
Kent Milfeld · Bronis R. de Supinski ·
Lars Koesterke · Jannis Klinkenberg (Eds.)

LN
CS

 1
22

95

16th International Workshop on OpenMP, IWOMP 2020
Austin, TX, USA, September 22–24, 2020
Proceedings

OpenMP:
Portable Multi-Level
Parallelism on Modern
Systems

Lecture Notes in Computer Science 12295

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Kent Milfeld • Bronis R. de Supinski •

Lars Koesterke • Jannis Klinkenberg (Eds.)

OpenMP:
Portable Multi-Level
Parallelism on Modern
Systems
16th International Workshop on OpenMP, IWOMP 2020
Austin, TX, USA, September 22–24, 2020
Proceedings

123

Editors
Kent Milfeld
Texas Advanced Computing Center (TACC)
Austin, TX, USA

Bronis R. de Supinski
Lawrence Livermore National Laboratory
Livermore, CA, USA

Lars Koesterke
Texas Advanced Computing Center (TACC)
Austin, TX, USA

Jannis Klinkenberg
RWTH Aachen University
Aachen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-58143-5 ISBN 978-3-030-58144-2 (eBook)
https://doi.org/10.1007/978-3-030-58144-2

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
Chapters “A Case Study on Addressing Complex Load Imbalance in OpenMP” and “A Study of Memory
Anomalies in OpenMP Applications” are licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see licence informa-
tion in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7173-0834
https://orcid.org/0000-0002-0339-1006
https://orcid.org/0000-0003-3455-4565
https://orcid.org/0000-0002-5518-7904
https://doi.org/10.1007/978-3-030-58144-2
http://creativecommons.org/licenses/by/4.0/

Preface

OpenMP is a widely used application programming interface (API) for high-level
parallel programming in Fortran, C, and C++. OpenMP has been supported in most
high-performance compilers and by hardware vendors since it was introduced in 1997.
Under the guidance of the OpenMP Architecture Review Board (ARB) and the diligent
work of the OpenMP Language Committee, the OpenMP specification has evolved up
to version 5.0, with version 5.1 soon to be released. It extends parallelism at several
levels: offloading in heterogeneous systems; task-based processing across processors;
and vectorization in SIMD units. It also goes beyond parallel computing by including
and enhancing memory operations, management, and affinity policy; matching direc-
tives and functions to computing environments; and processor affinity.

These advances are realized by the major 5.0 features: context selectors and the
declare variant construct and metadirectives that use them; the requires directive;
memory allocators and support for deep copy of pointer-based data structures; acquire
and release semantics; task (memory) affinity; the descriptive loop construct; reverse
offloading; affinity display; and first and third-party tool interfaces. OpenMP 5.0 also
significantly enhanced many existing features, such as implicit declare target semantics,
support for task reductions, discontiguous array shaping in target updates, and
imperfectly nested loop collapsing.

The latest proposed additions, which are found in OpenMP Technical Report 9
(TR9), are expected to be included in OpenMP 5.1 when the ARB releases it later this
year. The base languages C11, C18, C++18, C++11, C+14, C++17, and Fortran 2008
are fully supported. Initial support of C++20 and Fortran 2018 will be provided.
Directives can now be specified as C++ attributes, facilitating and simplifying template
creation. The new directive features in OpenMP 5.1 include: tile and unroll transforms;
interop and API routines for portable interactions with non-OpenMP device execution
contexts (e.g., CUDA streams and OpenCL queues); the assume directive for speci-
fying OpenMP invariants to enable more effective compiler optimization; support for
compare-and-swap and min/max atomics; a scope construct that enables reductions
outside of loops; and an error directive that supports compile-time and runtime error/
warning messages and actions.

The advancements, big and small, reflect the use cases that come from our OpenMP
user, vendor, and research communities. The OpenMP Language Committee carefully
evaluates and incorporates community needs into the OpenMP specification, a multi-
language high-level parallel paradigm that is performant, productive, and portable for
the entire hardware spectrum from embedded and accelerator devices to manycore
shared-memory systems.

OpenMP is important both as a stand-alone parallel programming model and as part
of a hybrid programming model for massively parallel, distributed memory systems
consisting of homogeneous manycore nodes and heterogeneous node architectures, as
found in leading supercomputers. As much of the increased parallelism in the exascale

systems is expected to be within a node, OpenMP will become even more widely used
in top-end systems. Importantly, the features in OpenMP 5.0 and 5.1 support appli-
cations on such systems in addition to facilitating portable exploitation of specific
system attributes.

The community of OpenMP, researchers, and developers are united under the
cOMPunity organization. This organization has held workshops on OpenMP around
the world since 1999: the European Workshop on OpenMP (EWOMP), the North
American Workshop on OpenMP Applications and Tools (WOMPAT), and the Asian
Workshop on OpenMP Experiences and Implementation (WOMPEI) attracted annual
audiences from academia and industry. The International Workshop on OpenMP
(IWOMP) consolidated these three workshop series into a single annual international
event that rotates across Europe, Asia-Pacific, and the Americas. The first IWOMP
workshop was organized under the auspices of cOMPunity. Since that workshop, the
IWOMP Steering Committee has organized these events and guided development
of the series. The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA.
Since then, meetings have been held each year, in Reims, France; Beijing, China; West
Lafayette, USA; Dresden, Germany; Tsukuba, Japan; Chicago, USA; Rome, Italy;
Canberra, Australia; Salvador, Brazil; Aachen, Germany; Nara, Japan; Stony Brook,
USA; Barcelona, Spain; and Auckland, New Zealand. Each workshop draws partici-
pants from research, program developer groups, and industry throughout the world. In
2020, IWOMP continued the series with technical papers and tutorials presented
through a virtual conference, due to the COVID-19 pandemic. We thank the generous
support of sponsors that help make these meetings successful; they are cited on the
conference pages (present and archived) at the iwomp.org website.

The evolution of the specification would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. The many additions in
OpenMP 5.0 and 5.1 reflect a vibrant and dedicated research community, committed to
OpenMP support. As we move beyond the present needs, and adapt and evolve
OpenMP to the expanding parallelism in new architectures, the OpenMP research
community will continue to play a vital role. The papers in this volume demonstrate the
adaption of new features found in OpenMP 5.0 and show how the OpenMP feature set
can significantly enhance user experiences on a wide range of systems. These papers
also demonstrate the forward thinking of the research community, and potential
OpenMP directions and further improvements for systems on the horizon.

The IWOMP website (www.iwomp.org) has the latest workshop information, as
well as links to archived events. This publication contains proceedings of the 16th
edition of the conference series (IWOMP 2020). The workshop program included 21
technical papers, 3 keynote talks, and a tutorial on OpenMP. All technical papers were
peer reviewed by at least four different members of the Program Committee. The work
evidenced by these authors and the committee demonstrates that OpenMP will remain a
key technology well into the future.

September 2020 Kent Milfeld
Bronis R. de Supinski

Lars Koesterke
Jannis Klinkenberg

vi Preface

http://www.iwomp.org

Organization

General Chair

Kent Milfeld Texas Advanced Computing Center, USA

Program Committee Co-chairs

Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Lars Koesterke Texas Advanced Computing Center, USA

Publication Chair

Jannis Klinkenberg RWTH Aachen University, Germany

Tutorial Chairs

Yun (Helen) He National Energy Research Scientific Computing Center
(NERSC), USA

Chris Ramos Texas Advanced Computing Center, USA

Sponsorship Chair

Melyssa Fratkin Texas Advanced Computing Center, USA

Program Committee

Alex Duran Intel Iberia, Spain
Amit Ruhela Texas Advanced Computing Center, USA
Chunhua Liao Lawrence Livermore National Laboratory, USA
Deepak Eachempati Hewlett Packard Enterprise, USA
Eduard Ayguade BSC, Universitat Politècnica de Catalunya, Spain
Florina Ciorba University of Basel, Switzerland
Gaurav Mitra Texas Instruments, Inc., USA
James Beyer NVIDIA, USA
Jannis Klinkenberg RWTH Aachen University, Germany
Jini Susan George AMD, Inc., USA
Joachim Protze RWTH Aachen University, Germany
Johannes Doerfert Argonne National Laboratory, USA
Kelvin Li IBM, Canada
Larry Meadows Intel, USA
Mark Bull The University of Edinburgh, UK
Michael Kruse Argonne National Laboratory, USA

Mitsuhisa Sato RIKEN Center for Computational Science (R-CCS),
Japan

Oliver Sinnen The University of Auckland, New Zealand
Oscar Hernandez Oak Ridge National Laboratory, USA
Stephen Olivier Sandia National Laboratories, USA
Terry Wilmarth Intel, USA
Thomas Scogland Lawrence Livermore National Laboratory, USA

Website

Tim Lewis Croftedge Marketing Limited, USA

IWOMP Steering Committee

Steering Committee Chair

Matthias S. Müller RWTH Aachen University, Germany

Steering Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC, Universitat Politècnica de Catalunya, Spain
Mark Bull EPCC, The University of Edinburgh, UK
Barbara Chapman Stony Brook University, USA
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Rudolf Eigenmann University of Delaware, USA
William Gropp University of Illinois, USA
Michael Klemm Intel, Germany
Kalyan Kumaran Argonne National Laboratory, USA
Lawrence Meadows Intel, USA
Stephen L. Olivier Sandia National Laboratories, USA
Ruud van der Pas Oracle, USA
Alistair Rendell Flinders University, Australia
Mitsuhisa Sato RIKEN Center for Computational Science (R-CCS),

Japan
Sanjiv Shah Intel, USA
Oliver Sinnen The University of Auckland, New Zealand
Josemar Rodrigues de

Souza
SENAI Unidade CIMATEC, Brazil

Christian Terboven RWTH Aachen University, Germany
Matthijs van Waveren OpenMP ARB & CS Group, France

viii Organization

Contents

Performance Methodologies

FAROS: A Framework to Analyze OpenMP Compilation Through
Benchmarking and Compiler Optimization Analysis 3

Giorgis Georgakoudis, Johannes Doerfert, Ignacio Laguna,
and Thomas R. W. Scogland

Evaluating the Efficiency of OpenMP Tasking for Unbalanced
Computation on Diverse CPU Architectures . 18

Stephen L. Olivier

Applications

A Case Study of Porting HPGMG from CUDA to OpenMP
Target Offload . 37

Christopher Daley, Hadia Ahmed, Samuel Williams,
and Nicholas Wright

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator,
Through Decomposition in Multiple Loops . 52

Laurent Turpin, Thierry Gautier, Jonathan Rouzaud-Cornabas,
and Christian Perez

Evaluating Performance of OpenMP Tasks in a Seismic
Stencil Application . 67

Eric Raut, Jie Meng, Mauricio Araya-Polo, and Barbara Chapman

OpenMP Extensions

Unified Sequential Optimization Directives in OpenMP 85
Brandon Neth, Thomas R. W. Scogland, Michelle Mills Strout,
and Bronis R. de Supinski

Supporting Data Shuffle Between Threads in OpenMP 98
Anjia Wang, Xinyao Yi, and Yonghong Yan

Performance Studies

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 115
Sandra Catalán, Tetsuzo Usui, Leonel Toledo, Xavier Martorell,
Jesús Labarta, and Pedro Valero-Lara

A Case Study on Addressing Complex Load Imbalance in OpenMP 130
Fabian Orland and Christian Terboven

Tools

On-the-fly Data Race Detection with the Enhanced OpenMP
Series-Parallel Graph . 149

Nader Boushehrinejadmoradi, Adarsh Yoga, and Santosh Nagarakatte

AfterOMPT: An OMPT-Based Tool for Fine-Grained Tracing of Tasks
and Loops . 165

Igor Wodiany, Andi Drebes, Richard Neill, and Antoniu Pop

Co-designing OpenMP Features Using OMPT and Simulation Tools 181
Matthew Baker, Oscar Hernandez, and Jeffrey Young

NUMA

sOMP: Simulating OpenMP Task-Based Applications
with NUMA Effects . 197

Idriss Daoudi, Philippe Virouleau, Thierry Gautier, Samuel Thibault,
and Olivier Aumage

Virtflex: Automatic Adaptation to NUMA Topology Change
for OpenMP Applications. 212

Runhua Zhang, Alan L. Cox, and Scott Rixner

Compilation Techniques

Using OpenMP to Detect and Speculate Dynamic DOALL Loops. 231
Bruno Chinelato Honorio, João P. L. de Carvalho, Munir Skaf,
and Guido Araujo

ComPar: Optimized Multi-compiler for Automatic OpenMP
S2S Parallelization . 247

Idan Mosseri, Lee-Or Alon, Re’Em Harel, and Gal Oren

Heterogeneous Computing

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 265
Jens Huthmann, Lukas Sommer, Artur Podobas, Andreas Koch,
and Kentaro Sano

Data Transfer and Reuse Analysis Tool for GPU-Offloading
Using OpenMP. 280

Alok Mishra, Abid M. Malik, and Barbara Chapman

x Contents

Toward Supporting Multi-GPU Targets via Taskloop
and User-Defined Schedules . 295

Vivek Kale, Wenbin Lu, Anthony Curtis, Abid M. Malik,
Barbara Chapman, and Oscar Hernandez

Memory

Preliminary Experience with OpenMP Memory
Management Implementation . 313

Adrien Roussel, Patrick Carribault, and Julien Jaeger

A Study of Memory Anomalies in OpenMP Applications 328
Lechen Yu, Joachim Protze, Oscar Hernandez, and Vivek Sarkar

Author Index . 343

Contents xi

Performance Methodologies

FAROS: A Framework to Analyze
OpenMP Compilation Through
Benchmarking and Compiler

Optimization Analysis

Giorgis Georgakoudis1(B) , Johannes Doerfert2 , Ignacio Laguna1 ,
and Thomas R. W. Scogland1

1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
{georgakoudis1,lagunaperalt1,scogland1}@llnl.gov
2 Argonne National Laboratory, Lemont, IL 60439, USA

jdoerfert@anl.gov

Abstract. Compilers optimize OpenMP programs differently than their
serial elision. Early outlining of parallel regions and invocation of parallel
code via OpenMP runtime functions are two of the most profound dif-
ferences. Understanding the interplay between compiler optimizations,
OpenMP compilation, and application performance is hard and usually
requires specialized benchmarks and compilation analysis tools.

To this end, we present FAROS, an extensible framework to auto-
mate and structure the analysis of compiler optimization of OpenMP
programs. FAROS provides a generic configuration interface to profile
and analyze OpenMP applications with their native build configurations.
Using FAROS on a set of 39 OpenMP programs, including HPC applica-
tions and kernels, we show that OpenMP compilation hinders optimiza-
tion for the majority of programs. Comparing single-threaded OpenMP
execution to its sequential counterpart, we observed slowdowns as much
as 135.23%. In some cases, however, OpenMP compilation speeds up exe-
cution as much as 25.48% when OpenMP semantics help compiler opti-
mization. Following analysis on compiler optimization reports enables
us to pinpoint the reasons without in-depth knowledge of the compiler.
The information can be used to improve compilers and also to bring
performance on par through manual code refactoring.

Keywords: Compilation analysis · OpenMP performance ·
Benchmarking and profiling

1 Introduction

Compiling OpenMP code introduces non-trivial complexity in the compiler and
its optimization pipeline. The state-of-the-art approach is outlining [3]. The com-
piler transforms an annotated parallel region to a closure, encapsulating the
region as a function with its context of operating variables. Outlined region
c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-58144-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_1&domain=pdf
http://orcid.org/0000-0001-6542-3555
http://orcid.org/0000-0001-7870-8963
http://orcid.org/0000-0002-9374-4433
http://orcid.org/0000-0001-7234-5743
https://doi.org/10.1007/978-3-030-58144-2_1

4 G. Georgakoudis et al.

closures are passed as callbacks to runtime functions that implement parallel
execution. The context variables of a closure follow the data sharing specifica-
tions of the region to either copy variables in the calling environment, if those
have private semantics, or become pointers to them, if those are shared.

Implementing parallel execution via outlining and runtime function calls has
significant impact on how compilers optimize parallel OpenMP code. Prior work
[9,10] has shown that OpenMP compilation hinders optimizations that would oth-
erwise apply to the serial elision of a program, that is compiling the program with-
out enabling OpenMP to ignore OpenMP directives. Executing an OpenMP pro-
gram single-threaded can be more than 2× slower than its sequentially compiled
and executed counterpart, solely due to missing compiler optimizations. Improv-
ing OpenMP compilation is an active field of research [10,11] and better under-
standing performance differences is crucial to guide and accelerate this research.

Although there are numerous benchmark suites [4–7,13,17,18,23] that
include OpenMP programs, there are none designed to perform analysis on
the compilation of OpenMP itself and analyze its implications for performance.
Understanding the implications of OpenMP compilation is important to both
compiler developers, seeking to improve optimization on OpenMP code, and
application developers for interpreting their application’s performance and refac-
toring their codes to help compiler optimization. Lack of such tools motivates
this work, which aims to evaluate OpenMP compilation and especially how it
affects compiler optimization and application performance.

In particular, we present FAROS1, a framework to analyze OpenMP compi-
lation. The contributions of this work are:

– The extensible framework FAROS that integrates OpenMP applications to
benchmark their execution and performed compiler optimizations. FAROS
takes as input a configuration file that specifies build and execution options
of applications under test, to generate compilation reports by leveraging com-
piler optimization remarks and profile execution.

– We provide FAROS open-source2 integrating an initial collection of 39 pro-
grams, including HPC proxy apps, NAS and Rodinia kernels, and GRO-
MACS, a large real-world scientific application. FAROS interfaces with the
Clang/LLVM compiler for compiler optimization analysis. Commercial com-
pilers that leverage Clang should be able to provide the same interface.

– We present new results and insight using FAROS to investigate missing com-
piler optimizations when compiling OpenMP programs contrasted with their
serial elision. Results show that, for most programs, OpenMP compilation
slows down execution ranging from 8.25% to 135.23%. In a small number
of cases, OpenMP compilation speeds up execution up to 25.48% due to
OpenMP semantics enabling additional compiler optimization. For both types
of results, we complement the analysis with methods to bring on par the per-
formance between sequential and OpenMP compilation.

1 Faros is a transliteration of the greek word , which means lighthouse or beacon,
in an analogy to our framework set to guide the analysis of OpenMP compilation.

2 https://github.com/ggeorgakoudis/FAROS.

https://github.com/ggeorgakoudis/FAROS

FAROS: A Framework to Analyze OpenMP Compilation 5

Section 2 details the methodology, design, and implementation of FAROS.
Sect. 3 presents new results and insight using FAROS to evaluate OpenMP com-
pilation. Section 4 discusses related work, and Sect. 5 concludes the paper and
discusses future work.

2 FAROS: Design and Implementation

Figure 1 presents an overview of the workflow in FAROS. FAROS includes a
harness script driven by a YAML configuration file. The configuration includes
information on fetching, building, and running test applications. FAROS lever-
ages compilation remarks when building an application to generate a set of com-
pilation reports that highlight the differences in compiler optimization between
different build options. Further, FAROS executes different executables, corre-
sponding to the different build options, to collect performance timing informa-
tion and aggregate those results. The following sections provide more details on
the components of FAROS and their operation.

Fig. 1. Workflow of FAROS

2.1 Harness and Configuration

The harness script in python, named harness.py, takes as input a YAML con-
figuration file and a set of options to build and run programs described in that
configuration. Fig. 2 shows the help output of the script. The configuration file
is set with the -i, --input argument. There are three different actions the
harness performs: (1) fetch, with the option -f, --fetch, fetches the program
sources from the specified repositories; (2) build, with the option -b, --build,
builds the selected program using specified compilation options in the configu-
ration, also fetching if needed; (3) generate, with the option -g, --generate,
generates compilation reports by combining optimization remarks for different
compilation configurations, creating remark diff files between them, from all the
sources of an application to a single file; (4) run, with the option -r, --run and
a following argument on how many repetitions to perform, that runs the exe-
cutable with the specified input. The flags can be individually set or combined to
perform multiple actions in a single harness run – fetching takes precedence over
building, building over generating reports and running. Also, the harness has

6 G. Georgakoudis et al.

Fig. 2. The help output for harness.py

a dry run option, -d,--dry-run, that prints what actions would be performed
without actually performing them.

The harness creates four extra directories for its operation when building and
running: (1) the directory repos to download the benchmark application speci-
fied in the configuration; (2) the directory bins to store and run the generated
executables from building; (3) the directory reports, where it stores compila-
tion reports, including optimization remarks; (4) the directory results to store
timing results, which contain execution times from running different built con-
figurations and inputs.

Fig. 3. An example YAML configuration

Figure 3 shows the format of the YAML configuration, exemplified through
specifying the application LULESH. Configuring an application is a hierarchy of
keys that prescribe actions for the harness script. The root of the hierarchy is
a user-chosen, descriptive name of the application, LULESH in this example. The

FAROS: A Framework to Analyze OpenMP Compilation 7

harness creates a sub-directory matching the name of the root key under bins to
store executables, so this directory is bins/LULESH in this case. The key fetch
contains the command to fetch the application code, which is specified as cloning
from a GitHub repo in the case of LULESH. Note that the fetching command
can also include patching, if needed, provided by the user. For example, for some
programs in our benchmark suite, we apply a patch to guard calls to OpenMP
runtime functions using the standard approach of enabling those calls within
#ifdef _OPENMP ... #endif preprocessor directives.

Regarding building, the key build_dir specifies the directory to build the
application, so harness changes to this directory to execute the build commands
specified under the key build. There is a different sub-key for each building
specification. In this example, the key seq specifies building LULESH without
OpenMP to produce an executable for sequential execution, whereas, the key omp
specifies building LULESH with OpenMP enabled. The harness creates different
sub-directories under bins/LULESH for each different compilation configuration.
In the example, it creates directories bins/LULESH/seq and bins/LULESH/omp.
The key copy specifies a list of files or directories that the harness copies out
to those sub-directories. The list contains the executable file and possibly any
input files needed for execution, if the user desires to have bins self-contained
by avoiding referring to input files in the directory repos, which is useful for
relocating bins without copying over repos.

Further, the key run specifies the command to execute, which is typically the
executable binary of the application, prepended with any environment variables.
In the example YAML file, the run command sets OpenMP environments vari-
ables OMP_NUM_THREADS = 1 and OMP_PROC_BIND = true to contrast sequential vs.
single-threaded OpenMP execution and to bind OpenMP threads for reducing
variability and best performance – note those environment variables have no
effect on the sequential binary, hence sequential execution is not pinned though
without discernible difference in performance by our experiments. Moreover, the
key input specifies the input arguments for the application in the run command.
The key measure specifies a regular expression, conforming to Python’s regular
expression syntax, to match in the application’s executable output. This makes
possible to capture an application-specific measure of performance, such as exe-
cution time of a region of interest or some other Figure of Merit (FoM). If the
value of the key measure is empty, the harness measures end-to-end, wall clock
execution time of the application, using python’s time module. Specifically, it
invokes time.perf_counter() before launching and after application execution
ends to calculate the duration of execution as the difference of those two times-
tamps. Lastly, the key clean specifies the commands that harness executes to
clean the repo for building a different compilation configuration.

Note that this YAML design provides significant flexibility. Keys that specify
the actions fetch, build, run, and clean contain commands to execute in the
command-line shell, thus they can include any executable command or program
available to the shell. For example, the build action can include cmake target
generation for building, or the action run can execute a generated executable

8 G. Georgakoudis et al.

through a job scheduler. Also, this YAML configuration is flexible to extend with
more keys or to enhance the semantics of existing ones. For example, it is possible
to extend the run with a sub-dictionary of keys that correspond to the different
build configurations to customize the run command, or to make the value of
the key input a list of different input configurations to run. We are working in
extensions like those for the harness in our open-source implementation.

There is an initial effort to create this YAML configuration file that requires
understanding the directory structure, building environment, and execution con-
figurations of the included applications. However, this format is flexible to imple-
ment building and testing any application, buildable through the command line.
Once a harness configuration is created, it is straightforward to extend it for
different compilation or execution configurations. Moreover, this configuration
is shareable with other users to enable reproducible testing for different compi-
lation and execution options.

2.2 Analyzing Compiler Optimization and Performance

FAROS generates compiler optimization reports that highlight compilation dif-
ferences to contrast the specified build configurations. To do that, FAROS lever-
ages LLVM optimization remarks3 generated during compilation. Optimization
remarks present a line-by-line record of applied or missed compiler optimiza-
tions, or of analysis results related to compiler optimization, for each source file
built. LLVM stores this information in a file, serialized in a YAML format. Also,
FAROS makes use of two tools provided by LLVM for analyzing optimization
remarks: the tool opt-diff, which generates the diff YAML file given as input
different YAML files of optimization remarks, and the tool opt-viewer, which
takes as input a YAML file of optimizations remarks (or a diff file) to generate
an easy-to-read, HTML output. FAROS extends opt-diff with a filter input
argument to filter output by selecting a single class of optimization remark type
for generating the diff to ease analysis: either missed, or passed optimizations,
or analysis information. For example, that makes easy to contrast what opti-
mizations applied for a sequential build but not for an OpenMP build, and vice
versa, by observing only the diff output of passed optimizations. FAROS gen-
erates reports for all combinations of build options and optimization remarks
types, in both YAML and HTML formats. We show excerpts of the report out-
put later, in the evaluation (Sect. 3), when discussing results.

Analyzing performance is done experimentally. FAROS runs the program
executable, compiled with the different build options specified in the config-
uration file, to collect performance results. Specifically, the user executes the
harness and provides the argument -r,--run with input the number of repe-
titions to execute each configuration’s executable, for collecting a statistically
significant number of performance samples. As explained in Sect. 2.1, FAROS
collects measurements of either the end-to-end execution time of the program or
the user-specified performance figure corresponding to the regular expression in

3 https://llvm.org/docs/Remarks.html.

https://llvm.org/docs/Remarks.html

FAROS: A Framework to Analyze OpenMP Compilation 9

the measure field of the configuration YAML file. It outputs those performance
measurements in the directory results, creating a different YAML output file
for each program, named results-<program name>.yaml. The format of this
result output is a 2-level dictionary, where the first level key is the program name,
and the second level consists of a key for each build configuration containing a
list of the measured performance value of each run repetition.

3 Evaluation

Table 1 presents programs integrated in FAROS so far, including HPC appli-
cations, NAS and Rodinia kernels, along with inputs used for evaluation. We
use Clang/LLVM version 10.0.0 for compilation and generation of optimization
remarks. Experiments run on an Intel Xeon E5-2695v4. For each build option,
sequential or OpenMP, we do 30 independent runs per program and calculate
95% confidence intervals using the t-distribution to avoid assumptions on the
sampled population.

Figure 4 shows results contrasting execution time of sequential vs. single-
threaded OpenMP execution with the percentage slowdown of OpenMP execu-
tion highlighted with a label (negative results signify speedup). We downselect
the number of programs shown for presentation, selecting programs that have
either discernible slowdown (more than 5%) due to OpenMP compilation or the
few cases that OpenMP compilation results in better performance.

Discussing results, 17 out of 21 programs slow down when compiled with
OpenMP enabled and executing single-threaded compared to sequential compi-
lation and execution. Interestingly, 4 of them speedup. Slowdown ranges from
8.25%, for the program MG, to 135.23%, for srad. Infrequent speedup from
OpenMP compilation ranges from 7.01% for gromacs-2019.5 to 25.48% for
hotspot.

We focus on srad and hotspot and explain their results through compilation
remarks. Figure 5 shows excerpts of the compilation report output for srad, using
our extensions. Figure 5a show only applied optimizations, while Fig. 5b shows
analyses output. Both plots highlight the diff between sequential and OpenMP
compilation. Sequential compilation successfully vectorizes the loop at line 130,
whereas OpenMP fails – the same happens to a later loop, not shown for brevity.
In OpenMP, the vectorizer cannot statically determine accessed array ranges
within the loop due to the extra pointer indirection emitted for accesses to shared
pointers. Hence, it fails to deduct accesses are alias-free, or to generate a sufficient
runtime alias check for vectorization. We verified our analysis of compilation
remarks in two ways. First, we manually inserted a #pragma omp simd directive
to explicitly vectorize the loop. Second, we run experimental inter-procedural
optimization [9,10] that performs value propagation through OpenMP runtime
functions to remove one level of indirection. Either of those changes rendered
the single-threaded OpenMP execution on par with sequential.

Regarding hotspot, Fig. 6 shows the passed optimization diff between sequen-
tial and OpenMP compilation. The first thing to notice is that OpenMP

10 G. Georgakoudis et al.

Table 1. List of programs integrated in FAROS with inputs tested

Application Input

HPC proxy/mini/large

AMG [25] -problem 1 -n 128 128 128

CoMD [22] -e -i 1 -j 1 -k 1 -x 20 -y 20 -z 20

CoSP2 [8] –hmatName hmatrix.1024.mtx –N 12288 –M 256

Kripke [20] (default)

LULESH [19] -i 500

Quicksilver [26] –nSteps 1

RSBench [28] -t 1 -s small

SimpleMOC [15] -s -t 1

XSBench [29] -t 1 -k 1 -s small

miniAMR [16] –num_refine 4 –max_blocks 6000 –init_x 1 –init_y 1
–init_z 1 –npx 1 –npy 1 –npz 1 –nx 8 –ny 8 –nz 8
–num_objects 1 –object 2 0 -0.01 -0.01 -0.01 0.0 0.0 0.0 0.0
0.0 0.0 0.0009 0.0009 0.0009 –num_tsteps 100 –comm_vars 2

miniAero [30] (default)

miniFE [16] -nx 64

hpcg [12] 128 128 128

gromacs-2019.5 [1] mdrun -ntmpi 1 -s ion_channel.tpr -maxh 0.50 -resethway
-noconfout -nsteps 1000

NAS [17]

BT A

CG B

EP A

FT A

IS B

LU A

MG B

SP A

Rodinia [7]

b+tree cores 1 file mil.txt command command.txt

backprop 16777216

bfs 1 graph1MW_6.txt

cfd fvcorr.domn.097K

heartwall test.avi 20 1

hotspot 1024 1024 1000 1 temp_1024 power_1024 output.out

hotspot3D 512 8 1000 power_512x8 temp_512x8 output.out

kmeans -n 1 -i kdd_cup

lavaMD -cores 1 -boxes1d 16

leukocyte 5 1 testfile.avi

lud -n 1 -s 8000

nn filelist 10000 30 90

nw 32000 10 1

particlefilter -x 128 -y 128 -z 10 -np 100000

pathfinder 1000000 100

srad 2048 2048 0 127 0 127 1 0.5 100

streamcluster 10 20 256 65536 65536 1000 none output.txt 1

FAROS: A Framework to Analyze OpenMP Compilation 11

(a) CoMD (b) Kripke (c) LULESH

(d) SimpleMOC (e) miniAMR (f) miniAero

(g) gromacs-2019.5 (h) FT (i) IS

(j) MG (k) SP (l) backprop

(m) bfs (n) cfd (o) hotspot

(p) hotspot3D (q) kmeans (r) lavaMD

(s) lud (t) nw (u) srad

Fig. 4. Execution time violin plots of sequential vs. OpenMP single-threaded execution.
Percentage labels show slowdown of OpenMP single-threaded execution

12 G. Georgakoudis et al.

Fig. 5. Optimization remarks diff between sequential (remarks signed −) and OpenMP
compilation (remarks signed +) for srad

compilation applied unrolling after the vectorization, which sequential misses.
This is an important optimization as the loop has 16 iterations in total (given
BLOCK_SIZE_C is a preprocessor constant equal to 16), 8 of which are part of one
vector iteration, thus only two iterations are left after vectorization. To verify
that the directive simd directive causes the performance difference, we remove
it and observe that indeed sequential and single-threaded OpenMP performance
is on par, though performance is worse overall by disabling this hint. Following,
to bring performance on par and include the unrolling optimization, we try the
clang loop unroll(full) pragma. However, this fails too due to an artifact
in the loop trip count computation, which we reported to LLVM developers,
that prevented the compiler from determining a static constant iteration count.
The OpenMP compilation benefits from the fact that it directly emits the loop
in a normalized form because of the canonical loop restrictions of OpenMP.
We manually made the loop trip count obvious to the compiler via refactor-
ing. Although, this enables unrolling in sequential compilation too, sequential
execution performance still lags compared to single-threaded OpenMP. To bring
performance on par, we additionally declare the pointers result, temp, power as
restrict, which roughly signifies that they point to distinct objects. This is an
approximation of the simd semantics that imply accesses are dependence free4.

4 Simplified for the sake of brevity.

FAROS: A Framework to Analyze OpenMP Compilation 13

Declaring the pointers as restrict is a common way to unlock further opti-
mization, in this case vectorization without a runtime alias check and respective
fallback code.

4 Related Work

Benchmark Suites. There are numerous benchmark suites [4–7,13,17,18,23]
that include a collection of OpenMP programs with a fixed build configuration
per program. Their main purpose is to evaluate the performance of parallel exe-
cution on the particular hardware to run. As such, they do not offer an automated
way to evaluate different build configurations or produce any output to analyze
compiler optimization. By contrast, FAROS targets analysis of the impact of
compiler optimization on OpenMP execution. It is flexible to include programs
from different benchmark suites or other OpenMP applications and define dif-
ferent build configurations, through its generic configuration file format. Also,
FAROS provides an automated way to extract information from compilation
remarks into reports to help the analysis of how different build configurations
change compiler optimization on source code.

Fig. 6. Optimization remarks diff between sequential (remarks signed −) and OpenMP
compilation (remarks signed +) for hotspot

Profiling Tools. Profiling tools [2,14,21,24,27] for parallel programs target per-
formance and bottleneck analysis in program execution to guide optimization.

14 G. Georgakoudis et al.

They profile a program, compiled with a particular set of options, through instru-
mentation and sampling to find hotspots, where most of the execution time is
spent, to target further analysis. Further, they collect hardware-oriented perfor-
mance metrics, such as cache misses, instructions-per-cycle and other hardware
performance counters, to correlate with execution for manual analysis or for
automatic analysis through an abstract performance model, such as the roofline
model [21]. In its current implementation, FAROS profiles execution time, or
some other performance metric reported in the output of the application, for
different configured build options. Extra profiling information from those tools
is complementary to the compilation analysis of FAROS to focus inspection and
analysis of compiler optimization reporting on hotspots and quantify the perfor-
mance difference in more detail. Nevertheless, we consider extending FAROS to
integrate execution performance analysis offered by those tools to provide pro-
filing information alongside compiler optimization remarks in a unified report.

Compiler Test Suites. Compiler test suites, such as those in LLVM5 and
GCC6, evaluate the correctness of compilation and the performance of the com-
pilation process itself. They typically provide a set of micro-benchmarks and
expected outputs, to debug the operation of the compiler and uncover any per-
formance problems in to help compiler developers. FAROS complements those
test suites by analyzing the performance and compiler optimization on gener-
ated code of larger programs, focusing on OpenMP compilation in this use case.
However, FAROS is expandable to other use cases by changing its configura-
tion input to different build options, for example enabling or disabling distinct
sets of compiler optimizations to evaluate their effectiveness and performance
improvement.

5 Conclusion and Future Work

We have presented FAROS, an extensible framework for integrating benchmark
applications, to contrast and analyze different compilation options and how they
affect compiler optimization and application performance. In FAROS, we have
already integrated a diverse set of 39 programs, including HPC proxy/mini appli-
cations, NAS and Rodinia kernels, and the large application GROMACS. Using
FAROS, we analyzed the compilation and performance of OpenMP programs
versus their serial elision. This analysis provided new insight on understanding
and quantifying sub-optimal OpenMP compilation that hinders optimization
found in its sequential counterpart, and interestingly revealing also few cases
where OpenMP semantics enable additional compiler optimization.

For future work, we plan to expand the analysis of compilation remarks to
present more informative visual output, for example including IR code besides
source code and hotspot information, and also provide recommendations to

5 https://llvm.org/docs/TestingGuide.html.
6 https://gcc.gnu.org/onlinedocs/gccint/Testsuites.html.

https://llvm.org/docs/TestingGuide.html
https://gcc.gnu.org/onlinedocs/gccint/Testsuites.html

FAROS: A Framework to Analyze OpenMP Compilation 15

developers for enabling optimization. Further, we intend to expand FAROS
to more compilers, besides Clang/LLVM, by integrating their own compilation
reporting.

Acknowledgments. The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work was performed under the aus-
pices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DEAC52-07NA27344 (LLNL-CONF-810797) and also partially sup-
ported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two
U.S. Department of Energy organizations (Office of Science and the National Nuclear
Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engi-
neering, and early testbed platforms, in support of the nation’s exascale computing
imperative.

References

1. Abraham, M.J., et al.: GROMACS: high performance molecular simula-
tions through multi-level parallelism from laptops to supercomputers. Soft-
wareX 1–2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001. http://
www.sciencedirect.com/science/article/pii/S2352711015000059

2. Adhianto, L., et al.: HPCToolkit: tools for performance analysis of optimized par-
allel programs. Concurr. Comput.: Pract. Exp. 22(6), 685–701 (2010)

3. Bataev, A., Bokhanko, A., Cownie, J.: Towards OpenMP support in LLVM. In:
2013 European LLVM Conference (2013)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: charac-
terization and architectural implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2008,
pp. 72–81. Association for Computing Machinery, New York (2008). https://doi.
org/10.1145/1454115.1454128

5. Bronevetsky, G., Gyllenhaal, J., de Supinski, B.R.: CLOMP: accurately character-
izing OpenMP application overheads. In: Eigenmann, R., de Supinski, B.R. (eds.)
IWOMP 2008. LNCS, vol. 5004, pp. 13–25. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79561-2_2

6. Bull, J.M., Enright, J.P., Guo, X., Maynard, C., Reid, F.: Performance evaluation
of mixed-mode OpenMP/MPI implementations. Int. J. Parallel Program. 38, 396–
417 (2010). https://doi.org/10.1007/s10766-010-0137-2

7. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characterization
(IISWC), IISWC 2009, pp. 44–54. IEEE Computer Society, USA (2009). https://
doi.org/10.1109/IISWC.2009.5306797

8. Cook, J., Finkel, H., Junghams, C., McCorquodale, P., Pavel, R., Richards, D.F.:
Proxy app prospectus for ECP application development projects. Office of Scien-
tific and Technical Information (OSTI), October 2017. https://doi.org/10.2172/
1477829

9. Doerfert, J., Diaz, J.M.M., Finkel, H.: The TRegion interface and compiler opti-
mizations for OpenMP target regions. In: Fan, X., de Supinski, B.R., Sinnen,
O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 153–167. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-28596-8_11

https://doi.org/10.1016/j.softx.2015.06.001
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1007/978-3-540-79561-2_2
https://doi.org/10.1007/978-3-540-79561-2_2
https://doi.org/10.1007/s10766-010-0137-2
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.2172/1477829
https://doi.org/10.2172/1477829
https://doi.org/10.1007/978-3-030-28596-8_11

16 G. Georgakoudis et al.

10. Doerfert, J., Finkel, H.: Compiler optimizations for OpenMP. In: de Supinski, B.R.,
Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP 2018.
LNCS, vol. 11128, pp. 113–127. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98521-3_8

11. Doerfert, J., Finkel, H.: Compiler optimizations for parallel programs. In: Hall,
M., Sundar, H. (eds.) LCPC 2018. LNCS, vol. 11882, pp. 112–119. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34627-0_9

12. Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient
benchmark: a new metric for ranking high-performance computing systems. Int.
J. High Perform. Comput. Appl. 30(1), 3–10 (2016). https://doi.org/10.1177/
1094342015593158

13. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: 2009 International Conference on Parallel Processing, pp. 124–131
(2009)

14. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurr. Comput.: Pract. Exp. 22(6), 702–719
(2010)

15. Gunow, G., Tramm, J., Forget, B., Smith, K., He, T.: SimpleMOC - a performance
abstraction for 3D MOC (2015)

16. Heroux, M.A., et al.: Improving performance via mini-applications. Sandia
National Laboratories, Technical Report SAND2009-5574 3 (2009)

17. Jin, H., Frumkin, M.A., Yan, J.M.: The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance (1999)

18. Juckeland, G., et al.: SPEC ACCEL: a standard application suite for measuring
hardware accelerator performance. In: Jarvis, S.A., Wright, S.A., Hammond, S.D.
(eds.) PMBS 2014. LNCS, vol. 8966, pp. 46–67. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17248-4_3

19. Karlin, I., et al.: Exploring traditional and emerging parallel programming models
using a proxy application. In: 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, pp. 919–932 (2013)

20. Kunen, A.J., Bailey, T.S., Brown, P.N.: KRIPKE - a massively parallel transport
mini-app. Office of Scientific and Technical Information (OSTI), June 2015

21. Marques, D., et al.: Performance analysis with cache-aware roofline model in intel
advisor. In: 2017 International Conference on High Performance Computing Sim-
ulation (HPCS), pp. 898–907 (2017)

22. Mohd-Yusof, J., Swaminarayan, S., Germann, T.C.: Co-design for molecular
dynamics: an exascale proxy application. Technical report LA-UR 13-20839 (2013)

23. Müller, M.S., et al.: SPEC OMP2012—An application benchmark suite for parallel
systems using OpenMP. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 223–236. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30961-8_17

24. Niethammer, C., Gracia, J., Knúpfer, A., Resch, M.M., Nagel, W.E. (eds.): Tools
for High Performance Computing 2014. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-16012-2

25. Park, J., Smelyanskiy, M., Yang, U.M., Mudigere, D., Dubey, P.: High-performance
algebraic multigrid solver optimized for multi-core based distributed parallel sys-
tems. In: SC 2015: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–12 (2015)

https://doi.org/10.1007/978-3-319-98521-3_8
https://doi.org/10.1007/978-3-319-98521-3_8
https://doi.org/10.1007/978-3-030-34627-0_9
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1007/978-3-319-17248-4_3
https://doi.org/10.1007/978-3-319-17248-4_3
https://doi.org/10.1007/978-3-642-30961-8_17
https://doi.org/10.1007/978-3-319-16012-2
https://doi.org/10.1007/978-3-319-16012-2

FAROS: A Framework to Analyze OpenMP Compilation 17

26. Richards, D.F., Bleile, R.C., Brantley, P.S., Dawson, S.A., McKinley, M.S.,
O’Brien, M.J.: Quicksilver: A Proxy App for the Monte Carlo Transport Code
Mercury. Office of Scientific and Technical Information (OSTI), July 2017

27. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J.
High Perform. Comput. Appl. 20(2), 287–311 (2006). https://doi.org/10.1177/
1094342006064482

28. Tramm, J.R., Siegel, A.R., Forget, B., Josey, C.: Performance analysis of a reduced
data movement algorithm for neutron cross section data in Monte Carlo simula-
tions. In: Markidis, S., Laure, E. (eds.) EASC 2014. LNCS, vol. 8759, pp. 39–56.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15976-8_3

29. Tramm, J.R., Siegel, A.R., Islam, T., Schulz, M.: XSBench - the development
and verification of a performance abstraction for Monte Carlo reactor analysis. In:
PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future. Kyoto
(2014). https://www.mcs.anl.gov/papers/P5064-0114.pdf

30. Trott, C.R., et al.: ASC Trilab L2 Codesign Milestone 2015. Office of Scientific and
Technical Information (OSTI), September 2015. https://doi.org/10.2172/1221176

https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1007/978-3-319-15976-8_3
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.2172/1221176

Evaluating the Efficiency of OpenMP
Tasking for Unbalanced Computation

on Diverse CPU Architectures

Stephen L. Olivier(B)

Center for Computing Research, Sandia National Laboratories,
Albuquerque, NM, USA
slolivi@sandia.gov

Abstract. In the decade since support for task parallelism was incor-
porated into OpenMP, its use has remained limited in part due to con-
cerns about its performance and scalability. This paper revisits a study
from the early days of OpenMP tasking that used the Unbalanced Tree
Search (UTS) benchmark as a stress test to gauge implementation effi-
ciency. The present UTS study includes both Clang/LLVM and ven-
dor OpenMP implementations on four different architectures. We mea-
sure parallel efficiency to examine each implementation’s performance in
response to varying task granularity. We find that most implementations
achieve over 90% efficiency using all available cores for tasks of O(100k)
instructions, and the best even manage tasks of O(10k) instructions well.

Keywords: OpenMP Tasks · Unbalanced Tree Search · Load
balancing

1 Introduction

The introduction of asynchronous task parallelism was the primary focus of ver-
sion 3.0 of the OpenMP R© API specification published in 2008 [24]. Subsequent
versions of the specification up to and including version 5.0 [25] have added
numerous enhancements to the OpenMP tasking model. Tasking has carved out
an important role in OpenMP as the mechanism for asynchronous device offload,
but its use remains somewhat limited in CPU-only OpenMP programs. Common
concerns include finding the optimal task granularity to amortize the overhead
costs of task creation, scheduling, and synchronization while at the same time
exposing sufficient application parallelism.

Shortly after the first OpenMP 3.0 implementations appeared, the Unbal-
anced Tree Search Benchmark (UTS) [20] was ported to the OpenMP task-
ing model as a stress test [21]. The OpenMP tasking version of UTS was ini-
tially compared against an OpenMP version that handled load balancing at user
level and a Cilk [10] version. An expanded study [22] included comparisons to
Cilk++ [15] (forerunner of Intel R© Cilk

TM
Plus) and Threading Building Blocks

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 18–33, 2020.
https://doi.org/10.1007/978-3-030-58144-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_2&domain=pdf
http://orcid.org/0000-0001-6247-8980
https://doi.org/10.1007/978-3-030-58144-2_2

Evaluating the Efficiency of OpenMP Tasking 19

(TBB) [26]. The results shed light on the ability of runtime systems of the time
to cope with large numbers of tasks generated in an unpredictable manner. UTS
was later added to the Barcelona OpenMP Tasks Suite (BOTS)1.

At the time of this writing, the UTS OpenMP tasking studies are just over
a decade old. They were carried out on a board comprised of eight dual-core
“Santa Rosa” Opteron processors manufactured in a 90 nm feature size. In con-
trast, Intel and AMD are currently transitioning down from 14 nm to smaller
feature sizes, and processors with up to 72 cores per chip have been deployed
in high performance computing (HPC) systems. Arm systems capable of 64-
bit server-class computing were not even available until recently. Compilers and
runtime systems have evolved in the intervening years as well. Many are now
based on the LLVM project [14], and its permissively licensed open-source code
base has enabled cooperation among vendors and researchers while still allowing
vendors to maintain custom versions with proprietary optimizations for added
value. In addition, the evolution of the OpenMP tasking model since its incep-
tion has required some changes to the data structures and algorithms used in
implementations. In light of these developments in hardware and software, the
time is ripe to reprise the UTS stress testing evaluation of OpenMP tasking.

We do not attempt to reproduce exactly the earlier UTS OpenMP tasking
studies. The problem size used then is much too small for current systems, and
only one machine was used. The present study explores the following dimensions:

– Diversity of architectures (IBM POWER9, Arm Thunder X2, Intel Xeon Sky-
lake, and Intel Xeon Phi Knights Landing);

– Comparison of Clang/LLVM and vendor implementations;
– Measuring parallel efficiency as a function of task granularity;
– Quantifying load balancing operations per thread per unit time.

This effort aims to offer insights into the present state of OpenMP tasking
efficiency for the benefit of OpenMP users and implementors.

2 UTS: The Benchmark and Its Implementation

The UTS benchmark is a traversal of a dynamically generated tree. The end
result is a count of all the tree nodes. Since the computation of the result does
not require storage of tree nodes already explored, it is possible to generate
and process massive problems on even a small system. A variety of tree types
are specified in the original UTS paper [20], but this study is confined to the
“binomial” tree type, which is particularly challenging to load balance due to
its unpredictability. In particular, simply distributing nodes near the root of
the tree across threads is not sufficient, because some of those nodes produce
very few descendants and the size of the subtree rooted at any node in the tree
is not known a priori. Rather, continuous dynamic load balancing is required.

1 https://github.com/bsc-pm/bots.

https://github.com/bsc-pm/bots

20 S. L. Olivier

Though the benchmark itself is synthetic, it is representative of applications that
perform an exhaustive search of a large irregular state space.

The key benchmark parameters are the root branching factor (b0), the non-
root branching factor (m), and the probability of generating children (q). At the
start of the benchmark only the root node of the tree exists. After the b0 child
nodes of the root are generated, each of those nodes and each of their descen-
dants determine the number of children to generate by sampling a binomial
probability distribution. Each non-root node has m children with probability
q and no children with probability 1 − q. Each node is identified by a 20-byte
descriptor. The generation of a child executes a SHA-1 cryptographic hash [9] on
the combination of the parent’s descriptor and its child index. Thus, successful
completion of the benchmark on an n-node tree requires n SHA-1 evaluations.

An additional parameter is useful for the present study, compute granularity
(g). This parameter specifies the number of times to repeat the SHA-1 hash at
each node and it defaults to 1. Repeating the hash does not change the result
of the computation, but it changes the amount of work done at each node. The
effect of increasing the compute granularity is to coarsen the tasks.

The version of UTS used in this study is based on the implementation in
the Barcelona OpenMP Tasks Suite (BOTS). The code for the recursive func-
tion that performs the tree traversal is shown in Fig. 1. The code in the figure
includes some minor simplifications, but it also shows one substantive change
from the BOTS version that has been made to the actual code run in the exper-
iments. That change is the if statement that ensures recursive calls are only
made in the case where a child node itself has children.2 This change aids anal-
ysis of the benchmark by ensuring that all tasks do the same number of SHA-1
hash operations (including only those performed within that task itself, not its
descendants). Recall that each node has m children with probability q and no
children with probability 1 − q. Thus, each task performs exactly m × g hash
operations, where g is the compute granularity parameter specifying the number
of repetitions of the hash operation for each node. In the original BOTS version,
the if statement was not present, and tasks were created for child nodes that
themselves produced no children and thus did no SHA-1 hash operations.3

3 Test Problem

The problem input used in the study is tree “T3S”, found in the small.input file
in the inputs/uts subdirectory of the BOTS distribution. The root node of the
tree has b0 = 2000 child nodes. Each non-root nodes has m = 5 children with
probability q = 0.200014 and no children with probability (1 − q) = 0.799986.

2 An if clause on the task construct would still create a task, though it would be
undeferred. The combination of final and mergeable clauses would allow but not
require that child tasks be merged, and it would require additional look-ahead since
the parent task must also be final to enable merging of the child tasks.

3 The version used in the 2009 UTS OpenMP tasking study [21] also had uniform
work per task, but with each task performing the SHA-1 hash for only a single node.

Evaluating the Efficiency of OpenMP Tasking 21

unsigned long long search(Node ∗parent, int numChildren)
{
Node n[numChildren], ∗nodePtr;
int i, j;
unsigned long long subtreesize = 1, partialCount[numChildren];

// Recurse on the children of Node
for (i = 0; i < numChildren; i++) {

nodePtr = &n[i];

// The following line is the work (one or more SHA−1 ops)
for (j = 0; j < granularity; j++) {

sha1 rng(parent−>state.state, nodePtr−>state.state, i);
}

// Sample a binomial distribution to determine the number of children of child i
nodePtr−>numChildren = uts numChildren(nodePtr);

if (nodePtr−>numChildren > 0) {
// Traverse the subtree rooted at child i to get subtree size
#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)

partialCount[i] = search(nodePtr, nodePtr−>numChildren);
}
else

partialCount[i] = 1;
}

// Wait for all subtree traversals
#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node
for (i = 0; i < numChildren; i++) {

subtreesize += partialCount[i];
}

return subtreesize;
}

Fig. 1. UTS code

The resulting tree has 111 345 631 nodes and with a maximum depth of 17 844
nodes. Only 22 268 727 nodes (19.99964% of the total nodes) have children, while
the remaining 89 076 904 nodes (80.00036% of the total nodes) have no children.
These numbers match closely the expected number of nodes with no children
based on the parameterized bias of the probability distribution given by q and
(1−q). Since the parallel code used in the experiments is structured to create one
task per child-producing node, 22 268 727 is also the number of OpenMP tasks.

22 S. L. Olivier

The compute granularity is varied in the experiments, but where not specified
explicitly it is only one SHA-1 hash operation per tree node.

Each experiment consisted of ten trials. Perhaps due in part to effective load
balancing, percent standard deviation was no more than 2% and in most cases
a fraction of a percent. Hence, error bars are omitted from the graphs.

4 Experimental Setup

The present study spans four different architectures and 2–3 OpenMP imple-
mentations per architecture:

– Xeon SKL: Intel R© Xeon R© “Skylake” Platinum 8160 Processors, dual socket
with 24 cores per socket (48 cores total), 2 hardware threads per core, 2.1
GHz, 192 GB DDR4 memory, Red Hat R© Enterprise Linux R© 7.1. Compilers:
Intel R© C/C++ Compiler 19.0.5 using “-fopenmp -O3 -xHost”; Clang LLVM
9.0.1 using “-fopenmp -O3 -march=native” with LLVM OpenMP Runtime.

– IBM P9: IBM R© POWER9
TM

8335-GTW Processors, dual socket with 22
cores per socket (44 cores total), 4 hardware threads per core, 2.3 GHz,
256 GB DDR4 memory, Red Hat R© Enterprise Linux R© 7.6. Compilers: PGI R©

Compiler 20.1 using “-mp -O3 -tp=pwr9”; Clang LLVM 9.0.1 using
“-fopenmp -O3 -mcpu=pwr9” with LLVM OpenMP Runtime.

– Arm TX2: Marvell R© ThunderX2 R© CN9975-2000 Arm R© v8 Processors, dual
socket with 28 cores per socket (56 cores total), 2 hardware threads per core4,
2.0 GHz, 128 GB DDR4 memory, Tri-Lab Operating System Stack (TOSS)
based on Red Hat R© Enterprise Linux R© 7.6. Compilers: Arm R© Compiler 20.0
(“armclang”) using “-fopenmp -O3 -mcpu=native”; Clang LLVM 9.0.1 using
“-fopenmp -O3 -mcpu=native” with LLVM OpenMP Runtime.

– Xeon Phi: Intel R© Xeon Phi
TM

“Knights Landing” 7250 Processor, sin-
gle socket with 68 cores, 1.4 GHz, 4 hardware threads per core, 16 GB
Multi-Channel MCDRAM on-package memory, 96 GB DDR4 memory, Cray
Linux R© Environment (CLE) based on SUSE Linux R© Enterprise Server.
Compilers: Intel R© C/C++ Compiler 19.0.4 using “-fopenmp -O3 -xMIC-
AVX512”; Cray R© Compiling Environment (CCE) “Cray clang” 9.1.2 using
“-fopenmp -O3 -h cpu=mic-knl”; Clang LLVM 9.0.1 using “-fopenmp -O3
-mcpu=knl” with LLVM OpenMP Runtime.

Clock speeds quoted above are as reported by /proc/cpuinfo, but proces-
sors may operate at higher “turbo” speeds given sufficient thermal headroom. To
enable the large stack sizes required by the recursion (and recursive parallelism)
in UTS, the system stack limit is set to “unlimited” via the ulimit command
and the OMP STACKSIZE environment variable is set to 100 MB. For the
Intel TBB version of UTS, per-thread stack size is provided as an argument at
TBB runtime initialization. Intel Cilk Plus limits maximum spawn depth to 1024
tasks, rendering it unable to run our test problem regardless of stack size.

4 Each core has 4, but the BIOS configuration on the test system only has 2 enabled.

Evaluating the Efficiency of OpenMP Tasking 23

Two major OpenMP implementations not included in the study are IBM
XL and GCC. Unfortunately, the executable generated by the XL 20.1 compiler
encounters a segmentation fault each time, regardless of stack size. This issue
has been reproduced by an IBM compiler engineer. GCC 9.2 correctly executes
UTS, but the task parallel OpenMP program does not scale at all: Even 2-thread
executions run no faster than the sequential program. Code inspection reveals
that GCC continues to employ a centralized queue for OpenMP tasks, while
most other implementations use scalable distributed work-stealing schedulers.

While task reductions would be useful for the expression of the UTS tree
traversal code, they are not used in the version tested in this study. Of the few
compilers that so far claim support for this OpenMP 5.0 feature, only GCC
successfully compiled a UTS version adapted to use task reductions. The others
reject the use of the in reduction clause on orphaned tasks. Bug reports have
been filed for clang and LLVM, with fixes expected to be available in the 11.0
release and subsequently in derivative vendor implementations.

5 Results

The primary independent variable in this study is task granularity. Recall that
the granularity of each task is the product m × g where m is the non-root
branching factor and g is the number of repeated SHA-1 hash operations per
tree node. Since each non-leaf node in the tree, excluding the root node, has
5 children, the lowest granularity of 5 hash operations per task represents only
one SHA-1 hash operation per child node in the tree. Coarser granularities are
obtained by repeating the hash operations.

The number of SHA-1 hash operations per tree node is a metric particular
to the UTS benchmark, but Tables 1 and 2 present task granularity in terms of
execution time and instructions, respectively. This data is taken from sequential
executions, representing lower bounds since the time to do the calculations in
each task may increase in parallel executions. This “work-time inflation” can
result, e.g., from cache and NUMA effects [23]. Moreover, the integer-heavy
instruction mix of SHA-1 means that these numbers may not be universally
applied to other programs. In spite of these differences, our results provide some
rough guidance for acceptable granularity of OpenMP tasks.

The time required to perform one SHA-1 hash operation (the first column of
numbers in Table 1) varies widely across the four systems, roughly 3× slower on
Xeon Phi compared to Xeon Skylake. Differences in clock speed and in core and
memory subsystem design contribute to these different computation rates. Using
different compilers on the same system mostly results in similar SHA-1 execution
rates, with some differences attributable to optimization choices and vectoriza-
tion capability. The number of instructions required to perform one SHA-1 hash
operation (the first column of numbers in Table 2) is a much narrower range
(1.39–1.74 kilo-instructions) across systems than the time per operation. This
observation suggests that generalizations of task granularity trends across sys-
tems may be more meaningful when expressed in terms of instructions per task
rather than time per task.

24 S. L. Olivier

Table 1. Translating task granularity from SHA-1 operations/task to time/task

Architecture and
implementation

Time (µs)
per op.

Time (µs) per recursive call at granularity

5 ops. 10 ops. 20 ops. 40 ops. 80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7

Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4

IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0

IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4

Arm TX2 -
Armclang

0.32 1.61 3.22 6.43 12.9 25.7 51.4

Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2

Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103

Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118

Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101

Table 2. Translating task granularity from SHA-1 operations/task to machine instruc-
tions/task

Architecture and
implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity

5 ops. 10 ops. 20 ops. 40 ops. 80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279

Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272

IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264

IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267

Arm TX2 -
Armclang

1.39 6.97 13.9 27.9 55.7 111 223

Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243

Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272

Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274

Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

5.1 Comparing Parallel Efficiency

The ability to compare across platforms with different architectures and core
counts makes percent parallel efficiency an ideal metric. It is calculated by the

formula
speedup

number of threads×100, where speedup is
sequential excution time
parallel execution time .

Ideal speedup is a speedup equal to the number of threads, yielding a percent
parallel efficiency of 100%.

Evaluating the Efficiency of OpenMP Tasking 25

Figures 2 and 3 show percent parallel efficiency for the UTS benchmark across
architectures and OpenMP implementations (and TBB on the Intel Skylake
platform). The vertical axis indicates percent parallel efficiency. The horizon-
tal axis indicates the task granularity on a logarithmic scale, in thousands of
instructions, derived from the data in Table 2. For each platform, the number of
OpenMP threads is equal to the number of available cores on the machine, and
each thread is bound to a single core.

ICC on Intel Skylake and PGI on IBM POWER9 are the top performers
among OpenMP implementations, bested only by TBB (compiled with ICC).
Even at the lowest granularity all three exceed 65% efficiency, and at a granu-
larity of 67–70 kilo-instructions per task, they exceed 90% efficiency. On Intel
Skylake, IBM POWER9, and Arm ThunderX2, the Clang/LLVM implemen-
tation achieves 43.0–47.7% efficiency at the lowest granularity and above 80%
with tasks of 61–68 kilo-instruction granularity. While the efficiency of the Arm
implementation is similar to clang on ThunderX2 at low granularity, it achieves
better efficiency at the coarser granularities. The Intel Xeon Phi exhibits the

Fig. 2. Parallel efficiency of UTS as a function of task granularity on Intel Xeon Skylake
and IBM POWER9 using various compilers

26 S. L. Olivier

lowest efficiency of all architectures at the lowest granularity, but ICC fares
much better than Clang or CCE. At a granularity of 65–68 kilo-instructions per
task, CCE and ICC reach 80% efficiency while Clang lags behind at 72.3%.

Several trends emerge from the data. At the finest task granularity, the range
of parallel efficiency is wide (16.8–77.5%). However, at the coarsest granularity
it is much narrower (89.7–96.9%). Better performance at fine task granularity
requires low overheads on the part of the OpenMP runtime implementations.
Vendor implementations exhibit the best results on each architecture among
those tested: ICC on Skylake and Xeon Phi, PGI on IBM, and armclang on
ThunderX2. However, Clang/LLVM reaches reasonable efficiency at the coarser
granularities on all architectures. Xeon Phi appears be the most challenging
architecture for implementations to target efficiently, but it also has the most
cores.

Fig. 3. Parallel efficiency of UTS as a function of task granularity on Arm ThunderX2
and Intel Xeon Phi Knights Landing using various compilers

Evaluating the Efficiency of OpenMP Tasking 27

The best implementations are successfully processing tasks consisting of
O(10k) instructions, but most implementations need a task granularity of
O(100k) instructions to reach high efficiency. Due to lack of space, the results
in terms of execution time per task are not shown. However, Tables 1 and 2 can
help to translate the results: In terms of execution time, the best implementa-
tions can manage tasks with only a few microseconds of work, but most require
tasks to have at least tens of microseconds of work.

5.2 Thread Scalability and Simultaneous Multithreading

All platforms used in this study support multiple hardware threads per core,
sometimes referred to as simultaneous multithreading (SMT). To assess the ben-
efits of SMT, we compared the speedup of executions using only one OpenMP
thread per core and executions using a number of OpenMP threads equal to

Fig. 4. Speedup at the coarsest granularity, varying thread count

28 S. L. Olivier

the number of available hardware threads. Figure 4 shows the results across the
various architectures with the maximum task granularity from the earlier exper-
iments (223–279 kilo-instructions per task). Also included are results using 40
threads, which allows comparison of speedup for the same thread count across the
architectures. All implementations achieve over 37X speedup using 40 threads,
and speedup continues to improve as more threads are added from 40 threads
to the number of threads equal to the number of cores on each architecture.5

POWER9 exhibits the best improvement from SMT, with its 4 hardware threads
more than doubling the performance compared to using a single thread per core.
The Arm ThunderX2 system shows a more modest benefit from SMT. On Sky-
lake (2-way SMT), ICC delivers a performance improvement with SMT while
Clang sees none. The reverse occurs on Xeon Phi, with its 4-way SMT.

5.3 Quantifying Load Balancing Operations

Due to the unpredictable imbalance of the dynamically generated tree traversed
in UTS, nearly continuous load balancing is required to scale the computation
across available threads. The OpenMP implementation is free to move any unex-
ecuted task from the thread on which it was generated to another thread in the
team. We instrumented the UTS source code to check the thread number at the
start of each task and increment a counter if it differs from the thread number
of the thread on which its parent task executed. Figure 5 reports on a log-log
scale the number of these “moved” child tasks per thread per second at each
granularity (in thousands of instructions, as in the earlier figures). This metric
allows comparison across executions on different numbers of threads and with
different total execution times. With finer-grained tasks, all implementations
are performing thousands of load balancing operations per second per thread.
Unsurprisingly, the rate of load balancing operations decreases as the granularity
of the tasks becomes coarser. The one outlier in this respect is CCE on Xeon
Phi, whose load balancing rate is flat across the finer granularities.

The implementations that performed best in the parallel efficiency results,
ICC on Xeon Skylake and PGI on IBM POWER9, carry out the most load bal-
ancing operations at the finest granularity setting. The least efficient implemen-
tations at the finest granularity setting, those on Xeon Phi, carry out the fewest
load balancing operations. As a group, Clang/LLVM on IBM, Clang/LLVM
on Arm, and Armclang produce nearly indistinguishable results on this metric
throughout the range of granularities. The load balancing metric may also help
to explain CCE’s poor parallel efficiency at low granularities and better parallel
efficiency at higher granularities, relative to other implementations: CCE is tied
for the second-fewest tasks moved among implementations in the fine granular-
ity executions but has the second-highest number of moved tasks in the coarse
granularity executions.

5 UTS places relatively low demands on memory, so it can be more amenable to
adding threads compared to more memory-hungry applications, which can saturate
the memory subsystem with fewer active threads than the total available cores.

Evaluating the Efficiency of OpenMP Tasking 29

Fig. 5. Load balancing: Number of child tasks executing on different threads than their
parent tasks, per thread, per second (log-log scale)

Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

SHA-1 ops. per task 5 10 20 40 80 160

Pearson correlation 0.69 0.59 0.42 0.42 0.38 0.12

Table 3 shows the Pearson correlation between speedup and the number of
moved child tasks per second per thread, calculated across implementations at
each granularity. A correlation coefficient near 1.0 or −1.0 indicates high pos-
itive or negative correlation, respectively, and a correlation coefficient near 0.0
indicates low correlation. Observe from the table that the finer the granularity
of tasks, the more correlated are speedup and the number of load balancing
operations. This data suggests that carrying out large numbers of load balanc-
ing operations per unit time becomes more important to the performance of
OpenMP implementations as task granularity becomes finer.

Our moved child tasks metric is actually only a lower bound on the number
of load balancing operations since we use untied tasks. Implementations can
move untied tasks between threads during execution at any task scheduling
points, such as at child task creation and when waiting in a taskwait region.
Since we did not check the thread number after each task scheduling point,

30 S. L. Olivier

any such operations would have been missed. Unfortunately, repeated calls to
omp get thread num() can be expensive for some implementations. OMPT-
based tools that introspect the OpenMP runtime library, once they are more
universally supported, may be a better way to capture a more complete load
balancing metric than the user-level code instrumentation we employed.

6 Related Work

Early work pertaining to the OpenMP tasking model included experimental
studies [4,7] and a treatment on the design rationale [3]. BOTS [8] was among
the earliest benchmark suites for OpenMP tasking and included kernels like FFT
and linear algebra, many based on recursive parallelism. Later efforts provided
basic microbenchmarks [5], benchmarks exercising task dependences [29], and
evaluations of NUMA impacts on tasking [28]. A study applying OpenMP tasks
to a graph problem is noteworthy for its scale, having run on an entire 1024-core
SGI Altix UV system [1]. A more recent application study used a Fast Multipole
Method (FMM) mini-application with results on some of the same architectures
that we used [2].

Several efforts have focused on developing tools for analysis of programs using
OpenMP tasking [11,16–18,27]. Previous work to analyze and reduce overheads
has taken several directions, including cutoffs (adaptive [6] or static [13]) to limit
parallelism. Others studied task granularity through profiling [12] or dynamic
adjustment of granularity [19]. The unpredictable parallelism of UTS makes it
a challenging target for the use of cutoffs or aggregation techniques.

7 Conclusions

The UTS benchmark is an extreme stress test, resulting in thousands of load bal-
ancing operations per second per thread. The study’s focus on parallel efficiency
allows comparison across diverse architectures and OpenMP implementations.
The results illustrate that all implementations tested, except GCC, can effi-
ciently manage tasks of O(100k) instructions per task using all available cores,
and the best implementations perform well with tasks of even O(10k) instruc-
tions per task. The adequate efficiency of OpenMP tasking in Clang/LLVM as
demonstrated in this study is particularly important for the OpenMP commu-
nity due to its free availability under a permissive license and its role as a base
for vendors to build upon. Still, we find that vendor OpenMP implementations,
many of which are LLVM-based, do perform best. The overarching conclusion
is that OpenMP tasking can be very efficient for unbalanced computation on a
variety of architectures.

Acknowledgment. This work used advanced architecture testbed systems provided
by the National Nuclear Security Administration’s Advanced Simulation and Comput-
ing Program. Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly

Evaluating the Efficiency of OpenMP Tasking 31

owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525.

References

1. Adcock, A.B., Sullivan, B.D., Hernandez, O.R., Mahoney, M.W.: Evaluating
OpenMP tasking at scale for the computation of graph hyperbolicity. In:
Rendell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol.
8122, pp. 71–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40698-0 6

2. Atkinson, P., McIntosh-Smith, S.: On the performance of parallel tasking runtimes
for an irregular fast multipole method application. In: de Supinski, B.R., Olivier,
S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS,
vol. 10468, pp. 92–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65578-9 7

3. Ayguadé, E., et al.: The design of OpenMP tasks. IEEE Trans. Parallel Distrib.
Syst. 20, 404–418 (2009)

4. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimen-
tal evaluation of the new OpenMP tasking model. In: Adve, V., Garzarán, M.J.,
Petersen, P. (eds.) LCPC 2007. LNCS, vol. 5234, pp. 63–77. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85261-2 5

5. Bull, J.M., Reid, F., McDonnell, N.: A microbenchmark suite for OpenMP tasks.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 271–274. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30961-8 24

6. Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In:
SC 2008: ACM/IEEE Supercomputing 2008, pp. 1–11. IEEE (2008)

7. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP task scheduling
strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol.
5004, pp. 100–110. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-79561-2 9

8. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: ICPP 2009: Proceedings of the 38th International Conference on
Parallel Processing, pp. 124–131. IEEE, September 2009

9. Eastlake, D., Jones, P.: US Secure Hash Algorithm 1 (SHA-1). RFC 3174, Internet
Engineering Task Force, September 2001. http://www.rfc-editor.org/rfc/rfc3174.
txt

10. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: PLDI 1998: Proc. ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI 1998, pp. 212–223.
Association for Computing Machinery, New York (1998)

11. Fürlinger, K., Skinner, D.: Performance profiling for OpenMP tasks. In: Müller,
M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp.
132–139. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02303-
3 11

12. Gautier, T., Perez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3 14

https://doi.org/10.1007/978-3-642-40698-0_6
https://doi.org/10.1007/978-3-642-40698-0_6
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1007/978-3-540-85261-2_5
https://doi.org/10.1007/978-3-642-30961-8_24
https://doi.org/10.1007/978-3-642-30961-8_24
https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1007/978-3-540-79561-2_9
http://www.rfc-editor.org/rfc/rfc3174.txt
http://www.rfc-editor.org/rfc/rfc3174.txt
https://doi.org/10.1007/978-3-642-02303-3_11
https://doi.org/10.1007/978-3-642-02303-3_11
https://doi.org/10.1007/978-3-319-98521-3_14

32 S. L. Olivier

13. Iwasaki, S., Taura, K.: A static cut-off for task parallel programs. In: PACT 2016:
International Conference on Parallel Architecture and Compilation Techniques, pp.
139–150, September 2016

14. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis and transformation. In: CGO 2004: International Symposium on Code Gener-
ation and Optimization, San Jose, CA, USA, pp. 75–88, March 2004

15. Leiserson, C.E.: The Cilk++ concurrency platform. J. Supercomput. 51(3), 244–
257 (2010)

16. Lin, Y., Mazurov, O.: Providing observability for OpenMP 3.0 applications. In:
Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS,
vol. 5568, pp. 104–117. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02303-3 9

17. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to reconcile event-
based performance analysis with tasking in OpenMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 109–121. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13217-9 9

18. Lorenz, D., Philippen, P., Schmidl, D., Wolf, F.: Profiling of OpenMP tasks with
score-P. In: ICPPW 2012: 41st International Conference on Parallel Processing
Workshops, pp. 444–453. IEEE Computer Society (2012)

19. Navarro, A., Mateo, S., Perez, J.M., Beltran, V., Ayguadé, E.: Adaptive and
architecture-independent task granularity for recursive applications. In: de Supin-
ski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP
2017. LNCS, vol. 10468, pp. 169–182. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65578-9 12

20. Olivier, S., et al.: UTS: an unbalanced tree search benchmark. In: Almási, G.,
Caşcaval, C., Wu, P. (eds.) LCPC 2006. LNCS, vol. 4382, pp. 235–250. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72521-3 18

21. Olivier, S.L., Prins, J.F.: Evaluating OpenMP 3.0 run time systems on unbalanced
task graphs. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 63–78. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02303-3 6

22. Olivier, S.L., Prins, J.F.: Comparison of OpenMP 3.0 and other task parallel frame-
works on unbalanced task graphs. Int. J. Parallel Program. 38(5–6), 341–360 (2010)

23. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and mitigat-
ing work time inflation in task parallel programs. In: SC 2012: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, pp. 65:1–65:12. IEEE Computer Society Press (2012)

24. OpenMP Architecture Review Board: OpenMP application programming interface,
version 3.0, May 2008. https://www.openmp.org/wp-content/uploads/spec30.pdf

25. OpenMP Architecture Review Board: OpenMP application programming inter-
face, version 5.0, November 2018. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf

26. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ For Multi-Core
Processor Parallelism. O’Reilly, Beijing (2007)

27. Schmidl, D., et al.: Performance analysis techniques for task-based OpenMP appli-
cations. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 196–209. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30961-8 15

https://doi.org/10.1007/978-3-642-02303-3_9
https://doi.org/10.1007/978-3-642-02303-3_9
https://doi.org/10.1007/978-3-642-13217-9_9
https://doi.org/10.1007/978-3-642-13217-9_9
https://doi.org/10.1007/978-3-319-65578-9_12
https://doi.org/10.1007/978-3-319-65578-9_12
https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.1007/978-3-642-02303-3_6
https://doi.org/10.1007/978-3-642-02303-3_6
https://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-642-30961-8_15
https://doi.org/10.1007/978-3-642-30961-8_15

Evaluating the Efficiency of OpenMP Tasking 33

28. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP task-
ing implementations on NUMA architectures. In: Chapman, B.M., Massaioli, F.,
Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30961-8 14

29. Virouleau, P., et al.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11454-5 2

https://doi.org/10.1007/978-3-642-30961-8_14
https://doi.org/10.1007/978-3-319-11454-5_2

Applications

A Case Study of Porting HPGMG
from CUDA to OpenMP Target Offload

Christopher Daley(B), Hadia Ahmed, Samuel Williams, and Nicholas Wright

Lawrence Berkeley National Laboratory (LBNL),
1 Cyclotron Road, Berkeley, CA 94720, USA

{csdaley,hahmed,SWWilliams,NJWright}@lbl.gov

Abstract. The HPGMG benchmark is a non-trivial Multigrid bench-
mark used to evaluate system performance. We ported this benchmark
from CUDA to OpenMP target offload and added the capability to use
explicit data management rather than managed memory. Our optimized
OpenMP target offload implementation obtains a performance of 0.73x
and 2.04x versus the baseline CUDA version on two different node archi-
tectures with NVIDIA Volta GPUs. We explain how we successfully used
OpenMP target offload, including the code refactoring required, and how
we improved upon our initial performance with LLVM/Clang by 97x.

Keywords: HPGMG · Managed memory · CUDA · OpenMP target
offload · NVIDIA · Volta · V100 · GPU

1 Introduction

The systems deployed at supercomputing centers increasingly consist of hetero-
geneous node architectures with both CPUs and GPUs. At the present time
this includes the Summit supercomputer at ORNL and the Sierra supercom-
puter at LLNL. However, there are also many planned deployments which will
use GPU accelerators from NVIDIA, AMD or Intel. It is important that user
applications can run efficiently on a variety of accelerators. Non-portable pro-
gramming approaches are not practical for a large number of application code
teams because of lack of resources, no detailed knowledge of specific accelera-
tors, or code maintainability concerns. OpenMP target offload is one approach to
enable users to portably offload computation to accelerators using directives [29].

There are case studies of user experiences of OpenMP target offload and
even an entire benchmark suite to evaluate OpenMP target offload performance
(SPEC ACCEL [16]). However, the case studies often consider relatively sim-
ple micro-benchmarks or mini-apps. There is generally a gap between OpenMP
target offload case studies and the complexity of full applications run at super-
computing centers. It is thus important to assess the ease and success of using
OpenMP target offload in non-trivial applications. This can find gaps in the
OpenMP specification, assist with developing best practices for other users to
follow, and identify bugs and performance issues in OpenMP compilers.
c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 37–51, 2020.
https://doi.org/10.1007/978-3-030-58144-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_3

38 C. Daley et al.

In this work, we ported a non-trivial application named HPGMG [1,32] from
CUDA to OpenMP target offload and extended the code to use explicit data
management rather than managed memory. Managed memory is a capability
enabling the CPU and GPU to transparently access the same data. It is used
in many non-trivial applications [3], however it is not portable to all systems
with GPUs and has potential performance issues [31]. We explain the code mod-
ifications required to use explicit data management as well as situations where
a detailed understanding of the OpenMP specification is needed to correctly
and efficiently manage data. We show performance of both code versions with
multiple OpenMP compilers against the baseline CUDA performance. Our con-
tributions include:

– We created an optimized OpenMP target offload implementation of HPGMG
which achieves a performance of 0.73x and 2.04x versus the baseline CUDA
version on two different node architectures with NVIDIA Volta GPUs.

– We describe how we successfully ported the managed memory CUDA version
of HPGMG to OpenMP target offload and how we added explicit data man-
agement. This includes details about the refactoring required and the issues
we encountered when mapping complicated data structures to the device.

– We compare the performance of 3 OpenMP offload compilers and detail a
major bottleneck in the open-source LLVM/Clang compiler related to the size
of the OpenMP present table. We describe our code changes to workaround
LLVM/Clang compiler limitations and how we improved upon the initial
LLVM/Clang performance by 97x.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the HPGMG application and discusses how we ported
it to OpenMP target offload and added explicit data management. Section 4
introduces the systems and compilers used as well as the benchmarked HPGMG
configuration. Section 5 shows the performance of the managed memory and
explicit data management versions of HPGMG, and explains our progressive
code optimizations for more efficient execution with the LLVM/Clang compiler.
Section 6 discusses lessons learned. Section 7 concludes the paper.

2 Related Work

There are many examples of using OpenMP target offload to execute applications
on platforms with GPUs, e.g. Nekbone [14], Lulesh [6,17], miniMD [30], Neutral
[22] and other UK mini-apps [21,23]. The performance analysis in these papers
mostly focuses on how well a compiler optimizes compute kernels for GPUs. User
guidelines exist for achieving high performance with OpenMP target offload on
CPU and GPU targets, e.g. using combined teams distribute parallel for
OpenMP constructs and avoiding the use of explicit OpenMP schedules [15,24].
Similar guidelines were followed to port the entire SPEC ACCEL benchmark
suite from OpenACC to OpenMP target offload [16]. Compiler optimization
research exists that explores how to accelerate a broader range of OpenMP

Porting HPGMG to OpenMP Target Offload 39

target regions on GPUs, specifically when user code appears between target
and parallel constructs [5,11,15,34]. There has been some initial work done
on identifying sources of overheads in OpenMP runtimes [26]. In this publication,
we evaluate GPU compute performance with 3 OpenMP compilers and identify
a significant LLVM/Clang OpenMP runtime overhead not previously reported.

There are fewer publications detailing data management challenges. The chal-
lenge of mapping structs containing pointers to the device is described in [22].
Here, the authors suggest a user code transformation of adding a new pointer
variable that points to a struct pointer, and then mapping and operating on the
new pointer variable. Cleaner methods to map structs containing pointers are
explained in [12]. In a follow on paper, the authors show how managed mem-
ory allocations via cudaMallocManaged simplifies the use of C++ objects and
enables std::vector to be used in OpenMP target offload applications [13].
There has been a successful study modifying OpenMP target offload applica-
tions and the LLVM/Clang compiler to use managed memory allocations [25].
However, managed memory is not available on all CPU/GPU systems and there
have been several studies reporting higher than expected overheads when using
managed memory [25,31]. One method to successfully use explicit data manage-
ment is to create data management abstractions using OpenMP runtime API
calls only, e.g. RAJA OpenMP target offload backend [4], and GenAsis [7]. The
use of data management directives can be problematic because of lack of compiler
support [35]. In this publication, we explain how we successfully used OpenMP
data management directives to map a complicated nested data structure to the
GPU.

3 The HPGMG Mini Application

HPGMG is a finite-volume geometric Multigrid HPC benchmark [1]. It is written
in C99 and has been parallelized using MPI and optionally OpenMP. The bench-
mark creates a Multigrid grid hierarchy once and repeats the same Multigrid
solve operation a user-specified number of times. The benchmark performance
metric is a throughput metric of Degrees of Freedom per second (DOF/s). The
metric does not include the time to build the Multigrid grid hierarchy.

A Multigrid solver is an iterative linear solver which achieves fast conver-
gence by solving an Ax = B equation at different resolutions. Multigrid solvers
often use a V-cycle computational pattern. The fine-to-coarse part of the V-cycle
consists of a smoothing operation on the finest structured grid, the calculation of
a residual, and restriction of this data to the next coarsest grid. A direct solver
is used on the coarsest level. The coarse-to-fine part of the V-cycle consists of
interpolation of data to finer grids followed by a smoothing operation. An alter-
native to a V-cycle computational pattern is an F-cycle computational pattern
which consists of multiple V-cycles using progressively more levels.

The coarsest level in the Multigrid hierarchy consists of a level with 23 grid
points. Each successive finer level of the hierarchy has 43, 83, 163, ... grid points.
The level data is divided into blocks of variable size up to a user-specified maxi-
mum size, typically 323 or 643 grid points. These blocks are distributed between

40 C. Daley et al.

MPI ranks to balance computational load and memory footprint. HPGMG uses a
nested data structure named level type to hold all block data, communication
buffers, and block neighbor metadata for a single level.

3.1 HPGMG-CUDA

HPGMG-CUDA is a CUDA port of HPGMG [32]. It depends on CUDA man-
aged memory allocations using cudaMallocManaged to enable the same data to
be accessed by CPU and GPU. A single execution of HPGMG-CUDA uses 14
different CUDA kernels. HPGMG-CUDA includes an optimization where oper-
ations for coarse levels are run on the CPU and operations for fine levels are run
on the GPU.

3.2 Porting HPGMG-CUDA to OpenMP Target Offload

The approach we took to port HPGMG-CUDA to OpenMP target offload
involved mixing the original CUDA memory allocation API calls with newly-
created OpenMP target offload regions. In HPGMG-CUDA, the CUDA kernels
access block data through a level structure variable of type level type which
is passed by value as part of the CUDA kernel launch. This data structure con-
tains many scalar and pointer variables, where pointer variables accessed by CPU
and GPU point to memory allocated using cudaMallocManaged. This makes
OpenMP data management as simple as adding map(to:level) to the OpenMP
target region because the targets of the pointer variables can be accessed by the
CPU and the GPU.

Our OpenMP target offload code regions look nearly identical to the original
CUDA kernels. The only difference is that the CUDA launch configuration is
replaced with loops inside the OpenMP target region. There is a repeating pat-
tern in our OpenMP target regions of a coarse-grained loop over blocks, followed
by extraction of block data, followed by a fine-grained loop over grid points in a
block. We parallelized and work-shared these loops using the teams distribute
combined construct on the outer loop and the parallel for combined construct
on the inner loop.

We implemented an incremental porting approach by creating a wrapper
layer that dispatched to the original CUDA kernel or our newly-created function
containing an OpenMP target region. This allowed us to test the correctness of
one OpenMP function at a time. If the numerical results are not identical then
we know we made a mistake in the OpenMP function or there is a compiler bug.
This methodology requires compiling all code without fused-multiply-adds and
fast math in order to expect a numerically identical solution.

3.3 Adding Explicit Data Management to HPGMG

Efficient explicit data management requires minimizing the number of data
transfers between host and device. Our approach involved creating the level

Porting HPGMG to OpenMP Target Offload 41

structure variable once on the device at program initialization. Most fields in
the device version of level never need to be accessed by the host. The excep-
tion is the raw block data which must be transferred to the host every solution
step because some HPGMG functions do not have GPU implementations. In
order to use this approach, we had to refactor the code so that our modified
OpenMP target regions access level data through a pointer to the device version
of level. The code transformation is shown in Fig. 1.

Example initial code using managed memory
void smooth (l e v e l t y p e l e v e l , . . .) {
// Map ” l e v e l ” to the dev i c e . Al l po in t e r v a r i a b l e s in ” l e v e l ” po int to
// data a l l o c a t e d with cudaMallocManaged . These addre s s e s are thus va l i d
// on host and dev i ce
#pragma omp ta rg e t teams d i s t r i b u t e map(to : l e v e l)

f o r (i n t blk=0; blk < l e v e l . num my blocks ; blk++) {

Example refactored code using explicit data management
void smooth (l e v e l t y p e ∗ l e v e l , . . .) {
// Map zero−l ength array s e c t i o n o f ” l e v e l ” . This a t taches the ” l e v e l ”
// po in t e r in the t a r g e t r eg ion to the dev i c e copy o f ” l e v e l ” which
// i s a l r eady present on the dev i ce
#pragma omp ta rg e t teams d i s t r i b u t e map(to : l e v e l [: 0])

f o r (i n t blk=0; blk < l e v e l −>num my blocks ; blk++) {

Fig. 1. The code transformation used to efficiently implement explicit data movement
in HPGMG.

