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Abstract. Ultrasonic phased arrays are used to generate mid-air haptic
feedback, allowing users to feel sensations in mid-air. In this work, we
present a method for testing mid-air haptics with a biomimetic tactile
sensor that is inspired by the human fingertip. Our experiments with
point, line, and circular test stimuli provide insights on how the acoustic
radiation pressure produced by the ultrasonic array deforms the skin-like
material of the sensor. This allows us to produce detailed visualizations
of the sensations in two-dimensional and three-dimensional space. This
approach provides a detailed quantification of mid-air haptic stimuli of
use as an investigative tool for improving the performance of haptic dis-
plays and for understanding the transduction of mid-air haptics by the
human sense of touch.
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1 Introduction

Ultrasonic phased arrays can generate haptic sensations in mid-air. They focus
acoustic radiation pressure in space, which deflects the skin to induce tactile
sensation [1]. To evaluate whether the array is producing the desired haptic
sensations, we need to understand how focal points of pressure interact with
compliant skin to cause it to deform. In this paper, we propose a method for
sensing mid-air haptics with a biomimetic tactile fingertip inspired by the human
sense of touch. Using the data obtained from the sensor, we are able to visualize
the different patterns produced by the haptic array.

Efforts to measure the haptic output from a phased ultrasonic array range
from quantitative to qualitative. Quantitative methods include microphones to
measure the sound pressure level of the generated focal points [1,8], directly
measuring the ultrasonic output of the system without considering its interaction
with other material. On the other hand, to quantitatively consider the interaction
of the sensations with skin-like materials, Laser Doppler Vibrometry (LDV), a
tool commonly used for non-contact vibration measurement, can give insight on
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how the haptic stimuli would interact with human skin at high frequencies [2].
Alternatively, qualitative methods include pulsed schlieren imaging, which was
used to visualize the pressure field produced by a focal point as it interacts
with external materials [5]. Additionally, by projecting the focal points onto the
surface of an oil bath, it can be used to visualize the patterns generated by the
haptic array [6]. New research has used a microphone-based tactile sensor array
to evaluate the vibrations of its surface due to ultrasonic haptic sensations [9],
highlighting the potential of tactile sensors for testing the output of a haptic
system.

In this work, we propose a method to sense and evaluate mid-air haptics using
the TacTip, a biomimetic tactile fingertip. The TacTip is biologically inspired
by glabrous (hairless) human skin, which has an intricate morphology of layers,
microstructures, and sensory receptors that contribute to its functions [3,10]. We
present a method for analyzing mid-air haptic sensations with a tactile sensor,
allowing us to quantitatively test ultrasonic arrays with a method inspired by
the human sense of touch.

2 Experimental Setup and Method

This work aims to develop a method for testing mid-air haptics with a biomimetic
tactile sensor. We carried out experiments with the tactile fingertip mounted on
a robot arm and an ultrasonic array (Fig. 1).

Fig. 1. The TacTip, a biomimetic tactile sensor (left): the flat-tipped model used in
this study; the skin of the TacTip with 127 inner nodular pins (middle); and the
experimental setup with the tactile sensor mounted on a robot arm to collect data over
the ultrasonic phased array (right).
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2.1 Biomimetic Tactile Sensor

The TacTip (Fig. 1, left panel) is a biomimetic tactile sensor developed at the
Bristol Robotics Laboratory [3,10], based on the structure of glabrous skin. The
human fingertip has dermal papillae where the dermis interdigitates with inter-
mediate ridges in the epidermis. These ridges and papillae focus strain from the
skin surface down to mechanoreceptors within the dermis. The TacTip mimics
this structure with an outer rubber-like skin which connects to inner nodular pins
(Fig. 1, middle panel). As the soft sensor interacts with objects, its skin deforms
and the nodular pins transmit surface strain into inner mechanical movements,
similar to human skin. An internal camera tracks the movement of its artificial
papillae, making it possible to detect the shear deformation of the skin. The sen-
sor has been used in many tasks in robot touch such as object exploration and
slip detection [10]. The TacTip is manufactured using dual-material 3D printing,
which prints both the sensor’s plastic base and the soft rubber-like material for
the skin. This allows for low-cost and rapid prototyping of different designs as
well as its integration with robotic grippers and hands. Additionally, the design
of the TacTip is modular, allowing for different tips to be used, such as varying
the shape or texture of the skin or varying the layout of the nodular pins [10].
The tip of the sensor can be filled with gel to affect its compliance or be left
unfilled. Since this is the first time the TacTip has been used to detect small
forces on the order of millinewtons, we needed a more compliant tip; after testing
tips with these variations, we found the flat-tipped TacTip without gel (Fig. 1,
left panel) to be more sensitive, and thus suitable for this work.

