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Abstract. In the high performance computing sector, researchers and
application developers expend considerable effort to port their applica-
tions to GPU-based clusters in order to take advantage of the massive
parallelism and energy efficiency of a GPU. Unfortunately porting or
writing an application for accelerators, such as GPUs, requires extensive
knowledge of the underlying architectures, the application/algorithm and
the interfacing programming model, such as CUDA, HIP or OpenMP.
Compared to native GPU programming models, OpenMP has a shorter
learning curve, is portable and potentially also performance portable.
To reduce the developer effort, OpenMP provides implicit data transfer
between CPU and GPU. OpenMP users may control the duration of a
data object’s allocation on the GPU via the use of target data regions,
but they do not need to. Unfortunately, unless data mappings are explic-
itly provided by the user, compilers like Clang move all data accessed
by a kernel to the GPU without considering its prior availability on the
device. As a result, applications may spend a significant portion of their
execution time on data transfer. Yet exploiting data reuse opportunities
in an application has the potential to significantly reduce the overall exe-
cution time. In this paper we present a source-to-source tool that auto-
matically identifies data in an OpenMP program which do not need to
be transferred between CPU and GPU. The tool capitalizes on any data
reuse opportunities to insert the pertinent, optimized OpenMP target

data directives. Our experimental results show considerable reduction
in the overall execution time of a set of micro-benchmarks and some
benchmark applications from the Rodinia benchmark suite. To the best
of our knowledge, no other tool optimizes OpenMP data mappings by
identifying and exploiting data reuse opportunities between kernels.

Keywords: Compiler optimization · GPU · Offloading · Compiler ·
HPC · OpenMP · Clang · LLVM · Data reuse · Data transfer

1 Introduction

GPUs are well known for their massively parallel architectures, as well as excep-
tional performance and energy efficiency for suitable codes. Supercomputing
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clusters like Summit [31] derive the lion’s share of their compute power from
GPUs. Each of the 4,608 nodes of Summit is configured with 2 IBM POWER9
processors and 6 NVIDIA Tesla V100 GPUs. For the last two decades, GPUs
are the preferred accelerator in the high performance computing (HPC) sector,
where they serve as a co-processor to accelerate general-purpose scientific and
engineering application codes. Today, they expedite computational workloads in
cutting-edge scientific research in diverse areas such as Physics, Bioinformatics,
Chemistry, Climate Modeling, Machine Learning, and much more.

In the HPC context, GPUs are generally considered to be auxiliary processors
that are attached to a CPU. A block of code which will run on the device
is called a kernel1. Since such a kernel often contains critical computations,
most application developers expend considerable time and effort to optimize it.
Yet both CPU and GPU have their own separate memories, and data must be
transferred between them. Orchestrating data motion between the CPU and
GPU memories is of vital importance since data transfer is expensive and can
often become a major bottleneck in GPU computing. Efficiently managing data
transfers is moreover quite burdensome for the application developer. This is the
issue we address in our work.

1.1 GPU Offloading Using OpenMP

OpenMP [9] is a directive-based application programming interface that can be
used in a Fortran, C or C++ application code to create a parallel program. It
is designed for portability, enjoys wide vendor support, and has a much smaller
learning curve than native programming models, like CUDA [25] and HiP [3].
From version 4.0 onward, OpenMP supports accelerator devices in a host-device
model, for which it offers “target offloading” features. The specification provides
several options to allow its users to control the duration of a data object’s allo-
cation on the GPU, via the use of target data directives. Compared to other
directive-based methods like OpenACC [32], OpenMP has a broader user com-
munity and is more widely available. Features for offloading to devices are under
active improvement, as are the implementations [27] in numerous compilers,
including Clang/LLVM [21], GCC [12], Intel [17], and Cray [8].

An advantage that OpenMP provides over most native GPU programming
models is that it enables implicit data transfer for GPU kernels. Users can
choose whether or not to handle data transfer explicitly; in the latter case,
the OpenMP compiler will manage the data motion. Unfortunately, compiler
support for implicit data transfer is in need of improvement.

1.2 The Problem

All compilers that we had access to and which support OpenMP GPU offload-
ing, like Clang and GCC, handle an implicit data transfer by moving all data
needed for kernel computation without considering its availability on the device.