The level structure variable contains a small number of data buffers for the
entire level. This enables the data buffers to be copied efficiently between CPU
and GPU in bulk data transfers. However, it has a software consequence that the
blocks for each level must contain multiple pointers to different offsets within the
larger data buffers. This necessitates additional OpenMP data management to
ensure that the pointers point to the appropriate device data buffer and not the
original host data buffer. The way we attached the appropriate device address
to the device block pointers used the [:0] syntax and is shown in Fig. 2. This
syntax has an additional effect of creating an association between the host and
device address in the OpenMP runtime.

We implemented two techniques to ensure correctness of the explicit data
management version of HPGMG. The first technique involved adding a print
statement in the wrapper layer to enable tracing of the executed GPU functions
in both managed memory and explicit data management versions. This allowed
us to find a case where a missing target update construct caused the BiCGStab
iterative solver to terminate early. Our second technique involved creating func-
tions that calculated mean and L1 norm summary statistics of the level data in
the location that owns the level, i.e. fine levels are owned by the GPU and coarse
levels are owned by the CPU. We called these functions after each function and
compared results against the managed memory version.

42 C. Daley et al.

Attaching a device address to a device pointer
f o r (shape=0; shape<STENCIL MAX SHAPES; shape++) {

f o r (b lock=0; block <3; ++block) {
f o r (b=0; b<l e v e l −>exchange ghosts [shape] . num blocks [b lock] ; ++b) {

#pragma omp ta rg e t ente r data \
map(a l l o c : l e v e l −>exchange ghosts [shape] . b locks [b lock] [b] . read . ptr [: 0])

}
}

}

Fig. 2. OpenMP target offload [:0] syntax to make device pointers point to device
addresses and not host addresses.

4 Experimental Methodology

4.1 Hardware and Software Environment

We used the Summit supercomputer at OLCF [18] and the Cori-GPU testbed
at NERSC [27]. The characteristics of the two systems which are most relevant
for this study are shown in Table 1.

Table 1. Overview of the Cori-GPU and Summit systems.

Cori-GPU Summit

Node architecture Cray CS-Storm 500NX IBM AC922

Node CPUs 2 × Intel Skylake 2 × IBM Power 9

Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz

Node GPUs 8 x 16GB NVIDIA V100 6 x 16 GB NVIDIA V100

CPU-GPU interconnect PCIe 3.0 switch NVLink 2.0

We evaluated multiple compilers on both systems to assess the OpenMP
offload performance of HPGMG. We compared performance against the orig-
inal CUDA version and also an OpenACC version which was ported to the
GPU in an identical way as the OpenMP offload version. The OpenACC version
was included to provide additional performance results for directive-based GPU
offload. The benefit of including OpenACC in our study is that the PGI compiler
provides mature OpenACC support and is available on both systems. The full
list of compilers is shown in Table 2.

The Cori-GPU MPI stack was always OpenMPI-4.0.3, except for the CCE
compiler which was limited to using MPICH-3.3.2. The OpenMPI library was
built with UCX support enabling CUDA-aware MPI communication, but not
GPUDirect support which would have enabled direct peer-to-peer data transfers
between GPUs. The Summit MPI stack was always IBM Spectrum MPI 10.3.1.2-
20200121. Our Summit job launch scripts always specified --smpiargs="-gpu"

Porting HPGMG to OpenMP Target Offload 43

Table 2. Compilers and GPU offload methods evaluated on the Cori-GPU and Summit
systems.

Compiler GPU offload Cori-GPU version Summit version

GCC + NVCC CUDA 7.3.0 + 10.1.243 7.4.0 + 10.1.243

NVIDIA/PGI OpenACC 20.4 20.1

Cray CCE OpenMP 9.1.0 (LLVM version) –

IBM XL OpenMP – 16.1.1-5

LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

to enable the use of CUDA-aware MPI with GPUDirect. We used the NVIDIA
nvprof profiler on both platforms to measure the time spent in GPU kernels and
data movement operations between CPU and GPU. nvprof was active for all
results shown in this study. We used the ECP-funded HPCToolkit profiler [2] on
Cori-GPU to identify bottlenecks in the LLVM/Clang OpenMP runtime.

4.2 Application Configuration

We configured the HPGMG benchmark to use the out-of-place Gauss Seidel
Red Black (GSRB) smoother, 4th order boundary conditions, and a Multigrid
F-Cycle. A single run executes 3 different problem sizes with a grid spacing of
h, 2 h, and 4 h. In this work we only consider the performance of the largest
problem: that is the problem with a grid spacing of h. Our chosen problem has a
grid spacing of h = 1

512 , a maximum box size of 323, and is executed between 3
and 100 steps depending on the throughput of the benchmark for each compiler.
This problem has a memory footprint of approximately 38 GB and thus exceeds
the memory capacity of the 16 GB GPUs in both our test platforms. In our
tests we choose to use a single CPU socket and optionally 3 GPUs. The CPU-
only configurations are executed with 1 MPI rank per core, and the CPU+GPU
configurations are executed with 1 MPI rank per GPU.

5 Performance Evaluation

5.1 Performance When Using Managed Memory

Figure 3 shows the performance of the managed memory versions of HPGMG.
The GPU versions of HPGMG generally performed better on Summit than
Cori-GPU because of higher data transfer bandwidth between CPU and GPU
(NVLink-2.0 versus PCIe 3.0), fewer GPU page faults, and less data movement
between CPU and GPU. The system-level reasons for the differences are out of
scope for this paper. Our performance evaluation will thus only compare compil-
ers on the same system and not between systems. Figure 3a shows that the CCE
and LLVM/Clang OpenMP compilers were not competitive with CUDA on Cori-
GPU. CCE performed poorly because the code needed to be compiled at -O0

44 C. Daley et al.

to workaround a compiler bug [10] (upstream issue at [19]). LLVM/Clang per-
formed poorly because of significant time spent in cuMemAlloc and cuMemFree
functions which are used to allocate and free device memory. These functions
were called when mapping the level structure variable to the device. Figure 3b
shows that the XL OpenMP compiler achieved 0.70x of CUDA performance on
Summit. The PGI OpenACC compiler achieved 0.76x and 0.89x of CUDA per-
formance on Cori-GPU and Summit, respectively, indicating that directive-based
programming can deliver performance competitive with CUDA.

(a) Cori-GPU (b) Summit

Fig. 3. HPGMG throughput for the managed memory version of HPGMG on Cori-
GPU and Summit (higher is better). All configurations used 1 CPU socket and 3 GPUs.
The dashed line shows the best MPI-only performance out of all available compilers
when using 1 CPU socket.

5.2 Performance When Using Explicit Data Management

The performance results for the explicit data management version of HPGMG
are limited because of various compiler issues: the XL compiler failed to correctly
create the HPGMG device data structures [28] and the CCE 9.1.0 compiler does
not support the OpenMP-5.0 pointer attachment rules required by HPGMG
(the recently released CCE-10.0.0 compiler should provide this capability [9]).
Henceforth, all performance results are obtained using the LLVM/Clang com-
piler. The initial results were disappointing compared to the OpenMP managed
memory version: 12.0x slower on Cori-GPU and 5.7x slower on Summit.

The HPCToolkit profiler showed that most of the runtime was spent exe-
cuting a target update construct used to copy data from GPU to CPU. The
bottleneck was not data movement but instead time spent in a library func-
tion provided by libstdc++ named std:: Rb tree increment. Our hypothesis
is that this function is used by the LLVM/Clang OpenMP runtime to find out
which host pointer corresponds to which device pointer before copying data
between memories. OpenMP runtimes maintain an association between host
and device pointers in a present table; it is expected to be efficient even when it

Porting HPGMG to OpenMP Target Offload 45

contains many entries [8,14,36]. We describe our optimizations to workaround
this LLVM/Clang bottleneck and other bottlenecks below. The impact of the
individual optimizations are shown in Fig. 4 and explained below.

(a) Cori-GPU (b) Summit

Fig. 4. HPGMG throughput for the explicit data management version of HPGMG
on Cori-GPU and Summit using the LLVM/Clang compiler (higher is better). All
configurations used 1 CPU socket and 3 GPUs. Optimizations apply additively, e.g.
the code changes associated with the 4th bar down includes the code changes associated
with the 2nd and 3rd bars. The dashed lines show the performance of the managed
memory version of HPGMG when using OpenMP target offload and CUDA (values
obtained from Fig. 3).

Don’t Map NULL Pointers: Many HPGMG block pointers point to NULL
for the duration of the application. These pointer addresses can safely be kept
out of the OpenMP runtime present table. We added an if statement around the
target enter data directive in Fig. 2 to only map data when it is not NULL.
This improved the solve performance by 6.5x on Cori-GPU. It also reduced the
initialization time from 392 s to 40 s on Cori-GPU. This is primarily because of
less exclusive time in the OpenMP runtime but also because of significantly fewer
CUDA HtoD memcpy transfers of 8 bytes. Here, an 8 byte transfer corresponds
to setting a pointer in the device environment to a new device address.

Minimize the Present Table: The HPGMG block pointers are simply a conve-
nience in the device kernels. Therefore, there is no need for the OpenMP runtime
to maintain an association between block pointer host and device addresses. This
is because all data transfers between CPU and GPU involve the larger level
data buffers pointed to by the block pointers. We avoid creating an association
by manually updating the device pointers in the device environment instead of
using the [:0] syntax shown earlier (Fig. 2). Our function to do this is named
omp attach and is shown in Fig. 5. It performs the same task as the OpenACC
runtime API function named acc attach. This improved the performance by
5.3x on Cori-GPU and reduced initialization time to 9.3 s. The nvprof profiler
shows that we called the OpenMP target region in omp attach 103,644 times.

46 C. Daley et al.

This implies that LLVM/Clang present table lookup time slows down signifi-
cantly when the present table has O(100K) entries.

Attaching a device address to a device pointer - alternate method
void omp attach (void ∗∗ ptr)
{

void ∗dptr = ∗ptr ;
i f (dptr) {

#pragma omp ta rg e t data u s e d ev i c e p t r (dptr)
{

#pragma omp ta rg e t i s d e v i c e p t r (dptr)
{

∗ptr = dptr ;
}

}
}

}
omp attach ((void∗∗)& l ev e l −>exchange ghosts [shape] .

b locks [b lock] [b] . read . ptr) ;

Fig. 5. The function omp attach() attaches a device address to a device pointer with-
out creating an entry in the present table of the OpenMP runtime. The function
assumes it is passed the address of a pointer variable which is pointing to the host
address of a mapped variable. We use the use device ptr clause to obtain the device
address of the mapped variable. We then use an OpenMP target region to set the
device pointer to the device address of the mapped variable.

Add CUDA-Aware MPI: The expensive target update code path can be
avoided by exchanging GPU data between processes using CUDA-aware MPI
communication. CUDA-aware MPI simplifies the OpenMP source code because
it only involves adding a target data region with a use device ptr clause to
pass the device address of a data buffer to a MPI communication call. The use
of CUDA-aware MPI improved performance by 1.3x on Cori-GPU. However,
CUDA-aware MPI is a capability that is not available in all MPI libraries.

SPMDize Kernels: The LLVM/Clang OpenMP compiler is known to per-
form poorly when there is user code in between target and parallel OpenMP
directives [33]. As mentioned in Sect. 3.2, this code pattern happens frequently in
HPGMG. It is possible to use the faster LLVM/Clang “SPMD” code generation
scheme by creating all parallelism upfront to ensure that all threads execute
the same code. It is impractical for us to use a combined teams distribute
parallel for construct in the HPGMG OpenMP target regions because this
would omit worksharing of the fine-grained loop over threads. Therefore we
used strictly nested teams and parallel constructs with a manual distribu-
tion of the coarse-grained loop over teams based on the team ID. This was
done because the OpenMP specification does not provide a combined teams
distribute parallel construct and specifies that the distribute construct
must be strictly nested inside a teams region. The SPMD code transforma-
tion improved LLVM/Clang performance by 2.2x on Cori-GPU. There was no

Porting HPGMG to OpenMP Target Offload 47

benefit to the XL compiler because this compiler already implements interpro-
cedural static compiler analysis to determine when all threads execute the same
code [34].

6 Discussion

In this section we discuss whether the abstractions provided by the OpenMP
specification were sufficient for our coding exercise as well as OpenMP compiler
maturity and performance.

6.1 Assessment of OpenMP Abstractions

The directives and runtime API functions provided by the OpenMP specification
enabled us to translate CUDA kernels into OpenMP target offload regions. They
also enabled us to successfully implement explicit data management in a code
that uses nested data structures with many pointer fields. We are concerned that
only a small minority of users will be able to explicitly manage data movement
in CPU/GPU systems in similarly complicated codes, however, this is no fault of
the OpenMP specification. The barrier to entry is significantly lowered by relying
on managed memory. We demonstrated that today’s compilers correctly inter-
operate with CUDA managed memory and we are looking forward to compilers
eventually supporting requires unified shared memory OpenMP directive to
eliminate the need to mix OpenMP with lower-level non-portable APIs.

The only abstractions that could benefit similar coding efforts are related
to performance. We found that a manual implementation of acc attach in
OpenMP enabled us to create a complicated data structure on the device in
less time and assisted the LLVM/Clang OpenMP runtime to more quickly find
the association between host and device addresses. However, this API func-
tion was only necessary because of a significant bottleneck in the LLVM/Clang
present table implementation. We found that a manual implementation of a
teams distribute parallel combined construct enabled us to use a faster
LLVM/Clang code generation scheme for most of the HPGMG functions con-
taining OpenMP target offload, however, it was detrimental to the performance
of XL generated compute kernels.

6.2 Assessment of Compiler Maturity and Performance

We encountered issues with XL and CCE compilers which limited the OpenMP
target offload results in Sect. 5. The only compiler which successfully com-
piled and executed the explicit data management version of HPGMG was
LLVM/Clang (versions prior to LLVM/Clang-11.0.0 also had issues [19]). We
found that the XL-compiled managed memory version of HPGMG achieved
0.70x of HPGMG-CUDA performance. This is encouraging because we made
no specific optimizations to achieve high performance with the managed mem-
ory version of the code. The LLVM/Clang compiler performed poorly with the

48 C. Daley et al.

managed memory code version and abysmally with the initial explicit data man-
agement code version on both computing platforms.

We optimized the initial explicit data management code to achieve higher
performance with the LLVM/Clang compiler: 2.04x of HPGMG-CUDA perfor-
mance on Cori-GPU and 0.73x of HPGMG-CUDA performance on Summit. It
should be mentioned that this is not the fairest of comparisons because HPGMG-
CUDA does not include explicit data management to enable efficient bulk data
transfers between CPU and GPU. One concern we have about our optimizations
for LLVM/Clang are that they are unintuitive to the average OpenMP program-
mer and should instead be performed by a tuned OpenMP compiler and runtime.
The runtime overheads in LLVM/Clang included excessive time spent in device
memory management functions and a slow present table implementation (we
have reported this issue [20]). Neither the CCE or XL compiler use device mem-
ory management functions as frequently as the LLVM/Clang compiler. We have
not been able to test whether the same present table bottleneck exists in the
CCE or XL compilers yet. The LLVM/Clang compiler also generated relatively
slow device code without our manual SPMD code transformation. This hopefully
will not be needed for much longer, since a prototype exists to use the faster
code generation scheme in LLVM/Clang [11].

7 Conclusion

This paper describes how we ported HPGMG from CUDA to OpenMP target
offload, added explicit data management, measured performance with multiple
OpenMP compiler and runtimes on two different node architectures, and finally
optimized HPGMG performance when using LLVM/Clang. Our work shows that
OpenMP target offload compiler and runtimes still need to fix compiler bugs,
implement more complete OpenMP 5.0 feature support, efficiently compile a
broader range of application usage of OpenMP directives, and fix overheads in
OpenMP runtimes. However, there were positive performance results compared
to HPGMG-CUDA (managed memory CUDA implementation of HPGMG): the
XL-compiled managed memory version of HPGMG achieved 0.70x of HPGMG-
CUDA performance on Summit, and the LLVM/Clang-compiled explicit data
management version of HPGMG achieved 2.04x of HPGMG-CUDA performance
on Cori-GPU and 0.73x of HPGMG-CUDA performance on Summit.

Acknowledgments. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231. This research also
used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office
of Science User Facility supported under Contract DE-AC05-00OR22725. The authors
would like to thank Mat Colgrove of NVIDIA for the initial development of an explicit
data management version of HPGMG using OpenACC. The authors would also like
to thank Brian Friesen of LBNL for installing CUDA-aware versions of OpenMPI for
several different compiler stacks.

Porting HPGMG to OpenMP Target Offload 49

References

1. Adams, M., Brown, J., Shalf, J., Van Straalen, B., Strohmaier, E., Williams, S.:
HPGMG (2020). https://bitbucket.org/hpgmg/hpgmg

2. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput.: Pract. Exp. 22(6), 685–701 (2010). https://
doi.org/10.1002/cpe.1553

3. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Van Andel, E.: Nyx: a massively
parallel AMR code for computational cosmology. Astrophys. J. 765, 39 (2013).
https://doi.org/10.1088/0004-637X/765/1/39

4. Beckingsale, D.A., et al.: RAJA: portable performance for large-scale scientific
applications. In: 2019 IEEE/ACM International Workshop on Performance, Porta-
bility and Productivity in HPC (P3HPC), pp. 71–81, November 2019. https://doi.
org/10.1109/P3HPC49587.2019.00012

5. Bercea, G.T., Bataev, A., Eichenberger, A.E., Bertolli, C., O’Brien, J.K.: An open-
source solution to performance portability for Summit and Sierra supercomputers.
IBM J. Res. Dev. 64(3/4), 12:1–12:23 (2020)

6. Bercea, G.T., et al.: Performance analysis of OpenMP on a GPU using a CORAL
proxy application. In: Proceedings of the 6th International Workshop on Perfor-
mance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems, PMBS 2015. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2832087.2832089

7. Budiardja, R.D., Cardall, C.Y.: Targeting GPUs with OpenMP directives on sum-
mit: a simple and effective Fortran experience. Parallel Comput. 88, 102544 (2019)

8. Colgrove, M., Wolfe, M.: Personal Communication, May 2020
9. Crayport: Case 247291 - Cray CCE-9.0.0 has OpenMP offload bugs when mapping

structs (2020). https://portal.cray.com
10. Crayport: Case 256571 - Test program must be compiled at -O0 when using

CCE/9.1.0 (2020). https://portal.cray.com
11. Doerfert, J., Diaz, J.M.M., Finkel, H.: The TRegion interface and compiler opti-

mizations for OpenMP target regions. In: Fan, X., de Supinski, B.R., Sinnen,
O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 153–167. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 11

12. Grinberg, L., Bertolli, C., Haque, R.: Hands on with OpenMP4.5 and unified mem-
ory: developing applications for IBM’s Hybrid CPU + GPU systems (part I). In:
de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2017. LNCS, vol. 10468, pp. 3–16. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65578-9 1

13. Grinberg, L., Bertolli, C., Haque, R.: Hands on with OpenMP4.5 and unified mem-
ory: developing applications for IBM’s hybrid CPU + GPU systems (part II). In:
de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2017. LNCS, vol. 10468, pp. 17–29. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65578-9 2

14. Hart, A.: First experiences porting a parallel application to a hybrid supercomputer
with OpenMP4.0 device constructs. In: Terboven, C., de Supinski, B.R., Reble, P.,
Chapman, B.M., Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 73–85.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24595-9 6

15. Hayashi, A., Shirako, J., Tiotto, E., Ho, R., Sarkar, V.: Performance evaluation of
OpenMP’s target construct on GPUS - exploring compiler optimisations. Int. J.
High Perform. Comput. Network. 13(1), 54–69 (2019). https://doi.org/10.1504/
IJHPCN.2019.097051

https://bitbucket.org/hpgmg/hpgmg
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1088/0004-637X/765/1/39
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1145/2832087.2832089
https://portal.cray.com
https://portal.cray.com
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-319-65578-9_1
https://doi.org/10.1007/978-3-319-65578-9_1
https://doi.org/10.1007/978-3-319-65578-9_2
https://doi.org/10.1007/978-3-319-65578-9_2
https://doi.org/10.1007/978-3-319-24595-9_6
https://doi.org/10.1504/IJHPCN.2019.097051
https://doi.org/10.1504/IJHPCN.2019.097051

50 C. Daley et al.

16. Juckeland, G., et al.: From describing to prescribing parallelism: translating the
SPEC ACCEL OpenACC suite to OpenMP target directives. In: Taufer, M., Mohr,
B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 470–488.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6 33

17. Karlin, I., et al.: Early experiences porting three applications to OpenMP 4.5.
In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS,
vol. 9903, pp. 281–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45550-1 20

18. Vergara Larrea, V.G., et al.: Scaling the summit: deploying the world’s fastest
supercomputer. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC
High Performance 2019. LNCS, vol. 11887, pp. 330–351. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34356-9 26

19. LLVM Bugzilla: Bug 44390 - Incorrect OpenMP target offload code at > -O0
optimization (2020). https://bugs.llvm.org

20. LLVM Bugzilla: Bug 46107 - Poor present table performance (2020). https://bugs.
llvm.org

21. Martineau, M., McIntosh-Smith, S., Gaudin, W.: Evaluating OpenMP 4.0’s effec-
tiveness as a heterogeneous parallel programming model. In: 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp.
338–347 (2016)

22. Martineau, M., McIntosh-Smith, S.: The productivity, portability and performance
of OpenMP 4.5 for scientific applications targeting Intel CPUs, IBM CPUs, and
NVIDIA GPUs. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 185–200. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65578-9 13

23. Martineau, M., et al.: Performance analysis and optimization of Clang’s OpenMP
4.5 GPU support. In: Proceedings of the 7th International Workshop on Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computing
Systems, PMBS 2016, pp. 54–64. IEEE Press (2016)

24. Martineau, M., Price, J., McIntosh-Smith, S., Gaudin, W.: Pragmatic perfor-
mance portability with OpenMP 4.x. In: Maruyama, N., de Supinski, B.R., Wahib,
M. (eds.) IWOMP 2016. LNCS, vol. 9903, pp. 253–267. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45550-1 18

25. Mishra, A., Li, L., Kong, M., Finkel, H., Chapman, B.: Benchmarking and evalu-
ating unified memory for OpenMP GPU offloading. In: Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC. LLVM-HPC 2017. Asso-
ciation for Computing Machinery, New York (2017). https://doi.org/10.1145/
3148173.3148184

26. Monsalve Diaz, J.M., Friedline, K., Pophale, S., Hernandez, O., Bernholdt, D.,
Chandrasekaran, S.: Analysis of OpenMP 4.5 offloading in implementations: cor-
rectness and overhead. Parallel Comput. 89, 102546 (2019). https://doi.org/10.
1016/j.parco.2019.102546

27. NERSC: Cori GPU Nodes (2020). https://docs-dev.nersc.gov/cgpu/
28. OLCF Support: IBM ticket TS003552272 - IBM compiler OpenMP target offload

data management bug (2020)
29. OpenMP Architecture Review Board: OpenMP application programming inter-

face version 5.0, November 2018. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf

https://doi.org/10.1007/978-3-319-46079-6_33
https://doi.org/10.1007/978-3-319-45550-1_20
https://doi.org/10.1007/978-3-319-45550-1_20
https://doi.org/10.1007/978-3-030-34356-9_26
https://bugs.llvm.org
https://bugs.llvm.org
https://bugs.llvm.org
https://doi.org/10.1007/978-3-319-65578-9_13
https://doi.org/10.1007/978-3-319-45550-1_18
https://doi.org/10.1145/3148173.3148184
https://doi.org/10.1145/3148173.3148184
https://doi.org/10.1016/j.parco.2019.102546
https://doi.org/10.1016/j.parco.2019.102546
https://docs-dev.nersc.gov/cgpu/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Porting HPGMG to OpenMP Target Offload 51

30. Pennycook, S.J., Sewall, J.D., Hammond, J.R.: Evaluating the impact of pro-
posed OpenMP 5.0 features on performance, portability and productivity. In: 2018
IEEE/ACM International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), pp. 37–46 (2018)

31. Rabbi, F., Daley, C.S., Aktulga, H.M., Wright, N.J.: Evaluation of directive-based
GPU programming models on a block eigensolver with consideration of large
sparse matrices. In: Wienke, S., Bhalachandra, S. (eds.) WACCPD 2019. LNCS,
vol. 12017, pp. 66–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
49943-3 4

32. Sakharnykh, N., Wang, P., Williams, S.: HPGMG-CUDA (2020). https://
bitbucket.org/nsakharnykh/hpgmg-cuda

33. The Clang Team: Clang 11 Documentation, OpenMP Support (2020). https://
clang.llvm.org/docs/OpenMPSupport.html

34. Tiotto, E., Mahjour, B., Tsang, W., Xue, X., Islam, T., Chen, W.: OpenMP 4.5
compiler optimization for GPU offloading. IBM J. Res. Dev. 64(3/4), 14:1–14:11
(2020)

35. Vergara Larrea, V.G., Budiardja, R.D., Gayatri, R., Daley, C., Hernandez, O.,
Joubert, W.: Experiences in porting mini-applications to OpenACC and
OpenMP on heterogeneous systems. Concurr. Comput.: Pract. Exp. e5780
(2020). https://doi.org/10.1002/cpe.5780. https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.5780. [Published online ahead of print (24 April 2020)]

36. Wolfe, M., Lee, S., Kim, J., Tian, X., Xu, R., Chandrasekaran, S., Chapman, B.:
Implementing the OpenACC data model. In: 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 662–672, May
2017. https://doi.org/10.1109/IPDPSW.2017.85

https://doi.org/10.1007/978-3-030-49943-3_4
https://doi.org/10.1007/978-3-030-49943-3_4
https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://clang.llvm.org/docs/OpenMPSupport.html
https://clang.llvm.org/docs/OpenMPSupport.html
https://doi.org/10.1002/cpe.5780
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5780
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5780
https://doi.org/10.1109/IPDPSW.2017.85

P-Aevol: An OpenMP Parallelization
of a Biological Evolution Simulator,

Through Decomposition in Multiple Loops

Laurent Turpin1,2(B), Thierry Gautier1, Jonathan Rouzaud-Cornabas2,
and Christian Perez1

1 Univ. Lyon, Inria, CNRS, EnsL, UCBL, LIP, Lyon, France
{laurent.turpin,christian.perez}@inria.fr, thierry.gautier@inrialpes.fr

2 Univ. Lyon, INSA Lyon, Inria, CNRS, UCBL, LIRIS, Lyon, France
jonathan.rouzaud-cornabas@inria.fr

Abstract. This paper presents how we have achieved the paralleliza-
tion of Aevol, a biological evolution simulator, on multi-core architecture
using the OpenMP standard. While it looks like a simple for-loop prob-
lem with independent iterations, the stochastic nature of Aevol makes the
duration of the iterations unpredictable and it conveys a high irregular-
ity. Classical scheduling algorithms of OpenMP runtimes turn out to be
inefficient. By analysing the origin of this irregularity, this paper present
how to transform the highly irregular Aevol for-loop to a sequence com-
posed by a small duration irregular for-loop followed by work intensive
for-loop easy to schedule using classical LPT algorithm. This method
leads to a gain up to 27% from the best OpenMP loop schedule.

Keywords: Loop scheduling · Irregular iterations · Multi-core ·
OpenMP · in-silico simulation

1 Introduction

Scientific applications made the development of High Performance Computing
more and more relevant. Frequently, these applications are based on independent
iterations loops. Aevol is an example of such application. The purpose of Aevol is
to simulate millions of generations of an evolving population of micro-organisms.
Each generation consists of a for loop iterating over the population. For each
individual, the model simulates their evolution through stochastic selection and
mutations that consist on random modifications of their structures. Our goal
is to parallelize with OpenMP the evolutionary loop of Aevol, that is, at first
glance, a simple for-loop with independent iterations.

The OpenMP API standard proposes 3 loop schedulers: static, dynamic and
guided. Due to the Aevol stochastic model, the irregularity of the application
requires a dynamic scheduler, like other scientific applications [1,18], in order to
well balance the workload between the threads of the parallel region.

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 52–66, 2020.
https://doi.org/10.1007/978-3-030-58144-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_4

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator 53

We, as most of HPC developers, are concerned with the following questions.
Can better schedule be computed for our application? What would be the gains?
How to implement it? The underlying problem was at first glance a list scheduling
problem with unknown duration of tasks. Thanks to an analysis of the applica-
tion structured as compositions of functions, we refine the problem by decom-
posing the loop in two sub-loops: the first one being a loop scheduling problem
with unknown durations that permits to estimate the iteration’s duration of the
second loop. By doing so, it becomes possible to use a clairvoyant list scheduling
algorithm. Using a method inspired by LPT scheduling [11] for the second loop,
and thanks to a well balanced first loop and a limited impact of sorting tasks,
we gain up to 27% more performance than the OpenMP dynamic.

The remainder of this paper is organized as follows: Sect. 2 introduces the
Aevol software, how its computation is structured and how it is characterized.
Sect. 3 explains the methodology developed to split the loop and how we use the
application data to design a new scheduling method and some practical imple-
mentations done with OpenMP. Sect. 4 deals with the experimental evaluations
of these implementations. Related work is discussed in Sect. 5. Last, Sect. 6 con-
cludes the paper and opens up some future work.

2 Aevol, An Irregular Stochastic Program

This section presents Aevol, a computational biology software. It describes its
computational model and characterizes the underlying main loop to parallelize.

2.1 Aevol: A Simulation of Darwinian Evolution

Biologists run in-vitro experiments in Petri dishes to observe the growth and
evolution of simple organisms [3]. Aevol1 proposes to run the same kind of exper-
iments but in-silico [13]. Aevol is a C++ implementation of the biological model
presented in [15]. It makes use of a stochastic model that puts uni-cellular organ-
isms in a well defined environment and lets them evolve. Each organism, or indi-
vidual, encloses genetic code in the form of a sequence of characters representing
its DNA. The information contained in the genetic code is treated and eventually
forms the phenotype of the individual, i.e., its macroscopic behaviour or appear-
ance. The phenotype is compared to an environmental target that models the
environment where the micro-organisms leave. The difference tells how well the
individual fits the environment. In Aevol, the fitness is represented as a scalar.
For each generation, the whole population follows the three evolution steps:

1. Selection: the fitness of each individual is computed. The higher the fitness
of an individual, the higher its probability of reproduction.

2. Reproduction: the survivors have the opportunity to pass their genetic
code to their offspring. It is the principle of heredity.

1 http://www.aevol.fr/.

http://www.aevol.fr/

54 L. Turpin et al.

3. Mutation: the new-born individuals may get random variations on the
genetic code that may modify their phenotype and their fitness.

The world in which individuals evolve is a 2D toric grid. In each cell of the grid
lies one and only one individual. For each cell, competition is made among the 9
individuals of its neighborhood and only one of these 9 individuals is selected as
the reproducer for this cell. That means that a single individual can reproduce
multiple times within its neighborhood. After selecting all the reproducers for
the entire grid, the population is wiped out and the reproducers are copied in the
cells where they reproduce. Then mutation may occur randomly, depending on a
mutation rate parameter defined by the user, on the DNA of the new population.
Their new phenotype and fitness are computed.

At runtime, the computation time of a generation is very short i.e., around
10ms, thanks to a simple model and a small population. For instance in [16],
the population size was 1024 individuals for a 32 × 32 square grid with differ-
ent mutation rates (10−4, 10−5 and 10−6). But they computed for a total of 81
millions of generations demanding weeks of computations. Improving the per-
formance of one generation becomes essential especially since Aevol is evolving
toward a more complex model [17].

Fig. 1. Workflow followed by each cell for one generation. The data (orange boxes) pass
through the different functions (white boxes). The output is the fitness value. (Color
figure online)

2.2 Computational Workflow of Aevol

As mentioned previously, Aevol runs forward generation by generation. For each
generation n, the population of generation n−1 is known. The evolutionary loop
iterates on each cell. The selection step is a stencil computation. Each cell clones
the selected individual (DNA, phenotype and fitness) from neighborhood cells

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator 55

from generation n − 1. In that way, all cell computations are independent and
can be computed in any order. At the end of the generation, individuals have to
wait for their neighbors to start the new generation. However, a global barrier
is used to simplify the synchronization at the end of each generation.

Once the selection is done, the remaining computation of an iteration can be
viewed as a sequential workflow, as shown in Fig. 1. An individual has a probabil-
ity to mutate depending on the size of its DNA and the mutation rate specified as
an user parameter. There are several kinds of mutation such as a one bit modifi-
cation of the genetic code or duplication of the entire genetic code or even more.
If an individual does not change, then all its information is known by its parent.
For the others, so called mutants, their new DNA must be processed to com-
pute their new fitness. It consists mainly on reading and recognizing sequences
of characters. These functions are mostly memory-intensive computation.

2.3 Dynamic Characterization of the Computation

The time to process an individual (i.e., a single iteration of a generation) strongly
depends on its data (DNA) and if it is a mutant or not. The computation loop
over the individuals is said to be irregular and it requires dedicated scheduling
as discussed hereafter.

Fig. 2. Density in function of the time to process mutants (in µs). The colors corre-
spond to distinct experiments. Top (bottom) plots are extracted at generation 101 000
(resp 251 000). Time scale is cut at 350 µs as very few (0.01%) individuals last longer.
(Color figure online)

The first origin of irregularity comes from the distinction between mutants
and non-mutants which do not follow the same process. Non-mutants are signif-
icantly faster to compute i.e., around 1% of the total runtime of a generation.

56 L. Turpin et al.

This proportion depends on the mutation rate which influences the number of
mutants. Nevertheless, mutants always count for the large majority (99%) of the
computation time. Besides, even among the mutants, we observe a large irregu-
larity. As shown in Fig. 2, a high density of individuals takes a similar amount
of time to be processed, but there are still some individuals that can last up to
10 times longer than the others. In addition the distribution of these iterations
varies depending on the generation and experimental parameters specified by
the user. It is especially true for the mutation rate that can be strongly linked to
size of the DNA [8]. Last, because the evolutionary model is stochastic, it is not
possible to know which and how individual will mutate before its computation.
The duration of each individual is therefore a priori unpredictable.

3 Parallelization of the Evolutionary Loop

To accelerate the simulation time, it is necessary to parallelize the evolutionary
loop. The main issue is a loop scheduling issue, with time per iteration at fine
grain. We limit our presentation to multi-core architecture for which OpenMP
is an acceptable parallel environment with good performance.

1 /* original pattern in
Aevol */

2 for i = 1..N do
3 fitness[i] = compute(indiv[i])

Listing 1.1. Evolutionary loop.

1 #pragma omp parallel loop \
2 schedule(<arguments >)
3 for i = 1..N do
4 fitness[i] = compute(indiv[i])

Listing 1.2. First parallelisation.

3.1 Straightforward Performance with OpenMP Loop Schedulers

With OpenMP, a direct parallelization is to add a #pragma omp parallel for
construct around the evolutionary loop that computes the new generation (see
Listings 1.1 and 1.2). However, due to the irregular work load, one should not use
the default static scheduler and should use instead dynamic or guided. Indeed,
for our case static scheduler only performs a speedup up to 16 on 32 cores for the
best configuration with lowest mutation rate. Table 1 reports the measured per-
formance of this approach on a 16, 32 and 64-core machine against a sequential
execution. By summing the duration di of each iteration, we are able to compute
the work W of a complete generation2 in order to express the idle proportion
I = 1− W

p×Tp
where the p cores stay idle during the time Tp of the for-loop execu-

tion, with no iteration left to distribute and wait for others to finish their work.
There are two important remarks. First, the work is inflated when running on
parallel NUMA architecture [19]. That explains the poor efficiency with respect
to a lower idle proportion. Second, the efficiency is not that good. It is important
to realise that the number of iterations (the population size) is not that large
in respect with the number of cores. Moreover, there are even fewer iterations
2 Iterations only perform computation.

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator 57

Table 1. Performance of Aevol with several mutation rates using dynamic and guided
schedulers. Environment: gcc8.3, libGOMP on 4 SkyLake Xeon Gold 6130.

cores Mutation
rate

SpeedUp Efficiency Idle proportion

Dynamic Guided Dynamic Guided Dynamic Guided

16 10−4 11.2 10.9 70% 68.1% 4.1% 7.5%
10−5 11.2 10.1 70% 63.1% 5.0% 14.6%
10−6 10.2 8.6 63.8% 53.8% 11.2% 27.0%

32 10−4 20.3 19.5 63.4% 60.9% 9.2% 15.3%
10−5 20.0 17.0 62.5% 53.1% 11.1% 26.3%
10−6 16.5 13.1 51.6% 40.9% 21.4% 41.7%

64 10−4 34.4 32.8 53.8% 51.3% 18.2% 27.0%
10−5 33.1 26.2 51.7% 40.9% 22.1% 41.1%
10−6 23.9 18.2 37.3% 28.4% 36.6% 56.5%

that represent the treatment of mutants: Function compute of listing 1.2 is very
fast for non-mutants. This kind of irregularity makes the guided scheduler inef-
fective [18]. For the case of the dynamic scheduler, even with 64 cores, speed-up
is only around 33. The idle proportion of the cores varies from 9% to 36%. This
reveals work imbalance due to not so good schedule. The population size is a
very important parameter for a biological point of view [2]. Doing experiments
with small, medium or large population will not produce the same results and
cannot be interpreted the same way. Thus, we cannot blindly increase the size
of population to convey more parallelism because the experiments will not be
the same.

3.2 Scheduling Iterations Based on Their Data

A finer inspection of the evolution loop of Aevol shows that it iterates over a
composition of functions fn ◦ ...f2 ◦ f1 applied to each individual (see Listing 1.3).
The classical list-scheduling algorithms [10] such as implemented in OpenMP
runtimes delivers medium level of performance with parallel efficiency ranging
from 37% to 63% as shown in the previous section. To increase performance of
the loop scheduler, we need extra information to schedule loop with a better
clairvoyance. For instance, LPT [11] requires the knowledge of execution time
for a better competitive ratio.

1 for i = 1..N do
2 fitness[i] = fn ◦ ...f2 ◦ f1(indiv[i])

Listing 1.3. Initial evolutionary
loop.

1 for i = 1..N do
2 r[i] = fk ◦ ...f2 ◦ f1(indiv[i])

3 for i = 1..N do
4 fitness[i] = fn ◦ ...fk+2 ◦ fk+1(r[i])

Listing 1.4. Our loop decomposition.

58 L. Turpin et al.

Our approach is to look whether the data generated during the execution of
a function fk may give clues on the remaining computation of this iteration.
Accordingly, our methodology is to split the functions into two groups and to
specialize the scheduling algorithm for each part: i) let schedule the first k func-
tion calls fk ◦ ...f2 ◦ f1 with a non-clairvoyant scheduling algorithm, and ii) let
use the data produced after this step to gain in information to better schedule
the remaining function calls fn ◦ ... ◦ fk+1 by a clairvoyant scheduling algorithm.

Listing 1.4 illustrates the resulting loops after having split the loop in two.
The remaining questions are: Why not to split in more than two the composition?
Which kind of clairvoyant loop scheduling algorithm? and finally: How to find
the right separator k to split the composition of functions? The first question
is related to the structure of the computation and we show a posteriori that
splitting the loop in two is enough. Moreover, each loop decomposition implies
a synchronization and we have found that a good trade-off for this application
is two.

Because the computation is at fine grain, we have decided to select an exist-
ing loop scheduler with low overhead at runtime. Our final choice was to base
our second loop scheduler on the original LPT algorithm [11] where individuals
are sorted according to the size of their DNA after mutation. This information
strongly correlates to the execution time of a mutant and the next sections focus
on it.

3.3 Predicting the Execution Time

A deep analysis of the Aevol code and, more precisely, the underlying compu-
tational biological model, leading to the creation of the Fig. 1, was necessary.
Knowing, for instance, that the Translation function take as input the list of
all the genes of an individual, we could induce the time of this function with the
number of genes i.e., thanks to the output of the Find_Genes function. Going
backward again, as genes are segments of characters inside RNA (which is also
a segment of characters inside the total DNA), the more RNA will be found in
the function Find_RNA, the more time function Find_Genes will take.

Finally, keeping the same logic, Fig. 3 illustrates that the size of the DNA
after mutation linearly correlates with the execution time of the iterations of
the loop fn ◦ ...f2(r[i]), where f1 applies the mutations on one individual. The
parameter of the linear model changes over the generations, but the linearity
between size of DNA and execution time permits us to schedule loop with the
LPT algorithm where individuals are sorted accordingly to their DNA sizes.

Simulation of LDNA Schedule. To test our hypothesis, we collect the execution
time of each function fi call on all the individuals and we simulate our scheduler
called LDNA: as for LPT individuals are sorted decreasingly with their DNA
size after mutation. We compare our LDNA with respect to LPT thanks to
the postmortem simulation with known execution times. Figure 4 displays the
simulated efficiency for 100 generations with the dynamic scheduler of OpenMP
(Dyn), LPT, and LDNA on a 64 cores machine. We see that LDNA almost

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator 59

Fig. 3. Scatter plot with duration of
iterations vs the size of DNA after
mutation. The different color represent
different point in time of the execution.
(Color figure online)

Fig. 4. Simulation of a posteriori
schedules of generation of Aevol on 64
cores with different scheduler

1 #pragma omp parallel for schedule(static)
2 for (auto i = 0; i<N; ++i) {
3 indiv[i] = prepare_mutation ◦ selection(cell[i])
4 if has_mutate(indiv[i])
5 mutant_list.push_back(i) // Concurrent access to the list
6 }
7 << synchron ize_sort (mutant_l ist) >>
8 #pragma omp parallel for schedule(monotonic: dynamic (1))
9 for (auto i: mutant_list)

10 fitness[i] = do_fitness ◦ ... ◦ do_mutation(indiv[i])

Listing 1.5. General structure of the code to compute a generation with LDNA.
Sections of the code depend on the way sort is implemented, see Sect. 3.5

achieves the performance of LPT which is almost optimal most of the time.
Next sections present how to build LDNA for the evolution loop.

3.4 LDNA, A Scheduling Algorithm for Aevol

Listing 1.5 describes the new organization of the computation of Aevol with two
parallel loops following our loop decomposition. The first loop computes in par-
allel the selection and prepares the mutations and give us the new DNA size of
the mutants. It also discriminates the mutants inside a shared data structure.
Because the duration of the iterations of this loop are small and with less irreg-
ularity than the initial problem, we can apply a static scheduling. At this point,
the computation for the non-mutants is finished and we only have to deal with
mutants. As previously, we applied the simplicity of LPT schedule with the DNA
size of the mutant. Iterations are sorted with this data by synchronize_sort()
as shown in the Listing 1.5. This function hides the complexity of managing the

60 L. Turpin et al.

list of mutants which is a data structure shared by all the working threads. Mul-
tiple implementations of this list are discussed in the next section. Finally, the
second loop is executed in parallel using the LPT rule with the mutant list as
iteration space. The next section will present how we implement the LPT rule
with OpenMP.

3.5 OpenMP Implementation of LDNA

The LPT rule is originally an off-line scheduling technique. Therefore, if one
wants to implement it with OpenMP as an off-line scheduler, one must touch
the OpenMP runtime. However, because our goal was to apply our solution
without touching to the OpenMP runtime, we used the dynamic schedule with 1
iteration per chunks using an already sorted list for the iteration space as shown
in Listing 1.5. This configuration will complete an LPT schedule if we assure that
an idle thread will pick the next iteration on the logical order, i.e., the longest
available iteration. Fortunately, OpenMP4.5 [20] introduces the monotonic mod-
ifier to be added to the scheduler (as shown on the second loop): it ensures that
chunks are assigned in the increasing logical iteration order.

An other issue was the management of the list of mutants shared between all
threads and subject to concurrent accesses. Because of fine grain operation, the
best implementation is a compromise between an algorithmic variant and the
overhead at runtime. We have followed a pragmatic experimental evaluation of
several variants that relies on different OpenMP features to manage it.

Our two promising implementations distribute the list where each thread
keeps a local sorted list, then synchronization_sort (Line 7) merges all
the data. In our first implementation, the merge operation is be done in two
ways: i) using the reduction construct of OpenMP4.0 or ii) do it ourselves.
The first implementation views concurrent list insertion as reduction operation
between lists. It relies on the declaration of reduction operator, called by the
OpenMP runtime, in charge of merge two lists. We call this implementation
LDNA_Omp_Redux.

In our second implementation, all the local lists are merged by our program
using a binary merge tree. This is LDNA_Par_Tree. Parallel merge may be of
interest but it depends on the size of the list. A first attempt has shown that
parallelism variant does not outperform sequential binary merge with useful data
size for our problem. So we call this implementation LDNA_Seq_Tree.

omp for vs taskloop. The OpenMP standard propose another way of parallelism
using tasks. The taskloop construct allows to execute and schedule chunks of
iterations as tasks. One could even turn each sub function of an iteration in
a new task and the program could convey more parallelism. However, the cur-
rent implementations of OpenMP have tremendous overhead at the creation of
tasks[9] prohibiting their use in the case of lots of small tasks. This is why we
only use the omp for construct for our implementation waiting for evolution in
the tasks management by the OpenMP runtimes.

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator 61

4 Experimental Results

This section deals with the evaluation of LDNA against the dynamic schedule
of OpenMP. For the experimentation, the program was compiled with GCC
8.3, linked with jemalloc5.2.1 [7] as a memory allocator more suited for parallel
allocations. The OpenMP runtime is libGOMP and the execution was done
on a yeti node running on Debian 10 from the Grid5000 platform. A node is
equipped, with 4 Skylake Intel Xeon Gold 6130 processors for a total of 64 cores
(Hyper-Threading was not used) and 768 GiB of memory on 4 NUMA sockets.
The memory allocation policy is the first-touch policy. As the computation of
a mutant asks the thread to copy (meaning memory allocation) the ancestor
and then work on the copy a thread will then work on his local NUMA node
to process a mutant. We select the libGOMP runtime because other runtimes
(from LLVM or Intel), did not show significant difference in performance.

4.1 Protocol of Experimentation

All the experiments were populated with 1024 individuals (see reason in
Sect. 2.1). Three mutation rates are used: 10−4, 10−5 and 10−6. For each muta-
tion rate, we did 4 repetitions with different seeds for the random generator.
For each experiment, we selected 6 starting generations separated by 50 000 gen-
erations from Generation 1000 to Generation 251 000. For each the 72 starting
generations, the protocol of execution was the following: for doubling numbers
of cores from 4 to 64 (using the least NUMA nodes possible thanks to numactl),
we computed 100 generations in which we timestamped the beginning and the
end of each iteration. During our preliminary study of Aevol, we observed that
the behavior of the computation only changes on large scale of generations. This
explains why we take this few contiguous generations but spread on 251 000
generations.

4.2 Results

The following figures summarize data averaged on all the executions. We
observed that the first 3 generations had a strange behavior certainly due to
a warming up effect and they are not counted in these means. Fig. 5 compares
the proportion of the time taken by the synchronization_sort step during
one generation. LDNA_Seq_Tree shows itself the best option over the two solu-
tions. For the case of LDNA_Omp_Redux, the results were surprising and further
analysis shows that all the operations of reduction occur sequentially with lots
of time spent in the OpenMP runtime. We chose to continue experiments with
LDNA_Seq_Tree as our LDNA scheduler.

Figure 6 compares the speedup of our LDNA scheduler with the reference
dynamic scheduler of OpenMP (Dyn). It is clear that LDNA outperforms Dyn.
For 64 cores the LDNA scheduler is on average 19%, 21% and 27% faster for
respectively 10−4, 10−5 and 10−6 mutation rates. In Fig. 7, an example of the
execution of one generation with mutation rate 10−5 is given. It shows how LDNA

62 L. Turpin et al.

Fig. 5. Average proportion of time
used for synchronization with the dif-
ferent implementations depending on
mutation rate

Fig. 6. Average speed up of Dyn and
LDNA depending on the mutation rate

(bottom) succeeds to compact the computation compared to Dyn (top). With
the latter, the mutants (blue) and non-mutants (red) are treated in a random
order, explaining why large mutants are computed only at the and. For LDNA,
non-mutants are all treated in the first part which is scheduled statically. This
reduces the schedule overhead that the non-mutants induce compared to the Dyn
scheduling. The second part only computes what remains for the mutant in a
specific order that permits to compact all the iteration. The blank part corre-
sponds to the sort and merge of the list of mutants. For this example, it takes
about 0.03ms which represents 5% of the computation time (On average for a
mutation rate at 10−5, it is 5.8%, Fig. 5).

For 10−4 and 10−5 mutation rates, the idle time proportion, without counting
synchronization and sort, dropped to a maximum of 7%. In the case of 10−6

mutation rate, we can see that it scales less than the others, and the idle time
is more difficult to reduce. In fact, the mutation rate is so low that the number
of mutants reaches is about 60 individuals. Therefore, the number of iterations
is very close to the number of cores and sometimes less. The program lacks of
parallelism and a solution would be to parallelize at the sub-functions grain. As
seen in Sect. 3.5 this could be easily done with task parallelism but will suffer
the large overhead due to the current OpenMP runtime.

4.3 Evaluation on Larger Populations

If the size of the population is 10 times larger than in previous experiments, and
future use of Aevol could use this for biological interests, the parallelism would
be greater. As the number of iterations rises, a simple dynamic schedule could
be enough and LDNA could suffer from the overhead from the management of
the mutant list. Nevertheless, LDNA succeeds to scale up the population better

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator 63

Fig. 7. Example of the execution of one generation with two scheduler. Blue rectangles
correspond to mutants and red to non-mutants. At the top Dyn, where iteration executes
at random order, and at the bottom LDNA, where the few step of evolution are performed
with a static scheduler, then the mutant list is merged and sorted (blank part) and
then only mutants are evaluated to find their fitness. (Color figure online)

than Dyn. Larger experiments with 9.216 individuals on 64 cores show that our
scheduling stay better but not as much. The difference is around 12% with muta-
tion rate at 10−6 and 2% at 10−4. With the smaller mutation rate, mutants are
enough so that Dyn suffers from the irregularity. At the end, a larger population
would mean that any scheduling algorithm would approach optimal result but
simulations with small population will still be used in the future. However, to
avoid prohibitive computation times, in the case of a larger population, we will
have to use a larger number of cores and thus return to a similar scheduling prob-
lem that the one with 1.024 individuals on 64 cores. Still, LDNA could do better
because we observe that NUMA effects became important and it is clear that
the cores wait because of communication latency during the first loop. Taking
NUMA into account would certainly improve LDNA scalability.

5 Related Work

Our scheduling problem is largely studied since at least 50 years. In [12], the
P ||Cmax problem is presented as NP -complete. Two approaches exist to deal
with this problem: whether the duration of iteration is known in advance or not.
[14] is certainly the best off-line algorithm but LPT [11] is a well known heuristic
with great performance [5] and simplicity and an even better version has been
developed by Cheng et al. [4].

When the information about the iterations is unknown before execution, the
list-scheduling algorithm described by Graham [10] is the upper-bound limit and

64 L. Turpin et al.

the basic technique for most of the dynamic scheduler developed since. After an
initial static distribution of the iterations, Durand et al. [6] implemented a work-
stealing method with memory location awareness. Lucco [18] presented a guided
self-scheduling scheme improved with statistics computed on early iterations. In
overall, the idea is to find information during execution to refine the scheduling.
Besides an approach applied in [21,22] consists on letting the user provides
workload estimation of the iterations before execution to perform near-optimal
static scheduling and balance the final workload with dynamic work-stealing
to catch up the possible mistakes of the estimation. Our approach is similar
but cannot use user-provided estimation because of the stochasticity of Aevol.
Instead, it has to use estimation from the application itself and these estimation
change generation after generation. Our method cannot be easily embedded into
an OpenMP loop scheduler because it requires (manual) loop decomposition
and analysis of the structure of the application. At this expense, we are able to
improve existing loop OpenMP schedulers with up to 27% on fine grain loop.

6 Conclusion and Future Work

In this paper, we present a new methodology to schedule irregular independent
iterations of an application structured as a composition of functions. Mixing
non-clairvoyant and clairvoyant techniques, we show that splitting the execu-
tion of the loop in several loops is a valid approach if the data gathered in the
first loop help the scheduling of the next one. Applying our method to Aevol, a
computational biology software, we implemented the algorithm LDNA to schedule
the computation of evolving uni-cellular organisms. Experimental evaluations on
a multi-core architecture computer show that our scheduler improves by about
27% the performance of the dynamic scheduler of OpenMP often used for irreg-
ular applications. We discuss on the implementation of the method and how to
manage the synchronization to optimize the execution of our solution.

As other work [22] that uses workload-aware scheduler, we think that allowing
the user to inform the runtime through the OpenMP standard would help this
kind of method. The standard could accept an estimation function or even a way
to pass a scheduler to be used by the runtime.

The management of the list of mutants brought to use a binary merge tree
that we kept sequential. However, this part take up to 10% of the total computing
and more work could certainly find a way to parallelize efficiently this part.

Finally, it would be on interest to evaluate if the methodology used to find
where to split the evolutionary loop could be generalized and automated to other
parallel applications.

Acknowledgement. Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see https://
www.grid5000.fr).

https://www.grid5000.fr
https://www.grid5000.fr

P-Aevol: An OpenMP Parallelization of a Biological Evolution Simulator 65

References

1. Banicescu, I., Velusamy, V.: Load balancing highly irregular computations with
the adaptive factoring. In: Proceedings 16th International Parallel and Distributed
Processing Symposium, p. 12, April 2002

2. Caballero, A.: Developments in the prediction of effective population size. Heredity
73(6), 657–679 (1994)

3. Card, K.J., LaBar, T., Gomez, J.B., Lenski, R.E.: Historical contingency in the
evolution of antibiotic resistance after decades of relaxed selection. PLoS Biol.
17(10), 1–18 (2019)

4. Cheng, T.C.E., Kellerer, H., Kotov, V.: Algorithms better than LPT for semi-
online scheduling with decreasing processing times. Oper. Res. Lett. 40(5), 349–352
(2012)

5. Coffman, Jr., E.G., Sethi, R.: A generalized bound on LPT sequencing. In: Pro-
ceedings of the 1976 ACM SIGMETRICS Conference on Computer Performance
Modeling Measurement and Evaluation, pp. 306–310. ACM (1976)

6. Durand, M., Broquedis, F., Gautier, T., Raffin, B.: An efficient OpenMP loop
scheduler for irregular applications on large-scale NUMA machines. In: Rendell,
A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp.
141–155. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40698-
0_11

7. Evans, J.: A Scalable Concurrent malloc(3) Implementation for FreeBSD, p. 14,
April 2006

8. Fischer, S., Bernard, S., Beslon, G., Knibbe, C.: A model for genome size evolution.
Bull. Math. Biol. 76(9), 2249–2291 (2014)

9. Gautier, T., Perez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3_14

10. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

11. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

12. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. In: Hammer,
P.L., Johnson, E.L., Korte, B.H. (eds.) Annals of Discrete Mathematics, vol. 5, pp.
287–326. Elsevier, January 1979

13. Hindré, T., Knibbe, C., Beslon, G., Schneider, D.: New insights into bacterial adap-
tation through in vivo and in silico experimental evolution. Nat. Rev. Microbiol.
10(5), 352–365 (2012)

14. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

15. Knibbe, C.: Structuration des génomes par sélection indirecte de la variabilité
mutationnelle: une approche de modélisation et de simulation. thesis, Lyon, INSA,
January 2006

16. Liard, V., Parsons, D., Rouzaud-Cornabas, J., Beslon, G.: The complexity Ratchet:
stronger than selection, weaker than robustness. Artif. Life Conf. Proc. 30, 250–257
(2018)

https://doi.org/10.1007/978-3-642-40698-0_11
https://doi.org/10.1007/978-3-642-40698-0_11
https://doi.org/10.1007/978-3-319-98521-3_14

66 L. Turpin et al.

17. Liard, V., Rouzaud-Cornabas, J., Comte, N., Beslon, G.: A 4-base model for the
aevol in-silico experimental evolution platform. In: Knibbe, C., et al. (eds.) Pro-
ceedings of the Fourteenth European Conference Artificial Life, ECAL 2017, Lyon,
France, 4–8 September 2017, pp. 265–266. MIT Press (2017)

18. Lucco, S.: A dynamic scheduling method for irregular parallel programs. In: Pro-
ceedings of the ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation, pp. 200–211. Association for Computing Machinery,
San Francisco, July 1992

19. Olivier, S., Supinski, B., Schulz, M., Prins, J.: Characterizing and mitigating work
time inflation in task parallel programs. Sci. Program. 21, 1–12 (2012)

20. OpenMP Architecture Review Board: OpenMP Application Program Interface.
Specification (2015). https://www.openmp.org/wp-content/uploads/openmp-4.5.
pdf

21. Penna, P.H., Castro, M., Freitas, H.C., Broquedis, F., Méhaut, J.F.: Design
methodology for workload-aware loop scheduling strategies based on genetic algo-
rithm and simulation. Concurr. Comput.: Pract. Exp. 29(22), e3933 (2017)

22. Penna, P.H.: A comprehensive performance evaluation of the BinLPT workload-
aware loop scheduler. Concurr. Comput.: Pract. Exp. 31(18), e5170 (2019)

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Evaluating Performance of OpenMP
Tasks in a Seismic Stencil Application

Eric Raut1(B) , Jie Meng2, Mauricio Araya-Polo2, and Barbara Chapman1

1 Stony Brook University, Stony Brook, NY 11794, USA
{eric.raut,barbara.chapman}@stonybrook.edu

2 Total EP R&T, Houston, TX 77002, USA

Abstract. Simulations based on stencil computations (widely used in
geosciences) have been dominated by the MPI+OpenMP programming
model paradigm. Little effort has been devoted to experimenting with
task-based parallelism in this context. We address this by introducing
OpenMP task parallelism into the kernel of an industrial seismic mod-
eling code, Minimod. We observe that even for these highly regular
stencil computations, taskified kernels are competitive with traditional
OpenMP-augmented loops, and in some experiments tasks even outper-
form loop parallelism.

This promising result sets the stage for more complex computational
patterns. Simulations involve more than just the stencil calculation: a
collection of kernels is often needed to accomplish the scientific objective
(e.g., I/O, boundary conditions). These kernels can often be computed
simultaneously; however, implementing this simultaneous computation
with traditional programming models is not trivial. The presented app-
roach will be extended to cover simultaneous execution of several kernels,
where we expect to fully exploit the benefits of task-based programming.

Keywords: OpenMP · Task parallelism · Stencil computation · Loop
scheduling

1 Introduction

Many industrial and scientific applications use stencil computation for solving
PDEs discretized with Finite Difference (FD) or Finite Volume (FV) methods.
These can range from geophysics to weather forecasting models [32]. Improving
performance is of utmost interest since this facilitates faster decision making as
well as more opportunities to explore further scientific questions. Optimization
of stencil computation has been addressed in the past aplenty (see Sect. 2) from
many different angles, e.g. low-level optimization, parallelism at different levels,
and DSLs.

In this work, we create OpenMP task-based versions of an industrial stencil-
based seismic modeling code and compare performance of the task-based ver-
sions to traditional loop-parallelized versions of the code. The motivation of this
c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 67–81, 2020.
https://doi.org/10.1007/978-3-030-58144-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_5&domain=pdf
http://orcid.org/0000-0001-8091-2066
https://doi.org/10.1007/978-3-030-58144-2_5

68 E. Raut et al.

work is to explore how task-based programming models and task parallelism can
support the stencil computation pattern in practice.

OpenMP [26] is the de-facto standard programming model for shared-
memory parallelism. OpenMP introduced tasks in version 3.0. OpenMP 4.0
added automatic dependency analysis to tasks, such that the compiler can auto-
matically determine the order of task execution based on user-supplied data
dependences.

In task-based OpenMP programming, an application is written as a set of
units of work called tasks. Each task is executed sequentially, but multiple tasks
can be run simultaneously subject to the availability of resources and dependen-
cies between the tasks. The set of tasks and dependencies between them can be
represented as a directed acyclic graph (DAG).

Our main contributions are the following: (1) we introduce task parallelism
to a stencil code in a proxy for an industrial application; (2) we test our task-
based stencil code on several architectures and compilers; and (3) we analyze
its behavior and compare results of the task-based stencil with several variants
written using parallel loops.

The paper is organized as follows: Sect. 2 describes relevant literature works
and contributions. Section 3 describes the target application. Section 4 details
the application code structure and how it was ported to task parallelism. In
Sect. 5, the experimental environment and results are presented. Section 6 and 7
provide discussion and conclusions.

2 Related Work

A great amount of research effort has been devoted to optimizing stencil compu-
tations to achieve higher performance. For example, Nguyen et al. [24] introduced
higher dimension cache optimizations, and de la Cruz et al. proposed the semi-
stencil algorithm [8] which offers an improved memory access pattern and effi-
ciently reuses accessed data by dividing the computation into several updates. In
2012, Ghosh et al. [13] analyzed the performance and programmability of three
high-level directive-based GPU programming models (PGI, CAPS, and Ope-
nACC) on an NVIDIA GPU against isotropic and tilted transversely isotropic
finite difference kernels in reverse time migration (RTM), which is a widely used
method in exploration geophysics. In 2017, Qawasmeh et al. [28] implemented
an MPI + OpenACC approach for seismic modeling and RTM. Also, from a pro-
gramming language perspective, domain-specific languages (DSLs) for stencils
have been proposed (e.g., [19]). Even performance models have been developed
for this computing pattern (see [9]).

In recent years, task-based parallel programming has been recognized as a
promising approach to improve performance in scientific applications such as
stencil-based algorithms. For example, in [22], Moustafa et al. illustrated the
design and implementation of a FD method-based seismic wave propagation
simulator using PaRSEC.

Researchers have been working on exploring the advantages of tasking in
OpenMP since tasks were introduced in version 3.0. Right after its release,

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 69

Virouleau et al. [34] evaluated OpenMP tasks and dependencies with the KAS-
TORS benchmark suite. Duran et al. [12] evaluated different OpenMP task
scheduling strategies with several applications. Rico et al. [30] provided insights
on the benefits of tasking over the work-sharing loop model by introducing task-
ing to an adaptive mesh refinement proxy application. Atkinson et al. [2] opti-
mized the performance of an irregular algorithm for the fast multipole method
with the use of tasks in OpenMP. Vidal et al. [33] evaluated the task features of
OpenMP 4.0 extensions with the OmpSs programming model.

Several programming systems supporting tasks have been proposed, some
of which (e.g., OpenMP) focus on shared-memory systems. Cilk [6] is an early
programming API supporting tasks using spawn keyword. Intel Thread Building
Blocks [29] also supports shared-memory task parallelism. StarSs [27] is a task-
based framework for multi/many-core systems using a pragma syntax. OmpSs
[11] is an attempt to extend OpenMP with tasking features using StarSs runtime.

Distributed-memory task-based systems have been explored as well, in which
the runtime automatically schedules tasks among the available nodes and takes
care of communication and data transfer. Charm++ [1] is a C++ framework
supporting distributed task parallelism. Legion [4], and its DSL, Regent [31], are
data-centric task-based programming systems developed at Stanford. PaRSEC
[7] enables an application to be expressed as a “parameterized task graph” which
is problem-size-independent and therefore highly scalable. HPX [15] is a task-
based framework which uses a global address space to distribute computations
across nodes. XcalableMP [18] is a PGAS language with elementary support
for task parallelism. YML [10,14] allows the user to specify a computation as a
graph of large-scale tasks; it can be combined with XcalableMP. StarPU [3] sup-
ports OpenMP-style pragmas and provides a runtime for distributed execution.
Klinkenberg et al. [16] propose a framework for distributing tasks across MPI
ranks in MPI+OpenMP hybrid applications.

3 Minimod Description

Minimod is a proxy application that simulates the propagation of waves through
the Earth models, by solving a Finite Difference (FD) discretized form of the
wave equation. It is designed and developed by Total Exploration and Produc-
tion Research and Technologies [21]. Minimod is self-contained and designed to
be portable across multiple compilers. The application suite provides both non-
optimized and optimized versions of computational kernels for targeted plat-
forms. The main purpose is benchmarking of emerging new hardware and pro-
gramming technologies. Non-optimized versions are provided to allow analysis
of pure compiler-based optimizations. Minimod is currently not publicly avail-
able; however, the plan is to eventually make it available to the community as
open-source software.

In this work, we study one of the kernels contained in Minimod, the isotropic
propagator in a constant-density domain [28]. For this propagator, the wave
equation PDE has the following form:

70 E. Raut et al.

1
V2

∂2u
∂t2

− ∇2u = f , (1)

where u = u(x, y, z) is the wavefield, V is the Earth model (with velocity as rock
property), and f is the source perturbation. The equation is discretized in time
using a second-order centered stencil, resulting in the semi-discretized equation:

un+1 − Qun + un−1 =
(
Δt2

)
V2fn, with Q = 2 + Δt2V2∇2. (2)

Finally, the equation is discretized in space using a 25-point stencil in 3D space,
with four points in each direction as well as the centre point:

∇2u(x, y, z) ≈
4∑

m=0

cxm [u(i + m, j, k) + u(i − m, j, k)]

+ cym [u(i, j + m, k) + u(i, j − m, k)]
+ czm [u(i, j, k + m) + u(i, j, k − m)]

where cxm, cym, czm are discretization parameters.
A simulation in Minimod consists of solving the wave equation at each

timestep for some number of timesteps. Pseudocode of the algorithm is shown
in Algorithm 1. We apply a Perfectly Matched Layer (PML) [5] boundary con-
dition to the boundary regions. The resulting domain consists of an “inner”
region where Eq. 2 is applied, and the outer “boundary” region where a PML
calculation is applied, as shown in Fig. 1.

Data: f : source
Result: un: wavefield at timestep n, for n ← 1 to T

1 u0 := 0;
2 for n ← 1 to T do
3 for each point in wavefield un do
4 Solve Eq. 2 (left hand side) for wavefield un;
5 end
6 un = un + fn (Eq. 2 right hand side);

7 end

Algorithm 1: Minimod high-level description

We note that the stencil does not have a uniform computational intensity
across the domain: the PML regions require more calculations than the inner
regions. This suggests an inherent load imbalance that may be amenable to
improvement with tasks. Furthermore, a full simulation includes additional ker-
nels, such as I/O and compression. These additional kernels are not evaluated
in this study but will be added in the future.

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 71

Inner

Front

Back

Left Right Inner

Front

Back

Left Right

x

y

Fig. 1. (left) x-y plane view of domain; (right) xy blocking scheme.

4 Code Structure and Taskification of Minimod

In this section, we describe the code structure of Minimod and explain how it
has been ported to a version that makes use of OpenMP tasks. The most com-
putationally expensive component of Minimod (Algorithm1) is the computation
of the wavefield for each point. The (original) serial version of the code has the
structure shown in Algorithm2.

Data: un−1, un−2: wavefields at previous two timsteps
Result: un: wavefield at current timestep

1 for i ← xmin to xmax do
2 if i ≥ x3 and i ≤ x4 then
3 for j ← ymin to ymax do
4 if j ≥ y3 and j ≤ y4 then
5 // Bottom Damping (i, j, z1...z2)

6 // Inner Computation (i, j, z3...z4)

7 // Top Damping (i, j, z5...z6)

8 else
9 // Back and Front Damping (i, j, zmin...zmax)

10 end

11 end

12 else
13 // Left and Right Damping (i, ymin...ymax, zmin...zmax)

14 end

15 end

Algorithm 2: Wavefield solution step

We evaluate several different configurations for the parallelization of this
code, using both OpenMP parallel loops and tasks. In the x-loop versions,

72 E. Raut et al.

we simply apply an omp parallel for directive to the x-loop on line 1 of
Algorithm 2. The OpenMP schedule is selected at runtime; we test the static,
dynamic, and guided OpenMP schedules in this study.

In addition to simply looping over the x-dimension, we also evaluate the
effect of loop blocking in the x-y plane. See Fig. 1. In the blocked version, we
apply OpenMP loop parallelism to the 2-D loop nest over x-y blocks. Again, we
evaluate the static, dynamic, and guided schedules.

In the task-based configurations, we insert a omp parallel master region
surrounding the entire timestep loop (before line 2 in Algorithm1). Then, in the
wavefield solution step we generate tasks representing parallel units of work. The
OpenMP depend clause is used to manage dependencies between timesteps. In
this stencil computation, the computation of each block depends on its neighbors
from the previous timestep.

The OpenMP depend clause does not support overlapping array sections
as dependencies. The most natural way to express dependencies between the
regions is to list, in array section form, the specific array elements that each
block depends on. However, this would result in overlapping dependency regions
and is therefore not supported. Instead, in our implementation we simply choose
one element of each neighboring block to include in the dependency list. This
workaround, however, is limited to simple dependence patterns. For example,
it is not possible to use more blocks (smaller block size) in the PML regions
than in the inner region, because each inner block would depend on multiple
PML blocks. OpenMP 5.0 supports using iterators in the depend clause, which
provides some additional flexibility; however, iterators are not supported in any
compilers we tested.

We evaluate the following configurations in this paper:

– Loop x static/dynamic/guided : an OpenMP parallel for loop is applied to the
x loop in line 1 of Algorithm 2. A static/dynamic/guided schedule is used.

– Loop xy static/dynamic/guided : Uses blocking in the x and y dimensions. A
OpenMP parallel for loop is applied to the 2-D loop nest over x-y blocks. (A
collapse(2) is used to combine the two loops). A static/dynamic/guided
schedule is used. Several different block sizes are evaluated.

– Tasks xy : Each x-y block is a task. OpenMP’s depend clause is used to manage
dependencies between timesteps.

– Tasks xy nodep: Same as above, but OpenMP dependencies are not used.
In order to prevent a race condition, an explicit task synchronization point
(taskwait) is added at the end of the timestep (i.e., before line 7 of
Algorithm 1).

An alternative approach, not evaluated here, would be to apply a taskloop
construct to the loops, generating one task for each chunk of iterations (with
configurable size). Currently, the taskloop construct does not support depen-
dencies, so an explicit task synchronization would be required, as in Tasks xy
nodep.

Our application is not currently NUMA-aware, which hurts performance on
NUMA architectures, including the nodes used in this study. The conventional

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 73

NUMA awareness for OpenMP tasks can be achieved with the affinity clause
of OpenMP 5.0 [17]; however, to the best of our knowledge, this clause is not
supported on any publicly available compilers as of the time of writing. (In [17],
an LLVM runtime with preliminary support of task affinity is implemented. We
are currently evaluating our application with this runtime.) In our application,
all data is allocated and initialized by a single thread and so will likely reside on
a single NUMA domain.

5 Evaluation

The different versions of Minimod are evaluated on Summit (a supercomputer
with IBM POWER9 architecture) and Cori and SeaWulf (supercomputers with
an Intel architecture).

5.1 Experimental Setup

Table 1. Hardware and software configuration of the experimental platforms.

Computer Hardware Software

Summit CPUs 2x IBM Power9 LLVM 9.0

CPU cores 44 (22 per CPU)

Memory 512 GB

L3 10 MB (per two cores)

L2 512 KB (per two cores)

L1 32+32 KB

Device fabrication 14 nm

Cori CPUs 2x Intel Xeon E5-2698v3 LLVM 10.0

CPU cores 32 (16 per CPU)

Memory 128 GB

L3 40 MB (per socket)

L2 256 KB

L1 32+32 KB

Device fabrication 22 nm

SeaWulf CPUs 2x Intel Xeon Gold 6148 LLVM 11.0 (git 3cd13c4)

CPU cores 40 (20 per CPU)

Memory 192 GB

L3 28 MB (per socket)

L2 1024 KB

L1 32+32 KB

Device fabrication 14 nm

Summit [25] is a computing system at the Oak Ridge Leadership Computing
Facility (see Table 1 top panel). Each node also has 6 NVIDIA V100 GPUs;

74 E. Raut et al.

however, we do not use GPUs in this study. We use 42 OpenMP threads in all
experiments with each thread bound to a physical core.

Cori [23] is a computing system at the National Energy Research Scientific
Computing Center (NERSC) (see Table 1 middle panel). We perform exper-
iments on Haswell nodes of Cori. 32 OpenMP threads on the Haswell nodes
were used, each thread bound to a physical core (using OMP PLACES=cores and
OMP PROC BIND=true).

SeaWulf is a computing system at Stony Brook University. Details are given
in Table 1 (bottom panel). In each run, we use 40 OpenMP threads (one per
physical core) with each thread bound to a physical core.

Each simulation is run with grid sizes between 643 (64 in each of the three
dimensions) and 10243. Sizes 5123 and 10243 are reported in this paper. Results
with the LLVM compiler on each computer are reported in this paper. Cache
statistics were collected using the Perf and HPCToolkit [20] profilers. Execution
times are averaged over three trials on Summit and SeaWulf. We were unable
to compute a three-run average on Cori due to lack of availability; however, the
application shows little variation in run time on the other machines, so it likely
would make little difference.

5.2 Results

Execution times for each configuration from Sect. 4 on all three platforms are
shown in Fig. 2. For each of the xy-blocked configurations, the time shown is
for the block size that gives the lowest execution time for each configuration.
On Cori, poor performance is seen from “Loop x static” as compared to other
configurations. Performance among the xy-blocked configurations are generally
quite similar.

To understand the relative performance and how it relates to the architecture
used, we gathered cache use statistics for each configuration. Table 2 shows the

Table 2. L3 miss rate [%] on each computer for each configuration.

Grid size 5123 Grid size 10243

Summit Cori SeaWulf Summit Cori Seawulf

Loop x static 16 19 49 12 16 50

Loop x dynamic 42 10 27 35 9 28

Loop x guided 45 15 41 36 15 47

Loop xy static 9 11 47 7 12 43

Loop xy dynamic 26 11 45 27 11 43

Loop xy guided 26 12 47 22 12 44

Tasks xy 27 12 45 27 11 43

Tasks xy nodep 27 11 45 26 11 43

Average 27.3 12.6 43.3 24.0 12.1 42.6

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 75

Fig. 2. Execution time (in seconds), top panel Summit, mid panel Cori and bottom
panel SeaWulf.

L3 miss rate for each configuration on Summit, Cori, and SeaWulf, respectively.
On Summit, the miss rate is significantly lower for static configurations than for
the other configurations. On Cori and SeaWulf, the L3 miss rate is highest for
“Loop x static”, and relatively similar among all xy-blocked configurations.

Figure 3 shows the effect of block size on execution time for each of the
xy-blocked configurations. The given block size is the size of both the x and y
dimensions of each block/task. We frequently see that at a small block size of 42,

76 E. Raut et al.

“Tasks xy” does significantly worse than other configurations. Also noteworthy
is that at larger block sizes, “Tasks xy” usually outperforms “Tasks xy nodep”,
showing the benefit of fine-grained synchronization.

We also ran experiments with other compilers (IBM XL 16.1.1 on Summit,
and Intel 19 on Cori and SeaWulf). The general trends discussed here (for the
LLVM compiler) also apply to other compilers, indicating that these conclusions
are intrinsic to the code and architecture. Due to space constraints, results with
the other compilers are not shown here.

6 Discussion

As shown in Table 2, the L3 miss rate on Summit (POWER9 architecture) is
lower for static-schedule configurations than other configurations, while for Cori
and SeaWulf (Intel architectures) this relationship does not hold. To under-
stand why, we must examine the cache hierarchies of these architectures. On the
POWER9 architecture (Summit), the L3 cache is shared between each pair of
cores only (Table 1). With a static schedule, the assignment of domain regions to
threads does not change between timesteps, and data resident in the L3 cache will
be reused at subsequent timesteps. With non-static schedules (including tasks),
the assignment of domain regions to threads is arbitrary and can change at
each timestep, introducing L3 cache misses (and an expensive fallback to main
memory) when a region moves to a different pair of physical cores. On Intel
architectures (Cori and SeaWulf), the L3 cache is shared on the entire socket, so
movement of regions between timesteps does not cause L3 cache misses unless
the movement is between sockets.

A notable trend in the block size plots (Fig. 3) is that for very small block
sizes (i.e., 42), there is a large overhead seen in “Tasks xy”. This sensitivity is
usually not seen in the other configurations (although on SeaWulf a similar time
increase occurs in the “Tasks xy nodep” configuration). This indicates that the
LLVM OpenMP runtime has a significant overhead associated with scheduling
small tasks. The difference between “Tasks xy” and “Tasks xy nodep” suggests
that there is also a significant overhead associated with handling the dependen-
cies between tasks for fine-grained synchronization. The bulk synchronization of
“Tasks xy nodep” (task synchronization at the end of each timestep) has less
overhead.

Most of the block size experiments in Fig. 3 show that there is a “minimum
point”, usually around a square block size of 16–32, where the execution time
is minimized. In general, there is a trade-off with respect to choosing a block
size. Small block sizes expose more parallelism to the runtime, resulting in more
opportunities for load balancing. However, as each block is a task that must be
scheduled for execution, small block sizes incur increased runtime task schedul-
ing overhead. It is interesting to see that the minimum point for block size is
relatively similar across computers in Fig. 3.

Especially at larger block sizes, we see a significant improvement of “Tasks
xy” over “Tasks xy nodep”. This shows potential for improvement of the

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 77

Fig. 3. Effect of block size on execution time using the LLVM compiler on Summit
(top), Cori (middle), and SeaWulf (bottom).

fine-grained synchronization provided by task dependencies. However, this
improvement is diminished at smaller block sizes. If the overheads of task depen-
dency resolution could be reduced, this approach might also benefit smaller block
sizes.

78 E. Raut et al.

7 Conclusions

In this paper, the Minimod application was ported to use OpenMP tasks. Even
for this relatively regular stencil application, task-based parallelism is competi-
tive with traditional loop-based parallelism, and is even better in some experi-
ments. This is a promising result for the effectiveness of OpenMP tasking.

A key finding of this paper is that the movement of domain region com-
putations between timesteps is more expensive on the POWER9 architecture
than on Intel architectures due to the difference in L3 cache hierarchy between
them (Sect. 6). This stresses the importance of locality-aware task scheduling
and suggests that the optimal policies for such a scheduler may be architecture-
dependent. The affinity clause introduced in OpenMP 5.0 may help improve
the locality of tasks, increasing performance. The OpenMP metadirective, also
introduced in version 5.0, could potentially help set scheduling parameters for
different target platforms.

As discussed in Sect. 6, our results indicate the potential for decreasing the
overhead associated with handling task dependencies. However, task dependen-
cies currently also have a lack of expressivity (see Sect. 4). Increasing the expres-
sivity without increasing overhead may prove difficult.

More research is needed to pinpoint the causes of these performance charac-
teristics. For example, we plan to use a profiler to continue to explore OpenMP
overheads and barriers for each configuration. We would also like to better under-
stand the extent to which tasks move between threads over the simulation. We
hope to see better support for tasks from performance tools.

In future work, this code will be ported to GPUs using OpenMP 4.0+ offload-
ing features, including using tasks to coordinate the work of multiple GPUs. We
would also like to extend the code to run on multiple nodes. One possibility is
to use MPI to coordinate OpenMP tasks between nodes. We will also add more
kernels to Minimod to form a more complete seismic imaging application; in
doing so, we expect to further exploit the benefits of task-based parallelism.

Acknowledgements. We would like to thank Total Exploration and Production
Research and Technologies for their support of this work. We also thank Vivek Kale
at Brookhaven National Laboratory for his help in guiding the experiments in this
paper. We used resources of the National Energy Research Scientific Computing Cen-
ter (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231. We also used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725. Furthermore, we would like to thank Stony Brook Research
Computing and Cyberinfrastructure, and the Institute for Advanced Computational
Science at Stony Brook University for access to the SeaWulf computing system, which
was made possible by a 1.4M National Science Foundation grant (#1531492).

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 79

References

1. Acun, B., et al.: Parallel programming with migratable objects: Charm++ in prac-
tice. In: SC 2014: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 647–658 (2014). https://doi.
org/10.1109/SC.2014.58

2. Atkinson, P., McIntosh-Smith, S.: On the performance of parallel tasking runtimes
for an irregular fast multipole method application. In: de Supinski, B.R., Olivier,
S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS,
vol. 10468, pp. 92–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65578-9 7

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011). https://doi.org/10.1002/cpe.1631

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: SC 2012: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
pp. 1–11, November 2012. https://doi.org/10.1109/SC.2012.71

5. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic
waves. J. Comput. Phys. 114(2), 185–200 (1994). https://doi.org/10.1006/jcph.
1994.1159

6. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207–216
(1995). https://doi.org/10.1145/209937.209958

7. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
PaRSEC: exploiting heterogeneity to enhance scalability. Comput. Sci. Eng. 15(6),
36–45 (2013). https://doi.org/10.1109/MCSE.2013.98

8. de la Cruz, R., Araya-Polo, M.: Algorithm 942: semi-stencil. ACM Trans. Math.
Softw. 40(3) (2014). https://doi.org/10.1145/2591006

9. de la Cruz, R., Araya-Polo, M.: Towards a multi-level cache performance model
for 3D stencil computation. Proc. Comput. Sci. 4, 2146 –2155 (2011). https://doi.
org/10.1016/j.procs.2011.04.235. Proceedings of the International Conference on
Computational Science, ICCS 2011

10. Delannoy, O., Petiton, S.: A peer to peer computing framework: design and per-
formance evaluation of YML. In: Third International Symposium on Parallel and
Distributed Computing/Third International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Networks, pp. 362–369 (2004).
https://doi.org/10.1109/ISPDC.2004.7

11. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21(02), 173–193 (2011). https://doi.org/10.
1142/S0129626411000151

12. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP task scheduling
strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol.
5004, pp. 100–110. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-79561-2 9

13. Ghosh, S., Liao, T., Calandra, H., Chapman, B.M.: Experiences with OpenMP,
PGI, HMPP and OpenACC directives on ISO/TTI kernels. In: 2012 SC Compan-
ion: High Performance Computing, Networking Storage and Analysis, pp. 691–700,
November 2012. https://doi.org/10.1109/SC.Companion.2012.95

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1145/209937.209958
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1145/2591006
https://doi.org/10.1016/j.procs.2011.04.235
https://doi.org/10.1016/j.procs.2011.04.235
https://doi.org/10.1109/ISPDC.2004.7
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1109/SC.Companion.2012.95

80 E. Raut et al.

14. Gurhem, J., Tsuji, M., Petiton, S.G., Sato, M.: Distributed and parallel program-
ming paradigms on the K computer and a cluster. In: Proceedings of the Interna-
tional Conference on High Performance Computing in Asia-Pacific Region, HPC
Asia 2019, pp. 9–17. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3293320.3293330

15. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: Proceedings of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models,
PGAS 2014. Association for Computing Machinery, New York (2014). https://doi.
org/10.1145/2676870.2676883

16. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.S.: Chameleon:
reactive load balancing for hybrid MPI + OpenMP task-parallel applications. J.
Parallel Distrib. Comput. 138, 55–64 (2020). https://doi.org/10.1016/j.jpdc.2019.
12.005

17. Klinkenberg, J., et al.: Assessing task-to-data affinity in the LLVM OpenMP run-
time. In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S.,
Labarta, J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 236–251. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98521-3 16

18. Lee, J., Sato, M.: Implementation and performance evaluation of XcalableMP:
a parallel programming language for distributed memory systems. In: 2010 39th
International Conference on Parallel Processing Workshops, pp. 413–420 (2010).
https://doi.org/10.1109/ICPPW.2010.62

19. Louboutin, M., et al.: Devito (v3.1.0): an embedded domain-specific language for
finite differences and geophysical exploration. Geosci. Model Dev. 12(3), 1165–1187
(2019). https://doi.org/10.5194/gmd-12-1165-2019

20. Mellor-Crummey, J., Fowler, R., Whalley, D.: Tools for application-oriented per-
formance tuning. In: Proceedings of the 15th International Conference on Super-
computing, ICS 2001, pp. 154–165. Association for Computing Machinery, New
York (2001). https://doi.org/10.1145/377792.377826

21. Meng, J., Atle, A., Calandra, H., Araya-Polo, M.: Minimod: a finite difference
solver for seismic modeling. arXiv (2020). https://arxiv.org/abs/2007.06048

22. Moustafa, S., Kirschenmann, W., Dupros, F., Aochi, H.: Task-based programming
on emerging parallel architectures for finite-differences seismic numerical kernel.
In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol.
11014, pp. 764–777. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96983-1 54

23. NERSC: Cori. https://docs.nersc.gov/systems/cori/
24. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking opti-

mization for stencil computations on modern CPUs and GPUs. In: SC 2010: Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–13 (2010)

25. Oak Ridge Leadership Computing Facility: Summit. https://www.olcf.ornl.gov/
olcf-resources/compute-systems/summit/

26. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, November 2018. https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5.0.pdf. version 5.0

27. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-
gramming with StarSs. Int. J. High Perform. Comput. Appl. 23(3), 284–299 (2009).
https://doi.org/10.1177/1094342009106195

https://doi.org/10.1145/3293320.3293330
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1007/978-3-319-98521-3_16
https://doi.org/10.1109/ICPPW.2010.62
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.1145/377792.377826
https://arxiv.org/abs/2007.06048
https://doi.org/10.1007/978-3-319-96983-1_54
https://doi.org/10.1007/978-3-319-96983-1_54
https://docs.nersc.gov/systems/cori/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1177/1094342009106195

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 81

28. Qawasmeh, A., Hugues, M.R., Calandra, H., Chapman, B.M.: Performance porta-
bility in reverse time migration and seismic modelling via OpenACC. Int. J.
High Perform. Comput. Appl. 31(5), 422–440 (2017). https://doi.org/10.1177/
1094342016675678

29. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly Media, Beijing (2007)

30. Rico, A., Sánchez Barrera, I., Joao, J.A., Randall, J., Casas, M., Moretó, M.: On
the benefits of tasking with OpenMP. In: Fan, X., de Supinski, B.R., Sinnen, O.,
Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 217–230. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28596-8 15

31. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: a high-
productivity programming language for HPC with logical regions. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2807591.2807629

32. Thaler, F., et al.: Porting the COSMO weather model to manycore CPUs. In:
Proceedings of the Platform for Advanced Scientific Computing Conference, PASC
2019. Association for Computing Machinery, New York (2019). https://doi.org/10.
1145/3324989.3325723

33. Vidal, R., et al.: Evaluating the impact of OpenMP 4.0 extensions on relevant
parallel workloads. In: Terboven, C., de Supinski, B.R., Reble, P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 60–72. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24595-9 5

34. Virouleau, P., et al.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11454-5 2

https://doi.org/10.1177/1094342016675678
https://doi.org/10.1177/1094342016675678
https://doi.org/10.1007/978-3-030-28596-8_15
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1145/3324989.3325723
https://doi.org/10.1145/3324989.3325723
https://doi.org/10.1007/978-3-319-24595-9_5
https://doi.org/10.1007/978-3-319-11454-5_2

OpenMP Extensions

Unified Sequential Optimization
Directives in OpenMP

Brandon Neth1(B), Thomas R. W. Scogland2, Michelle Mills Strout1,
and Bronis R. de Supinski2

1 University of Arizona, Tucson, AZ 85721, USA
brandonneth@email.arizona.edu

2 Lawrence Livermore National Lab, Livermore, CA 94550, USA

Abstract. OpenMP began as a mechanism to support portability of
shared-memory, loop-level parallelization via directives. OpenMP has
become widely popular due to the high value that users place on porta-
bility. Its original motivation has justified additions to its specification
to support SIMD parallelism and, as has been adopted for OpenMP 5.1,
directives for common loop optimizations such as tiling and unrolling.