2.2 Ultrasound Phased Array

To generate the mid-air haptic stimuli for the experiments, we used the Ultra-
haptics Evaluation Kit (UHEV1) from Ultraleap. The array has a 16 by 16 grid
of ultrasonic transducers which operate at 40 kHz to generate focal points in mid-
air, with an update rate of 16 kHz. The device is accompanied by software which
allows us to modulate these focal points so that they can be felt by users [1] and
to generate various shapes and textures [6].

2.3 Experiment

We used a 6-DOF robotic arm (ABB IRB120) to move the tactile sensor over
the haptic array. The robot arm moved the sensor in 10 mm increments over an
80 mm by 80 mm grid at a height of 200 mm above the haptic array. At each
position, 30 frames were captured from the camera to image the TacTip’s inner
nodular pins at 30 fps. This was done for a focal point generated by the array, as
well as two shapes (a line and a circle). The shapes were generated by the array
using Amplitude Modulation (AM) and Spatiotemporal Modulation (STM), to
see whether the sensor distinguishes between these two standard modulation
techniques. AM generates focal points in the path of the desired pattern and
modulates their intensity over time, while STM generates one focal point and
moves it rapidly along the path.
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Fig. 2. Analysis method. We capture an image from the tactile sensor as it interacts
with the mid-air haptic stimulus (1) and extract each pin position (2). Voronoi tessel-
lation is generated with pin positions as the center point for each cell (3); the change of
area of each cell compared to an unstimulated sensor, ΔA, is used as a measure of the
stimulus intensity (4). This is repeated for readings over a grid (5). Gaussian Process
Regression combines the data sets to produce detailed visualizations (6).

2.4 Analysis

In this work, we developed an analysis method to sense mid-air haptics with
a biomimetic tactile fingertip (Fig. 2). The images captured from the tactile
sensor as it interacts with the mid-air haptic stimulus were processed to find the
positions of the nodular pins at each time step. Then we used the pin positions to
generate a bounded Voronoi tessellation, shown by Cramphorn et al. to transduce
a third dimension to the sensor data [4]. Voronoi tessellation partitions a plane
based on the distance between points on that plane; each point along an edge
is equidistant from two points, and each vertex is equidistant from at least
three points. The areas of the cells give us information for tactile perception;
increasing areas indicate a compression of the skin. Thus, the areas of each cell
in the Voronoi tessellation were compared with a data set in which the sensor
was not stimulated, and the difference between the two areas, ΔA, was used as
a measure of the intensity of the stimulus as felt by the sensor. This was done
for every time step, and then averaged over the 30 frames of data. The process
was repeated for readings in a grid over the haptic display to populate a two-
dimensional plane. Then we trained a Gaussian process regression (GPR) model
for the measured intensity, represented by ΔA (using the MATLAB function
fitrgp with the default squared exponential covariance function). The output
values were then scaled between zero and one, to represent the relative intensity
of the stimulus as felt by the tactile sensor.
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AMPLITUDE MODULATION

SPATIOTEMPORAL MODULATION

Fig. 3. The mid-air haptic shapes, line and circle, as felt by the biomimetic tactile
sensor. The Amplitude Modulation (AM) cases use four focal points modulated with
a 200Hz sine wave. The Spatiotemporal Modulation (STM) cases use one focal point
moving at a repeat frequency of 100Hz along the path of the shape.

3 Results

In this work, we used a biomimetic tactile fingertip to sense mid-air haptics,
to develop a method for testing the output of a haptic display. We measured
the response of the tactile sensor to a focal point of pressure generated by an
ultrasonic haptic array as well as two haptic shapes, each generated by Amplitude
Modulation (AM) and Spatiotemporal Modulation (STM).

3.1 Sensing Mid-Air Haptics on a Two-Dimensional Grid

The experiments showed that the biomimetic tactile fingertip used in this study,
the TacTip, is able to sense the mid-air haptic stimuli produced by the ultrasonic
phased array using our developed method (Fig. 2). The focal points of pressure
generated by the ultrasound caused the skin-like surface to deform, expanding
the areas of the cells in the Voronoi tessellation, allowing us to identify the
location and intensity of contact. Voronoi tessellation was a valuable tool in
transducing a third dimension in the data, which allowed us to visualize the
sensations produced by the ultrasonic array.

Our analysis methods enables us to produce detailed visualizations of the
mid-air haptic sensations (Fig. 3), allowing us to distinguish between different
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patterns produced by the ultrasonic array. Additionally, the variation in the
strength of the focal point can be clearly seen. The visual representation of the
focal point shows that it creates a localized region of increased displacement
(Fig. 2, lower right panel). The point is much stronger in the center, and then
decreases in intensity as you move radially outwards. This is similar for the other
shapes; the center path of the shape has increased intensity, which decreases as
you move away (Fig. 3).

