node v becomes active if
the sum of the incoming active weights at time t − 1 is greater than or equal to
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its threshold tv, i.e., v ∈ At if and only if v ∈ At−1 or
∑

u∈At−1:(u,v)∈E buv ≥ tv.
The process terminates at the first time t̃ in which the set of active nodes would
not change in the next round, i.e., At̃ = At̃+1. We define the eventual set of
active nodes as A := At̃ and the expected size of A as σ(A0). Given a budget B,
the influence maximization problem consists in finding a set of nodes A0 of size
B, called seeds, in such a way that σ(A0) is maximum.

Kempe et al. [11] showed that the distribution of active nodes A, for any
set A0, is equal to the distribution of the sets of nodes that are reachable from
A0 in the set of random graphs called live-edge graphs. A live-edge graph is
a subgraph in which each node has at most one incoming edge. Even if the
number of live-edge graphs is exponential, by using standard Chernoff-Hoeffding
bounds, it is possible to compute a (1 ± ε)-approximation of σ(A0), for a given
A0, with high probability by sampling a polynomial number of live-edge graphs.
Moreover, σ(A0) is monotone and submodular w.r.t. to the initial set A0; hence,
an optimal solution can be approximated to a factor of 1 − 1/e using a simple
greedy algorithm [16]. There has been intensive research on the problem in the
last decade. We point the reader to a recent survey on the topic [13].

Notation. Let G = (V,E) be a directed graph representing a social network of
voters and their interactions. We denote the set of m candidates running for
the election as C = {c1, c2, . . . , cm} and the target candidate as c� ∈ C. Each
node v ∈ V has a probability distribution over the candidates πv, where πv(ci)
is the probability that v votes for candidate ci; then for each v ∈ V we have
that πv(ci) ≥ 0 for each candidate ci and

∑m
i=1 πv(ci) = 1. Moreover, we denote

by N−
v and N+

v , respectively, the sets of incoming and outgoing neighbors for
each node v ∈ V . For each candidate ci, we assume that πv(ci) is at least a
polynomial fraction of the number of voters, i.e., πv(ci) = Ω(1/|V |γ) for some
constant γ > 0.1 Let Xv(ci) be an indicator random variable, where Xv(ci) = 1
if v votes for ci, with probability πv(ci), and Xv(ci) = 0 otherwise. We define
the expected score of a candidate ci as the expected number of votes that ci

obtains from the voters F (ci, ∅) := E
[∑

v∈V Xv(ci)
]

=
∑

v∈V πv(ci).

PLTR Model. As in LTM, each node v has a threshold tv ∈ [0, 1]; each edge
(u, v) ∈ E has a weight buv, that models the influence of node u on v, with
the constraint that, for each node v,

∑
u:(u,v)∈E buv ≤ 1. We assume the weight

of each existing edge (u, v) not to be too small, i.e., buv = Ω(1/|V |γ) for some
constant γ > 0 (see footnote 1).

Given an initial set of seed nodes S, the diffusion process proceeds as in
LTM: Inactive nodes become active if the sum of the weights of incoming edges
from active neighbors is greater than or equal to their threshold. Mainly, we are
modeling the spread of some ads/news about the target candidate: Active nodes

1 The assumption is used in the approximation results, since Influence Maximiza-
tion problem with exponential (or exponentially small) weights on nodes is an open
problem. However, the assumption is realistic: Current techniques to estimate such
parameters generate values linear in the number of messages shared by a node.
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receive the message and spread it to their neighbors. Moreover, in PLTR, active
nodes are influenced by the message, increasing their probability of voting for
the target candidate. In particular, an active node v increases the probability of
voting for c� by an amount equal to the sum of the weights of its edges incoming
from other active nodes, i.e., it adds

∑
u∈A∩N−

v
buv to the initial probability

πv(c�). Then it normalizes to maintain πv as a probability distribution. Formally,
for each node v ∈ A, where A is the set of active nodes at the end of LTM, the
preference list of v is denoted as π̃v and it is equal to:

π̃v(c�) =
πv(c�) +

∑
u∈A∩N−

v
buv

1 +
∑

u∈A∩N−
v

buv
and π̃v(ci) =

πv(ci)
1 +

∑
u∈A∩N−

v
buv

, (1)

for each ci �= c�. All inactive nodes v ∈ V \ A will have π̃v(ci) = πv(ci)
for all candidates, including c�. As for the expected score before the process,
we can compute the expected final score of a candidate ci as F (ci, S) :=
E

[∑
v∈V Xv(ci, S)

]
=

∑
v∈V π̃v(ci), where Xv(ci, S) is the indicator random

variable after the process, i.e., Xv(ci, S) = 1 if v votes for ci, with probability
π̃v(ci), and Xv(ci, S) = 0 otherwise.

Let us denote by G the set of all possible live-edge graphs sampled from G.
We can also compute F (ci, S) by means of live-edge graphs used in the LTM
model as

F (ci, S) =
∑

G′∈G
FG′(ci, S) · P(G′), (2)

where FG′(ci, S) is the score of ci in G′ ∈ G and P(G′) is the probability of
sampling live-edge G′. More precisely, for the target candidate we have

FG′(c�, S)=
∑

v∈RG′(S)

πv(c�)+
∑

u∈RG′ (S)∩N−
v

buv

1 +
∑

u∈RG′ (S)∩N−
v

buv
+

∑

v∈V \RG′(S)

πv(c�),

where RG′(S) is the set of nodes reachable from S in G′. A similar formulation
can be derived for ci �= c�.

R-PLTR Model. In the next section we prove that the election control problem
in PLTR is hard to approximate to within a polynomial fraction of the optimum
(Theorem 1). However, we show that a small relaxation of the model allows us
to approximate it to within a constant factor. In the relaxed model, that we
call Relaxed Probabilistic Linear Threshold Ranking (R-PLTR), the probability
distribution of a node is updated if it has at least an active incoming neighbor
(also if the node is not active itself). More formally, every node v ∈ V (and
not just every node v ∈ A as in PLTR) changes its preference by updating
its probability distribution via Eq. (1); thus also nodes that have at least an
active incoming neighbor can change. The rationale is that a voter might slightly
change its opinion about the target candidate if it receives some influence from
its active incoming neighbors even if the received influence is not enough to
activate it (thus making it propagate the information to its outgoing neighbors).
Therefore, we include this small amount of influence in the objective function.
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In the next section, we show that election control in R-PLTR is still NP -hard,
and then we give an algorithm that guarantees a constant approximation ratio
in this setting.

Problem Statement. In the constructive election control problem we maximize
the expected Margin of Victory (MoV) of the target candidate w.r.t. its most
voted opponent, akin to [6,20]. We define the MoV(S) obtained starting from
S as the expected increase, w.r.t. the value before the process, of the difference
between the score of c� and that of the most voted opponent.2 Formally, if c and
ĉ are respectively the candidates different from c� with the highest score before
and after the diffusion process

MoV(S) := F (c, ∅) − F (c�, ∅) − (F (ĉ, S) − F (c�, S)) . (3)

Given a budget B, the constructive election control problem asks to find a set
of seed nodes S, of size at most B, that maximizes MoV(S). It is worth noting
that MoV can also be expressed as a function of the score gained by candidate
c� and the score lost by its most voted opponent ĉ at the end of the process. We
define the score gained and lost by a candidate ci as

g+(ci, S) := F (ci, S) − F (ci, ∅), g−(ci, S) := F (ci, ∅) − F (ci, S).

Therefore, we can rewrite MoV(S) as

MoV(S) = g+(c�, S) + g−(ĉ, S) − F (ĉ, ∅) + F (c, ∅). (4)

The destructive election control problem, instead, aims at making the target
candidate lose by minimizing its MoV. In this dual scenario, the probability
distributions of the voters are updated slightly differently in our models, i.e.,
influenced voters have a lower probability of voting for the target candidate c�

mimicking the spread of “negative” news about c�.
In our model the controller can send to the seed nodes a message in support

of only one single candidate, e.g., latest news about the candidate. We prove that
the best strategy is that of sending messages in support of the target candidate
c�, i.e., if the controller wants c� to win, then, according to our models, the
direct strategy of targeting voters with news about c� is more effective than
the alternative strategy of distracting the same voters with news about other
candidates. The proof of this observation, as well as other proofs, are omitted
due to space limitations and deferred to the full version.

3 Hardness Results

In this section we provide two hardness results related to election control in
PLTR and R-PLTR. In Theorem 1 we show that maximizing the MoV in PLTR
2 The increment in margin of victory, instead of just the margin, cannot be negative

and gives well defined approximation ratios.
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is at least as hard to approximate as the Densest-k-subgraph problem. This
implies several conditional hardness of approximation bounds for the election
control problem. Indeed, it has been shown that the Densest-k-subgraph problem
is hard to approximate: to within any constant bound under the Unique Games
with Small Set Expansion conjecture [18]; to within n−1/(log log n)c

, for some
constant c, under the exponential time hypothesis (ETH) [14]; to n−f(n) for any
function f ∈ o(1), under the Gap-ETH assumption [14]. Then, in Theorem 2,
we show that maximizing the MoV in R-PLTR is still NP -hard.

Theorem 1. An α-approximation to the election control problem in PLTR gives
an αβ-approximation to the Densest k-Subgraph problem, for a positive constant
β < 1.

Proof. Given an undirected graph G = (V,E) and an integer k, Densest k-
Subgraph (DkS) is the problem of finding the subgraph induced by a subset of
V of size k with the highest number of edges.

The reduction works as follows: Consider the PLTR problem on G with
budget B = k, where each undirected edge {u, v} is replaced with two directed
edges (u, v) and (v, u). Let us consider m candidates and let us assume that
πv(ĉ) = 1 for a ĉ �= c� and πv(ci) = πv(c�) = 0 for each ci �= ĉ and for each
v ∈ V . Assign to each edge (u, v) ∈ E a weight buv = 1

nγ , for any fixed constant
γ ≥ 4 and n = |V |.

We show the reduction considering the problem of maximizing the score,
because in the instance considered in the reduction the MoV is exactly equal to
twice the score. Indeed, the score of ĉ after PLTR starting from any initial set S
is F (ĉ, S) = |V | − F (c�, S). Thus, according to the definition of MoV in Eq. (4),
we get that

MoV(S) = |V | − (|V | − F (c�, S) − F (c�, S)) = 2F (c�, S).

To compute the expected final score of the target candidate, we average its
score in all live-edge graphs in G, according to Eq. (2). In our reduction, though,
the empty live-edge graph G′

∅ = (V, ∅) is sampled with high probability, i.e., with
probability at least 1 − n−Θ(1). In fact, for any γ ≥ 2, it is possible to show
that P

(
G′

∅
)

=
∏

v∈V

(
1 − ∑

u∈N−
v

buv

)
≥ 1 − 1

nγ−2 , using a binomial expansion
argument.

The score obtained by c� in any live-edge graph G′ starting from any seed
set S is

FG′(c�, S)=
∑

v∈RG′ (S)

πv(c�)+
∑

u∈RG′ (S)∩N−
v

1
nγ

1 +
∑

u∈RG′ (S)∩N−
v

1
nγ

= Θ

⎛

⎝
∑

v∈RG′ (S)

|RG′(S) ∩ N−
v |

nγ

⎞

⎠,

since 1 ≤ 1 +
∑

u∈RG′ (S)∩N−
v

1
nγ ≤ 2 for each v ∈ RG′(S). Note that the sum

in the previous approximation of FG′(c�, S), namely
∑

v∈RG′ (S) |RG′(S) ∩ N−
v |,

is equal to the number of edges of the subgraph induced by the set RG′(S) of
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nodes reachable from S in G′, which is not greater than n2, and thus FG′(c�, S) =
O (

1
nγ−2

)
.

In the empty live-edge graph G′
∅ the set RG′

∅
(S) at the end of LTM is equal

to S, since the graph has no edges. Thus FG′
∅
(c�, S) = 1

nγ ·∑v∈S
|S∩N−

v |
1+

∑
u∈S∩N

−
v

1
nγ

and since the denominator is, again, bounded by two constants we have that

FG′
∅
(c�, S) = Θ

(∑
v∈S |S ∩ N−

v |
nγ

)

= Θ

(
SOLDkS(S)

nγ

)

,

where SOLDkS(S) :=
∑

v∈S |S ∩ N−
v | is the number of edges of the subgraph

induced by S, i.e., the value of the objective function of DkS for solution S.
Thus, the expected final score of the target candidate is

F (c�, S) = FG′
∅
(c�, S) · P(G′

∅) +
∑

G′ �=G′
∅

FG′(c�, S) · P(G′).

Since FG′(c�, S) and
∑

G′ �=G′
∅
P (G′) are in O (

1
nγ−2

)
, then

∑

G′ �=G′
∅

FG′(c�, S) · P(G′) = O
(

1
n2(γ−2)

)

= O
(

SOLDkS(S)
nγ

)

,

for any γ ≥ 4. Thus F (c�, S) = Θ
(

SOLDkS(S)
nγ

)
· Θ(1) + O

(
SOLDkS(S)

nγ

)
, which

means F (c�, S) = Θ
(

SOLDkS(S)
nγ

)
. We apply the Bachmann-Landau definition

of Θ notation: There exist positive constants n0, β1, and β2 such that, for all
n > n0,

β1
SOLDkS(S)

nγ
≤ F (c�, S) ≤ β2

SOLDkS(S)
nγ

.

In this case, the constants n0, β1, and β2 do not depend on the specific instance.
Since the previous bounds hold for any set S we also have that β1

OPTDkS

nγ ≤
OPT, where OPT is the value of an optimal solution for PLTR and OPTDkS is
the value of an optimal solution for DkS.

Suppose there exists an α-approximation algorithm for PLTR, i.e., an algo-
rithm that finds a set S s.t. the value of its solution is MoV(S) = 2F (c�, S) ≥
α · OPT. Then,

α

2
· β1

OPTDkS

nγ
≤ α

2
· OPT ≤ F (c�, S) ≤ β2

SOLDkS(S)
nγ

.

Thus SOLDkS(S) ≥ α
2

β1
β2

OPTDkS , i.e., it is an αβ1
2β2

-approximation to DkS. �	
Theorem 2. Election control in R-PLTR is NP-hard.

Proof. We prove the hardness by reduction from Influence Maximization under
LTM, which is known to be NP -hard [11].
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Consider an instance ILTM = (G,B) of Influence Maximization under LTM.
ILTM is defined by a weighted graph G = (V,E,w) with weight function w :
E → [0, 1] and by a budget B. Let IR-PLTR := (G′, B) be the instance that
corresponds to ILTM on R-PLTR, defined by the same budget B and by a graph
G′ = (V ′, E′, w′) that can be built as follows:

1. Duplicate each vertex in the graph, i.e., we define the new set of nodes as
V ′ := V ∪ {v|V |+1, . . . , v2|V |}.

2. Add an edge between each vertex v ∈ V to its copy in V ′, i.e., we define the
new set of edges as E′ := E ∪ {(v1, v|V |+1), . . . , (v|V |, v2|V |)}.

3. Keep the same weight for each edge in E and we set the weights of all new
edges to 1, i.e., w′(e) = w(e) for each e ∈ E and w′(e) = 1 for each e ∈ E′ \E.
Note that the constraint on incoming weights required by LTM is not violated
by w′.

4. Consider m candidates c�, c1, . . . , cm−1. For each v ∈ V we set πv(c�) = 1 and
πv(ci) = 0 for any other candidate i ∈ {1, . . . , m − 1}. For each v ∈ V ′ \ V
we set πv(c�) = 0, πv(c1) = 1 and πv(ci) = 0 for any other candidate i ∈
{2, . . . , m − 1}.

Let S be the initial set of seed nodes of size B that maximizes ILTM and
let A be the set of active nodes at the end of the process. The value of the
MoV obtained by S in IR-PLTR is MoV(S) = |V | − |V \ A|. Indeed, each node
v ∈ V in G′ has π̃v(c�) = πv(c�) = 1, because the probability of voting for
the target candidate remains the same after the normalization. Moreover, each
node vi ∈ V ∩ A influences its duplicate v|V |+i with probability 1 and therefore
π̃v|V |+i

(c�) = (πv|V |+i
(c�) + 1)/2 = 1

2 . Therefore, F (c�, ∅) = F (c1, ∅) = |V |,
F (c�, S) = |V | + 1

2 |A|, and F (c1, S) = |V \ A| + 1
2 |A|.

Let S be the initial set of seed nodes of size B that achieves the maximum
in IR-PLTR. Without loss of generality, we can assume that S ⊆ V , since we
can replace any seed node v|V |+i in V ′ \ V with its corresponding node vi in V
without decreasing the objective function. If A is the set of active nodes at the
end of the process, then by using similar arguments as before, we can prove that
MoV(S) = |V |− |V \A|. Let us assume that S does not maximize ILTM, then, S
would also not maximize IR-PLTR, which is a contradiction since S is an optimal
solution for IR-PLTR.

We can prove the NP -hardness for the case of maximizing the score by
using the same arguments. In fact, notice that maximizing the score of c�, i.e.,
F (c�, S) = |V | + 1

2 |A|, is exactly equivalent to maximize the cardinality of the
active nodes in LTM. �	

4 Approximation Results

In this section we first show that we can approximate the optimal MoV to within
a constant factor by optimizing the increment in the score of c�. In detail we
show that, given two solutions S∗ and S∗∗ such that g+(c�, S

∗) and MoV(S∗∗)
are maximum, then MoV(S∗) ≥ 1

3MoV(S∗∗). Indeed, we show a more general
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statement that is: If a solution S approximates g+(c�, S
∗) within a factor α, then

MoV(S) ≥ α
3 MoV(S∗∗).

Then we show that a simple greedy hill-climbing approach (Algorithm 1)
gives a constant factor approximation to the problem of maximizing g+(c�, S),
where the constant is 1

2 (1− 1
e ). By combining the two results, we get a 1

6 (1− 1
e )-

approximation algorithm for the election control problem in R-PLTR. The next
theorem generalizes [20, Theorem 5.2] as it holds for any scoring rule and for
any model in which we have the ability to change only the position of c� in the
lists of a subset of voters and the increment in score of c� is at least equal to the
decrement in scoring of the other candidates.

Theorem 3. An α-approximation algorithm for maximizing the increment in
score of a target candidate gives an α

3 -approximation to the election control
problem.

Proof. Let us consider two solutions S and S∗ for the problem of maximizing the
MoV for candidate c�, with S∗ as the optimal solution to this problem. These
solutions arbitrarily select a subset of voters and modify their preference list
changing the score of c�. Let us fix c and ĉ, respectively, as the candidates dif-
ferent from c� with the highest score before and after the solution S is applied.
Assume there exists an α-approximation to the problem of maximizing the incre-
ment in score of the target candidate; if we do not consider the gain given by
the score lost by the most voted opponent, we have that

MoV(S) = g+(c�, S) + g−(ĉ, S) − F (ĉ) + F (c) ≥ αg+(c�, S
∗) − F (ĉ) + F (c)

≥ α

3
[g+(c�, S

∗) + g−(c̄, S∗) + g−(ĉ, S∗)] − F (ĉ) + F (c),

where the last inequality holds because g+(c�, S) ≥ g−(ci, S) for any solution S
and candidate ci since S modifies only the score of c�, increasing it, while the
score of all the other candidates is decreased, and the increment in score to c∗

is equal to the sum of the decrement in score of all the other candidates. Since
F (ĉ) ≤ F (c), we have that

MoV(S) ≥ α

3
[g+(c�, S

∗) + g−(c̄, S∗) + F (c) + g−(ĉ, S∗) − F (ĉ) + F (c̄) − F (c̄)]

=
α

3
[MoV(S∗) + g−(ĉ, S∗) − F (ĉ) + F (c̄)],

where c̄ is the candidate with the highest score after the solution S∗ is applied.
By definition of c̄ we have that F (c̄, S∗) ≥ F (ĉ, S∗), which implies that

g−(c̄, S∗) − g−(ĉ, S∗) = F (c̄) − F (c̄, S∗) − F (ĉ) + F (ĉ, S∗) ≤ F (c̄) − F (ĉ).

Thus, g−(ĉ, S∗) − F (ĉ) + F (c̄) ≥ 0 and we conclude that MoV(S) ≥ α
3

MoV(S∗). �	
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Constructive Election Control in R-PLTR. Next theorem shows how to get a con-
stant factor approximation to the problem of maximizing the MoV in R-PLTR
by reducing the problem to an instance of the weighted version of the influence
maximization problem with LTM [11]. This extension of the LTM, associates
to each node a non-negative weight that captures the importance of activat-
ing that node. The goal is to find the initial seed set in order to maximize the
sum of the weights of the active nodes at the end of the process, i.e., finding
arg maxSσw(S) = E

[∑
v∈A w(v)

]
, where w is a weight function over the node

set.

Algorithm 1. Greedy R-PLTR
Require: Social graph G = (V, E); Budget B
1: S = ∅; Ĝ = (G, w) � Weighted graph Ĝ
2: while |S| ≤ B do
3: v = arg maxu∈V \S σw(S ∪ {u}) − σw(S)
4: S = S ∪ {v}
5: return S

A simple hill-climbing greedy algorithm achieves a (1 − 1/e)-approximation
if the weights are polynomial (or polynomially small) in the number of nodes of
the graph and the number of live-edge graph samples is polynomially large in the
weights [11].3 We exploit this result to approximate the MoV via Algorithm 1,
reducing the problem of maximizing the score to that of maximizing σw(S) in
the weighted LTM. We define a new graph Ĝ with the same sets of nodes and
edges of G. Then, we assign a weight to each node v ∈ V equal to w(v) :=∑

u∈N+
v

bvu(1 − πu(c�)). Note that we are able to correctly approximate the
value of σw(S) using such weights since by hypothesis on the model buv ≥ 1

|V |γ1 ,
for each (u, v) ∈ E and for some constant γ1 > 0, and since πv(ci) ≥ 1

|V |γ2 ,
for each v ∈ V for some constant γ2 > 0. By applying a multiplicative form
of the Chernoff bound we can get a 1 ± ε approximation of σw(S), with high
probability [11, Proposition 4.1].

Thus, we can use Algorithm 1 to maximize the influence on Ĝ. The algorithm
starts with an empty set S and adds to it, in each of B rounds, the node v with
maximal marginal gain w.r.t. the solution computed so far.

Theorem 4. Algorithm 1 guarantees a 1
6 (1 − 1

e )-approximation factor to con-
structive election control in R-PLTR.

Proof. We first prove that Algorithm 1 gives an 1
2 (1 − 1

e )-approximation to the
problem of maximizing the increment in score of the target candidate c� in

3 It is still an open question how well the value of σw(S) can be approximated for an
influence model with arbitrary node weights.
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R-PLTR. Let S and S� respectively be the set of initial seed nodes found by the
greedy algorithm and the optimal one. We have that

g+(c�, S) =
∑

v∈V

(1 − πv(c�))
∑

u∈A∩N−
v

buv

1 +
∑

u∈A∩N−
v

buv

and, since the denominator is at most 2, that

g+(c�, S) ≥ 1
2

∑

v∈V

(1 − πv(c�))
∑

u∈A∩N−
v

buv =
1
2

∑

u∈A

∑

v∈N+
u

buv(1 − πv(c�)),

where A is the set of active nodes at the end of the process.
Note that

∑
u∈A

∑
v∈N+

u
buv(1−πv(c�)) is exactly the objective function that

the greedy algorithm maximizes. Hence, we know that
∑

u∈A

∑

v∈N+
u

buv(1 − πv(c�)) ≥ (1 − 1/e)
∑

u∈A�

∑

v∈N+
u

buv(1 − πv(c�)),

where A� is the set of active nodes at the end of the process starting from S�.
Therefore g+(c�, S) ≥ 1

2 (1 − 1/e) g+(c�, S
�) since

g+(c�, S
�) =

∑

v∈V

(1 − πv(c�))
∑

u∈A�∩N−
v

buv

1 +
∑

u∈A�∩N−
v

buv
≤

∑

u∈A�

∑

v∈N+
u

buv(1 − πv(c�)),

where the inequality holds since all the denominators in g+(c�, S
�) are at

least 1. Thus, Algorithm 1 achieves a 1
2

(
1 − 1

e

)
-approximation to the maxi-

mum increment in score. Using Theorem 3 we get a 1
6

(
1 − 1

e

)
-approximation for

the MoV. �	

Destructive Election Control in R-PLTR. The destructive election control prob-
lem is similar to the constructive problem, but in this scenario, in our models,
the probability that a voter v votes for c� decreases depending on the amount
of influence received by v and the loss of probability of c� is evenly split over all
the other candidates. In this way, we avoid negative values and values that do
not sum to 1. In detail, if A is the set of active nodes at the end of LTM, then,
for each v ∈ V , the preference list πv changes as follows:

π̃v(c�) =
πv(c�)

1 +
∑

u∈A∩N−
v

buv
and π̃v(ci) =

πv(ci) + 1
m−1

∑
u∈A∩N−

v
buv

1 +
∑

u∈A∩N−
v

buv

for each ci �= c�. We define MoVD, i.e., what we want to maximize, as

MoVD(S) := F (ĉ, S)−F (c�, S)−(F (c, ∅)−F (c�, ∅))=g−(c�, S)+g+(ĉ, S) + Δ,
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where S is the initial set of seed nodes and Δ = F (ĉ, ∅) − F (c, ∅) is the sum
of constant terms that are not modified by the process. Note that maximiz-
ing MoVD is NP -hard (it can be proved with a similar argument to that of
Theorem 2).

Similarly to the constructive case, we define a new graph Ĝ with the same
sets of nodes and edges of G. Then, we assign a weight to each node v ∈ V equal
to w(v) :=

∑
u∈N+

v
bvuπu(c�) and we run Algorithm 1 to find a seed set that

approximates the maximum expected weight of active nodes.

Theorem 5. Algorithm 1 guarantees a 1
4 (1 − 1

e )-approximation factor to the
destructive election control in R-PLTR.
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Abstract. Given two graphs H1 and H2, a graph G is (H1, H2)-free
if it contains no induced subgraph isomorphic to H1 or H2. Let Pt be
the path on t vertices. A graph G is k-vertex-critical if G has chromatic
number k but every proper induced subgraph of G has chromatic number
less than k. The study of k-vertex-critical graphs for graph classes is an
important topic in algorithmic graph theory because if the number of
such graphs that are in a given hereditary graph class is finite, then there
is a polynomial-time algorithm to decide if a graph in the class is (k−1)-
colorable. In this paper, we initiate a systematic study of the finiteness of
k-vertex-critical graphs in subclasses of P5-free graphs. Our main result
is a complete classification of the finiteness of k-vertex-critical graphs in
the class of (P5, H)-free graphs for all graphs H on 4 vertices. To obtain
the complete dichotomy, we prove the finiteness for four new graphs H
using various techniques – such as Ramsey-type arguments and the dual
of Dilworth’s Theorem – that may be of independent interest.

1 Introduction

All graphs in this paper are finite and simple. We say that a graph G contains a
graph H if H is isomorphic to an induced subgraph of G. A graph G is H-free
if it does not contain H. For a family of graphs H, G is H-free if G is H-free for
every H ∈ H. When H consists of two graphs, we write (H1,H2)-free instead of
{H1,H2}-free. As usual, Pt and Cs denote the path on t vertices and the cycle
on s vertices, respectively. The complete graph on n vertices is denoted by Kn.
The graph K3 is also referred to as the triangle. For two graphs G and H, we
c© Springer Nature Switzerland AG 2020
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use G + H to denote the disjoint union of G and H. For a positive integer r,
we use rG to denote the disjoint union of r copies of G. The complement of G
is denoted by G. A clique (resp. independent set) in a graph is a set of pairwise
adjacent (resp. nonadjacent) vertices. If a graph G can be partitioned into k
independent sets S1, . . . , Sk such that there is an edge between every vertex in
Si and every vertex in Sj for all 1 ≤ i < j ≤ k, G is called a complete k-partite
graph; each Si is called a part of G. If we do not specify the number of parts in G,
we simply say that G is a complete multipartite graph. We denote by Kn1,...,nk

the complete k-partite graph such that the ith part Si has size ni, for each
1 ≤ i ≤ k. A q-coloring of a graph G is a function φ : V (G) −→ {1, . . . , q} such
that φ(u) �= φ(v) whenever u and v are adjacent in G. Equivalently, a q-coloring
of G is a partition of V (G) into q independent sets. A graph is q-colorable if
it admits a q-coloring. The chromatic number of a graph G, denoted by χ(G),
is the minimum number q for which G is q-colorable. The clique number of G,
denoted by ω(G), is the size of a largest clique in G.

A graph G is k-chromatic if χ(G) = k. We say that G is k-critical if it is
k-chromatic and χ(G − e) < χ(G) for any edge e ∈ E(G). For instance, K2 is
the only 2-critical graph and odd cycles are the only 3-critical graphs. A graph
is critical if it is k-critical for some integer k ≥ 1. Critical graphs were first
defined and studied by Dirac [11–13] in the early 1950s, and then by Gallai
and Ore [15,16,29] among many others, and more recently by Kostochka and
Yancey [24]. A weaker notion of criticality is the so-called vertex-criticality. A
graph G is k-vertex-critical if χ(G) = k and χ(G− v) < k for any v ∈ V (G). For
a set H of graphs and a graph G, we say that G is k-vertex-critical H-free if it is
k-vertex-critical and H-free. We are mainly interested in the following question.

The meta question. Given a set H of graphs and an integer k ≥ 1, are there
only finitely many k-vertex-critical H-free graphs?

This question is important in the study of algorithmic graph theory because
of the following theorem.

Theorem 1 (Folklore). Given a set H of graphs and an integer k ≥ 1, if the
set of all k-vertex-critical H-free graphs is finite, then there is a polynomial-time
algorithm to determine whether an H-free graph is (k − 1)-colorable.

In this paper, we study k-vertex-critical graphs in the class of P5-free graphs.
Our research is mainly motivated by the following two results.

Theorem 2 ([21]). For any fixed k ≥ 5, there are infinitely many k-vertex-
critical P5-free graphs.

Theorem 3 ([3,26]). There are exactly 12 4-vertex-critical P5-free graphs.

In light of Theorem 2 and Theorem 3, it is natural to ask which subclasses of
P5-free graphs have finitely many k-vertex-critical graphs for k ≥ 5. For example,
it was known that there are exactly 13 5-vertex-critical (P5, C5)-free graphs [21],
and that there are finitely many 5-vertex-critical (P5,banner)-free graphs [4,22],
and finitely many k-vertex-critical (P5, P5)-free graphs for every fixed k [9]. Hell
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and Huang proved that there are finitely many k-vertex-critical (P6, C4)-free
graphs [19]. This was later generalized to (Pt,Kr,s)-free graphs in the context
of H-coloring [23]. Apart from these, there seem to be very few results on the
finiteness of k-vertex-critical graphs for k ≥ 5. The reason for this, we think, is
largely because of the lack of a good characterization of k-vertex-critical graphs.
In this paper, we introduce new techniques into the problem and prove some
new results beyond 5-vertex-criticality.

1.1 Our Contributions

We initiate a systematic study on the subclasses of P5-free graphs. In particular,
we focus on (P5,H)-free graphs when H has small number of vertices. If H has
at most three vertices, the answer is either trivial or can be easily deduced from
known results. So we study the problem for graphs H when H has four vertices.
There are 11 graphs on four vertices up to isomorphism:

– K4 and K4 = 4P1;
– P2 + 2P1 and P2 + 2P1;
– C4 and C4 = 2P2;
– P1 + P3 and P1 + P3;
– K1,3 and K1,3 = P1 + K3;
– P4 = P4.

The graphs P2 + 2P1, P1 + P3 and K1,3 are usually called diamond, paw and
claw, respectively.

One can easily answer our meta question for some graphs H using known
results, e.g., Ramsey’s Theorem for 4P1-free graphs: any k-vertex-critical
(P5, 4P1)-free graph is either Kk or has at most R(k, 4) − 1 vertices, where
R(s, t) is the Ramsey number, namely the minimum positive integer n such that
every graph of order n contains either a clique of size s or an independent set
of size t. However, the answer for certain graphs H cannot be directly deduced
from known results. In this paper, we prove that there are only finitely many
k-vertex-critical (P5,H)-free graphs for every fixed k ≥ 1 when H is K4, or
P2 + 2P1, or P2 + 2P1, or P1 + P3. (Note that these results do not follow from
the finiteness of k-vertex-critical (P5, P5)-free graphs proved in [9].) By combin-
ing our new results with known results, we obtain a complete classification of
the finiteness of k-vertex-critical (P5,H)-free graphs when H has 4 vertices.

Theorem 4. Let H be a graph of order 4 and k ≥ 5 be a fixed integer. Then
there are infinitely many k-vertex-critical (P5,H)-free graphs if and only if H is
2P2 or P1 + K3.

To obtain the complete classification, we employ various techniques, some of
which have not been used before to the best of our knowledge. For H = K4,
we use a hybrid approach combining the power of a computer algorithm and
mathematical analysis. For P1 + P3 and P2 + 2P1, we use the idea of fixed sets
(that was first used in [20] to give a polynomial-time algorithm for k-coloring
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P5-free graphs for every fixed k) combined with Ramsey-type arguments and
the dual of Dilworth’s Theorem. We hope that these techniques could be helpful
for attacking other related problems. The remainder of the paper is organized
as follows. We present some preliminaries in Sect. 2 and prove our new results
in Sect. 3. Finally, we give the proof of Theorem 4 in Sect. 4.

2 Preliminaries

For general graph theory notation we follow [1]. Let G = (V,E) be a graph. If
uv ∈ E, we say that u and v are neighbors or adjacent; otherwise u and v are
nonneighbors or nonadjacent. The neighborhood of a vertex v, denoted by NG(v),
is the set of neighbors of v. For a set X ⊆ V (G), let NG(X) =

⋃
v∈X NG(v) \X.

We shall omit the subscript whenever the context is clear. For X,Y ⊆ V , we say
that X is complete (resp. anticomplete) to Y if every vertex in X is adjacent
(resp. nonadjacent) to every vertex in Y . If X = {x}, we write “x is complete
(resp. anticomplete) to Y ” instead of “{x} is complete (resp. anticomplete) to
Y ”. If a vertex v is neither complete nor anticomplete to a set S, we say that
v is mixed on S. We say that H is a homogeneous set if no vertex in V − H is
mixed on H. A vertex is universal in G if it is adjacent to all other vertices. A
vertex subset K ⊆ V is a clique cutset if G − K has more components than G
and K induces a clique. For S ⊆ V , the subgraph induced by S, is denoted by
G[S]. A k-hole in a graph is an induced cycle H of length k ≥ 4. If k is odd, we
say that H is an odd hole. A k-antihole in G is a k-hole in G. Odd antiholes are
defined analogously. The graph obtained from Ck by adding a universal vertex,
denoted by Wk, is called the k-wheel.

List Coloring. Let [k] denote the set {1, 2, . . . , k}. A k-list assignment of a
graph G is a function L : V (G) → 2[k]. The set L(v), for a vertex v in G, is
called the list of v. In the list k-coloring problem, we are given a graph G with
a k-list assignment L and asked whether G has an L-coloring, i.e., a k-coloring
of G such that every vertex is assigned a color from its list. We say that G is
L-colorable if G has an L-coloring. If the list of every vertex is [k], then the list
k-coloring problem is precisely the k-coloring problem.

A common technique in the study of graph coloring is called propagation. If
a vertex v has its color forced to be i ∈ [k], then no neighbor of v can be colored
with color i. This motivates the following definition. Let (G,L) be an instance
of the list k-coloring problem. The color of a vertex v is said to be forced if
|L(v)| = 1. A propagation from a vertex v with L(v) = {i} is the procedure of
removing i from the list of every neighbor of v. If we denote the resulting k-list
assignment by L′, then G is L-colorable if and only if G − v is L′-colorable. A
propagation from v could make the color of other vertices forced; if we continue
to propagate from those vertices until no propagation is possible, we call the
procedure “exhaustive propagation from v”. It is worth mentioning that the idea
of propagation is featured in many recent studies on coloring Pt-free graphs and
related problems, see [2,5] for example.
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An Example of Propagation. Let G be a 4-vertex path w, x, y, z with L(w) =
{1}, L(x) = {1, 2}, L(y) = {2, 3}, and L(z) = {1, 2}. Then propagation from w
results in the new list assignment L′ where L′(x) = {2} and L′(v) = L(v) for
v �= x. On the other hand, exhaustive propagation from w results in the new list
assignment L′′ where L′′(w) = {1}, L′′(x) = {2}, L′′(y) = {3}, L′′(z) = {1, 2}.
Lemma 1 (Folklore). Any k-vertex-critical graph cannot contain clique cut-
sets.

Another folklore property of vertex-critical graphs is that such graph cannot
contain two nonadjacent vertices u, v such that N(v) ⊆ N(u). We generalize this
property to anticomplete subsets.

Lemma 2. Let G be a k-vertex-critical graph. Then G has no two nonempty
disjoint subsets X and Y of V (G) that satisfy all the following conditions.

– X and Y are anticomplete to each other.
– χ(G[X]) ≤ χ(G[Y ]).
– Y is complete to N(X).

Proof. Suppose that G has a pair of nonempty subsets X and Y that satisfy all
three conditions. Since G is k-vertex-critical, G − X has a (k − 1)-coloring φ.
Let t = χ(G[Y ]). Since Y is complete to N(X), at least t colors do not appear
on any vertex in N(X) under φ. So we can obtain a (k − 1)-coloring of G by
coloring G[X] with those t colors. This contradicts that G is k-chromatic. �	

A graph G is perfect if χ(H) = ω(H) for each induced subgraph H of G. An
imperfect graph is a graph that is not perfect. A classical theorem of Dilworth [10]
states that the largest size of an antichain in a partially ordered set is equal to
the minimum number of chains that partition the set. We will use the dual of
Dilworth’s Theorem which says that the largest size of a chain in a partially
ordered set is equal to the minimum number of antichains that partition the set.
This was first proved by Mirsky [27] and it has an equivalent graph-theoretic
interpretation via comparability graphs. A graph is a comparability graph if the
vertices of the graph are elements of a partially ordered set and two vertices are
connected by an edge if and only if the corresponding elements are comparable.

Theorem 5 (Dual Dilworth Theorem [27]). Every comparability graph is
perfect.

Theorem 6 (Strong Perfect Graph Theorem [7]). A graph is perfect if and
only if it contains no odd holes or odd antiholes.

3 New Results

In this section, we prove four new results: there are finitely many k-vertex-critical
(P5,H)-free graphs when H ∈ {K4, P2 + 2P1, P2 + 2P1, P1 + P3}.
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3.1 P1 + P3-Free Graphs

Theorem 7. For every fixed integer k ≥ 1, there are finitely many k-vertex-
critical P1 + P3-free graphs.

Proof. Let G be a k-vertex-critical P1 +P3-free graph. If G contains a Kk, then
G is isomorphic to Kk. So we assume in the following that G is Kk-free. Let
K = {v1, . . . , vt} be a maximal clique, where 1 ≤ t < k. Since K is maximal,
every vertex in V \ K is not adjacent to at least one vertex in K. We partition
V \ K into the following subsets.

– F1 is the set of nonneighbors of v1.
– For 2 ≤ i ≤ t, Fi is the set of nonneighbors of vi that are not in F1∪· · ·∪Fi−1.

By the definition, vi is complete to Fj if i < j. Since G is P1 + P3-free, each Fi

is P3-free, and so is a disjoint union of cliques.

Claim 1. If Fi has at least two components, then every neighbor of vi is either
complete or anticomplete to Fi.

Proof. Let v be a neighbor of vi. Suppose that v has a neighbor f in Fi. Let K be
the component of Fi containing f . If v is not adjacent to some vertex f ′ ∈ F1\K,
then {f ′, f, v, vi} induces a P1 +P3, a contradiction. So v is complete to Fi \ K.
Since Fi has at least two components, v has a neighbor in a component other than
K. It follows from the same argument that v is complete to K. This completes
the proof. �	
Claim 2. For every nonneighbor v of vi and every component K of Fi, v is either
complete or anticomplete to K.

Proof. If v is mixed on an edge xy in K, then {v, vi, x, y} induces a P1 + P3, a
contradiction. �	

By Claim 1 and Claim 2, if Fi has at least two components, every component
of Fi is a homogeneous set of G. Moreover, since vi is complete to Fj for i < j,
no vertex in {vj} ∪ Fj with j > i is mixed on two components of Fi. We next
show that each Fi has bounded size.

Claim 3. |F1| ≤ k.

Proof. We show that F1 is connected. Suppose not. Let K and K ′ be two com-
ponent of F1 with |K| ≤ |K ′|. Then N(K) = N(K ′). By Lemma 2, G is not
k-vertex-critical. This is a contradiction. Therefore, F1 is a clique and so has at
most k vertices. �	
Claim 4. For each 1 ≤ i ≤ t, Fi has bounded size.
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Proof. We prove this by induction on i. By Claim 3, the statement is true for
i = 1. Now assume that i ≥ 2 and Fj has bounded size for each 1 ≤ j < i. If Fi

is connected, then |Fi| ≤ k and we are done. So we assume that Fi has at least
two components. We will show that the number of components in Fi is bounded
and this will complete the proof. For this purpose, we construct a graph X as
follows.

– V (X) is the set of all components of Fi.
– Two components K and K ′ of Fi are connected by an edge in X if and only
if N(K) ⊆ N(K ′) or N(K ′) ⊆ N(K).

Note that X is a comparability graph. Next we show that ω(X) ≤ k. Suppose
that K1, . . . ,Kt is a maximum clique in X with t > k. We may assume that
N(K1) ⊆ N(K2) ⊆ · · · ⊆ N(Kt). It follows from Lemma 2 that |Ki| > |Kj | for
i < j, i.e., |K1| > |K2| > · · · > |Kt| ≥ 1. So |K1| ≥ k. This is a contradiction,
since G is Kk-free. This proves that ω(X) ≤ k. Since X is perfect by Theorem
5, V (X) can be partitioned into at most k independent sets S1, . . . , Sk. We
show that each Sp has bounded size. Let K and K ′ be two components in
Sp. Then there are vertices x and x′ such that x ∈ N(K) \ N(K ′) and x′ ∈
N(K ′) \ N(K). Note that x, x′ ∈ Ti =

⋃
1≤j<i Fj ∪ {vj}. If |Sp| > 2|Ti|2, by

the pigeonhole principle, there are two pairs {K,K ′} and {L,L′} of components
that correspond to the same pair {x, x′} in Ti. Then {K,x, L,K ′} induces a
P1 +P3. This shows that each Sp has size at most 2|Ti|2, which is a constant by
the inductive hypothesis. Therefore, X has constant number of vertices, i.e., Fi

has constant number of components. This completes the proof. �	
By Claim 3 and Claim 4, each |Fi| ≤ M for some constant M (depending

only on k). Therefore, G has bounded size. �	

3.2 P2 + 2P1-Free and Diamond-Free Graphs

Theorem 8. For every fixed integer k ≥ 1, there are finitely many k-vertex-
critical (P5, P2+2P1)-free graphs and k-vertex-critical (P5, diamond)-free graphs.

Due to page limits we omit the proof of Theorem 8.

3.3 K4-Free Graphs

Let G1 be the 13-vertex graph with vertex set {0, 1, . . . , 12} and the following
edges: {3, 4, 5, 6, 7} and {0, 1, 2, 8, 9} induce two disjoint 5-holes Q and Q′; 12
is complete to Q ∪ Q′; 11 is complete to Q and 10 is complete to Q′ with 10
and 11 being connected by an edge. Let G2 be the 14-vertex graph with vertex
set {0, 1, . . . , 13} and the following edges: {12, 13} is a cutset of G2 such that
12 and 13 are not adjacent and G2 − {12, 13} has exactly two components; one
component of G2 − {12, 13} is a 5-hole induced by {0, 1, 2, 3, 4}, and this 5-hole
is complete to {12, 13}; the other component, induced by {5, 6, 7, 8, 9, 10, 11}, is
the graph in Fig. 1, and 12 is complete to {5, 8, 9, 10, 11} and 13 is complete to
{6, 7, 9, 10, 11}.
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Fig. 1. One component of G2 − {12, 13}.

It is routine to verify that G1 and G2 are 5-vertex-critical (P5,K4)-free
graphs. The main result in this subsection is that they are the only 5-vertex-
critical (P5,K4)-free graphs.

Theorem 9. Let G be a 5-vertex-critical (P5,K4)-free graph. Then G is iso-
morphic to either G1 or G2.

The next two lemmas are based on a computer generation approach to
exhaustively generate all k-vertex-critical graphs in a given class of H-free graphs
via a recursive algorithm. The idea of computer generation was first used in [21],
and later developed extensively by Goedgebeur and Schaudt [18] and Chud-
novsky et al. [6].

We say that G′ is a 1-vertex extension of G if G can be obtained from G′ by
deleting a vertex in G′. Roughly speaking, the generation algorithm starts with
some small substructure which must occur in any k-vertex-critical graph, and
then exhaustively searches for all 1-vertex extensions of the substructure. The
algorithm stores those extensions that are k-vertex-critical and H-free in the
output list F . Then it recursively repeats the procedure for all (k − 1)-colorable
substructures found in the previous iterations. The pesudocode of the generation
algorithm is given in Algorithm1 and Algorithm2.

Algorithm 1: Generate(k, H, S)
Input: An integer k, a set H of forbidden induced subgraphs, and a

graph S.
Output: A list F of all k-vertex-critical H-free graphs containing S.

1 Let F be an empty list.
2 Extend(S).
3 Return F .
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Algorithm 2: Extend(G)

1 if G is H-free and is not generated before then
2 if χ(G) ≥ k then
3 if G is k-vertex-critical then
4 add G to F
5 end
6 end
7 else
8 for each valid 1-vertex extension G′ of G do
9 Extend(G′)

10 end
11 end
12 end

It should be noted that with a naive implementation the algorithm may not
terminate. For instance, if we extend a graph G by repeatedly adding vertices
that have the same neighborhood as some vertex in G, the program will never
terminate. So one has to design certain pruning rules to make the algorithm
terminate. For instance, if G contains two nonadjacent vertices u, v such that
N(u) ⊆ N(v), then we only need to consider all 1-vertex extensions G′ such
that the unique vertex in V (G′) \ V (G) is adjacent to u but not adjacent to v
(by Lemma 2). In [21], the authors designed two pruning rules like this so that
the algorithm terminates with 13 5-vertex-critical (P5, C5)-free graphs. Later, the
technique was extensively developed by Goedgebeur and Schaudt [18] who intro-
duced many more useful pruning rules that are essential for generating all critical
graphs in certain classes of graphs, e.g., 4-vertex-critical (P7, C4)-free graphs and
4-vertex-critical (P8, C4)-free graphs. The word “valid” in Algorithm2 is used
precisely to quantify those extensions that survive a specific set of pruning rules.

The algorithm we use in this paper is exactly the one developed in [18]. Hence,
the valid extensions on line 8 in Extend(G) are with respect to all pruning rules
given in Algorithm 2 in [18] (since we only use those rules as a black box, we do
not define them here [17]).

Theorem 10 ([18]). If Algorithm1 terminates and returns the list F , then F
is exactly the set of all k-vertex-critical H-free graphs containing S.

Let F be the graph obtained from a 5-hole by adding a new vertex and
making it adjacent to four vertices on the hole.

Lemma 3. Let G be a 5-vertex-critical (P5,K4)-free graph. If G contains an
induced W5 or F , then G is isomorphic to either G1 or G2.

Proof. We run Algorithm1 with the following inputs: k = 5, H = {P5,K4} and
S = W5 or S = F . If S = W5, then the algorithm terminates with the graphs
G1 and G2, and if S = F , then it terminates with only the graph G2. The
correctness of the algorithm follows from Theorem 10. �	
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Lemma 4. Let G be a 5-vertex-critical (P5,K4)-free graph. If G is 7-antihole-
free, then G is isomorphic to G1.

Proof. It was proved in [8] that G must contain a 5-hole. We run Algorithm1
with the following inputs: k = 5, H = {P5,K4, C7} and S = C5. The algorithm
terminates and outputs G1 as the only critical graph. The correctness of the
algorithm follows from Theorem 10. �	
Lemma 5. Let G be a (P5,K4,W5, F )-free graph. If G contains an 7-antihole,
then G is 4-colorable.

Due to page limits we omit the proof of Lemma 5. We are now ready to prove
Theorem 9.

Proof (Proof of Theorem 9). Let G be a 5-vertex-critical (P5,K4)-free graph. If
G contains an induced W5 or F , then G is either G1 or G2 by Lemma 3. So we can
assume that G is (W5, F )-free as well. By Lemma 5, G must be 7-antihole-free,
and so is G1 by Lemma 4. �	

4 A Complete Classification

Proof (Proof of Theorem 4). An infinite family of 5-vertex-critical 2P2-free
graphs is constructed in [21]. It can be easily checked that these graphs are
P1 + K3-free. Since 2P2 and P1 + K3 do not contain any universal vertices, for
every fixed k ≥ 6 one can obtain an infinite family of k-vertex-critical 2P2-free
graphs and (P5, P1 + K3)-free graphs by adding k − 5 universal vertices to the
5-vertex-critical family in [21].

Now assume that H is not 2P2 or P1 + K3. Let G be a k-vertex-critical
(P5,H)-free graph. We may assume that G is Kk-free for otherwise G is Kk.
If H = 4P1, then Ramsey’s theorem [30] shows that |G| ≤ R(4, k) − 1. If H =
K4, then there are no k-vertex-critical (P5,K4)-free graphs for any k ≥ 6 [14].
Moreover, there are only two 5-vertex-critical (P5,K4)-free graphs by Theorem
9. If H is a diamond or P2 +2P1, then the finiteness follows from Theorem 8. If
H = C4, then the finiteness follows from [19]. If H = P4, then G is perfect and
so (k − 1)-colorable, a contradiction. If H is a claw, then the finiteness follows
from [25]. If H is P1 + P3, then the finiteness follows from Theorem 7. If H is a
paw, then G is either triangle-free or a complete multipartite graph by a result
of Olariu [28]. In either case, G is (k − 1)-colorable, a contradiction. �	

In view of Theorem 4, it is natural to ask the following question, which we
leave as a possible future direction.

Problem. Which five-vertex graphs H could lead to finitely many k-vertex-
critical (P5,H)-free graphs?

As mentioned in the introduction, it was shown in [9] that H = P5 is one
such graph.
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Abstract. In this article, we address the classical One-Dimensional Bin
Packing Problem (1D-BPP), an NP-hard combinatorial optimization
problem. We propose a new formulation of integer linear programming for
the problem, which reduces the search space compared to those described
in the literature, as well as two families of cutting planes. Computational
experiments are conducted on the data-set found in BPPLib and the
results show that it is possible to solve more instances and to decrease
the computation time by using our new formulation.

Keywords: Bin packing · Integer linear programming · Cutting plane

1 Introduction

The one-dimensional Bin Packing Problem, noted 1D-BPP from here on, is a
well studied combinatorial optimization problem, with a rich literature detailing
different approaches for its solution. It can be informally defined as follows:
n items have to be packed each into one of n available bins. Each item i has
a non-negative weight wi (i = 1, . . . , n) and all bins have the same positive
integer capacity C. The objective is to find a packing with a minimum number
of bins such that the total weights of the items in each bin does not exceed the
capacity C.

We consider the following example, using a set of bins with capacity C = 6, a
set of items i = 1, 2, . . . , 8, with weights wi (given in Table 1). A feasible solution
as well as an optimal solution, respectively, with 8 bins and 4 bins, are given in
Fig. 1.

A central theme for this study is the computational effect of the removal of
symmetric solutions. To the best of our knowledge, no numerical studies have
been published to ascertain the performance gain of symmetry breaking con-
straints for 1D-BPP.
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Table 1. An example of data, with 8 items

Items i 1 2 3 4 5 6 7 8

Weights wi 2 2 5 1 2 3 2 4

1

b1

2

b2

3

b3

4

b4

5

b5

6

b6

7

b7

8

b8

A feasible solution, with 8 bins

6

2

4

b1

1

5

b2

3

b3

7

8

b4

An optimal solution, with 4 bins

Fig. 1. Solutions for the 1D-BPP

This article presents our study of a new symmetry-less formulation for 1D-
BPP without and with adding cutting planes, and a comparative study of the
performances of these two kinds of approaches.

The remainder of this paper is structured as follows. In the next section,
we briefly review the exact solution methods for 1D-BPP which rely on integer
linear programming. In Sect. 3, we present the new symmetry-less ILP formula-
tion. Sect. 4 is devoted to cutting planes for that formulation. Finally, in Sect. 5,
we present computational results obtained by running the proposed formula-
tions on a number of benchmark instances for the 1D-BPP and discuss their
performances. Conclusion and perspectives follow in Sect. 6.

2 Previous Work on ILP Formulations for 1D-BPP

2.1 Assignment-Based Models

The compact ILP formulation for 1D-BPP, which Martello and Toth attribute
to Kantorovich (see [8]), is the following. Let yj be a decision variable equal to 1
if bin j is used in the packing, and 0 otherwise, for all j ∈ {1, . . . , n}. Similarly,
let xij be a decision variable equal to 1 if item i is packed into bin j, and 0
otherwise, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , n}.

The full model, hereafter denoted as ILP-0, is:

ILP − 0 : min
n∑

j=1

yj (1)
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n∑

j=1

xij = 1 ∀ i ∈ {1, . . . , n} (2)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

wi ∗ xij ≤ C ∗ yj ∀ j ∈ {1, . . . , n} (3)

xij ∈ {0, 1} ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , n} (4)
yj ∈ {0, 1} ∀ j ∈ {1, . . . , n} (5)

In this formulation, constraints (2) ensure that each item is packed into
exactly one bin, constraints (3) impose that the capacity of any used bin is not
exceeded and both constraints (4) and (5) define the variable domains.

An obvious lower bound for the 1D-BPP, computable in O(n) time, is the
optimal value of the continuous relaxation of ILP-0. This lower bound, usually
denoted L1 in the literature, can be computed by:

L1 =

⌈
n∑

j=1

wi/C

⌉
(6)

It is easily seen that the worst-case performance ratio of L1 is equal to 1
2 (see,

e.g., [9]).

2.2 Other Methods for Optimally Solving the 1D-BPP

Among other methods for solving 1D-BPP exactly, we can find the pseudo-
polynomial ILP formulations coming from a graph representation of the solution
space and the branching algorithms. An overview of these methods is given in
Table 2. More detailed information is provided below.

Table 2. An overview of exact solutions for the 1D-BPP: pseudo-polynomial models
& branching algorithms

Methods Type Reference Supported ILP solver

MTP B&B Martello and Toth (1990) Not required

BISON B&B Scholl et al. (1997) Not required

CVRPSEP B&B Lysgaard et al. (2004) Not required

SCIP-BP B&P Ryan and Foster (1981) SCIPa

ONECUT ILP Dyckhoff (1981) CPLEXb

DPFLOW ILP Cambazard and O’Sullivan (2010) CPLEX, SCIP

SchedILP ILP Arbib et al. (2017) CPLEX
aSCIP: Solving Constraint Integer Programs
bCPLEX: https://www.ibm.com/analytics/cplex-optimizer

As shown in Table 2, the first four rows describe a set of four enumer-
ation algorithms. Three of them are branch-and-bound algorithms proposed

https://www.ibm.com/analytics/cplex-optimizer
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by [8,11] and [7], respectively. The last one is a branch-and-price algorithm
in [10]. In the same way, the last two rows give the two algorithms based on
a pseudo-polynomial formulations solved through an ILP solver (like CPLEX,
SCIP, GUROBI). The first one uses the model proposed by [5]. The second
one uses the model proposed by [2]. The third one uses the model proposed
by [1]. According to the results discussed in [3], among the approaches based on
pseudo-polynomial models, the DPFLOW has mainly theoretical interest, but
has the advantage of being easily understandable. In the same way, among the
enumeration algorithms, the SCIP-BP is effective only on small-size instances
(n ≤ 100).

Computer codes of these methods can be found in the BPPLIB, a library
dedicated to Bin Packing and Cutting Stock Problems, available at
http://or.dei.unibo.it/library/bpplib [4].

3 A Symmetry-less ILP for the 1D-BPP

The study of the topic of symmetry breaking constraints for the classical for-
mulation ILP-0 has led us to the consideration of an alternative encoding, and
thus an alternate formulation for the 1D-BPP.

Instead of having variables encoding the membership of items in bins, this
alternate encoding directly encodes a partition of the set of items. Indeed, a
solution with k bins to an instance of the 1D-BPP can be seen as a partition of
the n items into k parts. The actual parts of the partition are referenced by their
smallest-indexed item. Only one set of doubly-indexed variables is necessary for
this: in contrast to the ILP-0 formulation, no variable is used to represent the
bins.

More precisely, the variable zij is set to 1 if the lowest-indexed item sharing
the same bin as item i is item j, and 0 otherwise, for all i ∈ {1, . . . , n} and j ∈
{1, . . . , i}. Then zii = 1 if and only if i is the smallest-indexed item in its bin. One
can think of bins as labeled by their smallest-indexed item. Hence, counting bins
can be achieved by summing the diagonal variables zjj . The set of constraints
for this formulation includes all constraints of the classical formulation; only yj
has to be replaced by zjj . We denote by ILP-1 the resulting formulation.

ILP − 1 : min
n∑

j=1

zjj (7)

i∑

j=1

zij = 1 ∀ i ∈ {1, . . . , n} (8)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=j

wi ∗ zij ≤ C ∗ zjj ∀ j ∈ {1, . . . , n} (9)

zij ∈ {0, 1} ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , i} (10)

http://or.dei.unibo.it/library/bpplib
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We now argue that this formulation admits no symmetry at all.

Theorem 1. There is a one-to-one correspondence between the encodings of
feasible solutions for ILP-1, and partitions of the items.

Proof. Given an encoding z = (zij)i,j of a feasible solution, we can recover the
parts of the associated partition in this manner: there are as many parts as
indices j for which zjj = 1 and the set of these parts is Sj = {i ∈ {j, . . . , n} |
zij = 1}.
Given a partition P = (Sj)j∈I of {1, . . . , n}, the associated encoding is the one
described in an earlier part of this section. �

Using the same example given in Sect. 1, the optimal solution to ILP-0 given
in Fig. 1 can be encoded as a solution to the formulation ILP-1, as shown in
Fig. 2. In this solution, items 5 and 1 are packed in bin 1; items 2, 4 and 6 are
packed in bin 2; item 3 is packed in bin 3 and finally items 7 and 8 are packed
in bin 7.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8
1 1 × × × × × × ×
2 0 1 × × × × × ×
3 0 0 1 × × × × ×
4 0 1 0 0 × × × ×
5 1 0 0 0 0 × × ×
6 0 1 0 0 0 0 × ×
7 0 0 0 0 0 0 1 ×
8 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. A corresponding encoding for the optimal solution to ILP-0 using ILP-1

Since the ILP-1 admits no symmetry, one can expect that the solution of
ILP-1 instances has better performance than equivalent ILP-0 instances of
1D-BPP. An empirical evaluation of that statement is actually part of the study
that we report on in Sect. 5.

Another quality of formulation ILP-1 is that it is a strict ILP formulation,
and it is compact. Hence, wherever an ILP formulation P includes a BPP-like set
of constraints, akin to those found in ILP-0, these constraints can be replaced by
those in ILP-1 while retaining other constraints, resulting in a new formation P ′.
Wherever ILP-1 improves upon ILP-0, such a reformulated P ′ may supposedly
improve upon the original P .

This quality is not shared by other 1D-BPP reformulations as ILP such as are
the state of the art today, since they depart further from the original encoding
ILP-0, and also have a number of inequalities that is not polynomially bounded
in the number of items.
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4 Cutting Plane Constraints for the ILP-1 Formulation

We now introduce two families of constraints:

zjk + zij ≤ 1 ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , i − 1}, k ∈ {1, . . . , j − 1} (C1)

j−1∑

k=1

zjk + zij ≤ 1 ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , i − 1} (C2)

We will now prove in several steps that these two sets of inequalities are
actually cutting planes for the ILP-1 formulation.

Proposition 1. The inequalities (C2) are valid for the ILP-1 formulation.

Proof. Consider a feasible solution x for ILP-1, and let i in {1, . . . , n}, and k in
{i + 1, . . . , n}. We distinguish two cases according to the value of zij .

– First we consider the case zij = 0. Then
j−1∑

k=1

zjk ≤
j∑

k=1

zjk = 1, as a

consequence of constraint (8). So
j−1∑

k=1

zjk ≤ 1, and also
j−1∑

k=1

zjk + zij ≤ 1.

– In the case where zij = 1, we will first prove that zjk = 0 for all k < j.
Since zij = 1, the constraint (10) forces zjj to equal 1. But then, according

to constraint (9), all the zjk for k < j must equal 0. So
j−1∑

k=1

zjk = 0, and

hence
j−1∑

k=1

zjk + zij ≤ 1.
�

Proposition 2. Let i be in {1, . . . , n}, j be in {1, . . . , i − 1}, and k be in
{1, . . . , j − 1}. The inequality (C2) is stronger than the inequality (C1), when
considered as reinforcements to the formulation ILP-1.

Proof. In order to prove the statement, we will derive inequality (C1) from (C2).
Assume (C2) holds, then:

zjk + zij ≤
j−1∑

l=1

zjl + zij ≤ 1

where the first inequality holds, because in ILP-1, all variables are assumed to
be positive. �

Proposition 3. The inequality (C1) is a valid inequality for the ILP-1 formu-
lation.

Proof. This is the consequence of Propositions 1 and 2. �
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Proposition 4. There exist fractional solutions of ILP-1 that are separated by
inequalities (C1) and (C2).

Proof. We need to consider an instance of 1D-BPP such that there exists α with
1/2 < α < 1 and w1 + αw2 ≤ C.

Then the following is a feasible solution of the relaxation of ILP-1: set z21 =
z32 = α; z22 = z33 = 1 − α; zii = 1 for all i in {1, 4, 5, . . . , n}; and zij = 0 for all
other variables of the formulation.

This solution is represented in Fig. 3. Please note that the meaningful values
all lie in the first three rows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 . . . n

1 1 × × × . . . ×
2 α 1− α × × . . . ×
3 0 α 1− α × . . . ×
4 0 0 0 1 . . . ×
...

...
...

...
...

. . . ×
n 0 0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. A feasible solution to the relaxation of ILP-1 that is cut by (C1)

Equations (8) are obviously satisfied by z. The inequality (8) holds because
of the hypothesis we made for the case j = 1; because (1 − α)w2 + αw3 ≤
max(w2, w3) ≤ C for the case j = 2; and trivially holds for all the other cases.

But the inequalities (C1) will cut that point, namely z does not satisfy z21 +
z32 ≤ 1, since α + α = 2α > 1.

Since the inequalities (C2) are stronger than (C1), these too are cuts
for ILP-1. �

The number of inequalities in (C1) is O(n3), while it is O(n2) for (C2). Since
(C2) inequalities are both much fewer and stronger than (C1), it seems that their
use for performance improvement should be favored over (C1). In Section 5, we
study empirically the performance benefits of adding one or the other of these
families of inequalities.

5 Computational Experiments and Discussion

In this section, we analyze the performance of the new formulation ILP-1 with-
out and with adding cutting planes. Our experiments were motivated by the
following goals: comparing the number of optimally solved instances and the
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run-time performances of our formulation ILP-1 with the standard formulation
ILP-0 and determining the benefits obtained by including the cutting plane
inequalities described in Sect. 4.

5.1 Setup

We implemented formulations ILP-0, ILP-1 and all its variants in Gurobi Opti-
mizer 7.5.2 using Python 3.6 (https://www.gurobi.com/), running on a PC run-
ning Linux Debian 8.0 (“Jessy”). It has a Core 2 Duo CPU running at 3 GHz,
and 4 GB of RAM. All executions where run within a single thread; only one
core of the CPU was used.

5.2 Data-Sets

In order to test the performances of formulations ILP-0, ILP-1 and ILP-1+Ck
(k ∈ {1, 2}), we considered the data-sets from the literature of the 1D-BPP,
referred to in the following as the BPPLIB and described in [4]. All instances are
downloaded from the web page http://or.dei.unibo.it/library/bpplib. The main
characteristics of the used data-sets are summarized in Table 3. Each data-set
contains a number of tested instances (column #) of the 1D-BPP, characterized
by having the same number of items (column n) and the same bin capacity (col-
umn C). Detailed information about the structure of each of these benchmarks
can be found in [4] or in the BPPLIB web page.

Table 3. Main characteristics of the 9 used data-sets from the literature of the 1D-BPP
(provided by the BPPLIB) considered in the experiments

Data-set Ref. Parameters of the instances

#inst. n C

Falkenauer T [6] 40 {60, 120} 1000

Falkenauer U [6] 40 {120, 250} 150

Scholl 1 [11] 360 {50, 100} {100, 120, 150}
Scholl 2 [11] 240 {50, 100} 1000

Scholl 3 [11] 10 200 100 000

Schwerin 1 [12] 100 100 1000

Schwerin 2 [12] 100 120 1000

Wascher [13] 17 [57 − 239] 10 000

Randomly generated [3] 240 {50, 100} {50, 75, 100, 120,125,
150, 200, 300,
400, 500, 750, 1000}

https://www.gurobi.com/
http://or.dei.unibo.it/library/bpplib
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5.3 Comparison of the ILP Models

In order to evaluate the formulations, ILP-0, ILP-1 and ILP-1+Ck for k in {1, 2},
we first compare its size complexity, which indicates how large a problem is in
terms of binary variables and constraints as a function of n (the number of bins
as well as of items). We note that in these formulations no Big-M constraints
are considered.

The ILP-1 and ILP-1+Ck for k in {1, 2} formulations have a smaller number
of binary variables (n2) than the ILP-0 (n2+n). On the other hand, both ILP-0
and ILP-1 are generally equivalent. They have the same order of number of
constraints: O(n). In contrast, formulation ILP-1+C1 has the largest number
of constraint with an order of O(n3). Hence, the strengthening of formulation
ILP-1 by cutting plane constraints seems to be more favorable for effectively
reducing the search tree.

5.4 Computational Results: Analysis of the Gap and the Solution
Times

In this section, we analyze our results under two main axes:
– Axis 1: ILP-1vs. ILP-0: our goal is to assess the performance of the new

symmetry-less ILP-1 against the standard ILP-0.
– Axis 2: ILP-1+Ck for kin {1, 2}vs. ILP-1: our goal is to evaluate, with

respect to ILP-1, the benefits obtained by including cutting plane inequal-
ities.

Axis 1: ILP-1 vs. ILP-0. Table 4 gives the number of instances optimally
solved in one CPU minute by the formulation ILP-0, respectively the formulation
ILP-1. From these results, we can make the following observations:

– Formulation ILP-1 generally performs better than the formulation ILP-0,
both when activating and deactivating the Gurobi Optimizer proprietary
cuts. It was able to optimally solve within the time limit (60 s) in total
804 and 908 instances (in 5.7 and 4.5 s on average), respectively. Yet, the
formulation ILP-0 was able to optimally solve within the time limit and
in total only 597 and 584 instances (in 11 and 7.6 seconds on average),
respectively.

– Formulation ILP-1 was able to solve within the time limit all the instances
in the data-sets FalkT(60,1000), FalkT(120,150) and Scho1(50,150), either
when activating or deactivating Gurobi proprietary cuts (see Table 4).
In contrast, the formulation ILP-0 was unable to solve any instance in
the data-set FalkT(60,1000) and able to optimally solve only 8 instances in
the data-set FalkT(120,150) and 47 instances in the data-set Scho1(50,150)

(in 30 or 16.8 and 1.7 or 1 s on average, respectively) when activating or
deactivating the Gurobi proprietary cuts.

– Formulation ILP-0 provides the highest number of optimally solved
instances only in both Scho2(100,1000) and Schw1(100,1000) data-sets (when
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activating and deactivating the Gurobi proprietary cuts) and in the data-
set Schw2(120,1000) (when deactivating the Gurobi proprietary cuts).
In addition, it was able to optimally solve a single instance in the data-set
Wae([57−239],10000).

Table 4. Number of instances solved in less than one minute (average CPU time in
seconds), for formulations ILP-0 and ILP-1

Data-set #inst. ILP-0 ILP-1

No GC With GC No GC With GC

FalkT(60,1000) 20 0 (60.0) 0 (60.0) 20 (0.9) 20 (1.3)
FalkT(120,1000) 20 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0)
FalkU(120,150) 20 8 (30.0) 8 (16.8) 16 (8.3) 20 (6.8)
FalkU(250,150) 20 0 (60.0) - (60.0) 9 (12.7) - (60.0)
Scho1(50,100) 60 18 (1.3) 19 (0.8) 48 (0.2) 59 (0.04)
Scho1(50,120) 60 17 (2.2) 19 (2.9) 45 (0.1) 59 (0.1)
Scho1(50,150) 60 47 (1.7) 47 (1.0) 54 (0.7) 60 (0.1)
Scho1(100,100) 60 8 (12.9) 7 (4.3) 42 (0.3) 59 (0.3)
Scho1(100,120) 60 3 (15.0) 6 (23.4) 42 (2.8) 55 (1.4)
Scho1(100,150) 60 29 (11.5) 17 (11.3) 50 (6.7) 56 (2.7)
Scho2(50,1000) 120 111 (0.7) 113 (0.9) 112 (1.0) 118 (1.2)
Scho2(100,1000) 120 103 (1.5) 101 (1.7) 94 (3.0) 97 (4.6)
Scho3(200,100000) 10 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0)
Schw1(100,1000) 100 52 (8.4) 48 (10.3) 39 (18.8) 32 (16.9)
Schw2(120,1000) 100 49 (8.8) 38 (9.8) 40 (20.3) 39 (20.9)
Wae([57−239],10000) 10 1 (40.6) - (60.0) 0 (60.0) - (60.0)
RG 240 151 (8.1) 161 (8.1) 193 (4.4) 234 (2.0)
Total (average) 1140 597 (11.0) 584 (7.6) 804 (5.7) 908 (4.5)

Table 4 confirms the clear superiority of the formulation ILP-1 over the
formulation ILP-0. This means that the new symmetry-less ILP for the 1D-BPP
performs better.

Axis 2: ILP-1+Ck for k in {1, 2} vs. ILP-1. Table 5 gives the number of
instances solved in one CPU minute, by, respectively, the ILP-1 and ILP-1+Ck
for k in {1, 2} formulations. From these results, we can see that both formulations
ILP-1+Ck for k in {1, 2} generally have a similar performance, in particular they
perform better than the formulation ILP-1, both when activating and deactivat-
ing the Gurobi Optimizer proprietary cuts. They were able to optimally solve
within the time limit and when activating the Gurobi proprietary cuts in total
928 and 927 instances (in 6.5 and 5.1 s on average), respectively. Yet, the for-
mulation ILP-1 was able to optimally solve within the time limit and in total
only 908 instances in 4.5 s on average.

In contrast, the formulation ILP-1+C2 performs clearly better, when deacti-
vating the Gurobi proprietary cuts, than the other two ILPs. In fact, it was able
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to solve within the time limit in total 860 instances (in 5 s on average). Yet,
both formulations ILP-1 and ILP-1+C1 were able to optimally solve within the
time limit and in total only 804 and 835 instances (in 5.7 and 4.2 s on average),
respectively. This means that the formulation ILP-1+C1 performs also better
than the formulation ILP-1.

Table 5. Number of instances solved in less than one minute (average CPU time in
seconds), for formulations ILP-1 and ILP-1+Ck for k in {1, 2}

Data-set #inst. ILP-1 ILP-1+C1 ILP-1+C2

No GC With GC No GC With GC No GC With GC

FalkT(60,1000) 20 20 (0.9) 20 (1.3) 20 (2.0) 20 (2.7) 20 (1.9) 20 (2.5)
FalkT(120,1000) 20 0 (60.0) 0 (60.0) 0 (60.0) 1 (37.9) 0 (60.0) 0 (60.0)
FalkU(120,150) 20 16 (8.3) 20 (6.8) 19 (9.4) 20 (7.6) 18 (9.2) 20 (6.8)
FalkU(250,150) 20 9 (12.7) - (60.0) - (60.0) - (60.0) - (60.0) - (60.0)
Scho1(50,100) 60 48 (0.2) 59 (0.04) 54 (0.6) 60 (0.1) 55 (0.5) 60 (0.07)
Scho1(50,120) 60 45 (0.1) 59 (0.1) 50 (0.1) 60 (0.2) 54 (0.2) 60 (0.1)
Scho1(50,150) 60 54 (0.7) 60 (0.1) 56 (1.2) 60 (0.6) 57 (0.6) 60 (0.7)
Scho1(100,100) 60 42 (0.3) 59 (0.3) 45 (0.6) 59 (0.8) 47 (0.7) 59 (0.8)
Scho1(100,120) 60 42 (2.8) 55 (1.4) 43 (1.3) 57 (1.7) 45 (1.8) 56 (1.0)
Scho1(100,150) 60 50 (6.7) 56 (2.7) 50 (4.0) 57 (4.2) 52 (4.5) 55 (2.3)
Scho2(50,1000) 120 112 (1.0) 118 (1.2) 113 (1.0) 118 (0.4) 116 (1.6) 118 (0.6)
Scho2(100,1000) 120 94 (3.0) 97 (4.6) 96 (3.2) 99 (3.6) 95 (3.3) 104 (2.9)
Scho3(200,100000) 10 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0)
Schw1(100,1000) 100 39 (18.8) 32 (16.9) 40 (12.4) 40 (13.2) 48 (18.4) 43 (21.7)
Schw2(120,1000) 100 40 (20.3) 39 (20.9) 36 (13.9) 40 (16.8) 37 (18.2) 34 (24.7)
Wae([57−239],10000) 10 0 (60.0) - (60.0) - (60.0) - (60.0) - (60.0) - (60.0)
RG 240 193 (4.4) 234 (2.0) 213 (4.5) 237 (1.8) 216 (3.8) 238 (1.8)
Total (average) 1140 804 (5.7) 908 (4.5) 835 (4.2) 928 (6.5) 860 (5.0) 927 (5.1)

Table 5 clearly confirms the benefits obtained by including cutting plane
inequalities to the new symmetry-less ILP formulation ILP-1. This means
that formulations ILP-1+Ck for k in {1, 2} were slightly better than the new
symmetry-less ILP formulation ILP-1.

6 Conclusion and Future Work

We have presented a study of how a new symmetry-less formulation can improve
the resolution performance of Integer Linear Formulations for the 1-dimensional
bin packing problem. Our study includes a folklore symmetry-less formulation
and 2 series of cuts for this formulation. This folklore formulation encodes par-
titions directly, removing the need for variables to encode the use of bins.

One exciting perspective of this work would be to investigate the impact of
reusing the concept of that folklore formulation, i.e. encoding partitions of sets,
on the solution of other optimization problem ILP formulations, i.e. Bin Packing
with Conflicts, Cutting Stock Problem, etc.
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Abstract. In this paper we study the area requirements of planar greedy
drawings of triconnected planar graphs. Cao, Strelzoff, and Sun exhibited
a family H of subdivisions of triconnected plane graphs and claimed that
every planar greedy drawing of the graphs in H respecting the prescribed
plane embedding requires exponential area. However, we show that every
n-vertex graph in H actually has a planar greedy drawing respecting
the prescribed plane embedding on an O(n) × O(n) grid. This reopens
the question whether triconnected planar graphs admit planar greedy
drawings on a polynomial-size grid. Further, we provide evidence for a
positive answer to the above question by proving that every n-vertex
Halin graph admits a planar greedy drawing on an O(n) × O(n) grid.
Both such results are obtained by actually constructing drawings that are
convex and angle-monotone. Finally, we consider α-Schnyder drawings,
which are angle-monotone and hence greedy if α ≤ 30◦, and show that
there exist planar triangulations for which every α-Schnyder drawing
with a fixed α < 60◦ requires exponential area for any resolution rule.

1 Introduction

Let (M,d) be a metric space, where M is a set of points and d is a metric on
M . A greedy embedding of a graph G into (M,d) is a function φ that maps each
vertex v of G to a point φ(v) in M in such a way that, for every ordered pair
(u, v) of vertices of G, there is a distance-decreasing path from u to v in G, i.e., a
path (u = w1, w2, . . . , wk = v) such that d

(
φ(wi), φ(v)

)
> d(φ

(
wi+1), φ(v)

)
, for

i = 1, . . . , k − 1. Greedy embeddings, introduced by Rao et al. [23], can be used
as a data structure to support a simple and local routing scheme, called greedy
routing, in which a vertex forwards a packet to any neighbor that is closer to
the packet’s destination than itself. In order for greedy routing to be efficient,
a greedy embedding should be succinct, i.e., a polylogarithmic number of bits
should be used to store the coordinates of each vertex. A number of algorithms
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have been proposed to construct succinct greedy embeddings of graphs [4,11,13,
14,18,25,26]. A natural choice is the one of considering M to be the Euclidean
plane R

2 and d to be the Euclidean distance �2. Within this setting, not every
graph [21,22], and not even every binary tree [15,20], admits a greedy embedding;
further, there exist trees whose every greedy embedding requires a polynomial
number of bits to store the coordinates of some of the vertices [2].

From a theoretical point of view, most research efforts have revolved around
two conjectures posed by Papadimitriou and Ratajczak [21,22]. The first one
asserts that every 3-connected planar graph admits a greedy drawing, i.e., a
straight-line drawing in R

2 that induces a greedy embedding into (R2, �2). This
conjecture has been confirmed independently by Leighton and Moitra [15] and
by Angelini et al. [3]. The second conjecture, which strengthens the first one,
asserts that every 3-connected planar graph admits a greedy drawing that is also
convex. While this is still open, it has been recently proved by the authors of this
paper that every 3-connected planar graph admits a planar greedy drawing [8].

An interesting question is whether succinctness and planarity can be achieved
simultaneously. That is, does every 3-connected planar graph admit a planar,
and possibly convex, greedy drawing on a polynomial-size grid? Cao, Strelzoff,
and Sun [7] claimed a negative answer by exhibiting a family H of subdivisions
of 3-connected plane graphs and by showing that, for any n-vertex graph in H,
any planar greedy drawing that respects the prescribed plane embedding requires
2Ω(n) area and hence Ω(n) bits for representing the coordinates of some vertices.

Subsequently to the definition of greedy drawings, several more constrained
graph drawing standards have been introduced. Analogously to greedy drawings,
they all concern straight-line drawings in R

2. In a self-approaching drawing [1,
9,19], for every pair of vertices u and v, there is a self-approaching path from
u to v, i.e., a path P such that �2(a, c) > �2(b, c), for any three points a, b,
and c in this order along P . In an increasing-chord drawing [1,9,19], for every
pair of vertices, there is a path between them which is self-approaching in both
directions. In an angle-monotone drawing [5,9,16,17], for every pair of vertices
u and v, there is a β-monotone path from u to v for some angle β, i.e., a path
(w1 = u,w2, . . . , wk = v) such that each edge (wi, wi+1) lies in the closed 90◦-
wedge centered at wi and bisected by the ray originating at wi with slope β.
Note that an angle-monotone drawing is increasing-chord, an increasing-chord
drawing is self-approaching, and a self-approaching drawing is greedy. The first
implication was proved in [9], while the other two descend from the definitions.
Finally, a notable class of straight-line drawings are α-Schnyder drawings [19],
which are angle-monotone if α ≤ 30◦ and will be formally defined later.