In this paper, we explore another opportunity for OpenMP to provide
portability to common compiler directives – ones that support sequential
optimizations such as inlining or providing information about aliasing.
We survey the current support in production compilers for these fea-
tures. We find that the situation is similar to the one that originally
motivated OpenMP’s creation. Different compilers have different syntax
and sometimes different semantics for the same directives, thus requir-
ing complicated pragma configuration for an application to support the
use of multiple compilers. We also find that interaction of these direc-
tives with OpenMP further complicates their use. Our performance study
demonstrates that these directives can substantially improve the perfor-
mance of common programming usage by as much as 406%. Overall, we
argue that inclusion of similar directives in OpenMP would substantially
benefit users and compiler implementers.

1 Introduction

Prior to the specification of OpenMP, a wide range of compilers supported
shared-memory, loop-level parallelization via directives. Unfortunately, those
diverse directive sets often used different directives for the same functionality and
even occasionally supported slightly different semantics with the same directives.
This diversity significantly reduced the utility of those directives as users could
not reliably use them across architectures; OpenMP has become widely used
since the specification of portable directives with consistent semantics greatly
increased the utility of such parallel functionality.

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-CONF-812472.

This is a U.S. government work and not under copyright protection in the United States;
foreign copyright protection may apply 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 85–97, 2020.
https://doi.org/10.1007/978-3-030-58144-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_6

86 B. Neth et al.

OpenMP support has become ubiquitous among production-grade compil-
ers because of the popularity of consistent, portable semantics among users.
OpenMP has fulfilled its original purpose well and has gained support for more
and more programming constructs, including task parallelism and accelerator
offload, potentially with discrete memories. It has even built on its original pur-
pose through the standardization of directives to support SIMD parallelism and
traditional loop optimizations such as tiling.

In contrast to the consistent semantics for parallelization directives that
OpenMP provides, sequential optimization directives, such as those for inlin-
ing or aliasing, remain fractured. While most compilers support directives for
them, the syntax and, once again, the semantics vary. Users would greatly ben-
efit from standardization. While these directives usually do not impact correct-
ness, although mis-applied alias information certainly could, they can signifi-
cantly improve performance of both parallel and serial codes. Having to use
per-compiler versions of optimization directives imposes many of the same costs
and issues as using compiler-specific parallelism directives did when OpenMP
was first formed. We argue that we need sequential optimization directives with
consistent, portable semantics and that OpenMP is the ideal avenue for them.

The contributions of this work are:

– A survey of the sequential optimization directives available in three produc-
tion C++ compilers: Intel, GCC, and IBM XL;

– An analysis of the interactions between OpenMP and sequential optimization
directives;

– A case study of the importance of sequential optimization directives; and
– A proposed concrete syntax for including these directives in OpenMP.

Our case study finds that the appropriate use of inlining directives can improve
performance of common programming patterns by up to 406%.

In Sect. 2, we survey existing sequential optimization directives available in
GCC, Intel, and IBM compilers and argue that these directives should be stan-
dardized. Section 3 describes how sequential optimizations interact in sometimes
problematic ways with OpenMP thus supporting standardizing sequential opti-
mization directives in OpenMP. Section 4 demonstrates the significant impact
on performance available through inlining directives for applications written in
the RAJA parallel library [10]. Section 5 concludes with a summary of possible
standardizations for inlining and aliasing in OpenMP.

2 Sequential Optimizations

Many of the common sequential optimization directives of the Intel, IBM, and
GCC compilers fall into one of five different categories: aliasing, inlining, opti-
mization control, side effects, and alignment. Due to their semantic variety and
usefulness in program optimization, we propose that OpenMP incorporate alias-
ing, inlining, alignment, and side-effect directives, similarly to the addition of
sequential-loop optimizations in OpenMP 5.1.

Unified Sequential Optimization Directives in OpenMP 87

1 void f() {

2 int a[100];

3 int b[100];

4 int * p = a;

5 int * q = b;

6 // p and q do not alias

7 q = a;

8 // p and q alias

9 }

Listing 1. Example of Pointer Aliasing

1 #pragma omp aliases(list)

2 #pragma omp disjoint(list)

Listing 2. Syntax for Aliasing Directives

2.1 Aliasing

Aliasing directives inform the compiler about symbols with possible overlap.
Listing 1 shows an example of pointer aliasing. Because pointer aliasing presents
a major roadblock to compiler analyses and optimizations, many compilers
have directives to restrict the possibility of aliasing. For example, XL has the
disjoint pragma, which indicates that the identifiers in the argument list will
never alias, specifically that the identifiers do not share physical storage [3]. In
the function in Listing 1, appropriate directives include #pragma disjoint(p,b)
and #pragma disjoint(a,b) GCC takes a different approach with its alias
attribute [1,2]. The alias attribute indicates that a variable or function aliases
with another symbol in the program.

OpenMP should incorporate both approaches. The positive information of
the alias annotations and the negative information of the disjoint pragmas
provide orthogonal information for the compiler. These directives could be incor-
porated into the existing assume directive introduced in OpenMP 5.1, or intro-
duced as standalone directives. Listing 2 shows concrete syntax for inclusion as
standalone directives while Listing 3 shows alternative assume clauses.

2.2 Inlining

Inlining directives instruct the compiler whether it should attempt to inline
functions. Listing 4 shows examples of inlining used in all three of the different
compilers. While all have inlining directives, the syntax and semantics differ.

IBM’s XL compiler has the least support for inlining directives, with the
pragmas inline and noinline [5]. The inline pragma can only be used in
C source code and indicates that the function in the directive is to be inlined
whenever it is called. The noinline pragma can be used in C and C++ code
and indicates that the function in the directive should never be inlined.

88 B. Neth et al.

1 aliases(list)

2 disjoint(list)

3 pure

4 const

Listing 3. Syntax for assumes Clauses to Support Aliasing and Side Effect Information

Intel has three inlining pragmas: inline, noinline, and forceinline [11].
Unlike the XL pragmas, these pragmas are statement-specific: they are applied
to functions at their call sites. The noinline directive precludes the compiler
from inlining the function call, while inline is a hint that inlining the call would
be beneficial but does not require inlining. The stronger forceinline pragma
requires that the compiler to inline the function if possible. Both the inline and
forceinline directives allow the optional recursive argument, which indicates
that as a function call is inlined, the calls made within the inlined code should
also be (recursively) inlined. Recursive functions are one example of functions
that cannot be inlined.

GCC has three inlining function attributes, noinline, always_inline, and
flatten [1]. The noinline attribute works like the noinline pragma in XL.
Similarly, always_inline works like XL’s inline. The flatten attribute is
analogous to the inline recursive pragma in Intel’s compiler, but is applied
to function definitions. When compiling a function with the flatten attribute,
GCC tries to inline all calls within the function definition, but will not do so
recursively. Flattening a function does not affect whether it will be inlined itself.

We argue that OpenMP should include directives that require inlining. Direc-
tives give developers more control over their compilation. The compiler should
not ignore those directives; at most the directives should support a clause to
indicate that they are hints. A pair of directives, noinline and inline, com-
pletely encompasses existing support if inline has a clause to indicate that it
should apply recursively. As with the surveyed compilers, the semantics of an
inlined function should be the same as if the function were not inlined. Listing 5
shows concrete syntax for inlining directives.

2.3 Optimization Control

All three compilers have directives that support fine-grained control of opti-
mization passes. For optimization level controls, such as O2 or O3, XL has
option_override, Intel has optimization_level, and GCC has optimize [1,
7,11]. These directives apply optimization options at the function level. XL and
GCC have directives to guide compiler optimization towards more frequently exe-
cuted code. XL has the execution_frequency pragma, which has options for high
frequency and low frequency [4]. Similarly, GCC has two attributes, hot and cold
[1]. In contrast to XL’s directive, which can be applied at any level of a program,
GCC’s attributes can only be applied to functions. However, GCC does support
the GCC optimize pragma for finer levels of optimization control.

Unified Sequential Optimization Directives in OpenMP 89

1 void foo() {printf("foo\n");}

2 void bar() {printf("bar\n");}

3

4 void no_inlining() {

5 foo();

6 bar();

7 }

8

9 void all_inlined() {

10 printf("foo\n");

11 printf("bar\n");

12 }

13

14 void intel_inlined() {

15 #pragma inline

16 foo();

17 #pragma inline

18 bar();

19 }

20

21 __attribute__((flatten))

22 void gcc_inlined() {

23 printf("foo\n");

24 printf("bar\n");

25 }

26

27 #pragma inline(foo)

28 #pragma inline(bar)

29 void xl_inlined() {

30 foo();

31 bar();

32 }

Listing 4. Inlining Using Directives for All Three Compilers

1 #pragma omp inline [recursive]

2 #pragma omp noinline

Listing 5. Syntax for Inlining Directives in OpenMP

2.4 Side Effects

Knowledge about the side effects of a function (or more specifically its lack of
side effects) allows compilers to optimize more aggressively. XL and GCC sup-
port directives to indicate this type of information. In XL, the isolated_call
pragma indicates that a function makes absolutely no changes to the state of the
runtime environment [6]. This pragma corresponds to the GCC attribute pure.

90 B. Neth et al.

1 void neither(double * arr, size_t n) {

2 for(size_t i = 0; i < n; ++i) {

3 arr[i] = arr[i] + 1; // cannot modify program state

4 }

5 }

6

7 #pragma isolated_call

8 __attribute__ ((pure))

9 double pure_function(double * arr, size_t n) {

10 double sum = 0.0;

11 for(size_t i = 0; i < n; ++i) {

12 sum = sum + arr[i]; // can read non-volatile memory

13 }

14 return sum;

15 }

16

17 __attribute__ ((const))

18 double * const_function(double * arr, size_t n) {

19 return arr + n; // const functions cannot dereference pointers

20 }

Listing 6. Example of pure and const Functions with GCC Attributes

Stronger than these directives is GCC’s const attribute [1]. In addition to the
restrictions implied by pure, a const function cannot rely on the program state
for its result. Listing 6 provides an example of the difference between these
attributes. Like aliasing, side effect information can be incorporated as an addi-
tional clause to the assume directive, for which Listing 3 shows concrete syntax.
Alternatively, Listing 7 shows concrete syntax for standalone directives.

2.5 Alignment

Changing the alignment of variables can shrink memory footprints and improve
performance. All three compilers support directives for scoped alignment control
and not just for specific variables. GCC’s aligned attribute can be applied to
functions, variables, or fields, and takes an optional alignment value [1]. The
alignment value must be a power of two. Both XL and Intel support GCC’s
aligned attribute [9,11]. XL also supports the pack pragma [9]. The pack
pragma is used to manage the alignment of members of aggregates like struc-
tures, unions, and classes [8]. OpenMP should extend its memory management

1 #pragma omp pure

2 #pragma omp const

Listing 7. Syntax for Side Effect Directives in OpenMP

Unified Sequential Optimization Directives in OpenMP 91

1 #pragma omp aligned [(alignment)]

2 #pragma omp begin aligned [(alignment)]

3 #pragma omp end aligned

Listing 8. Syntax for Alignment Directives in OpenMP

directives to support scoped alignment control, which is frequently easier to use
than having to identify specific variables. Listing 8 shows concrete syntax for
inclusion in OpenMP.

3 Directive Interaction

A major reason that OpenMP should adopt sequential optimizations is to clar-
ify their interaction with existing OpenMP directives. For example, outlining
is a common technique used in OpenMP implementations. Code regions dec-
orated with parallel or task pragmas are outlined into their own function
and passed to the OpenMP runtime as function pointers. This outlining pro-
cess occurs at different times in different compilers. In LLVM/Clang, outlining
occurs early on as part of the front end, causing LLVM to receive OpenMP code
as runtime calls and native functions rather than OpenMP constructs. Other
compilers lower OpenMP pragmas to function calls on a spectrum from early
to late, sometimes providing OpenMP information to the backend to support
construct-aware optimizations. When parallel code regions occur in the presence
of sequential optimization directives, problems may arise.

For example, in Listing 9, the flatten attribute inlines all function calls within
the body of foo if possible. However, nearly all OpenMP implementations out-
line the loop into a function. When the outlining is combined with the flatten
attribute, the result is ambiguous. The flattening could occur first, resulting in
a parallel function with inlined calls, which is closer to the desired effect. Alter-
natively, outlining could occur first, resulting in a parallel function that makes
calls to bar and baz, losing the intent to inline them.

Aliasing directives suffer from a similar ambiguity. Aliasing information such
as disjoint, applies to the original variables. When those variables are used in

1 __attribute__((flatten))

2 void foo(int N) {

3 #pragma omp parallel for

4 for(int i = 0; i < N; i++) {

5 bar();

6 baz();

7 }

8 }

Listing 9. Interaction with Flatten Attribute

92 B. Neth et al.

an OpenMP region, the aliasing information may not propagate during out-
lining. This problem occurs with many compilers even with the C standard
restrict type qualifier, let alone with implementation-specific directives. Fur-
ther, the effect of data-sharing attributes such as firstprivate may obscure
the aliasing relationships. Finally, OpenMP support for aliasing would allow the
specification of relationships between copies created through those data-sharing
attributes. OpenMP should make clear statements about its impact on aliasing;
the inclusion of aliasing directives would facilitate them.

4 Case Study: Inlining in RAJA

To highlight the need for portable programmer control with respect to serial
optimization, we performed a case study using inlining macros in the context of
the RAJA Portability Layer and the GCC and Intel compilers. The results show
that on the RAJA benchmark suite and the proxy application LULESH, the
default compiler inlining decisions sometimes results in improved performance
and sometimes does not. Thus providing portable pragmas for specifying such
optimizations is important.

4.1 RAJA

The RAJA Performance Portability Layer [10] demonstrates the critical nature of
sequential optimization directives. RAJA heavily uses inlining to reduce abstrac-
tion costs. Inlining heuristics generally can determine when inlining is profitable.
Nonetheless they fail frequently for large applications with complex functions
with many variables, as is common for scientific codes that use RAJA. Thus,
RAJA extensively uses inlining directives to ensure its use.

As Listing 10 shows, RAJA uses two inlining macros, RAJA_INLINE and
RAJA_FORCEINLINE_RECURSIVE The latter is especially important for perfor-
mance due to the function call depth that the RAJA kernel abstraction intro-
duces. The kernel function takes a policy that represents a nested loop execu-
tion DSL as a C++ type, the interpretation of these policies requires non-trivial
metaprogramming and at least one level of nesting per level before execution of
the user’s provided lambda.

Each kernel statement, such as the one in Listing 11, starts with a call
to a more general kernel function, kernel_param. This function builds a loop
data object that represents the current state of the loop’s iterators, param-
eters and iteration values. It then prepares a statement list that recursively
instantiates StatementListExecutor instances and invokes their methods to
walk the policy’s type tree, as Listing 12 shows. Each statement invokes a
StatementExecutor that creates a wrapper for the nested For statements within
the outermost For. A reference to the loop data avoids unnecessary copies. That
wrapper is passed to a RAJA forall function that implements the loop-level
policy. The forall executes this wrapper for each value of the first iterator.
Similarly, wrapper execution unpacks the loop data and executes the next level

Unified Sequential Optimization Directives in OpenMP 93

1 RAJA_INLINE void kernel_param(SegmentTuple &&segments,

2 ParamTuple &¶ms,

3 Bodies &&... bodies)

4 {

5 util::PluginContext context{util::make_context<PolicyType>()};

6 util::callPreLaunchPlugins(context);

7

8 using segment_tuple_t =

9 typename IterableWrapperTuple<camp::decay<SegmentTuple>>::type;

10 using param_tuple_t = camp::decay<ParamTuple>;

11 using loop_data_t = internal::LoopData<PolicyType,

12 segment_tuple_t,

13 param_tuple_t,

14 camp::decay<Bodies>...>;

15

16 loop_data_t loop_data(make_wrapped_tuple(

17 std::forward<SegmentTuple>(segments)),

18 std::forward<ParamTuple>(params),

19 std::forward<Bodies>(bodies)...);

20

21 // Execute!

22 RAJA_FORCEINLINE_RECURSIVE

23 internal::execute_statement_list<PolicyType>(loop_data);

24

25 util::callPostLaunchPlugins(context);

26 }

Listing 10. The RAJA_FORCEINLINE_RECURSIVE Pragma in Use

of nesting in the statement list, the internal For loop. Eventually, when the
StatementExecutor specialization for Lambda is reached, the body of the loop
executes with the arguments that are collected in the loop data as it passed
through the other levels.

Overall, a single loop-nest kernel has nested calls to execute_statement_list,
StatementListExecutor::exec, StatementExecutor::exec, forall_impl, and body
for each nesting level. A three-dimensional loop has 15 levels of function calls that
must be inlined to maintain performance, and for moderately complex policies that
number can increase significantly. Fortunately, most compilers inline all levels as
well as function and method invocations in the lambda. However, compilers some-
times require hints due to the large number of levels that a kernel can generate for
a single statement.

The semantics of the inlining directive are critical. Recursive inlining direc-
tives are essential since they inline all function call levels. The flatten attribute
inlines only the first layer of function calls within the kernel implementation.
Our case study demonstrates the necessity of recursive inlining.

94 B. Neth et al.

1 using EXECPOL =

2 RAJA::KernelPolicy<

3 RAJA::statement::For<0, RAJA::loop_exec, // k

4 RAJA::statement::For<1, RAJA::loop_exec, // j

5 RAJA::statement::Lambda<0>

6 >

7 >

8 >;

9

10 RAJA::kernel<EXECPOL>(

11 RAJA::make_tuple(RAJA::RangeSegment(kbeg, kend),

12 RAJA::RangeSegment(jbeg, jend)),

13 hydro2d_lam1);

Listing 11. An Example RAJA Kernel

4.2 Evaluation

We evaluate the impact of inlining directives on RAJA performance using two
applications:

– the RAJA Performance Suite of RAJA implementations of streaming, simu-
lation, polyhedral, and scientific kernels

– LULESH, a hydrodynamics proxy application

By modifying the generalized RAJA_INLINE and RAJA_FORCEINLINE_RECURSIVE
macros, we created three versions of the applications for each compiler. The first
version uses the inline attribute/pragma. The second version uses the noinline
attribute/pragma. The third version uses no attributes or pragmas. We com-
pile the applications with two compilers: GCC version 11.0.0 and Intel version
19.1.1.217. We report the average of three executions for the execution time
evaluations.

For the RAJA Performance Suite, the compilers apply inlining successfully
with or without the directives. However, the explicit inlining and no inlining ver-
sions perform significantly different, as Tables 1 and 2 summarizes. On average,
when inlining is removed the suite takes four times as long as when inlining is
applied. Most prominently, the slowdown of the polybench category is more than
23× for GCC. The likely cause is the deeper nesting and more structurally com-
plicated kernels within these benchmarks. The performance of this application
demonstrates the necessity of inlining as an optimization for performance.

Unified Sequential Optimization Directives in OpenMP 95

1 template <typename StmtList, typename Data>

2 RAJA_INLINE void execute_statement_list(Data &&data) {

3 //creates StatementExecutors for the statements in the loop nest

4 StatementListExecutor<0, camp::size<StmtList>::value, StmtList>::

exec(std::forward<Data>(data));

5 }

6 template <camp::idx_t ArgumentId, typename ExecPolicy, typename

EnclosedStmts>

7 struct StatementExecutor<statement::For<ArgumentId, ExecPolicy,

EnclosedStmts...>> {

8 template <typename Data> static RAJA_INLINE void exec(Data &&data) {

9 // Create a wrapper, in case forall_impl needs to thread_privatize

10 ForWrapper<ArgumentId, Data, EnclosedStmts...> for_wrapper(data);

11 auto len = segment_length<ArgumentId>(data);

12 using len_t = decltype(len);

13 forall_impl(ExecPolicy{}, TypedRangeSegment<len_t>(0, len),

for_wrapper);

14 }

15 };

16 template <typename Iterable, typename Func>

17 RAJA_INLINE void forall_impl(const seq_exec &, Iterable &&iter, Func

&&body) {

18 RAJA_EXTRACT_BED_IT(iter);

19 for (decltype(distance_it) i = 0; i < distance_it; ++i) { body(*(

begin_it + i)); }

20 }

Listing 12. Statement Execution

Table 1. Average slowdowns when inlining is removed from RAJA Performance Suite,
GCC.

Benchmark Category Benchmark Count Average
Execution Time
with Inlining (s)

Average
Execution Time
without Inlining
(s)

Average
Slowdown
without
Inlining

basic 10 0.45 1.37 3.03x

lcals 11 0.76 1.22 1.59x

polybench 13 0.88 20.46 23.23x

stream 5 1.31 1.62 1.23x

apps 7 1.05 3.12 2.97x

total 46 .79 3.30 4.18x

For LULESH, as Table 3 summarizes, the no directive version performs better
than the version with explicit no inlining. In contrast to the performance suite,
where inlining directives do not lead to more inlining, LULESH sees performance
benefits when inlining is specified directly. The performance of this application
demonstrates that compiler heuristics alone do not lead to sufficient inlining.

96 B. Neth et al.

Table 2. Average slowdowns when inlining is removed from RAJA Performance Suite,
Intel.

Benchmark Category Benchmark Count Average
Execution Time
with Inlining
(s)

Average
Execution Time
without
Inlining (s)

Average
Slowdown
without
Inlining

basic 10 0.48 1.37 2.85x

lcals 11 0.93 1.64 1.75x

polybench 13 0.96 11.37 11.76x

stream 5 1.04 1.05 1.01x

apps 7 0.83 3.37 4.04x

total 46 0.81 3.24 3.98x

Table 3. Execution Times and Binary Sizes for LULESH Variants

Compiler Version Average Execution Time (s) Binary Size (kb)

GCC Inlining 112.33 530
No Directives 117.06 187
No Inlining 115.14 315

Intel Inlining 103.39 1490
No Directives 108.87 732
No Inlining 109.83 675

5 Conclusion

Regardless of programming language, directives are an important communica-
tion mechanism between developers and the compiler. However, directive diver-
gence across compilers significantly hampers developers. OpenMP’s history of
unifying different directive languages into a lingua franca for parallel program-
ming is a key reason for its popularity. Additionally, by supporting multiple
source languages, it further unifies parallel programming. However, it has left
other crucial types of directives, such as sequential program optimizations, to
evolve in disparate directions. We have shown that these directives are critical to
performance and that they interact with directives in OpenMP. Thus, users need
well-defined semantics for those directive and their interaction with OpenMP.
OpenMP 6.0 will be the ideal mechanism to provide those semantics.

References

1. 33.1 common function attributes. https://gcc.gnu.org/onlinedocs/gcc/Common-
Function-Attributes.html#Common-Function-Attributes. Accessed 24 May 2020

2. 34.1 common variable attributes. https://gcc.gnu.org/onlinedocs/gcc/Common-
Variable-Attributes.html#Common-Variable-Attributes. Accessed 24 May 2020

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#Common-Variable-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#Common-Variable-Attributes

Unified Sequential Optimization Directives in OpenMP 97

3. #pragma disjoint. https://www.ibm.com/support/knowledgecenter/SSLTBW 2.
4.0/com.ibm.zos.v2r4.cbclx01/pragma disjoint.htm. Accessed 24 May 2020

4. #pragma execution frequency. https://www.ibm.com/support/knowledgecenter/
SSLTBW 2.4.0/com.ibm.zos.v2r4.cbclx01/zos pragma execution frequency.htm.
Accessed 24 May 2020

5. #pragma inline (c only) / noinline. https://www.ibm.com/support/
knowledgecenter/SSLTBW 2.4.0/com.ibm.zos.v2r4.cbclx01/zos pragma inline.
htm#cplrill. Accessed 24 May 2020

6. #pragma isolated call. https://www.ibm.com/support/knowledgecenter/
SSLTBW 2.4.0/com.ibm.zos.v2r4.cbclx01/opt isolated call.htm#opt isolated
call. Accessed 24 May 2020

7. #pragma option override. https://www.ibm.com/support/knowledgecenter/
SSLTBW 2.4.0/com.ibm.zos.v2r4.cbclx01/pragma option override.htm#pragma
option override. Accessed 24 May 2020

8. #pragma pack. https://www.ibm.com/support/knowledgecenter/SSLTBW 2.4.0/
com.ibm.zos.v2r4.cbclx01/pragma pack.htm?view=kc#pragma pack. Accessed 24
May 2020

9. Using alignment modifiers. https://www.ibm.com/support/knowledgecenter/
SSGH2K 12.1.0/com.ibm.xlc121.aix.doc/proguide/modifiers.html#modifiers.
Accessed 24 May 2020

10. Beckingsale, D.A., et al.: Raja: portable performance for large-scale scientific appli-
cations. In: 2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), pp. 71–81. IEEE (2019)

11. Intel. Intel C++ Compiler 19.0 Developer Guide and Reference, December 2019

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/pragma_disjoint.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/pragma_disjoint.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/zos_pragma_execution_frequency.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/zos_pragma_execution_frequency.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/zos_pragma_inline.htm#cplrill
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/zos_pragma_inline.htm#cplrill
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/zos_pragma_inline.htm#cplrill
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/opt_isolated_call.htm#opt_isolated_call
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/opt_isolated_call.htm#opt_isolated_call
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/opt_isolated_call.htm#opt_isolated_call
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/pragma_option_override.htm#pragma_option_override
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/pragma_option_override.htm#pragma_option_override
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/pragma_option_override.htm#pragma_option_override
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/pragma_pack.htm?view=kc#pragma_pack
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbclx01/pragma_pack.htm?view=kc#pragma_pack
https://www.ibm.com/support/knowledgecenter/SSGH2K_12.1.0/com.ibm.xlc121.aix.doc/proguide/modifiers.html#modifiers
https://www.ibm.com/support/knowledgecenter/SSGH2K_12.1.0/com.ibm.xlc121.aix.doc/proguide/modifiers.html#modifiers

Supporting Data Shuffle Between
Threads in OpenMP

Anjia Wang, Xinyao Yi, and Yonghong Yan(B)

University of North Carolina at Charlotte, Charlotte, NC 28262, USA
{awang15,xyi2,yyan7}@uncc.edu

Abstract. Both NVIDIA and AMD GPUs provide shuffle or permuta-
tion instructions to enable direct data movement between private regis-
ters of different threads. Since it doesn’t involve the shared memory or
global memory on the device which are slower than direct register access,
data shuffling provides opportunities of optimizing data copy to improve
computing performance. However, shuffle is low-level primitive(warp-
or lane-level for NVIDIA and AMD GPUs) for GPU programming. It
requires advanced knowledge and skills to effectively use it. In this paper,
we present two approaches of using shuffle in OpenMP, 1) a high perfor-
mance runtime implementation of reduction clause using shuffle instruc-
tion; and 2) proposed shuffle extension to OpenMP to let users spec-
ify when and how the data should be moved between threads. Using
sum reduction and 2D stencil as examples in our experiment, the shuffle
implementation always delivers the best performance with up to 2.39x
speedup compared with other high performance implementation. Com-
pared with standard OpenMP offloading code for 2D stencil, our shuffle
implementation delivers superior performance for as many as 25x bet-
ter. We also provide study of simulated shuffle using shared memory on
NVIDIA GPUs to demonstrate how to support this extension on hard-
ware that has no native shuffle support.

Keywords: OpenMP · CUDA · Shuffle · Reduction · Stencil

1 Introduction

OpenMP has been known for productive shared-memory programming on multi-
core, multi-processor and many-core homogeneous systems in which data move-
ment between computing elements such as cores or CPUs are via memory implic-
itly. The recent specification introduced target-family constructs for specifying
offloading data and computation to accelerators whose memory are physically
separate from the host CPU memory. E.g. the map clause can be used to explic-
itly specify data movement between memories of host and an accelerator GPU.
From OpenMP users’ perspective, data sharing and movement between parallel
threads and tasks must go through the memory system, implicitly or explicitly.
This memory model has been both productive for programming and also well

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 98–112, 2020.
https://doi.org/10.1007/978-3-030-58144-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_7

Supporting Data Shuffle Between Threads in OpenMP 99

abstracting hardware systems of parallel architectures, thus reducing program-
ming efforts significantly for writing performance portable programs.

For manycore accelerators such as GPUs and vector architectures, data can
be copied between registers of multiple computing elements such as cores or
vector lanes without going through the memory and cache system, using shuffle
or permutation operations. For example, NVIDIA introduced shuffle instruction
from Kepler architecture to conduct data transfer between registers of different
threads in a warp. The feature enables a multi-thread kernel to perform vector-
like operations synchronously within a warp. When shared data is small and can
reside in register within a warp of threads (32 threads), those threads can access
registers from each other. Considering that register access latency could be 10x
and 100x smaller than SRAM and DRAM respectively, taking advantage of this
data shuffle feature between threads could significantly improve computation
performance of worksharing or vector loops.

In this paper, we present two approaches of using shuffle in OpenMP. First,
we provide a high performance runtime implementation of reduction clause using
shuffle. Then, a new directive and a new clause both named shuffle are intro-
duced for programmers to specify explicit data movement between threads. The
shuffle clause is used to specify the data that can be shuffled between threads,
and the directive to specify when and how the data are transferred. While the
motivation is to support shuffling data between cores or vector lanes via regis-
ters on many-core and vector architectures, the support in general is designed to
bypass slow memory for data movement between thread via explicit data shuf-
fle operation. We develop a prototype implementation of the proposed support
and evaluate it using reduction and stencil algorithm. The shuffle implementa-
tion always delivers the best performance with up to 2.39x speedup compared
with other high performance implementation. Compared with standard OpenMP
offloading code for 2D stencil, our shuffle implementation delivers superior per-
formance for as many as 25x better. We also provide study of simulated shuffle
using shared memory on NVIDIA GPUs to demonstrate how to support this
extension on hardware that has no native shuffle support.

In the rest of paper, Sect. 2 presents the data shuffle operations in the existing
NVIDIA GPUs, AMD GPUs and Intel vector architectures, and motivate our
work. Section 3 shows the high performance implementation of reduction using
shuffle instruction. Section 4 presents the shuffle extension to OpenMP with
syntax details and how to use it for 2D stencil. Then we show the performance
evaluation in Sect. 5. At last, we discuss some related work in Sect. 6 and conclude
our paper in Sect. 7.

2 Motivation

Manycore architecture such as GPUs and vector architecture excels in delivering
high performance and energy efficiency for data parallel computations. These
two architectures are more and more widely used in the HPC field because of its
highly parallelized architecture. While a CPU has less than a hundred of cores

100 A. Wang et al.

in most cases, a GPU could have thousands of cores and run tens to hundreds of
thousands of threads in parallel. In this section, we present the feature of data
shuffling between GPU cores and vector lanes available in NVIDIA GPU, AMD
GPU and vector architectures.

2.1 CUDA shuffle Instruction for NVIDIA GPUs

Since Kepler architecture, NVIDIA releases the warp shuffle instructions to
allow data exchange between registers without touching memory. Before that,
exchanging data between threads must go through shared memory (within
a block) or global memory. If the operation is not atomic, developers have
to insert synchronization calls before and after the data transferring, which
introduces overhead and increases the programming complexity. The shuffle
instructions introduced in NVIDIA CUDA include shfl sync, shfl up sync,
shfl down sync, and shfl xor sync. Using those instructions, data in pri-

vate registers of threads within the same warp could be exchanged directly. They
are atomic operations and the synchronization is enforced naturally by the SIMT
execution model of the NVIDIA GPU architecture. The shuffle instructions are
read-only operations to the threads that provide the data.

Table 1. CUDA shuffle instructions

Instruction Description Parameters

shfl sync Direct copy from indexed lane unsigned mask, T var, int

srcLane, int width=warpSize

shfl up sync Copy from a lane with lower ID
relative to caller

unsigned mask, T var,

unsigned int delta, int

width=warpSize

shfl down sync Copy from a lane with higher
ID relative to caller

unsigned mask, T var,

unsigned int delta, int

width=warpSize

shfl xor sync Copy from a lane based on
bitwise XOR of own lane ID

unsigned mask, T var, int

laneMask, int width=warpSize

The description of the CUDA’s shuffle instructions are shown in Table 1.
They take four parameters and the last one for warp size is optional. mask is
used to indicate which threads are involved. var is the targeting data, which
could be integer, float, double and other types. srcLane is an absolute lane ID
in the warp while delta represents the relative difference to the lane ID of caller
thread. laneMask is used to perform a bitwise operation to the lane ID of caller
thread.

We use a sum reduction as example to show how shuffle works. To simplify
the case, we assure there are only 8 lanes, which hold their own copy of variable
v. Without shuffle, they need to store the value into shared memory so that other
threads can access it. Between each iteration of reduction, the intermediate result

Supporting Data Shuffle Between Threads in OpenMP 101

Fig. 1. Shuffle example using NVIDIA GPU instruction [7]

also need to be maintained in the shared memory and the synchronization has
to be handled properly to avoid data race. By using shuffle instruction, a thread
can directly access the private register of another thread without routing via
shared memory. Furthermore, the shuffle operation is atomic and executed in
lock step. In Fig. 1 [7], initially the first four threads read v from the last four
threads and add it up to their own copy of v. Then the same kind of reduction
continued among these four threads and so on. Eventually, the very first thread
sets the sum of all eight elements. Through the whole procedure, only registers
are used for computing.

2.2 Cross-Lane Operations of AMD GPUs

The AMD GPUs also provide a set of instructions similar to the shuffle instruc-
tions in CUDA. Wavefront on AMD GPU plays the same role as warp on NVIDIA
GPU. Within a wavefront, there are 64 lanes that can execute the same code
simultaneously as a SIMD vector.

Table 2. Summary of AMD GPU shuffle instruction [9]

Instruction Description Parameters

ds permute b32 Push src data to a lane
indicated by addr

dest, addr, src

[offset:addr offset]

ds bpermute b32 Pull src data from a lane
indicated by addr

dest, addr, src

[offset:addr offset]

There are two instructions related to shuffle (Table 2). Unlike the read-
only operations in CUDA, AMD allows a thread to push its own data to another
thread’s private register using ds permute b32. ds bpermute b32 is used to read
data from another thread’s private register.

102 A. Wang et al.

2.3 Shuffle Data Between SIMD/Vector Lanes

Vector architectures also provide instructions for cross-lane operations. For
example, Intel AVX2 and AVX512 introduced SHUFFLE, BROADCAST and
PERMUTE operations for cross-lane functionality for floating-point and inte-
ger operations. Instructions are SHUFPS, VSHUFPS, VPERMI2D, VPERMD,
VPERMQ, etc, and their intrinsics can be found from Intel compiler devel-
oper guide [5]. ARM Scalable Vector Extension (SVE) provides permutation
and shuffle operations, including reductions across vector lanes. RISC-V vector
extensions also have permute instructions to allow cross-lane data movement.
While OpenMP’s simd directive can be used for instruct the compiler to vector-
ize a loop, advanced operations such for cross-lane data movement have not yet
supported in the standard.

3 Using Shuffle to Implement the reduction Clause

In parallel computing, reduction is a very common operation used for aggregating
partial results. For multi-thread programming, it repeatedly applies the same
operation by multiple threads that have the partial results. The final result
resides in one thread. Figure 2 shows the sum reduction using OpenMP. The task
is offloaded onto an accelerator that has multiple teams of threads to perform the
reduction operation. Within a team, data from all threads are accumulated. Then
those partial results are reduced into one final result and can be copied back to
host. By default, data and operations are performed off the global memory which
is DRAM memory on GPUs. An optimized implementation can takes advantage
of shared memory (SRAM) in NVIDIA to accelerate the reduction operations,
e.g. the reduction from the official CUDA examples of NVIDIA.

1 // prerequisite data declaration and computing

2 #define BLOCK_SIZE 64

3 float src[N] = ...;

4 #pragma omp target teams distribute parallel for map(to: src[0:N]) map(

from: sum) num_teams(N/BLOCK_SIZE) num_threads(BLOCK_SIZE) reduction

(+: sum)

5 for (i = 0; i < N; i++)

6 sum += src[i];

Fig. 2. Sum reduction using OpenMP

The reduction clause in OpenMP can be implemented in CUDA using shuffle
operations, along with other optimization techniques. Such implementation can
be done in the runtime system, thus requires minimum compiler transformation.
In Fig. 4, we show the implementation that is similar to the one presented in [7].
In this algorithm, it divides the whole input in the global memory to multiple tiles

Supporting Data Shuffle Between Threads in OpenMP 103

and each block on GPU reads a tile to its shared memory. Using shuffle, threads
in the same warp share their partial results directly between private registers as
soon as they are available. Only the results from warps will be reduced in the
shared memory.

1 template <class T>

2 __inline__ __device__ T warpReduceSum(T val) {

3 for (int offset = warpSize/2; offset > 0; offset /= 2)

4 val += __shfl_down_sync((unsigned int)-1, val, offset);

5 return val;

6 }

7 template <class T>

8 __global__ void reduce(T *g_idata, T *g_odata, unsigned int n) {

9 T mySum = ...; // prepare the local partial sum per thread

10 mySum = warpReduceSum<T>(mySum);

11 int lane = threadIdx.x % warpSize;

12 int wid = threadIdx.x / warpSize; // warp id

13 if (lane == 0) sdata[wid] = mySum; // the partial result of a warp

14 ... // rest of reduction

15 }

Fig. 3. Reduction implementation using native shuffle

For comparison, the same algorithm can be implemented using CUDA shared
memory, and the algorithm can be used for GPUs that has no native shuffle
instruction. The implementation is shown in Fig. 4. For each variable that needs
to be shuffled, an array of block size is created so that each thread in that block
can maintain a copy of the variable in that array. From the user’s point of view,
the simulated shuffle can still directly access the private data of another thread
even though they didn’t declare the shuffle variable as shared data. Comparing
the two implementation in Fig. 3 and Fig. 4, it is shown that their algorithms
are identical, and the only difference is the implementation of shuffle function.

4 Proposing shuffle Clause and Directive for OpenMP

As we discussed in Sect. 1 for the current OpenMP memory model, sharing
data between threads must go through the memory system. This is defined
based on the fact that most existing multi-core and many-core architectures
only allow sharing data between functional units via memory. Shuffle primitives
enable direct data movement between threads, hence function units of a system,
allowing data sharing by bypassing memory system. For the second contribution
of this paper, we experiment high-level language support of data sharing between
threads without using any kind or level of memory. We introduce a shuffle
clause and a shuffle directive to OpenMP for such experiment.

104 A. Wang et al.

1 template <class T>

2 __inline__ __device__ T warpReduceSum(T val) {

3 T *buffer = SharedMemory<T>();

4 int lane = threadIdx.x % warpSize;

5 int wid = threadIdx.x / warpSize;

6 buffer[threadIdx.x] = val;

7 __syncthreads();

8 for (int offset = warpSize/2; offset > 0; offset /= 2)

9 if (lane + offset < warpSize) {

10 val += buffer[wid*warpSize + lane + offset];

11 buffer[threadIdx.x] = val;

12 __syncthreads();

13 }

14 return val;

15 }

16 template <class T>

17 __global__ void reduce(T *g_idata, T *g_odata, unsigned int n) {

18 T mySum = ...; // prepare the local partial sum per thread

19 mySum = warpReduceSum<T>(mySum);

20 int lane = threadIdx.x % warpSize;

21 int wid = threadIdx.x / warpSize; // warp id

22 if (lane == 0) sdata[wid] = mySum; // the partial result of a warp

23 ... // rest of reduction

24 }

Fig. 4. Reduction kernel using simulated shuffle

First, the shuffle clause can be used with parallel and teams directives to
declare the shuffling variables. Its syntax is simply as “shuffle (src-variable-
list)”, in which the src-variable-list specifies the variables that can be shuffled.
Compared with the two similar clauses that are used in OpenMP to specify data
sharing attribute, the shared or private clauses, variables that are annotated
to be shuffled are read-only shared variables to other threads and access to the
variable must use the shuffle directive proposed. The shared clause indicate
read-write sharing among all threads while the private clause indicates that
the data are only available to the thread itself.

Second, the proposed shuffle directive is an executive directive to specify
how exactly the data should be shuffled between registers of different threads. It
must used within a parallel or teams region. The syntax is: “shuffle clause”,
and the clause must be in the following format:

“sync|up|down(mask-modifier[,] src-modifier[,] dst-variable [operator],
shuffle-variable)”

The shuffle directive performs operation of moving data of a shuffled variable
from a source thread or lane (specified by the src-modifier), and then accu-
mulating the data using specified operation (the operator) with a variable (the
dst-variable), and then storing the result in the variable. The mask-modifier is
a mask to indicate which threads to participate shuffle operation, similar to the

Supporting Data Shuffle Between Threads in OpenMP 105

Fig. 5. 2D 5 points stencil using shuffle. Each circle indicates an original pixel. Each
thread loads three pixels. Pixels in color are involved with computation of pixel (i,j).
Arrow represents the shuffle direction

first parameter in the CUDA’s shuffle primitives. The src-modifier is used to
specify the threads or lanes that supply the data. For the sync shuffling which
is used to specify that all participating threads shuffle data from a single source
thread, the src-modifier is the absolute warp or lane ID, such as 25 or 31. For
up and down clauses, the src-modifier is used to indicate the relative distance
between the participating thread and the source thread. operator is the operation
to be applied to the shuffled data, which could be =, +=, -=, \= and so on. It
equals to dst-variable = dst-variable operator shuffle-variable. The default oper-
ator is = if none is specified. The shuffle-variable must be the variable specified
by the shuffle clause.

Currently, the most usage of shuffle operation is for using GPUs because
of its availability on NVIDIA and AMD GPUs. On CPU and other platforms,
shuffle can be easily implemented using shared memory and performance can be
optimized by taking advantage of last level of shared cache. While our proposal
is one approach of exposing this features to users, shuffle can be used in other
approach such as via runtime function, or used with metadirective or declare
variant for performance optimization. Yet those approaches require knowledge
and skills of CUDA and OpenCL programming. One limitation of this proposal is
that the use of shuffle directive may render incorrect execution of the OpenMP
code if OpenMP compilation is turned off since the use of shuffle requires
parallel SIMD-type of data movement between variables of the same symbol.

4.1 Stencil Example

In stencil, a filter is applied to each pixel and several pixels around it to compute
a new value for that pixel. Since a pixel can be involved multiple times during
computing, if we can load several pixels to register once in one thread and

106 A. Wang et al.

1 // prerequisite data declaration and computing

2 float src[N], dst[N], fw, fc, fe, fn, fs, sum, BLOCK_SIZE = ...;

3 #pragma omp target teams map(to: src[0:N], fw, fc, fe, fn, fs) map(from:

dst[0:N]) num_teams(N/BLOCK_SIZE)

4 #pragma omp parallel num_threads(BLOCK_SIZE) shuffle(sum) // declare sum

for shuffle

5 { // prepared needed data, such as global index of src item and dst

item

6 int global_index[3], index = ...;

7 sum = src[global_index[1]] * fe; // partial sum1

8 #pragma omp shuffle down(-1, 1, sum, sum) // thread n shuffles sum

from thread n+1 and replace its own sum copy

9 sum += src[global_index[0]] * fn;

10 sum += src[global_index[1]] * fc;

11 sum += src[global_index[2]] * fs; // partial sum2

12 #pragma omp shuffle down(-1, 1, sum, sum)

13 sum += src[global_index[1]] * fw; // partial sum3

14 dst[index] = sum; // write the final result to output array dst

15 }

Fig. 6. 2D 5 points stencil using shuffle OpenMP extension

1 // prerequisite data declaration and computing

2 float src[N], dst[N], fw, fc, fe, fn, fs, sum, BLOCK_SIZE = ...;

3 int N = width*height;

4 #pragma omp target map(to: src[0:N], fc, fn0, fn1, fw1, fw0, fe1, fe0,

fs1, fs0, height, width) map(from: dst[0:N])

5 #pragma omp teams distribute parallel for num_teams(N/BLOCK_SIZE)

num_threads(BLOCK_SIZE) collapse(2) schedule(static, 1) shuffle(sum)

6 for (int i = 0; i < height; i++) {

7 for (int j = 0; j < width; j++) {

8 sum = src[i*width+j+1] * fe;

9 #pragma omp shuffle(-1, 1, sum, sum)

10 sum += src[(i-1)*width+j] * fn;

11 sum += src[i*width+j] * fc;

12 sum += src[(i+1)*width+j] * fs;

13 #pragma omp shuffle(-1, 1, sum, sum)

14 sum += src[i*width+j-1] * fw;

15 dst[i*width+j+1] = sum;

16 }

17 }

Fig. 7. 2D 5 points stencil using worksharing and shuffle OpenMP extension

complete all the computations, it would be faster than multiple threads all load
the pixels from global memory repeatedly. Taking 2D 5 points stencil as example,
to compute the pixel (i,j) it needs 4 adjacent pixels and itself. We consider these

Supporting Data Shuffle Between Threads in OpenMP 107

1 __global__ void stencil(const float* src, float* dst, ...,

2 float fc, float fn, float fw, float fe, float fs) {

3 // prepared needed data, such as global index of src item and dst item

4 int global_index[3], index = ...;

5 sum = src[global_index[1]] * fe; // partial sum1

6 sum = __shfl_down_sync(0xFFFFFFFF, sum, 1);

7 sum += src[global_index[0]] * fn;

8 sum += src[global_index[1]] * fc;

9 sum += src[global_index[2]] * fs; // partial sum2

10 sum = __shfl_down_sync(0xFFFFFFFF, sum, 1);

11 sum += src[global_index[1]] * fw; // partial sum3

12 dst[index] = sum; // save the result back to the output array

13 }

Fig. 8. 2D stencil kernel using shuffle instructions

5 pixels as 3 columns handled by 3 threads (Fig. 5). Each thread calculates a
partial sum and passes it to the left neighbor. The leftmost thread collects all
partial results and gets the final result. In this example, thread Ti+1 computes
sum1i,j = Pi,j+1 ×fe and passes it to thread Ti. Thread Ti computes sum2i,j =
Pi−1,j ×fn+Pi,j ×fc+Pi+1,j ×fs and passes sum1i,j +sum2i,j to thread Ti−1.
Then thread Ti−1 computes sum3i,j = Pi,j+1×fw. As the last step, thread Ti−1

stores the final result sumi,j = sum1i,j +sum2i,j +sum3i,j to a proper location.
In Fig. 6, it shows a simplified 2D 5 points stencil using shuffle constructs.

As we described above, each thread reads 3 points. It generates two partial
results and passes them to neighbours. Two partial sums are retrieved back as
well. At last, three partial results corresponding to three columns of filter are
combined together as the final result. Figure 7 presents a worksharing version
of 2D stencil. The nested loop is flatten by collapse. schedule clause ensures
that the threads next to each other process continuous pixels so that they can
correctly pass intermediate results.

We create a prototype implementation in CUDA to demonstrate how the
compiler would transform the OpenMP code in Fig. 6. It doesn’t perform shuffle
operation across the whole team. Instead, the operation is mapped to a warp on
NVIDIA GPU, which means the shuffle is conducted within a warp. For other
platforms, it depends on what native shuffle instruction is available and how
it works on the hardware level. The shuffle operations are implemented using
both native shuffle instructions and shared memory. In Fig. 8, the intermediate
results of a column of pixels are shuffled between adjacent threads at line 6
and 10, which correspond to line 8 and 12 in Fig. 6. Each thread makes the
maximum use of the pixels and produces all the possible results from them.
Then it exchanges the partial results among private register of neighbours via
shuffle to avoid shared memory access. The shuffle instruction can be simulated
using shared memory at line 8–14 and 18–24 so that the code will support the
devices without native shuffle (Fig. 9). They still share the same kernel function.

108 A. Wang et al.

1 __global__ void stencil(const double* src, double* dst, ...,

2 double fc, double fn, double fw, double fe, double fs) {

3 // prepared needed data, such as global index of src item and dst item

4 int global_index[3], index = ...;

5 // an array shared in a block to exchange sum between threads

6 __shared__ double shared_sum[BLOCK_SIZE];

7 float sum = src[global_index[1]] * fe;

8 shared_sum[thread_id] = sum;

9 __syncwarp();

10 if (lane_id < warpSize) { // lane_id is the thread id within a warp

11 shared_sum[thread_id] = shared_sum[thread_id+1];

12 __syncwarp();

13 sum = shared_sum[sumId];

14 }

15 sum += src[global_index[0]] * fn;

16 sum += src[global_index[1]] * fc;

17 sum += src[global_index[2]] * fs;

18 shared_sum[thread_id] = sum;

19 __syncwarp();

20 if (lane_id < warpSize) {

21 shared_sum[thread_id] = shared_sum[thread_id+1];

22 __syncwarp();

23 sum = shared_sum[thread_id];

24 }

25 sum += src[global_index[1]] * fw;

26 dst[index] = sum; // save the result back to the output array

27 }

Fig. 9. 2D Stencil kernel using shuffle simulated by shared memory

5 Experimental Results

The experimental platform used for reduction has a 12 cores Intel Xeon W-2133
CPU, 32 GB DRAM, and one NVIDIA Quadro P400 GPU with 2 GB of memory.
The other platform that is used for stencil has two 18 cores Intel Xeon E5-2699
v3 CPUs, 256 GB DRAM, and two NVIDIA Tesla K80 GPUs with 24 GB of
memory. Both systems run Ubuntu 18.04 LTS and NVIDIA CUDA SDK 10.2.

As baseline, omp target teams distribute parallel for is used to
implement reduction and stencil, and then compiled by Clang/LLVM 10.0.1
with -O3 parameter. Thus the baseline performance completely depends on the
transformation and optimization by Clang/LLVM compiler. The kernel time on
GPU is measured as execution time, the time cost of data transfer is not included.
There are four more versions of implementation to be evaluated, including access-
ing global memory directly, using shared memory as software cache for a tile of
loop tiling, using shared memory to simulate shuffle, and using native shuffle.
The version of using shared memory as software cache for loop tiling is considered
as highly optimized implementation on NVIDIA GPUs [10].

Supporting Data Shuffle Between Threads in OpenMP 109

In both tests, the baseline OpenMP version is much slower than the rest
four versions. The native shuffle version is about 20x faster than the baseline.
Beside the shuffle instruction, the reason could be that the manually transformed
CUDA code and the baseline OpenMP code compiled by LLVM have different
mechanism of parallelization. It may lead to various memory access behaviors,
such as coalesced memory access versus uncoalesced memory access.

5.1 Reduction

Fig. 10. Performance of reduction

The input is an array of given size that filled with randomly generated num-
bers. We can see the native shuffle version is the fastest as expected since it has
the least amount of access to slower memories (Fig. 10). It shows up to 25x bet-
ter performance than the standard OpenMP version and 2.39x speedup over the
global memory version. The version using shared memory to simulate the shuffle
instruction is slower than the second version that uses shared memory without
shuffle. It’s reasonable because the simulated shuffle requires more resources to
maintain an array to share data and it performs more synchronizations in the
block to make sure atomic data operations.

The memory access of reduction can be modeled in Table 3. f(x) is the
amount of memory operations for reducing x numbers, where f(x) =

∑k
0 2k

and k = log2 x. Different versions incurs different amount of memory access to
each memory. In the global memory version, all those accesses occur in the global
memory. In the shared memory version, the elements are reduced in the shared
memory. It reads and writes this memory location f(B) times, respectively. Since
there are G blocks, the total number of shared memory access is 2 ∗ G ∗ f(B).

For the native shuffle version, within a warp the elements are reduced among
registers directly. Then the partial results from all warps in the same block are

110 A. Wang et al.

Table 3. Memory accesses for reduction.

Global Memory Shared

Memory

Shared

Memory

Simulated

Shuffle

Native

Shuffle

Global memory access 2 * G * B + 2 * G * f(B) 2 * G * B 2 * G * B 2 * G * B

Shared memory access 0 2 * G * f(B) 2 * G * f(B) 2 * G * W

Cross-bock synchronization 2 * G 2 * G 2 * G *

(f(B)+1)

2*G

N: problem size = G * B, G: grid size = 32768, B: block size = 256, W: warp size =
32

reduced in the shared memory as usual or via shuffle again. The simulated shuffle
shares the same operations. However, it accesses shared memory 2 ∗ G ∗ f(B)
times to shuffle data. It also requires two more synchronizations to make the
operation atomic and prevent data race. Given one shuffle operation per iteration
of reduction, the additional amount of cross-block synchronization is 2 ∗G∗f(B).

According to the analysis above, the performance improvement of native shuf-
fle over the shared memory version is from the much less access to shared mem-
ory. The time overhead of simulated shuffle is caused by excessive cross-block
synchronization, which is a trade-off between performance and compatibility.

5.2 2D Stencil

Fig. 11. Performance of 2D 9 points stencil

The input of this test is an automatically generated image by random num-
bers. The results present a very similar trend between four versions to reduc-
tion experiments (Fig. 11). The native shuffle version has the best performance.
According to the breakdown of memory accesses, this version has the least
amount of slower memory accesses and cross-block synchronizations (Fig. 4).
The average speedup of native shuffle over hand-written tiled shared memory

Supporting Data Shuffle Between Threads in OpenMP 111

Table 4. Memory accesses for 2D stencil

Global Memory Shared Memory Shared Memory

Simulated

Shuffle

Native Shuffle

Global memory access G * B * 4 * 10 G * B * 9 G * B * 9 G * B * 9

Shared memory access 0 G * B * (8 + 4 * 9) G * B * 4 * 16 0

Cross-bock synchronization 0 1 4 * 4 * 2 0

Shared memory size used 0 B * 8 B 0

N: problem size = 4 * G * B, G: grid size = N/4B, B: block size = 128, W: warp size
= 32

version, which has been highly optimized, is 1.11. While sharing the same source
code, the simulated shuffle version suffers from the overhead of cross-block syn-
chronization.

6 Related Work

There are several work that have adopted the CUDA shuffle instructions in
their studies for performance improvement. CUDA shuffle instructions can
improve the performance of reduction operation by computing on private regis-
ters of multiple threads [1,7,8]. Liu and Schmit use warp shuffle functions in a
similar way to develop LightSpMV, which is a faster algorithm of sparse matrix-
vector multiplication [6]. For a more general linear solver, shuffle instructions
are able to speed up the computation by exchanging values stored on registers
directly as well [1]. Tangram is a high-level programming framework, which pro-
vides APIs to perform computation on GPU [2]. It has been extended to use
atomic and shuffle functions in the framework [4]. During AST construction,
an additional pass is added to determine the opportunity of inserting shuffle
instruction for loop optimization. With the help of shuffle instructions, Chen
et al. [3] realize the systolic execution on GPU and demonstrate superior perfor-
mance for 2D stencil in CUDA than most of state-of-the-art implementations.
In comparison, our work proposes high-level interface of using shuffle instruction
with OpenMP.

7 Conclusion

Data shuffling between threads or lanes of many-core GPUs allows data copy
between threads without involving the memory system. It could be exploited
to improve the computing performance when there are large amount of data
communication between threads. In this paper, we experiment two approaches
of using shuffle in the OpenMP high-level programming model, 1) a high per-
formance runtime implementation of reduction clause; and 2) proposed shuffle
extension to OpenMP to let users specify when and how the data should be
moved between threads. Superior performance improvement has been achieved

112 A. Wang et al.

and demonstrated when using shuffle to implement the reduction and 2D sten-
cil kernels. While the effort of correctly programming using shuffle primitive is
significant, our language extension to allow users to use it in high-level pro-
gramming model can reduce its complexity. These exploration and experiment
provide a strong proof of concept that shuffle instructions should be exploited in
compiler code generation and application optimization for performance improve-
ment. In the future, we would like to explore the shuffle implementation on CPU
by exploiting prefetching and non-temporal accesses, and on other heterogeneous
architectures to enable shuffle in more scenarios. We would also like to explore
the use of shuffle in OpenMP SIMD directive for vector architectures.

Acknowledgment. This work was supported by the National Science Foundation
under Grant No. 2015254 and 1409946.

References

1. Bernaschi, M., Carrozzo, M., Franceschini, A., Janna, C.: A dynamic pattern
factored sparse approximate inverse preconditioner on graphics processing units.
SIAM J. Sci. Comput. 41(3), C139–C160 (2019)

2. Chang, L.W., El Hajj, I., Rodrigues, C., Gómez-Luna, J., Hwu, W.M.: Efficient
kernel synthesis for performance portable programming. In: 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–13.
IEEE (2016)

3. Chen, P., Wahib, M., Takizawa, S., Takano, R., Matsuoka, S.: A versatile software
systolic execution model for GPU memory-bound kernels. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. pp. 1–81 (2019)

4. Gonzalo, S.G.D., Huang, S., Gómez-Luna, J., Hammond, S., Mutlu, O., Hwu,
W.M.: Automatic generation of warp-level primitives and atomic instructions for
fast and portable parallel reduction on GPUs. In: 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pp. 73–84, February
2019

5. Intel: Intel C++ compiler 19.1 developer guide and reference (2019). https://
software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-
developer-guide-and-reference/

6. Liu, Y., Schmidt, B.: LightSpMV: Faster CSR-based sparse matrix-vector multi-
plication on CUDA-enabled GPUs. In: 2015 IEEE 26th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), pp. 82–89,
July 2015

7. Luitjens, J.: Faster parallel reductions on Kepler. Parallel Forall. NVIDIA Corpora-
tion. https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler
(2014)

8. NVIDIA: CUDA programming guide (2020). https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html

9. Sander, B.: AMD GCN assembly: cross-lane operations (2016). https://gpuopen.
com/learn/amd-gcn-assembly-cross-lane-operations/

10. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008,
IEEE Press (2008)

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://gpuopen.com/learn/amd-gcn-assembly-cross-lane-operations/
https://gpuopen.com/learn/amd-gcn-assembly-cross-lane-operations/

Performance Studies

Towards an Auto-Tuned and Task-Based
SpMV (LASs Library)

Sandra Catalán1(B), Tetsuzo Usui2, Leonel Toledo3, Xavier Martorell4,
Jesús Labarta4, and Pedro Valero-Lara3

1 Universidad Complutense de Madrid (UCM), Madrid, Spain
scatalan@ucm.es

2 Next Generation Technical Computing Unit, Fujitsu Limited, Kawasaki, Japan
3 Barcelona Supercomputing Center (BSC), Barcelona, Spain

4 Universitat Politècnica de Catalunya Barcelona, Barcelona, Spain

Abstract. We present a novel approach to parallelize the SpMV ker-
nel included in LASs (Linear Algebra routines on OmpSs) library, after
a deep review and analysis of several well-known approaches. LASs is
based on OmpSs, a task-based runtime that extends OpenMP directives,
providing more flexibility to apply new strategies. Based on tasking and
nesting, with the aim of improving the workload imbalance inherent to
the SpMV operation, we present a strategy especially useful for highly
imbalanced input matrices. In this approach, the number of created tasks
is dynamically decided in order to maximize the use of the resources of
the platform. Throughout this paper, SpMV behavior depending on the
selected strategy (state of the art and proposed strategies) is deeply ana-
lyzed, setting in this way the base for a future auto-tunable code that is
able to select the most suitable approach depending on the input matrix.
The experiments of this work were carried out for a set of 12 matrices
from the Suite Sparse Matrix Collection, all of them with different char-
acteristics regarding their sparsity. The experiments of this work were
performed on a node of Marenostrum 4 supercomputer (with two sock-
ets Intel Xeon, 24 cores each) and on a node of Dibona cluster (using one
ARM ThunderX2 socket with 32 cores). Our tests show that, for Intel
Xeon, the best parallelization strategy reduces the execution time of the
reference MKL multi-threaded version up to 67%. On ARM ThunderX2,
the reduction is up to 56% with respect to the OmpSs parallel reference.

This project has received funding from the Spanish Ministry of Economy and Competi-
tiveness under the project Computación de Altas Prestaciones VII (TIN2015- 65316-P),
the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya,
under project MPEXPAR: Models de Programació i Entorns d’Execució Parallels
(2014-SGR-1051), and the Juan de la Cierva Grant Agreement No IJCI-2017- 33511,
and the Spanish Ministry of Science and Innovation under the project Heterogeneidad
y especialización en la era post-Moore (RTI2018-093684-B-I00). We also acknowledge
the funding provided by Fujitsu under the BSC-Fujitsu joint project: Math Libraries
Migration and Optimization.

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 115–129, 2020.
https://doi.org/10.1007/978-3-030-58144-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_8

116 S. Catalán et al.

Keywords: SpMV · Parallel programming · Tasking · Auto-tuning ·
Taskloop · Nesting · LASs · OmpSs.

1 Introduction

Sparse linear algebra is key in many scientific and engineering applications. One
of the most representative and used operations is the sparse matrix-vector prod-
uct (SpMV), defined as

y := αAx + βy, (1)

where α and β are scalars, x and y are dense vectors and, A is a sparse matrix.
The sparse nature of the input matrix makes this operation highly unbalanced,
due to the non-uniform pattern when accessing the elements of the matrix. How-
ever, several storage formats have been proposed in order to palliate this effect.

The relevance of SpMV kernel is shown in the wide range of vendors and
open-source libraries [1,3,6,9], and the large number of applications that make
use of it. A few of these reference sparse linear algebra libraries are MUMPS [4],
that implements a parallel sparse direct solver, SuperLU [12], a general purpose
library for the direct solution of systems of linear equations, MAGMA-Sparse [5],
that provides sparse linear algebra solutions for heterogeneous architectures,
cuSparse [1], which contains a set of basic sparse linear algebra subroutines
developed by Nvidia, PETSC [6], a suite of data structures and routines for the
solution of partial differential equations, FenicS [3], an open-source computing
platform for solving partial differential equations, or HPCG [9], a benchmark
project that aims to create a new metric for ranking HPC systems.

In this work, we focus on the sparse matrix-vector kernel (kdspmv) in LASs1,
a linear algebra library based on OmpSs [2,23,24]. Given that LASs is imple-
mented in OmpSs, the analyzed strategies are implemented with this program-
ming model throughout this work, although other programming models can be
used to this end and benefit from those approaches. OmpSs is an open-source
programming model [10] that has the following advantages in contrast to other
runtimes: i) The model presents efficient management of the threads based on
the use of queues, without the need of dealing with the overhead found in others
models, such as the fork-join model used in OpenMP. ii) OmpSs is specifically
designed for the use of tasks, making it a good choice for the study of task-based
approaches. iii) It allows the user to have deeper control of the thread scheduling.
iv) It provides us with tighter control and better knowledge about the taskloop
implementation necessary to improve the proposed optimizations of the code,
especially for nesting. iv) OmpSs is especially well integrated with the tools
used for performance evaluation Extrae and Paraver. Extrae [13] is a dynamic
instrumentation package to trace programs which generates trace files that can
be later visualized with Paraver. Thanks to the its integration with OmpSs more
information can be retrieved for those implementations in comparison to other
programming models.

1 https://pm.bsc.es/gitlab/pvalero/lass/.

https://pm.bsc.es/gitlab/pvalero/lass/

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 117

We propose and analyze different strategies in order to parallelize the SpMV
kernel included in LASs library [17–19], which implements the general SpMV
(see Eq. 1) and operates on an input matrix stored in CSR format [11]. The
main challenge we target through the parallelization of this kernel is balancing
the computations among the cores in order to attain good performance. Four
different parallel approaches based on OmpSs features are proposed and analyzed
to tackle sparsity and achieve a balanced workload distribution.

2 State of the Art

Sparse matrices are present in a wide variety of applications used in very differ-
ent fields such as graph analytics or economics. All these applications require the
resolution of large-scale linear systems, usually done through iterative methods,
and/or eigenvalue problems, whose most relevant component is the SpMV. For
this reason, improving the portability of this kernel and increasing the perfor-
mance delivered by making good use of the underlying resources is key for the
mentioned applications.

Big efforts have been carried out by the scientific community in order to
increase SpMV performance. An important part of the optimization of scientific
codes consists of using the appropriate format to represent matrices in mem-
ory [8,20,21,25]. Following different approaches, cache performance, data local-
ity and, consequently, the overall performance of SpMV, has been proven to be
affected substantially. Some of the most common formats for sparse matrices are
Coordinate format (COO), Compressed Row Storage (CRS), Compressed Col-
umn Storage (CCS) [11] or ELLPACK-R [15]. Among these options, CSR is the
most widely used and the de facto standard due to the fact that no assumptions
on the sparsity structure of the matrix are made.

There exist several works that target the parallelization of SpMV on multi-
core CPU, GPU, and MIC (many integrated cores). In [14] different scheduling
strategies for particular matrices are explored for both architectures, multi-core
CPU (SPARC64 IXfx and Intel Xeon Ivy Bridge-EP) and MIC (Knights Corner).
Following the same type of comparison, but focused on analyzing the impact
of using a hybrid MPI/OpenMP approach to make better exploitation of the
hardware resources, [26] presents the results on the Knights Corner. Halfway
between applying new parallelization algorithms and choosing an appropriate
storage format, in [27] the authors propose the Blocked Compressed Common
Coordinate (BCCOO) storage format and improve load balancing through a
matrix-based segmented sum/scan algorithm on AMD FirePro W8000, GeForce
Titan X, and Nvidia Tesla K20.

The analysis of the bibliography regarding SpMV shows that works in this
area mostly focus on studying and proposing new storage formats that exploit
better the features of specific hardware or application. On the contrary, in this
work, we focus on CSR format, the most wide-used format for sparse matrices,
and target algorithms that can be easily implemented and tuned on a multi-core
CPU.

118 S. Catalán et al.

3 Parallelizing SpMV

Parallelizing SpMV is key to solve nowadays problems in a wide spectrum of
engineering and scientific operations. For this reason, we explore four different
approaches based on OmpSs, that aim to increase the performance attained by
SpMV thanks to making better use of the platform resources. In this section,
we present these approaches and provide a small schema and pseudo-code to
illustrate each case.

3.1 One Task Per Row

One task per row is a simple and straight-forward approach in which one task per
row is created (see the pseudo-code and schema in Fig. 1). Given that each task
deals with a different row, there are no dependencies. However, numerous tasks
are created, as many as rows are in the matrix; and, these tasks are usually
very small due to the low amount of non-zeros per row, thus introducing a
non-negligible overhead for the runtime. In addition, the workload unbalance is
inherent to this approach since the number of computations performed by each
task depends on the number of non-zero elements.

for (r = 0 ; r < nRows ; r++){
sva l = 0 . 0 ;
#pragma oss task . . .
{

for (c = 0 ; c < nCols ; c++) {
va l = VAL A[ROWA[r]+c] ;
c o l = COL A[ROWA[r]+c] ;
s va l += val ∗ X[co l]∗ALPHA;

}
Y[r] = sva l + Y[r] ∗ BETA;

}
}

Fig. 1. Pseudo-code and schema for one task per row approach.

3.2 Blocking

Blocking implementation consists of splitting the matrix into smaller blocks and
creating one task per block. With this strategy we ensure the reuse of the same
entries of the array y within the task, thus improving data locality. Nevertheless,
blocking the matrix requires a preprocessing in order to create the blocks in
CSR format, which may add an overhead to the total run time. Moreover, all
the blocks that comprise the same rows in the matrix update the same positions
of the array y, turning into data dependencies. An additional question to take
into account with this approach is the changes required in the code in order to
apply blocking, since restructuring the matrix and dealing with the new data
dependencies make the programming difficult. Moreover, the block size to be

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 119

used when blocking the matrix needs to be calculated in advance, requiring a
previous analysis to determine it.

This approach is based on the code developed in [28], where an improved
version of the conjugate gradient method is presented.

3.3 Taskloop

Keeping the use of coarser tasks, we propose the use of taskloop. In this case,
each task will perform the matrix-vector multiplication on a fixed number of
rows. The taskloop construct is used to distribute the rows in different tasks
and the clause grainsize is used to determine the number of rows processed by
each task. The main advantage of this approach is its simplicity, although the
grainsize needs to be determined to maximize the use of the cores. However, it
is important to note that the number of non-zeros may be highly unbalanced
depending on the matrix. In our case, the grainsize is set in order to create one
chunk per core, thus it is calculated as #rows/#cores. In this way, we ensure
that all cores are used and the overhead due to tasks creation is minimum. Thus,
it can be used as a baseline.

#pragma os s task loop
g r a i n s i z e (nRows / #cor e s)

for (r = 0 ; r < nRows ; r++){
sva l = 0 . 0 ;
for (c = 0 ; c < nCols ; c++) {

va l = VAL A[ROWA[r]+c] ;
c o l = COL A[ROWA[r]+c] ;
s va l += val ∗ X[co l]∗ALPHA;

}
Y[r] = sva l + Y[r] ∗ BETA;

}

Fig. 2. Pseudo-code and schema for taskloop approach.

3.4 Grouping

Finally, aiming to keep using coarse tasks but trying to adapt to the different
amount of non-zero elements per row, we propose to apply the grouping approach
of Valero-Lara et al. [16,22]. In this case, we create groups of rows according to
a limit (given by the architecture, e.g. L1 size, L2 size, ...) and each group is
processed by a different task. The main drawback of this approach is that it
requires extra calculations in order to create the groups and this makes the code
less readable. Also, using this approach one core is busy computing the next
group and creating tasks.

120 S. Catalán et al.

4 Performance Analysis

In this section, we present performance results for all the presented approaches
in order to show the benefits/drawbacks of each one.

We have used a set of 12 characteristic matrices obtained from the SuiteS-
parse Matrix Collection [7] (formerly the University of Florida Sparse Matrix
Collection)2.

Although we analyze all the matrices of our test set, we pay particular atten-
tion at the in-2004 matrix as the main test case, due to its characteristics.
The in-2004 matrix is a non-symmetric square matrix with 1,382,908 rows and
16,917,053 non-zero elements. Additionally, as reported in Table 1, it has rows
with no elements (minimum 0) and other rows with quite a few elements (max-
imum 7753). These features made us consider this matrix as an “extreme” test
case in which sparsity in unevenly present.

A graphical representation of the in-2004 example matrix is shown in the last
column of Table 1.

Performance Results

We have run our tests on Marenostrum 4 and Dibona clusters; we have used a
single node of Marenostrum 4 Supercomputer, featuring two sockets Intel Xeon
Platinum 8160 CPU with 24 cores each at 2.10 GHz for a total of 48 cores
per node. Regarding memory hierarchy, each core has 32 KB L1 and 1 MB L2
caches, and 33 MB L3 cache shared among the 24 cores per socket. Regarding
Dibona, each node presents two sockets ARM Thunder X2 (ARMv8 NEON)
CPU with 32 cores each running at 2.0 GHz for a total of 64 cores per node.
In this case, only one socket has been considered for our tests. The memory
hierarchy characteristics for this platform are 32 KB of L1 cache, 256 KB L2
cache, and 32 MB L3 cache.

All tests are compiled with mcxx 2.3.0 (with GCC 6.4.0 or Intel icc 17.0.4 if
available) and OmpSs-2 2018.06 (nanos6 2.4); for those tests that use MKL func-
tions, MKL 2017.4 is used. Each test is run 20 times given the short time required
for the computation on SpMV; from this measurements, the first repetition is
discarded and only used as a warm-up phase. The reported values are calcu-
lated as the median of the remaining 19 repetitions, which measure exclusively
the computation of the SpMV, leaving outside the initialization of the operands.
Moreover, in each repetition cache memory is flashed to avoid data reuse between
consecutive tests. In order to palliate possible NUMA effects on the overall exe-
cution time, affinity is set via taskset and numactl − −interleave = all is used
to spread across the sockets.

Figure 3-Left graphically illustrates execution time for single-threaded MKL
(mkl dcsrmv), and the multi-threaded one (mkl sparse d mv) as reference. The

2 Input matrices from the UFMC are: cant, conf5 4-8x8-05, consph, cop20k A, eu-
2005, Ga41As41H72, in-2004, mac econ fwd500, mpi1, pdb1HYS, Si41Ge41H72,
webbase1-M.

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 121

single-threaded MKL routine implements SpMV as described in Eq. 1 on a sparse
matrix stored in CSR format, however, the multi-threaded MKL routine per-
forms the same operation in parallel, but it requires the use of specific MKL
structures to deal with the CSR matrix. Note that the order of the matrices in
the x differs from 1, showing decreasing performance to ease the reading of the
plots.

Table 1. Set of matrices used in SpMV tests. Information provided for each matrix:
matrix ID, name in the SuiteSparse Matrix Collection, domain, number of rows (and
columns), number of non-zero elements, maximum non-zeros per row, minimum non-
zeros per row, average non-zeros per row, image of the matrix.

ID Name Domain #rows NNZ Max. Min. Avg. Matrix

m1 cant FEM Cantilever 62,451 2,034,917 40 1 32

m2 conf5 4-8x8-05 Quantum

chromodynamics

49,152 1,916,928 39 39 39

m3 consph FEM concentric

spheres

83,334 3,046,907 66 1 36

m4 cop20k A Accelerator cavity

design

121,192 1,362,087 24 0 11

m5 eu-2005 Small web crawl of

.eu domain

862,664 19,235,140 6,985 0 22

m6 Ga41As41H72 Real-space pseudo

potential method

268,296 9,378,286 472 1 34

m7 in-2004 Small web crawl of .in

domain

1,382,908 16,917,053 7,753 0 12

m8 mac econ fwd500 Macroeconomic model 206,500 1,273,389 44 1 6

m9 mip1 Optimiation problem 66,463 5,209,641 713 1 78

m10 pdb1HYS Protein data bank

1HYS

36,417 2,190,591 184 1 60

m11 Si41Ge41H72 Real-space pseudo

potential method

185,639 7,598,452 531 1 40

m12 webbase1-M Web connectivity

matrix

1,000,005 3,105,536 4,700 1 3

122 S. Catalán et al.

Fig. 3. Execution time for SpMV with different approaches on Intel Xeon: one-task-
per-row, grouping, blocking and taskloop (Left). Execution time for 1, 2, 4, 8, and 16
chunks per core (Right).

Performance results show that the reference single-threaded MKL routine
and the one-task-per-row approach, provide longer execution times.

For the one-task-per-row approach, this behavior was already predicted when
presenting this strategy since many tasks are created (as many as rows) and its
granularity is too fine, introducing a relevant overhead.

According to these results the best options to parallelize SpMV are grouping,
multi-threaded MKL, blocking and taskloop strategies. Grouping (with a limit
equal to 25% of L2 cache, being this the best limit tested) provides the worst
performance among these three options. MKL multi-threaded presents a behavior
similar to Grouping, although it performs better for very unbalanced matrices
(m4, m5, m7, and m12), being slower than taskloop on all the tested matrices.

Blocking seems the best option in terms of execution time in some of the
cases. However, execution time is considerably high for those matrices that have
a highly unbalanced number of non-zeros per row (m4, m5, m7, and m12) and,
more important, the preprocessing time needed to block the input matrix as
CSR subblocks makes it unfeasible since this preprocessing requires an execution
time between 2 and 3 orders of magnitude greater than the SpMV execution
time. Finally, taskloop provides good results in all cases and, besides, eases the
parallelization of SpMV thanks to its simplicity, facilitating the maintainability
of the code.

In the light of the presented performance results, we consider the taskloop
approach the most suitable one in order to parallelize SpMV. This selection
is based on several reasons such as i) the fact that it is the easiest approach
since it only requires using the taskloop construct, ii) it is also easily optimizable
because, although it requires a previous analysis, testing different grain sizes
on the platform is enough to attain a reasonable behavior, iii) it follows the
OpenMP standard, so portability is ensured even if OmpSs is not available on
other platforms.

Figure 4 (first) contains the trace of the execution of SpMV (using in-2004
as an input) based on the taskloop strategy when a grainsize of #rows/#cores

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 123

Fig. 4. Traces for SpMV when applying taskloop with 1 (first) and 4 chunks (second)
per core, taskloop + nesting with th = 25% L2 (third) and th = avg nnz per chunk
(fourth) optimizations to taskloop approach.

124 S. Catalán et al.

is used. Axis y shows the 48 cores executing the kernel (on Intel Xeon platform)
and axis x is time. The trace shows that the taskloop construct maximizes the
use of resources, using all the available cores in the platform. However, due to the
static partitioning of the iterations made by taskloop and the unbalanced nature
of the created chunks, the total execution time for a few tasks is well above the
average task execution time (∼ 24, 000μs vs. 8, 000μs). In this scenario, and
given the good use of the resources made by the taskloop construct, we consider
exploring other alternatives that could potentially palliate the imbalance among
tasks and thus reduce the overall execution time.

5 Optimizing the taskloop implementation

In this section, we present two approaches to improve the load balance of SpMV
when using the taskloop construct to distribute the computations among the
cores. First, we focus on the straight-forward use of the taskloop construct and
the grainsize clause, performing an analysis in order to find the most suitable
grainsize. As an alternative to this approach, we present a more sophisticated
strategy where two levels of parallelism are created depending on a few features
either of the architecture or the input matrix.

5.1 Taskloop Grainsize Selection

As mentioned before, although the taskloop strategy provides high performance,
it is essential to determine the grainsize used to create the tasks. To find this
number, and keeping in mind that we want to maximize the use of the resources,
we tested different configurations that distribute the number of rows evenly
(independently of the number of non-zero elements in each row). In addition,
it is necessary to create enough tasks to “feed” all the available cores, for this
reason, we analyzed the performance of the SpMV when creating #cores∗factor
tasks, with factor equal to 1, 2, 4, 8 and 16, and #cores equal to 48. This formula
computes the size of the grainsize of the taskloop clause and then the number of
tasks as well. Figure 3-Right graphically illustrates the execution time for all the
matrices of the test set (Table 1) using different factors. We can see that, even the
matrices are very different among them in terms of number of non-zero elements
and sparsity, results show that almost all matrices present the same behavior,
finding the minimum execution time when a factor of 4 is used. Note that this is
not the case for eu-2005 and webbase-1M matrices. For these matrices a factor
of 8 provides lower execution times.

5.2 Taskloop + Nesting

Finally, we present taskloop + nesting as an alternative to create tasks with a
more regular number of non-zero elements, thus trying to mimic the behavior
of grouping but reducing the overhead introduced by the thread in charge of
creating the groups.

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 125

In this scenario, first we need to replace the taskloop construct used to create
the chunks by a task construct. This change allows us to know the first and
last row that is processed in a specific chunk and, consequently, the number of
non-zeros of the chunk can easily be calculated. Despite this change, we set the
number of rows to be processed by a task to #rows/#cores, which mimics the
behavior of setting the grainsize clause for the first level taskloop to the same
number. Then, a second level of parallelism is created in order to balance the
workload among the created tasks when necessary. The idea is subdividing those
tasks created at the first level that have a huge number of non-zeros into smaller
tasks that can be balanced better. To this end, every time a task is created at
the first level we check if the number of non-zeros of the chunk being processed
is greater than a threshold th. This idea is presented in Fig. 5.

nChunks = get num chunks (nRows) ;
for (nc = 0 ; nc < nChunks ; nc++){

#pragma oss task
{

nnzT = number o f non zeros in chunk (nc) ;
i n i t r ow = g e t i n i t r ow (nc) ;
end row = get end row (nc) ;
#pragma oss task loop

num tasks (nnzT/th)
i f (nnzT > th)

for (r = in i t r ow ; r < end row ; r++){
sva l = 0 . 0 ;
for (c = 0 ; c < nCols ; c++){

va l = VAL A[ROWA[r]+c] ;
c o l = COL A[ROWA[r]+c] ;
s va l += val ∗ X[co l] ∗ ALPHA;

}
Y[r] = sva l + Y[r] ∗ BETA;

}
}// End of pragma

}

Fig. 5. Pseudo-code and schema for taskloop + nesting approach.

To set the threshold value we have followed two different strategies, one
focused on the architecture features and one that takes into account the sparsity
of the matrix. In the first case, we set the threshold to a specific value that
depends on the L2 cache size, more specifically, we perform the tests setting
the threshold to 25% and 50% of L2 capacity. For the second case, we calculate
the average number of non-zeros per chunk, this is the total amount of non-
zero elements in the matrix divided by the number of cores of the platform. In
both cases, if the number of non-zero elements of the chunk is greater than the
threshold th, the task is split in as many tasks as necessary, each of them in
charge of th elements.

To make a deeper analysis, Fig. 4 shows the traces for the following strategies
on in-2004 matrix: taskloop with 4 chunks per core, taskloop + nesting with
th=25% of L2 cache, and taskloop + nesting with th=average of nnz per chunk.
Axis y shows the 48 cores running SpMV kernel on Intel Xeon platform, while

126 S. Catalán et al.

axis x shows the execution time. All traces are in the same scale; this is, the
total time represented by axis x is the same in all cases.

After the analysis of the traces for in-2004 matrix, we can state that applying
nesting may be beneficial in order to compact the trace by splitting the most time
consuming tasks in smaller ones. In this specific case, the approach focused on
architecture features, setting the threshold to 25% of L2 cache, allows to compact
the trace by creating smaller tasks, which are scheduled in a more balanced way
and, consequently, help to reduce the overall execution time. However, setting
the threshold to the average number of non-zeros per row, generates similar
imbalance to that seen in taskloop.

We extend the analysis to all the matrices of the test set (see Fig. 6). We use
the performance of the taskloop one chunk per core approach as a reference. For
well structured matrices, where the number of non-zero elements per row remains
almost constant, the taskloop 4 chunks per core approach is able to achieve good
performance; almost negligible overhead is introduced and workload is well dis-
tributed thanks to the nature of the matrices (m1, m2, and m3). However, for
very unbalanced matrices (m5, m7, m9, and m12), using taskloop + nesting
based on L2 capacity is able to outperform the previous approach, achieving
about 60% faster executions with respect to the reference parallel implementa-
tion. Regarding the taskloop + nesting approach based on the average number
of non-zeros per chunk, we see that performance is similar to that attained in
the other nested approaches except for a few matrices (m6, m9, m11), where the
execution time is considerably increased. Figure 6 also includes the percentage
of improvement for taskloop 4 chunks per core and taskloop + nesting based on
L2 capacity (higher is better) with respect to the parallel reference code. Results
show that the gains when cache capacity is taken into account are relevant espe-
cially for very unbalanced matrices; however, for balanced matrices the taskloop
4 chunks per core approach provides better results.

