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Abstract. Many modern supercomputers such as ORNL’s Summit,
LLNL’s Sierra, and LBL’s upcoming Perlmutter offer or will offer multi-
ple, e.g., 4 to 8, GPUs per node for running computational science and
engineering applications. One should expect an application to achieve
speedup using multiple GPUs on a node of a supercomputer over a sin-
gle GPU of the node, in particular an application that is embarrass-
ingly parallel and load imbalanced, such as AutoDock, QMCPACK and
DMRG++. OpenMP is a popular model used to run applications on
heterogeneous devices of a node and OpenMP 5.x provides rich fea-
tures for tasking and GPU offloading. However, OpenMP doesn’t pro-
vide significant support for running application code on multiple GPUs
efficiently, in particular for the aforementioned applications. We provide
different OpenMP task-to-GPU scheduling strategies that help distribute
an application’s work across GPUs on a node for efficient parallel GPU
execution. Our solution involves using OpenMP’s construct taskloop to
generate OpenMP tasks containing target regions for OpenMP threads,
and then having OpenMP threads assign those tasks to GPUs on a node
through a schedule specified by the application programmer. We analyze
the performance of our solution using a small benchmark code represen-
tative of the aforementioned applications. Our solution improves perfor-
mance over a standard baseline assignment of tasks to GPUs by up to
57.2%. Further, based on our results, we suggest OpenMP extensions
that could help an application programmer have his or her application
run on multiple GPUs per node efficiently.
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1 Introduction

Modern supercomputers for running computational science and engineering
applications are often comprised of compute nodes with accelerator devices.
Many of the supercomputers ranked on the latest Top500 list (http://www.
top500.org) and the Green500 list (http://www.green500.org) in November 2019
are equipped with an accelerator component such as the NVIDIA GPU. A com-
pute node in such a supercomputer often has multiple accelerators to further
improve the power-to-performance ratio. For example, ORNL’s supercomputer
Summit has 6 NVIDIA Volta-100 GPUs per compute node [5], and LBL’s Perl-
mutter will have nodes with 4 NVIDIA A100 GPUs and 2 AMD Milan GPUs [4].
This node architecture allows application programs to offload multiple compu-
tational kernels onto independent devices simultaneously and achieve significant
performance. Supercomputers with such a node architecture are often considered
as a leading candidate for running applications, in particular those applications
that are embarrassingly parallel and load imbalanced, and employing Monte
Carlo algorithms [3,26].

Accelerator programming languages such as CUDA, OpenCL, OpenMP, and
OpenACC are often used to offload kernels to devices [28]. OpenMP is one of the
most commonly used parallel programming models for on-node programming.
The current version of OpenMP, OpenMP 5.0, provides GPU offloading sup-
port [1]. However, multi-GPU OpenMP offload is limited by mapping a target
region for an accelerator to a specified device number of one of multiple devices
on a node explicitly when a target region is created. How can we create suit-
able software for applications to take advantage of multiple GPUs on a node in
a generic way, without mapping to specific devices, to leverage multiple GPUs
on the node and improve performance portability on systems with a different
number of devices per node?

This paper explores how to program multiple GPUs within a node by looking
at different task-to-GPU scheduling strategies to map computations to multiple
devices. Our solution involves using OpenMP’s tasking construct taskloop to
generate OpenMP tasks containing target regions for OpenMP threads, and
then having OpenMP threads assign or schedule those tasks to GPUs on a
node through a schedule specified by the application programmer, or a user
such as a performance engineer helping optimize an application. We analyze
the performance of our solution using a small OpenMP performance benchmark
code representative of the applications with Monte Carlo methods, in particular
AutoDock [15] and DMRG++ [13]. Applying our solution to our benchmark,
we improve performance over a standard baseline assignment of tasks to GPUs
up to 57.2%. Further, based on our results, we suggest OpenMP extensions that
could help application programmers have their applications use multiple GPUs

http://www.top500.org
http://www.top500.org
http://www.green500.org
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per node efficiently through OpenMP. We make the following contributions in
this work:

1. OpenMP task-to-GPU scheduling strategies that help distribute an applica-
tion’s computations across GPUs on a node, which provide significant per-
formance benefit over basic or naive approaches of assigning computations to
GPUs;

2. a framework for developing user-defined task-to-GPU scheduling strategies;
3. OpenMP extension proposals to support our approach of programming multi-

ple accelerators within a single node through taskloop and user-defined sched-
ules.

