
A Case Study of Porting HPGMG
from CUDA to OpenMP Target Offload

Christopher Daley(B), Hadia Ahmed, Samuel Williams, and Nicholas Wright

Lawrence Berkeley National Laboratory (LBNL),
1 Cyclotron Road, Berkeley, CA 94720, USA

{csdaley,hahmed,SWWilliams,NJWright}@lbl.gov

Abstract. The HPGMG benchmark is a non-trivial Multigrid bench-
mark used to evaluate system performance. We ported this benchmark
from CUDA to OpenMP target offload and added the capability to use
explicit data management rather than managed memory. Our optimized
OpenMP target offload implementation obtains a performance of 0.73x
and 2.04x versus the baseline CUDA version on two different node archi-
tectures with NVIDIA Volta GPUs. We explain how we successfully used
OpenMP target offload, including the code refactoring required, and how
we improved upon our initial performance with LLVM/Clang by 97x.

Keywords: HPGMG · Managed memory · CUDA · OpenMP target
offload · NVIDIA · Volta · V100 · GPU

1 Introduction

The systems deployed at supercomputing centers increasingly consist of hetero-
geneous node architectures with both CPUs and GPUs. At the present time
this includes the Summit supercomputer at ORNL and the Sierra supercom-
puter at LLNL. However, there are also many planned deployments which will
use GPU accelerators from NVIDIA, AMD or Intel. It is important that user
applications can run efficiently on a variety of accelerators. Non-portable pro-
gramming approaches are not practical for a large number of application code
teams because of lack of resources, no detailed knowledge of specific accelera-
tors, or code maintainability concerns. OpenMP target offload is one approach to
enable users to portably offload computation to accelerators using directives [29].

There are case studies of user experiences of OpenMP target offload and
even an entire benchmark suite to evaluate OpenMP target offload performance
(SPEC ACCEL [16]). However, the case studies often consider relatively sim-
ple micro-benchmarks or mini-apps. There is generally a gap between OpenMP
target offload case studies and the complexity of full applications run at super-
computing centers. It is thus important to assess the ease and success of using
OpenMP target offload in non-trivial applications. This can find gaps in the
OpenMP specification, assist with developing best practices for other users to
follow, and identify bugs and performance issues in OpenMP compilers.
c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 37–51, 2020.
https://doi.org/10.1007/978-3-030-58144-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_3

38 C. Daley et al.

In this work, we ported a non-trivial application named HPGMG [1,32] from
CUDA to OpenMP target offload and extended the code to use explicit data
management rather than managed memory. Managed memory is a capability
enabling the CPU and GPU to transparently access the same data. It is used
in many non-trivial applications [3], however it is not portable to all systems
with GPUs and has potential performance issues [31]. We explain the code mod-
ifications required to use explicit data management as well as situations where
a detailed understanding of the OpenMP specification is needed to correctly
and efficiently manage data. We show performance of both code versions with
multiple OpenMP compilers against the baseline CUDA performance. Our con-
tributions include:

– We created an optimized OpenMP target offload implementation of HPGMG
which achieves a performance of 0.73x and 2.04x versus the baseline CUDA
version on two different node architectures with NVIDIA Volta GPUs.

– We describe how we successfully ported the managed memory CUDA version
of HPGMG to OpenMP target offload and how we added explicit data man-
agement. This includes details about the refactoring required and the issues
we encountered when mapping complicated data structures to the device.

– We compare the performance of 3 OpenMP offload compilers and detail a
major bottleneck in the open-source LLVM/Clang compiler related to the size
of the OpenMP present table. We describe our code changes to workaround
LLVM/Clang compiler limitations and how we improved upon the initial
LLVM/Clang performance by 97x.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the HPGMG application and discusses how we ported
it to OpenMP target offload and added explicit data management. Section 4
introduces the systems and compilers used as well as the benchmarked HPGMG
configuration. Section 5 shows the performance of the managed memory and
explicit data management versions of HPGMG, and explains our progressive
code optimizations for more efficient execution with the LLVM/Clang compiler.
Section 6 discusses lessons learned. Section 7 concludes the paper.

2 Related Work

There are many examples of using OpenMP target offload to execute applications
on platforms with GPUs, e.g. Nekbone [14], Lulesh [6,17], miniMD [30], Neutral
[22] and other UK mini-apps [21,23]. The performance analysis in these papers
mostly focuses on how well a compiler optimizes compute kernels for GPUs. User
guidelines exist for achieving high performance with OpenMP target offload on
CPU and GPU targets, e.g. using combined teams distribute parallel for
OpenMP constructs and avoiding the use of explicit OpenMP schedules [15,24].
Similar guidelines were followed to port the entire SPEC ACCEL benchmark
suite from OpenACC to OpenMP target offload [16]. Compiler optimization
research exists that explores how to accelerate a broader range of OpenMP

Porting HPGMG to OpenMP Target Offload 39

target regions on GPUs, specifically when user code appears between target
and parallel constructs [5,11,15,34]. There has been some initial work done
on identifying sources of overheads in OpenMP runtimes [26]. In this publication,
we evaluate GPU compute performance with 3 OpenMP compilers and identify
a significant LLVM/Clang OpenMP runtime overhead not previously reported.