Our Contributions. We show that every n-vertex graph in the family H defined
by Cao et al. [7] actually admits a convex angle-monotone drawing that respects
the prescribed plane embedding and lies on an O(n)×O(n) grid. This reopens the
question about the existence of succinct planar greedy drawings of 3-connected
planar graphs. Further, we provide an indication that this question might have
a positive answer by proving that the n-vertex Halin graphs, a notable family
of triconnected planar graphs, admit convex angle-monotone drawings on an
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O(n) × O(n) grid. Finally, we construct bounded-degree planar triangulations
whose α-Schnyder drawings all require exponential area, for any fixed α < 60◦.
This result was rather surprising to us, as any planar triangulation admits a 60◦-
Schnyder drawing on an O(n) × O(n) grid [24]; further, although 30◦-Schnyder
drawings have been proved to exist for all stacked triangulations, our result shows
that they are not the right tool to obtain succinct planar greedy drawings.

2 Definitions and Preliminaries

A straight-line drawing of a graph maps each vertex to a point in the plane and
each edge to a straight-line segment. A planar drawing, i.e., one with no crossings,
partitions the plane into connected regions, called faces. The unbounded face is
the outer face; the other faces are internal. Two planar drawings of a connected
planar graph are equivalent if they determine the same circular order of the edges
incident to each vertex. A planar embedding is an equivalence class of planar
drawings. A plane graph is a planar graph equipped with a planar embedding
and a designated outer face. A straight-line drawing is convex if it is planar
and every face is delimited by a convex polygon. A grid drawing is such that
each vertex is mapped to a point with integer coordinates. The width (resp.
height) of a grid drawing is the number of grid columns (rows) intersecting it. A
drawing lies on a W × H grid if it is a grid drawing with width W and height
H. The area of a graph drawing is defined as the area of the smallest axis-
parallel rectangle enclosing the drawing (when proving upper bounds) or as the
area of the smallest convex polygon enclosing the drawing (when proving lower
bounds). Any constraint implying a finite minimum area for a graph drawing
(e.g., requiring vertices to have distance at least 1 or to lie at grid points) is
called a resolution rule. We measure angles in radians. In a straight-line drawing
of a graph, the slope of an edge (u, v) is the angle spanned by a counter-clockwise
rotation around u of a ray originating at u and directed rightwards bringing the
ray to overlap with (u, v); hence, the edge slopes are in the range [0, 2π). We let
(x(v), y(v)) be the point in the plane representing a vertex v in a graph drawing.

A planar triangulation G is a plane graph whose every face is bounded by
a 3-cycle. Denote by (a1, a2, a3) the 3-cycle bounding the outer face of G. A
Schnyder wood (T1, T2, T3) of G is an assignment of directions and colors 1, 2
and 3 to the internal edges of G such that the following two properties hold; see
the figure below and refer to [24]. Let i − 1 = 3, if i = 1, and let i + 1 = 1, if
i = 3.
Property (1) Each internal vertex v has one outgoing edge ei of each color i,
with i = 1, 2, 3. The outgoing edges e1, e2, and e3 appear in this clockwise order
at v. Further, all the incoming edges of color i appear in the clockwise sector
between the edges ei+1 and ei−1. Property (2) At the external vertex ai, all
the internal edges are incoming and of color i.
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v

e2

e1

e3
a3

a1

a2

Property (1) Property (2)
A planar 3-tree can be obtained from a 3-cycle, by repeatedly inserting a

vertex into any internal face and connecting it to the vertices of the face. The
planar triangulations with a unique Schnyder wood are the planar 3-trees [6,12].

For 0 < α ≤ π
3 , a planar straight-line drawing of a planar triangulation G

with Schnyder wood (T1, T2, T3) is an α-Schnyder drawing if, for each internal
vertex v of G, its outgoing edge in T1 has direction in [π

2 − α
2 , π

2 + α
2 ], its outgoing

edge in T2 has direction in [11π
6 − α

2 , 11π
6 + α

2 ], and its outgoing edge in T3 has
direction in [7π

6 − α
2 , 7π

6 + α
2 ]. Note that, by definition, in an α-Schnyder drawing,

for each internal vertex v of G, its incoming edges in T1, T2, and T3, if any, have
direction in [3π

2 − α
2 , 3π

2 + α
2 ], [5π

6 − α
2 , 5π

6 + α
2 ], and [π

6 − α
2 , π

6 + α
2 ], respectively.

Figure 3b shows the angular widths of an α-Schnyder drawing. “Usual” Schnyder
drawings [24] are 60◦-Schnyder drawings; see, e.g., [10].

3 Angle-Monotone Drawings of Cao-Strelzoff-Sun Graphs

z1

y1

y2

x2 z2

x0
x1

xi+1zi+1

zi−1

yi−1

yi

xi zi

xi−1

Hi−1

yi+1

Cao et al. [7] defined the following family H
of plane graphs. For i = 1, 2, . . . , the plane
graph Hi ∈ H on 3i + 4 vertices is inductively
defined as follows: The plane graph H1 consists
of a cycle (x2, z1, y2, x1, z2, y1) and a vertex x0

inside such a cycle and adjacent to x1, y1, and
z1; see the left part of the figure. For i ≥ 2, the
plane graph Hi is obtained by embedding in the outer face of Hi−1 the vertices
xi+1, yi+1, and zi+1, and the edges of the cycle (xi+1, zi, yi+1, xi, zi+1, yi), which
bounds the outer face of Hi; see the right part of the figure. In contrast to the
result in [7], we prove the following.

Theorem 1. Every n-vertex plane graph in H admits a planar angle-monotone
drawing on an O(n) × O(n) grid that respects the plane embedding.

Proof sketch. We construct, for every i ≥ 1, a planar straight-line drawing Γi of
Hi = (Vi, Ei) satisfying the following properties:

i. the vertices of Hi lie on a (2i + 3) × (2i + 3) grid;
ii. there exist paths pi(α), with α ∈ {π

2 , 5π
4 , 7π

4 }, originating at x0 and each
terminating at a distinct vertex in {xi+1, yi+1, zi+1}, that are vertex-disjoint
except at x0, that together span all the vertices in Vi, and such that all the
edges in pi(α) have slope α.
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Property ii implies that Γi is angle-monotone. Namely, consider any two
vertices u and v of Hi. If both u and v belong to the same path pi(α), then
the subpath of pi(α) from u to v is either α-monotone or (π + α)-monotone. If
u ∈ pi(α) and v ∈ pi(β), with α �= β, then the path p∗ consisting of the subpath
of pi(α) from u to x0 and of the subpath of pi(β) from x0 to v is π

2 -monotone
(if β = π

2 ), or 3π
2 -monotone (if α = π

2 ), or π-monotone (if α = 7π
4 and β = 5π

4 ),
or 0-monotone (if α = 5π

4 and β = 7π
4 ).

Our proof is by induction on i. In the base case i = 1 and a drawing Γ1 of
H1 satisfying Properties i and ii is constructed as in Fig. 1a.

x0

y2

y1

x1

z2x2
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Γi−1
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z4 y4x3

x4

(d)

Fig. 1. Illustrations for the proof of Theorem 1: (a) The drawing Γ1 of H1; (b) The
drawing Γi of Hi obtained from the drawing Γi−1 of Hi−1, with i > 1. (d) The convex
angle-monotone drawing Γ ′

3 of H3 obtained from (c) Γ3.

If i > 1, suppose we have inductively constructed a drawing Γi−1 of Hi−1

satisfying Properties i and ii. Assume, as in Fig. 1b, that zi is in pi−1(π
2 ), yi is

in pi−1( 5π
4 ), and xi is in pi−1( 7π

4 ); the other cases can be treated analogously.
We obtain Γi from Γi−1 by placing xi+1 at (x(zi), y(zi)+1), yi+1 at (x(xi)+

1, y(xi)−1), and zi+1 at (x(yi)−1, y(yi)−1), and by drawing the edges incident
to these vertices as straight-line segments. We have the following.

Claim 1. Γi satisfies Properties i and ii.

Proof sketch. Clearly, Γi−1 is a planar drawing on the (2i + 3) × (2i + 3) grid
(implying Property i). Property ii is satisfied with pi(π

2 ) = pi−1(π
2 ) ∪ (zi, xi+1),

pi( 5π
4 ) = pi−1( 5π

4 ) ∪ (yi, zi+1), and pi( 7π
4 ) = pi−1( 7π

4 ) ∪ (xi, yi+1). ��

Claim 1 concludes the induction and the proof of the theorem. ��
We note that, for i ≥ 1, the graph Hi even admits a convex angle-monotone

drawing Γ ′
i on a (2i + 3) × (2i + 3) grid; indeed, Γ ′

i can be obtained from the
planar angle-monotone drawing Γi of Hi described in the proof of Theorem 1 by
moving xi one unit to the right and one unit down, yi+1 and zi+1 one unit to the
right, and xi+1 one unit to the left; see Figs. 1c and 1d. We have the following.

Claim 2. The straight-line drawing Γ ′
i of Hi is convex, angle-monotone and lies

on a (2i + 3) × (2i + 3) grid.
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Proof. It is easy to see that Γ ′
i is a convex drawing of Hi on an (2i + 3) × (2i +

3) grid. We prove that Γ ′
i is angle-monotone. Consider the following three paths:

(1) P1 = pi(π
2 )∪pi( 5π

4 ); (2) P2 = pi(π
2 )∪pi( 7π

4 ); and (3) P3 = pi−1( 5π
4 )∪pi( 7π

4 ).
If u and v both belong to P1, P2, or P3, then the subpath of such a path from u

to v is (1) π
2 - or 3π

2 -monotone, (2) 3π
4 - or 7π

4 -monotone, or (3) 0- or π-monotone,
respectively. Note that u and v both belong to one of P1, P2, or P3, unless one
of them, say u, is zi+1 and the other one, say v, belongs to pi( 7π

4 ). In such a
case, a β-monotone path P from u to v can be defined as follows. If v = xi, then
P coincides with the edge (zi+1, xi); if v = yi+1, then P coincides with the path
(zi+1, xi, yi+1); in both cases, P is 0-monotone. Finally, if v belongs to pi−2( 7π

4 ),
then P is defined as the subpath of pi( 5π

4 ) from u to the only neighbor of v in
pi( 5π

4 ), and from that neighbor to v; then P is π
4 -monotone. ��

He and Zhang [14] pointed out that, although the graphs Hi’s are not 3-
connected, they can be made so by adding the three additional edges (xi+1, yi+1),
(yi+1, zi+1), and (zi+1, xi+1). Let H+

i be the resulting graph. We note here that
the drawing Γi of Hi whose construction is described in the proof of Theorem
1 can be turned into a convex angle-monotone drawing Γ+

i of H+
i simply by

drawing the edges (xi+1, yi+1), (yi+1, zi+1), and (zi+1, xi+1) as straight-line seg-
ments.

4 Angle-Monotone Drawings of Halin Graphs

In this section, we show how to construct convex angle-monotone drawings of
Halin graphs on a polynomial-size grid.

We denote the number of leaves of a tree T by �(T ). A tree all whose vertices
but one are leaves is a star. A rooted tree T is a tree with one distinguished vertex,
called root and denoted by r(T ). The height of a rooted tree is the maximum
number of edges in any path from the root to a leaf. In a rooted tree T , we
denote by T (v) the subtree of T rooted at a vertex v. An ordered rooted tree
is a rooted tree in which the children of each internal vertex u are assigned a
left-to-right order u1, . . . , uk; the vertices u1 and uk are the leftmost and the
rightmost child of u, respectively. The leftmost path of an ordered rooted tree T
is the path (v1, . . . , vh) in T such that v1 is the root of T , vi+1 is the leftmost
child of vi, for i = 1, . . . , h − 1, and vh is a leaf, which is called the leftmost leaf
of T . The rightmost path and the rightmost leaf of T can be defined analogously.

A Halin graph G is a planar graph that admits a plane embedding E such
that, by removing all the edges incident to the outer face fE of E , one gets a tree
TG whose internal vertices have degree at least 3. Note that G is 3-connected
and its leaves are incident to fE .

Theorem 2. Every n-vertex Halin graph G admits a convex angle-monotone
drawing on an O(n) × O(n) grid.

If TG contains one internal vertex, then G is a wheel and a convex angle-
monotone drawing on a 3× (n−1) grid can easily be computed; see Fig. 2a(top).
In the following, we assume that TG contains at least two internal vertices.
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Let ξ be an internal vertex of TG whose every neighbor is a leaf, except
for one, which we denote by ρ; see Fig. 2b. Such a vertex exists by the above
assumption. Further, let T ⊂ TG be the tree obtained from TG by removing ξ
and all its adjacent leaves and by rooting the resulting tree at ρ. Also, let S ⊂ TG

be the star obtained from TG by removing the vertices of T and by rooting the
resulting tree at ξ. We regard T and S as ordered rooted trees such that the
left-to-right order of the children of each vertex is the one induced by the plane
embedding E of G. For any subtree T ′ ⊆ TG, let G[T ′] be the subgraph of G
induced by the vertices of T ′. In Lemma 1, we show how to construct a drawing
Γ of G[T ]. Then, we will exploit Lemma 1 in order to prove Theorem 2.

Lemma 1. The graph G[T ] has a drawing Γ satisfying the following properties:

(i) Γ is angle-monotone and convex;
(ii) Γ lies on a WΓ × HΓ grid, where WΓ = 2�(T ) − 1 and HΓ = �(T );
(iii) the leaves of T lie at (0, 0), (2, 0), . . . , (2�(T ) − 2, 0), where the i-th leaf of

T lies at (2i − 2, 0), for i = 1, . . . , �(T ); and
(iv) for each vertex v of T , the edges of the leftmost path (resp., of the rightmost

path) of T (v) have slope 5π
4 (resp., slope 7π

4 ).

v1 vk

r(T )

(a)

ρ=r(T )
T

ξ
S

(b)

Γ

ΓS

ρ
ξ

ΓG

Γ1 Γ2

r(T2)r(T1)

(c)

Fig. 2. (a) A convex angle-monotone drawing of a wheel on the grid (top) and the
base case for the proof of Lemma 1 (bottom). (b) The trees T and S for the proof
of Theorem 2. (c) The convex angle-monotone drawing ΓG of G constructed from the
drawings Γ of G[T ] and ΓS of G[S].

Proof sketch. Our proof is by induction on the height h of T . In the base case
we have h = 1, hence T is a star and a straight-line drawing Γ of G[T ] satisfying
Properties i to iv is constructed as in Fig. 2a(bottom).

Suppose now that h > 1; see Fig. 2c. Let T1, . . . , Tk be the left-to-right order
of the subtrees of T rooted at the children of r(T ), where k ≥ 2. For each Ti

which is not a single vertex, assume to have inductively constructed a drawing Γi

of G[Ti] satisfying Properties i to iv. For each Ti which is a single vertex, let Γi

consist of the point (0, 0). For i = 1, . . . , k, let Wi be the width of Γi. Place the
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drawings Γ1, . . . , Γk side by side, so that all their leaves lie on the x-axis, so that
the leftmost leaf of T1 is at (0, 0), and so that, for i = 1, . . . , k −1, the rightmost
leaf of Ti is two units to the left of the leftmost leaf of Ti+1. We conclude the
construction of Γ by placing r(T ) at (�(T )− 1, �(T )− 1). We have the following.

Claim 3. Γ satisfies Properties i to iv.

Proof sketch. Property iii holds true since it is inductively satisfied by each draw-
ing Γi and since, by construction, the rightmost leaf of Ti is two units to the left
of the leftmost leaf of Ti+1, for i = 1, . . . , k − 1.

Concerning Property ii, we have that WΓ =
∑k

i=1 WΓi
+ (k − 1) =

∑k
i=1(2�(Ti)−1)+(k−1) = 2�(T )−1, where we exploited WΓi

= 2�(Ti)−1, which
is true by induction. Further, by construction and by induction, each vertex of
Ti has a y-coordinate between 0 and �(Ti)−1. Since �(Ti) < �(T ), the maximum
y-coordinate of any vertex of T in Γ is the one of r(T ), hence HΓ = �(T ).

Property iv holds true for each vertex different from r(T ) since it is induc-
tively satisfied by each drawing Γi. Further, since WΓ = 2�(T ) − 1, since r(T )
lies at (�(T ) − 1, �(T ) − 1), and since the leftmost and rightmost leaves of T lie
at (0, 0) and (2�(T )− 2, 0), respectively, the slopes of the segments from r(T ) to
such leaves are 5π

4 and 7π
4 , respectively. Hence, the edges of the leftmost (resp.,

rightmost) path of T have slope 5π
4 (resp., 7π

4 ), given that the edges of the
leftmost (resp., rightmost) path of T1 have slope 5π

4 (resp., 7π
4 ), by induction.

Finally, we prove Property i. We first prove that Γ is convex. By induction,
each internal face of Γ which is also a face of some Γi is delimited by a convex
polygon. The outer face of Γ is delimited by a triangle, by Properties iii and
iv. Let f be an internal face incident to r(T ) and note that f is delimited by
two edges (r(T ), r(Ti)) and (r(T ), r(Ti+1)), by the rightmost path of Ti, by the
leftmost path of Ti+1, and by the edge of G[T ] connecting the rightmost leaf of
Ti with the leftmost leaf of Ti+1. The angles of f at r(T ), at the internal vertices
of the rightmost path of Ti or of the leftmost path of Ti+1, at the rightmost leaf
of Ti, and at the leftmost leaf of Ti+1 are at most π by Properties iii and iv. The
angle of f at r(Ti) is larger than or equal to π

2 and smaller than π; namely, the
slope of the edge (r(T ), r(Ti)) is in the interval [5π

4 , 7π
4 ), by Property iv and by

i < k; further, the slope of the edge of the rightmost path of Ti incident to r(Ti)
is 7π

4 , by Property iv. The argument for the angle of f at r(Ti+1) is symmetric.
We now prove that Γ is angle-monotone. Let u and v be any two vertices

of T . If u and v both belong to a subtree Ti of T , then a β-monotone path
between u and v exists in Γ since it exists in Γi, by induction. Otherwise, either
u and v belong to distinct subtrees Ti and Tj of T , or one of u and v is r(T ).
In the former case, suppose w.l.o.g. that i < j. Let P be the path from u to v
consisting of: (1) the rightmost path Pu of Ti(u); (2) the path Puv in G[T ] from
the rightmost leaf of Ti(u) to the leftmost leaf of Tj(v) that only passes through
leaves of T ; and (3) the leftmost path Pv of Tj(v). Since the edges of Pu (which
are traversed in the direction of Pu) and those of Pv (which are traversed in the
direction opposite to the one of Pv) have slope 7π

4 and π
4 , by Property iv, and

the edges of Puv have slope 0, by Property iii, we have that P is 0-monotone.
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Fig. 3. Illustrations for the proof of Theorem 3: (a) The graph Gm. (b) The different
angular widths of an α-Schnyder drawing, with α < π

3
.

In the latter case, suppose w.l.o.g. that v = r(T ) and that u ∈ V (Ti), for some
i ∈ {1, . . . , k}. By Property iv, all the edges of the path from u to v in T have
slope in the closed interval [π

4 , 3π
4 ], hence such a path is π

2 -monotone. ��
Claim 3 concludes the proof of the lemma. ��
We now prove Theorem 2. We construct a drawing ΓG of G as follows; see

Fig. 2c. We initialize ΓG to the drawing Γ of G[T ] obtained by Lemma 1. Further,
we apply Lemma 1 a second time in order to construct a drawing ΓS of G[S]. Let
ΓS be the drawing of G[S] obtained by rotating ΓS by π radians. We translate
ΓS so that ξ lies one unit above ρ. Further, we draw the edge (ρ, ξ) as a vertical
straight-line segment. Finally, we draw the edge between the leftmost (rightmost)
leaf of S and the rightmost (leftmost) leaf of T as a straight-line segment.

We have the following claim, which concludes the proof of Theorem 2.

Claim 4. ΓG is a convex angle-monotone drawing of G on an O(n)×O(n) grid.

Proof sketch. By Properties ii and iv of Lemma 1, the width of ΓG is max(2�(T )−
1, 2�(S) − 1) and the height of ΓG is �(T ) + �(S). Both such values are in O(n).

Properties i,iii and iv imply that the faces of ΓG which are also faces of Γ or
ΓS , as well as the outer face of ΓG, are delimited by convex polygons. Consider
any face f incident to the edge (ρ, ξ). By Property iv of Lemma 1, the angles of
f incident to the internal vertices of the leftmost and rightmost paths of T are
equal to π, hence f is delimited by a quadrilateral Q; the angles of f incident to
ρ and to ξ are 3π

4 , again by Property iv of Lemma 1 and since (ρ, ξ) is vertical,
hence the remaining two angles of Q sum up to π

2 and Q is convex.
We now prove that ΓG is angle-monotone. Let u and v be any two vertices

of G. If u and v both belong to T or both belong to S, then a β-monotone
path between u and v exists in ΓG since it exists in Γ or in ΓS , respectively, by
Lemma 1. Otherwise, we can assume that u belongs to S and that v belongs to
T . Then the path P from u to v in TG is 3π

2 -monotone. Namely, by Property iv
of Lemma 1, the edge of P in S, if any, has slope in the interval [5π

4 , 7π
4 ]; further,

by construction, the edge (ξ, ρ) has slope 3π
2 ; finally, again by Property iv of

Lemma 1, all the edges of P in T , if any, have slope in the interval [5π
4 , 7π

4 ]. ��
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5 α-Schnyder Drawings of Plane Triangulations

For a function f(n) and a parameter ε > 0, we write f(n) ∈ Ωε(n) if f(n) ≥ cεn
for a constant cε > 0 only depending on ε. Next, we prove the following theorem.

Theorem 3. There exists an infinite family F of bounded-degree planar 3-trees
such that, for any resolution rule, any n-vertex graph in F requires 2Ωε(n) area
in any (π

3−ε)-Schnyder drawing, for any fixed 0 < ε < π
3 .

Proof sketch. We define a 3m-vertex plane 3-tree Gm; see Fig. 3a. The plane
3-tree G1 is a cycle (a1, b1, c1). For any integer m > 1, Gm is obtained from
Gm−1 by embedding a cycle (am, bm, cm) in the outer face of Gm−1, so that it
contains Gm−1 in its interior, and by inserting the edges (am, am−1), (bm, am−1),
(bm, bm−1), (cm, am−1), (cm, bm−1), and (cm, cm−1). Since Gm is a plane 3-tree, it
has a unique Schnyder wood (T1, T2, T3); see [6,12]. Assume, w.l.o.g., that all the
internal edges incident to am, bm, and cm belong to T1, T2, and T3, respectively.

Claim 5. For 1 ≤ k < m, the edges (ak, bk) and (ak, ck) belong to T1 and
are directed towards ak, the edge (ak, ak+1) belongs to T1 and is directed
towards ak+1, the edge (bk, ck) belongs to T2 and is directed towards bk, the
edges (bk+1, ak) and (bk+1, bk) belong to T2 and are directed towards bk+1, and
the edges (ck+1, ak), (ck+1, bk), and (ck+1, ck) belong to T3 and are directed
towards ck+1.

o

ci

π 2
−

α 2

π 6
+

α 2

5π
6 − α

2

Δ�

Δ∗

β

δ

o�

h

κ

ci−1

ai−1

bi−1

bi

o∗

ai

σ

γ

We now prove that, for any fixed α = π
3 − ε with

ε > 0, any α-Schnyder drawing Γ of Gm (respecting
the plane embedding of Gm and corresponding to the
unique Schnyder wood of Gm) requires 2Ωε(m) area. We
exploit the next claim. For i = 1, . . . , m, let Δi be the
triangle (ai, bi, ci) in Γ .

Claim 6. For any i = 2, . . . ,m − 1, the area Ai of Δi

is at least kε times the area Ai−1 of Δi−1, where kε > 1
is a constant only depending on ε.

Proof sketch. Refer to the figure on the right. For two
elements x and y, each representing a point or a vertex
in Γ , let �(x, y) be the line through x and y. Let o (resp.
o∗) be the intersection point between �(ai, bi) and the
line with slope π

6 + α
2 (resp. 5π

6 − α
2 ) through ci and let o� be the intersection point

between the line with slope π
2 − α

2 through ci and the line through o perpendicular
to �(ci, o). Let A∗ and A� denote the areas of the triangles Δ∗ = (ci, o, o

∗)
and Δ� = (ci, o

�, o), respectively. By Claim 5 and since Γ is an α-Schnyder
drawing, we have that the slopes of the edges (bi, ai), (ci, ai), (bi−1, ai−1), and
(ci−1, ai−1) are in the range [π

2 − α
2 , π

2 + α
2 ], the slope of (bi, ci) is in the range

[5π
6 − α

2 , 5π
6 + α

2 ], and the slope of (ci, ai−1) is in the range [π
6 − α

2 , π
6 + α

2 ].
Thus, Δi−1 is enclosed in Δ∗ and Δ� is enclosed in the region Δi − Δi−1, hence
Ai−1 ≤ A∗ and Ai ≥ A� +Ai−1. Therefore, Ai

Ai−1
≥ kε is implied by A�

A∗ ≥ kε −1.
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Let h be the length of the segment cio, let δ be the internal angle of Δ� at
ci, and let σ, β, and γ be the internal angles of Δ∗ at ci, o, and o∗, respectively.
By construction, the slope of the segments cio� and cio are π

2 − α
2 and π

6 + α
2 ,

respectively, hence δ = π
3 . Therefore, we have (Eq. 1) A� = h2 tan(δ)

2 =
√
3
2 h2.

Simple geometric arguments prove that σ = π
3 +α, β ≤ π

3 , and γ ≥ π
3 −α. Let

κ denote the length of the segment cio∗. By the law of sines applied to Δ∗, we
have κ = h sin(β)/ sin(γ). By β ≤ π

3 and γ ≥ π
3 −α, we get κ ≤ h sin(π

3 )/ sin(π
3 −

α) = h
√

3/(2 sin(π
3 − α)). Further, since the segments cio and cio∗ are two sides

of Δ∗, whose angle at ci is σ, we have A∗ = hκ sin(σ)/2. Using the upper bound
for κ and σ = π

3 + α, we get (Eq. 2) A∗ ≤ h2√
3

4

sin(π
3 +α)

sin(π
3 −α) .

By Eqs. 1 and 2, we get A�
A∗ ≥ 2 sin(π

3 −α)

sin(π
3 +α) . Since π

3 −α = ε and π
3 +α = 2π

3 −ε,

we have that A�
A∗ ≥ kε − 1 is satisfied with kε = 1 + 2 sin(ε)/ sin(2π

3 − ε). Since
0 < ε < π

3 is fixed, we have that kε is a constant greater than 1. ��
Claim 6 immediately implies that the area of the triangle (am−1, bm−1, cm−1)

is at least km−2
ε times the area of the triangle (a1, b1, c1). Since the area of the

triangle (a1, b1, c1) is greater than some constant depending on the adopted
resolution rule, we get that the area of Γ is in 2Ωε(m).

We now define the family F of the statement. For any positive integer m and
any n = 6m − 2, we construct the graph Fn ∈ F from the complete graph K4,
by taking two copies G′

m and G′′
m of Gm and by identifying the vertices incident

to the outer face of each copy with the three vertices incident to two distinct
triangular faces of the K4. Observe that Fn is a bounded-degree planar 3-tree. In
any α-Schnyder drawing Γ of Fn (in fact in planar drawing of Fn), at least one of
the two copies of Gm, say G′

m, is drawn so that its outer face is delimited by the
triangle (am, bm, cm). Since Fn has a unique Schnyder wood [6,12], the restriction
of such a Schnyder wood to the internal edges of G′

m satisfies the properties of
Claim 5. It follows that the restriction of Γ to G′

m is an α-Schnyder drawing of
G′

m (respecting the plane embedding of G′
m), and therefore it requires 2Ωε(m)

area. The proof is concluded by observing that m ∈ Ω(n). ��

6 Conclusions and Open Problems

In this paper, we refuted a claim by Cao et al. [7] and re-opened the question of
whether 3-connected planar graphs admit planar, and possibly convex, greedy
drawings on a polynomial-size grid. We provided some evidence for a positive
answer by showing that n-vertex Halin graphs admit convex greedy drawings
on an O(n) × O(n) grid; in fact, our drawings are angle-monotone, a stronger
property than greediness. Moreover, we proved that α-Schnyder drawings, which
are even more constrained, might require exponential area for any fixed α < π

3 .
Several questions remain open in this topic. We mention two of them. (Q1) Does
every 2-outerplanar graph admit a planar, and possibly convex, greedy drawing
on a polynomial-size grid? Note that the class of 2-outerplanar graphs is strictly
larger than the one of Halin graphs. (Q2) Does every plane 3-tree admit a planar
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greedy drawing on a polynomial-size grid? We indeed proved a negative answer
if “greedy drawing” is replaced by “α-Schnyder drawing”, for any fixed α < π

3 .
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Abstract. Given a set P of n points in R
2 and an input line γ, we

present an algorithm that runs in optimal Θ(n log n) time and Θ(n)
space to solve a restricted version of the 1-Steiner tree problem. Our
algorithm returns a minimum-weight tree interconnecting P using at
most one Steiner point s ∈ γ where edges are weighted by the Euclidean
distance between their endpoints.

Keywords: Minimum k-Steiner tree · Steiner point restrictions

1 Introduction

Finding the shortest interconnecting network for a given set of points is an
interesting problem for anyone concerned with conserving resources. Sometimes,
we are able to add new points in addition to the given input points to reduce
the total length of the edges in the interconnecting network. These extra points
are called Steiner points. However, finding where to place these Steiner points
and how many to place is NP-hard [11,12,23,33], and so a natural question is:
What is the shortest spanning network that can be constructed by adding only k
Steiner points to the given set of points? This is the k-Steiner point problem.

Consider a set P of n points in the 2-D Euclidean plane, which are also called
terminals in the Steiner tree literature. The Minimum Spanning Tree (MST)
problem is to find the minimum-weight tree interconnecting P where edges are
weighted by the Euclidean distance between their endpoints. Let MST(P ) be
a Euclidean minimum spanning tree on P and let |MST(P )| be the sum of its
edge-weights (also called the length of the tree). Imagine we are given another set
S of points in the 2-D Euclidean plane. The set S is the set of Steiner points that
we may use as intermediate nodes in addition to the points of P to compute the
minimum-weight interconnection of P . An MST on the union of the terminals
P with some subset of Steiner points S′ ⊆ S, i.e., {P ∪ S′}, is a Steiner tree. In
the Euclidean Minimum Steiner Tree (MStT) problem, the goal is to find
a subset S′ ⊆ S such that |MST({P ∪ S′})| is no longer than |MST({P ∪ X})|
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for any X ⊆ S. Such a minimum-weight tree is a MStT. For our restricted k-
Steiner tree problem, we are given an input line γ in R

2; the line γ = S and the
cardinality of S′ is at most k.

As 3-D printing enters the mainstream, material-saving and time-saving
printing algorithms are becoming more relevant. Drawing on the study of MStTs,
Vanek et al. [36] presented a geometric heuristic to create support-trees for 3-D
printed objects where the forking points in these trees are solutions to a con-
strained Steiner point problem. Inspired by the work of Vanek et al. as well as
the solutions for the 1-Steiner and k-Steiner point problems in the 2-D Euclidean
plane [8,12,24], we present an efficient algorithm to compute an exact solution
for the 1-Steiner point problem where the placement of the Steiner point is con-
strained to lie on an input line. We present another motivating example. Imagine
we have a set V of wireless nodes that must communicate by radio transmission.
To transmit a longer distance to reach more distant nodes requires transmitting
at a higher power. The MST of V can be used to model a connected network
that spans the nodes of V while minimizing total power consumption. Suppose
that an additional wireless node is available to be added to V , but that the new
node’s position is restricted to lie on a road γ on which it will be delivered on
a vehicle. Where on γ should the additional node be positioned to minimize the
total transmission power of the new network?

We refer to our problem as a 1-Steiner tree problem restricted to a line.
For our purposes, let an optimal Steiner point be a point s ∈ γ such that
|MST(P ∪ {s})| ≤ |MST(P ∪ {u})| for all u ∈ γ.

Problem. Given a set of n points P in R
2 and a line γ in R

2, compute the
MStT of P using at most 1 optimal Steiner point s ∈ γ.

A restricted version of our problem has been studied for the case when the
input point set P lies to one side of the given input line and a point from the
line must be chosen. Chen and Zhang gave an O(n2)-time algorithm to solve this
problem [15]. Similar problems have also been studied by Li et al. [29] building
on the research of Holby [28]. The two settings they study are: (a) the points of
P lie anywhere and must connect to the input line using any number of Steiner
points, and any part of the input line used in a spanning tree does not count
towards its length; and (b) the same problem, but the optimal line to minimize
the network length is not given and must be computed. Li et al. provide 1.214-
approximation1 algorithms for both (a) and (b) in O(n log n) and O(n3 log n)
time respectively. The problems of Chen and Zhang, Li et al., and Holby are
different than our problem since we are not required to connect to our input
line, we have no restriction on the placement of the points of P with respect
to the line, and travel in our network has the same cost on the input line as
off of it. For example, one can imagine if the points of the point set were close
to the line but far from each other, in which case the solution of Li et al. [29]
1 This means the length of their tree is at most 1.214 times the length of the optimal

solution. Here they take advantage of the result of Chung and Graham [18] showing
that the MST is a 1.214-approximation (to three decimals) of the MStT.
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would connect the points to the line and get a tree with much less weight/length
than even the MStT. Such an example is shown in Fig. 1. In Fig. 1 the MStT
of points {a, b, c, d} is the same as its MST since all triples form angles larger
than 2π

3 [12,25]. In our setting, the MST is the best solution for this point set,
whereas in the setting of Holby [28] and Li et al. [29], the best solution connects
each input point directly to γ to form a spanning tree between the points using
pieces of γ. The length of the MST is significantly larger than the length of the
other solution since in their setting, only the edges connecting the points to γ
contribute to the length of the spanning tree.

Fig. 1. Here we have γ as the x-axis, a = (0.489, 0.237), b = (1.865, −0.114), c =
(3.26, 0.184), and d = (4.75, −0.141). The MST of {a, b, c, d} in red dashed line segments
and its length, the input line γ, a spanning tree of {a, b, c, d} connecting each point to
γ, and the length of this spanning tree for the setting of Holby [28] and Li et al. [29].
(Color figure online)

We use a type of Voronoi diagram in our algorithm whose regions are bounded
by rays and segments. We make a general position assumption that γ is not
collinear with any ray or segment in the Voronoi diagrams. In other words, the
intersection of the rays and segments of these Voronoi diagrams with γ is either
empty or a single point. We also assume that the edges of MST(P ) have distinct
weights. In this paper we show the following.

Theorem 1. Given a set P of n points in the Euclidean plane and a line γ, there
is an algorithm that computes in optimal Θ(n log n) time and optimal Θ(n) space
a minimum-weight tree connecting all points in P using at most one point of γ.

Section 2 reviews the tools and properties we will need for our algorithm, and
Sect. 3 presents our algorithm and the proof of Theorem1.

2 Relevant Results

There has been a lot of research on Steiner trees in various dimensions, metrics,
norms, and under various constraints. See the surveys by Brazil et al. [7] and
Brazil and Zachariasen [12] for a good introduction. In the general Euclidean
case it has been shown that Steiner points that reduce the length of the MST
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have degree 3 or 4 [32]. There are results for building Steiner trees when the
terminal set is restricted to zig-zags [4,20], curves [33], ladders [19], and checker-
boards [6,9,10]; for when the angles between edges are constrained [11,12]; for
obstacle-avoiding Steiner trees [37–41] (which include geodesic versions where
the terminals, Steiner points, and tree are contained in polygons); and for k-
Steiner trees with k as a fixed constant where you can use at most k Steiner
points (for terminals and Steiner points in various normed planes including the
2-D Euclidean plane, there is an O(n2k)-time algorithm) [8,12,24].

2.1 Tools

Without loss of generality, we consider the positive x-axis to be the basis for
measuring angles, so that 0 radians is the positive x-axis, π

3 radians is a coun-
terclockwise rotation of the positive x-axis about the origin by π

3 radians, etc.

Observation 2. Given a point set V ⊂ R
2, if we build MST(V ), each point

v ∈ V will have at most 6 neighbours in the MST. This is because, due to the
sine law, for any two neighbours w and z of v in MST(V ) the angle ∠wvz must
be at least π

3 radians. These potential neighbours can be found by dividing the
plane up into 6 interior-disjoint cones of angle π

3 all apexed on v. The closest
point of V to v in each cone is the potential neighbour of v in the MST in that
cone.

Consider our input line γ as being the real number line, represented by the
x-axis in the Euclidean plane. This line can be parametrized by x-coordinates.
Let an interval on γ be the set of points on γ in between and including two
fixed x-coordinates, called the endpoints of the interval. Our approach will be to
divide the input line into O(n) intervals using a special kind of Voronoi diagram
outlined below. The intervals have the property that for any given interval I, if
we compute MST(P ∪ {s}) for any s ∈ I, the subset of possible neighbours of s
in the MST is constant. For example, Fig. 2 shows a set V of input points with
the blue points labelled pi for 1 ≤ i ≤ 6, the input line γ, and a green interval
I. The plane is divided into 6 cones of 60 degrees, all apexed on the red point
x ∈ I. In MST(V ∪ {x}), if x connects to a point in cone i, it connects to pi.
The green interval I has the property that this is true anywhere we slide x and
its cones in I.

Oriented Voronoi Diagrams. The 1-Steiner point algorithm of Georgakopou-
los and Papadimitriou (we refer to this algorithm as GPA) [24] works by subdi-
viding the plane into O(n2) regions defined by the cells of the Overlaid Oriented
Voronoi Diagram (overlaid OVD).2 Refer to the cone K defining an OVD as
an OVD-cone. Let Kv be a copy of the OVD-cone whose apex coincides with
point v ∈ R

2. OVDs are a type of Voronoi diagram made up of oriented Voronoi

2 In the Georgakopoulos and Papadimitriou paper [24] this is referred to as Overlaid
Oriented Dirichlet Cells.
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Fig. 2. Every point along the green interval I of γ (i.e., between the � endpoint and
the r endpoint) has the same potential MST neighbour (the blue points) in the same
cone. (Color figure online)

regions (OVRs) where the OVR of a site p ∈ P is the set of points w ∈ R
2 for

which p is the closest site in Kw ∩P . If Kw ∩P = ∅ we say w belongs to an OVR
whose site is the empty set. These notions are illustrated in Fig. 3.

Chang et al. [13] show us that the OVD for a given OVD-cone of angle π
3

(e.g., the OVD in Fig. 3) can be built in O(n log n) time using O(n) space. The
OVD is comprised of segments and rays that are subsets of bisectors and cone
boundaries which bound the OVRs. The size of the OVD is O(n).

Since by Observation 2 a vertex of the MST has a maximum degree of 6, by
overlaying the 6 OVDs for the 6 cones of angle π

3 that subdivide the Euclidean
plane (i.e., each of the six cones defines an orientation for a different OVD)
the GPA creates O(n2) regions. Each of these regions has the property that if
we place a Steiner point s in the region, the points of P associated with this
region (up to 6 possible points) are the only possible neighbours of s in the
MStT (similar to the example in Fig. 2). The GPA then iterates over each of
these regions. In region R, the GPA considers each subset of possible neighbours
associated with R. For each such subset it then computes the optimal location
for a Steiner point whose neighbours are the elements of the subset, and then
computes the length of the MStT using that Steiner point, keeping track of the
best solution seen. The generalized algorithm for placing k Steiner points [8,12]
essentially does the same thing k times (by checking the topologies of the MStT
for all possible placements of k points), but is more complicated (checking the
effects that multiple Steiner points have on the MStT is more complex).

Updating Minimum Spanning Trees. In order to avoid actually computing
each of the candidate MSTs on the set of P with the addition of our candidate
Steiner points, we instead compute the differences in length between MST(P )
and the candidate MStTs. Georgakopoulos and Papadimitriou similarly avoid
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Fig. 3. An example of an OVD for 6 points defined by the OVD-cone K with bounding
rays oriented towards 0 and π

3
. The 6 sites (i.e., the points) are the blue top-right

points of the coloured OVRs. When intersected with γ, the OVD creates intervals along
γ. Each interval corresponds to exactly one OVR, but an OVR may create multiple
intervals (for example, the light-blue OVR creates the two orange intervals). The site
corresponding to an interval outside of a coloured OVR is a special site represented by
the empty set. (Color figure online)

repeated MST computations by performing O(n2) preprocessing to allow them
to answer queries of the following type in constant time: given that the edges
ab1, ab2, . . . , abj are decreased by δ1, δ2, . . . , δj for constant j, what is the new
MST? They then use these queries to find the length of the MStT for each
candidate Steiner point. Refer to [24] for details. Brazil et al. also perform some
preprocessing in time between O(n2) and O(n3) [8]. However, using an approach
involving an auxiliary tree and lowest common ancestor (LCA) queries, we can
compute what we need in o(n2) time. We first compute MST(P ) and build an
auxiliary tree in O(n log n) time and process the auxiliary tree in O(n) time [27]
to support LCA queries in O(1) time [5,30].

3 Algorithm

In this section we present our algorithm and prove Theorem 1. The algorithm
computes OVDs for the 6 cones of angle π

3 that divide up the Euclidean plane
(i.e., each of the 6 cones defines an orientation for a different OVD). Though they
can be overlaid in O(n2) time, we do not need to overlay them. As mentioned
in Sect. 2.1, each OVD has O(n) size and is therefore comprised of O(n) rays
and segments. As illustrated in Fig. 3, intersecting any given OVD with a line γ
carves γ up into O(n) intervals since we have O(n) rays and segments, each of
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which intersect a line O(1) times.3 Each interval corresponds to an intersection
of γ with exactly one OVR of the OVD since OVDs are planar, but multiple
non-adjacent intervals may be defined by the same OVR, as in Fig. 3. Therefore
each interval I is a subset of an OVR, and for every pair of points u1, u2 ∈ I the
closest point in Ku1 ∩ P is the same as in Ku2 ∩ P , where K is the OVD-cone of
the OVD being considered.

If we do this with all six OVDs, γ is subdivided into O(n) intervals. As in
Fig. 2, each interval I has the property that for any point u ∈ I, if we were to
build MST(P ∪ {u}), the ordered set of six potential neighbours is a constant-
sized set.4 Each element of this ordered set is defined by a different OVD and
corresponds to the closest point in Ku ∩P . In each interval we solve an optimiza-
tion problem to find the optimal placement for a Steiner point in that interval
(i.e., minimize the sum of distances of potential neighbours to the Steiner point)
which takes O(1) time since each of these O(1) subproblems has O(1) size.

(a) MST({a, b, c, d, e}) (b) MST({a, b, c, d, e, s}) (c) Union of the trees from
Figs. 4a and 4b

Fig. 4. The union of the trees in (a) and (b) gives the graph in (c) with cycles (s, b, d, a),
(s, a, e, c), and (s, b, d, a, e, c) whose longest edges excluding s are (d, a) and (a, e).

Once we have computed an optimal placement for a Steiner point for each
computed interval of our input line γ, we want to compute which one of these
O(n) candidates produces the MStT, i.e., the candidate s that produces the
smallest length of the MST(P ∪ {s}). Let T ∗ be the union of MST(P ) and
MST(P ∪ {s}), as in Fig. 4. For a candidate s, the savings are calculated by
summing the length of the longest edge on each cycle of T ∗ excluding the edges
incident to s minus the sum of the lengths of the edges incident to s in MST(P ∪
{s}). For example, in Fig. 4c, the candidate edges on the left cycle are (b, d) and
(d, a), and on the right cycle they are (a, e) and (e, c); we sum the lengths of
the longest candidate edge from each cycle, i.e., (d, a) and (a, e), and subtract
the sum of the lengths of edges (s, a), (s, b), and (s, c) to calculate the savings
we get from choosing s as the solution Steiner point. Note that the longest edge
on the cycle (s, b, d, a, e, c) is either (d, a) or (a, e). As will be seen in the proof
of Theorem 1, the sum of the lengths of the edges incident to s are computed
when determining s. What remains to find are the lengths of the longest edges
3 This follows from the zone theorem [3,14,21].
4 In other words, each u ∈ I has the same constant-sized set of fixed candidate topolo-

gies that could be the result of MST(P ∪ {u}).
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of MST(P ) on the cycles of T ∗. The following theorem from Bose et al. [5] tells
us that with O(n log n) preprocessing of MST(P ), we can compute the sum in
which we are interested in O(1) time for each candidate Steiner point.5 First an
auxiliary binary tree is computed whose nodes correspond to edge lengths and
leaves correspond to points of P . This tree has the property that the LCA of
two leaves is the longest edge on the path between them in MST(P ). They then
take advantage of a result that uses O(n) preprocessing on the auxiliary tree
enabling them to perform O(1)-time LCA queries (either Harel and Tarjan [27],
Schieber and Vishkin [34], or Bender and Farach-Colton [2]).

Lemma 1 (Bose et al. 2004 [5, paraphrased Theorem 2]). We can preprocess
a set of n points in R

2 in O(n log n) time into a data structure of size O(n)
such that the longest edge on the path between any two points in the MST can
be computed in O(1) time.

We are now ready to finish proving Theorem1.

Theorem 1. Given a set P of n points in the Euclidean plane and a line γ, there
is an algorithm that computes in optimal Θ(n log n) time and optimal Θ(n) space
a minimum-weight tree connecting all points in P using at most one point of γ.

Proof. The tree T = MST(P ) and its length are computed in O(n log n) time
and O(n) space by computing the Voronoi diagram in those bounds [1,3,22,26],
walking over the Voronoi diagram creating the dual and weighting the edges in
O(n) time and space (the reasoning for which follows from Shamos [35]), and
computing the MST from the Delaunay triangulation in O(n) time and space
[16,31]. By Lemma 1, in O(n log n) time and O(n) space we compute the longest
edge auxiliary tree T ′ and preprocess it to answer LCA queries in O(1) time. Each
of the 6 OVDs is then computed in O(n log n) time and O(n) space [8,13,17]. In
O(n) time and space we extract L, the set of rays and segments defining each
OVR of each OVD. While computing the OVDs, in O(n) time we add labels to
the boundary rays and segments describing which OVD-cone defined them and
the two sites corresponding to the two OVRs they border.

Since γ is a line, it intersects any element of L O(1) times and we can compute
each of these intersections in O(1) time. Therefore, computing the intersections
of γ with L takes O(n) time and space. Assume without loss of generality that
γ is the x-axis. Given our O(n) intersection points, we can make a list of the
O(n) intervals they create along γ in O(n log n) time and O(n) space by sorting
the intersection points by x-coordinate and then walking along γ. During this
process we also use the labels of the elements of L to label each interval with its
six potential neighbours described above in O(1) time per interval.

By the triangle inequality, an optimal Steiner point has degree more than 2.
In [32] it was shown to have degree no more than 4. Therefore an optimal Steiner
point has degree 3 or 4. We then loop over each interval looking for the solution
by finding the optimal placement of a Steiner point in the interval for O(1) fixed

5 A similar result was shown in Monma and Suri [30, Lemma 4.1, pg. 277].
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topologies. Consider an interval I and its set of potential neighbours P ′ ⊂ P of
size at most 6. For each subset P of P ′ of size 3 and 4 (of which there are O(1)),
we compute O(1) candidate optimal Steiner points in γ. Note that γ is actually a
polynomial function, γ(x). Our computation is done using the following distance
function d(x), where ax and ay are the x and y coordinates of point a respectively,
and γ(x) is the evaluation of γ at x: dP(x) =

∑|P|
a∈P

√
(ax − x)2 + (ay − γ(x))2.

We then take the derivative of this distance function and solve for the global
minima by finding the roots within the domain specified by the endpoints of
I. Since the size of P is bounded by a constant and since the degree of the
polynomial γ is a constant, this computation takes O(1) time and O(1) space
and the number of global minima is O(1). Note that the value of the distance
function at a particular x for a particular P tells us the sum of edge lengths from
the point u = (x, γ(x)) to the points in P. We associate this value with u. Out of
the O(1) candidate points, we choose the one for which dP(x) is minimum. We
can break ties arbitrarily, since a tie means the points offer the same amount
of savings to the MST since they both have the same topology in the MST
(meaning they have the same cycles in MST(P )∪MST(P ∪{u})), and since the
value of dP(x) being the same means that the sum of adjacent edges is the same.

Once we have our O(1) candidate optimal Steiner points for I, we need to
compare each one against our current best solution s. In other words, for each
candidate u we need to compare |MST(P ∪{u})| with |MST(P ∪{s})|. We take
advantage of the following: if we compute the union of MST(P ) and MST(P ∪
{u}) we get at most

(
4
2

)
= 6 simple cycles6 through u. Let this connected set

of cycles be Q. If Pu is the set of neighbours associated with the candidate u,
we have |MST(P ∪ {u})| = |MST(P )| + dPu

(u) − Δ, where Δ is the sum of the
longest edge in each cycle of Q excluding from consideration the edges incident
to u. By Lemma 1, we can compute Δ in O(1) time using T ′. Due to space
constraints, we omit the proof that removing the longest edge from each cycle
of Q results in a tree. If |MST(P ∪ {u})| < |MST(P ∪ {s})| we set s = u.

Finally, we check if |MST(P ∪ {s})| < |T |. If so, we return MST(P ∪ {s}).
Otherwise we return T .

Now we show the space and time optimality. The Ω(n)-space lower-bound
comes from the fact that we have to read in the input. The Ω(n log n)-time lower-
bound comes from a reduction from the closest pair problem (CPP). The CPP is
where we are given n points in R

2 and we are supposed to return a closest pair
with respect to Euclidean distance. The CPP has an Ω(n log n) lower-bound
[31, Theorem 5.2]. Indeed, given an instance of CPP, we can turn it into our
problem in O(n) time by using the points as the input points P and choosing an
arbitrary γ.

Given the solution to our problem, we can find a closest pair in O(n) time by
walking over the resulting tree. First, remove the Steiner point (if any) and its
incident edges to break our tree up into O(1) connected components. Consider
one of these components C. C may contain both points of multiple closest pairs,
or none. Imagine C contained both points for exactly one closest pair. Then the

6 In a simple cycle the only vertex seen twice is the first/last vertex.
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edge connecting them will be in C and it will be the edge with minimum-weight
in C; otherwise it contradicts that we had a minimum-weight tree. Imagine C

contained both points for multiple closest pairs. Pick one of the closest pairs. If
C does not contain the edge e connecting the two points of the pair, then there
is a path between them in C consisting of minimum-weight edges (whose weights
match e) connecting other closest pairs; otherwise we contradict the minimality
of our tree or that both points were in the same connected component. If no
component contains both points of a closest pair, then the path between a clos-
est pair goes through the Steiner point. Once again, choose a closest pair (a, b)
and let the edge connecting this closest pair be e. Due to the minimality of our
tree, the weight of every edge on the path between a and b is no more than that
of e. However, since no component contains a closest pair, that means that a and
b are incident to the Steiner point. Therefore, we get a solution to the CPP by
walking over our resulting tree and returning the minimum among a minimum-
weight edge connecting neighbours of the Steiner point and a minimum-
weight edge seen walking through our tree excluding edges incident to the
Steiner point. 	

Corollary 1. Given a set P of n points in the Euclidean plane and j lines Γ =
{γ1, . . . γj}, by running the algorithm of Theorem1 for each γ ∈ Γ , in O(jn log n)
time and O(n+j) space we compute a minimum-weight tree connecting all points
in P using at most one point from γ1, . . . γj.
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Universitätsring 15, 54296 Trier, Germany
hoffmanns@informatik.uni-trier.de

Abstract. Here we study the computational complexity of the con-
strained synchronization problem for the class of regular commutative
constraint languages. Utilizing a vector representation of regular com-
mutative constraint languages, we give a full classification of the compu-
tational complexity of the constrained synchronization problem. Depend-
ing on the constraint language, our problem becomes PSPACE-complete,
NP-complete or polynomial time solvable. In addition, we derive a poly-
nomial time decision procedure for the complexity of the constrained
synchronization problem, given a constraint automaton accepting a com-
mutative language as input.

Keywords: Constrained synchronization · Computational
complexity · Automata theory · Commutative language

1 Introduction

A deterministic semi-automaton is synchronizing if it admits a reset word, i.e., a
word which leads to a definite state, regardless of the starting state. This notion
has a wide range of applications, from software testing, circuit synthesis, commu-
nication engineering and the like, see [10,11]. The famous Černý conjecture [1]
states that a minimal synchronizing word has at most quadratic length. We refer
to the mentioned survey articles for details. Due to its importance, the notion of
synchronization has undergone a range of generalizations and variations for other
automata models. It was noted in [9] that in some generalizations only certain
paths, or input words, are allowed (namely those for which the input automaton
is defined). In [5] the notion of constrained synchronization was introduced in
connection with a reduction procedure for synchronizing automata. The paper
[2] introduced the computational problem of constrained synchronization. In this
problem, we search for a synchronizing word coming from a specific subset of
allowed input sequences. For further motivation and applications we refer to the
aforementioned paper [2]. In this paper, a complete analysis of the complexity
landscape when the constraint language is given by small partial automata was
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done. It is natural to extend this result to other language classes, or even to give
a complete classification of all the complexity classes that could arise. Our work
is in this vein, we will look at the complexity landscape for commutative regular
constraint languages.

2 Prerequisites

2.1 General Notions and Problems Related to Automata
and Synchronization

By N0 “ {0, 1, 2, . . .} we denote the natural numbers with zero. Setting n ă 8
for all n P N0, we will use the symbol 8 in connection with N0. Hence we regard
N0 Y {8} as an ordered set with top element 8. Throughout the paper, we
consider deterministic finite automata (DFAs). Recall that a DFA A is a tuple
A “ (Σ,Q, δ, q0, F ), where the alphabet Σ is a finite set of input symbols, Q
is the finite state set, with start state q0 P Q, and final state set F Ď Q. The
transition function δ : Q ˆ Σ → Q extends to words from Σ∗ in the usual way.
The function δ can be further extended to sets of states in the following way. For
every set S Ď Q with S �“ H and w P Σ∗, we set δ(S,w) :“ { δ(q, w) | q P S }. We
call A complete if δ is defined for every (q, a) P Q ˆ Σ; if δ is undefined for some
(q, a), the automaton A is called partial. If |Σ| “ 1, we call A a unary automaton.
The set L(A) “ {w P Σ∗ | δ(q0, w) P F } denotes the language accepted by A.
A semi-automaton is a finite automaton without a specified start state and with
no specified set of final states. The properties of being deterministic, partial, and
complete for semi-automata are defined as for DFAs. When the context is clear,
we call both deterministic finite automata and semi-automata simply automata.
An automaton A is called synchronizing if there exists a word w P Σ∗ with
|δ(Q,w)| “ 1. In this case, we call w a synchronizing word for A. We call a state
q P Q with δ(Q,w) “ {q} for some w P Σ∗ a synchronizing state.

Theorem 1 [11]. For any deterministic complete semi-automaton, we can
decide if it is synchronizing in polynomial time O(|Σ||Q|2). Additionally, if we
want to compute a synchronizing word w, then we need time O(|Q|3 ` |Q|2|Σ|))
and the length of w will be O(|Q|3).
The following obvious remark, stating that the set of synchronizing words is a
two-sided ideal, will be used frequently without further mentioning.

Lemma 1. Let A “ (Σ,Q, δ) be a deterministic and complete semi-automaton
and w P Σ∗ be a synchronizing word for A. Then for every u, v P Σ∗, the word
uwv is also synchronizing for A.

We assume the reader to have some basic knowledge in computational com-
plexity theory and formal language theory, as contained, e.g., in [8]. For instance,
we make use of regular expressions to describe languages. For a word w P Σ∗

we denote by |w| its length, and for a symbol x P Σ we write |w|x to denote
the number of occurences of x in the word. We denote the empty word, i.e., the



462 S. Hoffmann

word of length zero, by ε. We also make use of complexity classes like P, NP, or
PSPACE. With ďlog

m we denote a logspace many-one reduction. If for two prob-
lems L1, L2 it holds that L1 ďlog

m L2 and L2 ďlog
m L1, then we write L1 ”log

m L2.
In [2] the constrained synchronization problem was defined for a fixed partial
deterministic automaton B “ (Σ,P, μ, p0, F ).

Decision Problem 1: [2] L(B)-Constr-Sync
Input: Deterministic complete semi-automaton A “ (Σ,Q, δ).
Question: Is there a synchronizing word w P Σ∗ for A with w P L(B)?

The automaton B will be called the constraint automaton. If an automaton
A is a yes-instance of L(B)-Constr-Sync we call A synchronizing with respect
to B. Occasionally, we do not specify B and rather talk about L-Constr-Sync.

A language L Ď Σ∗ is called commutative if with w P L, every word arising
out of w by permuting its letters is also in L. Essentially, a commutative language
is defined by conditions that say how often a letter is allowed to appear in its
words, but not by the actual position of that letter. For this class of languages
it was noted that it is structurally simple [6,7]. Also in terms of synchronizing
words this class yields quite simple automata [3], but nevertheless may give
algorithmic hard problems, as this class is sufficient for many reductions [3].
Here, we are concerned with L-Constr-Sync for the case that the constraint
language L is a commutative regular language. We will use the shuffle operation
in connection with unary languages frequently to write commutative languages.

Definition 1. The shuffle operation, denoted by �, is defined as

u� v :“
{

x1y1x2y2 · · · xnyn | u “ x1x2 · · · xn, v “ y1y2 · · · yn,
xi, yi P Σ∗, 1 � i � n, n � 1

}
,

for u, v P Σ∗ and L1 � L2 :“ ⋃
xPL1,yPL2

(x� y) for L1, L2 Ď Σ∗.

2.2 Unary Languages

Let Σ “ {a} be a unary alphabet. Suppose L Ď Σ∗ is regular with an accepting
complete deterministic automaton A “ (Σ,S, δ, s0, F ). Then by considering the
sequence of states δ(s0, a1), δ(s0, a2), δ(s0, a3), . . . we find numbers i � 0, p ą 0
with i ` p minimal such that δ(s0, ai) “ δ(s0, ai`p). We call these numbers the
index i and the period p of the automaton A. If Q “ {δ(s0, am) | m � 0}, then
i ` p “ |S|. In our discussion unary languages that are accepted by automata
with a single final state appear.

Lemma 2 [7]. Let L Ď {a}∗ be a unary language that is accepted by an automa-
ton with a single final state, index i and period p. Then either L “ {u} with
|u| ă i (and if the automaton is minimal we would have p “ 1), or L is infinite
with L “ ai`m(ap)∗ and 0 � m ă p. Hence two words u, v with min{|u|, |v|} � i
are both in L or not if and only if |u| ” |v| (mod p).
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2.3 Known Result on Constrained Synchronization
and Commutative Languages

Here we collect results from [2,7], and some consequences that will be used later.
First a mild extension of a lemma from [2], where it was formulated only for the
class P, but it also holds for NP and PSPACE.

Lemma 3. Let X denote any of the complexity classes P, NP or PSPACE.
If L(B) is a finite union of languages L(B1), L(B2), . . . , L(Bn) such that for
each 1 ď i ď n the problem L(Bi)-Constr-Sync P X , then L(B)-Constr-
Sync P X .

The next result from [2] states that the computational complexity is always
in PSPACE.

Theorem 2 [2]. For any constraint automaton B “ (Σ,P, μ, p0, F ) the problem
L(B)-Constr-Sync is in PSPACE.

If |L(B)| “ 1, then L(B)-Constr-Sync is obviously in P. Simply feed this
single word into the input semi-automaton for every state and check if a unique
state results. Hence by Lemma 3 the next is implied.

Lemma 4. Let B “ (Σ,P, μ, p0, F ) be a constraint automaton such that L(B)
is finite, then L(B)-Constr-Sync P P.

The following result from [2] gives a criterion for containment in NP.

Theorem 3 [2]. Let B “ (Σ,P, μ, p0, F ) be a partial deterministic finite
automaton. Then, L(B)-Constr-Sync P NP if there is a σ P Σ such that for
all states p P P , if L(Bp,{p}) is infinite, then L(Bp,{p}) Ď {σ}∗.

With this we can deduce another sufficient condition for containment in NP,
which is more suited for commutative languages.

Lemma 5. Let Σ be our alphabet and suppose a P Σ. If

L “ {a}∗
� F1 � . . .� Fk

for finite languages F1, . . . , Fk, then L-Constr-Sync P NP.

The next result from [2] will be useful in making several simplifying assump-
tions about the constraint language later in Sect. 3.1.

Theorem 4 [2]. Let L Ď L′ Ď Σ∗. If L′ Ď { v P Σ∗ | ∃u,w P Σ∗ : uvw P L },
then L-Constr-Sync ”log

m L′-Constr-Sync.

The following Theorem 5 is taken from [7] and will be crucial in deriving our
vector representation form for the constraint language later in Sect. 3.1.
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Theorem 5. Let Σ “ {a1, . . . , ak} be our alphabet. A commutative language
L Ď Σ∗ is regular if and only if it could be written in the form

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k

with non-empty unary regular languages U
(i)
j Ď {aj}∗ for i P {1, . . . , n} and

j P {1, . . . k} that could be accepted by a unary automaton with a single final state.

With respect to the Constrained Synchronization Problem1, for commutative
constraint languages L(B), we will refer more to the form given by Theorem5
than to the specific automaton B “ (Σ,P, μ, p0, F ) underlying it. In Sect. 3.6
we will give some details how to compute such a form for a given automaton
accepting a commutative language.

3 Results

Our main result, Theorem 6, gives a complete classification of the computa-
tional complexity of L-Constr-Sync, for different regular commutative con-
straint languages. In the following sections, we will prove various simplifications,
propositions, corollaries and lemmata that ultimately will all be used in proving
Theorem 6. First, we will give criteria that allow certain simplification of the
constraint language, and derive a mechanism to describe a given constraint lan-
guage by a set of vectors, which gives all the essential information with regard to
our problem. This notion will be used repeatedly in all the following arguments.
In Sect. 3.2 we will give sufficient conditions for containment in P. Then we sin-
gle out those instances that give hardness results for the complexity classes NP
and PSPACE in Sect. 3.3 and Sect. 3.4. Finally, in Sect. 3.5, we combine all these
results to prove Theorem 6. From Theorem 6, in the last Sect. 3.6, a decision pro-
cedure is derived to decide the complexity of L(B)-Constr-Sync, if we allow
B to be part of our input.

3.1 Simplifications of the Constraint Language

Our first Proposition 1 follows from Theorem 4. Very roughy, it says that for
the letters that are allowed infinitely often, the exact way in which they appear
is not that important, but only that we can find arbitrary long sequences of
them. We then use this result to derive a more compact description, in terms of
vectors over N0 Y{8}, to capture the essential part of a commutative constraint
language L with respect to the problem L-Constr-Sync.

Proposition 1. (infinite language simplification) Let Σ “ {a1, . . . , ak} be our
alphabet. Consider the Constrained Synchronization Problem 1 with commutative
constraint language L. Suppose

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k
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with unary languages U
(i)
j Ď {aj}∗ for i P {1, . . . , n} and j P {1, . . . k}. If for

some i0 P {1, . . . , n} and j0 P {1, . . . k} the unary language U
(i0)
j0

is infinite, then
construct the new language

L′ “
n⋃

i“1

V
(i)
1 � . . .� V

(i)
k

with

V
(i)
j “

{{aj}∗ if i “ i0 and j “ j0

U
(i)
j otherwise.

We simply change the single language U
(i0)
j0

for the language {aj}∗. Then a
complete and deterministic input semi-automaton A “ (Σ,Q, δ) has a synchro-
nizing word in L if and only if it has one in L′ and L-Constr-Sync ”log

m

L′-Constr-Sync.

Suppose L is a constraint language with

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k

according to Theorem 5. By Proposition 1, for our purposes we can assume that
if U

(i)
j is infinite, then it has the form U

(i)
j “ {aj}∗. The unary languages U

(i)
j

for j P {1, . . . , k} and i P {1, . . . , n} are accepted by some unary automaton
with a single final state. By Lemma 2, if such a language is non-empty and finite
it contains only a single word. Hence, the only relevant information is whether
such a unary language part is infinite or what length has the single unary word
it contains. This is captured by the next definition.

Definition 2. (vector representation of L) Let Σ “ {a1, . . . , ak} be our alpha-
bet. Consider the Constrained Synchronization Problem1 with commutative reg-
ular constraint language L. Suppose

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k (1)

with non-empty unary languages U
(i)
j Ď {aj}∗ for i P {1, . . . , n} and j P {1, . . . k}

that are acceptable by unary automata with a single final state. Then we say that
a set of vectors N Ď (N0 Y {8})k corresponds to L, according to Eq. (1), if
N “ {(n(i)

1 , . . . , n
(i)
k ) | i P {1, . . . , n}} with1

n
(i)
j “

{
8 if U

(i)
j is infinite ,

|u| if U
(i)
j “ {u}

1 Note that, as by assumption, the languages U
(i)
j for i P {1, . . . , n} and j P {1, . . . , k}

are accepted by unary automata with a single final state, by Lemma 2, they only
contain a single word if they are finite and non-empty.
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for i P {1, . . . , n} and j P {1, . . . , k}. By Theorem5, every regular commutative
constraint language has at least one vector representation.

Example 1. Let Σ “ {a, b, c} with a “ a1, b “ a2, c “ a3. For the language
L “ {aa}� b∗ Y {a}� {bb}� c(cc)∗ we have N “ {(2, 8, 0), (1, 2, 8)}. Please
see Example 3 for other languages.

The language L is infinite precisely if for some vector at least one entry
equals 8. Another important observation, quite similar to Proposition 1, allows
us to make further assumptions about the constraint language, or the vectors
corresponding to it. It will be used in the proofs of Proposition 5 and Proposi-
tion 6.

Proposition 2. (comparable vectors simplification) Let Σ “ {a1, . . . , ak}. Con-
sider L-Constr-Sync. Suppose L has the form stated in Theorem5,

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k (2)

with unary languages U
(i)
j Ď {aj}∗ for i P {1, . . . , n} and j P {1, . . . k}. Let N

be the vector set, corresponding to Eq. (2) and according to Definition 2. Suppose
x, y P N with x � y and x “ (x(i0)

1 , . . . , x
(i0)
k ) for i0 P {1, . . . , n}, i.e., the vector

x arises out of the part U
(i0)
1 � . . .� U

(i0)
k in the above union for L. Construct

the new language
L′ “

⋃
iP{1,...n}z{i0}

U
(i)
1 � . . .� U

(i)
k

without the part U
(i0)
1 � . . . � U

(i0)
k . Then a complete and deterministic input

semi-automaton A “ (Σ,Q, δ) has a synchronizing word in L if and only if it
has one in L′ and L-Constr-Sync ”log

m L′-Constr-Sync.

Example 2. Let Σ “ {a, b, c} with a “ a1, b “ a2, c “ a3. If L “ aaa∗
�{b}Ya∗

�

{bb}� {c} Y {a}, then N “ {(8, 1, 0), (8, 2, 1), (1, 0, 0)}. After simplification by
Proposition 2 and Proposition 1, we get a computationally equivalent constrained
synchronization problem, with constraint language L′ “ a∗

� {bb} � {c} and
vector representation N ′ “ {(8, 2, 1)}. In this case N ′ contains precisely the
maximal vector in N .

Hence, by taking the maximal vectors, which does not change the complex-
ity, we can assume that the vectors associated with any regular commutative
constraint language are pairwise incomparable.

3.2 The Polynomial Time Solvable Variants of the Problem

If in the sets U
(i)
1 � . . . � U

(i)
k each U

(i)
j is either infinite or U

(i)
j “ {ε}, then

L-Constr-Sync P P.
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Proposition 3. Let Σ “ {a1, . . . , ak} be our alphabet. Consider the Constrained
Synchronization Problem1. Suppose the commutative constraint language L is
decomposed as stated in Theorem5,

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k . (3)

Denote by N “ {(n(i)
1 , . . . , n

(i)
k | i “ 1, . . . , n} the vector representation, accord-

ing to Definition 2 and corresponding to Eq. (3). If for all i P {1, . . . , n} and all
j P {1, . . . , k} we have n

(i)
j P {0, 8}, then the problem is in P.

Interestingly, because of Lemma 6 stated next, if in the sets U
(i)
1 � . . . �

U
(i)
k , we have at most one j0 P {1, . . . , k} such that U

(i)
j0

“ {aj0}, and at most

one other j1 P {1, . . . , k} such that U
(i)
j1

is infinite, and U
(i)
j “ {ε} for all j P

{1, . . . , k}z{j0, j1}, then also L-Constr-Sync P P. Later, we will see that only
a slight relaxation of this condition, for example, if instead U

(i)
j0

“ {aj0aj0} in
the above, then the problem becomes NP-complete.

Lemma 6. Let A “ (Σ,Q, δ) be a unary semi-automaton with Σ “ {a} and
S Ď Q. Then |δ(S, ak)| “ 1 for some k � 0 if and only if |δ(S, a|Q|´1)| “ 1.

Proposition 4. Let Σ “ {a1, . . . , ak} be our alphabet. Consider the Constrained
Synchronization Problem1. Suppose the commutative constraint language L is
decomposed as stated in Theorem5,

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k . (4)

Denote by N “ {(n(i)
1 , . . . , n

(i)
k | i “ 1, . . . , n} the vector representation, accord-

ing to Definition 2 and corresponding to Eq. (4). If for all i P {1, . . . , n} in the
vector (n(i)

1 , . . . , n
(i)
k ), at most one entry equals 8 and at most one entry is non-

zero, and if so it equals one, then the problem is solvable in polynomial time.

3.3 The NP-complete Variants of the Problem

In this section, we state a criterion, in terms of the constraint language, which
gives NP-hardness. Surprisingly, in contrast to Proposition 4, if some letter,
whose appearance is bounded in an infinite language of the form U

(i)
1 �. . .�U

(i)
k ,

is allowed to appear more than once, then we get NP-hardness.

Proposition 5. Let Σ “ {a1, . . . , ak} be our alphabet. Consider the Constrained
Synchronization Problem1. Suppose the commutative constraint language L is
decomposed as stated in Theorem5,

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k . (5)
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Denote by N the vector representation, according to Definition 2 and correspond-
ing to Eq. (5). Suppose we find i0 P {1, . . . , k} with (n(i0)

1 , . . . , n
(i0)
k ) P N such

that at least one of the following conditions is true:

(i) n
(i0)
j0

“ 8 and 2 � n
(i0)
j1

ă 8 for distinct j0, j1 P {1, . . . , k}, or
(ii) n

(i0)
j0

“ 8 and 1 � n
(i0)
j1

, n
(i0)
j2

ă 8 for distinct j0, j1, j2 P {1, . . . , k}.
Then the problem is NP-hard.

3.4 The PSPACE-complete Variants of the Problem

Proposition 6. Let Σ “ {a1, . . . , ak} be our alphabet. Consider the Constrained
Synchronization Problem1. Suppose the commutative constraint language L is
decomposed as stated in Theorem5,

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k . (6)

Denote by N the vector representation, according to Definition 2 and correspond-
ing to Eq. (6). Suppose we find i0 P {1, . . . , n} and distinct j0, j1, j2 P {1, . . . , k}
with (n(i0)

1 , . . . , n
(i0)
k ) P N such that n

(i0)
j0

“ n
(i0)
j1

“ 8 and 1 � n
(i0)
j2

ă 8. Then
the problem is PSPACE-hard.

3.5 Main Theorem

Combining everything up to now gives our main computational complexity clas-
sification result for L(B)-Constr-Sync.

Theorem 6. Let Σ “ {a1, . . . , ak} be our alphabet. Consider the Constrained
Synchronization Problem1. Suppose the commutative constraint language L is
decomposed as stated in Theorem5,

L “
n⋃

i“1

U
(i)
1 � . . .� U

(i)
k . (7)

Denote by N “ {(n(i)
1 , . . . , n

(i)
k ) | i “ 1, . . . , n} the vector representation, accord-

ing to Definition 2 and corresponding to Eq. (7).

(i) Suppose for all i P {1, . . . , n}, if we have distinct j0, j1 P {1, . . . , k} with
n
(i)
j0

“ n
(i)
j1

“ 8, then n
(i)
j P {0, 8} for all other j P {1, . . . , k}z{j0, j1}.

More formally,

∀i P {1, . . . , n} : (∃j0, j1 P {1, . . . , k} : j0 �“ j1 ∧ n
(i)
j0

“ n
(i)
j1

“ 8)

Ñ (∀j P {1, . . . , k} : n
(i)
j P {0, 8}).

Furthermore, suppose N fulfills the condition mentioned in Proposition 5,
then it is NP-complete.
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(ii) If the set N fulfills the condition imposed by Proposition 6, then it is
PSPACE-complete.

(iii) In all other cases the problem is in P.

We give some examples for all cases in Example 3.

Example 3. Let Σ “ {a, b, c} with a “ a1, b “ a2, c “ a3.

– If L “ {aa} � b(bb)∗ with N “ {(2, 8, 0)}, then L-Constr-Sync is NP-
complete.

– If L “ {a} � b(bb)∗
� {c} with N “ {(1, 8, 1)}, then L-Constr-Sync is

NP-complete.
– The constraint language from Example 1 gives a NP-complete problem.
– If L “ {aa}� b(bb)∗ Y (aaa)∗

� b� c∗ with N “ {(2, 8, 0), (8, 1, 8)}, then
L-Constr-Sync is PSPACE-complete.

– If L “ {a}� b(bb)∗ with N “ {(1, 8, 0)}, then L-Constr-Sync P P.
– If L “ (aa)∗

� c(ccc)∗ with N “ (8, 0, 8), then L-Constr-Sync P P.

3.6 Deciding the Computational Complexity of the Constrained
Synchronization Problem

This section addresses the issue of deciding the computational complexity of
L(B)-Constr-Sync, for a constraint automaton such that L(B) is commutative.
The next definition is a mild generalization of a definition first given in [4], and
used for state complexity questions in [6,7].

Definition 3. Let Σ “ {a1, . . . , ak} and suppose A “ (Σ,Q, δ, s0, F ) is a
complete and deterministic automaton accepting a commutative language. Set
Qj “ {δ(s0, ai

j) : i � 0} for j P {1, . . . , k}. The automaton CA “ (Σ,Q1 ˆ . . . ˆ
Qk, μ, t0, E) with t0 “ (s0, . . . , s0),

μ(w, (s1, . . . , sk)) “ (δ(s1, a
|w|a1
1 ), . . . , δ(sk, a

|w|ak

k ))

and E “ {(δ(t0, a
|w|a1
1 ), . . . , δ(t0, a

|w|ak

k )) : w P L(A)} is called the commutative
automaton constructed from A.

If A is the minimal automaton of a commutative language, it is exactly the
definition from [4,6,7]. In that case, also in [4,6,7], it was shown that L(CA) “
L(A), and that L(A) is a union of certain shuffled languages. Both statements
still hold for any automaton A such that L(A) is commutative.

Theorem 7. Let Σ “ {a1, . . . , ak} and suppose A “ (Σ,Q, δ, s0, F ) is a com-
plete and deterministic automaton accepting a commutative language. Denote by
CA “ (Σ,Q1 ˆ . . . ˆ Qk, μ, t0, E) the commutative automaton from Definition 3.
Then L(CA) “ L(A).

The set of words that lead into a single state of the commutative automaton
has a simple form.
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Lemma 7. Let Σ “ {a1, . . . , ak} and suppose A “ (Σ,Q, δ, s0, F ) is a complete
and deterministic automaton accepting a commutative language. Denote by CA “
(Σ,Q1 ˆ . . . ˆ Qk, μ, t0, E) the commutative automaton from Definition 3. Let
s “ (s1, . . . , sk) P Q1 ˆ . . . ˆ Qk and set Uj “ {u P {aj}∗ | δ(s0, u) “ sj}. Then

{w P Σ∗ | μ(t0, w) “ (s1, . . . , sk)} “ U1 � . . .� Uk.

Example 4. Note that the form from Lemma 7 need not hold for some arbitrary
automaton. For example, let Σ “ {a, b} and L “ Σ`. Then a minimal automaton
has two states with a single accepting state, and the commutative automaton
derived from it has four states, with three accepting states. We have L “ a` Y
b` Y a`

� b`.

As the language of any deterministic automaton could be written as a disjoint
union of languages which lead into a single final state, the next is implied.

Corollary 1. Let Σ “ {a1, . . . , ak} and suppose A “ (Σ,Q, δ, s0, F ) is a com-
plete and deterministic automaton accepting a commutative language. Denote
by CA “ (Σ,Q1 ˆ . . . ˆ Qk, μ, t0, E) the commutative automaton from Defini-
tion 3. Suppose E “ {(s(l)1 , . . . , s

(l)
k ) | l P {1, . . . , m}} for some m � 0. Set2

U
(l)
j “ {u P {aj}∗ | δ(s0, u) “ s

(l)
j } for l P {1, . . . , m} and j P {1, . . . , k}. Then

L(A) “
m⋃
l“1

U
(l)
1 � . . .� U

(l)
k . (8)

With these notions, we can derive a decision procedure. First construct the
commutative automaton. Then derive a representation as given in Eq. (8). Use
this representation to compute a vector representation according to Definition 2.
With the help of Theorem6, from such a vector representation the computational
complexity could be read off.

Theorem 8. Let Σ “ {a1, . . . , ak} be a fixed alphabet. For a given (partial)
automaton B “ (Σ,P, μ, p0, F ) accepting a commutative language, the computa-
tional complexity of L(B)-Constr-Sync could be decided in polynomial time.

4 Conclusion

We have looked at the Constrained Synchronization Problem1 for commutative
regular constraint languages, thereby continuing the investigation started in [2].
The complexity landscape for regular commutative constraint languages is com-
pletely understood. Only the complexity classes P, NP and PSPACE arise, and
we have given conditions for P, NP-complete and PSPACE-complete problems.
In [2] the questions was raised if we can find constraint languages that give

2 If we start with the minimal automaton, then these are the same sets U
(l)
j as intro-

duced in [6].
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other levels of the polynomial time hierarchy. At least for commutative regu-
lar languages this is not the case. Lastly, we have given a procedure to decide
the computational complexity of L(B)-Constr-Sync, for a given automaton B
accepting a commutative language.
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Abstract. Graph routing problems have been investigated extensively
in operations research, computer science and engineering due to their
ubiquity and vast applications. In this paper, we study constant approx-
imation algorithms for some variations of the cluster general routing
problem. In this problem, we are given an edge-weighted complete undi-
rected graph G = (V,E, c), whose vertex set is partitioned into clusters

C1, . . . , Ck. We are also given a subset V
′

of V and a subset E
′

of E.
The weight function c satisfies the triangle inequality. The goal is to find
a minimum cost walk T that visits each vertex in V ′ only once, traverses
every edge in E′ at least once and for every i ∈ [k] all vertices of Ci are
traversed consecutively.

Keywords: Routing problem · Approximation algorithm · General
routing problem

1 Introduction

Graph routing problems have been studied extensively since the early 1970s.
Most of there problems are NP-hard, and hence no polynomial-time exact algo-
rithms exist for most of them unless P=NP. In a typical routing problem, a
salesman starts from a home location, visits a set of prescribed cities exactly
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once, and returns to the original location with minimum total distance trav-
elled.