2 Motivation Through Use Case Applications

Distributing work and data across multiple GPUs on a node is challenging. We
have discovered applications that require work decomposition, often exemplified
by the computational motif, or pattern, of Monte Carlo Methods [3,26], to be
straightforward to map to multiple devices get significant performance benefit
from doing so. Below is a summary of applications that can benefit of a task
decomposition approach to deal with load imbalances across multiple GPUs. We
focus the first application due to its timeliness.

2.1 Autodock

In 2019, the emergence of a novel coronavirus (SARS-CoV-2) caused the Coro-
navirus Disease 2019 (COVID-19). This virus has become a major threat world-
wide due to its highly contagious nature. Molecular docking is one of the impor-
tant steps used in identifying candidate drugs against a virus like SARS-CoV-2.

AutoDock is a family of applications that perform this kind of docking.
AutoDock 4 [15] is the sequential version that is the baseline for improvements
due to parallelism. AutoDock Vina [24] achieves approximately two orders of
magnitude speed-up over AutoDock 4 through threaded parallelism, while also
significantly improving the accuracy of binding predictions. AutoDock 4.2 [22], or
Autodock-GPU, is based on OpenCL and simulates the molecular docking pro-
cess by predicting the ligand-receptor interactions. It uses a Lamarckian Genetic
Algorithm (LGA) to perform docking by offloading independent LGA executions
to a GPU.

During the docking of the receptor protein and the ligand molecule,
Autodock-GPU searches for a pose that has a satisfyingly low energy state, which
will be predicted by a scoring function. This is achieved by searching in the space
of the receptor-ligand pair’s conformational coordinates (position, orientation,
and torsion), using LGA. The search stops automatically after either reaching
a small standard deviation of the current best pose, a large number of genera-
tions, or a large number of scoring function evaluations, whichever comes first.
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In Autodock-GPU, the receptors are rigid and are modeled by static grid maps.
This limits the sizes of the search spaces, and makes the number of rotatable
bounds in the ligand one of the most influential factors on the search difficulty.
Due to the randomness of the genetic algorithm, experiments have shown that
the larger search space is correlated with higher variations in the time it takes
to find a good pose for a given receptor-ligand pair.
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Fig. 1. Variation in docking time when running the OpenCL version of Autodock-GPU
on NVIDIA Tesla V100, with local-search method ADADELTA.

We benchmarked Autodock-GPU on an NVIDIA Tesla V100 GPU, and
recorded the docking times for four different ligands on the same receptor, 30
runs for each pair. In the results presented in Fig. 1, large variations are observed:
the difference in run time for the same pair can vary from two times to more
than four times. Similar results can be observed for ligands with fewer amounts
of rotatable bounds, but with smaller variations.

Table 1. Mean, standard deviation and coefficient of variation of the docking time of
the tested ligands. The result of ligand SW04057 includes several outliers that were
not plotted in Fig. 1.

Ligand Rotatable bounds μ σ Coefficient of variation

SW04057 36 531.51 s 818.66 s 1.54

SW04119 22 494.38 s 185.39 s 0.37

SW04187 17 324.31 s 67.518 s 0.21

SW04306 36 1131.1 s 300.50 s 0.27

When docking is performed in a multi-GPU setup, each GPU typically pro-
cesses its own set of receptor-ligand pairs independently. Although this process
is embarrassingly parallel, the distribution of the docking times shown in Table 1
suggests that we should expect variations of at least 20% of the mean docking



OpenMP Tasking for Multi-GPUs 299

time. In the absence of a load balancing scheduler that distributes the receptor-
ligand pairs dynamically, the work could become unevenly distributed and thus
result in inefficient utilization of the GPUs.