There are fewer publications detailing data management challenges. The chal-
lenge of mapping structs containing pointers to the device is described in [22].
Here, the authors suggest a user code transformation of adding a new pointer
variable that points to a struct pointer, and then mapping and operating on the
new pointer variable. Cleaner methods to map structs containing pointers are
explained in [12]. In a follow on paper, the authors show how managed mem-
ory allocations via cudaMallocManaged simplifies the use of C++ objects and
enables std::vector to be used in OpenMP target offload applications [13].
There has been a successful study modifying OpenMP target offload applica-
tions and the LLVM/Clang compiler to use managed memory allocations [25].
However, managed memory is not available on all CPU/GPU systems and there
have been several studies reporting higher than expected overheads when using
managed memory [25,31]. One method to successfully use explicit data manage-
ment is to create data management abstractions using OpenMP runtime API
calls only, e.g. RAJA OpenMP target offload backend [4], and GenAsis [7]. The
use of data management directives can be problematic because of lack of compiler
support [35]. In this publication, we explain how we successfully used OpenMP
data management directives to map a complicated nested data structure to the
GPU.

3 The HPGMG Mini Application

HPGMG is a finite-volume geometric Multigrid HPC benchmark [1]. It is written
in C99 and has been parallelized using MPI and optionally OpenMP. The bench-
mark creates a Multigrid grid hierarchy once and repeats the same Multigrid
solve operation a user-specified number of times. The benchmark performance
metric is a throughput metric of Degrees of Freedom per second (DOF/s). The
metric does not include the time to build the Multigrid grid hierarchy.

A Multigrid solver is an iterative linear solver which achieves fast conver-
gence by solving an Ax = B equation at different resolutions. Multigrid solvers
often use a V-cycle computational pattern. The fine-to-coarse part of the V-cycle
consists of a smoothing operation on the finest structured grid, the calculation of
a residual, and restriction of this data to the next coarsest grid. A direct solver
is used on the coarsest level. The coarse-to-fine part of the V-cycle consists of
interpolation of data to finer grids followed by a smoothing operation. An alter-
native to a V-cycle computational pattern is an F-cycle computational pattern
which consists of multiple V-cycles using progressively more levels.

The coarsest level in the Multigrid hierarchy consists of a level with 23 grid
points. Each successive finer level of the hierarchy has 43, 83, 163, ... grid points.
The level data is divided into blocks of variable size up to a user-specified maxi-
mum size, typically 323 or 643 grid points. These blocks are distributed between

40 C. Daley et al.

MPI ranks to balance computational load and memory footprint. HPGMG uses a
nested data structure named level type to hold all block data, communication
buffers, and block neighbor metadata for a single level.

3.1 HPGMG-CUDA

HPGMG-CUDA is a CUDA port of HPGMG [32]. It depends on CUDA man-
aged memory allocations using cudaMallocManaged to enable the same data to
be accessed by CPU and GPU. A single execution of HPGMG-CUDA uses 14
different CUDA kernels. HPGMG-CUDA includes an optimization where oper-
ations for coarse levels are run on the CPU and operations for fine levels are run
on the GPU.

3.2 Porting HPGMG-CUDA to OpenMP Target Offload

The approach we took to port HPGMG-CUDA to OpenMP target offload
involved mixing the original CUDA memory allocation API calls with newly-
created OpenMP target offload regions. In HPGMG-CUDA, the CUDA kernels
access block data through a level structure variable of type level type which
is passed by value as part of the CUDA kernel launch. This data structure con-
tains many scalar and pointer variables, where pointer variables accessed by CPU
and GPU point to memory allocated using cudaMallocManaged. This makes
OpenMP data management as simple as adding map(to:level) to the OpenMP
target region because the targets of the pointer variables can be accessed by the
CPU and the GPU.

Our OpenMP target offload code regions look nearly identical to the original
CUDA kernels. The only difference is that the CUDA launch configuration is
replaced with loops inside the OpenMP target region. There is a repeating pat-
tern in our OpenMP target regions of a coarse-grained loop over blocks, followed
by extraction of block data, followed by a fine-grained loop over grid points in a
block. We parallelized and work-shared these loops using the teams distribute
combined construct on the outer loop and the parallel for combined construct
on the inner loop.

We implemented an incremental porting approach by creating a wrapper
layer that dispatched to the original CUDA kernel or our newly-created function
containing an OpenMP target region. This allowed us to test the correctness of
one OpenMP function at a time. If the numerical results are not identical then
we know we made a mistake in the OpenMP function or there is a compiler bug.
This methodology requires compiling all code without fused-multiply-adds and
fast math in order to expect a numerically identical solution.