1 In this paper the term kernel is always used in reference to a GPU kernel.
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Thus, all data used in the kernel are transferred both to and from the device at
the start and end of the kernel’s execution, respectively. In consequence, appli-
cations may spend a significant portion of their execution time on data transfer
itself. Automatically determining which data does not need to be transferred to
the GPU (because it is already there) or from the GPU (when it has not been
changed or is no longer required) could lead to better performance by reducing
the amount of data transferred and hence the overall execution time. Such an
optimization could largely avoid the performance penalty currently associated
with the implicit transfer approach and ultimately help increase the fraction of
codes that can utilize a GPU by reducing the developer effort. Although there are
tools available which perform source-to-source transformations for GPU offload-
ing [22,28], to the best of our knowledge no such tool exists that identifies and
exploits opportunities for data reuse between kernels.

1.3 Our Solution

We have developed a Clang-based tool to perform static data reuse analysis
between kernels. We selected Clang because it is the front end for the LLVM
framework which is now a building block of all major compiler frameworks.
The target applications of this tool are those which already use OpenMP for
offloading computation to GPU. This tool performs the following actions:

– It identifies all kernels in an application that uses OpenMP for GPU offload-
ing.

– It identifies the data that needs to be transferred between the CPU and GPU
for each kernel.

– It automatically recognizes data reuse opportunities between multiple kernels.
– It inserts the pertinent OpenMP target data directives into the original source

code to precisely manage data transfers between the host and the device.

Currently, our tool considers traditional data management and not data man-
agement through unified memory [20,24]. Optimizing GPU data management
through unified memory is planned as future work. We also currently assume
that all CPU-GPU data transfers for an input application code is handled by
our tool, therefore, there are no explicit data transfers.

The rest of this paper is organized as follows: Sect. 2 provides motivating
examples to describe common scenarios in user code which can benefit from data
reuse. Section 3 gives a detailed explanation of our strategy for automatically
generating code to exploit data reuse opportunities between kernels. Section 4
describes the experimental setup for our research. Section 5 provides a detailed
analysis of the results from our experiments using the tool. Section 6 looks at
related work and discussion about probable usage of the tool and we conclude
in Sect. 7. Future work and planned extensions are discussed in Sect. 8.

2 Motivating Examples

For this work, we analyzed the Rodinia benchmark suite [4] to find example
codes where data can be reused on a GPU. The use cases are defined in Sect. 4.
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To motivate the utility of our tool, we discuss here two common scenarios in a
user code which can profit from data reuse:

Loops: If a kernel is called from within a loop, there is a high probability that
data is reused in multiple calls to that kernel. Any data used inside these kernels
are potential candidates for reuse. Our tool analyzes data in all such kernels to
decide how to efficiently transfer data between the CPU and GPU. As can be
seen in Code 1.1, Kernel 1 is called within a while loop and Array A is reused
by every call of the kernel. Similarly Kernel 2 is called within a for loop, and
Array B is reused in every subsequent call to the kernel.

Close Proximity: We define two kernels to be in close proximity to each other
if they are both called from the same function. In such a case there is also a
high possibility of data reuse between the kernels. As can be seen in Code 1.2,
3 kernels are called inside function func1, and the array Array A is used inside
all 3 kernels in different ways. All kernels called within a loop are, by default,
considered to be in close proximity to their subsequent calls. Our tool has the
ability to detect data reuse in two kernels if they are in close proximity.

while(iter < MAX_ITER) {
// Kernel 1
#pragma omp target teams distribute parallel for
for(int i=0; i<N; i++)

// Compute on Array_A;
iter++;

}
for(iter = 0; iter < MAX_ITER; iter++) {

// Kernel 2
#pragma omp target teams distribute parallel for
for(int i=0; i<N; i++)

// Compute on Array_B;
}

Code 1.1. Code snippet for kernels called from
inside loops

void func1 (Array_A) {
// Kernel 1
#pragma omp target ...

// Assigning Array_A

// Kernel 2
#pragma omp target ...

// Updating Array_A

// Kernel 3
#pragma omp target ...

// Using Array_A
}

Code 1.2. Code snippet for
proximity of kernels

3 Data Reuse Optimization

In this section, we outline the key steps of our approach.