2.2 DMRG++

Density Matrix Renormalization Group (DMRG++) [13] is a condensed matter
physics code which is used to study superconductive properties of materials.
One of the main computations of the application is a Hamiltonian matrix-vector
multiplication, where the elements of the Hamiltonian matrix contain vectors of
different sizes with symmetrical values to the diagonal part of the matrix that
are only known at runtime. The Hamiltonian matrix-vector operation can be
significantly optimized through using taskloop as it’s a sparse matrix-vector
multiplication and using OpenMP target regions to accelerate the inner matrix-
vector multiplications of each of element on multiple GPUs.

2.3 Formulating Our Problem with a Representative Benchmark

We develop an OpenMP benchmark kernel code in C that represents the afore-
mentioned applications’ computational pattern and that identifies their perfor-
mance bottlenecks1. Through this benchmark code, we apply the technique that
we want to experiment with. The benchmark code takes as input (1) a max-
imum problem dimension n of each computation and (2) the number of such
computations C. The benchmark’s work is to perform a set of C square rooted
vector multiplications, each of which are on vectors of sizes chosen randomly
from the set {1, 4, 9, . . . , n ∗ n}. The vector sizes are randomly generated and
stored in an array of integers before the computations start. Each of these C
computations resemble the multiplication of two matrices each of dimension
n for protein-ligand docking pairs in Autodock. The matrix dimensions of the
matrix multiplications in Autodock are of a variety of sizes and are generated
at runtime.

We augment the benchmark kernel with OpenMP offload features as follows.
OpenMP threads, each of which run on a core of a multi-core CPU, first ran-
domly choose the vector sizes. Then, each OpenMP thread offloads its prepared
work of the computations to a GPU. This offload is performed by enclosing the
benchmark’s computation in an OpenMP target region. Within each OpenMP
task of computation, we allocate the same amount of data and the same data
for running the computation on a GPU. The amount of data movement between
CPU and GPU across target regions is uniform. This uniform amount of data
movement is representative of the CPU-GPU data movement in the Autodock
application code.

With this augmented benchmark kernel code, we make the following observa-
tions. First, each vector multiplication is independent of the other, making this

1 A repository for the benchmark code, which includes the strategies in this paper, is
accessible at https://tinyurl.com/omp-ad-bench.

https://tinyurl.com/omp-ad-bench
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computation embarrassingly parallel. Second, the code isn’t using the remain-
ing GPUs on the node. Doing so could significantly speed up the code’s execu-
tion, especially considering the baseline performance numbers shown in Sect. 2.1.
Third, even if the code did use all the GPUs on the node, the code wouldn’t
use the GPUs efficiently due to load imbalance caused by the differently sized
computations, in particular given our observations from Sect. 2.1. Given these
observations, our objective is to have an application code use all computational
power of the node, specifically the GPUs, all the time, given the load imbalance
due to the high standard deviations of the timings across the computations. The
next section covers how we try to meet the objective of using all of the GPUs
all the time.

3 Using OpenMP Offload on Multiple GPUs Efficiently

The key idea of the solution is to have OpenMP threads generate work in well-
defined and standard units and then have one or more OpenMP threads work
together to dynamically map these units of work to GPUs. This section explains
our solutions and the baseline that we compare our solution to.

A basic way to run OpenMP offload code on multiple GPUs is by pre-
assigning each target region of computational work of the application to a device,
i.e., GPU, ID [21]. To run a set of 100 computations of our benchmark on nodes
with 6 GPUs, we can have an OpenMP thread assign the first 17 computations
to GPU 0, the next 17 to GPU 1, and so on. When running T computations on
a node of G GPUs, an OpenMP thread assigns the xth computation to device
ID �x∗G

T � through adding the clause device(x*G/T) to the target construct.
We call this strategy compact, and it is our baseline strategy.