3.3 Adding Explicit Data Management to HPGMG

Efficient explicit data management requires minimizing the number of data
transfers between host and device. Our approach involved creating the level

Porting HPGMG to OpenMP Target Offload 41

structure variable once on the device at program initialization. Most fields in
the device version of level never need to be accessed by the host. The excep-
tion is the raw block data which must be transferred to the host every solution
step because some HPGMG functions do not have GPU implementations. In
order to use this approach, we had to refactor the code so that our modified
OpenMP target regions access level data through a pointer to the device version
of level. The code transformation is shown in Fig. 1.

Example initial code using managed memory
void smooth (l e v e l t y p e l e v e l , . . .) {
// Map ” l e v e l ” to the dev i c e . Al l po in t e r v a r i a b l e s in ” l e v e l ” po int to
// data a l l o c a t e d with cudaMallocManaged . These addre s s e s are thus va l i d
// on host and dev i ce
#pragma omp ta rg e t teams d i s t r i b u t e map(to : l e v e l)

f o r (i n t blk=0; blk < l e v e l . num my blocks ; blk++) {

Example refactored code using explicit data management
void smooth (l e v e l t y p e ∗ l e v e l , . . .) {
// Map zero−l ength array s e c t i o n o f ” l e v e l ” . This a t taches the ” l e v e l ”
// po in t e r in the t a r g e t r eg ion to the dev i c e copy o f ” l e v e l ” which
// i s a l r eady present on the dev i ce
#pragma omp ta rg e t teams d i s t r i b u t e map(to : l e v e l [: 0])

f o r (i n t blk=0; blk < l e v e l −>num my blocks ; blk++) {

Fig. 1. The code transformation used to efficiently implement explicit data movement
in HPGMG.

The level structure variable contains a small number of data buffers for the
entire level. This enables the data buffers to be copied efficiently between CPU
and GPU in bulk data transfers. However, it has a software consequence that the
blocks for each level must contain multiple pointers to different offsets within the
larger data buffers. This necessitates additional OpenMP data management to
ensure that the pointers point to the appropriate device data buffer and not the
original host data buffer. The way we attached the appropriate device address
to the device block pointers used the [:0] syntax and is shown in Fig. 2. This
syntax has an additional effect of creating an association between the host and
device address in the OpenMP runtime.

We implemented two techniques to ensure correctness of the explicit data
management version of HPGMG. The first technique involved adding a print
statement in the wrapper layer to enable tracing of the executed GPU functions
in both managed memory and explicit data management versions. This allowed
us to find a case where a missing target update construct caused the BiCGStab
iterative solver to terminate early. Our second technique involved creating func-
tions that calculated mean and L1 norm summary statistics of the level data in
the location that owns the level, i.e. fine levels are owned by the GPU and coarse
levels are owned by the CPU. We called these functions after each function and
compared results against the managed memory version.

42 C. Daley et al.

Attaching a device address to a device pointer
f o r (shape=0; shape<STENCIL MAX SHAPES; shape++) {

f o r (b lock=0; block <3; ++block) {
f o r (b=0; b<l e v e l −>exchange ghosts [shape] . num blocks [b lock] ; ++b) {

#pragma omp ta rg e t ente r data \
map(a l l o c : l e v e l −>exchange ghosts [shape] . b locks [b lock] [b] . read . ptr [: 0])

}
}

}

Fig. 2. OpenMP target offload [:0] syntax to make device pointers point to device
addresses and not host addresses.

4 Experimental Methodology

4.1 Hardware and Software Environment

We used the Summit supercomputer at OLCF [18] and the Cori-GPU testbed
at NERSC [27]. The characteristics of the two systems which are most relevant
for this study are shown in Table 1.

Table 1. Overview of the Cori-GPU and Summit systems.

Cori-GPU Summit

Node architecture Cray CS-Storm 500NX IBM AC922

Node CPUs 2 × Intel Skylake 2 × IBM Power 9

Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz

Node GPUs 8 x 16GB NVIDIA V100 6 x 16 GB NVIDIA V100

CPU-GPU interconnect PCIe 3.0 switch NVLink 2.0

We evaluated multiple compilers on both systems to assess the OpenMP
offload performance of HPGMG. We compared performance against the orig-
inal CUDA version and also an OpenACC version which was ported to the
GPU in an identical way as the OpenMP offload version. The OpenACC version
was included to provide additional performance results for directive-based GPU
offload. The benefit of including OpenACC in our study is that the PGI compiler
provides mature OpenACC support and is available on both systems. The full
list of compilers is shown in Table 2.