Fig. 6. Execution time (left) and percentage gain (right) for SpMV when applying
optimizations to taskloop on Intel Xeon platform.

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 127

When comparing these results with those obtained for ThunderX2 (Fig. 7),
we observe a similar behavior. The only exceptions are m6, m9 and m11 matrices.
For those matrices, slightly higher performance is attained with taskloop with 4
chunks when Intel Xeon is used.

Fig. 7. Execution time (left) and percentage gain (right) for SpMV when applying
optimizations to taskloop on ThunderX2 platform.

6 Conclusions and Future Work

Performance results show that making a static and homogeneous partition of the
rows by using taskloop is able to achieve a good result on well-balanced sparse
matrices. However, on other matrices where we find an important unbalanced
sparsity, the use of taskloop + nesting presents a much better behavior, achieving
an important time reduction in some cases. Both approaches are faster than the
multi-threaded MKL counterpart.

In this scenario, we plan as future work to combine both strategies via the
final clause in other to choose the most appropriate one, depending on the input
matrix with the aim of attaining higher performance in each case.

References

1. cuSparse. https://docs.nvidia.com/pdf/CUSPARSE Library.pdf
2. OmpSs-2. https://pm.bsc.es/ftp/ompss-2/doc/spec/OmpSs-2-Specification.pdf
3. Alnæs, M.S., et al.: The FEniCS project version 1.5. Archive of Numerical Software

3(100) (2015). https://doi.org/10.11588/ans.2015.100.20553
4. Amestoy, P.R., Duff, I.S., L’excellent, J.Y.: Multifrontal parallel distributed sym-

metric and unsymmetric solvers. Comput. Methods Appl. Mechanics Eng. 184(2–
4), 501–520 (2000)

5. Anzt, H., Sawyer, W., Tomov, S., Luszczek, P., Yamazaki, I., Dongarra, J.: Opti-
mizing Krylov subspace solvers on graphics processing units. In: Fourth Interna-
tional Workshop on Accelerators and Hybrid Exascale Systems (AsHES), IPDPS
2014. IEEE, IEEE, Phoenix, AZ, May 2014 (2014)

https://docs.nvidia.com/pdf/CUSPARSE_Library.pdf
https://pm.bsc.es/ftp/ompss-2/doc/spec/OmpSs-2-Specification.pdf
https://doi.org/10.11588/ans.2015.100.20553

128 S. Catalán et al.

6. Balay, S., et al.: PETSc Web page (2018). http://www.mcs.anl.gov/petsc
7. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.

Math. Softw. 38(1), 1:1–1:25, December 2011. https://doi.org/10.1145/2049662.
2049663, http://doi.acm.org/10.1145/2049662.2049663

8. Dongarra, J.J., Hammarling, S., Higham, N.J., Relton, S.D., Valero-Lara, P.,
Zounon, M.: The design and performance of batched BLAS on modern high-
performance computing systems. In: International Conference on Computational
Science, ICCS 2017, 12–14 June 2017, Zurich, Switzerland. pp. 495–504 (2017).
https://doi.org/10.1016/j.procs.2017.05.138

9. Dongarra, J.J., Heroux, M.A., Luszczek, P.: HPCG Benchmark : a New Metric for
Ranking High Performance Computing Systems (2015)

10. Duran, A., et al.: OMPSS: a proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters 21(2), 173–193 (2011). https://doi.org/
10.1142/S0129626411000151

11. Langr, D., Tvrd́ık, P.: Evaluation criteria for sparse matrix storage formats. IEEE
Trans. Parallel Distrib. Syst. 27(2), 428–440 (2016). https://doi.org/10.1109/
TPDS.2015.2401575

12. Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface.
ACM Trans. Math. Software 31(3), 302–325 (2005)

13. Llort, G., Servat, H., Gonzalez, J., Giménez, J., Labarta, J.: On the usefulness of
object tracking techniques in performance analysis. In: International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2013,
Denver, CO, USA - November 17–21, 2013, pp. 29:1–29:11 (2013)

14. Ohshima, S., Katagiri, T., Matsumoto, M.: Performance Optimization of SpMV
Using CRS Format by Considering OpenMP Scheduling on CPUs and MIC. In:
Proceedings of the 2014 IEEE 8th International Symposium on Embedded Multi-
core/Manycore SoCs. pp. 253–260. MCSOC 2014, IEEE Computer Society, Wash-
ington, DC, USA (2014). https://doi.org/10.1109/MCSoC.2014.43, http://dx.doi.
org/10.1109/MCSoC.2014.43

15. Ortega, G., Vázquez, F., Garćıa, I., Garzón, E.M.: FastSpMM: an efficient library
for sparse matrix matrix product on GPUs. Comput. J. 57(7), 968–979 (2014).
http://dx.doi.org/10.1093/comjnl/bxt038

16. Valero-Lara, P., et al.: Variable batched DGEMM. In: 2018 26th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Processing (PDP),
pp. 363–367, March 2018. https://doi.org/10.1109/PDP2018.2018.00065

17. Valero-Lara, P., Andrade, D., Sirvent, R., Labarta, J., Fraguela, B.B., Doallo,
R.: A fast solver for large tridiagonal systems on multi-core processors (Lass
Library). IEEE Access 7, 23365–23378 (2019). https://doi.org/10.1109/ACCESS.
2019.2900122

18. Valero-Lara, P., Catalán, S., Martorell, X., Labarta, J.: BLAS-3 optimized by
OmpSs regions (LASs Library). In: 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, PDP 2019, Pavia, Italy,
February 13–15, 2019. pp. 25–32 (2019). https://doi.org/10.1109/EMPDP.2019.
8671545

19. Valero-Lara, P., Catalán, S., Martorell, X., Usui, T., Labarta, J.: sLASs: a fully
automatic auto-tuned linear algebra library based on OpenMP extensions imple-
mented in OmpSs (LASs Library). J. Parallel Distrib. Comput. 138, 153–171
(2020). https://doi.org/10.1016/j.jpdc.2019.12.002

20. Valero-Lara, P., Mart́ınez-Pérez, I., Peña, A.J., Martorell, X., Sirvent, R., Labarta,
J.: cuHinesBatch: solving multiple hines systems on GPUs human brain project*.

http://www.mcs.anl.gov/petsc
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1016/j.procs.2017.05.138
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1109/TPDS.2015.2401575
https://doi.org/10.1109/TPDS.2015.2401575
https://doi.org/10.1109/MCSoC.2014.43
http://dx.doi.org/10.1109/MCSoC.2014.43
http://dx.doi.org/10.1109/MCSoC.2014.43
http://dx.doi.org/10.1093/comjnl/bxt038
https://doi.org/10.1109/PDP2018.2018.00065
https://doi.org/10.1109/ACCESS.2019.2900122
https://doi.org/10.1109/ACCESS.2019.2900122
https://doi.org/10.1109/EMPDP.2019.8671545
https://doi.org/10.1109/EMPDP.2019.8671545
https://doi.org/10.1016/j.jpdc.2019.12.002

Towards an Auto-Tuned and Task-Based SpMV (LASs Library) 129

In: International Conference on Computational Science, ICCS 2017, 12–14 June
2017, Zurich, Switzerland, pp. 566–575 (2017). https://doi.org/10.1016/j.procs.
2017.05.145

21. Valero-Lara, P., Mart́ınez-Pérez, I., Sirvent, R., Martorell, X., Peña, A.J.:
cuThomasBatch and cuThomasVBatch, CUDA routines to compute batch of tridi-
agonal systems on NVIDIA GPUs. Concurrency and Computation: Practice and
Experience 30(24) (2018). https://doi.org/10.1002/cpe.4909

22. Valero-Lara, P., Sirvent, R., Peña, A.J., Martorell, X., Labarta, J.: MPI+OpenMP
tasking scalability for the simulation of the human brain: human brain project.
In: Proceedings of the 25th European MPI Users’ Group Meeting. pp. 5:1–5:8.
EuroMPI 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/
3236367.3236373, http://doi.acm.org/10.1145/3236367.3236373

23. Valero-Lara, P., Sirvent, R., Peña, A.J., Labarta, J.: MPI+OpenMP tasking scala-
bility for multi-morphology simulations of the human brain. Parallel Comput. 84,
50–61 (2019). https://doi.org/10.1016/j.parco.2019.03.006

24. Valero-Lara, P., Sirvent, R., Peña, A.J., Martorell, X., Labarta, J.: MPI+OpenMP
tasking scalability for the simulation of the human brain: human brain project. In:
Proceedings of the 25th European MPI Users’ Group Meeting, Barcelona, Spain,
September 23–26, 2018. pp. 5:1–5:8 (2018). https://doi.org/10.1145/3236367.
3236373

25. Valero-Lara, P., et al.: Simulating the behavior of the human brain on GPUs. Oil
Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 63 (2018). https://doi.org/10.
2516/ogst/2018061

26. Ye, F., Calvin, C., Petiton, S.G.: A Study of SpMV Implementation Using MPI
and OpenMP on Intel Many-Core Architecture. In: VECPAR (2014)

27. Zhang, Y., Li, S., Yan, S., Zhou, H.: A cross-platform SpMV framework on many-
core architectures. ACM Trans. Archit. Code Optim. 13(4), 33:1–33:25, October
2016. https://doi.org/10.1145/2994148

28. Zhuang, S., Casas, M.: Iteration-fusing conjugate gradient. In: Proceedings of the
International Conference on Supercomputing, pp. 21:1–21:10. ICS 2017, ACM, New
York, NY, USA (2017). https://doi.org/10.1145/3079079.3079091

https://doi.org/10.1016/j.procs.2017.05.145
https://doi.org/10.1016/j.procs.2017.05.145
https://doi.org/10.1002/cpe.4909
https://doi.org/10.1145/3236367.3236373
https://doi.org/10.1145/3236367.3236373
http://doi.acm.org/10.1145/3236367.3236373
https://doi.org/10.1016/j.parco.2019.03.006
https://doi.org/10.1145/3236367.3236373
https://doi.org/10.1145/3236367.3236373
https://doi.org/10.2516/ogst/2018061
https://doi.org/10.2516/ogst/2018061
https://doi.org/10.1145/2994148
https://doi.org/10.1145/3079079.3079091

A Case Study on Addressing Complex
Load Imbalance in OpenMP

Fabian Orland(B) and Christian Terboven

Chair for Computer Science 12 - High-Performance Computing,
RWTH Aachen University, Aachen, Germany
{orland,terboven}@itc.rwth-aachen.de

Abstract. Load balance is an important factor that fundamentally
impacts the scalability of any parallel application. In this paper we
present a case study to address a complex load imbalance related to the
convergence behavior of the parallel SPMD implementation of a GMRES
solver used in a real world application in the field of computational fluid
dynamics. In order to tackle this load imbalance in OpenMP we illustrate
different approaches involving the use of nested tasks as well as nested
parallel regions. Furthermore, we evaluate these approaches on a small
kernel program extracted from the original application code and show
how the load balance is affected by each of these approaches.

Keywords: OpenMP · Load balance · Dynamic load balancing ·
Tasking · Nested parallelism · GMRES · Convergence · SPMD

1 Introduction

Currently the largest HPC systems listed in the top500 list [3] offer hundreds of
thousands or even millions of cores. In order to scale any scientific application
code to such large scales the application has to efficiently utilize every available
hardware resource. When doing strong scaling measurements of an application
the fundamental assumption is that the code can be perfectly parallelized which
in reality is not always the case [5].

For shared-memory systems the OpenMP [10,14] programming interface
offers a range of concepts for load balancing such as different loop schedules or
the task construct. A static loop schedule divides the loop iterations in chunks
of equal size and assigns these chunks to threads in a round-robin fashion. Using
dynamic schedules each thread requests a chunk of iterations and upon comple-
tion requests another chunk until all loop iteration have been carried out. With a
guided schedule the size of these chunks varies. First some large chunks are cre-
ated and then for further chunks the size is decreased steadily. The OpenMP task
construct allows user-defined chunks of work to be completed asynchronously
which can already lead to a good load balance.

c© The Author(s) 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 130–145, 2020.
https://doi.org/10.1007/978-3-030-58144-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_9&domain=pdf
http://orcid.org/0000-0002-8681-2661
http://orcid.org/0000-0003-2284-2957
https://doi.org/10.1007/978-3-030-58144-2_9

A Case Study on Addressing Complex Load Imbalance in OpenMP 131

In this paper we want to raise attention to a special kind of load imbalance
that can occur in the SPMD implementation of iterative solvers and is complex
to tackle. We discovered a scenario in which loop scheduling cannot be applied
and splitting the original problem into smaller subproblems executed as tasks
increases the amount of computation to be performed instead of reducing it.

2 Related Work

In order to quantify load imbalances different metrics have been established.
The POP project [2], an EU Centre of Excellence in HPC, defines the load
balance efficiency as the ratio between the average computation time across all
execution units and the maximum computation time across these. For example,
a load balance efficiency of 75% indicates that 25% of the available hardware
resources are not properly utilized.

Unfortunately, this metric does not give any insight into the actual load
distribution. Different distributions can have the same load balance efficiency
but need to be tackled in different ways in order to improve the load balance.
For example, it might make a difference if there are many slightly overloaded
execution units or only a few but therefor heavily overloaded. Hence, Pearce et al.
[15] propose to also take statistical moments like standard deviation, skewness
and kurtosis into account. We use these metrics to quantify our load balance
problem in this paper.

The OpenMP load balancing constructs have already been studied in the
past. Durand et al. proposed an adaptive schedule which dynamically deter-
mines the chunk size depending on the utilization of the machine resources and
also takes NUMA affinity information into account [13]. Recently, Ciorba et al.
[8] investigated the state-of-the-art loop scheduling techniques. However, in our
work dynamic loop scheduling cannot be applied because the application stat-
ically creates a single work load for each thread. We show that splitting these
work loads into multiple smaller units, which could then be scheduled dynami-
cally, will actually increase the overall runtime.

In the field of social and networking analysis Adcock et. al. used tasks to split
up the computation of the δ-hyperbolicity into multiple levels of small chunks
which yielded good load balancing at a scale of 1000 threads [4]. Recently, tasks
have been used successfully to balance the work in a Density Matrix Renor-
malization Group algorithm [9]. Identifying different kinds of tasks as well as
assigning higher priorities to large tasks compared to small tasks lead to a more
balanced execution. Based on the idea of using nested parallelism as discussed
by Royuela et al. [16] we show how the load balance can be improved by imple-
menting nested tasks as well as nested parallel regions into the code.

3 Complex Load Imbalance

During our studies on the CalculiX [1,12] application code we discovered an
interesting and complex kind of load imbalance. Further investigation revealed

132 F. Orland and C. Terboven

that the issue is related to the GMRES solver [17]. Here the GMRES implemen-
tation provided by the SLATEC project is used [7,18]. Hence, in this section we
will first give a brief summary of the parallel GMRES implementation first and
then present the structural pattern that we found in the code leading to a load
imbalance.

3.1 Generalized Minimal Residual Method

The generalized minimal residual method (GMRES) originally developed by
Yousef Saad and Martin H. Schultz in 1986 [17] is a widely used iterative method
to solve linear systems of the form Ax = b, where A is a nonsymmetric matrix.
The main idea is to create a Krylov subspace K(v1) = span{v1, Av1, . . . , A

mv1}
using Arnoldi’s method [6] and approximate the exact solution of the linear
system by a vector in that subspace which minimizes the residual norm. This
process is repeated until the solution convergences up to a certain tolerance.

3.2 Parallel GMRES

In the CalculiX code the governing equations of the Computational Fluid
Dynamics problem are discretized using the finite volume method [11]. The simu-
lation is discretized in time by individual timesteps called increments. To obtain
a steady state solution for the primary variables, such as velocity, temperature
and pressure, several inner iterations are performed in which the physical con-
servation laws are solved in their transient form until they converge to a steady
solution [12]. In each of these inner iterations multiple nonsymmetric linear equa-
tion systems have to be solved. The size of these systems is determined by the
number of elements the mesh is composed of. Typically, millions of elements are
used to discretize a given geometry. In order to solve these large systems the
GMRES method is applied in parallel as follows:

Consider a single of these systems at an inner iteration k given by

A[uk−1]uk = b[uk−1], (1)

where uk ∈ R
n is the velocity field at the end of the inner iteration k. Both the

left hand side matrix A ∈ R
n×n and the right hand side vector b ∈ R

n depend
on the solution of the previous inner iteration uk−1. Let T be the number of
threads used for the parallelization. The matrix A gets subdivided into a T × T
grid of submatrices Ai,j ∈ R

nblk×nblk with i, j ∈ {1, 2, ..., T} and the vectors u
and b are split correspondingly into

A =

⎛
⎜⎝

A1,1 . . . A1,T

...
. . .

...
AT,1 . . . AT,T

⎞
⎟⎠ , u =

⎛
⎜⎝
u1

...
uT

⎞
⎟⎠ , b =

⎛
⎜⎝
b1
...
bT

⎞
⎟⎠ , (2)

A Case Study on Addressing Complex Load Imbalance in OpenMP 133

where the size of each submatrix Ai,j is determined as nblk = � n
T �. Splitting the

system in this fashion leads to T smaller subsystems

A1,1[uk−1] · uk
1 + A1,2[uk−1] · uk

2 + ... + A1,T [uk−1] · uk
T = b1...

AT,1[uk−1] · uk
1 + AT,2[uk−1] · uk

2 + ... + AT,T [uk−1] · uk
T = bT .

However, these systems are not independent as they are still connected by the
various uk

i for i ∈ {1, 2, ..., T}. Thus, by assuming that the solution uk only
changes slightly between each iteration one can approximate uk ≈ uk−1 and
reorder the system to yield

A1,1[uk−1] · uk
1 = b1 −

T∑
i=1
i�=1

A1,i[uk−1] · uk−1
i

...

AT,T [uk−1] · uk
T = bT −

T∑
i=1
i�=T

AT,i[uk−1] · uk−1
i

As a result there are now T independent, smaller subsystems of the form

Ãtũt = b̃t, (3)

where we have Ãt = At,t[uk−1] ·uk
t , ũt = uk

t and b̃ = bt−
∑T

i=1
i�=t

At,i[uk−1] ·uk−1
i .

So in order to solve the whole system in parallel each of these smaller subsystems
is solved by a single thread using a serial GMRES implementation.

3.3 Convergence Dependent Load Imbalance

When we studied the CalculiX application we noticed a pattern occurring over
the course of the whole simulation, in which one thread takes significantly longer
to finish its GMRES computation than the other threads. In order to analyse
this issue in more detail we isolated the solution of one of these systems and
extracted a small kernel program by saving input and output data like matrices
and vectors to file. In the original CalculiX code worker threads are forked and
joined using the pthread API. We translated this equally into using an OpenMP
parallel region so that we can use OpenMP constructs like tasks to implement
solutions tackling the load imbalance later on.

134 F. Orland and C. Terboven

Fig. 1. Trace visualization of our GMRES kernel program using 8 OpenMP threads.
Different colors correspond to different operations performed by the GMRES solver
(Color figure online).

Figure 1 shows a trace of our kernel program executed with 8 OpenMP
threads. We will refer to the master thread as thread 0 to match the number-
ing of threads in the trace correctly. On first sight the load imbalance becomes
directly apparent because thread 4 takes significantly longer to finish compared
to the others. We color coded different important subroutines of the GMRES
implementation in the trace to highlight the iterative structure of this solver.
One iteration consists mostly of applying a preconditioner in msolve (yellow)
followed by a matrix vector product matvec (orange) and the orthogonalization
dorth (pink) of the resulting vector. After 10 of such sequences the residual
is calculated in drlcal (green) and the method is restarted in case the resid-
ual is not low enough. Based on this information we can count the number of
GMRES iterations that each thread performs in the trace. While most of the
threads obtain a converged solution after 31 or 32 iterations thread 4 requires
46 iterations. In order to quantify the load imbalance in our kernel program we
measured load balance efficiency, standard deviation, skewness and kurtosis. All
of these metrics are computed based on the runtime of the threads as well as
on the number of GMRES iterations they perform. The results are shown in
Table 1. First of all, we can verify that the kernel indeed has a significant load
imbalance. The load balance efficiency based on runtimes ranges from 60% with
48 threads to 73% with 8 threads. Comparing these values to the load balance
efficiency obtained based on GMRES iterations reveals a correlation between

Table 1. Load balance metrics obtained with our reference kernel using 8 to 48
OpenMP threads. We measured POP load balance efficiency, standard deviation, skew-
ness and kurtosis based on runtime and GMRES iterations.

threads POP eff std. dev skewness kurtosis

runtime 8 73% 0.065 2.192 2.959

16 71% 0.024 3.555 10.790

32 67% 0.012 3.531 14.152

48 60% 0.013 4.144 17.011

iterations 8 72% 4.841 2.227 3.039

16 69% 3.849 3.493 10.492

32 67% 3.211 3.803 14.647

48 68% 3.041 4.010 15.803

A Case Study on Addressing Complex Load Imbalance in OpenMP 135

them. In most cases the values are nearly the same, except for the execution
with 48 threads. Here we now have two slow threads while for the other execu-
tions we only have one. Furthermore, in both slow threads we find a single call to
the subroutine dorth which suddenly takes much longer to complete compared
to all other calls to this routine in the whole execution. This leads to lower
efficiency value based on runtime than on GMRES iterations.

The standard deviation is not really comparable because runtime and iter-
ations are measured in different units and have different magnitudes. However,
skewness and kurtosis can be compared. We recognize that we get nearly the
same results for all numbers of threads when comparing values based on run-
times and iterations. A positive skewness indicates that only a few number of
threads are overloaded. The high kurtosis values indicate that variances are
caused by infrequent extreme changes, i.e. by the one (or two) slow thread(s).

Even though the subsystems that each thread has to solve are of equal size
in our case, the different convergence behavior leads to a load imbalance. This
kind of imbalance is hard to tackle because it is difficult to predict the required
number of GMRES iterations prior to the execution.

4 Load Balance Strategies

In order to improve the load balance of our parallel GMRES kernel program
we implemented different ideas. The first idea uses OpenMP tasks to create
multiple smaller subsystems to be solved in parallel. The second idea creates
tasks conditionally only in the unbalanced phase of the execution. Lastly, the
third idea is similar to the second one but instead of conditionally creating tasks
it uses nested parallel regions in the unbalanced phase of the execution. In the
following subsections each idea will be presented in more detail.

4.1 Tasking

In the first approach we use the OpenMP task construct. The idea is relatively
simple: Instead of creating only a single subsystem to be solved by each thread we
create multiple. Each subsystem is expressed as one OpenMP task. Depending on
how many tasks we create a single task will shrink meaning that the subsystem to
be solved will be smaller. In case a thread encounters a subsystem that converges
slower than the other ones, the other threads can be kept busy by the OpenMP
runtime scheduling another task from the pool of tasks to them. As a result we
expect the total execution to be more balanced among the threads than with
the original work distribution.

4.2 Conditional Nested Tasks

Our second approach directly tackles the unbalanced part of the execution. In
our example (Fig. 1) this is the point at which all threads except thread 4 are

136 F. Orland and C. Terboven

finished with their computation. The idea is to conditionally split the remaining
work in the slow thread into tasks that can be executed by the idling threads as
well.

Therefore, we identified some subroutines of the GMRES solver that can be
potentially parallelized. In all of these subroutines most work is done in some
loops that can trivially be parallelized. We illustrate the implementation of our
approach by the example of the matvec subroutine.

1 do i=1,n
2 y(i)=a(ja(i)+1)*x(ia(ja(i)+1))
3 do j=ja(i)+2,ja(i+1)
4 y(i)=y(i)+a(j)*x(ia(j))
5 enddo
6 enddo

Listing 1.1. Original matvec loop performing a sparse matrix vector product.

The original Fortran code is shown in Listing 1.1. It shows the main loop
that iterates over the rows of a sparse matrix a stored in CSR format. For each
row of a it computes the inner product of that row with the column vector x
and stores the result in the corresponding location in the result vector y. The
computation for each row is completely independent from the other rows so we
can easily parallelize the outer do loop.

1 nThreads = OMP_GET_NUM_THREADS ()
2 !$OMP ATOMIC READ
3 addThreads = freeThreads
4 if (addThreads .GT. 0.75 * nThreads) then
5 gs = int((n-1) / (addThreads +1)) + 1
6 do k=1,n,gs
7 !$OMP TASK SHARED(x,y,n,nelt ,ia,ja,a,isym) IF(gs.ne.n)
8 do i=k,min(k+gs -1,n)
9 y(i)=a(ja(i)+1)*x(ia(ja(i)+1))

10 do j=ja(i)+2,ja(i+1)
11 y(i)=y(i)+a(j)*x(ia(j))
12 enddo
13 enddo
14 !$OMP END TASK
15 enddo
16 !$OMP TASKWAIT
17 else
18 ! serial matvec
19 endif

Listing 1.2. Our modified matvec loop performing a sparse matrix vector product
with conditionally spawning nested tasks.

Our modifications to the code to implement our load balancing strategy
are shown in Listing 1.2. We keep track of the number of threads that already
finished their GMRES computation by atomically increasing a global variable
freeThreads. Before we start computing the matrix vector product we atomi-
cally read this variable and save it in the variable addThreads (line 3).

If more than 75% of all threads are already finished with their own GMRES
computation we consider to be in the unbalanced phase of the execution (line
4). In our example with 8 threads this corresponds to at least 7 threads that
are already finished. Based on the number of freeThreads we determine the

A Case Study on Addressing Complex Load Imbalance in OpenMP 137

grainsize (gs) (line 5) in order to split the outer do loop into as many OpenMP
tasks as there are freeThreads, including the slow running thread of course
(lines 6–15). So each task corresponds to a number of rows the matrix vector
product is performed on.

If less than 75% of all threads have finished their own computation we con-
sider to still be in the balanced phase. In this case we default to the original
serial matvec implementation (line 18). This should avoid any overhead the task
creation may introduce when we know that only one task would be created
anyways.

4.3 Conditional Nested Parallel Region

Our third and last approach is very similar to our second approach. It also
conditionally splits the remaining work of the slow thread in the unbalanced
phase between the other threads. However, as there is a certain overhead of
creating nested tasks we use nested parallel regions as an alternative in this
approach. Again we present the implementation of our approach by the example
of the matvec subroutine. For the original Fortran code we refer to Listing 1.1.

1 nThreads = OMP_GET_NUM_THREADS ()
2 addThreads = 0
3 !$OMP ATOMIC CAPTURE
4 addThreads = freeThreads
5 freeThreads = 0
6 !$OMP END ATOMIC
7 if (addThreads .LE. 0.75 * nThreads) then
8 !$OMP ATOMIC
9 freeThreads = freeThreads + addThreads

10 !$OMP END ATOMIC
11 addThreads = 0
12 endif
13

14 !$OMP PARALLEL DO PRIVATE(i,j) NUM_THREADS (1+ addThreads)
15 do i=1,n
16 y(i)=a(ja(i)+1)*x(ia(ja(i)+1))
17 do j=ja(i)+2,ja(i+1)
18 y(i)=y(i)+a(j)*x(ia(j))
19 enddo
20 enddo
21 !$OMP END PARALLEL DO
22

23 if (addThreads .GT. 0) then
24 !$OMP ATOMIC
25 freeThreads = freeThreads + addThreads
26 !$OMP END ATOMIC
27 endif

Listing 1.3. Our modified matvec loop performing a sparse matrix vector product
with conditionally creating a nested parallel region.

Our modifications in order to implement this third approach are shown in
Listing 1.3. Again we track the number of threads that already completed their
own GMRES computation in a global variable freeThreads. Before performing
the matrix vector product loop we atomically read the value of freeThreads and
save it in another variable addThreads indicating how many additional threads
we can use for the following computation (line 4). In this approach we have to

138 F. Orland and C. Terboven

make sure that we also set freeThreads to zero to make sure no other slow
thread sees the freeThreads and would create additional nested threads as well
(line 5). Then again we evaluate our condition to determine if we are already in
the unbalanced phase or not (line 7).

If we are in the balanced phase then we logically release all additional threads
that we would have used to speed up computation on the current thread by
performing an atomic update on freeThreads (line 9) and setting addThreads
to zero. Conversely, if we are in the unbalanced phase addThreads holds the
value of other idling threads at this point in the computation (line 13).

It follows the main do loop that performs the matrix vector product. This
time we embedded it into a nested parallel region (lines 14–21). Depending on the
evaluation of our condition to distinguish between the balanced and unbalanced
phase this region will be executed with a different number of threads (line 14).
If we are in the balanced phase addThreads = 0 and the parallel region will only
be executed by the current thread. However, if we are in the unbalanced phase
addThreads > 0 and the parallel region will be executed by the current thread
together with some additional threads depending on how many are currently
idling. In our example with 8 threads this will be all the other 7 threads.

After the parallel region has been executed we need to make sure to logi-
cally release the additional threads again by performing an atomic update on
freeThreads (line 25). Of course this only needs to be done if we have really
used them so only if addThreads > 0 (line 23). Otherwise we can save the atomic
update operation.

5 Results

In this section we will present some performance results obtained with our kernel
program. For each of our three implemented approaches we will show how it
affects the load balance of our kernel.

All measurements were done on one node of the CLAIX-2018 cluster system
of RWTH Aachen University. Such a node is a two-socket system equipped with
two Intel Xeon Platinum 8160 processors. Each processor provides 24 cores run-
ning with a clock frequency of 2.1 GHz and 192 GB of memory. In order to fully
exploit the memory bandwidth of this NUMA architecture threads are placed
onto cores according to the policy of KMP AFFINITY=scatter. To compile the
programs we used the Intel Fortran compiler version 19.0.1.144 2018 which also
provides an OpenMP runtime. For performance analysis we used Score-P 6.0,
Cube 4.5 (release preview) and Vampir 9.8.0.

5.1 Tasking

Performance results obtained with the version of our kernel program that imple-
ments tasking as described in Sect. 4.1 are shown in Table 2. The kernel was
executed with 8 OpenMP threads. We created a different number of tasks per
thread and measured the load balance, the number of instructions executed as

A Case Study on Addressing Complex Load Imbalance in OpenMP 139

well as the time spent inside the GMRES kernel accumulated over all threads.
First of all we recognize that the more tasks we create the closer the load bal-
ance approaches 100%. So in terms of load balancing this approach is nearly
optimal. However, this approach also comes with a huge drawback. Already if
we create 5 tasks per thread the accumulated time spent inside the kernel over
all threads increases by 62%. Though with 10 tasks per thread this runtime
only increases by 51%. In the extreme case of creating 150 tasks per thread the
time spent in the kernel is 87% higher than in the reference case of using just
1 task per thread. In all cases where the runtime increases there are also more
instructions executed than in the reference case. This clearly indicates that the
convergence of the GMRES method plays an important role. The systems to be
solved are much smaller than in the reference case. For example, when creating
150 tasks per thread an individual system is only of size 1280 × 1280 compared
to 192000 × 192000 in the reference case. Unfortunately, overall more work has
to be done to obtain the same solution. So this approach does not improve the
load balance in a sensible way.

Table 2. Performance results of our tasking approach with 8 OpenMP threads.

Tasks per thread Load balance instructions time (accumulated)

1 74% 3.83 × 1010 3.73 s

5 89% 5.63 × 1010 6.05 s

10 96% 5.71 × 1010 5.63 s

50 99% 6.61 × 1010 6.59 s

100 99% 6.41 × 1010 6.76 s

150 99% 6.25 × 1010 6.98 s

Fig. 2. Trace comparison of our reference GMRES kernel (top) and the conditional
nested tasks version (bottom) both using 8 OpenMP threads.

5.2 Conditional Nested Tasks

In order to evaluate our second approach to tackle the load imbalance in our
kernel we obtained a trace of the execution. A comparison between the original

140 F. Orland and C. Terboven

kernel and the one implementing conditional nested tasks is shown in Fig. 2.
The balanced phase of the execution is almost identical in both traces. However,
the unbalanced phase is significantly shorter using nested tasks compared to
the reference. While thread 4 originally finished after roughly 630 ms it is now
already finished after roughly 540 ms. This is a speedup of 1.16 compared to
the reference. Moreover, the load balance has improved to 89%(+16%). The
standard deviation in the runtimes is almost halved. This indicates that indeed
the runtime on the slow thread got shorter while the runtimes on the other
threads get longer because they now additionally spend time with computations
inside the nested tasks. So overall the runtimes are now closer together than
before. The skewness and kurtosis are also slightly lower than in the reference
execution. This means the characteristics of the runtime distribution among the
threads are still the same. We still have only one slow thread. However, this
thread is now faster.

We obtained similar results for executions with a higher number of threads.
Table 3 shows load balance metrics obtained for thread numbers ranging from 8
to 48. By comparing these results with the reference results shown in Table 1 we
can see that the load balance efficiency is improved in all cases. While for 8 and
16 threads we yield an improvement of 16% we only get 11% with 32 threads and
4% with 48 threads. The same trend can be observed for the speedup factors.
With 8 and 16 threads we yield a speedup of 1.16 and 1.18 respectively. However,
with 32 threads only a speedup of 1.09 is obtained. Even worse when running
with 48 threads the runtime is still the same as in the reference execution. This
might be an impact of the overhead when frequently spawning nested tasks
because each individual task is quite small and only operates on vectors with
roughly 667 elements. The statistical moments are all slightly lower compared
to the reference. Again this means that in all cases the runtime characteristics
of the load imbalance stay the same. But the individual runtimes of each thread
are now closer to the average.

Table 3. Load balance metrics obtained with our kernel implementing nested tasks
using 8 to 48 OpenMP threads. We measured POP load balance efficiency, standard
deviation, skewness, kurtosis and the speedup compared to the reference kernel.

threads POP eff std. dev skewness kurtosis speedup

nested tasks 8 89% 0.035 2.029 2.557 1.16

16 87% 0.012 3.349 9.808 1.18

32 78% 0.009 3.033 11.691 1.09

48 64% 0.013 4.119 16.670 1.00

Finally, we also verified our results. In all cases the converged solution is equal
to the original solution in the reference case with respect to machine precision
(16 digits). The number of GMRES iterations that each thread performs have
also not changed.

A Case Study on Addressing Complex Load Imbalance in OpenMP 141

Fig. 3. Trace comparison of our reference GMRES kernel (top) and the conditional
nested parallel regions version (bottom) both using 8 OpenMP threads.

5.3 Conditional Nested Parallel Region

A comparison between the original kernel and the one implementing conditional
nested parallel regions is shown in Fig. 3. In the balanced phase we do not rec-
ognize any differences between the reference execution and the execution with
nested parallel regions, except that these regions are visible in the trace even
when they are executed by just one thread. However, in the unbalanced phase
the runtime of the kernel is significantly shorter. Thread 4 obtains the converged
solution after roughly 540 ms. This is a speedup of roughly 1.16 compared to the
reference execution. The load balance is also significantly improved and is now
at 88% (+15%). Furthermore, the statistical moments are also improved. The
standard deviation almost got halved. This means that the variance in the indi-
vidual runtimes of the threads are now smaller. The skewness is still positive
and only slightly lower than before which shows that there is still only one over-
loaded thread. The kurtosis is also only slightly lower indicating that there are
still infrequent large variances in the runtimes caused by the one slow thread.

Similar results are obtained with higher numbers of threads, ranging from 8
to 48, as shown in Table 4. In all cases the load balance efficiency is improved.
Using 8 and 16 threads we yield an improvement of 15% and 16% respectively.
However, with 32 threads we only yield a plus of 8%, which is also 3% less than
with nested tasks. Using 48 threads we only get 3% improvement. The speedup
values show a similar behavior. With 8 threads we get a speedup of roughly 1.16
which is identical to the nested task approach. But with 16 or more threads the
nested parallel regions approach becomes a little bit slower than nested tasks.
Using 16 threads we yield a speedup of 1.13 which is 5% slower than nested tasks.
With 32 threads the speedup is only 1.02 and 7% slower than nested tasks. This
becomes worse when using 48 threads. Here we yield a speedup of 0.95 which
is a 5% slowdown compared to the reference execution. The statistical moments
are all slightly lower compared to the reference case. However, they have still the
same order of magnitude and are all positive. The similar skewness and kurtosis
imply that still the load imbalance is caused by one overloaded thread.

Moreover, the kernel still computes the correct solution. The converged solu-
tion is identical with the original one up to machine precision (16 digits). The
number of GMRES iterations performed by each thread also remains the same.

142 F. Orland and C. Terboven

Table 4. Load balance metrics obtained with our kernel implementing nested regions
using 8 to 48 OpenMP threads. We measured POP load balance efficiency, standard
deviation, skewness, kurtosis and the speedup compared to the reference kernel.

threads POP eff std. dev skewness kurtosis speedup

nested regions 8 88% 0.034 2.165 2.883 1.16

16 87% 0.015 3.461 10.087 1.13

32 75% 0.011 3.218 11.350 1.02

48 63% 0.015 3.734 13.424 0.95

In order to execute the kernel with nested parallel regions correctly the envi-
ronment needs to be configured in a special way. First of all, we set OMP NESTED
= 1 to enable nested parallelism. Furthermore, we set KMP HOT TEAMS MODE =
1 which will keep the nested threads in the team for faster reuse as multiple
nested regions are quickly executed one after another. Related to this we also set
KMP BLOCKTIME = 0 which causes threads to instantly go to sleep state instead
of waiting the default 200 ms after completing the execution of a parallel region.
On the one hand this makes sure that outer level threads do not spend cpu time
with idling. On the other hand this global environment variable also affects the
nested threads, so that they will also instantly go to sleep state after executing
a nested parallel region. Since we are rapidly executing lots of nested regions
it would be much better if the blocktime could be set for each nesting level
separately. Unfortunately, this is not possible with the current Intel OpenMP
runtime.

Lastly, we pinned the kernel to a set of physical cores corresponding to the
KMP AFFINITY=scatter setting using taskset. The number of cores is equal to
the number of outer level threads the kernel is executed with. Otherwise the
nested threads could be scheduled on one of the remaining free physical cores
of our system if there are some, for example when running with only 8 threads.
However, the intent of our implementation is to mimic a similar behavior as with
nested tasks. So by restricting the execution to as many physical cores as there
are threads initially, we make sure that nested threads can only be scheduled to
the same set of physical cores as the outer level threads.

6 Future Work

Our current approach using nested parallelism has some drawbacks. Currently,
the condition when to trigger the nested parallelism is hard-coded into the sub-
routines of the GMRES solver. Nested tasks or threads are spawned as soon as
more than 75% are idling. For the presented load imbalance, where mostly only
a single thread is heavily overloaded, this condition works quite well. However,
for other cases with multiple slow threads it might not be suitable. Hence, we
would like to also investigate arbitrary thresholds to trigger nested parallelism.

A Case Study on Addressing Complex Load Imbalance in OpenMP 143

Moreover, the results presented in this paper focus only on the execution
of a small kernel program extracted from the CalculiX application. Our results
on the kernel look promising to also speedup the whole CalculiX application as
the presented load imbalance pattern can be found over the course of the whole
simulation. Hence, we want to verify the applicability of our approach using the
whole CalculiX application in the future.

After that it might be interesting to identify similar load imbalances in imple-
mentations of iterative methods other than GMRES. If the load imbalance is
similar to the pattern presented in this paper we expect our approach to be
applicable as well.

Finally, our approach tackles the load imbalance when it already occurred.
Thus, we are also interested in investigating the root cause of this imbalance. If
we know what the imbalance is caused by we could tackle it directly and avoid
the need to spawn nested tasks or nested regions at all.

7 Conclusions

In this work we presented a very special kind of load imbalance that can occur in
the parallel implementation of iterative methods used to solve systems of linear
equations in an SPMD fashion. If each thread solves an independent subsystem
different convergence behavior of these systems may induce a load imbalance
between the threads.

We identified such a pattern in the CalculiX code in which one thread con-
sistently has to perform more solver iterations than all the other threads thus
reducing the load balance to 73% and implemented three different approaches to
tackle the load imbalance: Splitting the problem into more even smaller subprob-
lems leads to a perfectly balanced workload but also to a higher computational
complexity and thus a longer runtime. Conditionally spawning nested tasks or
nested parallel regions in the unbalanced phase of the execution both yield com-
parable results when running with 8 or 16 threads. Here we got a speedups
between 1.13 and 1.18. But when running with 32 or 48 threads the kernel does
not scale as well anymore so that in the worst case our approach slightly slowed
the kernel down. Moreover, we investigated different statistical moments which
indicate that the characteristics of the load imbalance are the same for all num-
ber of threads. In all cases we mostly have a single overloaded thread. Since
the nested regions approach requires a special environment configuration, inter-
feres with the thread scheduling of the OpenMP runtime and yielded a small
application slowdown, we recommend to prefer nested tasks whenever possible.

Finally, our approach is directly implemented into the GMRES solver. It is
independent from the CalculiX application code and can in general be used by
other applications, that use the GMRES method in a similar way, as well.

Acknowledgements. Part of this work was performed under the POP2 project and
has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement 824080.

144 F. Orland and C. Terboven

References

1. CALCULIX A Free Software Three-Dimensional Structural Finite Element Pro-
gram. http://www.calculix.de/. Accessed 22 May 2020

2. Performance Optimisation and Productivity (POP) - A Centre of Excellence in
HPC. https://pop-coe.eu. Accessed 22 May 2020

3. Top500 list - november 2019. https://www.top500.org/list/2019/11/?page=1.
Accessed 22 May 2020

4. Adcock, A.B., Sullivan, B.D., Hernandez, O.R., Mahoney, M.W.: Evaluating
OpenMP tasking at scale for the computation of graph hyperbolicity. In: Ren-
dell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122,
pp. 71–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40698-
0 6

5. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Com-
puter Conference, pp. 483–485. AFIPS 1967 (Spring), Association for Computing
Machinery, New York, NY, USA (1967). https://doi.org/10.1145/1465482.1465560

6. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Q. Appl. Math. 9(1), 17–29 (1951). https://doi.org/10.1090/
qam/42792

7. Brown, P.N., Hindmarsh, A.C.: Reduced storage matrix methods in stiff ODE
systems. Appl. Math. Comput. 31, 40–91 (1989). https://doi.org/10.1016/0096-
3003(89)90110-0

8. Ciorba, F.M., Iwainsky, C., Buder, P.: Openmp loop scheduling revisited: making a
case for more schedules. In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo
Bellido, S., Labarta, J. (eds.) Evolving OpenMP for Evolving Architectures, pp.
21–36. Springer, Cham (2018)

9. Criado, J., et al.: Optimization of condensed matter physics application with
OpenMP tasking model. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman,
N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 291–305. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28596-8 20

10. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.
1109/99.660313

11. Dhondt, G.: The Finite Element Method for Three-dimensional Thermomechanical
Applications. Wiley, Chichester (2004)

12. Dhondt, G.: CalculiX CrunchiX USER’S MANUAL version 2.16, November 2019
13. Durand, M., Broquedis, F., Gautier, T., Raffin, B.: An efficient OpenMP loop

scheduler for irregular applications on large-scale NUMA machines. In: Rendell,
A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp.
141–155. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40698-
0 11

14. OpenMP Architecture Review Board: OpenMP Application Program Inter-
face Version 5.0. https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf (2018)

15. Pearce, O., Gamblin, T., de Supinski, B.R., Schulz, M., Amato, N.M.: Quantifying
the effectiveness of load balance algorithms. In: Proceedings of the 26th ACM
International Conference on Supercomputing, pp. 185–194. ICS 2012, Association
for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/
2304576.2304601

http://www.calculix.de/
https://pop-coe.eu
https://www.top500.org/list/2019/11/?page=1
https://doi.org/10.1007/978-3-642-40698-0_6
https://doi.org/10.1007/978-3-642-40698-0_6
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1090/qam/42792
https://doi.org/10.1090/qam/42792
https://doi.org/10.1016/0096-3003(89)90110-0
https://doi.org/10.1016/0096-3003(89)90110-0
https://doi.org/10.1007/978-3-030-28596-8_20
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1007/978-3-642-40698-0_11
https://doi.org/10.1007/978-3-642-40698-0_11
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1145/2304576.2304601
https://doi.org/10.1145/2304576.2304601

A Case Study on Addressing Complex Load Imbalance in OpenMP 145

16. Royuela, S., Serrano, M.A., Garcia-Gasulla, M., Mateo Bellido, S., Labarta, J.,
Quiñones, E.: The Cooperative Parallel: A Discussion About Run-Time Sched-
ulers for Nested Parallelism. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman,
N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 171–185. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28596-8 12

17. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869
(1986)

18. Seager, M.: A SLAP for the masses. Technical report, Lawrence Livermore National
Laboratory (1988)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-28596-8_12
http://creativecommons.org/licenses/by/4.0/

Tools

On-the-fly Data Race Detection with the
Enhanced OpenMP Series-Parallel Graph

Nader Boushehrinejadmoradi(B), Adarsh Yoga, and Santosh Nagarakatte

Rutgers University, New Brunswick, NJ 08901, USA
{naderb,adarsh.yoga,santosh.nagarakatte}@cs.rutgers.edu

Abstract. This paper proposes OMP-RACER, a dynamic apparent
data race detector for OpenMP programs. Apparent data races are those
races that manifest in a program considering the logical series-parallel
relations of the execution. By identifying apparent races, OMP-RACER
can detect races that occur not only in the observed schedule but also
in other schedules for a given input. Our key contribution is a data
structure to capture series-parallel relations between various fragments
of an OpenMP program with both structured and unstructured paral-
lelism directives, which we call the Enhanced OpenMP Series-Parallel
Graph (EOSPG). OMP-RACER maintains information about previous
accesses with each memory access and uses the EOSPG to check if they
can logically execute in parallel. OMP-RACER detects more races with
similar overheads when compared to existing state-of-the-art race detec-
tors for OpenMP programs.

Keywords: OpenMP · Data races · Series-parallel relations · EOSPG.

1 Introduction

Data races are common in OpenMP programs as with any multithreaded pro-
gram. Data races can cause non-determinism, make the execution dependent on
the memory model, and cause debugging issues. Two accesses are said to con-
stitute a data race if they access the same memory location, one of them is a
write, and they can execute in parallel. Data races can be classified into appar-
ent races and feasible races [17]. Data races that manifest when we consider the
computation, synchronization, and parallel constructs are termed feasible races.
Although there is a large body of work on detecting feasible races [10,20,24],
they detect races in a given schedule (i.e., interleaving). Detecting feasible races
also requires interleaving exploration either systematically or through prioriti-
zation [6,16]. In contrast, data races that occur in an execution of a program
primarily considering the parallel constructs, but without taking the actual com-
putation into account, are termed apparent races. An apparent race may not be
a feasible race in scenarios where the computation itself may change when the
parallel threads are scheduled in a different order. Every apparent race is also a
feasible race for Abelian programs [8].
c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 149–164, 2020.
https://doi.org/10.1007/978-3-030-58144-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_10

150 N. Boushehrinejadmoradi et al.

To detect apparent races, one needs a data structure that represents the
logical series-parallel relations between various fragments of the program. Fur-
ther, any race detector also needs to maintain access history metadata with
each memory location that records previous accesses to that location. Prior
work on detecting apparent races has primarily focused on task-parallel pro-
grams [9,21,22,27,30], which have structured parallelism. This paper focuses
on detecting apparent races in OpenMP programs with both work-sharing and
tasking directives.

This paper proposes OMP-RACER, an on-the-fly apparent data race detec-
tor for OpenMP programs. To encode the logical series-parallel relations between
various fragments of the execution in the presence of both structured and unstruc-
tured directives (e.g., taskwait and dependencies), we propose a new data struc-
ture that we call the Enhanced OpenMP Series-Parallel Graph (EOSPG). It
enhances the OpenMP Series-Parallel Graph (OSPG), which we previously pro-
posed for profiling serialization bottlenecks [4], with support for unstructured
directives. Specifically, the EOSPG encodes the nesting depth of the tasks that
enables it to capture the logical series-parallel relations for a larger class of
OpenMP programs than prior state-of-the-art.

The EOSPG accurately encodes logical series-parallel relations between any
two fragments of an OpenMP execution (where a fragment is the longest
sequence of serial instructions without any OpenMP directives encountered
in the dynamic execution). This logical series-parallel relation encoded by the
EOSPG is a property of the program for a given input. It enables OMP-RACER
to detect races not just in a given schedule but also in other schedules for a
given input. It can alleviate the need for exploring schedules with race detec-
tion, which is an advance compared to per-schedule detectors based on vec-
tor clocks [10,13,24]. The EOSPG supports a large subset of directives in the
OpenMP specification. It still does not support undeferred tasks and their inter-
action with dependency clauses, which we plan to explore in future work.

Apart from constructing the EOSPG during the execution of the program,
OMP-RACER also maintains access history metadata with every memory loca-
tion. On a memory access, OMP-RACER consults the per-location access his-
tory metadata and uses the EOSPG to check if the current access can logi-
cally happen in parallel using least common ancestor (LCA) queries (see Sect. 3).
OMP-RACER provides two modes: a precise mode and a fast mode. In the pre-
cise mode, OMP-RACER detects data races when the program uses taskwait
directives with no restrictions. The metadata per-memory location is propor-
tional to the nesting level of tasks. In the fast mode, OMP-RACER performs
a quick execution to construct the EOSPG and identifies whether the program
uses taskwaits in a fully nested manner, which results in structured parallelism.
Subsequently, it performs an execution to detect races by maintaining a con-
stant amount of information per-memory location. In our experiments, the fast
mode detects all data races in the DataRaceBench suite [14] without any false
positives. The performance overhead of OMP-RACER in its fast mode is com-
parable to a single execution of Archer [2]. Further, Archer generally requires

OMP-RACER On-the-fly Data Race Detection 151

multiple executions of the same program with the same input to detect a given
data race while OMP-RACER does not. OMP-RACER is open source and
publicly available [5].

Contributions. This paper proposes EOSPG, a novel data structure, to encode
logical series-parallel relations for an OpenMP program with both structured and
unstructured directives. This paper presents mechanisms to construct and use
the EOSPG to detect data races that occur not only in the observed schedule
but also in other possible schedules for a given input.

2 Overview of OMP-RACER

This section provides an overview of race detection with OMP-RACER. We
use the program in Fig. 1(a) that uses different OpenMP directives to compute
the sum of an array in parallel to illustrate OMP-RACER. It uses worksharing
(i.e., single and for) and tasking directives (i.e., task) to add parallelism to
the program. This example has a data race due to insufficient synchronization
between child tasks and the implicit task executing the single directive (lines
12–24 in Fig. 1(a)). The thread encountering the taskwait directive only waits
for its child tasks to complete but does not wait for its descendant tasks, which
results in unstructured parallelism [19]. The dynamic execution trace with the
memory accesses generated when the program is executed on a machine with
two threads is shown in Fig. 1(b). The two accesses involved in the data race
are executed by the same thread in this schedule. However, OMP-RACER can
detect this race because it uses the logical series-parallel relation.

Enhanced OpenMP Series-Parallel Graph. OMP-RACER executes on-
the-fly with the program and constructs the EOSPG during program execution.
EOSPG is an extension of the OSPG [4]. The EOSPG is an ordered directed
acyclic graph (DAG) that captures the dynamic execution of an OpenMP pro-
gram as a set of program fragments. A fragment is the longest sequence of
instructions in the dynamic execution of the program between two OpenMP
directives. Each fragment executes serially in a thread or a task. By design, each
program fragment is a leaf node in the EOSPG. The intermediate nodes of the
EOSPG encode the series-parallel relation between the leaf nodes. EOSPG cap-
tures the logical series-parallel relations between any pair of fragments in the
program for a given input. Given any two fragments, we can identify if they may
execute in parallel by performing a least common ancestor (LCA) query between
the leaf nodes corresponding to the two fragments.

Nodes in an EOSPG. The EOSPG generated for the example program is
shown in Fig. 1(c). Each W-node represents a fragment of the execution. The
intermediate nodes can be one of the following types: S-node, P-node, or an
ST-node (see Sect. 3). The subtree under the S-node executes in series with the
siblings and their descendants to the right. Similarly, the subtree under the P-
node executes in parallel with the siblings and their descendants on the right. In
the EOSPG, ST-nodes captures the fact that the subtree under the ST-node has

152 N. Boushehrinejadmoradi et al.

encountered a taskwait directive. As taskwait only serializes a task’s immediate
children, it is necessary to count the nesting depth of the tasks. Hence, each
ST-node and P-node maintain a value (e.g., st val) to account for the nesting
depth. Each P-node contributes a value of 1 to the nesting depth. Each ST-
node that has seen a taskwait serializes the immediate children and nullifies the
contribution of one P-node under it. Hence, the value of the ST-node starts at
0, and upon encountering a taskwait, it changes to −1.

Checking if Two Accesses can Execute in Parallel. In the absence of ST-
nodes and dependencies, two W-nodes, Wi and Wj , where Wi is to the left of
Wj , logically execute in parallel if the left child of the least common ancestor
(LCA) of Wi and Wj on the path to Wi is a P-node. In the presence of ST-nodes,
the procedure is slightly more involved (see Sect. 3). When the left child of the
LCA on the path to Wi is an ST-node, we compute the sum of the values related
to nesting depth maintained with each ST-node and P-node from Wi to the left
child of the LCA. If this sum is greater than zero, then the two nodes execute
in parallel. Otherwise they execute serially.

In Fig. 1(c), W-nodes W2 and W5 logically execute in parallel because the left
child of the LCA node S3 is the P-node P1. Intuitively, these are parallel chunks
of a dynamic for loop. A pair of W-nodes, W8 and W10, in Fig. 1(c) execute in
parallel because the left child of the LCA node (i.e., S4) is the ST-node ST1 and
the sum of st val values from W8 to ST1 is 1, indicating a logical parallel relation.
In contrast, W-nodes W9 and W10 execute in series because the left child of the
LCA node (i.e., S4) is the ST-node ST1. However, the sum of st val values from
W9 to ST1 is 0. Intuitively, the taskwait on line 22 serializes their execution.

Metadata for Data Race Detection. To detect races, OMP-RACER main-
tains access history metadata with each memory location. To store access his-
tories, it has two modes: a fast mode and a precise mode. In the fast mode, it
performs a complete execution of the program to first check if all taskwaits are
fully nested (i.e., they create a taskgroup, where each parent task waits for its
child tasks with a taskwait), and there are no critical sections. In such cases,
it treats all ST-nodes as S-nodes and maintains two parallel reads and a write
with each memory location. In precise mode, OMP-RACER maintains addi-
tional information about two reads and writes with each ST-node that is present
on the path from the W-node to the root of the EOSPG. The execution has
an apparent race if the current operation happens in parallel with the previous
conflicting operations to the same memory location in the access history meta-
data associated with the root node or the access history metadata associated
with each of the ST-nodes on the path from the current node to the root of the
EOSPG.

Illustration of Race Detection. Figure 1(b) provides the dynamic execution
trace and the updates to the access history metadata for each memory loca-
tion using the precise mode for the example program in Fig. 1(a). The write
operation to psum[1] at line 18 of the example program corresponds to the
W-node, W8. Upon this write operation, the metadata associated with psum[1]

OMP-RACER On-the-fly Data Race Detection 153

(a) Example OpenMP Program

(c) Program’s EOSPG

(b) Program Trace

L10-L11

L20-L21

L17-L18

L15-L16

L26-L28

S1

S2W1 W11

L2-L4

S3

P1

S4

ST1P2

W2 W5

P3 P5 P4 P6

W4 W3

W6 W10

P7

W7 ST2

P8

W8

W9

L10-L11 L10-L11L10-L11

L13-L14 L23-L24

-1

1

0

1

1 int main(){
2 int a[4];
3 int psum[2];
4 int sum;
5 #pragma omp parallel num_threads(2)
6 {
7 #pragma omp for schedule(dynamic, 1)
8 for (int i=0; i < 4; ++i)
9 {
10 a[i] = i;
11 }
12 #pragma omp single
13 {
14 #pragma omp task
15 {
16 #pragma omp task
17 {
18 psum[1] = a[2] + a[3];
19 }
20 psum[0] = a[0] + a[1];
21 }
22 #pragma omp taskwait
23 sum = psum[1] + psum[0];
24 }
25 }
26 printf(“sum = %d\n”, sum);
27 return 0;
28 }

Time Observed Trace
(Tid, Type, Addr, Node)

Access History
(Node, W, R1, R2)

1 (0,Wr,a[0],W2) (S1,W2,-,-)

2 (1,Wr,a[2],W3) (S1,W3,-,-)

3 (1,Wr,a[3],W5) (S1,W5,-,-)

4 (0,Wr,a[1],W4) (S1,W4,-,-)

5 (0,Rd,a[3],W8) (S1,W4,W8,-)(ST1,-,W8,-)(ST2,-,W8,-)

6 (0,Rd,a[2],W8) (S1,W3,W8,-)(ST1,-,W8,-)(ST2,-,W8,-)

7 (0,Wr,psum[1],W8) (S1,W8,-,-)(ST1,W8,-,-)(ST2,W8,-,-)

8 (1,Rd,a[1],W9) (S1,W4,W9,-)(ST1,-,W9,-)(ST2,-,W9,-)

9 (1,Rd,a[0],W9) (S1,W2,W9,-)(ST1,-,W9,-)(ST2,-,W9,-)

10 (1,Wr,psum[0],W9) (S1,W9,-,-)(ST1,W9,-,-)(ST2,W9,-,-)

11 (0,Rd,psum[0],W10) (S1,W9,W10,-)(ST1,W9,-,-)(ST2,W9,-,-)

12 (0,Rd,psum[1],W10) (S1,W8,W10,-)(ST1,W8,-,-)(ST2,W8,-,-)

Fig. 1. (a) Example OpenMP program with a write-read apparent data race on vari-
able psum[1] at lines 18 and 23. (b) The execution trace of the example program when
executed with two threads. The first column specifies the ordering of the observed trace.
The second column specifies the memory access as a 4-tuple comprised of thread id,
memory access type, memory access location, and the W-node performing the access.
The third column illustrates the access history maintained by OMP-RACER for the
corresponding memory access as a 4-tuple with the node identifier, W-node correspond-
ing to the latest write, and two W-nodes corresponding to two parallel read accesses (-
denotes the empty set). (c) The program’s EOSPG. The code fragment each W-node
represents is shown below it. The square boxes next to some EOSPG nodes represent
the value indicating the nesting depth in the presence of taskwaits.

154 N. Boushehrinejadmoradi et al.

is updated to include W8. The path from the root of the EOSPG to W8 has two
ST-nodes: ST1 and ST2. In addition, the metadata corresponding to psum[1]
is also updated to include W8 for each ST-node on the path to the root node,
resulting in three entries for psum[1] in the access history (as illustrated at time
7 in Fig. 1(b)). Eventually, the program execution reaches the taskwait directive
at line 22 in Fig. 1(a). OMP-RACER updates the st val of node ST1 from 0 to
−1 to record the presence of a taskwait. Later, when the implicit task executing
the single directive performs a read operation on psum[1] at line 23 in Fig. 1(a),
the W-node representing the current read is W10. OMP-RACER retrieves the
metadata for psum[1], which includes access histories corresponding to the root
node of the EOSPG and ST-nodes ST1 and ST2. Since the path from W10 to
the root node of the EOSPG does not contain any ST-nodes, only the metadata
entry corresponding to the root node of the EOSPG, S1, is updated to include
the current read access (time 12 in Fig. 1(b)). Next, OMP-RACER looks for
possible data races by checking if the current read operation happens in parallel
with any previous write accesses recorded in the access history metadata. In our
example, OMP-RACER checks if the current read access may happen in par-
allel with the previously recorded write operation corresponding to W-node W8.
In this case, the LCA of W8 and W10 is S4. The left child of S4 on the path to W8
is an ST-node ST1. Next, OMP-RACER computes the sum of the st val values
from W8 to ST1, which evaluates to 1. Thus, W8 and W10 may execute in parallel,
and one of the operations is a write operation, which results in OMP-RACER
reporting an apparent race on the memory access to psum[1].

3 OMP-RACER Approach

The goal of OMP-RACER is to detect apparent data races that manifest not
just in a given schedule but also in other schedules for a given input. OMP-
RACER constructs the Enhanced OpenMP Series-Parallel Graph (EOSPG) to
represent series-parallel relations, maintains access history metadata with each
memory location, and checks them to catch races.

Enhanced OpenMP Series-Parallel Graph. EOSPG is a data structure that
captures series-parallel relations between various fragments of an OpenMP exe-
cution in the presence of both structured and unstructured directives. It builds
on our prior work, the OpenMP Series-Parallel Graph (OSPG) [4]. Specifically,
the OSPG assumed that taskwaits are fully nested. According to the OpenMP
specification [19], the taskwait directives need not be fully nested. EOSPG is
an enhancement of OSPG to handle directives that can result in unstructured
parallelism such as taskwaits and other features such as dependencies.

Definition. EOSPG is a directed acyclic graph (DAG), G = (V,E), where the
set V consists of four types of nodes, W-nodes, S-nodes, P-nodes, and ST-nodes.
Thus, V = Vw∪Vp∪Vs∪Vst. The set of edges, E = Epc∪Edep, where Epc denotes
the parent-child edges between nodes and Edep denotes the dependency edges.
The EOSPG has a root S-node which has a unique directed path consisting

OMP-RACER On-the-fly Data Race Detection 155

of only Epc edges to all other nodes. A node’s depth is defined as the number
of edges on the path consisting of Epc edges from the root node to it. Nodes
with the same parent are referred to as sibling nodes. Edep edges are between
two sibling nodes. Thus an Epc edge between a pair nodes, (v1, v2), establishes
a parent-child relation between the two nodes, where v1 is the parent node of
v2. Moreover, sibling nodes in an EOSPG are ordered from left to right, which
corresponds to the logical ordering of operations in the program.

In contrast to the OSPG, the EOSPG has a new type of node (ST-nodes).
Further, each P-node and ST-node maintains additional information to encode
the nesting depth that is required to correctly identify series-parallel relations in
the presence of the taskwait directive. The state is maintained with each node
is called st val, which is an integer in {−1, 0, 1}.

W-node. Similar to the OSPG, a W-node represents a serial fragment of
dynamic execution in the program. By construction, a W-node is always a leaf
node in the EOSPG. A fragment either starts from the beginning of the program
or when the execution encounters an OpenMP directive. The fragment continues
until the program ends, or it reaches another OpenMP directive. In the absence
of any OpenMP directives in the program’s execution, the entire program is seri-
ally executed. Hence, the EOSPG of a sequential program consists of a single
W-node that is a direct child of the root S-node. A W-node has an st val of zero.

S-node and P-node. These nodes encode the logical series-parallel relations
between W-nodes. An S-node establishes a serial relation (whereas a P-node
establishes a parallel relation) between all its descendant W-nodes and all right
siblings and their descendant W-nodes. A P-node and an S-node have an st val of
one and zero, respectively. The st val of a P-node is one because a P-node creates
a parallel strand of execution and contributes a level to nested parallelism.

ST-node. This node also encodes the logical series-parallel relations between
W-nodes. Unlike S-nodes or P-nodes, the logical series-parallel relation between
W-nodes in the subtree under an ST-node and its right siblings and their descen-
dants depends on whether there has been a taskwait and the nesting depth of
the node. Effectively, for an ST-node, its descendant W-nodes are partitioned
into two subsets. First, W-nodes that execute serially with all right siblings and
the descendants of the ST-node. Second, W-nodes that run in parallel relative
to the right siblings and their descendants of the ST-node. The OSPG did not
have any ST-nodes [4]. We added this node to the OSPG to enable capturing
the logical series-parallel relations in the presence of OpenMP directives that do
not fall under structured parallelism. ST-nodes are used whenever creating a P-
node or an S-node is not sufficient to capture the logical series-parallel relations
between program fragments.

Construction of the EOSPG. A program’s EOSPG is constructed incremen-
tally and in parallel during program execution. Each executing thread adds nodes
to a subtree of the EOSPG. Different threads will operate on different subtrees
of the EOSPG and updates can be done with limited use of synchronization.

156 N. Boushehrinejadmoradi et al.

P1

(a) #pragma omp taskgroup (b) #pragma omp task

S1

W1 S2

W2

W3

1

S1

W1 ST1

0

W2

W3

(c) #pragma omp taskwait

P1

1

ST1

0

W2

W3

-1

P1

S1

W1 ST1

W2

W3 P2

W4

(d) task dependency

Fig. 2. EOSPG construction for different OpenMP directives. The nodes before encoun-
tering a directive are greyed out after the EOSPG is updated.

Except for the handling of the ST-nodes, the construction of the EOSPG is sim-
ilar to the construction of the OSPG [4]. Here, we highlight the changes to the
construction algorithm to capture the logical series-parallel relation that were
not supported in the original OSPG design. Figure 1(c) illustrates the EOSPG
for the program in Fig. 1(a) after the program completes execution.

Handling Task Synchronization Directives in the EOSPG. OpenMP
supports task-based parallelism using the task directive. During program execu-
tion, when the currently running task, whether implicit or explicit, encounters
a task directive, the current task creates a new child task, becoming its parent
task. The child task may execute in parallel with the continuation of the parent
task. Moreover, OpenMP provides several options to synchronize task execution.
These options include the taskgroup directive, the taskwait directive, and task
dependencies.

Taskgroup Directive. A taskgroup directive enforces a serial ordering between
the structured block associated with the taskgroup and the code fragments that
execute after the taskgroup. Namely, the code following the taskgroup waits for
the completion of all created tasks and their descendants within the taskgroup’s
structured block. As illustrated in Fig. 2(a), the EOSPG captures this serial rela-
tion by adding an S-node, S2, when the program trace encounters the beginning
of a taskgroup. All the fragments in the taskgroup are contained in the sub-
tree rooted at node S2. Moreover, the fragment executing after the taskgroup
will be the right siblings of newly created S-node, depicted as W-node W3 in
Fig. 2(a). Therefore, creating the S-node S2 captures the serial relation between
all fragments executing within the taskgroup and all the fragments executing
after it.

Taskwait Directive. A taskwait directive specifies a serial ordering between the
task encountering the directive and its children. However, unlike the taskgroup
directive, a taskwait does not enforce a serial ordering with the parent task and
its grandchildren and descendant tasks. While fully nested taskwaits produce a
behavior similar to that of a taskgroup, it becomes more challenging to correctly
capture series-parallel relations when taskwaits are not fully nested.

To capture the series-parallel relations induced by the taskwait directive cor-
rectly, we also need to take the nesting level into account. Further, during the

OMP-RACER On-the-fly Data Race Detection 157

dynamic execution, we do not know whether the execution will see a taskwait
directive in the future. Hence, whenever a parent task encounters a task direc-
tive and creates its first child task in the program or spawns a new task after a
taskwait, we add an ST-node, followed by a P-node to the program’s EOSPG
as illustrated in Fig. 2(b). We create an ST-node at this point in the execution
because we do not know a priori the nesting level of the newly created child
task and whether at each nesting level, including the current one, the execution
will encounter a taskwait directive. The subsequent P-node captures the parallel
relation between the newly created child task and its sibling tasks, if any.

An ST-node partitions the W-nodes under its subtree into two subsets
because a taskwait does not serialize all the W-nodes in the subtree. (1) W-nodes
that execute serially with all right siblings of the ST-node and their descendants.
(2) W-nodes that run in parallel relative to the right siblings of the ST-node
and their descendants. To determine if a W-node is a member of the first or
the second subset, we use the nodes’ st val values on the path to the ST-node.
Intuitively, st val values on the path to the ST-node, capture the nesting level
and the number of encountered taskwaits. Whenever an ST-node is created, its
st val is initially set to zero (Fig. 2(b)). If later during the execution, the task
that created the ST-node encounters a taskwait, we capture this information by
setting the st val of the corresponding ST-node to −1 (Fig. 2(c)). To capture
the nesting level under an ST-node’s subtree, the newly created P-node, which
is the immediate child of the ST-node, will have an st val of one.

Key Invariant in the Presence of ST-nodes. For a pair of W-nodes, (Wi,
Wj), where Wi is under the subtree of ST-node STk and Wj is either a right
sibling or a descendant of a right sibling of STk, the pair of W-nodes execute in
parallel if the sum of the st val values of the EOSPG nodes on the path from
STk to Wi is a positive integer. Otherwise, the two W-nodes execute in series.

Task Dependencies. In OpenMP, sibling tasks logically execute in paral-
lel. However, with task dependencies, OpenMP supports user-defined ordering
between sibling tasks. We capture the serial ordering produced by task depen-
dencies in the EOSPG by adding Edp edges between P-nodes that correspond
to dependent tasks. For example, consider two sibling tasks t1 and t2 where
t2 is dependent on t1. The EOSPG captures this task dependency as follows.
By construction, each task has a corresponding P-node in the EOSPG, labeled
as P1 and P2 in Fig. 2(d). The Edp edge, (p1, p2), captures the underlying task
dependency. The dependency of two sibling tasks can be checked by looking for
a path comprised of Edp edges between the corresponding P-nodes.

To check if a pair of W-nodes, (W2, W4) in Fig. 2(d), execute in series due to
a task dependency, we first check if they are sibling tasks. This is accomplished
by computing the LCA. If the LCA node is not an ST-node, then they are not
sibling tasks, and the dependency edges are ignored. A task dependency only
serializes the sibling tasks, which does not imply the serialization of its nested
descendants. If the LCA is a ST-node, then we identify the corresponding P-
nodes to check the if pair of W-nodes are at the same nesting level; we use the
sum of the st val values of EOSPG nodes on the path from W2 to the LCA.

158 N. Boushehrinejadmoradi et al.

The pair of W-nodes execute in series if this sum equals to 1, and there exists a
directed path comprised of Edp edges between the two sibling P-nodes.

Checking Series-Parallel Relations. Using the EOSPG, we can check if two
W-nodes logically execute in parallel. Given a pair of W-nodes, Wl and Wr

where Wl is to the left of Wr, this procedure is as follows. (1) Compute the least
common ancestor (LCA) of the two nodes Wl and Wr. (2) Identify the left child
of the LCA on the path to Wl. If this left child is a S-node or a W-node, then the
two nodes logically execute in series. (3) If the left child of the LCA on the path
to Wl is a P-node, check if the two W-nodes under consideration are serialized
by dependency edges. Identify the child of the LCA on the path to Wr. If there
is a directed path between these two P-nodes and are at the same nesting level,
they execute in series. Otherwise, they logically execute in parallel. (4) If the
left child of the LCA on the path to Wl is a ST-node, check if the two nodes are
serialized by fully nested taskwaits. Determine the count of the st val values on
the path from Wl to the child of the LCA. If this count is greater than 0, then
two nodes execute in parallel. Otherwise, they execute in series.

Metadata.OMP-RACER maintains access history metadata with each shared
memory address. In the fast mode when the taskwait directives are properly
nested and the program does not use locks, then OMP-RACER maintains three
W-nodes corresponding to the previous write and two previous reads (R1 and
R2) per-memory location similar to prior work [22,30]. The invariant maintained
by OMP-RACER is that if any future memory access is involved in a data race
with prior n reads to the same memory location R1..n, then it will also have a
data race with R1 or R2. This invariant is maintained by choosing (R1, R2) such
that, L = LCA(R1, R2), is closer to the root node than L′ = LCA(R1, RK) or
L′′ = LCA(R2, RK) for any RK ∈ R1..n.

In the precise mode, OMP-RACER stores a number of W-nodes per shared
memory location that increases proportionally to the size of the lockset and the
number of active ST-nodes in the program. When the EOSPG has ST-nodes,
maintaining only two read accesses for the entire program to detect the first
data race is no longer sufficient. Consider two parallel reads, (R1, R2) that occur
in tasks that are at an outer nesting level of the program and a parallel read that
occurs in a task at an inner nesting level, R3. Maintaining the earlier invariant
results in keeping (R1, R2) in the access history. Leading to potentially missing
data races that involve R3. For example, this could happen if the outer nesting
level is synchronized with a taskwait that does not synchronize the inner nesting
level, as depicted in Fig. 1(a) (lines 14–23). Hence, OMP-RACER maintains
two additional reads and one write for each active ST-node in the program. To
detect data races in the presence of locks, OMP-RACER tracks the set of locks
held before an access (i.e., lockset [8]) and maintains up to two W-nodes for
prior parallel reads (R1, R2) and up to two W-nodes for prior parallel writes
(W1,W2) for each lockset per memory location [22,30].

Metadata Updates and Checks on Each Access. On every memory access,
the metadata for that memory location is retrieved, checked for races, and is

OMP-RACER On-the-fly Data Race Detection 159

updated. In the precise mode, the metadata is a list of access history entries. Each
entry is uniquely identified by the lockset and a node of the EOSPG (i.e., either
root node or a ST-node). Each entry consists of a lockset, a node of the OSPG
(i.e., a root or an ST-node), two reads, and two write operations. On a memory
access with a lockset (lc) in a W-node Wc, the metadata is checked as follows.
OMP-RACER iterates over the list of access histories to retrieve a 6-tuple
(lockset, node, R1, R2, W1, W2). For every entry, if the intersection of the lockset
of the access history and lc is non-empty, OMP-RACER checks if the current
node Wc and previous reads/writes in the access history are conflicting and can
logically execute in parallel. If so, it reports an apparent race. Subsequently, the
metadata is updated as follows. Starting from Wc, traverse the EOSPG to the
root node and identify all ST-nodes on the path to the root node. For every
ST-node encountered and the root node, OMP-RACER creates or retrieves a
new entry from the list of access history entries that corresponds to the current
lockset. This entry contains four W-nodes. If the LCA of Wc and one of the
existing nodes is closer to the root than the existing LCA of the nodes, then
Wc is added to the access history. Otherwise, information about Wc is already
subsumed by the existing information in the access history.

In the fast mode, OMP-RACER runs the program once to construct the
EOSPG and to identify whether the program uses locks and uses taskwaits in
a properly nested manner. During the construction of the EOSPG, when an
ST-node completes execution, if the st val of the all ST-nodes is −1, then the
program contains properly nested taskwait directives. In the subsequent race
detection execution, the access history per-memory location contains two reads
and a write operation. A current access is an apparent data race if it is conflicting
with the prior access in the access history and can happen in parallel.

Scaling to Long Running Applications. Our approach can scale to long
running applications because it is not necessary to maintain the entire EOSPG
in memory. The EOSPG and the access history metadata can be cleared at the
end of the parallel directive. Further, any EOSPG node can be deallocated even
before the end of the parallel directive when it does not have any reference in
the access history metadata space.

4 Experimental Evaluation

Prototype. OMP-RACER prototype supports C/C++ OpenMP programs.
It uses LLVM-10’s OpenMP runtime and the OMPT interface to construct the
EOSPG. It also includes an LLVM pass to instrument memory accesses. OMP-
RACER constructs a program’s EOSPG and performs data race detection on-
the-fly during execution. OMP-RACER has two modes: a precise and a fast
mode. The precise mode detects data races even when the program uses locks
and imposes no restriction on how taskwaits are used in the program, which
can have significant overheads. In the fast mode, OMP-RACER first checks
if the program has fully nested taskwaits. If so, it uses a constant amount of
metadata per memory location in the subsequent execution for race detection.

160 N. Boushehrinejadmoradi et al.

Fig. 3. small Performance slowdown of OMP-RACER and Archer with various PBBS,
BOTS, and Coral application suites.

It is significantly faster. We report all evaluation results with the fast mode.
OMP-RACER prototype is publicly available [5].

Benchmarks. We evaluate the detection abilities of OMP-RACER with
DataRaceBench1.2.0 [14]. OMP-RACER does not support the target directive
and SIMD parallelization, yet. Out of 116 programs, 106 do not contain these
directives. To measure performance overheads, we use a suite of 26 OpenMP
applications from Coral, BOTS, and PBBS benchmarks suites. We performed
all experiments on a Ubuntu 16.04 machine with a 16-core Xeon 6130 processor
running at 2.1 GHz and with 32 GB of memory. We use the latest version of
Archer [2] with LLVM-10, which is the state-of-the-art for OpenMP programs,
to compare the detection abilities and overheads with OMP-RACER.

Detection Ability. We compare OMP-RACER and Archer’s effectiveness in
detecting races using DataRaceBench. OMP-RACER detects data races in all
the 106 programs from a single execution and does not produce any false posi-
tives (i.e., 100% detection rate). As we detect apparent races, OMP-RACER
detects races that do not manifest in a particular schedule. Archer did not detect
many of the races in a single execution. When we ran Archer with multiple
threads and multiple times, it detected 95% of the races. We observed that
Archer misses races in some programs (e.g., DRB013) when executed with a low
number of threads. Archer does not precisely capture the semantics of task syn-
chronization and task dependency, which results in false negatives. In summary,
OMP-RACER is more effective in detecting races compared to Archer.

Performance Overheads. Figure 3 reports the performance overhead of OMP-
RACER and Archer with our performance applications. The runtime overhead
of OMP-RACER in its fast mode, on average, is 20×. The overhead of Archer
is 21×. When the program performs significant recursive decomposition (e.g.,
with Strassen and SparseLU), OMP-RACER has higher runtime overhead
compared to Archer. The height of the EOSPG is proportional to the nesting
level of the program. An increase in height can increase the cost of performing
LCA queries, which results in higher overheads.

We also measured the impact of increasing the number of threads and the
costs of EOSPG creation. The overhead of OMP-RACER decreases with the

OMP-RACER On-the-fly Data Race Detection 161

increase in the number of threads with scalable applications as the instrumenta-
tion code is executed in parallel. The average cost of constructing the EOSPG
is 1.12× on average compared to the baseline program without any instrumenta-
tion. Hence, performing an initial execution to check if the taskwaits are properly
nested in the fast mode is inexpensive compared to the cost of overall race detec-
tion.

5 Related Work

Race detection has been widely studied for parallel programs. These include
both approaches that rely on static analysis [3,7,26] and dynamic analysis
[9–12,15,18,21–25,30]. Static analysis tools can detect races for all inputs. How-
ever, they report false positives due to conservative analyses. Among dynamic
analysis tools, Eraser [23] uses locksets to identify data races. Subsequent
approaches have used happens-before relation with vector clocks [13] to detect
races [10,24]. ThreadSanitizer [24] makes numerous trade-offs to scale vector-
clocks to large applications.

Our work is inspired by prior approaches that use logical series-parallel rela-
tions for fork-join programs, which include labeling [11,15,18] and construction
of series-parallel graphs [1,9,21,22,25,28–30]. OMP-RACER proposes a novel
series-parallel graph (i.e., EOSPG) to accurately capture series-parallel relations
induced by the directives according to the OpenMP specification.

Among OpenMP tools for dynamic race detection, ROMP [11] and Archer [2]
are closely related. ROMP [11] expands upon offset-span labeling to support
OpenMP directives, including tasking and task synchronization. Asymptotically,
the operations in the EOSPG are comparable to ROMP’s offset-span labeling
since the length of labels and the depth of the EOSPG grow proportional to
the nesting level of the program. However, the public prototype of ROMP is not
mature to run with large applications. Archer [2] builds upon ThreadSanitizer by
extending it to support OpenMP semantics. As Archer is a per-schedule detector,
it is necessary to run an application with Archer multiple times and with multiple
thread counts to detect races. Compared to Archer, OMP-RACER is able to
detect more races that not only occur in the observed schedule but also in other
possible schedules for a given input from a single execution.

6 Conclusion

This paper makes a case for detecting apparent races in OpenMP programs using
logical series-parallel relations. The Enhanced OpenMP Series-Parallel Graph
precisely models logical series-parallel relations for a significant portion of the
OpenMP specification, which makes it useful for building numerous performance
analysis and debugging tools. It supports both work-sharing and tasking direc-
tives. The ability to detect races not only in the observed schedule but also
in other possible schedules for a given input with OMP-RACER can alleviate
the need for repeated executions and interleaving exploration. Our preliminary

162 N. Boushehrinejadmoradi et al.

results with OMP-RACER are promising and we plan to support more features
from the OpenMP specification in the future.

Acknowledgments. We thank the reviewers for their feedback. This paper is based
on work supported in part by NSF CAREER Award CCF–1453086, NSF Award CCF-
1908798, and NSF Award CCF-1917897.

References

1. Agrawal, K., Devietti, J., Fineman, J.T., Lee, I.T.A., Utterback, R., Xu, C.: Race
detection and reachability in nearly series-parallel dags. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, p. 156–
171. SODA 2018 (2018)

2. Atzeni, S., et al.: Archer: effectively spotting data races in large OpenMP applica-
tions. In: 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 53–62. IPDPS 2016 (2016)

3. Basupalli, V., et al.: ompVerify: polyhedral analysis for the OpenMP programmer.
In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 37–53. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21487-5 4

4. Boushehrinejadmoradi, N., Yoga, A., Nagarakatte, S.: A parallelism profiler with
what-if analyses for OpenMP programs. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage, and Analysis, pp.
16:1–16:14. SC 2018 (2018)

5. Boushehrinejadmoradi, N., Yoga, A., Nagarakatte, S.: Omp-racer data race detec-
tor (2020). https://github.com/rutgers-apl/omprace

6. Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.: A randomized sched-
uler with probabilistic guarantees of finding bugs. In: Proceedings of the 15th
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 167–178. ASPLOS (2010)

7. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model for
SPMD programs and its use in static data race detection. In: Ding, C., Criswell, J.,
Wu, P. (eds.) LCPC 2016. LNCS, vol. 10136, pp. 106–120. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52709-3 10

8. Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data
races in cilk programs that use locks. In: Proceedings of the 10th ACM Symposium
on Parallel Algorithms and Architectures, pp. 298–309. SPAA (1998)

9. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.
In: Proceedings of the 9th ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 1–11. SPAA (1997)

10. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 121–133 (2009)

11. Gu, Y., Mellor-Crummey, J.: Dynamic data race detection for OpenMP programs.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, pp. 61:1–61:12. SC 2018 (2018)

12. Jannesari, A., Bao, K., Pankratius, V., Tichy, W.: Helgrind+: an efficient dynamic
race detector. In: 2009 IEEE International Symposium on Parallel Distributed
Processing, pp. 1–13 (2009)

https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/978-3-642-21487-5_4
https://github.com/rutgers-apl/omprace
https://doi.org/10.1007/978-3-319-52709-3_10

OMP-RACER On-the-fly Data Race Detection 163

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, pp. 558–565 (1978)

14. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: Dataracebench: a bench-
mark suite for systematic evaluation of data race detection tools. In: Proceedings of
the International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp. 11:1–11:14. SC 2017 (2017)

15. Mellor-Crummey, J.: On-the-fly detection of data races for programs with nested
fork-join parallelism. In: Proceedings of the 1991 ACM/IEEE Conference on Super-
computing, pp. 24–33. Supercomputing (1991)

16. Nagarakatte, S., Burckhardt, S., Martin, M.M., Musuvathi, M.: Multicore acceler-
ation of priority-based schedulers for concurrency bug detection. In: Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 543–554. PLDI (2012)

17. Netzer, R.H.B., Miller, B.P.: What are race conditions?: Some issues and formal-
izations. ACM Lett. Program. Lang. Syst. pp. 74–88 (1992)

18. Nudler, I., Rudolph, L.: Tools for the efficient development of efficient parallel pro-
grams. In: Proceedings of the 1st Israeli conference on computer system engineering
(1988)

19. OpenMP Architecture Review Board: Openmp 5.0 complete specification,
November 2017. https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

20. Pozniansky, E., Schuster, A.: Efficient on-the-fly data race detection in multi-
threaded c++ programs. In: Proceedings of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 179–190. PPoPP (2003)

21. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Efficient data race detec-
tion for Async-finish parallelism. In: Proceedings of the 1st International Confer-
ence on Runtime Verification, pp. 368–383. RV (2010)

22. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Scalable and precise
dynamic datarace detection for structured parallelism. In: Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 531–542. PLDI (2012)

23. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multi-threaded programs. In: Proceedings of the
16th ACM Symposium on Operating Systems Principles, pp. 27–37. SOSP (1997)

24. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: Data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications, pp.
62–71. WBIA (2009)

25. Utterback, R., Agrawal, K., Fineman, J.T., Lee, I.T.A.: Provably good and prac-
tically efficient parallel race detection for fork-join programs. In: Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA
2016 (2016)

26. Ye, F., Schordan, M., Liao, C., Lin, P.H., Karlin, I., Sarkar, V.: Using polyhedral
analysis to verify OpenMP applications are data race free. In: 2018 IEEE/ACM
2nd International Workshop on Software Correctness for HPC Applications (Cor-
rectness), pp. 42–50 (2018)

27. Yoga, A., Nagarakatte, S.: Atomicity violation checker for task parallel programs.
In: Proceedings of the 2016 International Symposium on Code Generation and
Optimization, pp. 239–249. CGO (2016)

28. Yoga, A., Nagarakatte, S.: A fast causal profiler for task parallel programs. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pp. 15–26. ESEC/FSE 2017 (2017)

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

164 N. Boushehrinejadmoradi et al.

29. Yoga, A., Nagarakatte, S.: Parallelism-centric what-if and differential analyses. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, p. 485–501. PLDI 2019 (2019)

30. Yoga, A., Nagarakatte, S., Gupta, A.: Parallel data race detection for task paral-
lel programs with locks. In: Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pp. 833–845. FSE
(2016)

AfterOMPT: An OMPT-Based Tool for
Fine-Grained Tracing of Tasks and Loops

Igor Wodiany1(B), Andi Drebes2, Richard Neill1, and Antoniu Pop1

1 Department of Computer Science, The University of Manchester, Manchester, UK
{igor.wodiany,richard.neill,antoniu.pop}@manchester.ac.uk

2 Inria and École Normale Supérieure, Paris, France
andi.drebes@inria.fr

Abstract. We present AfterOMPT, a new trace-based tool for analyz-
ing the execution of OpenMP applications using the OMPT interface to
capture accurate information on loop partitioning, distribution of itera-
tion spaces across workers, task scheduling, and synchronization events.
In contrast to previous works that rely on specific, instrumented runtime
libraries, our tool is able to collect information from any runtime imple-
menting the OMPT interface. In order to visualize the information from
the collected traces, we have extended the Aftermath performance anal-
ysis tool with appropriate renderers for OMPT events. We also propose
an extension of the OMPT interface for the collection of more detailed
information on scheduled OpenMP loops. Experimental results show a
tracing overhead of under 5% for the majority of studied benchmarks,
increasing more significantly for those with highly fine-grained workloads.