Through a static assignment of computations to GPUs described in the previ-
ous paragraph, the benchmark code and application codes of Sect. 2.3 can have
load imbalance across, and an under-utilization of, the GPUs of a node. The
benchmark and application codes can utilize the GPUs more efficiently if the
computations are assigned dynamically to GPUs during the application’s execu-
tion [10,12,17]. To assign, or schedule, computations to GPUs dynamically, we
must find a way to encapsulate the computations in standardized units of work
that can be managed by the OpenMP threads to distribute to the GPUs. We
use the OpenMP tasking support already available in OpenMP for this purpose.

Figure 2 illustrates the dynamic OpenMP task-to-GPU scheduling strategy,
showing how OpenMP threads on a CPU manage and schedule an OpenMP task
to some GPU in the set of GPUs on a node. A taskloop construct is applied to
the loop that performs the computation in independent outer iterations, each of
which contains a target region. The red trapezoids in the figure are tasks gener-
ated from the taskloop construct, and the grey rectangle represents the queue
of taskloop. Each OpenMP thread on the CPU offloads a task of computation
in taskloop to a particular GPU by dequeueing the next available GPU from
a GPU queue, which is stored on the host. This GPU queue does not perform
cross-GPU synchronizations, thus avoiding GPU-to-GPU communication before
each execution of a task.
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Fig. 2. Conceptual diagram of OpenMP threads scheduling tasks to GPUs.

Figure 3 shows the implementation strategy for our task-to-GPU scheduling
technique. We wrap each OpenMP target region in an OpenMP task, as men-
tioned in the explanation of Fig. 2, and create a preceding and succeeding task for
management of computational tasks for the GPU queue. These three OpenMP
tasks are executed within each task in the taskloop. OpenMP threads of the
parallel region assign the computational task of each task of the taskloop to
GPUs through the function gpu scheduler dyn(). The function doWork() is the
function for doing the square rooted vector multiplication computation in our
benchmark.

Figure 4 shows the code change to a generic application for using the task-
to-GPU dynamic scheduling strategy, which we implemented in the application
code. An OpenMP thread running on the CPU invokes this function, and then
waits in the while loop looking for an available GPU by repeatedly going through
the array occupancies for the GPUs. Note that all the OpenMP threads are
cycling through the same array occupancies, so atomic operations are used
to avoid any data races/locks. If a GPU is busy, the thread just moves on and
checks the next GPU. The thread keeps doing this until it sees the first GPU with
occupancy of zero in the GPU queue. Other strategies, which may provide better
load balance along with low overhead of data movement or coordination [11,14],
can be defined and used by programmers or application developers alike.

4 Results

The benchmark was experimented with on SeaWulf, a cluster at Stony Brook
University. We chose SeaWulf because it is representative of some of the modern
supercomputers with multiple GPUs per node such as Summit, Sierra and the
upcoming machine Perlmutter at NERSC, which run the applications discussed
in Sect. 2. Also, the cluster was readily available for our experiments. SeaWulf
has nodes with 8 NVIDIA K80 GPUs with 12 GB memory and CUDA 10.0.130
and a 28-core Intel Xeon E5-2683 v3 CPU (2 × 14-core). We use the clang/L-
LVM OpenMP compiler, cloned from the GitHub master branch, commit hash
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1 #pragma omp parallel

2 {

3 #pragma omp single

4 {

5 #pragma omp taskloop shared(success)

6 for (int i = 0; i < numTasks; i++) {

7 const int dev = gpu_scheduler_dyn(occupancies , ndevs);

8 output[i] = 0;

9 #pragma omp task depend(out : success[i])

10 {

11 success[i] = 0;

12 }

13 #pragma omp task depend(inout : success[i])

14 {

15 #pragma \)ved(ecivedtegratpmo

16 map(to: a[0: arrSize], b[0: arrSize], c[0: arrSize ]) \

17 map(tofrom: success[i:1], output[i:1], taskWork[i:1],

occupancies[dev :1])

18 {

19 devices[dev ]++;

20 if (taskWork[i] > probSize) taskWork[i] = probSize;

21 const int NN = taskWork[i];

22 output[i] = doWork(c, a, b, taskWork[i]);

23 success[i] = 1;

24 }

25 }

26 #pragma omp task depend(in : success[i])

27 {

28 #pragma omp atomic

29 occupancies[dev]--;

30 }

31 }

32 }

33 }

Fig. 3. Implementation for task-to-GPU scheduling.