The Cori-GPU MPI stack was always OpenMPI-4.0.3, except for the CCE
compiler which was limited to using MPICH-3.3.2. The OpenMPI library was
built with UCX support enabling CUDA-aware MPI communication, but not
GPUDirect support which would have enabled direct peer-to-peer data transfers
between GPUs. The Summit MPI stack was always IBM Spectrum MPI 10.3.1.2-
20200121. Our Summit job launch scripts always specified --smpiargs="-gpu"

Porting HPGMG to OpenMP Target Offload 43

Table 2. Compilers and GPU offload methods evaluated on the Cori-GPU and Summit
systems.

Compiler GPU offload Cori-GPU version Summit version

GCC + NVCC CUDA 7.3.0 + 10.1.243 7.4.0 + 10.1.243

NVIDIA/PGI OpenACC 20.4 20.1

Cray CCE OpenMP 9.1.0 (LLVM version) –

IBM XL OpenMP – 16.1.1-5

LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

to enable the use of CUDA-aware MPI with GPUDirect. We used the NVIDIA
nvprof profiler on both platforms to measure the time spent in GPU kernels and
data movement operations between CPU and GPU. nvprof was active for all
results shown in this study. We used the ECP-funded HPCToolkit profiler [2] on
Cori-GPU to identify bottlenecks in the LLVM/Clang OpenMP runtime.

4.2 Application Configuration

We configured the HPGMG benchmark to use the out-of-place Gauss Seidel
Red Black (GSRB) smoother, 4th order boundary conditions, and a Multigrid
F-Cycle. A single run executes 3 different problem sizes with a grid spacing of
h, 2 h, and 4 h. In this work we only consider the performance of the largest
problem: that is the problem with a grid spacing of h. Our chosen problem has a
grid spacing of h = 1

512 , a maximum box size of 323, and is executed between 3
and 100 steps depending on the throughput of the benchmark for each compiler.
This problem has a memory footprint of approximately 38 GB and thus exceeds
the memory capacity of the 16 GB GPUs in both our test platforms. In our
tests we choose to use a single CPU socket and optionally 3 GPUs. The CPU-
only configurations are executed with 1 MPI rank per core, and the CPU+GPU
configurations are executed with 1 MPI rank per GPU.

5 Performance Evaluation

5.1 Performance When Using Managed Memory

Figure 3 shows the performance of the managed memory versions of HPGMG.
The GPU versions of HPGMG generally performed better on Summit than
Cori-GPU because of higher data transfer bandwidth between CPU and GPU
(NVLink-2.0 versus PCIe 3.0), fewer GPU page faults, and less data movement
between CPU and GPU. The system-level reasons for the differences are out of
scope for this paper. Our performance evaluation will thus only compare compil-
ers on the same system and not between systems. Figure 3a shows that the CCE
and LLVM/Clang OpenMP compilers were not competitive with CUDA on Cori-
GPU. CCE performed poorly because the code needed to be compiled at -O0

44 C. Daley et al.

to workaround a compiler bug [10] (upstream issue at [19]). LLVM/Clang per-
formed poorly because of significant time spent in cuMemAlloc and cuMemFree
functions which are used to allocate and free device memory. These functions
were called when mapping the level structure variable to the device. Figure 3b
shows that the XL OpenMP compiler achieved 0.70x of CUDA performance on
Summit. The PGI OpenACC compiler achieved 0.76x and 0.89x of CUDA per-
formance on Cori-GPU and Summit, respectively, indicating that directive-based
programming can deliver performance competitive with CUDA.

(a) Cori-GPU (b) Summit

Fig. 3. HPGMG throughput for the managed memory version of HPGMG on Cori-
GPU and Summit (higher is better). All configurations used 1 CPU socket and 3 GPUs.
The dashed line shows the best MPI-only performance out of all available compilers
when using 1 CPU socket.

5.2 Performance When Using Explicit Data Management

The performance results for the explicit data management version of HPGMG
are limited because of various compiler issues: the XL compiler failed to correctly
create the HPGMG device data structures [28] and the CCE 9.1.0 compiler does
not support the OpenMP-5.0 pointer attachment rules required by HPGMG
(the recently released CCE-10.0.0 compiler should provide this capability [9]).
Henceforth, all performance results are obtained using the LLVM/Clang com-
piler. The initial results were disappointing compared to the OpenMP managed
memory version: 12.0x slower on Cori-GPU and 5.7x slower on Summit.

The HPCToolkit profiler showed that most of the runtime was spent exe-
cuting a target update construct used to copy data from GPU to CPU. The
bottleneck was not data movement but instead time spent in a library func-
tion provided by libstdc++ named std:: Rb tree increment. Our hypothesis
is that this function is used by the LLVM/Clang OpenMP runtime to find out
which host pointer corresponds to which device pointer before copying data
between memories. OpenMP runtimes maintain an association between host
and device pointers in a present table; it is expected to be efficient even when it

Porting HPGMG to OpenMP Target Offload 45

contains many entries [8,14,36]. We describe our optimizations to workaround
this LLVM/Clang bottleneck and other bottlenecks below. The impact of the
individual optimizations are shown in Fig. 4 and explained below.

