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Abstract. This study presents the development of a wearable device
that merges capacitive soft-flexion and surface electromyography
(SEMG) sensors for the estimation of shoulder orientation and move-
ment, evaluating five natural movement gestures of the human arm. The
use of Time Series Networks (TSN) to estimate the arm orientation, and
a pattern recognition method for the estimation of the classification of
the gesture are proposed. It is demonstrated that it is possible to know
the orientation of the shoulder, and that the algorithm is capable of
recognising the five gestures proposed with two different configurations.
The study is performed on people who reported healthy upper limbs.

Keywords: Soft robotics - Wearable sensors - UpperLimb + sEMG.

1 Introduction

There have been many attempts to identify the movement of the human body in
a virtual way by monitoring the behaviour of the extremities for haptic interfaces
[7], teleoperation tasks [1] and assistive and rehabilitation devices [4,16]. Robots
increase the number of repetitions performed in a rehabilitation session, thus
improving patient morale and motivation [24]. In recent years, rehabilitation
devices use SEMG as main source of feedback [15] for control [8].

Several sSEMG techniques are used for the identification and classification of
movements [3], some of the most relevant being the Detrended Fluctuation Anal-
ysis (DFA) for the identification of low-level muscle activation [19], the sSEMG
signal decomposition into Motor Unit Action Potential Trains (MUAPTSs) [18],
the Tunable-Q factor Wavelet Transform (TQWT) based algorithm proposed
for the classification of physical actions [2], and Convolutional Neural Network
(CNN), recently confirmed as as a powerful tool for the classification of oper-
ator movements [25]. These methods, combined with appropriate signal filter-
ing techniques [5], are useful for estimating the movement of the human body.
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Data fusion [13] using SEMG sensors is widely used in rehabilitation. Move-
ment recognition algorithms generally combine sEMG signals with the Inertial
Measurement Unit (IMU) [11], or with force sensors [10]. There are particular
cases where flexion sensors [22] are used to avoid the accumulated error on the
measurement.

This paper focuses on the development of a soft-compressive jacket with a
network of soft-flexion sensors, merged with sEMG sensors attached to it for
movement detection of the upper limbs. This device allows the user to quickly
start estimating shoulder orientation without the need for prior calibration.

2 Materials and Methods

Using a configuration of seven one-axis sensors, as in previous work [21], it
is possible to obtain 95% of the variance of the principal components for the
shoulder gestures. The configuration proposed in this paper places only an array
of four flexion sensors in the intermediate positions due to the fact that they
provide flexion measurements in two axes.

The array of four flexion sensors Sz (being ‘x’ the sensor number) was placed
over a compression jacket (see Fig. 1). The capacitive flexion sensors are the Two
Auzis Sensor of Bendlabs [12] and its operation is explained and well detailed in
[20]. The sensors have been attached to a compression jacket by sewing two small
rigid pieces which hold and guide the sensor in the arm movement direction and
to neglect properties such as wrinkles and stretching. The first support (FxA)
(see Fig.1b) holds the sensor in a fixed position while the second one (FxB)
allows it to slide inside it and guides it over the arm (see Fig. 1c).

Fig. 1. Soft Sensor Device. SEMG location (la): Trapezius Descendens (CH3), Del-
toideus Medius (CH2) and Pectoralis major (CH1). Markers location: one over the
shoulder Acromion bone, two on the arm (1b) and two vertically over the base (1c).
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The sensor arrangement allows shoulder movement to be measured in a six-
degree-of-freedom (DoF) work-space where arm rotation around its longitudinal
axis is not included, this measurement is converted into two angle XY and YZ
given by the conversion of the position of the ground truth. sEMG sensors [23],
are allocated following the recommendations of Surface Electromyography for the
Non-Invasive Assessment of Muscles (SENIAM) [9]. The electrodes are placed
on the user (as shown on Fig. 1); then, the user puts on the compression jacket
over the electrodes (not shown on Fig. 1b nor Fig. 1c¢). The design of this device
allows the deformation and stretching of the fabric to be disregarded due to the
small rigid pieces, in addition to not limiting the user’s mobility on daily tasks.