3.1 Problem with OpenMP Implicit Data Transfer

When an OpenMP program begins, an implicit target data region for each device
surrounds the whole program [2]. Each device has a device data environment that
is defined by its implicit target data region. Any declare target directives, and
directives that accept data-mapping attribute clauses, determine how an original
variable in a data environment is mapped to a corresponding variable in a device
data environment. If a user chooses not to map any data to the device explicitly,
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then the data is implicitly managed by the compiler. Compilers, such as Clang,
identify all variables used in a target region and move any data associated with
them to the device. The compilers we studied do not take into consideration
whether the data is already available on the device. Once the kernel execution
is over, all array data is moved back to the host, irrespective of whether or not
the data was updated on the kernel or needed beyond the kernel.

3.2 Our Approach

Our tool automatically identifies the data which need to be moved between
the host and the device for each OpenMP kernel, and then searches for any
data reuse opportunity between these kernels. It then inserts pertinent target
data directives, which complies with OpenMP Specification 5.0 [7], to precisely
manage data transfers between CPU and GPU. The goal of our tool is to modify
the original source code (C/C++) by inserting explicit data transfers between
the CPU and GPU, optimized to avoid any unnecessary data motion between
them. Two advantages of this approach are:

– The user can accept, modify or reject the changes introduced by our tool.
– The updated code can be compiled using any compiler with OpenMP GPU

offloading support.

3.3 Implementation

We implemented our framework using Clang/LLVM version 8.0.0 [5]. During
the design stage for the tool, we had to decide whether to apply our analysis
and optimization in Clang or on the LLVM IR. Yet the LLVM IR is relatively
low-level and generally unsuitable for any approach that involves modification to
source code. Once LLVM IR has been generated and optimizations are applied
to it, it would be quite difficult to pinpoint the location of the source code where
we need to insert directives. Thus, we decided to apply our analysis using the
Clang Abstract Syntax Tree (AST) [19].

Table 1. Nodes identified as kernels

Clang AST node OpenMP directive

OMPTargetDirective omp target

OMPTargetParallelDirective omp target parallel

OMPTargetParallelForDirective omp target parallel for

OMPTargetParallelForSimdDirective omp target parallel for simd

OMPTargetSimdDirective omp target simd

OMPTargetTeamsDirective omp target teams

OMPTargetTeamsDistributeDirective omp target teams distribute

OMPTargetTeamsDistributeParallelForDirective omp target teams distribute parallel for

OMPTargetTeamsDistributeParallelForSimdDirective omp target teams distribute parallel for simd

OMPTargetTeamsDistributeSimdDirective omp target teams distribute simd
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Fig. 1. Workflow for identifying data transfer opportunities and data reuse in an appli-
cation using OpenMP for GPU offloading

Clang supports source to source translation, via libTooling [6], even though it
is not primarily used for this purpose. In the Clang/LLVM framework [19] most
of the analysis is performed on the LLVM Intermediate Representation (IR) and
not on the AST. As a result, we had to re-implement some standard analyses
such as live variable analysis, data flow graph and code transformation at the
AST level for our tool. Consequently, we parse the AST to collect all required
information related to the kernels and data variables used in them.

Figure 1 illustrates how our implementation in Clang accurately identifies
data reuse opportunity between kernels. First, we parse the AST and identify
the kernels in the application. To achieve this, we search for all nodes in the
AST as specified in Table 1. For this, we have defined our own Kernel Information
Object, which contains information about each identified kernel, e.g., a unique id
assigned to the kernel, start and end location of the kernel, function from which
the kernel is called, data used inside the kernel, etc. We subsequently use this
class to identify variables accessed inside the kernels. The variables are classified
into five groups as shown in Table 2 and stored in the Kernel Information Object,
to be used during “common data” analysis and for generating the source code.

For each kernel, we implement live variable analysis using the Clang AST,
focusing only on variables used inside a kernel. While traversing the AST, we
store information about the source code location related to all the variables
declared and accessed. Next, we check whether the kernel is called from within
a loop and also check for proximity to other kernels, as defined in Sect. 2. Once
kernels are identified to be in close proximity to each other, we analyze them
to find common data which can be reused across multiple kernels. We use pat-
tern matching on all variables accessed inside the sets of kernels that are in close
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Table 2. Types of variables for live variable analysis.