(a) Cori-GPU (b) Summit

Fig. 4. HPGMG throughput for the explicit data management version of HPGMG
on Cori-GPU and Summit using the LLVM/Clang compiler (higher is better). All
configurations used 1 CPU socket and 3 GPUs. Optimizations apply additively, e.g.
the code changes associated with the 4th bar down includes the code changes associated
with the 2nd and 3rd bars. The dashed lines show the performance of the managed
memory version of HPGMG when using OpenMP target offload and CUDA (values
obtained from Fig. 3).

Don’t Map NULL Pointers: Many HPGMG block pointers point to NULL
for the duration of the application. These pointer addresses can safely be kept
out of the OpenMP runtime present table. We added an if statement around the
target enter data directive in Fig. 2 to only map data when it is not NULL.
This improved the solve performance by 6.5x on Cori-GPU. It also reduced the
initialization time from 392 s to 40 s on Cori-GPU. This is primarily because of
less exclusive time in the OpenMP runtime but also because of significantly fewer
CUDA HtoD memcpy transfers of 8 bytes. Here, an 8 byte transfer corresponds
to setting a pointer in the device environment to a new device address.

Minimize the Present Table: The HPGMG block pointers are simply a conve-
nience in the device kernels. Therefore, there is no need for the OpenMP runtime
to maintain an association between block pointer host and device addresses. This
is because all data transfers between CPU and GPU involve the larger level
data buffers pointed to by the block pointers. We avoid creating an association
by manually updating the device pointers in the device environment instead of
using the [:0] syntax shown earlier (Fig. 2). Our function to do this is named
omp attach and is shown in Fig. 5. It performs the same task as the OpenACC
runtime API function named acc attach. This improved the performance by
5.3x on Cori-GPU and reduced initialization time to 9.3 s. The nvprof profiler
shows that we called the OpenMP target region in omp attach 103,644 times.

46 C. Daley et al.

This implies that LLVM/Clang present table lookup time slows down signifi-
cantly when the present table has O(100K) entries.

Attaching a device address to a device pointer - alternate method
void omp attach (void ∗∗ ptr)
{

void ∗dptr = ∗ptr ;
i f (dptr) {

#pragma omp ta rg e t data u s e d ev i c e p t r (dptr)
{

#pragma omp ta rg e t i s d e v i c e p t r (dptr)
{

∗ptr = dptr ;
}

}
}

}
omp attach ((void∗∗)& l ev e l −>exchange ghosts [shape] .

b locks [b lock] [b] . read . ptr) ;

Fig. 5. The function omp attach() attaches a device address to a device pointer with-
out creating an entry in the present table of the OpenMP runtime. The function
assumes it is passed the address of a pointer variable which is pointing to the host
address of a mapped variable. We use the use device ptr clause to obtain the device
address of the mapped variable. We then use an OpenMP target region to set the
device pointer to the device address of the mapped variable.

Add CUDA-Aware MPI: The expensive target update code path can be
avoided by exchanging GPU data between processes using CUDA-aware MPI
communication. CUDA-aware MPI simplifies the OpenMP source code because
it only involves adding a target data region with a use device ptr clause to
pass the device address of a data buffer to a MPI communication call. The use
of CUDA-aware MPI improved performance by 1.3x on Cori-GPU. However,
CUDA-aware MPI is a capability that is not available in all MPI libraries.

SPMDize Kernels: The LLVM/Clang OpenMP compiler is known to per-
form poorly when there is user code in between target and parallel OpenMP
directives [33]. As mentioned in Sect. 3.2, this code pattern happens frequently in
HPGMG. It is possible to use the faster LLVM/Clang “SPMD” code generation
scheme by creating all parallelism upfront to ensure that all threads execute
the same code. It is impractical for us to use a combined teams distribute
parallel for construct in the HPGMG OpenMP target regions because this
would omit worksharing of the fine-grained loop over threads. Therefore we
used strictly nested teams and parallel constructs with a manual distribu-
tion of the coarse-grained loop over teams based on the team ID. This was
done because the OpenMP specification does not provide a combined teams
distribute parallel construct and specifies that the distribute construct
must be strictly nested inside a teams region. The SPMD code transforma-
tion improved LLVM/Clang performance by 2.2x on Cori-GPU. There was no

Porting HPGMG to OpenMP Target Offload 47

benefit to the XL compiler because this compiler already implements interpro-
cedural static compiler analysis to determine when all threads execute the same
code [34].

6 Discussion

In this section we discuss whether the abstractions provided by the OpenMP
specification were sufficient for our coding exercise as well as OpenMP compiler
maturity and performance.