Arguably the most well-known routing problem is the travelling salesman
problem (TSP) (see [6] for a compendium of results on the problem). We are
given a weighted graph G = (V,E, c) (directed or undirected) with vertex set
V , edge set E, and cost c(e) for each edge e ∈ E. The TSP’s goal is to find a
Hamiltonian cycle with minimum total cost. Without loss of generality, we may
assume that G is a complete graph (digraph); otherwise, we could replace the
missing edges with edges of very large cost.

Unfortunately, the TSP is NP-hard even for metric arc costs [10]. There-
fore, one approach for solving the TSP (and other NP-hard problems) is using
(polynomial-time) approximative algorithm whose performance is measured by
the approximation ratio, which is the maximum ratio of the approximative solu-
tion value to the optimum value among all problem instances. The best known
approximation algorithm for the TSP with triangle inequality is by Christofides
[3] with ratio 1.5. For the general TSP where the triangle inequality does not
hold, there is no (polynomial-time) approximation algorithm with a constant
approximation ratio, unless P=NP [11]. TSP along with its variations have been
extensively investigated in the literature. Here are two generalizations of TSP
studied in the literature.

The general routing problem (GRP): Let G = (V,E, c) be an edge-weighted
complete undirected graph such that the triangle inequality holds for the weight
function c. The goal is to find a minimum cost walk that visits each vertex in a
required subset V

′ ⊆ V exactly once and traverses every edge in a required subset
E

′ ⊆ E at least once. For this problem, Jansen [9] gave a 1.5-approximation
algorithm.

The cluster travelling salesman problem (CTSP): Let G = (V,E, c) be an
edge-weighted complete undirected graph such that the triangle inequality holds
for the weight function c. The vertex set V is partitioned into clusters C1, . . . , Ck.
The goal is to compute a minimum cost Hamiltonian cycle T that visits all ver-
tices of each cluster consecutively (and thus for each cluster we have starting and
finishing vertices on T ). Arkin et al. [1] designed a 3.5-approximation algorithm
for the problem with given starting vertices in each cluster. Guttmann-Beck
et al. [7] proposed a 1.9091-approximation algorithm for the problem in which
the starting and ending vertices of each cluster are specified and gave a 1.8-
approximation algorithm if for each cluster two vertices are given such that one
of the them can be a starting vertex and the other the finishing vertex.

In this paper, we introduced and studied the general cluster routing problem
(GCRP) which generalizes both GRP and CTSP. We provide approximation
algorithms of constant approximation ratio for variations of this problem. In
GCRP, we are given an edge-weighted undirected graph G = (V,E, c) such
that the triangle inequality holds for the weight function c. The vertex set V
is partitioned into clusters C1, . . . , Ck. For any given vertex subset V ′ ⊆ V and
edge subset E′ ⊆ E, the aim is to find a minimum cost walk T (hereafter a walk
will be called a tour) that visits each vertex in V ′ exactly once and traverses each
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edge in E′ at least once such that for every i ∈ [k] all vertices of T belonging to
Ci are visited consecutively in T . Depending on whether or not the starting and
finishing vertices of a cluster are specified or not, we consider two cases. When
every cluster has a pair of specified starting and finishing vertices, we offer a
2.4-approximation combinatorial algorithm. When every cluster has unspecified
starting and finishing vertices, depending on whether the required edges (i.e.,
those in E′) are incident with different clusters or not, we further consider two
subcases. If all required edges are only distributed in the clusters, we get a
3.25-approximation combinatorial algorithm. On the other hand, if there exist
edges from E′ incident with two different clusters, we get a 2.25-approximation
combinatorial algorithm.

The remainder of this paper is organized as follows. We provide some pre-
liminaries in Sect. 2. We study algorithms for the GCRP in Sect. 3. We conclude
in Sect. 4.

2 Preliminaries

In this section, we recall some algorithms for three problems along with some
preliminary results, which will be used as subroutines in our algorithms later.

2.1 The Travelling Salesman Path Problem

The traveling salesman path problem (TSPP) [5,7,8,12–14] is a generalization
of the TSP, but received much less attention than TSP in the literature. In
TSPP, given an edge-weighted undirected graph G = (V,E, c) and two vertices
s, t ∈ V , the aim is to find a minimum cost Hamiltonian path from s to t.
Note that vertices s and t need not be distinct. However, when s = t TSPP
is equivalent to the TSP. Let MST (G) be a minimum spanning tree of G. For
simplicity, MST (G) will also denote the cost of this tree.

Hoogeveen [8] considered three variations of the travelling salesman path
problem (TSPP), where as part of the inputs, the following constraints are placed
on the end vertices of the resulting Hamiltonian path:

(1) both the source and the destination are specified;
(2) one of the source and the destination is specified;
(3) neither the source nor the destination are specified.

Property 1. For Cases (2) and (3), it was shown in [8] that a straightforward
adaptation of Christofide’s algorithm can yield an algorithm with a performance
ratio of 3

2 .

However, Case (1) is more difficult, for which many results exist in the lit-
erature. On the positive side, a 5

3 -approximation algorithm is proposed in [8],
followed by an improved 8

5 -approximation in [13]. Sebo [12] gave a strongly poly-
nomial algorithm and improved the analysis of the metric s − t path TSP. He
found a tour of cost less than 1.53 times the optimum of the subtour elimination
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LP. On the negative side, the usual integer linear programming formulation has
an integrality gap at least 1.5.

Let c(P ) be the sum of all the edge costs of a given path or tour P . The
following result from [8] will be used later.

Theorem 1 [8]. There exists a polynomial-time algorithm for travelling sales-
man path problem with given end vertices s and t, and we can find two solutions
S1 and S2 for the problem which satisfy the following inequalities:

c(S1) ≤ 2MST (G) − c(s, t) ≤ 2OPT − c(s, t),

c(S2) ≤ MST (G) +
1
2
(OPT + c(s, t)) ≤ 3

2
OPT +

1
2
c(s, t).

Corollary 1 [8]. The shorter of the tours S1 and S2 is at most 5
3OPT .

Proof. By Theorem 1, if c(s, t) ≥ 1
3OPT , then c(S1) ≤ 5

3OPT . Otherwise (i.e.
c(s, t) ≤ 1

3OPT ) we have c(S2) ≤ 5
3OPT .

��
Below, we consider a more general problem, called the travelling general path

problem (TGPP). Let G = (V,E, c) be a weighted connected graph with two
specified ending vertices s, t ∈ V . For any given vertex subset V ′ ⊆ V and edge
subset E′ ⊆ E, the objective is to find a minimum cost path from s to t in G
that visits all vertices in V ′ exactly once and traverses all edges in E′. Note that
when s = t, this problem becomes the general routing problem introduced in [2]
which was discussed earlier. We focus on the case s �= t in the reminder of this
paper.

Note that this is a minimum cost problem and the edge costs satisfy the
triangle inequality. Thus, we can reduce the visits of vertices and edges not in
V ′ and E′. Namely, we can create a new reduced graph as follow in the problem:

G′ = ({v|v ∈ e, e ∈ E′} ∪ {s} ∪ {t} ∪ V ′, E′).

We assume that s and t are two different vertices in the new graph G′.
First, we compute the connected components of G′ via depth-first search in
polynomial time. Then, contracting each component to a vertex, we construct
a new complete graph G∗, where each edge cost between vertices is the longest
edge cost between each pair of components, which is defined as the distance
of each pair of component. This can be done in polynomial time. But we only
consider those edges between the vertices with degree d(v) ∈ {0, 1}. Finally from
the graph G∗, we create a feasible solution as described in Algorithm 1.

Theorem 2. (�) Let S be the path output by Algorithm1. Then we have

c(S) ≤ min
{

3OPT − c(s, t),
3
2
OPT +

1
2
c(s, t)

}
.

Corollary 2. The length of the tour output by Algorithm1 is at most 2OPT .

Proof. By Theorem 2, if c(s, t) ≥ OPT , then c(S) ≤ 3OPT − c(s, t) ≤ 2OPT .
Otherwise, if c(s, t) ≤ OPT , we have c(S) ≤ 3

2OPT + 1
2c(s, t) ≤ 2OPT . ��
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Algorithm 1. Algorithm of TGPP with specified vertice
Input:
1: An edge-weighted undirected graph G = (V,E, c).
2: Starting vertex s and ending vertex t of G.
3: V ′ ⊆ V , E′ ⊆ E are required vertex subset and edge subset, respectively.
Output: A travelling general salesman path.

begin:
4: Construct a new graph G′ = ({v|v ∈ e, e ∈ E′} ∪ {s} ∪ {t} ∪ V ′, E′).
5: Compute the connected components K1, . . . ,Kk of G′.
6: Let U be the set of vertices v with degree d(v) ∈ {0, 1}. Define a complete graph

Gk = ([k], Ek) with the cost c(e) of edge e = (i, j) with i �= j equal to the longest
link between a vertex in Ki ∩ U and a vertex in Kj ∩ U.

7: Copy the edges of MST (G∗) except for those on s-t path.
8: Find an Eulerian walk between s and t.
9: Turn the Eulerian walk into a Hamilton path S.

10: output S.
end

2.2 The Stacker Crane Problem

Given a weighted graph G = (V,E, c) whose edge costs satisfy the triangle
inequality. Let D = {(si, ti) : i = 1, . . . , k} be a given set of special directed
arcs, each with length li. The arc

−−−−→
(si, ti) denotes an object that is at vertex si

and needs to be moved to vertex ti using a vehicle (called the stacker crane).
The problem is to compute a shortest walk that traverses each directed arc−−−−→
(si, ti) at least once in the specified direction (from si to ti). Let D =

∑
i

li and

A = OPT − D.
This problem is a generalization of the TSP, which can be viewed as an

instance of this problem where each vertex is replaced by an arc of zero-length.
Frederickson et al. presented a 1.8-approximation algorithm for this problem [4].
This algorithm applies two subroutines and then selects the better of the two
solutions generated. The main ideas of these two subroutines are summarized
below for convenience (see [4,7] for details):

– Algorithm Short-Arcs 1: Shrink the directed arcs and reduce the problem to
an instance of TSP. Use an approximation algorithm for the TSP instance,
and then recover a solution for the original problem. This algorithm works
well when D ≤ 3

5OPT .
– Algorithm Long-Arcs 1: Complete the set of directed arcs into a directed cycle

cover. Then find a set of edges of minimum total weight to connect the cycles
together. Add two copies of each one of these edges, and orient the copies
in opposite directions to each other. The resulted graph is Eulerian, and the
algorithm outputs an Euler walk of this solution. The algorithm performs well
when D > 3

5OPT .

The following theorem can be derived from [4].
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Theorem 3 [4]. Consider an instance of the Stacker Crane Problem where the
sum of the lengths of the special directed arcs is D. Let OPT be an optimal
solution, and let A = OPT − D. The walk returned by Algorithm Short-Arcs 1
has length at most 3

2A + 2D. The walk returned by Algorithm Long-Arcs 1 has
length at most 3A + D.

2.3 The Rural Postman Problem

Let E′ ⊆ E be a specified subset of special edges. We use c(e) to denote the edge
cost of e. The rural postman problem (RPP) is to compute a shortest walk that
visits all the edges in E′. The Chinese Postman Problem is a special case of RPP
in which E′ = E, i.e., the walk must include all the edges. The Chinese Postman
Problem is solvable in polynomial time by reducing it to weighted matching,
whereas RPP is NP-hard. Let D =

∑
i li be the total length of the paths in all

clusters. We recall the algorithms in [4,7].

– Algorithm Short-Arcs 2: Consider the line graph c(G) of original graph G.
This algorithm works well when D ≤ 3

5OPT.
– Algorithm Long-Arcs 2: Complete the set of undirected arcs into a cycle

cover. Then find a set of edges of minimum total weight to connect the cycles
together. Add two copies of each one of these edges. The resulting graph
is Eulerian, and the algorithm outputs an Euler walk of this solution. The
algorithm performs well when D is large. Note that Algorithm Long-Arcs 2
is similar to Long-Arcs 1, but in this case, D is a set of undirected edges. The
algorithm performs well when D > 3

5OPT .

The two algorithms defined above for SCP can be modified to solve RPP. It is
easy to see that the second part of Theorem 3 holds for this case as well, i.e. the
walk returned by Algorithm Long-Arcs 2 has length at most 3A + D.

Remark 1. As indicated by Frederickson et al. [4], it is easy to show that the
above algorithms produce a 3

2 performance ratio for RPP.

3 The General Cluster Routing Problem

3.1 The General Cluster Routing Problem with Pre-specified
Starting and Ending Vertices

Note that there may exist two subcases in this case. First, each edge in E′ is
fully contained in its cluster. Second, some edges may be incident with more
than one cluster.

Let si and ti be pre-specified starting and ending vertices of cluster Ci, i ∈ [k].
Since the goal is to find a minimal total edge cost and the edge costs satisfy the
triangle inequality, we can ignore the vertices not in V ′ and edges not in E′ from
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graph G to consider a new graph instead. Namely, for every cluster Ci, i ∈ [k],
consider the GCRP in the following new graph G = ∪Ci, where

Ci = (Vi, Ei) =

(
{v|v ∈ e, e ∈ E′

i} ∪ V ′
i ∪ {si} ∪ {ti}, E′

i

)
.

Our algorithm is based on the following idea. First, within each cluster Ci, we
find a path pi, starting with si and ending at ti, visits all the vertices in V ′

and edges of each cluster Ci. This can be done by Algorithm1. Second, we need
to connect the paths by adding some edges to make the resulting graph into a
single cycle.

Let G = (V,E) be a complete graph with vertex set V and edge set E,
the vertex set is partitioned into clusters C1, . . . , Ck. The starting and ending
vertices in each cluster are specified. Let Ci = (Vi, Ei) be the new graph as
described above. Clearly, the desired tour in G does not always exist, e.g., when
there exists a required edge e ∈ E′ between cluster Ci and cluster Cj , i �= j,
and this required edge is not a (ti, sj) edge (in such a case, at least one of the
clusters must be visited more than one time). Henceforth, we will assume that
the desired tour does exist.

Algorithm 2. Algorithm of given starting and ending vertices
Input:
1: An edge-weighted graph G = (V,E, c).
2: A partition of V into clusters C1, . . . , Ck.
3: Each cluster Ci with starting and ending vertices si and ti, respectively, i =

1, . . . , k.
Output: A general cluster routing tour.

begin:
4: Construct a new graph G = ∪k

i=1Ci.
5: For i = 1, . . . , k, apply Algorithm 1 to get a path pi and orient the (si, ti) edge a

direction, from si to ti, to obtain the arc
−−−−→
(si, ti).

6: Apply Algorithm Short-Arcs 1 and Algorithm Long-Arcs 1 for SCP on special arc−−−−→
(si, ti), i = 1, . . . , k, and output the shorter solution T .

7: In T , replace the special directed arc (si, ti) by the path pi, for i = 1, . . . , k.
8: Output the resulting tour Ts.

end

The main idea of Algorithm 2 is illustrated as follows:
In Step 1, we first consider the number of connected components of Ci. If

the number is 1, it means that there exists a path from si to ti that visits all
the required edges in E′ and vertices in V ′. When the number is more than 2,
shrinking the connected components to be vertices and finding a path to connect
all these vertices lead to a feasible solution.

In Step 2, by applying Algorithm1, we can get a path from the starting
vertex si to ending vertex ti.
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In Step 3, we only need to connect these clusters to form a tour. In this
progress, we can shrink the directed arc

−−−−→
(si, ti) and reduce the problem to an

instance of TSP. Use Christofides’ algorithm [3] for the TSP instance.
In Step 4 by replacing the special directed arc (si, ti) by path pi, we obtain

a solution to the original graph.
Our algorithm is a combinational algorithm, which deals with the condition

of the pre-specified starting and ending vertices carefully. Let OPT be the cost
of the optimal solution. Let L be the sum of lengths of the paths of OPT through
each cluster and let A be the length of the other edges of OPT that are not in
L. Let D be the total length of the directed arcs (si, ti), i = 1, . . . , k. Then, we
have the following theorem:

Theorem 4. (�) Let T be the tour output by Algorithm2. Then

c(Ts) ≤ 2.4 OPT.

For the second case, there exists required edges in E′ between different clusters.
If there exist required edges incident with two different clusters, they must be
(ti, sj) edges. First, we need to compute the number of (ti, sj) edges. Suppose
the number is k. If k = 0, it is just Case 1. If k ≥ 2, we then get k+1 components
and we can shrink the components and go back to Case 1 again.

According to Theorem 4, for the general cluster routing problem with pre-
specified vertices, we now get a 2.4-approximation combinatorial algorithm.

3.2 The General Cluster Routing Problem Without Specifying
Starting and Ending Vertices

In this section, we consider the version of GCRP where, for each cluster Ci we
are free to choose the starting and ending vertices. We consider the two cases
again. In the first case, all required edges in E′ are only distributed within the
clusters. In the second case, there exist some required edges incident with some
different clusters.

For every cluster Ci, i ∈ [k], we consider GCRP on the new graph G = ∪Ci

defined as before:

Ci = (Vi, Ei) = ({v|v ∈ e ∈ E′
i} ∪ V ′

i , E
′
i).

We first consider the connected components of Ci. In order to obtain the
resulted tour, the degree of every vertex of the tour must be even. Therefore,
there also exist some cases that the tour cannot exist, i.e., there exists a vertex
v ∈ Vi with degree d(v) > 2 (in such a case, at least one of the clusters must be
visited more than once). Henceforth, we will assume that the desired tour exists.

To solve the first case when all required edges in E′ are only distributed within
the clusters, we propose an algorithm which computes two different solutions.
Then we select the shorter one of these two tours. To get the first solution, by
using Algorithm 1 with unspecified ends, we can find paths within each cluster.
Then we can view this as a Rural Postman Problem instance. To get the second
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solution, for each cluster, we select two vertices si and ti such that c(si, ti) is
maximized. Let them be the end vertices of each cluster. Then we can apply
Algorithm 2 to get the second tour. Finally, we select the shorter tour.

The algorithm for the case when the tour exists can be described as follows:

Algorithm 3. Algorithm of unspecified ending vertices
Input:
1: An edge-weighted graph G = (V,E, c), V ′ ⊆ V , E′ ⊆ E.
2: A partition of V into clusters C1, . . . , Ck.
Output: A cluster general routing tour.

begin:
3: Consider the new graph Ci, for i ∈ [k].
4: Apply Algorithm 1 with unspecified end vertices in each cluster C1, . . . , Ck. Let

path pi be the resulting path on Ci, and denote its end vertices by ai and bi. Apply
Algorithm Long-Arc 2 and Algorithm Short-Arc 2 to output the shorter solution
for RPP with special edges (ai, bi) and let T1 be the tour obtained by replacing
special edge (ai, bi) by path pi, for i ∈ [k].

5: In each cluster find vertices si and ti that maximize c(si, ti), for i ∈ [k]. Apply
Algorithm 2 with the end vertices {si, ti} to output a tour T2

6: Output the shorter of T1 and T2.
end

We will analyze the approximation ratio of Algorithm3. We first introduce
some notations. As in the previous section, let L denote the sum of the lengths
of the Hamiltonian paths within the clusters in OPT , and let A denote the sum
of the lengths of the remaining edges of OPT . Let D =

∑k
i=1 c(si, ti) denote the

sum cost of required edges. The first algorithm works well when D is small, and
the second works well when D is large.

Theorem 5. (�) Let T1 be the tour computed in Step 2 of Algorithm3. Then
we have

c(T1) ≤ 3
2
OPT +

1
2
L + 2D.

Theorem 6. (�) Let T2 be the tour computed in Step 3 of Algorithm3. Then
we have

c(T2) ≤ 3
2
OPT + 3L − 2D.

Now we can get the following theorem:

Theorem 7. Let T be the tour returned by Algorithm3, then

c(T ) ≤ 13
4

OPT.
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Proof. Note that L ≤ OPT . If 2D ≤ 5
4L, Theorem 5 implies that

c(T1) ≤ 3
2
OPT +

7
4
L ≤ 13

4
OPT.

Otherwise, when 2D ≥ 5
4L, Theorem 6 implies that

c(T2) ≤ 13
4

OPT.

Since the algorithm chooses the shorter one between the tours T1 and T2, the
proof is completed. ��

Next, we will consider Case 2 when there exist required edges between clus-
ters.

We consider the problem in three different cases. In the first case, the number
of required edges incident with different clusters is k. In the second case, some
clusters have two required edges incident with other clusters. In the third case,
the number of clusters with required edges incident with other cluster is 0.

In the first case, we only need to find paths between each specified vertices.
This can be seen as an instance of Travelling Salesman Path Problem as we
described before. So the performance ratio of this case is 1.5.

In the second case, for the clusters which have two required edges incident
with other clusters, we find paths in them and it becomes the third case.

Without loss of generality, we consider the third case: the number of clusters
with required edges incident to other cluster is 0. For every cluster Ci, we denote
the specified vertex as ai. First, in each cluster, by computing the distance
between each component, we select the longest one; that is, we find the vertex
bi such that c(ai, bi) is maximum. This can be done in polynomial time, because
the number of vertices in each cluster is no more than n. Then we can find the

Algorithm 4. Algorithm of existing required edges between clusters
Input:
1: An edge-weighted graph G = (V,E, c), V ′ ⊆ V , E′ ⊆ E.
2: A partition of V into clusters C1, . . . , Ck.
Output: A general cluster routing tour.

begin:
3: Let the vertex adjacent to required edges between different cluster Ci be ai. Find

a vertex that maximize c(ai, bi), for i = 1, . . . , k.
4: For each Ci, compute a path pi, a Hamiltonian path with end vertices ai and bi,

for i = 1, . . . , k.
5: Apply Algorithm Long-Arc 2 and Algorithm Short-Arc 2 to output the shorter

solution for RPP with the special edges {(ai, bi)|i = 1, . . . , k} to obtain tour S, for
i = 1, . . . , k.

6: In T , replace the special edge (ai, bi) by the path pi, for i = 1, . . . , k.
7: return the resulting tour T .

end
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path pi in each cluster Ci by Algorithm 1. Since this problem has no direction, we
apply Algorithm Long-Arc 2 and Algorithm Short-Arc 2 to output the shorter
solution for RPP and find the tour with the edge (ai, bi). At last, we replace the
edge(ai, bi) by path pi. The whole algorithm can be described as follows:

Theorem 8. (�) Let T be the tour output by Algorithm4. Then c(T ) ≤ 9
4OPT.

Algorithm 4 is a 2.25-approximation algorithm for the general cluster routing
problem with unspecified end vertices, in which some required edges may be inci-
dent with different clusters. Therefore, the performance ratio of approximation
algorithm for the problem with unspecified vertices is 3.25.

4 Conclusion

In this paper, we present constant approximation algorithms for two variations of
the general cluster routing problem. However, the two presented algorithms have
different approximation ratio, and in our future work we will consider whether
we can design approximation algorithms with the same approximation ratio for
these two problems.

References

1. Arkin, E., Hassin, R., Klein, L.: Restricted delivery problems on a network. Net-
works 29, 205–216 (1997)

2. Bienstock, D., Goemans, M.-X., Simchi, D., Williamson, D.-P.: A note on the
prize-collecting traveling salesman problem. Math. Program. 59, 413–420 (1991)

3. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research
Group (1976)

4. Frederickson, G.-N., Hecht, M.-S., Kim, C.-E.: Approximation algorithms for some
routing problems. SIAM J. Comput. 7, 178–193 (1978)

5. Fumei, L., Alantha, N.: Traveling salesman path problems. Math. Program. 13,
39–59 (2008)

6. Gutin, G., Punnen, A.: The Traveling Salesman Problem and its Variations.
Kluwer, Dordrecht (2002)

7. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation
algorithms with bounded performance guarantees for the clustered traveling sales-
man problem. Algorithmica 28, 422–437 (2000)

8. Hoogeveen, J.-A.: Analysis of Christofides’ heuristic: some paths are more difficult
than cycles. Oper. Res. Lett. 10, 291–295 (1991)

9. Jansen, K.: An approximation algorithm for the general routing problem. Inf. Pro-
cess. Lett. 41, 333–339 (1992)

10. Karp, R.-M.: Reducibility among combinatorial problems. Complex. Comput.
Comput. 2, 85–103 (1972)

11. Sahni, S., Gonzales, T.: P -complete approximation problems. J. ACM 23, 555–565
(1976)
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Abstract. We study the magnification of hardness of sparse sets in
nondeterministic time complexity classes on a randomized streaming

model. One of our results shows that if there exists a 2n
o(1)

-sparse set

in NDTIME(2n
o(1)

) that does not have any randomized streaming algo-
rithm with no(1) updating time, and no(1) space, then NEXP �= BPP,
where a f(n)-sparse set is a language that has at most f(n) strings of
length n. We also show that if MCSP is ZPP-hard under polynomial
time truth-table reductions, then EXP �= ZPP.

Keywords: MCSP · Sparse sets · Magnification · Reductions

1 Introduction

Hardness magnification has been intensively studied in the recent years [4,10,
12,13]. A small lower bound such as Ω(n1+ε) for one problem may bring a large
lower bound such as super-polynomial lower bound for another problem. This
research is closely related to Minimum Circuit Size Problem (MCSP) that is to
determine if a given string of length n = 2m with integer m can be generated by
a circuit of size k. For a function s(n) : N → N, MCSP[s(n)] is that given a string
x of length n = 2m, determine if there is a circuit of size at most s(n) to generate
x. This problem has received much attention in the recent years [2–8,10–13].

Hardness magnification results are shown in a series of recent papers about
MCSP [4,10,12,13]. Oliveira and Santhanam [13] show that n1+ε-size lower
bounds for approximating MKtP[nβ ] with an additive error O(log n) implies
EXP �⊆ P/poly. Oliveira, Pich and Santhanam [12] show that for all small
β > 0, n1+ε-size lower bounds for approximating MCSP[nβm] with factor O(m)
error implies NP �⊆ P/poly. McKay, Murray, and Williams [10] show that an
Ω(npoly(log n)) lower bound on poly(log n) space deterministic streaming model
for MCSP[poly(log n)] implies separation of P from NP.

The hardness magnification of non-uniform complexity for sparse sets is
recently developed by Chen et al. [4]. Since MCSP[s(n)] are of sub-exponential
density for s(n) = no(1), the hardness magnification for sub-exponential density
sets is more general than the hardness magnification for MCSP. They show that
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if there is an ε > 0 and a family of languages {Lb} (indexed over b ∈ (0, 1))
such that each Lb is a 2nb

-sparse language in NP, and Lb �∈ Circuit[n1+ε], then
NP �⊆ Circuit[nk] for all k, where Circuit[f(n)] is the class of languages with
nonuniform circuits of size bounded by function f(n). Their result also holds for
all complexity classes C with ∃C = C.

On the other hand, it is unknown if MCSP is NP-hard. Murray and Williams
[11] show that NP-completeness of MCSP implies the separation of EXP from
ZPP, a long standing unsolved problem in computational complexity theory.
Hitchcock and Pavan [8,11] if MCSP is NP-hard under polynomial time truth-
table reductions, then EXP�⊆ NP ∩ P/poly.

Separating NEXP from BPP, and EXP from ZPP are two of major open
problems in the computational complexity theory. We are motivated by further
relationship about sparse sets and MCSP, and the two separations NEXP �= BPP
and EXP �= ZPP. We develop a polynomial method on finite fields to magnify
the hardness of sparse sets in nondeterministic time complexity classes over a
randomized streaming model. One of our results show that if there exists a
2no(1)

-sparse set in NDTIME(2no(1)
) that does not have a randomized streaming

algorithm with no(1) updating time, and no(1) space, then NEXP �= BPP, where
a f(n)-sparse set is a language that has at most f(n) strings of length n. Our
magnification result has a flexible trade off between the spareness and time
complexity.

We use two functions d(n) and g(n) to control the sparseness of a tally set
T . Function d(n) gives an upper bound for the number of elements of in T and
g(n) is the gap lower bound between a string 1n and the next string 1m in T ,
which satisfy g(n) < m. The class TALLY(d(n), g(n)) defines the class of all
those tally sets. By choosing d(n) = log log n, and g(n) = 22

2n
, we prove that

if MCSP is ZPP ∩ TALLY(d(n), g(n))-hard under polynomial time truth-table
reductions, then EXP �= ZPP.

1.1 Comparison with the Existing Results

Comparing with some existing results about sparse sets hardness magnification
in this line [4], there are some new advancements in this paper.

1. Our magnification of sparse set is based on a uniform streaming model. A
class of results in [4] are based on nonuniform models. In [10], they show that
if there is A ∈ PH, and a function s(n) ≥ log n, search-MCSPA[s(n)] does not
have s(n)c updating time in deterministic streaming model for all positive,
then P �= NP. MCSP[s(n)] is a s(n)O(s(n))-sparse set.

2. Our method is conceptually simple, and easy to understand. It is a polynomial
algebraic approach on finite fields.

3. A flexible trade off between sparseness and time complexity is given in our
paper.

Proving NP-hardness for MCSP implies EXP �= ZPP [8,11]. We consider
the implication of ZPP-hardness for MCSP, and show that if MCSP is ZPP ∩
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TALLY(d(n), g(n))-hard for a function pair such as d(n) = log log n and g(n) =
22

2n
, then EXP �= ZPP. It seems that proving MCSP is ZPP-hard is much easier

than proving MCSP is NP-hard since ZPP ⊆ (NP ∩ coNP) ⊆ NP. According to
the low-high hierarchy theory developed by Schöning [14], the class NP ∩ coNP
is the low class L1. Although MCSP may not be in the class ZPP, it is possible
to be ZPP-hard.

2 Notations

Minimum Circuit Size Problem (MCSP) is that given an integer k, and a binary
string T of length n = 2m for some integer m ≥ 0, determine if T can be
generated by a circuit of size k. Let N = {1, 2, · · · } be the set of all natural
numbers. For a language L, Ln is the set of strings in L of length n, and L≤n is
the set of strings in L of length at most n. For a finite set A, denote |A| to be the
number of elements in A. For a string s, denote |s| to be its length. If x, y, z are
not empty strings, we have a coding method that converts a x, y into a string
〈x, y〉 with |x|+ |y| ≤ |〈x, y〉| ≤ 3(|x|+ |y|) and converts x, y, z into 〈x, y, z〉 with
|x|+ |y|+ |z| ≤ |〈x, y, z〉| ≤ 3(|x|+ |y|+ |z|). For example, for x = x1 · · · xn1 , y =
y1 · · · yn2 , z = z1 · · · zn3 , let 〈x, y, z〉 = 1x1 · · · 1xn1001y1 · · · 1yn200z1 · · · zn3 .

Let DTIME(t(n)) be the class of languages accepted by deterministic Tur-
ing machines in time O(t(n)). Let NDTIME(t(n)) be the class of languages
accepted by nondeterministic Turing machines in time O(t(n)). Define EXP =
∪∞

c=1DTIME(2nc

) and NEXP = ∪∞
c=1NDTIME(2nc

). P/poly, which is also called
PSIZE, is the class of languages that have polynomial-size circuits.

We use a polynomial method on a finite field F . It is classical theory that
each finite field is of size pk for some prime number p and integer k ≥ 1 (see [9]).
For a finite field F , we denote R(F ) = (p, tF (u)) to represent F , where tF (u) is
a irreducible polynomial over field GF(p) for the prime number p and its degree
is deg(tF (.)) = k. The polynomial tF (u) is equal to u if F is of size p, which is a
prime number. Each element of F with R(F ) = (p, tF (u)) is a polynomial q(u)
with degree less than the degree of tF (u). For two elements q1(u) and q2(u) in F ,
their addition is defined by (q1(u)+ q2(u))(mod tF (u)), and their multiplication
is defined by (q1(u) · q2(u))(mod tF (u)) (see [9]). Each element in GF(2k) is
a polynomial

∑k−1
i=0 biu

i (bi ∈ {0, 1}), which is represented by a binary string
bk−1 · · · b0 of length k.

We use GF(2k) field in our randomized streaming algorithm for hardness
magnification . Let F be a GF(2k) field (a field of size q = 2k) and has its
R(F ) = (2, tF (u)). Let s = a0 · · · am−1 be a binary string of length m with m ≤
k, and u be a variable. Define w(s, u) to be the element

∑m−1
i=0 aiu

i in GF(2k). Let
x be a string in {0, 1}∗ and k be an integer at least 1. Let x = sr−1st−2 · · · s1s0
such that each si is a substring of x of length k for i = 1, 2, · · · , r − 1, and
the substring s0 has its length |s0| ≤ k. Each si is called a k-segment of x for
i = 0, 1, · · · , r − 1. Define the polynomial dx(z) = zr +

∑r−1
i=0 w(si, u)zi, which

converts a binary string into a polynomial in GF(2k).
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We develop a streaming algorithm that converts an input string into an
element in a finite field. We give the definition to characterize the properties of
the streaming algorithm developed in this paper. Our streaming algorithm is to
convert an input stream x into an element dx(a) ∈ F = GF(2k) by selecting a
random element a from F .

Definition 1. Let r0(n), r1(n), r2(n), s(n), u(n) be nondecreasing functions
from N to N. Define Streaming(r0(n), r1(n), s(n), u(n), r2(n)) to be the class of
languages L that have one-pass streaming algorithms that has input (n, x) with
n = |x| (x is a string and read by streaming), it satisfies

1. It takes r0(n) time to generate a field F = GF(2k), which is represented by
(2, tF (.)) with a irreducible polynomial tf (.) over GF(2) of degree k.

2. It takes O(r1(n)) random steps before reading the first bit from the input
stream x.

3. It uses O(s(n)) space that includes the space to hold the field represen-
tation generated by the algorithm. The space for a field representation is
Ω((deg(tF (.)) + 1)) and O((deg(tF (.)) + 1)) for the irreducible polynomial
tF (.) over GF(2).

4. It takes O(u(n)) field conversions to elements in F and O(u(n)) field opera-
tions in F after reading each bit.

5. It runs O(r2(n)) randomized steps after reading the entire input.

3 Overview of Our Methods

In this section, we give a brief description about our methods used in this paper.
Our first result is based on a polynomial method on a finite field whose size affects
the hardness of magnification. The second result is a translational method for
zero-error probabilistic complexity classes.

3.1 Magnify the Hardness of Sparse Sets

We have a polynomial method over finite fields. Let L be f(n)-sparse language
in NDTIME(t1(n)). In order to handle an input string of size n, a finite field
F = GF(q) with q = 2k for some integer k is selected, and is represented by
R(F ) = (2, tF (z)), where tF (z) is a irreducible polynomial over GF(2). An input
y = a1a2 · · · an is partitioned into k-segments sr−1 · · · s1s0 such that each si is
converted into an element w(si, u) in F , and y is transformed into an polyno-
mial dy(z) = zr +

∑r−1
i=0 w(si, u)zi. A random element a ∈ F is chosen in the

beginning of streaming algorithm before processing the input stream. The value
dy(a) is evaluated with the procession of input stream. The finite F is large
enough such that for different y1 and y2 of the same length, dy1(.) and dy2(.) are
different polynomials due to their different coefficients derived from y1 and y2,
respectively. Let H(y) be the set of all 〈n, a, dy(a)〉 with a ∈ F and n = |y|. Set
A(n) is the union of all H(y) with y ∈ Ln. The set of A is ∪∞

i=1A(n). A small
lower bound for the language A is magnified to large lower bound for L.
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The size of field F depends on the density of set L and is O(f(n)n). By
the construction of A, if y ∈ L, there are q tuples 〈n, a, dy(a)〉 in A that are
generated by y via all a in F . For two different y1 and y2 of length n, the
intersection H(y1) ∩ H(y2) is bounded by the degree of dy1(.). If y �∈ L, the
number of items 〈n, a, dy(a)〉 generated by y is at most q

4 in A. If y ∈ L, the
number of items 〈n, a, dy(a)〉 generated by y is q in A. This enables us to convert
a string x of length n in L into some strings in A of length much smaller than
n, make the hardness magnification possible.

3.2 Separation by ZPP-Hardness of MCSP

Our another result shows that ZPP-hardness for MCSP implies EXP �= ZPP.
We identify a class of functions that are padding stable, which has the property
if T ∈ TALLY(d(n), g(n)), then {1n+2n : 1n ∈ T} ∈ TALLY(d(n), g(n)). The
function pair d(n) = log log n and g(n) = 22

2n
has this property. We construct

a very sparse tally set L ∈ EXP ∩ TALLY(d(n), g(n)) that separates ZPEXP
from ZPP, where ZPEXP is the zero error exponential time probabilistic class.
It is based on a diagonal method that is combined with a padding design. A
tally language L has a zero-error 22

n

-time probabilistic algorithm implies L′ =
{1n+2n : 1n ∈ L} has a zero-error 2n-time probabilistic algorithm. Adapting to
the method of [11], we prove that if MCSP is ZPP ∩ TALLY(d(n), g(n))-hard
under polynomial time truth-table reductions, then EXP �= ZPP.

4 Hardness Magnification via Streaming

In this section, we show a hardness magnification of sparse sets via a streaming
algorithm. A classical algorithm to find irreducible polynomial [15] is used to
construct a field that is large enough for our algorithm.

Theorem 1. [15] There is a deterministic algorithm that constructs a irre-
ducible polynomial of degree n in O(p

1
2 (log p)3n3+ε + (log p)2n4+ε) operations

in F , where F is a finite field GF(p) with prime number p.

Definition 2. Let f(n) be a function from N to N . For a language A ⊆ {0, 1}∗,
we say A is f(n)-sparse if |An| ≤ f(n) for all large integer n.

4.1 Streaming Algorithm

The algorithm Streaming(.) is based on a language L that is f(n)-sparse. It
generates a field F = GF(2k) and evaluates dx(a) with a random element a

in F . A polynomial zr +
∑r−1

i=0 biz
i = zr + br−1z

r−1 + br−2z
r−2 + · · · + b0 can

be evaluated by (· · · ((z + br−1)z + br−2)z + ...)z + b0 according to the classical
Horner’s algorithm. For example, z2 + z + 1 = (z + 1)z + 1.

Algorithm
Streaming(n, x)
Input: an integer n, and string x = a1 · · · an of the length n;
Steps:
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1. Select a field size q = 2k such that 8f(n)n < q ≤ 16f(n)n.
2. Generate an irreducible polynomial tF (u) of degree k over GF(2) such that

(2, tF (u)) represents finite F = GF(q) (by Theorem 1 with p = 2);
3. Let a be a random element in F ;
4. Let r =

⌈
n
k

⌉
; (Note that r is the number of k-segments of x. See Sect. 2)

5. Let j = r − 1;
6. Let v = 1;
7. Repeat
8. {
9. Receive the next k-segment sj from the input stream x;

10. Convert sj into an element bj = w(sj , u) in GF(q);
11. Let v = v · a + bj ;
12. Let j = j − 1;
13. }
14. Until j < 0 (the end of the stream);
15. Output 〈n, a, v〉;

End of Algorithm
Now we have our magnification algorithm. Let M(.) be a randomized Turing

machine to accept a language A that contains all 〈|x|, a, dx(a)〉 with a ∈ F and
x ∈ L. We have the following randomized streaming algorithm to accept L via
the randomized algorithm M(.) for A.

Algorithm
Magnification(n, x)
Input integer n and x = a1 · · · an as a stream;
Steps: Let y =Streaming(n, x); Accept if M(y) accepts;
End of Algorithm

4.2 Hardness Magnification

In this section, we derive some results about hardness magnification via sparse
set. Our results show a trade off between the hardness magnification and sparse-
ness via the streaming model.

Definition 3. For a nondecreasing function t(.) : N → N, define BTIME(t(n))
the class of languages L that have two-side bounded error probabilistic algorithms
with time complexity O(t(n)). Define BPP = ∪∞

c=1BTIME(nc).

Theorem 2. Assume that u1(m) be nondecreasing function for the time to gen-
erate an irreducible polynomial of degree m in GF(2), and u2(m) be the nonde-
creasing function of a time upper bound for the operations (+, .) in GF(2m). Let
f(.), t1(.), t2(.), t3(n) be nondecreasing functions N → N with f(n) ≤ 2

n
2 , v(n) =

(log n + log f(n)), and 10v(n) + t1(n) + u1(10v(n)) + n · u2(10v(n)) ≤ t2(v(n))
for all large n. If there is a f(n)-sparse set L with L ∈ NDTIME(t1(n)) and
L �∈ Streaming(u1(10v(n))), v(n), v(n), 1, t3(10v(n))), then there is a language A
such that A ∈ NDTIME(t2(n)) and A �∈ BTIME(t3(n)).
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Proof. Select a finite field GF(q) with q = 2k for an integer k by line 1 of the
algorithm streaming(.). For each x ∈ Ln, let x be partitioned into k-segments:
sr−1sr−2 · · · s0. Let w(si, u) convert si into an element of GF(q) (See Sect. 2).
Define polynomial dx(z) = zr +

∑r−1
i=0 w(q, si)zi. For each x, let H(x) be the

set {〈n, a, dx(a)〉|a ∈ GF(q)}, where n = |x|. Define set A(n) = ∪y∈LnH(y) for
n = 1, 2 · · · , and language A = ∪+∞

n=1A(n).

Claim 1. For any x �∈ Ln with n = |x|, we have |H(x) ∩ A(n)| < q
4 .

Proof. Assume that for some x �∈ Ln with n = |x|, |H(x) ∩ A(n)| ≥ q
4 . It is easy

to see that r ≤ n and k ≤ n for all large n by the algorithm Streaming(.) and the
condition of f(.) in the theorem. Assume that |H(x) ∩ H(y)| < r + 1 for every
y ∈ Ln. Since A(n) is the union H(y) with y ∈ Ln and |Ln| ≤ f(n), there are
at most rf(n) ≤ nf(n) < q

8 elements in H(x) ∩ A(n) by line 1 of the algorithm
Streaming(.). Thus, |H(x) ∩ A(n)| < q

8 . This brings a contradiction. Therefore,
there is a y ∈ Ln to have |H(x) ∩ H(y)| ≥ r + 1. Since the polynomials dx(.)
and dy(.) are of degrees at most r, we have dx(z) = dy(z) (two polynomials are
equal). Thus, x = y. This brings a contradiction because x �∈ Ln and y ∈ Ln.

Claim 2. If x ∈ L, then Streaming(|x|, x) ∈ A. Otherwise, with probability at
most 1

4 , Streaming(|x|, x) ∈ A.

Proof. For each x, it generates 〈n, a, dx(a)〉 for a random a ∈ GF(q). Each a ∈
GF(q) determines a random path. We have that if x ∈ L, then 〈n, a, dx(a)〉 ∈ A,
and if x �∈ L, then 〈n, a, dx(a)〉 ∈ A with probability at most 1

4 by Claim 1.

Claim 3. A ∈ NDTIME(t2(m)).

Proof. Let z = 10v(n) = 10(log n + log f(n)). Each element in field F = GF(2k)
is of length k. For each u = 〈n, a, b〉 (a, b ∈ F ), we need to guess a string x ∈ Ln

such that b = dx(a). It is easy to see that v(n) ≤ |〈n, a, b〉| ≤ 10v(n) for all
large n if 〈n, a, b〉 ∈ A (See Sect. 2 about coding). Let m = |〈n, a, b〉|. It takes
at most u1(z) steps to generate a irreducible polynomial tF (.) for the field F by
our assumption.

Since L ∈ NDTIME(t1(n)), checking if u ∈ A takes nondeterministic t1(n)
steps to guess a string x ∈ Ln, u1(z) deterministic steps to generate tF (u) for
the field F , O(z) nondeterministic steps to generate a random element a ∈ F ,
and additional O(n · u2(z)) steps to evaluate dx(a) in by following algorithm
Streaming(.) and check b = dx(a). The polynomial tF (u) in the GF(2) has
degree at most z. Each polynomial operation (+ or .) in F takes at most u2(z)
steps. Since z + t1(n) + u1(z) + n · u2(z) ≤ t2(m) time by the condition of this
theorem, we have A ∈ NDTIME(t2(m)).

Claim 4. If A ∈ BTIME(t3(m)), then L ∈ Streaming(u1(10v(n)), v(n), v(n),
1, t3(10v(n))).

Proof. The field generated at line 2 in algorithm Streaming(.) takes u1(10(log n+
log f(n))) time. Let x = a1 · · · an be the input string. The string x partitioned
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into k-segments sr−1 · · · s0. Transform each si into an element bi = w(si, u)
in GF(q) in the streaming algorithm. We generate a polynomial dx(z) = zr +
∑r−1

i=0 biz
i = zr + br−1z

r−1 + br−2z
r−2 + · · · + b0. Given a random element

a ∈ GF(q), we evaluate dx(a) = (· · · ((a + br−1)a + br−2)a + ...)a + b0 according
to the classical algorithm. Therefore, dx(a) is evaluated in Streaming(.) with
input (|x|, x).

If A ∈ BTIME(t3(m)), then L has a randomized streaming algorithm that has
at most t3(10v(n)) random steps after reading the input, and at most O(v(n))
space. After reading one substring si from x, it takes one conversion from a
substring of the input to an element of field F by line 10, and at most two field
operations by line 11 in the algorithm Streaming(.).

Claim 4 brings a contradiction to our assumption about the complexity of L
in the theorem. This proves the theorem.

Proposition 1. Let f(n) : N → N be a nondecreasing function. If for each fixed
ε ∈ (0, 1), f(n) ≤ nε for all large n, then there is a nondecreasing unbounded
function g(n) : N → N with f(n) ≤ n

1
g(n) .

Proof. Let n0 = 1. For each k ≥ 1, let nk be the least integer such that nk ≥ nk−1

and f(n) ≤ n
1
k for all n ≥ nk. Clearly, we have the infinite list n1 ≤ n2 · · · ≤

nk ≤ · · · such that limk→+∞ nk = +∞. Define function g(k) : N → N such that
g(n) = k for all n ∈ [nk−1, nk). For each n ≥ nk, we have f(n) ≤ n

1
k .

Our Definition 4 is based Proposition 1. It can simplify the proof when we
handle a function that is no(1).

Definition 4. A function f(n) : N → N is no(1) if there is a nondecreasing
function g(n) : N → N such that limn→+∞ g(n) = +∞ and f(n) ≤ n

1
g(n) for all

large n. A function f(n) : N → N is 2no(1)
if there is a nondecreasing function

g(n) : N → N such that limn→+∞ g(n) = +∞ and f(n) ≤ 2n
1

g(n) for all large n.

Corollary 1. If there exists a 2no(1)
-sparse language L in NDTIME(2no(1)

) such
that L does not have any randomized streaming algorithm with no(1) updating
time, and no(1) space, then NEXP �= BPP.

Proof. Let g(n) : N → N be an arbitrary unbounded nondecreasing function that

satisfies limn→+∞ g(n) = +∞ and g(n) ≤ log log n. Let t1(n) = f(n) = 2n
1

g(n)

and Let t2(n) = 22n, t3(n) = n
√

g(n), and v(n) = (log n + log f(n)).
It is easy to see that v(n) = no(1), and both u1(n) and u2(n) are nO(1) (see

Theorem 1). For any fixed c0 > 0, we have t2(v(n)) > t2(log f(n)) ≥ t2(n
1

g(n) ) >
t1(n) + nc0 for all large n. For all large n, we have

t3(10v(n)) ≤ t3(20 log f(n)) = t3(20n
1

g(n) ) (1)

≤ (20n
1

g(n) )
√

g(20n
1

g(n) ) ≤ (n
2

g(n) )
√

g(n) = no(1). (2)
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Clearly, these functions satisfy the inequality of the precondition in Theorem 2.
Assume L ∈ Streaming(poly(v(n)), v(n), v(n), 1, t3(10v(n))). With O(v(n)) =
no(1) space, we have a field representation (2, tF (.)) with deg(tF (.)) = no(1).
Thus, each field operation takes no(1) time by the brute force method for poly-
nomial addition and multiplication. We have t3(10v(n)) = no(1) by inequality
(2). Thus, the streaming algorithm updating time is no(1). Therefore, we have
that L has a randomized streaming algorithm with no(1) updating time, and
no(1) space. This gives a contradiction. So,
L �∈ Streaming(poly(v(n)), v(n), v(n), 1, t3(10v(n))). By Theorem 2, there is
A ∈ NDTIME(t2(n)) such that A �∈ BTIME(t3(n)). Therefore, A �∈ BPP. Thus,
NEXP �= BPP.

5 Implication of ZPP-Hardness Of MCSP

In this section, we show that if MCSP is ZPP∩TALLY-hard, then EXP �= ZPP.
The conclusion still holds if TALLY is replaced by a very sparse subclass of
TALLY languages.

Definition 5. For a nondecreasing function t(.) : N → N, define ZTIME(t(n))
the class of languages L that have zero-error probabilistic algorithms with time
complexity O(t(n)). Define ZPP = ∪∞

c=1ZTIME(nc), and
ZPEXP = ∪∞

c=1ZTIME(2nc

).

Definition 6. For an nondecreasing function f(n) : N → N, define
TALLY[f(k)] to be the class of tally set A ⊆ {1}∗ such that for each 1m ∈ A,
there is an integer i ∈ N with m = f(i). For a tally language T ⊆ {1}∗, define
Pad(T ) = {12

n+n|1n ∈ T}.
Definition 7. For two languages A and B, a polynomial time truth-table reduc-
tion from A to B is a polynomial time computable function f(.) such that for
each instance x for A, f(x) = (y1, · · · , ym, C(.)) to satisfy x ∈ A if and only if
C(B(y1), · · · , B(ym)) = 1, where C(.) is circuit of m input bits and B(.) is the
characteristic function of B.

Let ≤P
r be a type of polynomial time reductions (≤P

tt represents polynomial
time truth-table reductions), and C be a class of languages. A language A is
C-hard under ≤P

r reductions if for each B ∈ C, B ≤P
r A.

Definition 8. Let k be an integer. Define two classes of functions with recur-
sions: (1) log(1)(n) = log2 n, and log(k+1)(n) = log2(log(k)(n)). (2) exp(1)(n) =
2n, and exp(k+1)(n) = 2exp

(k)(n).

Definition 9. For two nondecreasing functions d(n), g(n) : N → N, the pair
(d(n), g(n)) is time constructible if (d(n), g(n)) can be computed in time d(n) +
g(n) steps.

Definition 10. Define TALLY(d(n), g(n)) to be the class of tally sets T such
that |T≤n| ≤ d(n) and for any two strings 1n, 1m ∈ T with n < m, they satisfy
g(n) < m. We call d(n) to be the density function and g(n) to be the gap function.
A gap function g(n) is padding stable if g(2n + n) < 2g(n) + g(n) for all n > 1.
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Lemma 1.

1. Assume the gap function g(n) is padding stable. If T ∈ TALLY(d(n), g(n)),
then Pad(T ) ∈ TALLY(d(n), g(n)).

2. For each integer k > 0, g(n) = exp(k)(2n) is padding stable.

Proof. Part 1. Let 1n be a string in T . The next shortest string 1m ∈ T with
n < m satisfies g(n) < m. We have 12

n+n and 12
m+m are two consecutive

neighbor strings in Pad(T ) such that there is no other string 1k ∈ Pad(T ) with
2n + n < k < 2m + m. We have g(2n + n) < 2g(n) + g(n) < 2m + m. Since
the strings in Pad(T )≤n are one-one mapped from the strings in T with length
less than n, |Pad(T )≤n| ≤ |T≤n| ≤ d(n), we have Pad(T ) ∈ TALLY(d(n), g(n)).
This proves Part (1).

Part 2. We have inequality g(2n + n) = exp(k)(2(2n + n)) < exp(k)(4 · 2n) =
exp(k)(2n+2) ≤ exp(k)(22n) = 2g(n) < 2g(n) + g(n). Therefore, gap function g(n)
is padding stable. This proves Part 2.

Lemma 2. Let d(n) and g(n) be nondecreasing unbounded functions from N to
N , and (d(n), g(n)) is time constructible. Then there exists a time constructible
increasing unbounded function f(n) : N → N such that
TALLY[f(n)] ⊆ TALLY(d(n), g(n)).

Proof. Compute the least integer n1 with d(n1) > 0. Let s1 be the number of
steps for the computation. Define f(1) = max(s1, n1). Assume that f(k − 1) has
been defined. We determine the function value f(k) below.

For an integer k > 0, compute g(f(k−1)) and the least k numbers n1 < n2 <
· · · < nk such that 0 < d(n1) < d(n2) < · · · < d(nk). Assume the computation
above takes s steps. Define f(k) to be the max(2s, nk, g(f(k − 1)) + 1). For each
language T ∈ TALLY[f(n)], there are at most k strings in T with length at
most f(k). On the other hand, d(nk) ≥ k by the increasing list 0 < d(n1) <
d(n2) < · · · < d(nk). Therefore, we have |T≤nk | ≤ k ≤ d(nk). Furthermore, we
also have g(f(k − 1)) < f(k). Since s is the number of steps to determine the
values s, nk, and g(f(k−1))+1. We have 2s ≤ f(k). Thus, f(k) can be computed
in f(k) steps by spending some idle steps. Therefore, the function f(.) is time
constructible.

We will use the notion TALLY[f(k)] to characterize extremely sparse tally

sets with fast growing function such as f(k) = 22
2k

. It is easy to see that
TALLY = TALLY[I(.)], where I(.) is the identity function I(k) = k.

Lemma 3. Let d(n) and g(n) be nondecreasing unbounded functions. If function
g(n)) is padding stable, then there is a language A such that A ∈ ZTIME(2O(n))∩
TALLY(d(n), g(n)) and A �∈ ZPP.

Proof. It is based on the classical translational method. Assume ZTIME(2O(n))∩
TALLY(d(n), g(n)) ⊆ ZPP. Let f(.) be a time constructible increasing
unbounded function via Lemma 2 such that
TALLY[f(n)] ⊆ TALLY(d(n), g(n)). Let t1(n) = 22

n

and t2(n) = 22
n−1

. Let L be
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a tally language in DTIME(t1(n))∩TALLY[f(n)], but it is not in DTIME(t2(n)).
Such a language L can be constructed via a standard diagonal method. Let
M1, · · · ,M2 be the list of Turing machines such that each Mi has time upper
bound by function t2(n). Define language L ∈ TALLY[f(n)] such that for
each k, 1f(k) ∈ L if and only if Mk(1f(k)) rejects in t2(f(k)) steps. We have
L ∈ TALLY(d(n), g(n)) by Lemma 2.

Let L1 = Pad(L). We have L1 ∈ TALLY(d(n), g(n)) by Lemma 1. We have
L1 ∈ DTIME(2O(n)) ⊆ ZTIME(2O(n)). Thus, L1 ∈ ZPP. So, L ∈ ZTIME(2O(n)).
Therefore, L ∈ ZTIME(2O(n)) ∩ TALLY(d(n), g(n)). We have L ∈ ZPP. Thus,
L ∈ DTIME(2nO(1)

) ⊆ DTIME(22
n−1

). This brings a contradiction.

Theorem 3. Let d(n) and g(n) be nondecreasing unbounded functions from N

to N. Assume that g(n) is padding stable. If MCSP is ZPP∩TALLY(d(n), g(n))-
hard under polynomial time truth-table reductions, then EXP�= ZPP.

Proof. Assume that MCSP is (ZPP∩TALLY(d(n), g(n))-hard under polynomial
time truth-table reductions, and EXP = ZPP.

Let L be a language in ZTIME(2O(n)) ∩ TALLY[d(.), g(.)], but L �∈ ZPP by
Lemma 3. Let L′ = Pad(L). Clearly, every string 1y in L′ has the property that
y = 2n + n for some integer n. This property is easy to check and we reject all
strings without this property in linear time. We have L′ ∈ ZPP. Therefore, there
is a polynomial time truth-table reduction from L′ to MCSP via a polynomial
time truth-table reduction M(.). Let polynomial p(n) = nc be the running time
for M(.) for a fixed c and n ≥ 2.

Define the language R = {(1n, i, j), the i-th bit of j-th query of M(1n+2n)
is equal to 1, and i, j ≤ p(n + 2n)}. We can easily prove that R is in EXP.
Therefore, R ∈ ZPP ⊆ P/poly (See [1]).

Therefore, there is a class of polynomial size circuits {Cn}∞
n=1 to recognize R

such that Cn(.) recognize all (1n, i, j) with i, j ≤ p(n+2n) in R. Assume that the
size of Cn is of size at most q(n) = nt0 + t0 for a fixed t0. For an instance x = 1n

for L, consider the instance y = 1n+2n for L′. We can compute all non-adaptive
queries 〈T, s(n)〉 to MCSP in 2nO(1)

time via M(y). If s(n) ≥ q(n), the answer
from MCSP for the query 〈T, s(n)〉 is yes since 〈T, s(n)〉 can be generated as
one of the instances via the circuit Cn(.). If s(n) < q(n), we can use a brute
force method to check if there exists a circuit of size at most q(n) to generate
T . It takes 2nO(1)

time. Therefore, L ∈ EXP. Thus, L ∈ ZPP. This bring a
contradiction as we already assume L �∈ ZPP.

Corollary 2. For any integer k ≥ 1, if MCSP is ZPP ∩ TALLY(log(k)(n),
exp(k)(2n))-hard under polynomial time truth-table reductions, then EXP�= ZPP.

Corollary 3. If MCSP is ZPP-hard under polynomial time truth-table reduc-
tions, then EXP�= ZPP.
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Abstract. Monotone Boolean circuits are circuits where each gate is
either an AND gate or an OR gate. In other words, negation gates are
not allowed in monotone circuits. This class of circuits has sparked the
attention of researchers working in several subfields of combinatorics and
complexity theory. In this work, we introduce the notion of certification-
width of a monotone Boolean circuit, a complexity measure that intu-
itively quantifies the minimum number of edges that need to be traversed
by a minimal set of positive weight inputs in order to certify that C is
satisfied. We call the problem of computing this new invariant, the Suc-
cinct Monotone Circuit Certification (SMCC) problem. We prove
that SMCC is NP-complete even when the input monotone circuit is pla-
nar. Subsequently, we show that the problem is W[1]-hard, but still in
W[P], when parameterized by the size of the solution. We also show that
SMCC is fixed-parameter tractable when restricted to monotone circuits
of bounded genus. In contrast, we show that SMCC on planar circuits
does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Keywords: Monotone circuits · Planarity · Genus · FPT · Treewidth

1 Introduction

Boolean circuits are one of the earliest combinatorial formalisms for the rep-
resentation of Boolean functions. Besides being a fundamental object of study
in classical complexity theory, Boolean circuits also play a central role in the
field of parameterized complexity [5]. More specifically, while the satisfiability
problem for general Boolean circuits can be used to define the class NP, the
satisfiability problem for Boolean circuits of bounded weft can be used to define
the levels of the W-hierarchy [5]. An important, and well-studied, subclass of
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Boolean circuits is the class of monotone Boolean circuits, i.e., circuits where
only AND and OR gates are allowed. While the standard satisfiability problem for
monotone Boolean circuits is trivial, since the all-ones vector is always a satisfy-
ing truth assignment, some weighted versions of satisfiability problems are still
interesting in this setting. One of these problems is the Weighted Monotone
Circuit Satisfiability (WMCS) problem, where we are given a monotone
Boolean circuit C as input, and the goal is to find a minimum-weight satisfying
assignment for the inputs of C [3,10,13]. The WMCS is particularly relevant
in the field of circuit design, since the minimum number of inputs necessary to
make a monotone circuit evaluate to true is a parameter that is often taken into
consideration [12].

In this work, we introduce the notion of a succinct certificate for a monotone
Boolean circuit. Given a monotone circuit C, a succinct certificate for C is a
connected sub-circuit of C with a minimal set of edges that is sufficient to ensure
that C is satisfiable. Just like circuit size and circuit depth, the minimum size
of a succinct certificate is an interesting complexity measure. Additionally, a
succinct certificate may be seen as a minimal map to be followed by a satisfying
truth assignment. This map may find applications in the field of circuit design
and may be used as a way of representing solutions to problems modeled through
monotone circuits.

We study the complexity of computing the size of a minimum succinct certifi-
cate of a given monotone circuit C. We call this invariant the certification-width
of C, and name the problem of computing the value of this invariant as the
Succinct Monotone Circuit Certification (SMCC) problem. The prob-
lem under consideration is both of theoretical and practical relevance. From a
theoretic perspective, the minimum size of a succinct certificate naturally gives
information about the complexity of a circuit. Therefore, determining the under-
lying structure that makes SMCC (fixed-parameter) tractable is interesting from
the perspective of complexity theory. From a practical perspective, SMCC can
be applied in many problem-reduction representations [14,18,19].

The notion of planarity is well-explored in graph theory and has significant
relevance in the field of circuit analysis. In particular VLSI (Very Large-Scale
Integration) circuits, which are widely applied in electronics and engineering,
are typically modeled by planar graphs. In addition, there are several studies on
circuits and satisfiability problems defined on certain structures that are planar
or that satisfy certain structural properties (see [1,2,10–13,17,20,21]).

We show that SMCC is NP-hard even when the input monotone circuit
is planar, and that SMCC is W[1]-hard, but in W[P], when parameterized by
solution size. Subsequently, we present a polynomial-time algorithm that takes a
monotone circuit as input and either solves the instance or bounds the diameter
of the input; then using the notion of contraction obstructions for treewidth we
are able to conclude that the treewidth of the resulting circuit is bounded by
k+g, where k is the solution size and g is the genus of the input circuit. Thus, by
using such a win/win approach and applying a dynamic programming algorithm
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we solve SMCC in FPT time when parameterized by k + g. This result also
implies that SMCC can be solved in time 2O(k) · nO(1) on planar circuits.

Due to space constraints, some proofs were omitted.

1.1 Preliminaries

We use standard graph-theoretic and parameterized complexity notation, and
we refer the reader to [4,5] for any undefined notation.

A Boolean circuit is a combinatorial model for the representation of Boolean
functions. We formalize the notion of a Boolean circuit according to Definition 1.
In general, a circuit can have multiples outputs. Nevertheless, for convenience,
we will adopt the following definition.

Definition 1. A Boolean circuit is a directed acyclic graph C(V,E) having only
one sink, where the set of vertices V is partitioned into (I,G, {vout}): (i) a set of
inputs I = {i1, i2, . . . } composed of the vertices of in-degree 0; (ii) a set of gates
G = {g1, g2, . . . }, which are vertices labeled with Boolean operators; (iii) and
the single output (sink) vertex vout with out-degree equal to 0 and also labeled
with a Boolean operator. The input vertices represent Boolean variables that can
take values from {0, 1} ({false, true}, depending on the conventions), and the
label/operator of a gate or output vertex w is given by f(w). A monotone circuit
is a Boolean circuit where the Boolean operators allowed are in {AND, OR}.

Note that we are considering general circuits with no restrictions on the
number of in-neighbors and out-neighbors. Besides, in this work, we only deal
with monotone circuits.

Definition 2. An assignment of C is a vector X = [x1, x2, . . . , x|I|] of values
for the set of inputs I, where for each j, xj ∈ {0, 1} is the value assigned to input
ij. We say that X is a satisfying truth assignment if the circuit C evaluates to
1 (true) when given x as input.

In Fig. 1a, we have an example of a circuit C with six inputs i1, i2, . . . , i6, four
gates g1, g2, g3, g4 and the output vertex vout. Figure 1b shows an example of the
results of an assignment X = [0, 1, 1, 1, 1, 0] to the circuit presented in Fig. 1a. In
this example, the function AND of vout returns 1, thus, X is a satisfying truth
assignment according to Definition 2.

We denote by X → C the adapted directed graph in which the values of X
were assigned to I, and the label of the gates are replaced by the returned values
of their respective functions (see Fig. 1b).

The directions of the edges represent inputs to functions of the gates. When
all in-edges of a gate gj have a value assigned to it, then the gate will be assigned
with a value computed according to the operator f(gj). We note that the signal
of an input may not reach vout, for example, in Fig. 1b, the assignment sets i5 to
1. However, this signal cannot reach vout because f(g2) was not satisfied. This
situation brings us another important definition: the critical edges.
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(a) Graph representation of circuit C. (b) Satisfying truth assignment on C.

Fig. 1. Graph representation of a circuit and a satisfying truth assignment for it.

Definition 3. Given a monotone circuit C with a satisfying truth assignment
X, an edge (vj , vk) is considered critical to X → C if the signal output by vj is
positive and can reach the vertex vout through the gate vk.

According to Definition 3, in Fig. 1 the edge (i5, g2) is not critical while
(i2, g1), (i3, g3), (i4, g4), (g1, g3), (g3, vout) and (g4, vout) are critical edges in
X → C. This motivates the notion of positive certificate stated in Definition 4.

Definition 4. Given a monotone circuit C, and a satisfying truth assignment
X of C, a positive certificate for X → C is a connected subgraph of C formed
by the critical edges and their respective vertices.

Notice that a positive certificate may have redundant edges. Next, we define
the notion of succinct certificate; and certification-width of C.

Definition 5. Given a monotone circuit C, and a satisfying truth assignment
X of C, a succinct certificate for X → C, is a connected subgraph SCX→C of
its positive certificate such that:

– vout is a vertex of SCX→C ; and
– for every vertex v of SCX→C holds that

• if f(v) = AND, then every in-edge of v is in SCX→C ;
• if f(v) = OR, then exactly one in-edge of v is in SCX→C .

The size of a succinct certificate SCX→C is the number of edges of SCX→C .

Definition 6. The certification-width of a monotone circuit C is the minimum
size among all possible succinct certificates on all satisfying truth assignments
of C.

We remark that the notion of certification-width is closely related to the
notion of energy complexity of a circuit C, which is defined as the maximum
number of gates outputting “1” over all assignments to C (see [22]).
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Now, we have all elements to describe our main problem.

Succinct Monotone Circuit Certification (SMCC)
Instance: A monotone circuit C; a positive integer k.
Goal: Determine whether the certification-width of C is at most k.

We denote by SMCC(k) the parameterized version of Succinct Mono-
tone Circuit Certification where k is the parameter.

2 NP-Completeness on Planar Circuits

Now, we dedicate our attention to SMCC restricted to planar monotone circuits.
Clearly, SMCC is in NP. Next, we show its NP-hardness. For that, we will use
a reduction from Planar Vertex Cover.

Theorem 1. SMCC is NP-complete even restricted to planar circuits.

Proof. It is easy to see that SMCC is in NP. In order to prove its NP-hardness,
we present a reduction from Planar Vertex Cover. First, consider the fol-
lowing preprocessing: Let (H, c′) be an instance of Planar Vertex Cover. By
subdividing twice each edge of H, we obtain a graph G where each edge e = (ab)
of H is replaced by a P4 ab′a′b, where a′ and b′ are new vertices. Notice that G
is planar; H has a vertex cover of size c′ if and only if G has a vertex cover of
size c = c′ + |E(H)|; and given a planar embedding of G, the boundary of any
pair of adjacent faces of G contains at least three edges.

From a fixed planar embedding of the instance (G, c) of Planar Vertex
Cover, we proceed with the reduction. We will construct an instance (C, k) of
SMCC where C is a planar monotone circuit, and k is the target size of the
vertex cover. From the original structure of G, we apply the following:

1. Firstly, set V (C) = V (G);
2. for each vertex vi ∈ V (G), create an input vertex vin

i , assign f(vi) = AND,
and add a directed edge (vin

i , vi);
3. for each edge ei = (u, v) ∈ E(G), create a vertex vcover

ei
such that f(vcover

ei
) =

OR, and create the directed edges (v, vcoverei
) and (u, vcover

ei
). This step guar-

antees that if vcover
ei

is in the succinct certification, then either v or u will also
be on the certificate.

Notice that C is still planar. Now, preserving the planarity, we will ensure
that every vcover

ei
is in any succinct certification of C as follows:

4. create an output vertex vout such that f(vout) = AND;
5. for each vertex vcover

ei
which are in the external face of G, create one directed

edge from vcover
ei

to vout;

Let DG be the dual graph of G, and denote by f1 the vertex representing
the external face of G. Let TDG

be the spanning tree of DG obtained from a
breadth-first search of DG rooted at f1. In a top-down manner, according to a
level-order traversal of TDG

, we visit each edge e = (fi, fj) of TDG
, applying the

following:
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6. Let fj be a child of fi in TDG
;

By construction of G, it follows that the boundary between fi and fj contains
at least three edges, at least one of which being between vertices a′ and b′

that do not exist in H;
Thus, create a vertex vfj

, add edges from vfj
to such a′ and b′; and for each

vcover
e�

in the face fj that does not reach vout, yet, add an edge from vcover
e�

to vfj
; after that, if vfj

has in-degree greater than 0, then set f(vfj
) = AND,

otherwise vfj
is an input vertex;

7. Finally, set k = c + 2 · |E(G)| + |V (TDG
)| − 1.

Given a vertex cover S of G with c vertices, without loss of generality, we
can assume that S does not contain pairs of adjacent vertices that do not belong
to V (H). By setting 1 to the corresponding inputs of S in C, in exactly c edges
flows 1 from vertices vin

i to its out-neighbor vi; from each vi assigned with 1
flow positive values to each vcover

e such that e is an out-edge of vi. Since S is
a vertex cover, each vcover

e receives at least one positive value, which implies
that every vertex vfj

outputs 1, and vout also outputs 1. Thus, C has a succinct
certificate SC where all in-edges of vout are in SC; each in-neighbor of vout has
as in-neighbor one vertex of S in SC; since the vertices representing faces and
vertices of G have the label AND, by construction, every vcover

e is in SC and has
exactly one out-edge in SC; Given that S does not contain pairs of adjacent
vertices that do not belong to V (H), each vertex vfj

also has exactly one out-
neighbor in SC; and as every vcover

e is labeled OR, one can construct SC in such
a way that vcover

e has as in-neighbor exactly one vertex in S. Thus, SC has size
equal to k = c + 2 · |E(G)| + |V (TDG

)| − 1. (Namely, c in-edges of vin
i vertices;

one in-edge and one out-edge for each vcover
e ; one out-edge for each vertex vfj

.)
Conversely, let SC be a succinct certificate of C with size equal to k =

c+2 · |E(G)|+ |V (TDG
)| − 1. By construction, it is easy to see that any succinct

certificate of C contains every vcover
e vertex and has size at least 2 · |E(G)| +

|V (TDG
)| − 1. Therefore, SC has exactly c vertices of V (G), which cover every

edge of G. ��

3 Parameterized Complexity

In this section, we analyse the parameterized complexity of SMCC.
The W[P]-membership follows from a reduction of SMCC to Weighted

Circuit Satisfiability.

Lemma 1. SMCC(k) is in W[P].

Next, we prove the W[1]-hardness of SMCC(k) using a reduction from Mul-
ticolored Clique, a well-known W[1]-complete problem [6].

Theorem 2. SMCC(k) is W[1]-hard.
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3.1 On the Treewidth of Monotone Circuits with Bounded Genus

In this section, we bound the treewidth of bounded genus circuits. The win-win
approach applied in this section is based on the grid minor theorems proposed
by Robertson and Seymour [15,16], see also [9].

First consider the following definitions.
A graph G has genus g if it can be drawn without crossings on a surface of

genus g (a sphere with g handles), but not on a surface of genus g − 1. We refer
the reader to [8] for more information on the genus of a graph. We consider the
genus of a circuit as the genus of its underlying undirected graph.

Definition 7. A tree decomposition of an undirected graph G is a pair T =
(T, {Xt}t∈V (T )) such that T is a tree where each node t is assigned to a set of
vertices Xt ⊆ V (G), called bags, according to the following conditions:

–
⋃

t∈V (T )Xt=V (G), i.e. all vertices must be in one bag at least;
– For each (u, v) ∈ E(G), there exist a node t such that the vertices {u, v} ∈ Xt;
– For each v ∈ V (G), the set Tv = t ∈ V (T ) : v ∈ Xt spans a connected subtree

of T .

The treewidth tw(T ) of a tree decomposition T is the size of the largest bag
of T minus one. The treewidth of G is the minimum treewidth among all its
possible tree decompositions.

Definition 8. A graph H is a minor of a graph G if H can be constructed from
G by deleting vertices or edges, and contracting edges.

Definition 9. A grid p × q, denoted by �p×q or �p when p = q, is a graph
whose set of vertices is V (G) = {vij |(i, j) ∈ {1, 2, . . . , p} × {1, 2, . . . , q}} and
there is an edge (vij , vi′j′) ∈ E(G) exactly if |i′ − i| = 1 or |j′ − j| = 1, but not
both.

Theorem 3 (Excluded Grid Theorem [15]). Let t be a non-negative integer.
Then every planar graph G of treewidth at least 9t/2 contains �t as a minor.

Definition 10. For every face F of a planar embedding M , we define d(F ) to
be the minimum value of r such that there is a sequence F0, F1, . . . , Fr of faces
of M , where F0 is the external face, F = Fr, and for 1 ≤ j ≤ r there is a vertex
v incident with both Fj−1 and Fj. The radius ρ(M) of M is the minimum value
r such that ρ(F ) ≤ r for all faces F of M . The radius of a planar graph is the
minimum across all radii of its planar embeddings.

From the Excluded Grid Theorem, it is easy to see that there is a connection
between the radius of a planar graph and its treewidth. In [16], Robertson and
Seymour presented a bound for the treewidth of a planar graph with respect to
its radius.

Theorem 4 (Radius Theorem [16]). If G is planar and has radius at most
r, then its treewidth is at most 3r + 1.
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Using Theorem 4 we are able to either solve SMCC(k) on planar circuits
or output an equivalent instance C ′ with treewidth bounded by a function of k.
First consider the following.

Lemma 2. Let (C, k) be an instance of SMCC(k). There is an algorithm that in
polynomial time either solves (C, k) or outputs an instance (C ′, k) of SMCC(k)
having depth at most k, such that (C ′, k) is an yes-instance of SMCC(k) if and
only if (C, k) is also an yes-instance.

Proof. Let (C, k) be an instance for SMCC(k) such that C is a planar monotone
circuit and k is a parameter. Firstly, we apply to C the following preprocessing
steps to generate a graph C ′:

1. For each vertex vj such that f(vj) = AND, if |N−
vj

| > k, then vj is deleted;
2. Delete every vertex which is at a distance greater than k from vout;
3. Delete all isolated vertex;
4. Delete all vertices whose in-degree became equal to 0; (the original inputs are

not affected by this step)
5. Delete all AND-vertices that lost one of its in-neighbors;
6. Repeat steps 1 to 5 as long as possible.
7. If C ′ = ∅, then we conclude that (C, k) is a no-instance of SMCC(k).

It is easy to see that the rules described above are safe. Thus, after this
preprocessing, if C ′ 	= ∅ then C ′ has only vertices at a distance at most k from
vout. ��

Notice that the underlying undirected graph of the output C ′ has diameter
at most 2k, which implies that if it is planar, then it also has a radius at most 2k,
thus, by Theorem 4, it follows that the underlying undirected graph of C ′ has
treewidth at most 6k + 1. Next, we extend the previous reasoning for bounded
genus graphs.

According to [10], for an edge e = uv of a graph G, contracting e means
removing the two vertices u and v from G, replacing them with a new vertex w,
and for every vertex y in the neighborhood of v or u in G, adding in the new
graph an edge wy whose multiplicity is the sum of the multiplicities of the edges
of G between v and y and between u and y. If in the above definition we do not
sum up multiplicities, and if the initial graph G is a simple graph, then we call
the operation simple contraction, or for short s-contraction. Given a vertex-set
S ⊆ V (G) such that the subgraph of G induced by S, denoted G[S], is connected,
contracting S means contracting the edges between the vertices in S to obtain
a single vertex at the end. We say that a graph H is an s-contraction of a graph
G if H can be obtained after applying to G a (possibly empty) sequence of edge
s-contractions.

The following is a construction presented in [7,10]. Consider an (r × r)-grid.
A corner vertex of the grid is a vertex of the grid of degree 2. By Γr we denote
the graph obtained from the (r×r)-grid as follows: construct first a graph called
Γ ′
r by triangulating all internal faces of the (r × r)-grid such that all internal
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vertices of the grid are of degree 6, and all non-corner external vertices of the
grid are of degree 4 (Γ ′

r is unique up to isomorphism). Two of the corners of the
initial grid have degree 2 in Γ ′

r; let x be one of them. Now Γr obtained from Γ ′
r

by adding all the edges having x as an endpoint and a vertex of the external face
of the grid that is not already a neighbor of x as the other endpoint. Observe
again that Γ ′

r is unique up to isomorphism. The following is a lemma from [10]
implied from Lemma 6 in [7].

Lemma 3 (Lemma 4.5 in [10]). Let G be a graph of genus g, and let r be any
positive integer. If G excludes Γr as an s-contraction, then the treewidth of G is
at most (2r + 4) · (g + 1)3/2.

Lemma 4. Let C ′ be the circuit obtained from Lemma 2. It holds that C ′ has
treewidth at most (4k + 10) · (g + 1)3/2), where g is the genus of C ′.

Proof. First, notice that for each vertex u of a Γ2k+3 there is another vertex v
such that the distance between u and v is at least k + 1. Now, suppose that C ′

has Γ2k+3 as an s-contraction, and let u be a vertex of a Γ2k+3 such that u is
either vout or a vertex obtained by contracting S containing vout. Since there
is a vertex v such that the distance between u and v is at least k + 1, it holds
that C ′ does not have depth greater than k, which is a contradiction. Thus, by
Lemma 3 we have that the treewidth of C ′ is at most (4k + 10) · (g + 1)3/2. ��

3.2 Dynamic Programming on Treewidth

From Lemma 4, in order to solve SMCC(k) on bounded genus graphs, it is
enough to present an FPT algorithm parameterized by the treewidth of C. For
that, we use an extended nice tree decomposition [4].

Theorem 5. SMCC(k) can be solved in time 2O(tw) · n, where tw is the tree-
width of the input.

Proof. Let C be a planar monotone circuit and T = (T, {Xt}t∈V (T )) be an
extended nice tree decomposition of C. For convenience, we add the vertex vout
to every bag of T ; thus, the treewidth of T is increased by 1. The root bag Xr

and the leaves are equal to {vout}. This change ensures that for every bag, there
exists at least one possible subsolution. It is worth to remember that all succinct
certification necessarily contains vout.

Another preprocessing must be made: The introduce edge nodes will be
labeled according of Boolean functions of the head of the directed edge, thus, we
have “introduce edge of an AND-gate” and “introduce edge node of an OR-gate”.
The same alteration is applied to forget nodes, i.e., we have “forget node of AND-
gate” and “forget node of OR-gate”. This separation of nodes help us to organize
the subproblems according to the previous subsolutions already computed.

Let TXt
be the subtree of T rooted by Xt and GXt

be the graph/circuit
having TXt

as tree decomposition.
Each subproblem of the dynamic programming is represented by c[t,X,B],

which denotes the minimum number of edges of a succinct subcircuit of GXt
,
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where X ⊆ Xt is the set of vertices of Xt in such a subcircuit, and B is a Boolean
vector of size at most |X| such that for each v ∈ X with f(v) = OR it is holds
that if B[v] = 1, then the OR-gate v has an in-edge in the subcircuit and B[v] = 0
means that v does not yet have an out-edge in the subcircuit.

Note that since vout belongs to every solution, we do not need to handle
the connectivity issue, as this is a guaranteed property of any minimal solution.
Therefore, the optimal solution can be found at c[t, {vout},B] where B = ∅ if
vout is an AND-gate; otherwise B[vout] = 1. The recurrences are presented below.