Data types Description

alloc These are variables assigned inside the kernel for the first time.
Data which falls under this category need not be transferred
from the host to the device. During code generation these data
are mapped with the map type “alloc”

to These are variables assigned before but accessed inside the
kernel. Data which falls under this category need to be
transferred from the host to the device. During code generation
these data are mapped with the map type “to”

from These are variables that are updated inside the kernel and
accessed after the kernel call. Data which falls under this
category needs to be transferred from the device to the host.
During code generation these data are mapped with the map
type “from”

tofrom These are variables that are assigned before a kernel call, updated
inside it and accessed after the kernel execution is complete.
Data which falls under this category need to be transferred both
ways between the host and the device. During code generation
these data are mapped with the map type “tofrom”

private Finally, we have variables which are defined and used only inside
the kernel. Data which falls under this category does not need to
be transferred between the host and the device. During code
generation these data are not mapped

proximity to each other, to check for potential data reuse. After identifying com-
mon data between kernels, we update the Kernel Information Object. Finally,
we use the results of our analysis to update the original source code, inserting
the pertinent target data map directives to transfer data between the host and
the device explicitly.

4 Experimental Setup

To evaluate our benchmarks, we used the SeaWulf computational cluster at
Stony Brook University [30]. We ran our tool on four microbenchmarks (Table 3)
and six benchmark applications (Table 4) defined in the Rodinia benchmark
suite [4]. We selected only those benchmarks from the Rodinia suite, which has
GPU offloading support with OpenMP and more than one kernel as part of the
code. We modified these benchmarks by removing all data transfer directives
so that our tool could introduce new code for them automatically. For each
application, we compared two versions:

– Base Code: − This is the basic code with implicit data transfer. It does not
contain any explicit data transfers.
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Table 3. Micro-benchmarks used in the experimentation.

Benchmarks Description

Three Matrix Multiplication
(3 mm)

This is the most basic implementation of
multiplying three large matrices. This is a
benchmark where two kernels are reusing
same data. The experiment used matrices of
size 5000 × 5000 each

Gauss Seidel Method (gauss) The method for solving linear equations is
an iterative method, in which the values for
the given variables keep changing until a
certain threshold of variance is reached. The
experiment used a matrix of size 213 × 213

Laplace Equation (laplace) The equation in two dimensions with finite
differences using jacobi iteration. The
experiment used a matrix of size 2000×2000

Single-Precision A·X Plus Y
(saxpy)

SAXPY is a function in the standard Basic
Linear Algebra Subroutines (BLAS) library.
In its simplest form this is a benchmark
where two kernels are reusing same data.
The experiment used two vectors of size 227

each

Table 4. Updated benchmarks from the Rodinia benchmark suite

Application Description

Breadth First
Search (bfs) [15]

Graph Algorithm domain. This benchmark provides the
GPU implementations of BFS algorithm which traverses
all the connected components in a graph

Hotspot [16] Physics Simulation domain. We re-implemented the
transient differential equation solver from HotSpot using
target offloading directives for GPU

k-Nearest Neighbor
(knn) [11]

Data Mining domain. In the implementation it finds the
k-nearest neighbors from an unstructured data set

LU Decomposition
(lud)

Linear Algebra domain. This benchmark is a good
example where multiple kernels care called from within a
loop and some data shared by these kernels are also used
on the host

Needleman Wunsch
(nw) [29]

Bioinformatics domain. Needleman-Wunsch is a
nonlinear global optimization method for DNA sequence
alignments

Particle Filter
(p-filter) [14]

Medical Imaging domain. This particular
implementation is optimized for tracking cells, particularly
leukocytes and myocardial cells
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– Optimized Code: − This is the corresponding code in which our data reuse
optimization has been applied to generate explicit data transfers.

We ran the two versions of a benchmark 10 times each and collected infor-
mation on the amount of data transferred and the total execution time. In its
current version, OpenMP in Clang uses CUDA to implement GPU offloading.
Our tool is based on Clang/LLVM version 8.0, using OpenMP offloading with
CUDA 10.0 in the backend. Therefore, during our experiments, we also tracked
how many times the following CUDA APIs related to data transfer are invoked:

– cuMemAlloc - Allocates bytes of linear memory on the device and returns
a pointer to the allocated memory.

– cuMemFree - Frees the memory space which must have been returned by a
previous call to cuMemAlloc.

– cuMemcpyHtoD - Synchronous copies the specified amount of data from
host memory to device memory.

– cuMemcpyDtoH - Synchronously copies the specified amount of data from
device memory to host memory.

We ran these experiments on an NVIDIA Tesla V100 [26] GPU using a PCI-e
connector between the CPU and GPU.