Keywords: OpenMP · OMPT · Performance analysis · Tracing

1 Introduction

There are many factors that impact the performance of OpenMP [15] programs
which may result in an inefficient utilization of the executing system, such as
a limited amount of parallelism exposed by the application itself, interactions
with the runtime system, locality of memory accesses, and sub-optimal use of
explicit parallel constructs. Such performance bottlenecks are difficult or even
impossible to detect using static analysis and thus require tracing of dynamic
events and post-mortem analysis. In order to precisely identify the source of
performance issues, it is further necessary to be able to attribute such events to
specific instances of parallel constructs and to the OpenMP workers.

This work was supported by the grant EuroEXA H2020-754337. Antoniu Pop is funded
by the RAEng University Research Fellowship. Igor Wodiany is supported by the Depart-
ment of Computer Science Kilburn Scholarship and the University of Manchester Presi-
dents Award.

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 165–180, 2020.
https://doi.org/10.1007/978-3-030-58144-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_11

166 I. Wodiany et al.

Aftermath [5] is a trace-based tool for performance analysis of parallel pro-
grams and has been extended for OpenMP programs in prior work [4]. The
tool provides developers with accurate traces for loop and task execution and
is able to capture synchronization events. Its ability to trace and visualize the
distribution of loop iteration spaces across workers allows programmers to track
the origin of work imbalance caused by inappropriate chunk sizes, unsuited loop
scheduling strategies or a mismatch between data placement and work distribu-
tion on machines with non-uniform memory access. However, Aftermath relies
on an instrumented version of the OpenMP runtime to generate traces. This
comes with a cost for setting up the execution environment and bears the risk
of an outdated runtime library, as the instrumentation likely requires updating
with every new version of the runtime.

With the inclusion of the OpenMP Tools (OMPT) interface [7] in the
OpenMP standard, it became possible to develop portable profiling tools that
can be attached to any compatible runtime. The OMPT interface defines a set
of callbacks that are invoked by the runtime for specific events throughout the
execution. Tools can use this interface to capture information associated to these
events and to write this information to a trace file. In order to eliminate the need
for a specific, instrumented runtime for Aftermath tracing and thus provide a
portable tool for OpenMP performance analysis, we have developed AfterOMPT,
a library that implements the OMPT callbacks to collect dynamic events and
write them to a trace file using the Aftermath tracing API. We have further
extended Aftermath with OMPT-specific rendering functions that enables the
visualization of such traces.

While the set of callback functions specified by the OMPT interface covers
a basic set of OpenMP events, it is unsuited to capture dynamic information
about the distribution of loop iteration spaces across workers: the OMPT work
callback (ompt callback work) can only capture an aggregated execution of
all iterations assigned to a specific worker, without any loop-specific details.
The more recent dispatch callback (ompt callback dispatch) is an attempt to
mitigate this issue, but potentially incurs a high overhead as is called at the
beginning of each loop iteration.

Langdal et al. [10] identified similar issues with OMPT in the context of
Grain Graphs, a chronogram-based tool for visualizing OpenMP applications in
the form of hierarchical graphs. Although their work provides specific implemen-
tation details and detailed overhead analysis, it lacks concrete examples on how
information obtained from those callbacks can be used to optimize the perfor-
mance of applications.

In this work, we provide concrete case studies to make a case for extending
the tracing interface. Specifically, this paper makes the following contributions:

– We present AfterOMPT, a new Aftermath-based tool implementing the
OMPT interface for portable and detailed performance analysis.

– We present two case studies to support an extension of the tracing interface
with loop-related OMPT callbacks.

Tracing of Tasks and Loops with AfterOMPT 167

– We provide experimental results showing that the instrumentation overhead
is below 5% for the majority of our studied benchmarks.

The rest of the paper is organized as follows. Section 2 introduces After-
math and sets the terminology that AfterOMPT borrows from Aftermath. In
Sect. 3, we discuss the implementation of our profiling tool and use of exist-
ing and proposed OMPT callbacks. We then present two case studies in Sect. 4
illustrating how AfterOMPT can be used to collect and inspect OpenMP traces.
Tracing overhead is analyzed in Sect. 5. Related work, concluding remarks and
directions for future work are presented in Sect. 6 and Sect. 7.

for (int k = 0 ; k < 2 ; k++) {
#pragma omp p a r a l l e l
{

#pragma omp for schedu le (static , 2) // Fir s t loop
for (int i = 0 ; i < 32 ; i++) { f oo () ; }
f oo () ;
#pragma omp for schedu le (dynamic , 2) // Second loop
for (int i = 0 ; i < 32 ; i++) { f oo () ; }
f oo () ;

}
}

Listing 1.1. Example with two loop constructs

2 Aftermath

Aftermath1 is a free and open source tracing and visualization tool for perfor-
mance analysis. The project has transitioned from a tool supporting a specific
set of parallel frameworks [4,5] to a framework-independent toolbox for build-
ing specialized tools for performance analysis. Multiple models can co-exist at
the same time and are supported by an extensible, template-based type system
for the definition of the trace format, trace processing and the in-memory data
model. The four main components of the tool are:

– A type system, offering a declarative description of on-disk and in-memory
tracing data structures and their relationships, from which functions for cre-
ation, management, storage and processing of trace data are generated.

– A tracing library that defines set of functions to create, write and read After-
math trace files used for the instrumentation of runtimes and for building
data capturing tools.

– A rendering library providing a set of functions to visualize trace data in
graphical user interfaces or tools for bulk rendering.

– A configurable graphical user interface (GUI), used for trace inspection and
performance analysis by the end user. The GUI is defined by a customizable
interface file that assembles different graphical widgets and a data-flow graph
for trace processing, both of which can be modified on-the-fly during execu-
tion. Multiple GUI definitions and data-flow graphs can co-exist, providing
specialized tools for specific frameworks or specific types of analyses.

168 I. Wodiany et al.

Fig. 1. Visualization of iteration periods from Listing 1.1 in the Aftermath GUI: (1)
Timeline; (2) Worker Threads/Cores; (3) Execution of a single loop instance (Color
figure online)

It is worth noting that the timeline in the Aftermath GUI is hierarchical and
nodes (e.g., worker threads, cores) can be collapsed, so that statistics shown on a
lane are the accumulated values. As an example, consider three CPUs, with the
first one spending 40% of the time in function f , the second one spending 30%
of the time also in f , and the third one spending 60% of the time in function g
for the same time interval associated to a pixel. The non-collapsed view would
show three lanes: two with the pixel in the colour associated to f and another
one with the pixel in the colour associated to g. When collapsed, the dominant
function becomes f and the pixel would be rendered with the colour of f . Using
this approach a large number of cores can be divided into smaller groups and
the user can expand/collapse nodes to adjust granularity of the displayed data.

Previous support for OpenMP in Aftermath relied on a specific, instrumented
OpenMP runtime to generate the trace files. In this paper, we present an OMPT-
based tool that can be used to trace any runtime supporting OMPT. To this end,
we extended the Aftermath type system to represent OMPT events and imple-
mented callbacks with calls to Aftermath’s tracing library. Since our OMPT-
based tool is intended to entirely replace the legacy OpenMP support in After-
math based on the instrumented runtime library, we refer to both our tool and
Aftermath simply as Aftermath for the remainder of the paper.

Throughout the paper, we use the terms loop instance, iteration set, iteration
period, task instance and task period introduced in [4] and defined as follows. We
say that a parallel loop is instantiated when control flow reaches the instructions
associated with a static definition of a parallel loop in the source code and its
iteration space is distributed across workers according to its scheduling strategy.
Each such encounter is defined as a loop instance. Similarly, we speak of a task
instance when referring to the dynamic instructions executed by a task statically
defined in the source code. The iteration space of a loop instance is split into
iteration sets, each of which is assigned to exactly one worker. The iteration set
corresponds directly to the loop chunk. The execution of an iteration set consists

1 https://www.aftermath-tracing.com/.

https://www.aftermath-tracing.com/

Tracing of Tasks and Loops with AfterOMPT 169

of one or more iteration periods, defined as contiguous intervals of execution of
dynamic instructions of the loop associated to the loop instance. For flat loops
each iteration set consists of exactly one iteration period, that corresponds to
the execution of a specific loop chunk. For loops containing loops’ nests the
iteration set is split between multiple iteration periods, representing execution
on the given nest level. Similarly, execution of a task instance is split into one
or more task periods.

To illustrate these concepts, consider the Listing 1.1 where two loops are each
executed twice. This results in four loop instances in total—two for the first loop
and two for the second loop. Each instance is split into 16 distinct iteration sets
with each set containing two iterations invoking the function foo(). Since the
loop body does not contain nested parallel regions and does not spawn tasks,
each iteration set will be associated with one continuous iteration period.

A visualization of the execution is given in Fig. 1. The four distinct loop
instances are presented as beige and green regions executing on a total of 8 worker
threads, each identified by their thread ID on the left side of the figure. Those
coloured regions represent alternating iteration periods, in this case correspond-
ing directly to loop chunks (iteration sets). The thin yellow line after each loop
instance represents the loop’s implicit barrier, while the rightmost yellow line
represents the barrier at the end of the parallel section.

3 Tracing Using OMPT Callbacks

In this section, we present the implementation of AfterOMPT based on the
OMPT interface. We discuss which OMPT callbacks are used and what infor-
mation is captured through the interface. We also present workarounds for cases
in which additional information is required, but is not provided by OMPT.

3.1 Labeling Instances

The ability to associate dynamic events with specific instances of OpenMP con-
structs and to combine the data captured from multiple callbacks requires a
mechanism to reliably identify particular instances. AfterOMPT implements a
labeling mechanism for this, associating each instance of a supported OpenMP
construct with a unique label that identifies it. Each label is composed of two
components: the thread ID of the worker instantiating the construct and the
value of the worker’s monotonically increasing sequence counter. Since the thread
ID and the counter value are unique and private to a worker, workers can gener-
ate labels independently and concurrently without any need for synchronization.
Once an instance has been created, its label is stored within an associated task
data structure. Any related event that is captured through an OMPT callback
function afterwards has access to the task’s data and can thus store the serialized
event data along with a reference to the instance in the trace file.

170 I. Wodiany et al.

3.2 Tracing Loops

The current OMPT interface provides very limited information on loops via the
ompt callback work callback function. Neither the loop bounds nor the parti-
tioning of the iteration space into chunks are exposed, which prevents tracing
the distribution of the iteration space using OMPT alone. While this issue was
identified in [10], and we base our work on that proposal, we propose further
changes to the callback signatures necessary to generate more complete traces.

typedef void (∗ ompt ca l l ba ck l oop beg in t) (
ompt data t∗ pa r a l l e l d a t a , ompt data t∗ task data ,
int f l a g s ,
i n t 6 4 t lower bound , i n t 6 4 t upper bound ,
i n t 6 4 t increment ,
int num workers ,
void∗ codept r ra) ;

typedef void (∗ ompt ca l l back l oop end t) (
ompt data t∗ pa r a l l e l d a t a , ompt data t∗ ta sk data) ;

Listing 1.2. Callback signatures for loop tracing

For loop tracing, AfterOMPT uses two callbacks with signatures as defined
in Listing 1.2, one invoked at the beginning of the loop and one invoked at the
end of the loop. In line with the work of Langdal et al. those callbacks replace the
current work callback whenever a loop is executed. However, rather than using
the endpoint argument as the authors proposed, we use two distinct callbacks
with names ending with * begin and * end. This simplifies the implementation
by reducing the data required to be traced at the end of the loop, as work-sharing
information is instead provided implicitly through the bounds, the increment, the
number of workers and the flags indicating the schedule. This defines a compact
representation from which the distribution across workers can be recovered by
the callback function, compared to an explicit set of chunks and distribution.

The codeptr ra argument refers to an address of an instruction of the loop
body and can be used as a unique identifier for the source code location of the
instantiated loop construct.

In order to trace loop chunks, we propose an additional callback function
with the signature shown on Listing 1.3. In contrast to the signature proposed by
Langdal et al., we do not include a parameter marking the final chunk, since this
chunk is always followed by the loop end event and can thus be recovered post-
mortem. We also omit the loop chunk creation time parameter, as we currently
do not use it, however we aim to investigate potential use cases in the future.

Using this information, iteration sets can be recovered by mapping each
occurrence of the loop chunk event into the new iteration set. To recover itera-
tion periods we consider four cases: (1) The new period starts when the chunk
gets dispatched and finishes when the next chunk gets dispatched; (2) The new
period starts when the chunk gets dispatched and finishes when the loop ends;
(3) The new period starts when the loop at the nest level n ends and finishes
when the loop at the nest level n− 1 ends; (4) The new period spans the execu-
tion time between the end of one loop and the start of the another loop at the
same nest level, e.g., for{ for{} /* Period (4) */ for{} }.

Tracing of Tasks and Loops with AfterOMPT 171

typedef void (∗ ompt ca l lback loop chunk t) (
ompt data t∗ pa r a l l e l d a t a , ompt data t∗ task data , i n t 6 4 t
lower bound , i n t 6 4 t upper bound) ;

Listing 1.3. Callback signature for the tracing of loop chunks

3.3 Tracing Tasks

While the detailed tracing of loops requires an extension of the OMPT interface,
tasks can be traced using the existing callbacks ompt callback task create and
ompt callback task schedule. These events are captured as discrete events
in the trace, with the task instance beginning and end events associated post-
mortem, to reduce the run-time overhead. All instances of a given task construct
can also be retrieved post-mortem by iterating over all task-creation events for
the task’s address, as provided by the codeptr ra parameter within the task cre-
ation callback function. Tasks periods can be easily determined from scheduling
points captured through the task schedule callback.

3.4 Tracing Synchronization Events and Regions

Barriers, taskwait states, critical sections, master, single and parallel regions can
be accurately traced by recording the information provided by the associated
OMPT callbacks and by matching the invocations of the callbacks indicating
the beginning of an event with the invocation of the callback indicating its end.

4 Case Studies

We now present two case studies using the tracing interface and show that
AfterOMPT provides performance insights which are unavailable to developers
without the proposed extensions of the OMPT interface for loop-related call-
backs. In the first study, we show how an uneven distribution of work across
the iteration space of a parallel loop can be inspected with our tool. The sec-
ond study shows how AfterOMPT can be used to assess the effect of pipeline
parallelism on the performance of an application.

4.1 Experimental Setup

We implemented new callbacks for dynamic loops and loop chunks, and static
loops in the LLVM 9.0 OpenMP runtime2. This work is based on the implemen-
tation of the Aftermath instrumented OpenMP runtime [4].

For static loops, each worker can determine its part of the iteration space
independently from the others, solely based on its thread ID, the chunk size, the
loop bounds and the loop increment. Since this does not require invocation of

2 Artifacts and sources available at: https://github.com/IgWod/ompt-loops-tracing.

https://github.com/IgWod/ompt-loops-tracing

172 I. Wodiany et al.

the OpenMP runtime, static loops cannot be traced from within the runtime and
require static instrumentation by the compiler. We have therefore used the mod-
ified version of Clang proposed in [10], where the compiler inserts the required
callback directly into static loops within the application.

An alternative approach, not used in this paper, that does not require
the modified compiler involves setting the compile-time schedule to runtime
(with schedule(runtime)) and then runtime schedule to static with a specific
chunk size. This forces the application to distribute the work using the runtime
functions—the same ones that are used by the dynamic scheduling.

For trace recording, processing and visualization, we have extended the lat-
est branch of Aftermath with new types representing OMPT events. To leverage
the existing OpenMP support in Aftermath and to avoid code duplication with
our new OMPT-based implementation, we have also added an extra processing
step in the Aftermath GUI that converts OMPT events into native Aftermath
OpenMP types. Finally, AfterOMPT comes as a standalone library that imple-
ments required callbacks with Aftermath tracing API to capture required data.

All experiments have been carried out on a platform with two Intel Xeon Sil-
ver 4116 processors, each of which has 12 cores (24 threads) running at 2.10 GHz.
The 112 GiB memory is split across 2 NUMA nodes. The system was running
Ubuntu 18.04.4 LTS with kernel version 4.15 and Hyper-Threading enabled.

For the case studies, we have limited the execution to 12 threads (6 physical
cores) on a single socket in order to improve readability of the visualized traces
and to exclude any NUMA-specific effects. The subsequent overhead analysis
has been carried out using all 48 threads (24 physical cores).

4.2 Identifying Slow Iterations in Unbalanced Loops

The first case study demonstrates how AfterOMPT’s loop tracing capabilities
can be used to inspect a non-uniform distribution of work across the iteration
space of a parallel loop. We illustrate this on the integer bucket sort (IS) from
the NAS Parallel Benchmark suite [3], version 3.4 with a custom data set.

The bucket sort algorithm sorts a sequence of N integer values by distributing
these values into K buckets, sorting each bucket individually and concatenating
the sorted buckets into a final, sorted sequence. The distribution into the buckets
is based on the maximum value Vmax of the input sequence: a value v is put into
the bucket with the index

⌊
(K − 1) · v

Vmax

⌋
. The amount of work required to sort

a bucket depends on the number of values in the bucket, which in turn depends
on the distribution of values of the input sequence.

The IS benchmark consists of three parallel loops in the main processing
function. Two loops distribute keys into buckets and one loop sorts one bucket
per iteration. In the following analysis, we show how AfterOMPT can be used
to determine an uneven data distribution in the IS benchmark and to determine
for which iterations the amount of work differs substantially.

Tracing of Tasks and Loops with AfterOMPT 173

To this end, we have first changed the range of generated integer values to
(1048576, 1064960)3. Since this range does not start at zero and does not end at
the hard-coded Vmax of the implementation, the buckets for low and high values
remain empty, while the buckets for “medium” values each receive a significant
part of the keys.

With the default parameters, the execution takes 2.58 s for the input class C
and the input range adjusted to the interval above. A visualization of the loop
iteration intervals from the execution trace is given in Fig. 2a. We have outlined

(a) Before (full program)

(b) After (full program)

(c) Before (sub-optimal loop instance)

(d) After (optimized loop instance)

Fig. 2. Iteration periods before and after changing the number of buckets in IS with
bucket sorting loop instances marked in red (Color figure online)

3 Partial verification of this changed dataset fails as it relies on pre-defined ranks for
keys at specific locations, but full verification passes, so that we can assume that the
algorithm executes correctly.

174 I. Wodiany et al.

in red the first three loop instances which are sorting the buckets. For each such
instance, only two workers have significant iteration periods, indicated by the
green and beige intervals within the red rectangles. For the remaining workers
the visualization shows the alternating black and gray of the background, which
means that these workers are mostly idle. Outside of the red rectangles, the loops
process keys with a constant amount of work per iteration.

The zoomed visualization on the first imbalanced loop instance given in
Fig. 2c confirms the imbalance and clearly shows that two iterations are signifi-
cantly slower than most of the remaining iterations. Further inspection with our
tool shows that these are the iterations for buckets 128 and 129. The remaining
1022 iterations processing the buckets 0 to 127 and 130 to 1023 are very short,
since these sort empty, or almost empty buckets.

The performance can be easily improved, simply by increasing number of
buckets from 1024 to 4096 as this effectively distributes the work for a single
bucket from the initial settings to more buckets and thus more workers. With
a higher number of buckets, the execution time can be reduced to 2.11 s, which
corresponds to a speedup of 1.22×. The absence of large gaps in the visualization
of the trace in Fig. 2b confirms the improved work balance. The long iteration
periods from the original settings could be reduced by a factor of 3 with the
increased number of buckets.

In conclusion, the visualization of iteration periods helped identifying the
loop imbalance and allowed for attribution of the intervals to specific iterations
of a specific parallel loop in the code. Repeated tracing with changed settings
further allowed for rapid qualitative and quantitative evaluation of the changes.

4.3 Comparison of Loop-Based and Task-Based Implementations

In the second case study, we illustrate how AfterOMPT can be used to evaluate
and compare different implementations of the same benchmark. We use the
SparseLU benchmark of the Barcelona OpenMP Task Suite (BOTS) [6] and
compare two loop-based versions, using different schedules, with the unmodified,
task-based implementation. We first investigate the effect of the loop schedule in
our modified versions on the performance, before assessing the effects of pipeline
parallelism of the task-based version.

We produce a first loop-based implementation from the benchmark by com-
menting all task pragmas in the for-omp-tasks version of the application. This
results in a benchmark whose parallelism is exposed solely through parallel loops
with the default schedule, synchronized with barriers.

The execution time on our test system for this version is 2.08 s for default
input size (S1 = 50 × 50, S2 = 100 × 100). The visualization of the execution
trace provided in Fig. 3a reveals significant work imbalance. Inspection of the
iteration periods shows that the bulk of the execution time is spent in the code
region executing the bmod function.

To mitigate the work imbalance, we have changed the default static sched-
ule (no schedule specified) to a dynamic schedule with a chunk size of a single

Tracing of Tasks and Loops with AfterOMPT 175

(a) Iteration periods (static schedule)

(b) Loop instances (dynamic schedule)

(c) Iteration periods (dynamic schedule)

(d) Tasks of task-based implementation

Fig. 3. Traces for loop-based and task-based implementations of SparseLU (Color
figure online)

iteration (schedule(dynamic, 1)). This decreases the execution time to 1.81 s,
corresponding to a speedup of 1.15×. Although this represents a significant
improvement, the gaps in the visualization of the execution trace after modi-
fication shown in Fig. 3b indicate that there is still potential for improvement.
To identify the cause of the remaining imbalance, we investigate the iteration
periods shown in Fig. 3c. The duration of the periods is relatively uniform,
indicating that the distribution of work is even across iterations. However, the
barriers between loop instances have a significant impact as they cause a sig-
nificant fraction of the workers to idle if the number of available iterations is
not a multiple of the number of workers. Furthermore, the available parallelism
decreases over time, leaving more and more workers idle towards the end of the
execution. Since the number of iterations is data-dependent, any statically con-

176 I. Wodiany et al.

figured chunk size or loop schedule will lead to imbalance for certain problem
instances.

The original, unmodified version the benchmark uses the parallel loops only
to spawn parallel tasks. The barrier only synchronizes task creation, but not
completion, thus exposing pipeline parallelism which allows all the workers to
be kept busy for most of the time (Fig. 3d) and reduces the execution time to
1.47 s (1.41× speedup). This shows that pipelining parallelism in the original
implementation has a significant impact on performance.

5 Overhead Analysis

To obtain meaningful traces, it is crucial that the tracing mechanism does not
perturb the execution of the application. In this section, we evaluate the tracing
overhead using selected applications from BOTS [6] and the C implementation4

of the NPB 2.3 [3] benchmarks. In our experiments, we trace threads, task cre-
ation, task execution, the beginning and end of loops, and the beginning and end
of the execution of loop chunks via the callback functions thread {begin,end},
task create, task schedule, loop {begin,end} and loop chunk.

To stress the tracing mechanism for loops, we selected CG, EP, LU, MG and
SP, excluding BT and FT as they failed to build5, as well as IS as it does not
report its execution time.

For task-based benchmarks, we selected alignment, fft, fib, floorplan, health,
nqueens, sort, sparselu and strassen from BOTS. The uts benchmark was
excluded as we encountered frequent application segmentation faults when run-
ning it on the experimental machine. We used the omp-tasks-tied version for the
BOTS benchmarks, except alignment and sparselu for which this version was
unavailable, and the for-omp-tasks-tied version was used instead.

Each benchmark was executed with default values, except for fib where N
was increased to 35 to avoid the high variation of the very short execution
for the default value. The largest available input files were used for the BOTS
benchmarks that require input files, except for uts, where small.input was used.
The NPB benchmarks operated on the C input class, with the exception of
SP which was given the A input class in order to avoid excessive experiment
duration. Each benchmark was executed 50 times, where for the same reason SP
was instead executed 20 times.

Figure 4 shows the relative mean increase of the execution time when tracing
is enabled, compared to the execution without tracing. The reported values were
obtained by dividing the execution time of each run of the benchmark with the
tool attached, by the mean execution time of 50 runs of the baseline (no tool
attached). The value above each bar indicates the mean relative change and error
bars indicate the standard deviation.

4 https://github.com/benchmark-subsetting/NPB3.0-omp-C.
5 The compilation error is caused by the potential bug in the unofficial C port of the

benchmarks and does not appear in the official Fortran implementation.

https://github.com/benchmark-subsetting/NPB3.0-omp-C

Tracing of Tasks and Loops with AfterOMPT 177

The relative overhead for three of the loop-based NPB benchmarks, CG, EP
and MG, was very low, with all three recording an increased execution time of
under 3%. A higher relative overhead was recorded for the remaining two NPB
benchmarks LU and SP : averaging 6.0% ± 4.0% for LU, and 35.2% ± 5.7% for
SP. The increased relative overhead for these benchmarks is due to their large
number of very fine-grained loop-chunks (especially for SP), resulting in a large
number of invoked callbacks relative to the overall work done.

The overhead results varied across the task-based BOTS benchmarks, with
values under 3% for alignment, fft, sort, sparselu and strassen, and values up to
24% for the remaining benchmarks. As with the NPB results, the more sig-
nificant relative overheads resulting for these benchmarks is due to their large
number of short-lived task instances, thereby invoking significantly more tracing-
callbacks relative to their workload. Analysis of the floorplan benchmark shows
that the average duration of an AfterOMPT tracing-callback was around 200
cycles, compared to the average total duration of a task instance (including the
tracing overhead) of around 2400 cycles. All of these measures include the over-
head of the OMPT interface itself. For more details, including cases with empty
callbacks and OMPT disabled, we refer to [10].

EP
*

CG
*

M
G
*

LU
*

SP
*

ali
gn

men
t
†

sp
ar

sel
u
†

str
as

sen
†

fft
†

so
rt
†

ut
s
†

he
alt

h
†

fib
†

flo
or

pla
n
†

nq
ue

en
s
†

−10
−5

0
5

10
15
20
25
30
35
40
45
50

-0.12
1.90 2.11

6.05

35.20

-0.65 0.56

2.53
3.00

3.15 3.90

6.95

12.4

21.2423.34

R
el

.
in

cr
.
o
f
ex

ec
.
ti

m
e

[%
]

Fig. 4. Profiling overhead for the selected benchmarks from NPB 2.3 and BOTS (∗loop-
based, †task-based)

In conclusion, the average overhead of AfterOMPT was found to be under 5%
for the majority of the benchmarks (9 out of 15), increasing to under 7% for two
further benchmarks, and greater than 10% for only four of the most fine-grained
benchmarks. As the AfterOMPT tracing infrastructure incurs an overhead of
only around 200 cycles per callback invocation, its generally low impact on the
overall program execution time—while dependent on the workload granularity—
means that it is highly suitable for tracing and analysing many target OpenMP
applications. Moreover the overhead does not depend on number of threads, as
synchronization within the tool is kept to minimum—one critical section per
thread initialization —meaning each thread is traced independently.

178 I. Wodiany et al.

6 Related Work

Langdal et al. [10] were first to investigate extending the OMPT interface with
loop related callbacks. While they discuss implementation details and overhead
analysis for the potential new loop callbacks, they do not provide detailed use
cases to support proposed changes. We complement their work by presenting
detailed scenarios, showing how information associated with those callbacks are
useful in practice.

Their work was done in the context of Grain Graphs [12]. Compared to After-
math, Grain Graphs is a chronogram-based application that represents OpenMP
programs in a hierarchical graph form. It allows detection of limited parallelism,
load imbalance and synchronization issues, however the visual representation
does not attribute profiled constructs to specific cores. Aftermath presents traces
on per worker timelines allowing to detect additional anomalies, such as problems
related to NUMA.

Score-P [8,11] is a profiling and event tracing infrastructure for HPC appli-
cations. It allows tracing of OpenMP applications with either by POMP2 [9]
instrumentation using source-to-source compiler or with OMPT interface. It gen-
erates traces in the formats (OTF2 or CUBE4) compatible with several analysis
tools such as Vampir [13] or TAU [13] toolkit. However Score-P does not support
tracing of loops using OMPT with granularity offered by AfterOMPT.

Extrae [1], a tool for capturing execution trace with interfaces for MPI,
OpenMP, pthreads, OmpSS and CUDA. Captured data can be later viewed with
Paraver [16] visualization tool. Although data collection using OMPT interface
is supported, it has the same limitations as Score-P.

Finally Intel VTune [2] does not support OMPT and uses VTune instrumen-
tation API in the OpenMP runtime in addition to the sampling based profiling.

7 Conclusion and Future Work

We presented AfterOMPT, an OMPT-based tool for tracing, visualization and
performance analysis of OpenMP applications that is portable across OpenMP
runtimes. We motivated an extension of the OMPT interface that allows for fine-
grained analysis of parallel loops. We showed that our tool allows for a detailed
analysis of both loop-based and task-based applications. With a tracing overhead
as little as 200 cycles per OMPT callback function, the resulting increase in
the execution time is less than 5% for many benchmarks and only leads to a
significant increase for very fine-grained work sharing. In the future we plan to
extend our tool further with the visualization of tasks trees and also integrate
OpenMP hardware event profiling proposed before in [14].

Tracing of Tasks and Loops with AfterOMPT 179

References

1. Extrae. https://tools.bsc.es/extrae. Accessed 25 May 2020
2. Intel VTune Profiler. https://software.intel.com/content/www/us/en/develop/

tools/vtune-profiler.html. Accessed 25 May 2020
3. Bailey, D.H.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3), 63–

73 (1991)
4. Drebes, A., Bréjon, J.-B., Pop, A., Heydemann, K., Cohen, A.: Language-centric

performance analysis of OpenMP programs with aftermath. In: Maruyama, N., de
Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS, vol. 9903, pp. 237–250.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45550-1 17

5. Drebes, A., Pop, A., Heydemann, K., Cohen, A.: Interactive visualization of cross-
layer performance anomalies in dynamic task-parallel applications and systems.
In: 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 274–283. IEEE (2016)

6. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: 2009 International Conference on Parallel Processing, pp. 124–131.
IEEE (2009)

7. Eichenberger, A.E., et al.: OMPT: an OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 13

8. Feld, C., Convent, S., Hermanns, M.-A., Protze, J., Geimer, M., Mohr, B.: Score-P
and OMPT: navigating the perils of callback-driven parallel runtime introspection.
In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019.
LNCS, vol. 11718, pp. 21–35. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-28596-8 2

9. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y., Lin, Y.: An OpenMP runtime
API for profiling. OpenMP ARB White Paper (2007). http://www.compunity.
org/futures/omp-api.html

10. Langdal, P.V., Jahre, M., Muddukrishna, A.: Extending OMPT to support grain
graphs. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 141–155. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65578-9 10

11. Lorenz, D., Dietrich, R., Tschüter, R., Wolf, F.: A comparison between OPARI2
and the OpenMP tools interface in the context of Score-P. In: DeRose, L., de
Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014.
LNCS, vol. 8766, pp. 161–172. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11454-5 12

12. Muddukrishna, A., Jonsson, P.A., Podobas, A., Brorsson, M.: Grain graphs:
OpenMP performance analysis made easy. In: Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp. 1–13.
ACM (2016)

13. Müller, M.S., et al.: Developing scalable applications with Vampir. VampirServer
and VampirTrace. In: PARCO, vol. 15, pp. 637–644 (2007)

14. Neill, R., Drebes, A., Pop, A.: Accurate and complete hardware profiling for
OpenMP. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 266–280. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65578-9 18

https://tools.bsc.es/extrae
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://doi.org/10.1007/978-3-319-45550-1_17
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1007/978-3-030-28596-8_2
https://doi.org/10.1007/978-3-030-28596-8_2
http://www.compunity.org/futures/omp-api.html
http://www.compunity.org/futures/omp-api.html
https://doi.org/10.1007/978-3-319-65578-9_10
https://doi.org/10.1007/978-3-319-11454-5_12
https://doi.org/10.1007/978-3-319-11454-5_12
https://doi.org/10.1007/978-3-319-65578-9_18

180 I. Wodiany et al.

15. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face (Version 5.0) (2018)

16. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: a tool to visualize and
analyze parallel code. In: Proceedings of WoTUG-18: Transputer and OCCAM
Developments, vol. 44, pp. 17–31 (1995)

Co-designing OpenMP Features Using
OMPT and Simulation Tools

Matthew Baker1(B), Oscar Hernandez1, and Jeffrey Young2

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA
{bakermb,oscar}@ornl.gov

2 Georgia Institute of Technology, Atlanta, Georgia
jyoung9@gatech.edu

Abstract. The design of future HPC systems is trending towards
more heterogeneity with different types of accelerators, special purpose
instructions sets, system-on-chip designs, complex memory hierarchies,
and multiple memory coherence domains. This complexity exacerbates
the design challenges and testing of programming models which aim to
provide a high-level interface while also producing high performance pro-
grams. In this paper we describe how to use full-system architectural sim-
ulation of OpenMP applications to provide a platform for experimenting
with OpenMP extensions on future architecture designs. Furthermore, we
put forward the concept of integrating the OpenMP Tools API (OMPT)
in conjunction with other tools (performance, emulators, etc.) to help
speed up the use of architectural simulators with new OpenMP imple-
mentations. In this work, we evaluate an initial implementation of this
simulation testbed design using gem5, an open source full system simula-
tion, with the EPCC OpenMP micro-benchmarks that are instrumented
with OMPT. We show that OMPT can be a powerful tool for the code-
sign of future systems models and programming model features.

Keywords: OpenMP · HW/SW codesign · Full system simulation ·
OpenMP Tools API

1 Introduction

As we design new OpenMP specifications (e.g. OpenMP 5.1, 6.0, etc), we need
to evaluate how proposed OpenMP extensions will work on future systems. For
example, we are seeing a trend in next-generation systems towards more diverse
types of accelerators, special purpose instructions on multicores for HPC and AI,
and novel memories and interconnects that may have “extreme NUMA” proper-
ties. New features of the OpenMP specification, especially those related to per-
formance portability, need to keep up with these new system trends. For example,
the new loop constructs, variants, metadirectives, and affinity and thread man-
agement need to be extended to have the ability to program devices of different
types and to schedule tasks on heterogeneous devices. As these possibilities arise,

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 181–194, 2020.
https://doi.org/10.1007/978-3-030-58144-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_12

182 M. Baker et al.

we need to evaluate if the latest features in OpenMP 5.0 (e.g. memory manage-
ment API, data affinity, etc) can manage this diverse set of architectural designs
on the node efficiently.

We belive that full-system (FS) simulation (with gem5) is key to studying
programming models like OpenMP and for improving the co-design process for
performance and power studies on future architectures. Full-system simulation
incorporates a Linux kernel and full support for code generated by OpenMP
compilers and associated OpenMP runtimes. This full software stack allows pro-
grams to run on top of simulated architecture models at cycle-level detail while
capturing all the dynamic behavior on the target platform. However, this pro-
cess is expensive in terms of exploration time; we need to improve the simulation
process by designing new techniques for speeding up these typically slow simu-
lations. Our key contributions that differentiate our work from previous studies
is a focus on using new features with the OpenMP Tools API to find regions of
interest and sample these regions with detailed simulations and to demonstrate
how the OpenMP tool chain can be connected to a simulation infrastructure.

Full-system simulators can help to provide a “full-stack” approach to model
architectures, programming models and runtimes, and applications in a way
that promotes co-design of hardware and software with the major limitation of
extreme slowdowns of 10,000x or more versus native execution. Our approach
is different from other existing simulators like SST which improve simulation
speed by abstracting away hardware features that may impact language design
(e.g., tasking for OpenMP runtimes, orchestration of multiple devices, etc.).
Instead, simulators like gem5 rely on a complicated process for checkpointing
regions of interest and then resetting simulation state with more detailed CPU
models. In the context of OpenMP programs, our definition of regions of interest
refers to parallel execution regions, typically bounded by OpenMP constructs
and delineated by implicit or explicit thread synchronization points (e.g., an
omp barrier call) to guarantee consistent state across all threads.

As a first step to addressing this slowdown, we have been investigating
techniques to define small enough regions of interest and to use sampling to
evaluate critical parts of these regions. The OpenMP tools API provides a
runtime-based method to execute arbitrary code as “callbacks” when specific
OpenMP pragmas are encountered. As an example, we have just recently used
the ompt callback parallel begin t API call from a custom Clang/LLVM
build to trigger a checkpoint for gem5 simulations whenever a parallel region,
such as #pragma omp parallel for is encountered. This arbitrary, runtime-
driven code instrumentation allows us to scope detailed simulations explicitly to
relevant OpenMP pragma regions we are interested in. We are currently inves-
tigating how this technique can be used to skip the first few loop iterations of
the parallel region (to allow for cache warm-ups for detailed simulations) and
to sample relevant loop or thread iterations for a highly multi-threaded appli-
cation. With miniapps like toypush from the XGC code, we are also looking at
how to potentially use the OpenMP Tools API to sample every other iteration

OpenMP Simulation Co-design with OMPT 183

of a parallel region and how to switch between detailed simulations with a few
threads and less-detailed simulations with many threads.

In this paper, we describe the available tools and techniques available to
evaluate Arm SVE architectures with gem5 and Arm’s Instruction Emulator,
and we detail how OMPT can be used to speed up architectural simulators.
Results show that it is possible to simulate OpenMP constructs using OMPT,
and that OMPT tools can enable more efficient testing of different architectural
features such as vector length. We also note how users can drive the selection
of large, parallel regions of interest for simulation and emulation by annotating
their OpenMP code with pragmas and running with OMPT libraries.

Figure 1 shows the general overview of how the OpenMP Tools API, Arm’s
Instruction Emulator (ArmIE), and simulators can be integrated to select and
simulate regions of interest on simulated future architectures. In this workflow,
the OMPT API is used to dynamically link with both an OpenMP executable
and multiple generated tools for working with the gem5 simulator by either plac-
ing simulation checkpoints or by switching between simulation modes. It should
be noted that these tool libraries can be swapped out at runtime, allowing for
more flexible analysis of application codes. We plan to cover compiler analy-
sis in future work, so we note here that static compiler analysis and related
projects like the LLVM-based codelet extraction tool, CERE [4], can be used as
an alternate means of selecting ROI.

Compiler

Application

Native Execution ARMIE (Native +
Emulation of SVE)

Regions of Interest

Sampled ROI (BarrierPoints)

Parallel simulations of ROI

Native HW Execution

Static Analysis

OMPT
BarrierPoints

Tool

OMPT
gem5 Tools

(Checkpoint, SwitchCPU)

BP 2 BP N

Executable
Simulation N

Detailed
CPU

Functional
Memory

Fig. 1. Using OMPT and ArmIE to select regions of interest

184 M. Baker et al.

2 Background and Related Work

Based on Fig. 1 we go into more detail about the OpenMP Tools, emulation, and
simulation components for selecting and analyzing regions of interest with an
application. In our discussion, we define simulation to include detailed archi-
tectural models with some sort of timing model (e.g., cycle- or event-driven)
while emulation focuses on modeling software and kernel correctness without
providing detailed timing information.

2.1 OpenMP Tools Interface

OpenMP compilers lowers directives to transform code that invokes custom run-
time libraries to manage the OpenMP environment, and to create threads or
initialize devices, assign work to them, and/or offload computations to devices.
The lack of a defacto OpenMP runtime layer has hindered the development
of third-party tools for OpenMP application development because it requires
either modifying the application source code or writing binary specific instru-
mentation for implementations. In OpenMP 5.0 [9], the OpenMP tools interface
(OMPT) [5] was adopted as an interface specification for profiling and tracing
tools that support the OpenMP programming model. It is designed to permit
tools to gather or query information about a program’s OpenMP execution by
tracking OpenMP states or triggering event callbacks. OMPT is implemented
inside the OpenMP runtime library. The main advantage is that it leverages
the OpenMP runtime to track OpenMP states and events. By doing so, OMPT
does not require modification of the application’s source code because all instru-
mentation is independent of the user’s code. Instead, OMPT relies on callback
handles implemented via the runtime. It also does not interfere with compiler
analysis and optimizations while providing the context to map tools information
to the OpenMP execution context. The design and implementation allows for a
tool to interact with an OpenMP program via LD PRELOAD or through static
linking. Section 4 provides more details on the specific OpenMP 5.0/OMPT call-
backs that are used in the creation of OpenMP analysis tools.

2.2 Gem5 Simulator

Gem5 [1] is a cycle-accurate architectural simulation tool that can be used to
simulate detailed models of system components like caches, memory, GPU accel-
erators, networks and processor designs. It consists of different components that
can simulate an instruction set architecture (ISA) and its implementation in
hardware, and these components can be used to run applications in a traditional
Linux environment via a QEMU-like front-end. Of importance to our recent
investigations for OpenMP codesign, gem5 also provides SVE models for forth-
coming Arm SVE hardware [8,11] and accelerator support via a ROCm GCN 3
Advanced Processing Unit (APU) model [6].

OpenMP Simulation Co-design with OMPT 185

For our evaluations, we are focused on using recently integrated Arm SVE
support within gem5 which provides an SVE-based processor model that sup-
ports vector lengths of 128 to 2048 bits. In addition to providing detailed mem-
ory models (not evaluated in this work), gem5 also provides two types of widely
used CPU models: 1) AtomicSimpleCPU provides a very simple in-order CPU
model that implements atomic accesses to memory and that provides approxi-
mate time for caching of data accesses to memory. The Atomic CPU model is
suitable for “fast-forward” execution and providing cache warm-up capabilities
for more detailed simulation models. 2) O3CPU implements a detailed out-of-
order CPU that is very similar to today’s 64-bit processors with five pipeline
stages and accurate timing via the execution of simulated instructions in the
execution phase of the pipeline. The O3CPU model can be used to execute SVE
64-bit instructions based on the AArch64 instruction set with fine-grained detail
at the cost of long simulation times.

2.3 Arm Instruction Emulator

ArmIE is an emulator tool that is built around the DynamoRio [2] dynamic
binary instrumentation tool, and it supports multiple clients for memory trac-
ing, instruction tracing and counting, and basic block and code introspection.
Since ArmIE does not provide a detailed timing model, it cannot be used to
provide a detailed performance vision of codes. However, it can be used to count
and investigate the SVE instructions that would be executed on SVE-enabled
hardware and can be used as an extra validation platform for comparing against
SVE statistics and instruction counts from gem5. Specifically, ArmIE can be
used for the following tasks: 1) predicting cache performance with SVE code 2)
vector utilization for SVE/non-SVE code, and 3) analyzing SVE gather/scatter
versus contiguous accesses. We use ArmIE in the experimental evaluation to help
validate statistics (specifically the number of SVE instructions and total instruc-
tions) from our gem5 results, and we note some incongruities between the two
tools. Section 2.3 shows the execution of one of the EPCC kernels, SIMDBench,
with ArmIE emulating a 1024-bit wide SVE hardware support.

186 M. Baker et al.

2.4 Future Work - Measuring ROI in OpenMP Applications with
BarrierPoint

A BarrierPoint [3] (BP) is a sampled region of interest that is typically delin-
eated by a synchronization point in a multi-threaded program. Based on Sim-
Points sampling and clustering techniques developed to speed up architectural
simulation by finding and simulating regions of interest [7,10], the BarrierPoint
technique extends this capability by creating candidate ROI based on paral-
lel regions within OpenMP programs that have similar runtime characteristics.
More recent work by Arm Research [12] extended this functionality to also sup-
port constructs with explicit synchronization of threads such as #pragma omp
barrier and implicit synchronization such as at the end of a parallel for region
or after #pragma omp single. These added capabilities led to a further 4.3x
speedup in simulation times when compared to the initial BarrierPoint tech-
nique.

Implicit Task
Creation Point

Implicit Synchronization (IS)

Fig. 2. Mapping BarrierPoints to OMPT callbacks

Importantly, BarrierPoint can be used with OpenMP semantics and barriers
to specify ROI and to help guide user-driven codesign and architectural explo-
ration. Figure 2 shows an example of how BarrierPoints can be used to delineate
ROI and speed up analysis. The parallel region creates an implicit task for
the parallel region body where all the threads will execute, and the threads all
synchronize again at the end of this region. This is the outer BarrierPoint. In
between, assuming no variable dependencies, each thread can execute the outer
loop redundantly in parallel. We use the combined directive #pragma omp for
simd to define an inner BarrierPoint because #pragma omp simd (without a for)
does not imply any synchronization and does not have OMPT callback handles
for measuring the inner loop as a region of interest. #pragma omp barrier (not
shown in Fig. 2) also can be used to create an explicit synchronization point for
a BarrierPoint. More recent work by Arm Research has shown that independent
loop iterations may also be sampled (i.e., simulate every N iterations) and then
used to reconstruct representative behavior for the entire parallel loop region.

OpenMP Simulation Co-design with OMPT 187

3 Sample OMP Tools for Codesign

Here we briefly discuss some of the types of OpenMP tools we envision for
codesign and demonstrate how one or two of them can be used for emulation
and simulation studies. Specifically, we envision 3 different types of tools and
demonstrate the usage of one of them, the gem5 tool, to show how it can be used
to improve the usage of architectural simulation. We specifically envision that
OMPT can be used for triggering added events and monitoring in several ways:
1) Simulation with gem5 can be improved by using OMPT to create checkpoints
for simulation of smaller regions of interest and for switching CPU models at
runtime. 2) For emulation with ArmIE, OMPT can be used to scope tracing and
analysis to a specific region using ArmIE’s ROI functionality and the insertion of
START and STOP tracing macros at the beginning and end of OpenMP regions.
Listing 2 shows an example of how OMPT can be used to trigger region-of-
interest tracing with ArmIE. 3) While it is not detailed here, we have also tested
using OMPT callbacks with native execution for either starting or stopping PAPI
counter-based profiling.

Since detailed O3 gem5 simulations are too slow to run an entire bench-
mark, a benchmark is normally run using a sampling technique like SimPoint

188 M. Baker et al.

or BarrierPoint. Alternatively, a benchmark can be run in a low-detail mode,
such as “SimpleAtomic” mode, checkpointed near the region of interest, and
then restarted in a higher fidelity mode. Integrating this technique with OMPT
requires that a benchmark be run twice - once in a low detail mode to identify all
regions of interest and generate checkpoints using our custom OMPT gem5 tool
and once to simulate from the generated checkpoints. After these checkpoints
are made, they can be filtered to remove checkpoints that include initialization
and cleanup, rather than compute kernels which are of actual interest. Listing
3 shows how we use OMPT to drop checkpoints and switch CPU models for
OpenMP-based ROI, specifically for #pragma omp parallel for regions.

4 Experimental Setup

We focus our experiments on variants of the EPCC benchmark to detail the
overheads for running OpenMP code with gem5 and also to demonstrate using
OpenMP Tools API to generate checkpoints and run detailed simulations in
parallel.

Specifically we run the following benchmarks: 1) Syncbench with the OMP
PARALLEL FOR and BARRIER sub-tests. 2) A new variant of Syncbench
called ”Overhead” that runs each of these two sub-tests without any loop com-
putation - this test just measures the amount of time to run OpenMP paral-
lel regions. 3) SIMDbench - a simplistic OMP PARALLEL FOR implementa-
tion that does matrix multiplication on two 16K input matrices. This test was
designed as a simple example that can be vectorized using a SIMD OpenMP
pragma implemented by the Arm compiler and that can be executed with ArmIE

OpenMP Simulation Co-design with OMPT 189

and gem5 using SVE instructions. Listing 4 shows the code for this test. SIMD-
Bench is run with 20 outer reptitions and 1024 repetitions, since it can be vec-
torized using SVE instructions. Overhead and Syncbench are each run with 1
outer and inner repetition to allow for simulation with gem5.

All code is compiled with the Arm 20.0 HPC compiler and the -
mcpu = generic -march = armv8-a+sve flags to produce SVE-based code for exe-
cution with gem5 and ArmIE. ArmIE 20.0 is used for all emulation tests, and
gem5’s gem5-20 release branch is used for all gem5 testing. Each of the bench-
marks is run with 1,2,4, and 8 OpenMP threads and the wall-clock time is
measured as well as statistics provided by ArmIE like instruction counts, SVE
instruction counts, and opcode (histogram of types of instructions) counts. An
Arm TX2 machine is used for native and ArmIE experiments, and the gem5
tests are run in parallel on an x86 cluster at ORNL.

4.1 ArmIE Emulator Setup

ArmIE 20.0 is used to generate timings for basic emulated analysis with two
tools: 1) inscount emulated is used to execute SVE instructions and to measure
the total time taken for execution and the total number of instructions executed
and SVE instructions executed. 2) opcodes emulated is used to generate the
number of opcodes generated as well as the total number of SVE opcodes and
instructions that are generated as a percentage of the overall instructions. Each
of these tools takes in a vector length as demonstrated in Sect. 2.3.

190 M. Baker et al.

4.2 Simulator Setup

The gem5 simulator itself consists of a C++ code that handles the main exe-
cution of the simulator. To configure the simulated machine a python script is
used. This script will set up the specific hardware configuration of a simulated
machine such as the number of CPUs, what size and kind of caches are utilized,
and how the cores and caches are connected and how these connect to memory.

For these experiments a simulated Arm machine is created with 8 cores, SVE
registers 512 bits wide, and 4GB of DDR memory. A virtual disk image provided
by Arm with gem5, which is loaded with Linaro Linux, is added to this machine
and edited to add the EPCC benchmarks.

As mentioned in Sect. 3, two separate OMPT tools are used to drop check-
points and to switch to more detailed CPU models (Atomic to O3) for simulation
of regions of interest with gem5. Multiple gem5 simulation runs can be started
simultaneously to do a detailed simulation of each of the benchmarks and spe-
cific configurations (i.e., different tests or runs with different vector lengths or
numbers of OpenMP threads) and OMPT is used at the end of the region of
interest to dump statistics files that can then be collated and parsed.

The gem5 stats.txt file provides in-depth and detailed statistics of hardware
behavior in the region of interest. The statistics used in this paper focus on
host seconds or wall clock time, but we also measure statistics like sim seconds
and an aggregation of vec insts across all cores in the simulator. These statistics
can be used to calculate how efficiently codes operate with Arm SVE and what
kind of overheads exist when running OpenMP pragma regions in simulation.

5 Results

Figures 3, 4, and 5 all show the normalized simulation/emulation time for the
three EPCC benchmarks, Overhead, Syncbench, and SIMDBench. For each of
these, the wall-clock time is normalized to the native execution of the benchmark
on the ThunderX2 (TX2) platform. For example, Syncbench’s Parallel For test
with 2 OpenMP threads runs in 29 ms on the native TX2 machine, 764 ms with
ArmIE’s instruction count emulation tool, and 1210 ms with a detailed O3 simu-
lation model on gem5. We show this normalization to demonstrate the slowdown
from emulation and simulation with different test parameters.

Figure 3 and Fig. 4 have similar slowdowns for both the Parallel For and Bar-
rier tests, but we can identify several interesting trends. As the number of threads
is increased, the overhead of the gem5 simulations dramatically increases due to
the serial nature of multi-threaded CPU simulation within gem5. Interestingly,
with 1 OpenMP thread gem5 is quite fast, beating out the ArmIE emulation
tool while also providing more detailed statistics.

These plots also demonstrate that the overhead for ArmIE is relatively con-
sistent as the number of threads is increased to 8 threads, with a slowdown of
around 31–35 for ArmIE, as compared to the slowdown of 2267x to 3459x with
gem5’s O3 model.

OpenMP Simulation Co-design with OMPT 191

1

10

100

1000

10000

1 2 4 8

N
or

m
al

iz
ed

 Ti
m

e

Number OpenMP Threads

ARMIE-Parallel For gem5-Parallel For
ARMIE-Barrier gem5 Barrier

Fig. 3. Normalized simulation time - overhead benchmark

1

10

100

1000

10000

1 2 4 8

N
or

m
al

iz
ed

 Ti
m

e

Number OpenMP Threads

ARMIE-Parallel For gem5-Parallel For
ARMIE-Barrier gem5 Barrier

Fig. 4. Normalized simulation time - syncbench benchmark

SIMDBench includes much more computation and less synchronization and
idle delay time than either of the other benchmarks, so simulation time also
suffers more drastically as thread count increases. Slowdowns vary from 22.96x
to 67.29x for ArmIE’s instruction count tool while gem5 takes anywhere from
816.94x longer to ˜193,000x longer to run SIMDBench with 1024 inner iterations
and 20 outer iterations. In practical terms, an 8 thread gem5 simulation takes
893.49 ms of measured wallclock time while ArmIE takes 0.31 ms and native
execution takes 4.64 ns.

We also use ArmIE’s opcode tool to evaluate how the percentage of instruc-
tion opcodes varies with vector length and number of OpenMP threads, shown in
Fig. 6. Since we compiled SIMDBench with an explicit #pragma omp for simd
simdlen(8) pragma, we would expect that 8 quadwords or 512 bits would be
the best-performing vector length for a target architecture executing this code.

192 M. Baker et al.

1

10

100

1000

10000

100000

1000000

1 2 4 8

N
or

m
al

iz
ed

 Ti
m

e

Number OpenMP Threads

ARMIE gem5

Fig. 5. Normalized simulation time - SIMDBench benchmark

This figure does indeed show that as vector length increases to 512 bits, the
percentage of SVE instructions increases to a maximum of 46% with 1024 bit
vector lanes and 1 OpenMP thread. The vector length does not strictly corre-
late with improved performance. However, having a higher percentage of vector
instructions likely leads to better performance on SVE-enabled architectures.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

128 256 512 1024 2048

%
 S

VE
 In

st
ru

ct
io

ns
 o

f T
ot

al

Vector Length (b)

N=1 N=2 N=4 N=8

Fig. 6. SVE opcode % of total instructions with SIMDBench and N Threads

OpenMP Simulation Co-design with OMPT 193

6 Conclusion

In this paper we have demonstrated that it is possible to use the OpenMP tools
API to control the execution of the EPCC benchmarks with an instruction emu-
lator and architectural simulator. This was done in an automated fashion that
did not require the rebuilding of binaries in a way that would prevent the appli-
cation from running on hardware that supports an ArmV8+SVE instruction set.
Evaluations of simple microbenchmarks show that gem5 simulation overheads
increase dramatically due to the serial nature of the simulation engine, with
overheads of up to 193,000x versus a native, non-SVE benchmark execution. For
this reason, we need to further improve techniques like those proposed in this
work for using both emulation and simulation in a productive manner to limit
simulation and analysis time with increasingly complicated architectural models.

Using tools like gem5, OMPT, and in the future, BarrierPoint-based tools,
we plan to build better methodologies for extracting regions of interest from
OpenMP codes and for simulating them in a detailed and accurate fashion with
architectural simulators.

Acknowledgments. This research was funded by the Laboratory Directed Research
and Development (LDRD) Program of the Oak Ridge National Laboratory managed
by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-
00OR22725. This research also used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011). https://doi.org/10.1145/2024716.2024718

2. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In: International Symposium on Code Generation and Opti-
mization, CGO 2003, pp. 265–275, March 2003. https://doi.org/10.1109/CGO.
2003.1191551

3. Carlson, T.E., Heirman, W., Van Craeynest, K., Eeckhout, L.: Barrierpoint: Sam-
pled simulation of multi-threaded applications. In: 2014 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). pp. 2–12
(2014)

4. Castro, P.D.O., Akel, C., Petit, E., Popov, M., Jalby, W.: Cere: LLVM-based
codelet extractor and replayer for piecewise benchmarking and optimization. ACM
Trans. Archit. Code Optim. 12(1) (2015). https://doi.org/10.1145/2724717

5. Eichenberger, A.E., Mellor-Crummey, J., Schulz, M., Wong, M., Copty, N.,
Dietrich, R., Liu, X., Loh, E., Lorenz, D.: OMPT: an OpenMP tools applica-
tion programming interface for performance analysis. In: Rendell, A.P., Chapman,
B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40698-0 13

6. Gutierrez, A., et al.: Lost in abstraction: pitfalls of analyzing GPUs at the interme-
diate language level. In: 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 608–619, February 2018. https://doi.org/10.
1109/HPCA.2018.00058

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1145/2724717
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1109/HPCA.2018.00058
https://doi.org/10.1109/HPCA.2018.00058

194 M. Baker et al.

7. Hamerly, G., Perelman, E., Calder, B.: Comparing multinomial and k-means clus-
tering for SimPoint. In: 2006 IEEE International Symposium on Performance Anal-
ysis of Systems and Software, pp. 131–142 (2006)

8. Kodama, Y., Odajima, T., Matsuda, M., Tsuji, M., Lee, J., Sato, M.: Preliminary
performance evaluation of application kernels using arm SVE with multiple vector
lengths. In: 2017 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 677–684, September 2017. https://doi.org/10.1109/CLUSTER.2017.93

9. Pennycook, S.J., Sewall, J.D., Hammond, J.R.: Evaluating the impact of pro-
posed OpenMP 5.0 features on performance, portability and productivity. In: 2018
IEEE/ACM International Workshop on Performance, Portability and Productiv-
ity in HPC (P3HPC), pp. 37–46, November 2018. https://doi.org/10.1109/P3HPC.
2018.00007

10. Perelman, E., Hamerly, G., Van Biesbrouck, M., Sherwood, T., Calder, B.: Using
SimPoint for accurate and efficient simulation. ACM SIGMETRICS Perform. Eval.
Rev. 31(1), 318–319 (2003)

11. Rico, A., Joao, J.A., Adeniyi-Jones, C., Van Hensbergen, E.: Arm HPC ecosystem
and the reemergence of vectors: Invited paper. In: Proceedings of the Computing
Frontiers Conference, CF 2017, pp. 329–334. ACM, New York (2017). https://doi.
org/10.1145/3075564.3095086

12. Tairum Cruz, M., Bischoff, S., Rusitoru, R.: Shifting the barrier: extending the
boundaries of the barrierpoint methodology. In: 2018 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pp. 120–122
(2018)

https://doi.org/10.1109/CLUSTER.2017.93
https://doi.org/10.1109/P3HPC.2018.00007
https://doi.org/10.1109/P3HPC.2018.00007
https://doi.org/10.1145/3075564.3095086
https://doi.org/10.1145/3075564.3095086

NUMA

sOMP: Simulating OpenMP Task-Based
Applications with NUMA Effects

Idriss Daoudi1,2(B) , Philippe Virouleau1,2, Thierry Gautier2,
Samuel Thibault1, and Olivier Aumage1

1 INRIA, LaBRI, Université de Bordeaux, IPB, CNRS, Bordeaux, France
idriss.daoudi@inria.fr

2 LIP, ENS-Lyon, UCBL-Lyon 1, Inria, Lyon, France

Abstract. Anticipating the behavior of applications, studying, and
designing algorithms are some of the most important purposes for the
performance and correction studies about simulations and applications
relating to intensive computing. Often studies that evaluate performance
on a single-node of a simulation don’t consider Non-Uniform Memory
Access (NUMA) as having a critical effect. This work focuses on accu-
rately predicting the performance of task-based OpenMP applications
from traces collected through the OMPT interface. We first introduce
TiKKi, a tool that records a rich high-level representation of the execu-
tion trace of a real OpenMP application. With this trace, an accurate
prediction of the execution time is modeled from the architecture of the
machine and sOMP, a SimGrid-based simulator for task-based applica-
tions with data dependencies. These predictions are improved when the
model takes into account memory transfers. We show that good precision
(10% relative error on average) can be obtained for various grains and on
different numbers of cores inside different shared-memory architectures.

Keywords: OpenMP tasks · NUMA architecture · Performance
modeling · Simulation

1 Introduction

Simulation tools are of significant interest in the field of application development.
They allow, among other things, to understand whether an application has been
designed efficiently, and to test limits and sensitivity of hardware characteristics
for components such as CPUs and memory buses. They can be an important
predictive tool for evaluating existing and non-existing systems in procurements.

OpenMP is probably the most commonly used programming language for
shared-memory paradigms in HPC applications. On these architectures, the
increasing number of cores leads to the need for a complex memory hierarchy,
which implies Non-Uniform Memory Access (NUMA) timings from each core
to each memory location. To benefit the most from such a platform, it is thus
not enough that several blocks of operations are made to execute in parallel on
c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 197–211, 2020.
https://doi.org/10.1007/978-3-030-58144-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_13&domain=pdf
http://orcid.org/0000-0003-2425-8359
https://doi.org/10.1007/978-3-030-58144-2_13

198 I. Daoudi et al.

different cores. It is also essential that these blocks of operations are executed on
CPU cores close to the memory node in which the data they access is located.
The placement of data, therefore, has a primary effect on the performance of the
application. This makes simulating task-based applications on shared memory
architectures a challenging endeavor, since these different NUMA-related effects
must be captured accurately to perform a reliable simulation.

This work targets OpenMP applications composed of tasks with data depen-
dencies, such as dense linear algebra routines (Cholesky, QR...). Task-based
applications are indeed increasingly common, but overheads in runtime systems
implementations may limit the applicability of the task model [12]. It is funda-
mentally important to be able to exhibit the precise performance of an OpenMP
task-based application without artifacts from the runtime implementation: in
addition to performance profiling [7,11], simulation is a way to achieve this goal.
In previous works [24,25], we explored the simulation of task-based scheduling
on heterogeneous architectures, which is now used as a reliable tool for schedul-
ing experiments [1]. This work differs in that it targets the complications of
task-based OpenMP programs that use architectures with large core counts.

To retrieve the information necessary to replay and predict an application’s
performance, we developed a tool called TiKKi1 on top of the OMPT API,
that records all profiling events required to construct a task graph. We then
created a simulator named sOMP2, using the SimGrid framework, to address
the problem of predicting the performance of a task-based parallel application
on shared memory architectures. sOMP finely models the platform to simulate
data transfer contentions accurately, and takes data locality into account to
predict the execution time from various scenarios of data placements. Although
SimGrid is designed to simulate distributed memory architectures, we adapted
the possibilities offered by this tool to execute tasks on simulated shared-memory
NUMA platforms. To summarize, this paper presents the following contributions:

1. We introduce TiKKi an OMPT-based tracing tool to extract the high-level
information necessary for the simulation;

2. We introduce a modeling of a NUMA machine using the SimGrid framework;
3. We develop sOMP, an implementation of the simulator that leverages the

S4U API tool from SimGrid;
4. We propose a model to refine the simulations that uses the link parameters

of the simulated platform to model the effects of contention and data access;
5. We show a small relative error of the simulation for various architectures

(Intel and AMD) while taking into account the locality effects of the data.
The simulation itself is found to be much faster than real executions.

2 Related Work

Many simulators have been designed for predicting performance in a variety of
contexts, in order to analyze application behavior. Several simulators have been
1 https://gitlab.inria.fr/openmp/tikki/-/wikis/home.
2 https://gitlab.inria.fr/idaoudi/omps/-/wikis/home.

https://gitlab.inria.fr/openmp/tikki/-/wikis/home
https://gitlab.inria.fr/idaoudi/omps/-/wikis/home

Simulating OpenMP Task-Based Applications 199

developed to study the performance of MPI applications on simulated platforms,
such as BigSim [29], xSim [10], the trace-driven Dimemas tool [13], or MERP-
SYS [6] for performance and energy consumption simulations. Some others are
oriented towards cloud simulation like CloudSim [4] or GreenCloud [18].

Other studies are oriented towards the simulation on specific architectures,
such as the work by Aversa and al. [2] for hybrid MPI/OpenMP applications
on SMP, and task-based applications simulations on multicore processors [15,22,
24,26]. All these studies present approaches with reliable precision, but, as with
Simany [16], no particular memory model is implemented.

Many efforts have been made to study the performance of task-based appli-
cations, whether with modeling NUMA accesses on large compute nodes [8,14],
or with accelerators [25]. Some studies have a similar approach to our work,
whether in the technical sense, like using SimGrid’s components for the simula-
tion of parallel loops with various dynamic loop scheduling techniques [20], or
in the modeling sense, such as simNUMA [19] on multicore machines (achieving
around 30% precision error on LU algorithm) or HLSMN [23] (without consid-
ering task dependencies). But to our knowledge, no currently available simula-
tor allows the prediction of task-based OpenMP applications performances on
NUMA architectures, while taking into account data locality effects. To build
our simulator, it was necessary to develop new tools and models that employ an
extraction process of OMPT traces, but also manage task dependencies, data
locality, and memory access effects.

3 sOMP: Simulating Task-Based OpenMP Applications

Since our goal is to build a simulator for existing OpenMP task-based applica-
tions on multicore NUMA architectures, we will use two tools. First, the TiKKi
tool leverages the OMPT API [9] to record events of a running OpenMP appli-
cation. Secondly, the generated traces are then processed by the sOMP tool to
perform an offline simulation on top of the SimGrid [5] generic engine. For this
work, sOMP extends SimGrid with the modeling of NUMA architectures.

To perform the simulations, tasks and their dependencies are re-computed by
collecting information contained in the post mortem execution trace generated by
TiKKi. We then introduce a communications-based model to take into account
NUMA effects, to produce improved simulations.

3.1 TiKKi: Tracing with OMPT

OMPT [9] is the OpenMP API for performance tools integrated in OpenMP since
its revision 5.0 [3]. OMPT allows developers to instrument tools with trace-based
methodologies.

The libKOMP [28] OpenMP runtime has an embedded trace and monitor-
ing tool, based on the work of de Kergommeaux et al. [17]. The tool, called
TiKKi, was developed using the initial OMPT API [9] available in an older ver-
sion of the LLVM OpenMP runtime with extensions. We have updated it to

200 I. Daoudi et al.

match the OMPT specification of the current standard [3]. TiKKi captures all
events required to construct the program’s task graph, and records them to a
file. It also enriches the recording with performance information. For instance,
task attributes may contain locality information [28], and hardware performance
counters may be registered, in addition to time, within specific events (task cre-
ation, task termination...). Hence, TiKKi can generate several output forms of
execution traces: task graph as a .dot file, Gantt chart as an R script, or a spe-
cific file format for the simulations performed by sOMP. In the current OpenMP
standard, it is impossible to recover the information about data size: we are doing
this explicitly for the moment, but the standard could be improved to expose
this information, the implementation is usually easy.

The structure of the execution trace is a sequence of parallel regions, where
the events of each task are recorded. When TiKKi processes the trace, it gener-
ates a sequence of sOMP input files, one per parallel region. Each of these can
then be simulated as a separate task graph.

3.2 Modeling of NUMA Architectures with SimGrid

SimGrid. [5]. The specific objective of SimGrid is to facilitate research in the
field of programming and running parallel applications on distributed computing
platforms, from a simple network running in a workstation to the computing
grids. It provides the basic functionalities for the simulation of heterogeneous
distributed applications in distributed environments.

The operating principle is as follows: an actor, i.e. an independent stream
of execution in a distributed application, can perform several activities, such as
computations or communications, on a host, representing some physical resource
with computing and networking capabilities. Several actors can communicate,
and all classical synchronization mechanisms such as barriers, semaphores,
mutexes, and conditional variables are provided.

From a platform description point of view, SimGrid provides the building
blocks for a detailed description of each element of a distributed system, such
as the computing hosts mentioned above, routers, links..., but also the rout-
ing on the platform, i.e. which path is taken by communications between two
hosts. These elements have arguments that allow configuration and tuning of
the platform in order to simulate different scenarios.

NUMA Architecture Modeling. While SimGrid is initially designed for
simulating applications running on distributed architectures, we divert its use
to simulate NUMA platforms.

The approach to model these architectures is as follows. The CPU cores are
considered to be computing units interconnected by a network of links. Cores are
thus grouped into NUMA nodes and sockets according to the actual architecture
topology and these groups are interconnected with links to ensure access to the
memory.

The model we consider in this work does not take into account the mem-
ory topology exhaustively. The addition of even more architectural components

Simulating OpenMP Task-Based Applications 201

would result in better precision, but also contribute to increasing the complexity
of the problem and the simulation time. We had to make a compromise between
accuracy and cost of the simulation: we could simulate more architectural ele-
ments, and that would be precise and expensive, or simulate very few elements
which would be inexpensive but imprecise.

Notably, we do not model the L1/L2 cache, because all data sizes considered
in this work exceed L1/L2 cache sizes, and their behavior will thus be caught
already well enough when measuring task execution time without contention.
Therefore, we model a NUMA architecture using elements sketched in Fig. 1a,
and we employ the concepts defined by SimGrid to model these components.

Fig. 1. NUMA machine modeling

Fig. 2. Model using SimGrid components

Modeling with SimGrid. SimGrid offers the possibility of describing a plat-
form with the XML format. Any platform must contain basic essential elements
such as hosts, links, routers, etc. SimGrid requires the explicit declaration of the
routes and links between these components in order to simulate communications
between hosts.

We map the cores of a processor with SimGrid hosts. These represent a com-
puting resource on which actors can run. From there, as depicted in Fig. 2, we

202 I. Daoudi et al.

can model a NUMA node by a group of hosts, each having a link to a backbone-
type link. The latter makes it possible to model the intra-node contention and
connect the group of hosts to a router, which allows communications with other
NUMA nodes. Regarding the memory controller, we chose to model it with a
“fake” host (memory controller host) that does not perform any computation:
this component only receives communications which simulate accesses to the
machine’s memory. Every link and route is referenced by an ID and can be
tuned with parameters such as latency and bandwidth, allowing them to match
the real machine’s characteristics. We will discuss the tuning of those parameters
in Sect. 5.3.

In the end, sOMP provides SimGrid with an assembly of simulated compo-
nents (hosts, links, backbones, routers, routes) which mimics the actual archi-
tecture topology: for instance routes between routers represent real UPI/Infinity
Fabric links. The properties of these components (notably the bandwidth) are
then set to the values obtained on the native system. This allows, with a sim-
ple architecture description, to model different Intel/AMD platforms and obtain
accurately simulated behavior as described in Sect. 5.3. The SimGrid network
model used in this work is the LV08 default model.

3.3 Task-Based Applications Simulation

Here we use two components to model a task-based application: first, only the
task computational time is modeled, then the memory access costs are taken
into account.

Task Execution Simulation. At runtime, we assume that a task mainly exe-
cutes arithmetic instructions interleaved with memory instructions (typically
load/store instructions). Let’s assume that the execution time of a task ti is
decomposed into (ie, we neglect interactions between memory accesses and com-
putations):

Time(ti) = TComputations(ti) + TMemory(ti) (1)

where TComputations(ti) represents the time spent in the sequential execution of
the task ti with data local to the core executing the task. The term TMemory(ti)
represents the penalty due to a remote memory access on a NUMA architecture,
which depends on the data location on the machine as well as the core that
initiates the access. We consider that TComputations(ti) is the execution time that
we collect from a sequential execution, which thus does not suffer from NUMA
effects. This time can also be collected from regression-based models [24].

As a first step, the sOMP model considers that TMemory(ti) = 0. Hence,
we only simulate tasks computation time without any consideration for memory
access and data locality. Such a model is well adapted for computation-bound
applications.

Simulating OpenMP Task-Based Applications 203

Communications-Based Model. When the application is more memory-
bound and is executed on NUMA architectures, the time to perform memory
accesses should be taken into account. Our model considers the set of mem-
ory accesses made by a task, groups them by task operands (e.g. matrix tiles),
and takes into account the machine topology and the capacity of links between
components.

The grouping allows matching with SimGrid’s programming model which
is oriented towards distributed memory platforms: we model the task mem-
ory accesses with data transfers for the task operands, i.e., as SimGrid
communications. Since application tasks usually access to the content of all
operands in an interleaved pattern, we make these communications concurrent
and let SimGrid account for contention on the simulated links.

TMemory(ti), the communications time of the task operands, which allows to
improve the simulation accuracy, can then be written as:

TMemory(ti) =
n−1
max
j=0

TComm(ai,j) (2)

where n is the number of memory accesses, ai,j is the j-th operand of task ti
and TComm(ai,j) the time to transfer ai,j depending on its location and the core
performing task ti.

Moreover, the memory access modes (read, write, or read-write) allows us to
take into account the cost of each communication differently: for read-write type
operations, we double the communication time since these are composed of two
distinguished transfers of the same tile.

To summarize, we express memory accesses to task operands as sets of con-
current SimGrid communications. SimGrid can then take into account the con-
currency between the various communications of all tasks executing at the same
time on the platform, with respect to the network characteristics, as depicted
in Fig. 2. This allows us to model the actual concurrency observed in real plat-
forms [21]. SimGrid can thus determine for each communication how its duration
TComm(ai,j) gets affected by contention. These are then gathered by Eq. (2) into
TMemory(ti) which influences the simulated execution time according to Eq. (1).
All of this is driven by the machine model and the defined latency and band-
width values of the intra and inter-node links (obtaining those values will be
discussed in Sect. 5.2).

4 Implementation

To simulate the execution of task-based applications on the architecture model
presented in Sect. 3.2, we need to develop a scheduling algorithm to manage
task dispatching, execution, and dependencies on SimGrid hosts, with support
of memory accesses for the communications-based model.

4.1 sOMP Architecture

Since we exploit a trace file from a sequential execution of the application, we
first need a parser to extract all the useful pieces of information contained in the

204 I. Daoudi et al.

generated file with the TiKKi tool in .rec format (from GNU Recutils). This file
gives details on the executed tasks and provides their name, submission order,
dependencies, logical CPU number and memory node on which the task was
executed, submission/start/end time, the nature of memory transfers performed
by the task, the data on which these operations happened, and their size.

After parsing the trace file, we proceed with inserting tasks in a submis-
sion queue (FIFO) that the sOMP scheduler handles. The scheduler submits
the tasks for execution by the simulated cores (hosts). The scheduler’s task sub-
mission works according to two constraints: tasks must be ready, i.e., all their
dependencies have been satisfied, and hosts workers must be idle, i.e., they are
not currently executing another task. We use a centralized task queue for now
which is similar to the one performed by a typical OpenMP runtime. Other
scheduling policies can be tested in the future to try to improve the application
performances relating to that field. We do not use the SimDAG (deprecated)
and disk support of Simgrid since they do not allow us to finely control data
transfers and interactions on the memory bus.

On each simulated core, a SimGrid actor (called worker) picks tasks one by
one for simulation. The worker first simulates the memory accesses of the task:
for every operand access, it triggers a message with the corresponding size (in
bytes). The worker then waits for the completion of the transfer of all messages,
which will increase SimGrid’s internal clock, taking into account the latency and
bandwidth of the traversed links and the contention induced on those links by
concurrent accesses. The worker then simulates the task’s execution by advancing
the internal clock of SimGrid by a time equal to the task’s real execution time,
obtained from the TiKKi trace. Once the execution of a task is completed,
the worker is responsible for activating the submission of the successors of the
finished task to the scheduler, if all their dependencies have been satisfied.

4.2 Managing Data Locality

In the communications-based model, we store the NUMA node number on which
each data allocation and initialization task was executed, and thus the NUMA
node on which the data was effectively allocated. Since the other (computation)
tasks will need to access those pieces of data, their NUMA locations are crucial
to properly model the accesses.

When modeling the access to an operand with a communication, we not only
define a payload size corresponding to the size of the operand, but also specify the
source and recipient of the communication. This corresponds to modeling data
accesses according to their location: the communication is performed between
the memory controller host of the NUMA node where the operand was effectively
allocated, and the core host that executes the task. Notably, if the core is in the
NUMA node where storage is assigned, the communication will take place only
on the local backbone, thus modeling the reduced contention.

Simulating OpenMP Task-Based Applications 205

5 Evaluation

The KASTORS [27] benchmark suite has been designed to evaluate the imple-
mentation of the OpenMP dependent task paradigm, introduced as part of the
OpenMP 4.0 specifications. It includes several benchmarks. The experiments
presented here are based on the PLASMA subset of the KASTORS benchmark
suite, which provides three matrix factorization algorithms (Cholesky, LU, QR)
extracted from the PLASMA library [27]. Experiments with the KASTORS
benchmarks were performed on two machines:

– dual-socket Intel Xeon Gold 6240, 24.75MB L3 cache, 36 cores, Cascade-
Lake microarchitecture with 1 NUMA node per socket, and 18 cores per
NUMA node;

– dual-socket AMD EPYC 7452, 128MB L3 cache, 64 cores, AMD Infinity
architecture with 4 NUMA nodes per socket, and 8 cores per NUMA node.

5.1 Methodology

In order to evaluate our simulator performance, we carry out various tests with
the KASTORS benchmarks on the machines presented above. We choose differ-
ent matrix sizes and different tile sizes in order to observe the accuracy of our
simulator when confronted with a variety of scenarios.

To measure the reliability of the simulations by comparing simulation time
(Tsim) with real execution time (Tnative), we do not consider the absolute values
of the metric, but set a metric that defines the precision error of sOMP compared
to native executions: PrecisionError = (Tnative − Tsim)/Tnative. Therefore,
when the precision error is positive, it means that we “under-simulate” the actual
execution time, in other terms our prediction is optimistic. A negative precision
error means that we “over-simulate”, hence a pessimistic prediction.

5.2 Latency and Bandwidth Measurements

To model a NUMA machine, providing the link’s latency and bandwidth cor-
responding to the real values in the architecture is essential. As stated before,
we consider that all of our memory transfers only involve the L3 cache and the
DRAM, since all the representative tile sizes exceed the conventional sizes of
the L1 and L2 caches (respectively around 64 Kb and 256 Kb). Therefore, we
have set data sizes at least equal to the size of L2 cache in our experiments. To
carry out our measurements, we used two benchmarks: BenchIT combined with
x86membench and Intel Memory Latency Checker v3.8 to confirm the results.

The latency and bandwidth measurements inside a NUMA node for a data
size just beyond the size of the L2 cache are attributed to the intra-node links,
while measurements with data sizes just beyond the size of the L3 cache are
attributed to the backbone. For inter-node links, we performed tests to measure
values corresponding to the UPI/Infinity Fabric links latencies/bandwidths for
Intel/AMD simulations: 147 ns/221 ns, and 45 GBps/70 GBps.

206 I. Daoudi et al.

5.3 Results

In order to evaluate the simulator, we carry out tests on dense linear algebra
applications in different data size scenarios and check the sOMP precision error,
both in the case with only task execution modeling, and with the addition of
the communications-based model

Our first tests aim to verify the reliability of the simulator for several tile
sizes. We compare a real execution time to the simulated time for a matrix
with a size of 16384 × 16384 and different tile sizes (512 × 512, 768 × 768, and
1024 × 1024) on the machines presented in Sect. 5.2. We perform tests using a
single core up to using all cores on a node. As presented in Fig. 3(left), on the

-10

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 35

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

Intel Xeon Gold 6240 - Bloc size = 512 x 512

sOMP
sOMP + Communications model

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

AMD EPYC 7452 - Bloc size = 512 x 512

sOMP
sOMP + Communications model

-10

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 35

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

Intel Xeon Gold 6240 - Bloc size = 768 x 768

sOMP
sOMP + Communications model

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

AMD EPYC 7452 - Bloc size = 768 x 768

sOMP
sOMP + Communications model

-10

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 35

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

Intel Xeon Gold 6240 - Bloc size = 1024 x 1024

sOMP
sOMP + Communications model

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

AMD EPYC 7452 - Bloc size = 1024 x 1024

sOMP
sOMP + Communications model

Fig. 3. sOMP simulator accuracy for the Cholesky algorithm using three different bloc
sizes on the two architectures, for the same matrix size 16384× 16384.

Simulating OpenMP Task-Based Applications 207

Intel architecture the variation in the number of cores influences the accuracy of
the simulator regardless of tile size.

On the Intel architecture, we achieve ±5% error of precision on the Cholesky
algorithm when running on a single socket (up to 18 cores) and using the task
execution model only. Additionally using the second socket contributes to an
increase in precision error, especially when approaching full machine usage.

However, we observe that the communications model introduced compensates
for the loss of precision, notably when the majority of the cores of the two sockets
are used. This is highlighted in tests with AMD architecture (Fig. 3(right)),
where the communication model provides excellent precision compared to task
execution alone, especially for fine-grain simulations —under 10% error up to
32 cores and less than 20% at full node in all configurations—. The difference
in precision between the two machines is due to the nature of each architecture:
Intel with a single NUMA domain per socket generates less memory effects than
the four NUMA domains socket AMD.

The simulator’s behavior, when coupled with the communications model,
allows us to confirm the reliability of the developed NUMA modeling, and also,
observe the impact of memory-related effects on the execution of the application
when disabling communications. In algorithms where tasks are handling fewer
data, sOMP default model allows us to obtain better accuracy, as depicted in
Fig. 4 for the LU algorithm. The tile size is fixed (768× 768) and two matrices
of 8192 and 16384 are simulated. For the task execution model the error of
precision remains lower than 15 model based on communications, it is possible to
efficiently improve the simulations even for a large number of cores with an error
contained in the interval [−5%, 5%] regardless of the problem size. Therefore,
we can achieve better overall precision on the LU algorithm compared to other
simulators such as simNUMA (30% average error).

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

AMD EPYC 7452 - Matrix size = 8192

sOMP
sOMP + Communications model

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

AMD EPYC 7452 - Matrix size = 16384

sOMP
sOMP + Communications model

Fig. 4. sOMP simulator accuracy for the LU algorithm using two different matrix sizes
and a tile size of 768× 768 on AMD EPYC 7452

For the QR algorithm, the precision is influenced widely by the size of the
problem: in Fig. 5, we fix the tile size (768×768) and vary the size of the matrix.
In the first case (matrix size of 8192×8192 and a tile size of 768×768), the error

208 I. Daoudi et al.

remains below 10% on average. However, for the matrix size 16384×16384 (four
times bigger) the precision error grows linearly from −5% to about 37%, with
an average of 21%. We also observe that the communications model contributes
less to improving accuracy compared with tests for the Cholesky algorithm. This
is related to the nature of the task graph of the QR algorithm, which is slightly
different: first, the arithmetic intensity of the kernels is more significant, so data
accesses have less impact on the execution time. Next, QR kernels handle more
data per task, some of which are temporary, generating significant cache-related
effects that are not supported by the current version of the simulator and will
be addressed in further work.

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

AMD EPYC 7452 - Matrix size = 8192 x 8192

sOMP
sOMP + Communications model

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

P
re

ci
si

on
 e

rr
or

 (
%

)

Number of cores

AMD EPYC 7452 - Matrix size = 16384 x 16384

sOMP
sOMP + Communications model

Fig. 5. sOMP simulator accuracy for the QR algorithm using two different matrix sizes
and a tile size of 768× 768 on AMD EPYC 7452

Finally, simulation with sOMP provides considerable time savings compared
to actual execution. The simulation time is primarily linked to the number of
tasks and the number of cores that emit communications at the same time. At
the full scale (all cores) and fine grain blocking (matrix size of 16384 × 16384
and tile size of 512× 512) and with the default model, simulations are typically
30× faster. With the communications model, they are typically only 5× faster
on the Intel system and 2.5× faster on the AMD system which has twice as
many cores emitting communications at the same time. The overhead created
by the communications-based model highlights the concerns mentioned earlier
in adding too many architectural elements. Furthermore, SimGrid uses only one
core, so several simulations can be run simultaneously on a multicore laptop.

6 Conclusion

This work focuses on simulating OpenMP task-based applications on shared
memory architectures. On such structures, taking memory effects into account
is crucial to obtain accurate simulations of linear algebra applications. Modeling
the execution time of the tasks only is not sufficient.