86e3abc9. We use clang/LLVM due to its support of OpenMP features for task-
ing and devices. In performing our experiments, we aim to answer the question
of whether sophisticated task-to-GPU scheduling on a node with multiple GPUs
provides a performance benefit over the baseline approach of statically assigning
tasks to GPUs.

In our experiments, we show results for four strategies of assigning OpenMP
target regions to GPUs. We show the compact strategy which involves a straight-
forward static assignment of target regions to GPUs, as discussed in Sect. 3.
We show a round-robin task-to-GPU scheduling strategy that has OpenMP
threads of the taskloop assigning tasks to GPUs in a round-robin fashion,
with a scheduler function named gpu scheduler rrb() returning taskID %
ngpus, where taskID is the task number taken as another input parameter
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1 unsigned gpu_scheduler_dyn( unsigned *occupancies , int ngpus)

2 {

3 short looking = 1;

4 unsigned chosen;

5 while (looking) {

6 for (unsigned i = 0; i < ngpus; i++) {

7 unsigned occ_i;

8 #pragma omp atomic read

9 occ_i = occupancies[i];

10 if (occ_i == 0) {

11 chosen = i;

12 #pragma omp atomic

13 occupancies[chosen ]++;

14 looking = 0;

15 break;

16 }

17 }

18 }

19 return chosen;

20 }

Fig. 4. Implementation of user-defined task-to-GPU schedule.

by the scheduler and ngpus is the number of GPUs on a node. Additionally,
we show a random scheduling strategy in which an OpenMP thread assigns a
task to a GPU by choosing a GPU randomly, with a scheduler function named
gpu scheduler ran() returning rand() % ngpus. Finally, we show the dynamic
scheduling strategy described through Fig. 4.

(a) Max problem size 1000. (b) Max problem size 3400.

Fig. 5. Execution times for different task-to-GPU scheduling strategies on 8 GPUs of
a node of SeaWulf.
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4.1 Impact of Task-to-GPU Scheduling Strategies

We assess the impact on performance of the four different task-to-GPU assign-
ment strategies we designed, by applying them to the benchmark code presented
in Sect. 3.

Figure 5a shows results of the benchmark for 500 target regions for vector
sizes from 1 to 10002 and run using the 8 GPUs on a SeaWulf node. We see
that when we use random, the execution time reduces significantly from 3.96 s
to 2.54 s, an improvement of 35.49%. Compared to random, round robin offers a
comparable but larger improvement, 38.89% relative to compact (the baseline).
When we use dynamic, the time decreases further, providing the best perfor-
mance improvement over our baseline, 54.61%.

Figure 5b shows the results of the same square root vector addition bench-
mark on the same platform, this time with 500 target regions for various vec-
tors between size 1 and 34002. Here, the round-robin strategy provides a 45.8%
improvement (reducing from the baseline of 241.22 s to 130.76 s). When we use
dynamic, the time decreases significantly, improving performance by 57.2%.

From these results, we make a few observations. First, for both problem sizes,
a large amount of the performance gains come from using a task-based approach
in which OpenMP threads distribute tasks across GPUs through the sophisti-
cated task-to-GPU scheduling strategies, specifically, random, round-robin and
dynamic. Second, round-robin performs slightly better than random, showing
that a calculated and predefined strategy rather than a randomized strategy is
important when using tasking, though it isn’t tremendously significant. Third,
dynamic shows a more pronounced benefit over random and round-robin, telling
us that a dynamic task-to-GPU scheduling strategy, in particular one which
is carefully implemented to maintain low coordination overhead, can provide a
significant performance benefit.