The gestures performed were simplified to cover the natural range of arm
movement [14] for daily tasks, and were assigned a number for further identi-
fication: 1. Abduction/Adduction of the shoulder until the arm reaches 120°
inclination; 2. Flexion/Extension of the shoulder from 0° to 120°; 3. Horizontal
adduction/displacement of the arm at 90° flexion, hand crosses sagittal plane
till arm reaches a 30° displacement; 4. Closing/Swing drill movement of the arm
inwards from 0° to 120°; and, 5. Opening/Swing drill movement, starting with a
flexion of 120° to 0°. The method developed in this study was evaluated in four
healthy subjects; tests were spread over three different days to avoid exhaustion
of the muscles. Each subject performed a total of five repetitions of each of the
five gestures, continuously and without interruptions. Participants’ ages ranged
from 24 to 30 years old. All the gestures made by the subjects were performed
in a chair facing a screen.

2.1 Data Acquisition

To start data collection, the sSEMG sensors and the flex sensor compression jacket
are placed on the subject’s right arm. Then, OptiTrack [17] markers are located
as shown in Fig. 1, in order to obtain the real pose of the subject’s arm.

Both flexion and SEMG sensors are connected to a custom acquisition board
based on the LAUNCHXL-F28379D development board. On the one hand, the
sEMG sensors provide an amplified, rectified and integrated analogical signal

Visual feedback of the movement
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Fig. 2. The EMG signals and angles of the user’s movements (first box on the left)
were acquired using visual feedback generated by the interface on the Jetson Nano,
which also stores this data. The OptiTrack system stores the position of the markers.
In the end, both files are merged into one.
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(AKA the EMG’s envelope), which is obtained by the micro-controller at a rate
of 1kHz. On the other hand, the flexion sensors communicate with the micro-
controller via I12C protocol at a frequency of 200 Hz.

A graphical user interface has been developed to guide the speed and kind
of movement of the participants while performing the gestures and to log all
obtained data. This software has been implemented on an NVIDIA Jetson Nano.
This device communicates with the acquisition board via SPI at 500 Hz and
stores the data contained in every received message along with the timestamp
and the gesture that is being performed in a plain text document. Simultaneously
to the start of the sensors’ data acquisition, Optitrack data acquiring is initiated
at 240fps. In the end, a file with the positions of the markers belonging to the
OptiTrack system is exported. The interaction of all elements is shown in Fig. 2.

2.2 Data Processing

The sessions for each subject are condensed into a single file. Given that the
Optitrack system captures are made at 240 fps, an interpolation is performed to
reach a frequency of 500 Hz in the data. The interpolation method consists on
taking the Optitrack file which is the shortest and matching it with the number
of samples with the Jetson Nano file by adding with a quadratic splines method
the missing data. The signal from the SEMG sensors is filtered offline. To Smooth
this data a Savitzky-Golay smoothing local regression using weighted linear least
squares and a 2nd degree polynomial filter is used with an span of 0.7% of the
total number of data points. The angle between the markers of the Optitrack
system is obtained by calculating the angle generated between the line generated
from the arm markers on the shoulder Acromion bone, and the vertical from the
markers of the backrest of the rehabilitation system.

A Time series Network [6] with Levenberg-Marquardt algorithm is used to
calculate the orientation of the arm using the angles given by the flexion sensors
as input data, and the OptiTrack markers reference as target. With the use
of Matlab’s Machine Learning and Deep Learning Toolbox, it was possible to
estimate that the best parameters for this task were 10 hidden neurons and
consecutive samples. For the training of the neural network, 70% of the data
was used for training, 15% for validation and 15% for testing, in order to find
the lower MSE and the best Regression value (R).