We introduced a model to simulate the effects of memory accesses by lever-
aging the communications features offered by the SimGrid framework. Although

Simulating OpenMP Task-Based Applications 209

SimGrid is oriented towards simulations of distributed architectures, we showed
that we could divert its use to model a shared-memory machine, and to build
a simulator for linear algebra applications based on parallel tasks with data
dependencies, offering a good trade-off between the cost and the accuracy of the
simulations.

We showed that the communications model consistently reduces the precision
error, regardless of the number of cores or the architectures. Within a processor,
the simulator initially obtains an average relative error of around 15%; the com-
munications model lowers this to less than 5% for the LU algorithm. Therefore,
we have shown that it is necessary to consider memory access metrics in the
architecture model to reduce precision errors.

Moreover, we observed that variations in the number of cores and granularity
deeply impact simulation accuracy within a socket. Two effects are involved: con-
current memory access contention, and data movements between caches. Even
if our machine model does not capture the detailed connectivity between the
cores, we were able to simulate the contention delays accurately. However, we
do not yet model data movements between caches, as depicted in results with
the QR algorithm. Capturing this second effect is the subject of on-going work.
We can also take into account more architecture components and simulate other
applications such as SpMVM, BiCGStab... In the longer run, it will be useful to
combine this work with simulations of MPI and GPUs to achieve the simulation
of hybrid MPI/OpenMP applications on heterogeneous architectures.

Acknowledgments. This work is partially supported by the Hac Specis INRIA Project
Lab. Experiments presented in this paper were carried out using the PlaFRIM experi-
mental testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux,
Bordeaux INP and Conseil Régional d’Aquitaine (see https://www.plafrim.fr/).

References

1. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? A case study on cholesky factorization. In: IPDPS 2016. Proceedings of the
30th IEEE International Parallel & Distributed Processing Symposium, IPDPS
2016, Chicago, IL, United States. IEEE (May 2016)

2. Aversa, R., Di Martino, B., Rak, M., Venticinque, S., Villano, U.: Performance
prediction through simulation of a hybrid MPI/OPENMP application. Parallel
Comput. 31(10), 1013–1033 (2005). openMP

3. Board, O.A.R.: Openmp application programming interface - version 5.0. https://
www.openmp.org (2018)

4. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software: Pract. Exp. 41(1),
23–50 (2011)

5. Casanova, H.: Simgrid: a toolkit for the simulation of application scheduling. In:
Proceedings First IEEE/ACM International Symposium on Cluster Computing
and the Grid, pp. 430–437 (2001)

https://www.plafrim.fr/
https://www.openmp.org
https://www.openmp.org

210 I. Daoudi et al.

6. Czarnul, P., et al.: MERPSYS: an environment for simulation of parallel application
execution on large scale HPC systems. Simul. Model. Pract. Theory 77, 124–140
(2017)

7. Daumen, A., Carribault, P., Trahay, F., Thomas, G.: ScalOMP: analyzing the
scalability of OpenMP applications. In: Fan, X., de Supinski, B.R., Sinnen, O.,
Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 36–49. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28596-8 3

8. Denoyelle, N., Goglin, B., Ilic, A., Jeannot, E., Sousa, L.: Modeling non-uniform
memory access on large compute nodes with the cache-aware roofline model. IEEE
Trans. Parallel Distrib. Syst. 30(6), 1374–1389 (2019)

9. Eichenberger, A.E., et al.: OMPT: An OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 13

10. Engelmann, C.: Scaling to a million cores and beyond: using light-weight simulation
to understand the challenges ahead on the road to exascale. Fut. Gener. Comput.
Syst. 30, 59–65 (2014)., special Issue on Extreme Scale Parallel Architectures and
Systems, Cryptography in Cloud Computing and Recent Advances in Parallel and
Distributed Systems, ICPADS 2012 Selected Papers

11. Feld, C., Convent, S., Hermanns, M.-A., Protze, J., Geimer, M., Mohr, B.: Score-P
and OMPT: navigating the perils of callback-driven parallel runtime introspection.
In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019.
LNCS, vol. 11718, pp. 21–35. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-28596-8 2

12. Gautier, T., Perez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3 14

13. Girona, S., Labarta, J.: Sensitivity of performance prediction of message pass-
ing programs. J. Supercomput. 17, 291–298 (2000). https://doi.org/10.1023/A:
1026567408307

14. Haugen, B.: Performance analysis and modeling of task-based runtimes. Ph.D.
thesis (2016)

15. Haugen, B., Kurzak, J., YarKhan, A., Luszczek, P., Dongarra, J.: Parallel simula-
tion of superscalar scheduling. In: 2014 43rd International Conference on Parallel
Processing, pp. 121–130 (2014)

16. Heinrich, F.: Modeling, Prediction and Optimization of Energy Consumption of
MPI Applications using SimGrid. Theses, Université Grenoble Alpes, May 2019

17. de Kergommeaux, J.C., Guilloud, C., de Oliveira Stein, B.: Flexible performance
debugging of parallel and distributed applications. In: Kosch, H., Böszörményi,
L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 38–46. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45209-6 9

18. Dzmitry, K., Pascal, B., Samee, K.U.: GreenCloud: a packet-level simulator of
energy-aware cloud computing data centers. J. Supercomput. 62, 1263–1283 (2012)

19. Liu, Y., Zhu, Y., Li, X., Ni, Z., Liu, T., Chen, Y., Wu, J.: SimNUMA: simulat-
ing NUMA-architecture multiprocessor systems efficiently. In: 2013 International
Conference on Parallel and Distributed Systems, pp. 341–348, December 2013

20. Mohammed, A., Eleliemy, A., Ciorba, F.M., Kasielke, F., Banicescu, I.: Experimen-
tal verification and analysis of dynamic loop scheduling in scientific applications.
In: 2018 17th International Symposium on Parallel and Distributed Computing
(ISPDC), pp. 141–148. IEEE (2018)

https://doi.org/10.1007/978-3-030-28596-8_3
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1007/978-3-030-28596-8_2
https://doi.org/10.1007/978-3-030-28596-8_2
https://doi.org/10.1007/978-3-319-98521-3_14
https://doi.org/10.1023/A:1026567408307
https://doi.org/10.1023/A:1026567408307
https://doi.org/10.1007/978-3-540-45209-6_9

Simulating OpenMP Task-Based Applications 211

21. Porterfield, A., Fowler, R., Mandal, A., Lim, M.Y.: Empirical evaluation of multi-
core memory concurrency (2009)

22. Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., Valero, M.: Trace-driven
simulation of multithreaded applications. In: IEEE International Symposium on
Performance Analysis of Systems and Software (IEEE ISPASS), pp. 87–96 (2011)

23. Slimane, M., Sekhri, L.: HLSMN: high level multicore NUMA simulator. Elec-
trotehnica Electronica, Automatica 65(3), 170–175 (2017)

24. Stanisic, L., et al.: Fast and accurate simulation of multithreaded sparse linear
algebra solvers. In: The 21st IEEE International Conference on Parallel and Dis-
tributed Systems. Melbourne, Australia, December 2015

25. Stanisic, L., Thibault, S., Legrand, A., Videau, B., Méhaut, J.F.: Faithful per-
formance prediction of a dynamic task-based runtime system for heterogeneous
multi-core architectures. Concur. Comput. Pract. Exper. 27(16), 4075–4090 (2015)

26. Tao, J., Schulz, M., Karl, W.: Simulation as a tool for optimizing memory accesses
on NUMA machines. Perform. Eval. 60(1–4), 31–50 (2005)

27. Virouleau, P., et al.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11454-5 2

28. Virouleau, P., Roussel, A., Broquedis, F., Gautier, T., Rastello, F., Gratien, J.-M.:
Description, implementation and evaluation of an affinity clause for task directives.
In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS,
vol. 9903, pp. 61–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45550-1 5

29. Zheng, G., Kakulapati, G., Kalé, L.V.: BigSim: a parallel simulator for performance
prediction of extremely large parallel machines. In: 18th International Parallel and
Distributed Processing Symposium 2004. Proceedings, p. 78. IEEE (2004)

https://doi.org/10.1007/978-3-319-11454-5_2
https://doi.org/10.1007/978-3-319-45550-1_5
https://doi.org/10.1007/978-3-319-45550-1_5

Virtflex: Automatic Adaptation
to NUMA Topology Change
for OpenMP Applications

Runhua Zhang(B), Alan L. Cox, and Scott Rixner

Rice University, Houston, TX 77005, USA
{rz18,alc,rixner}@rice.edu

Abstract. Advances in PCI-Express and optical interconnects are mak-
ing “rack-scale computers” possible, but these computers will undoubt-
edly exhibit Non-Uniform Memory Access (NUMA) latencies. Ideally,
a hypervisor for rack-scale computers should be able to dynamically
reconfigure a virtual machine’s processing and memory resources, i.e., its
NUMA topology, to satisfy each application’s evolving demands. Unfor-
tunately, current hypervisors lack support for such dynamic reconfigu-
ration. To that end, this paper introduces Virtflex, a multilayered sys-
tem for enabling unmodified OpenMP applications to adapt automat-
ically to NUMA topology changes. Virtflex provides a novel NUMA
page placement reset mechanism within the guest OS and a novel
NUMA-aware superpage ballooning mechanism that spans the guest OS-
hypervisor boundary. The evaluation shows that Virtflex enables appli-
cations to adapt efficiently to NUMA topology changes. For example,
adding resources incurs an average runtime overhead of only 7.27%.

Keywords: Virtualization · NUMA · OpenMP

1 Introduction

Advances in PCI-Express and optical interconnect technologies are making it
possible to consider the construction of “rack-scale computers”, where the whole
rack can be considered a single computer [13]. When communication latency
is low enough (and bandwidth is high enough), it becomes practical to build
disaggregated servers in which there are pools of processors, memory, and I/O
devices within the rack that can be carved up as necessary to suit the demands
of each application. Nonetheless, such rack-scale computers will undoubtedly
exhibit Non-Uniform Memory Access (NUMA) latencies [3].

In principle, a machine virtualization system, like Xen or VMware ESXi
should be ideal for flexibly allocating a rack’s resources among its users’ appli-
cations, while providing stronger isolation than container-based systems, like
Docker. In particular, a hypervisor for rack-scale computers should make it pos-
sible to dynamically construct or reconfigure high-performance virtual machines

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 212–227, 2020.
https://doi.org/10.1007/978-3-030-58144-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_14

Virtflex 213

that provide each application with the appropriate processing, memory, and
I/O resources as the application’s requirements evolve over time. Unfortunately,
current hypervisors provide inadequate support for NUMA architectures. In par-
ticular, they do not adequately support the dynamic reconfiguration of a virtual
machine’s NUMA topology, i.e., its processing and memory resources [1,2,7].

This paper introduces Virtflex, a multilayered system for enabling unmodi-
fied OpenMP applications to adapt automatically to NUMA topology changes.
Specifically, Virtflex provides synergistic enhancements to the GNU OpenMP
runtime, the Linux guest operating system (OS), and the Xen hypervisor that
enable the OpenMP runtime to recognize the addition or removal of processing
and memory resources from the underlying virtual machine (VM) and adapt
thread and memory page placement to these changes. These enhancements
include a novel NUMA page placement reset mechanism within the guest OS
and a novel NUMA-aware superpage ballooning mechanism that spans the guest
OS-hypervisor boundary.

To evaluate the efficacy and overhead of Virtflex, this paper presents an
analysis of its impact on the execution of a variety of well-known, unmodified
OpenMP applications from the HPC Challenge and NPB 3.3.1 benchmark suites.
While these applications do not have changing resource requirements over the
course of their execution, they enable a clear evaluation of the impact of topology
change on performance. The innovations of Virtflex are effective on both tradi-
tional NUMA architectures and rack-scale computers, so the applications are
evaluated on a traditional NUMA architecture. This makes it easier to under-
stand the performance characteristics of the overall system by using familiar
hardware.

The rest of this paper is organized as follows. Section 2 provides background.
Section 3 describes the design and implementation of Virtflex. Section 4 evaluates
the efficacy and overhead of Virtflex. Section 5 discusses related work, and Sect. 6
concludes the paper.

2 Background

2.1 Virtualization

Virtualization is the technique that allows multiple tenants to use one physical
machine for resource consolidation. In hypervisor-based virtualization, the privi-
leged hypervisor controls access to the physical hardware resources and manages
the virtual machines. Virtual machines run with full-blown operating systems
and share the hardware resources of the physical machine.

A virtual CPU (vCPU) represents a period of time a virtual machine can
run on a physical CPU core. The hypervisor schedules vCPUs to time-share
physical cores just like processes are scheduled on CPUs in operating systems.
vCPU can also be scheduled to different CPU cores if necessary. Xen and Linux
allow hot-add or hot-remove vCPUs of a virtual machine, which increases the
flexibility of vCPU furthermore.

214 R. Zhang et al.

Memory virtualization is accomplished by adding a layer of address trans-
lation. Guests cannot access machine physical addresses directly for isolation
and security reasons. Instead, virtual addresses in the guests are translated into
guest physical addresses first, then another page table (the nested page table
in AMD processors or the extended page table in Intel processors) is used to
translate the guest physical address into machine physical addresses. The hyper-
visor has complete control of the nested/extended page table. When a page fault
occurs in the guest, the hardware page table walker performs a 2-dimensional
page walk, walking two page tables at once. And the guest virtual address to
machine physical address translation is cached in the TLB.

2.2 Linux NUMA Support Limitations

Linux exposes NUMA policies to user applications through libnuma. For exam-
ple, applications can choose to use a “first-touch” policy, where memory is allo-
cated on the NUMA node in which the first accessing thread runs, or “inter-
leaved”, where memory is allocated across all NUMA nodes in a round-robin
fashion. Selecting the appropriate allocation policy can boost the performance
of memory-intensive applications by up to 50%.

Unfortunately, the libnuma interface assumes a static NUMA topology. It
provides functions for placing memory and threads on specific nodes. When the
topology can change, this interface is not only ineffective, but can be incorrect,
as the nodes that memory and threads are placed on can disappear.

Linux also provides autoNUMA, which will automatically migrate pages
across NUMA nodes in an attempt to achieve better performance. AutoNUMA
periodically unmaps pages in an application’s address space and uses the ensu-
ing soft page faults to collect statistics about local and remote accesses. When
remote accesses happen twice in a row to a page, autoNUMA will migrate that
page to the node that made the remote accesses. AutoNUMA is turned on by
default in Linux.

While autoNUMA does not necessarily assume a static NUMA topology, it
is designed for the case where most of the memory pages are already in the
right place. When the topology changes, autoNUMA can take a long time to
adapt. First, it takes time for autoNUMA to scan the entire address space of
an application (tens of minutes for an application with a large working set).
Second, the statistics collected by autoNUMA will need to be invalidated upon
a change in topology, forcing it to restart its accounting mechanisms, further
delaying reconfiguration upon a topology change.

Currently, virtualization systems, including Xen, Linux KVM, and ESXi, all
handle NUMA architectures in one of two ways. In one approach, the hypervisor
simply hides the underlying NUMA topology from the guests and provides the
guests with the illusion of uniform memory access (UMA) latency. Any resource
exchange (processors and memory) between the hypervisor and the guests is
oblivious to the NUMA topology. Moreover, this approach prevents applica-
tions from doing any NUMA-related optimization. In the other approach, Xen’s
vNUMA, the hypervisor places a guest within a static partition of the NUMA

Virtflex 215

topology, and exposes this subset of the NUMA topology to the guest as a vir-
tual NUMA topology. On the upside, applications and the guest OS are able to
perform NUMA optimizations. However, the downside is that guests are locked
within this subset of the NUMA topology. Moreover, any resource exchange
between a guest and the hypervisor will potentially make the static vNUMA
topology inaccurate, invalidating NUMA-related optimizations by applications
or the OS.

In virtualized systems, memory ballooning is a mechanism that enables mem-
ory exchange between the hypervisor and the guest. It requires the balloon driver
running in the guest OS to cooperate with the hypervisor. To reclaim memory
from the guest, the hypervisor instructs the guest’s balloon driver to “inflate”
the balloon by allocating memory from the guest operating system. The balloon
driver then transfers this memory to the hypervisor and the hypervisor unmaps
it from the guest. To restore memory to the guest, the hypervisor instructs the
guest’s balloon driver to “deflate” the balloon by freeing memory that the hyper-
visor first transfers back to the balloon driver (and maps to the guest). Note that
the memory that the hypervisor gives back to the balloon driver is unlikely to
be the same physical memory that it originally took.

Ballooning is a simple, yet effective, mechanism often used in the context
of memory overcommitment. However, there are some challenges when using
ballooning in NUMA systems, especially when the NUMA topology can change.
First, the current implementation of Linux’s balloon driver for Xen is not NUMA
aware; it treats all memory as one uniform pool. Ballooning is known to often
disturb a guest’s NUMA topology [9], so it is therefore recommended to turn
off ballooning when vNUMA is used. Second, ballooning is slow, exchanging
memory at around 1 GB/s. Finally, ballooning splits nested page table entries.
On creating a guest, Xen tries to use 1 GB and 2 MB page mappings in the
nested page table instead of 4 KB mappings to reduce the cost of guest physical
to machine physical address translation [6]. But ballooning will split the large
pages into 4 KB pages.

3 Virtflex Design and Implementation

Virtflex operates at three levels: the hypervisor, the guest OS, and the applica-
tion’s runtime library.

3.1 Hypervisor-Guest OS Boundary

In Virtflex, when the hypervisor decides to change the topology of a guest, the
hypervisor communicates this information to the guest through Xenstore. The
hypervisor changes the available guest memory on each node of a guest and sets
a topology change indicator in Xenstore. vCPUs are hot-added to/removed from
the guest accordingly. If this is a node de-population, the balloon driver in the
guest OS inflates the balloon on nodes that are being de-populated and issues a
new memory migration hypercall to migrate the non-reclaimable memory of that

216 R. Zhang et al.

node to a remaining node. Note that non-reclaimable memory is memory that
the balloon driver cannot allocate on the node, since it is in use by the kernel. If
this is a node population, the balloon driver in the guest first uses the hypercall
to migrate non-reclaimable memory back to the correct physical location, then
deflates the balloon, making the rest of the memory available to the guest.

0 10 20 30
0

50

100

150

200

Memory size (GB)

Ti
m

e(
s)

2M_dec
2M_inc
4K_dec
4K_inc

Fig. 1. Ballooning performance 4K/2 M

NUMA-awareness is vital for ballooning to be used to change the guest’s
NUMA topology. NUMA-aware ballooning requires the hypervisor to have con-
trol over the available memory with per-node granularity instead of per-VM
granularity. Virtflex’s balloon driver separates the management of each NUMA
node by having one balloon for each NUMA node, which allows Virtflex to guar-
antee that pages exchanged by the guest and hypervisor are from the same node.
This prevents the balloon driver from disrupting the guest’s NUMA topology.

To use ballooning to achieve rapid topology change, it must be possible to
quickly exchange memory. Virtflex modifies the Xen balloon driver to operate
on 2 MB regions instead of individual 4KB pages to improve ballooning perfor-
mance. There have been previous attempts to implement superpage ballooning
in KVM and ESXi to improve performance. Hu [12] proposed a hugepage bal-
looning mechanism in KVM, changing the ballooning granularity from 4 KB to
2 MB. VMware similarly has attempted to change the ballooning granularity [4].
However, neither of these are NUMA-aware.

The main bottleneck of ballooning in Xen is the hypervisor’s updates to
4 KB granularity nested page table entries. Virtflex modifies the nested page
table management in Xen to operate on larger pages. This reduces the number of
nested page table entries Xen has to work on by a factor of 512. Using larger pages
also reduces memory allocation/deallocation overheads, the number of guest
machine frame numbers that need to be exchanged between the guest OS and
hypervisor, and the number of hypercalls guests have to make. Together, these
large page ballooning optimizations yield more than a ten-fold improvement in
ballooning performance in Xen.

Figure 1 shows the performance comparison between Virtflex’s superpage bal-
looning and regular 4 KB ballooning. In our experiments, Virtflex’s superpage

Virtflex 217

ballooning outperforms regular 4 KB ballooning by 33.4x to 39.1x for decrease
reservation and 13.4x to 22.3x for increase reservation. Our ballooning mecha-
nism does support 1 GB ballooning granularity in the hypervisor. However, due
to restrictions on large memory allocations in Linux, Virtflex’s balloon driver in
Linux can only use 2 MB superpages for ballooning.

When the NUMA topology changes, entire NUMA nodes are added or
removed. Memory ballooning can never entirely remove a complete NUMA node.
Linux stores unreclaimable memory in every node. Experiments reveal that
Linux stores around 100 MB of such unreclaimable memory: around 64 MB is
used for storing the node’s struct page’s, around 15 MB is used for the slab
allocator, and there is a small amount of free memory that is unreclaimable
because of fragmentation.

Rather than making intrusive modifications to the Linux kernel, Virtflex
migrates this unreclaimable guest kernel memory to alternate nodes. The mem-
ory is migrated via the nested page table. Once the balloon driver balloons the
target node down to the point where only unreclaimable memory remains, the
guest passes the guest’s physical memory range of this node to the hypervisor
through a hypercall. After that, the hypervisor scans the corresponding range
in the nested page table in two passes.

In the first pass, the hypervisor write-protects any valid leaf entries in that
range. The hypervisor also encodes a special migration type for those entries.
Write-protection makes any page fault from the guest on this range trap in
the hypervisor. The hypervisor’s page fault handler recognizes such faults and
waits for the migration to complete before resuming. In the second pass, the
hypervisor allocates pages from the destination node, copies the content from
the old pages to the new pages and updates the nested page table to reflect
the change. After the update to the page table entry, the hypervisor signals the
migration’s completion to any page fault handler that is waiting. Finally, Xen
frees the old pages.

After the kernel memory migration, guests are left with a minimal node
that has all of its CPUs disabled by the hypervisor and a small amount of
unreclaimable memory. This allows Linux to continue to operate unmodified.
When the hypervisor wants to re-populate such a node, it does so in the reverse
order. The hypervisor first moves the remaining memory of that node back to
the right place. Then ballooning populates the remaining memory of the node.
Finally, all the CPUs from the node are enabled again by the hypervisor.

One issue with this strategy is dealing with pages that are shared between
the hypervisor and the guest. In particular, there are two shared pages per vCPU
that are used to deliver interrupts. After those pages are allocated at boot time,
the guest’s physical frame numbers are passed to the hypervisor. The references
to these pages, and other shared pages are potentially scattered throughout
the hypervisor. Virtflex simply skips all shared pages for correctness. A better
solution would be to restructure the Xen hypervisor to centrally manage all
shared pages so that access to them can easily be restricted during migration.

218 R. Zhang et al.

3.2 Guest OS-Application Boundary

After the hypervisor changes the topology of a guest, applications running in that
guest have to adapt to the new topology to take advantage of the added resources
or minimize the impact of the lost resources. Specifically, applications have to
redistribute their threads and memory accordingly. Virtflex introduces a page
placement reset system call that simplifies applications’ memory adaptation.

To adapt to the topology change, applications have to know when a topology
change occurs. Virtflex provides a simple Linux proc file system interface that is
used to notify applications of NUMA topology changes. With this mechanism,
it is up to applications to decide when to adapt.

Virtflex modifies the OpenMP library to watch for topology changes and
reconfigure applications, as necessary. OpenMP applications often have paral-
lel sections interleaved with serial sections. Before launching a team of threads
for each parallel section, the runtime checks for topology change. If the topol-
ogy has changed, the OpenMP runtime recalculates the number of threads to
be launched and reassigns thread affinity from the OMP PLACES list accord-
ingly if necessary. After the new team of threads is ready, OpenMP issues the
memory reset system call before launching those threads. Around 200 lines of
code in total are modified for the GCC 7.3.0 implementation of OpenMP to
work with Virtflex. And we expect the same amount of work for integrating
Virtflex to other OpenMP implementations like LLVM. With these changes, any
application written in OpenMP can adapt to topology change automatically.

Thread adaptation for OpenMP applications is achieved by using the OMP
DYNAMIC directive in the GNU OpenMP implementation. OMP DYNAMIC
allows the OpenMP runtime to adjust the number of OpenMP threads to the
number of available cores on the fly. As for memory layout adaptation, Virtflex
introduces a page placement reset system call that enables applications to adapt
their memory layout to a new topology. Depending on the original policy of a
memory region, Virtflex takes two possible actions, next-touch and re-interleave,
to redistribute memory. For memory regions that use the default first-touch
policy, next-touch is used; while for memory regions that use the interleave
policy, re-interleave is used.

There are three possible ways to set NUMA placement traits for an OpenMP
application, the first way is to use Linux’s default first-touch policy; the second
way is via administrator tools like numactl; the third way will be introduced by
OpenMP 5.0, using custom allocators. Custom allocators can define the “parti-
tion” trait for the placement of allocated memory. Specifically, users can specify
“nearest” to place memory in the nearest storage location (or NUMA node) to
the thread that requested the allocation; “blocked” partitions memory into same
size parts with one part on each of the NUMA nodes; “interleaved” interleaves
memory to NUMA nodes; “environment” defers the placement decision to be
made during execution.

Regardless of how NUMA placement is set in the user-space, these traits
are/will be reflected by setting NUMA policies of memory regions in the kernel
space. Since Virtflex’s memory reset operates at the kernel level, Virtflex is/will

Virtflex 219

be able to recognize those NUMA placement traits and take next-touch or re-
interleave actions accordingly.

Similar to Linux’s first-touch policy, next-touch uses thread accesses to deter-
mine on which node a memory page is placed. It protects all of the page table
entries within the application’s address space. When a page fault occurs, the
handler determines whether the access is remote or local by comparing the cur-
rent thread’s node with the node where the page resides. For a local access, the
page fault handler simply removes the protection and resumes the access. For a
remote access, the page fault handler migrates the page to the node where the
access came from. This works for any memory regions that are accessed by a
single thread, including thread local storage.

4-n
ode b

as
eli

ne

nex
t-to

uch

au
toNUMA

2-n
ode b

as
eli

ne
0

50

100

150

200

MG

Ru
nt

im
e(

s)

4-n
ode b

as
eli

ne

nex
t-to

uch

au
toNUMA

2-n
ode b

as
eli

ne
0

500

1000

1500

2000

CG

Ru
nt

im
e(

s)

Fig. 2. Next-touch vs. baseline runtimes

Figure 2 shows the comparison between next-touch and autoNUMA in terms
of the speed of topology change adaptation. For autoNUMA and next-touch
results, the CPUs on nodes 2 and 3 are enabled after applications initialize their
memory on nodes 0 and 1. This creates a fictitious node-expansion topology
change. The OpenMP runtime adjusts the number of threads to all logical cores
available (56 threads in this case), and applications use autoNUMA or next-
touch (MG and CG are first-touch applications and re-interleave is not included
in this experiment.) to adapt their memory layouts. The adaptation overhead
for next-touch is 10.74% and 0.97% for the NPB MG.D and CG.D applica-
tions, respectively. While for autoNUMA this adaptation overhead is 63.68%
and 32.18%, respectively.

AutoNUMA adapts to topology changes much slower because autoNUMA
is designed for the case where most of the memory pages are in the correct
place. For the default setting, autoNUMA only scans 256 MB of application
memory every scan period (each scan period ranges from 1 s to 60 s). That means
for MG.D (the total amount of memory touched during execution is around
26.5 GB), it takes at least 106 s to scan the whole address space. And since
autoNUMA requires two remote accesses in a row to migrate a page, the actual
adaptation time doubles the scanning time. Tuning the scanning rate to be more

220 R. Zhang et al.

aggressive may shorten the adaptation time but with the cost of larger overhead
for handling page faults between topology changes.

In contrast, instead of scanning an application’s address space gradually,
next-touch unmaps the entire address space at once and does not require
repeated accesses to trigger migration. Thus, pages can be migrated as soon
as the first remote access occurs after a topology change.

Some memory regions that are accessed by multiple threads need to be inter-
leaved to avoid a bandwidth bottleneck. For these memory regions, instead of
using the fault-driven next-touch, Virtflex uses re-interleave, which redistributes
the memory pages across the nodes in the new topology. While next-touch needs
to temporarily protect the page table entries to guide where pages should be
migrated to, re-interleave can place pages immediately in the correct nodes deter-
ministically without waiting for page faults.

Fig. 3. Events timeline for end-to-end test

Virtflex provides two versions of the re-interleave policy: a serialized version
that uses the thread that makes the re-interleave syscall to re-interleave pages,
and a parallel version that uses multiple kernel threads on different NUMA nodes
to achieve faster re-interleaving. Virtflex also uses some heuristics to reduce inter-
connect traffic in the parallel version. In particular, it avoids assigning remote
nodes to migrate local pages. While the parallel version re-interleaves memory
faster, it will slow down other applications running in the guest because of its
CPU and memory bandwidth consumption.

Virtflex provides applications with a simple topology change notification
interface and a page placement reset system call to reallocate memory across
the new topology. The page placement reset system call takes different actions,
namely, next-touch or re-interleave, according to the memory regions’ original
placement policies. However, for OpenMP applications, the application does not
need to be aware of any of this, as it is completely handled by the OpenMP
runtime library.

3.3 End-to-End Operation

Figure 3 shows the series of events that takes place in Virtflex for node pop-
ulation. First, Xen initiates a topology change by writing new node targets in
Xenstore and setting the topology change indicator. Note that this topology

Virtflex 221

change would be triggered by control software running in Domain 0 of Xen. The
control software could choose to initiate a topology change based upon infor-
mation about the system—including, but not limited to, node utilization, new
guests starting, or existing guests stopping—and resource policies—including,
but not limited to, information about guest priorities and desired resources.

Once the control software initiates a topology change, the balloon driver
in the guest is woken up. The balloon driver first kicks off the guest kernel
memory migration, migrating the unreclaimable memory of an unpopulated node
to its correct physical location. Afterward, the balloon driver reacquires the
remaining memory from the hypervisor. It updates the topology version once
ballooning and kernel memory migration have finished. After applications realize
the topology has changed, the OpenMP runtime redistributes the threads and
initiates the page placement reset. Pages are migrated to the correct place during
the execution of the next parallel section. Note that the OpenMP runtime system
only checks for topology changes during serial sections. To give a quantitative
sense of the timing of these events, the events in Fig. 3 are annotated with
timestamps (system uptime, shown in brackets) from an execution of CG.D.

4 Evaluation

This section shows the end-to-end effects of combining the hypervisor, guest OS,
and runtime adaptation mechanisms when a NUMA topology change occurs.
The results show that Virtflex is able to adapt to topology changes rapidly, close
to the ideal case.

Experiments were conducted on an AMD EPYC 7551P-based machine run-
ning Xen 4.11 and Linux 4.18. Internally, this chip is organized as 4 NUMA
nodes with 8 processor cores (16 threads) each. Each node has 2 2666 MHz
DDR4 channels with 16 GB of memory; each memory channel has a max band-
width of 21.325 GB/s. The four NUMA nodes are fully connected by AMD’s
Infinity Fabric, which has a bidirectional bandwidth of 42.6 GB/s over each link.
Remote accesses take about 1.6 times longer than local accesses.

One hardware thread on each NUMA node was reserved for Xen’s Dom0.
All of the 4-node VMs had 56 vCPUs and the 2-node VMs had 28 vCPUs. For
the bare-metal experiments, all 64 hardware threads on the machine were used.
In all cases, the number of threads for the application was set to the number of
vCPUs.

The following OpenMP applications were evaluated: NPB 3.3.1 class C and
D benchmarks with runtimes greater than 10 s and memory usage less than
our machine’s total physical memory size, and HPC Challenge’s RandomAccess
(“GUPS”). While most NPB benchmarks perform well with first-touch place-
ment, GUPS performs best with interleaved placement. To demonstrate the gen-
erality of Virtflex’s mechanisms, two non-OpenMP applications were modified
and evaluated, fluidanimate and streamcluster, from Parsec 3.0. These two appli-
cations performed best with interleaved placement.

For the expansion of the guest’s NUMA topology, VMs were created with 4
NUMA nodes, 2 of the nodes are populated while the other two are unpopulated

222 R. Zhang et al.

(the majority of the memory is ballooned out and vCPUs are hot-removed).
Applications start running within 2 nodes and later Xen populates the other 2
nodes while the application is running. For the reduction of the guest’s topology,
applications start running in a fully populated 4 node VM, later two of the nodes
are de-populated.

The result of the topology expansion case is shown in Fig. 4. The x-axis shows
during which iteration the topology change occurs and the y-axis shows the
runtime of the application. Note that the x-axis is showing the time at which
the application recognizes the topology change, which is after the hypervisor
initiates the change. The two horizontal lines show the performance with fixed
2-node and 4-node topologies. The ideal case is one in which an application is
able to adapt to a topology change instantaneously with no overhead. If the
topology change occurred at the start of the benchmark, in the ideal case, the
runtime would be the same as the fixed 4-node topology runtime. Similarly, if
the topology change occurs at the end of execution, the runtime would be equal
to the fixed 2-node topology runtime. If the topology changes in the middle of
the run, in the ideal case, the performance should vary linearly between the two
fixed cases. The gap between Virtflex’s performance in the figure and this ideal
case reflects Virtflex’s end-to-end topology change adaptation overhead.

0 20 40 60 80
0

5

10

15

CG

iter # topo change occur

Ru
nt

im
e(

s)

0 50 100 150 200
0

20

40

60

80

UA e2e

iter # topo change occur

Ru
nt

im
e(

s)

0 10 20 30 40 50
0

50

100

150

200

MG

iter # topo change occur

Ru
nt

im
e(

s)

0 50 100 150 200 250
25

30

35

40

45

50

55

LU e2e

iter # topo change occur

Ru
nt

im
e(

s)

0 50 100 150 200
0

20

40

60

80

BT e2e

iter # topo change occur

Ru
nt

im
e(

s)

0 1 2 3 4 5
25

30

35

40

45

Fluidanimate

iter # topo change occur

Ru
nt

im
e(

s)

0 2 4 6
40

45

50

55

60

65

Streamcluster

iter # topo change occur

Ru
nt

im
e(

s)

Virtflex
2 node baseline
4 node baseline
ideal

0 100 200 300 400
0

50

100

150

200

SP e2e (with autoNUMA)

iter # topo change occur

Ru
nt

im
e(

s)

Virtflex
2 node baseline
4 node baseline
ideal

Fig. 4. End-to-end topology change (add nodes) adaptation

Topology change adaptation overhead is on average 7.27%. However, this per-
centage heavily depends on the total runtime of the application. The absolute
slowdown is primarily a function of the memory usage of the application, because
for most applications page migration accounts for the majority of the overhead.
Table 1 lists the total amount of memory touched during the execution of tested
applications. Applications whose pages are migrated mainly by re-interleave suf-
fer less overhead than applications that mainly use next-touch. This is because
next-touch uses a fault-driven approach: pages are migrated upon a subsequent
page fault. In contrast, re-interleave directly migrates pages to their destination
nodes when the page placement reset system call is performed, so there is no
added page fault overhead.

Virtflex 223

Table 1. Total amount of memory touched of tested applications

Application CG.C BT.C SP.C Fluidanimate

Memory touched (MB) 892.03 701.63 177.74 894.4

Application MG.D UA.C LU.C Streamcluster

Memory touched (MB) 27098.01 484 602.72 107.73

0 50 100 150 200
0

20

40

60

80

100

BT e2e remove

iter # topo change occur

Ru
nt

im
e(

s)

0 50 100 150 200
0

20

40

60

80

UA e2e remove

iter # topo change occur

Ru
nt

im
e(

s)

0 50 100 150 200 250
0

20

40

60

LU e2e remove

iter # topo change occur

Ru
nt

im
e(

s)

Virtflex
2 node baseline
4 node baseline
ideal

0 20 40 60 80
0

5

10

15

20

CG e2e remove

iter # topo change occur

R
un

tim
et

(s
)

0 100 200 300 400
0

50

100

150

200

SP e2e remove

iter # topo change occur

Ru
nt

im
e(

s)

0 10 20 30 40 50
0

50

100

150

200

250

MG e2e remove

iter # topo change occur

Ru
nt

im
e(

s)

Virtflex
2 node baseline
4 node baseline
ideal

Fig. 5. End-to-end topology change (remove nodes) adaptation

Figure 5 shows the results for the reverse process, taking away nodes while
applications are running. Arguably, taking away nodes while applications are
running is less likely to happen than adding nodes. For example, it can occur in
cases where VMs are not cooperating with the hypervisor.

In this set of experiments, applications are started in a 4-node VM, but the
VM is reduced to 2 nodes while applications are running. In such cases, the
order of events in the topology change timeline (Fig. 3) is reversed. For the ideal
situation, if a topology change occurs at time 0, the application’s runtime should
be equal to the 2-node baseline. If the topology change occurs at the end, the
application’s runtime should be equal to the 4-node baseline.

Figure 5 shows that Virtflex’s adaptation line is close to the ideal adaptation
line. The average overhead for the remove case is 19.39%. However, compared to
the node population case, the gaps between the ideal line and Virtflex are slightly
larger. There are two reasons for this. First, removing nodes generally takes more
time than adding nodes. Xen’s balloon driver zeroes pages before giving them
to hypervisor to prevent information leakage. Second, since next-touch uses a
fault-driven approach to migrate pages, the migration time depends on how
many cores are faulting on pages. In the node removal case, instead of using
vCPUs from 4 nodes, migration can only use vCPU from 2 nodes to perform
next-touch (Fig. 6).

224 R. Zhang et al.

As for the overhead on applications that are not subject to topology changes,
as shown in Fig. 7, the performance impact is minimal. In this experiment,
applications are pinned to nodes 0 and 1 while the guest topology changes from
2 nodes to 4 nodes or from 4 nodes to 2 nodes.

0 10 20 30 40

4 node

Virtflex

2 node

GUPS

Runtime(s)

Fig. 6. GUPS topology change adapta-
tion time

CG.C
MG.D

Stre
am

clu
ste

r
BT.C UA.C

SP.C LU.C
-5

0

5

10

15

Sl
ow

do
w

n
pe

rc
en

ta
ge remove nodes

add nodes

Fig. 7. Background topology change slow-
down

Adding nodes causes little to no slowdown for most applications, while the
slowdown from removing nodes is more visible. (In the streamcluster case, the
average adding nodes runtime is slightly less than the native 2 node run, but
not statistically significant.) Besides the fact that the expanding node time is
around 1/3 to 1/4 of the removing node case, when adding nodes, the scheduler
is likely to schedule the balloon driver on node 2 or 3 to reduce the CPU com-
petition with applications. In the removing case, since the balloon driver first
removes the vCPUs then does the ballooning, the balloon driver is competing
with applications for the vCPUs of nodes 0 and 1. The absolute slowdowns for
removing nodes on all applications are around 1–2 s, comparable to the stan-
dalone superpage ballooning time.

5 Related Work

Researchers have developed NUMA-aware schedulers for OpenMP, including a
multi-level task scheduler [15] and a dynamic loop scheduler [10]. Broquedis,
et al. further developed interfaces to maintain thread-memory affinity for OpenMP
applications on NUMA machines [8]. Their system uses next-touch to migrate
memory to the correct NUMA node, but it requires guidance from the program-
mer.Overall, theseworks are complimentary toVirtflex, as theydealwithOpenMP
memory and thread placement on static NUMA topologies and do not react to
topology changes.

Virtflex 225

Hyper-V, KVM, and Xen do not support dynamic changes to the guest’s
NUMA topology [1,2,7]. Similarly, VMware is only able to change the guest’s
NUMA topology when the virtual machine is power cycled [5].

Apart from various performance analyses on virtualized NUMA systems
(Han [11] and Song [18]), most research that focuses on optimization for vir-
tualized NUMA systems takes one of the following two approaches: (1) hiding
the NUMA topology from the guests and handling all optimizations in the hyper-
visor [14,16,17,19,20] or (2) exposing the topology to the guest and letting the
guest OS and applications do all NUMA optimization [1].

The closest research to Virtflex is XPV [9]. XPV is an interface that exposes
the NUMA topology to guests and is able to track topology changes. They aban-
doned the ACPI table that vNUMA uses to express NUMA topology, which only
allows setting NUMA topology at boot time. This work mainly focuses on three
situations that invalidate the guest NUMA topology: ballooning, vCPU schedul-
ing, and memory flipping. Every time the guest NUMA topology changes, the
guest OS will get notified through their interface. However, changing the ACPI
table to this new interface in the guest requires invasive kernel modifications. As
a result, the bootstrap, page allocator and scheduler code have to be changed
for the guest OS to work with the new interface. In contrast, Virtflex takes a
different approach in which the hypervisor presents empty nodes to the guests.
This eliminates the need for invasive kernel modifications in order to adapt to
topology changes. Furthermore, in XPV, the application itself must respond
to topology changes, placing the burden of dealing with toplogy changes on the
programmer. In contrast, Virtflex provides toplogy-free interfaces like next-touch
and re-interleave that can easily be encapsulated within the OpenMP runtime
to adapt to topology changes.

6 Conclusions

This paper has presented Virtflex, a NUMA virtualization solution that allows
unmodified OpenMP applications to adapt automatically to NUMA topology
changes. Virtflex provides a novel NUMA page placement reset mechanism
within the guest OS and a novel NUMA-aware superpage ballooning mecha-
nism that spans the guest OS-hypervisor boundary. Virtflex enables applications
to adapt to added resources with an average runtime overhead of only 7.27%.
Furthermore, Virtflex’s innovations are valuable in a variety of contexts, both
in virtualized and non-virtualized systems. The NUMA-aware balloon driver is
arguably the way ballooning should be done on all NUMA machines, and super-
page ballooning should be used over traditional 4 KB granularity ballooning in
any situation. The memory-reset system call enables applications to change their
memory placement at runtime.

226 R. Zhang et al.

References

1. Hyper-V NUMA support. https://www.silviodibenedetto.com/hyper-v-series-
configure-numa/. Accessed 9 Jan 2020

2. KVM NUMA support. https://access.redhat.com/documentation/en-us/red hat
enterprise linux/7/html/virtualization tuning and optimization guide/sect-virtua
lization tuning optimization guide-numa-numa and libvirt. Accessed 9 Jan 2020

3. The Gen-Z Consortium. https://genzconsortium.org/. Accessed 24 May 2020
4. VMware hugepage ballooning. https://www.spinics.net/lists/kernel/msg1968363.

html. Accessed 2 Jan 2020
5. VMware NUMA topology. https://www.vmware.com/content/dam/digitalmarket

ing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-
paper.pdf. Accessed 2 Jan 2020

6. Xen Hugepage Support. https://wiki.xenproject.org/wiki/Huge Page Support.
Accessed 31 Dec 2019

7. Xen NUMA support. https://wiki.xen.org/wiki/Xen NUMA Roadmap. Accessed
9 Jan 2020

8. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., Namyst, R.: Forest-
GOMP: an efficient OpenMP environment for NUMA architectures. Int. J. Parallel
Prog. 38(5–6), 418–439 (2010)

9. Bui, B., et al.: When extended para - virtualization (XPV) meets NUMA. In:
Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys 2019, New York,
NY, USA, 2019, pp. 7:1–7:15. ACM (2019)

10. Eichenberger, A.E., et al.: OMPT: an OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 13

11. Han, J., Ahn, J., Kim, C., Kwon, Y., Choi, Y., Huh, J.: The effect of multi-core on
HPC applications in virtualized systems. In: Guarracino, M.R., et al. (eds.) Euro-
Par 2010. LNCS, vol. 6586, pp. 615–623. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21878-1 76

12. Hu, J., Bai, X., Sha, S., Luo, Y., Wang, X., Wang, Z.: Hub: hugepage ballooning
in kernel-based virtual machines. In: Proceedings of the International Symposium
on Memory Systems, pp. 31–37. ACM (2018)

13. Intel. Rack Scale Design. https://www.intel.com/content/www/us/en/archi
tecture-and-technology/rack-scale-design-overview.html. Accessed 24 May 2020

14. Liu, M., Li, T.: Optimizing virtual machine consolidation performance on NUMA
server architecture for cloud workloads. In: 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pp. 325–336. IEEE (2014)

15. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. Int. J. High Perform.
Comput. Appl. 26(2), 110–124 (2012)

16. Rao, D.S., Schwan, K.: VNUMA-MGR: managing VM memory on NUMA plat-
forms. In: 2010 International Conference on High Performance Computing, pp.
1–10. IEEE (2010)

17. Rao, J., Wang, K., Zhou, X., Xu, C.-Z.: Optimizing virtual machine scheduling in
NUMA multicore systems. In: 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), pp. 306–317. IEEE (2013)

18. Song, W., Jung, H.-J., Ahn, J.H., Lee, J.W., Kim, J.: Evaluation of performance
unfairness in NUMA system architecture. IEEE Comput. Archit. Lett. 16(1), 26–
29 (2016)

https://www.silviodibenedetto.com/hyper-v-series-configure-numa/
https://www.silviodibenedetto.com/hyper-v-series-configure-numa/
https://access.redhat.com/documentation /en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization _guide/sect-virtualization_tuning_optimization_guide -numa-numa_and_libvirt
https://access.redhat.com/documentation /en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization _guide/sect-virtualization_tuning_optimization_guide -numa-numa_and_libvirt
https://access.redhat.com/documentation /en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization _guide/sect-virtualization_tuning_optimization_guide -numa-numa_and_libvirt
https://genzconsortium.org/
https://www.spinics.net/lists/kernel/msg1968363.html
https://www.spinics.net/lists/kernel/msg1968363.html
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://wiki.xenproject.org/wiki/Huge_Page_Support
https://wiki.xen.org/wiki/Xen_NUMA_Roadmap
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1007/978-3-642-21878-1_76
https://doi.org/10.1007/978-3-642-21878-1_76
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

Virtflex 227

19. Voron, G., Thomas, G., Quéma, V., Sens, P.: An interface to implement NUMA
policies in the xen hypervisor. In: Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys 20177, New York, NY, USA, 2017, pp. 453–46.
ACM (2017)

20. Wu, S., Sun, H., Zhou, L., Gan, Q., Jin, H.: VPROBE: scheduling virtual machines
on NUMA systems. In: 2016 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 70–79. IEEE (2016)

Compilation Techniques

Using OpenMP to Detect and Speculate
Dynamic DOALL Loops

Bruno Chinelato Honorio(B) , João P. L. de Carvalho , Munir Skaf ,
and Guido Araujo

IC and IQ – UNICAMP, Campinas, Brazil
{bruno.honorio,joao.carvalho,guido}@ic.unicamp.br, skaf@unicamp.br

Abstract. Production compilers such as GCC, Clang, IBM XL and the
Intel C Compiler employ multiple loop parallelization techniques that
help in the task of parallel programming. Although very effective, these
techniques are only applicable to loops that the compiler can statically
determine to have no loop-carried dependences (DOALL). Because of this
restriction, a plethora of Dynamic DOALL (D-DOALL) loops are out-
right ignored, leaving the parallelism potential of many computationally
intensive applications unexplored. This paper proposes a new analysis
tool based on OpenMP clauses that allow the programmer to gener-
ate detailed profiling of any given loop by identifying its loop-carried
dependences and producing carefully selected execution time metrics.
The paper also proposes a set of heuristics to be used in conjunction with
the analysis tool metrics to properly select loops which could be paral-
lelized through speculative execution, even in the presence of loop-carried
dependences. A thorough analysis of 180 loops from 45 benchmarks of
three different suites (cBench, Parboil, and Rodinia) was realized using
the Intel C Compiler and the proposed approach. Experimental results
using static analysis from the Intel C Compiler showed that only 7.8% of
the loops are DOALL. The proposed analysis tool exposed 39.5% May
DOALL (M-DOALL) loops which could be eventually parallelized using
speculative execution, as exemplified by loops from the Parboil sad pro-
gram which produced a speedup of 1.92x.

Keywords: Compilers · Loop-carried dependences · Debugging ·
Profiling

1 Introduction

For decades, multicore and manycore parallel architectures have been success-
fully employed to deliver performance to data-parallel applications [28]. This
success is mainly due to substantial work on compiler-based techniques that
identify and exploit parallelism opportunities in applications’ code [42]. State-
of-the-art compiler-based techniques can statically prove that many loops are

Supported by CCES (Center for Computing in Engineering and Sciences) and FAPESP
(São Paulo Research Foundation). Grant Numbers: 2013/08293-7, 2019/04536-9,
2016/15337-9 and 2019/01110-0.

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 231–246, 2020.
https://doi.org/10.1007/978-3-030-58144-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_15&domain=pdf
http://orcid.org/0000-0003-0273-7367
http://orcid.org/0000-0002-3476-184X
http://orcid.org/0000-0001-7485-1228
http://orcid.org/0000-0003-4869-5190
https://doi.org/10.1007/978-3-030-58144-2_15

232 B. C. Honorio et al.

free of loop-carried dependences1 (DOALL) by analyzing their control and data
dependences [5,20,31,37]. Most production-ready compilers such as the GNU
Compiler Collection (GCC) [14], the C language family front-end (Clang) for
LLVM [30], the IBM XL Compiler [25] and Intel’s C Compiler (ICC) [26] already
implement such parallelization techniques. Besides, application programming
interfaces (APIs) such as OpenMP [36] simplify this task by giving program-
mers control over which and how loops are parallelized without requiring them
to write parallel code.

Most production compilers provide loop parallelization methods that are very
effective in exploiting DOALL loops, making the ability to detect such loops a
central technique in the effective usage of the parallelism available in today’s
machines. To achieve that, compilers rely on alias analysis which determines if
two memory references access the same address and thus are dependent [10]. As
a consequence, the quality of the dependence analysis is based on the quality of
the alias analysis. Despite the many years of active research [10–12,16,17,19,40],
alias analysis remains difficult to verify [38] and requires trade-offs in time/mem-
ory vs. precision to be implemented in practice [9,21,45]. Static alias analysis
for both flow-sensitive and insensitive cases was proven to be NP-Hard [22,29].

Although compilers have been successful in parallelizing DOALL loops, they are
oblivious to loops that do have loop-carried dependences (DOACROSS), potentially
leaving a significant amount of parallelism unexplored [8]. Instead of only relying
on information available at compile-time, an alternative to static alias analysis
is to leverage dynamic information that can be collected at runtime [4,35]. Pre-
vious work focused on dynamic memory disambiguation techniques that couples
trace scheduling with compile-time inserted assertions [35]. Other works pro-
posed actual runtime checks that direct control-flow to aggressively parallelize
versions of code when dynamic disambiguation determines that two memory
references are not aliased [4]. Subsequent works exploited out-of-order execution
features, such as speculative execution of branch dependent code, to improve
parallelism and efficiency of runtime dependence checks [2,23,33,39].

As Wu et al. show in [43], dynamic memory disambiguation indeed improves
program coverage and is more effective than static alias analysis. Nevertheless,
such improvements come at the cost of more pressure to processors’ micro-
architectural structures (e.g. caches). More specifically, program size increases
due to code duplication2 from runtime checks [2,4,23,33,39] and compensation
code from traces [35]. This extra code adds needless pressure to a processor
micro-architecture even when memory ambiguity is rare or nonexistent [4,35].
This paper leverages dynamic memory disambiguation to precisely find run-
time dependences. It aims at detecting two potential classes of parallelizable
loops: (a) Dynamic DOALL loops (D-DOALL), which are loops that a compiler
failed to statically prove, but may have no loop-carried dependences at run-
time; and (b) Dynamic DOACROSS loops (D-DOAX) that have dynamic loop-carried
dependences at runtime. In such cases, because of the dynamic nature of these

1 Dependences that arise across different loop iterations.
2 Code duplication can be avoided in some cases, but not always [13].

Using OpenMP to Detect and Speculate Dynamic DOALL Loops 233

 0

 0.5

 1

 1.5

 2

1 2 4 8
S

p
ee

d
u

p
 A

ch
ie

ve
d

 o
n

 P
ro

g
ra

m
 s

ad
Number of threads

Loop F
Loop G
Loop H
Loop I
Loop J

Fig. 1. Speedup achieved by Parboil sad program when different loops are speculated.

dependences, privatization and speculative execution via hardware transactional
memory (HTM) [18] can be used to parallelize such loops. HTM is widely
available on modern commodity processors from Intel [27], IBM [24], and most
recently on ARM processors [3]. Alongside a memory disambiguation analysis,
this paper proposes a set of metrics governed by a group of heuristics that allows
users to properly choose D-DOAX loops with speed-up potential. This paper makes
the following contributions:

– An OpenMP based tool, LoopAnalyzer, integrated into LLVM compiler
framework [30], that automatically instruments loops with calls to a cus-
tom runtime (see Sect. 3). The runtime collects a set of metrics (see Sect. 3.1)
that couples dynamic dependence information with source code location for
precise application profiling reports (see Sect. 3.3);

– A set of heuristics that, guided by LoopAnalyzer’s profiling reports, allows
programmers to properly select loops for parallel speculative execution or
privatization (see Sect. 4).

– A thorough dependence analysis and discussion of loops from 45 applications
of three well-known benchmarks: cBench [15], Parboil [41], and Rodinia [7].
The evaluation in Sect. 4.2 covered up to 180 loops that are responsible for,
at least, 10% of CPU time.

– An artifact [1], which will be open-sourced at publication time.

1.1 Motivating Example

Program sad is among the benchmarks that LoopAnalyzer detected to have
loops with potential for D-DOALL parallelism. From all the loops in sad, loop
F has shown to be a good candidate for parallelization through speculative exe-
cution using hardware transactions (see Sect. 4.2). However loop F exhibit early
cache evictions (see Sect. 3.1), which prevents it from taking advantage of HTM
(see Sect. 2). Fortunately, F has several nested loops within it (G, H, I, J) and the
programmer can determine which nesting level could benefit the most from spec-
ulative execution. As described in Sect. 3.1, this paper proposes several metrics to

234 B. C. Honorio et al.

help the programmer in this decision. The performance achieved by speculating
each nested loop in F is shown in Fig. 1. As the speculation is moved to deeper
loop nest levels, HTM capacity aborts become less frequent as transaction sizes
decrease. However, the overhead of starting/committing transaction becomes
more noticeable. Therefore, in the case of sad, loop H has the best trade-off
in terms of reducing capacity aborts and speculation overhead (see Sect. 4.2).
According to the proposed heuristics, nested loop H is exactly the loop chosen
to be speculated when parallelizing loop F. As a result, when loop H is specu-
lated and parallelized with 8 threads, the whole application achieves a speedup
of 1.92x. This shows how effective HTM-enabled speculation of D-DOALL loops
can be when LoopAnalyzer’s criteria are met.

The remainder of the paper is organized as follows. Section 2 briefly discusses
the fundamental ideas on data-dependence and hardware transactional memory
support. Section 3 presents LoopAnalyzer, explains its components, and shows
how they are integrated into a new OpenMP clause. Section 4 makes an in-depth
discussion of the results obtained with LoopAnalyzer on finding parallelization
opportunities. Final and concluding remarks are presented in Sect. 5.

2 Background

Data dependences arise when different statements, or different instances of a
statement in the case of loops, access the same memory address and one of the
accesses is a write operation [31,32]. Let S1 and S2 be two memory statements
accessing the same memory address such that S1 performs a memory read and
S2 be a memory write. If S1 executes after S2, in program order, then a True
dependence3 exists between statements S1 and S2. Alternatively, if S1 executes
before S2 in the program order then the dependence between S1 and S2 is said to
be an Anti-dependence4. Now assuming that both S1 and S2 write to the same
memory address, then an Output dependence5 exists. Loop-carried dependences
(LCDs) are a special case of those data dependence types that arise between
statement instances from different loop iterations [32]. LCDs constrain the order
in which loop iterations are allowed to execute in parallel without violating
program order semantics [35].

Hardware support for speculative execution in the flavor of transactional
memory (HTM) is available on commodity processors for a couple of years
already [24,27,34,44]. Most recently, ARM announced the introduction of HTM
support to their processors [3]. Hardware transactions are exposed to program-
mers as new instructions from ISA (Instruction-Set Architecture) extensions.
HTM instructions are used to explicitly start, commit, or abort transactions. A
hardware transaction only commits if throughout its execution no data con-
flicts happen. Aborts might happen not only due to data conflicts but also

3 a.k.a. Flow or Read-After-Write (RAW) dependence.
4 a.k.a. Write-After-Read (WAR) dependence.
5 a.k.a. Write-After-Write (WAW) dependence.

Using OpenMP to Detect and Speculate Dynamic DOALL Loops 235

Table 1. The proposed metrics of LoopAnalyzer.

Metric Description

Number of visits The number of times a loop was visited and fully executed

Total number of iterations Average number of iterations a single loop visit has

Innermost loop indicator Indicates if a loop is the innermost in a loop nest

First Eviction Iteration (FEI) Indicates in which iteration of a loop the first cache line

eviction happens

Total number Of Loop-Carried Dependences

(LCD)

The sum of unique loop-carried dependences (LCD) of a

loop

Total Loop-Carried Probability (LCP) The accumulated loop-carried probability (LCP) of all

unique LCDs of a loop

because hardware transactions can exhaust the hardware’s speculative capac-
ity [34]. Existing HTM-ready processors store speculative state on their cache
hierarchy, usually on first or second-level caches [34]. Due to capacity constraints
and restrictions on the instructions that are allowed to execute inside transac-
tions, there are no guarantees that a transaction will eventually commit. Thus,
HTM runtimes are best-effort implementations, and programmers need to pro-
vide a fallback code path to handle aborted transactions. The most common
(but not the most effective) fallback mechanism is to acquire a global lock to
serialize transactions that persistently fail [6].

3 Extending OpenMP to Enable Loop Profiling

The main goal of LoopAnalyzer is to discover loops that can be parallelized
but static analysis in mainstream compilers considered non-profitable to do so
because of may-dependences. Thusly, at runtime, LoopAnalyzer can determine
if a loop is D-DOALL or D-DOAX for a given set of program inputs. Moreover,
LoopAnalyzer also measures each loop’s CPU time and how much, percentage-
wise, it contributes to the overall execution time of an application. However, this
information alone is not enough to determine if a loop is a good candidate for
parallelization (see Sect. 4.2). For example, in the case the loop is detected to
be D-DOALL, the programmer cannot assure it is a DOALL loop, as a dependence
might arise if a different input is used. Therefore, a group of metrics was chosen
to help users of LoopAnalyzer to quickly determine if a loop is a good candidate
for parallelization.

3.1 Metrics

Table 1 shows the proposed metrics. A high number of visits implies high over-
head for parallel runtime libraries, possibly causing a slowdown if a loop is par-
allelized. The total number of iterations is a desirable metric because it relates
to how much work is available to be divided between worker threads. The size
of innermost loops constrains how effective hardware transactions will be when
executing iterations speculatively. Hardware-based transactions have capacity

236 B. C. Honorio et al.

limitations in most commercially available HTM implementations [44]. FEI is
computed via a custom software simulation of the cache level associated with the
speculative state of hardware transactions [34]. Cache evictions cause hardware
transactions to abort in all commercially available HTM implementations [34].
Capacity aborts increase the overhead and affect the overall performance of
applications. If a loop has FEI of one, then every transaction will abort and
roll-back for retry. Due to the best-effort nature of HTMs, this will force every
transaction to be serialized. FEI is a simple way to estimate the number of iter-
ations a transaction can execute without suffering compulsory aborts. LCD is
used because since the analysis is dynamic, different dependences can manifest in
each loop iteration due to conditional branches within a loop’s body. Low LCP
means that dependences happen rarely, meaning that it is possible to execute a
loop speculatively in parallel for the majority of its iterations.

3.2 General Overview of the Profiling Tool

LoopAnalyzer is comprised of three components: DOVEC, DOPROF, and DOCHECK.
DOVEC uses the Intel C Compiler (ICC) with the vectorization report flags6 on
to collect whether a loop was vectorized. If the loop was vectorized it is cate-
gorized as a DOALL loop, otherwise is said to be a may-DOALL loop (M-DOALL).
The ICC report feature is the only functionality not provided by LoopAnalyzer.
Although ICC offers a better vectorization report, dependence analyzers from
other compilers could also be adapted to LoopAnalyzer.

DOPROF performs profiling of loops and collects the following loop information:
CPU time, the total number of visits, average execution time of each visit, and
the average number of iterations. Loops that contribute to less than 10% of
total CPU time are discarded because the goal was to capture loops with the
best possible payback.

DOCHECK leverages on the proposed OpenMP clause check to look for loop-
carried dependences at runtime (see Sect. 3.3). Adding check to a loop will
instrument it with calls to a custom runtime library (see Sect. 3.4) that collects
dependence information of each visit to the loop. The output of DOCHECK is the
group of metrics discussed in Sect. 3.1 that summarizes the speculative poten-
tial of each loop. DOCHECK reports if a loop has loop-carried dependences and
categorizes the loop as either dynamic DOALL (D-DOALL) or dynamic DOACROSS
(D-DOAX), for the given set of program input data (see Subsect. 4.1). If the loop
is D-DOALL, it means it did not present any data dependence during the whole
execution in all of its visits. For D-DOAX loops, DOCHECK also shows its LCD,
LCP, and FEI. It also shows innermost loop information for both loop types.
DOCHECK takes as input the output from both DOVEC and DOPROF and automati-
cally annotates loops with the check clause. The output of DOCHECK is then fed
to a table generator that presents the loops sorted in the following order: CPU
Time, LCD, LCP, and FEI.

6 -q-opt-report5 and -qopt-report-phase=vec.

Using OpenMP to Detect and Speculate Dynamic DOALL Loops 237

3.3 The Check Clause

As Table 2 shows, check has four attributes: dependence, first, verbose and
time. dependence classifies the loop as D-DOALL or D-DOAX and collects the
number of LCDs, LCP, FEI and indicates if a loop is an innermost loop in
a loop nest. With dependence every loop visit is instrumented to collect the
total number of unique LCDs and LCPs. It is the optimal choice for analyzing
a significant amount of loops in a neatly summarized way. The dependence
attribute can be used in any type of loop (for, while or do-while loops), and is
capable of instrumenting canonical as well as non-canonical loops7. Due to the
high memory overhead of memory disambiguation analysis, it is recommended
to annotate with dependence just one loop at a time.

Table 2. The different attributes of the check clause.

Attribute Operation

Time Reports file name, line number, CPU time, iterations and visits

Dependence Reports LCD, LCP, FEI, INNER for all loop visits

First Reports if the loop has at least one LCD or not

Verbose Reports the location of the loop dependence

Listing 1.1. Using verbose on a loop.

1 #pragma omp parallel \

2 check(verbose)

3 f o r (i=0; i < N; ++i){

4 const i n t value = img[

i];

5 i f (histo[value] <

UINT8_MAX)

6 {

7 ++histo[value];

8 }

9 }

Listing 1.2. verbose report.

1
2 f o r (i=0; i < N; ++i){

3 .

4 .

5 +--> i f (histo[value]...

6 | .

7 | .

8 +<-- >--< ++histo[value];

9 .

The first attribute aims at checking if a loop has any loop-carried depen-
dence. With first the dependence analysis of subsequent memory access is
skipped once the first loop-carried dependence is detected. After the first LCD
is detected the loop continues to run without any instrumentation. The infor-
mation gathered with first is the same as with dependence, but only up to
the first LCD found. This allows for much faster execution and shorter analysis
time.

The verbose attribute shows the exact source code location of loop-carried
dependences, thus allowing programmers to identify the precise code region that
7 A loop is canonical if and only if it has a single induction variable, a simple test

expression, and its induction variable is never modified in the loop body.

238 B. C. Honorio et al.

should be executed speculatively. As an example, consider the loop in Listing 1.1,
extracted from the histo benchmark in the Parboil suite. Listing 1.2 shows the
report generated when loop in Listing 1.1 is annotated with verbose. The >--<
arrows represent loop-carried dependences within the same program line while
+-->/+<-- arrows show the dependence relation across different lines. verbose
is recommended for loops that have a small number of LCDs, as loops with high
LCD counts are associated with hard to parallelize loops and will generate long
reports.

The time attribute has considerably lower runtime overhead compared to
other check attributes such as verbose and dependence, thus it can be used to
instrument many, or even all loops in an application. Depending on the input
size of the data and loop nesting level, the runtime overhead will increase pro-
portionally to the trip-count.

All loops can be instrumented without any source-code changes by specifying
the -fdoprof flag to LoopAnalyzer.

Listing 1.3. For-loop after a check source-to-source
transformation.

1 { //START OF PROFILING

2 uns igned long __indvar = 0;

3 __enterLoopRegion ();

4 f o r (...){
5 __start_iter_prof(__indvar ++);

6
7 //Loop body

8
9 __stop_iter_prof ();

10 }

11 __exitLoopRegion (INNER ,SUMMARY);

12 } //END OF PROFILING

3.4 Implementation of the Check Clause

We extended the OpenMP language support in Clang to add the check clause
and its attributes. Source-to-source transformation passes add calls to a custom
runtime (check-rt) which are later used in an LLVM IR pass (OMPCheckPass)
to instrument load/store instructions within loops. Moreover, any functions that
are called within annotated loops also need to be instrumented.

Listing 1.3 shows how a for-loop looks like after check’s source-to-source
transformations. enterLoopRegion is an initializer function that passes to
check-rt the stack pointer and program counter (PC) at the start of the loop.
start iter prof passes the current iteration of the loop. Loop iteration infor-
mation is key to enable the collection of metrics such as FEI and to identify the
LCDs themselves, as discussed shortly.

Using OpenMP to Detect and Speculate Dynamic DOALL Loops 239

start iter prof and stop iter prof mark the boundaries of a loop’s body.
Only variables declared within the loop body are not instrumented. All exit
points of a function are annotated with a call to function exit. All metrics are
summarized when exitLoopRegion is called at the end of each loop visit. The
first argument indicates if the loop is the innermost (INNER) or not (OUTER).
The second argument is a LoopAnalyzer’s dependence report mode: summarized
(SUMMARY) or verbose (VERBOSE).

The check dependence function in check-rt implements the memory disam-
biguation analysis to identify loop-carried dependences. Moreover, it also imple-
ments the logic to simulate the cache organization to compute FEI. This runtime
function takes two arguments: (1) the program counter (PC) of the instruction
accessing memory and (2) the type of memory access (read/write). Memory
access information is stored in a two-level map data-structure, one map for reads,
and another for writes. The first level maps memory addresses to another map
that associates the PC of the access with the last iteration that accessed the
same address. Dependences are stored in a separate map that associates the PC
of memory accessing instruction with a list of dependence records. A depen-
dence record keeps the pair of PCs of each dependent instruction along with the
dependence type and probability (LCP).

4 Experimental Results

This section shows how LoopAnalyzer is used to uncover parallelism opportu-
nities that are not discovered by typical compile-time static analysis. We also
discuss a set of heuristics that allows users to identify parallelizable loops guided
by the metrics extracted with LoopAnalyzer.

4.1 Methodology

The experimental results aim to show the latent parallelism that a state of the
art compiler misses due to the conservative nature of its static analysis. In order
to assess LoopAnalyzer capabilities, three benchmark suites widely studied in
the literature are used, namely cBench [15], Parboil [41], and Rodinia [7]. cBench
is a collection of open-source sequential programs, while Parboil and Rodinia are
sets of computing applications with multiple implementations for different paral-
lel models, such as CUDA, OpenMP and OpenCL. The unoptimized sequential
versions of Parboil’s applications were used. Rodinia does not provide a sequen-
tial version of its applications, thus the OpenMP parallelized code without the
pragmas was used. In total, 180 loops from 45 benchmarks were analyzed by our
LoopAnalyzer tool. These loops do not cover all loops existing in each applica-
tion. Only loops that account for at least 10% of total CPU time are discussed.

The results reported in this section represent the mean of 10 executions8 of
the DOPROF step of LoopAnalyzer, since DOCHECK’s reports are the same for the

8 Average variance across measurements was lower than 0.5% of the mean.

240 B. C. Honorio et al.

specific input of parameters used. All applications were compiled with Clang
4.0 and Intel C Compiler (ICC) 19.1 with the highest optimization level (-O3)
enabled. All applications were compiled from the same source code in both com-
pilers. cBench applications were executed with the default input size and repeat
loop iterations set to 1, because rerunning the application would not reveal dif-
ferent loop-carried dependences. For Parboil, sad used large, bfs used 1M, mri-q,
histo and spmv used large, cutcp and tpacf used small. The default input was
used in Rodinia. The experiments discussed next were conducted on a machine
powered by a Intel R© Xeon

TM
E5-2620 2.1 GHz processor and 64 GB of RAM.

4.2 Identifying Parallelization Opportunities via LoopAnalyzer

Figure 2(a) shows the breakdown of loops classified either as DOALL or M-DOALL
by ICC’s static analysis. Only 7.2% of the loops analyzed were categorized
as DOALL (3 from cBench, 3 from Parboil, and 7 from Rodinia). The results
with our LoopAnalyzer tool runtime analysis reveal that there is a significant
amount of potential parallel loops that are not uncovered by ICC’s static analy-
sis, as Fig. 2(b) shows. Out of the 167 M-DOALL loops (92.2%), 44 loops (26.4%)
were categorized as D-DOALL9 and 123 (73.6%) as D-DOAX10 for the input data
of the corresponding benchmarks. Although a significant percentage of loops
(26.4%) revealed to be D-DOALL, this does not automatically imply that perfor-
mance gains via speculation of these loops are possible. Similarly, being classi-
fied as D-DOAX does not mean that a loop cannot be parallelized. The metrics
proposed in this paper were designed to allow a finer-grained analysis of these
loops. Besides, a set of heuristics is proposed to guide the decision of which loops
should be considered for parallelization. These heuristics were designed based on

(a) Static analysis. (b) Dynamic analysis. (c) Heuristic analysis.

Fig. 2. Breakdown of loops according to (a) static (DOALL and M-DOALL loops), (b)
dynamic analysis, and with LoopAnalyzer’s classification for each benchmark suite.
In (b) M-DOALL loops are further divided into D-DOALL and D-DOAX without any par-
allelization concern. In (c) the heuristic analysis divides loops into non-parallelizable
(NON-PAR) and parallelizable (D-DOALL, D-DOAX, and DOALL).

9 12 from cBench, 12 from Parboil and 20 from Rodinia.
10 57 from cBench, 25 from Parboil and 41 from Rodinia.

Using OpenMP to Detect and Speculate Dynamic DOALL Loops 241

Table 3. Detailed loop information extracted with LoopAnalyzer from loops in cBench
(cB), Parboil (Par), and Rodinia (Rod) benchmark applications. Potentially paralleliz-
able loops have IDs in bold.

LOOPS CPU TIME METRICS

ID BENCHMARK FILENAME LINE % TOTAL(s) MEAN(s) TYPE VISITS INNER ITER FEI LCP LCD

A (cB) consumer jpeg c jcapimin.c 155 80.17 0.015589 8.66e-04 D-DOALL 18 YES 13.0 - - -

B (cB) security blowfish e bf.c 111 20.66 0.000107 1.08e-06 D-DOALL 99 YES 39.0 - - -

C (cB) automotive susan c susan.c 1458 71.49 0.012366 2.81e-05 D-DOAX 440 YES 590.0 356 21.43 10003

D (cB) telecom adpcm c adpcm.c 101 77.53 0.001421 1.82e-05 D-DOAX 78 YES 989.0 - 58.91 181

E (cB) consumer jpeg d djpeg.c 570 55.72 0.001972 1.97e-03 D-DOAX 1 YES 208.0 - 99.52 1

F (Par) sad sad cpu.c 39 96.88 52.29 7.80e-01 D-DOALL 67 YES 120.0 1 - -

G (Par) sad sad cpu.c 69 96.88 52.29 6.50e-03 D-DOAX 8040 NO 33.0 20 96.97 13

H (Par) sad sad cpu.c 70 96.86 52.28 1.97e-04 D-DOALL 265320 NO 33.0 - - -

I (Par) sad sad cpu.c 74 96.29 51.96 5.93e-06 D-DOAX 8755560 NO 4.0 - 75.0 10

J (Par) sad sad cpu.c 75 93.40 50.41 1.44e-06 D-DOALL 35022240 NO 4.0 - - -

K (Par) tpacf model compute cpu.c 32 98.78 3.24 3.31e-05 D-DOAX 97786 NO 364.0 - 38.81 5

L (Rod) heartwall main.c 549 99.89 69.462486 3.47e+00 D-DOALL 20 YES 51.0 - - -

M (Rod) pathfinder pathfinder.cpp 42 22.33 0.319378 3.19e-01 D-DOALL 1 NO 100.0 - - -

N (Rod) backprop backprop.c 316 11.50 0.010901 6.41e-04 D-DOAX 17 YES 61682.0 99 100.00 2

O (Rod) hotspot3D 3D.c 161 19.74 1.005184 1.26e-03 D-DOALL 800 NO 512.0 2 - -

observations we made during the experiments over the benchmark suites. We are
working towards making them generic for most programs. The loops at Table 3
are used to guide readers in understanding the insights that lead to the choice
of the proposed heuristics. Only loops that satisfy all the conditions below are
considered viable candidates for parallelization:

– VISITS: The number of visits should be below 1000, due to the high overhead
of OpenMP runtime calls as wells as transaction invocations.

– ITER: The number of iterations has to be at least two to mitigate threading
overhead.

– LCP and LCD: If LCP is higher than 30%, then the LCD threshold is at most
15. Otherwise, the LCD threshold is at most 30.

– FEI: D-DOALL or D-DOAX loops that satisfy the above metrics and do not have
FEI = 1 are immediately considered parallelizable. If FEI = 1, a search over
perfectly nested loops (if they exist) is done to find a loop that satisfies the
following conditions:
• Inner Loops with Visits Below 1 Million
• Inner Loops that have FEI higher than 1.

A high LCP means that dependences are frequent and thus some iterations
inevitably need to be executed sequentially, thus reducing potential performance
gains. Frequent dependences would also cause frequent transaction aborts that
introduce overhead. A high LCP but a low LCD count indicates that these
dependences could be removed via privatization. Low LCP and high LCD do not
necessarily imply that a loop can be safely speculated as, even with a low LCP,
most iterations might have at least one loop-carried dependence. For example,
if a loop has 4 dependences on a loop with 100 iterations and each dependence
only appears in separated chunks of 25 iterations, the accumulated LCP will only
be 25%, but all iterations will have a dependence. So the higher the number of
LCDs, the higher the chance of dependences appearing in all iterations.

242 B. C. Honorio et al.

Loops with FEI > 1 can have individual iterations speculated when the
outermost loop is divided between worker threads, as long it satisfies all metrics
other than FEI. Alternatively, such loops can also be strip-mined, mitigating
possible loop-carried dependences by assigning dependent iterations to the same
thread.

Table 3 presents only 15 out of 180 loops analyzed due to space constraints11.
Each loop is labeled from A to R for easier referencing as Table 3 shows. As
D-DOALL loops do not have dependences, denoted by “-” in their respective LCP
and LCD columns in Table 3. Similarly, “-” in the FEI column is used to denote
when no cache evictions happen throughout a loop’s execution. Loops in Table 3
were selected because they are representative of different metrics’ values that
show how the heuristics work. According to the heuristics presented above, the
following loops are parallelizable: A, B, E, F, L, M, N, O. The other loops are
considered nonparallelizable.

Loops A, B, L, M, and O are all D-DOALL loops and they satisfy all metrics.
Loops E and N are D-DOAX loops that have an LCP of 99.52% and 100% but
with only 1 and 2 LCDs, respectively. However, as both have low LCD they
are also good candidates for parallelization. Loop C meets all criteria except
that it exceeds the LCD threshold (30) for low LCP (<30%) loops with a total
of 10003 loop-carried dependences. A high LCD count does not make Loop C
a good candidate for speculation because, even with a low LCP (20%), most
iterations have at least one loop-carried dependence. When Loop C was executed
speculatively via HTM an abort rate near 100% is observed. Loop D does not
meet both LCD and LCP requirements. Loop K exceeds the VISITS threshold
(1000), which could cause a significant overhead due to thread dispatching, as
each thread could be (re)dispatched 97786 times.

Loops F, H, I, and J show how effective the heuristics are to identify loops
with potential parallelism. Loop F is a D-DOALL loop with FEI = 1 which
prevents it from being directly speculated. Therefore, speculation needs to hap-
pen in a fine-grained manner. Although LoopAnalyzer shows that this loop is
an innermost loop, a quick inspection of the application code revealed that F’s
body consists of a single function call. The function called within F’s body con-
tains loops G, H, I, and J nested in this order. Because these loops are perfectly
nested, speculation can happen at any nesting level. Speculating loop F shows
no performance gains due to FEI being 1, meaning that almost every transaction
aborts, serializing the loop. Loop G, has a higher FEI (20), however, capacity
aborts were still frequent, explaining the modest performance gains achieved by
speculating its body. Loops I and J have visits higher than 1 million and bodies
consisting of a dozen of instructions, imposing a high speculation overhead due
to transaction management. Loop H has the best trade-off in terms of transac-
tion size and speculation overhead. Application (sad), when loop H is speculated
and parallelized with 8 threads achieved a whole application speedup of 1.92x.

11 These loops were chosen because they are representative of the values of the pre-
sented metrics.

Using OpenMP to Detect and Speculate Dynamic DOALL Loops 243

Figure 2(c) shows that a detailed analysis using LoopAnalyzer combined with
the proposed set of heuristics reveals that 53 (out of 167) M-DOALL loops are
parallelizable. Combining the above-mentioned approach to the DOALL loops that
the compile-time static analysis encountered, the cBench benchmark presented a
total of 13% of potentially parallelizable loops, Parboil showed 55% of the loops
having the potential to be parallelized, Rodinia showed that 40.2% of its loops
have potential to be parallelized. A stark contrast when compared to the initial
static analysis, which only showed as high as 10% parallelizable loops for the
Rodinia benchmark.

5 Conclusion

This paper presented LoopAnalyzer, a loop profiling tool designed to identify
loops that can be parallelized through speculative execution. A new OpenMP
clause is proposed to enable LoopAnalyzer and simplify the task of finding loop
candidates. Loops annotated with the proposed clause are automatically instru-
mented with calls to a custom runtime memory disambiguation and loop analysis
library (check-rt). Experimental results show that LoopAnalyzer revealed that
up to 53 (out of 167) M-DOALL loops would benefit from parallel speculative exe-
cution. Moreover, by using LoopAnalyzer guided by the proposed heuristics, a
thorough loop dependence analysis and discussion of 45 applications showed that
over 36% of loops across all applications from well-known benchmarks (cBench,
Parboil, and Rodinia) have parallelism opportunities not explored by existing
production-ready compilers. Exploiting these opportunities is a future goal of
this work.

References

1. LoopAnalyzer Tool Repository: Available at publication time. https://github.com/
BrunoChonorio/LoopAnalyzer

2. Alli, S., Bailey, C.: Compiler-directed dynamic memory disambiguation for loop
structures. In: Euromicro Symposium on Digital System Design, 2004, DSD 2004,
pp. 130–134 (2004). https://doi.org/10.1109/DSD.2004.1333268

3. ARM C Language Extensions Documentation, ARM Limited: Transactional
Memory Extension (TME) intrinsics (2019). https://developer.arm.com/docs/
101028/0009/transactional-memory-extension-tme-intrinsics. Release ACLE Q3
2019. Document Number 101028

4. Bernstein, D., Cohen, D., Maydan, D.E.: Dynamic memory disambiguation for
array references. In: Proceedings of the 27th Annual International Symposium on
Microarchitecture, MICRO 27, pp. 105–111. Association for Computing Machinery,
New York (1994). https://doi.org/10.1145/192724.192737

5. Burke, M., Cytron, R.: Interprocedural dependence analysis and parallelization.
SIGPLAN Not. 21(7), 162–175 (1986). https://doi.org/10.1145/13310.13328

6. de Carvalho, J.P., Araujo, G., Baldassin, A.: The case for phase-based transactional
memory. IEEE Trans. Parallel Distrib. Syst. 30(2), 459–472 (2018)

https://github.com/BrunoChonorio/LoopAnalyzer
https://github.com/BrunoChonorio/LoopAnalyzer
https://doi.org/10.1109/DSD.2004.1333268
https://developer.arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics
https://developer.arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics
https://doi.org/10.1145/192724.192737
https://doi.org/10.1145/13310.13328

244 B. C. Honorio et al.

7. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–
54. IEEE (2009)

8. Chen, D.K., Yew, P.C.: An empirical study on DOACROSS loops. In: Proceedings
of Supercomputing 1991, pp. 620–632. IEEE (1991)

9. Chowdhury, Rezaul A., Djeu, Peter., Cahoon, Brendon., Burrill, James H., McKin-
ley, Kathryn S.: The limits of alias analysis for scalar optimizations. In: Duester-
wald, Evelyn (ed.) CC 2004. LNCS, vol. 2985, pp. 24–38. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24723-4 3

10. Cooper, K.D., Kennedy, K.: Fast interprocedual alias analysis. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1989, pp. 49–59. Association for Computing Machinery, New
York (1989). https://doi.org/10.1145/75277.75282

11. Deutsch, A.: Interprocedural may-alias analysis for pointers: beyond k-limiting.
SIGPLAN Not. 29(6), 230–241 (1994). https://doi.org/10.1145/773473.178263

12. Diwan, A., McKinley, K.S., Moss, J.E.B.: Type-based alias analysis. SIGPLAN
Not. 33(5), 106–117 (1998). https://doi.org/10.1145/277652.277670

13. Doerfert, J., Grosser, T., Hack, S.: Optimistic loop optimization. In: Proceedings
of the 2017 International Symposium on Code Generation and Optimization, CGO
2017, pp. 292–304. IEEE Press (2017)

14. Free Software Foundation Inc.: Using the GNU Compiler Collection (2019).
https://gcc.gnu.org/onlinedocs/

15. Fursin, G., Lokhmotov, A., Plowman, E.: Collective knowledge: towards R&D sus-
tainability. In: Proceedings of the Conference on Design, Automation and Test in
Europe (DATE 2016) (March 2016)

16. Gupta, S.K., Sharma, N.: Alias analysis for intermediate code. In: GCC Developers
Summit, p. 71. Citeseer (2003)

17. Hall, Mary W., Murphy, Brian R., Amarasinghe, Saman P., Liao, Shih -Wei,
Lam, Monica S.: Interprocedural analysis for parallelization. In: Huang, Chua-
Huang, Sadayappan, Ponnuswamy, Banerjee, Utpal, Gelernter, David, Nicolau,
Alex, Padua, David (eds.) LCPC 1995. LNCS, vol. 1033, pp. 61–80. Springer, Hei-
delberg (1996). https://doi.org/10.1007/BFb0014192

18. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, pp. 289–300 (1993)

19. Hind, M., Burke, M., Carini, P., Choi, J.D.: Interprocedural pointer alias analysis.
ACM Trans. Program. Lang. Syst. 21(4), 848–894 (1999). https://doi.org/10.1145/
325478.325519

20. Hind, M., Burke, M., Carini, P., Midkiff, S.: An empirical study of precise inter-
procedural array analysis. Sci. Program. 3, 255–271 (1994)

21. Hind, M., Pioli, A.: Evaluating the effectiveness of pointer alias analyses. Sci. Com-
put. Program. 39(1), 31–55 (2001). https://doi.org/10.1016/S0167-6423(00)00014-
9. http://www.sciencedirect.com/science/article/pii/S0167642300000149. Static
Program Analysis (SAS 1998)

22. Horwitz, S.: Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans.
Program. Lang. Syst. 19(1), 1–6 (1997). https://doi.org/10.1145/239912.239913

23. Huang, A.S., Slavenburg, G., Shen, J.P.: Speculative disambiguation: a compilation
technique for dynamic memory disambiguation. In: Proceedings of the 21st Annual
International Symposium on Computer Architecture, ISCA 1994, pp. 200–210.
IEEE Computer Society Press, Washington, DC (1994). https://doi.org/10.1145/
191995.192012

https://doi.org/10.1007/978-3-540-24723-4_3
https://doi.org/10.1145/75277.75282
https://doi.org/10.1145/773473.178263
https://doi.org/10.1145/277652.277670
https://gcc.gnu.org/onlinedocs/
https://doi.org/10.1007/BFb0014192
https://doi.org/10.1145/325478.325519
https://doi.org/10.1145/325478.325519
https://doi.org/10.1016/S0167-6423(00)00014-9
https://doi.org/10.1016/S0167-6423(00)00014-9
http://www.sciencedirect.com/science/article/pii/S0167642300000149
https://doi.org/10.1145/239912.239913
https://doi.org/10.1145/191995.192012
https://doi.org/10.1145/191995.192012

Using OpenMP to Detect and Speculate Dynamic DOALL Loops 245

24. IBM Corporation: IBM Power ISA, Version 3.0 B (2017)
25. IBM Corporation: IBM XL C/C++ for Linux: Compiler Reference, Version 16.11

(SC27-8047-01) (2018)
26. Intel Corporation: Intel R© C++ Compiler Developer Guide and Reference (Version

19.1) (2019)
27. Intel Corporation: Intel R© Architecture Instruction Set Extensions Programming

Reference (2020). Reference Number 319433–038
28. Kirk, D.B., Wen-Mei, W.H.: Programming Massively Parallel Processors: A Hands-

on Approach. Morgan Kaufmann, Burlington (2016)
29. Landi, W., Ryder, B.G.: Pointer-induced aliasing: a problem classification. In: Pro-

ceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 93–103 (1991)

30. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion, CGO 2004, pp. 75–86. IEEE Computer Society, Washington, DC (2004).
http://dl.acm.org/citation.cfm?id=977395.977673

31. Maydan, D.E., Hennessy, J.L., Lam, M.S.: Efficient and exact data dependence
analysis. SIGPLAN Not. 26(6), 1–14 (1991). https://doi.org/10.1145/113446.
113447

32. Maydan, D.E., Hennessy, J.L., Lam, M.S.: Effectiveness of data dependence anal-
ysis. Int. J. Parallel Program. 23(1), 63–81 (1995)

33. Moshovos, A., Breach, S.E., Vijaykumar, T.N., Sohi, G.S.: Dynamic speculation
and synchronization of data dependences. SIGARCH Comput. Archit. News 25(2),
181–193 (1997). https://doi.org/10.1145/384286.264189

34. Nakaike, T., Odaira, R., Gaudet, M., Michael, M.M., Tomari, H.: Quantitative com-
parison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12,
Intel Core, and POWER8. SIGARCH Comput. Archit. News 43(3S), 144–157
(2015). https://doi.org/10.1145/2872887.2750403

35. Nicolau, A.: Run-time disambiguation: coping with statically unpredictable depen-
dencies. IEEE Trans. Comput. 38(5), 663–678 (1989). https://doi.org/10.1109/12.
24269

36. OpenMP Architecture Review Board: OpenMP application program interface ver-
sion 5.0 (November 2018). http://www.openmp.org

37. Padua, D.A., Wolfe, M.J.: Advanced compiler optimizations for supercomputers.
Commun. ACM 29(12), 1184–1201 (1986). https://doi.org/10.1145/7902.7904

38. Robert, Valentin, Leroy, Xavier: A formally-verified alias analysis. In: Hawblitzel,
Chris, Miller, Dale (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-35308-6 5

39. Sato, T.: Speculative resolution of ambiguous memory aliasing. In: Proceedings
Innovative Architecture for Future Generation High-Performance Processors and
Systems, pp. 17–26 (1997)

40. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996, pp. 32–41. Association for Computing Machinery, New York
(1996). https://doi.org/10.1145/237721.237727

41. Stratton, J.A., et al.: Parboil: a revised benchmark suite for scientific and com-
mercial throughput computing. Cent. Reliab. High-Perform. Comput. 127 (2012)

42. Wolfe, M.J.: High Performance Compilers for Parallel Computing. Addison-Wesley
Longman Publishing Co., Inc., Boston (1995)

http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/113446.113447
https://doi.org/10.1145/113446.113447
https://doi.org/10.1145/384286.264189
https://doi.org/10.1145/2872887.2750403
https://doi.org/10.1109/12.24269
https://doi.org/10.1109/12.24269
http://www.openmp.org
https://doi.org/10.1145/7902.7904
https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/10.1145/237721.237727

246 B. C. Honorio et al.

43. Wu, Y., Chen, L.L., Ju, R., Fang, J.: Performance potentials of compiler-directed
data speculation. In: Proceedings of the 2003 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2003, pp. 22–31. IEEE
Computer Society, USA (2003)

44. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of intel R©
transactional synchronization extensions for high-performance computing. In: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC 2013. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2503210.2503232

45. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, pp. 197–208. Association for Computing Machinery, New
York (2008). https://doi.org/10.1145/1328438.1328464

https://doi.org/10.1145/2503210.2503232
https://doi.org/10.1145/1328438.1328464

ComPar : Optimized Multi-compiler
for Automatic OpenMP S2S

Parallelization

Idan Mosseri1,2, Lee-Or Alon1,3, Re’Em Harel3,4, and Gal Oren1,2(B)

1 Department of Computer Science, Ben-Gurion University of the Negev,
P.O.B. 653, Be’er Sheva, Israel

{idanmos,alonlee,orenw}@post.bgu.ac.il
2 Department of Physics, Nuclear Research Center-Negev,

P.O.B. 9001, Be’er-Sheva, Israel
3 Israel Atomic Energy Commission, P.O.B. 7061, 61070 Tel Aviv, Israel

reemharel22@gmail.com
4 Department of Physics, Bar-Ilan University, IL52900 Ramat-Gan, Israel

Abstract. Parallelization schemes are essential in order to exploit the
full benefits of multi-core architectures, which have become widespread
in recent years. In shared-memory architectures, the most comprehen-
sive parallelization API is OpenMP. However, the introduction of correct
and optimal OpenMP parallelization to applications is not always a sim-
ple task, due to common parallel shared-memory management pitfalls,
architecture heterogeneity and the current necessity for human expertise
in order to comprehend many fine details and abstract correlations. To
ease this process, many automatic parallelization compilers were created
over the last decade. [2] tested several source-to-source compilers and
concluded that each has its advantages and disadvantages and no com-
piler is superior to all other compilers in all tests. This indicates that a
fusion of the compilers’ best outputs under the best hyper-parameters
for the current hardware setups can yield greater speedups. To create
such a fusion, one should execute a computationally intensive hyper-
parameter sweep, in which the performance of each option is estimated
and the best option is chosen. We created a novel parallelization source-
to-source multi-compiler named ComPar, which uses code segmentation-
and-fusion with hyper-parameters tuning to achieve the best parallel
code possible without any human intervention while maintaining the
program’s validity. In this paper we present ComPar and analyze its
results on NAS and PolyBench benchmarks. We conclude that although
the resources ComPar requires to produce parallel code are greater than
other source-to-source parallelization compilers – as it depends on the
number of parameters the user wishes to consider, and their combina-
tions – ComPar achieves the best performance overall compared to the
serial code version and other tested parallelization compilers. ComPar
is publicly available at: https://github.com/Scientific-Computing-Lab-
NRCN/compar.