Leaf node – Let t′ be a leaf node, then Xt = {vout} which gives us two
possibilities:

c[t, ∅, ∅] = +∞ (1)

c[t, {vout}, ∅] = 0 (2)

Introduce vertex node – Let t be an introduce vertex node with exactly one
child t′ such that Xt = Xt′ ∪ {v}. Since no edge of v was introduced yet, v is
isolated in GXt

. The recurrence in Eq. (3) resumes the subproblems.

c[t,X,P,B] =
{

c[t′,X\{v},B], if v ∈ X
c[t′,X,B], if v /∈ X

(3)

Introduce edge of an AND-gate – Let t be a node that introduces the directed
edge (u, v), where f(v) = AND and let t′ be the child of t. For each possible tuple
(t,X,B), we have three situations (See Eq. (4)):

1. If v ∈ X and u ∈ X, then the edge (u, v) must be in the solution (increase
the recurrence by 1);

2. If v /∈ X, then a solution for t′ is recovered;
3. Lastly, if v ∈ X and u /∈ X, then the edge (u, v) cannot be used, thus, this

solution is invalid because v is an AND-gate.

c[t,X,B] =

⎧
⎨

⎩

c[t′,X,B] + 1, if v ∈ X and u ∈ X
c[t′,X,B], if v /∈ X
+∞ if v ∈ X and u /∈ X.

(4)

Introduce edge of an OR-gate – Let t be a node that introduces the edge (u, v)
where f(v) = OR and let t′ be the child of t. For each possible tuple (t,X,B), we
need check the following situations:

1. If u ∈ X, v ∈ X and B[v] = 1, then the edge (u, v) can be included in solution
depending on the most advantageous conditions in t′:

– for a tuple of t′ with B′
[v] = 0 and B′

[w] = B[w] ∀w 	= v; the OR-gate v
was not satisfied, so we sum 1 to the result since we consider the use of
(u, v) in the current stage.

– for a tuple t′ where B[v] = 1; the OR-gate v has already been satisfied,
i.e., it uses another edge.

2. Case u /∈ X, v /∈ X or B[v] = 0, the edge (u, v) can not be utilized in current
solution; here we copy the solution of t′ with the same condition.
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c[t,X,B] =
{

min{c[t′,X,B′
] + 1, c[t′,X,B]}, if {u, v} ∈ X and B[v] = 1

c[t′,X,B], if u /∈ X, v /∈ X or B[v] = 0
(5)

Forget node of an AND-vertex – Let t be a forget node and t′ be its child such
that Xt = Xt′\v and f(v) = AND. In this case, we need choose the best of two
possibilities: v is part of the solution; v is not a part of the current solution.
These two situations are represented in Eq. (6).

c[t,X,B] = min {c[t′,X,B], c[t′,X ∪ {v},B]} (6)

Forget node of an OR-vertex – Let t be a forget node and t′ be its child such
that Xt = Xt′\v and f(v) = OR. We need the best of two possibilities:

1. v is part of the solution – in this case B′
[v] = 1 and B′

[w] = B[w] ∀w 	= v; if
B′

[v] = 0 the solution would be unfeasible.
2. If v is not a part of the current solution – in this case we recover the solution

from t′ with the similar conditions.

c[t,X,B] = min
{
c[t′,X,B], c[t′,X ∪ {v},B′

]
}

(7)

Join node – Let t be a join node with two children t1 and t2. For tabulation
of the join nodes, we need to encode the merging of two partial solutions: one
originating from GXt1

and another from GXt2
. When merging two partial solu-

tions, we need check if some OR-gate has more than one in-edge. This can be done
through a simple strategy: when we merge two solutions, two vectors B1 and B2

from t1 and t2, respectively, to form B, we may assume that B[i] = B1[i] + B2[i]
for any i. For each possible tuple (t,X,B), we have:

c[t,X,B] = min
B1,B2

{c[t1,X,B1] + c[t2,X,B2]} (8)

Recall that every bag of T has at most tw + 1 vertices, each bag has at
most 2tw+1 possible subsets X, and at most 2tw+1 possible Boolean vectors B.
Since each entry of the table can be computed in 2O(tw) time, it holds that the
algorithm performs in time 2O(tw) · n. ��

Corollary 1. SMCC(k) can be solved in time 2O(k·(g+1)3/2) · nO(1), where g is
the genus of the input.

Corollary 2. Let F be either a class of graphs with the diameter-treewidth prop-
erty or a class of graphs that does not contain every apex graph. Then SMCC(k)
on monotone Boolean circuits whose underlying graph belongs to F can be solved
in time αF (k) · nO(1), where αF is a function that depends only on the class F .

Theorem 6. SMCC(k) on planar circuits does not admit a polynomial kernel,
unless NP ⊆ coNP/poly.
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Abstract. Defining a notion of space in the real/complex model of com-
putation introduced by Blum, Shub and Smale (BSS) is a challenging
task. Though there were some attempts at defining a feasible notion of
space over real/complex numbers, none of the measures seem to capture
the notion of space in a satisfactory manner.

De Naurois [9] introduced the notion of weak space as a possible mea-
sure of space for capturing small space computations. Joglekar et. al. [11]
exhibited limitations of the model over complex numbers.

It is important to explore various possibilities of defining space for
computations over real/complex numbers to understand the difficulty of
the problem. We study the feasibility of defining notions of space based
on: 1) The unit cost model with a simultaneous time bound; 2) Size of an
arithmetic circuit as a measure of space. We compare the space bounded
complexity classes that can be defined based on these measures with the
existing complexity classes.

Finally, we introduce the computational model of algebraic branching
programs with select nodes and explore the relationship of the model
with space bounded complexity classes based on circuit parameters.

1 Introduction

Numerical computation involves algebraic and comparison operations over real
numbers. Any formalism for the foundations of numerical computation requires
computational models that are capable of storing and performing operations on
real numbers with infinite precision. The classical notions of computation devel-
oped by Church, Turing and others do not address computations with infinite
precision. To overcome this difficulty, in 1989, Blum Shub and Smale [3] proposed
a real analogue of the Turing machine, which is now referred to as the BSS model
of real computation. A BSS machine can store an element from the underlying
field with arbitrary precision in its cell. It can perform an algebraic operation on
the contents of the cells or do a branch based on the outcome of a comparison
operation. The decision problems accepted by BSS machines correspond to the
union of semi-algebraic sets over the underlying field [2].

Assuming that each of the permissible operation requires unit time, Blum,
Shub and Smale defined the real counterparts of the complexity classes P and NP
denoted by PR and NPR, respectively. Further, Blum, Cucker, Shub and Smale [3]
developed the notion of reductions for the BSS model of computation, which
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resulted in the discovery of NPR complete languages. For example, testing the
feasibility of a system of quadratic equations is NPR complete under polynomial-
time reductions [3]. See [2] for a detailed exposition on the topic.

Algebraic circuits (arithmetic circuits with comparison operations) are used
to define real/complex analogues of parallel computation [2]. While the question
of PR versus NPR is open, we do have some separation of complexity classes in the
BSS model of computation. There are algebraic sets over R that can be computed
in polynomial time, but cannot be computed in parallel poly-logarithmic time [6].

Though unit time per operation seems to be a natural choice of cost model
for a mathematical formalization of real computation, it is far from real world
constraints. In particular, this measure of complexity does not take into account
size of the numbers that are obtained during the course of computation.

To address this issue, Koiran [12] introduced the notion of weak time for BSS
computations. This allowed him to show that the set of all Boolean languages
accepted by the weak BSS model in polynomial time is contained in P/poly.

Time complexity in the BSS model of computation is arguably well under-
stood and the theory is somewhat analogous to the Boolean world. Soon after
the introduction of the BSS model, Michaux [14] showed that everything decid-
able in the model can also be decided using only a constant number of cells.
This rules out the possibility of considering the unit space as a useful notion
of space. To overcome this limitation, the research community focused on alge-
braic circuit based complexity classes such as NCi

R
and PARR etc. While this

has given us finer complexity classes, none of the classes except for PARR have
shown behavior similar to Boolean space bounded complexity classes.

To define a more realistic cost measure for space used by BSS machines, de
Naurois [9] introduced the notion of weak space for real computation. This is
motivated by Koiran’s [12] notion of weak time. While the notion of weak space
captured certain properties of space bounded computation such as a bound on
the number of configurations in terms of space used, it was not powerful enough
to decide problems that can be decided by constant-depth algebraic circuits. In
fact, over the complex numbers, Joglekar et al. [11] showed that the hyper surface
defined by the elementary symmetric polynomial of degree n/2 on n variables
cannot be computed in polynomial weak space.

We explore the possibility of defining notions of space over the BSS model of
computation using the notion of algebraic branching programs and circuit size.

Motivations: Though lack of a feasible notion of space is well documented in
literature, apart from Michaux [14], which explains the failure of unit space
model, reasons for the lack of other notions of space are not available in litera-
ture. Given the rich algebraic structure of polynomials, half spaces and varieties
which are essential ingredients in the study of the BSS model of computation,
one would expect to have deeper insights into resource bounded computation
over real/complex numbers. Further, in the Boolean setting logspace bounded
complexity classes have several different characterizations in terms of branching
programs and circuits of bounded width [13,18]. Given this pretext, it is sur-
prising that the investigation into reasons for lack of a notion of space over real
computations did not get the attention it deserves.
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It is important to understand the limitations of natural candidates for notions
of space apart from the unit space model. One natural direction is to consider
the inherent complexity of the polynomials that appear during the course of
computation in a BSS machine as a measure of space. In this article, we look
at the possibility of defining notions of space using various complexity measures
for the polynomials that appear during the course of a BSS computation.

Further, for any possibility of having a notion of space that has properties
similar to the one in the Boolean setting, it is important to have related com-
putational models such as branching programs that characterize space bounded
computation in the Boolean setting. Towards this, we develop a notion of branch-
ing programs for the BSS model of computation and relate the corresponding
complexity classes with the existing classes.

Our Contributions: Although the simulation of arbitrary BSS machines accept-
ing a set L ⊆ R

∗ =
⋃

n≥0 R
n given by Michaux [14] involves only a constant

number of cells, the time required could be exponential in the running time of
the original machine. One possibility is to put a simultaneous restriction on time
as well as the number of cells used. Taking cue from Boolean computation it is
fair to expect a machine that uses at most s cells at any point of time during the
computation to halt in 2O(s) time. Note that this was considered by Cucker [7] in
the context of polynomial space. We consider BSS machines with simultaneous
space and time bound for small space computations. With the number of cells as
notion of space and running time bounded by an exponential function of space,
we observe that log-space bounded machines can accept sets accepted by NC1

R

(Theorem 1). However, it turns out that the Boolean part of log-space under
this notion is powerful enough to contain P (Theorem 2). This makes the notion
not very useful for defining analogues of small space complexity classes.

Our next attempt is using an implicit representation for the contents of the
cell in a BSS machine. At any point of time during the execution, the content
of any cell of a BSS machine can be viewed as an evaluation of a polynomial (or
a rational function when division is allowed) at the given input. The definition
of weak-space in [9] used the bit size required to represent the polynomial in
explicit sparse form as the cost of each cell, sum of the costs taken over all cells
being the cost of a configuration. A natural way to generalize this would be to
use implicit circuit representation. We study the minimum size of an arithmetic
circuit computing polynomials corresponding to a configuration as a notion of
space. This notion has the desirable properties that when restricted to polyno-
mial space the resulting complexity class is large enough to contain PR and its
boolean part is contained in PSPACE (Theorems 3 and 4).

Algebraic branching programs (ABPs) play a vital role in algebraic complex-
ity theory [16,17]. It may be noted that defining algebraic branching programs
to capture real computation is not straightforward. In particular, a comparison
operation depends on the actual input and it is not clear how to represent it as
an edge label in the branching program. We introduce the notion of a select node
and we propose algebraic branching programs with select nodes as a natural real-
computation analogue of ABPs. We show that formulas with a small number of
select nodes can be simulated by ABPs with select nodes (Theorem 5).
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Finally, we consider the problem of depth reduction for algebraic formulas.
We give efficient depth reduction for the case of formulas with a small number
of select nodes or with bounded select depth (Theorem 6).

2 Preliminaries

We give necessary definitions and notations relating to the BSS model of real
computation.

BSS Model: A BSS machine M over F ∈ {R,C} with machine constants α1,
α2, . . . , αk ∈ F, k ≥ 0 and with admissible input Y ⊆ F

∗ is a random access
machine having access to registers (called cells) and can execute three types
of instructions: Compute: Perform algebraic operation ci ← cj op ck where
op ∈ {+,×,−}, and go to the next instruction. Branch: Perform test operation

≥ 0? (in the case where F = C, then the comparison would be =? 0) and
branch to next instruction according to the result of the comparison. Copy :
Store the content of one register into another, that is, ci ← cj and go to the next
instruction.

For the decision version of problems the input-output (φM : F∗ → F
∗) map is

the characteristic function of the language accepted by the BSS machine M . For
simplicity of exposition, we restrict ourselves to division-free computations. For
a BSS machine M , let L(M) = {x ∈ Y | M accepts x}. The running time of a
BSS machine on an input x ∈ R

n is the number of operations it performs before
halting. A BSS machine M is said to be t time bounded, if for any x ∈ R

∗,
M runs for at most t(|x|) time on input x of |x| real numbers. For any time
constructible function t : N → N, let DTIMEF(t) be the set of all subsets L ⊆ F

∗

that can be accepted by t-time bounded BSS machines. Let PF denote the set
of all subsets of F

∗ accepted by polynomial-time bounded BSS machines, i.e.,
PF =

⋃
c≥0 DTIME(nc). For L ⊆ F

∗, let BP(L) = L ∩ {0, 1}∗, i.e., the Boolean
part of L. For a BSS based complexity class C, let BP(C) = {BP(L) | L ∈ C}.

Arithmetic Circuits and Algebraic Branching Programs: Let F be a field. An
arithmetic circuit C over F is a directed acyclic graph where nodes of in-
degree zero, called input gates, are labeled by an element in X ∪ F, where
X = {x1, . . . , xn}. Internal gates have in-degree two and are labeled by an
operation in {+,−,×}. Nodes of out-degree zero are called the output gates of
the circuit. Every gate in C computes a unique polynomial in F[X]. The set
of polynomials computed at the output gates of the circuit is the set of out-
puts computed by C. An arithmetic formula is an arithmetic circuit where the
underlying graph is a tree.

An Algebraic Branching Program ABP P is a directed acyclic graph with a
source node s and a sink node t. The edges are labeled by elements from X ∪F.
For a s to t path ρ, the weight of ρ is the product of labels of edges in ρ. The
polynomial computed by P is the sum of weights of all of the s to t paths in P .

The polynomial identity testing PIT problem is to test if the given arithmetic
circuit computes the zero polynomial or not.
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Proposition 1 [10,15,19]. PIT ∈ coRP ⊆ PSPACE.

Algebraic Circuits: An algebraic circuit is a directed acyclic graph having nodes
(gates) of in-degree 0, 1 or 2. Gates with in-degree 0 are the input gates or
constant gates and are labeled by input variables or constants from the under-
lying field, respectively. Nodes with in-degree 2 are the arithmetic gates and are
labeled by symbols {+,−,×}. Nodes with in-degree 1 are the select gates that
are labeled ≥ 0?, when inputs to the circuit are from R or =0? for inputs coming
from field of complex numbers C. There is one designated select gate, output
gate, with out-degree 0.

The value computed at gate g is defined recursively as in the case of arith-
metic circuits. A select gate returns 0 if its input polynomial evaluates to a value
less than 0, or 1 otherwise. The size of the algebraic circuit is the number of gates
in it and depth is the maximum length of a path from output gate to input gate
in the circuit. The select depth of an algebraic circuit is the maximum number
of select gates in any root to leaf path in the circuit.

A set L ⊆ F
∗ is said to be accepted by an algebraic circuit family (Cn)n≥0 if

Cn computes the characteristic function of Ln = L ∩ F
n, for every n.

The parallel complexity class NCF for F ∈ {R,C} is defined as follows:

Definition 1 [2]. For i ≥ 0,

NCi
F

def=

⎧
⎪⎪⎨

⎪⎪⎩
L ⊆ F

∗ |
there is a log space uniform family (Cn)n≥0 of algebraic
circuits, where
Cn is of size nc for some constant c and of depth O(login)
such that L =

⋃
n≥0 L(Cn).

⎫
⎪⎪⎬

⎪⎪⎭

The NC hierarchy over F is defined as NCF

def=
⋃

i≥1 NC
i
F
.

Unit Space and Weak Space: Let M be a BSS machine which runs in time t(n),
and c1, c2, . . . , ct is its computation path on some input x1, x2, . . . , xn where ci’s
are configurations of M . Then Size(c) is the number of non-empty work tape
cells in configuration c of M and unit space USpace(M, (x1, x2, . . . , xn)) is the
maximum of Size(c) over all configuration in the computation path of M on input
x1, x2, . . . , xn, and USpace(M,n) is the maximum of USpace(M, (x1, x2 . . . , xn))
over all input instances of length n on which M halts. Michaux [14] showed:

Proposition 2 [14]. Let L ⊆ R
∗ be accepted by a BSS machine M . There a

BSS machine M ′ such that M ′ accepts L in unit space O(1).

The result above makes unit space uninteresting for defining sub-linear space
complexity classes. To overcome this, Naurois [9] proposed the notion of weak
space for the BSS model. This definition was inspired by the notion of weak
time introduced by Koiran [12]. We give a somewhat simplified description of
the notion of weak space as presented in [11]. The Weak-Size of a polynomial
g ∈ Z[x1, x2, . . . , xn] with integer coefficients is defined as the length of the binary
encoding of the polynomial g using the sparse representation. Let g =

∑
m∈M m
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where M = {m1, . . . ,ms} is a set of monomials in the variables {x1, . . . , xn}.
For a monomial m, let enc(m) be a binary encoding of m. Then Sizew(g) =∑s

i=1 |enc(mi)|, where |enc(mi)| is the number of bits in enc(mi).

Remark 1. For simplicity of exposition, we do not consider any shift in variable
indices which was included in the original definition by Naurois [9].

Definition 2. Consider a BSS machine M with machine constants α1, . . . , αk ∈
F running in time t(n). Consider an input x = (x1, x2, . . . , xn) ∈ F

n, n ≥ 0.
Let c1, c2, . . . , ct, where t = t(n) be the sequence of configurations of M on x
such that c1 is the initial configuration and ct is the final configuration. For
1 ≤ i, j ≤ t, let fij ∈ Z[x1, x2, . . . , xn, y1, . . . , yk] be the polynomial representing
the content in the jth non-empty cell of the configuration ci, i.e., the content of
the jth cell is the value fij(x1, . . . , xn, α1, . . . , αk). The polynomial fij is unique
for deterministic computations. The weak space of the configuration ci is defined
as WSpace(M, ci) =

∑
j∈[l] Sizew(fi,j)). The weak space of the machine M on

input x1, x2, . . . , xn is WSpace(M, (x1, x2, . . . , xn)) = maxi WSpace(M, ci). The
weak space of the machine M is the maximum taken over all inputs:

WSpace(M,n) = max
x1,x2,...,xn

WSpace(M, (x1, x2, . . . , xn)).

LOGSPACEW is defined to be the class of sets in F
∗ that can be accepted by

BSS machines of weak space O(log n). Similarly, PSPACEW denotes the class of
sets that is accepted by BSS machines of polynomial weak space.

Remark 2. Any comparison between machine based complexity classes and cir-
cuit based complexity classes requires suitable notions of uniformity. For exam-
ple, for polynomial size circuits, we assume that the circuit is P-uniform. For
notions of uniformity, the reader is referred to [18].

3 On the Unit Cost Space Model with Time Bound

Proposition 2 does not give a good upper bound on the running time of the
constant-cell machine. As far as we know, for simulating a t time bounded BSS
machine with a constant number of cells, the running time required for the
simulating machine can be as large as 2poly(t).

We look at computations where the number of cells and the running time are
simultaneously bounded.

Cucker [7] had considered the BSS computation with a simultaneous restric-
tion on time and space with a polynomial bound on space. We extend this to
arbitrary time and space bound by defining complexity classes based on a simul-
taneous bound on the running time; as well as the number of cells used by the
BSS machine before it halts. Proofs from this section are omitted due to space
constraints.

Definition 3. Let F ∈ {C,R} and s : N → N be any space constructible function
and t : N → N be any time constructible function. Define

SPACETIMEF(s, t) =
{

L ⊆ F
∗ | There is a BSS machine M that accepts L

using at most O(s) cells and time O(t).

}



514 O. Prakash and B. V. Raghavendra Rao

Using a depth first evaluation of formulas, we get:

Theorem 1. For any field F, NC1
F

⊆ SPACETIMEF(log n, poly(n)).

Since the BSS machine is capable of storing an arbitrary real/complex num-
ber with infinite precision, even with a constant number of registers, a BSS
machine can have the power of a polynomial-time-bounded TM.

Theorem 2. P ⊆ BP(SPACETIMER(O(1), poly(n))).

Using the simulation given in the proof of Theorem 2, we can show that every
polynomial space bounded TM can be simulated by a BSS machine using only
a constant number of cells.

Corollary 1. PSPACE ⊆ BP(SPACETIMEF(O(1), 2nO(1)
) ⊆ PSPACEF where

F ∈ {C,R} and PSPACEF is the BSS analogue of PSPACE

Proof. The proof is similar to that of Theorem 2 except that a machine M
accepting a language L ∈ PSPACE can run for exponential time.

4 Circuit Size as a Measure of Space

The notion of weak space given by Naurois [9] is based on the size of representa-
tion of a polynomial in the sum of product form. However, the arithmetic circuit
model of computation gives us access to more intrinsic notions of complexity for
polynomials. One possible avenue is to consider size measures on an arithmetic
circuit representing the content of a cell in a BSS machine.

We study measures of space based on the size of arithmetic circuits computing
the polynomials that arise during the course a computation in a BSS machine.

Definition 4. Let M be a BSS machine with constants α1, . . . , αk. Fix the input
length to be n and let x = (x1, . . . , xn) ∈ F

∗. Consider a configuration c on input
x, with non-empty cells e1, . . . , er. For 1 ≤ i ≤ r let fi(x1, . . . , xn, α1, . . . , αk) be
the polynomial representing the content of cell ei in the configuration c. Define
csize(c) as the minimum size of an arithmetic circuit computing fe1 , . . . , fer

simultaneously, where the only constants used in the circuit are from {−1, 0, 1}.
Then spacesize(M,x) of the machine M on a given input x is defined as the
maximum csize(c) taken over all configurations of M on x. Finally, the cell size
function for M is defined as csizeM (n) def= maxx∈Fn spacesize(M,x).

Based on the above notion, we define the following complexity classes:

Definition 5. Let s be any space constructible function:

SPACESIZE(s)
def=

{

L ⊆ F
∗ | ∃ a BSS machine M such that L(M) = L, and

csizeM (n) = O(s(n)).

}

LOGSPACESIZE
def= SPACESIZE(log n); PSPACESIZE

def=
⋃

i≥0

SPACESIZE(ni).
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Since sparse polynomials have small circuits, we have:

Observation 1. LOGSPACEW ⊆ LOGSPACESIZE; PSPACEW ⊆ PSPACESIZE.

For any t ≥ n, the number of arithmetic circuits of size t over inputs X =
{x1, . . . , xn} and constants {−1, 0, 1} is at most tO(t). This immediately gives
a bound on the total number of configurations in an s space bounded machine
with the notion of space as above. As a consequence, we get:

Lemma 1. For F ∈ {C,R}, SPACESIZE(t) ⊆ DTIMEF(2O(t(log t+log n))).

We observe that polynomial space under the above notion is powerful enough
to capture polynomial time:

Theorem 3. For F ∈ {R,C}, PF ⊆ PSPACESIZE.

In [11], it was shown that PSPACEW ⊂ PC over complex numbers. As an
immediate corollary to Theorem 3, we have:

Corollary 2. Over the field of complex numbers, PSPACEW ⊂ PSPACESIZE.

Finally, we obtain a PSPACE bound on the Boolean part of PSPACESIZE.

Theorem 4. Over the field of complex numbers, BP(PSPACESIZE) ⊆ PSPACE.

5 Algebraic Branching Programs with Select Nodes

The BSS model of computation can be viewed as a generalization of Valiant’s
algebraic model of computation where the intermediary values computed in the
circuit can be compared and the output gate is a comparison gate. In an attempt
to obtain a real-analogue of the well studied ABPs, we introduce the notion of
algebraic branching programs with select nodes:

Definition 6. An algebraic branching program over a field F with select nodes is
a directed acyclic graph having one designated node of zero in-degree, called the
source node, denoted by s and two nodes of zero out-degree called terminal nodes
and denoted by tacc and trej. Every node except the terminal nodes is labeled as
either an algebraic node or a select node. Edges between any two algebraic nodes
are labeled with either a variable or an element from F. Every select node has
in-degree one, out-degree two and is labeled by a comparison operation op which
depends on the underlying field. For example, when F = R, op can be either ≤
or =. Whereas, for C, op is treated as =.

Notion of Acceptance in ABPs with Select Nodes: An algebraic branching pro-
gram with select nodes can be viewed as a generalization of the classical algebraic
branching program where the algebraic branching programs are connected via
select node. Let P be an algebraic branching program with select nodes. Let s
be the start node, tacc and trej be the terminal nodes in P . Consider an input
x1 = a1, · · · , xn = an with a1, . . . , an ∈ F. Let g1 be a select node in P such
that there is no select node in any of the paths from s to g1 in P . Suppose g1
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corresponds to the comparison ≤. Let u and v be out-neighbors of g1, and w be
its in-neighbor. Let pw be the polynomial computed at nodes w in P . The edge
(g1, u) is said to be active with respect to the input a = (a1, . . . , an) if pu(a) ≥ 0
and is inactive otherwise. If (g1, u) is inactive, then (g1, v) is considered as active
and vice-versa. For a select node g in P with out-neighbors u and v, in-neighbor
w, suppose that for every select node along any s to w path their outgoing edges
are marked as active or inactive. Let [s, w]ac denote the polynomial computed
by the sub-program with s as the start node and w as the terminal node where
all inactive edges are removed. If [s, w]ac(a) ≥ 0 then mark (g, u) as active and
(g, v) as inactive, and vice-versa otherwise. This way, we have that for every
select gate in P , one of its two outgoing edges is active and the other inactive.
We say that P accepts the input a = (a1, . . . , an) if there is a directed path from
s to tacc that does not contain any inactive edge.

For a branching program P , let LP denote the set of inputs accepted by it,
i.e., LP = {(a1, . . . , an) | P accepts (a1, . . . , an)}.

The resources such as size of an algebraic branching program with select
nodes is defined in the same manner as for algebraic branching programs. Size
of P is the number of nodes in P .

We define the following complexity classes based on ABPs with select nodes:

BPF =

⎧
⎨

⎩
L ⊆ F

∗ |
there is a log space uniform family (Pn)n≥0 of ABPs
with select nodes where Pn is of size nc for some con-
stant c and L =

⋃
n≥0 L(Pn).

⎫
⎬

⎭

BWBPF =

⎧
⎨

⎩
L ⊆ F

∗ |
there is a log space uniform family (Pn)n≥0 of ABPs
with select nodes where Pn is of size nc and width w
for some constants c and w such that L =

⋃
n≥0 L(Pn).

⎫
⎬

⎭

It follows immediately that BPF ⊆ PF. By a simple divide-and-conquer con-
struction we get:

Lemma 2. BWBPF ⊆ NC1
F
.

By a straightforward series-parallel construction, we have

Lemma 3. NC1
F

⊆ BPF.

6 Algebraic Formulas

Definition 7. An algebraic formula is a directed acyclic graph, having four types
of nodes input node, select node, arithmetic node and output node, where each
node has fan-out 1. Input node has fan-in zero and is labelled by the input vari-
able, select node is the comparison gate having fan-in 3, one is the control input,
other two inputs correspond to the possible output of the select gates based on
the outcome of comparison test performed on control input. Arithmetic nodes
are labelled by {+,×,−} and perform the arithmetic operation of addition and
multiplication, output node is a select node whose other two inputs besides the
control input are 0 and 1.
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We prove that languages accepted by a family of polynomial size algebraic for-
mula having log n select gates can also be accepted by polynomial size constant-
width algebraic-branching programs with select nodes.

Theorem 5. Let L ⊆ F
∗ be a set accepted by a family (Fn)n≥0 of algebraic for-

mula such that Fn is of polynomial size, O(log n) depth and has at most O(log n)
test gates. Then L can be accepted by a family of constant-width polynomial-size
algebraic branching programs with select nodes.

The proof involves guessing the values of the test gates in the formula, then
compressing the resulting formula into an ABP using [1] and then carefully
performing the verification.

The branching programs constructed in Theorem 5 can be seen as non-
deterministic branching programs.

It is known that any polynomial computed by polynomial size arithmetic
formulas can also be computed by formulas of logarithmic depth and polynomial
size. We consider the problem of depth reduction for algebraic formulas.

The select depth of an algebraic formula is the maximum number of select
gate in any path from root to leaf. We consider algebraic formulas where the
top gate is a select gate of the form s = (g, 1, 0), i.e., the output value is either
0 or 1. Let F be an algebraic formula with input variables x1, . . . , xn. An input
a = (a1, . . . , an) ∈ F

n is accepted by F , if the output of the final comparison gate
on input a is 1. The class of sets accepted by families of formulas of polynomial
size is denoted by FF:

FF =

⎧
⎪⎪⎨

⎪⎪⎩

L ⊆ F
∗ |

there is a log space uniform family (Fn)n≥0 of alge-
braic formulas where
Fn is of size nc for some constant c and L =⋃

n≥0 L(Fn).

⎫
⎪⎪⎬

⎪⎪⎭

F-DEPTHF =

⎧
⎪⎪⎨

⎪⎪⎩

L ⊆ F
∗ |

there is a log space uniform family (Fn)n≥0 of alge-
braic formulas where
Fn is of size nc and depth c log n for some constant
c and L =

⋃
n≥0 L(Fn).

⎫
⎪⎪⎬

⎪⎪⎭

We observe that circuits of logarithmic depth and polynomial size can be trans-
formed to algebraic formulas:

Observation 2. NC1
F
is the same as the class of sets accepted by families of

polynomial size algebraic formulas of logarithmic depth over F.

In the case of Boolean as well as Valiant’s arithmetic model of computation,
it is known that formulas of polynomials can be efficiently depth reduced to
formulas of O(log n) depth and polynomial size. However, in the case of algebraic
circuits with comparison gate, depth reduction is not known. We show depth
reduction for the case of formulas with a small number of comparison gates.

Lemma 4. Let F = (Fn)n≥0 be a family of algebraic formulas, of size s = s(n)
and containing at most � = �(n) comparison gates accepting a set L. Then



518 O. Prakash and B. V. Raghavendra Rao

for every n ≥ 0, there is an algebraic formula F ′
n of size 2�sO(1) and depth

O(log s + log �) such that the family F ′ = (F ′
n)n≥0 accepts L. Moreover, if the

family F is log-space uniform, then so is F ′

Proof. A select gate s in the formula Fn is denoted by a triplet s = (h, f, g).
The output of s on a given input is denoted by ηs such that ηs = f if h ≥ 0 and
ηs = g, otherwise. We do a depth-first search traversal of the formula Fn, let
the select gate visited are in the order, s1, s2, . . . sm, where m ≤ �(n). For every
b ∈ {0, 1}n, Fn(b) is the formula obtained from Fn after replacing every select
gate si with

ŝi =

{
fi if bi = 1
gi otherwise.

Let F (i, b) be the sub-formula of F (b) rooted at select gate si and all other select
gates sj �= si in the sub-formula are replaced by ŝj . Further, replace the select
gate si = (hi, fi, gi) in formula F (i, b) by s̃i = (hi, 1, 0) such that

s̃i =

{
1 if ((hi ≥ 0) ∧ (bi = 1)) ∨ ((hi < 0) ∧ (bi = 0))
0 otherwise.

Let F̂ (i, b) denote the resulting formula. Let VER(b) be the verification formula,
which verifies whether bi = 1 if, and only if hi ≥ 0, for all i. In fact VER(b) =
∏�

i=1 F̂ (i, b). Consider the formula F ′(b) =
∑

b∈{0,1}n F (b) × VER(b), having
one select gate at the output with a > 0? test. It is clear from the construction
that, the formula F ′(b) accepts an input instance if and only if it is accepted by
the formula F . Now since the formula F ′(b) has only one test gate at the top,
we can depth reduce the resulting formula. The uniformity requirement follows
from the fact the reachability in a forest can be done in logarithmic space [5]

Further, by a simple application of Brent’s [4] depth reduction technique, we
can show that formulas in which there are at most a constant number of select
gates in any path from root to leaf can be efficiently depth reduced.

Theorem 6. Let L ⊆ F
∗ be accepted by a family F = (Fn)n≥0 polynomial size

algebraic formulas such that Fn has constant select depth for every n ≥ 0. Then
L can be accepted by a family F ′ of algebraic formulas of polynomial size and
depth O(log n). Moreover, if F is log-space uniform, so is F ′.

Conclusions. We have studied various notions of space for the BSS model of
computation and discussed their limitations. We believe that it is worthwhile
exploring the structure and power of ABPs with select nodes. In particular, a
real analogue of Ben-Or and Cleve [1] will be interesting and might be helpful
in the study of the class a-NC1

> defined in [8].

Acknowledgments. The authors gratefully acknowledge anonymous reviewers of an
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the presentation significantly.
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Abstract. In the paper, we study the adaptivity of maximizing a
monotone nonsubmodular function subject to a cardinality constraint.
Adaptive approximation algorithm has been previously developed for
the similar constrained maximization problem against submodular func-
tion, attaining an approximation ratio of (1 − 1/e − ε) and O

(
log n/ε2

)

rounds of adaptivity. For more general constraints, Chandra and Kent
described parallel algorithms for approximately maximizing the multilin-
ear relaxation of a monotone submodular function subject to either car-
dinality or packing constraints, achieving a near-optimal (1 − 1/e − ε)-
approximation in O

(
log2 m log n/ε4

)
rounds. We propose an Expand-

Parallel-Greedy algorithm for the multilinear relaxation of a monotone
and normalized set function subject to a cardinality constraint based
on rounding the multilinear relaxation of the function. The algorithm

achieves a ratio of
(
1 − e−γ2 − ε

)
, runs in O

(
log n/ε2

)
adaptive rounds

and requires O
((

n log n/ε2
))

queries, where γ is the Continuous generic
submodularity ratio.

Keywords: Cardinality constraints · Parallel algorithm ·
Nonsubmodular · Multilinear relaxation

1 Introduction

The problem of maximizing a monotone set function over a k-cardinality con-
straint has broad applications in many scenarios, such as experiment design [4],
sparse modeling [10], feature selection [15], graph inference [14], link recommen-
dation [17]. Formally the problem can be described as follows:

max f(S) s.t S ⊆ V, | S |≤ k, (P1)
c© Springer Nature Switzerland AG 2020
D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 520–531, 2020.
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where V = {v1, ..., vn} is the ground set, f : 2N → R+ is a monotone normalized
set function.

f(·) is submodular if and only if it satisfies that f(A ∪ v) − f(A) ≥
f(B ∪ v) − f(B) for all A ⊆ B ⊆ V and v ∈ V , where V is the ground set.
In the case, we say the set function satisfies the diminishing property called
submodularity and the problem is (relatively) well researched. The standard
greedy algorithm is known as a theoretical performance guarantee for maximiz-
ing a submodular function, and nevertheless performs well empirically even when
the objective function deviates from being submodular. For example, under a
simple cardinality constraint, it is shown that the standard greedy algorithm
deserves an approximation factor of (1 − 1/e) [16,18]. This constant factor later
has been further improved with respect to curvature [19], which is a property of
a submodular function measuring how close is a submodular function to being
modular [9].

However, there are many other important applications whose objective func-
tion is not submodular. An important class of such objectives are ς-weakly sub-
modular functions, where ς is called submodularity ratio and characterizes how
close the function is from being submodular. As first introduced in [10], it was
shown that the approximation ratio of Greedy for (P1) attains (1 − e−ς), which
degrades slowly as the submodularity ratio decreases. In [3], Bian et al. obtain
the approximation guarantee of the form α−1(1 − e−ας), that further depends
on the curvature α. In paper [13], Gong et al. propose a measurement γ′ called
generic submodularity ratio, which clearly characterizes how close a nonnegative
increasing set function is to be submodular. Compared with submodularity ratio
ς, γ′ is more flexible in inequality applications, although both of them are actu-
ally derived from two different equivalent definitions of submodular functions.
In fact, the min-marginal function is constructed from objective function with
interpolation and decreasing property.

A recent line of work focused on developing distributed algorithms for sub-
modular maximization problems in parallel models of computation. They focused
on parallelizing sequential algorithms such as the greedy algorithm and its
variants, aiming to achieve tradeoffs between the performance guarantee and
resources including the number of rounds and the total amount of communica-
tion. Balkanski and Singer [2] recently initiated the study of adaptivity (or par-
allelism) with respect to constrained submodular function maximization subject
to a cardinality constraint. Subsequent works individually developed by Balka-
nski et al. [1] and Ene and Nguyen [11] produced a near-optimal (1 − 1/e − ε)-
approximation in O(log n/ε2) rounds of adaptivity. For extending these results to
more general constraints, Chandra and Kent [7] described parallel algorithms for
approximately maximizing the multilinear relaxation of a monotone submodular
function subject to packing constraints. Their algorithm achieves a near-optimal
(1 − 1/e − ε)-approximation in O(log2 m log n/ε4) rounds, where n is the cardi-
nality of the ground set and m is the number of packing constraints.
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1.1 Our Contribution

In this paper, we devise parallel algorithms for non-submodule maximization
problems by solving the following multilinear relaxation in parallel:

max F (x)
s.t. 〈1, x〉 ≤ k, x ∈ RN

≥0 (P2),

where F : [0, 1]N → R+ is the multilinear extension of f [5].

The main result can be summarized as in the following theorem

Theorem 1. For the multilinear relaxation of a monotone and normalized set
function subject to a cardinality constraint, there is a parallel/adaptive algorithm
which runs in (O(log n/ε2)) adaptive rounds, consumes O(n log n/ε2) queries,
and deserves a ratio of ((1 − e−γ2

) − ε) for any given parameter ε > 0. Fur-
thermore, by rounding a fractional solution of the multilinear relaxation, the
algorithm eventually outputs a γ((1−e−γ2

)−ε)-approximation solution for max-
imizing the nonsubmodular set function subject to a cardinality constraint.

1.2 Organizations

The remainder of this paper is organized as follows. Section 2 provides some nec-
essary preliminaries; Sect. 3 gives the main Expand-Parallel-Greedy algorithm
and its analysis; Sect. 4 gives the rounding schemes and lastly Sect. 5 concludes
our work.

2 Preliminaries

Let f be a nonnegative, monotone and normalized nonsubmodular set function.
For any vectors x, y ∈ [0, 1]N , and a set of coordinates S, we say x ≤ y if and
only if xi ≤ yi holds for any i ∈ S. Let x ∨ y be the coordinate-wise maximum
of x and y, x ∧ y be the coordinate-wise minimum, and x\y = x − x ∧ y.

For a vector x ∈ [0, 1]N , and a set of coordinates S, we use x ∧ S to denote
the vector obtained from x by setting all coefficients not indexed by S to 0, and
x\S = x − x ∧ S the vector obtained from x but setting all coordinates indexed
by S to 0.

Definition 1. Given a set function f : 2N → R+, the multilinear extension of
f , denoted F , extends f to the product space [0, 1]N by interpreting each point
x ∈ [0, 1]N as an independent sample S ⊆ N with sampling probabilities given
by x, and taking the expectation of f(S). Equivalently,

F (x) =
∑

S⊆N

(
∏

i∈S

xi

∏

i/∈S

(1 − xi)

)
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We extend F to the cone RN
≥0 by truncation F (x) = F (x ∧ 1), where x ∧ 1

takes the coordinate-wise minimum of x and the all-ones vector 1. Moreover,
we write Fy(x) = F (x ∨ y) − F (y) which essentially generalizes the definition of
marginal values to the continuous setting. Let F ′(x) be the gradient of F at x
and F ′

i (x) denote the partial derivative of F with respect to i.

Lemma 1. Let F be the multilinear extension of a set function f , x ∈ [0, 1]N .
Then we have

1) (Multilinearty) For any i ∈ N,F (x) = F (x \ i) + Fx\i(i).
2) (Monotonicity) For any i ∈ N,F ′

i (x) = Fx\i(i), if f is monotone, then F ′ is
nonnegative, and F is monotone.

In the work of [13], they proposed the definition of generic submodular ratio
γ′, for clearly characterizing how close a nonnegative increasing set function is
to be submodular. Compared with submodularity ratio ς which proposed by Das
and Kempe [10], γ′ is more flexible in inequality applications. Next, we extend
the definition to continuous situations.

Definition 2 (Generic submodularity ratio). Given a ground set N and an
increasing set function f : 2N → R+, the generic submodularity ratio of f is
the largest scalar γ′ such that for any S ⊆ T ⊆ N and any j ∈ N \ T , we have

fS(j) ≥ γ′fT (j).

Definition 3 (Continuous generic submodularity ratio). Given any normalized
set function f , the continuous generic submodular ratio is defined as the largest
scalar γ ∈ [0, 1] subject to

Fx\i(i) ≥ γFy\i(i), x ≤ y.

Comparing the two submodularity ratio, the elements in the set S can be
regarded as some coordinates in x, so we have γ ≤ γ′ by comparing Definition 2
with Definition 3.

Evaluating F and F ′: The formula for F (x) gives a natural random sampling
algorithm to evaluate F (x) in expectation. Often we need to evaluate F (x) and
F ′(x) to high accuracy. This issue has been addressed in prior work via standard
Chernoff type concentration inequalities when f is non-negative.

Lemma 2 [6]. Suppose (F ′(x))i ∈ [0,M ′]. Then with r = O(p log d/ε2) parallel
evaluations of f , one can find an estimation Z of (F ′(x))i such that

P

[
|Z − (F ′(x))i | ≥ ε (F ′(x))i +

εM ′

p

]
≤ 1

d3
.

Similarly, if F (x) ∈ [0,M ], then with r = O(p log d/ε2) parallel evaluations of f ,
one can find an estimated Z of F (x) such that

P

[
|Z − F (x)| ≥ εF (x) +

εM

p

]
≤ 1

d3
.
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Algorithm 1. EPG: Expand-Parallel-Greedy(F,N, k, ε)
1: x ← 0, λ ← OPT

2: while 〈x, 1〉 ≤ k and λ ≥ e−γ2
OPT do

3: A. Let Mλ = {j ∈ N : F ′
j(x) ≥ (1−ε)λ

k
}

4: B. Update S0 = Mλ

5: while Sl−1 is not empty and 〈x, 1〉 ≤ k do
6: a. choose δ maximal s.t.
7: 1). Fx(x + δSl−1) ≥ γ1−l (1−ε)2λδ|Sl−1|

k

8: 2). 〈x + δSl−1, 1〉 ≤ k
9: b. x ← x + δSl−1

10: c. update Sl = {j ∈ N : F ′
j(x) ≥ γ−l (1−ε)λ

k
}

11: end while
12: C. λ ← (1 − ε)λ
13: end while
14: return x

The following algorithm and analysis were under the assumption that gradi-
ents of the multilinear extension F were easy to compute, i.e. could be computed
by oracles. In fact, such oracles do exist for many real submodular functions of
interest. Moreover, given oracle access to f , one can implement sufficiently accu-
rate oracles to F (x) and F ′(x) with O(1) oracle calls to f but without increasing
the depth.

3 The Greedy Algorithm and Its Analysis

3.1 Expand-Parallel-Greedy Algorithm

In this section, we shall describe our main algorithm. The key idea of our algo-
rithm actually originated from the continuous-greedy algorithm proposed by
Calinescu et al. in [5] which maximizes a submodular function within a cardinal-
ity constraint polytope through adding δej to x for a fixed and conservative step
size δ > 0. The algorithm was parallelized by Chekuri et al. [7] via incorporat-
ing two changes to the continuous-greedy algorithm: First, rather than increase
x along the single best coordinate, identify all good coordinates with gradient
values nearly as large as the best coordinate, and increase along all of these
coordinates uniformly; Second, rather than increasing x along these coordinates
by a fixed increment, they use a dynamical increment δ.

Although obtained via extending continuous-greedy algorithm [5] and the
parallel-greedy algorithm of Chekuri et al. [7], our algorithm is different in sophis-
ticated details. Due to the submodularity, the previous parallel-greedy algorithm
can ensure the number of good coordinates decreases during iterations. How-
ever, when the function is nonsubmodular, the set of the best coordinate does
not decrease during iterations, and hence the continuous-greedy algorithm and
parallel-greedy algorithm are no longer feasible. In this paper, we overcome this
difficulty by proposing the so-called Expand-Parallel-Greedy algorithm. In essen-
tial, our algorithm use a different definition of good coordinates with respect to
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the continuous generic submodularity ratio γ and gradient values, and actually
increase along all of these coordinates uniformly.

The algorithm is briefly described as follows: The first part is to increase
the good coordinates as much as possible when the threshold λ is given. The
second part is to update our threshold λ carefully when x does not violate the
constraints. The detailed layout of our algorithm is as formally in Algorithm 1.

3.2 Approximation Ratio

Lemma 3. If the inner loop terminates after the m rounds, then any output
value x satisfies OPT − F (x) ≤ γ−m−1λ.

Proof. If z is an optimal solution, then we have

OPT − F (x) ≤ Fx(z)
= F (x ∨ z) − F (x)

≤ γ−1〈F ′(x, x ∨ z − x)〉
≤ γ−1〈F ′(x, z)〉

≤ γ−m−1 (1 − ε)λ
k

〈z, 1〉
≤ γ−m−1λ.

Lemma 4. If the inner loop terminates after the m rounds, the output x satisfies
F (x) ≥ (1 − O(ε))(1 − e−γ2

)OPT.

Proof. Let t = Σxi. From Lemma 1 and the choice of δ in Algorithm 1, we
immediately have

Fx(x + δSm−1) ≥ γ1−m(1 − ε)2δ|Sm−1|
k

γ1+m(OPT − F (x))

≥ γ2(1 − ε)2δ|Sm−1|
k

(OPT − F (x)).

Consequently,
dF (x)

dt
≥ γ2(1 − ε)2

k
(OPT − F (x)).

So we get
F (x) ≥ [1 − exp

(
−γ2(1 − ε)

2t
k

)
]OPT.

Next, we analyze the above results in two cases:

1) If t = 〈x, 1〉 = k at the end of the algorithm, we have

F (x) ≥ (1 − O(ε))(1 − e−γ2
)OPT.
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2) If λ ≤ e−γ2
OPT , we get

F (x) ≥ (1 − γ−m−1e−γ2
)OPT.

Combining 1) and 2) as above, we eventually have

F (x) ≥ (1 − O(ε))(1 − e−γ2
)OPT.

The analysis of Lemma 4 considers only the case that the set S is an empty
set after the loop of the algorithm. How about the case when the set S is non-
empty? Assuming that the corresponding solution of the previous update round
of S is x′, when the number of k elements are selected, the inner loop does not
stop until S is an empty set, and the corresponding solutions are x∗ and x′′

respectively. Then we have

F (x′) ≥ (1 − O(ε))(1 − e−γ2
)OPT, F (x′′) ≥ (1 − O(ε))(1 − e−γ2

)OPT,

so
F (x∗) ≥ (1 − O(ε))(1 − e−γ2

)OPT.

3.3 Number of Iterations

Because the two inequalities in the sixth and seventh lines of the algorithm are
possible to reach tight, so with the update of δ, there must be an inequality to
be tight. When (B.a.2)) is tight, the algorithm will terminates, so we only need
to analyze (B.a.1)).

Lemma 5. If Fx(x + δS) = γ1−l(1−ε)2λδ|S|
k , the loop at (B.a) iterates at most

O(log n/ε) times, and the total loop at most O(log n/ε2).

Proof.
γ1−l(1 − ε)2λδ|Sl−1|

k
= Fx(x + δSl−1)

≥ γ〈F ′(x + δSl−1), δSl−1〉
≥ γ〈F ′(x + δSl−1), δSl〉

≥ γ1−l(1 − ε)λδ|Sl|
k

So, we have
|Sl| ≤ (1 − ε)|Sl−1|,

and the inner loop repeats at most O(log n/ε) times.
Now, we continue to analyze Algorithm 1(C). Due to λ ← (1 − ε)λ, the

outside loop iterates for at most O(1/ε) times, and hence the total loop at most
O(log n/ε2) times.
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3.4 Oracle Queries

In Lemma 2, by setting d = n and p = n we can estimate (F ′(x))i and F (x)
within a (1 ± ε) multiplicative error, as well as an additive error of εM ′/n and
εM/n respectively [7]. From Algorithm 1, we find the number of oracle queries
to F is at most O(log n/ε2), and oracle queries to F ′ at most O(n log n/ε2).

4 Rounding the Fractional Solution

In this section, we concentrate on rounding a fractional solution of (P2) to obtain
a feasible solution of (P1). We shall first introduce basic definitions and depict the
general idea of its construction, and then provide the approximation to complete
the algorithm under the assumption as in [7] that (1 − ε, 1 − ε)-balanced CR
scheme always exists.

Our algorithm solves the continuous relaxation and outputs a fractional solu-
tion x. To obtain an integer solution we need to round x. Several powerful and
general rounding strategies have been developed over the years including pipage
rounding, swap rounding, and contention resolution schemes [8]. However, most
rounding strategies are not suitable in our scenario. E.g., pipage rounding tech-
nique is not applicable because it has strong requirement for submodularity. So
we adopt contention resolution schemes to round solutions of the multilinear
relaxation. Theorem 1 already gives an estimate of the value of the integer opti-
mum solution. One interesting aspect of several of these rounding algorithms is
the following:

Definition 4. Let b, c ∈ [0, 1]. A (b, c)-balanced CR scheme π for PI is a
procedure that, for every x ∈ bPI and A ⊆ N , returns a random set πx(A) ⊆
A ∩ support(x) and satisfies the following properties:

(i) πx(A) ∈ I with probability 1 for all A ⊆ N,x ∈ bPI , and
(ii) for all i ∈ support(x), P r[i ∈ πx (R(x)) |i ∈ R(x)] ≥ c for all x ∈ bPI .

The rounding phase consists of a random R(y) and a monotone CR scheme.
We claim an expected performance ratio for the nonsubmodular maximization
problem. Consider an increasing set function f : 2N → R+ with generic submod-
ularity ratio γ , and its multilinear extension F : [0, 1]N → R≥0 on a cardinality
constraint polytope {PI = x ∈ [0, 1]n :

∑
i xi ≤ k}.

We also restrict our attention to monotone functions. Let x be a feasible
fractional solution to constraints of the form 〈1, x〉 ≤ k. It’s clear that the above
constraint is satisfied by the following lemma.

Lemma 6 [8]. Given a nonnegative m × n matrix A and nonnegative vector d,
for a constant number of knapsack constraints Ax ≤ d, x ∈ [0, 1]n, (m = O(1)),
by guessing and enumeration tricks, one can effectively get a (1−ε, 1−ε)-balanced
CR scheme for any fixed ε > 0.
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Algorithm 2 (b, c)-balanced CR scheme
1: Given parameters b, c > 0, let x∗ be the fractional solution by EPG algorithm.
2: Let R(x∗) be random set obtained by including each i ∈ N independently with

probability x∗
i .

3: Remove some elements from R(bx∗), and ensure every element i appears in I with
probability at least cx∗

i

4: return I

Lemma 7. Let π be a bc-balanced CR scheme over PI and b, c ∈ [0, 1]. For any
fixed vector y ∈ PI , we have ER←R(y),I←πy(R)[f(I)] ≥ bcγ′F (y).

Here we give some technical outcomes about Min-Marginal Function, Dis-
tributive lattice and FKG inequality, which support the proof of Lemma 7.

Definition 5 (Min-Marginal Function). Let f : 2N → R be a set function. For
any S ⊆ N and any j ∈ N , we define the min-marginal function of f as follows

L(S, j) = minS′⊆SfS′(j)

where fS′(j) = f(S′ ∪ j) − f(S′).

Lemma 8 [13]. Let f : 2N → R+ be an increasing set function with generic
submodularity ratio γ′. For any S ⊆ N and j ∈ N , denote by L(S, j) the min-
marginal function of f . We can show that (a) γ′fS(j) ≤ L(S, j) ≤ fS(j), for any
S ⊆ N (interpolation property); (b) L(S1, j) ≥ L(S2, j), for any S1 ⊆ S2 ⊆ N
(decreasing property).

Definition 6 (FKG inequality [12]). Let X be a finite distributive lattice and
μ be a nonnegative log supermodular function, that is, μ(x ∧ y)μ(x ∨ y) ≥
μ(x)μ(y),∀x, y ∈ X. The FKG inequality says that for any two functions g and
h with the same monotonicity on X, the following positive correlation inequality
holds:

(
∑

x∈X

g(x)h(x)μ(x)

) (
∑

x∈X

μ(x)

)
≥

(
∑

x∈X

g(x)μ(x)

) (
∑

x∈X

h(x)μ(x)

)
.

Lemma 9 [13]. Let X = 2N and i ∈ N . Let π be a CR scheme for PI and
y ∈ PI . For any subset R ⊆ N and any fixed element i ∈ N , define g(R) =
EI←πy(R)[1i ∈ I | R], h(R) = L(R, i), μ(R) = Pr[R | i ∈ R], where 1i ∈ I is an
indicator that equals to 1 if i ∈ I and 0 otherwise. We can show that
(

∑

R∈X

g(R)h(R)μ(R)

) (
∑

R∈X

μ(R)

)
≥

(
∑

R∈X

g(R)μ(R)

)(
∑

R∈X

h(R)μ(R)

)
.

Next, we prove Lemma 9. If π is a bc−CR schemes with b, c ∈ [0, 1], then for any
y ∈ PI , we have E[f(πy(R(y)))] ≥ bcγ′F (y).
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Proof. Let R ← R(y) and I ← πy(R). Assume Ri = R ∩ {1, ..., i} and Ii =
I ∩ {1, ..., i}. For any fixed i ∈ {1, ..., n}, we have

ER←R(y),I←πy(R)[f(Ii) − f(Ii−1)]

= ER←R(y),I←πy(R)[1i∈IfIi−1(i)]

= Pr[i ∈ R] · ER←R(y),I←πy(R)[1i∈IfIi−1(i) | i ∈ R]

≥ Pr[i ∈ R] · ER←R(y),I←πy(R)[1i∈ILIi−1(i) | i ∈ R]

≥ Pr[i ∈ R] · ER←R(y),I←πy(R)[1i∈ILRi−1(i) | i ∈ R]

= Pr[i ∈ R] ·
(

∑

R

Pr[R | i ∈ R] · EI←πy(R)[1i∈I | R] · L(Ri−1, i)

)
.

Because
∑

R Pr[Ri ∈ R] = 1, from Lemma 9, we have

∑

R

Pr[R | i ∈ R] · EI←πy(R)[1i∈I | R] · L(Ri−1, i)

≥
(

∑

R

Pr[R | i ∈ R] · EI←πy(R)[1i∈I | R]

)
·
(

∑

R

Pr[R | i ∈ R] · L(Ri−1, i)

)

= ER←R(y)[EI←πy(R)[1i∈I | R] | i ∈ R] · ER←R(y)[L(Ri−1, i) | i ∈ R]

= EI←πy(R)[1i∈I | i ∈ R] · ER←R(y)[L(Ri−1, i)].

Then, we get

ER←R(y),I←πy(R)[f(Ii) − f(Ii−1)]

≥ Pr[i ∈ R] · EI←πy(R)[1i∈I | i ∈ R] · ER←R(y)[L(Ri−1, i)]

= Pr[i ∈ R] · Pr[i ∈ I | i ∈ R] · ER←R(y)[L(Ri−1, i)]
≥ Pr[i ∈ R] · b · c · ER←R(y)[L(Ri−1, i)]
≥ b · c · γ′ER←R(y)[fR∩[i−1](i)]
= b · c · γ′E[f(R ∩ [i]) − f(R ∩ [i − 1])].

Therefore, we have

ER←R(y),I←πy(R)[f(I)]

=
n∑

i−1

ER←R(y),I←πy(R)[f(Ii) − f(Ii−1)]

≥ b · c · γ′
n∑

i−1

ER←R(y)[f(Ri) − f(Ri−1)]

≥ b · c · γ′ER←R(y)[f(R)]
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Combining Lemmas 5 and 6, we get a γ′(1−ε)-approximate function value by
using contention resolution schemes to convert a fractional solution of Multilinear
relaxation Problem to a feasible solution of original Problem.

Recall that in Sect. 3, the continuous greedy method approximates (P2)
within a factor of (1 − O(ε)) (1 − e−γ2

). Then the contention resolution schemes
converts a fractional solution of (P2) to a feasible solution of (P1) with γ′(1−ε)-
approximate function value. Assuming that continuous greedy algorithm returns
a fractional solution y ∈ PI and the rounding process provides a discrete solution
I, we eventually have

E[f(I)] ≥ γ′ (1 − O(ε)) (1 − e−γ2
)OPT ≥ γ (1 − O(ε)) (1 − e−γ2

)OPT.

5 Conclusion

In this paper, we devised parallel algorithms to nonsubmodular maximization
problems by first presenting a ((1 − e−γ2

) − ε)-approximation to the multilinear
relaxation of (P2) and then rounding a solution of the multilinear relaxation to
obtain a γ((1 − e−γ2

) − ε)-approximation. In particular, when the continuous
generic submodularity ratio is 1 (i.e. the function is submodular), our results
coincide with the state-of-art result in [7]. Observing the approximate ratio ((1−
e−γ2

)− ε) depends on the choice of parameter δ, we are currently investigating a
new update method for the parameter δ so as to improve the approximate ratio
of our algorithm.
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18. Vondrák, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: Proceedings of STOC, pp. 67–74 (2008)
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Abstract. In this paper, we study the Bregman k-means problem with
respect to μ-similar Bregman divergences (μ-BKMP). Given an n-point
set S and k ≤ n, μ-BKMP is to find a center subset C ⊆ S with | C |= k
and separate the given set into k clusters accordingly, aiming to minimize
the sum of μ-similar Bregman divergences of the points in S to their
nearest centers. We propose a new variant of k-means++ by employing
the local search scheme, and show the algorithm deserves a constant
approximation guarantee.

Keywords: Seeding algorithm · Local search · k-means · μ-similar
Bregman divergences

1 Introduction

The k-means problem is a classical NP-hard problem, whose roots can be traced
back as far as the early 17th century. Formally, given a finite data points S in
R

d and an integer k, the k-means problem is to choose k centers such that the
sum of the squared distances from each point in S to its closest center attains
minimum. In the past decades, k-means, as a basic “unsupervised” learning
process, has been extensively studied in many fields within machine learning
and theoretical computer science [10,11], such as data mining, data compression,
picture segmentation, and pattern recognition.

With the explosive growth of stored data, a wide variety of dissimilarity mea-
sures are used for clustering, such as square Euclidean distance, Mahalanobis
distance, Bregman divergences. In the context, it depends not only on the geo-
metrical properties of Euclidean distance, such as symmetry and the triangle
inequality, to describe the dissimilarity between data points.
c© Springer Nature Switzerland AG 2020
D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 532–541, 2020.
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To our knowledge, the family of Bregman divergences, which are frequently
used in practice, were first proposed by Bregman to solve convex optimization
problems in [7] and particularly the “Bregman distance” is coincided with the
one defined in [8]. In addition, the family of Bregman divergences also applies
to the context of clustering problems because of their combinatorial properties,
and brings the Bregman k-means problem. In this paper, we mainly focus on
using Bregman divergences as dissimilarity measurement.

In practice, the most celebrated heuristic for the k-means problem is Lloyd’s
algorithm [15], which initially choose k centers, and then repeats to improve the
solution and clusters the data points to the nearest centers, until the partition
and the center points become stable. Banerjee et al. [6] achieved breakthrough
results via extending Lloyd’s algorithm to the whole class of all Bregman diver-
gences. The first (1 + ε)-approximation algorithm applicable to the Bregman
k-median problem was proposed by Ackermann et al. [3], which is based on gen-
eralizing an earlier algorithm for the squared Euclidean distances in [13] with
respect to a large number of Bregman divergences.

Although Lloyd’s algorithm has high accuracy in practice, it does not pos-
sess a theoretical approximation guarantee. To obtain a performance guaran-
tee, Arthur et al. developed the k-means++ seeding algorithm [4] that deserves
O(log k)-approximation by carefully choosing the first initial k centers with spec-
ified probability. In [2], Ackermann et al. generalized the k-means++ seeding
approach as in [4] to the class of Bregman divergences. They showed how to con-
struct a factor O(log k)-approximation for the k-median problem with respect to
a μ-similar Bregman divergence. It is known that the μ-similar Bregman diver-
gence has some quasi-metric properties, such as triangle inequality and symme-
try within a constant factor of O(1/μ). More recently, Lattanzi et al. developed
a new variant of k-means++ seeding [14] based on the local search strategy.
They showed their algorithm deserves a constant approximation guarantee and
consumes O(k log log k) rounds of local search.

Contribution. In this paper, we present an approximation algorithm for the
μ-similar Bregman k-means problem (μ-BKMP) that uses an arbitrary μ-similar
Bregman divergence as dissimilarity measure. Via combining k-means++ seeding
and local search technique, we obtain a constant approximation for μ-BKMP,
which is also a generalization of the k-means++ seeding approach via local search
[14]. Formally, our main result can be summarized as follows:

Theorem 1.1. If Dϕ is a μ-similar Bregman divergence, C ⊆ R
d with C = k

is chosen at random according to Dϕ, then we have E[cost(S, C)] ∈ O(optk) in
expectation. The running time of the algorithm is O(dnk2 log log k).

Organization. The remainder of the paper is organized as follows: Sect. 2 gives
the notations and provides several lemmas related to μ-BKMP; Sect. 3 presents
the algorithms based on local search techniques and then analyzes their perfor-
mance guarantee; Sect. 4 provides all other proofs; Sect. 5 lastly concludes the
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paper. Due to the space constraints, the formal proofs are omitted and will be
given in detail in the journal version.

2 Preliminaries and Notations

In this section, we formally define the k-means problem with respect to a Breg-
man divergence, as well as notations used in the paper. Let S = {s1, s2, · · · , sn}
be a data points set in R

d. For two points a, b in R
d, the distance D(a, b) is

described as an arbitrary dissimilarity measure between them, where D : X×X →
R ∪ ∞. Obviously, for a point a in R

d and a subset C = {c1, c2, · · · , ck} ⊆ S,
the distance D(a,C) = min

c∈C
D(a, c) is characterized by the dissimilarity from

point a towards the closest point from set C. Specifically, the total dissimilarity
measurement of all points from S to their closest point from set C with respect
to D is defined as costD(S, C) =

∑

sj∈S
D(sj , C), also written cost(S, C) in short.

Specifically, D(a, b) ≥ 0 and D(a, b) = 0 if and only if a = b.
Firstly, the classical k-means problem can be defined as follows. Given data

points S and an integer k, we consider the squared Euclidean distance as a
distance measure, the goal is to find a set C of k centers in R

d that minimize
the sum of the squared distances from each point in S to its closest center, i.e.

cost(S, C) =
n∑

j=1

min
i∈{1,2,··· ,k}

‖ sj − ci ‖2. The clusters are defined by assigning

each point to their closest center.
In the following part, we will introduce an important subclass of the class of

Bregman divergences among dissimilarity measures, namely μ-similar Bregman
divergences [3]. To do this, we begin by introducing several related notions. Let
Dϕ denote a Bregman divergence which is defined with respect to a strictly
convex function ϕ : ri(X) → R on the relative interior ri(X) of convex domain
S ∈ R

d. If ϕ also has continuous first-order partial derivatives on ri(X), then
it is called a (Bregman) generating function. Among the Bregman divergences,
the class of Mahalanobis distances is closely related to the μ-similar Bregman
divergences. For a symmetric positive definite matrix A ∈ R

d×d, Mahalanobis
distances DA is defined as DA(a, b) = (a − b)�A(a − b). Furthermore, for a
positive constant 0 < μ ≤ 1 if there exists the aforementioned A such that for
the Mahalanobis distance DA we have μDA(a, b) ≤ Dϕ(a, b) ≤ DA(a, b), then
the Bregman divergences Dϕ is called μ-similar Bregman divergences.

The paper focuses on primary concern is k-means with respect to a μ-similar
Bregman divergence. Let Dϕ be a μ-similar Bregman divergence, given a n-point
set S ∈ R

d and an integer k, the μ-BKMP is to find a set C of k points in R
d,

such that cost(S, C) is minimized. Apparently, each center implicitly defines a
clustering, whereas objects in the same cluster should be similar to each other
and objects in different clusters should be not.

In particular, a set S is called a feasible solution for μ-BKMP if it satisfies
F ∈ R

d and | S |= k. For a feasible solution S, each point s ∈ S is assigned to
one nearest center denoted by ci, i.e., ci := arg min

c∈C
Dϕ(s, c). If the nearest center
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is not unique, then s is assigned to one of them arbitrarily. When the indices are
not relevant, we will drop the index. For the sake of discussion, we refer to the
set of optimal centers as O∗ which can also be partitioned into k disjoint subsets
O∗

1 , · · · , O∗
k induced by the optimal centers. We refer to the cost of the optimal

solution as optk, where optk =
k∑

i=1

opt(O∗
i ).

The centroid of S can be computed by c(S) = 1
n

∑

si∈S
S. Note that c(S) is

the unique optimal 1-means of S, akin to the dissimilarity measure as squared
Euclidean distance. In this sense, μ-BKMP can be formally described mathe-

matically as: cost(S, C) =
k∑

i=1

∑

s∈Si

Dϕ(c(Si), s).

Furthermore, Banerjee et al. gave a crucial importance property of centroid
point in [6].

Lemma 2.1. Let Dϕ be a μ-similar Bregman divergence on domain X and S ⊆
R

d be a set of n-point. For all s ∈ S, we have

cost(S, s) = cost(S, c(S)) + nDϕ(c(S), s)

It is well known that the dissimilarity measure as squared Euclidean distance
satisfy the triangle inequality (i.e, there may exist a, b, c ∈ S with Dl22

(a, c) >
Dl22

(a, b) + Dl22
(b, c))and also symmetric. Unfortunately, it is not difficult to find

that a μ-similar Bregman divergences does not obey the triangle inequality. As
expected, Ackermann et al. [1] obtained that μ-similar Bergman divergences
feature via the approximate metric properties in the following lemma.

Lemma 2.2. Let Dϕ be a μ-similar Bregman divergence on domain S. For all
a, b, c ∈ S we have

Dϕ(a, c) ≤ 1/μDϕ(c, a)
Dϕ(a, c) ≤ 2/μDϕ(a, b) + 2/μDϕ(b, c)
Dϕ(a, c) ≤ 2/μDϕ(a, b) + 2/μDϕ(c, b)
Dϕ(a, c) ≤ 2/μDϕ(b, a) + 2/μDϕ(b, c)
Dϕ(a, c) ≤ 2/μDϕ(b, a) + 2/μDϕ(c, b),

where 0 ≤ μ ≤ 1.

From the above lemma, we know that μ-similar Bergman divergences are
approximately symmetric within a factor of O(1/μ) and satisfy the triangle
inequality within a factor of O(1/μ). The following lemma is also helpful for
the analysis of our results generalizing the work in [9].

Lemma 2.3. Let ε > 0, a, b ∈ R
d and C ⊆ R

d is a set of k centers. Then

| cost(a,C) − cost(b, C) |≤ ε

μ
Dϕ(a,C) +

1
μ

(1 + 1/ε)Dϕ(a, b).
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Algorithm 1. BregMeans++ with local search
Input: A data point set S ⊆ R

d with n points, integer k, M and C = φ.
Output: An approximate Bregman k-means++ solution C for S.
1: Sample the first center c1 uniformly at random from S and set C = C ∪ c1.
2: for i = 1 to k do
3: Sample the center ci = s′ ∈ S with probability

Dϕ(s′,C)

cost(S,C)
.

4: C ← C ∪ ci.
5: end for
6: for i = 1 to N do
7: Set C := LocalSearch(S, C).
8: end for

Algorithm 2. LocalSearch
Input: Data set S and center set C
Output: C

1: Sample the center s′ ∈ S with probability
Dϕ(s′,C)

cost(S,C)
.

2: if ∃ ci ∈ C s.t. cost(S, C \ ci ∪ s′) < cost(S, C) then
3: Compute (ci) := arg min

ci∈C
cost(S, C \ ci ∪ s′).

4: C ← C \ ci ∪ s′.
5: else
6: C ← C.
7: end if

3 The µ-similar BregMeans++ Algorithm
via Local Search

In this section, we mainly introduce the BregMeans++ algorithm based on local
search for μ-BKMP, which is essentially k-means++ seeding combining with the
local search strategy. We prove that the approach is also applicable to μ-similar
Bregman k-means clusterings. The formal algorithm is presented in Algorithm 1.

The BregMeans++ algorithm starts with an empty solution C and choose
the first center c1 uniformly at random from S. Recall that cost(s′, C) denotes
the shortest distance from a data point S to the closest center we have already
chosen. The remaining centers will be selected iteratively at random from S with
a direction proportional to cost(s′, C), until the size of the initial clustering C
attains k. If |C| < k, we add the chosen point to C; Otherwise the algorithm calls
a local search subroutine(see Algorithm 2) to update the clustering by the single
swap operation. The main idea of the local search method is based on improv-
ing the current solution iteratively until the clustering remains unchanged. The
formal local search method is presented in Algorithm 2. If there exists a point
ci ∈ C such that cost(P,C \ ci ∪ s′) < cost(P,C), we find from S a new point s′

that reduces the cost function as much as possible and use it to replace ci. For
briefness, we denote such a single swap operation by swap(ci, s

′).
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Our main result is that the expected approximation guarantee is O(1). The
main result of the paper attained by BregMeans++ with local search can be
stated as below.

Theorem 3.1. Let Dϕ be a μ-similar Bregman divergence, S ⊆ R
d be a set

of n-point and C be the output of Algorithm 1. When using parameter N ≥
100000k log log k, Algorithm 1 runs in time O(dnk2 log log k), and produces μ-
BKMP that satisfies E[cost(S, C)] ≤ 516cost(S, O∗), where O∗ is the set of
optimum centers.

Proof (Sketch). Algorithm 1 is in fact k-means++ combining with O(k log log k)
rounds of local search. Before analyzing the running time of the whole algorithm,
we shall focus on two crucial processes.

In the initial centers set sampling phase, that is performing the first for loop
in Algorithm 1 repeatedly to construct a feasible solution. In every iteration,
before we make a decision whether to add a new point to the set of current
centers, we need to compute the distance from the new center to over all points
in S. If the new distance is smaller than the currently nearest center, add it to
C. So we choose a new point at random according to Dϕ and update the center
set with probability proportional to Dϕ(s′, Ci), i = 1, · · · , k. it means that for
all s′ ∈ S, we have Pr[ci = s′ | c1, · · · , ci−1 already sampled] = Dϕ(s′,C)

cost(S,C) . The
sampling scheme is repeated until we have chosen such k points. Therefore, it
can be done in linear time, to be more specific in O(dn) time.

In the local search phase, we should decrease the cost function to an extreme
by swap(ci, s

′) for each swap operation. In order to maintain a set of k centers,
intuitively, the swap operation consists of insertions point and deletions of cluster
centers. If there is no improving swap, we delete the sampled center. Therefore,
it is necessary to calculate the change of swapping cost between the new center s′

and the old center, i.e. cost(P,C \ ci ∪ s′). To guarantee the polynomial runtime,
we require that all candidate centers be selected from S. This requires to traverse
over all clusters. Thus, a local search step requires O(dkn) time in the worst case,
which leads to an overall running time of O(dnk2 log log k). Furthermore, after
O(k log log k) iterations, our solution is expected a constant factor larger than
the optimal solution.

Our general proof strategy is inspired by [12,14]. The details of proof will be
given in the journal version.

4 Proof of the Main Result

In this section, we will introduce some definitions and notations to analyze the
local search procedure which is starting from an initial feasible solution and is
iteratively improved by single swaps. Given a feasible solution C and an optimal
solution O∗, the optimal solution is apparently unique. Moreover, without loss of
generality, we assume that | S |=| O∗ |= k. For all i, 1 ≤ i ≤ k, the corresponding
clustering and the k-partition are represented as Si and O∗

i , respectively.
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For each optimal center o∗ ∈ O∗, we say that o∗ is captured by a center in
C, if c is the center closest to o∗ among all centers in C. If c ∈ C captures only
one center o∗ ∈ O∗, we consider a swap swap(c, o∗). It means that we choose one
center c to delete from the current set C, and select one point o∗ to add to the
current set of centers. Afterward, we reassign each point to its nearest center. If
there are l such swaps, then there are k− l elements left in C and in O∗. Some of
the remaining elements of C may capture at least two centers of O∗. Also note
that some centers in S do not capture any optimal centers in O∗.

We shall use the above information to analyze the swaps. Let E be the subset
of indices of cluster centers from C = {c1, · · · , ck} that capture exactly one
optimal cluster from O∗. It is easy to verify that the corresponding points can
be used as a candidate center for this cluster. In this case, if ce(e ∈ E) is far away
from the center of the optimal cluster, then we are likely to sample a point near
the center with high probability. Meanwhile, we also need to assign all points
in the cluster of ce that are not in the captured optimal cluster to a different
center without significantly increasing their contribution. The reassignment cost
incurred in the context will be calculated as R(ce) = cost(S\O∗

e , C\ce)−cost(S\
O∗

e , C).
Analogously, we call a center lonely when it is not captured by any optimal

centers. The subset of all lonely centers in S is denoted by L. Let O∗
l be the

cluster in the optimal solution captured by cl. In this case, cl can be moved
to a different cluster. However, we instead sample a point from other clusters
with high probability such that the reassignment cost is much less than the
improvement for this cluster. The reassignment cost of cl due to a swap is defined
as R(cl) = cost(S, C \ cl) − cost(S, C).

Furthermore, we can estimate the cost of the reassignment points through
the following lemma:

Lemma 4.1. For m ∈ E ∪ L, we have

R(cm) =
21

100μ2
cost(Sm, C) +

24
μ2

cost(Sm, O∗).

The above lemma gives an upper bound for the reassignment, as the reas-
signment may not be optimal following the construction of the proof. Hence, we
need to give a good bound on the reassignment cost with high probability. On
one hand, for e ∈ E, we can replace e with any point near the optimal cluster
center of the optimal cluster captured by e, which significantly increases the cost
of the solution. Let T = {1, · · · , k} \ E be representing the index set of optimal
cluster centers that were captured by centers. On the other, for l ∈ L, we focus
on the centers t ∈ T to remove an arbitrary center l ∈ L and insert a new center
close to one of the optimal centers of O∗

t for some t ∈ T , for the sake of improv-
ing the cost of the solution. We treat such clusters as good clusters and try to
find the corresponding indexes. The precise definition of the concept is given as
follows.
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Definition 4.1 (Good and Bad Center Indexes). A cluster center index i ∈ {1,
· · · , k} is called good, if there exists a center index e ∈ E such that

cost(O∗
e , C) − R(ce) − 9

μ2
cost(O∗

e , o∗
e) >

1
100kμ2

cost(S, C),

or T = {1, · · · , k} \ E holds and there exists a center index l ∈ L such that

cost(O∗
i , C) − R(cl) − 9

μ2
cost(O∗

i , o∗
i ) >

1
100kμ2

cost(S, C).

Otherwise, the cluster center index is called bad.

Based on the above definition, we will calculate the cost of replacing an old point
by a new sample point. It is not difficult to find the cost sum of good clusters is
large and further show that sampling such a cluster with high probability. We
still category all good clusters into two classes and calculate the total costs of
good clusters individually.

Consider the case of 3
∑

e∈E

cost(Oe, C) > cost(S, C), where C is the set of

center points corresponding to the current solution. Recall that for every e ∈ E
the optimal center is captured by ce is c∗

e. For e ∈ E, by definition we can
compute the gain of replacing ce by a point close to the center of O∗

e and assigning
all points in O∗

e to the new center. Without loss of generality, we abbreviate the
facts e is a good or bad index in E as eg or eb, respectively.

Lemma 4.2. For e ∈ E and 0 < μ ≤ 1, if 3
∑

e∈E

cost(O∗
e , C) > cost(S, C) >

500optk, we have

25μ2
∑

eg∈E

cost(O∗
eg

, C) ≥ cost(S, C),

where eg is good index in E.

From the above lemma, we know that the total cost of good cluster is large.
Nevertheless, we can further consider sampling points near the optimal center
with high probability to get an approximation of the cost of the cluster.

Lemma 4.3. Let G ⊆ R
d be a cluster and C ⊆ R

d be a set of k centers w.r.t
the current solution, if cost(G,C) ≥ δcost(G, c(G)),then

cost(R,C)
cost(G, c(G))

≥ μ(δ − 1)
8

where δ ≥ 17 and R ⊆ G s.t. Dϕ(c(G), R) ≤ 2μ cost(G,c(G))
|G| .

Next, consider the other case, 3
∑

e∈E

cost(Oe, C) ≤ cost(S, C), where C is

the set of center points corresponding to the current solution. Recall that T =
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{1, · · · , k} \ E, therefore
∑

t∈T

cost(O∗
t , C) ≥ 2

3cost(S, C) holds. For l ∈ L, we can

estimate the cost of removing l and inserting a new cluster center close to the
center of O∗

i by considering a clustering that reassigns the points in O∗
i and

assigns all points in O∗
i to the new center. In fact, we will prove the cost sum of

good clusters is large in the lemma below. For any t ∈ T , we use tg to denote
the index t is good, and use tb for otherwise.

Lemma 4.4. Let T = {1, · · · , k} \ E, t ∈ T and 0 < μ ≤ 1, if
3

∑

e∈E

cost(O∗
e , C) ≤ cost(S, C) and cost(S, C) ≥ 500optk, we have

20μ2
∑

tg∈T

cost(O∗
eg

, C) ≥ cost(S, C)

where tg is good index in T .

Combining the above lemmas, we can eventually prove the following lemma,
and then prove the main theorem.

Lemma 4.5. Let S be a set of points and C ⊆ S be the centers set with | C |= k
and cost(S, C) ≥ 500optk. Let C ′ = LocalSearch(S, C) then cost(S, C ′) ≤ (1 −

1
100kμ2 )cost(S, C) with probability 1

1000 .

After the above analysis, we argue that the μ-similar BregMeans++ seeding
algorithm via local search reduces the cost of the current solution by a 1 −

1
100kμ2 factor in every iteration with probability 1

1000 . That is, after O(k log log k)
iterations we can eventually obtain our main result.