6.1 Assessment of OpenMP Abstractions

The directives and runtime API functions provided by the OpenMP specification
enabled us to translate CUDA kernels into OpenMP target offload regions. They
also enabled us to successfully implement explicit data management in a code
that uses nested data structures with many pointer fields. We are concerned that
only a small minority of users will be able to explicitly manage data movement
in CPU/GPU systems in similarly complicated codes, however, this is no fault of
the OpenMP specification. The barrier to entry is significantly lowered by relying
on managed memory. We demonstrated that today’s compilers correctly inter-
operate with CUDA managed memory and we are looking forward to compilers
eventually supporting requires unified shared memory OpenMP directive to
eliminate the need to mix OpenMP with lower-level non-portable APIs.

The only abstractions that could benefit similar coding efforts are related
to performance. We found that a manual implementation of acc attach in
OpenMP enabled us to create a complicated data structure on the device in
less time and assisted the LLVM/Clang OpenMP runtime to more quickly find
the association between host and device addresses. However, this API func-
tion was only necessary because of a significant bottleneck in the LLVM/Clang
present table implementation. We found that a manual implementation of a
teams distribute parallel combined construct enabled us to use a faster
LLVM/Clang code generation scheme for most of the HPGMG functions con-
taining OpenMP target offload, however, it was detrimental to the performance
of XL generated compute kernels.

6.2 Assessment of Compiler Maturity and Performance

We encountered issues with XL and CCE compilers which limited the OpenMP
target offload results in Sect. 5. The only compiler which successfully com-
piled and executed the explicit data management version of HPGMG was
LLVM/Clang (versions prior to LLVM/Clang-11.0.0 also had issues [19]). We
found that the XL-compiled managed memory version of HPGMG achieved
0.70x of HPGMG-CUDA performance. This is encouraging because we made
no specific optimizations to achieve high performance with the managed mem-
ory version of the code. The LLVM/Clang compiler performed poorly with the

48 C. Daley et al.

managed memory code version and abysmally with the initial explicit data man-
agement code version on both computing platforms.

We optimized the initial explicit data management code to achieve higher
performance with the LLVM/Clang compiler: 2.04x of HPGMG-CUDA perfor-
mance on Cori-GPU and 0.73x of HPGMG-CUDA performance on Summit. It
should be mentioned that this is not the fairest of comparisons because HPGMG-
CUDA does not include explicit data management to enable efficient bulk data
transfers between CPU and GPU. One concern we have about our optimizations
for LLVM/Clang are that they are unintuitive to the average OpenMP program-
mer and should instead be performed by a tuned OpenMP compiler and runtime.
The runtime overheads in LLVM/Clang included excessive time spent in device
memory management functions and a slow present table implementation (we
have reported this issue [20]). Neither the CCE or XL compiler use device mem-
ory management functions as frequently as the LLVM/Clang compiler. We have
not been able to test whether the same present table bottleneck exists in the
CCE or XL compilers yet. The LLVM/Clang compiler also generated relatively
slow device code without our manual SPMD code transformation. This hopefully
will not be needed for much longer, since a prototype exists to use the faster
code generation scheme in LLVM/Clang [11].

7 Conclusion

This paper describes how we ported HPGMG from CUDA to OpenMP target
offload, added explicit data management, measured performance with multiple
OpenMP compiler and runtimes on two different node architectures, and finally
optimized HPGMG performance when using LLVM/Clang. Our work shows that
OpenMP target offload compiler and runtimes still need to fix compiler bugs,
implement more complete OpenMP 5.0 feature support, efficiently compile a
broader range of application usage of OpenMP directives, and fix overheads in
OpenMP runtimes. However, there were positive performance results compared
to HPGMG-CUDA (managed memory CUDA implementation of HPGMG): the
XL-compiled managed memory version of HPGMG achieved 0.70x of HPGMG-
CUDA performance on Summit, and the LLVM/Clang-compiled explicit data
management version of HPGMG achieved 2.04x of HPGMG-CUDA performance
on Cori-GPU and 0.73x of HPGMG-CUDA performance on Summit.

Acknowledgments. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231. This research also
used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office
of Science User Facility supported under Contract DE-AC05-00OR22725. The authors
would like to thank Mat Colgrove of NVIDIA for the initial development of an explicit
data management version of HPGMG using OpenACC. The authors would also like
to thank Brian Friesen of LBNL for installing CUDA-aware versions of OpenMPI for
several different compiler stacks.

Porting HPGMG to OpenMP Target Offload 49

References

1. Adams, M., Brown, J., Shalf, J., Van Straalen, B., Strohmaier, E., Williams, S.:
HPGMG (2020). https://bitbucket.org/hpgmg/hpgmg

2. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput.: Pract. Exp. 22(6), 685–701 (2010). https://
doi.org/10.1002/cpe.1553

3. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Van Andel, E.: Nyx: a massively
parallel AMR code for computational cosmology. Astrophys. J. 765, 39 (2013).
https://doi.org/10.1088/0004-637X/765/1/39

4. Beckingsale, D.A., et al.: RAJA: portable performance for large-scale scientific
applications. In: 2019 IEEE/ACM International Workshop on Performance, Porta-
bility and Productivity in HPC (P3HPC), pp. 71–81, November 2019. https://doi.
org/10.1109/P3HPC49587.2019.00012