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 247–262, 2020.
https://doi.org/10.1007/978-3-030-58144-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_16&domain=pdf
https://github.com/Scientific-Computing-Lab-NRCN/compar
https://github.com/Scientific-Computing-Lab-NRCN/compar
https://doi.org/10.1007/978-3-030-58144-2_16

248 I. Mosseri et al.

1 Introduction

Since the end of Dennard scaling [3] in 2005, there is a growing usage in multi-
core architectures. These architectures can be found in a wide range of com-
puters from wearable devices through smartphones and personal computers to
high-performance computers [4]. Although these architectures can yield excellent
performance in theory, in practice one should adjust his programming methods
to work in parallel [5], i.e. to be executed by several processing units simulta-
neously. Furthermore, to fully exploit these architectures, one has to consider
balancing the workload of the program between the processing units. Unfortu-
nately, transforming a program from a sequential into a parallel one may be a
very complicated and pricey task, especially when dealing with legacy codes [6].
This is due to the fact that in order to evolve a program to work in a parallel
fashion, one must have a deep understanding of the code behavior and be very
cautious not to change the inner logic of the program while attempting to utilize
the benefits of the system. In a shared-memory setting, this is usually done via
compiler optimizations and parallelization API such as OpenMP.

OpenMP [7] is a pragma (compiler directive) oriented library for shared mem-
ory parallelization. The programmer can mark structured code-block by wrap-
ping them with directives that instruct the compiler how to perform the paral-
lelization. At run-time, each structured code-block is divided and executed con-
currently on several threads. Note that the compiler might ignore the suggested
directives. In this case, the structured block that was wrapped by the ignored
directive will not be executed in parallel. In addition to the directives, OpenMP
offers a wide variety of run-time sub-routines and environment variables that can
control the run-time specification and the fashion of the parallel execution. All
of the above have an impact on the final performance of the parallel execution.
To ease the burden of introducing such directives, several source-to-source (S2S)
parallelization compilers that allow users to automatically parallelize their code
[8] – prior to the machine-code compilation – were invented.

The automatic S2S parallelization compilers insert parallelization instruc-
tions in different fashions while preserving both the program’s correctness and
data coherence implied by its data dependencies. These compilers work as fol-
lows: The compilers parse the code into an Abstract Syntax Tree (AST) [9];
then, they find data dependencies by analyzing the generated tree; and after-
ward, they add parallel directives to certain structured code-blocks in an attempt
to optimize the performance of the code. This process is done several times until
convergence. At the end of the process, the tree is converted back to code in
the original programming language. The following note should be highlighted
in this context: Currently, no existing automatic parallelization compiler can
fully replace the programmer’s insight, as programmers are still able to push
the performance of the parallelization further than automatic compilers. This is
since some information is usually hard to automatically extract from the AST
alone, and is crucial for full exploitation of the parallel performance of the code.
For example, function side effects; pointer aliasing; valuable information that
may be based on computational load; optimal scheduling; chunk size and the

ComPar : Optimized Multi-compiler for Auto’ OpenMP S2S Parallelization 249

number of threads. In this work, we introduce ComPar : a unified multi-compiler
that sweeps over different flags, OpenMP clauses and runtime library routines
for each structured code-block that is suitable for parallelization using different
automatic S2S parallelization compilers and fuses the best results, in terms of
performance, together into one optimal code.

The rest of the paper is organized as follows: In Sect. 2 we present the related
work done in regards to automatic parallelization compilers and the foundations
of ComPar. In Sect. 3 we briefly discuss the relevant compilers for ComPar pur-
poses. In Sect. 4 we present ComPar, and examine its performance in Sect. 5.
Finally, we conclude this work and discuss future work in Sect. 6.

2 Related Work

S2S Automatic Parallelization Compilers: S. Prema et al. [10] compared
several automatic parallelization compilers (not necessarily S2S) including Cetus
[11], Par4All [12], Pluto [13], Parallware [14,15], AutoPar [16], and ICC [17].
They discussed the different aspects of the compilers’ work fashions and showed
their speedups and points of failure on ten NAS Parallel Benchmarks [18] using
the Gprof performance analysis tool [19]. While Parallware and Pluto failed
to parallelize the benchmarks, the authors suggested a way to overcome these
points of failure with manual intervention. They observed that Par4All requires
no manual intervention, while Cetus and AutoPar require minimal manual inter-
vention, thus allowing us to consider them for this work. Harel et al. [2] focused
on Cetus, Par4All, and AutoPar [16] while eliminating the need for the rest of
the S2S automatic parallelization compilers. [2] briefly discussed these compil-
ers (regarding both history and work fashion) and presented each compiler’s
strengths and weaknesses. Moreover, [2] tested the performance of these compil-
ers in the Matrix Multiplication kernel and the NAS benchmark [18]. In addi-
tion, [2] pointed out the pitfalls of the selected compilers and proposed changes
to their code-base, in an attempt to aid these compilers to insert more OpenMP
directives. [2] also compared the compilers’ performance on two different suit-
able hardware architectures – multi-core (Non-Uniform Memory Access) and
many-core (XeonPhi, GPGPU). [2] concluded that currently there is no best
S2S automatic parallelization compiler. However, there is a preferable compiler
for each specific case, as the compilers behave differently either inherently (e.g.
different AST analysis and precautions) or extrinsically (e.g. compilation flags
of the parallelizer itself), thus finding the preferable one might be a tedious and
costly task.

Hyper-parameters Tuning: The concept of auto-tuning OpenMP code is well-
established [20–23], and as one can assume, the choice of each environment vari-
able can greatly affect the performance of the code [24]. Consider for example the
dynamic scheduling option: If the chosen chunk size is too small, the resulting
numerous work segments cause high overhead. Contrary, too large chunk size
may result in some threads that will not be assigned with any work, hence
harming the parallelization performance. Therefore, these variables should be

250 I. Mosseri et al.

carefully tuned. One way to do this is by testing and empirically selecting the
optimal ones. Sreenivasan et al. [25] proposed an auto-tuning tool for OpenMP
directives. The suggested framework currently supports only changing the num-
ber of threads used for parallel regions (the more the merrier does not necessarily
apply here), the chunk size, and the scheduler type (static/dynamic). However,
in addition to these control variables, recent advancements in OpenMP provides
many additional variables that control the run-time environment of the program,
which may increase the performance of the program when defined correctly [26].
For example, even in the context of the already used variables, [25] disregarded
newer types of scheduling such as guided, auto, and runtime.

Code Segmentation-and-Fusion: As OpenMP directives target each optional
parallel section separately (in contrast, for example, to MPI [27]), and as each
one of them might have a completely different work fashion and balance, no
unified compilation of an entire program using a single S2S compiler can assure
the best possible performance. Thus, code segmentation into possibly parallel
sections, followed by a varied S2S compilation sweep for best match in terms of
performance is needed. Although not S2S, this idea was previously suggested by
Shivam et al. in MCompiler [28], which divides the code into segments, chooses
the best machine-code compiler for each segment, and composes the compiled
segments back together. MCompiler uses the following compilers: Intel’s C com-
piler [17], PGI’s C compiler [29], GNU GCC [30], LLVM Clang [31], Polly [32],
and Pluto [13]. MCompiler’s code segmentation is based on identifying loops
in the code. While compiling a loop nest, MCompiler attempts to optimize it
using different compiler flags. Machine learning is optionally used in order to
match each loop nest to the proper compiler before running the job in practice.
However, the reliance of MCompiler on machine-code compilation to gain higher
performance and not on S2S with an OpenMP parallelization, prevents users
from retrieving the enhanced code for further development, as well as tweaking
run-time variables such as the number of threads used by the computation or
other parallelization-related ones. Yet, MCompiler may be used as the machine-
code compiler for resulting S2S automatic parallelized code, thus achieving better
performance both in terms of machine compilation as well as parallelization.

Unified Multi-compiler Approach: Concluding, [2] suggested an automatic
compiler that will take the current automatic parallelization performances to the
next level: Dividing the code into suitable-for-parallelization segments, choos-
ing the best parallelization compiler for each segment while tuning the hyper-
parameters (both OpenMP’s and the compiler’s) and fusing the outperforming
segments back together to a unified code. The suggested compiler is based on the
assumption that there is no best compiler for an entire program, yet there is one
for a suitable-for-parallelization individual segment, as each compiler is prefer-
able for a different task under different hyper-parameters. As High-Performance
Computing (HPC) resources skyrocket over the last decade, such a compute-
intensive task of hyper-parameters sweep and the execution of many computa-
tions to achieve the best performing code is no longer impossible in terms of
computing power and might be worthwhile and cost-effective for long-living and

ComPar : Optimized Multi-compiler for Auto’ OpenMP S2S Parallelization 251

legacy codes. Moreover, as those codes use HPC resources constantly and on a
massive scale, even modest optimizations to the codes’ performances – in terms
of parallelization efficiency – can dramatically reduce future unnecessary stacked
costs. Ergo, in this paper, we implemented and extended the suggested compiler,
named ComPar.

3 ComPar ’s S2S Automatic Parallelization Compilers

As [2] concluded, AutoPar, Par4All, and Cetus are the most suitable compilers
for S2S automatic parallelization (although other S2S compilers can be easily
added to ComPar by implementing an appropriate interface). Therefore, we
decided to incorporate them into ComPar. In the following section a brief sum-
mary of each chosen compiler is provided.

Cetus: Cetus [33] is an open-source S2S automatic parallelization compiler for
C programs, which was developed by the ParaMount research group at Purdue
University. Cetus compiler can verify existing OpenMP directives in a given code
and perform data-dependent analysis, pointer alias analysis, and array privatiza-
tion and reduction recognition. Moreover, Cetus uses a special flag to guarantee
that parallelization is done only for loops above 10,000 iterations, in an attempt
to prevent parallelization overhead. In cases of nested loops, the number of iter-
ations of each loop segment will also include the number of iterations of its inner
loops. However, standard compilers may not recognize Cetus’ clauses. One main
disadvantage of Cetus is that it does not insert OpenMP directives to loops that
contain function calls.

AutoPar: AutoPar [16] is an open-source S2S automatic parallelization com-
piler for C and C++ programs and is developed by Lawrence Livermore National
Laboratory (LLNL). Besides AutoPar’s ability to automatically insert OpenMP
directives to a given code, it can also ensure the correctness of the directives in
a given parallel code. As was mentioned above, some additional manual infor-
mation is required from the user in order to maximize the parallelization perfor-
mance. Users can provide to AutoPar an annotation file describing the features
of the code.

Par4All: Par4All [34] is an open-source S2S automatic parallelization com-
piler for C and Fortran programs, which was developed by SILKAN, MINES
ParisTech, and Institute Télécom as a merge of some open-source develop-
ment projects. This compiler is suitable for a broad range of hardware archi-
tectures [12], and in particular it can be used to migrate programs to multi-core
processors and GPGPUs using CUDA paradigms. Furthermore, it can optimize
code execution on multi-core and many-core architectures. Par4All can perform
data dependencies analysis and can validate the correctness of code manipula-
tions. Note that Par4All may change the structure of the code.

252 I. Mosseri et al.

4 ComPar : From Theory to Practice

As was discussed in [2], each tested compiler has its advantages and disadvan-
tages and no compiler is superior to the other compilers in all tested benchmarks.
Hence, using only one compiler at a time is not enough in order to reach optimal
performance. This might suggest that one should carefully fuse the abilities of all
compilers in order to fully exploit the given hardware capabilities to the limit. In
this paper, we suggest ComPar - a novel parallelization S2S compiler that follows
this vision. Due to the fact that ComPar uses outputs of different S2S compilers,
ComPar support is limited to these compilers. For example, since AutoPar sup-
ports parallelization over accelerators, ComPar has the ability to do the same.

4.1 Characteristics, Architecture and Workflow

ComPar is a S2S compiler that optimizes the parallelization of the code in terms
of running-time that can be achieved from S2S automatic parallelization compil-
ers without any human intervention. This is done by fusing several outputs of said
compilers while selecting the best from each based on varied empirical tests. Com-
Par only requires the user to specify the desired hyper-parameters to be consid-
ered (i.e. the parameters defined by OpenMP and the different compilers) in a
JSON format (an example of such file can be found in [35]). Note that although,
theoretically, ComPar considers all available compilers’ flags as well as OpenMP
parallel for directive clauses and OpenMP run-time library routines (RTLs), some
of them might affect the correctness of the program. The correctness of the gen-
erated code is based on the assumption that it is the responsibility of the user
to provide reasonable guiding parameters, as the user is familiar with the logic
of the source code, its dependencies, and the hardware at hand. For example, in
cases of a source code containing pointer aliasing, the user must not provide the
no-pointer-aliasing flag as a parameter in the JSON file. We suggest two methods
to overcome this problem: (1) ComPar ’s black-box testing functionality, which
examines the functionality of an application before and after the parallelization
without peering into its internal structures or workings, and (2) AutoPar’s ability
to ensure the correctness of OpenMP directives in a given parallel code.

The workflow of ComPar is as follows (summarized in the diagram in Fig. 1):
First, the Fragmentor enumerates and annotates all loops in the given source
code by their parenthesis. Next, the Timer adds a piece of code around each enu-
merated loop which will later be used to measure its execution time. Meanwhile,
the Combinator parses three JSON files specifying which S2S compilers should
be used; which compilation flags should be considered for each compiler; which
OpenMP directives should ComPar consider adding to each parallel loop (i.e.
schedule(kind[, chunk size])); and which OpenMP RTL functions should Com-
Par consider adding before each loop. The Combinator registers a combination
in the DB for each possible permutation of the above parameters. Consequently,
for every such combination, the Parallelizer parallelizes the code with the com-
piler and flags specified by the combination, and then adds the specified directive

ComPar : Optimized Multi-compiler for Auto’ OpenMP S2S Parallelization 253

Input
Codes

Params
JSON

Optimal
Parallel
Code

Fregmentor

Combinator

Optimal
Code

Generator

Execution
Complete
Signal

Code with
Loop

Enumeration

Combinations

DB

running-times

Timer

Parallel
Codes

with Loop
Enumeration
and Timing

Executor

Code with
Loop

Enumeration
and Timing

Parallelizer

AutoPar

Par4All

Cetus

Other Tools

Fig. 1. Architecture and workflow of ComPar. Green: inputs, blue: modules, grey:
transferred data type, yellow: compilers, teal: DB, red: output. (Color figure online)

clauses and RTL functions to the loops that the compiler parallelized. Each par-
allel code is then executed by the Executor, which logs its total running-time and
the running-times of all of its loops in the DB. Finally, after all combinations are
executed, the Optimal Code Generator chooses the parallelization scheme that
produced the shortest running-time across all combinations for every individual
loop and creates a parallel code version in which each loop is parallelized using
its empiric optimal parallelization scheme.

Consider, for example, the following program presented in Listing 1. This
source code is a tri-nested loop that multiplies elements in array x by constant
α and stores the result in array y. First, ComPar annotates and times the loops
in the given code (lines 2 and 5, for instance, in Listing 2). Then, it creates all
possible combinations of the given hyper-parameters and names them. After-
ward, ComPar generates the output source codes for each structured block as
was produced by the S2S compilers with all these combinations. Next, Com-
Par chooses the combination that produced the best run-time in practice for
each structured block. As one can see, ComPar ’s output (Listing 2) is composed
of both AutoPar output and Cetus output (Line 3 was generated by AutoPar,
whereas lines 14–17 and 19–22 were generated by Cetus). That is, ComPar
found that the best parallelized code that could be generated under these S2S
parallelization compilers would be the fusion of both AutoPar and Cetus. Thus,
ComPar allows the user to enjoy the advantages of these compilers, while avoid-
ing, when possible, from their disadvantages. Table 1 summarizes the differences
between each loop segment as a comparison between the two listings.

254 I. Mosseri et al.

Table 1. Comparison of Listings 1 and 2 in the

context of the marked loops. ComPar chose comb’

HASH#1 and HASH#2 for the first and second

structured block respectively. This choice led to

speedup of ∼16 in the first block and ∼29 in the

second one.

File daxpy.c

Comb’ HASH#1 HASH#2

Comp’ Autopar Cetus

Comp’ flags keep going

no aliasing

parallelizeloops=2

privatize= 2

alias= 3

Runtime 0.11 1.99

Speedup 16.62 26.96

Total (sec) 2.21

ComPar : Optimized Multi-compiler for Auto’ OpenMP S2S Parallelization 255

Additionally, as previously noted, the user may provide ComPar with a test-
ing script that verifies the correctness of each execution according to its output
(i.e stdout or output file). Using this script, ComPar rejects any combination
that did not pass the tests, thus providing correctness criteria that might help
with pointing out invalid hyper-parameters. The user can also use AutoPar ’s
abilities in this regard.

Assuming the correctness of the input, and the complete preservation of the
entire AST under each S2S compiler, the theoretical proof of ComPar opti-
mization is straight-forward. The algorithm chooses the best directive provided
by the different compilers for each loop structured block. Thus, ComPar either
improves or does not change the running-time of the parallelized algorithm that
could be produced by the best compiler, i.e., in the worst case, ComPar ’s out-
put would be the best-parallelized code out of the codes that were generated by
each of the supported compilers separately (or the serial code in case none of
them succeed). We stress that a decrease, improvement or disruption of the code
performance or results can be an outcome only of the selected parallelization
paradigm per each segment, and that the code validity can be assured using
ComPar ’s black-box testing functionality and AutoPar’s ability to ensure the
correctness of the OpenMP directives in a given parallel code.

As was mentioned above, ComPar runs all possible combinations of S2S
compilers and flags, thus the number of combinations is given by the number of
subsets of possible flags, which is:

∑

i∈C

(2ni − 1)(2rtl+d − 1)

where C is the group of S2S compilers, ni is the number of flags to consider for
S2S compiler i, and rtl and d are the number of run-time library routines and
directives to consider adding to parallel loops, respectively.

The running-time of a single combination is the running-time of the cor-
responding parallel version of the input code (since the rest of the workflow’s
running-time is negligible compared to the Executor’s running-time). Thus, the
total time until ComPar produces its output is the sum over all the running-
times of all combinations. Since ComPar ’s running-time depends on the running-
time of the given source code, if one wishes to parallelize code s, it is strongly
recommended to choose a sufficiently suitable input x′ for s, preferably a
‘sweet-spot’ in which the input is not too small to cause the parallel code to
overwhelmingly suffer from parallelization overhead and not too big to cause the
code to suffer from excessive running-times. Then it is recommended to run the
realistic input x using the parallel code generated.

4.2 Interface

ComPar offers both command-line and GUI interfaces with a variety of options
such as compilation options, i.e. whether to use a Makefile or what machine-code
compiler (e.g. GCC, ICC, etc.) to use, together with the corresponding compi-
lation flags; SLURM parameters (ComPar executes its jobs using the SLURM

256 I. Mosseri et al.

resource manager [36]); whether or not to save all the created combinations’
files; where to store ComPar ’s output; what is the name of the project and what
operational mode to use, etc. ComPar ’s GUI is divided to three modes, where
each mode has its own features. For further information, please see [37].

5 Experiments and Discussion

In order to evaluate the contributions of this paper, we examined the paral-
lelization output on different kernels of both the NAS [18] and PolyBench 4.2.1
beta [38] Parallel benchmarks. ComPar was compared against the different par-
allelization compilers and to serial executions. All of our benchmarks were exe-
cuted using a single computation node with a total of 32 cores (AMD Opteron
Processor 6376 [39]). Note that the number of threads utilized by the benchmark
(correlates to the number of cores used) depends on each and every specification
of combination. Table 2 presents the flags of the S2S compilers; the OpenMP
parallel for directive clauses; and OpenMP run-time library routines that we
tested in our experiments. Moreover, we present the resulted speedups as well
as the running-times in order to ratify the truthfulness of our results (by show-
ing that they consumed a reasonable amount of computation time in regard to
the given input and hardware settings). Note that the presented running-times
and speedups are the best each S2S compiler achieved using the different flag
combinations and are not a result of a “vanilla” execution (i.e. without any
flags).

5.1 NAS Parallel Benchmarks

The Numerical Aerodynamics Simulations (NAS) Parallel Benchmarks [18] are
a group of applications, developed by NASA, to evaluate the performance of

Table 2. Parallelization compilers’ flags, OpenMP parallel for directive clauses and
OpenMP run-time library routines we tested in our experiments.

Compilers’ flags

Compiler Flag

Cetus parallelize-loops, reduction, privatize, alias

AutoPar keep going, enable modeling, no aliasing,
unique indirect index

Par4All O, fine-grain, com-optimization, no-pointer-aliasing

OMP parallel for Directive Clauses

Clause Kind

schedule static [2, 4, 8, 16, 32], dynamic

Runtime Library Routines

RTL Routine Argument

omp set num threads 2, 4, 8, 16, 32

ComPar : Optimized Multi-compiler for Auto’ OpenMP S2S Parallelization 257

high-performance computers. NAS Parallel Benchmarks include ten different
benchmarks [40]. In order to be consistent with [2], we tested the performance
of the compilers over the following benchmarks: Block Tri-diagonal solver (BT),
Conjugate Gradient (CG), Embarrassingly Parallel (EP), Lower-Upper Gauss-
Seidel solver (LU), Multi-Grid (MG) and Scalar Penta-diagonal solver (SP).
Similarly to [2], we did not use Fourier Transform (FT), Integer Sort (IS) and
Unstructured Adaptive mesh (UA) benchmarks, as some compilers failed to
process them. As can be observed from Figs. 2 and 3, ComPar always achieved
the best speedups and running-times respectively, or at least the same ones as
the best S2S compiler (which is different for each benchmark).

BT LU SP EP MG CG

0.1

1

10

S
p
ee
d
u
p

AutoPar Par4All Cetus

ComPar

Fig. 2. NAS benchmark speedups (compared to a serial execution) achieved by the
different compilers in logarithmic scale.

BT LU SP EP MG CG

10

100

1,000

10,000

R
u
n
n
in
g
-t
im

e
(s
ec
) Serial AutoPar Par4All

Cetus ComPar

Fig. 3. NAS benchmark running-times achieved by the different compilers in logarith-
mic scale.

258 I. Mosseri et al.

5.2 PolyBench Benchmarks

PolyBench [38,41,42] is a collection of 30 representative potentially compute-
intensive benchmarks. It attempts to make the kernels’ execution as uniform and
consistent as possible. PolyBench contains a single file, tunable at compile-time,
which is used for the kernel instrumentation. This file performs extra opera-
tions such as cache flushing before the kernels’ execution, and can set real-time
scheduling to prevent operating-system interference.

Most of the benchmarks in the same category are computationally compara-
ble (e.g 2 mm versus 3 mm). Therefore, we chose one representative benchmark in
each category (except for Medley which we considered redundant in this context).
We tested the performance of the compilers over correlation (cat. Data Mining),
gemm (cat. BLAS), 2 mm (cat. Linear Algebra Kernels), cholesky (cat. Linear
Algebra Solvers) and jacobi-2d (cat. Stencils). We did not change the number
of iterations in any of the chosen benchmarks. However, we evenly enlarged the
(already LARGE) problem size by x8 (in terms of memory footprint) in order to
ensure that the benefit from load-balancing imposed by the parallelization will
not be overshadowed by the parallelization overhead. Another benefit of maxi-
mizing memory usage (in regard to the given hardware) is that the running-time
is less affected by the Non-Uniform Memory Access architecture and by the
cache hierarchy, thus attempting to represent a full-scale job as much as pos-
sible. Again, as can be observed from Figs. 4 and 5, ComPar always achieved
the best speedups and running-times respectively, or at least the same ones as
the best S2S compiler (which is different for each benchmark). As one can see,
even though jacobi-2d has a single kernel loop nest, i.e. should only have a single
segment, ComPar outperform all of the individual compilers. This is a direct
result of the parameter autotuning of ComPar.

gemm 2mm jacobi-2d correlation cholesky

4

6

8

10

S
p
ee
d
u
p

AutoPar Par4All Cetus

ComPar

Fig. 4. Polybench benchmark speedups (compared to a serial execution) achieved by
the different compilers.

ComPar : Optimized Multi-compiler for Auto’ OpenMP S2S Parallelization 259

gemm 2mm jacobi-2d correlation cholesky

0

0.5

1
104

R
u
n
n
in
g
-t
im

e
(s
ec
) Serial

AutoPar

Par4All

Cetus

ComPar

Fig. 5. Polybench benchmark running-times achieved by the different compilers.

6 Conclusions and Future Work

In this paper, we address the pitfalls of S2S automatic parallelization and how
some crucial aspects of them could be resolved using ComPar. We briefly dis-
cussed Cetus, AutoPar and Par4All, which we found most suitable for this task.
We then presented ComPar and analyzed its results over both the NAS and the
PolyBench benchmarks. We conclude that although the resources ComPar con-
sumes in order to produce efficient parallel code are greater than the resources
other parallelization compilers demand – as it depends on the number of param-
eters the user wishes ComPar to consider – ComPar achieves the best overall
performance compared to the tested parallelization compilers and the serial code
version. We presented the reasons for which this usage might be worthwhile and
even cost-effective.

Much work is left for the future: Adding support for Fortran programming
language is one of our next goals, as ComPar is primarily targeting legacy large-
scale serial scientific codes. One may also try to better learn the code dependen-
cies and refine the semantically correct parallelization parameters accordingly.
Additionally, since ComPar runtime strongly depends on the problem’s size, one
might develop a model that suggests users the most suitable size. Moreover, a
comprehensive understanding of the hardware specs, let alone actively learn-
ing which hyper-parameters best suite each hardware using machine learning
paradigms, may further enhance our speedups and shorten ComPar ’s execu-
tion time [43]. In addition, the chosen S2S compilers are currently limited to
OpenMP v2.5, hence the generated code can not utilize most of the advantages
of directives from later OpenMP versions. Adding more automatic paralleliza-
tion compilers might be also beneficial. Furthermore, adding more machine-code
compilers might improve the current results and support additional input source
codes. Currently, ComPar can choose the most suited compiler for different
hardware architectures only under certain circumstances (see Sect. 4), while in
the future we wish to explore this improvement opportunity under other cir-
cumstances. As was discussed in [28], it may be advantageous to use VTune [44]
in ComPar in order to find the most suited automatic parallelization compiler

260 I. Mosseri et al.

for each code segment and the best machine-code compilers for each output file
generated by ComPar and each hardware architecture. Nevertheless, we empha-
size that ComPar is the first open-sourced platform for such optimizations of
S2S automatic parallelization compilers, and as such could benefit from further
unexplored avenues and future research.

Acknowledgments. This work was supported by the Lynn and William Frankel Cen-
ter for Computer Science. Computational support was provided by the NegevHPC
project [1]. The authors would like to thank Reuven Regev Farag, Gilad Guralnik,
Yoni Cohen, May Hagbi, Shlomi Tofahi, and Yoel Vaizman from the Department of
Software Engineering - SCE for their part in the development of ComPar, and to Matan
Rusanovsky1,2 for his fruitful comments and extensive evaluation of this work.

References

1. NegevHPC Project. https://www.negevhpc.com
2. Harel, R., Mosseri, I., Levin, H., Alon, L., Rusanovsky, M., Oren, G.: Source-to-

source parallelization compilers for scientific shared-memory multi-core and accel-
erated multiprocessing: analysis, pitfalls, enhancement and potential. Int. J. Par-
allel Program. 48(1), 1–31 (2020)

3. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design
of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-
State Circ. 9(5), 256–268 (1974)

4. Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE
Signal Process. Mag. 26(6), 26–37 (2009)

5. Pacheco, P.: An Introduction to Parallel Programming. Elsevier, Amsterdam
(2011)

6. Feathers, M.: Working Effectively with Legacy Code. Prentice Hall, Upper Saddle
River (2004)

7. Dagum, L., Menon, R.: Openmp: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

8. Prema, S., Nasre, R., Jehadeesan, R., Panigrahi, B.K.: A study on popular auto-
parallelization frameworks. Concurr. Comput.: Pract. Exp. 31(17), e5168 (2019)

9. Neamtiu, I., Foster, J.S., Hicks, M.: Understanding source code evolution using
abstract syntax tree matching. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5
(2005)

10. Prema, S., Jehadeesan, R., Panigrahi, B.K.: Identifying pitfalls in automatic par-
allelization of NAS parallel benchmarks. In: 2017 National Conference on Parallel
Computing Technologies (PARCOMPTECH), pp. 1–6. IEEE (2017)

11. Dave, C., Bae, H., Min, S.-J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-
to-source compiler infrastructure for multicores. Computer 42(12), 36–42 (2009)

12. Amini, M., et al.: Par4all: from convex array regions to heterogeneous computing.
In: IMPACT 2012: Second International Workshop on Polyhedral Compilation
Techniques, HiPEAC 2012 (2012)

13. Bondhugula, U., Ramanujam, J.: Pluto: a practical and fully automatic polyhedral
parallelizer and locality optimizer (2007)

14. Parallware: The OpenMP-enabling Source-to-Source Compiler. http://www.
appentra.com/products/parallware

https://www.negevhpc.com
http://www.appentra.com/products/parallware
http://www.appentra.com/products/parallware

ComPar : Optimized Multi-compiler for Auto’ OpenMP S2S Parallelization 261

15. Gómez-Sousa, H., Arenaz, M., Rubiños-López, Ó., Mart́ınez-Lorenzo, J.Á.: Novel
source-to-source compiler approach for the automatic parallelization of codes based
on the method of moments. In: 2015 9th European Conference on Antennas and
Propagation (EuCAP), pp. 1–6. IEEE (2015)

16. Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Semantic-aware automatic par-
allelization of modern applications using high-level abstractions. Int. J. Parallel
Programm. 38(56), 361–378 (2010)

17. Intel C++ Compiler for Linux Systems User’s Guide. https://software.intel.com/
en-us/cpp-compiler-developer-guide-and-reference

18. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl.
5(3), 63–73 (1991)

19. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler.
ACM SIGPLAN Not. 39(4), 49–57 (2004)

20. Katarzyński, J., Cytowski, M.: Towards autotuning of OpenMP applications on
multicore architectures. arXiv preprint arXiv:1401.4063 (2014)

21. Liao, C., Quinlan, D.J., Vuduc, R., Panas, T.: Effective source-to-source outlining
to support whole program empirical optimization. In: Gao, G.R., Pollock, L.L.,
Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 308–322. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13374-9 21

22. Mustafa, D., Eigenmann, R.: Performance analysis and tuning of automatically
parallelized OpenMP applications. In: Chapman, B.M., Gropp, W.D., Kumaran,
K., Müller, M.S. (eds.) OpenMP in the Petascale Era, IWOMP 2011. Lecture Notes
in Computer Science, vol. 6665, pp. 151–164. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21487-5 12

23. Silvano, C., et al.: Autotuning and adaptivity in energy efficient HPC systems: the
ANTAREX toolbox. In: Proceedings of the 15th ACM International Conference
on Computing Frontiers, pp. 270–275 (2018)

24. Balaprakash, P., et al.: Autotuning in high-performance computing applications.
Proc. IEEE 106(11), 2068–2083 (2018)

25. Sreenivasan, V., Javali, R., Hall, M., Balaprakash, P., Scogland, T.R.W., de Supin-
ski, B.R.: A framework for enabling OpenMP autotuning. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 50–60.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 4

26. Van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP the Next Step: Affinity,
Accelerators, Tasking, and SIMD. MIT Press, Cambridge (2017)

27. Gropp, W., Gropp, W.D., Lusk, E., Skjellum, A., Lusk, A.D.F.E.E.: Using MPI:
Portable Parallel Programming with the Message-Passing Interface, vol. 1. MIT
Press, Cambridge (1999)

28. Shivam, A., Nicolau, A., Veidenbaum, A.V.: Mcompiler: a synergistic compilation
framework. arXiv preprint arXiv:1905.12755 (2019)

29. PGI: PGI compiler user’s guide (2020)
30. GNU Project. GCC online documentation (2020). https://gcc.gnu.org/onlinedocs
31. Lattner, C.: LLVM and Clang: next generation compiler technology. In: The BSD

Conference, vol. 5 (2008)
32. Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger, A., Pouchet, L.-N.:

Polly-polyhedral optimization in LLVM. In: Proceedings of the First International
Workshop on Polyhedral Compilation Techniques (IMPACT), vol. 2011, p. 1 (2011)

33. Cetus Homepage. https://engineering.purdue.edu/Cetus/
34. Par4All Homepage. http://par4all.github.io/
35. ComPar’s Assets

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
http://arxiv.org/abs/1401.4063
https://doi.org/10.1007/978-3-642-13374-9_21
https://doi.org/10.1007/978-3-642-21487-5_12
https://doi.org/10.1007/978-3-642-21487-5_12
https://doi.org/10.1007/978-3-030-28596-8_4
http://arxiv.org/abs/1905.12755
https://gcc.gnu.org/onlinedocs
https://engineering.purdue.edu/Cetus/
http://par4all.github.io/

262 I. Mosseri et al.

36. SLURM. https://slurm.schedmd.com/
37. ComPar GitHub (2020). https://github.com/Scientific-Computing-Lab-NRCN/

compar/blob/master/README.md
38. PolyBench Benchmarks. https://web.cse.ohio-state.edu/∼pouchet.2/software/

polybench/
39. AMD Opteron(tm) Processor 6376 (2013). https://www.amd.com/en/products/

cpu/6376
40. Padua, D. (ed.): NAS Parallel Benchmarks. Encyclopedia of Parallel Computing,

pp. 1254–1259. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-
09766-4

41. Pouchet, L.-N., et al.: PolyBench: the polyhedral benchmark suite (2012). http://
www.cs.ucla.edu/pouchet/software/polybench

42. Yuki, T.: Understanding PolyBench/C 3.2 kernels. In: International workshop on
Polyhedral Compilation Techniques (IMPACT), pp. 1–5 (2014)

43. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.P.: Towards a holistic app-
roach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping. ACM Sigplan Not. 44(6), 177–187 (2009)

44. Reinders, J.: VTune Performance Analyzer Essentials. Intel Press, Santa Clara
(2005)

https://slurm.schedmd.com/
https://github.com/Scientific-Computing-Lab-NRCN/compar/blob/master/README.md
https://github.com/Scientific-Computing-Lab-NRCN/compar/blob/master/README.md
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.amd.com/en/products/cpu/6376
https://www.amd.com/en/products/cpu/6376
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
http://www.cs.ucla.edu/pouchet/software/polybench
http://www.cs.ucla.edu/pouchet/software/polybench

Heterogeneous Computing

OpenMP Device Offloading to FPGAs
Using the Nymble Infrastructure

Jens Huthmann1, Lukas Sommer2(B), Artur Podobas3, Andreas Koch2,
and Kentaro Sano1

1 Riken Center for Computational Science, Kobe, Japan
{jens.huthmann,kentaro.sano}@riken.jp

2 Embedded Systems and Applications Group, TU Darmstadt, Darmstadt, Germany
{sommer,koch}@esa.tu-darmstadt.de

3 Royal Institute of Technology, KTH, Stockholm, Sweden
artur@podobas.net

Abstract. Next to GPUs, FPGAs are an attractive target for
OpenMP device offloading, as they allow to implement highly efficient,
applications-specific accelerators. However, prior approaches to support
OpenMP device offloading for FPGAs have been limited by the interfaces
provided by the FPGA vendors’ HLS tool interfaces or their integration
with the OpenMP runtime, e.g., for data mapping.

This work presents an approach to OpenMP device offloading for
FPGAs based on the LLVM compiler infrastructure and the Nymble
HLS compiler. The automatic compilation flow uses LLVM IR for HLS-
specific optimizations and transformation and for the interaction with the
Nymble HLS compiler. Parallel OpenMP constructs are automatically
mapped to hardware threads executing simultaneously in the generated
FPGA accelerator and the accelerator is integrated into libomptarget

to support data-mapping.
In a case study, we demonstrate the use of the compilation flow and

evaluate its performance.

Keywords: FPGA · OpenMP · Device offloading · Heterogeneous ·
LLVM · HLS

1 Introduction

As the end of transistor scaling [30] draws near, researchers are actively pursu-
ing and evaluating alternative emerging architectures and computing paradigms,
with which they hope to continue performance scaling we have grown used to
rely on. Among the more salient of these emerging architectures are reconfig-
urable systems, whose silicon plasticity/reconfigurability provides a partial rem-
edy for the end of Moore’s law [22] – we do not need more transistors, we just
need to repurpose the existing transistor to better fit the requirements of our
applications.

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 265–279, 2020.
https://doi.org/10.1007/978-3-030-58144-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_17

266 J. Huthmann et al.

Today, Field-Programmable Gate Arrays (FPGAs) are among the more pop-
ular and mature reconfigurable systems available. While early FPGAs had lim-
ited computing capabilities, and were primarily used for circuit simulation and
digital signal processing, modern FPGAs – on the other hand – feature tens
of TeraFLOP/s of raw single-precision performance, and are capable of rivaling
both general-purpose and graphics processing units (GPUs) in power efficiency
and/or raw execution performance. Furthermore, with the increased maturity of
High-Level Synthesis [12] tools, using FPGAs is no longer monopolized by hard-
ware architectures, and instead, anyone with knowledge of C/C++/Java pro-
gramming can map applications onto these exciting new architectures. Today,
several research groups have already mapped important High-Performance Com-
puting (HPC) applications onto FPGAs, with benefits illustrated over existing
approaches [16,26,33–35]. These efforts have led to several research laboratories
setting up large FPGA-based testbeds to investigate the role of these reconfig-
urable devices in a post Exa-scale era, such as the Noctua cluster at Paderborn
University or the Cygnus cluster at University of Tsukuba.

In this paper, we present the Nymble OpenMP HLS infrastructure, which
is a self-contained compilation tool-kit for running (a subset of) OpenMP con-
structs on FPGAs, and also visualize them using the Paraver [23] visualization
tool. Unlike existing OpenMP HLS approaches, which use source-to-source com-
pilation and rely on commercial black box compilers for hardware generation,
Nymble is transparent and fully transforms OpenMP code down to Register
Transfer Level (RTL) Verilog code without external dependencies. This, in turn,
enables users to get a better insight into what hardware is actually generated,
while at the same time providing an open platform for FPGA-based OpenMP
research.

Our contributions in this paper are:

– A description over the Nymble infrastructure, including details on the front-
end compilation and the hardware generation & architecture, including which
OpenMP constructs Nymble supports and how they are implemented,

– A use-case showing how Nymble transforms well-known OpenMP code into
hardware, including empirical performance evaluation, and

– A discussion on the future of OpenMP for FPGAs, including challenges and
directions.

2 Motivation

Today, FPGAs are being considered to complement (and compete with) the
general-purpose processor and GPUs that currently reside in modern HPC infras-
tructure. Several research laboratories are already setting up large FPGA-based
testbeds to investigate the role of these reconfigurable devices in a post-Exa-
scale era, such as for example the Noctua cluster at Paderborn University or the
Cygnus cluster at the University of Tsukuba.

Meanwhile, using these accelerators in a user-friendly way (that is, with-
out resorting to writing RTL code), is often limited to using vendor-specific

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 267

toolchains, such as for example Intel’s OpenCL SDK for FPGA [8] or Xilinx
SDSoC/SDAccel [32]. While these toolchains are often high-performing, they are
also very tied to a specific execution model. Furthermore, adding or researching
into alternative programming models using these vendor solutions (such as for
example OpenMP) is challenging, because tools are closed source, and even if
some aspects can be changed (such as the Board Support Package, BSP), these
changes become non-trivial.

There are methods to extend functionality, such as using source-to-source
methods to transcompile OpenMP [10], but these methods have no way of even
remotely controlling or dictating how the underlying hardware is generated.
Finally, vendor tools and road-maps are not always necessarily aligned with
what we as users or researchers need, meaning that it is imperative to look at
alternative approaches, in particular for guiding and doing research on OpenMP
execution on future FPGAs. The Nymble OpenMP infrastructure aspires to be
one such alternative for OpenMP researchers and users.

3 The Nymble OpenMP Infrastructure

The goal of this work is to develop a compilation flow that maps OpenMP target
regions to FPGA-based accelerators without requiring manual intervention by
the user. The compilation flow is based on the LLVM compiler infrastructure [18]
and its implementation of OpenMP. In contrast to many prior approaches that
use source-to-source transformations on AST-level to extract target regions for
HLS (see Sect. 6 for detailed discussion), the compilation flow in this work uses
LLVM IR to interact with the HLS tool. This approach facilitates code trans-
formations that can be used to transform and optimize target regions, described
in more detail in Sect. 3.1.

As the commercially available HLS-tools only provide source-level inter-
faces and no official interface on IR-level, the state-of-the-art academic HLS
compiler Nymble [15] is used for the actual High-Level Synthesis of the tar-
get regions. Besides providing an IR-level interface, Nymble also supports true
multi-threading in the generated accelerators [14], described in more detail in
Sect. 3.2.

3.1 Compilation Flow

Figure 1 presents an overview of our compilation flow. For OpenMP device
offloading, LLVM’s Clang frontend uses separate compilation passes for host- and
device code. For this work, the host compilation remains completely unchanged
and therefore supports any host code and OpenMP host constructs that Clang
supports.

The device compilation flow (shown on the right-hand side of Fig. 1) does
not only support the basic target directive to denote target regions and the
full range of data-mapping constructs (map-clause, target data-directive, array-
sections, etc.), but also provides two kinds of parallelism: The teams or parallel

268 J. Huthmann et al.

construct can be used inside a target region to express parallelism, Sect. 3.2
explains how this parallelism is realized in hardware. Note that in our current
prototype, only one of these constructs can be used at a time and nested par-
allelism is not supported. For the teams construct, the distribute construct is
also supported to specify worksharing for a loop nest.

Fig. 1. Overview of the compilation flow.

Similar to many approaches investigated in the survey by Mayer et al. [21]
(see Sect. 6 for detailed discussion), a binary stub for execution on the host
machine is generated as one of the products of the device compilation flow. In
this work, the binary stub is not only used to initiate the FPGA execution,
but also to handle parallelism. Parallel constructs will spawn multiple software
threads in the binary stub, these threads then interact with one hardware thread
each in the FPGA-accelerator in an 1:1-relationship. This approach allows to re-
use the standard mechanisms from LLVM’s OpenMP runtime libomp to manage
thread spawning and worksharing. Therefore, after generating LLVM IR in the
Clang frontend, the Kernel Extraction splits the outlined target function into
the stub to remain on the host and the actual target region kernel function for
High-Level Synthesis.

The API Call Insertion then inserts calls to a thin wrapper library around
Intel’s Open Programmable Acceleration Engine1 into the stub function to
1 https://opae.github.io/.

https://opae.github.io/

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 269

transfer function arguments and initiate hardware execution. Note that, in con-
trast to approaches such as [17], data-management is not handled via generated
API calls, but rather through a plugin for LLVM’s libomptarget, enabling the
whole range of data-mapping clauses/constructs, including array sections and
uni-directional transfers (to/from clause). The stub is then compiled for the
host machine (x86-64 in our case) and included in the binary executable using
the Clang Offload-Bundler [1]. At runtime, the stub is loaded by libomptarget
and initiates the execution on the FPGA accelerator.

The extracted HLS kernel undergoes a number of transformations and
optimizations before actual High-Level Synthesis (HLS-specific Optimiza-
tions in Fig. 1). The transformations are mainly concerned with transform-
ing OpenMP language constructs into constructs suitable for High-Level
Synthesis. Currently, the prototype supports the OpenMP API runtime
functions omp get thread num, omp get num threads, omp get team num and
omp get num teams, which, in addition to teams distribute, can be used to
assign individual workloads to the different threads. Besides that, the syn-
chronization constructs omp critical and omp barrier are also supported
inside target regions and mapped to efficient implementations using hardware
semaphores.

Static allocation of thread-private memory inside the target region (alloca
in LLVM IR) is also supported by the compilation flow and HLS backend and
automatically mapped to low-latency accessible local memory (SRAM) on the
FPGA device. Vector datatypes are also allowed in the target regions, but arith-
metic operations on vectors are realized as individual operations on each vector
element, as vector operations do not provide significant benefits in FPGA hard-
ware. Therefore, to allow for more fine-grained scheduling during HLS, we auto-
matically partition vector-wide thread-private memories into individual local
memories for each element while preserving array semantics as one of the opti-
mization steps.

The transformed LLVM IR is then passed to the Nymble HLS backend, which
performs the typical HLS steps of allocation, binding and scheduling. For this
purpose, the LLVM IR is transformed into a control dataflow graph (CDFG)
representation, as described in [15]. More details on the mapping of different
constructs to hardware will be presented in the next section.

The final product of the Nymble HLS backend is an HDL (Verilog) description
of the accelerator, which is passed to Intel’s Quartus software for synthesis and
place-and-route, eventually yielding an FPGA bitstream.

3.2 Hardware Architecture

The overall hardware architecture of the generated FPGA accelerator is depicted
in Fig. 2. The Avalon slave interface of the compute unit (CU) that is connected
to the host is used as entry point for the hardware execution. The memory
mapped register file can be used to pass kernel arguments and other information
(e.g., thread ID) from the software thread to the corresponding hardware thread.

270 J. Huthmann et al.

For larger data, the accelerator supports two different kinds of memory:

– Small, on-chip (SRAM) local memories (LMEM) are directly connected to
the compute unit. These memories can be used as thread-private memory.

– External memory (DRAM) located on the FPGA-board can be used to hold
large amounts of data and also for data-exchange with the host RAM using
the OpenMP data-mapping constructs via the libomptarget-plugin. This
memory is connected to the CU via an Avalon bus, with a dedicated Avalon
master port per hardware thread.

Fig. 2. Hardware architecture of the reconfigurable accelerator.

As the data-width of the external memory interface is usually higher than the
size of single data-item of primitive type (e.g., float), vector data-types can be
used in the OpenMP input code to improve the memory access efficiency. Where
possible, vector-wide memory accesses are automatically mapped to Avalon burst
accesses.

Another mechanism to further improve the memory access efficiency is the
use of the Preloader. By using calls to the custom function omp target preload
in the OpenMP input code to transfer data between global memory and thread-
private local memory, the required data can be transferred efficiently in a single
burst transfer. A more detailed discussion of the Preloader can be found in
Sect. 4.1.

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 271

The Avalon bus system is also used to integrate the memory-mapped Hard-
ware Semaphore that is used to realize the omp critical and omp barrier
synchronization constructs.

The execution inside the Datapath is based on the Nymble-MT execution
model presented in prior work by Huthmann et al. [14]. The unique feature of
this execution model is the fact that it supports the simultaneous execution of
multiple hardware threads in a single compute-unit, whereas most other FPGA-
based approaches achieve thread-level parallelism through spatial replication of
the compute-unit (e.g., [6], cf. Sect. 6 for discussion).

To allow for simultaneous execution of multiple hardware threads, the oper-
ations found in the data-flow graph of the kernel are organized into so-called
stages according to their static HLS schedule. The different stages can operated
independently by the controller, allowing multiple threads to be active in dif-
ferent stages simultaneously. The stage-based execution model in addition also
support loop pipelining.

The threads can operate completely independently of each other in this
model, also allowing threads to start and finish at different points in time. Hard-
ware threads are launched by their software counterpart (as stated in the previ-
ous section, we use a 1:1-relationship between software- and hardware threads)
through the entry point in the Avalon slave interface. Parallelism in the OpenMP
execution model (threads/teams) is automatically mapped to these simultane-
ously operating threads by the compilation flow presented here.

A major challenge in the stage-based execution model is the integration of
operations for which the latency (in clock cycles) cannot be determined stat-
ically, e.g., accesses to external memory, which we call variable-latency opera-
tions (VLO). These operations are scheduled assuming their minimum latency.
In case a VLO exceeds the assumed latency at execution time, the execution of
the encountering thread is suspended until the VLO completes. To make sure
that a single thread encountering a longer-than-expected latency does not block
other threads, stages containing a VLO allow for thread re-ordering, i.e., threads
can overtake each other in these stages.

3.3 Performance Visualization

Just as with any other device or target platform, the optimization of application
code is an important step to achieve performance on FPGAs and is often an iter-
ative process. To assist developers in this process, the compilation flow developed
in this work provides mechanisms to automatically include various performance
counters directly in the generated hardware. While the full details of the hard-
ware implementation are out of scope for this work, the performance counters
were designed to be as non-invasive as possible, i.e., to not have an impact on
the performance of the investigated accelerator design, e.g. by increasing the
initiation interval of pipelined loops.

The performance counters allow to capture important metrics such as mem-
ory bandwidth, arithmetic operations per time-interval (e.g. GFLOPs) or hard-
ware thread idle times and facilitate the analysis and optimization of the target

272 J. Huthmann et al.

regions offloaded to the FPGA. After the execution on the FPGA completes, the
collected performance data is exported in the Paraver trace format for use with
the popular HPC performance visualization tool Paraver [23]. The integration
with a state-of-the-art HPC visualization tool makes the performance analysis
of the FPGA target regions more accessible for HPC domain experts.

4 Evaluation

To demonstrate the compilation flow from OpenMP with target offloading to
FPGA-based accelerators, we use a well-understood benchmark as case study.
The selected application allows to test the different features of the compilation
flow and architecture template by covering the supported OpenMP constructs
as mentioned in the previous section, including synchronization.

For the application, a single compute unit is implemented inside the FPGA,
supporting the simultaneous execution of up to four threads. The implementation
of the compilation flow is based on LLVM release 9.0 and Quartus Prime version
18.1.2 is used for synthesizing the generated Verilog code to an FPGA bitstream.

The targeted FPGA is an Intel FPGA PAC D5005 card. The card is coupled
via PCIe to the host processor, a quad-core Xeon Gold 5122 CPU which executes
the host-portion of the applications and is also used for CPU benchmarking.
Note that the performance figures always include data-transfers between host-
and FPGA external memory via PCIe, initiated through libomptarget, i.e., the
numbers reported here are end-to-end performance of the FPGA offloading.

4.1 Case Study: GEMM

As an example application, we use the general matrix multiplication (GEMM).
The FPGA accelerator is compiled from a blocked version of GEMM and the
different hardware threads compute distinct submatrices of the overall result
matrix. Inside the computation of each thread, the computation is partially
unrolled to exploit the potential of spatial parallelism provided by FPGAs. To
reduce the number of expensive accesses to global, external memory, local mem-
ory is used to buffer inputs and intermediate results. To further improve the
efficiency of memory access to the input matrices A and B, the threads preload
blocks of the input matrices into the local memory using the preloader that
is part of the compute unit. For users of the compilation flow, the preload-
ing capability is available through a simple C++ template function called
omp target preload (cf. Listing 1.1), which simply gets passed the relevant
pointers to external and local memory and the number and type of the elements
to load.

1 template <typename T, int ELEMENTS >

2 void omp_target_preload (size_t offset , size_t stride ,

3 size_t num_transfers , void* globalSrc , void* localDst){...}

Listing 1.1. Definition of the omp target preload-function

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 273

The preloader will then collect the access to multiple elements in a single
Avalon (burst) request, significantly improving the memory access efficiency.
To further leverage the spatial parallelism, double buffering is implemented for
the local memory and the preloading for the next block happens in parallel to
the computation of the current block. All these optimizations have been imple-
mented using standard OpenMP or, in case of unrolling (pragma unroll), com-
piler annotations and C++ constructs. The omp target preload-function was
designed to be very generic and corresponds to a pattern often found in accel-
erator programming (e.g., GPU programming), the preloading of relevant input
data from global memory to local memory. An usage example of the preload-
function can be found in Listing 1.2.

1 void gemm(float* A,...){

2 [...]

3 VECTOR A_local[BUFFERING][BLOCK_SIZE];

4 omp_target_preload <float , BLOCK_SIZE >((i*DIM)+k, DIM ,

↪→ BLOCK_SIZE , (void *) A, (void *)

↪→ &A_local[buffer%BUFFERING * BLOCK_SIZE]);

5 [...]

6 }

Listing 1.2. Usage example of the omp target preload-function (excerpt).

Figure 3 shows the performance of the FPGA accelerator with different num-
bers of hardware threads executing simultaneously in the single compute unit
for matrices of dimensions 8192 × 8192. While the performance of the accelera-
tor almost doubles when going from a single to two threads, the increase slows
down for three and four threads, respectively. In these cases, the threads do not
only compete for compute resources in the multithreaded accelerator, but also
for memory bandwidth to the external memory. The comparison with the BLAS
implementation from the ATLAS library [31] on the Xeon CPU shows that the
accelerator with a single thread outperforms a single thread on the CPU, but is
not able to keep up with an execution with four threads on the CPU, partially
also due to the data-transfers between host and FPGA.

In terms of hardware resource usage, the accelerator takes up 14% of logic
resources, 16% of BRAM and 18% DSPs at a frequency of 183 MHz. Despite
the relative low resource usage, it does not make sense to further increase the
number of threads due to the negative impact on operating frequency. Instead,
the remaining resources could be utilized to duplicate the accelerator and com-
pute on multiple compute units in parallel in future versions of the proposed
architecture.

In order to validate the support for OpenMP synchronization constructs via
a lock implemented in the bus-attached hardware semaphore, an alternative
version of GEMM, where each thread computes parts of the result for each
element of the result matrix. The computed partial result is then added to the
overall result inside a critical region. Even though the hardware semaphore
allows for efficient locking, this version of GEMM, due to the very frequent
access to global memory, delivers less performance than the optimized version
using local memories described above.

274 J. Huthmann et al.

Fig. 3. Arithmetic performance of the blocked GEMM computation in GFLOP/s with
different numbers of hardware threads simultaneously active in the compute unit.

5 Discussion

In this paper, we have demonstrated the Nymble infrastructure and shown that
we can support a significant subset of OpenMP target offloading on FPGAs with-
out much loss of generality, and that many of the properties (load-imbalance,
scalability, etc.) materialize even in hardware. However, there are ample oppor-
tunities and future work for OpenMP on FPGAs, some of which we discuss
herein.

OpenMP tasking, introduced in v3.0 (and dependent tasks in v4.0), is a con-
struct that we would like to support in the Nymble subsystem. In theory, all
necessary ingredients to support tasking is already provided by Nymble, and
scheduling could be in a very software manner. However, such a solution would
likely bloat the generated hardware, and a more customized approach is prefer-
able (such as Nexus [9]), but a trade-off between consumed FPGA resources and
the added performance must be performed. Alternatively, we could outsource
task-management to a soft-core (e.g., a RISC-V [2]) that only orchestrates and
resolves dependencies. More importantly, the FPGA allows for customizing com-
munication between threads (and thus tasks), leading to interesting opportuni-
ties, particularly for dependent tasks.

One exciting future direction is concerning the synchronization and atomic-
ity of operations. Today, Nymble uses a customized mutex hardware core (that
is memory mapped) to support atomicity and synchronization. While this is a
correct and functional way of supporting them, there are likely better ways that
leverage the customization that FPGAs give us. For example, since we are work-
ing with an FPGA, we could, in theory, place the functionality of atom updates
inside the external memory controller (DDR4 in our case). Similarly, rather than
going through shared memory for synchronization, we could have a system-wide
token bus that synchronizes all the threads (by sending and forwarding a syn-
chronization token).

Another opportunity, unique for the FPGA, is concerning the recent mem-
ory allocations added in OpenMP. Because the memory hierarchy can be fully

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 275

customized, we foresee that there are many future opportunities for tuning
these for a particular performance criteria (e.g., execution time or power-
consumption). For example, we could mark part of the FPGA that would be
dedicated to the memory hierarchy as a partially reconfigurable region, and
then dynamically adapt and optimize the actual hardware in real-time, such as
for example changing cache sizes or replacement policies, scratchpad memories,
coherency (or coherency-less) islands of memory, and so on and forth, in order
to facilitate high-performance, low-latency producer/consumer patterns in (for
example) the OpenMP 4.0 dependent tasks.

The representation of floating-point numbers has recently become a hot topic,
with multiple authors proposing (and evaluating) new representations such as
Posit [13] and Elias encoding [20]. Today, OpenMP does not contain support for
setting a particular region to use a specific representation, but in the future, it
might. FPGAs can execute arithmetic operations on these exciting new repre-
sentations at high speed [27]. If selecting number representation will be part of
future OpenMP standard, then FPGAs will be the platform that can exploit it
to the fullest.

Finally, scaling OpenMP onto multiple FPGAs is an open question. On hand,
we could rely on OpenMP’s accelerator directives, and treat each device a dis-
crete system with little to no access to other systems. However, on FPGAs, we
can do more, and create/include special hardware to (for example) support a
shared-memory view across multiple FPGAs, or use tasks as containers that
encapsulate produced/consumed data, that are exchanged among FPGAs.

In short, our understanding of OpenMP on FPGAs is just starting, and there
are ample opportunities and future directions where this work affect OpenMP
in the future.

6 Related Work

As OpenMP-based programming is very attractive for integrating FPGAs
into HPC systems and toolflows, a number of previous works has presented
approaches for mapping OpenMP to FPGAs. A good overview of these
approaches can be found in the survey by Mayer et al. [21].

Early approaches tried to map OpenMP tasks [4,11,24,25] or workshar-
ing constructs [6,7,19], such as parallel for to FPGA accelerators. As these
approaches date back to the time before the OpenMP target constructs were
standardized, no OpenMP constructs for specifying data mapping and device-
specific execution were available for these approaches.

More recent approaches combine the OpenMP device constructs with com-
mercially available HLS tools. Many of these works take an approach where tar-
get regions are extracted from the input program on AST-level [3,28], making
OpenMP-specific optimizations before HLS difficult. The approach presented
by Ceissler et al. [5] even requires the accelerator cores to be implemented
in a hardware-description language and uses OpenMP only for the integra-
tion into the overall application. Only the work by Knaust et al. [17] uses IR

276 J. Huthmann et al.

(namely LLVM-IR) to interact with the HLS tool through an undocumented
interface. However, as the data-transfers via the OpenCL API are statically gen-
erated during compile-time, their approach does not support array sections or
mapping of data in only one direction (to or from), a limitation not found on
our approach.

All of the tools mentioned above try to achieve a speedup over sequential exe-
cution through spatial parallelism (e.g., a dedicated accelerator core per thread)
and classical HLS optimization techniques such as loop pipelining, but none of
them supports actual hardware multi-threading inside the accelerator core. In
contrast, in [29], OpenMP worksharing loops were mapped to multi-threaded
accelerator cores. However, their threading model is much more limited than the
one used in this work, as in their model, only a single thread can be active at a
time and threads would only be switched when the active thread was suspended
due to memory access latency.

As one of the key challenges for an effective mapping of OpenMP constructs
to FPGA hardware, Mayer et al. [21] identified the code analysis and optimiza-
tion across the border between compiler frontend and low-level HLS tool. With
our fully integrated compilation flow from input program to Verilog, we are able
to propagate information across this border and exploit knowledge of the under-
lying FPGA execution model for high-level, FPGA-specific transformations on
IR-level in the compiler frontend.

7 Conclusion

This work presented a compilation flow for targeting FPGAs with OpenMP
device offloading, in combination with a complete integration in libomptarget
for complete data management support. The presented compile flow supports a
significant subset of OpenMP for device offloading, including parallel constructs
(e.g., parallel, teams) that are mapped to actual hardware threads executing
simultaneously in the generated, multi-threaded accelerator, a unique feature of
the presented approach.

By optimizing across the border between compiler front-end and the HLS-
tool based on LLVM and the academic HLS-compiler Nymble, FPGA-specific
optimizations were integrated in the compile flow. This insight could also be
interesting for FPGA’s vendor and a motivation to further open up their HLS-
compiler IR interfaces for OpenMP-based compilation flows.

The case study showed that it is possible to target FPGAs from OpenMP
programs, using only standard programming language constructs and annota-
tions, without any HLS-specific extensions, and also showcased an integration of
a data preloading functionality that could also be of interest on other accelera-
tor architectures (e.g. GPUs). As described in Sect. 5, OpenMP is an interesting
option for integrating FPGAs into parallel and heterogeneous applications, with
a number of interesting research avenues.

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 277

References

1. Antão, S.F., et al.: Offloading support for OpenMP in Clang and LLVM. In: Third
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM-HPC@SC 2016,
Salt Lake City, UT, USA, November 14, 2016, pp. 1–11. IEEE Computer Society
(2016). https://doi.org/10.1109/LLVM-HPC.2016.006

2. Asanović, K., Patterson, D.A.: Instruction sets should be free: the case for RISC-
V. Tech. rep. UCB/EECS-2014-146, EECS Department, University of California,
Berkeley (2014)

3. Bosch, J., et al.: Application acceleration on FPGAs with OmpSs@FPGA. In:
International Conference on Field-Programmable Technology, FPT 2018, Naha,
Okinawa, Japan, December 10–14, 2018, pp. 70–77. IEEE (2018). https://doi.org/
10.1109/FPT.2018.00021

4. Cabrera, D., Martorell, X., Gaydadjiev, G., Ayguadé, E., Jiménez-González, D.:
OpenMP extensions for FPGA accelerators. In: Najjar, W.A., Schulte, M.J. (eds.)
Proceedings of the 2009 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling and Simulation (IC-SAMOS 2009), Samos, Greece,
July 20–23, 2009, pp. 17–24. IEEE (2009). https://doi.org/10.1109/ICSAMOS.
2009.5289237

5. Ceissler, C., Nepomuceno, R., Pereira, M.M., Araujo, G.: Automatic offloading
of cluster accelerators. In: 26th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2018, Boulder, CO, USA,
April 29–May 1, 2018, p. 224. IEEE Computer Society (2018). https://doi.org/10.
1109/FCCM.2018.00058

6. Choi, J., Brown, S.D., Anderson, J.H.: From software threads to parallel hardware
in high-level synthesis for FPGAs. In: 2013 International Conference on Field-
Programmable Technology, FPT 2013, Kyoto, Japan, December 9–11, 2013, pp.
270–277. IEEE (2013). https://doi.org/10.1109/FPT.2013.6718365

7. Cilardo, A., Gallo, L., Mazzeo, A., Mazzocca, N.: Efficient and scalable OpenMP-
based system-level design. In: Macii, E. (ed.) Design, Automation and Test in
Europe, DATE 2013, Grenoble, France, March 18–22, 2013, pp. 988–991. EDA
Consortium, ACM, San Jose (2013). https://doi.org/10.7873/DATE.2013.206

8. Czajkowski, T.S., et al.: From OpenCL to high-performance hardware on FPGAs.
In: 22nd International Conference on Field Programmable Logic and Applications
(FPL), pp. 531–534 (2012)

9. Dallou, T., Engelhardt, N., Elhossini, A., Juurlink, B.: Nexus#: a distributed hard-
ware task manager for task-based programming models. In: 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp. 1129–1138 (2015)

10. Filgueras, A., et al.: OmpSs@ Zynq all-programmable SoC ecosystem. In: Proceed-
ings of the 2014 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 137–146 (2014)

11. Filgueras, A., et al.: OmpSs@ Zynq all-programmable SoC ecosystem. In: Betz,
V., Constantinides, G.A. (eds.) The 2014 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA 2014, Monterey, CA, USA, February
26–8, 2014, pp. 137–146. ACM (2014). https://doi.org/10.1145/2554688.2554777

12. Gajski, D.D., Dutt, N.D., Wu, A.C., Lin, S.Y.: High-Level Synthesis: Introduction
to Chip and System Design. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-1-4615-3636-9

13. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: Posit
arithmetic. Supercomput. Front. Innov. 4(2), 71–86 (2017)

https://doi.org/10.1109/LLVM-HPC.2016.006
https://doi.org/10.1109/FPT.2018.00021
https://doi.org/10.1109/FPT.2018.00021
https://doi.org/10.1109/ICSAMOS.2009.5289237
https://doi.org/10.1109/ICSAMOS.2009.5289237
https://doi.org/10.1109/FCCM.2018.00058
https://doi.org/10.1109/FCCM.2018.00058
https://doi.org/10.1109/FPT.2013.6718365
https://doi.org/10.7873/DATE.2013.206
https://doi.org/10.1145/2554688.2554777
https://doi.org/10.1007/978-1-4615-3636-9
https://doi.org/10.1007/978-1-4615-3636-9

278 J. Huthmann et al.

14. Huthmann, J., Koch, A.: Optimized high-level synthesis of SMT multi-threaded
hardware accelerators. In: 2015 International Conference on Field Programmable
Technology, FPT 2015, Queenstown, New Zealand, December 7–9, 2015, pp. 176–
183. IEEE (2015). https://doi.org/10.1109/FPT.2015.7393145

15. Huthmann, J., Liebig, B., Oppermann, J., Koch, A.: Hardware/software co-
compilation with the Nymble system. In: 2013 8th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), Darm-
stadt, Germany, July 10–12, 2013, pp. 1–8. IEEE (2013). https://doi.org/10.1109/
ReCoSoC.2013.6581538

16. Huthmann, J., Shin, A., Podobas, A., Sano, K., Takizawa, H.: Scaling performance
for N-Body stream computation with a ring of FPGAs. In: Proceedings of the
10th International Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, pp. 1–6 (2019)

17. Knaust, M., Mayer, F., Steinke, T.: OpenMP to FPGA offloading prototype using
OpenCL SDK. In: IEEE International Parallel and Distributed Processing Sym-
posium Workshops, IPDPSW 2019, Rio de Janeiro, Brazil, May 20–24, 2019, pp.
387–390. IEEE (2019). https://doi.org/10.1109/IPDPSW.2019.00072

18. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2004), San Jose, CA, USA, March 20–24,
2004, pp. 75–88. IEEE Computer Society (2004). https://doi.org/10.1109/CGO.
2004.1281665

19. Leow, Y.Y., Ng, C.Y., Wong, W.: Generating hardware from OpenMP programs.
In: Constantinides, G.A., Mak, W., Sirisuk, P., Wiangtong, T. (eds.) 2006 IEEE
International Conference on Field Programmable Technology, FPT 2006, Bangkok,
Thailand, December 13–15, 2006, pp. 73–80. IEEE (2006). https://doi.org/10.
1109/FPT.2006.270297

20. Lindstrom, P.: Universal coding of the reals using bisection. In: Proceedings of the
Conference for Next Generation Arithmetic 2019, pp. 1–10 (2019)

21. Mayer, F., Knaust, M., Philippsen, M.: OpenMP on FPGAs—a survey. In: Fan,
X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS,
vol. 11718, pp. 94–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28596-8 7

22. Moore, G.E.: Cramming more components onto integrated circuits. Electron. Mag.
38(8), 114–117 (1965)

23. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: a tool to visualize and ana-
lyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam Devel-
opments, pp. 17–31 (1995)

24. Podobas, A.: Accelerating parallel computations with OpenMP-driven system on-
chip generation for FPGAs. In: IEEE 8th International Symposium on Embedded
Multicore/Manycore SoCs, MCSoC 2014, Aizu-Wakamatsu, Japan, September 23–
25, 2014, pp. 149–156. IEEE Computer Society (2014). https://doi.org/10.1109/
MCSoC.2014.30

25. Podobas, A., Brorsson, M.: Empowering OpenMP with automatically generated
hardware. In: Najjar, W.A., Gerstlauer, A. (eds.) International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation, SAMOS
2016, Agios Konstantinos, Samos Island, Greece, July 17–21, 2016, pp. 245–252.
IEEE (2016). https://doi.org/10.1109/SAMOS.2016.7818354

26. Podobas, A., Matsuoka, S.: Designing and accelerating spiking neural networks
using OpenCL for FPGAs. In: 2017 International Conference on Field Pro-
grammable Technology (ICFPT), pp. 255–258 (2017)

https://doi.org/10.1109/FPT.2015.7393145
https://doi.org/10.1109/ReCoSoC.2013.6581538
https://doi.org/10.1109/ReCoSoC.2013.6581538
https://doi.org/10.1109/IPDPSW.2019.00072
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/FPT.2006.270297
https://doi.org/10.1109/FPT.2006.270297
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1109/MCSoC.2014.30
https://doi.org/10.1109/MCSoC.2014.30
https://doi.org/10.1109/SAMOS.2016.7818354

OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure 279

27. Podobas, A., Matsuoka, S.: Hardware implementation of POSITs and their appli-
cation in FPGAs. In: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 138–145 (2018)

28. Sommer, L., Korinth, J., Koch, A.: OpenMP device offloading to FPGA accel-
erators. In: 28th IEEE International Conference on Application-Specific Systems,
Architectures and Processors, ASAP 2017, Seattle, WA, USA, July 10–12, 2017,
pp. 201–205. IEEE Computer Society (2017). https://doi.org/10.1109/ASAP.2017.
7995280

29. Sommer, L., Oppermann, J., Hofmann, J., Koch, A.: Synthesis of interleaved multi-
threaded accelerators from OpenMP loops. In: International Conference on ReCon-
Figurable Computing and FPGAs, ReConFig 2017, Cancun, Mexico, December 4–
6, 2017, pp. 1–7. IEEE (2017). https://doi.org/10.1109/RECONFIG.2017.8279823

30. Waldrop, M.M.: The chips are down for Moore’s law. Nat. News 530(7589), 144
(2016)

31. Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in sup-
porting persistently optimized BLAS. Softw.: Pract. Exp. 35(2), 101–121 (2005)

32. Wirbel, L.: Xilinx SDAccel: A Unified Development Environment for Tomorrow’s
Data Center. The Linley Group Inc., Mountain View (2014)

33. Yang, C., et al.: Molecular dynamics range-limited force evaluation optimized for
FPGAs. In: 2019 IEEE 30th International Conference on Application-Specific Sys-
tems, Architectures and Processors (ASAP), pp. 263–271 (2019)

34. Zohouri, H.R., Maruyama, N., Smith, A., Matsuda, M., Matsuoka, S.: Evaluating
and optimizing OpenCL kernels for high performance computing with FPGAs.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, pp. 409–420 (2016)

35. Zohouri, H.R., Podobas, A., Matsuoka, S.: High-performance high-order stencil
computation on FPGAs using OpenCL. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 123–130 (2018)

https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1109/RECONFIG.2017.8279823

Data Transfer and Reuse Analysis Tool
for GPU-Offloading Using OpenMP

Alok Mishra1(B), Abid M. Malik2, and Barbara Chapman1,2

1 Stony Brook University, Stony Brook, NY 11794, USA
{alok.mishra,barbara.chapman}@stonybrook.edu

2 Brookhaven National Laboratory, Upton, NY 11973, USA
{amalik,bchapman}@bnl.gov

Abstract. In the high performance computing sector, researchers and
application developers expend considerable effort to port their applica-
tions to GPU-based clusters in order to take advantage of the massive
parallelism and energy efficiency of a GPU. Unfortunately porting or
writing an application for accelerators, such as GPUs, requires extensive
knowledge of the underlying architectures, the application/algorithm and
the interfacing programming model, such as CUDA, HIP or OpenMP.
Compared to native GPU programming models, OpenMP has a shorter
learning curve, is portable and potentially also performance portable.
To reduce the developer effort, OpenMP provides implicit data transfer
between CPU and GPU. OpenMP users may control the duration of a
data object’s allocation on the GPU via the use of target data regions,
but they do not need to. Unfortunately, unless data mappings are explic-
itly provided by the user, compilers like Clang move all data accessed
by a kernel to the GPU without considering its prior availability on the
device. As a result, applications may spend a significant portion of their
execution time on data transfer. Yet exploiting data reuse opportunities
in an application has the potential to significantly reduce the overall exe-
cution time. In this paper we present a source-to-source tool that auto-
matically identifies data in an OpenMP program which do not need to
be transferred between CPU and GPU. The tool capitalizes on any data
reuse opportunities to insert the pertinent, optimized OpenMP target

data directives. Our experimental results show considerable reduction
in the overall execution time of a set of micro-benchmarks and some
benchmark applications from the Rodinia benchmark suite. To the best
of our knowledge, no other tool optimizes OpenMP data mappings by
identifying and exploiting data reuse opportunities between kernels.

Keywords: Compiler optimization · GPU · Offloading · Compiler ·
HPC · OpenMP · Clang · LLVM · Data reuse · Data transfer

1 Introduction

GPUs are well known for their massively parallel architectures, as well as excep-
tional performance and energy efficiency for suitable codes. Supercomputing
c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 280–294, 2020.
https://doi.org/10.1007/978-3-030-58144-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_18

Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP 281

clusters like Summit [31] derive the lion’s share of their compute power from
GPUs. Each of the 4,608 nodes of Summit is configured with 2 IBM POWER9
processors and 6 NVIDIA Tesla V100 GPUs. For the last two decades, GPUs
are the preferred accelerator in the high performance computing (HPC) sector,
where they serve as a co-processor to accelerate general-purpose scientific and
engineering application codes. Today, they expedite computational workloads in
cutting-edge scientific research in diverse areas such as Physics, Bioinformatics,
Chemistry, Climate Modeling, Machine Learning, and much more.

In the HPC context, GPUs are generally considered to be auxiliary processors
that are attached to a CPU. A block of code which will run on the device
is called a kernel1. Since such a kernel often contains critical computations,
most application developers expend considerable time and effort to optimize it.
Yet both CPU and GPU have their own separate memories, and data must be
transferred between them. Orchestrating data motion between the CPU and
GPU memories is of vital importance since data transfer is expensive and can
often become a major bottleneck in GPU computing. Efficiently managing data
transfers is moreover quite burdensome for the application developer. This is the
issue we address in our work.

1.1 GPU Offloading Using OpenMP

OpenMP [9] is a directive-based application programming interface that can be
used in a Fortran, C or C++ application code to create a parallel program. It
is designed for portability, enjoys wide vendor support, and has a much smaller
learning curve than native programming models, like CUDA [25] and HiP [3].
From version 4.0 onward, OpenMP supports accelerator devices in a host-device
model, for which it offers “target offloading” features. The specification provides
several options to allow its users to control the duration of a data object’s allo-
cation on the GPU, via the use of target data directives. Compared to other
directive-based methods like OpenACC [32], OpenMP has a broader user com-
munity and is more widely available. Features for offloading to devices are under
active improvement, as are the implementations [27] in numerous compilers,
including Clang/LLVM [21], GCC [12], Intel [17], and Cray [8].

An advantage that OpenMP provides over most native GPU programming
models is that it enables implicit data transfer for GPU kernels. Users can
choose whether or not to handle data transfer explicitly; in the latter case,
the OpenMP compiler will manage the data motion. Unfortunately, compiler
support for implicit data transfer is in need of improvement.

1.2 The Problem

All compilers that we had access to and which support OpenMP GPU offload-
ing, like Clang and GCC, handle an implicit data transfer by moving all data
needed for kernel computation without considering its availability on the device.

1 In this paper the term kernel is always used in reference to a GPU kernel.

282 A. Mishra et al.

Thus, all data used in the kernel are transferred both to and from the device at
the start and end of the kernel’s execution, respectively. In consequence, appli-
cations may spend a significant portion of their execution time on data transfer
itself. Automatically determining which data does not need to be transferred to
the GPU (because it is already there) or from the GPU (when it has not been
changed or is no longer required) could lead to better performance by reducing
the amount of data transferred and hence the overall execution time. Such an
optimization could largely avoid the performance penalty currently associated
with the implicit transfer approach and ultimately help increase the fraction of
codes that can utilize a GPU by reducing the developer effort. Although there are
tools available which perform source-to-source transformations for GPU offload-
ing [22,28], to the best of our knowledge no such tool exists that identifies and
exploits opportunities for data reuse between kernels.

1.3 Our Solution

We have developed a Clang-based tool to perform static data reuse analysis
between kernels. We selected Clang because it is the front end for the LLVM
framework which is now a building block of all major compiler frameworks.
The target applications of this tool are those which already use OpenMP for
offloading computation to GPU. This tool performs the following actions:

– It identifies all kernels in an application that uses OpenMP for GPU offload-
ing.

– It identifies the data that needs to be transferred between the CPU and GPU
for each kernel.

– It automatically recognizes data reuse opportunities between multiple kernels.
– It inserts the pertinent OpenMP target data directives into the original source

code to precisely manage data transfers between the host and the device.

Currently, our tool considers traditional data management and not data man-
agement through unified memory [20,24]. Optimizing GPU data management
through unified memory is planned as future work. We also currently assume
that all CPU-GPU data transfers for an input application code is handled by
our tool, therefore, there are no explicit data transfers.

The rest of this paper is organized as follows: Sect. 2 provides motivating
examples to describe common scenarios in user code which can benefit from data
reuse. Section 3 gives a detailed explanation of our strategy for automatically
generating code to exploit data reuse opportunities between kernels. Section 4
describes the experimental setup for our research. Section 5 provides a detailed
analysis of the results from our experiments using the tool. Section 6 looks at
related work and discussion about probable usage of the tool and we conclude
in Sect. 7. Future work and planned extensions are discussed in Sect. 8.

2 Motivating Examples

For this work, we analyzed the Rodinia benchmark suite [4] to find example
codes where data can be reused on a GPU. The use cases are defined in Sect. 4.

Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP 283

To motivate the utility of our tool, we discuss here two common scenarios in a
user code which can profit from data reuse:

Loops: If a kernel is called from within a loop, there is a high probability that
data is reused in multiple calls to that kernel. Any data used inside these kernels
are potential candidates for reuse. Our tool analyzes data in all such kernels to
decide how to efficiently transfer data between the CPU and GPU. As can be
seen in Code 1.1, Kernel 1 is called within a while loop and Array A is reused
by every call of the kernel. Similarly Kernel 2 is called within a for loop, and
Array B is reused in every subsequent call to the kernel.

Close Proximity: We define two kernels to be in close proximity to each other
if they are both called from the same function. In such a case there is also a
high possibility of data reuse between the kernels. As can be seen in Code 1.2,
3 kernels are called inside function func1, and the array Array A is used inside
all 3 kernels in different ways. All kernels called within a loop are, by default,
considered to be in close proximity to their subsequent calls. Our tool has the
ability to detect data reuse in two kernels if they are in close proximity.

while(iter < MAX_ITER) {
// Kernel 1
#pragma omp target teams distribute parallel for
for(int i=0; i<N; i++)

// Compute on Array_A;
iter++;

}
for(iter = 0; iter < MAX_ITER; iter++) {

// Kernel 2
#pragma omp target teams distribute parallel for
for(int i=0; i<N; i++)

// Compute on Array_B;
}

Code 1.1. Code snippet for kernels called from
inside loops

void func1 (Array_A) {
// Kernel 1
#pragma omp target ...

// Assigning Array_A

// Kernel 2
#pragma omp target ...

// Updating Array_A

// Kernel 3
#pragma omp target ...

// Using Array_A
}

Code 1.2. Code snippet for
proximity of kernels

3 Data Reuse Optimization

In this section, we outline the key steps of our approach.