5 Conclusions

In this paper, we devised a direct approximation algorithm for μ-BKMP by
employing the local search scheme, achieving a constant approximation factor.
The algorithm essentially generalized the previous k-means++ algorithm with
local search due to Lattanzi and Sohler [14], which solved the k-means problem in
squared Euclidean distance. The generalization observed that μ-similar Bergman
divergences satisfy the triangle inequality within a factor of O(1/μ), which is
different from the Euclidean distance measure. Challenges remains on μ-BKMP
such as develop a direct algorithm with a smaller approximation ratio for the
μ-BKMP. Moreover, it is an interesting problem to reduce the number of local
search steps but meanwhile retain the approximation ratio.
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3. Ackermann, M.R., Blömer, J., Sohler, C.: Clustering for metric and non-metric
distance measures. ACM Trans. Algorithms 6(4), 1–26 (2010)

4. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of SODA, pp. 1027–1035 (2007)

5. Banerjee, A., Guo, X., Wang, H.: On the optimality of conditional expectation as
a Bregman predictor. IEEE Trans. Inf. Theory 51(7), 2664–2669 (2005)

6. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

7. Bregman, L.M.: The relaxation method of finding the common points of convex
sets and its application to the solution of problems in convex programming. USSR
Comput. Math. Math. Phys. 7, 200–217 (1967)

8. Censor, Y., Lent, A.: An iterative rowaction method for interval convex program-
ming. J. Optim. Theory Appl. 34(3), 321–353 (1981)

9. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data:
constant-size coresets for k-means, PCA and projective clustering. arXiv preprint
arXiv: 1807.04518 (2018)

10. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, New Jersey
(1988)

11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31, 264–323 (1999)

12. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. In: Proceed-
ings of SoCG, pp. 10–18 (2002)

13. Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + ε)-approximation
algorithm for k-means clustering in any dimensions. In: Proceedings of FOCS, pp.
454–462 (2004)

14. Lattanzi, S., Sohler, C.: A better k-means++ algorithm via local search. In: Pro-
ceedings of ICML, pp. 3662–3671 (2019)

15. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

http://arxiv.org/abs/1807.04518


Approximating Maximum Acyclic
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Abstract. A matching M in a graph G is acyclic if the subgraph of G
induced by the vertices that are incident to an edge in M is a forest.
Even restricted to graphs of bounded maximum degree, the maximum
acyclic matching problem is hard. We contribute efficient approximation
algorithms for this problem, based on greedy and local search strategies,
that have performance guarantees involving the maximum degree of the
input graphs.

Keywords: Acyclic matching · Induced matching · Greedy
algorithm · Local search

1 Introduction

We study efficient approximation algorithms for the following problem:

Maximum Acyclic Matching
Instance: A graph G.
Task: Determine an acyclic matching in G of maximum size.

Our contributions are based on greedy and local search strategies and have
performance guarantees that involve the maximum degree of the input graphs.
Before we discuss our contributions and related results, we recall some termi-
nology. We consider finite, simple, and undirected graphs. Let M be a matching
in a graph G. The set of vertices of G incident to an edge in M is denoted by
V (M), and the subgraph of G induced by V (M) is denoted by G(M). If G(M)
is a forest, then M is an acyclic matching in G [10], and, if G(M) is 1-regular,
then M is an induced matching in G [21]. If ν(G), νac(G), and νs(G) denote the
maximum size of a matching, an acyclic matching, and an induced matching in
G, respectively, then, since every induced matching is acyclic, we have

ν(G) ≥ νac(G) ≥ νs(G).
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In contrast to the matching number ν(G), which is a well known classical tractable
graph parameter, both, the acyclic matching number νac(G) as well as the induced
matching number νs(G) are computationally hard [10,21]. In fact, the problem
to find a maximum induced matching in a given graph of order n does not allow
an efficient approximation algorithm with approximation factor n1/2−ε for every
positive ε, unless P=NP [18]. Furthermore, Chalermsook et al. [4] showed that,
unless NP=ZPP, for every ε > 0 and every sufficiently large Δ, there is no approx-
imation algorithm with approximation factor Δ1−ε for determining a maximum
induced matching in bipartite graphs of maximum degree at most Δ. As the fol-
lowing observation [6] shows that the induced matching number and the acyclic
matching number are within a factor of 2 from each other, the same hardness of
approximation results hold for Maximum Acyclic Matching.

Observation 1. νs(G) ≥ νac(G)
2 for every graph G.

Proof. If M is a maximum acyclic matching in G, then contracting each edge
from M within the forest G(M) yields a forest F of order |M |. If I is a maximum
independent set in F , then |I| ≥ |M |

2 , and uncontracting the edges in I yields an
induced matching of size νac(G)

2 . �
Altogether, it is unlikely that Maximum Acyclic Matching allows efficient
approximation algorithms with approximation factors that are considerably bet-
ter than the maximum degree of the input graphs.

Approximating maximum induced matchings has been intensely studied for
regular graphs and graphs of bounded maximum degree [1,5,9,11,15,17,20,22].
Currently, the best general results for the maximum induced matching problem
are polynomial time approximation algorithms with approximation factors

• 0.75Δ + 0.15 for Δ-regular graphs [11], and
• 0.97995Δ + 0.5 for graphs of maximum degree at most Δ [1].

By Observation 1, these algorithms approximate Maximum Acyclic Match-
ing with factors that are twice as large. For the weighted version of maximum
induced matching, Lin et al. [17] obtained an approximation factor of Δ for
graphs of maximum degree at most Δ.

For Maximum Acyclic Matching, some simple approximation algorithms
are already known. Baste and Rautenbach [2] showed that one can find in poly-
nomial time an acyclic matching of size at least m

Δ2 in a given graph of size m
and maximum degree at most Δ. Fürst and Rautenbach [7] improved this to
m
6 for connected subcubic graphs G of order at least 7. A simple edge counting
yields the following upper bound.

Observation 2. If G is a Δ-regular graph with m edges for some Δ at least 2,
then νac(G) ≤ m−1

2(Δ−1) .

Proof. If M is an acyclic matching, then m(G(M)) ≤ 2|M | − 1. Since there are
2Δ|M | − 2m(G(M)) edges in G between V (M) and V (G) \ V (M), we obtain
m ≥ 2Δ|M |−2m(G(M))+m(G(M)) = 2Δ|M |−m(G(M)) ≥ 2Δ|M |−2|M |+1,
which implies the stated upper bound. �
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Combining the above size guarantees from [2,7] with this upper bound yields
polynomial time approximation algorithms for Maximum Acyclic Matching
with approximation factors

• 0.5Δ + 0.5 + 1
2Δ−2 for Δ-regular graphs, and

• 3
2 for cubic graphs.

Efficient exact algorithms for Maximum Acyclic Matching are known only
for certain graph classes; chain graphs and bipartite permutation graphs [19],
P5-free graphs and 2P3-free graphs [6,8], and chordal graphs [2]. Even graphs
realizing extreme values are hard to recognize; while the equality ν(G) = νs(G)
can be decided efficiently for a given graph G [3,16], it is NP-complete to decide
whether ν(G) = νac(G) for a given bipartite graph G of maximum degree at
most 4 [8], that is, the two matching numbers behave differently in this respect.
Lower bounds on the induced matching number have been studied in [12–15].

Our contributions in the present paper are efficient approximation algorithms
for Maximum Acyclic Matching in graphs of maximum degree at most Δ
with the following performance guarantees:

– Approximation factor Δ (cf. Observation 3).
– Asymptotic approximation factor Δ − 1 (cf. Corollary 1).
– Approximation factor 2(Δ+1)

3 (cf. Theorem 2).

The first two of these factors actually relate the size of the produced acyclic
matching to the size of a maximum (not necessarily acyclic) matching.

Furthermore, combining greedy and local search strategies, we obtain an
efficient algorithm that returns, for a given graph of order n, maximum degree
at most Δ, and no isolated vertex, an acyclic matching of size at least

(1 − o(1))
6n

Δ2
.

Before we present our results in detail, we collect some more notation. Let G be
a graph. The distance in G between two edges uv and xy of G is the minimum
number of edges of a path in G between the two sets {u, v} and {x, y}. In
particular, the distance between two edges is 0 if and only if the edges are
identical or adjacent. For an edge e of G, let δG(e) be the set of edges in E(G)\{e}
that are adjacent to e, let CG(e) be the set of edges in E(G) \ {e} that are at
distance at most 1 to e, let δG[e] = δG(e) ∪ {e}, and let CG[e] = CG(e) ∪ {e}.
For an integer Δ, let [Δ] be the set of positive integers that are at most Δ, and
let GΔ be the set of graphs of maximum degree at most Δ.

2 Simple Greedy Algorithms

In this section we consider two greedy algorithms. The first algorithm AcM-
Color greedily colors the edges of a maximum matching such that each color
class is an acyclic matching, and returns the largest color class.
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Observation 3. AcMColor is a polynomial time approximation algorithm for
Maximum Acyclic Matching in GΔ with approximation factor Δ.

Proof. Since a maximum matching M for a given graph G can be determined
efficiently, the statement follows immediately once we show that AcMColor
determines a well defined function f : M → [Δ] such that f−1(i) is an acyclic
matching for each i in [Δ]. Suppose, for a contradiction, that f(ei) is not well
defined in line 4. This implies that there are at least two edges between ei and
each of the Δ sets V

({ej : j ∈ [i − 1] with f(ej) = k}) for k ∈ [Δ]. If ei = uv,
then this implies dG(u) + dG(v) ≥ 2Δ + 2, which is a contradiction. Hence, the
function f is well defined. Since each of the sets f−1(i) is an acyclic matching
by construction, and ν(G) ≥ νac(G) the statement follows. �

The proof of Observation 3 implies ν(G) ≤ Δνac(G) for every graph G in GΔ.
Using Theorem 1, it is not difficult to show that KΔ,Δ is the only connected
extremal graph for this inequality.

AcMColor
Input: A graph G from GΔ.
Output: An acyclic matching in G.

1 begin
2 Determine a maximum matching M = {e1, . . . , eν} in G;
3 for i = 1 to ν do
4 Set f(ei) to the smallest k in [Δ] such that there is at most one

edge between ei and V
({ej : j ∈ [i − 1] with f(ej) = k});

5 end
6 return the largest of the sets f−1(1), . . . , f−1(Δ);
7 end

Our second greedy algorithm AcMGreedy(G,M) is recursive, and iteratively
selects edges from a given matching M in such a way as to minimize the number
of edges between the selected edges and the rest of the graph G.

Theorem 1. Let G be a graph of maximum degree at most Δ for some Δ ≥ 3,
let M be a matching in G, and let AcMGreedy executed on the pair (G,M)
return Mac.

(i) If G(M) has no Δ-regular component, then |Mac| ≥ |M |
Δ−1 .

(ii) If G is connected, then |Mac| ≥ |M |−1
Δ−1 .

Proof. (i) The proof is by induction on the number of recursive calls, say k,
of AcMGreedy(G,M). Possibly replacing G with G(M), we may assume that
M is perfect. Since G has no Δ-regular component, some vertex in V (M ′) has
degree less than Δ in line 3 of AcMGreedy. Together with the fact that G(M ′)
is a tree, this implies that the number m of edges of G between V (M ′) and
V (G) \ V (M ′) satisfies m ≤ ∑

u∈V (M ′)
dG(u) − 2m(G(M ′)) ≤ (

2Δ|M ′| − 1
) −

2
(
2|M ′|−1

)
= 2(Δ−2)|M ′|+1 throughout the entire execution of AcMGreedy.
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By the condition for the while loop, every edge in M ′′ is joined to V (M ′) by
at least 2 edges in line 7, which implies |M ′| + |M ′′| ≤ |M ′| +

⌊
2(Δ−2)|M ′|+1

2

⌋
=

(Δ − 1)|M ′|.
If k = 1, then M ′′′ in line 7 is empty, which implies |M | = |M ′ ∪ M ′′|, and,

hence, |M ′| ≥ |M |
Δ−1 . Since M ′ is an acyclic matching in G, this implies the base

case of the induction. Now, let k > 1. Clearly, no component of G(M ′′′) is Δ-
regular. By induction, it follows that AcMGreedy

(
G

(
M ′′′),M ′′′

)
is an acyclic

matching in G(M ′′′) of size at least |M |−(|M ′|+|M ′′|)
Δ−1 . Since there are no edges

between V (M ′) and V (M ′′′), AcMGreedy returns an acyclic matching in G in
line 11 of size at least |M ′| + |M |−(|M ′|+|M ′′|)

Δ−1 ≥ |M ′|+|M ′′|
Δ−1 + |M |−(|M ′|+|M ′′|)

Δ−1 =
|M |
Δ−1 , which completes the proof of (i).
(ii) By (i), we may assume that M is perfect, and that G is Δ-regular. The
upper bound on m, as determined within (i), worsens by 1, that is, we only have
m ≤ 2(Δ − 2)|M ′| + 2. This implies |M ′| + |M ′′| ≤ |M ′| +

⌊
2(Δ−2)|M ′|+2

2

⌋
=

(Δ − 1)|M ′| + 1. Since no component of G(M ′′′) is Δ-regular, we obtain, by (i),
that AcMGreedy returns an acyclic matching in G in line 11 of size at least
|M ′| + |M |−(|M ′|+|M ′′|)

Δ−1 ≥ |M ′|+|M ′′|−1
Δ−1 + |M |−(|M ′|+|M ′′|)

Δ−1 = |M |−1
Δ−1 . �

AcMGreedy(G,M)
Input: A graph G and a matching M in G.
Output: An acyclic maximum in G that is a subset of M .

1 begin
2 Choose uv ∈ M minimizing dG(u) + dG(v);
3 M ′ ← {uv};
4 while ∃u′v′ ∈ M \ M ′ : G

(
M ′ ∪ {u′v′})

is a tree do
5 M ′ ← M ′ ∪ {u′v′};
6 end

7 M ′′ ←
(

⋃

u′v′∈M ′
CG(u′v′)

)
\ M ′; M ′′′ ← M \ (M ′ ∪ M ′′);

8 if M ′′′ = ∅ then
9 return M ′;

10 else

11 return M ′∪ AcMGreedy
(
G

(
M ′′′),M ′′′

)
;

12 end
13 end
Combining a maximum matching algorithm with AcMGreedy yields the fol-
lowing.

Corollary 1. Maximum Acyclic Matching in GΔ has an efficient approxi-
mation algorithm with asymptotic approximation factor Δ − 1.

Theorem 1 implies the Brooks type inequality ν(G) ≤ (Δ − 1)νac(G) + 1 for
every graph G of maximum degree at most Δ. We conjecture that KΔ,Δ is
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the only extremal graph for this inequality. For Δ = 3, this follows from the
main result of [7]. If we restrict the acyclic matchings to subsets of some given
maximum matching, then there are more extremal configurations, cf. Figure 1
for an example, which generalizes to larger maximum degrees.

Fig. 1. A graph G of maximum degree 3 that has a perfect matching M indicated by
the dashed edges such that no acyclic matching in G that is a subset of M contains
more than |M|−1

2
edges.

3 A Local Search Algorithm

In this section, we consider the following local search algorithm.

AcM-k-LocalSearch
Input: A graph G.
Output: An acyclic matching M in G.
begin

M ← ∅;
while there is a set Min of at most k edges in G and a subset Mout of
M such that (M \ Mout) ∪ Min is an acyclic matching in G that is
larger than M do

M ← (M \ Mout) ∪ Min;
end
return M ;

end

Note that the set Mout in each iteration of AcM-k-LocalSearch must be
strictly smaller than Min, which implies that AcM-k-LocalSearch has poly-
nomial running time for fixed k. For large values of k, the behavior of AcM-k-
LocalSearch is hard to analyze, but for k = 3, we can nicely exploit the tree
structure.

Theorem 2. AcM-3-LocalSearch is a polynomial time approximation algo-
rithm for Maximum Acyclic Matching in GΔ with approximation factor
2(Δ+1)

3 .

Proof. As observed above, AcM-3-LocalSearch has polynomial running time,
and we only need to establish the performance guarantee. Therefore, let G be
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a graph of maximum degree at most Δ, let M be the acyclic matching in G
returned by AcM-3-LocalSearch, and let M∗ be a maximum acyclic matching
in G. For an edge e in M∗, let

f(e) = 2
∣
∣δG[e] ∩ M

∣
∣ + |{e′ ∈ δG(e) : δG(e′) ∩ (M \ δG[e]) �= ∅}| ,

see Fig. 2 for an illustration. Let f(M∗) =
∑

e∈M∗
f(e).

u1 u2

v1 v2 v3 v4 v5

w1 w2

Fig. 2. We give the value of f(u1u2) for different choices of M : If M = {v4w1}, then
f(u1u2) = 1, if M = {u1u2} or M = {v2v4}, then f(u1u2) = 2, if M = {u1v1, v4w1} or
M = {v2v3}, then f(u1u2) = 3, if M = {u1v1, u2v5, v4w1} or M = {v2v3, v4w1, v5w2},
then f(u1u2) = 5.

Claim 1. f(M∗) ≤ 2Δ|M |.
Proof. We consider the contribution to f(M∗) of each individual edge uv in
M . Since M∗ is a matching, we have p ∈ {0, 1, 2} for p =

∣
∣δG[uv] ∩ M∗∣∣. If

p = 0, then uv contributes 1 to each edge in M∗ at distance exactly one to e.
Since M∗ is a matching, there are at most |δG(uv)| such edges, and, hence, the
edge uv contributes at most |δG(uv)| to f(M∗). If p = 1, then uv contributes 2
to f(e), where e is the unique edge in δG[uv] ∩ M∗. Furthermore, the edge uv
contributes 1 to each edge in M∗ at distance exactly one to uv. Since there are
at most |δG(uv)| such edges, the edge uv contributes at most 2 + |δG(uv)| to
f(M∗). Finally, if p = 2, then uv �∈ M∗, and u and v are incident to distinct
edges in M∗, say eu and ev. The edge uv contributes 2 to f(eu) as well as to
f(ev). Furthermore, the edge uv contributes 1 to each edge in M∗ at distance
exactly one to uv. In view of eu and ev, there are at most |δG(uv)| − 2 such
edges, and, hence, the edge uv contributes at most 2 + 2 + (|δG(uv)| − 2) to
f(M∗). Altogether, the edge uv contributes at most |δG(uv)| + 2 to f(M∗).
Since |δG(uv)| = dG(u) + dG(v) − 2 ≤ 2Δ − 2, the claim follows. �

If f(e) ≤ 1 for some edge e in M∗, then δG[e] contains no edge from M , and there
is at most one edge in G between e and V (M). This implies the contradiction
that M ∪ {e} is an acyclic matching in G. Therefore, we obtain that f(e) ≥ 2
for every edge e in M∗, and, hence,

f(M∗) =
∑

e∈M∗
f(e) ≥ 2|M∗|. (1)
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Note that this inequality holds actually for every maximal acyclic matching, that
is, for any output of AcM-1-LocalSearch. Together with Claim 1 we obtain
|M | ≥ |M∗|

Δ , that is, every maximal acyclic matching is within a factor of Δ
from a maximum acyclic matching. In order to complete the proof, we bound
the number of edges e in M∗ with f(e) = 2. Therefore,

– let M∗
1 be the set of edges e in M∗ with f(e) = 2 and |CG[e] ∩ M | = 1, and

– let M∗
2 be the set of the remaining edges e in M∗ \ M∗

1 with f(e) = 2.

Since |CG[e]∩M | ≥ 1 for every edge e in M∗, we have |CG[e]∩M | ≥ 2 for every
edge in M∗

2 .

Claim 2. |M∗
1 | ≤ |M |.

Proof. Let the function g : M∗
1 → M be such that g(e) is the unique edge in

CG[e] ∩ M for every edge e in M∗
1 . Suppose, for a contradiction, that g is not

injective, that is, g(e′) = g(e′′) = e for two distinct edges e′ and e′′ in M∗
1 and

some edge e in M . Note that e may coincide with e′ or e′′. Since V ({e′, e′′}) and
V (M \ {e}) induce disjoint forests in G, and, by the definition of M∗

1 , there is
no edge in G between these two sets, it follows that (M \ {e}) ∪ {e′, e′′} is an
acyclic matching in G, contradicting the choice of M . Hence, the function g is
injective, which completes the proof. �

Claim 3. |M∗
2 | ≤ |M |.

Proof. Let uv be an edge in M∗
2 . If δG[uv] intersects M , then the definition of

f and f(uv) = 2 imply that the set CG[uv] contains a unique element from
M , that is, the edge uv would belong to M∗

1 . Hence, the set δG[uv] contains no
edge from M ; in particular, the two sets M and M∗

2 are disjoint. Similarly, it
follows that no edge in M has both of its endpoints in (NG(u)∪NG(v)) \ {u, v}.
Altogether, it follows that there are exactly two edges, say e1 and e2, in δG[uv]
such that ei is adjacent to an edge fi from M for i ∈ {1, 2}, both edges f1 and f2
belong to CG(uv)\ δG[uv], and the two edges f1 and f2 are uniquely determined
and distinct.

Let the multigraph H arise from the subgraph of G induced by V (M ∪ M∗
2 )

by contracting the edges in M ∪ M∗
2 . We consider M ∪ M∗

2 to be the vertex set
of H in the obvious way. The above observations easily imply that H has no
parallel edges, that is, the graph H is simple. Let H ′ be the bipartite subgraph
of H that arises by removing all edges of H that lie within either M or M∗

2 , that
is, the graph H ′ has the two partite sets M and M∗

2 . By the above observations,
every vertex of H ′ from M∗

2 has exactly two neighbors in H ′.
We now prove that every component of H ′ is either a C4 or a tree.
Suppose, for a contradiction, that H ′ has a component K that is neither

a C4 nor a tree. First, we assume that K contains a cycle e1f1e2f2 . . . ekfke1
of length 2k at least 6 with e1, . . . , ek ∈ M∗

2 and f1, . . . , fk ∈ M , where we
consider indices modulo k. If ei is not adjacent to ei+1 in H, then V (M \ {fi})
induces a forest in G, there is exactly one edge in G between V (M \ {fi}) and
each of ei and ei+1, and no edge in G between ei and ei+1. This implies that
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(M \{fi})∪{ei, ei+1} is an acyclic matching in G, contradicting the choice of M .
Hence, ei is adjacent to ei+1 in H for every i, which implies the contradiction that
the subgraph of G induced by V ({e1, . . . , ek}) contains a cycle. It follows that
K contains a C4 but is distinct from this C4. Let e1f1e2f2e1 with e1, e2 ∈ M∗

2

and f1, f2 ∈ M be the C4, and let f1 have a neighbor e3 in M∗
2 distinct from

e1 and e2. The sets V ({e1, e2, e3}) and V (M \ {f1, f2}) induce disjoint forests
in G, and there is at most one edge in G between these two sets. It follows that
(M \ {f1, f2})∪{e1, e2, e3} is an acyclic matching in G, contradicting the choice
of M . Altogether, it follows that every component of H ′ is either a C4 or a tree.
If H ′ has q components that are trees, then the number of edges of H ′ equals
2|M∗

2 | as well as n(H ′) − q = |M∗
2 | + |M | − q, which implies |M∗

2 | ≤ |M |. �

Combining the three claims, we obtain

2(Δ + 1)|M | = 2Δ|M | + 2|M | ≥ f(M∗) +
∣
∣M∗

1 ∪ M∗
2

∣
∣ ≥ 3|M∗|,

which completes the proof of Theorem 2. �
Figure 3 shows that there is an instance for which the acyclic matching

returned by AcM-3-LocalSearch is a factor of (2Δ − 3)/4 away from the
acyclic matching number. Note that AcM-3-LocalSearch may greedily pick
the four dashed edges, and then output these four edges. On the other hand,
taking one of the dashed edges together with all horizontal edges that are not
one of the dashed edges nor adjacent to one of them yields a maximum acyclic
matching of size 2(Δ − 2) + 1 = 2Δ − 3. It would be very interesting to know
the true approximation factor of AcM-3-LocalSearch.

Fig. 3. An example where the output of AcM-3-LocalSearch is a factor of (2Δ−3)/4
away from the optimal solution.

4 Combining Greedy and Local Search

In this section we consider the recursive algorithm AcMExtend&Exchange
that combines greedy and local search elements. Our goal is to show that this
algorithm, executed on a graph G of order n, maximum degree at most Δ, and
no isolated vertex, returns an acyclic matching in G of size at least

6n

Δ2 + 12Δ
3
2
. (2)
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In order to achieve this in an recursive/inductive way, AcMExtend&
Exchange chooses a non-empty acyclic matching M , constructs a reduced graph
G′

M from G by removing

– the set N [M ] of all vertices in V (G) that have a neighbor in V (M), and
– the set I(M) of all isolated vertices in G − N [M ],

and returns M∪AcMExtend&Exchange(G′
M ).

AcMExtend&Exchange(G)
Input: A graph G.
Output: An acyclic maximum M in G.

1 begin
2 if Δ ≤ 2 then
3 return a maximum acyclic matching M ;
4 end
5 M ← ∅;
6 if ∃uv ∈ E(G) : dG(u) + dG(v) ≤ 2

√
Δ then

7 Let M = {uv} be such that dG(u) + dG(v) ≤ 2
√

Δ;
8 return M∪AcMExtend&Exchange(G′

M );
9 end

10 if S = ∅, where S := {u ∈ V (G) : dG(u) ≤ √
Δ} then

11 Let M = {uv} be such that u has minimum degree in G;
12 return M∪AcMExtend&Exchange(G′

M );
13 end
14 if max{dS(v) : v ∈ V (G)} �∈ [

0.2Δ, 0.8Δ
]
, where dS(v) := |NG(v) ∩ S|

then
15 Choose a vertex v maximizing dS(v);
16 Choose a neighbor u of v minimizing dG(u);
17 M ← {uv};
18 return M∪AcMExtend&Exchange(G′

M );
19 end
20 while there is a set Min of at most 3 edges in G and a subset Mout of

M such that M ′ = (M \ Mout) ∪ Min is a light ◦K1-matching with
w(M ′) > w(M) do

21 M ← M ′, where M ′ is as in the while-condition;
22 end
23 return M∪AcMExtend&Exchange(G′

M );
24 end

By construction, there are no edges between V (M) and V (G′
M ), which implies

the correctness of AcMExtend&Exchange. In order to achieve the desired
guaranteed size (2) for the output, we show that the order of G′

M is not too
small. More precisely, we need to establish the inequality

|N [M ]| + |I(M)| ≤
(

Δ2

6
+ 2Δ

3
2

)
|M |. (3)
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In turn AcMExtend&Exchange considers different ways of choosing M
depending on properties of G. The most interesting and crucial choice leads
to the notion of a light ◦K1-matching defined as follows: Let S be the set of
vertices of G of degree at most

√
Δ, let N be the set of vertices that have a

neighbor in S, and let dS(v) = |NG(v) ∩ S| for every vertex v in G. An acyclic
matching M in G is a light ◦K1-matching if

(i) M only contains edges with one endpoint in S,
(ii) every vertex in V (M) ∩ S has degree 1 in G(M), and
(iii) every vertex v in V (M) ∩ N satisfies dS(v) ≥ 0.2Δ.

The weight w(M) of M is defined as
∑

v∈V (M)∩N

dS(v).

The recursive steps within the if-statements in lines 2, 6, 10, and 14 ensure
that Δ ≥ 3, dG(u) + dG(v) > 2

√
Δ for every edge uv of G, that S is non-

empty, and that max{dS(v) : v ∈ V (G)} ∈ [
0.2Δ, 0.8Δ

]
in line 19, where

we start the construction of a light ◦K1-matching M , whose weight is max-
imized by local search exchanges. Since the weight is integral and polynomi-
ally bounded, there are only polynomially many iterations of the while-loop.
Since G′

M always has strictly less vertices than G, the recursive depth is also
polynomially bounded. Together, these two observations imply that AcMEx-
tend&Exchange has polynomial running time. Therefore, in order to complete
the proof of the following final result, omitted due to space restrictions, it suffices
to verify condition (3) for each choice of M within AcMExtend&Exchange.

Theorem 3. Executed on a graph G of order n, maximum degree at most Δ,
and no isolated vertex, AcMExtend&Exchange returns in polynomial time
an acyclic matching M in G with |M | ≥ 6n

Δ2+12Δ
3
2
.

5 Conclusion

Our results suggest several interesting lines of further research. It would be very
nice to obtain a tight analysis of AcM-3-LocalSearch or to understand the
performance of AcM-k-LocalSearch for k larger than 3. The characterization
of the extremal graphs for the Brooks type inequality ν(G) ≤ (Δ − 1)νac(G) + 1
for G in GΔ is a nice graph theoretical problem. Finally, we believe that every
graph G of order n, maximum degree at most Δ, and no isolated vertex has an
acyclic matching of size at least (1 − o(1)) 8n

Δ2 , which can be found efficiently.
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Abstract. Motivated by the study of networks of web-pages generated
by their information content, Kostochka et al. [ISIT 2019] introduced a
novel notion of directed intersection representation of a (acyclic) directed
graph and studied the problem of determining the directed intersection
number of a digraph D, henceforth denoted by DIN(D), defined as the
minimum cardinality of a ground set C such that it is possible to assign
to each vertex v ∈ V (D) a subset ϕ(v) ∈ C such that (u, v) ∈ E(D) if
and only if the following two conditions hold: (i) ϕ(v) ∩ ϕ(u) �= ∅; (ii)
|ϕ(u)| < |ϕ(v)|.

In this paper we show that determining DIN(D) is NP -hard. We also
show a 2-approximation algorithm for arborescences.

Keywords: Intersection number · Digraphs · NP-hardness ·
Approximation algorithms

1 Introduction

Every finite undirected graph can be represented by a family of finite sets associ-
ating each vertex to one of the sets of the family so that two vertices are adjacent
if and only if their associated sets have non-empty intersection. In other words,
every undirected graph is an intersection graph of finite sets. The intersection
number of an undirected graph G, denoted IN(G) is defined as the minimum
cardinality of a set U such that G is the intersection graph of subsets of U .
Erdős, Goodman and Posa [4] showed that the intersection number of a graph
equals the minimum number of cliques needed to cover its edges, aka the size of a
minimum edge clique cover of G. Determining the size of a minimum edge clique
cover—and equivalently the intersection number—was proved to be NP-hard in
[10] (see also [7]). By [8] both problems are not approximable within a factor of
|V |ε for some ε > 0 unless P = NP. On the other hand, by the result of [5], it
follows that computing the intersection number of a graph is fixed parameterized
tractable (with respect to the intersection number as parameter).

Several analogues of the above concepts have been proposed for the case of
directed graphs [1,2,9] that are based on the representation of a digraph by
identifying each vertex v with a pair of subsets Sv, Tv of a ground set U , with
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(u, v) ∈ E if and only if Su ∩ Tv �= ∅. In [2] a characterization is provided on the
intersection number of a digraph, analogous to the one for undirected graphs
given in [4].

Recently, motivated by the study of networks of web-pages generated by their
information content, and cardinality dependent generative models of networks
[3,11], Kostochka et al. [6] introduced a novel notion of directed intersection
representation of a (acyclic) directed graph. In this model, an acyclic directed
graph D = (V (D), E(D)) is represented by a family of subsets of a ground set
C via an assignment ϕ : V (D) �→ 2C such that (u, v) ∈ E(D) if and only if
ϕ(u) ∩ ϕ(v) �= ∅ and |ϕ(u)| < |ϕ(v)|.

The authors of [6] studied the problem of determining the corresponding
notion of directed intersection number of a digraph D, denoted by DIN(D) and
defined as the minimum cardinality of a ground set C such that it is possible to
assign to each vertex v ∈ V (D) a subset ϕ(v) ⊆ C such that (u, v) ∈ E(D) if and
only if the following two conditions hold: (i) ϕ(v)∩ϕ(u) �= ∅; (ii) |ϕ(u)| < |ϕ(v)|.

The main results of [6] are about extremal values of DIN(D) and precisely:
(i) DIN(D) ≤ 5n2

8 − 3n
4 +1 for every DAG D with n vertices; and (ii) for each n

there exist DAGs D with n vertices with DIN(D) ≥ n2

2 . These results, however,
only bound the extremal approximation one can get in the worst possible case
for a given size n = |V (D)|. Moreover, the tractability of the problem is left
open. The authors limit themselves to observe that DIN(D) is lower bounded
by the length of the longest path in D, which is an easy problem on DAGs.

In this paper we show that determining DIN(D) is in fact NP -hard. We
also show a linear time 2-approximation algorithm for arborescences.

2 Notation and Basic Definitions

Given a DAG D, we use colouring as metaphor of intersection representation
according to the definition of [6]. We say that ϕ : V (D) �→ 2Cϕ is a proper
colouring (pc) of a DAG D if for each u, v ∈ V (D) it holds that (u, v) ∈ E(D) if
and only if ϕ(v) ∩ ϕ(u) �= ∅ and |ϕ(u)| < |ϕ(v)|. We denote by Φ(D) the set of
proper colourings of D. For a proper colouring ϕ, we denote by |ϕ| the cardinality
of the colour (ground) set Cϕ and refer to |ϕ| = |Cϕ| as the size of the colouring
ϕ. We are interested in the problem of determining DIN(D) = min

ϕ∈Φ(D)
|ϕ|.

For vertices u, v and colouring ϕ we will abuse notation and (whenever there
is no risk of confusion) we will write ϕ(u) < ϕ(v) (resp. ϕ(u) ≤ ϕ(v)) to denote
|ϕ(u)| < |ϕ(v)| (resp. |ϕ(u)| ≤ |ϕ(v)|). The notation ϕ(u) = ϕ(v) (resp. ϕ(u) �=
ϕ(v)) will be reserved to indicate the set equality (resp. inequality).

For any integer n ≥ 1 we shall use [n] to denote the set {1, . . . , n}.

3 The Hardness Proof

Let us consider the decision problems associated to the computation of the inter-
section number of an undirected graph and the computation of the directed
intersection number of a DAG.
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Intersection Number Problem (IntNumP)
Input: A graph G = (V,E), and an integer bound k.
Question: Is IN(G) ≤ k?

By the result in [4], showing that IN(G) ≤ V (G)2/4 for every G, we shall
tacitly assume that for every instance of IntNumP it holds that k < n2.

Directed Intersection Number Problem (DirIntNumP)
Input: A directed acyclic graph D = (V,E), and an integer bound k.
Question: Is DIN(D) ≤ k?

In this section we are going to show that the computation of the directed
intersection graph is NP -hard by providing a polynomial time reduction from
IntNumP to DirIntNumP.

Fig. 1. An example of the gadget VN which is used to fix the cardinality of the colour
set of a vertex v. For N > 3, a proper colouring with N +3 colours {α, β1, . . . , βN , γ, δ}
is: ϕ(a) = {α}, ϕ(bi) = {α, βi}, ϕ(ci) = {βi, δ, γ}, and ϕ(v) = {β1, . . . , βN}.

The Cardinality Gadget VN . As the main gadget of our reduction, we use
several copies of a graph VN , that allows us to “force” the cardinality of the set
of colours assigned to the vertices of the instance of the DirIntNumP problem.

Fix N > 3. Then, the set of vertices and edges of gadget VN are as follows:

– V (VN ) = {a, b1, . . . , bN , c1, . . . , cN , v};
– E(VN ) = {(a, bi) | i = 1, . . . N} ∪ {(bi, ci) | i = 1, . . . N} ∪ {(bi, v) | i =

1, . . . N} ∪ {(ci, v) | i = 1, . . . N}.

We start by collecting some useful properties on the colourability of this
gadget. The structure of the gadget is exemplified in Fig. 1, where it is also shown
that we can colour it with N + 3 colours (recall that, by definition, N > 3).

The following lemmas shows that N +3 is also a lower bound on the number
of colours necessary to properly colour VN .

Lemma 1. For every proper colouring ϕ of VN it holds that for each i =
1, . . . , N, we have ϕ(ci) \ ∪i−1

j=1ϕ(cj) �= ∅.
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Proof. We argue by contradiction. Let i be the smallest value for which (contra-
dicting the statement) it holds that ϕ(ci) ⊆ ⋃i−1

j=1 ϕ(cj).
Note that

for each j �= k it holds that ϕ(cj) �⊆ ϕ(ck). (1)

For, otherwise, we would have |ϕ(bj)| < |ϕ(cj)| ≤ |ϕ(ck)| and ∅ �= ϕ(bj)∩ϕ(cj) ⊆
ϕ(bj) ∩ ϕ(ck), which is not possible because of the absence of an edge bj → ck.

Under the hypothesis ∅ �= ϕ(ci) ⊆ ⋃i−1
j=1 ϕ(cj) we have that there are

j1, . . . , jt ∈ {1, . . . , i−1} such that for each � = 1, . . . , t we have ϕ(ci)∩ϕ(cj�
) �= ∅

and ϕ(ci) ⊆ ϕ(cj1) ∪ · · · ∪ ϕ(cjt
). We have the following two possible cases:

1. For some � it holds that |ϕ(ci)| �= |ϕ(cj�
)|. Hence, the difference in cardinality

and the presence of non-empty intersection contradicts the absence of an edge
between ci and cj�

. So this case cannot happen.
2. For each � = 1, . . . , t, it holds that |ϕ(ci)| = |ϕ(cj�

)|. Hence, for each � we
have |ϕ(bi)| < |ϕ(ci)| = |ϕ(cj�

)|. Let x ∈ (ϕ(bi) ∩ ϕ(ci)). Because of ϕ(ci) ⊆
ϕ(cj1)∪· · ·∪ϕ(cjt

) there is �∗ such that x ∈ ϕ(cj�∗ ). Hence ϕ(bi)∩ϕ(cj�∗ ) �= ∅
which, together with the difference in cardinality contradicts the absence of
the edge bi → cj�∗ .

Since in both cases we reach a contradiction, the proof is complete. �
Lemma 2. Every proper colouring of VN uses at least N + 3 colours.

Proof. Let ϕ be a proper colouring of VN . For each i = 1, . . . , N, the existence
of the path a → bi → ci, implies that 1 ≤ ϕ(a) < ϕ(bi) < ϕ(ci), hence, in
particular, we have ϕ(c1) ≥ 3. In addition, for each i = 1, . . . , N, the fact that
ϕ(a) < ϕ(ci) and the absence of an edge a → ci, we also have that ϕ(a)∩ϕ(ci) =
∅. Therefore, we have

|(∪N
i=1ϕ(ci) ∪ ϕ(a)| = | ∪N

i=1 ϕ(ci)| + |ϕ(a)|. (2)

Finally, using Lemma 1, we have

|ϕ(a) ∪ (∪N
i=1ϕ(ci))| = |ϕ(a)| + | ∪N

i=1 ϕ(ci)| ≥ 1 + | ∪N
i=1 ϕ(ci)|

= 1 + |ϕ(c1)| +
N∑

i=2

|ϕ(ci) \
i−1⋃

j=1

ϕ(cj)| ≥ N + 3 (3)

where the first equality follows from (2); the following inequality follows from
ϕ(a) �= ∅; the next equality follows by partitioning the union into distinct parts;
the last inequality follows from ϕ(c1) ≥ 3 (proved above) and Lemma 1. �

We are now going to prove that in order to colour the gadget with N + 3
colours, it is necessary to colour the vertex v with at least N colours. We need
to show some preliminary simple facts.

Fact 1. If there exists i such that |ϕ(bi)| = 2 then for each j = 1, . . . , N we
have |ϕ(bj)| = 2 and ϕ(bj) ∩ ϕ(a) = ϕ(a).
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Proof. Since 2 = |ϕ(bi)| > |ϕ(a)| > 0, we have |ϕ(a)| = 1. Since for each j, it
holds that ∅ �= ϕ(a)∩ϕ(bj) ⊆ ϕ(a), we also have ϕ(a)∩ϕ(bj) = ϕ(a). Therefore,
for each j �= j′ we have ∅ �= ϕ(a) ⊆ ϕ(bj)∩ϕ(bj′), i.e., ϕ(bj) and ϕ(bj′) have non-
empty intersection. Hence we cannot have |ϕ(bj)| �= |ϕ(bj′)|, because otherwise
the absence of an edge between bj and bj′ would imply that the colouring is not
proper. �
Lemma 3. If for some i it holds that |ϕ(bi)| = 2 then |ϕ(v)| ≥ N.

Proof. By Fact 1, we have that for some colour x, it holds ϕ(a) = {x} and for
each j = 1, . . . , N we have ϕ(bj) = {x, yj}.

For each j �= j′ we must have yj �= yj′ , for, otherwise, ϕ(bj) = ϕ(bj′) and,
since the colouring is proper, this would contrast with the fact that we have an
edge bj′ → cj′ but there is no edge bj → cj′ .

Since ϕ(v) cannot contain x (for, otherwise, this would violate the absence
of an edge from a to v), and ϕ(v) ∩ ϕ(bj) �= ∅, we must have that for each j,
ϕ(v)∩ϕ(bj) = {yj}, and since these are all distinct colours, we have |ϕ(v)| ≥ N.

The Path Gadget. The following lemma provides a lower bound on the number
of colours necessary to properly colour a path P = s → t1 → t2 → · · · → t�
(possibly part of a larger DAG, but, in this case, such that only the starting
node is connected to the rest of the graph). The bound is given as a function of
the length � of the path and the cardinalities of a bipartition of the colouring
ϕ(s) into the colours that s shares with (possibly existing) nodes u such that
u → s and the remaining colours of ϕ(s).

Lemma 4. Let � be a positive integer. Let P = t0 → t1 → t2 → · · · → t2� be a
path in a DAG D such that for each i = 1, . . . , 2� the in-degree of ti is equal to 1,
and for each i = 0, . . . , �− 1 the out-degree of ti is equal to 1; and the out-degree
of t2� is equal to 0.

Fix a proper colouring ϕ for D. Let n1 be the number of colours that t0 shares
with its in-neighbours; and n2 be the number of remaining colours in ϕ(t0). Then,
we have

|
(

2�⋃

i=1

ϕ(ti)

)

\ ϕ(t0)| ≥ �(n1 + n2 + 1) + �2.

Moreover, there is a colouring that attains this lower bound.

Proof. For each i = 1, . . . , 2� let zi = |ϕ(ti) ∩ ϕ(ti−1)| and yi = |ϕ(ti) \ ϕ(ti−1)|.
For the sake of definiteness, let z0 = n1 and y0 = n2. It is not hard to see that for
each i = 1, . . . , 2� it holds that yi+zi > yi−1+zi−1 (because of the edge ti−1 → ti)
and zi ≤ yi−1 (because of the absence of the edge ti−2 → ti). It follows that
yi > zi−1. With this constraint, the minimum of

∑2�
i=1 |ϕ(ti)| =

∑2�
i=1(zi + yi)

is attained by setting, for each j = 1, . . . , � y2j−1 = z0 + j and y2j = y0 + j.
Therefore, we have

|
(

2�⋃

i=1

ϕ(ti)

)

\ ϕ(t0)| ≥
�∑

j=1

(z0 + j) + (y0 + j) = �(z0 + y0 + 1) + �2, (4)
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as desired. In addition, we can observe that the number of colours in the right
hand side of (4) can be attained by setting ϕ(ti) to be the union of the yi−1

colours of ϕ(ti−1) not used in any previous node and zi−1 + 1 new colours.

The Reduction. Let (G = (V,E), k) be an instance of the Intersection
Number (IN) problem. We define the instance (D, k′) of Directed Inter-
section Number (DIN) problem, where D is the graph obtained from G as
follows

1. fix an order on the vertices of G, let v1, . . . , vn be the vertices of G listed in
the order fixed;

2. orient each edge (vi, vj) of G as vi → vj if and only if, i < j;
3. for each i = 1, . . . , n add a gadget V(i) = VNi

to G with Ni = i · n2;
4. for each i = 1, . . . , n, identify the vertex vi with the vertex v(i) (the v vertex

of the gadget V(i);
5. add a path P = t0 → t1 → t2 → · · · → t2� with � a positive integer > k + 4;
6. for each i = 1, . . . , n and j = 1, . . . , Ni, add an edge c

(i)
j → t0;

7. set k′ = k +
∑n

i=1 Ni + n + 4(� + 1) + �2 + �.

See Fig. 2 for a pictorial example of the transformation of the graph G into
the DAG D.

v1

v2

v3

v5

v4

G

v1 v2 v3 v5v4

t0

t1

t2 -1

t2

VN3VN2 VN4 VN4

VN1

a(1)

b1
(1)

bi
(1)

bN1

(1)

c1
(1)

ci
(1) cN1

(1)

... ...

......

P

t0 t0 t0
t0

Fig. 2. An example of the reduction. The original graph G is on the top left of the
figure. The vertices are arbitrarily sorted and edges directed accordingly. Edges and
vertices of G are marked in bold in the resulting DAG D. Each vertex is extended by
a V-gadget and the c-vertices of this gadget are connected to the starting vertex of the
path P. For readability, this is explicitly drawn only for the first gadget on the left.

The direction IN(G) ≤ k ⇒ DIN(D) ≤ k′. We first show the “easy” direction
of the reduction.
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Theorem 1. If IN(G) ≤ k then DIN(D) ≤ k′.

Proof. Let us assume that there is a set of colours CG of cardinality k and a family
F = {Sv ⊆ CG|v ∈ V (G)} such that Sv ∩ Su �= ∅ if and only if (u, v) ∈ E(G).

Let us define, for each i = 1, . . . , n a distinct set of Ni + 1 colours C(i) =
{α(i), β

(i)
1 , . . . , β

(i)
Ni

}. Let CP be another distinct set of colours of cardinality 5�+
�2. Let γ, δ, γ′, δ′ be four additional distinct colours. Let CD = CG ∪ ⋃n

i=1 C(i) ∪
CP ∪ {γ, δ, δ′, γ′}. It is not hard to see that |CD| = k′.

For each i = 1, . . . , n we can use colours in C̃(i) = C(i) ∪ {δ, γ} to properly
colour the gadget V(i), as shown in Fig. 1. In particular, this means to define the
partial colouring ϕ′ by setting

ϕ′(a(i)) = {α(i)}, and ϕ′(b(i)j ) = {α(i), β
(i)
j }, ϕ(c

(i)
j ) = {β

(i)
j , δ, γ}, for j = 1, . . . , Ni,

and assign Ni colours {β
(i)
1 , . . . , β

(i)
Ni

} to vertex vi = v(i) i.e.,

ϕ′(vi) = {β
(i)
1 , . . . , β

(i)
Ni

}.

We now set ϕ′(t0) = {δ, γ, δ′, γ′} and colour the remaining part of P, i.e., vertices
t1, . . . , t2� using the colours in CP—this can be achieved by proceeding as in the
proof of Lemma 4.

It is not hard to see that for each pair of vertices u, u′ ∈ V (D) such that
they are not both vertices of V (G) it holds that u → u′ ∈ E(D) if and only if
ϕ′(u′) ∩ ϕ′(u) �= ∅ and |ϕ′(u′)| > |ϕ′(u)|.

In order to take care of pairs of vertices both coming from V (G) we extend
ϕ′ to a new colouring ϕ by setting ϕ(u) = ϕ′(u) for each u �∈ V (G) and for each
i = 1, . . . , n we set ϕ(vi) = ϕ′(vi) ∪ Svi

.
Recall that for each i = 1, . . . , n we have |Svi

| ≤ |CG| = k < n2. It is not
hard to see then, that for each i = 1, . . . , n, we have

i · n2 < |ϕ(vi)| = |Svi
| + |ϕ′(vi)| = |Svi

| + Ni < n2 + i · n2 = (i + 1)n2.

Therefore, for each i < j we have |ϕ(vi)| < |ϕ(vj)|. Moreover, since ϕ′(vi) ∩
ϕ′(vj) = ∅, it follows that ϕ(vi) ∩ ϕ(vj) �= ∅ if and only if Svi

∩ Svj
�= ∅, i.e., if

and only if (vi, vj) ∈ E(G), and by construction (due to i < j) this is true if and
only if vi → vj ∈ E(D), as desired. �

The direction DIN(D) ≤ k′ ⇒ IN(G) ≤ k. We will need the following
technical result, whose proof is deferred to the extendend version of the paper.

Lemma 5. Let ϕ be a proper colouring of D. Then, it holds that
∣
∣
∣
∣
∣
∣

n⋃

i=1

⎛

⎝ϕ(a(i)) ∪
Ni⋃

j=1

ϕ(c(i)j )

⎞

⎠ ∪ ϕ(t0)

∣
∣
∣
∣
∣
∣
≥ n + 4 +

n∑

i=1

Ni.

Lemma 6. Fix a colouring ϕ for the DAG D. If for some i ∈ {1, . . . , n} the
vertex v(i) in V(i) satisfies |ϕ(v(i))| < Ni then |ϕ| > k′.
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Proof. By Lemma 3, we have that there exists j ∈ [Ni] such that 3 ≤ |ϕ(b(i)j )| ≤
|ϕ(c(i)j )|−1 ≤ |ϕ(t0)|−2, hence |ϕ(t0)| ≥ 5. Then, by Lemma 4, with (n1+n2) =
|ϕ(t0)| ≥ 5, we have that

|
(

2�⋃

i=1

ϕ(ti)

)

\ ϕ(t0)| ≥ 6� + �2 > 5� + �2 + k + 4, (5)

where, in the last inequality we used � > k + 4.
We now observe that the colours used for the “private” vertices (t1, . . . , t2�)

of the path P, i.e.,
⋃2�

j=1 ϕ(tj), cannot be used in the colouring of any vertex

a(i), b
(i)
j , c

(i)
j . Since there is a path from each one of these vertices to any tm, we

have max{|ϕ(a(i))|, |ϕ(b(i)j )|, |ϕ(c(i)j )|} ≤ |ϕ(tm)|, for any i, j,m; hence, any non-
empty intersection and the absence of an edge would imply that the colouring
is not proper.

Therefore, we have

|ϕ| ≥ |(
n⋃

i=1

ϕ(a(i)) ∪
Ni⋃

j=1

ϕ(c(i)j )) ∪ (
2�⋃

s=1

ϕ(ts))| (6)

= |(
n⋃

i=1

ϕ(a(i)) ∪
Ni⋃

j=1

ϕ(c(i)j )) ∪ ϕ(t0)| + |
(

2�⋃

s=1

ϕ(ts)

)

\ ϕ(t0)| (7)

> n + 4 +
n∑

i=1

Ni + 5� + �2 + k + 4 > k′, (8)

where the last inequality follows by Lemma 5 and (5). �

Theorem 2. If DIN(D) ≤ k′ then IN(G) ≤ k.

Proof. Assume we can color the DAG D (obtained from G via the above reduc-
tion) with k′ colours. Then, for each i = 1, . . . , n, and j = 1, . . . , Ni (by Lemma 6
and Lemma 4), we must have

|ϕ(t0)| = 4, |ϕ(c(i)j )| = 3, |ϕ(b(i)j )| = 2, |ϕ(a(i))| = 1. (9)

To see this, first notice that the righthand sides of each equality is a lower
bound on the quantity in the corresponding left hand side because of the path
a(i) → b

(i)
j → c

(i)
j → t0. Moreover, suppose that one of the equalities is not

satisfied, hence it holds as a strict inequality (>). Then, because of the above
path we have |ϕ(t0)| ≥ 5. By Lemma 4, with n1 + n2 = |ϕ(t0)| ≥ 5, proceeding
like in (6)–(8), we have that the total number of colours would be

|ϕ| ≥ n + 4 +
n∑

i=1

Ni + (|t0| + 1)� + �2 > n + 4 +
n∑

i=1

Ni + 5� + �2 + k + 4 > k′,
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where the first strict inequality follows because of � > k + 4.
Since each ai has a distinct out-neighborhood, we must have that there are

distinct colours α1, . . . , αn such that ϕ(a(i)) = {αi}. Analogously, it follows
that, for each i ∈ [n] and j ∈ [Ni] there are distinct colours β

(i)
j such that

ϕ(b(i)j ) = {αi, β
(i)
j }.

Also, we have ϕ(v(i)) ⊇ {β
(i)
1 , . . . , β

(i)
Ni

}.

Let W (i) = ϕ(v(i)) \ {β
(i)
1 , . . . , β

(i)
Ni

}. Since for every graph G it holds that
IN(G) < n2, skipping trivialities we may assume that k < n2. Therefore, under
the standing hypothesis on the size of the colouring, because of Lemma 4 and
Lemma 5, we have

| ∪j W (j)| ≤ k′ −
(

n + 4 +
n∑

i=1

Ni

)

− (
�(n1 + n2 + 1) + �2

)
= k,

where the first bracket is the contribution from Lemma 5 and the second bracket
is the contribution from Lemma4. For the latter, we are using that n1 + n2 =
|ϕ(t0)| = 4, as argued above (|ϕ(t0)| ≥ 5 would imply |ϕ| > k′).

Then, we have
|W (i)| ≤ | ∪j W (j)| ≤ k < n2

These considerations, together with Lemma 6 imply that for each i = 1, . . . , n,
we have Ni ≤ |ϕ(v(i))| ≤ Ni + |W (i)| < in2 + n2 = (i + 1)n2 = Ni+1, hence,
|ϕ(v(i))| < |ϕ(v(i+1))|.

Recall that for each i �= i′, we have {β
(i)
1 , . . . , β

(i)
Ni

} ∩ {β
(i′)
1 , . . . , β

(i′)
Ni′ } = ∅.

Therefore, for each i �= i′ such that vi → vi′ (equivalently (vi, vi′) ∈ E(G)) it
holds that W (i) ∩ W (i+1) = ϕ(v(i)) ∩ ϕ(v(i′)) �= ∅. Hence, G is the intersection
graph of the family of sets {W (i)}i=1,...,n which is defined on the ground set of
size k, i.e., IN(G) ≤ k.

4 Approximation for Arborescences

In this section we present a simple linear time algorithm for computing a proper
colouring for an arborescence graph. Recall that a directed graph T is an arbores-
cence if there is a vertex r called the root such that for all other vertices v there
is exactly one path from r to v. Alternatively, T is a directed rooted tree where
all edges are directed in the direction away from the root.

Lemma 7. Let T be an arborescence. Let ι be the number of internal vertices of
T . Let κ be the set of levels of T with at least one leaf. Let h be the depth of T .
Then, Algorithm1 produces a colouring with h(h − 1)/2 + ι + κ ≤ h(h + 1)/2 + ι
colours in linear time (plus the time to write down the sets of colours)

Proof. For the time bound, it is enough to observe that all the quantities used
by the algorithm can be defined during a constant number of traversals of the
graph, hence in linear time in |T |.
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Algorithm 1: Colouring Arborescences
Input: A non-empty arborescence graph T with root r = root(T )
Output: a proper colouring ϕ of T
Set h ← depth of T and for each vertex v level(v) ← level of vertex v (the
root is on level 0);
for � = 1, . . . , h do

Define a new set of colours for level �: C(�) = {a
(�)
1 , . . . , a

(�)
�−1};

if there is at least one leaf on level i then
Define a new colour λ(�);

for each internal node v do
Define a new colour c(v)

Set ϕ(root(T )) ← c(root(T ));
for each vertex v �= root(T ) do

if v is not a leaf then

Set ϕ(v) ← c(v) ∪ C(level(v)) ∪ c(parent(v))
else

Set ϕ(v) ← λ(level(v)) ∪ C(level(v)) ∪ c(parent(v))

return ϕ

The algorithm uses: one colour per each internal vertex; one colour per each
level with at least one leaf; and

∑h
i=1(i − 1) =

∑h−1
i=1 i = h(h−1)

2 colours for all
the level sets C(i). In total the algorithm uses ι+h(h−1)/2+κ ≤ ι+h(h+1)/2,
where the inequality holds because κ ≤ h.

To see that the colouring ϕ is proper we observe that: (i) vertices on different
levels have a different number of colours assigned; (ii) two vertices share a colour
if and only if they are on the same level or they are in parent-child relationship.

Lemma 8. Let T be an arborescence. Let ι be the number of internal vertices
of T and h be the depth of T . Then, every proper colouring ϕ for T uses at least
ι+π(h) colours, where π(h) = �2+1 if h = 2� and π(h) = �2+�+3 if h = 2�+1.

Proof. Let us first consider the case where h is an even number, i.e., h = 2� for
some � ∈ N (we are tacitly skipping the trivial case where h = 0).

Let P be a root-to-leaf path in T of length h. By Lemma 4 (with n0 =
0, n1 = 1 and adding a single colour for t0 = root(T )), we have that the number
of colours used for the vertices of P in any proper colouring of T must satisfy
|ϕ(P )| ≥ 1 + 2� + �2.

Let v1, v2, . . . , vι−2� be all the internal vertices of T which are not on the
path P and listed in DFS order from the root towards the leaves. We observe
that

ϕ(vi) \
⎛

⎝ϕ(P ) ∪
i−1⋃

j=1

ϕ(vj)

⎞

⎠ �= ∅. (10)

To see this, note that there is a colour χ that v = vi shares with its child vc.
Moreover |ϕ(vc)| > |ϕ(v)|. If there exists a vertex u ∈ P ∪⋃i−1

j=1 ϕ(vj) that shares
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colour χ then there are three possibilities: (i) |ϕ(u)| ≤ |ϕ(v)| < |ϕ(vc)| hence
there must be an edge u → vc which is not possible since there are no vertices
listed in DFS before v or on P that have an edge towards vc (note that vc cannot
be not on P since v is not); (ii) |ϕ(u)| > |ϕ(v)|, hence there is an edge v → u
which is also impossible since, no vertex listed in the DFS before v can be an
out-neighbour of v and no vertex in P is a neighbour of v since v is not on P.
Since in all cases we reach a contradiction the righthand side of (10) contains at
least colour χ, which proves the inequality.

Therefore, we have

|ϕ| ≥ |ϕ(P ) ∪ ϕ({v1, . . . , vι−2�})| = |ϕ(P )| +
ι−2�∑

j=1

|ϕ(vi) \
⎛

⎝ϕ(P ) ∪
i−1⋃

j=1

ϕ(vj)

⎞

⎠ |

≥ �2 + 2� + 1 + ι − 2� = �2 + ι + 1 (11)

The case where h is odd, i.e. h = 2� + 1 can be dealt with in exactly the
same way. In this case, by an immediate extension of Lemma 4 we have |ϕ(P )| ≥
�2 + 3� + 2. This together with the fact that P now contains 2� + 1 internal
vertices, gives us the claimed bound |ϕ| ≥ �2 + � + 1 + ι.

Theorem 3. Algorithm1 guarantees approximation ≤ 2

Proof. Let ϕ be the colouring produced by Algorithm1 and ϕ∗ be a proper
colouring with the minimum possible number of colours.

Assume the number h of levels of T is an even number. Let h = 2�. Then,
from Lemma 7 and Lemma 8 we have

|ϕ|
|ϕ∗| ≤ h(h + 1)/2 + ι

�2 + ι + 1
=

2�(2� + 1)/2 + ι

�2 + ι + 1
=

2�2 + � + ι

�2 + ι + 1
≤ 2,

where the last inequality follows from when ι > � − 2, which is always verified
by the internal vertices on the path P, which are at least 2�.

Assume now that the number h of levels of T is an odd number, i.e., h = 2�+1.
Then, from Lemma 7 and Lemma 8 we have

|ϕ|
|ϕ∗| ≤ h(h + 1)/2 + ι

�2 + � + ι + 1
=

(� + 1)(2� + 1) + ι

�2 + � + ι + 1
=

2�2 + 3� + ι + 1
�2 + � + ι + 1

≤ 2,

where the last inequality follows when ι > � − 1, which is always verified by the
internal vertices on the path P, which are at least 2�.

Remark 1. Note that the fuller the arborescence, the better the approximation,
e.g., for any ε > 0 if ι ≥ 1−ε

ε �2 + �
ε the approximation guarantee becomes (1+ ε).

In particular, with some more care in the analysis (and a refined lower bound)
it is possible to show that the colouring output by the algorithm is optimal for
the case of a T where the leaves are only on the last level. We defer this to the
extended version of the paper.
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5 Open Problems

Several natural and interesting questions are left open by our result. The first
natural question regards the approximability and inapproximability of the prob-
lem for arbitrary DAGs. As mentioned in the introduction, the intersection num-
ber (for undirected graphs) is not approximable in polynomial time within a
factor of |V (G)|ε [8]. This result does not appear to carry over to the problem of
computing DIN (through our reduction). Nor do the extremal results from [6]
provide any approximation guarantee for arbitrary DAGs. For the special case of
arborescences, we presented a 2-approximation algorithm. An exact polynomial
time algorithm for arborescences appears to be already a challenging question.
Another open question that arises from the comparison to the classical inter-
section number problem regards fixed parameterized tractability: is the problem
FPT with respect to the value of DIN(D)?
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Abstract. Exploring further the power of negations in Boolean circuits,
in this paper we study the effect of interdependency of negation gates
in circuits in terms of computational power. As a starting point, we
study the power of independent negations (where no negation feeds into
another, even via other gates) in circuits and show the following results.

– The minimum number of independent negations required to com-
pute a Boolean function is exactly characterized by the decrease of
the function. We also provide an additional characterization by a
generalization of orientation [9], which we call the monotone orien-
tation.

– We define a new measure called the thickness of a Boolean function,
and show that if f has thickness at most t and has a circuit of
depth d, then f can be computed using 2�log(t+1)� (independent)
negations in depth d + O(log n). When the function is monotone,
we also show a parameterized version of this result, where the depth
is expressed in terms of thickness and d. Our techniques include a
natural generalization of the Karchmer-Widgerson games to include
a switch step.

– For functions with thickness t, we show that the monotone and non-
monotone circuit depths are related by the factor of thickness and
an extra O(log n) additive factor. This generalizes the fact [16] that
for slice functions, the monotone and non-monotone circuit depth
complexities are related by an additive factor of O(log n).

To go further, we study the dependency between negations in the circuit
by modeling the same using a negation graph with negation gates (and
root) as vertices and directed edges representing pair of negation gates
which feed into each other through a path which does not have negations.
We associate a measure of decrease capacity with the negation graph,
denoted dmax. We show the following results:

– For a negation graph N , dmax(N) is the maximum decrease of any
circuit which has this negation graph. Using this as a tool, we derive
necessary conditions on the structure of negation graphs when the
circuit is negation optimal.

– We show how to construct circuits for a function f , given a negation
tree with decrease capacity at least alt(f)

2
. En route this result, we

show that if f and g are two Boolean functions on n variables with
alt(f) ≤ alt(g) and f(0n) = g(0n), then any circuit for g can be used
(with substitution of variables with monotone functions) to compute
f without using any extra negation. This may be of independent
interest.
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1 Introduction

A central question in circuit complexity is to prove exponential size lower bounds
for an explicit language in the class NP. Unfortunately, this task has evaded the
attempts over decades, and the best known circuit size lower bounds for any
explicit function is as small as 5n. Noting that there are monotone function
families (equivalently languages) which are NP-complete (like The Clique func-
tion), a natural restricted question is to prove lower bounds for monotone circuits
computing the Clique function [1,13]. A similar success story in the setting of
monotone circuits is in the context of depth lower bounds. In an attempt to
separate the class P from NC1, a line of research considered proving depth lower
bounds against the perfect matching function (given a graph G, as the adjacency
matrix, whether it has a perfect matching or not). An important tool that was
introduced in this direction was the Karchmer-Wigderson games which exactly
captured the depth of circuits computing a function. By proving strong lower
bounds for the monotone variant of this game (which exactly captured the depth
of monotone circuits), lower bounds for monotone circuits computing the reach-
ability problem (Ω(log2 n) [8]) and perfect matching problem (Ω(n) [12]) were
shown, where n is the number of vertices of the given graph.

To extend the success against monotone circuits to the general setting - a nat-
ural attempt is to study a measure of monotonicity of the circuit computing the
function, and use it to prove lower bounds for non-monotone circuits, possibly
even parameterized by the measure of non-monotonicity of the circuits. There
are broadly two kinds of measures of non-monotonicity measures on circuit, one
is syntactic on circuits. The most natural restriction on this is the number of
negations used by the circuit. Power of negations in circuits has been a subject of
study since the 1940s. Markov [10] proved that nearly O(log n) negations are suf-
ficient to compute any Boolean function.1 However, the size of the circuit can be
exponential. In contrast, Morizumi [11] showed that in the case of formulas, �n

2 �
negations are sufficient (and sometimes required) to compute a Boolean function
on n variables. This showed that there is an exponential gap between the power
of negations in the context of circuits and formulas. Fischer [4] showed that any
function f : {0, 1}n → {0, 1} that can be computed by circuits of size poly(n)
can also be computed by circuits which O(log n) negations while retaining the
circuit to be poly(n) size. This, in particular, implies that, to separate P from
NP, it suffices to prove super-polynomial size lower bounds for circuits that use
at most O(log n) negations. Closely following this, [2] proved a super-polynomial
lower bound for circuits which use at most 1

6 log log n negations. This is still the
best known for general circuit size lower bound for a circuit with limited nega-
tions computing single bit output functions. For multioutput functions Jukna
[5] has proved a super-polynomial size lower bound even when the number of
negations is additively close to O(log n). For restricted depth scenario, Rossman

1 The actual bound in [10] is stated in terms of the measure of non-monotonicity of a
function called decrease (which we denote by dec(f)) - see Sect. 2 for definition).
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[14] showed that the whole of NC1 cannot be computed by logarithmic depth
polynomial size circuits with

(
1
2 − ε

)
log n negations for ε > 0.

One of the strategies to interpolate between the general circuits and mono-
tone circuits is to consider other measures of non-monotonicity of Boolean cir-
cuits. Several attempts has been made in this direction. Koroth and Sarma [9]
considers weight of the orientation2 of the functions computed at the individual
gates as a measure of non-monotonicity of circuits. More recently, Jukna and
Lingas [7] studied negation-width as a measure of non-monotonicity and proved
circuit depth lower bounds limiting the same.

Our Results: Given the lack of further progress in lower bounds in terms of
number of negations, it is natural to explore the interplay between negations and
to see whether the way in which negation gates feed into each other affects the
computational power. As noted earlier, the power of negation in Boolean circuits
varies exponentially when (negation) gates are allowed to feed in to each other
(through a series of gates). To understand this further, we study the dependency
between negations. The simplest case to start with is when the negations do not
feed into each other in a circuit (even indirectly via other gates). Such a circuit
is said to have independent negations.

Power of Independent Negations: As a starting point, we show that restrict-
ing the negations to be independent (no negation feeds into another through
series of gates)3 makes the circuit as weak as a formula in terms of the decrease
of the functions which they can compute.

Theorem 1. For any Boolean function f , the independent negation complexity
of f , denoted by Id(f) is exactly dec(f), where dec(f) denotes the decrease of f .

The argument for the above Theorem is inspired by a result of Morizumi [11]
who proved that dec(f) is exactly equal to the minimum number of negations
that any formula computing a function f must contain (originally proved by [3]).
We also generalize orientation [9] to obtain another characterization of Id(f).

Morizumi [11] also proved that any function which can be computed by for-
mulas of depth d and size poly(n) can also be computed formulas that use at
most �n

2 � negations with depth d + O(log n) and size poly(n).
We prove a similar statement for circuits with independent negations com-

puting monotone functions. We parameterize it with the following new measure.
The thickness of a (non-constant) function f is given as t(f) = maxx,y(wt(y) −
wt(x)) where x ∈ f−1(1), y ∈ f−1(0), and wt(x) denotes number of 1s in x . We
show that:

Theorem 2. If a Boolean function f of thickness t has a circuit of depth d,
then f can also be computed by a circuit of depth d + O(log n) using 2�log(t+1)�

independent negations.
2 Informally, this is the number of negations that any De-Morgan circuits requires, to

compute the function.
3 When the circuit is viewed as a graph, the negation gates represent an independent

set.
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As a tool to prove the above Theorem we define a modified version of the
Karchmer-Wigderson games [8]. Karchmer and Wigderson considered two ver-
sions (monotone and non-monotone) of their communication game. They showed
that the minimum cost of a non-monotone game (KW(f)) for a function is equal
to the minimum depth of a circuit computing it; and the minimum cost of a
monotone game is equal to the minimum depth of a monotone circuit com-
puting the function. Note that the versions relate to the case with unbounded
negation gates and no negation gates respectively. Naturally we want a version
of the game that controls the amount of negation gates in the circuit.

The simple generalization we define involves an intuitive switch step - which
is allowed to Alice and Bob at any point in a protocol, it is allowed atmost once
in a run of the protocol and if & after this is done, in order to complete the game,
they need to find an index i such that xi = 0 and yi = 1. If there is no switch
step used in a run of the protocol, then they have to find an i such that xi = 1
and yi = 0. Clearly, if this operation is allowed in an unrestricted way, then it
is as powerful as the general version of the game. We study the version of the
game where the total number of switch step operations in the communication
tree is restricted to be at most k. We denote the communication required in this
version of the game for the function f to be SKWk(f) (which also includes the
bit took for communicating if & when they switch). The following Lemma is
very natural which forms our main tool to prove Theorem2 stated earlier. For
every Boolean function f with decrease at least k, there is a circuit computing
f which uses k independent negations with depth at most SKWk(f).
When the function f is monotone, we state below a parameterized (by the thick-
ness of the function f) version of Theorem 2.

Theorem 3. If a monotone Boolean function f of thickness t has a circuit of
depth d, then for any 1 ≤ k ≤ �log(t + 1)�, f can also be computed by a circuit
of depth d� t

2k−1
� + O(log n) using only 2k independent negations.

Using the techniques developed en-route to the above Theorem we also show a
relation between cost of monotone and non-monotone versions of the Karchmer-
Wigderson games (denoted by KW(f) and KW+(f) respectively) for a monotone
function f , in terms of the thickness of f .

Theorem 4. For any monotone function f having thickness t,

KW+(f) ≤ (t + 1) KW(f) + O(log n).

Negation (Dependency) Graph: Theorem 1 indicates that the negations are
more powerful when they feed into each other. To systematically study the struc-
ture of the dependency between negation gates in a circuit we introduce the
negation graph: where the vertex set is the set of negation gates along with the
root gate. A directed edge (u, v) indicates that there is a negation-free path
between gates u and v in the circuit. Given a negation graph of a circuit, we
associate a non-monotonicity measure with it, which we call the decrease capac-
ity (denoted by dmax defined in Sect. 5) of the negation graph (and hence the
circuit). By adapting a lower bound argument due to [11], we show that:
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Theorem 5. If a circuit C computes a function f , then dec(f) ≤ dmax(C).

This gives us a useful tool to arrive at interesting structural properties of the
negation gates in a circuit computing a given function. We use it to derive
(Theorem 15) structural properties for negation optimal circuits. We use the
measure to provide an alternative proof for a negation lower bound for circuits
by Santha and Wilson [15]: If a Boolean function f of decrease k is computed by
a circuit C of depth d, then the number of negations in C is at least d(k1/d − 1).

We also ask the question: Given a negation graph N and a function f , is it
possible to design a circuit computing the f with the given negation dependency
structure? We are able to answer this for negation graphs which are trees.

Theorem 6. Given any function f : {0, 1}n → {0, 1} with alternation k, for
any negation tree N with dmax(N) ≥ k/2, we can design a circuit C which
computes function f and has negation graph N .

En route the proof, we also prove the following: Let f : {0, 1}n → {0, 1} and
g : {0, 1}m → {0, 1} be two functions such that alt(f) ≤ alt(g) and f(0m) =
g(0n). Then, any circuit for g can be used (with substitution of variables with
monotone functions) to compute f without using any extra negations. This might
be of independent interest.

2 Preliminaries

We now define basic notations and terms used in the paper. Unless explicitly
mentioned, we deal with functions from {0, 1}n to {0, 1}. For definitions of circuit
complexity classes, monotone functions and circuits we refer the reader to the
textbook [6]. We deal with circuits whose ∨ and ∧ gates have a fan-in of 2.

For any x ∈ {0, 1}n, we define weight of x, denoted by wt(x), as the number
of 1s in the string x. Let x, y ∈ {0, 1}n be two distinct strings and let si stand
for the ith bit of a string s. We say x ≺ y iff ∀i ∈ [n], xi ≤ yi. A chain of
inputs is defined as a sequence 〈x(0), x(1), . . . x(k)〉 where each x(i) is distinct
and i < j =⇒ x(i) ≺ x(j). For a given Boolean function f and a chain
X = 〈x(0), x(1), . . . x(k)〉, the decrease of f along the chain is the number of indices
i such that f(x(i)) = 1 and f(x(i+1)) = 0. The decrease of f , denoted by dec(f),
is the maximum such decrease over all possible chains. Similarly, the alternation
of f along a chain is the number of indices i such that f(x(i)) �= f(x(i+1)). The
alternation of f , denoted by alt(f), is the maximum alternation over all chains.

We quickly review the Karchmer-Wigderson game for functions defined by
[8], and their relation to circuit depth complexity. The game is played between
two players, Alice and Bob, who individually have infinite computational power
and co-operate with each other. For a Boolean function f , Alice is given an
input x ∈ f−1(1) (i.e, f(x) = 1) and Bob is given y ∈ f−1(0). Their aim is
to communicate and find an index i such that xi �= yi. The cost (sometimes
called as complexity) of the game when Alice and Bob follow a given protocol is
the number of bits communicated in the worst case. The cost of the game for a
function f , denoted by KW(f), is the lowest possible cost of any valid protocol.
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The protocol can also be viewed as a tree. The root of the tree is labelled
with a matrix with rows from f−1(1) and columns from f−1(0). Whenever Alice
speaks, we create two children node, one for the case she communicates 0 and
other for the case she communicates 1. Since Alice has communicated, Bob will
eliminate some possibilities for Alice’s inputs and thus remove some rows of the
matrix. Thus the matrix will be row-partitioned between the children nodes. We
can construct children similarly when Bob speaks as well. The leaves of the tree
correspond to the case when Alice and Bob have solved the game. So, the cost
of the game can also be seen as the depth of the communication tree.

Karchmer and Wigderon studied a monotone variant of the game too where
f is a monotone function and hence it is guaranteed that ∃i ∈ [n] such that
xi = 1 and yi = 0. The aim of this variant of the game is to output this index i.
The cost of the game is defined similarly and is denoted by KW+(f).

Karchmer and Wigderson [8] showed that the costs of these games for a func-
tion f are closely related to the minimum depth of non-monotone and monotone
circuits that compute f . More formally, for a given Boolean function f , if the
minimum depth of a (possibly non-monotone) circuit computing f is d, then
KW(f) = d. For a given monotone Boolean function f , if the minimum depth
of a monotone circuit computing f is dm, then KW+(f) = dm. Exploring the
weights of inputs and combining with some circuit theoretic ideas, we strengthen
this to the following proposition (we defer the details to a full version of the
paper).

Proposition 1. The following five statements are equivalent for any monotone
function f : {0, 1}n → {0, 1}.
– f has an O(log n) depth circuit.
– f has an O(log n) general KW game protocol.
– f has an O(log n) general KW game protocol in the case where Alice and Bob

get inputs of equal weight.
– f has an O(log n) monotone KW game protocol in the case where Alice and

Bob get inputs of equal weight.
– f has an O(log n) monotone KW game protocol in the case where weight of

Alice’s input is greater than or equal to weight of Bob’s input.

3 Power of Independent Negations

We begin our study by looking into circuits with only independent negations. We
show that the minimum number of independent negations required to compute
a given function is characterized by the decrease of the function.

For any Boolean function f , define the independent negation complexity,
Id(f) to be the minimum number of negation gates that are required for any
circuit computing the function f such that no negation gate feeds4 in to another.
We prove the following characterization. Due to lack of space, we defer the details
to the full version.
4 Not even through a series of gates.
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Theorem 7. For any Boolean function f , we have Id(f) = dec(f).

We now show that independent negation complexity is also characterized by
a variant of orientation [9] which is a measure of non-monotonicity of a function
considered in [9]. A function f : {0, 1}n → {0, 1} is said to have orientation
β ∈ {0, 1}n if there is a monotone function h : {0, 1}2n → {0, 1} such that:
∀x ∈ {0, 1}n, f(x) = h(x, (x ⊕ β)). We generalize this in the following way.

Definition 1 (Monotone Orientation). A function f : {0, 1}n → {0, 1} is
said to have monotone orientation β ∈ {0, 1}n if there is a monotone function
h : {0, 1}2n → {0, 1} and a monotone function g : {0, 1}n → {0, 1}n such that :
∀x ∈ {0, 1}n, f(x) = h(x, (g(x) ⊕ β))

The weight of a monotone orientation β is defined as the number of 1s in the
vector β. The monotone orientation weight of a function, w(f) is the minimum
weight of a monotone orientation of f . Using basic properties of the definition,
we show that the this measure is equivalent to independent negation complexity
(see full version for a proof).

Theorem 8. For any Boolean function f : {0, 1}n → {0, 1}, w(f) = Id(f)

Now, we present a characterization for minimum depth of a formula with
k independent negations computing a given function f . We have already seen
the monotone and non-monotone (general) version of the Karchmer-Wigderson
games. The monotone game corresponds to circuits in which there are no nega-
tion gates (that is, monotone circuits). The non-monotone game corresponds to
general circuits where there can be any number of negations. Naturally, we would
like to have an in-between version where we can control the number of negation
gates in the circuit. To achieve this, we will modify the monotone version of the
game by adding a switch step. Alice and Bob can, at any point in a protocol,
choose5 to switch. After the switch step, they are said to have played the game
successfully if they find an index i such that xi = 0 and yi = 1.

We now define the Switch Karchmer-Wigderson (or SKW in short) game:

Definition 2 (Switch Karchmer-Wigderson Game). Alice and Bob are
given inputs from f−1(1) and f−1(0) respectively. They communicate between
themselves and can at any point decide to perform the switch step. If the step
was used, then they cannot use the step again. The aim of the game is to find,
at the end of the game, an index i such that xi = 1 �= yi = 0 if switch step was
not used or xi = 0 �= yi = 1 if the switch step was used

Any protocol for the game can be seen as a communication tree [8]. We will
also consider the switch step as an additional edge/level in the tree. The cost
of a protocol is defined as the depth of the communication tree (number of bits

5 Alice and Bob must both know that they are performing the operation. This can be
inferred from the communication or can be indicated by one player by communicating
with the other.
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communicated + the number of switch steps (0 or 1) performed in the worst
case). The cost of the game is the least cost of a valid protocol.

Clearly if this step is allowed in all cases we can play the game successfully
as follows: Alice and Bob will play the general version of the game. After this
they are guaranteed an index such that xi �= yi. Now they can check if xi = 1, if
so, they are done. Otherwise they can perform the switch step and complete the
game. This is similar to the non-monotone Karchmer-Wigderson game. If the
step was not allowed, we arrive at the monotone Karchmer-Wigderson game.

We restrict the use of the switch step by allowing it only in a limited number
of cases. We define it in a more concrete way as follows:

The switch step can be performed only at some k nodes in the communication
tree, the nodes at which this is done is left to (the protocol)Alice and Bob. Let
the said game be SKWk and the cost of the game be SKWk(f). We relate the
cost of this game to the depth of a formula computing f with k independent
negations. See full version for details.

Lemma 1. For every Boolean function f with decrease at least k, there is a
circuit (in fact a formula) computing f which uses k independent negations with
depth at most SKWk(f).

4 Thickness and Independent Negation Complexity

We showed in Proposition 1 the effect of weights of the inputs in the complexity
of Karchmer-Wigderson games. To exploit the full power of this restriction, we
define a measure of complexity of a function which we call the thickness.

Definition 3 (Thickness). Let f : {0, 1}n → {0, 1} be a non-constant Boolean
function. We define thickness of the f as t(f) = maxx,y(wt(y)−wt(x)) where x ∈
f−1(1), y ∈ f−1(0).

Indeed, −1 ≤ t(f) ≤ n. The lower bound is achieved by threshold functions
and the upper bound is achieved when f(1n) = 0 and f(0n) = 1.

Thickness and Independent Negations: We will now show that ≈ t inde-
pendent negations are enough to compute a function with almost optimal depth.

Theorem 9. If a Boolean function f of thickness t has a circuit of depth d,
then f can also be computed by a circuit of depth d + O(log n) using 2�log(t+1)�

independent negations.