4.2 Detailed Profiling

To understand utilization of all GPUs and overhead of the runtime and task-to-
GPU scheduler, we did manual instrumentation with the CUDA Profiling Tools
Interface (CUPTI), specifically through using the SOLLVE V&V suite’s [2] tim-
ing implementation and interface for CUPTI. Through CUPTI, CUDA invokes
user-defined callbacks to record start/finish timestamps of various events. There
are many high-level activity categories: DEVICE, CONTEXT, DRIVER, RUN-
TIME, MEMCPY, MEMSET, KERNEL, OVERHEAD. We inserted a timing
function from the interface at the beginning and at the end of the task of the
target region. To understand GPU utilization and overhead, we focus on the
DRIVER, OVERHEAD, and MEMCPY activity, by searching the resulting out-
put of the SOLLVE V&V interface. We experiment with just the smaller of the
two problem sizes, as for the larger of the two problem sizes, CUPTI created
large amounts of overhead, making it difficult for us to understand the benefits
of our approach.
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Table 2 shows the timings, in nanoseconds, obtained through the CUPTI
Activity API. We see that the DRIVER operations, which includes CUDA con-
text/stream activities and synchronizations, dominate the execution time, and
this is also the main source of reduction in execution time, as timings in this
category are orders of magnitude larger than those in other categories. There
are some variations in the MEMCPY category, which could be the result of
combining GPU-to-socket locality issues and our locality-unaware schedulers.
The OVERHEAD category captures the driver compiler’s activity, buffer flush
overhead and the instrumentation overhead. We have yet to identify the source
of reductions in this category due to perturbation from the instrumentation
itself. From these timings, we see that our sophisticated OpenMP task-to-GPU
scheduling strategies are relevant not just from a standpoint of load balancing,
but also from a standpoint of GPU resource management and reducing overhead.

Table 2. Execution activity breakdown using CUPTI (nanoseconds)

Scheduler DRIVER MEMCPY OVERHEAD

Compact 23654161998 7393960 189489499

RoundRobin 16634552748 8526436 248582086

Random 17742577658 8085590 208329746

Dynamic 14229831142 6374549 171728914

5 Discussion on Results and Proposed Extensions

A key question that arises from our implementation and results is how we extend
OpenMP to support of task scheduling for multi-GPUs, for ease of use by appli-
cation programmers. There are different aspects to this, and we cover them in
this section.

First, we need support for a single OpenMP construct to offload asynchronous
target regions on multiple devices. In our implementation, we partition work
across GPUs by leveraging the taskloop construct, associating one thread with
a task of taskloop and then having that thread assign the task to a GPU. We
used taskloop in our implementation for the strategy because we know through
the OpenMP Community [1] that there is a potential that tasking constructs
and target constructs will be unified. However, right now, a problem exists with
executing each of the tasks on any of the GPUs and keeping track of the correct
device contexts used by the OpenMP tasks that offload the different target
regions on multiple GPUs. For example, if a CPU task is scheduled a different
thread, then after a target region with a nowait clause is offloaded, there could be
issues with the GPU contexts when running on multiple devices. We found this
issue with some OpenMP implementations, where we had to comment out the
nowait clause on the target construct to make our benchmark work on multiple
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devices. We are aware of ongoing efforts in the LLVM OpenMP community [6] to
improve the support of nowait with tasks, in particular in the context of multiple
GPUs. We expect that our results can further improve with these improvements
in the OpenMP library implementation.

Second, our approach could have less overhead, and could also require less
programmer effort, if OpenMP’s taskloop construct was extended so that it
could handle the scheduling of target regions to GPUs and avoid additional lev-
els of nested tasks. In our current implementation, we have two levels of tasking.
The lower level is for the target and the higher level is for coordination of the
tasks of taskloop. We could reduce the possible overhead and reduce the pro-
gramming complexity by eliminating one of these two levels. A possible extension
of taskloop is to create a target taskloop construct that will automatically
manage the assignment of tasks to GPUs using grainsize or num tasks as
scheduling strategies supported by OpenMP implementations and that can be
specified in the construct. We may also want to extend the taskloop construct
to support pipelines where the body of the taskloop can contain dependent
tasks that execute on both the CPU and GPU.