For the classification of the gestures, dummy variables of the numbers
assigned to each movement (as listed on Sect.2) are used to recognise each
pattern from the fusion of the signals of the filtered SEMG sensors and the data
from the flexion sensors; a two-layer feed-forward network, with sigmoid hidden
and softmax output neurons tool was used as pattern recognition. Ten, fifteen,
twenty and twenty five hidden neurons where evaluated by testing the compu-
tation time and the number of iterations in order to get the best cross-entropy
value; fifteen hidden neurons where the most appropriate for this task. The net-
works were trained with scaled conjugate gradient back-propagation (trainscg)
using again, 70% of data for training, 15% for validation and 15% for testing.
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3 Results and Discussion

For the estimation of the orientation, two Time series Network configurations
were designed, one for dummy variables and one for the gestures as numbered in
Sect. 2, resulting in a MSE of 1.49F — 05 with a Regression value of 9.99F — 01
and a MSE of 1.50F — 04 and R of 9.99F — 01, respectively. It can be concluded
that the selection of either of the two target variables does not have a significant
influence on the results, given that both have a regression value (R) of 0.99%,
and the difference on the MSE is minimum.

In order to evaluate the trained networks for both orientation and gesture,
a new single session is performed by one of the original subjects. It is observed
that the proposed device is valid to find the orientation of an arm when the
network is calibrated with a sub-millimeter system. This can be noted in the
box on Fig. 3, corresponding to one portion of the whole closing drill movement;
the data comes from flexion sensors only and is processed offline with the trained
network and later compared with the ground truth data of that new session. It
can be seen that the estimation is close to the calibration system, with an MSE
of 1.32F — 05.

For gesture classification, the condensed data from the flex sensors is taken
along with the sEMG data in order to train a pattern recognition neural net-
work. To verify that the fusion of the data is feasible, three different networks
are trained, one network only with the EMG data, another only with the flex
sensors, and the third with the two of them. The resulting performance values
are displayed in Table 1.

In order to compare the models, F-score is used. Given by: Fscore =
(2% Recall* Precision)/(Recall+ Precision), where Recall = TP/(TP+5_ FN)
(being TP the true positive value and FN the false negative values); and
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Fig. 3. Signal of the angle generated by the arm with the data of the ground truth
together with the signal estimated by the network.
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Table 1. Performance in percentage of the classification for sEMG (50.6%) and Soft-
Flexion sensors (89.8%) and combined SEMG with Flexion (95.4%).

sEMG Flexion sEMG + Flexion
# | Gesture Recall | Precision | Recall | Precision | F-score | Recall | Precision | F-score
1 | Abduction 40.4 |49.5 91.3 |91.1 91.2 96.1 [98.0 97.5
2 | Flexion 66.8 |56.8 90.5 |87.1 88.7 97.2 |94.3 95.7
3 |Horizontal add |54.4 |41.4 89.5 ]90.6 90.0 93.1 |93.1 93.1
4 | Closing drill 41.6 |53.7 85.8 |87.5 86.6 93.7 ]95.5 94.6
5 |Opening drill |{43.8 |52.0 92.0 |92.8 92.4 95.7 195.9 95.8

Precision =TP/(TP+ > FP), (being FP the false positive values for each of
the Confusion Matrices).

The network using only the sEMGs shows poor results for this application,
whilst the Flexion network and the combination of SEMG and Flexion sensors
both have promising results. It could be said that flexion sensors are sufficient
for the classification of movements for a certain type of application that does
not require great sensitivity, while the fusion of both sensors denotes a great
performance with minimum error. The overall performance of the network with
the fusion of the two type of sensors is 95.4%; the best results were obtained by
the Abduction gesture with 98% of precision, which could be a result of it being
the only gesture generated in a different space and different muscle activation
with respect to the other four gestures. On the other hand, Horizontal Adduction
(93.1%) shares estimations with the Closing Drill and Opening Drill gestures;
this can be given to the fact that they share movement space on certain spots.
Using the data acquired for the new session and tested offline, it can be noted that
the gestures, that coincide in the Flexion movement space such as the drilling
gestures, cause an error in the estimation of the pattern. Table2 depicts the
response to the estimation in percentage for each gesture made during the new
data collection. Horizontal Adduction presents the least exact estimation, con-
trary to Abduction, which presents a minor magnitude of error which coincides
in a way with the training performance for the two sensors network.