Proof. (Sketch) We provide a SKW protocol with the required properties. The
main idea is for Alice and Bob to communicate and determine if wt(y) > wt(x)
and to perform the switch step if this is true. Generally this would take O(log n)
bits of communication. However, since the thickness of f is t, to get wt(y) >
wt(x), wt(y) has only t possible values. We exploit this fact to reduce the initial
communication required and in effect reduce the number of switch steps in the
protocol.
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We have seen what that we can compute f almost optimally if 2�log(t+1)� ≈ t
(thickness) number of negations are given. Note that all the negations are used
as independent negations. A better bound may be possible if these negations are
not used in that form. We defer the details of the proof to the full version.

Theorem 10. If a Boolean function f of thickness t has a circuit of depth d,
then f also has a circuit of depth d + O(log n) with only �log(t + 1)� negations.

A Parameterized Bound for Monotone Functions: We have seen that for
a monotone function of thickness t; without using negations in a circuit, we can
compute it within nearly t times the optimal depth. We have also seen that using
nearly t independent negations, we can compute it with almost optimal depth.
We will now see what can be done if fewer than t independent negations are
allowed in the circuit. We defer the details to the full version.

Theorem 11. If a monotone Boolean function f of thickness t has a circuit of
depth d, then for any 1 ≤ k ≤ �log(t + 1)�, f can also be computed by a circuit
of depth d� t

2k−1
� + O(log n) using only 2k independent negations.

Thickness and Karchmer-Wigderson Games for Monotone Functions:
We now show that if a monotone function has low thickness, then negation gates
are not very useful for computing it. We prove, by relating the complexity of the
KW games to depth of circuits: d ≥ dm−O(log n)

t+1 , where d is the minimum depth
of a (possibly non-monotone) circuit computing f and dm is the minimum depth
of a monotone circuit computing the function f of thickness t.

We remark a known special case of the theorem. A function f is said to be
a slice function iff ∃k such that f(x) = 1 if wt(x) > k, f(x) = 0 if wt(x) < k,
and f(x) is non-trivial for wt(x) = k. Note that slice functions have thickness of
0. Thus, from the below Theorem, we may observe that for a slice function, the
minimum depths of monotone and general circuits differ by O(log n).

Theorem 12. For any monotone function f : {0, 1}n → {0, 1} having a thick-
ness t, KW+(f) ≤ (t + 1) KW(f) + O(log n).

Proof. It suffices to show that given a circuit of depth d computing f , we can
devise a protocol for the monotone KW game of cost (t + 1)d + c log n.

Recall that the setting of the monotone KW game is that there are two players
Alice and Bob; Alice gets x ∈ f−1(1) and Bob gets y ∈ f−1(0). They have to find
an index i such that xi = 1 and yi = 0 using minimum bits of communication.

We have a circuit of depth d computing f . We push down negations to the
leaves of the circuit without increasing the depth using De Morgan’s laws. From
here on, we assume that negations are only at the input variables. Now they
play the general KW game on the circuit with Alice communicating at ∧ gates
and Bob communicating at ∨ gates. They will move down through the circuit
and reach a leaf literal. This will either be a variable or its negation. We are
guaranteed that the literal evaluates to 1 for Alice and 0 for Bob. If the literal
is positive, we have found an index where xi = 1 and yi = 0 and we are done.
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If not, we have an index where xi = 0 and yi = 1. Alice sets the input bit xi

to 1. Let us call this new input x′. Since f is a monotone function and x′ > x,
f(x′) = 1. Alice and Bob repeat playing the game, now on x′ and y. Again they
will end up in a literal evaluating to 1 for Alice and 0 for Bob. Note that the
bits at which x is changed are now equal to those of y. Thus we cannot get those
indices from the replay of the game. So, after each run of the game, they have
either found the desired index, or the number of 1s in x has increased by 1.

They will repeat this process t + 1 times (unless the desired index is already
obtained). Consider all the indices found in this process. Let the set of these
indices be S. All the indices i ∈ S satisfy xi = 0 and yi = 1. For any set S ⊆ [n]
we denote xS as x restricted to the indices present in S. Thus wt(xS) = wt(x)
and wt(yS) = wt(y) − (t + 1). Since the thickness of f is t and x ∈ f−1(1) and
∈ f−1(0), we have wt(x) ≥ wt(y) − t. Thus wt(xS) = wt(x) ≥ wt(y) − t ≥
wt(yS) + (t + 1) − t > wt(yS).

Now Alice will communicate wt(xS) to Bob and they will consider the func-
tion Thwt(xS). This function evaluates to 1 on xS which is available for Alice at
this point, and to 0 on yS which is available for Bob. As any threshold function
has a O(log n) depth monotone circuit, they can play the monotone game on
such a circuit and find an index i such that the ith bit of xS is 1 and that of yS

is 0. Since i /∈ S, the ith bit of x is same as that of xS . Similar property holds for
y and yS . Hence, xi = 1 and yi = 0 for the same i. This completes the protocol.

Cost of the protocol also follows from the description; in the worst case we
would have played the general game t+1 times on the circuit computing f , after
which we would have spent O(log n) bits due to the threshold circuit. Thus the
cost is atmost (t + 1)d + O(log n). ��

5 Negation Graph and Decrease Capacity

We have explored the power of independent negations. We also know that when
we remove the restriction of independence, we exponentially increase their power.
We now explore how the structure of the negation graph influences the decrease
of the circuit. Given a circuit, the negation graph contains the negation gates
and the root gate6 as vertices. There is an edge from a vertex g1 to vertex g2 iff
the gate g1 feeds into gate g2 via a path which does not contain a negation gate.

Definition 4 (Decrease Capacity of a Negation Graph). Given a negation
graph of a circuit, for every vertex v in the negation graph, we define the function
dmax(v) recursively (bottom-up) as follows: (1) Decrease capacity of a negation
gate v with no incoming edges is dmax(v) = 1. (2) Decrease capacity of a negation
gate v with incoming edges from vertex v1, . . . vk is: dmax(v) = 1+

∑k
i=1 dmax(vi).

(3) Decrease capacity of the root gate r is the sum of decrease capacities of all
the vertices feeding into it. For a given negation graph N , we define dmax(N) =
dmax(r). The decrease capacity of a circuit C, denoted dmax(C), is dmax(N)
where N is the underlying negation graph of the circuit.
6 If the root gate is a negation gate, add a dummy gate as a root gate.
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To justify the word capacity, we will show that this measure is a bound on
the decrease of a function computed by a given circuit.

Theorem 13. If a circuit C computes a function f , then dec(f) ≤ dmax(C).

Proof. (Sketch) We present the main idea of the proof and defer the details to
the full version. Morizumi [11] showed that for any negation gate g, across a given
chain X , the number of 0 to 1 transitions in the output of g can be bounded by
the number of 1 to 0 transitions of negation gates that feed into g. We use this
to arrive at an upper bound for the 1 to 0 transitions in the output of g.

Note that we in fact show something stronger: for any negation gate g, dmax(g)
is an upper bound on the decrease of the function computed at the gate.

We will show that given only the negation graph of a circuit C, dmax(C) is
the best upper bound obtainable if the negation graph is a tree. However, it is
easy to see from the definition of decrease capacity of a negation tree is exactly
the number of negation nodes.

Theorem 14. Given a Negation Tree N with less than n
2 nodes, there is a

circuit C with negation graph N computing a function with decrease dmax(N).

Necessary Conditions for Negation Optimal Circuits: We start by proving
tight upper bounds on dmax(C) for a circuit C in terms of the number of negations.
Due to lack of space, we defer the proof of the following to the full version.

Theorem 15. Any circuit C containing � negations satisfies dmax(C) ≤ 2� −
1. Also the equality is achieved only when the undirected negation graph is a
complete graph.

Note that if C computes f , then dec(f) ≤ dmax(C). Now if C has the min-
imum number of negations required to compute f (which is called the inver-
sion complexity I(f)), the above Theorem gives dmax(C) ≤ 2I(f) − 1, and so
dec(f) ≤ 2I(f) − 1. This proves one side of Markov’s Theorem [10].

Also, the equality condition shows that if a function f has decrease dec(f) =
2� − 1, then any circuit C containing � negations and computing f will have
a complete undirected negation graph. Note that � is the minimum number
of negations required to compute f . In addition, we can also conclude that if
2� < dec(f) ≤ 2�+1−1, then any circuit C computing f containing �+1 negations
satisfies: Every negation gate in C either (1) feeds into another negation gate
(via a negation free path) or (2) has a negation gate feeding into it. Alternatively,
If N is the undirected negation graph of the circuit and r is the root gate vertex,
N \ r is connected.

We show that any function f can be computed using negation structure of
any other given function g, as long as g has high enough alternation. We provide
the detailed argument in the full version of the paper.

Theorem 16. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two functions
such that alt(f) ≤ alt(g) and f(0m) = g(0n). Then, any circuit for g can be used
(with substitution of variables with monotone functions) to compute f without
using any extra negation.
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By combining Theorem 16 and 14 we get Theorem 6 in the introduction.

Negation Lower Bound for Depth Limited Circuits: As yet another appli-
cation of the notion of decrease capacity of the negation graph, we provide an
alternate proof for a negation lower bound shown by Santha and Wilson [15].

Theorem 17. If a Boolean function f of decrease k is computed by a circuit C
of depth d, then the number of negations in C is at least d(k1/d − 1).
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Abstract. Given a bipartite graph G, the BICLUSTER EDITING
problem asks for the minimum number of edges to insert or delete in G
so that every connected component is a bicluster, i.e. a complete bipar-
tite graph. This has applications in various areas such as social network
analysis and bioinformatics. We study the parameterized complexity of
the problem, the best published algorithm so far attaining a time of
O∗(3.24k), with k the number of edges to edit. Using novel but intuitive
ideas, we significantly improve this to an O∗(2.695k) time complexity.

Our algorithm has the advantage of being conceptually simple and
does not require tedious case handling. Previous approaches were based
on finding a forbidden induced subgraph (e.g. a P4) and branching into
several ways of eliminating such a subgraph. We take a departure from
this local viewpoint, and instead solve conflicts globally. That is, we take
two vertices that prevent the graph from containing only biclusters, and
branch into the ways of resolving all the conflicts they are part of, at
once. We hope that these ideas will allow simpler algorithms for other
forbidden induced subgraph problems.

As a complementary result, we also show that BICLUSTER EDIT-
ING admits a problem kernel with 5k vertices.

1 Introduction

Partitioning data points into clusters, which are often interpreted as groups of
similarity, is a fundamental task in computer science with several practical appli-
cations in areas such as social networks analysis and bioinformatics. Although
many formulations of what constitutes a good clustering have been proposed
(e.g. based on pairwise distances [8,13,17], modularity [19], random walks [22]
or likelihood [14]), most approaches are based on the principle that a cluster
should contain members that are similar to each other, and different from the
members outside of the cluster. In a graph-theoretic setting, the ideal clustering
should therefore consist of disjoint cliques.

In some applications, one has two classes of data points and only the relation-
ships between classes are interesting. Clustering then takes the form of finding
sub-groups in which the members of one class have similar relationships (e.g.
groups of people who like the same movies). This can be modeled as a bipartite
graph with two vertex sets V1 and V2, one for each class, and the goal is to
c© Springer Nature Switzerland AG 2020
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partition V1 ∪ V2 into disjoint biclusters, which are complete bipartite graphs.
This variant has several applications [18,27], for instance in the analysis of social
interactions between groups [5], gene expression data [7], and phylogenetics (e.g.
when comparing the left and right descendant of an ancestral species [2,16]).

In this work, we assume that bipartite graphs that do not consist of disjoint
biclusters are due to erroneous edges and non-edges. In the BICLUSTER EDIT-
ING problem, we ask whether a given bipartite graph G can be transformed into
a set of disjoint biclusters by adding/removing at most k edges.

Related Work. The BICLUSTER EDITING problem is known to be NP-hard
even on subcubic graphs [9] and on dense graphs [26]. By observing that graphs
of disjoint biclusters coincide with bipartite P4-free graphs, Protti et al. [21]
first devised a simple O∗(4k) time algorithm that finds a P4, and branches over
the four possible ways to remove it (here, the O∗ notation suppresses polynomial
factors). They also show that BICLUSTER EDITING admits a kernel of 4k2+6k
vertices. In [12], the authors extend the branching algorithm to solve induced
P5’s, if any—this leads to slightly more case handling but achieves an improved
running time of O∗(3.24k). A kernel of size 4k is also proposed, but this turns
out to be a slight inaccuracy (we provide a counter-example). An O∗(25

√
pk)

algorithm is proposed in [9], where p is the number of desired biclusters. In terms
of approximability, a factor 11 approximation algorithm is presented in [3] and
is improved to a pivot-based, randomized factor 4 approximation in [1]. Owing
to the practical applications of the problem, several heuristics and experiments
have also been published [20,23–25].

A closely related problem is CLUSTER EDITING, where the given graph does
not have to be bipartite and the goal is to attain a collection of disjoint cliques.
To some extent, this problem seems inherently easier than its bipartite coun-
terpart: CLUSTER EDITING is only known to be NP-hard on graphs of max-
imum degree 6 [15], it admits an O∗(1.619k) FPT algorithm [6] (obtained after a
series of improvements [10,11]), and a 3-approximation approximation [4] (a 2.5-
approximation is given in [28] if edit weights satisfy probability constraints).

OurContributions.We provide an O∗(2.695k) time algorithm for BICLUSTER
EDITING, a significant improvement over the best known bound of O∗(3.24k).
To achieve this, we take a departure from the usual idea of branching over the
ways to correct a forbidden induced subgraph. Instead of resolving such conflicts
locally, we resolve these problems globally by finding two vertices that prevent
the graph from containing only biclusters, and eliminating every conflict they are
part of. More concretely, we apply a very intuitive but powerful idea. Given two
vertices u and v with different but overlapping neighborhoods, we branch over two
possibilities: either u and v belong to the same bicluster, or they do not. In the first
case, we try every way to make their neighborhoods equal, and in the second, we
try every way to make their neighborhoods non-intersecting.

This leads to a simpler algorithm, but also to less straightforward branching
factors to analyze. In particular, our algorithm branches over a number of cases
that is exponential in the number of modifications, but we characterize when
it is worth it to do so (Lemma 3). We first show that this immediately leads to
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an O∗(3.237k) algorithm that is easier to implement than previously published
approaches. The O∗(2.695k) time algorithm is obtained by only adding a special
case to handle degree one vertices. Our algorithm therefore has the advantage
of being very simple to comprehend and implement.

On another note, we also correct the inaccuracy of [12] concerning the 4k
kernel size for BICLUSTER EDITING. We provide an example showing that
the approach cannot achieve better than a 6k kernel. We then show that with
an additional reduction rule, one can attain a 5k kernel size. The proof on the
kernel size is based on a combinatorial charging argument.

Preliminary Notions. Given two sets A and B, we write A�B = (A \ B) ∪
(B \ A) for the symmetric difference between A and B. Let G be a graph and
let v ∈ V (G). We write NG(v) for the set of neighbors of v and define degG(v) =
|NG(v)|. The G subscript may be dropped if it is clear from the context. For F
a set of pairs of V (G), we write G − F for the graph (V,E \ F ). If F = {xy} has
a single element, we may write G − xy instead of G − {xy}.

The vertex set V (G) of a bipartite graph G = (V1 ∪ V2, E) has two disjoint
subsets V1 and V2. For X ⊆ Vi, i ∈ {1, 2}, we define NG(X) =

⋃
x∈X NG(x).

Two vertices u, v ∈ Vi, with i ∈ {1, 2} are called twins if N(u) = N(v). Note
that twins form an equivalence relation. A twin class is an equivalence class, i.e.
a maximal subset X ⊆ V (G) such that x1 and x2 are twins for every x1, x2 ∈ X.

Given a bipartite graph G = (V1∪V2, E) and subsets X ⊆ V1 and Y ⊆ V2, we
say that X ∪ Y form a a bicluster if N(x) = Y for all x ∈ X and N(y) = X for
all y ∈ Y (note that a single vertex is a bicluster). We say that G is a bicluster
graph if each of its connected components is a bicluster. An edge modification is
either the insertion of a non-existing edge, or the deletion of an existing edge.

The BICLUSTER EDITING problem asks, given a bipartite graph G,
whether there exists a sequence of at most k edge modifications that trans-
form G into a bicluster graph. We treat k as a parameter. A solution to a graph
G is a graph B in which every connected component is a bicluster, and such
that at most k modifications are needed to transform G into B. We say that B
is optimal if no other solution requires less modifications.

2 Reduction Rules and a 5k Problem Kernel

We provide three reduction rules based on those proposed in [12]. We use the
notion of a sister of a vertex u. Let R be a twin class of G. Let S = N(R) and
t ∈ N(S)\R. Then t is a sister of R if the two following conditions are satisfied:

– t does not have a twin in G;
– N(t) = S ∪ {v} for some vertex v ∈ V (G) \ S.

For any u ∈ V (G), we say that t is a sister of u if t is a sister of the twin
class containing u, see Fig. 1. We can now describe our reduction rules.

Rule 1: if a connected component X of G is a bicluster, remove X from G.
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R
S W

T

Fig. 1. R is a twin class, S = N(R), T are the sisters of R (there is only one) and
W = N(S) \ (T ∪ R). Note how the two bottom vertices of W are not sisters of R.

Rule 2: if there is a twin class R such that |R| > |N(N(R)) \ R|, then remove
any vertex from R.

Rule 3: let R be a twin class, let T be the set of sisters of R, and let W =
N(N(R))\ (R∪T ). If |R| > |W | and |T | ≥ 1, then choose any t ∈ T and remove
the edge between t and N(t) \ N(R).

The idea of Rule 3 is that if removing a single edge from a T vertex would
help it join a “large enough” twin-class, then we should do so. For instance in
Fig. 1, according to Rule 3, we can remove the edge from the T vertex to the
bottom degree 1 vertex, making the size of the R twin class larger.

Note that in [12], Rule 1 and Rule 2 were introduced and the authors sug-
gested that they would lead to a kernel of size 4k. However, the P6 graph is
a counter-example to this claim. Indeed, the P6 admits a bicluster graph with
k = 1, has 6k vertices, and Rule 1 and Rule 2 do not apply. It is plausible that
Rule 1 and Rule 2 can lead to a 6k kernel, whereas Rule 3 allows us to reduce
this to 5k (in particular, Rule 3 does reduce the P6).

It is easy to see that Rule 1 is safe. Rule 2 was already shown to be safe
in [12]. The proof was based on a result on twins that we restate here, as it will
be useful later. Rule 3 can then be shown to be safe.

Lemma 1 ([12]). There is an optimal solution B of G in which every pair of
twins are in the same bicluster of B.

Lemma 2. Let R be a twin class and let T be the set of sisters of R. Also let
S = N(R) and W = N(S) \ (R ∪ T ). If |R| > |W | and |T | ≥ 1, then for any
t ∈ T there exists an optimal solution in which the edge between t and the vertex
in N(T ) \ S is deleted.

The proof of the latter is somewhat technical and we defer it to the full
version. The main idea is that if some t ∈ T keeps its edge to N(t) \ S in some
optimal solution, then we can modify this solution by forming a new bicluster
with R, t, S and possibly other vertices but not N(t) \ S.

We now have enough ingredients to devise our small kernel. Here we only
include the description of our charging scheme, which is perhaps the original
portion of the proof. It also demonstrates why Rule 2 and Rule 3 are needed: it
guarantees that R ≤ W , which allows us to redirect the charge of every r ∈ R
to a distinct vertex in W .
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Theorem 1. Let G be a graph on which Rules 1, 2 and 3 do not apply. Then
G has at most 5k vertices.

Sketch of the proof. Let B be an optimal bicluster graph of G in which vertices in
the same twin class of G belong to the same bicluster, which exists by Lemma 1.
Let EI be the set of inserted edges and let ED be the set of deleted edges. Let X
be the set of vertices of G that are incident to at least one edge of EI ∪ED, and
let R = V \X be the unaffected vertices of G. Let {R1, . . . , Rp} be the partition
of R into twin classes. For each Ri, let Si = NG(Ri), let Ti be the sisters of Ri,
and let Wi = NG(Si) \ (Ti ∪ Ri). Moreover, let Bi be the bicluster of B that Ri

belongs to. Since for each i ∈ [p], Ri is unmodified, we have Si ⊆ Bi and, since
each Wi ∪ Ti vertex has a different neighborhood than the Ri vertices, we have
Wi ∪ Ti ⊆ X.

We argue that for i �= j, we have Bi �= Bj . This is because if Ri and Rj

are both in the same part of the bipartition, say in V1, then we would have
NG(Ri) = NG(Rj) and Ri ∪ Rj would be a larger twin class. If Ri and Rj

are in different parts of the bipartition, then Ri ∪ Rj would form a connected
component of G that is a bicluster, and should be removed according to Rule 1.

We want to bound the size of V := V (G) by devising a charging scheme in
which each vertex of V charges a total amount of 1 to edges of EI ∪ ED. The
idea is that every modified edge receives a charge of at most 5 in this scheme.

There are three rules that describe this charging scheme. C1 handles vertices
of X, and C2, C3 handle vertices of R.

C1. For each x ∈ X, let Ex ⊆ EI ∪ ED be the set of modified edges that are
incident to x. Then x charges 1/|Ex| to each edge of Ex.

As for the R vertices, because our three rules do not apply, we have |Ri| ≤
|Wi| for each i. This is because if |Ri| > |Wi|, then if |Ti| ≥ 1, Rule 3 applies,
and if Ti = ∅, Wi = N(N(Ri))\Ri and Rule 2 applies. Note that this is precisely
where Rule 3 is needed. First map each vertex of Ri to a distinct vertex of Wi

in an arbitrary manner using any injective function fi : Ri → Wi. Then denote
W in

i = Wi ∩ Bi and W out
i = Wi \ Bi. Let r ∈ Ri and let w = fi(r) be the vertex

that r is mapped to. The charging scheme for r is described as follows.

C2. Suppose that w ∈ W out
i . Let Sw = NG(w) ∩ Si, noting that |Sw| ≥ 1 and

that each edge between w and Sw has been deleted. In that case, r charges
1/|Sw| to each edge between w and Sw.

C3. Suppose instead that w ∈ W in
i . Then since w is not a sister of R, one of the

following holds:
(a) if w has a non-neighbor s in Si, then ws was inserted, in which case r

charge 1 to ws (if multiple choices of s arise, choose any).
(b) If Si ⊆ NG(w), then let Zw = NG(w)\Si, noting that |Zw| ≥ 1 and that

each edge between w and Zw has been deleted. In that case, r charges
1/|Zw| to each edge between w and Zw.
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The total charge c(e) of an edge e of EI ∪ ED is the sum of charges given
to e by all the vertices of G. We claim that c(e) ≤ 5. Since each vertex outputs
a charge of 1, this allows us to establish that |V | =

∑
e∈EI∪ED

c(e) ≤ 5k. We
redirect the reader to the full version for the remaining details. The main idea
is that any edge e ∈ EI ∪ ED can receive at most two charges from each of C1,
C2, or C3, each charge is at most 1, and two of them must be at most 1/2. �

We note that we do not know whether the 5k bound is tight, since we know
of no example of a graph on which none of the rules apply, but that has size 5k.

3 An O∗(2.695k) Branching Algorithm

We now present our main branching algorithm. We take two vertices u, v ∈ Vi,
i ∈ {1, 2} that are not twins but whose neighborhood intersects. Either u and v
belong to the same bicluster, or they do not. If we fix the choice that u, v are
in the same bicluster, we need to do something about N(u)�N(v), and we try
every way of ensuring that u and v have the same neighbors. If we fix the choice
that u, v are in different biclusters, we need to do something about N(u)∩N(v),
and this time we ensure that u and v share no common neighbor. See Fig. 2.

1 function biclusterize(G, k)
2 if k < 0 then Report “NO” and return
3 Remove from G all bicluster connected components (Rule 1)
4 if G has no vertex then Report “YES” and return
5 if G has maximum degree 2 then Solve G in polynomial time
6

7 Let u, v ∈ V (G) such that N(u) ∩ N(v) �= ∅ and N(u)�N(v) �= ∅
8 Let Ru be the twin class of u and Rv be the twin class of v
9 /*Put u, v in the same bicluster*/

10 for each subset Z of N(u)�N(v) do
11 Obtain G′ from G by:

inserting all missing edges between Ru ∪ Rv and Z and
deleting all edges between Ru ∪ Rv and (N(u)�N(v)) \ Z

12 Let h be the number of edges modified from G to G′

13 biclusterize(G′, k − h)
14 end
15 /*Put u, v in different biclusters*/
16 for each subset Z of N(u) ∩ N(v) do
17 Obtain G′ from G by:

deleting all edges between Ru and (N(u) ∩ N(v)) \ Z and
deleting all edges between Rv and Z

18 Let h be the number of edges modified from G to G′

19 biclusterize(G′, k − h)
20 end
21 if some recursive call reported “YES” then report “YES”
22 else report “NO”

Algorithm 1: Main branching algorithm
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u

v

u

v

u

v

In same bicluster In different biclusters

Fig. 2. Left: two vertices u, v and N(u) ∪ N(v). Middle: one of the 8 ways to branch
into if u and v are in the same bicluster. Right: one of the 4 ways to branch into if u
and v are in distinct biclusters. Dotted edges are deletions, fat edges are insertions.

The pseudo-code of this approach is presented in Algorithm 1. As we will
show, it is sufficient to achieve time O∗(3.237k) with an easy analysis.

Importantly, we observe that h ≥ |N(u)�N(v)| in the first case because
each z ∈ Z requires an insertion and each z /∈ Z requires a deletion. Similarly,
h ≥ |N(u) ∩ N(v)| in the second case, because each element requires a deletion.

Notice that even if Algorithm 1 might branch into an exponential number
of cases, the larger the set of branching cases, the more k is reduced in each
recursive call. It turns out to be more advantageous to have more cases: the
larger N(u) ∩ N(v) and N(u)�N(v) are, the closer to an O(2k) algorithm we
get. The graphs of small maximum degree are the most problematic.

To analyze this more formally, let u, v ∈ Vi and let c := |N(u) ∩ N(v)| and
d := |N(u)�N(v)| (c stands from ‘common’, d for ‘different’). Then in the worst
case, when |Ru| = |Rv| = 1, the number of recursive calls given by the recurrence

f(k) = 2cf(k − c) + 2df(k − d),

whose characteristic polynomial is ak − 2cak−c − 2dak−d. We will be interested
in the worst possible combination of c and d, i.e. that lead to a polynomial with
the maximum largest real root.

Definition 1. Let f be a polynomial function. Then lrr(f) denotes the largest
real root of f .

Let c, d ≥ 1 be integers. We denote by lrr(c, d) the largest real root of the
polynomial function f(a) = ak − 2cak−c − 2dak−d.

The intuition that higher c and d is better follows from the next technical
lemma, which characterizes particular situations in which a characteristic poly-
nomial is better than another. Roughly speaking, it says that if we can decrease
k at the expense of creating more branching cases, it is advantageous if the
additional number of cases increases exponentially in the amount decreased.

Although we will not need the full generality of the statement here, it might
be of independent interest.

Lemma 3. Let k ∈ N, let b > 1 be a real and let c, c0, . . . , ck−1 be non-negative
reals, with 0 < c ≤ k. Let

f(a) = ak −
k−1∑

j=0

cja
j − bcak−c
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be a polynomial. Moreover let ε > 0 be a positive real, and let

f∗(a) = ak −
k−1∑

j=0

cja
j − bc+εak−c−ε

Then lrr(f∗) ≤ lrr(f).

Proof. We first claim that f∗(a) ≥ f(a) for all a ≥ b. We prove this by con-
traposition, i.e. we assume that f∗(a) < f(a) for some a, and deduce a < b. If
a ≤ 0, then a < b, so suppose a is positive. Then

ak −
k−1∑

j=0

cja
j − bc+εak−c−ε < ak −

k−1∑

j=0

cja
j − bcak−c,

and thus −bc+εak−c−ε < −bcak−c. Solving for a leads to aε < bε. Given that
a > 0 and b > 1, this means that a < b, proving our claim by contraposition.

We next claim that lrr(f) ≥ b. Note that for each a satisfying 0 ≤ a < b,
because the cj ’s are non-negative, f(a) ≤ ak − bcak−c = ak−c(ac − bc). Still
assuming that 0 ≤ a < b, we have ac − bc < 0 and thus the roots of f cannot
be in the interval [0..b). Moreover, f is negative in this interval and, since the
leading coefficient of f is positive, f is eventually positive for some a ≥ b, and
by the continuity of f , f(a) = 0 for some a ≥ b. This implies lrr(f) ≥ b.

Owing to its leading coefficient, we also know that f is positive for all
a > lrr(f). Since f∗(a) ≥ f(a) for all a ≥ b and lrr(f) ≥ b, we know that
f∗ is also positive for all a > lrr(f). Thus f∗(a) > 0 for all a > lrr(f). Thus
any real root of f∗ must be equal or less than lrr(f), proving the lemma. �
Corollary 1. Let c, d ≥ 1 be integers. Then lrr(c, d) ≥ lrr(c + 1, d) and
lrr(c, d) ≥ lrr(c, d + 1).

Proof. Recall that lrr(c, d) is the largest real root of f(a) = ak−2cak−c−2dak−d.
Consider lrr(c, d+1), the largest real root of f∗(a) = ak − 2cak−c − 2d+1ak−d−1.
Using Lemma 3 and plugging in b = 2, ε = 1, we see that lrr(c, d+1) ≤ lrr(c, d).
The proof is the same for lrr(c + 1, d) ≤ lrr(c, d). �

We can then show that the simple algorithm above achieves a similar running
time as that of [12]. The time complexity proof is based on the idea that, the
worst case occurs when c and d are as small as possible. Since G contains a
vertex of degree at least 3, the worst case is when we branch over u, v of degrees
3 and 1, which gives branching factor lrr(1, 2) � 3.237.

Theorem 2. Algorithm1 is correct and runs in time O∗(3.237k).
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With a Little Bit More Work: An O∗(2.695k) Time Algorithm

One might notice that the worst case complexity of the algorithm is achieved
when the maximum degree of G is low, since high degree vertices will lead to
better branching factors. This complexity can be significantly improved by han-
dling low degree vertices in an ad-hoc manner. In fact, only a slight modification
of the algorithm is necessary. We only need to handle degree 1 vertices in a
particular manner, to apply Rule 3 when possible, and to restrict ourselves to
optimal solutions that favor deletions over insertions. These allow us to attain a
time complexity of O∗(2.695k).

The latter point means the following: consider any vertex v and its degree
deg(v) in the original input graph. Then one option is to have v in its own
bicluster and delete every edge incident to v. Therefore it is pointless to have
more than deg(v) modified edges with v as an endpoint. Furthermore, if exactly
deg(v) modified edges contain v and some of them are insertions, we can always
replace these by deg(v) deletions without altering the optimality of the solution.

Lemma 4. There exists an optimal solution of BICLUSTER EDITING for a
graph G such that for any v ∈ V (G), either deg(v) modified edges contain v and
they are all deletions, or at most deg(v) − 1 modified edges contain v.

The modified algorithm remembers the original graph and checks that we
meet the requirements of Lemma 4. The next step is to handle degree 1 vertices.

Lemma 5. Let G be a graph on which Rule 1 does not apply, and suppose that
G has a vertex of degree 1. Then it is possible to achieve a branching vector of
(1, 2, 3, 3, 4) and thus branching factor 2.066, or better.

Proof. Assume that G has a vertex u ∈ Vi with a single neighbor v, i ∈ {1, 2}.
By Lemma 4, we may assume that either uv gets deleted, or that no modified
edge contains u. Let Ru be the twin class that contains u. Let W = N(v) \ Ru,
and observe that each w ∈ W has degree at least 2 (otherwise, w would be
in Ru). If W is empty, then Ru ∪ {v} forms a bicluster and Rule 1 applies, so
suppose W �= ∅. We consider three cases in the proof.

Case 1: W has a vertex of degree 2. In that case, the neighbors of w are v and
some other vertex z. We can first branch into the situation where we delete uv
and decrease k by 1. Otherwise, we fix uv. In that case, one can see that in any
solution B, w must be the endpoint of at least one modified edge. Indeed, if u
and w are in the same bicluster in B, then wz must be deleted (since we assume
that uz is not inserted). If u and w are in different biclusters, then wv must be
deleted (since uv is fxed). We argue that u and w can be assumed to be in the
same bicluster. Suppose that in B, u and w are in different biclusters. Notice
that since no inserted edge contains u, the bicluster B that contains u and v
satisfies B ⊆ {v} ∪ N(v). It follows that we can obtain an alternate solution B′

by adding w into B. This requires deleting wz instead of wv. Thus, assuming
that uv is fixed, there exists an optimal solution in which u and w are in the
same bicluster. We can thus delete wz safely. We branch into two cases, each
with one deletion. This gives branching vector (1, 1) and branching factor 2.
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In the remaining, we assume that every vertex of W has degree 3 or more.
Case 2: |W | = 1. Let w be the vertex of W , and observe that v only has neighbors
Ru ∪ {w}. We can either put u and w in the same bicluster or not. If u and w
are in the same bicluster, we must delete the edges between w and N(w) \ {v}
since we forbid insertions that involve u. Since w has degree at least 3 or more,
this decreases k by at least 2.

If u and w are not in the same bicluster, we can either delete uv or wv.
We claim that we can branch on only deleting wv. Assume that in an optimal
solution B, u and v are not in the same bicluster and uv is deleted. We may
assume that the bicluster Bu of B that contains u only contains u. Consider the
solution B′ obtained by removing v from its bicluster and adding v to Bu. This
saves any inserted edge containing v, and saves the uv deletion. On the other
hand, this requires deleting wv (but no other edge since |W | = 1). We save at
least as many modifications as we create, so we may assume that wv is deleted.
Thus we only branch in the case where wv is deleted, reducing k by 1.

The above cases lead to branching vector (2, 1) or better, and thus to branch-
ing factor 1.619 or better.
Case 3: |W | > 1. Let x, y ∈ W . We branch into five scenarios that cover all ways
of obtaining a solution1:

– delete uv and reduce k by 1;
– fix uv, and put u, x in the same bicluster. This requires deleting at least two

edges incident to x (since it has degree 3 or more, and we forbid insertions
with u). Once this is done, we consider two more cases:

• put u, y in the same bicluster. This also requires deleting at least two edges
incident to y. When we reach that case, we can decrease k by at least 4.

• put u, y in different biclusters. This requires deleting yv, and we may
decrease k by at least 3.

– fix uv, and put u, x in the different biclusters. This requires deleting xv. Once
this is done, we consider two more cases:

• put u, y in the same bicluster. This also requires deleting at least two edges
incident to y. When we reach that case, we can decrease k by at least 3.

• put u, y in different biclusters. This requires deleting yv, and we may
decrease k by 2.

These five cases yield branching vector (1, 2, 3, 3, 4), which has branching
factor less than 2.066. �

The rest of the time analysis is dedicated to show that if we get rid of vertices
of degree one, we are able to achieve a much better branching factor. This part
of the proof requires work but is elementary. The essential idea is that if G has
minimum degree 5 or more, then any u, v pair that we branch on yields a low
enough lrr(c, d). We must deal with minimum degree 2, 3 and 4 on a case-by-case

1 Notice that this could be divided into three cases: two of x, y are with u, only one
of them is, or none. However, our division into five cases makes the recursion calls
to make more explicit.
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basis. Rule 3 is used in this analysis to handle difficult cases, e.g. when d = 1.
The most important idea is that when running Algorithm 1, several recursive
calls will create vertices of degree 1. When this happens, the next recursive call
then allows us to use the branching vector of Lemma 5. Therefore, although
lrr(c, d) will be high if we branch on vertices u, v of small degree, the subcases
that lead to graphs with a degree one vertex will counter-balance this with the
low branching factor of Lemma5.

Theorem 3. BICLUSTER EDITING can be solved in time O∗(2.695k).

Concluding Remarks. We conclude with some open ideas. First, one could
check whether our approach could be improved by combining it with the half-
edge ideas used in CLUSTER EDITING (see [6]). Second, we do not even know
whether our 5k bound is tight, and we don’t know the true complexity of Algo-
rithm 1. In practice, its running time should be better than O∗(2.695k) if the
input graph has high degree vertices. Moreover, we do not know whether our
bound is tight even on graphs of maximum degree 2 or 3, and better analysis
techniques might improve our complexity. We also note that Algorithm 1 could
be implemented on the integer weighted Bipartite Clustering problem, where
each deletion and each insertion has a positive integer cost. However, the exten-
sion that handles degree 1 vertices might not work on this problem: our analysis
uses Rule 3 in the proof, which does not apply to integer weighted graphs.
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Abstract. We develop a randomized approximation algorithm for the
size of set union problem |A1 ∪ A2 ∪ . . . ∪ Am|, which is given a list of
sets A1, . . . , Am with approximate set size mi for Ai with mi ∈ ((1 −
βL)|Ai|, (1 + βR)|Ai|), and biased random generators with probability

Prob (x = RandomElement(Ai)) ∈
[
1−αL
|Ai| , 1+αR

|Ai|

]
for each input set Ai

and element x ∈ Ai, where i = 1, 2, . . . , m and αL, αR, βL, βR ∈ (0, 1).
The approximation ratio for |A1 ∪ A2 ∪ . . . ∪ Am| is in the range [(1 −
ε)(1 − αL)(1 − βL), (1 + ε)(1 + αR) (1 + βR)] for any ε ∈ (0, 1). The
complexity of the algorithm is measured by both time complexity and
round complexity. One round of the algorithm has non-adaptive accesses
to those RandomElement(Ai) functions 1 ≤ i ≤ m, and membership
queries (x ∈ Ai?) to input sets Ai with 1 ≤ i ≤ m. Our algorithm
gives an approximation scheme with O(m · (log m)7) running time and
O(log m) rounds in contrast to the existing algorithm [18] that needs
Ω(m) rounds in the worst case with O((1+ ε)m/ε2) running time, where
m is the number of sets. Our algorithm gives a flexible tradeoff with time

complexity O
(
m1+ξ

)
and round complexity O

(
1
ξ

)
for any ξ ∈ (0, 1).

Our algorithm runs sublinear in time under certain condition that each
element in A1 ∪ A2 ∪ . . . ∪ Am belongs to ma sets for any fixed a > 0,
to our best knowledge, we have not seen any sublinear results about this
problem.

Keywords: #P-hard · Randomized approximation · Lattice points ·
Rounds · Sublinear time

1 Introduction

Computing the cardinality of set union is a basic algorithmic problem that
has a simple and natural definition. It is related to the following problem:
given a list of sets A1, . . . , Am with set size |Ai|, and random generators
RandomElement(Ai) for each input set Ai, where i = 1, 2, . . . , m, the task
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is to compute |A1 ∪A2 ∪ . . .∪Am|. This problem is #P-hard if each set contains
0, 1-lattice points of a high dimensional cube [20]. Karp, Luby, and Madras [18]
developed a (1+ε)-randomized approximation algorithm to improve the running
time of approximating the number of distinct elements in the union A1∪. . .∪Am

to linear O((1 + ε)m/ε2) time. Their algorithm is based on the input that pro-
vides the exact size of each set and a uniform random element generator of each
set. Bringmann and Friedrich [5] applied Karp, Luby, and Madras’ algorithm in
deriving an approximate algorithm for high dimensional geometric object with
uniform random sampling. They also proved that it is #P-hard to compute the
volume of the intersection of high dimensional boxes and showed that there is
no polynomial time 2d1−ε

-approximation unless NP = BPP. Of the algorithms
mentioned above, some of them were based on random sampling, and some of
them provided exact set sizes when approximating the cardinalities of multisets
of data and some of them dealt with two multiple sets. However, in reality, it is
really hard to have an uniform sampling or exact set size especially when dealing
with high dimensional problems.

Motivation. The existing approximate set union algorithm [18] needs each
input set having a uniform random generator. In order to have approximate
set union algorithms with broad application, it is essential to have algorithms
with biased random generator for each input set, and see how approximation
ratio depends on the bias. In this paper, we propose a randomized approxi-
mation algorithm to approximate the size of set union problem by extending
the model used in [18]. In our algorithm, each input set Ai is a black box
that can provide its size |Ai|, generate a random element RandomElement(Ai)
of Ai, and answer the membership query (x ∈ Ai?) in O(1) time. Our algo-
rithm can handle input sets that can generate random elements with bias with
Prob(x = RandomElement(Ai)) ∈

[
1−αL

|Ai| , 1+αR

|Ai|
]

for each input set Ai and
approximate set size mi for Ai with mi ∈ [(1 − βL)|Ai|, (1 + βR)|Ai|].

As the communication complexity is becoming important in distributed envi-
ronment, data transmission among variant machines may be more time consum-
ing than the computation inside a single machine. Our algorithm complexity
is also measured by the number of rounds. The algorithm is allowed to make
multiple membership queries and get random elements from the input sets in
one round. Our algorithm makes adaptive accesses to input sets with multiple
rounds. The round complexity is related a distributed computing complexity if
input sets are stored in a distributed environment, and the number of rounds
indicates the complexity of interactions between a central server, which runs the
algorithm to approximate the size of set union, and clients, which save one set
each.

Computation via bounded queries to another set has been well studied in the
field of structural complexity theory. Polynomial time truth table reduction has
a parallel way to access oracle with all queries to be provided in one round [6].
Polynomial time Turing reduction has a sequential way to access oracle by pro-
viding a query and receiving an answer in one round [7]. The constant-round
truth table reduction (for example, see [10]) is between truth table reduction,
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and Turing reduction. Our algorithm is similar to a bounded round truth table
reduction to input sets to approximate the size set union. Karp, Luby, and
Madras [18]’s algorithm runs like a Turing reduction which has the number of
adaptive queries proportional to the time.

Contributions. We have the following contributions to approximate the size of
set union. 1. Our algorithm is based on a new approach that is different from that
in [18]. 2. Our algorithm has constant number of rounds to access the input sets,
which is contrast to the existing algorithm [18] that needs Ω(m) rounds in the
worst case with m be the number of sets. This reduces an important complexity
in a distributed environment where each set stays a different machine. 3. Our
algorithm handles the approximate input set sizes and biased random sources.
The existing algorithm [18] assumes uniform random source from each set. 4. Our
algorithm runs in sublinear time when each element belongs to at least ma sets
for any fixed a > 0. We have not seen any sublinear results about this problem.
5. We show a tradeoff between the number of rounds, and the time complexity.
Our algorithm takes log m rounds with time complexity O

(
m(log m)7

)
, and

takes O
(

1
ξ

)
rounds, with a time complexity O

(
m1+ξ

)
for any ξ ∈ (0, 1). We

still maintain the time complexity nearly linear time in the classical model. 6. We
identify two additional parameters zmin and zmax that affect both the complexity
of rounds and time, where zmin is the least number of sets that an element
belongs to, and zmax is the largest number of sets that an element belongs to. 7.
Our algorithm developed in the randomized model only accesses a small number
of elements from the input sets. The algorithm developed in the streaming model
algorithm accesses all the elements from the input sets. Therefore, our algorithm
is incomparable with the results in the streaming model [1–4,8,9,11–14,16,17].

Organization. The rest of paper is organized as follows. In Sect. 2, we define
the computational model and round complexity. Section 3 presents some the-
orems that play an important role in accuracy analysis. In Sect. 4, we give a
randomized approximation algorithm to approximate the size of set union prob-
lem; time complexity and round complexity also be analyzed in Sect. 4. Section 5
summarizes the conclusions.

2 Computational Model and Complexity

In this section, we show our model of computation, and the definition of round
complexity.

2.1 Model of Randomization

Definition 1. Let A be a set of elements:

1. A α-biased random generator for set A is a generator that each element in A

is generated with probability in the range
[
1−α
|A| , 1+α

|A|
]
.
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2. A (αL, αR)-biased random generator for set A is a generator that each element
in A is generated with probability in the range

[
1−αL

|A| , 1+αR

|A|
]
.

Definition 2. Let L be a list of sets A1, A2, . . . , Am such that each supports
the following operations:

1. The size of Ai has an approximation mi ∈ [(1 − βL)|Ai|, (1 + βR)|Ai|] for

i = 1, 2, . . . , m. Both M =
m∑

i=1

mi and m are part of the input.

2. Function RandomElement(Ai) returns a (αL, αR)-biased random element x
from Ai for i = 1, 2, . . . , m.

3. Function query(x, Ai) function returns 1 if x ∈ Ai, and 0 otherwise.

Definition 3. For a list L of sets A1, A2, . . . , Am and real numbers
αL, αR, βL, βR ∈ (0, 1), it is called ((αL, αR), (βL, βR))-list if each set Ai

is associated with a number mi with (1 − βL)|Ai| ≤ mi ≤ (1 + βR)|Ai|
for i = 1, 2, . . . , m, and the set Ai has a (αL, αR)-biased random generator
RandomElement(Ai).

Definition 4. The model of randomized computation for our algorithm is
defined below:

1. The input is a list L defined in Definition 2.
2. It allows all operations defined in Definition 2.

2.2 Round and Round Complexity

The round complexity is the total number of rounds used in the algorithm. Our
algorithm has several rounds to access input sets. At each round, the algorithm
sends non-adaptive (i.e., parallel) requests to random generators, and member-
ship queries, and receives the answers from them.

Our algorithm is considered as a client-server interaction. The algorithm is
controlled by the server side, and each set is a client. In one round, the server
asks some questions to clients which are selected.

The parameters m, ε, γ may be used to determine the time complexity and
round complexity, where ε controls the accuracy of approximation, γ controls
the failure probability, and m is the number of sets.

3 Preliminaries

During the accuracy analysis, Hoeffding Inequality [15] and Chernoff Bound [19]
play an important role. They showed how the number of samples determines the
accuracy of approximation.

Theorem 1. Let X1, . . . , Xm be m independent random 0–1 variables, where

Xi takes 1 with probability at least p for i = 1, . . . , m. Let X =
m∑

i=1

Xi, and

μ = E[X]. Then for any δ > 0, Pr(X < (1 − δ)pm) < e− 1
2 δ2pm.
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Theorem 2. Let X1, . . . , Xm be m independent random 0-1 variables, where

Xi takes 1 with probability at most p for i = 1, . . . , m. Let X =
m∑

i=1

Xi. Then

for any δ > 0, Pr(X > (1 + δ)pm) <
[

eδ

(1+δ)(1+δ)

]pm

.

Define g1(δ) = e− 1
2 δ2

, g2(δ) = eδ

(1+δ)(1+δ) and g(δ) = max (g1(δ), g2(δ)). We

give a bound for g(δ). First, we give a bound for g2(δ) = eδ

(1+δ)(1+δ) . Let u(x) =
ex

(1+x)(1+x) . We consider the case x ∈ [0, 1]. We have

log u(x) = x − (1 + x) log(1 + x) ≤ x − (1 + x)
(

x − x2

2

)
≤ −x2

6
.

Therefore,
u(x) ≤ e− x2

6

for all x ∈ [0, 1]. We let

g∗(x) = e− x2
6 .

Hence, we have g(δ) ≤ g∗(δ) for all δ ∈ [0, 1] as g1(δ) = e− 1
2 δ2 ≤ e− 1

6 δ2
.

A well known fact, called union bound, in probability theory is the inequality

Pr(E1 ∪ E2 . . . ∪ Em) ≤ Pr(E1) + Pr(E2) + . . . + Pr(Em),

where E1, E2, . . . , Em are m events that may not be independent. In the analysis
of our randomized algorithm, there are multiple events such that the failure
from any of them may fail the entire algorithm. We often characterize the failure
probability of each of those events, and use the above inequality to show that
the whole algorithm has a small chance to fail after showing that each of them
has a small chance to fail.

4 Algorithm Based on Adaptive Random Sampling

In this section, we develop a randomized algorithm for the size of set union when
the approximate set sizes and biased random generators are given for the input
sets. We give some definitions before the presentation of the algorithm. The
algorithm developed in this section has an adaptive way to access the random
generators from the input sets. All the random elements from input sets are
generated in the beginning of the algorithm, and the number of random samples
is known in the beginning of the algorithm. The results in this section show a
tradeoff between the time complexity and the round complexity.

Definition 5. Let L = A1, A2, . . . , Am be a list of finite sets:

1. For an element x, define T (x,L) =
∣∣{i : 1 ≤ i ≤ m and x ∈ Ai}

∣∣.
2. For an element x, and a subset H of indices with multiplicity of {1, 2, . . . ,m},

define S(x,H) =
∣∣{i : i ∈ H and x ∈ Ai}

∣∣.
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3. Define minThickness(L) = min{T (x,L) : x ∈ A1 ∪ A2 ∪ . . . ∪ Am}.
4. Define maxThickness(L) = max{T (x,L) : x ∈ A1 ∪ A2 ∪ . . . ∪ Am}.
5. Let W be a subset with multiplicity of A1 ∪ . . . ∪ Am, define F (W,h, s) =

s
h

∑
x∈W

1
T (x,L) , and F ′(W ) =

∑
x∈W

1
T (x,L) = h

s F (W,h, s), where h and s are

real numbers.
6. For a δ ∈ (0, 1), partition A1 ∪ A2 ∪ . . . ∪ Am into A′

1, . . . , A
′
k such that

A′
i = {x : x ∈ A1 ∪ A2 ∪ . . . ∪ Am and T (x,L) ∈ [(1 + δ)i−1, (1 + δ)i)} where

i = 1, 2, . . . , k. Define v(δ, z1, z2, L) = k, which is the number of sets in the
partition under the condition that z1 ≤ T (x,L) ≤ z2.

Remark: Our algorithm is based on random sampling, therefore, the random
elements could be repeatedly chosen from the sets. For example, a subset H of
indices with multiplicity of {1, 2, . . . ,m} could be {3, 4, 4, 3, 5, . . . ,m}.

4.1 Overview of Algorithm

We give an overview of the algorithm. For a list L of input sets A1, . . . , Am,
each set Ai has an approximate size mi and a random generator. It is easy to

see that |A1 ∪ A2 ∪ . . . ∪ Am| =
m∑

i=1

∑
x∈Ai

1
T (x,L) . In the first round, the algorithm

approximates
m∑

i=1

∑
x∈Ai

1
T (x,L) by m1+...+mm

|R1| × ∑
x∈R1

1
T (x,L) via generating a set of

R1 of sufficient random samples from the list of input sets. The algorithm has
constant rounds to approximate the thickness T (x,L) for each x ∈ R1. In each
round, the algorithm selects some number of subsets and check how frequently
chosen (i.e., thickness) elements appear in the chosen subsets. Naturally, samples
appearing in a large number of subsets would require small number of subsets to
accurately approximate its thickness, and samples appearing in a small number
of subsets would require large number of subsets to accurately approximate its
thickness. As rounds proceed, the algorithm targets with decreasing thickness
and samples more subsets. Finally, as the thickness T (x,L) for every x ∈ R1

have been approximated, m1+...+mm

|R1| × ∑
x∈R1

1
T (x,L) can be used to approximate

m∑
i=1

∑
x∈Ai

1
T (x,L) , which is equal to |A1 ∪ A2 ∪ . . . ∪ Am|.

Example 1. Let L be a list of 10 sets A1, A2, . . . , A10, where Ai = Bi ∪ C with
|C| = 1000 and |Bi| = 100 for i = 1, 2, . . . , 10. In the beginning of the algorithm,
we generate a set R1 of h1 = 220 random samples from list L, where 20 random
samples with higher thickness T (x, L) coming from C and 200 random samples
with lower thickness T (x, L) coming from Bi. At the first round, we only need
to select sets A1, A3, and A6 to approximate the thickness T (x, L) of the 20
random samples locating at C. Then at the second round, we have to select
all the sets A1, A2, . . . , A10, to approximate the thickness T (x, L) of the 200
random samples coming from Bi (see Fig. 1).
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Fig. 1. Set union of ten sets.

4.2 Algorithm Description

Before giving the algorithm, we define an operation that selects a set of random
elements from a list L of sets A1, . . . , Am. We assume m ≥ 2 throughout the
paper.

Definition 6. Let L be a list of m sets A1, . . . , Am with mi ∈ [(1−βL)|Ai|, (1+
βR)|Ai|] and (αL, αR)-biased random generator RandomElement(Ai) for i =
1, 2, . . . ,m, and M = m1 + m2 + . . . + mm. A random choice of L is to get an
element x via the following two steps:

1. With probability mi

M , select a set Ai among A1, . . . , Am.
2. Get an element x from set Ai via RandomElement(Ai).

We give some definitions about the parameters and functions that affect our
algorithm below. We assume that ε ∈ (0, 1) is used to control the accuracy
of approximation, and γ ∈ (0, 1) is used to control the failure probability. In
the following algorithm, the two integer parameters zmin and zmax with 1 ≤
zmin ≤ minThickness(L) ≤ maxThickness(L) ≤ zmax ≤ m can help speed up the
computation. The algorithm is still correct if we use default case with zmin = 1
and zmax = m.

1. Function f1(.) is used to control the number of rounds of the algorithm. Its
growth rate is mainly determined by the parameter c1 that will be determined
later:

f1(m) = 8mc1 with c1 ≥ 0.

2. Function f2(.) determines the number of random samples from the input sets
in the beginning of the algorithm, and δ = ε

432(log m) :

f2(m) =
m (log m)2

zminε3
[26244 ∗ (v (δ, zmin, zmax, L)

+
log m

zmin

log(1 + δ)
) log

(
54m2 log m

ε

)
+ 60466176 log m ∗ log

(
12 log m

γ

)
].
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3. Function f3(.) affects the number of random indices in the range {1, 2, . . . ,m}.
Those random indices will be used to choose input sets to detect the approx-
imate T (x,L) for those random samples x:

f3(m) =
559872 ∗ mc1 ∗ (log m)2

ε2

∗ [log

(
24m (log m)3

γzminε3

)

+ log(26244 ∗ (v (δ, zmin, zmax, L) +
log m

zmin

log(1 + δ)
) log

(
54m2 log m

ε

)

+ 60466176 ∗ log m ∗ log
(

12 log m

γ

)
)].

Algorithm 1. ApproximateUnion(L, zmin, zmax,M, γ, ε)
Input : L is a list of m sets A1, A2, . . . , Am with m ≥ 2, mi ∈ [(1−βL)|Ai|, (1+βR)|Ai|]
and (αL, αR)-biased random generator RandomElement(Ai) for i = 1, 2, . . . , m, inte-
gers zmin and zmax with 1 ≤ zmin ≤ minThickness(L) ≤ maxThickness(L) ≤ zmax ≤
m, parameter γ ∈ (0, 1) to control the failure probability, parameter ε ∈ (0, 1) to con-
trol the accuracy of approximation, and M = m1 + m2 + . . . + mm as the sum of sizes
of input sets.
Output : sum · M.

1: Initialize: h1 = f5(m), currentThickness1 = zmax , s1 = m
currentThickness1

,

s′
1 = 1, and sum = 0

2: Obtain a set R1 of h1 random choices of L (see definition 6)
3: Let i = 1
4: Round i
5: Let ui = si · f6(m)
6: Select ui random indices Hi = {k1, . . . , kui} from {1, 2, . . . , m}
7: Compute S(x, Hi) for each x ∈ Ri

8: Let Vi be the subset of Ri with elements x satisfying S(x, Hi) ≥
currentThicknessi

2f1(m)·m · ui

9: Let sum = sum + s′
i

∑
x∈Vi

ui
S(x,Hi)m

10: Let currentThicknessi+1 = currentThicknessi
f1(m)

11: Let si+1 = m
currentThicknessi+1

12: Let hi+1 = h1
si+1

13: If (|Ri| − |Vi| < hi+1)
14: Then
15: {
16: Let Ri+1 = Ri − Vi

17: Let ai = 1
18: }
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19: Else
20: {
21: Let Ri+1 be a set of random hi+1 samples from Ri − Vi

22: Let ai = |Ri|−|Vi|
hi+1

23: }
24: Let s′

i+1 = s′
i · ai

25: Let i = i + 1
26: If (currentThicknessi < zmin)
27: Return sum · M and terminate the algorithm
28: Else
29: Enter the next Round i

We let M = m1 + m2 + . . . + mm and zmin be part of the input of the
algorithm. It makes the algorithm be possible to run in a sublinear time when
zmin ≥ ma for a fixed a > 0. Otherwise, the algorithm has to spend Ω(m) time
to compute M .

4.3 Proof of Algorithm Performance

The accuracy and complexity of algorithm ApproximateUnion(.) will be proven
in the following lemmas.

Lemma 1 gives an upper bound for the number of rounds for the algorithm.
It shows how round complexity depends on zmax, zmin and constant c1.

Lemma 1. The number of rounds of the algorithm is O

(
log

(
zmax
zmin

)

log(8mc1 )

)
.

Lemma 2 shows that at round i, it can approximate T (x,L) for all random
samples with highest T (x,L) in Ri. Those random elements with highest T (x,L)
will be removed in round i so that the algorithm will look for random elements
with smaller T (x,L) in the coming rounds.

Lemma 2. After the execution of round i, with probability at least 1 − γ2, we
have the following three statements:

1. Every element x ∈ Ri with T (x,L) ≥ currentThicknessi

4f1(m) has S(x,Hi) ∈[
(1 − ε1)

T (x,L)
m ui, (1 + ε1)

T (x,L)
m ui

]
.

2. Every element x ∈ Vi with T (x,L) ≥ currentThicknessi

f1(m) , it satisfies the condition
in line 8 of the algorithm.

3. Every element x ∈ Vi with T (x,L) < currentThicknessi

4f1(m) , it does not satisfy the
condition in line 8 of the algorithm.

Lemma 3. Let x and y be positive real numbers with 1 ≤ y. Then we have:

1. 1 − xy < (1 − x)y.
2. If xy < 1, then (1 + x)y < 1 + 2xy.
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3. If x1, x2 ∈ [0, 1), then 1 − x1 − x2 ≤ (1 − x1)(1 − x2), and (1 + x1)(1 + x2) ≤
1 + 2x1 + x2.

Lemma 4 shows that how to gradually approximate F (R1, h1, 1)M via several
rounds. It shows that the left random samples stored in Ri+1 after round i is
enough to approximate F ′(Ri − Vi).

Lemma 4. Let y be the number of rounds. Let Vi be the set of elements removed
from Ri in round i. Then we have the following facts:

1. With probability at least 1 − γ2, aiF
′(Ri+1) ∈ [(1 − ε1)F ′ (Ri − Vi), (1 +

ε1)F ′(Ri − Vi)].

2. With probability at least 1 − 2yγ2,
y∑

i=1

s′
iF

′(Vi) ∈ [(1 − yε1)S, (1 + 2yε1)S],

where S = F (R1, h1, 1).

Lemma 5 gives the time complexity of the algorithm. The running time
depends on several parameters.

Lemma 5. The algorithm ApproximateUnion(.) takes O(mf3(m)
zmin

· log zmax
zmin

log f1(m) )
time.

We have Theorem 3 to show the performance of the algorithm. The algorithm
is sublinear if minThickness(L) ≥ ma for a fixed a > 0, and has a zmin with
minThickness(L) ≥ zmin ≥ mb for a positive fixed b (b may not be equal to a)
to be part of input to the algorithm.

Theorem 3. The algorithm ApproximateUnion(.) takes O

(
log

(
zmax
zmin

)

log(8mc1 )

)
rounds

and O

(
m

zmin
·
(

log
(

zmax
zmin

)

log(8mc1 )

)
(log m)6 poly (ε, γ)

)
time such that with probability

at least 1 − γ, it gives

sum × M ∈ [(1 − ε)(1 − αL)(1 − βL) × A, (1 + ε)(1 + αR)(1 + βR) × A],

where zmin and zmax are parameters with 1 ≤ zmin ≤ minThickness(L) ≤
maxThickness(L) ≤ zmax ≤ m, and A = |A1 ∪ . . . ∪ Am|.

Since 1 ≤ zmin ≤ minThickness(L) ≤ maxThickness(L) ≤ zmax ≤ m, we
have the following Corollary 1. Its running time is almost linear in the classical
model.

Corollary 1. There is a O
(
poly (ε, γ) · m · (log m)7

)
time and O(log m) rounds

algorithm for |A1 ∪ A2 ∪ . . . Am| such that with probability at least 1 − γ, it gives
sum · M ∈ [(1 − ε)(1 − αL)(1 − βL) × A, (1 + ε)(1 + αR)(1 + βR) × A], where
A = |A1 ∪ . . . ∪ Am|.
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Corollary 2. For each ξ > 0, there is a O
(
poly (ε, γ) · m1+ξ

)
time and O

(
1
ξ

)

rounds algorithm for |A1 ∪ A2 ∪ . . . Am| such that with probability at least 1 − γ,
it gives sum · M ∈ [(1 − ε)(1 − αL)(1 − βL) × A, (1 + ε)(1 + αR)(1 + βR) × A],
where A = |A1 ∪ . . . ∪ Am|.

An interesting open problem is to find an O(m) time and O(log m) rounds
approximation scheme for |A1∪A2∪. . . Am| with a similar accuracy performance
as Corollary 1.

5 Conclusions

We introduce an almost linear bounded rounds randomized approximation algo-
rithm for the size of set union problem |A1 ∪A2 ∪ . . .∪Am|, which given a list of
sets A1, . . . , Am with approximate set size and biased random generators. The
definition of round is introduced. We prove that our algorithm runs sublinear in
time under certain condition. Due to the limitation of the pages, we refer the
readers to https://arxiv.org/abs/1802.06204 for the full paper.
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Abstract. Can a function f defined on some domain D be extended to
a submodular function on a larger domain D′ ⊃ D? This is the problem
of submodular partial function extension. In this work, we develop a new
combinatorial certificate of nonextendibility called a square certificate.
We then present two applications of our certificate: to submodular exten-
sion on lattices, and to property testing of submodularity.

- For lattices, we define a new class of lattices called pseudocyclic lat-
tices that strictly generalize modular lattices, and show that these are
sublattice extendible, i.e., a partial function that is submodular on a
sublattice is extendible to a submodular function on the lattice. We give
an example to show that in general lattices this property does not hold.

- For property testing, we show general lower bounds for a class of sub-
modularity testers called proximity oblivious testers. One of our lower
bounds is applicable to matroid rank functions as well, and is the first
lower bound for this class of functions.

1 Introduction

Submodular functions are perhaps the most important functions in combinato-
rial optimization. They occur in many applications, including social networks,
economics, and machine learning [6,7,10]. In economics, for example, they cap-
ture the common assumption of diminishing marginal returns for valuations.
Many important functions such as coverage functions, matroid rank functions,
and graph cut functions are submodular.

In this paper, we address the problem of extending a given partial function
on a subset D of a lattice L to a submodular function on the lattice L. A
partial function consists of a subset D ⊆ L and a function h : D → R. The
partial function extension problem is to determine if there exists a total function
f : L → R satisfying a given property—in our case, submodularity—and that
extends the partial function, i.e., f(x) = h(x) for all x in D. This problem
is central to many areas such as property testing [13], computational learning
theory [11] and revealed preference theory in economics [16].

In property testing, a function is given by an oracle, and the problem is to
determine with high probability by querying the oracle whether the function
satisfies a given property, or is far from it. For a function on 2[m], the lattice of
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subsets of {1, 2, . . . ,m} ordered by containment, the function is (at least) ε-far
if any function that satisfies the property differs from f on at least ε2m points.
Earlier work studies property testing for submodular functions on 2[m] and gives
a combinatorial certificate for nonextendibility called a path certificate [13]. The
existence of a path certificate for the partial function certifies that the partial
function cannot be extended to a submodular function on the lattice.

Our first contribution is to give a different certificate of nonextendibility,
called a square certificate. We give two applications of square certificates. We first
apply square certificates to study submodular extendibility on general lattices.
We are interested in classes of lattices that are sublattice extendible, i.e., for
which a partial function that is submodular on a sublattice is always extendible
to a submodular function on the lattice. Topkis studied this problem in an article
on comparative statics, to understand when the solution to an optimization
problem is a monotone function of an exogenous parameter [14]. He showed that
modular lattices are sublattice extendible. We show that this property holds for
a strictly larger class of lattices, which we call pseudocyclic lattices. We also give
an example to show that general lattices are not sublattice extendible.

We note that apart from their applications in combinatorial optimization,
there is also recent interest in submodular functions on lattices due to con-
nections with the maximum constraint satisfaction problem, including product
lattices [8] and diamonds [9]. Submodular functions on lattices are also studied
in financial mathematics and supermodular games [12,15].

Our second application of square certificates is to property testing of sub-
modular functions on 2[m]. Partial function extension is a natural component of
property testing, since testing algorithms1 cleverly query some points and reject
only if the values at the queried points cannot be extended to a function with the
required property. For submodularity, a particular tester called a square tester
repeatedly samples unit squares of the form (A,A ∪ {i}, A ∪ {j}, A ∪ {i, j}),
and rejects iff a unit square violates submodularlity [13]. The upper and lower
bounds on the number of samples required are however quite distant, and the
problem of property testing for submodularity remains wide open.

Preliminaries. We use [m] for the set {1, 2, . . . ,m}. For a set C, 2C is the
power set of C.

Lattices. We restrict ourselves to finite lattices. A poset (L,≤) is a binary relation
≤ on elements of L, that satisfies for any a, b, c ∈ L, a ≤ a (reflexivity), if a ≤ b,
b ≤ c then a ≤ c (transitivity), and if a ≤ b, b ≤ a then a = b (antisymmetry).
Elements a and b are incomparable if neither a ≤ b nor b ≤ a. Element c is an
upper bound of a, b if a ≤ c and b ≤ c. Similarly, d is a lower bound for a, b if
d ≤ a and d ≤ b. A lattice L is a poset in which any two elements a, b have a
least upper bound (denoted a ∨ b) and a greatest lower bound (a ∧ b). Hence if

1 To be precise, this is true of one-sided testers, which must accept if a function satisfies
the property.
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c is an upper bound of a and b then a ∨ b ≤ c and if d is an lower bound for a, b
then d ≤ a ∧ b.

We say a is covered by b (or b covers a) denoted by a ≺ b if a 
= b, a ≤ b and
if a ≤ z ≤ b then z ∈ {a, b}. We have a � b if either a = b or a ≺ b. Given a ≤ b,
a chain from a to b of length t is a sequence a = z0 ≺ z1 · · · ≺ zt = b. A lattice
may have chains of different lengths from a to b.

Since lattices (in general, posets) are transitive, they can be described just
by the covering relation ≺. They are pictorially represented by Hasse diagrams
where elements are points on a plane and a ≺ b iff there is an upward line joining
a and b.

A sublattice is a subset L′ ⊆ L that is closed under ∨ and ∧. The lattice
closure of a set S ⊆ L is the smallest sublattice containing all points in S.

A lattice L is modular if it does not contain a pentagon N5 as a sublattice
(see the full version or [5]). A lattice L is distributive if for all x, y, z ∈ L,
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Distributive lattices are isomorphic to the lattice
2{[m]}. We also refer to the latter as the hypercube.

Submodularity and Squares. A function f : L → R is submodular if f(a)+f(b) ≥
f(a ∨ b) + f(a ∧ b) for all a, b ∈ L. The quadruple (a, b, a ∨ b, a ∧ b) is called a
square tuple. The square tuple is violated if f(a) + f(b) < f(a ∨ b) + f(a ∧ b). In
case of the hypercube, the quadruple (A,A∪{i}, A∪{j}, A∪{i, j}) for A ⊆ [m],
i, j 
∈ A is called a unit square tuple.

Property Testing. Given a distance parameter ε ∈ (0, 1) (also called proximity), a
function f : 2[m] → R is ε-far from submodular if at least ε fraction of the points
must be changed to make the function submodular, i.e., |{S ⊆ [m] : f(S) 
=
g(S)}| ≥ ε2m for any submodular function g. A tester for submodular functions
is a randomized algorithm that takes parameter ε and oracle access to a function
f : 2[m] → R as input. The tester queries the oracle, accepts if f is submodular,
and rejects with constant probability if f is ε-far from submodular.

Many well-known and natural testers in the literature belong to a class of
testers called proximity oblivious testers (POTs) [4]. Here, the testers have a basic
test that is independent of ε. The tester uses the parameter ε only to determine
the number of times a basic test is invoked. The tester rejects iff the value of
points queried in a single basic test cannot belong to a function with the required
property. For example, consider the celebrated BLR tester for linearity [1]. It
repeats O(1/ε) times the basic test, which consists of randomly picking disjoint
sets S, T , querying f(S), f(T ), f(S+T ), and rejecting if f(S+T ) 
= f(S)+f(T ).
For the edge tester [3] for monotonicity testing, the basic test picks sets S and
S ∪{j} and rejects if f(S) > f(S ∪{j}). If the probability of rejecting when the
function does not satisfy the property—the detection probability—of the basic
test is ρ(ε) then the POT repeats the basic test O(1/ρ(ε)) times.

Definition 1. ([4]) A q-query POT with detection probability ρ : (0, 1] → (0, 1]
for a property P is a randomized algorithm with oracle access to a function f
that queries the oracle at q points, and (1) accepts if f ∈ P, or (2) rejects with
probability at least ρ(ε) if f is ε-far from the property P.
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Thus the BLR tester is a 3-query POT with detection probability ρ(ε) = ε.
Note that ε is not an input but a POT for P can be repeated 1/ρ(ε) times to
get a standard tester for P. Since the number of repetitions of the basic test is
the inverse of detection probability ρ, the upper bound for ρ is a lower bound
on the number of queries the POT makes. To avoid confusion, our upper and
lower bounds will always refer to the detection probability ρ of the basic test.

Our Contribution. A technical contribution of our work is the square certifi-
cate, which certifies nonextendibility of a given partial function. We view this
as a significant contribution since it is a natural certificate based on multisets of
squares. It is also useful in a variety of applications, as we demonstrate.

Sublattice Extendibility. We first show that general lattices are not sublattice
extendible. We also give a novel but intuitive characterization of sublattice
extendible lattices (Theorem 6). We then generalize Topkis’ result for modu-
lar lattices, showing that a larger class of lattices, which we call pseudocyclic
lattices, are sublattice extendible.

Theorem 1. Modular lattices are pseudocyclic.

Theorem 2. Pseudocyclic lattices are sublattice extendible.

Our proof depends on transforming one square certificate to another, using a
graph-theoretic abstraction of a square certificate which we call a circuit graph.

Property Testing. Property testing for submodular functions is poorly under-
stood. The square tester of Seshadhri and Vondrak [13] is a 4-query POT with
detection probability at least Ω(ε

√
m logm). They also give a lower bound to show

that the detection probability of the square tester cannot exceed O(ε2). There
is thus a large gap between lower and upper bounds, even for this tester.

The lower bound for Seshadhri and Vondrak (for the square tester) is shown
by a family of functions defined on 2[m+2]. Each function fS∗ in the family is
parametrized by a set S∗ ⊆ [m] of size m/2. We first show that for this lower
bound instance, there is a significantly better tester than the square tester. In
particular, there is a partial function consisting of just O(m) points that is a
square certificate for any function in the lower bound instance, and hence is not
extendible to a submodular function. Thus a tester that queries these O(m) sets
and rejects iff the partial function so obtained is not extendible, will reject any
function in the lower bound family described (and accept submodular functions).

Theorem 3. There exists a family of sets D ⊆ 2[m+2] with |D| = O(m) so that,
for any function fS∗ in the family of functions in the lower bound instance of
Seshadhri and Vondrak, the partial function (S, fS∗(S))S∈D is not extendible to
a submodular function.

The theorem suggests that instead of testing unit squares, a tester based on
square certificates may be significantly more powerful.
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We then show two lower bounds for testing submodularity on the hypercube.
Our first lower bound also holds for matroid rank functions,2 an important
subclass of submodular functions. Testing matroid rank functions is mentioned
as an open problem in [13], for which we provide the first non-trivial lower bound.

Theorem 4. 1. No 2o(m)-query POT for submodularity and matroid rank func-
tions has detection probability ρ(ε) = Ω(ε1.2−c) for any constant c > 0.

2. No constant query POT for submodularity has detection probability ρ(ε) =
ω(ε2).

The above theorem separates testing submodularity from other properties
on the hypercube such as monotonicity, Lipschitzness, and unateness for which
O(m), O(m), O(m1.5) query POT exist respectively with optimal detection prob-
ability ρ(ε) = Ω(ε) [2,3]3. Further, our second result generalises one of the main
results of [13] which shows that the detection probability of the square tester
(i.e., a particular 4-query POT) cannot exceed Ω(ε2).

We describe relevant related work and give all proofs in the full version.

2 Square Certificates

A partial function consists of a set of points D ⊆ L and a function h : D → R.
The points in D are called defined points. In partial function extension, given a
partial function h, the goal is to determine if there exists a submodular extension
of h, i.e., a submodular function f : L → R such that f(x) = h(x)∀x ∈ D.

We define a combinatorial structure called a square certificate that certifies
non-extendibility of a given partial function. To convey the intuition, we start
with an example. Consider the lattice in Fig. 1a with partial function h defined
on D = {a, c, d, f, g, i} that has value 1 at d and 0 at other points. If there
is a submodular extension s(·) then (see Fig. 1b) s(a) + s(e) ≥ s(b) + s(d),
s(b) + s(i) ≥ s(h) + s(c) and s(h) + s(f) ≥ s(e) + s(g). Summing, we get,
s(a)+ s(i)+ s(f) ≥ s(c)+ s(d)+ s(g), or h(a)+h(i)+h(f) ≥ h(c)+h(d)+h(g)
as s extends h. Therefore, 0 = h(a) + h(i) + h(f) < h(c) + h(d) + h(g) = 1 is
a certificate that h is not extendible. More precisely, the set of square tuples
{(a, e, b, d), (b, i, h, c), (h, f, e, g)} is a certificate of nonextendibility of h.

For a square tuple (a, b, a ∨ b, a ∧ b), the points a and b are called middle
points, a ∨ b is the top point and a ∧ b is the bottom point of this square. Points
a, b, a∨ b, a∧ b are said to be part of this square. Given a multiset of squares, for
a point x ∈ L, define m(x) to be the number of square tuples with x as a middle
point, and tb(x) to be the number of square tuples with x as a top or bottom
point. A point x is involved if m(x) or tb(x) is > 0, i.e., it is a part of some
square in the multiset. An involved point x is an input point if m(x) > tb(x), an
intermediate point if m(x) = tb(x), and an output point if m(x) < tb(x).

2 A function f : 2[m] → Z≥0 is a matroid rank function if (i)f(∅) = 0, (ii)f(S ∪ i) −
f(S) ∈ {0, 1} for any S and i �∈ S and (iii)f is submodular.

3 There exist constant query POTs with ρ(ε) = ε/O(m), ε/O(m), ε/O(m1.5) respec-
tively. These imply O(m), O(m), O(m1.5)-query POTs with ρ(ε) = ε.
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(a) A lattice that is not sub-
lattice extendible

(b) A square certificate

Fig. 1. The function h : {a, c, d, f, g, i} → {0, 1} is submodular in the sublattice but
not extendible to the whole lattice.

In the above example, points b, e, h have tb(·) = m(·) = 1, points c, d, g have
tb(·) = 1, m(·) = 0, and points a, f , i have tb(·) = 0, m(·) = 1.

Square Certificates. Given a partial function h : D → R, a square certificate is a
multiset of squares satisfying the following properties.

(P1) If x ∈ L is an input or an output point, i.e., m(x) 
= tb(x), then x must be
in D.

(P2)
∑

x∈D h(x) (tb(x) − m(x)) > 0.

In the above example, a, i, f are input points and c, d, g are output points, and
all of them are in D. The intermediate points b, e, h are not required to be in D.

Theorem 5. Given a partial function h : D → R, there exists a submodular
function f : L → R such that f(x) = h(x) for all x ∈ D iff there does not exist
a square certificate.

3 Sublattice Extendibility

We first give an example in Fig. 1a to show that not all lattices are sublattice
extendible. One can check that {a, d, f, g, c, i} is a sublattice. Consider a function
on this sublattice with value 1 at d and 0 at other points. The function is clearly
submodular within the sublattice, but is not extendible to the whole lattice as
there is a square certificate shown in Fig. 1b and described earlier.

Topkis showed that modular lattices are sublattice extendible [14]. We give
two main results. Firstly, we give a novel combinatorial characterization for sub-
lattice extendible lattices (Theorem 6). Secondly, we define a strict generalization
of modular lattices called pseudocyclic lattices, and show that these are sublat-
tice extendible (Theorems 1, 2).
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Characterizing Sublattice Extendibility. For the characterization of sublattice
extendibility, we assume we are given a lattice L and a multiset of square tuples.
For any x ∈ L, define m(x) − tb(x) to be the multiplicity of x. Two multisets
of squares are similar if, for some k ≥ 1 and for every x ∈ L, the multiplicity
of x in the first multiset is k times the multiplicity in the other. Note that by
this definition, the set of input points and the set of output points are identical
for both multisets, though the intermediate points may differ. This is because
an intermediate point x in a multiset of squares has m(x) − tb(x) = 0. Hence x
may be an intermediate point in one multiset, but may not be involved in the
other multiset.4 Further, a multiset of squares is good if all its involved points
are in the lattice closure of the input and output points. The square certificate
in Fig. 1b is not good as b, e, h are not in the lattice closure of {a, c, d, f, g, i}.

Theorem 6. A lattice L is sublattice extendible iff for any multiset of squares
there exists a similar and good multiset of squares.

The proof of Theorem2 only uses sufficiency of Theorem 6, that lattice L is
sublattice extendible if for any multiset of squares there exists a good multiset
for which the multiplicity m(x) − tb(x) is identical for all x ∈ L (i.e., similar
with k = 1). For a proof sketch of sufficiency, suppose a submodular function h
on some sublattice L′ is not extendible to a submodular function on the lattice
L. By Theorem 5, there exists a square certificate with input and output points
in L′ (because of (P1) as the set of defined points D is L′). By assumption,
there exists a good multiset of squares similar to the square certificate. This
new multiset of square is thus another square certificate (this uses the similarity
assumption) with all involved points in L′ (this uses the good assumption). This
contradicts that h is submodular on L′.

Pseudocyclic Lattices. Here, we define pseudocyclic lattices and give some intu-
ition for Theorems 1 and 2. Formal proofs are in the full version. Informally, a
lattice is pseudocyclic if two multisets of squares on the lattice that have the
same structure and the same input points, must have the same output points. In
order to define the structure on multisets of squares, we will first define a graph-
theoretic abstraction called a circuit graph, and describe the relation between
square multisets and circuit graphs in terms of satisfying functions, that map
vertices of the circuit graph to points in the multiset. We then formally define
pseudocyclic lattices.

For the proof of Theorem2, we will describe a process that converts a cyclic
circuit graph into an acyclic one. This, combined with Tarski’s fixed point theo-
rem on lattices, will allow us to complete the proof. For the proof of Theorem1,
we will first present an alternate characterization of modular lattices. This char-
acterization combined with the strong form of Tarski’s fixed point theorem will
be used to prove the result.

4 E.g., in Fig. 1a, the multisets {(a, e, b, d), (d, h, e, g)} and {(a, h, b, g)} are similar
(with k = 1).
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Circuit Graphs. Theorems 1 and 2 require the transformation of one multiset of
squares to another. For this transformation, we define an abstraction of a multiset
of squares as a directed graph, which we call a circuit graph. This abstraction
is useful in multiple ways, including to concretize the notion of a cycle in the
multiset, and to define pseudocyclic lattices.