#pragma omp target data map(alloc:temp[0:N][0:N])

{ data reuse region starts

#pragma omp target data map(to:A[0:N][0:N],B[0:N][0:N])
#pragma omp target teams distribute parallel for collapse(2)

for(int i=0; i<N; i++) {
for(int j=0; j<N; j++) {

temp[i][j] = 0;
for(int k=0; k<N; k++)

temp[i][j] += A[i][k]*B[k][j];
}

}
#pragma omp target data map(to:C[0:N][0:N]) map(from:D[0:N][0:N])
#pragma omp target teams distribute parallel for collapse(2)

for(int i=0; i<N; i++) {
for(int j=0; j<N; j++) {

D[i][j] = 0;
for(int k=0; k<N; k++)

D[i][j] += temp[i][k]*C[k][j];
}

}

} // data reuse region ends

Code 1.3. Example of multiplying three matrices reusing data. Code shown in red is
generated automatically by our tool.

5 Results and Analysis

Code 1.3 gives a sample output of our tool when applied to a benchmark code
multiplying three matrices. Here the code marked in red is auto-generated by
our tool. In this particular example, two kernels use, and reuse data from the
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Fig. 2. Comparison of data transferred between CPU and GPU for different bench-
marks

array temp. Arrays A,B and C only need to be transferred to the device. Since
they are not updated on the GPU, we do not need to transfer their values back
to the host. Array temp is needed only on the GPU, while array D needs to
be returned to the host. The array temp is assigned on the GPU, so we do not
need to transfer its data from the host to the device. We ran the base codes
and optimized codes and collected the amount of data transferred between the
host and device. We determined that more than 2 GB of data was transferred
between the host and device in the base case.

In contrast, in our optimized code, only 763 MB of data was transferred.
As can be observed in Fig. 2, there is a reduction of 66.67% in data transfer,
accomplished by automatically adding three lines of OpenMP target data direc-
tives to manage data transfer (cf. Code 1.3). After running our tool on all the
benchmark applications, we collected the amount of data transferred for the base
and optimized code for each of them, and found that in all cases, less data was
transferred in the optimized code than in the base code. This can clearly be
observed in Fig. 2.

For Rodinia’s LU-Decomposition benchmark, in the base case 5.5 TB (Ter-
aByte!) of data was transferred between the host and the device, as compared
to 1.5 GB in the optimized code. This is a huge reduction of 99.97%. Also, the
Laplace Equation micro-benchmark transferred 1.2 TB of data in the base case,
in comparison to only 61 MB in the optimized code (99.99% reduction). As evi-
dent from Fig. 2(b), we observed a tremendous reduction in the amount of data
transferred between the host and device, with BFS being the lowest at 47.7%.

We then took a closer look at the number of times the CUDA data trans-
fer APIs are called for each application. As shown in Fig. 3(C), Laplace Equa-
tion called each of the four APIs – cuMemAlloc, cuMemFree, cuMemcpyHtoD and
cuMemcpyDtoH around 25000 times in its base case. Upon further analysis of the
base code, we discovered that it was calling a kernel from inside a loop which
iterated for 5000 times. Of the four arrays and one variable which were used
inside the kernel, only the variable was used both on the host and the device.
In our optimized code, the data transfer for the arrays was moved outside the
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Fig. 3. Number of calls to data transfer CUDA APIs. The % at the tip of optimized
code represent reduction in total number of calls when compared to base code.

loop, dramatically reducing the number of times the data was moved between
the host and device. In our optimized code, each of the four concerned APIs
were only called around 5000 times. To achieve this, our tool added just one
target data directive. Figure 3 shows the reduction in the number of times the
APIs are called, with a maximum of 99.96% reduction in LU-Decomposition and
a minimum of 45.71% reduction in Needleman Wunsch.