Third, in this work, we showed the need for a specialized task-to-GPU
scheduling strategy using atomics. Such a specialized strategy can be imple-
mented with an OpenMP user-defined task-to-GPU schedule in a similar fashion
as has been proposed in [18]. The user could define her task-to-GPU schedule in
an application by implementing a function gpu scheduler X(), with a pointer
to a record as a parameter to the function. The user could then specify the
schedule X in a clause of taskloop. We note that better atomic instructions
such as compare-and-swap can also help make developing such schedules easier.

Lastly, our approach can benefit from an affinity clause for taskloop which
could work hand-in-hand with the proposed user-defined task-to-GPU schedules.
The affinity clause would reduce data movement from CPU to GPU, and signifi-
cantly improve performance when data has been mapped to a specific device. We
need to assess various design issues given the application for this kind of affin-
ity which include a study of task-to-data, task-to-device and thread-to-device
affinity. For example, for Autodock, the tasks doing docking for a ligand will
be assigned to the GPU on which that data already resides through the affinity
clause hint, which would allow for improved locality through reuse of the data.

6 Related Work

Existing accelerator programming libraries support only a single accelerator.
However, several methods deal with multiple accelerators by using the libraries
together with parallel programming libraries for hosts. One example method is
to spawn multiple threads using OpenMP on host, and each thread deals with
one accelerator [9,16,27]. Another is to spawn multiple processes using MPI on
host, with each process dealing with one accelerator [7,27].

Xu et al. [28] propose an OpenACC extension to support multiple accel-
erators. Although the OpenACC extension supports communication between
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accelerators, dividing data and tasks manually is needed. Komoda et al. [20]
propose another OpenACC extension that supports dividing data and tasks into
multiple accelerators. Furthermore, its compiler has a mechanism to keep data
consistency on the accelerator memory automatically. However, the OpenACC
extension can be used only before the loop statement. So, the OpenACC exten-
sion cannot offload data to an arbitrary device, as in our work. Scogland [25]
developed directive extensions to support scheduling work on multiple GPUs
and multi-cores using the a runtime called coreTStar. The extension partitions
loop iterations and its data across multiple devices and CPU threads.

Matsumura et al. [8] develop anOpenACCcompiler system to generate anOpe-
nACC code for multiple accelerators from an OpenACC code for a single accelera-
tor automatically. However, there are some limitations. For example, a loop state-
ment that can be divided is composed only of affine access. Nakao et el. [23] develop
an XcalableACC directive-based language for accelerated clusters which gives an
ability to use multiple accelerators on a single node. In contrast, our work allows for
sophisticated scheduling strategies that the user to define within the application
code.

7 Conclusions

In this work, we presented methods to use all GPUs of a node of an HPC clus-
ter efficiently through OpenMP, particularly for applications that are embar-
rassingly parallel and load imbalanced, which are characteristics of the compu-
tational pattern of Monte Carlo Methods and exemplified by the applications
Autodock and DMRG++. Our solution involves encapsulating each OpenMP
target region containing a computation within an OpenMP task, and then hav-
ing OpenMP threads assign the OpenMP tasks to GPUs on a node through a
user-level task-to-GPU schedule. Through experimenting with our approach, our
results provide up to a 57.2% performance improvement. Our results suggest the
usefulness of OpenMP tasking across GPUs on a node.

Our technique focuses on scheduling tasks across GPUs rather than schedul-
ing of Thread Blocks to Stream Multiprocessors (SMs), i.e., scheduling within a
GPU. An extension to our approach that combines scheduling across GPUs
and scheduling within GPUs will be written for future work. We will also
incorporate our techniques within relevant application codes, e.g., Autodock,
DMRG++ [13,19,22]. We will work to propose new extensions in OpenMP, par-
ticularly implementing them in the LLVM OpenMP compiler and supporting
OpenMP implementations that allow users to easily use our approach. We will
look at the impact of and tune the taskloop’s grain-size. Finally, we will look at
using or adapting the affinity clause to easily reduce data movement overheads
of our task-to-GPU scheduling strategies. The affinity clause will give a hint to
the task scheduler about placing a task on the most appropriate GPU based on
the GPU context.