We define a multiset of squares to be unit if, for any x ∈ L, m(x), tb(x) ∈
{0, 1}, i.e., each point x ∈ L is in at most 2 squares, and further in at most 1
square as a middle point and at most 1 square as top or bottom point. It is easier
to see the correspondence between circuit graphs and unit multisets. Informally,
given a unit multiset of squares, the directed graph formed by drawing edges
from a, b to both c and d for each square (a, b, c, d) in the multiset and labelling
c by ∨ and d by ∧ is a circuit graph. A formal definition is as follows.

Definition 2. A circuit graph G is a directed graph consisting of input vertices
(vertices with outdegree 2 and indegree 0), intermediate vertices (vertices with
outdegree 2 and indegree 2) and output vertices (vertices with outdegree 0 and
indegree 2) such that

1. All intermediate and output vertices are labelled by ∧ or ∨ .
2. If vertices v1 and v2 have an edge to a vertex v labelled by ∨ (∧) then v1 and

v2 also have an edge to a vertex v′ labelled by ∧ (∨).

Figure 2b shows a circuit graph with u1, u2, u3 as input vertices, z1, z2, z3 as
intermediate vertices and w1, w2, w3 as output vertices. It follows immediately
from the definition that for a circuit graph, the number of input vertices is
equal to the number of output vertices. It can be seen that a circuit graph is
a collection of square subgraphs where a square subgraph consists of 4 vertices
(v1, v2, v3, v4) such that v3 is labelled by ∨, v4 is labelled by ∧ and there are edges
from v1, v2 to both v3 and v4. The above circuit graph consists of (u1, z3, z1, w3),
(z1, u2, w1, z2) and (z2, u3, w2, z3) as square subgraphs. We further extend our
existing nomenclature for multiset of squares to circuit graphs. Given a square
subgraph (v1, v2, v3, v4), v1 and v2 are part of this square subgraph as middle
vertices while v3 and v4 are part as top and bottom vertex respectively. For any
vertex v, m(v) and tb(v) are the number of square subgraphs that v is part of
as a middle vertex and a top or bottom vertex respectively. Thus m(v) = 1 and
tb(v) = 0 for input vertices; m(v) = 1 and tb(v) = 1 for intermediate vertices
and m(v) = 0 and tb(v) = 1 for output vertices.

The notion of a satisfying function formalizes the link between multiset of
squares and circuit graphs.

Definition 3. Given a circuit graph G and a lattice L, a function f : V (G) → L
is called satisfying if f(v1) ∨ f(v2) = f(v3) and f(v1) ∧ f(v2) = f(v4) for all
square subgraphs (v1, v2, v3, v4) in G.

Pseudocyclic Lattices. We now formally define pseudocyclic lattices. For clarity,
we will reserve n for number of input (or output) vertices in the circuit graph
G. We order the input and output vertices and denote them by u1, . . . , un and
w1, . . . , wn respectively.
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Definition 4. A lattice L is a pseudocyclic lattice if for any circuit graph G
(with n input and output vertices), and any two satisfying functions F,H :
V (G) → L with F (ui) = H(ui) ∀i ∈ [n], it holds that F (wi) = H(wi) ∀i ∈ [n].

Thus to show a lattice not pseudocyclic we need to provide a circuit graph G and
two satisfying functions F,G such that they have same values on input vertices
but differ on at least one output vertex. We give an example of a lattice that is
not pseudocyclic in Fig. 2.

(a) A lattice that is not
pseudocyclic

∨ z1 u2

∨ w1

∧ z2 u3

∨ w2

∧ z3u1

∧ w3

(b) A Circuit
graph.

∨ b d

∨ c

∧ g f

∨ e

∧ ha

∧ i

∨ a d

∨ c

∧ i f

∨ f

∧ ia

∧ i

(c) Two satisfying functions

Fig. 2. The above lattice is not pseudocyclic as for the above circuit graph, there are
two different satisfying functions with same value a, d, f on input vertices (u1, u2 and
u3 respectively) but different value on the output vertex w2.

From Theorem 6, we want to show that given any multiset of squares that
is not good in a pseudocyclic lattice, there exists a similar and good multiset of
squares. Given the initial multiset of squares, we construct the circuit graph by
an abstraction algorithm (see the full version). The algorithm gives a satisfying
function C that maps vertices of the circuit graph to involved points in the
multiset. However, for some vertex v, since the multiset is not good, C(v) may
not be in the lattice closure of input points. Then we show existence of another
satisfying function C′ with the property that C′ agrees with C on input vertices
and additionally maps all vertices to lattice closure of input points. Since our
lattice is pseudocyclic, C and C′ must agree on output vertices as well. This
will give us a similar and good multiset of squares and hence by Theorem6
pseudocyclic lattices are sublattice extendible. One can see that the crux of this
proof is the existence of C′. Once the basic framework is developed, the existence
of C′ will be immediate by an application of Tarski’s fixed point theorem.

For Theorem 1, at a high level, we first give an alternative characterization
of modular lattices. Given a lattice L and x ≤ y ∈ L, we define the distance
d(x, y) between x and y to be the length of a chain of minimum length from x
to y. Therefore d(x, x) = 0 and if x ≺ y then d(x, y) = 1. Define the function
F : L2 → L2 as F (x, y) = (x ∨ y, x ∧ y) for all x, y ∈ L.
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Proposition 1. A lattice is modular iff for all x, x′, y such that x′ ≺ x , it holds
that d(F (x′, y), F (x, y)) = 1.

This characterization, combined with the strong form of Tarski’s fixed point
theorem—the non empty set of fixed points P form a complete lattice and hence
have a minimum element—will give us our proof.

4 Property Testing

We here give a sketch of the proof of the first part of Theorem4 here. The full
proof of the theorem is given in the full version of the paper.

Proof sketch of Theorem 4 (1). We define a family of functions F from 2[m] to R≥0

such that each function in F has distance ε = 2−5m/6 from submodularity and
matroid rank. This family F = {fR s.t. R ⊆ [m], |R| = m/2} is parametrized
by sets R of size m/2.

Fix a subset R ⊆ [m] such that |R| = m/2. Let A1, A2, A3 ⊆ R be fixed
sets such that |Ai| = m/3 for all i = 1, 2, 3 and Ai ∪ Aj = R for all i 
= j.
Let Mi = {S|Ai ⊆ S ⊆ R} for i = 1, 2, 3. We note the following properties of
the construction: (i) any two of A1, A2, A3 fix the third, (ii) for sets A′

i ∈ Mi,
A′

j ∈ Mj with i 
= j, A′
i ∪ A′

j = R, and (iii) Ak 
⊆ A′
i ∩ A′

j , for any k = 1, 2, 3.

Fig. 3. At least one value in {M1, M2, M1 ∩ M2, B, T, (T \ R) ∪ B} must be changed
to make f submodular.

Since R is fixed, we drop the subscript from fR. The function f is defined as:

f(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|S| − 1 if S ∈ M1 or S ∈ M2,

|S| if S ∈ 2R but S 
∈ M1,M2,

f(S ∩ R) if S 
∈ 2R and S ∩ R ∈ M3

f(S ∩ R) + 1 if S 
∈ 2R and S ∩ R 
∈ M3

Informally, if S ∈ 2R, then f(S) is |S| − 1 if it is a superset of A1 or A2, and
|S| otherwise. Otherwise, if S = T ∪S′ where S′ ⊆ R and T ⊆ [m] \R, the value
is f(S′) if A3 ⊆ S′, and is f(S′) + 1 otherwise.
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For i = 1, 2, define the modified function fi as fi(S) = f(S)+1 if S ∈ Mi\R,
and fi(S) = f(S) otherwise. We show in the full version that the function fi(S)
is a matroid rank function, for i = 1, 2. Note that the number of modifications
required to change f into fi is exactly |Mi \ R| = 2m/6 − 1. Hence ε ≤ 2−5m/6.
Secondly, we show that this is tight: at least 2m/6 − 1 points must be changed
to make f submodular.

To show this, we construct 2m/6−1 disjoint partial functions that each cannot
be extended to a submodular function (see Fig. 3). Hence at least one point from
each, i.e, total 2m/6 − 1 points must be changed for f to be submodular. Each
partial function consists of 6 points and will be shown to be not extendible by
showing a square certificate consisting of 2 squares. The point R is not in any
partial function, but will be in every square certificate, as a top point in one
square and a middle square in another (thus R is an intermediate set in the
square certificate, and need not be in the partial function).

The first square in each of the 2m/6 − 1 square certificates consists of a set
M1 from M1 \ R, a set M2 from M2 \ R, their union R and their intersection
M1 ∩ M2. We show in the full proof how to obtain 2m/6 − 1 disjoint (apart
from R) such squares. The second square in each of 2m/6 − 1 square certificates
consists of a set B ∈ M3\R as a bottom point, a set T ⊃ R as a top point, set R
as a middle point, and the set (T \R)∪B as the second middle point. Thus, the
square obtained is (R, (T \R)∪B, T,B). Again, we can obtain 2m/6 − 1 disjoint
(apart from R) such squares. We now construct 2m/6 − 1 square certificates by
selecting, for each square certificate, a unique square from the first set of squares
and a unique square from the second set of squares. Let (M1,M2, R,M1 ∩ M2)
and (R, (T \ R) ∪ B, T,B) be the squares selected. The partial function consists
of the points M1,M2,M1 ∩ M2, (T \ R) ∪ B, T , and B (these are the defined
points) and their values for the function f . The two squares described give a
square certificate for this partial function, since all input and output sets are
defined points, and f(M1)+f(M2) +f((T \R)∪B)−f(T ) −f(B)−f(M1∩M2)
= −1

Thus there are 2m/6 − 1 disjoint partial functions, each of which cannot be
extended to a submodular function. Hence the distance to submodularity (and
matroid rank) is at least ε = 2−5m/6. From the earlier upper bound, this is exact.

By Yao’s minmax principle, to bound the detection probability of a q-query
POT, it suffices to bound the detection probability of a deterministic algorithm
D (that queries q points) against a uniform distribution over functions in F =
{fR |R ⊆ [m], |R| = m/2}. Let Q be the fixed set of points queried by D. Recall
that the functions fi(S) are equal to f(S) (i = 1, 2) for all S not in Mi, so
2[m] \ Mi can be extended to a matroid rank function (and hence a submodular
function). Therefore, if D has to reject fR then Q must contain5 a set S1 ∈ M1

and a set S2 ∈ M2. That is, if D has to reject fR then Q must contain sets
S1 and S2 such that S1 ∪ S2 = R. Therefore, if |Q| = 2o(m) then the detection
probability |Q|2/(

m
m/2

)
= O(2o(m)/2m) ≤ ε1.2−c for any constant c > 0. ��

5 This is because we are dealing with one-sided testers. If a function has the property
then the tester must accept the function.
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Abstract. A graph H is p-edge colorable if there is a coloring ψ :
E(H) → {1, 2, . . . , p}, such that for distinct uv, vw ∈ E(H), we have
ψ(uv) �= ψ(vw). The Maximum Edge-Colorable Subgraph problem
takes as input a graph G and integers l and p, and the objective is to find
a subgraph H of G and a p-edge-coloring of H, such that |E(H)| ≥ l. We
study the above problem from the viewpoint of Parameterized Complex-
ity. We obtain FPT algorithms when parameterized by: (1) the vertex
cover number of G, by using Integer Linear Programming, and (2)
l, a randomized algorithm via a reduction to Rainbow Matching, and
a deterministic algorithm by using color coding, and divide and color.
With respect to the parameters p+k, where k is one of the following: (1)
the solution size, l, (2) the vertex cover number of G, and (3) l − mm(G),
where mm(G) is the size of a maximum matching in G; we show that the
(decision version of the) problem admits a kernel with O(k · p) vertices.
Furthermore, we show that there is no kernel of size O(k1−ε · f(p)), for
any ε > 0 and computable function f , unless NP ⊆ coNP/poly.
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1 Introduction

For a graph G, two (distinct) edges in E(G) are adjacent if they share an end-
point. A p-edge coloring of G is a function ψ : E(G) → {1, 2, . . . , p} such that
adjacent edges receive different colors. One of the basic combinatorial optimiza-
tion problems Edge Coloring, where for the given graph G and an integer
p, the objective is to find a p-edge coloring of G. Edge Coloring is a very
well studied problem in Graph Theory and Algorithm Design and we refer the
readers to the survey by Cao et al. [3], the recent article by Grüttemeier et al.
[11], and references with-in for various known results, conjectures, and practical
importance of this problem.

The smallest integer p for which G is p-edge colorable is called its chromatic
index and is denoted by χ′(G). The classical theorem of Vizing [18] states that
χ′(G) ≤ Δ(G)+1, where Δ(G) is the maximum degree of a vertex in G. (Notice
that by the definition of p-edge coloring, it follows that we require at least Δ(G)
many colors to edge color G.) Holyer showed that deciding whether chromatic
index of G is Δ(G) or Δ(G)+1 is NP-Hard even for cubic graphs [12]. Laven and
Galil generalized this result to prove that the similar result holds for d-regular
graphs, for d ≥ 3 [15].

Edge Coloring naturally leads to the question of finding the maximum
number of edges in a given graph that can be colored with a given number of
colors. This problem is called Maximum Edge Colorable Subgraph which
is formally defined below.

Maximum Edge Colorable Subgraph
Input: A graph G and integers l, p
Output: A subgraph of G with at least l edges and its p-edge coloring or
correctly conclude that no such subgraph exits.

Note that the classical polynomial time solvable problem, Maximum Match-
ing, is a special case of Maximum Edge Colorable Subgraph (when p = 1).
Feige et al. [8] showed that Maximum Edge Colorable Subgraph is NP-
hard even for p = 2. In the same paper, the authors presented a constant factor
approximation algorithm for the problem and proved that for every fixed p ≥ 2,
there is ε > 0, for which it is NP-hard to obtain a (1 − ε)-approximation algo-
rithm. Sinnamon presented a randomized algorithm for the problem [17]. To the
best of knowledge, Aloisioa and Mkrtchyan were the first to study this problem
from the viewpoint of Parameterized Complexity [1] (see Sect. 2 for definitions
related to Parameterized Complexity). Aloisioa and Mkrtchyana proved that
when p = 2, the problem is fixed-parameter tractable, with respect to various
structural graph parameters like path-width, curving-width, and the dimension
of cycle space. Grüttemeier et al. [11], very recently, obtained kernels, when
the parameter is p + k, where k is one of the following: i) the number of edges
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that needs to be deleted from G, to obtain a graph with maximum degree at
most p − 1,1, and ii) the deletion set size to a graph whose connected compo-
nents have at most p vertices. Galby et al. [10] proved that Edge Coloring is
fixed-parameter tractable when parameterized by the number of colors and the
number of vertices having the maximum degree.

Our Contributions: Firstly, we consider Maximum Edge Colorable Sub-
graph, parameterized by the vertex cover number, and we prove the following
theorem.

Theorem 1. Maximum Edge Colorable Subgraph, parameterized by the
vertex cover number of G, is FPT.

We prove the above theorem, by designing an algorithm that, for the given
instance, creates instances of ILP, and the resolves the ILP instance using the
known algorithm [13,14]. Intuitively, for the instance (G, l, p), suppose (H,φ) is
the solution that we are seeking for, and let X be a vertex cover of G. (We can
compute X by the algorithm of Chen et al. [5].) We “guess” H ′ = H[X] and
φ′ = φ|E(H′). Once we have the above guess, we try to find the remaining edges
(and their coloring), using ILP.

Next, we present two (different) FPT algorithms for Maximum Edge Col-
orable Subgraph, when parameterized by the number of edges in the desired
subgraph, l. More precisely, we prove following theorem.

Theorem 2 (�2). There exists a deterministic algorithm A and a randomized
algorithm B with constant probability of success that solves Maximum Edge
Colorable Subgraph. For a given instance (G, l, p), Algorithms A and B
terminate in time O∗(4l+o(l)) and O∗(2l), respectively.

We remark that in the above theorem, the Algorithms A and B use different
sets of ideas. Algorithm A, uses a combination of the technique [6] of color-
coding [2] and divide and color. Algorithm B uses the algorithm to solve Rain-
bow Matching as a black-box. We note that the improvement in the running
time of Algorithm B comes at the cost of de-randomization, as we do not know
how to de-randomize Algorithm B.

Next we discuss our kernelization results. We show that (the decision version
of) the problem admits a polynomial kernel, when parameteized by p+k, where
k is one of the following: (a) the solution size, l, (b) the vertex cover number of G,
and (c) l−mm(G), where mm(G) is the size of a maximum matching in G; admits a
kernel with O(kp) vertices. We briefly discuss the choice of our third parameter.
By the definition of edge coloring, each color class is a set of matching edges.
Hence, we can find one such color class, in polynomial time [16], by computing
a maximum matching in a given graph. In above guarantee parameterization
theme, instead of parameterizing, say, by the solution size (l in this case), we
look for some lower bound (which is the size of a maximum matching in G, for
1 Recall that any graph with maximum degree at most p − 1, is p-edge colorable [18],

and thus, this number is a measure of “distance-from-triviality”.
2 The proofs of results marked with � can be found in the full version.
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our case) for the solution size, and use a more refined parameter (l−mm(G)). We
prove the following theorem.

Theorem 3. Maximum Edge Colorable Subgraph admits a kernel with
O(kp) vertices, for every k ∈ {�, vc(G), l − mm(G)}.

We complement this kernelization result by proving that the dependency of
k on the size of the kernel is optimal up-to a constant factor.

Theorem 4 (�). For any k ∈ {�, vc(G), l − mm(G)}, Maximum Edge Col-
orable Subgraph does not admit a compression of size O(k1−ε ·f(p)), for any
ε > 0 and computable function f , unless NP ⊆ coNP/poly.

2 Preliminaries

For a positive integer n, we denote set {1, 2, . . . , n} by [n]. We work with simple
undirected graphs. The vertex set and edge set of a graph G are denoted as V (G)
and E(G), respectively. An edge between two vertices u, v ∈ V (G) is denoted
by uv. For an edge uv, u and v are called its endpoints. If there is an edge uv,
vertices u, v are said to be adjacent to one another. Two edges are said to be
adjacent if they share an endpoint. The neighborhood of a vertex v is a collection
of vertices which are adjacent to v and it is represented as NG(v). The degree of
vertex v, denoted by degG(v), is the size of its neighbourhood. For a graph G,
Δ(G) denotes the maximum degree of vertices in G. The closed neighborhood of
a vertex v, denoted by NG[v], is the subset NG(v) ∪ {v}. When the context of
the graph is clear we drop the subscript. For set U , we define N(U) as union of
N(v) for all vertices v in U . For two disjoint subsets V1, V2 ⊆ V (G), E(V1, V2) is
set of edges where one endpoint is in V1 and another is in V2. An edge in the set
E(V1, V2) is said to be going across V1, V2. For an edge set E′, V (E′) denotes the
collection of endpoints of edges in E′. A graph H is said to be a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). In other words, any graph obtained from G
by deleting vertices and/or edges is called a subgraph of G. For a vertex (resp.
edge) subset X ⊂ V (G) (resp. ⊂ V (G)), G − X (G − Y ) denotes the graph
obtained from G by deleting all vertices in X (resp. edges in Y ). Moreover, by
G[X], we denote graph G − (V (G) − X).

For a positive integer p, a p-edge coloring of a graph G is a function φ :
E(G) → {1, 2, . . . , p} such that for every distinct uv, wx ∈ E(G) s.t. {u, v} ∩
{w, x} 
= ∅, we have φ(uv) 
= φ(wx). The least positive integer p for which there
exists a p-edge coloring of a graph G is called edge chromatic number of G and
it is denoted by χ′(G).

Proposition 1 ([18] Vizing). For any simple graph G, Δ(G) ≤ χ′(G) ≤
Δ(G) + 1.

For a coloring φ and for any i in {1, 2, . . . , p}, the edge subset φ−1(i) is called
the ith color class of φ. Notice that by the definition of p-edge coloring, every
color class is a matching in G.
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For a graph G, a set of vertices W is called an independent set if no two
vertices of W are adjacent with each other. A set X ⊆ V (G) is a vertex cover of
G if G − S is an independent set. The size of a minimum vertex cover of graph
is called its vertex cover number and it is denoted by vc(G). A matching of a
graph G is a set of edges of G such that every edge shares no vertex with any
other edge of matching. The size of maximum matching of a graph G is denoted
by mm(G). It is easy to see that mm(G) ≤ vc(G) ≤ 2 · mm(G).

Definition 1 (deg-1-modulator). For a graph G, a set X ⊆ V (G) is a deg-
1-modulator of G, if the degree of each vertex in G − X is at most 1.

Expansion Lemma. Let t be a positive integer and G be a bipartite graph with
vertex bipartition (P,Q). A set of edges M ⊆ E(G) is called a t-expansion of
P into Q if (i) every vertex of P is incident with exactly t edges of M , and (ii)
the number of vertices in Q which are incident with at least one edge in M is
exactly t|P |. We say that M saturates the end-points of its edges. Note that the
set Q may contain vertices which are not saturated by M . We need the following
generalization of Hall’s Matching Theorem known as expansion lemmas:

Lemma 1 (See, for example, Lemma 2.18 in [7]). Let t be a positive integer
and G be a bipartite graph with vertex bipartition (P,Q) such that |Q| ≥ t|P |
and there are no isolated vertices in Q. Then there exist nonempty vertex sets
P ′ ⊆ P and Q′ ⊆ Q such that (i) P ′ has a t-expansion into Q′, and (ii) no
vertex in Q′ has a neighbour outside P ′. Furthermore two such sets P ′ and Q′

can be found in time polynomial in the size of G.

Integer Linear Programming. The technical tool we use to prove that Max-
imum Edge Colorable Subgraph is fixed-parameter tractable (defined in
next sub-section) by the size of vertex cover is the fact that Integer Linear
Programming is fixed-parameter tractable when parameterized by the num-
ber of variables. An instance of Integer Linear Programming consists of a
matrix A ∈ Z

m×q, a vector b̄ ∈ Z
m and a vector c̄ ∈ Z

q. The goal is to find a
vector x̄ ∈ Z

q which satisfies Ax̄ ≤ b̄ and minimizes the value of c̄ · x̄ (scalar
product of c̄ and x̄). We assume that an input is given in binary and thus the
size of the input instance or simply instance is the number of bits in its binary
representation.

Proposition 2 ([13,14]). An Integer Linear Programming instance of
size L with q variables can be solved using O(q2.5q+o(q)·(L+logMx)·log(Mx·Mc))
arithmetic operations and space polynomial in L+logMx, where Mx is an upper
bound on the absolute value that a variable can take in a solution, and Mc is the
largest absolute value of a coefficient in the vector c̄.

Parameterized Complexity. We refer readers to books [7,9] for basic definitions.
We say a parameter k2 is larger than a parameter k1 if there exists a computable
function g(·) such that k1 ≤ g(k2). In such case, we denote k1 � k2 and say k1
is smaller than k2. If a problem if FPT parameterized by k1 then it is also FPT
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parameterized by k2. Moreover, if a problem admits a kernel of size h(k1) then
it admits a kernel of size h(g(k2)). For a graph G, let X be its minimum sized
deg-1-modulator. By the definition of vertex cover, we have |X| ≤ vc(G). This
implies |X| � vc(G). In the following observation, we argue that for “non-trivial”
instances, vc(G) � l and |X| � l − mm(G).

Observation 21 (�). For a given instance (G, l, p) of Maximum Edge Col-
orable Subgraph, in polynomial time, we can conclude that either (G, l, p) is
a Yes instance or vc(G) � l and |X| � (l − mm(G)), where X is a minimum
sized deg-1-modulator of G.

3 FPT Algorithm Parameterized by the Vertex Cover
Number of the Input

In this section, we consider the problem Maximum Edge Colorable Sub-
graph, when parameterized the vertex cover number of the input graph, and
our objective is to prove Theorem 1. Let (G, l, p) be an instance of the problem,
where the graph G has n vertices. We assume that G has no isolated vertices
as any such vertex is irrelevant for an edge coloring. We begin by computing a
minimum sized vertex cover, X of G, in time O(2|X|n|X|), using the algorithm
of Chen et al. [4].

We begin by intuitively explaining the working of our algorithm. We assume
an arbitrary (but fixed) ordering over vertices in G, and let W = V (G) \ X.
Suppose that we are seeking for the subgraph H, of G, with at least � edges
and the coloring φ : E(H) → {1, 2, . . . , p}. We first “guess” the intersection
of H with G[X], i.e., the subgraph H ′ of G[X], such that V (H) ∩ X = H ′

and V (H) ∩ E(G[X]) = H ′. (Actually, rather than guessing, we will go over
all possible such H ′s, and do the steps, that we intuitively describe next.) Let
φ′ = φE(H′). Based on (H ′, φ′), we construct an instance of ILP, which will help
us “extend” the partial solution (H ′, φ′), to the solution (if such an extended
solution exists), for the instance (G, �, p). Roughly speaking, the construction of
the ILP relies on the following properties. Note that W is an independent set
in G, and thus edges of the solution that do not belong to H ′, must have one
endpoint in X and the other endpoint in W . Recall that H has the partition
(given by φ) into (at most) p matchings, say, M1,M2, . . . ,Mp′ . The number of
different neighborhoods in X, of vertices in W , is bounded by 2k. This allows
us to define a “type” for Mi − E(H ′), based on the neighborhoods, in X, of the
vertices appearing in Mi − E(H ′). Once we have defined these types, we can
create a variable YT,α, for each type T and color class α (in {0, 1, . . . , p′}). The
special color 0 will be used for assigning all the edges that should be colored
using the colors outside {1, 2, . . . , p′} (and we will later see that it is enough to
keep only one such color). We would like the variable YT,α to store the number
of matchings of type T that must be colored α. The above will heavily rely on
the fact that each edge in H that does not belong to H ′, must be adjacent to a
vertex in X, this in turn will facilitate in counting the number of edges in the
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matching (via the type, where the type will also encode the subset of vertices in
X participating in the matching). Furthermore, only for α = 0, the variable YT,α

can store a value which is more than 1. Once we have the above variable set,
by adding appropriate constraints, we will create an equivalent instance of ILP,
corresponding to the pair (H ′, φ′). We will now move to the formal description
of the algorithm.

For S ⊆ X, let Γ (S) be the set of vertices in W whose neighborhood in G
is exactly S, i.e., Γ (S) := {w ∈ W | NG(w) = S}. We begin by defining a tuple,
which will be a “type”, and later we will relate a matching (between W and X),
to a particular type.

Definition 2 (Type). A type T = 〈X ′ = {x1, x2, . . . , x|X′|};S1, S2, . . . , S|X|〉
is a (|X| + 1) sized tuple where each entry is a subset of X and which satisfy
following properties.

1. The first entry, X ′, is followed by |X ′| many entries which are non-empty
subsets of X and the remaining (|X| + 1 − |X ′|) entries are empty sets.

2. Any non-empty set S of X appears at most |Γ (S)| many times from the
second entry onward in the tuple.

3. For every i ∈ {1, 2, . . . , |X ′|}, we have xi ∈ Si.

We note that the number of different types is at most 2|X| · 2|X|2 ∈ 2O(|X|2)

and it can be enumerated in time 2O(|X|2) ·nO(1). We need following an auxiliary
function corresponding to a matching, which will be useful in defining the type for
a matching. Let M be a matching across X,W (M has edges whose one endpoint
is in X and the other endpoint is in W ). Define τM : X ∩ V (M) → W ∩ V (M),
as τM (x) := w if xw is an edge in M . We drop the subscript M when the context
is clear.

Definition 3 (Matching of type T). A matching M = {xτ(x)| x ∈ X and
τ(x) ∈ W}, is of type T = 〈X ′;S1, S2, . . . , S|X|〉 if V (M) ∩ X = X ′ ( :=
{x1, x2, . . . , x|X|′}), and Sj = N(τ(xj)) for every j in {1, 2, . . . , |X ′|}.

We define some terms used in the sub-routine to construct an ILP instance.
For a type T = 〈X ′;S1, S2, . . . , S|X|〉, we define |T| := |X ′|. Note that |T|
is the number of edges in a matching of type T. For a vertex x ∈ X and
a type T = 〈X ′;S1, S2, . . . , S|X|〉, value of is_present(x,T) is 1 if x ∈ X ′,
and otherwise it is 0. For w ∈ W , define false_twins(w) as the number
of vertices in W which have the same neighborhood as that of w. That is,
false_twins(w) = |{ŵ ∈ W | N(w) = N(ŵ)}|. For a vertex w ∈ W and a
type T = 〈X ′;S1, S2, . . . , S|X|〉, the value of nr_nbr_present(w,T) denotes the
number of different js in {1, 2, . . . , |X ′|} for which Sj = N(w). We remark that
the values of all the functions defined above can be computed in (total) time
bounded by 2O(|X|2) · nO(1).

Constructing ILP Instances. Recall that G is the input graph and X is a
(minimum sized) vertex cover for G. Let T be the set of all types. For every
subgraph H ′ of G[X], a (non-negative) integer p0 ≤ p, and a p0-edge coloring
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φ′ : E(H ′) → {0, 1, 2, . . . , p0}, we create an instance I(H′,φ′), of ILP as follows.
Let [p0]′ = {0, 1, 2, . . . , p0}. Define a variable YT,α for every type T and integer
α ∈ [p0]′. (These variables will be allowed to take values from {0, 1, . . . , p}).
Intuitively speaking, for α in [p0]′, the value assigned to YT,α will indicates that
there is a matching of type T which is assigned the color α. Moreover, for α = 0,
the value of YT,0 will indicate that there are YT,0 many matchings of type T, each
of which must be assigned a unique color which is strictly greater than p0. Recall
that for a type T ∈ T, |T| is the number of edges in a matching of type T. We
next define our objective function, which (intuitively speaking) will maximize
the number of edges in the solution.

maximize
∑

T∈T;α∈[p0]′
YT,α · |T|

We next discuss the set of constraints.
For every vertex x in X, we add the following constraint, which will ensure

that x will be present in at most p matchings:
∑

T∈T;α∈[p0]′
YT,α · is_present(x,T) ≤ p − degH′(x). (ConstSetI)

For each x ∈ X, an edge xx̂ incident on x in H ′, and T ∈ T, we add the
following constraint, which will ensure that no other edge incident on x and some
vertex in W is assigned the color φ′(xx̂):

YT,φ′(xx̂) · is_present(x,T) = 0. (ConstSetII)

We will next add the following constraint for each w ∈ W , which will help
us in ensuring that w is present in at most p matchings:

∑

T∈T;α∈[p0]′
YT,α · nr_nbr_present(w,T) ≤ p · false_twins(w). (ConstSetIII)

Notice that for two vertices w1, w2 ∈ W , such that N(w1) = N(w2), the
above constraints corresponding to w1 and w2 is exactly the same (and we skip
adding the same constraint twice).

When α 
= 0, we want to ensure that at most one matching that is colored
α. Thus, for α ∈ [p0], add the constraint:

∑

T∈T

YT,α ≤ 1. (ConstSetIV)

Note that we want at most p color classes, which will be ensured by our final
constraint as follows.

∑

T∈T;α∈[p0]′
YT,α ≤ p. (ConstSetV)
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This completes the construction of the ILP instance of I(H′,φ′).

Algorithm for Maximum Edge Colorable Subgraph: Consider the given
instance (G, l, p) of Maximum Edge Colorable Subgraph. The algorithm
will either return a solution (H,φ) for the instance, or conclude that no such
solution exists. We compute a minimum sized vertex cover, X of G, in time
O(2|X|n|X|), using the algorithm of Chen et al. [4]. For every subgraph H ′

of G[X], a (non-negative) integer p0 ≤ p, and a p0-edge coloring φ′ : E(H ′) →
{0, 1, 2, . . . , p0}, we create the instance I(H′,φ′), and resolve it using Proposition 2.
(In the above we only consider those φ′ : E(H ′) → {0, 1, 2, . . . , p0}, where each
of the color classes are non-empty.) If there exists a tuple (H ′, φ′) for which the
optimum value of the corresponding ILP instance is at least (l − |E(H ′)|) then
algorithm constructs a solution (H,φ) as specified in the proof of Lemma 3 and
returns it as a solution. If there is no such tuple then the algorithm concludes
that no solution exists for a given instance.

For a solution (H,φ : E(H) → [p]) for the instance (G, l, p), we say that
(H,φ) is a good solution, if for some p0 ∈ [p], for each e ∈ E(H) ∩ E(G[X]),
we have φ(e) ∈ [p0]. Note that if (G, l, p) has a solution, then it also has a good
solution. We argue the correctness of the algorithm in the following two lemmas.

Lemma 2. If (G, l, p) has a good solution (H,φ) then the optimum value of the
ILP instance I(H′,φ′) is at least (l−|E(H ′)|), where H ′ = H[X] and φ′ : E(H ′) →
{1, 2, . . . , p0}, such that φ′ = φ|E(H′) and p0 = max{φ(e) | e ∈ E(H)∩E(G[X])}.
Proof. Let M1,M2, . . . ,Mp be the partition of edges in E(H) \E(H ′) according
to the colors assigned to them by φ, and M = {Mi | i ∈ [p]} \ {∅}. Notice that
each Mi is a matching, where the edges have one endpoint in X and the other
endpoint in W . We create an assignment asg : Var(H′,φ′) → [p0]′, where Var(H′,φ′)
is the set of variables in the instance I(H′,φ′) as follows. Initialize asg(z) = 0, for
each z ∈ Var(I(H′,φ′)). For i ∈ [p], let Ti be the type of Mi and pi = φ(e), where
e ∈ Mi. For each i ∈ [p], we do the following. If pi > p0, then increment asg(YTi,0)
by one, and otherwise increment value of asg(YTi,pi

) by one. This completes the
assignment of variables. Next we argue that asg satisfies all constraints in I(H′,φ′)
and the objective function evaluates to a value that is at least (l − |E(H ′)|).

As there are at most p matchings, we have
∑

T∈T;α∈[p0]′ YT,α ≤ p, and thus,
the constraint in ConstSetV is satisfied.

We will now argue that each constraint in ConstSetI is satisfied. To this
end, consider a variable x ∈ X, and let ax =

∑
T∈T;α∈[p0]′ asg(YT,α) ·

is_present(x,T). Since H is p-edge colorable, degH(x) ≤ Δ(H) ≤ p. Hence,
there are at most p edges incident on x in H (Proposition 1). For any T ∈ T
and α ∈ [p0]′, if asg(YT,α) ·is_present(x,T) 
= 0, then there are asg(YT,α) many
matchings of type T in M, each of which contains an edge incident on x. More-
over, each such matching contains a different edge incident on x. Since φ is a
p-edge coloring of H, we have ax + degH′(x) = degH(x) ≤ p. This implies
that ax =

∑
T∈T;α∈[p0]′ asg(YT,α) · is_present(x,T) ≤ p − degH′(x). Thus we

conclude that all constraints in ConstSetI are satisfied.
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Now we argue that all constraints in ConstSetII are satisfied. Consider x ∈ X,
an edge xx̂ incident on x in H ′, and T ∈ T such that is_present(x,T) = 1.
Since xx̂ ∈ E(H ′), there is no matching Mi ∈ M, such that pi = φ′(xx̂) and
M contains an edge incident on x. Thus we can obtain that asg(YT,φ′(xx̂)) =
0 (recall that is_present(x,T) = 1). From the above we can conclude that
asg(YT,φ′(xx̂)) · is_present(x,T) = 0.

Next we argue that all constraints in ConstSetIII are satisfied. To this end,
consider a (maximal) subset W ′ = {w1, w2, . . . , wr} ⊆ W , such that any two
vertices in W ′ are false twins of each other. Notice that for each j, j′ ∈ [r],∑

T∈T;α∈[p0]′ YT,α · nr_nbr_present(wj ,T) ≤ p · false_twins(wj) is exactly the
same as

∑
T∈T;α∈[p0]′ YT,α · nr_nbr_present(wj ,T) ≤ p · false_twins(wj′).

Consider any w ∈ W ′, T ∈ T, and α ∈ [p0]′, such that we have asg(YT,α) ·
nr_nbr_present(w,T) 
= 0. There are asg(YT,α) many matchings in M each
of which contains nr_nbr_present(w,T) many edges incident vertices in W ′.
Hence

∑
T∈T;α∈[p0]′ asg(YT,α) · nr_nbr_present(wj ,T) is the number of edges

incident on W ′ in H. Note that p · false_twins(w) is the maximum number of
edges in H which can be incident on vertices in W ′. Thus we can conclude that∑

T∈T;α∈[p0]′ asg(YT,α) · nr_nbr_present(wj ,T) ≤ p · false_twins(w).
For any α ∈ [p0], there is at most one matching in M whose edges are

assigned the color α. This implies that
∑

T∈T asg(YT,α) ≤ 1. Hence all constraints
in ConstSetIV are satisfied.

There are at least (l − |E(H ′)|) many edges in E(H) \ E(H ′) and each
such edge has one endpoint in X and another in W . Every edge in match-
ing contributes exactly one to the objective function. Thus we can obtain that∑

T∈T;α∈[p0]′ asg(YT,α) · |T| ≥ (l − |E(H ′)|). This concludes the proof. ��
Lemma 3 (�). If there is (H ′, φ′) for which the optimum value of the ILP
instance I(H′,φ′), is at least (l − |E(H ′)|), then the Maximum Edge Col-
orable Subgraph instance (G, l, p) admits a solution. Moreover, given asg :
Var(H′,φ′) → [p0]′, where Var(H′,φ′), we can be compute a solution (H,φ) for
(G, l, p), in polynomial time.

The proof of Theorem 1 follows from Lemma 2 and 3, and Proposition 2.

4 Kernelization Algorithm

In this section, we prove Theorem 3. To obtain our result, we show that Maxi-
mum Edge Colorable Subgraph admits a polynomial kernel when param-
eterized by the number of colors and |X|, where X is a minimum sized deg-1-
modulator. The above result, together with Observation 21, implies the proof of
Theorem 3.

Consider an instance (G, p, l) of Maximum Edge Colorable Subgraph.
We assume that we are given a deg-1-modulator X of G (see Definition 1). We
justify this assumption later and argue that one can find a deg-1-modulator
which is close to a minimum sized deg-1-modulator in polynomial time. We
start with the following simple reduction rule.
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Reduction Rule 41. If there exists a connected component C of G − X such
that no vertex of C is adjacent to a vertex in X, then delete all the vertices in
C and reduce l by |E(C)|, i.e. return the instance (G − V (C), l − |E(C)|, p).
Lemma 4. Reduction Rule 41 is safe and given X, it can be applied in polyno-
mial time.

Let (G, l, p) be the instance obtained by exhaustively applying Reduction
Rule 41. This implies that every connected component of G − X is adjacent
to X. Let C be the set of connected components of G − X. We construct an
auxiliary bipartite graph B, with vertex bipartition X and C (each C ∈ C cor-
responds to a vertex, say bC of B). There exists edge xbC in B for x ∈ X and
bC ∈ C if and only x is adjacent to at least one vertex in C in G. For C′ ⊆ C
of connected components, V (C′) ⊆ V (G) denotes the vertices in connected com-
ponents in C′ and E(C′) ⊆ E(G) denotes the edges that have both endpoints
in V (C′). Since every connected component in C is adjacent to X, there are no
isolated vertices in B. We thus apply the following rule which is based on the
Expansion Lemma.

Reduction Rule 42. If |C| ≥ p|X| then apply Lemma 1 to find X ′ ⊆ X and
C′ ⊆ C such that (1) there exits a p-expansion from X ′ to C′; and (2) no vertex in
C′ has a neighbour outside X ′. Delete all the vertices in X ′ ∪ V (C′) from G and
reduce l by p|X ′|+ |E(C′)|, i.e. return (G − (X ′ ∪ V (C′)), l − p|X ′| − |E(C′)|, p).
Lemma 5. Reduction Rule 42 is safe and given set X, it can be applied in poly-
nomial time.

Next we argue that Maximum Edge Colorable Subgraph admits a poly-
nomial kernel when parameterized by size of the given deg-1-modulator.

Lemma 6. Maximum Edge Colorable Subgraph admits a kernel with
O(|X|p) vertices, where X is a deg-1-modulator of G.

Proof. (of Theorem 3) For an instance (G, l, p) of Maximum Edge Colorable
Subgraph the kernelization algorithm first uses Observation 21 to conclude that
either (G, l, p) is a Yes instance or vc(G) � l and |Xopt| � (l − mm(G)), where
Xopt is a minimum sized deg-1-modulator of G. In the first case, it returns
a vacuously true instance of constant size. If it can not conclude that given
instance is a Yes instance then algorithm computes a deg-1-modulator, say X,
of G using the simple 3-approximation algorithm: there exists a vertex u which
is adjacent with two different vertices, say v1, v2 then algorithm adds u, v1, v2 to
the solution. It keeps repeating this step until every vertex is of degree at most
one. The algorithm uses the kernelization algorithm mentioned in Lemma 6 to
compute a kernel of size O(p|X|).

The correctness of the algorithm follows from the correctness of Lemma 6.
As X is obtained by using a 3-factor approximation algorithm, |X| ≤ 3|Xopt|
and hence |X| � |Xopt|. Since the algorithm was not able to conclude that
(G, l, p) is a Yes instance, by Observation 21, we have |Xopt| � vc(G) � l and
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|Xopt| � l−mm(G). This implies the number of vertices in the reduced instance is
at most O(kp) where k is one of the parameters in the statement of the theorem.
By Observation 21, Lemma4 and Lemma 5, and the fact that every application of
reduction rules reduces the number of vertices in the input graph, the algorithm
terminates in polynomial time. ��
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Abstract. In this paper, we consider the lower-bounded k-median prob-
lem (LB k-median) that extends the classical k-median problem. In the
LB k-median, a set of facilities, a set of clients and an integer k are
given. Every facility has its own lower bound on the minimum number
of clients that must be connected to the facility if it is opened. Every
facility-client pair has its connection cost. We want to open at most k
facilities and connect every client to some opened facility, such that the
total connection cost is minimized.

As our main contribution, we study the LB k-median and present our
main bi-criteria approximation algorithm, which, for any given constant
α ∈ [0, 1), outputs a solution that satisfies the lower bound constraints
by a factor of α and has an approximation ratio of 1+α

1−α
ρ, where ρ is the

state-of-art approximation ratio for the k-facility location problem (k-
FL). Then, by extending the main algorithm to several general versions
of the LB k-median, we show the versatility of our algorithm for the LB
k-median. Last, through providing relationships between the constant α
and the approximation ratios, we demonstrate the performances of all
the algorithms for the LB k-median and its generalizations.

Keywords: k-median · Lower bounds · Approximation algorithm ·
Bi-criteria

1 Introduction

The uncapacitated facility location problem (UFL) has numerous applications
in operations management and computer science. In this problem, we are given
a set of facilities and a set of clients. Every facility has an associated opening
cost, and every facility-client pair has an associated connection cost which is
c© Springer Nature Switzerland AG 2020
D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 627–639, 2020.
https://doi.org/10.1007/978-3-030-58150-3_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58150-3_51&domain=pdf
https://doi.org/10.1007/978-3-030-58150-3_51


628 L. Han et al.

proportional to the distance between the facility and client. The aim is to open
some facilities and connect every client to an opened facility so as to minimize
the total opening and connection cost. Since the UFL is a well-known NP-hard
problem, researchers pay attention on designing approximation algorithms for it
and its generalizations [3,8,10,12,15,16,18,19]. For a minimization problem, a
λ-approximation algorithm is a polynomial time algorithm which can output a
solution for any instance of the problem, such that the cost of the solution is
within a factor of λ of the cost of an optimal solution. For the UFL, under the
assumption that the connection costs are metric (i.e., the connection costs are
non-negative, symmetric and satisfy the triangle inequality), Li [12] presents the
current best 1.488-approximation algorithm and assume that P�=NP Sviridenko
[16] gives the 1.463-hardness of approximation.

However, in many real-life situations, the facility expects to be connected by
a minimum number of clients for the profitable sake. In fact, the lower-bounded
facility location problem (LBFL) characterizes these scenarios. Besides, the moti-
vation of the lower bound constraints also comes from a data privacy perspective
[1]. Compared with the UFL, in the LBFL, every facility is given an additional
lower bound on the minimum number of clients that must be connected to the
facility if it is opened. The goal is to find some facilities to open and connect every
client to an opened facility without violating any lower bound constraints, such
that the total opening as well as connection cost is minimized. The LBFL is intro-
duced by Guha et al. [7] and Karger and Minkoff [11] simultaneously. Both give
an O(1)-bi-criteria approximation algorithm that approximately subjects to the
lower bound constraints. For the special case of the LBFL where the lower bound
of every facility is the same, by reducing the LBFL to the capacitated facility
location problem (CFL), Svitkina [17] proposes the first true 448-approximation
algorithm. Later, Ahmadian and Swamy [2] improve the approximation ratio to
82.6. For the general case of the LBFL where every facility has its own lower
bound, Li [13] also reduces the LBFL to the CFL and gives the breakthrough
true approximation algorithm which has a ratio of 4000.

When every facility in the UFL does not have an opening cost and the
aim becomes to find at most k facilities to open and connect every client to
some opened facility so as to minimize the sum of connection costs, we get
the classical k-median problem. The k-median is another well-studied NP-hard
problem and has various generalizations. [3–6,9,10,14,18,19]. For the k-median,
under the assumption that the connection costs are metric, Byrka et al. [5]
present the state-of-art (2.675 + ε)-approximation algorithm and assume that
NP�⊆DTIME(nO(log log n)) Jain et al. [9] offer the 1.736-hardness of approxima-
tion. Despite the fact that many meaningful and interesting general versions of
the k-median have been considered in the literatures, to the best of our knowl-
edge, very little work concentrates on studying the k-median with lower bounds.
This situation stimulates us to pay attention on the lower-bounded k-median
problem (LB k-median). Compared with the k-median, the LB k-median has
extra lower bound constraints which need to be respected.
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In this paper, we study the LB k-median and its generalizations. First,
inspired by the previous works of Guha et al. [7] and Karger and Minkoff [11]
on the LBFL, we propose our main O(1)-bi-criteria approximation algorithm for
the LB k-median, which satisfies the lower bound constraints by a factor of some
given constant α ∈ [0, 1) and has an approximation ratio of 1+α

1−αρ, where ρ is
the current best approximation ratio for the k-facility location problem (k-FL).
The key idea behind the main algorithm relies on an observation that construct-
ing and solving a new instance of the k-FL instead of the original instance of
the LB k-median can easily obtain a solution respects the cardinality constraint,
and then trying to guarantee every facility is connected by a certain amount of
clients can give us a bi-criteria solution. Second, we extend the main algorithm
to several generalizations of the LB k-median, including the lower-bounded k-
facility location problem (LB k-FL), the lower-bounded knapsack median prob-
lem (LB knapsack median) and the prize-collecting lower-bounded k-median
problem (PLB k-median). The algorithms for these generalizations involve con-
structing and solving new instances of the k-FL, the knapsack facility location
problem (knapsack FL) and the prize-collecting k-facility location problem (P
k-FL), respectively. Last but not least, we give the relationships between the
given constant α and the approximation ratios of all the algorithms to demon-
strate their performances. Particularly, we show that our algorithm for the LB
k-median can give a nice approximation ratio while violating the lower bound
constraints within an acceptable range.

The remainder of our paper is structured as follows. Section 2 presents our
main O(1)-bi-criteria approximation algorithm for the LB k-median. Section 3
extends the main algorithm to several general versions of the LB k-median.
Section 4 demonstrates the performances of our algorithms. Due to space con-
straint, all proofs are removed but will further appear in a full version of this
paper.

2 The Lower-Bounded k-median Problem

In this section, we present an O(1)-bi-criteria approximation algorithm for the
LB k-median. Subsection 2.1 describes the LB k-median and the relevant k-FL
along with their integer programs. Subsection 2.2 presents our main algorithm
for the LB k-median and its analysis.

2.1 Preliminaries for the LB k-median

In the LB k-median, we are given a set of facilities F , a set of clients D and
an integer k. Every facility i ∈ F has an associated lower bound Li on the
minimum number of clients in D that must be connected to the facility if it is
opened. Every facility-client pair (i, j), where i ∈ F and j ∈ D, has an associated
connection cost cij which is proportional to the distance between facility i and
client j. Under the assumption that the connection costs are metric, the goal
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is to find at most k facilities to open and connect every client to some opened
facility, such that the total connection cost is minimized.

The LB k-median can be formulated as the following integer program:

min
∑

i∈F

∑

j∈D
cijxij (1)

s. t.
∑

i∈F
xij ≥ 1, ∀j ∈ D, (2)

xij ≤ yi, ∀i ∈ F , j ∈ D, (3)
∑

j∈D
xij ≥ Liyi, ∀i ∈ F , (4)

∑

i∈F
yi ≤ k, (5)

xij ∈ {0, 1}, ∀i ∈ F , j ∈ D, (6)
yi ∈ {0, 1}, ∀i ∈ F . (7)

In program (1–7), there are two types of variables ({xij}i∈F,j∈D, {yi}i∈F ). The
variable xij indicates whether client j is connected to facility i for any facility-
client pair (i, j) where i ∈ F and j ∈ D. The variable yi indicates whether
facility i is opened for any facility i ∈ F . The objective function describes the
total connection cost. The constraints (2) say that every client j ∈ D must be
connected to some facility. The constraints (3) state that if a client j is connected
to some facility i ∈ F , then the facility must be opened. The constraints (4)
guarantee that the lower bound of any opened facility cannot be violated. The
constraint (5) shows that the number of opened facilities can not exceed k.

When every facility i ∈ F in the LB k-median has an associated opening cost
fi instead of the lower bound Li and the aim becomes to find at most k facilities
to open and connect every client to some opened facility so as to minimize the
sum of opening costs as well as connection costs, we get the k-FL. By introducing
the same variables ({xij}i∈F,j∈D, {yi}i∈F ), as in the integer program (1–7), the
k-FL can be formulated as the following integer program:

min
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cijxij (8)

s. t.
∑

i∈F
xij ≥ 1, ∀j ∈ D, (9)

xij ≤ yi, ∀i ∈ F , j ∈ D, (10)
∑

i∈F
yi ≤ k, (11)

xij ∈ {0, 1}, ∀i ∈ F , j ∈ D, (12)
yi ∈ {0, 1}, ∀i ∈ F . (13)
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In program (8–13), the objective function consists of opening costs and connec-
tion costs.

Note that we have the following observation.

Lemma 1. From program (1–7) and program (8–13), it is clear that with the
same inputs of F , D and k, any feasible solution for the LB k-median is also a
feasible solution for the k-FL.

2.2 Algorithm for the LB k-median

For the LB k-median, we propose a bi-criteria approximation algorithm, that, for
any given constant α ∈ [0, 1), outputs a solution in which every opened facility
i is connected by at least αLi clients and has a constant approximation ratio of
1+α
1−αρ, where ρ is the current best approximation ratio for the k-FL. Our main
algorithm for the LB k-median consists of three steps. First of all, from the
instance IN of the LB k-median, we construct a new instance IN ′ of the k-FL.
Secondly, we apply existing approximation algorithm for the k-FL to solve the
instance IN ′ and obtain a solution (S′, σ′) where S′ is the set of opened facilities
and σ′ : D → S′ is the corresponding connections of clients in D to facilities in
S′. Finally, we continually close some facility in S′ and reconnect its clients to
obtain a new solution (S, σ) which connects at least αLi clients to every opened
facility i ∈ S.

For any facility i ∈ F , denote Di as the set of closest Li clients to it in D.
Now we are ready to present our main algorithm.

Algorithm 1

Step 1 Construct a new instance of the k-FL.
For the instance IN = (F ,D, k, {Li}i∈F , {cij}i∈F,j∈D) of the LB k-
median, pick a constant α ∈ [0, 1), get rid of the lower bounds {Li}i∈F
from IN and

set fi :=
2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain a new instance IN ′ = (F ,D, k, {fi}i∈F , {cij}i∈F,j∈D)
of the k-FL.

Step 2 Solve the instance of the k-FL.
Solve new instance IN ′ with the current best ρ-approximation algorithm
for the k-FL (see [19]), where ρ = 2 +

√
3 + ε, and obtain a feasible

solution (S′, σ′), where S′ is the set of opened facilities and σ′ : D → S′

is a function that maps every client j ∈ D to the closest facility in S′.
For any client j ∈ D, let σ′(j) denote its closest facility in S′.

Step 3 Construct a solution for the LB k-median.
Step 3.1 Initialization.

At the very begining, set S := S′ and σ(j) := σ′(j) for any j ∈ D, define
li := |j ∈ D : σ(j) = i| for any i ∈ F and Sd := {i ∈ S : li < αLi}.
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Step 3.2 Close facilities and reconnect clients.
While Sd �= ∅ do

Arbitrarily choose some facility i ∈ Sd and close it. For every client
j with σ(j) = i, reconnect it to its closest facility i′ in S \ {i} and
update σ(j) := i′. Update S := S \{i}. Update li for any facility i ∈ F
and Sd.

Output solution (S, σ).

Algorithm 1 provides a solution (S, σ), where S is the set of opened facilities
and σ : D → S denotes the corresponding connections between clients in D and
facilities in S, for the LB k-median. For any client j ∈ D, let σ(j) denote the
facility which is connected by j in solution (S, σ).

The following theorem presents our main result for the LB k-median.

Theorem 1. Algorithm1 is a bi-criteria approximation algorithm for the LB
k-median that produces a solution (S, σ), which connects at least αLi clients to
every opened facility i ∈ S, and has an approximation ratio of 1+α

1−αρ where α is
a given constant in interval [0, 1) and ρ is the current best approximation ratio
of 2 +

√
3 + ε for the k-FL.

Because of Step 3.2 in Algorithm 1, it is not hard to see that

|j ∈ D : σ(j) = i| = li ≥ αLi for any i ∈ S,

which means the solution (S, σ) connects at least αLi clients to every opened
facility i ∈ S. The remainder of this section will put focus on analyzing the
approximation ratio of our algorithm for the LB k-median.

Suppose that (S∗, σ∗) is the optimal solution for the instance IN of the LB
k-median, where S∗ is the optimal set of opened facilities and σ∗ : D → S∗

denotes the optimal corresponding connections. Let OPTlk be the total cost of
the solution (S∗, σ∗) for IN , i.e., OPTlk =

∑
j∈D cσ∗(j)j . For every client j ∈ D,

denote σ∗(j) as the facility which is connected by j in solution (S∗, σ∗). In order
to provide the approximation ratio of Algorithm1, the following lemmas are
essential.

Lemma 2. The total cost of the solution (S′, σ′) for the instance IN ′ of the
k-FL is within a factor of 1+α

1−αρ of the total cost of the optimal solution (S∗, σ∗)
for the instance IN of the LB k-median, i.e.,

∑

i∈S′
fi +

∑

j∈D
cσ′(j)j ≤ 1 + α

1 − α
ρ · OPTlk,

where α ∈ [0, 1) and ρ = 2 +
√

3 + ε.

Lemma 3. The total cost of the solution (S, σ) for the instance IN of the LB
k-median is no more than the total cost of the solution (S′, σ′) for the instance
IN ′ of the k-FL, i.e.,

∑

j∈D
cσ(j)j ≤

∑

i∈S′
fi +

∑

j∈D
cσ′(j)j .
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Integrating Lemma 2 with Lemma 3 implies the approximation ratio of Algo-
rithm1.

3 Generalizations of the Lower-Bounded k-median
Problem

In this section, by extending our main algorithm to several more general versions
of the LB k-median, we show the versatility of Algorithm 1. Subsection 3.1, 3.2
and 3.3 present algorithms for the LB k-FL, LB knapsack median and PLB k-
median through altering only the first step, the first two steps and all the steps
in Algorithm 1, respectively.

3.1 The Lower-Bounded k-facility Location Problem

Compared with the LB k-median, in the LB k-FL, every facility i ∈ F is given
an additional opening cost fi. The aim is to open at most k facilities and connect
every client to some opened facility, such that the total opening and connection
cost is minimized.

The algorithm for the LB k-FL is obtained by only modifying the first step
in Algorithm 1 slightly.

Algorithm 2

Step 1 Construct a new instance of the k-FL.
For the instance IN = (F ,D, k, {Li}i∈F , {fi}i∈F , {cij}i∈F,j∈D) of the
LB k-FL, pick a constant α ∈ [0, 1), get rid of the lower bounds {Li}i∈F
from IN and

set f ′
i := fi +

2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain a new instance IN ′ = (F ,D, k, {f ′
i}i∈F , {cij}i∈F,j∈D)

of the k-FL.
Step 2 Solve the instance of the k-FL.

Same as Step 2 in Algorithm1. Solve new instance IN ′ with the current
best ρ-approximation algorithm for the k-FL (see [19]), where ρ = 2 +√

3 + ε, and obtain a feasible solution (S′, σ′).
Step 3 Construct a solution for the LB k-FL.

Same as Step 3 in Algorithm1. At the end of this step, output solution
(S, σ).

The following theorem offers the result for the LB k-median.

Theorem 2. Algorithm2 is a bi-criteria approximation algorithm for the LB
k-FL that produces a solution (S, σ), which connects at least αLi clients to every
opened facility i ∈ S, and has an approximation ratio of 1+α

1−αρ where α ∈ [0, 1)
and ρ = 2 +

√
3 + ε.

We skip the proof of this theorem since it is similar to the one for the LB
k-median.
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3.2 The Lower-Bounded Knapsack Median Problem

Compared with the LB k-median, in the LB knapsack median, the cardinality
constraint is replaced with a knapsack constraint. More specifically, we are given
some budget B instead of the integer k. Every facility i ∈ F has a weight wi.
We want to open a subset S ⊆ F of facilities which subjects to

∑
i∈S wi ≤ B,

and connect every client to some opened facility, so as to minimize the total
connection cost.

The algorithm for the LB knapsack median is offered by changing the first
two steps in Algorithm 1.

Algorithm 3

Step 1 Construct a new instance of the knapsack FL.
For the instance IN = (F ,D, B, {Li}i∈F , {wi}i∈F , {cij}i∈F,j∈D) of the
LB knapsack median, pick a constant α ∈ [0, 1), get rid of the lower
bounds {Li}i∈F from IN and

set fi :=
2α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain instance IN ′ = (F ,D, B, {fi}i∈F , {wi}i∈F ,
{cij}i∈F,j∈D) of the knapsack FL.

Step 2 Solve the instance of the knapsack FL.
Solve new instance IN ′ with the current best η-approximation algorithm
for the knapsack FL (see [4]), where η = 17.46 + ε, and obtain a feasible
solution (S′, σ′).

Step 3 Construct a solution for the LB knapsack median.
Same as Step 3 in Algorithm1. At the end of this step, output solution
(S, σ).

The following theorem gives the result for the LB knapsack median.

Theorem 3. Algorithm3 is a bi-criteria approximation algorithm for the LB
knapsack median that produces a solution (S, σ), which connects at least αLi

clients to every opened facility i ∈ S, and has an approximation ratio of 1+α
1−αη

where α ∈ [0, 1) and η = 17.46 + ε.

We skip the proof of this theorem since it is analogous to the one for the LB
k-median.

3.3 The Prize-Collecting Lower-Bounded k-median Problem

Compared with the LB k-median, in the PLB k-median, every client j ∈ D is
given an additional penalty cost pj . Our goal is to select at most k facilities to
open, connect a portion of the clients and penalize the rest of them, so as to
minimize the sum of opening, connection and penalty costs.

The algorithm for the PLB k-median is given by transforming all the steps
in Algorithm 1.
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Algorithm 4

Step 1 Construct a new instance of the P k-FL.
For the instance IN = (F ,D, k, {Li}i∈F , {pj}j∈D, {cij}i∈F,j∈D) of the
PLB k-median, pick a constant α ∈ [0, 1), get rid of the lower bounds
{Li}i∈F from IN and

set fi :=
1 + α

1 − α

∑

j∈Di

cij for every i ∈ F ,

in order to obtain instance IN ′ = (F ,D, k, {fi}i∈F , {pj}j∈D,
{cij}i∈F,j∈D) of the P k-FL.

Step 2 Solve the instance of the P k-FL.
Solve new instance IN ′ with the current best θ-approximation algorithm
for the P k-FL (see [18]), where θ = 2 +

√
3 + ε, and obtain a feasible

solution (S′, P ′, σ′), where S′ is the set of opened facilities, P ′ is the set
of penalized clients and σ′ : D \ P ′ → S′ is a function that maps every
client j ∈ D \ P ′ to the closest facility in S′. For any client j ∈ D \ P ′,
let σ′(j) denote its closest facility in S′. For any client j ∈ P ′, define its
σ′(j) := ip where ip is a dummy facility for penalizing.

Step 3 Construct a solution for the PLB k-median.
Step 3.1 Initialization.

At the very begining, set S := S′, P := P ′ and σ(j) := σ′(j) for any
j ∈ D, define Ti := {j ∈ D : σ(j) = i}, li := |Ti| and Pi := {j ∈ D : j ∈
Di, σ(j) = ip} for any i ∈ F . Define Sd := {i ∈ S : li < αLi}.

Step 3.2 Close facilities and reconnect clients.
While Sd �= ∅ do

Arbitrarily choose some facility i ∈ Sd. There are two possible cases.
Case 1. |Ti| + |Pi| < αLi.
In this case, close facility i. For every client j ∈ Ti, reconnect it
to its closest facility i′ ∈ S \ {i} and update σ(j) := i′. Update
S := S \ {i}. Update Ti, li for any facility i ∈ F and Sd.
Case 2. |Ti| + |Pi| ≥ αLi.
In this case, for every client j ∈ Pi, connect it to its closest facility
i′ ∈ S and update σ(j) := i′. Update P := P \ Pi. Then, update
Pi, Ti as well as li for any facility i ∈ F , also update Sd.

Output solution (S, P, σ).

The following theorem provides the result for the PLB k-median.

Theorem 4. Algorithm4 is a bi-criteria approximation algorithm for the PLB
k-median that produces a solution (S, P, σ), which connects at least αLi clients
to every opened facility i ∈ S, and has an approximation ratio of 2θ

1−α where
α ∈ [0, 1) and θ = 2 +

√
3 + ε.
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Fig. 1. Relationships between the constant α and approximation ratios.

The proof of this theorem is more intricate than the one for the LB k-median,
since every client has an alternative decision in the PLB k-median, which is to be
penalized. Suppose that (S∗, P ∗, σ∗) is the optimal solution for the instance IN
of the PLB k-median. Let OPTplk be the total cost of the solution (S∗, P ∗, σ∗) for
the instance IN . From Algorithm 4, it is clear that the solution (S, P, σ) connects
at least αLi clients to every opened facility i ∈ S. We need the following lemmas
to achieve the approximation ratio of our algorithm for the PLB k-median.

Lemma 4. The total cost of the solution (S′, P ′, σ′) for the instance IN ′ of
the P k-FL is within a factor of 2θ

1−α of the total cost of the optimal solution
(S∗, P ∗, σ∗) for the instance IN of the PLB k-median, i.e.,

∑

i∈S′
fi +

∑

j∈D\P ′
cσ′(j)j +

∑

j∈P ′
pj ≤ 2θ

1 − α
· OPTplk,

where α ∈ [0, 1) and θ = 2 +
√

3 + ε.

Lemma 5. The total cost of the solution (S, P, σ) for the instance IN of the
PLB-k-median is no more than the total cost of the solution (S′, P ′, σ′) for the
instance IN ′ of the P k-FL, i.e.,

∑

j∈D\P

cσ(j)j +
∑

j∈P

pj ≤
∑

i∈S′
fi +

∑

j∈D\P ′
cσ′(j)j +

∑

j∈P ′
pj .

Combining Lemma 4 and Lemma 5 implies the approximation ratio of Algo-
rithm4.

4 Performances Evaluation of the Algorithms

In this section, through providing the relationships between the given constant
α ∈ [0, 1) and the approximation ratios, we demonstrate the performances of
Algorithm 1–4.
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Fig. 2. Relationships between the constant α and approximation ratios. Zoom in on
approximation ratios smaller than 100.

It is worth mentioning that, combining the idea behind Algorithm1 and the
significant first true 4000-approximation algorithm of Li [13] for the LBFL, we
strongly believe that there exists O(1)-approximation algorithm for the LB k-
median which does not violate any lower bound. Unfortunately, the true approxi-
mation algorithm for the LB k-median cannot be practical, since the approxima-
tion ratio of it is likely no less than the one for the LBFL. Li [13] also states that
even with more in-depth consideration, it is hard to reduce the approximation
ratio for the LBFL to below 100 by using the same method.

Now, we want to demonstrate that our Algorithm1 for the LB k-median
can offer an obviously better approximation ratio while slightly violating the
lower bound constraints. In Fig. 1, we show the relationships between constant
α ∈ [0, 1) and the approximation ratios of Algorithm1–4. Note that the approxi-
mation ratios grow slowly and steadily at first, but after the constant α exceeds
0.9 the approximation ratios begin to increase in a steep way. From Fig. 1, it is
clear that when α = 0.9 (i.e., when the algorithm outputs a solution that 90% of
the lower bound requirement of the opened facility is satisfied), the approxima-
tion ratio of Algorithm1 for the LB k-median is significantly better than 4000.
Figure 2 zooms in on approximation ratios smaller than 100. As we can see, when
Algorithm 1 outputs a solution for the LB k-median with an approximation ratio
of 100, the solution can satisfy the majority (i.e., more than 90%) of the lower
bound requirement of any opened facility. In some real-world applications, it
would be advisable to choose our algorithm, which has a preferable approxima-
tion ratio and violates the lower bound constraints within an acceptable range
(i.e., violates no more than 10 % of the lower bound requirements).

Additionally, Fig.1 and Fig. 2 show that Algorithm 2 performs as same as
Algorithm 1 and Algorithm 4 is almost as well as Algorithm 1. Among our algo-
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rithms, Algorithm 3 has the worst performance. From Fig. 1, when α = 0.9,
the approximation ratio of Algorithm3 for the LB knapsack median is visibly
greater than the ratios of other algorithms. From Fig. 2, when Algorithm 3 out-
puts a solution with a ratio of 100, the solution can only guarantee to satisfy
about 70% of the lower bound requirement of any opened facility.
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Abstract. Fault diagnosis of processors has played an essential role
when evaluating the reliability of multiprocessor systems. In many
novel multiprocessor systems, their diagnosability has been extensively
explored. Conditional diagnosability is a useful measure for evaluating
diagnosability by adding a further condition that all neighbors of every
node in the system do not fail at the same time. In this paper, we study
the conditional diagnosability of n-dimensional alternating group net-
works ANn under the PMC model, and obtain the results tc(AN4) = 5,
and tc(ANn) = 6n − 17 for n ≥ 5. In addition, for the isomorphism
property between ANn and Sn,k with k = n − 2, namely (n, n − 2)-star
graphs Sn,n−2, the above results can be extended to Sn,n−2, and we have
tc(S4,2) = 5 and tc(Sn,n−2) = 6n − 17 for n ≥ 5. It is worth noting that
the conditional diagnosability is about six times the degree of ANn and
Sn,n−2, which is very different from general networks with a multiple of
four.

Keywords: Interconnection networks · Fault diagnosis · Conditional
diagnosability · PMC model · Alternating group networks · (n, k)-star
graphs · Fault tolerance · Multiprocessor systems

1 Introduction

As the very-large-scale integration (VLSI) technology grows rapidly, a multi-
processor system usually consists of hundreds or even thousands of processors
(nodes), some of which may fail when the system is running. This has spurred
our focus on the reliability issues of multiprocessor systems. As the number of
nodes in a multiprocessor system increases, diagnosing faulty nodes becomes
very important for parallel and reliable computing. The process of distinguish-
ing faulty nodes from other fault-free nodes in a system is called fault diagnosis.
The diagnosability of a system refers to the maximum number of faulty nodes
the system can diagnose. Whenever a faulty node is diagnosed, it can be replaced
by a fault-free one to maintain the reliability of the system.
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There are several diagnosis models proposed for measuring the diagnosability
of a multiprocessor system. Among these models, the Preparata, Metze, and
Chien’s (PMC) model [20] and the Maeng and Malek’s (MM) model [19] are
best known and widely used. In the PMC model, a node is assumed to test the
faulty/fault-free status of its neighboring nodes. A test result is called reliable
(resp. unreliable) if the node enabling the test is fault-free (resp. faulty). A test
for comparison in the MM model is performed by a node, chosen as a comparator.
The comparator sends one same task as input to pairs of neighboring nodes. The
neighboring nodes execute the received task and send back their responses to
the comparator that then performs the comparison. For this purpose, the MM
model is also called the comparison diagnosis model. The MM* model was first
proposed by Maeng and Malek [11], which is a specialization of the MM model
in which each node executes comparisons for every two neighboring nodes it is
connected to.

Interconnection networks are often used to display the structure of multipro-
cessor systems. The n-dimensional hypercube, denoted by Qn, and its variants
are popular examples of interconnection networks. In 1987, Akers et al. [1,2]
proposed the n-dimensional star graph, denoted by Sn, which is superior to Qn

in many ways such as lower node degree, smaller diameter, and a shorter aver-
age distance. In 1993, Jwo et al. [16] proposed the alternating group graph AGn

as an interconnection network topology for multiprocessor systems. AGn has
many nice properties including node transitivity, edge transitivity, strong hierar-
chy, maximal connectivity, and has small diameter and average distance [16,23].
Moreover, AGn has many advantages over Qn and Sn. In 1995, Chiang and
Chen [9] proposed the (n, k)-star graph, denoted by Sn,k, as a generalization
of Sn that keeps many attractive properties of Sn. In 1998, Ji [15] proposed a
favorable topology structure of interconnection networks called alternating group
network, denoted by ANn, which improves AGn and has many good properties
such as that ANn is Hamiltonian and has diameter

⌈
3(n−2)

2

⌉
.

In the classical measurement of the system-level diagnosis for multiprocessor
systems, when all neighbors of a node v fail at the same time, it is impossible to
determine whether v is faulty or fault-free. Then the diagnosability of a system
is limited to be less than or equal to its minimum node degree. However, in
some large-scale multiprocessor systems, the probability that all the neighbors
of any node can fail at the same time is quite small. Therefore it is reasonable
to make a assumption that all the neighbors of any node do not fail at the
same time. Based on this assumption, Lai et al. [17] proposed the concept of
conditional diagnosability and showed that the conditional diagnosability of an
n-dimensional hypercube Qn is 4n− 7 for n ≥ 5 under the PMC model. Numer-
ous studies have contributed to the conditional diagnosability of multiprocessor
systems under both the PMC and MM* models including hypercubes [14,17],
alternating group graphs [12], star graphs [5,18], Cayley graphs [3,18], and
(n, k)-star graphs [4,6,7,24], alternating group networks [7,25] (only in the MM*
model). In this paper, we evaluate the conditional diagnosability for alternating
group networks ANn under the PMC model and show that tc(AN4) = 5, and
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tc(ANn) = 6n − 17 for n ≥ 5. Since Cheng et al. [8] have shown that ANn is
isomorphic to (n, n−2)-star graph Sn,n−2, our results can be extended to Sn,n−2

and obtain that tc(S4,2) = 5 and tc(Sn,n−2) = 6n − 17 for n ≥ 5.
The rest of the paper is organized as follows: Sect. 2 provides some necessary

definitions and notations for system-level diagnosis. Section 3 introduces topo-
logical properties regarding both (n, k)-star graph Sn,k and alternating group
network ANn. In Sect. 4, we evaluate the conditional diagnosability of ANn and
Sn,n−2. Finally, some conclusions are given in Sect. 5.

2 Preliminaries

An undirected graph (graph for short) G = (V (G), E(G)) is a pair consisting of
a node set V (G) and an edge set E(G), where V (G) is a finite set and E(G) is a
subset of {uv| u and v are distinct elements of V (G)}. Throughout this paper,
we consider simple and connected graphs.

Let G = (V (G), E(G)) be a graph and u be a node in G. The neighborhood
of a node u in G, denoted by NG(u), is the set of all nodes adjacent to u in G.
The cardinality |NG(u)| is called the degree of u in G, denoted by degG(u). The
minimum degree δ(G) equals min{degG(u)| u ∈ V (G)}. A graph G is said to
be k-regular if every node in G has the same degree k. For simplicity, we define
NG(H) ≡ NG(V (H)), where H is a subgraph of G. For a node set T in a graph
G, the notation G \ T denotes the subgraph obtained by deleting all the nodes
in T from G. For a subset of nodes V ′ ⊆ V (G), the neighborhood of V ′ in G is
defined as NG(V ′) =

{⋃
u∈V ′ NG(u)

} \ V ′. The components of a graph G are its
maximal connected subgraphs. A component is called a singleton if it is a single
node.

The connectivity of a graph G, denoted by κ(G), is the minimum number of
nodes whose removal causes G to be disconnected or to have only one node. An
isomorphism from a graph G to a graph H is a one-to-one and onto function
π : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (π(u), π(v)) ∈ E(H).
We say “G is isomorphic to H”, written G ∼= H, if there is an isomorphism
from G to H. The symmetric difference of two sets F1 and F2 is defined as
F1ΔF2 = (F1 \ F2) ∪ (F2 \ F1). For simplicity, we use 〈n〉 to denote the set
{1, 2, . . . , n}. Specifically, a 6-node-paw is defined as a graph consisting of a 3-
cycle with one node extending as a path of length 3.

A multiprocessor system is often modelled as an undirected graph G =
(V (G), E(G)) whose nodes represent processors and edges represent commu-
nication links. Under the classical PMC model [20], adjacent nodes are capable
of performing tests on each others. For adjacent nodes u, v ∈ V (G), the ordered
pair (u, v) represents the test performed by u on v. In this situation, u is called
the tester and v is called the tested node. The outcome of a test (u, v) is 1 (resp.
0) if u evaluates v as faulty (resp. fault-free).

A test assignment for a system G = (V (G), E(G)) is a collection of tests
(u, v) for some adjacent pairs of nodes. The collection of all test results is called
a syndrome. Formally, a syndrome is a function σ : L → {0, 1}. The set of faulty
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nodes in the system is called the fault set. This can be any subset of V (G). The
process of identifying all faulty nodes is called the diagnosis of the system. The
maximum number of faulty nodes that the system G can guarantee to identify
is called the diagnosability of G, written as t(G).

For a given syndrome σ in a system G, a subset of nodes F ⊆ V (G) is said
to be consistent with syndrome σ if σ can be produced from the situation that,
for any (u, v) ∈ L such that for u ∈ V (G) \ F , σ(u, v) = 1 if v ∈ F ; otherwise,
σ(u, v) = 0. Because a faulty tester can lead to an unreliable result, a given
fault set F may produce different syndromes. Let σ(F ) represent the set of all
syndromes which could be produced if F is the fault set. Two distinct fault sets
F1 and F2 in a system G are said to be indistinguishable if σ(F1) ∩ σ(F2) �= ∅;
otherwise, they are said to be distinguishable.

Some known results regarding the definitions of a t-diagnosable system and
related concepts are described below.

Definition 1 [20]. A system of n nodes is t-diagnosable if all faulty nodes
can be identified without replacement, provided that the number of faulty nodes
presented does not exceed t.

Lemma 1 [10]. A system G is t-diagnosable if and only if for any two fault
sets F1 and F2 in G satisfying |F1| ≤ t, |F2| ≤ t, and F1 �= F2, there is at least
one test from V (G) \ (F1 ∪ F2) to F1ΔF2.

The following lemma comes directly from Lemma 1, which gives the necessary
and sufficient condition for distinguishing two fault sets F1 and F2.

Lemma 2 [17]. Let F1 and F2 be any two fault sets in a system G. Then, F1

and F2 are distinguishable if and only if there exists a node u ∈ V (G)\ (F1 ∪F2)
which is adjacent to a node v ∈ F1ΔF2.

3 Properties of Alternating Group Networks
and (n, k)-Star Graphs

In this section, we will introduce some useful properties of alternating group
networks ANn. Because ANn is proven to be isomorphic to the well known
interconnection network called (n, k)-star graph Sn,k [8] by limiting k = n − 2,
namely the (n, n − 2)-star graph Sn,n−2 and our main result will also applies to
Sn,n−2, we first introduce several useful properties of Sn,k and then apply these
properties to ANn.
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3.1 Properties of Sn,k

This subsection is omitted due to page limit.

3.2 Properties of ANn

The n-dimensional alternating group network ANn [15] has node set con-
sisting of all even permutations over {1, 2, · · · , n}, where n ≥ 3. Let u =
q1q2q3q4 . . . qi . . . qn be any node in ANn. For example, u = 346152, an even
permutation over {1, 2, 3, 4, 5, 6}, is a node in AN6, and we have q1 = 3, q2 =
4, q3 = 6, q4 = 1, q5 = 5, and q6 = 2. The edge adjacency about u is defined as
follows:

1. u is adjacent to two nodes v1 = q3q1q2q4 . . . qi . . . qn and v2 = q2q3q1q4 . . .
qi . . . qn through edges (called 3-edges) of dimension 3. The nodes v1 and v2
are called the 3-neighbors of u.

2. u is adjacent to the node q2q1qiq4 . . . q3 . . . qn, denoted by (u)i, through an
edge (also called i-edge) of dimension i, where 4 ≤ i ≤ n (i.e., swapping q3 and
qi). The node (u)i is called the i-neighbor of u. In particular, u’s n-neighbor
(u)n is also called the outgoing neighbor of u.

Cheng et al. [8] give an important result for the isomorphism property
between ANn and Sn,n−2, which is written as the following lemma.

Lemma 3 [8]. ANn is isomorphic to Sn,n−2 for n ≥ 3.

According to Lemma 3 and the properties presented in Sect. 3.1, several use-
ful properties of ANn are given below. ANn is (n − 1)-regular and contains

n!
(n−(n−2))! = n!

2 nodes.
We introduce two kinds of decomposition methods for ANn. First, we use the

same term cluster to denote a subgraph of ANn induced by all the nodes having
the same symbols in the last (n−2)−1 = n−3 positions, that is q4q5 . . . qn. We
then have the observations that (1) ANn can be decomposed into node-disjoint
clusters, and each node of ANn belongs to a unique cluster, (2) each cluster in
ANn contains exactly n − (n − 2) + 1 = 3 nodes, (3) any two nodes within the
same cluster are adjacent, that is, each cluster in ANn is isomorphic to a 3-cycle
K3, and (4) the edges within the same cluster are all 3-edges.

For the second kind of decomposition, let AN i
n denote a subgraph of ANn

induced by all the nodes having the same symbol i in the last position n, i.e.,
qn = i, where n ≥ 4 and 1 ≤ i ≤ n. ANn can be decomposed along dimension n
into n subgraphs AN1

n, AN2
n, · · · , ANn

n , and each subgraph AN i
n is isomorphic

to ANn−1. The edges between two subgraphs ANa
n and AN b

n refer to the edge
set Ea,b = {(u, v)| u = q1q2bq4 · · · qn−1a ∈ V (ANa

n), and v = q2q1aq4 · · · qn−1b ∈
V (AN b

n)}. Here, we have
∣∣Ea,b

∣∣ = (n−2)!
(n−(n−2))! = (n−2)!

2 .
We generalize the above decomposition as follows. Let AN j:i

n denote the sub-
graph of ANn induced by all the nodes having the same symbol i in the position
j, i.e., qj = i, where 4 ≤ j ≤ n and 1 ≤ i ≤ n. ANn can be decomposed along
dimension j into n subgraphs AN j:1

n , AN j:2
n , . . . , AN j:i

n , . . . , AN j:n−1
n , AN j:n

n .
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Corollary 1. Suppose that ANn (n ≥ 4) is decomposed along dimension j into
n subgraphs AN j:1

n , AN j:2
n , · · · , AN j:n

n , where 4 ≤ j ≤ n. Then, each subgraph
AN j:i

n is isomorphic to ANn−1 for 1 ≤ i ≤ n.