5. Bercea, G.T., Bataev, A., Eichenberger, A.E., Bertolli, C., O’Brien, J.K.: An open-
source solution to performance portability for Summit and Sierra supercomputers.
IBM J. Res. Dev. 64(3/4), 12:1–12:23 (2020)

6. Bercea, G.T., et al.: Performance analysis of OpenMP on a GPU using a CORAL
proxy application. In: Proceedings of the 6th International Workshop on Perfor-
mance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems, PMBS 2015. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2832087.2832089

7. Budiardja, R.D., Cardall, C.Y.: Targeting GPUs with OpenMP directives on sum-
mit: a simple and effective Fortran experience. Parallel Comput. 88, 102544 (2019)

8. Colgrove, M., Wolfe, M.: Personal Communication, May 2020
9. Crayport: Case 247291 - Cray CCE-9.0.0 has OpenMP offload bugs when mapping

structs (2020). https://portal.cray.com
10. Crayport: Case 256571 - Test program must be compiled at -O0 when using

CCE/9.1.0 (2020). https://portal.cray.com
11. Doerfert, J., Diaz, J.M.M., Finkel, H.: The TRegion interface and compiler opti-

mizations for OpenMP target regions. In: Fan, X., de Supinski, B.R., Sinnen,
O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 153–167. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 11

12. Grinberg, L., Bertolli, C., Haque, R.: Hands on with OpenMP4.5 and unified mem-
ory: developing applications for IBM’s Hybrid CPU + GPU systems (part I). In:
de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2017. LNCS, vol. 10468, pp. 3–16. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65578-9 1

13. Grinberg, L., Bertolli, C., Haque, R.: Hands on with OpenMP4.5 and unified mem-
ory: developing applications for IBM’s hybrid CPU + GPU systems (part II). In:
de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2017. LNCS, vol. 10468, pp. 17–29. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65578-9 2

14. Hart, A.: First experiences porting a parallel application to a hybrid supercomputer
with OpenMP4.0 device constructs. In: Terboven, C., de Supinski, B.R., Reble, P.,
Chapman, B.M., Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 73–85.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24595-9 6

15. Hayashi, A., Shirako, J., Tiotto, E., Ho, R., Sarkar, V.: Performance evaluation of
OpenMP’s target construct on GPUS - exploring compiler optimisations. Int. J.
High Perform. Comput. Network. 13(1), 54–69 (2019). https://doi.org/10.1504/
IJHPCN.2019.097051

https://bitbucket.org/hpgmg/hpgmg
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1088/0004-637X/765/1/39
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1145/2832087.2832089
https://portal.cray.com
https://portal.cray.com
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-319-65578-9_1
https://doi.org/10.1007/978-3-319-65578-9_1
https://doi.org/10.1007/978-3-319-65578-9_2
https://doi.org/10.1007/978-3-319-65578-9_2
https://doi.org/10.1007/978-3-319-24595-9_6
https://doi.org/10.1504/IJHPCN.2019.097051
https://doi.org/10.1504/IJHPCN.2019.097051

50 C. Daley et al.

16. Juckeland, G., et al.: From describing to prescribing parallelism: translating the
SPEC ACCEL OpenACC suite to OpenMP target directives. In: Taufer, M., Mohr,
B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 470–488.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6 33

17. Karlin, I., et al.: Early experiences porting three applications to OpenMP 4.5.
In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS,
vol. 9903, pp. 281–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45550-1 20

18. Vergara Larrea, V.G., et al.: Scaling the summit: deploying the world’s fastest
supercomputer. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC
High Performance 2019. LNCS, vol. 11887, pp. 330–351. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34356-9 26

19. LLVM Bugzilla: Bug 44390 - Incorrect OpenMP target offload code at > -O0
optimization (2020). https://bugs.llvm.org

20. LLVM Bugzilla: Bug 46107 - Poor present table performance (2020). https://bugs.
llvm.org

21. Martineau, M., McIntosh-Smith, S., Gaudin, W.: Evaluating OpenMP 4.0’s effec-
tiveness as a heterogeneous parallel programming model. In: 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp.
338–347 (2016)

22. Martineau, M., McIntosh-Smith, S.: The productivity, portability and performance
of OpenMP 4.5 for scientific applications targeting Intel CPUs, IBM CPUs, and
NVIDIA GPUs. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 185–200. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65578-9 13

23. Martineau, M., et al.: Performance analysis and optimization of Clang’s OpenMP
4.5 GPU support. In: Proceedings of the 7th International Workshop on Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computing
Systems, PMBS 2016, pp. 54–64. IEEE Press (2016)