We next calculated the time it took to perform the data transfer and the time
taken to execute the kernel computations. The result is shown in Fig. 4. It can
be seen that the kernel execution time in both base and optimized code is almost
identical. This is expected, as we did not make any changes to the kernel code
itself. In Figs. 4(A), 4(B), 4(E), 4(I) and 4(J), we observe that the majority of the
execution time is consumed in the kernel computation rather than in data man-
agement. However, the K-Nearest Neighbor algorithm, Fig. 4(G), spends 4.382 s
in cuMemAlloc, 2.958 s in cuMemFree, 0.209 s in cuMemcpyHtoD and 0.193 s in
cuMemcpyDtoH, with overall 7.743 s for data management, which is almost 91x
the kernel computation time of 0.085 s. After applying our optimization, data
management was improved by 71% to just 2.26 s. In Fig. 4(G) we do not even see
the compute bar as it is insignificant compared to the data management time.
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For the LU-Decomposition, Fig. 4(H), the base case requires 282.514 s for data
management, which is almost 1.63x the kernel compute time of 173.441 s. But
after our optimization it consumes only 94.28 ms, which is a 99.96% improvement
over the base case. We also observe considerable improvement in data transfer
time for Laplace (99.01%), SAXPY (99.54%), HotSpot (85.95%) and Particle
Filter (83.96%).

6 Related Work

Optimizing GPU memory management where data movement must be managed
explicitly has been explored in a variety of research. Jablin et al. [18] provide a
fully automatic system for managing and optimizing CPU-GPU communication
for CUDA programs. Gelado et al. [13] present a programming model for hetero-
geneous computing to simplify and optimize GPU data management. Recently
Barua et al. [1] introduce static analysis of explicit data transfers already inserted
into an OpenMP code. Current research in the field do not provide insight into
utilizing data reusability on GPU for implicitly managed data between multiple
kernels.
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Although there are several studies on data placement in heterogeneous mem-
ory system, like Dullor et al. [10] or Yu et al. [33], unfortunately they ignore the
impact of implicit data transfer in unified memory. Recently Li et al. [20] have
introduced optimizations to improve the performance of unified memory and
their work can be used in extension to our tool. Other related research on fully
automatic GPU offloading of code by Mishra et al. [23], Mendonça et al. [22]
and Poesia et al. [28], can take benefit from our research to add data reuse opti-
mization in their tool, which would further reduce the barriers to use of GPUs
for scientific computing.

7 Conclusion

Careful management of data and its mapping between host and device is critical
for the use of accelerators in HPC, given the high cost of data motion. The com-
plexities involved are a deterrent to the exploitation of GPUs. The optimization
introduced in this paper may result in a significant reduction in the amount of
data transferred between CPU and GPU and hence improve the overall execu-
tion time of codes that relied on implicit data transfer. It thus contributes to the
ease of use of OpenMP by avoiding the penalty often associated with implicit
transfers. To the best of our knowledge, this is the first tool to apply static
analysis in order to identify and exploit data reuse between offload kernels in an
OpenMP program. The same strategy could clearly easily be used to optimize
an OpenMP compiler’s handling of such transfers. By producing modified source
code, as we have chosen to do, we give the user the option of accepting, improv-
ing or rejecting our generated code, and we enable them to use their compiler of
choice for further building their code.

8 Future Work

The tool is under constant improvement, and a number of extensions are planned
or already under way:

– We are working on exploiting unified memory for data management between
the host and the device.

– We also need to further analyze data usage to determine which data can be
pinned to the GPU, to reduce multiple data allocations. We are also consid-
ering how to handle data between multiple GPUs.

– Discussion is also going on for managing complex structures, sub-structures
and sub-arrays and handling data between multiple GPUs as well.

– Most importantly, we are planning to improve our proximity analysis to ana-
lyze kernels beyond a single function. This could be facilitated by extending
the target data directive of OpenMP, so that the user only prescribes the
data region without the need to explicitly define the map clause. This would
let the compiler automatically handle the data movement, potentially reusing
data on the GPU. Any kernel called from such a data region would be con-
sidered a candidate for data reuse and be analyzed as such.
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DawnCC: automatic annotation for data parallelism and offloading. ACM Trans.
Archit. Code Optim. (TACO) 14(2), 13 (2017)

23. Mishra, A., Kong, M., Chapman, B.: Kernel fusion/decomposition for automatic
GPU-offloading. In: Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, pp. 283–284. IEEE Press (2019)

24. Mishra, A., Li, L., Kong, M., Finkel, H., Chapman, B.: Benchmarking and evalu-
ating unified memory for OpenMP GPU offloading. In: Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–10 (2017)

25. Nvidia, C.: Nvidia cuda c programming guide. Nvidia Corp. 120(18), 8 (2011)
26. NVIDIA Tesla: Nvidia tesla v100 GPU architecture (2017)
27. OpenMP Compilers & Tools (April 2019). https://www.openmp.org/resources/

openmp-compilers-tools
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