3.1 Discussion

Since the objective of this study is to control flexible exoskeletons used in reha-
bilitation and assistive devices for the upper limbs, the feedback of the shoulder

Table 2. Trained network estimation: Ranking results for each gesture performed

Abduction | Flexion | Horizontal Add | Closing Drill | Opening Drill
Recall 98.0 94.3 93.1 95.5 95.9
Precision | 97.1 97.2 93.1 93.7 95.7
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position and the gesture performed are extremely important for Control. This
device, in its prototype mode, was created in a single compression shirt size,
always being able to adapt in different sizes. This document does not present a
study of the comparison of undefined gestures. It is estimated that the developed
algorithm could be functional for new gestures as long as the data is processed
and is not within the range of movement of the other gestures.

4 Conclusions

In this document, the signals of three electromyography sensors and an array
of four flexion sensors are used to compose a flexible device to estimate five
predefined gestures and the orientation of the shoulder. Two different algorithms
are used to perform each characteristic, one for the identification of patterns to
estimate the gesture being performed, and a recurrent neural network to estimate
the orientation of the arm. The results show that the device consisting of an array
of four flexion sensors is capable of estimating the gestures with a performance
of 89.8%, with results showing improvement by adding the sSEMG signal to the
algorithm with a performance of 95.4%, there being an area of improvement in
this last characteristic, such as filtering the sEMG signal online. Depending on
the desired performance for the application, different arrangements can be used.

References

1. Artemiadis, P.K., Kyriakopoulos, K.J.: EMG-based teleoperation of a robot arm
in planar catching movements using ARMAX model and trajectory monitoring
techniques. In: Proceedings 2006 IEEE International Conference on Robotics and
Automation. ICRA 2006, pp. 3244-3249. IEEE (2006)

2. Chada, S., Taran, S., Bajaj, V.: An efficient approach for physical actions classifi-
cation using surface EMG signals. Health Inf. Sci. Syst. 8(1), 3 (2020)

3. Chowdhury, R.H., Reaz, M.B., Ali, M.A.B.M., Bakar, A.A., Chellappan, K.,
Chang, T.G.: Surface electromyography signal processing and classification tech-
niques. Sensors 13(9), 12431-12466 (2013)

4. Cogollor, J.M., et al.: Handmade task tracking applied to cognitive rehabilitation.
Sensors 12(10), 14214-14231 (2012)

5. De Luca, C.J., Gilmore, L..D., Kuznetsov, M., Roy, S.H.: Filtering the surface EMG
signal: movement artifact and baseline noise contamination. J. Biomech. 43(8),
1573-1579 (2010)

6. Faust, O., Hagiwara, Y., Hong, T.J., Lih, O.S., Acharya, U.R.: Deep learning for
healthcare applications based on physiological signals: a review. Comput. Methods
Programs Biomed. 161, 1-13 (2018)

7. Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., Bergamasco, M.: A
new force-feedback arm exoskeleton for haptic interaction in virtual environments.
In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems. World Haptics Conference, pp.
195-201. IEEE (2005)

8. Gunasekara, J., Gopura, R., Jayawardane, T., Lalitharathne, S.: Control method-
ologies for upper limb exoskeleton robots. In: 2012 IEEE/SICE International Sym-
posium on System Integration (SII), pp. 19-24. IEEE (2012)



378

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

A. F. Contreras-Gonzélez et al.

. Hermens, H.J., et al.: European recommendations for surface electromyography.