The visualizations produced by our method allow us to compare the shapes
generated by the ultrasonic array using different modulation techniques. We see
that the tactile sensor is able to distinguish the four focal points that make up
the amplitude modulated line (Fig. 3, top left panel). A user of the ultrasonic
array would not distinguish the points as the distance between them is small [1],
and so it creates the illusion of a continuous line. The sensor can discriminate
between the points because our analysis method is measuring the deformation
of the tactile sensor’s surface, which would correspond to the deformation of the
user’s skin rather than their perception of the sensation. On the other hand, the
spatiotemporally modulated line (Fig. 3, lower left panel) is felt as a continuous
line by the sensor. The focal point used to generate the line is moved along its
path at very small increments. The distance between the points in this case is
too small to be distinguished by the sensor, making the output more similar to
how a user would sense the stimulus.

3.2 Sensing a Focal Point in Three-Dimensional Space

In the previous section, we presented our results when sensing various shapes
over a two-dimensional grid. In this section, we extend our method to sense
mid-air haptic stimuli in three dimensions. When a person interacts with the
haptic array to sense the shapes it generates, they naturally move their hand
around the display surface, which includes moving their hands up and down as
they process the sensations they feel. Thus, understanding how the generated
sensations vary with height is important to determine whether the desired effect
is being produced and to check that there are no undesired artefacts. We repeated
the data collection process described earlier for the point stimulus at different
heights over the array, at 10 mm increments. This results in a three-dimensional
grid on which we applied our presented analysis method.

This experiment allows us to see how the shape is sensed over a three-
dimensional surface, looking at how the shape varies by height. The focal point
is generated by the array at a specific height in space; however, there are still
sensations at other points due to the interaction of the ultrasonic waves [8]. The
point stimulus is sensed by the tactile fingertip as an elongated spheroid, with a
localized region of increased intensity (Fig. 4). It appears the lower the intensity
of the stimulus felt, the more elongated it is. As the sensor moves away from the
center height, the stimulus becomes fainter.
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CROSS-SECTIONAL VIEWS OF A FOCAL POINT IN 3D

Fig. 4. The three-dimensional view of a focal point as felt by the biomimetic tactile
sensor presented as cross sections at z = 0 (left), which corresponds to 200mm above
the array; y = 0 (middle); and x = 0 (right).

4 Discussion and Conclusion

Tactile sensors can further our understanding of the human sense of touch. Our
experiments have shown that we can use a biomimetic tactile fingertip to sense
the mid-air haptic stimuli produced by an ultrasonic phased array, providing
insights on the deformation of the skin-like material of the TacTip due to ultra-
sonic mid-air haptic sensations. This allows us to produce detailed visualizations
of the sensations produced by the device. Using our analysis methods, we were
able to see the difference between shapes that are amplitude modulated versus
spatiotemporally modulated by the ultrasonic array. Additionally, we were able
to sense and visualize a focal point in three-dimensional space, providing insights
on how the focal point varies by height.

The visualizations of the stimuli produced in our study are similar to those in
other works which use alternative methods. For example, Laser Doppler Vibrom-
etry was used to measure the deformation of skin-like material due to ultrasonic
mid-air haptics [2]; it measured the high frequency vibrations (50 Hz and above)
of the skin surface, and the root mean square (RMS) of the deformation was
used to visualize the sensations. While we do not measure the high frequency
vibrations, we get similar results. This could indicate that the data we collect is
similar to the RMS of the skin deformation. Additionally, our three-dimensional
measurements of the focal point look very similar to simulations of the same
stimulus [8]. The elongated spheroid felt by the sensor looks like the higher
values of acoustic field pressure in the simulation, suggesting that the tactile
fingertip is able to sense the ultrasound when it crosses a threshold pressure.

This work has provided insights into the measurement of haptic stimuli, but
it has areas for improvement. At this point, we have measured the intensity
of the stimulus without relating it to a specific physical value. Further work
is planned to determine the relationship of the measured stimulus intensity to
the skin deformation, which would allow us to compare our results with other
quantitative experiments. Additionally, we do not measure the skin deformation
at high frequencies. While the results we get are similar to those which use
vibrometry, studying the vibrations of the artificial skin could determine whether
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the sensor does behave similarly to human skin. One approach is to modify the
sensor with a higher frame rate camera which could allow us to see the high-
frequency deformations of the skin; another approach would be to add another
high-frequency tactile sensing modality to the TacTip [7].

Our work has shown promising results for sensing mid-air haptics with a
biomimetic tactile fingertip. The developed approach could be used as an inves-
tigative tool for evaluating and improving the capabilities of haptic displays.
The insights gained from this work could also be used to investigate human per-
ception. In the future, we could apply our methods to intelligent exploration of
the haptic stimuli. This could allow us to develop an autonomous robotic system
that is able to feel and interact with the sensations similar to how a person would
explore mid-air haptic stimuli.
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or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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