Acknowledgements. This research was supported in part by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy



308 V. Kale et al.

Office of Science and the National Nuclear Security Administration, in particular its
subproject on Scaling OpenMP with LLVm for Exascale performance and portability
(SOLLVE). It is also supported in part by NSF project 1409946 “Compute on Data
Path”. This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, under contract
number DE-AC05-00OR22725. This research used resources of the Oak Ridge Leader-
ship Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. The authors would like to thank Stony Brook Research Computing and
Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony
Brook University for access to the high-performance SeaWulf computing system, which
was made possible by a $1.4M National Science Foundation grant (#1531492). We
want to thank Jeremy Smith and Ada Sedova, from Oak Ridge National Laboratory,
for providing a small sample of input sets for the Autodock-GPU experiments to help
us study the application workload. We acknowledge the QMCPACK team at ORNL
for discussing their code with respect to application load imbalances.

References

1. OpenMP 5.0 Reference Guide. https://www.openmp.org/wp-content/uploads/
OpenMPRef-5.0-1119-01-TSK-web.pdf

2. OpenMP Verification and Validation Suite. https://github.com/SOLLVE/sollve
vv

3. Parallel Computational Pattern: Monte Carle Methods. https://patterns.eecs.
berkeley.edu/?page id=186

4. Perlmutter User Guide. https://www.nersc.gov/systems/perlmutter/
5. Summit User Guide. https://docs.olcf.ornl.gov/systems/summit user guide.html
6. The LLVM Compiler Infrastructure. http://llvm.org/
7. Optimizing MPI Communication on Multi-GPU Systems Using CUDA Inter-

Process Communication (2012)
8. Matsumura, K., Sato, M., Boku, T., Podobas, A., Matsuoka, S.: MACC: an Ope-

nACC transpiler for automatic multi-GPU use. In: Yokota, R., Wu, W. (eds.)
SCFA 2018. LNCS, vol. 10776, pp. 109–127. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-69953-0 7

9. Beyer, J., de Supinski, B.R.: IWOMP 2016 tutorial: OpenMP accelerator
model (2016). http://iwomp2016.riken.jp/wp-content/uploads/2016/10/tutorial-
accelerator.pdf

10. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1995)

11. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, pp. 99–105, Lund, Sweden
(1999)

12. Ciorba, F.M., Iwainsky, C., Buder, P.: OpenMP loop scheduling revisited: making
a case for more schedules. ArXiv arxiv:1809.03188 (2018)

13. Criado, J., et al.: Optimization of condensed matter physics application with
OpenMP tasking model. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman,
N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 291–305. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28596-8 20

https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf
https://github.com/SOLLVE/sollve_vv
https://github.com/SOLLVE/sollve_vv
https://patterns.eecs.berkeley.edu/?page_id=186
https://patterns.eecs.berkeley.edu/?page_id=186
https://www.nersc.gov/systems/perlmutter/
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
http://llvm.org/
https://doi.org/10.1007/978-3-319-69953-0_7
https://doi.org/10.1007/978-3-319-69953-0_7
http://iwomp2016.riken.jp/wp-content/uploads/2016/10/tutorial-accelerator.pdf
http://iwomp2016.riken.jp/wp-content/uploads/2016/10/tutorial-accelerator.pdf
http://arxiv.org/abs/1809.03188
https://arxiv.org/abs/1809.03188
https://doi.org/10.1007/978-3-030-28596-8_20


OpenMP Tasking for Multi-GPUs 309

14. Donfack, S., Grigori, L., Gropp, W.D., Kale, V.: Hybrid static/dynamic scheduling
for already optimized dense matrix factorization. In: 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 496–507 (2012)

15. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy
force field with charge-based desolvation. J. Comput. Chem. 28, 1145–1152 (2007)

16. Guan, J., Yan, S., Jin, J.M.: An OpenMP-CUDA implementation of multilevel
fast multipole algorithm for electromagnetic simulation on multi-GPU computing
systems. IEEE Trans. Antennas Propag. 61(7), 3607–3616 (2013)
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