Roessingh Res. Dev. 8(2), 13-54 (1999)

Jimenez-Fabian, R., Verlinden, O.: Review of control algorithms for robotic ankle
systems in lower-limb orthoses, prostheses, and exoskeletons. Med. Eng. Phys.
34(4), 397-408 (2012)

Krasoulis, A., Vijayakumar, S., Nazarpour, K.: Multi-grip classification-based pros-
thesis control with two EMG-IMU sensor. IEEE Trans. Neural Syst. Rehabil. Eng.
(2020)

Labs, B.: Bend labs. Internet draft (2018). https://www.bendlabs.com/products/
2-axis-soft-flex-sensor/

Lépez, N.M., di Sciascio, F., Soria, C.M., Valentinuzzi, M.E.: Robust EMG sensing
system based on data fusion for myoelectric control of a robotic arm. Biomed. Eng.
online 8(1), 5 (2009)

Magermans, D., Chadwick, E., Veeger, H., Van Der Helm, F.: Requirements for
upper extremity motions during activities of daily living. Clin. Biomech. 20(6),
591-599 (2005)

McCabe, J.P., Henniger, D., Perkins, J., Skelly, M., Tatsuoka, C., Pundik, S.: Fea-
sibility and clinical experience of implementing a myoelectric upper limb orthosis
in the rehabilitation of chronic stroke patients: a clinical case series report. PloS
One 14(4) (2019)

Monroy, M., Ferre, M., Barrio, J., Eslava, V., Galiana, I.: Sensorized thimble for
haptics applications. In: 2009 IEEE International Conference on Mechatronics, pp.
1-6. IEEE (2009)

NaturalPoint, I.: Optitrack. Internet draft (2019). https://optitrack.com

Nawab, S.H., Chang, S.S., De Luca, C.J.: High-yield decomposition of surface EMG
signals. Clin. Neurophysiol. 121(10), 1602-1615 (2010)

Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Fractal analysis features for
weak and single-channel upper-limb EMG signals. Expert Syst. Appl. 39(12),
11156-11163 (2012)

Reese, S.P.: Angular displacement sensor of compliant material (Jan 27 2015), uS
Patent 8,941,392

Samper-Escudero, J.L., Contreras-Gonzalez, A.F., Ferre, M., Sdnchez-Urdn, M.A.,
Pont-Esteban, D.: Efficient multiaxial shoulder-motion tracking based on flexible
resistive sensors applied to exosuits. Soft Robot. (2020)

Sankaran, S.: Robotic arm for the easy mobility of amputees. Int. J. Innov. Technol.
Exploring Eng. 9 (2020). https://doi.org/10.35940/ijitee.B1151.12925219
Technologies, A.: Myoware. Internet draft (2016). https://cdn.sparkfun.com/
assets/a/3/a/f/a/AT-04-001.pdf

Washabaugh, E.P., Treadway, E., Gillespie, R.B., Remy, C.D., Krishnan, C.: Self-
powered robots to reduce motor slacking during upper-extremity rehabilitation: a
proof of concept study. Restorative Neurol. Neurosci. 36(6), 693-708 (2018)
Yamanoi, Y., Ogiri, Y., Kato, R.: Emg-based posture classification using a convo-
lutional neural network for a myoelectric hand. Biomed. Sig. Process. Control 55,
101574 (2020)


https://www.bendlabs.com/products/2-axis-soft-flex-sensor/
https://www.bendlabs.com/products/2-axis-soft-flex-sensor/
https://optitrack.com
https://doi.org/10.35940/ijitee.B1151.1292S219
https://cdn.sparkfun.com/assets/a/3/a/f/a/AT-04-001.pdf
https://cdn.sparkfun.com/assets/a/3/a/f/a/AT-04-001.pdf

Soft-Wearable Device 379

Open Access This chapter is licensed under the terms of the Creative Commons
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or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.
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chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
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