Corollary 2 [15]. ANn is (n − 1)-connected, where n ≥ 4.

Corollary 3. Let T be a set of nodes in ANn with |T | ≤ 2n − 6, where n ≥ 4.
Then, ANn \ T satisfies one of the following conditions.

1. ANn \ T is connected.
2. ANn \ T has two components, one of which is a singleton.

The following lemma describes the outcome after deleting a certain set of
nodes from ANn.

Lemma 4 [25]. Let T be a set of nodes in ANn with |T | ≤ 3n−10, where n ≥ 4.
Then, ANn \ T has a large component and some small components containing
at most 2 nodes in total.

Corollary 4. Let (u, v) be any edge in ANn, where n ≥ 3. Then, we have

|NANn
({u, v})| =

⎧
⎨
⎩

2n − 5
2n − 4

if (u, v) is a 3-edge;
if (u, v) is an i-edge,

where 4 ≤ i ≤ n.

Lemmas 5 and 6 show the property that ANn cannot contain any 4-cycles
and 5-cycles.

Lemma 5 [13,22]. ANn does not contain 4-cycles, where n ≥ 4.

Lemma 6 [13,22]. ANn does not contain 5-cycles, where n ≥ 4.

4 Conditional Diagnosability of Alternating Group
Networks

An n-dimensional alternating group network ANn contains
(
n!/2
n−1

)
node subsets

of size n − 1, among which only n!
2 node subsets contain all neighbors of some

node. Since the ratio n!
2 /

(
n!/2
n−1

)
becomes relatively small as n grows sufficiently

large, the probability of a fault set containing all the neighbors of some node is
very low. For this reason, Somani and Agarwal [21] generalized the concept for
system-level diagnosis. Moreover, by considering the situation that any fault set
cannot contain all the neighbors of every node in a system, Lai et al. [17] proposed
a new fault diagnosis strategy called conditional diagnosability for multiprocessor
systems. We need to give some definitions formally. A set of faulty nods F ⊆
V (G) is called a conditional fault set if NG(u) � F for every node u ∈ V (G).
Similar to Definition 1, the definition of a conditionally t-diagnosable system is
given as follows.



646 N.-W. Chang and S.-Y. Hsieh

Definition 2 [17]. A system G is conditionally t-diagnosable if any two condi-
tional fault sets F1 and F2 in G satisfying F1 �= F2, |F1| ≤ t, and |F2| ≤ t are
distinguishable.

An equivalent way of representing the above definition is given below, which
will be utilized in our main theorem.

Lemma 7. A system G is conditionally t-diagnosable if and only if for any
two conditional fault sets F1 and F2 with F1 �= F2 in G such that they are
indistinguishable, it implies |F1| ≥ t + 1 or |F2| ≥ t + 1.

The conditional diagnosability of G, written tc(G), is defined to be the max-
imum value of t such that G is conditionally t-diagnosable.

Before discussing conditional diagnosability, we need to have more observa-
tions regarding the neighborhood of a node in a system given two conditional
fault sets F1 and F2 that are indistinguishable. Lai et al. [17] state this fact as
the following lemma.

Lemma 8 [17]. Suppose that two conditional fault sets F1 and F2 satisfying
F1 �= F2 are indistinguishable in a system G. Let X = G \ (F1 ∪ F2). Then, the
following two properties hold:

1. |NG(u) ∩ V (X)| ≥ 1 for each u ∈ V (X), and
2. |NG(v) ∩ (F1 \ F2)| ≥ 1 and |NG(v) ∩ (F2 \ F1)| ≥ 1 for each v ∈ F1ΔF2.

With Lemma 8, we establish the following important properties, which will
be utilized in our main theorems.

Lemma 9. Suppose that two conditional fault sets F1 and F2 satisfying F1 �= F2

are indistinguishable in a system G. Then, G \ (F1 ∩ F2) has a component H
with (1) V (H) ⊆ F1ΔF2 and (2) δ(H) ≥ 2. Moreover, if G contains neither 4-
cycles nor 5-cycles, then we further have (i) H contains a 6-node-paw or P8, (ii)
|H ′| ≥ 4 or |H ′′| ≥ 4 (i.e., max{|H ′|, |H ′′|} ≥ 4), where H ′ = V (H) ∩ (F1 \ F2)
and H ′′ = V (H) ∩ (F2 \ F1).

Proof. The proof is omitted due to page limit.

4.1 Conditional Diagnosability of AN4

This subsection is omitted due to page limit. The following is a list of lemmas
introduced in this subsection.

Lemma 10. The conditional diagnosability of AN4 is at most 5, i.e., tc(AN4) ≤
5.

Lemma 11. AN4 is 5-conditionally diagnosable.

Theorem 1. The conditional diagnosability of AN4 under the PMC model is 5,
i.e., tc(AN4) = 5.
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4.2 Conditional Diagnosability of ANn for n ≥ 5

Now consider the remaining case where n ≥ 5. We first show that the conditional
diagnosability of n-dimensional alternating group network ANn does not exceed
6n−17, i.e., tc(ANn) ≤ 6n−17. Recall that each cluster in ANn contains exactly
3 nodes. Let (u1, v1) be any 4-edge in ANn, and u2 and u3 (resp. v2 and v3) be
the two 3-neighbors of u1 (resp. v1). Let V ′ = {u1, u2, u3, v1, v2, v3}, F1 = {u1,
v1}∪ NANn

(V ′), and F2 = {u2, u3, v2, v3}∪ NANn
(V ′). By actually observing the

structure of ANn, we can obtain that each node in F1 (resp. F2) has a neighbor
outside F1 (resp. F2). Then, from definition, both F1 and F2 are conditional
fault sets. Moreover, by Lemma 2, F1 and F2 are indistinguishable. Also, note
that |F1 \ F2| = |{u1, v1}| = 2, |F2 \ F1| = |{u2, u3, v2, v3}| = 4, and |F1 ∩ F2| =
|NANn

(V ′)| = 4+6·(n−4) = 6n−20, which implies |F1| = 2+(6n−20) = 6n−18
and |F2| = 4 + (6n − 20) = 6n − 16. From Definition 2, ANn is not conditionally
(6n − 16)-diagnosable, which implies tc(ANn) ≤ (6n − 16) − 1 = 6n − 17. An
upper bound for tc(ANn) is written below.

Lemma 12. tc(ANn) ≤ 6n − 17, where n ≥ 5.

Next, we derive a lower bound for the conditional diagnosability of ANn.
Suppose that two conditional fault sets F1 and F2 satisfying F1 �= F2 are indistin-
guishable in ANn for n ≥ 5. We next show that |F1| ≥ 6n−16 or |F2| ≥ 6n−16.

Lemma 13. Suppose that two conditional fault sets F1 and F2 satisfying F1 �=
F2 are indistinguishable in ANn for n ≥ 5. Then, we have |F1| ≥ 6n − 16 or
|F2| ≥ 6n − 16 (i.e., max{|F1|, |F2|} ≥ 6n − 16).

Proof. Let T = F1 ∩ F2. By Lemmas 5, 6, and 9, ANn \ T has a component H
with the following properties: (1) V (H) ⊆ F1ΔF2, (2) δ(H) ≥ 2, (3) H contains
a 6-node-paw or P8, which implies |V (H)| ≥ 6, and (4) |H ′| ≥ 4 or |H ′′| ≥ 4 (i.e.,
max{|H ′|, |H ′′|} ≥ 4), where H ′ = V (H)∩ (F1 \F2) and H ′′ = V (H)∩ (F2 \F1),
which implies |F1 \ F2| ≥ |H ′| ≥ 4 or |F2 \ F1| ≥ |H ′′| ≥ 4. It suffices to prove
|T |+max{|H ′|, |H ′′|} ≥ 6n−16, which implies max{|F1|, |F2|} = max{|T |+|F1\
F2|, |T | + |F2 \ F1|} = |T | + max{|F1 \ F2|, |F2 \ F1|} ≥ |T | + max{|H ′|, |H ′′|} ≥
6n − 16

If |T | ≥ 6n − 20, then we have |T | + max{|H ′|, |H ′′|} ≥ (6n − 20) + 4 =
6n−16, and the lemma holds immediately. In the remainder, we only consider the
situation |T | ≤ 6n−21. Note that because |V (H)| ≥ 6 > 3, H contains two nodes,
say u and v, which belong to different clusters. Suppose [u]j �= [v]j for some j with
4 ≤ j ≤ n. By Corollary 1, we can decompose ANn into n subgraphs AN i

n for
i ∈ 〈n〉 along dimension j such that u and v are in different subgraphs. Then, the
nodes of H are distributed in at least two subgraphs. Denote Ti = T ∩ V (AN i

n)
for every i ∈ 〈n〉. For convenience, we classify all subgraphs into two categories
by letting A = {i | |Ti| ≤ 2n − 8} and B = {i | |Ti| ≥ 2n − 7}. Clearly,
|A| + |B| = n. A subgraph AN i

n is called an A-subgraph if i ∈ A; otherwise, it is
called a B-subgraph (i.e., i ∈ B).

Because |T | ≤ 6n − 21, we have |B| ≤ 3 (i.e., there are at most three
B-subgraphs), which implies |A| ≥ n − 3, i.e., there are at least n − 3(≥ 2)
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A-subgraphs. Otherwise, we have |T | ≥ 4(2n − 7) = 8n − 28 ≥ 6n − 20 > |T |,
which leads to a contradiction. Note that in each A-subgraph AN i

n (i.e., i ∈ A),
|Ti| ≤ 2n − 8 = 2(n − 1) − 6. By Corollary 3, AN i

n \ Ti has a large compo-
nent, denoted by Mi, and up to one singleton. Let ANa

n be an A-subgraph (i.e.,
|Ta| ≤ 2n − 8), and M be the component of ANn \ T containing Ma, the large
component of ANa

n \ Ta. Before continuing the proof, we first give the following
claim:

Claim. For every A-subgraph AN i
n, the nodes of Mi are contained in M .

Proof of the claim: The proof is omitted due to page limit.
We continue the remaining part of the proof. According to the distribution

of the nodes of H, we consider two cases:

Case 1: V (H) ∩ V (M) �= ∅.
Recall that both H and M are components of ANn \ T . We conclude that H
and M refer to the same component, i.e., H = M , which implies |V (H)| =
|V (M)|. According to the size of n, we consider the following two cases.
Case 1.1: n ≥ 6.
Recall that there are at least n − 3(≥ 2) A-subgraphs. By further
utilizing Claim 4.2, we then have |V (H)| = |V (M)| ≥ (n − 3) ·[
(n−1)!

2 − ((2n − 8) + 1)
]

= (n−3)·
[
(n−1)!

2 − (2n − 7)
]

≥ 2·(6n−16) for n ≥
6. Therefore, we conclude that |T | + max{|H ′|, |H ′′|} ≥ |T | +

⌈
|V (H)|

2

⌉
≥

0 +
⌈
2·(6n−16)

2

⌉
= 6n − 16.

Case 1.2: n = 5.
In this case, we need |T | + max{|H ′|, |H ′′|} ≥ 6 · 15 − 16 = 14. Note that in
each A-subgraph AN i

5, |Ti| ≤ 2 · 5 − 8 = 2 < (5 − 1) − 1. By Corollary 2,
AN i

5 \ Ti is connected. Recall that there are at most three B-subgraphs. For
the number of B-subgraphs, we consider the following two subcases.
Case 1.2.1: At most two B-subgraphs.
The proof of this subcase is omitted due to page limit.
Case 1.2.2: Exactly three B-subgraphs, say ANα

5 , ANβ
5 , and ANγ

5 .
Note that there are 5−3 = 2 A-subgraphs. Recall that ANa

5 is an A-subgraph.
Let AN b

5 be the other A-subgraph. Since |Tα| ≥ 2 · 5 − 7 = 3, |Tβ | ≥ 2 · 5 −
7 = 3, |Tγ | ≥ 2 · 5 − 7 = 3 and |T | ≤ 6 · 5 − 21 = 9, we have |Tα| =
|Tβ | = |Tγ | = 3 and |Ta| = |Tb| = 0, i.e., ANa

5 and AN b
5 are both fault-

free. By Claim 4.2, M contains at least all nodes of ANa
5 and AN b

5 . Next,
consider the outgoing neighbors of the nodes of ANa

5 and AN b
5 in ANα

5 ,
ANβ

5 , and ANγ
5 . Since |Eα,a| + |Eα,b| = 2 · (5−2)!

2 = 6 and |Tα| = 3, M
contains at least 6 − 3 = 3 nodes of ANα

5 \ Tα. Similarly, M also contains at
least 6 − 3 = 3 nodes of ANβ

5 \ Tβ (resp. ANγ
5 \ Tγ). Accordingly, we obtain

|V (H)| = |V (M)| ≥ 2 · (5−1)!
2 + 3 · 3 = 24 + 9 = 33. Therefore, we conclude

that |T | + max{|H ′|, |H ′′|} ≥ |T | +
⌈

|V (H)|
2

⌉
≥ 0 +

⌈
33
2

⌉
= 17 ≥ 14.

Case 2: V (H) ∩ V (M) = ∅.
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By Claim 4.2, H cannot contain the nodes of Mi in every A-subgraph
AN i

n. Moreover, since δ(H) ≥ 2, H cannot contain any singletons among all
A-subgraphs because every singleton has exactly one outgoing neighbor. So, the
nodes of H cannot be distributed in any A-subgraphs, i,e., the nodes of H can be
distributed in only B-subgraphs. Secondly, recall that (1) ANn has been decom-
posed into n subgraphs along some dimension such that at least two subgraphs
contain some nodes of H and (2) there are at most three B-subgraphs. Conse-
quently, the nodes of H can be distributed in exactly two or three B-subgraphs.
However, the latter case cannot occur. We explain this fact as the following
claim:

Claim. The nodes of H cannot be distributed in exactly three B-subgraphs.

Proof of the claim: The proof of this claim is omitted due to page limit.
We continue the remaining part of the proof. By Claim 4.2, the nodes of H

are distributed in exactly two B-subgraphs, say ANα
n and ANβ

n . Note that |Tα| ≥
2n − 7 and |Tβ | ≥ 2n − 7. Let (u1, v1) be an edge of H where u1 is in ANα

n \ Tα

and v1 is in ANβ
n \Tβ . Also, because δ(H) ≥ 2, u1 (resp. v1) has a neighbor, say

u2 (resp. v2), in ANα
n \ Tα (resp. ANβ

n \ Tβ). Since [u1]3 = β and [u1]3 �= [u2]3,
u2’s outgoing neighbor (u2)n is not in ANβ

n , which causes (u2)n ∈ T \ (Tα ∪Tβ).
Similarly, u2 has a neighbor u3 (�= u1) in ANα

n \ Tα, and u3’s outgoing neighbor
(u3)n is in T \ (Tα ∪ Tβ). With a similar manner, we also have that (1) v2’s
outgoing neighbor (v2)n ∈ T \(Tα∪Tβ), (2) v2 has a neighbor v3 (�= v1) in ANβ

n \
Tβ , and (3) v3’s outgoing neighbor (v3)n ∈ T \ (Tα ∪ Tβ). Clearly, (u2)n, (u3)n,
(v2)n, and (v3)n are all distinct because each node has exactly one outgoing
neighbor. Therefore, we have |T \ (Tα ∪ Tβ)| ≥ |{(u2)n, (u3)n, (v2)n, (v3)n}| = 4,
which causes |Tα| + |Tβ | = |T | − |T \ (Tα ∪ Tβ)| ≤ (6n − 21) − 4 = 6n − 25.

Without loss of generality, assume |Tα| ≤ |Tβ |. Then, we have 2|Tα| ≤ |Tα|+
|Tβ | ≤ 6n − 25, which implies |Tα| ≤ ⌊

6n−25
2

⌋
= 3n − 13 = 3(n − 1) − 10. By

Lemma 4, ANα
n \Tα has a large component Mα and up to some small components

containing at most 2 nodes in total. This implies that u1, u2, and u3 are all
contained in Mα. Hence, H contains the nodes of Mα, and v1, v2, and v3. So, we
have |V (H)| ≥ |V (Mα)|+ |{v1, v2, v3}| ≥

[
(n−1)!

2 − (3n − 13) − 2
]
+3 = (n−1)!

2 −
3n + 14 ≥ 2 · (2n − 6) for n ≥ 5. Therefore, we obtain |T | + max{|H ′|, |H ′′|} ≥
|T | +

⌈
|V (H)|

2

⌉
= |Tα| + |Tβ | + |T \ (Tα ∪ Tβ)| +

⌈
|V (H)|

2

⌉
≥ (2n − 7) + (2n − 7) +

4 +
⌈
2(2n−6)

2

⌉
= 6n − 16.

Combining the above cases completes the proof. ��
We now express our main result as follows.

Theorem 2. tc(ANn) = 6n − 17 for n ≥ 5.

Proof. We prove this theorem by combining both the upper and lower bounds of
tc(ANn). First, by Lemma 12, we have tc(ANn) ≤ 6n − 17. Next, by Lemmas 7
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and 13, ANn is conditionally (6n − 17)-diagnosable, where n ≥ 5, implying that
tc(ANn) ≥ 6n − 17, where n ≥ 5. Therefore, the result holds. ��

Combined with Lemma 3, Theorems 1 and 2 can also be extended to (n, n−2)-
star graphs Sn,n−2. We write them as the following corollary.

Corollary 5. tc(S4,2) = 5, and tc(Sn,n−2) = 6n − 17 for n ≥ 5

5 Conclusion

In this paper, we study the work for the conditional diagnosability of n-
dimensional alternating networks ANn under the PMC model. By investigating
and utilizing the structural properties of ANn and (n, k)-star graphs Sn,k, the
conditional diagnosability of ANn is determined to be (1) tc(AN4) = 5 and (2)
tc(ANn) = 6n−17 for n ≥ 5. Also, because of the isomorphism property between
ANn and Sn,k for k = n − 2, namely (n, n − 2)-star graphs Sn,n−2, the above
results can also be extended to Sn,n−2. So, we further have (3) tc(S4,2) = 5 and
(4) tc(Sn,n−2) = 6n−17. Compared with traditional fault diagnosis in which the
diagnosability is limited by the system node degree, by introducing the concept
of conditional diagnosability, the number of fault processors that the system
can diagnose has increased significantly. These results illustrates the importance
of conditional diagnosability in reliability analysis. It is worth noting that the
conditional diagnosability of ANn is about six times its degree, which is very
different from general networks with a multiple of four. With our results, the
problem for the conditional diagnosability of Sn,k is completely solved.
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Abstract. The study of parameterized streaming complexity on graph
problems was initiated by Fafianie et al. (MFCS’14) and Chitnis et
al. (SODA’15 and SODA’16). In this work, we initiate a systematic study
of parameterized streaming complexity of graph deletion problems –
F-Subgraph deletion, F-Minor deletion in the four most well-
studied streaming models: the Ea (edge arrival), Dea (dynamic edge
arrival), Va (vertex arrival) and Al (adjacency list) models. Our main
conceptual contribution is to overcome the obstacles to efficient parame-
terized streaming algorithms by utilizing the power of parameterization.
We focus on the vertex cover size K as the parameter for the parame-
terized graph deletion problems we consider. At the same time, most of
the previous work in parameterized streaming complexity was restricted
to the Ea (edge arrival) or Dea (dynamic edge arrival) models. In this
work, we consider the four most well-studied streaming models: the Ea,
Dea, Va (vertex arrival) and Al (adjacency list) models.

1 Introduction

In streaming algorithms, a graph is presented as a sequence of edges. For the
upcoming discussion, V (G) and E(G) will denote the vertex and edge set, respec-
tively of the graph G having n vertices. Based on the sequence in which the edges
are revealed, streaming algorithms for graph problems are usually studied in the
following models [8,16,19]: (i) Edge Arrival (Ea) model: the stream con-
sists of edges of G in an arbitrary order; (ii) Dynamic Edge Arrival (Dea)
model: each element of the input stream is a pair (e, state), where e ∈ E(G) and
state ∈ {insert, delete} describes whether e is being inserted into or deleted from
the current graph; (iii) Vertex Arrival (Va) model: the vertices of V (G) are
exposed in an arbitrary order, after a vertex v is exposed, all the edges between
v and neighbors of v that have already been exposed, are revealed one by one in
an arbitrary order; (iv) Adjacency List (Al) model: the vertices of V (G) are
exposed in an arbitrary order and when a vertex v is exposed, all the edges that
are incident to v are revealed one by one in an arbitrary order, and note that in
this model each edge is exposed twice, once for each exposure of an endpoint.
c© Springer Nature Switzerland AG 2020
D. Kim et al. (Eds.): COCOON 2020, LNCS 12273, pp. 652–663, 2020.
https://doi.org/10.1007/978-3-030-58150-3_53
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The primary objective is to quickly answer some basic questions over the
current state of the graph while storing only a small amount of information.
There is a vast literature on graph streaming and we refer to the survey by
McGregor [16] for more details. Algorithms that can access the sequence of edges
of the input graph, p times in the same order, are defined as p-pass streaming
algorithms. For simplicity, we refer to 1-pass streaming algorithms as streaming
algorithms. The space used by a (p-pass) streaming algorithm, is defined as the
streaming complexity of the algorithm. For streaming algorithms, it is the space
complexity of the algorithm, or the streaming complexity, that is optimized.

Parameterized Complexity. The goal of parameterized complexity is to find ways
of solving NP-hard problems by aiming to restrict the combinatorial explosion
to a parameter that is hopefully much smaller than the input size. Formally, a
parameterization of a problem is assigning an integer k to each input instance.
A parameterized problem is said to be fixed-parameter tractable (FPT) if there
is an algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size
of the input and f is an arbitrary computable function depending only on the
parameter k. There is a long list of NP-hard graph problems that are FPT under
various parameterizations [10]. Given the definition of FPT for parameterized
problems, it is desirable to expect an efficient algorithm for the corresponding
parameterized streaming versions to allow O(f(k) logO(1) n) bits of space, where
f is an arbitrary computable function of the parameter k.

There are several ways to formalize the parameterized streaming question.
Some of these notions were formalized in the following two papers [5,6] and
several results for Vertex Cover and Maximum Matching were presented
there. Unfortunately, this relaxation to O(f(k) logO(1) n) bits of space does not
buy us too many new results. Most of the problems for which parameterized
streaming algorithms are known are “local problems”. Other local problems like
Cluster Vertex Deletion (denoted as CVD) and Triangle Deletion
(denoted as TD) do not have positive results. Also, problems that require some
global checking – such as Feedback Vertex Set (denoted as FVS), Even
Cycle Transversal (denoted as ECT), Odd Cycle Transversal (denoted
as OCT) etc. remain elusive (the formal definition of all such problems are in
Appendix of [2]). In fact, one can show that, when edges of the graph arrive in
an arbitrary order, using reductions from communication complexity all of the
above problems will require Ω(n) space even if we allow a constant number of
passes over the data stream [5].

The starting point of this paper is the above mentioned Ω(n) lower bounds
on basic graph problems. We ask the most natural question – how do we decon-
struct these intractability results? Possibly, look beyond the most well-studied
parameter of the size of the solution that we are seeking.

What Parameters to Use? In parameterized complexity, after solution size and
treewidth, arguably the most notable structural parameter is vertex cover size
K [10,13]. For all the vertex deletion problems that we consider in this paper, a
vertex cover is also a solution. Thus, the vertex cover size K is always larger than
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the solution size k for all the above problems. We do a study of vertex deletion
problems from the view point of parameterized streaming in all known models.
The main conceptual contribution of this paper is to use structural parameter
in parameterized streaming algorithms.

What Problems to Study? We study the streaming complexity of parameterized
versions of F-Subgraph deletion and F-Minor deletion. These problems
are one of the most well studied ones in parametertized complexity and have
led to development of the field. The parameters we consider in this paper are (i)
the solution size k and (ii) the size K of the vertex cover of the input graph G.
In F-Subgraph deletion and F-Minor deletion, the objective is to decide
whether there exists X ⊂ V (G) of size at most k such that G\X has no graphs in
F as a subgraph, and has no graphs in F as a minor, respectively. F-Subgraph
deletion and F-Minor deletion are interesting due to the following reasons.
Feedback Vertex set (FVS), Even Cycle Transversal (ECT), Odd
Cycle Transversal (OCT) and Triangle Deletion (TD) are special cases
of F-Subgraph deletion when F = {C3, C4, C5, . . .}, F = {C3, C5, . . .}, F =
{C4, C6, . . .} and F = {C3}, respectively. FVS is also a special case of F-Minor
deletion when F = {C3}. For formal definitions of the problems, see Appendix
of [2].

Related Work. Problems in class P have been extensively studied in stream-
ing complexity in the last decade [16]. Recently, there has been a lot of inter-
est in studying streaming complexity of NP-hard problems like Hitting Set,
Set Cover, Max Cut and Max CSP [1,14,15]. Structural parameters have
been considered to study Matching in streaming [3,5,9,11,17,18]. Fafianie and
Kratsch [12] were the first to study parameterized streaming complexity of NP-
hard problems like d-Hitting Set and Edge Dominating Set in graphs.
Chitnis et al. [5–7] developed a sampling technique to design efficient parameter-
ized streaming algorithms for promised variants of Vertex Cover, d-Hitting
Set problem, b-Matching etc. They also proved lower bounds for problems
like G-Free Deletion, G-Editing, Cluster Vertex Deletion etc. [5].
Chitnis et al. [4] studied and defined different complexity classes for parame-
terized streaming problems.

Organisation of the Paper. Section 2 describes the interrelationship between the
streaming models and our results. The algorithms for Common Neighbor,
F-Subgraph deletion and F-Minor deletion are given in Sect. 3. We skip
the lower bound proofs that use reductions from communication complexity
problems in this work; an interested reader is referred to [2].

2 Interrelation Between Models and Our Results

Streamability and Hardness. Let Π be a parameterized graph problem that
takes as input a graph on n vertices and a parameter k. Let f : N × N → R be
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a computable function. For a model M ∈ {Dea,Ea,Va,Al}, whenever we say
that an algorithm A solves Π with complexity f(n, k) in model M, we mean A
is a randomized algorithm that for any input instance of Π in model M gives
the correct output with probability 2/3 and has streaming complexity f(n, k).

Definition 1. A parameterized graph problem Π, that takes an n-vertex graph
and a parameter k as input, is Ω(f) p-pass hard in the Edge Arrival model,
or in short Π is (Ea, f, p)-hard, if there does not exist any p-pass streaming
algorithm of streaming complexity O(f(n, k)) bits that can solve Π in model M.

Analogously, (Dea, f, p)-hard, (Va, f, p)-hard and (Al, f, p)-hard are
defined.

Definition 2. A graph problem Π, that takes an n-vertex graph and a parame-
ter k as input, is O(f) p-pass streamable in Edge Arrival model, or in short Π
is (Ea, f, p)-streamable if there exists a p-pass streaming algorithm of streaming
complexity O(f(n, k)) words1 that can solve Π in Edge Arrival model.

(Dea, f, p)-streamable, (Va, f, p)-streamable and (Al, f, p)-streamable are
defined analogously. For simplicity, we refer to (M, f, 1)-hard and (M, f, 1)-
streamable as (M, f)-hard and (M, f)-streamable, respectively, where M ∈
{Dea,Ea,Va,Al}.

Definition 3. Let M1,M2 ∈ {Dea,Ea,Va,Al} be two streaming models, f :
N × N → R be a computable function, and p ∈ N.

(i) If for any parameterized graph problem Π, (M1, f, p)-hardness of Π implies
(M2, f, p)-hardness of Π, then we say M1 ≤h M2.

(ii) If for any parameterized graph problem Π, (M1, f, p)-streamability of Π
implies (M2, f, p)-streamability of Π, then we say M1 ≤s M2.

Now, from Definitions 1, 2 and 3, we have the following Observation.

Observation 4. Al ≤h Ea ≤h Dea; Va ≤h Ea ≤h Dea; Dea ≤s Ea ≤s Va;
Dea ≤s Ea ≤s Al.

This observation has the following implication. If we prove a lower (upper) bound
result for some problem Π in model M, then it also holds in any model M′ such
that M ≤h M′ (M ≤s M′). For example, if we prove a lower bound result
in Al or Va model, it also holds in Ea and Dea model; if we prove an upper
bound result in Dea model, it also holds in Ea, Va and Al model. In general,
there is no direct connection between Al and Va. In Al and Va, the vertices
are exposed in an arbitrary order. However, we can say the following when the
vertices arrive in a fixed (known) order.

Observation 5. Let Al′(Va′) be the restricted version of Al (Va), where the
vertices are exposed in a fixed (known) order. Then Al′ ≤h Va′ and Va′ ≤s Al′.
1 It is usual in streaming that the lower bound results are in bits, and the upper bound

results are in words.
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Now, we remark the implication of the relation between different models
discussed in this section to our results mentioned in Table 1.

Remark 1. In Table 1, the lower bound results in Va and Al hold even if we
know the sequence in which vertices are exposed, and the upper bound results
hold even if the vertices arrive in an arbitrary order. In general, the lower bound
in the Al model for some problem Π does not imply the lower bound in the Va
model for Π. However, our lower bound proofs in the Al model hold even if we
know the order in which vertices are exposed. So, the lower bounds for FVS,
ECT, OCT, presented in [2], in the Al model imply the lower bound in the
Va model. By Observations 4 and 5, we will be done by showing a subset of the
algorithmic and lower bound results mentioned in the Table 1.

Table 1. A summary of our results. “str.” means streamable. The results marked with
† in Table 1 are lower bound results of Chitnis et al. [5]. The other lower bound results
are ours, some of them being improvements over the lower bound results of Chitnis
et al. [5]. The full set of lower bound results are presented in [2]. Notice that the lower
bound results depend only on n.

Problem Parameter Al model Va model Ea/Dea model

F-Subgraph
k

(Al, n logn)-hard (Va, n log n)-hard (Ea, n log n)-hard
(Al, n/p, p)-hard (Va, n/p, p)-hard (Ea, n/p, p)-hard†

Deletion

K (Al, Δ(F) · KΔ(F)+1)-str.∗ (Va, n/p, p)-hard (Ea, n/p, p)-hard
(Theorem 11)

F-Minor
k

(Al, n logn)-hard (Va, n log n)-hard (Ea, n log n)-hard
(Al, n/p, p)-hard (Va, n/p, p)-hard (Ea, n/p, p)-hard

Deletion

K (Al, Δ(F) · KΔ(F)+1)-str.∗ (Va, n/p, p)-hard (Ea, n/p, p)-hard
(Theorem 14)

Our Results. Let a graph G and a non-negative integer k be the inputs to
the graph problems we consider. Notice that for F-Subgraph deletion and
F-Minor deletion, K ≥ k. In particular, we obtain a range of streaming algo-
rithms as well as lower bounds on streaming complexity for the problems we
consider. The results of the paper are highlighted in Table 1 and the full range
of results are highlighted in the Table in [2].

The highlight of our results are captured by the F-Subgraph deletion and
F-Minor deletion. They are summarized below.

Theorem 6. (F-Subgraph deletion in the Al model) Parameterized
by solution size k, F-Subgraph deletion is (Al, Ω(n log n))-hard. How-
ever, when parameterized by vertex cover K, F-Subgraph deletion is
(Al,O (

Δ(F) · KΔ(F)+1
)
)-streamable. Here Δ(F) is the maximum degree of any

graph in F .
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The above Theorem is in contrast to results shown in [5]. First, we would
like to point out that to the best of our knowledge this is the first set of results
on hardness in the Al model. The results in [5] showed that F-Subgraph
deletion is (Ea, Ω(n))-hard. A hardness result in the Al model implies one
in the Ea model (Refer to Observation 4). Thus, our result (see the proofs of
lower bounds of FVS, ECT, OCT in [2]) implies a stronger lower bound for
F-Subgraph deletion particularly in the Ea model. On the positive side, we
show that F-Subgraph deletion parameterized by the vertex cover size K, is(
Al,Δ(F) · KΔ(F)+1

)
-streamable (Proof in Theorem 11).

Our hardness results are obtained from reductions from well-known problems
in communication complexity. The problems we reduced from are Indexn, Disjn

and Permn (refer to [2] for details). In order to obtain the algorithm, one of the
main technical contributions of this paper is the introduction of the Common
Neighbor problem which plays a crucial role in designing streaming algorithms
in this paper. We show that F-Subgraph deletion and many of the other
considered problems, like F-Minor deletion parameterized by vertex cover
size K, have a unifying structure that can be solved via Common Neighbor,
when the edges of the graph are arriving in the Al model. In Common Neigh-
bor, the objective is to obtain a subgraph H of the input graph G such that the
subgraph contains a maximal matching M of G. Also, for each pair of vertices
a, b ∈ V (M)2, the edge (a, b) is present in H if and only if (a, b) ∈ E(G), and
enough3 common neighbors of all subsets of at most Δ(F) vertices of V (M) are
retained in H. Using structural properties of such a subgraph, called the common
neighbor subgraph, we show that it is enough to solve F-Subgraph deletion
on the common neighbor subgraph. Similar algorithmic and lower bound results
can be obtained for F-Minor deletion. The following theorem can be proven
using Theorem 14 in Sect. 3 and the lower bound results presented in [2] (see for
example, the lower bound proofs of FVS, ECT, OCT in [2]).

Theorem 7. Consider F-Minor deletion in the Al model. Parame-
terized by solution size k, F-Minor deletion is (Al, Ω(n log n))-hard.
However, when parameterized by vertex cover K, F-Minor deletion is
(Al,O (

Δ(F) · KΔ(F)+1
)
)-streamable. Here Δ(F) is the maximum degree of any

graph in F .

General Notation. The set {1, . . . , n} is denoted as [n]. Without loss of gener-
ality, we assume that the number of vertices in the graph is n, which is a power
of 2. Given an integer i ∈ [n] and r ∈ [log2 n], bit(i, r) denotes the r-th bit in the
bit expansion of i. The union of two graphs G1 and G2 with V (G1) = V (G2), is
G1∪G2, where V (G1∪G2) = V (G1) = V (G2) and E(G1∪G2) = E(G1)∪E(G2).
For X ⊆ V (G), G \ X is the subgraph of G induced by V (G) \ X. The degree of
a vertex u ∈ V (G), is denoted by degG(u). The maximum and average degrees
of the vertices in G are denoted as Δ(G) and Δav(G), respectively. For a fam-
ily of graphs F , Δ(F) = max

F∈F
Δ(F ). A graph F is a subgraph of a graph G if

2 V (M) denotes the set of all vertices present in the matching M .
3 By enough, we mean O(K) in this case.
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V (F ) ⊆ V (G) and E(F ) ⊆ E(G) is the set of edges that can be formed only
between vertices of V (F ). A graph F is said to be a minor of a graph G if F
can be obtained from G by deleting edges and vertices and by contracting edges.
The neighborhood of a vertex v ∈ V (G) is denoted by NG(v). For S ⊆ V (G),
NG(S) denotes the set of vertices in V (G) \ S that are neighbors of every vertex
in S. A vertex v ∈ NG(S) is said to be a common neighbor of S in G. The size of
any minimum vertex cover in G is denoted by VC(G). A cycle on the sequence
of vertices v1, . . . , vn is denoted as C(v1, . . . , vn). For a matching M in G, the
vertices in the matching are denoted by V (M). Ct denotes a cycle of length t.
Pt denotes a path having t vertices. A graph G is said to a cluster graph if G is
a disjoint union of cliques, that is, no three vertices of G can form an induced
P3.

3 Deterministic Algorithms in the Al Model

We can show that both F-Subgraph deletion and F-Minor deletion are
(Al, n log n)-hard parameterized by solution size k (see the lower bound results
for FVS, ECT and OCT in [2]) as because a lower bound on Feedback Ver-
tex Set is also a lower bound for F-Subgraph deletion (deletion of cycles
as subgraphs) and F-Minor deletion (deletion of 3-cycles as minors). This
motivates us to study F-Subgraph deletion and F-Minor deletion when
the vertex cover of the input graph is parameterized by K. In this Section, we
show that F-Subgraph deletion is (Al,Δ(F) · KΔ(F)+1)-streamable when
the vertex cover of the input graph is parameterized by K. This will imply
that FVS, ECT, OCT and TD parameterized by vertex cover size K, are
(Al,K3)-streamable. Then we design an algorithm for F-Minor deletion that
is inspired by the algorithm.

For the algorithm for F-Subgraph deletion, we define an auxiliary prob-
lem Common Neighbor and a streaming algorithm for it. This works as a
subroutine for our algorithm for F-Subgraph deletion.

3.1 Common Neighbor Problem

For a graph G and a parameter � ∈ N, H will be called a common neighbor
subgraph for G if

(i) V (H) ⊆ V (G) such that H has no isolated vertex;
(ii) E(H) contains the edges of a maximal matching M of G along with the

edges where both the endpoints are from V (M) such that
• for all S ⊆ V (M), with |S| ≤ d, we have |NH(S) \ V (M)| =

min{|NG(S) \ V (M)| , �}. In other words, E(H) contains edges to at most
� common neighbors of S in NG(S) \ V (M).

In simple words, a common neighbor subgraph H of G contains the subgraph
of G induced by V (M) as a subgraph of H for some maximal matching M in
G. Also, for each subset S of at most d vertices in V (M), H contains edges to
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sufficient common neighbors of S in G. The parameters d ≤ K and � are referred
to as the degree parameter and common neighbor parameter, respectively.

The Common Neighbor problem is formally defined as follows. It takes
as input a graph G with VC(G) ≤ K, degree parameter d ≤ K and common
neighbor parameter � and produces a common neighbor subgraph of G as the
output. Common Neighbor parameterized by vertex cover size K, has the
following result.

Algorithm 1: Common Neighbor

Input: A graph G, with VC(G) ≤ K, in the Al model, a degree parameter
d ≤ K, and a common neighbor parameter �.

Output: A common neighbor subgraph H of G.
begin1

Initialize M = ∅ and V (M) = ∅, where M denotes the current maximal2

matching.
Initialize a temporary storage T = ∅.3

for (each vertex u ∈ V (G) exposed in the stream) do4

for (each (u, x) ∈ E(G) in the stream) do5

if (u /∈ V (M) and x /∈ V (M)) then6

Add (u, x) to M and both u, x to V (M).7

if (x ∈ V (M)) then8

Add (u, x) to T .9

10

if (u is added to V (M) during the exposure of u) then11

Add all the edges present in T to E(H).12

else13

for (each S ⊆ V (M) such that |S| ≤ d and (u, z) ∈ T ∀z ∈ S) do14

if (NH(S) is less than �) then15

Add the edges (u, z) ∀z ∈ S to E(H).16

17

18

Reset T to ∅.19

20

end21

Lemma 8. Common Neighbor, with a commmon neighbor parameter � and
parameterized by vertex cover size K, is (Al,K2�)-streamable.

Proof. We start our algorithm by initializing M = ∅ and construct a match-
ing in G that is maximal under inclusion; See Algorithm1. As |VC(G)| ≤ K,
|M | ≤ K. Recall that we are considering the Al model here. Let Mu and M ′

u

be the maximal matchings just before and after the exposure of the vertex u
(including the processing of the edges adjacent to u), respectively. Note that, by
construction these partial matchings Mu and M ′

u are also maximal matchings in
the subgraph exposed so far. The following Lemma will be useful for the proof.
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Claim 9. Let u ∈ NG(S) \ V (M) for some S ⊆ V (M). Then S ⊆ V (Mu), that
is, u is exposed, after all the vertices in S are declared as vertices of V (M).

Proof. Observe that if there exists x ∈ S such that x /∈ V (Mu), then after u is
exposed, there exists y ∈ NG(u) such that (u, y) is present in M ′

u. This implies
u ∈ V (M ′

u) ⊆ V (M), which is a contradiction to u ∈ NG(S) \ V (M). 
�
Now, we describe what our algorithm does when a vertex u is exposed.

A complete pseudocode of our algorithm for Common Neighbor is given in
Algorithm 1. When a vertex u is exposed in the stream, we try to extend the
maximal matching Mu. Also, we store all the edges of the form (u, x) such that
x ∈ V (Mu), in a temporary memory T . As |Mu| ≤ K, we are storing at most
2K many edges in T . Now, there are the following possibilities.

– If u ∈ V (M ′
u), that is, either u ∈ V (Mu) or the matching Mu is extended by

one of the edges stored in T , then we add all the edges stored in T to E(H).
– Otherwise, for each S ⊆ V (Mu) such that |S| ≤ d and S ⊆ NG(u), we check

whether the number of common neighbors of the vertices present in S, that
are already stored, is less than �. If yes, we add all the edges of the form (u, z)
such that z ∈ S to E(H); else, we do nothing. Now, we reset T to ∅.

As |M | ≤ K, |V (M)| ≤ 2K. We are storing at most � common neighbors for
each S ⊆ V (M) with |S| ≤ d and the number of edges having both the endpoints
in M is at most O(K2), the total amount of space used is at most O(Kd�). 
�

We call our algorithm described in the proof of Lemma8 and given in Algo-
rithm1, as Acn. The following structural Lemma of the common neighbor sub-
graph of G, obtained by algorithm Acn is important for the design and analysis of
streaming algorithms for F-Subgraph deletion. The proof of this structural
result is similar to that in [13].

Lemma 10. Let G be a graph with VC(G) ≤ K and let F be a connected graph
with Δ(F ) ≤ d ≤ K. Let H be the common neighbor subgraph of G with degree
parameter d and common neighbor parameter (d+2)K, obtained by running the
algorithm Acn. Then the following holds in H: For any subset X ⊆ V (H), where
|X| ≤ K, F is a subgraph of G \ X if and only if F ′ is a subgraph of H \ X,
such that F and F ′ are isomorphic.

Proof. Let the common neighbor subgraph H, obtained by algorithm Acn, con-
tain a maximal matching M of G. First, observe that since VC(G) ≤ K, the size
of a subgraph F in G is at most dK. Now let us consider a subset X ⊆ V (H)
such that |X| ≤ K. First, suppose that F ′ is a subgraph of H \ X and F ′ is
isomorphic to F . Then since H is a subgraph of G, F ′ is also a subgraph of
G \ X. Therefore, F = F ′ and we are done.

Conversely, suppose F is a subgraph of G\X that is not a subgraph in H \X.
We show that there is a subgraph F ′ of H \ X such that F ′ is isomorphic to F .
Consider an arbitrary ordering {e1, e2, . . . , es} ⊆ (E(G)\E(H))∩E(F ); note that
s ≤ |E(F )|. We describe an iterative subroutine that converts the subgraph F to
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F ′ through s steps, or equivalently, through a sequence of isomorphic subgraphs
F0, F1, F2, . . . Fs in G such that F0 = F and Fs = F ′.

Let us discuss the consequence of such an iterative routine. Just before the
starting of step i ∈ [s], we have the subgraph Fi−1 such that Fi−1 is isomorphic to
F and the set of edges in (E(G)\E(H)) ∩ E(Fi−1) is a subset of {ei, ei+1, . . . , es}.
In step i, we convert the subgraph Fi−1 into Fi such that Fi−1 is isomorphic
to Fi. Just after the step i ∈ [s], we have the subgraph Fi such that Fi is
isomorphic to F and the set of edges in (E(G) \ E(H)) ∩ E(Fi) is a subset of
{ei+1, ei+2, . . . , es}. In particular, in the end Fs = F ′ is a subgraph both in G
and H.

Now consider the instance just before step i. We show how we select the
subgraph Fi from Fi−1. Let ei = (u, v). Note that ei /∈ E(H). By the definition
of the maximal matching M in G, it must be the case that |{u, v} ∩ V (M)| ≥ 1.
From the construction of the common neighbor subgraph H, if both u and v
are in V (M), then ei = (u, v) ∈ E(H). So, exactly one of u and v is present in
V (M). Without loss of generality, let u ∈ V (M). Observe that v is a common
neighbor of NG(v) in G. Because of the maximality of M , each vertex in NG(v) is
present in V (M). Now, as (u, v) /∈ E(H), v is not a common neighbor of NG(v)
in H. From the construction of the common neighbor subgraph, H contains
(d+2)K common neighbors of all the vertices present in NG(v). Of these common
neighbors, at most (d+1)K common neighbors can be vertices in X ∪Fi. Thus,
there is a vertex v′ that is a common neighbor of all the vertices present in
NG(v) in H such that Fi+1 is a subgraph that is isomorphic to Fi. Moreover,
(E(G) \ E(H)) ∩ E(Fi+1) ⊆ {ei+2, ei+3 . . . , es}. Thus, this leads to the fact that
there is a subgraph F ′ in H \ X that is isomorphic to the subgraph F in G \ X.


�

3.2 F-Subgraph deletion and F-Minor deletion

Our result on Common Neighbor leads us to the following streamability result
for F-Subgraph deletion and F-Minor deletion. We first discuss the result
on F-Subgraph deletion, which is stated in the following theorem.

Theorem 11. F-Subgraph deletion parameterized by vertex cover size K is
(Al, d · Kd+1)-streamable, where d = Δ(F) ≤ K.

Proof. Let (G, k,K) be an input for F-Subgraph deletion, where G is the
input graph, k ≤ K is the size of the solution of F-Subgraph deletion, and
the parameter K is at least VC(G).

Now, we describe the streaming algorithm for F-Subgraph deletion. First,
we run the Common Neighbor streaming algorithm described in Lemma 8 (and
given in Algorithm 1) with degree parameter d and common neighbor parameter
(d + 2)K, and let the common neighbor subgraph obtained be H. We run a
traditional FPT algorithm for F-Subgraph deletion [10] on H and output
YES if and only if the output on H is YES.

Let us argue the correctness of this algorithm. By Lemma 10, for any subset
X ⊆ V (H), where |X| ≤ K, F ∈ F is a subgraph of G \ X if and only if F ′,
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such that F ′ is isomorphic to F ′, is a subgraph of H \ X. In particular, let X
be a k-sized vertex set of G. As mentioned before, k ≤ K. Thus, by Lemma 10,
X is a solution of F-Subgraph deletion in H if and only if X is a solution
of F-Subgraph deletion in G. Therefore, we are done with the correctness of
the streaming algorithm for F-Subgraph deletion.

The streaming complexity of F-Subgraph deletion is same as the stream-
ing complexity for the algorithm Acn from Lemma 8 with degree parameter
d = Δ(F) and common neighbor parameter (d + 2)K. Therefore, the streaming
complexity of F-Subgraph deletion is O(d · Kd+1). 
�
Corollary 12. FVS, ECT, OCT and TD parameterized by vertex cover size
K are (Al,K3)-streamable due to deterministic algorithms.

Finally, we describe a streaming algorithm for F-Minor deletion that
works similar to that of F-Subgraph deletion due to the following proposition
and the result is stated in Theorem 14.

Proposition 13 [13]. Let G be a graph with F as a minor and VC(G) ≤ K.
Then there exists a subgraph G∗ of G that has F as a minor such that Δ(G∗) ≤
Δ(F ) and V (G∗) ≤ V (F ) + K(Δ(F ) + 1).

Theorem 14. F-Minor deletion parameterized by vertex cover size K are
(Al, d · Kd+1)-streamable, where d = Δ(F) ≤ K.

Proof. Let (G, k,K) be an input for F-Minor deletion, where G is the input
graph, k is the size of the solution of F-Minor deletion we are looking for,
and the parameter K is such that VC(G) ≤ K. Note that, k ≤ K.

Now, we describe the streaming algorithm for F-Minor deletion. First,
we run the Common Neighbor streaming algorithm described in Lemma 8
with degree parameter d and common neighbor parameter (d+2)K, and let the
common neighbor subgraph obtained be H. We run a traditional FPT algorithm
for F-Minor deletion [10] and output YES if and only if the output on H
is YES.

Let us argue the correctness of this algorithm, that is, we prove the following
for any F ∈ F . G \ X contains F as a minor if and only if H \ X contains F ′ as
a minor such that F and F ′ are isomorphic, where X ⊆ V (G) is of size at most
K. For the only if part, suppose H \X contains F ′ as a minor. Then since H is a
subgraph of G, G \ X contains F ′ as a minor. For the if part, let G \ X contains
F as a minor. By Proposition 13, G \ X conatins a subgraph G∗ such that G∗

contains F as a minor and Δ(G∗) ≤ Δ(F ). Now, Lemma 10 implies that H \ X
also contains a subgraph Ĝ∗ that is isomorphic to G∗. Hence, H \X contains F ′

as a monor such that F ′ is isomorphic to F .
The streaming complexity of the streaming algorithm for F-Minor dele-

tion is same as the streaming complexity for the algorithm Acn from Lemma 8
with degree parameter d = Δ(F) and common neighbor parameter (d + 2)K.
Therefore, the streaming complexity for F-Minor deletion is O(d · Kd+1). 
�
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Abstract. We prove rapid mixing of well-known Markov chains for the
hardcore model on a new graph class, the class of chordal graphs with
a bound on minimal separator size. In the hardcore model, for a given
graph G and a fugacity parameter λ ∈ R

+, the goal is to produce an
independent set S of G with probability proportional to λ|S|. In general
graphs and arbitrary λ, producing a sample from this distribution in
polynomial time is provably difficult. However, natural Markov chains
converge to the correct distribution for any graph, leading to the study
of their mixing times for different graph classes. Rapid mixing for graphs
of bounded degrees and a range of λs dependent on the maximum degree
has attracted attention since the 1990s. Recent results showed rapid mix-
ing for arbitrary λ and two other classes of graphs: graphs of bounded
treewidth and graphs of bounded bipartite pathwidth. In this work, we
extend these results by showing rapid mixing in a new graph class, class
of chordal graphs with bounded minimal separators. Graphs in this class
have no bound on the vertex degrees, the treewidth, or the bipartite path-
width. Similar to the results dealing with bounded treewidth and with
bounded bipartite pathwidth, we prove rapid mixing using the canoni-
cal paths technique. However, unlike in the previous works, we need to
process the data using a non-linear, tree-like, approach.

1 Introduction

Independent sets, that is, sets of vertices in a graph without any edges between
them, are heavily studied in computer science and other fields. Among their
many applications is the hardcore model of a gas in statistical physics, where
the goal is to sample independent sets of a given graph according to a specific
probability distribution. In particular, for a given parameter (also known as
fugacity) λ ∈ R

+, the goal is to generate an independent set S with probability
proportional to λ|S|.

Markov chains have attracted attention as a sampling technique for the hard-
core distribution since the late 1990s. The mixing time of a Markov chain is the
time it takes to converge to its stationary distribution, and a Markov chain is
said to be rapidly mixing if its mixing time is polynomial in the size of the input.
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Luby and Vigoda [15] showed rapid mixing of a natural insert/delete chain (a
single-site Glauber dynamics) for independent sets of triangle-free graphs with
degree bound Δ and λ < 2/(Δ − 2), which was soon extended by Vigoda [23]
to general graphs with degree bound Δ. Independently, Dyer and Greenhill [4]
analyzed an insert/delete chain with an added drag transition, showing rapid
mixing for the same graph class and range of λs. All these works used the cou-
pling technique to obtain their mixing results.

Dyer, Frieze, and Jerrum [6] established a hardness result, showing that even
for λ = 1, no Markov chain for sampling independent sets that changes only
a “small” number (that is, a linear fraction) of vertices per step mixes rapidly
for general graphs, even if the maximum degree is six. This was followed by
an influential non-Markov-chain-based approach of Weitz [24] which leads to
rapid mixing of the Glauber dynamics for subexponentially growing graphs with
maximum degree Δ and λ < λc := (Δ − 1)Δ−1/(Δ − 2)Δ. Efthymiou et al.
[7] used belief propagation to obtain rapid mixing for graphs with sufficiently
large maximum degree and girth (that is, the length of the smallest cycle) ≥
7, and λ < λc. Very recently, Anari, Liu, and Oveis Gharan [1] established
rapid mixing for bounded degree graphs and λ < λc using a new notion of
spectral independence. We refer the reader to [1] for an overview of rapid mixing
results for restricted graph classes with bounded degrees. On the complementary
hardness side, assuming NP �= RP , a celebrated result of Sly [20], together
with [8,9,17,21], imply hardness of polynomial-time approximate sampling for
bounded degree graphs and λ > λc.

Beyond graphs of bounded degrees, Bordewich and Kang [2] studied an
insert/delete Markov chain (a multi-site Glauber dynamics) to sample vertex
subsets, a generalization of the hardcore model, and proved that its mixing time
is nO(tw) for an arbitrary λ and n-vertex graphs of treewidth tw. Recently, gen-
eralizing work of Matthews [16] on claw-free graphs, Dyer, Greenhill, and Müller
[5] introduced a new graph parameter, the bipartite pathwidth, obtaining a mix-
ing time of nO(p) for the insert/delete chain for an arbitrary λ and graphs with
bipartite pathwidth bounded by p. These works used the canonical paths tech-
nique [13] to prove rapid mixing.

We extend this line of work to another graph class, the class of chordal graphs
with bounded minimum separator size. In particular, we obtain a mixing time
of O(nO(log b)) for arbitrary λ and chordal graphs with minimal separators of
size at most b (or, equivalently, bound b on the intersection size of any pair of
maximal cliques). Graphs in this class have no bound on their degrees, treewidth,
or bipartite pathwidth1. Chordal graphs, where each cycle of length at least four
has a chord, are a widely studied graph class, playing an important role in many
real-world applications such as inference in probabilistic graphical models [14].

We also use the canonical paths technique but we need to overcome the “non-
linearity” of our data. The technique relies on finding a Markov chain path (a

1 This can be seen by taking a complete binary tree of
√

n vertices, where each vertex
is replaced by a clique of size

√
n, and each pair of adjacent cliques is connected by

an edge.
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canonical path) between every pair of states in such a way that no transition
gets overloaded (congested). This is typically done by considering the symmetric
difference of the two states (a pair of independent sets), gradually removing one
vertex from the initial independent set while adding a vertex from the final
independent set. If the symmetric difference induces a collection of paths in the
original graph, we can “switch” each path from initial to final starting at one
end-point of the path and gradually going to the other end-point, never violating
the independent set property. Bounded bipartite pathwidth guarantees that the
symmetric difference can be viewed as “wider” paths, as does bounded treewidth
due to its relation to the (non-bipartite) pathwidth. However, for our graphs, the
symmetric difference is tree-like, which leads to the need to recursively “switch”
entire subtrees from initial to final before being able to process the root vertex
from the final independent set. Due to this “tree-like” process we also need to
overcome corresponding complications in the analysis of the congestion.

We note that if one is interested purely in sampling independent sets from
the hardcore distribution on chordal graphs, just like for graphs of bounded
treewidth, polynomial-time sampling algorithms exist: Okamoto, Uno, and
Uehara [18] designed polynomial-time dynamic programming algorithms to
count independent sets, maximum independent sets, and independent sets of
fixed size on chordal graphs without any restrictions, which can then be used
to sample independent sets from the hardcore distribution. In contrast, our
work contributes to the understanding of the conditions under which the well-
studied and easy-to-implement insert/delete(/drag) Glauber dynamics Markov
chain mixes rapidly.

2 Preliminaries

For an undirected graph G, an independent set is a set of vertices S ⊆ V (G)
such that there is no edge (u, v) ∈ E(G) with u, v ∈ S. Let ΩG be the set
of all independent sets of G. We study the problem of sampling independent
sets from ΩG, where the probability distribution is parameterized by a given
constant λ > 0 as follows: A set S ∈ ΩG is to be generated with probability
π(S) := λ|S|/ZG(λ), where the normalization factor ZG(λ) :=

∑
S∈ΩG

λ|S| is
known as the partition function.

We will use Markov chains to obtain a fully polynomial almost uniform
sampler (FPAUS) from the target distribution π: For a given ε ∈ (0, 1), we
will produce a random element (a sample) from ΩG chosen from a distribu-
tion μ that is ε-close to π. In particular, dTV (μ, π) ≤ ε, where dTV (μ, π) :=∑

S∈ΩG
|μ(S) − π(S)|/2 is the total variation distance. The sample will be pro-

vided in time polynomial in |V (G)| and log(1/ε).
Next we briefly review chordal graphs and Markov chains.

Chordal graphs
An undirected graph is chordal if every cycle of four or more vertices has a

chord, that is, an edge that connects two vertices of the cycle but is not part of
the cycle. For a nice treatment of chordal graphs, we refer the reader to [22]; in
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this section we briefly describe the concepts relevant to our work. Every chordal
graph G has a clique tree TG which satisfies the following conditions:

(i) TG is a tree whose vertices are maximal cliques in G and
(ii) TG has the induced subtree property : For every vertex v ∈ V (G), the maxi-

mal cliques containing v form a subtree of TG. We refer to this tree as the
v-induced subtree TG(v).

In fact, this is a complete characterization of chordal graphs: such a clique tree
exists if and only if G is chordal [3,10]. We note that in some literature the term
“clique tree” refers only to the first condition above — in this text by a “clique
tree” we mean a clique tree with the induced subtree property, that is, satisfying
both conditions above. It follows that since an edge is a clique of size 2, it is a
part of a maximal clique, and, therefore, for each edge (u, v) ∈ E(G) there is a
clique in V (TG) that contains both u and v. The existence of clique trees implies
that the treewidth of a chordal graph is one less than the size of its largest clique,
and, as such, chordal graphs can have unbounded treewidth.

In any graph, a vertex separator is a set of vertices whose removal leaves
the remaining graph disconnected, and a separator is minimal if it has no sub-
set that is also a separator. Suppose we root a clique tree TG at an arbitrary
clique R ∈ V (TG), denoting the rooted tree by TR

G . Then, each clique C ∈ TR
G

can be partitioned into a separator set Sep(C) = C ∩ p(C) and a residual set
Res(C) = C\Sep(C), where p(C) denotes the parent clique of C �= R in TR

G and
p(R) := ∅. The induced subtree property implies the following theorem, see, for
example [22]:

Theorem 1. Let TR
G be an R-rooted clique tree of a graph G.

– The separator sets Sep(C) where C ranges over all non-root cliques of TR
G ,

are the minimal vertex separators of G.
– For each v ∈ V (G), there is exactly one clique Cv ∈ TR

G that contains v in
its residual set, that is, v ∈ Res(Cv). In particular, Cv is the root of the v-
induced subtree TG(v) in TR

G . (Therefore, the other cliques in TG(v) contain
v in their separator sets.)

In this work we assume, without loss of generality, that the given chordal graph
G is connected. We also assume that there exists a constant b ∈ N

+, which we
refer to as the separator bound, that upper-bounds the size of every minimal
separator of G.

Markov chains
In this section we briefly review Markov chains and the canonical paths tech-

nique for bounding their mixing times. For more details we refer the reader to,
for example, [12]. A (finite discrete) Markov chain is a pair (P,Ω) where Ω
denotes the state space and P is its transition matrix: a stochastic matrix of
dimensions |Ω| × |Ω|, indexed by elements from Ω, where P (u, v) is the proba-
bility of transitioning from state u ∈ Ω to state v ∈ Ω. The transition from one
state to the next is also referred to as a step of the Markov chain. A distribution
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π on Ω (viewed as a vector) is said to be stationary if πP = π. If a Markov chain
is so-called ergodic, its stationary distribution is unique and it is the limiting
distribution the Markov chain converges to as the number of its steps goes to
infinity. In this work we deal with ergodic Markov chains and reserve the sym-
bol π for the stationary distribution. For a start distribution μ on Ω, after t
steps the chain is in distribution μP t. For an ergodic chain, limt→∞ μP t = π.
For Markov chains with exponentially large state space the transition matrix is
typically very sparse and not given explicitly but instead described implicitly by
an algorithm that, for a current state, describes the random process of getting
to the next state.

The mixing time of the Markov chain is the number of steps needed for the
chain to get ε-close to its stationary distribution. For a start state x ∈ Ω, let μx

denote the distribution where μx(x) = 1 and μx(y) = 0 for every y ∈ Ω \ {x}.
Then, for a given ε ∈ (0, 1), the mixing time τx(ε) from the state x is the
smallest t such that dTV (μxP t, π) ≤ ε. Therefore, a polynomial mixing time for
a polynomially-computable start state provides an FPAUS.

Canonical paths [13,19] is a technique for bounding the mixing time. The idea
is to define, for every pair of states x, y ∈ Ω, a path γx,y = (x = z0, . . . , z� = y)
such that (zi, zi+1) are adjacent states in the Markov chain, that is, P (zi, zi+1) >
0. Let Γ := {γxy | x, y ∈ Ω} be the set of all canonical paths. The congestion
through a transition e = (u, v), where P (u, v) > 0, is


(Γ, e) :=
1

π(u)P (u, v)

∑

x,y:γxy uses e

π(x)π(y) |γxy| (1)

where |γxy| is the length of the path γxy. The overall congestion of the paths Γ
is defined as 
(Γ ) := maxe=(u,v):P (u,v)>0 
(Γ, e). The mixing time of the chain

is bounded by τx(ε) ≤ 
(Γ )
(
ln( 1

π(x) ) + ln(1ε )
)

[19].

3 Rapid Mixing for Chordal Graphs with Bounded
Separators

Recall that we are given a graph G and a parameter λ ∈ R
+. The most commonly

used Markov chain for sampling independent sets is the Glauber dynamics (also
known as the Luby-Vigoda chain or the insert/delete chain): Let S be the current
independent set. Pick a random vertex u ∈ V (G). If u ∈ S, remove it from S
with probability dependent on λ to maintain the desired target distribution (this
probability turns out to be 1

1+λ ). If u �∈ S and if none of its neighbors are in
S, add it to S with probability λ

1+λ . Our polynomial mixing time results hold
for the Glauber dynamics but in this work we prove mixing time bounds for a
closely related Markov chain by Dyer and Greenhill [4].

The Dyer-Greenhill chain: Let S ∈ ΩG be the current independent set. Pick
a vertex u uniformly at random from V (G). Then:

[Delete ↓:] If u ∈ S, remove it with probability 1
1+λ .
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[Insert ↑:] If u /∈ S and none of the neighbors of u are in S, add u with probability
λ

1+λ .
[Drag ↔:] if u /∈ S and it has a unique neighbor v ∈ S, add u and remove v.

Let S′ be the resulting independent set (if none of the above holds for u, let
S′ = S), which is the next state of the Markov chain. The chain is ergodic with
the desired stationary distribution π(S) = λ|S|

ZG(λ) [4].

3.1 Canonical Paths for Chordal Graphs

From now on we assume that G is a connected chordal graph with n vertices. We
will define a canonical path between every pair of independent sets I (“initial”)
and F (“final”) in G. As is often done in canonical paths construction, we will
work only with vertices of I ⊕ F , the symmetric difference of I and F : we will
gradually remove vertices from I \F while adding vertices in F \ I. (Notice that
vertices in I ∩ F do not neighbor I ⊕ F , and hence we do not need to touch
them.)

We first observe that the symmetric difference of two independent sets in a
chordal graph forms an induced forest.

Lemma 1. Let G be a chordal graph and let I and F be its two independent
sets. Then, the subgraph of G induced by I ⊕ F is a forest.

Proof. Let H = G[I ⊕ F ] be the subgraph induced by I ⊕ F . By contradiction,
assume that H contains a cycle c. Since G is chordal and H is induced, c must
have a chord in H, obtaining a shorter cycle. Applying this argument inductively,
H contains a triangle which has a pair of adjacent vertices in I, or in F , a
contradiction with I, F ∈ ΩG. �

We assume that the vertices of G are labeled 1, . . . , n. Before defining our
canonical paths, we fix a clique tree TG corresponding to G and we root it at a
vertex R (for example, let R be the clique that has vertex 1 in its residual set),
obtaining TR

G . For a vertex u in V (G), let Cu be the clique of TR
G that contains

u in its residual set. We define the depth of u in TR
G as d(u) := d(Cu), where

d(Cu) is the depth of Cu in TR
G (that is, d(Cu) is the distance of Cu from the

root R).
For a pair I, F ∈ ΩG, we define the canonical path from I to F as follows.

By Lemma 1, each connected component of G[I ⊕F ], the subgraph of G induced
by I ⊕F , is a tree. Since the connected components of G[I ⊕F ] form a partition
of I ⊕F , we refer to the vertex sets of the connected components as components
of I ⊕ F . We process components in I ⊕ F in the ascending order of their
smallest vertex. We first define a start vertex for each component: For a current
component D, its start vertex uD ∈ I ⊕ F is the vertex with the smallest depth.
If there are multiple such vertices, we pick the smallest one.

We define the canonical way to convert the current component D from I to F
as follows: We process D by doing depth-first search of G[D] from its start vertex
uD, processing the children vertices of the current vertex in increasing order of
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the sizes of the subtrees associated with the children vertices. We break ties by
processing smaller children first. Let u be the current vertex in the depth-first
search. Then:

– If u ∈ I: If its parent has no other neighbors in the current independent set,
we apply the drag transition ↔ on u and its parent. Otherwise, we apply the
delete transition ↓ on u.

– If u ∈ F : If u has no children, we apply the insert transition ↑ on u. Otherwise,
we proceed to process the children of u.

In other words, we always remove an I-vertex before visiting its children, and we
add an F -vertex (either by the insertion ↑ or by dragging ↔) to the independent
set after we process all its descendants. Clearly, the transitions for u ∈ I maintain
the current state as an independent set. Notice that an F -vertex is added after
its I-children have been removed, and we have removed its I-parent prior to
visiting this vertex; therefore, these transitions are also legal and maintain the
current state as an independent set throughout the process.

3.2 Bounding the Congestion

Let t = (S, S′) be a transition for which we want to bound the congestion ρ(Γ, t),
see (1), the definition of which involves a sum through all canonical paths that
use t. To bound this sum, one typically defines an “encoding” for each canonical
path γI,F through t. The goal for the encoding is to comprise of a state of ΩG,
and possibly some additional information chosen from a set of polynomial size.

Suppose I, F ∈ ΩG are such that γI,F uses t. Our encoding ηI,F of γI,F will
consist of multiple parts. We start by defining its first part η̂t(I, F ), see Fig. 1:

– Let D be the component of I ⊕ F on which t is applied (that is, t inserts,
deletes, or drags a vertex u ∈ D).

– Let pu = (uD, . . . , u) be the path from the start vertex uD to u in G[D].
– Let Qpu

be the set of vertices in pu \{u} that (a) have more than one child in
the tree G[D] rooted at uD, and (b) their successor vertex on pu is not their
last child.

– Then, let
η̂t(I, F ) = (I ⊕ F ⊕ (S ∪ S′)) \ Qpu

. (2)

Denote by cp(t) := {(I, F ) | t ∈ γI,F } the set of pairs (I, F ) ∈ Ω2
G whose

canonical path γI,F uses transition t. Then we have the following lemma.

Lemma 2. For a transition t and an independent set pair (I, F ) such that
(I, F ) ∈ cp(t), η̂t(I, F ) is an independent set.

Proof. Let S, S′, u, and D be defined as above. Let A = I ⊕ F ⊕ (S ∪ S′).
Then by the definition of the canonical paths, components of I ⊕ F prior to D
have been already processed, that is, for every such component D′, the current
state S (and S′) contains vertices in D′ ∩ F . Likewise, every component D′

after D is untouched, that is S (and S′) contains vertices in D′ ∩ I. Thus, A,
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Fig. 1. On the canonical path from I to F : On the left is a chordal graph with 19
vertices. An initial and a final independent set I and F are shown in black and grey,
respectively. Solid lines indicate the edges of the induced subgraph G[I ⊕ F ], the other
edges are dotted. G[I ⊕F ] is processed from vertex 1, the current transition t is adding
u = 13, and the current independent set is shown in double circles. Path pu is shown
using arrows, Qpu = {5, 11}. Vertices in η̂t(I, F ) are squared. A corresponding clique
tree is on the right, each clique represented by a rectangle with the separator set and
the residual set at the top and bottom, respectively.

and therefore also η̂t(I, F ), contains the I-vertices in the processed components
and the F -vertices in the untouched components. These I-vertices in A (and
η̂t(I, F )) form an independent set since I ∈ ΩG, the same is true for the F -
vertices. Moreover, if D′ and D′′ are two different components of I ⊕ F (that
correspond to two different connected components of G[I ⊕F ]), there is no edge
in G[I ⊕ F ] connecting D′ and D′′. Thus, so far, A \ D forms an independent
set, whose vertices do not neighbor D.

It remains to analyze D itself. The path pu splits the tree G[D] into processed
parts and untouched parts. Then A agrees with I on the processed parts and it
agrees with F on the untouched parts. If v, v′ ∈ D are adjacent and neither is on
pu, then v and v′ cannot be both in A because these two vertices are either both
in the processed or both in the untouched part of the tree. Therefore, for any
two adjacent vertices in D that are both in A, at least one of them is on pu. We
will prove that it is sufficient to remove Qpu

from A to make it an independent
set.

Let v be a vertex in A and v ∈ pu \Qpu
(that is, v’s last child in D is on pu).

Then, v must be in I because if v were in F , it would have been added to S (and
therefore not be in A) by the drag transition ↔ when processing v’s last child.
We will show that there is no neighbor v′ of v in A \ Qpu

, which will conclude
our proof of η̂t(I, F ) = A \ Qpu

being an independent set. Since v ∈ I, every
neighbor of v in D is in F . We first consider v’s neighbors on pu: Let vparent be
the parent of v (if available) and vchild be the last child of v. Notice that u �= v
because u ∈ S ∪ S′ and, therefore, it is not in A. Thus, vchild exists.
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We claim that a vertex v′ is in A∩F ∩ pu if and only if it is in Qpu
∩F . This

is because v′ ∈ A ∩ F ∩ pu if and only if v′ ∈ F ∩ pu has not yet been added
to S, which means that when we were processing the child v′′ of v′ on pu, the
transition over v′′ was remove ↓ and thus v′′ was not the last child of v′, which
is equivalent to v′ ∈ Qpu

∩ F . Therefore, for neighbor v′ ∈ {vparent, vchild} of v
we have v′ ∈ F and v′ /∈ A \ Qpu

.
Finally, consider a neighbor v′ of v in A \ pu. Since vchild is the last child of

v, we have that v′ has been already processed. Since v′ ∈ F , it has been already
added to S. Therefore, v′ /∈ A, concluding the proof. �

The following lemma bounds |Qpu
|, the proof is omitted due to space con-

straints. A similar argument was made by Ge and Štefankovič [11].

Lemma 3. Let t = (S, S′) be a transition, (I, F ) ∈ cp(t), and u, D, uD, and
Qpu

be defined as above. Then, |Qpu
| ≤ log2 n.

In our congestion bounds, we will view I⊕F through the lens of the clique tree
TG. The following observation follows directly from I and F being independent
sets.

Observation. Every clique in TG can contain at most two vertices of I ∪ F ,
and at most one vertex of I and at most one vertex of F .

Next we relate components of I ⊕ F to subtrees of the rooted clique tree
TR

G . Recall that Cu refers to the clique in V (TR
G ) that contains u ∈ V (G) in its

residual set, that is u ∈ Res(Cu).

Lemma 4. Let D be a component of I ⊕ F and let X be the subtree of TG

spanned by clique set {Cu | u ∈ D}. Let XR be the corresponding rooted tree of
X, with edge directions consistent with TR

G . Then the following holds:

(i) CuD
is the root of XR.

(ii) Let v ∈ D and let p = (uD = u0, . . . , u� = v) be the path from uD to v
in G[D]. Then the directed path pC in XR from CuD

to Cv passes through
Cu0 , Cu1 , . . . , Cu�

in this order. Moreover, Cui
’s are all distinct, with a pos-

sible exception of Cu0 = Cu1 .

Proof. We begin by proving (i). By contradiction, assume that a clique vertex
R′ �= CuD

is the root of XR. Then there is a directed path p′ from R′ to CuD
in

XR. Since uD ∈ D is the vertex of the smallest depth (which we defined as the
depth of CuD

in TR
G ), none of the cliques on the path p′ contain a vertex in D in

their residual set. Therefore, the only reason why R′ would be included in XR is
that there is another vertex w ∈ D such that the path from CuD

to Cw in X goes
through R′. Let p′′ be the path from R′ to Cw in XR. Notice that p′′ intersects p′

only at R′. If uD were of depth 0, we would have CuD
= R = R′. Therefore, the

depth of uD, and thus also of w, is at least 1. Since both uD, w ∈ D, there is a
path from uD to w in G[D]. Then, this path needs to pass through the separator
set Sep(CuD

), which means that Sep(CuD
) contains a vertex u′ ∈ D. But then
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u′ is in the parent clique of CuD
, which would mean that u′ has a smaller depth

than uD. This is a contradiction and, therefore, R′ must be equal to CuD
.

To prove (ii), we will use induction on the depth of v. For the base case, when
v is of the same depth as uD, we have two possibilities. If v = uD, then p = (uD)
and pC = (CuD

) and the statement holds. If v �= uD, since v and uD are of the
same depth and, by (i), CuD

is the root of XR, it follows that Cv = CuD
. Then

p = (uD, v) and pC = (CuD
) and the statement holds.

For the inductive claim, let v be of depth larger than uD. If Sep(Cv) contains
uD, then p = (uD, v) and pC starts at CuD

and ends at Cv, so the statement
holds. Otherwise, Sep(Cv) separates uD from v. Therefore, there must be uk,
where k ∈ {1, . . . ,  − 1}, such that uk ∈ Sep(Cv). We will show that k =  − 1,
that is, u�−1 ∈ Sep(Cv). By contradiction, suppose that k <  − 1. By the
observation on page 8, there are at most two vertices of D in Cv. Therefore, Cv

contains uk and v, and not v�−1. But since uk and v are in the same clique Cv,
there is an edge between them. Therefore, uk, uk+1, . . . , u�−1, u� = v is a cycle,
contradicting Lemma 1 which states that G[D] is a tree. Thus, k =  − 1.

The subtree of X of cliques containing u�−1 has its root Cu�−1 at smaller
depth than Cv, since this subtree contains Cv. Therefore, the path pC needs to
pass through Cu�−1 . Since the depth of u�−1 is smaller than the depth of v, we
may use the inductive hypothesis for v′ := u�−1. We get that the directed path
p′

C in XR from CuD
to Cv′ passes through Cu0 , Cu1 , . . . , Cu�−1 in this order.

Since pC passes through Cv′ , it is formed by extending p′
C to Cv. Therefore, pC

passes through Cu0 , . . . , Cu�
in this order. Moreover, Cu�−1 �= Cu�

, finishing the
proof. �

The following corollary characterizes the appearance of paths from I ⊕ F in
TR

G . The proof is omitted due to space constraints.

Corollary 1. Let D be a component of I ⊕ F , let v ∈ D, and let p = (uD =
u0, . . . , u� = v) be the path from uD to v in G[D]. Then the following holds for
the directed path pC = (CuD

= C0, . . . , C�′ = Cv) in TR
G from CuD

to Cv:

(i) For every i ∈ {0, . . . , }, there exist ji, ki, 0 ≤ ji ≤ ki ≤ ′ such that the
cliques on the path pC that contain ui are exactly cliques Cji

, Cji+1, . . . , Cki
.

Moreover, ui ∈ Res(Cji
).

(ii) For every i ∈ {2, . . . , }, ui−1 ∈ Sep(Cji
).

We are ready to define the encoding of the canonical path from I to F ,
passing through a transition t = (S, S′). Let Nb := {1, . . . , b}, where b is the
separator bound of G. The encoding ηt(I, F ) consists of an independent set, a
vertex, and a vector from N

�log n�
b :

ηt(I, F ) := (η̂t(I, F ), uD, s1, s2, . . . , s�log n�),

where the role of the vector s is to indicate the vertices of Qpu
that were removed

from I ⊕ F ⊕ (S ∪ S′) during the construction of η̂t(I, F ), see (2). We define
each sx, x ∈ {1, . . . , �log n�}, as follows. We apply Corollary 1 to the path
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p = pu = (uD = u0, . . . , u� = u). For each vertex ui ∈ Qpu
, we have that

ui ∈ Sep(Cji+1) (notice that u /∈ Qpu
, thus ji+1 is always well-defined). Suppose

we ordered Qpu
in increasing order of distance from u. Let x be the position of

ui in this ordering, thus sx will encode ui. Since |Sep(Cji+1)| ≤ b, we can specify
ui by its position in Sep(Cji+1). Thus, sx is such that ui is the sx-th smallest
vertex in Sep(Cji+1). Notice that we will need as many sx’s as is the size of Qpu

,
which is bounded by �log2 n� by Lemma 3. For x > |Qpu

|, we let sx = 1.

Lemma 5. Let t be a transition of the Markov chain. The above-described func-
tion ηt : cp(t) → ΩG × V × N

�log n�
b is injective.

Proof (Sketch due to space constraints). To prove the injectivity, we need to
show that given a state η̂t(I, F ), a vertex uD, a vector (s1, s2, . . . , s�log n�), and
the current transition t = (S, S′), we can uniquely recover the initial and final
independent sets I and F .

Suppose we know I ⊕ F . Then, due to the canonical order of processing the
components, and also since we know S, we can reconstruct I and F .

It remains to recover I ⊕ F . Notice that I ⊕ F = (η̂t(I, F ) ⊕ (S ∪ S′)) ∪ Qpu
.

Therefore, the only missing part in order to determine I ⊕ F is Qpu
. Let B =

η̂t(I, F ) ⊕ (S ∪ S′). Since uD is given and u is known from t, we can construct
the path pC from Corollary 1 applied to p := pu. Notice that we do not yet have
the path pu constructed—if we did, we would get I ⊕ F as B ∪ pu and we would
not need to reconstruct Qpu

—but, despite not having pu, we can construct pC

uniquely just from u and uD. Our next step will be to construct pu.
Let pC = (CuD

= C0, . . . , C�′ = Cu). We want to reconstruct pu = (uD =
u0, u1, . . . , u� = u). We know all the vertices in B and we have that u ∈ Cu.
We will work our way backwards, reconstructing ui for i =  − 1,  − 2, . . . , 1.
Suppose we know ui+1 and so far x− 1 vertices of Qpu

have been reconstructed.
We consider Cui+1 . By Corollary 1(ii), we have that ui ∈ Sep(Cui+1). By the
observation on page 8 we know that ui and ui+1 are the only two vertices of
I ⊕ F in Cui+1 . Therefore, we start by checking if clique Cui+1 contains a vertex
from B in its separator set. If yes, it must be ui. If not, we will use sx to recover
ui as the sx-th smallest vertex in Sep(Cui+1). This process uniquely determines
pu, and hence also I ⊕ F , from which we obtain I and F . �

Combining Lemmas 3 and 5 allows us to bound the congestion, which then
leads to our mixing time bound. The proofs of the corresponding theorems are
omitted for space reasons.

Theorem 2. The congestion of the canonical paths defined above is bounded by
n(3+log2 bλ̄)λ̄, where b is the separator bound of G and λ̄ := max{1, λ}.
Theorem 3. Let G be a connected chordal graph with separator bound b ∈ N

+,
and let λ ∈ R

+. If λ < 1, let x = ∅, otherwise, let x be a maximum independent
set of G. The mixing time of the Dyer-Greenhill Markov chain from the start
state x is O(n(4+log2 bλ̄)).
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We remark that obtaining the start state x, a maximum independent set, is
computable in polynomial time for chordal graphs. We conclude with a natural
open problem, in addition to extending rapid mixing results to other graph
classes: extending our results to arbitrary chordal graphs.
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