24. Martineau, M., Price, J., McIntosh-Smith, S., Gaudin, W.: Pragmatic perfor-
mance portability with OpenMP 4.x. In: Maruyama, N., de Supinski, B.R., Wahib,
M. (eds.) IWOMP 2016. LNCS, vol. 9903, pp. 253–267. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45550-1 18

25. Mishra, A., Li, L., Kong, M., Finkel, H., Chapman, B.: Benchmarking and evalu-
ating unified memory for OpenMP GPU offloading. In: Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC. LLVM-HPC 2017. Asso-
ciation for Computing Machinery, New York (2017). https://doi.org/10.1145/
3148173.3148184

26. Monsalve Diaz, J.M., Friedline, K., Pophale, S., Hernandez, O., Bernholdt, D.,
Chandrasekaran, S.: Analysis of OpenMP 4.5 offloading in implementations: cor-
rectness and overhead. Parallel Comput. 89, 102546 (2019). https://doi.org/10.
1016/j.parco.2019.102546

27. NERSC: Cori GPU Nodes (2020). https://docs-dev.nersc.gov/cgpu/
28. OLCF Support: IBM ticket TS003552272 - IBM compiler OpenMP target offload

data management bug (2020)
29. OpenMP Architecture Review Board: OpenMP application programming inter-

face version 5.0, November 2018. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf

https://doi.org/10.1007/978-3-319-46079-6_33
https://doi.org/10.1007/978-3-319-45550-1_20
https://doi.org/10.1007/978-3-319-45550-1_20
https://doi.org/10.1007/978-3-030-34356-9_26
https://bugs.llvm.org
https://bugs.llvm.org
https://bugs.llvm.org
https://doi.org/10.1007/978-3-319-65578-9_13
https://doi.org/10.1007/978-3-319-45550-1_18
https://doi.org/10.1145/3148173.3148184
https://doi.org/10.1145/3148173.3148184
https://doi.org/10.1016/j.parco.2019.102546
https://doi.org/10.1016/j.parco.2019.102546
https://docs-dev.nersc.gov/cgpu/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Porting HPGMG to OpenMP Target Offload 51

30. Pennycook, S.J., Sewall, J.D., Hammond, J.R.: Evaluating the impact of pro-
posed OpenMP 5.0 features on performance, portability and productivity. In: 2018
IEEE/ACM International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), pp. 37–46 (2018)

31. Rabbi, F., Daley, C.S., Aktulga, H.M., Wright, N.J.: Evaluation of directive-based
GPU programming models on a block eigensolver with consideration of large
sparse matrices. In: Wienke, S., Bhalachandra, S. (eds.) WACCPD 2019. LNCS,
vol. 12017, pp. 66–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
49943-3 4

32. Sakharnykh, N., Wang, P., Williams, S.: HPGMG-CUDA (2020). https://
bitbucket.org/nsakharnykh/hpgmg-cuda

33. The Clang Team: Clang 11 Documentation, OpenMP Support (2020). https://
clang.llvm.org/docs/OpenMPSupport.html

34. Tiotto, E., Mahjour, B., Tsang, W., Xue, X., Islam, T., Chen, W.: OpenMP 4.5
compiler optimization for GPU offloading. IBM J. Res. Dev. 64(3/4), 14:1–14:11
(2020)

35. Vergara Larrea, V.G., Budiardja, R.D., Gayatri, R., Daley, C., Hernandez, O.,
Joubert, W.: Experiences in porting mini-applications to OpenACC and
OpenMP on heterogeneous systems. Concurr. Comput.: Pract. Exp. e5780
(2020). https://doi.org/10.1002/cpe.5780. https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.5780. [Published online ahead of print (24 April 2020)]

36. Wolfe, M., Lee, S., Kim, J., Tian, X., Xu, R., Chandrasekaran, S., Chapman, B.:
Implementing the OpenACC data model. In: 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 662–672, May
2017. https://doi.org/10.1109/IPDPSW.2017.85

https://doi.org/10.1007/978-3-030-49943-3_4
https://doi.org/10.1007/978-3-030-49943-3_4
https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://clang.llvm.org/docs/OpenMPSupport.html
https://clang.llvm.org/docs/OpenMPSupport.html
https://doi.org/10.1002/cpe.5780
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5780
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5780
https://doi.org/10.1109/IPDPSW.2017.85

	A Case Study of Porting HPGMG from CUDA to OpenMP Target Offload
	1 Introduction
	2 Related Work
	3 The HPGMG Mini Application
	3.1 HPGMG-CUDA
	3.2 Porting HPGMG-CUDA to OpenMP Target Offload
	3.3 Adding Explicit Data Management to HPGMG

	4 Experimental Methodology
	4.1 Hardware and Software Environment
	4.2 Application Configuration

	5 Performance Evaluation
	5.1 Performance When Using Managed Memory
	5.2 Performance When Using Explicit Data Management

	6 Discussion
	6.1 Assessment of OpenMP Abstractions
	6.2 Assessment of Compiler Maturity and Performance

	7 Conclusion
	References