3.1 Problem with OpenMP Implicit Data Transfer

When an OpenMP program begins, an implicit target data region for each device
surrounds the whole program [2]. Each device has a device data environment that
is defined by its implicit target data region. Any declare target directives, and
directives that accept data-mapping attribute clauses, determine how an original
variable in a data environment is mapped to a corresponding variable in a device
data environment. If a user chooses not to map any data to the device explicitly,

284 A. Mishra et al.

then the data is implicitly managed by the compiler. Compilers, such as Clang,
identify all variables used in a target region and move any data associated with
them to the device. The compilers we studied do not take into consideration
whether the data is already available on the device. Once the kernel execution
is over, all array data is moved back to the host, irrespective of whether or not
the data was updated on the kernel or needed beyond the kernel.

3.2 Our Approach

Our tool automatically identifies the data which need to be moved between
the host and the device for each OpenMP kernel, and then searches for any
data reuse opportunity between these kernels. It then inserts pertinent target
data directives, which complies with OpenMP Specification 5.0 [7], to precisely
manage data transfers between CPU and GPU. The goal of our tool is to modify
the original source code (C/C++) by inserting explicit data transfers between
the CPU and GPU, optimized to avoid any unnecessary data motion between
them. Two advantages of this approach are:

– The user can accept, modify or reject the changes introduced by our tool.
– The updated code can be compiled using any compiler with OpenMP GPU

offloading support.

3.3 Implementation

We implemented our framework using Clang/LLVM version 8.0.0 [5]. During
the design stage for the tool, we had to decide whether to apply our analysis
and optimization in Clang or on the LLVM IR. Yet the LLVM IR is relatively
low-level and generally unsuitable for any approach that involves modification to
source code. Once LLVM IR has been generated and optimizations are applied
to it, it would be quite difficult to pinpoint the location of the source code where
we need to insert directives. Thus, we decided to apply our analysis using the
Clang Abstract Syntax Tree (AST) [19].

Table 1. Nodes identified as kernels

Clang AST node OpenMP directive

OMPTargetDirective omp target

OMPTargetParallelDirective omp target parallel

OMPTargetParallelForDirective omp target parallel for

OMPTargetParallelForSimdDirective omp target parallel for simd

OMPTargetSimdDirective omp target simd

OMPTargetTeamsDirective omp target teams

OMPTargetTeamsDistributeDirective omp target teams distribute

OMPTargetTeamsDistributeParallelForDirective omp target teams distribute parallel for

OMPTargetTeamsDistributeParallelForSimdDirective omp target teams distribute parallel for simd

OMPTargetTeamsDistributeSimdDirective omp target teams distribute simd

Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP 285

C/C++

AST Kernel Identification Kernel found?

Update Kernel Information ObjectLoop CheckProximity Check

Check for common data between kernels

Kernel
data used

between calls?

Is Data
Scalar?

Update Kernel Information Object

Find another kernel

Update source code using Kernel Information ObjectReturn Code

Parse AST

Yes

Fail

PassPass
Common Data found

Yes

No

Yes

Fail

No

No

continue

No

Fig. 1. Workflow for identifying data transfer opportunities and data reuse in an appli-
cation using OpenMP for GPU offloading

Clang supports source to source translation, via libTooling [6], even though it
is not primarily used for this purpose. In the Clang/LLVM framework [19] most
of the analysis is performed on the LLVM Intermediate Representation (IR) and
not on the AST. As a result, we had to re-implement some standard analyses
such as live variable analysis, data flow graph and code transformation at the
AST level for our tool. Consequently, we parse the AST to collect all required
information related to the kernels and data variables used in them.

Figure 1 illustrates how our implementation in Clang accurately identifies
data reuse opportunity between kernels. First, we parse the AST and identify
the kernels in the application. To achieve this, we search for all nodes in the
AST as specified in Table 1. For this, we have defined our own Kernel Information
Object, which contains information about each identified kernel, e.g., a unique id
assigned to the kernel, start and end location of the kernel, function from which
the kernel is called, data used inside the kernel, etc. We subsequently use this
class to identify variables accessed inside the kernels. The variables are classified
into five groups as shown in Table 2 and stored in the Kernel Information Object,
to be used during “common data” analysis and for generating the source code.

For each kernel, we implement live variable analysis using the Clang AST,
focusing only on variables used inside a kernel. While traversing the AST, we
store information about the source code location related to all the variables
declared and accessed. Next, we check whether the kernel is called from within
a loop and also check for proximity to other kernels, as defined in Sect. 2. Once
kernels are identified to be in close proximity to each other, we analyze them
to find common data which can be reused across multiple kernels. We use pat-
tern matching on all variables accessed inside the sets of kernels that are in close

286 A. Mishra et al.

Table 2. Types of variables for live variable analysis.

Data types Description

alloc These are variables assigned inside the kernel for the first time.
Data which falls under this category need not be transferred
from the host to the device. During code generation these data
are mapped with the map type “alloc”

to These are variables assigned before but accessed inside the
kernel. Data which falls under this category need to be
transferred from the host to the device. During code generation
these data are mapped with the map type “to”

from These are variables that are updated inside the kernel and
accessed after the kernel call. Data which falls under this
category needs to be transferred from the device to the host.
During code generation these data are mapped with the map
type “from”

tofrom These are variables that are assigned before a kernel call, updated
inside it and accessed after the kernel execution is complete.
Data which falls under this category need to be transferred both
ways between the host and the device. During code generation
these data are mapped with the map type “tofrom”

private Finally, we have variables which are defined and used only inside
the kernel. Data which falls under this category does not need to
be transferred between the host and the device. During code
generation these data are not mapped

proximity to each other, to check for potential data reuse. After identifying com-
mon data between kernels, we update the Kernel Information Object. Finally,
we use the results of our analysis to update the original source code, inserting
the pertinent target data map directives to transfer data between the host and
the device explicitly.

4 Experimental Setup

To evaluate our benchmarks, we used the SeaWulf computational cluster at
Stony Brook University [30]. We ran our tool on four microbenchmarks (Table 3)
and six benchmark applications (Table 4) defined in the Rodinia benchmark
suite [4]. We selected only those benchmarks from the Rodinia suite, which has
GPU offloading support with OpenMP and more than one kernel as part of the
code. We modified these benchmarks by removing all data transfer directives
so that our tool could introduce new code for them automatically. For each
application, we compared two versions:

– Base Code: − This is the basic code with implicit data transfer. It does not
contain any explicit data transfers.

Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP 287

Table 3. Micro-benchmarks used in the experimentation.

Benchmarks Description

Three Matrix Multiplication
(3 mm)

This is the most basic implementation of
multiplying three large matrices. This is a
benchmark where two kernels are reusing
same data. The experiment used matrices of
size 5000 × 5000 each

Gauss Seidel Method (gauss) The method for solving linear equations is
an iterative method, in which the values for
the given variables keep changing until a
certain threshold of variance is reached. The
experiment used a matrix of size 213 × 213

Laplace Equation (laplace) The equation in two dimensions with finite
differences using jacobi iteration. The
experiment used a matrix of size 2000×2000

Single-Precision A·X Plus Y
(saxpy)

SAXPY is a function in the standard Basic
Linear Algebra Subroutines (BLAS) library.
In its simplest form this is a benchmark
where two kernels are reusing same data.
The experiment used two vectors of size 227

each

Table 4. Updated benchmarks from the Rodinia benchmark suite

Application Description

Breadth First
Search (bfs) [15]

Graph Algorithm domain. This benchmark provides the
GPU implementations of BFS algorithm which traverses
all the connected components in a graph

Hotspot [16] Physics Simulation domain. We re-implemented the
transient differential equation solver from HotSpot using
target offloading directives for GPU

k-Nearest Neighbor
(knn) [11]

Data Mining domain. In the implementation it finds the
k-nearest neighbors from an unstructured data set

LU Decomposition
(lud)

Linear Algebra domain. This benchmark is a good
example where multiple kernels care called from within a
loop and some data shared by these kernels are also used
on the host

Needleman Wunsch
(nw) [29]

Bioinformatics domain. Needleman-Wunsch is a
nonlinear global optimization method for DNA sequence
alignments

Particle Filter
(p-filter) [14]

Medical Imaging domain. This particular
implementation is optimized for tracking cells, particularly
leukocytes and myocardial cells

288 A. Mishra et al.

– Optimized Code: − This is the corresponding code in which our data reuse
optimization has been applied to generate explicit data transfers.

We ran the two versions of a benchmark 10 times each and collected infor-
mation on the amount of data transferred and the total execution time. In its
current version, OpenMP in Clang uses CUDA to implement GPU offloading.
Our tool is based on Clang/LLVM version 8.0, using OpenMP offloading with
CUDA 10.0 in the backend. Therefore, during our experiments, we also tracked
how many times the following CUDA APIs related to data transfer are invoked:

– cuMemAlloc - Allocates bytes of linear memory on the device and returns
a pointer to the allocated memory.

– cuMemFree - Frees the memory space which must have been returned by a
previous call to cuMemAlloc.

– cuMemcpyHtoD - Synchronous copies the specified amount of data from
host memory to device memory.

– cuMemcpyDtoH - Synchronously copies the specified amount of data from
device memory to host memory.

We ran these experiments on an NVIDIA Tesla V100 [26] GPU using a PCI-e
connector between the CPU and GPU.

#pragma omp target data map(alloc:temp[0:N][0:N])

{ data reuse region starts

#pragma omp target data map(to:A[0:N][0:N],B[0:N][0:N])
#pragma omp target teams distribute parallel for collapse(2)

for(int i=0; i<N; i++) {
for(int j=0; j<N; j++) {

temp[i][j] = 0;
for(int k=0; k<N; k++)

temp[i][j] += A[i][k]*B[k][j];
}

}
#pragma omp target data map(to:C[0:N][0:N]) map(from:D[0:N][0:N])
#pragma omp target teams distribute parallel for collapse(2)

for(int i=0; i<N; i++) {
for(int j=0; j<N; j++) {

D[i][j] = 0;
for(int k=0; k<N; k++)

D[i][j] += temp[i][k]*C[k][j];
}

}

} // data reuse region ends

Code 1.3. Example of multiplying three matrices reusing data. Code shown in red is
generated automatically by our tool.

5 Results and Analysis

Code 1.3 gives a sample output of our tool when applied to a benchmark code
multiplying three matrices. Here the code marked in red is auto-generated by
our tool. In this particular example, two kernels use, and reuse data from the

Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP 289

3
m

m

g
a
u
ss

la
p
la

c
e

sa
x
p
y

b
fs

h
o
ts

p
o
t

k
-n

n

lu
d

n
w

p
-f
il
te

r

0
2GB
4GB
6GB
8GB

10GB

D
at

a
T
ra

n
sf
er
re
d

1.2TB
20GB

5.5TB
27GB

Base Code Optimimzed Code

Data transfer between CPU and GPU

3
m

m

g
a
u
ss

la
p
la

c
e

sa
x
p
y

b
fs

h
o
ts

p
o
t

k
-n

n

lu
d

n
w

p
-f
il
te

r

0%

20%

40%

60%

80%

100%

6
6
. 7

% 9
9
%

9
9
.9

%

5
0
%

4
7
.7

% 8
5
%

9
2
. 5

%

9
9
.9

%

6
2
.5

%

6
9
. 3

%

D
at

a
R
ed

u
ct
io
n

% Reduction in size of data transferred
when reusing data on GPU

Fig. 2. Comparison of data transferred between CPU and GPU for different bench-
marks

array temp. Arrays A,B and C only need to be transferred to the device. Since
they are not updated on the GPU, we do not need to transfer their values back
to the host. Array temp is needed only on the GPU, while array D needs to
be returned to the host. The array temp is assigned on the GPU, so we do not
need to transfer its data from the host to the device. We ran the base codes
and optimized codes and collected the amount of data transferred between the
host and device. We determined that more than 2 GB of data was transferred
between the host and device in the base case.

In contrast, in our optimized code, only 763 MB of data was transferred.
As can be observed in Fig. 2, there is a reduction of 66.67% in data transfer,
accomplished by automatically adding three lines of OpenMP target data direc-
tives to manage data transfer (cf. Code 1.3). After running our tool on all the
benchmark applications, we collected the amount of data transferred for the base
and optimized code for each of them, and found that in all cases, less data was
transferred in the optimized code than in the base code. This can clearly be
observed in Fig. 2.

For Rodinia’s LU-Decomposition benchmark, in the base case 5.5 TB (Ter-
aByte!) of data was transferred between the host and the device, as compared
to 1.5 GB in the optimized code. This is a huge reduction of 99.97%. Also, the
Laplace Equation micro-benchmark transferred 1.2 TB of data in the base case,
in comparison to only 61 MB in the optimized code (99.99% reduction). As evi-
dent from Fig. 2(b), we observed a tremendous reduction in the amount of data
transferred between the host and device, with BFS being the lowest at 47.7%.

We then took a closer look at the number of times the CUDA data trans-
fer APIs are called for each application. As shown in Fig. 3(C), Laplace Equa-
tion called each of the four APIs – cuMemAlloc, cuMemFree, cuMemcpyHtoD and
cuMemcpyDtoH around 25000 times in its base case. Upon further analysis of the
base code, we discovered that it was calling a kernel from inside a loop which
iterated for 5000 times. Of the four arrays and one variable which were used
inside the kernel, only the variable was used both on the host and the device.
In our optimized code, the data transfer for the arrays was moved outside the

290 A. Mishra et al.

10 20 30

Base

Optimized 37.04%

3mm

250 500 750

Base

Optimized 49.50%

gauss

25K 50K 75K 100K

Base

Optimized 79.99%

laplace

10 20 30

Base

Optimized 48.39%

saxpy

20 40

Base

Optimized 50.98%

bfs

50 100 150 200

Base

Optimized 82.05%

hotspot

200K 400K 600K

Base

Optimized 75%

k-nn

10K 20K 30K

Base

Optimized 99.96%

lud

10 20 30

Base

Optimized 45.71%

nw

200 400

Base

Optimized 66.54%

p-filter

cuMemAlloc cuMemFree cuMemcpyHtoD cuMemcpyDtoH

Fig. 3. Number of calls to data transfer CUDA APIs. The % at the tip of optimized
code represent reduction in total number of calls when compared to base code.

loop, dramatically reducing the number of times the data was moved between
the host and device. In our optimized code, each of the four concerned APIs
were only called around 5000 times. To achieve this, our tool added just one
target data directive. Figure 3 shows the reduction in the number of times the
APIs are called, with a maximum of 99.96% reduction in LU-Decomposition and
a minimum of 45.71% reduction in Needleman Wunsch.

We next calculated the time it took to perform the data transfer and the time
taken to execute the kernel computations. The result is shown in Fig. 4. It can
be seen that the kernel execution time in both base and optimized code is almost
identical. This is expected, as we did not make any changes to the kernel code
itself. In Figs. 4(A), 4(B), 4(E), 4(I) and 4(J), we observe that the majority of the
execution time is consumed in the kernel computation rather than in data man-
agement. However, the K-Nearest Neighbor algorithm, Fig. 4(G), spends 4.382 s
in cuMemAlloc, 2.958 s in cuMemFree, 0.209 s in cuMemcpyHtoD and 0.193 s in
cuMemcpyDtoH, with overall 7.743 s for data management, which is almost 91x
the kernel computation time of 0.085 s. After applying our optimization, data
management was improved by 71% to just 2.26 s. In Fig. 4(G) we do not even see
the compute bar as it is insignificant compared to the data management time.

Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP 291

5 10

Base

Optimized

0.060

0.027

3mm
10 20 30 40

Base

Optimized

0.377

0.012

gauss

20 40

Base

Optimized

35.94

0.353

laplace
0.2 0.4 0.6

Base

Optimized

0.153

0.0007

saxpy

10 20 30

Base

Optimized

0.45

0.23

bfs
1 2 3

Base

Optimized

1.1

0.15

hotspot

2 4 6 8

Base

Optimized

7.74

2.26

k-nn
200 400

Base

Optimized

282

0.094

lud

2 4 6 8

Base

Optimized

0.78

0.397

nw
0.2 0.4 0.6

Base

Optimized

0.056

0.009

p-filter

kernel cuMemAlloc cuMemFree cuMemcpyHtoD cuMemcpyDtoH

Fig. 4. Time taken (in sec) for different data management APIs and kernel computation
time on V100 GPU. The numbers at the tip of each graph represent the time taken for
data transfer only (in sec).

For the LU-Decomposition, Fig. 4(H), the base case requires 282.514 s for data
management, which is almost 1.63x the kernel compute time of 173.441 s. But
after our optimization it consumes only 94.28 ms, which is a 99.96% improvement
over the base case. We also observe considerable improvement in data transfer
time for Laplace (99.01%), SAXPY (99.54%), HotSpot (85.95%) and Particle
Filter (83.96%).

6 Related Work

Optimizing GPU memory management where data movement must be managed
explicitly has been explored in a variety of research. Jablin et al. [18] provide a
fully automatic system for managing and optimizing CPU-GPU communication
for CUDA programs. Gelado et al. [13] present a programming model for hetero-
geneous computing to simplify and optimize GPU data management. Recently
Barua et al. [1] introduce static analysis of explicit data transfers already inserted
into an OpenMP code. Current research in the field do not provide insight into
utilizing data reusability on GPU for implicitly managed data between multiple
kernels.

292 A. Mishra et al.

Although there are several studies on data placement in heterogeneous mem-
ory system, like Dullor et al. [10] or Yu et al. [33], unfortunately they ignore the
impact of implicit data transfer in unified memory. Recently Li et al. [20] have
introduced optimizations to improve the performance of unified memory and
their work can be used in extension to our tool. Other related research on fully
automatic GPU offloading of code by Mishra et al. [23], Mendonça et al. [22]
and Poesia et al. [28], can take benefit from our research to add data reuse opti-
mization in their tool, which would further reduce the barriers to use of GPUs
for scientific computing.

7 Conclusion

Careful management of data and its mapping between host and device is critical
for the use of accelerators in HPC, given the high cost of data motion. The com-
plexities involved are a deterrent to the exploitation of GPUs. The optimization
introduced in this paper may result in a significant reduction in the amount of
data transferred between CPU and GPU and hence improve the overall execu-
tion time of codes that relied on implicit data transfer. It thus contributes to the
ease of use of OpenMP by avoiding the penalty often associated with implicit
transfers. To the best of our knowledge, this is the first tool to apply static
analysis in order to identify and exploit data reuse between offload kernels in an
OpenMP program. The same strategy could clearly easily be used to optimize
an OpenMP compiler’s handling of such transfers. By producing modified source
code, as we have chosen to do, we give the user the option of accepting, improv-
ing or rejecting our generated code, and we enable them to use their compiler of
choice for further building their code.

8 Future Work

The tool is under constant improvement, and a number of extensions are planned
or already under way:

– We are working on exploiting unified memory for data management between
the host and the device.

– We also need to further analyze data usage to determine which data can be
pinned to the GPU, to reduce multiple data allocations. We are also consid-
ering how to handle data between multiple GPUs.

– Discussion is also going on for managing complex structures, sub-structures
and sub-arrays and handling data between multiple GPUs as well.

– Most importantly, we are planning to improve our proximity analysis to ana-
lyze kernels beyond a single function. This could be facilitated by extending
the target data directive of OpenMP, so that the user only prescribes the
data region without the need to explicitly define the map clause. This would
let the compiler automatically handle the data movement, potentially reusing
data on the GPU. Any kernel called from such a data region would be con-
sidered a candidate for data reuse and be analyzed as such.

Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP 293

Acknowledgement. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Sci-
ence and the National Nuclear Security Administration. The authors would like to
thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute for
Advanced Computational Science at Stony Brook University for access to the SeaWulf
computing system, which was made possible by a $1.4M National Science Foundation
grant (#1531492). Special thanks to our colleague Dr. Chunhua Liao from Lawrence
Livermore National Laboratory for his initial feedback and helpful discussions.

References

1. Barua, P., Shirako, J., Tsang, W., Paudel, J., Chen, W., Sarkar, V.: OMPSan:
static verification of OpenMP’s data mapping constructs. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 3–18.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 1

2. Bercea, G.T., et al.: Implementing implicit OpenMP data sharing on GPUs. In:
Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure in
HPC, pp. 1–12 (2017)

3. C++ Heterogeneous-Compute Interface for Portability (2016). https://github.
com/ROCm-Developer-Tools/HIP

4. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–
54. IEEE (2009)

5. Clang 8.0 (2019). http://releases.llvm.org/8.0.1/tools/clang/docs/index.html
6. Clang, Libtooling (2019). http://clang.llvm.org/docs/LibTooling.html
7. Consortium, O., et al.: OpenMP specification version 5.0 (2018)
8. Cray, C.: C++ reference manual, s-2179 (8.7). Cray Research (2019). https://

pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-
overview

9. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

10. Dulloor, S.R., et al.: Data tiering in heterogeneous memory systems. In: Proceed-
ings of the Eleventh European Conference on Computer Systems, pp. 1–16 (2016)

11. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU.
In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pp. 1–6. IEEE (2008)

12. GCC Support for the OpenMP Language (2019). https://gcc.gnu.org/wiki/
openmp

13. Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarro, N., Hwu, W.M.W.: An
asymmetric distributed shared memory model for heterogeneous parallel systems.
In: Proceedings of the Fifteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 347–358 (2010)

14. Goodrum, M.A., Trotter, M.J., Aksel, A., Acton, S.T., Skadron, K.: Parallelization
of particle filter algorithms. In: Varbanescu, A.L., Molnos, A., van Nieuwpoort,
R. (eds.) ISCA 2010. LNCS, vol. 6161, pp. 139–149. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24322-6 12

15. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using
CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77220-0 21

https://doi.org/10.1007/978-3-030-28596-8_1
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
http://releases.llvm.org/8.0.1/tools/clang/docs/index.html
http://clang.llvm.org/docs/LibTooling.html
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-overview
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-overview
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-overview
https://gcc.gnu.org/wiki/openmp
https://gcc.gnu.org/wiki/openmp
https://doi.org/10.1007/978-3-642-24322-6_12
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-540-77220-0_21

294 A. Mishra et al.

16. Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan,
M.R.: Hotspot: a compact thermal modeling methodology for early-stage VLSI
design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(5), 501–513 (2006)

17. Intel C++ Compiler Code Samples (March 2019). https://software.intel.com/en-
us/code-samples/intel-c-compiler

18. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.:
Automatic CPU-GPU communication management and optimization. In: Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 142–151 (2011)

19. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization, p.
75. IEEE Computer Society (2004)

20. Li, L., Chapman, B.: Compiler assisted hybrid implicit and explicit GPU mem-
ory management under unified address space. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–16 (2019)

21. LLVM Support for the OpenMP Language (2019). https://openmp.llvm.org
22. Mendonça, G., Guimarães, B., Alves, P., Pereira, M., Araújo, G., Pereira, F.M.Q.:

DawnCC: automatic annotation for data parallelism and offloading. ACM Trans.
Archit. Code Optim. (TACO) 14(2), 13 (2017)

23. Mishra, A., Kong, M., Chapman, B.: Kernel fusion/decomposition for automatic
GPU-offloading. In: Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, pp. 283–284. IEEE Press (2019)

24. Mishra, A., Li, L., Kong, M., Finkel, H., Chapman, B.: Benchmarking and evalu-
ating unified memory for OpenMP GPU offloading. In: Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–10 (2017)

25. Nvidia, C.: Nvidia cuda c programming guide. Nvidia Corp. 120(18), 8 (2011)
26. NVIDIA Tesla: Nvidia tesla v100 GPU architecture (2017)
27. OpenMP Compilers & Tools (April 2019). https://www.openmp.org/resources/

openmp-compilers-tools
28. Poesia, G., Guimarães, B., Ferracioli, F., Pereira, F.M.Q.: Static placement of

computation on heterogeneous devices. Proc. ACM Program. Lang. 1(OOPSLA),
50 (2017)

29. Poesia, G., Guimarães, B.C.F., Ferracioli, F., Pereira, F.M.Q.: Static placement of
computation on heterogeneous devices. Proc. ACM Program. Lang. 1(OOPSLA),
50:1–50:28 (2017). Article 50

30. Seawulf, Computational Cluster at Stony Brook University (2019). https://it.
stonybrook.edu/help/kb/understanding-seawulf

31. Vazhkudai, S.S., et al.: The design, deployment, and evaluation of the coral pre-
exascale systems. In: SC18: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 661–672. IEEE (2018)

32. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC—first experiences
with real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32820-6 85

33. Yu, S., Park, S., Baek, W.: Design and implementation of bandwidth-aware mem-
ory placement and migration policies for heterogeneous memory systems. In: Pro-
ceedings of the International Conference on Supercomputing, pp. 1–10 (2017)

https://software.intel.com/en-us/code-samples/intel-c-compiler
https://software.intel.com/en-us/code-samples/intel-c-compiler
https://openmp.llvm.org
https://www.openmp.org/resources/openmp-compilers-tools
https://www.openmp.org/resources/openmp-compilers-tools
https://it.stonybrook.edu/help/kb/understanding-seawulf
https://it.stonybrook.edu/help/kb/understanding-seawulf
https://doi.org/10.1007/978-3-642-32820-6_85

Toward Supporting Multi-GPU Targets
via Taskloop and User-Defined Schedules

Vivek Kale1(B), Wenbin Lu2, Anthony Curtis2, Abid M. Malik1,
Barbara Chapman1,2, and Oscar Hernandez3

1 Brookhaven National Laboratory, Upton, NY 11973, USA
vkale@bnl.gov

2 Stony Brook University, Stony Brook, NY 11794, USA
3 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

Abstract. Many modern supercomputers such as ORNL’s Summit,
LLNL’s Sierra, and LBL’s upcoming Perlmutter offer or will offer multi-
ple, e.g., 4 to 8, GPUs per node for running computational science and
engineering applications. One should expect an application to achieve
speedup using multiple GPUs on a node of a supercomputer over a sin-
gle GPU of the node, in particular an application that is embarrass-
ingly parallel and load imbalanced, such as AutoDock, QMCPACK and
DMRG++. OpenMP is a popular model used to run applications on
heterogeneous devices of a node and OpenMP 5.x provides rich fea-
tures for tasking and GPU offloading. However, OpenMP doesn’t pro-
vide significant support for running application code on multiple GPUs
efficiently, in particular for the aforementioned applications. We provide
different OpenMP task-to-GPU scheduling strategies that help distribute
an application’s work across GPUs on a node for efficient parallel GPU
execution. Our solution involves using OpenMP’s construct taskloop to
generate OpenMP tasks containing target regions for OpenMP threads,
and then having OpenMP threads assign those tasks to GPUs on a node
through a schedule specified by the application programmer. We analyze
the performance of our solution using a small benchmark code represen-
tative of the aforementioned applications. Our solution improves perfor-
mance over a standard baseline assignment of tasks to GPUs by up to
57.2%. Further, based on our results, we suggest OpenMP extensions
that could help an application programmer have his or her application
run on multiple GPUs per node efficiently.

Notice of Copyright: This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan (http://energy.gov/
downloads/doe-public-access-plan).

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 295–309, 2020.
https://doi.org/10.1007/978-3-030-58144-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_19&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-58144-2_19

296 V. Kale et al.

Keywords: OpenMP · Tasks · Offload · Multi GPUs · AutoDock ·
Load balancing · User-defined scheduling · High-performance · Parallel

1 Introduction

Modern supercomputers for running computational science and engineering
applications are often comprised of compute nodes with accelerator devices.
Many of the supercomputers ranked on the latest Top500 list (http://www.
top500.org) and the Green500 list (http://www.green500.org) in November 2019
are equipped with an accelerator component such as the NVIDIA GPU. A com-
pute node in such a supercomputer often has multiple accelerators to further
improve the power-to-performance ratio. For example, ORNL’s supercomputer
Summit has 6 NVIDIA Volta-100 GPUs per compute node [5], and LBL’s Perl-
mutter will have nodes with 4 NVIDIA A100 GPUs and 2 AMD Milan GPUs [4].
This node architecture allows application programs to offload multiple compu-
tational kernels onto independent devices simultaneously and achieve significant
performance. Supercomputers with such a node architecture are often considered
as a leading candidate for running applications, in particular those applications
that are embarrassingly parallel and load imbalanced, and employing Monte
Carlo algorithms [3,26].

Accelerator programming languages such as CUDA, OpenCL, OpenMP, and
OpenACC are often used to offload kernels to devices [28]. OpenMP is one of the
most commonly used parallel programming models for on-node programming.
The current version of OpenMP, OpenMP 5.0, provides GPU offloading sup-
port [1]. However, multi-GPU OpenMP offload is limited by mapping a target
region for an accelerator to a specified device number of one of multiple devices
on a node explicitly when a target region is created. How can we create suit-
able software for applications to take advantage of multiple GPUs on a node in
a generic way, without mapping to specific devices, to leverage multiple GPUs
on the node and improve performance portability on systems with a different
number of devices per node?

This paper explores how to program multiple GPUs within a node by looking
at different task-to-GPU scheduling strategies to map computations to multiple
devices. Our solution involves using OpenMP’s tasking construct taskloop to
generate OpenMP tasks containing target regions for OpenMP threads, and
then having OpenMP threads assign or schedule those tasks to GPUs on a
node through a schedule specified by the application programmer, or a user
such as a performance engineer helping optimize an application. We analyze
the performance of our solution using a small OpenMP performance benchmark
code representative of the applications with Monte Carlo methods, in particular
AutoDock [15] and DMRG++ [13]. Applying our solution to our benchmark,
we improve performance over a standard baseline assignment of tasks to GPUs
up to 57.2%. Further, based on our results, we suggest OpenMP extensions that
could help application programmers have their applications use multiple GPUs

http://www.top500.org
http://www.top500.org
http://www.green500.org

OpenMP Tasking for Multi-GPUs 297

per node efficiently through OpenMP. We make the following contributions in
this work:

1. OpenMP task-to-GPU scheduling strategies that help distribute an applica-
tion’s computations across GPUs on a node, which provide significant per-
formance benefit over basic or naive approaches of assigning computations to
GPUs;

2. a framework for developing user-defined task-to-GPU scheduling strategies;
3. OpenMP extension proposals to support our approach of programming multi-

ple accelerators within a single node through taskloop and user-defined sched-
ules.

2 Motivation Through Use Case Applications

Distributing work and data across multiple GPUs on a node is challenging. We
have discovered applications that require work decomposition, often exemplified
by the computational motif, or pattern, of Monte Carlo Methods [3,26], to be
straightforward to map to multiple devices get significant performance benefit
from doing so. Below is a summary of applications that can benefit of a task
decomposition approach to deal with load imbalances across multiple GPUs. We
focus the first application due to its timeliness.

2.1 Autodock

In 2019, the emergence of a novel coronavirus (SARS-CoV-2) caused the Coro-
navirus Disease 2019 (COVID-19). This virus has become a major threat world-
wide due to its highly contagious nature. Molecular docking is one of the impor-
tant steps used in identifying candidate drugs against a virus like SARS-CoV-2.

AutoDock is a family of applications that perform this kind of docking.
AutoDock 4 [15] is the sequential version that is the baseline for improvements
due to parallelism. AutoDock Vina [24] achieves approximately two orders of
magnitude speed-up over AutoDock 4 through threaded parallelism, while also
significantly improving the accuracy of binding predictions. AutoDock 4.2 [22], or
Autodock-GPU, is based on OpenCL and simulates the molecular docking pro-
cess by predicting the ligand-receptor interactions. It uses a Lamarckian Genetic
Algorithm (LGA) to perform docking by offloading independent LGA executions
to a GPU.

During the docking of the receptor protein and the ligand molecule,
Autodock-GPU searches for a pose that has a satisfyingly low energy state, which
will be predicted by a scoring function. This is achieved by searching in the space
of the receptor-ligand pair’s conformational coordinates (position, orientation,
and torsion), using LGA. The search stops automatically after either reaching
a small standard deviation of the current best pose, a large number of genera-
tions, or a large number of scoring function evaluations, whichever comes first.

298 V. Kale et al.

In Autodock-GPU, the receptors are rigid and are modeled by static grid maps.
This limits the sizes of the search spaces, and makes the number of rotatable
bounds in the ligand one of the most influential factors on the search difficulty.
Due to the randomness of the genetic algorithm, experiments have shown that
the larger search space is correlated with higher variations in the time it takes
to find a good pose for a given receptor-ligand pair.

SW04057 SW04119 SW04187 SW04306
Ligand type

0

500

1000

1500

2000

D
oc

ki
ng

 ti
m

e
(s

ec
on

ds
)

Fig. 1. Variation in docking time when running the OpenCL version of Autodock-GPU
on NVIDIA Tesla V100, with local-search method ADADELTA.

We benchmarked Autodock-GPU on an NVIDIA Tesla V100 GPU, and
recorded the docking times for four different ligands on the same receptor, 30
runs for each pair. In the results presented in Fig. 1, large variations are observed:
the difference in run time for the same pair can vary from two times to more
than four times. Similar results can be observed for ligands with fewer amounts
of rotatable bounds, but with smaller variations.

Table 1. Mean, standard deviation and coefficient of variation of the docking time of
the tested ligands. The result of ligand SW04057 includes several outliers that were
not plotted in Fig. 1.

Ligand Rotatable bounds μ σ Coefficient of variation

SW04057 36 531.51 s 818.66 s 1.54

SW04119 22 494.38 s 185.39 s 0.37

SW04187 17 324.31 s 67.518 s 0.21

SW04306 36 1131.1 s 300.50 s 0.27

When docking is performed in a multi-GPU setup, each GPU typically pro-
cesses its own set of receptor-ligand pairs independently. Although this process
is embarrassingly parallel, the distribution of the docking times shown in Table 1
suggests that we should expect variations of at least 20% of the mean docking

OpenMP Tasking for Multi-GPUs 299

time. In the absence of a load balancing scheduler that distributes the receptor-
ligand pairs dynamically, the work could become unevenly distributed and thus
result in inefficient utilization of the GPUs.

2.2 DMRG++

Density Matrix Renormalization Group (DMRG++) [13] is a condensed matter
physics code which is used to study superconductive properties of materials.
One of the main computations of the application is a Hamiltonian matrix-vector
multiplication, where the elements of the Hamiltonian matrix contain vectors of
different sizes with symmetrical values to the diagonal part of the matrix that
are only known at runtime. The Hamiltonian matrix-vector operation can be
significantly optimized through using taskloop as it’s a sparse matrix-vector
multiplication and using OpenMP target regions to accelerate the inner matrix-
vector multiplications of each of element on multiple GPUs.

2.3 Formulating Our Problem with a Representative Benchmark

We develop an OpenMP benchmark kernel code in C that represents the afore-
mentioned applications’ computational pattern and that identifies their perfor-
mance bottlenecks1. Through this benchmark code, we apply the technique that
we want to experiment with. The benchmark code takes as input (1) a max-
imum problem dimension n of each computation and (2) the number of such
computations C. The benchmark’s work is to perform a set of C square rooted
vector multiplications, each of which are on vectors of sizes chosen randomly
from the set {1, 4, 9, . . . , n ∗ n}. The vector sizes are randomly generated and
stored in an array of integers before the computations start. Each of these C
computations resemble the multiplication of two matrices each of dimension
n for protein-ligand docking pairs in Autodock. The matrix dimensions of the
matrix multiplications in Autodock are of a variety of sizes and are generated
at runtime.

We augment the benchmark kernel with OpenMP offload features as follows.
OpenMP threads, each of which run on a core of a multi-core CPU, first ran-
domly choose the vector sizes. Then, each OpenMP thread offloads its prepared
work of the computations to a GPU. This offload is performed by enclosing the
benchmark’s computation in an OpenMP target region. Within each OpenMP
task of computation, we allocate the same amount of data and the same data
for running the computation on a GPU. The amount of data movement between
CPU and GPU across target regions is uniform. This uniform amount of data
movement is representative of the CPU-GPU data movement in the Autodock
application code.

With this augmented benchmark kernel code, we make the following observa-
tions. First, each vector multiplication is independent of the other, making this

1 A repository for the benchmark code, which includes the strategies in this paper, is
accessible at https://tinyurl.com/omp-ad-bench.

https://tinyurl.com/omp-ad-bench

300 V. Kale et al.

computation embarrassingly parallel. Second, the code isn’t using the remain-
ing GPUs on the node. Doing so could significantly speed up the code’s execu-
tion, especially considering the baseline performance numbers shown in Sect. 2.1.
Third, even if the code did use all the GPUs on the node, the code wouldn’t
use the GPUs efficiently due to load imbalance caused by the differently sized
computations, in particular given our observations from Sect. 2.1. Given these
observations, our objective is to have an application code use all computational
power of the node, specifically the GPUs, all the time, given the load imbalance
due to the high standard deviations of the timings across the computations. The
next section covers how we try to meet the objective of using all of the GPUs
all the time.

3 Using OpenMP Offload on Multiple GPUs Efficiently

The key idea of the solution is to have OpenMP threads generate work in well-
defined and standard units and then have one or more OpenMP threads work
together to dynamically map these units of work to GPUs. This section explains
our solutions and the baseline that we compare our solution to.

A basic way to run OpenMP offload code on multiple GPUs is by pre-
assigning each target region of computational work of the application to a device,
i.e., GPU, ID [21]. To run a set of 100 computations of our benchmark on nodes
with 6 GPUs, we can have an OpenMP thread assign the first 17 computations
to GPU 0, the next 17 to GPU 1, and so on. When running T computations on
a node of G GPUs, an OpenMP thread assigns the xth computation to device
ID �x∗G

T � through adding the clause device(x*G/T) to the target construct.
We call this strategy compact, and it is our baseline strategy.

Through a static assignment of computations to GPUs described in the previ-
ous paragraph, the benchmark code and application codes of Sect. 2.3 can have
load imbalance across, and an under-utilization of, the GPUs of a node. The
benchmark and application codes can utilize the GPUs more efficiently if the
computations are assigned dynamically to GPUs during the application’s execu-
tion [10,12,17]. To assign, or schedule, computations to GPUs dynamically, we
must find a way to encapsulate the computations in standardized units of work
that can be managed by the OpenMP threads to distribute to the GPUs. We
use the OpenMP tasking support already available in OpenMP for this purpose.

Figure 2 illustrates the dynamic OpenMP task-to-GPU scheduling strategy,
showing how OpenMP threads on a CPU manage and schedule an OpenMP task
to some GPU in the set of GPUs on a node. A taskloop construct is applied to
the loop that performs the computation in independent outer iterations, each of
which contains a target region. The red trapezoids in the figure are tasks gener-
ated from the taskloop construct, and the grey rectangle represents the queue
of taskloop. Each OpenMP thread on the CPU offloads a task of computation
in taskloop to a particular GPU by dequeueing the next available GPU from
a GPU queue, which is stored on the host. This GPU queue does not perform
cross-GPU synchronizations, thus avoiding GPU-to-GPU communication before
each execution of a task.

OpenMP Tasking for Multi-GPUs 301

Fig. 2. Conceptual diagram of OpenMP threads scheduling tasks to GPUs.

Figure 3 shows the implementation strategy for our task-to-GPU scheduling
technique. We wrap each OpenMP target region in an OpenMP task, as men-
tioned in the explanation of Fig. 2, and create a preceding and succeeding task for
management of computational tasks for the GPU queue. These three OpenMP
tasks are executed within each task in the taskloop. OpenMP threads of the
parallel region assign the computational task of each task of the taskloop to
GPUs through the function gpu scheduler dyn(). The function doWork() is the
function for doing the square rooted vector multiplication computation in our
benchmark.

Figure 4 shows the code change to a generic application for using the task-
to-GPU dynamic scheduling strategy, which we implemented in the application
code. An OpenMP thread running on the CPU invokes this function, and then
waits in the while loop looking for an available GPU by repeatedly going through
the array occupancies for the GPUs. Note that all the OpenMP threads are
cycling through the same array occupancies, so atomic operations are used
to avoid any data races/locks. If a GPU is busy, the thread just moves on and
checks the next GPU. The thread keeps doing this until it sees the first GPU with
occupancy of zero in the GPU queue. Other strategies, which may provide better
load balance along with low overhead of data movement or coordination [11,14],
can be defined and used by programmers or application developers alike.

4 Results

The benchmark was experimented with on SeaWulf, a cluster at Stony Brook
University. We chose SeaWulf because it is representative of some of the modern
supercomputers with multiple GPUs per node such as Summit, Sierra and the
upcoming machine Perlmutter at NERSC, which run the applications discussed
in Sect. 2. Also, the cluster was readily available for our experiments. SeaWulf
has nodes with 8 NVIDIA K80 GPUs with 12 GB memory and CUDA 10.0.130
and a 28-core Intel Xeon E5-2683 v3 CPU (2 × 14-core). We use the clang/L-
LVM OpenMP compiler, cloned from the GitHub master branch, commit hash

302 V. Kale et al.

1 #pragma omp parallel

2 {

3 #pragma omp single

4 {

5 #pragma omp taskloop shared(success)

6 for (int i = 0; i < numTasks; i++) {

7 const int dev = gpu_scheduler_dyn(occupancies , ndevs);

8 output[i] = 0;

9 #pragma omp task depend(out : success[i])

10 {

11 success[i] = 0;

12 }

13 #pragma omp task depend(inout : success[i])

14 {

15 #pragma \)ved(ecivedtegratpmo

16 map(to: a[0: arrSize], b[0: arrSize], c[0: arrSize]) \

17 map(tofrom: success[i:1], output[i:1], taskWork[i:1],

occupancies[dev :1])

18 {

19 devices[dev]++;

20 if (taskWork[i] > probSize) taskWork[i] = probSize;

21 const int NN = taskWork[i];

22 output[i] = doWork(c, a, b, taskWork[i]);

23 success[i] = 1;

24 }

25 }

26 #pragma omp task depend(in : success[i])

27 {

28 #pragma omp atomic

29 occupancies[dev]--;

30 }

31 }

32 }

33 }

Fig. 3. Implementation for task-to-GPU scheduling.

86e3abc9. We use clang/LLVM due to its support of OpenMP features for task-
ing and devices. In performing our experiments, we aim to answer the question
of whether sophisticated task-to-GPU scheduling on a node with multiple GPUs
provides a performance benefit over the baseline approach of statically assigning
tasks to GPUs.

In our experiments, we show results for four strategies of assigning OpenMP
target regions to GPUs. We show the compact strategy which involves a straight-
forward static assignment of target regions to GPUs, as discussed in Sect. 3.
We show a round-robin task-to-GPU scheduling strategy that has OpenMP
threads of the taskloop assigning tasks to GPUs in a round-robin fashion,
with a scheduler function named gpu scheduler rrb() returning taskID %
ngpus, where taskID is the task number taken as another input parameter

OpenMP Tasking for Multi-GPUs 303

1 unsigned gpu_scheduler_dyn(unsigned *occupancies , int ngpus)

2 {

3 short looking = 1;

4 unsigned chosen;

5 while (looking) {

6 for (unsigned i = 0; i < ngpus; i++) {

7 unsigned occ_i;

8 #pragma omp atomic read

9 occ_i = occupancies[i];

10 if (occ_i == 0) {

11 chosen = i;

12 #pragma omp atomic

13 occupancies[chosen]++;

14 looking = 0;

15 break;

16 }

17 }

18 }

19 return chosen;

20 }

Fig. 4. Implementation of user-defined task-to-GPU schedule.

by the scheduler and ngpus is the number of GPUs on a node. Additionally,
we show a random scheduling strategy in which an OpenMP thread assigns a
task to a GPU by choosing a GPU randomly, with a scheduler function named
gpu scheduler ran() returning rand() % ngpus. Finally, we show the dynamic
scheduling strategy described through Fig. 4.

(a) Max problem size 1000. (b) Max problem size 3400.

Fig. 5. Execution times for different task-to-GPU scheduling strategies on 8 GPUs of
a node of SeaWulf.

304 V. Kale et al.

4.1 Impact of Task-to-GPU Scheduling Strategies

We assess the impact on performance of the four different task-to-GPU assign-
ment strategies we designed, by applying them to the benchmark code presented
in Sect. 3.

Figure 5a shows results of the benchmark for 500 target regions for vector
sizes from 1 to 10002 and run using the 8 GPUs on a SeaWulf node. We see
that when we use random, the execution time reduces significantly from 3.96 s
to 2.54 s, an improvement of 35.49%. Compared to random, round robin offers a
comparable but larger improvement, 38.89% relative to compact (the baseline).
When we use dynamic, the time decreases further, providing the best perfor-
mance improvement over our baseline, 54.61%.

Figure 5b shows the results of the same square root vector addition bench-
mark on the same platform, this time with 500 target regions for various vec-
tors between size 1 and 34002. Here, the round-robin strategy provides a 45.8%
improvement (reducing from the baseline of 241.22 s to 130.76 s). When we use
dynamic, the time decreases significantly, improving performance by 57.2%.

From these results, we make a few observations. First, for both problem sizes,
a large amount of the performance gains come from using a task-based approach
in which OpenMP threads distribute tasks across GPUs through the sophisti-
cated task-to-GPU scheduling strategies, specifically, random, round-robin and
dynamic. Second, round-robin performs slightly better than random, showing
that a calculated and predefined strategy rather than a randomized strategy is
important when using tasking, though it isn’t tremendously significant. Third,
dynamic shows a more pronounced benefit over random and round-robin, telling
us that a dynamic task-to-GPU scheduling strategy, in particular one which
is carefully implemented to maintain low coordination overhead, can provide a
significant performance benefit.

4.2 Detailed Profiling

To understand utilization of all GPUs and overhead of the runtime and task-to-
GPU scheduler, we did manual instrumentation with the CUDA Profiling Tools
Interface (CUPTI), specifically through using the SOLLVE V&V suite’s [2] tim-
ing implementation and interface for CUPTI. Through CUPTI, CUDA invokes
user-defined callbacks to record start/finish timestamps of various events. There
are many high-level activity categories: DEVICE, CONTEXT, DRIVER, RUN-
TIME, MEMCPY, MEMSET, KERNEL, OVERHEAD. We inserted a timing
function from the interface at the beginning and at the end of the task of the
target region. To understand GPU utilization and overhead, we focus on the
DRIVER, OVERHEAD, and MEMCPY activity, by searching the resulting out-
put of the SOLLVE V&V interface. We experiment with just the smaller of the
two problem sizes, as for the larger of the two problem sizes, CUPTI created
large amounts of overhead, making it difficult for us to understand the benefits
of our approach.

OpenMP Tasking for Multi-GPUs 305

Table 2 shows the timings, in nanoseconds, obtained through the CUPTI
Activity API. We see that the DRIVER operations, which includes CUDA con-
text/stream activities and synchronizations, dominate the execution time, and
this is also the main source of reduction in execution time, as timings in this
category are orders of magnitude larger than those in other categories. There
are some variations in the MEMCPY category, which could be the result of
combining GPU-to-socket locality issues and our locality-unaware schedulers.
The OVERHEAD category captures the driver compiler’s activity, buffer flush
overhead and the instrumentation overhead. We have yet to identify the source
of reductions in this category due to perturbation from the instrumentation
itself. From these timings, we see that our sophisticated OpenMP task-to-GPU
scheduling strategies are relevant not just from a standpoint of load balancing,
but also from a standpoint of GPU resource management and reducing overhead.

Table 2. Execution activity breakdown using CUPTI (nanoseconds)

Scheduler DRIVER MEMCPY OVERHEAD

Compact 23654161998 7393960 189489499

RoundRobin 16634552748 8526436 248582086

Random 17742577658 8085590 208329746

Dynamic 14229831142 6374549 171728914

5 Discussion on Results and Proposed Extensions

A key question that arises from our implementation and results is how we extend
OpenMP to support of task scheduling for multi-GPUs, for ease of use by appli-
cation programmers. There are different aspects to this, and we cover them in
this section.

First, we need support for a single OpenMP construct to offload asynchronous
target regions on multiple devices. In our implementation, we partition work
across GPUs by leveraging the taskloop construct, associating one thread with
a task of taskloop and then having that thread assign the task to a GPU. We
used taskloop in our implementation for the strategy because we know through
the OpenMP Community [1] that there is a potential that tasking constructs
and target constructs will be unified. However, right now, a problem exists with
executing each of the tasks on any of the GPUs and keeping track of the correct
device contexts used by the OpenMP tasks that offload the different target
regions on multiple GPUs. For example, if a CPU task is scheduled a different
thread, then after a target region with a nowait clause is offloaded, there could be
issues with the GPU contexts when running on multiple devices. We found this
issue with some OpenMP implementations, where we had to comment out the
nowait clause on the target construct to make our benchmark work on multiple

306 V. Kale et al.

devices. We are aware of ongoing efforts in the LLVM OpenMP community [6] to
improve the support of nowait with tasks, in particular in the context of multiple
GPUs. We expect that our results can further improve with these improvements
in the OpenMP library implementation.

Second, our approach could have less overhead, and could also require less
programmer effort, if OpenMP’s taskloop construct was extended so that it
could handle the scheduling of target regions to GPUs and avoid additional lev-
els of nested tasks. In our current implementation, we have two levels of tasking.
The lower level is for the target and the higher level is for coordination of the
tasks of taskloop. We could reduce the possible overhead and reduce the pro-
gramming complexity by eliminating one of these two levels. A possible extension
of taskloop is to create a target taskloop construct that will automatically
manage the assignment of tasks to GPUs using grainsize or num tasks as
scheduling strategies supported by OpenMP implementations and that can be
specified in the construct. We may also want to extend the taskloop construct
to support pipelines where the body of the taskloop can contain dependent
tasks that execute on both the CPU and GPU.

Third, in this work, we showed the need for a specialized task-to-GPU
scheduling strategy using atomics. Such a specialized strategy can be imple-
mented with an OpenMP user-defined task-to-GPU schedule in a similar fashion
as has been proposed in [18]. The user could define her task-to-GPU schedule in
an application by implementing a function gpu scheduler X(), with a pointer
to a record as a parameter to the function. The user could then specify the
schedule X in a clause of taskloop. We note that better atomic instructions
such as compare-and-swap can also help make developing such schedules easier.

Lastly, our approach can benefit from an affinity clause for taskloop which
could work hand-in-hand with the proposed user-defined task-to-GPU schedules.
The affinity clause would reduce data movement from CPU to GPU, and signifi-
cantly improve performance when data has been mapped to a specific device. We
need to assess various design issues given the application for this kind of affin-
ity which include a study of task-to-data, task-to-device and thread-to-device
affinity. For example, for Autodock, the tasks doing docking for a ligand will
be assigned to the GPU on which that data already resides through the affinity
clause hint, which would allow for improved locality through reuse of the data.

6 Related Work

Existing accelerator programming libraries support only a single accelerator.
However, several methods deal with multiple accelerators by using the libraries
together with parallel programming libraries for hosts. One example method is
to spawn multiple threads using OpenMP on host, and each thread deals with
one accelerator [9,16,27]. Another is to spawn multiple processes using MPI on
host, with each process dealing with one accelerator [7,27].

Xu et al. [28] propose an OpenACC extension to support multiple accel-
erators. Although the OpenACC extension supports communication between

OpenMP Tasking for Multi-GPUs 307

accelerators, dividing data and tasks manually is needed. Komoda et al. [20]
propose another OpenACC extension that supports dividing data and tasks into
multiple accelerators. Furthermore, its compiler has a mechanism to keep data
consistency on the accelerator memory automatically. However, the OpenACC
extension can be used only before the loop statement. So, the OpenACC exten-
sion cannot offload data to an arbitrary device, as in our work. Scogland [25]
developed directive extensions to support scheduling work on multiple GPUs
and multi-cores using the a runtime called coreTStar. The extension partitions
loop iterations and its data across multiple devices and CPU threads.

Matsumura et al. [8] develop anOpenACCcompiler system to generate anOpe-
nACC code for multiple accelerators from an OpenACC code for a single accelera-
tor automatically. However, there are some limitations. For example, a loop state-
ment that can be divided is composed only of affine access. Nakao et el. [23] develop
an XcalableACC directive-based language for accelerated clusters which gives an
ability to use multiple accelerators on a single node. In contrast, our work allows for
sophisticated scheduling strategies that the user to define within the application
code.

7 Conclusions

In this work, we presented methods to use all GPUs of a node of an HPC clus-
ter efficiently through OpenMP, particularly for applications that are embar-
rassingly parallel and load imbalanced, which are characteristics of the compu-
tational pattern of Monte Carlo Methods and exemplified by the applications
Autodock and DMRG++. Our solution involves encapsulating each OpenMP
target region containing a computation within an OpenMP task, and then hav-
ing OpenMP threads assign the OpenMP tasks to GPUs on a node through a
user-level task-to-GPU schedule. Through experimenting with our approach, our
results provide up to a 57.2% performance improvement. Our results suggest the
usefulness of OpenMP tasking across GPUs on a node.

Our technique focuses on scheduling tasks across GPUs rather than schedul-
ing of Thread Blocks to Stream Multiprocessors (SMs), i.e., scheduling within a
GPU. An extension to our approach that combines scheduling across GPUs
and scheduling within GPUs will be written for future work. We will also
incorporate our techniques within relevant application codes, e.g., Autodock,
DMRG++ [13,19,22]. We will work to propose new extensions in OpenMP, par-
ticularly implementing them in the LLVM OpenMP compiler and supporting
OpenMP implementations that allow users to easily use our approach. We will
look at the impact of and tune the taskloop’s grain-size. Finally, we will look at
using or adapting the affinity clause to easily reduce data movement overheads
of our task-to-GPU scheduling strategies. The affinity clause will give a hint to
the task scheduler about placing a task on the most appropriate GPU based on
the GPU context.

Acknowledgements. This research was supported in part by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy

308 V. Kale et al.

Office of Science and the National Nuclear Security Administration, in particular its
subproject on Scaling OpenMP with LLVm for Exascale performance and portability
(SOLLVE). It is also supported in part by NSF project 1409946 “Compute on Data
Path”. This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, under contract
number DE-AC05-00OR22725. This research used resources of the Oak Ridge Leader-
ship Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. The authors would like to thank Stony Brook Research Computing and
Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony
Brook University for access to the high-performance SeaWulf computing system, which
was made possible by a $1.4M National Science Foundation grant (#1531492). We
want to thank Jeremy Smith and Ada Sedova, from Oak Ridge National Laboratory,
for providing a small sample of input sets for the Autodock-GPU experiments to help
us study the application workload. We acknowledge the QMCPACK team at ORNL
for discussing their code with respect to application load imbalances.

References

1. OpenMP 5.0 Reference Guide. https://www.openmp.org/wp-content/uploads/
OpenMPRef-5.0-1119-01-TSK-web.pdf

2. OpenMP Verification and Validation Suite. https://github.com/SOLLVE/sollve
vv

3. Parallel Computational Pattern: Monte Carle Methods. https://patterns.eecs.
berkeley.edu/?page id=186

4. Perlmutter User Guide. https://www.nersc.gov/systems/perlmutter/
5. Summit User Guide. https://docs.olcf.ornl.gov/systems/summit user guide.html
6. The LLVM Compiler Infrastructure. http://llvm.org/
7. Optimizing MPI Communication on Multi-GPU Systems Using CUDA Inter-

Process Communication (2012)
8. Matsumura, K., Sato, M., Boku, T., Podobas, A., Matsuoka, S.: MACC: an Ope-

nACC transpiler for automatic multi-GPU use. In: Yokota, R., Wu, W. (eds.)
SCFA 2018. LNCS, vol. 10776, pp. 109–127. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-69953-0 7

9. Beyer, J., de Supinski, B.R.: IWOMP 2016 tutorial: OpenMP accelerator
model (2016). http://iwomp2016.riken.jp/wp-content/uploads/2016/10/tutorial-
accelerator.pdf

10. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1995)

11. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, pp. 99–105, Lund, Sweden
(1999)

12. Ciorba, F.M., Iwainsky, C., Buder, P.: OpenMP loop scheduling revisited: making
a case for more schedules. ArXiv arxiv:1809.03188 (2018)

13. Criado, J., et al.: Optimization of condensed matter physics application with
OpenMP tasking model. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman,
N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 291–305. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28596-8 20

https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf
https://github.com/SOLLVE/sollve_vv
https://github.com/SOLLVE/sollve_vv
https://patterns.eecs.berkeley.edu/?page_id=186
https://patterns.eecs.berkeley.edu/?page_id=186
https://www.nersc.gov/systems/perlmutter/
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
http://llvm.org/
https://doi.org/10.1007/978-3-319-69953-0_7
https://doi.org/10.1007/978-3-319-69953-0_7
http://iwomp2016.riken.jp/wp-content/uploads/2016/10/tutorial-accelerator.pdf
http://iwomp2016.riken.jp/wp-content/uploads/2016/10/tutorial-accelerator.pdf
http://arxiv.org/abs/1809.03188
https://arxiv.org/abs/1809.03188
https://doi.org/10.1007/978-3-030-28596-8_20

OpenMP Tasking for Multi-GPUs 309

14. Donfack, S., Grigori, L., Gropp, W.D., Kale, V.: Hybrid static/dynamic scheduling
for already optimized dense matrix factorization. In: 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 496–507 (2012)

15. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy
force field with charge-based desolvation. J. Comput. Chem. 28, 1145–1152 (2007)

16. Guan, J., Yan, S., Jin, J.M.: An OpenMP-CUDA implementation of multilevel
fast multipole algorithm for electromagnetic simulation on multi-GPU computing
systems. IEEE Trans. Antennas Propag. 61(7), 3607–3616 (2013)

17. Kalé, L., Krishnan, S.: CHARM++: a portable concurrent object oriented system
based on C++. In: Paepcke, A. (ed.) Proceedings of OOPSLA 1993, pp. 91–108.
ACM Press (September 1993)

18. Kale, V., Iwainsky, C., Klemm, M., Müller Korndörfer, J.H., Ciorba, F.M.: Toward
a standard interface for user-defined scheduling in OpenMP. In: Fan, X., de Supin-
ski, B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp.
186–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 13

19. Kim, J., et al.: QMCPACK: an open source ab initio quantum Monte Carlo package
for the electronic structure of atoms, molecules and solids. J. Phys.: Condens.
Matter 30(19), 195901 (2018). https://doi.org/10.1088/1361-648x/aab9c3

20. Komoda, T., Miwa, S., Nakamura, H., Maruyama, N.: Integrating multi-GPU exe-
cution in an OpenACC compiler. In: 2013 42nd International Conference on Par-
allel Processing, pp. 260–269 (2013)

21. Leopold Grinberg, C.B., Haque, R.: Hands on with openmp4.5 and unified memory:
developing applications for IBM’s hybrid CPU + GPU systems (Part ii) (2017)

22. Morris, G.M., et al.: Autodock4 and AutoDockTools4: automated docking with
selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

23. Nakao, M., Murai, H., Iwashita, H., Tabuchi, A., Boku, T., Sato, M.: Implementing
lattice QCD application with XcalableACC language on accelerated cluster, pp.
429–438 (2017)

24. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of dock-
ing with a new scoring function, efficient optimization and multithreading. J. Com-
put. Chem. 31(2), 455–461 (2010)

25. Scogland, T.R.W., Feng, W., Rountree, B., de Supinski, B.R.: CoreTSAR: adaptive
worksharing for heterogeneous systems. In: Kunkel, J.M., Ludwig, T., Meuer, H.W.
(eds.) ISC 2014. LNCS, vol. 8488, pp. 172–186. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07518-1 11

26. Tandon, P., Rosner, D.E.: Monte Carlo simulation of particle aggregation and
simultaneous restructuring. J. Colloid Interface Sci. 213(2), 273–286 (1999)

27. Wolfe, M.: Scaling OpenACC applications across multiple GPUs (2014)
28. Xu, R., Tian, X., Chandrasekaran, S., Chapman, B.: Multi-GPU support on single

node using directive-based programming models (January 2016)

https://doi.org/10.1007/978-3-030-28596-8_13
https://doi.org/10.1088/1361-648x/aab9c3
https://doi.org/10.1007/978-3-319-07518-1_11
https://doi.org/10.1007/978-3-319-07518-1_11

Memory

Preliminary Experience with OpenMP
Memory Management Implementation

Adrien Roussel1,2,3(B), Patrick Carribault1,3, and Julien Jaeger1,2,3

1 CEA, DAM, DIF, 91297 Arpajon, France
{adrien.roussel,patrick.carribault,julien.jaeger}@cea.fr

2 Exascale Computing Research Laboratory, Bruyères-le-Châtel, France
3 CEA, Laboratoire en Informatique Haute Performance pour le Calcul et la

simulation, Université Paris-Saclay, 91680 Bruyères-le-Châtel, France

Abstract. Because of the evolution of compute units, memory hetero-
geneity is becoming popular in HPC systems. But dealing with such
various memory levels often requires different approaches and interfaces.
For this purpose, OpenMP 5.0 defines memory-management constructs
to offer application developers the ability to tackle the issue of exploit-
ing multiple memory spaces in a portable way. This paper proposes an
overview of memory-management from applications to runtimes. Thus,
we describe a convenient way to tune an application to include memory
management constructs. We also detail a methodology to integrate them
into an OpenMP runtime supporting multiple memory types (DDR,
MCDRAM and NVDIMM). We implement our design into the MPC
framework, while presenting some results on a realistic benchmark.

Keywords: OpenMP 5.0 · Data allocation · Memory management

1 Introduction

For the past decades, the main trend has been to enhance the compute capa-
bilities of processors through frequency increase, functional unit extension (e.g.
SIMD) or core duplication. It leads to the current generation of supercomputer
nodes design with several multi-core processors linked together. But this large
spectrum of compute capabilities puts the stress on the memory part to keep
feeding such functional units. For example, SIMD operations may require more
memory bandwidth to enable issuing one instruction requiring a large number
of register inputs. However, proposing a new memory type with a larger band-
width, for the same overall cost, exposes a smaller storage. That is why various
kinds of memory appeared in the HPC community. For example, Intel launched
the Knights Landing many-core processor [26] which embeds a high bandwidth
stacked memory named MCDRAM. The next generation of such an approach
is called HBM and will be available in some processors like ARM-based Fujitsu
A64FX [30]. This approach improves the throughput of bandwidth-hungry units,

c© Springer Nature Switzerland AG 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 313–327, 2020.
https://doi.org/10.1007/978-3-030-58144-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_20

314 A. Roussel et al.

but there still is a need for a large storage with lower bandwidth but better per-
formance than regular disks. This is why the notion of persistent memory appears
in clusters like the flash memory NVDIMM technology [15].

While these new memory types may fulfill the requirements of many parallel
applications (HBM/MCDRAM for compute-intensive parts, NVDIMM for I/O
dedicated portions), allocating data in these target memory spaces in a portable
and easy way is tedious. Thus, memory management is becoming one major
concern for HPC application developers. Since version 5.0, OpenMP tackles this
issue by introducing memory management extensions [22]. It is now possible
to control data allocation and placement on specific memory spaces through
OpenMP constructs. For this purpose, OpenMP defines multiple memory spaces:
application developers have then to specify some parameters (traits) for a specific
allocator (e.g., data alignment, pool size, . . .).

This paper proposes a first experience of implementing these OpenMP mem-
ory management constructs. It makes the following contributions:

– Preliminary implementation of OpenMP memory management constructs
targeting DRAM, MCDRAM and NVDIMM into the MPC framework [7]1

(a thread based MPI implementation with a OpenMP 3.0 runtime system)
– Port of a C++ mini-application with effort to support STL objects.
– Experiments on portability with various target architectures exposing differ-

ent memory types.

This paper is organized as follows: Sect. 2 exposes an overview of the OpenMP
specification for memory management. Section 3 presents related work in this
area. Section 4 details our approach to implement these OpenMP constructs into
the MPC framework and enable their support inside an application. Finally, this
papers illustrates experimental results in Sect. 5 before concluding in Sect. 6.

� �

1 // Initialization
omp_memspace_handle_t mcdram = omp_high_bw_mem_space;

3 omp_alloctrait_t mcdram_traits[1] = {omp_atk_alignment, 64};
omp_allocator_handle_t mcdram_alloc;

5 mcdram_alloc = omp_init_allocator(mcdram, 1, mcdram_traits);

7 // Allocation
void* Allocate(size_t size, omp_allocator_handle_t allocator) {

9 return (void*)omp_alloc(size, allocator);
}

11

// Deallocation
13 void Release(void **ptr, omp_allocator_handle_t allocator) {

if (*ptr != NULL) {
15 omp_free(*ptr, allocator) ;

*ptr = NULL ;
17 }

}
� �

Listing 1.1. Functions for OpenMP Memory Management

1 Available at https://mpc.hpcframework.com/.

https://mpc.hpcframework.com/

OpenMP Memory Management Implementation 315

2 Memory Management in OpenMP 5.0

OpenMP 5.0 introduces constructs and API routines to manage portable data
allocation in various memory banks. Thus it defines a set of memory spaces
(omp memspace handle t) and parameters (traits) that can affect the way data
are allocated in this target memory (omp alloctrait t). Even though each
implementation can propose its own spaces and traits, OpenMP 5.0 defines
default spaces (default, large capacity, constant, high bandwidth and low latency),
and allocator traits (such as alignment, pool size and fallback). Thus, the user
has to create an allocator handle (omp allocator handle t) by specifying a tar-
get memory space and a set of traits. This operation is performed by calling the
initialization function named omp init allocator. Listing 1.1 highlights this
process at the top part.

After this setup, the application can allocate data with this new allocator.
The runtime will thus be responsible for allocating data into the target mem-
ory bank with the specified trait values. There are two ways to manage data
allocations with OpenMP: functions and directives. The first method is to call
the functions omp alloc and omp free. Both take an allocator handle as input
(which should be initialized first). Listing 1.1 shows this approach.

� �

float A[N], B[N];
2 #pragma omp allocate(A) allocator(omp_large_cap_mem_alloc)

4 #pragma omp parallel
{

6 #pragma omp task allocate(omp_const_mem_alloc: B)
{

8 /* ... */
}

10 }
� �

Listing 1.2. Directives for OpenMP Memory Management

The second method relies on the allocate directive and clause (see List-
ing 1.2). The directive takes a list of data variables to allocate through the
handle specified in the allocator clause. This clause can be used in several
constructs such as task, taskloop and target. Users have to specify in this
clause the handle to use to allocate data, and the list of data variables. The
handle allocator can be defined by the user or a predefined allocator. There is
one allocator given by the OpenMP standard per memory space.

3 Related Work

This section details different approaches to deal with multiple memory levels
inside an HPC compute node: dedicated allocations, portable allocations and
OpenMP implementations.

316 A. Roussel et al.

Dedicated Memory Management. The first approach deals with dedicated inter-
faces to allocate data inside a specific target memory type. Even if some memory
kinds can be configured as a cache level to enable automatic hardware-driven
management (e.g. MCDRAM in Intel KNL [9,18,21]), fine-grain data alloca-
tion can lead to better performance. Thus, some research papers set up this
MCDRAM as flat mode meaning that a specific action is required to put data
into this target memory. This action may have a coarse-grain scope (e.g. relying
on the numactl library [8] or forcing the global memory-placement policy [19]),
or a more fine-grain approach (e.g. using memory allocators like memkind [6] to
deal with placement on a per-allocation basis [5]). Similar fine-grain initiatives
also exist for other types of memory e.g., persistent [2,16,25].

Portable Memory Management. Runtime systems are already able to deal with
memory management for performance portability concerns [1,4,12]. This list is
not exhaustive as multiple approaches exist in this domain, especially focusing
on heterogeneous systems. Some other initiatives also deal with high bandwidth
memory management like MCDRAM for KNL processors. These forms of mem-
ory management have been explored within domain specific languages in [24].

High level programming interfaces are widespread in the HPC community.
Previous works such as [10,11] have to deal with memory allocation in a portable
way, but only for the GPGPU concerns now. These interfaces enable abstract
memory allocations through wrapper functions or objects.

OpenMP Memory Management. While some initiatives have been already pro-
posed for memory management in a portable way, there is no standard way to
do it. OpenMP now provides a way to standardize memory management for a
wide system spectrum. Based on directives and functions, software developers
are able to address memory allocations in an easy way: they do not need to deal
with the actual low-level allocation method into a specific memory. As far as
we know, LLVM [20] has the most up-to-date OpenMP runtime implementation
for the support of memory management constructs. Even if this runtime system
is well advanced, the front-end part of supported compilers (Clang and Intel)
does not support the full specification. Until now, it supports allocation in stan-
dard and high bandwidth memory banks only with few traits (e.g. pool size,
fallback and alignment). For the high bandwidth memory support, LLVM
forwards memory allocations to hbw malloc from the memkind library.

Paper Positon: While our work is similar to the LLVM approach (design and
implementation of memory-management constructs inside an existing OpenMP
runtime), the objective of this paper is to give a preview our implementation of
multiple memory levels (DDR, MCDRAM/HBM and NVDIMM) its portabil-
ity aspects. Moreover, we have experimented how to integrate those OpenMP
functions in a portable solution with a C++ application.

OpenMP Memory Management Implementation 317

4 Application- and Runtime-Level OpenMP Memory
Management

This section presents the main contribution of this paper: the support of multiple
memory types inside an existing OpenMP implementation (Sect. 4.1) and the
port of a C++ mini-app (Sect. 4.2).

4.1 Runtime System Design for Memory Management Integration

MPC [23] is a thread-based MPI implementation which proposes an OpenMP [7]
runtime system. It is compliant to OpenMP 3.1 and partially supports version
4.5. As MPC integrates its own NUMA aware allocator, we have decided to
design and implement the memory management constructs inside this frame-
work. MPC is compatible with GNU and Intel compilers for OpenMP lowering
and thread-based specific features. But these compilers have currently a lim-
ited support of the allocate directive and clause. Thus, our work focuses on
providing initialization functions and allocation/deallocation calls (omp alloc
and omp free) for multiple memory types: DDR, high bandwidth MCDRAM
and large-capacity NVDIMM. For this purpose, it is necessary to enhance the
existing implementation with an advanced hardware topology detection and an
approach for initializing and allocating data. This section details those steps.

Automatic Memory Banks Discovery. OpenMP offers a set of predefined
memory spaces with a way to fallback if the application tries to allocate in non-
existing type. Thus, the first step is to discover available memory banks on the
target machine. For this purpose, a hardware detection tool has to be integrated
into the OpenMP runtime system to list available memory spaces on a system
at execution time. Most of the runtime systems already rely on the hwloc library
for hardware topology discovery and thread binding. Recent work [13] adds the
support of heterogeneous memory types such as high bandwidth memory (e.g.
MCDRAM from Intel’s KNL processor) or large capacity memory bank like
NVDIMM technology. On such machines, MCDRAM memory space is exposed
as a no-core NUMA node with a special attribute named MCDRAM. Checking the
presence of MCDRAM in a system is thus possible by browsing all the NUMA
nodes and searching for the one which has this defined hwloc attribute. Large
capacity memory spaces such as NVDIMM memory are viewed by hwloc as OS
devices, and tagged with a special attribute. So, it is possible to detect such
memory banks by listing all the OS devices and searching for large capacity
memory banks.

The basic block of our design relies on the hardware detection module based
on hwloc in the MPC framework. It is called at runtime initialization and for
every runtime entry point that is not in a parallel region to detect and save
available hardware components.

318 A. Roussel et al.

Memory Management Initialization. The allocation process is separated
into two parts: the initialization of allocators and the data allocation (as seen in
Listing 1.1).

First of all, the omp init allocator function initializes some user-defined
traits in a omp alloctrait t structure, and link them into a memory space in a
omp memspace handle t structure. From a runtime point of view, it is necessary
to save a dynamic collection of allocators. By default, in our implementation,
this structure contains pre-defined allocators only. Its size can then be enlarged
to allow users to create new allocators with some specific traits. This structure
maps an allocator handle (i.e. omp alloc handle t) to an allocator structure
(i.e. omp alloc t). This collection is only accessible from each thread in a read-
only access mode. Indeed, we do not ensure thread safety for this structure yet.
Thus, all the allocators have to be initialized outside a parallel region. We are
currently working on thread safety to enable the creation of allocators inside
parallel regions. In this way, concurrent threads may benefit from allocators
inside parallel regions within the omp alloc function.

Various traits are proposed in the specification, such as memory alignment as
illustrated in Listing 1.1. Traits have a default value, but the initialization process
may set them user-defined values. The MPC framework currently supports the
alignment and fallback traits. Future work is needed to support more traits
in the framework.

Fig. 1. omp alloc call procedure

Data Allocation Process. The final step is to implement the data-allocation
mechanisms. Figure 1 sketches this process. For this purpose, an allocator can
be retrieved from the collection based on the handle structure. Depending on
the trait values, the data allocation process is different. For example, we test
the value of the fallback trait if the runtime detects that the requested memory

OpenMP Memory Management Implementation 319

space is unavailable. Trait checking is quite similar no matter what the selected
memory space is. Once the traits values are set, we need to link a memspace to
an allocation function. Depending on the desired memory space, this function
differs. For example, malloc from glibc is the function used to allocate data in
DRAM memory space (denoted as omp default mem space) while hbw malloc
from the memkind library enables data allocation in the high bandwidth mem-
ory space (denoted as omp high bw mem space). To support all the set of the
specification defined memory spaces, runtime developers may have to integrate
various allocator library inside the OpenMP runtime. For example, data alloca-
tion in high bandwidth or in large capacity memory spaces are currently well
supported within the memkind library.2 The MPC framework comes with its
own NUMA-aware allocator [28] based on kernel page reuse. For more conve-
nience, and to avoid multiple library integrations, we link our allocator to the
OpenMP runtime. Data allocations in DRAM (referred to as default memory
space) and in high bandwidth memory space are thus operated by our allocator.
As MCDRAM is currently detected as a no-core NUMA node, we redirect all the
dynamic allocations queries to this NUMA node. We also support data alloca-
tion in large capacity devices like NVDIMM. For this purpose, we have integrated
the nvmem3 library inside the MPC framework.

The deallocation process is quite similar to the allocation one. When
omp free is called, we check the memory space specified in the allocator struc-
ture and then call the appropriate data free function.

� �

template <typename T>
2 class omp_allocator

{
4 public:

...
6 omp_allocator_handle_t& allocator;

8 omp_allocator(omp_allocator_handle_t& alloc) : allocator(alloc) {}

10 pointer allocate(size_type n, const T* hint = 0) {
return (T*)omp_alloc(sizeof(T) * n, allocator);

12 }

14 void deallocate(pointer p, size_type n) {
omp_free(p, allocator);

16 }
};

18 ...
std::vector<Real_t, omp_allocator<Real_t> > m_x(N, 0., omp_allocator<Real_t>(

allocator);
� �

Listing 1.3. Custom Allocator for STL Objects

4.2 Enabling Portable Application Memory Management

After implementing partial memory management support into the runtime, it
is necessary to modify the target application as presented in Listing 1.1. This
2 See https://memkind.github.io/memkind for more information.
3 Available at https://pmem.io.

https://memkind.github.io/memkind
https://pmem.io

320 A. Roussel et al.

section illustrates the case of LULESH [17], an hydrodynamics application from
the CORAL benchmark suite. This example provides some valuable experience
on how to port an existing C++ application to use OpenMP memory man-
agement functions. While porting C codes leads to additional codes as shown
in Listing 1.1, many C++ applications exploit STL objects [27] (e.g. vector,
stack, list, . . .). Such objects manage allocators through a template parameter
Allocator. We propose a custom allocator object (see Listing 1.3) that inte-
grates the OpenMP omp allocator handle t structure features. Thus, all the
methods (e.g., constructor/destructor, resize or insert) use OpenMP alloca-
tion constructs. This example also illustrates that the new allocator has to be
passed as a template parameter of the STL object and as input of the constructor
(to indicate the right memory spaces to the allocator).

5 Experimental Results

This section illustrates our implementation inside the MPC framework on one
benchmark allocating data in various memory banks based on the OpenMP 5.0
memory-management functions. For this purpose, we modified the LULESH
benchmark (as previously explained in Sect. 4.2) by inserting calls to omp alloc
functions to allocate data in various memory spaces.

Experimental Environment. On the hardware side, the target platforms cover
the different memory kinds that our implementation supports. Thus we rely
on 4 different systems. The first one is a compute node containing a 68-core
Intel Knights Landing processor [26], 16 GB of MCDRAM and 96 GB of regu-
lar DRAM memory. This configuration will be used to evaluate the allocation
inside a high bandwidth memory. To test the large storage memory, we use a
compute node equipped with two NVDIMM technology storages (with a capacity
of 1.5 TB each). This persistent-memory node is composed of two 24-core Intel
Cascade Lake processors (Xeon Platinum 8260L), each clocked at 2.40 GHz.
Finally, two systems are available to ensure portability by exposing only regu-
lar DDR: one AMD ROME node (two 32-core AMD EPYC 7502 processors at
2.50 GHz with 128 GB of DDR) and one Intel Skylake node (two 24-core Intel
Xeon Platinum 8168 Skylake processor at 2.70 GHz with 96 GB of DDR). On the
software side, all benchmark versions were compiled with -O3 and linked to the
MPC framework (configured with standard options) for the OpenMP runtime.

5.1 Coarse-Grain OpenMP Memory Allocation

This section describes the experiments conducted on the modified LULESH
benchmark targeting a single memory space. Thus, it aims at testing the ability
of our implementation to allocate data in a specified memory space following the
OpenMP 5 standard.

OpenMP Memory Management Implementation 321

Fig. 2. Coarse-grain data allocation management in MCDRAM

High-Bandwidth Memory. The first evaluation concerns the MCDRAM memory
on Intel KNL node with 64 threads. Figure 2 shows the Figure of Merit (FOM
- number of elements solved per microsecond) according to the mesh size on
different versions of LULESH (with a fixed total number of iterations: 100). The
first bar (standard) represents the regular run (everything is allocated in DDR)
while the second bar (numactl) is controlled by the numactl command that
places all data into the MCDRAM. The third version (omp alloc) is modified
with OpenMP memory management constructs. All of the three executions were
compiled and run within the MPC OpenMP implementation. These results show
only a 5% difference in performance between the execution with numactl and the
application modified to use omp alloc, for problem sizes from 30 to 200. There
are no results for problem sizes greater than 200 for the numactl version because
all the data does not fit in MCDRAM and the application stops. From 200 to 350,
however, the omp alloc execution can execute even though the allocation does
not fit into MCDRAM, and the performance diminishes. This is due to the cache
memory mode, as data does not fit in MCDRAM, the application performance is
lead the DRAM bandwidth because some data are allocated in it. Performance
of the original application without the use of numactl are lower than the two
previous ones. In conclusion, we are able to allocate data in the MCDRAM high
bandwidth memory bank with the OpenMP memory management functions. The
performance difference between omp alloc and numactl charts is due to the fact
that numactl is much more aggressive and allocates all the data in MCDRAM.
In our modified implementation, we only moved data dynamically allocated such
as arrays and vectors, so not all the data are moved to MCDRAM.

322 A. Roussel et al.

Fig. 3. Coarse-grain data allocation management in NVDIMM

Large-Capacity Memory Space. Figure 3 presents the FOM running LULESH on
a dual-socket 24-core Skylake node (i.e., 48 OpenMP threads) equipped with a
NVDIMM device. While the two versions rely on OpenMP to allocate data, the
first one (RAM) allocates all data in regular DDR (default allocator) while the
second one (NVDIMM) changes the OpenMP allocator to target the large capac-
ity space. With minor modifications, this graphic shows the ability to perform
data allocation in large capacity memory devices like NVDIMM technology. As
explained in [14], the NVDIMM memory can be configured in two modes. Our
results are similar for both selected memory spaces. We can conclude that the
node is configured in a 2LM mode (i.e. similar to KNL cache memory mode):
all the data allocation are thus directed to NVDIMM memory. Since no error
message are emitted from the vmem library, we are assured all allocated mem-
ory is in NVRAM. We do not have any error message when using vmem library,
which means that we are able to allocate memory in NVRAM.

5.2 Fine-Grain OpenMP Memory Allocation

An previous analysis [3] of the LULESH benchmark has already determined the
relevant data to be placed in high bandwidth memory bank. The purpose of this
work was to detect which functions are bandwidth bound. Application perfor-
mance can thus be improved if data operated in these functions are placed in
memory banks with a higher bandwidth. This analysis demonstrated that some
functions are sensitive to bandwidth, such as EvalEOSForElems, AllocateGradi-
ents and CalcForceNodes. We thus placed all the data relative to these function
in omp high bw mem space (i.e. MCDRAM here) while the other data are placed
in omp default mem space (i.e. DRAM memory).

The objective of this experiment is to illustrate the benefit of fine-grain
management for data allocation: i.e., choose in which memory bank to allocate

OpenMP Memory Management Implementation 323

Fig. 4. Fine-grain data allocation management in MCDRAM

through the omp alloc function. Figure 4 presents the results of this approach
(data selection) compared to allocating everything inside the MCDRAM (full
mcdram). For this experiment, we change the number of iterations performed
to 250 from the previous experiment while still varying the problem size. We
can observe that allocating all data in MCDRAM is generally about 10% better
between problem sizes of 75 and 250. Performance is about 50% less that the
data selection method beyond problem sizes of 250. Below a problem size of
75, then are about the same. Performance decreases beyond and are worse than
standard allocation model. These results show that selecting MCDRAM may
suffer a bit in performance at small scale, it may be significantly important at
large scale, where many HPC applications run. For all the tested configurations,
we observe no performance decrease. However, performance seems to be bound
to 6500.

In conclusion, as previously stated in several papers like [5], we show that
allocating all data in MCDRAM memory might not be the most relevant
choice. Indeed, when data do not fit inside this high bandwidth memory bank,
application performance is deteriorated, even more than without the use of
MCDRAM. From this experiment, we aim to warn developers about data allo-
cation. OpenMP offers ways to allocate easily, in a portable way, data in various
memory banks. However, the strategy to select which data to move from one
memory bank to another is still in charge of the developers. Currently, no run-
time mechanism to automatically move data from memory banks exists.

5.3 Portabilty Across Hardware Platforms

The design of OpenMP memory-management constructs enables portability of
applications whatever the available memory types on the target hardware. With
the help of the fallback trait, data can be allocated in a default memory space

324 A. Roussel et al.

(default mem fb) if the specified one does not exist. However, an application
can also terminate if the fallback property is set to abort fb. We propose here an
experiment that highlights the portability of our OpenMP memory-management
implementation. For this purpose, we ran the LULESH benchmark with the
fine-grain data allocation strategy as sketched in the previous section (selected
functions allocated in the high bandwidth memory space while the other ones
target a default allocator). We executed it on several platforms, without any
code modification. The selected machines are the ones composed of AMD EPYC,
Intel Skylake and Intel KNL processors previously described in Sect. 5. All the
runs were performed with 48 threads, and we fix the size problem to 350 for 100
iteration. We set the fallback trait to default mem fb to forward data allocation
to DRAM memory space if high bandwidth memory is not found. Results are
gathered in Table 1.

Table 1. FOM results

System AMD ROME Intel Skylake Intel KNL

FOM (z/s) 4834.99 4416.18 5397.94

Time (s) 890 970 790

The execution on KNL achieve better performance than the two other
machines. Indeed, as KNL platform benefits from MCDRAM, some selected data
allocation are directed to high bandwidth memory based on OpenMP constructs.
However, the two others do not have the MCDRAM memory type, so all data
allocations are forwarded to classical DRAM memory without any application
cancellation. We conclude that we are able to ensure portability with OpenMP
memory management constructs. The main advantage of this approach is to
achieve this result without any significant modification to the application, and
maintain portability.

6 Conclusion and Future Work

This paper presents our experiences with the OpenMP memory management
constructs at the application-level and the runtime-level. From the applica-
tion side, developers should integrate data allocation calls with a standard like
OpenMP, to provide portability. Through the LULESH benchmark, we have
illustrated that these new constructs are easy to integrate. However, C++ STL
objects users have to change the default allocator and implement a new one
which encapsulates OpenMP function calls. We also have implemented these
constructs into the OpenMP runtime of the MPC framework. While we do not
support all the specification yet, we have implemented the major basic blocks into
an OpenMP runtime system targeting various memory levels (DDR, MCDRAM
and NVDIMM). For this purpose, we detail our implementation from hardware
detection to data allocation process.

OpenMP Memory Management Implementation 325

Our results show that this implementation is feasible and that there are
advantages that provide performance improvements for user applications. We
illustrate that it is easy to make portable applications with slight modifications.
Our implementation is able to allocate data in default, high bandwidth and large
capacity memory spaces. Our experiments also show that data allocations should
be performed with care: the best strategy is not always to allocate all data in
the fastest memory.

As a future work, we plan to support all the features provided by the specifica-
tion, especially remaining traits. We also plan to work on coupling the OpenMP
memory management constructs with the affinity clause. Since the last ver-
sion of the OpenMP, 5.0, the specification introduces a new affinity clause in
task directives to give some hints at scheduling time in order to enhance data
locality. This clause has been already implemented and evaluated by others [29].
Information from allocators will be needed from the runtime for the affinity
clause. Indeed, this information can assist the task scheduler to make smarter
decisions about affinity. In addition of that, it has a low memory footprint to
keep this information and can significantly improve application performance.
Thus we plan to evaluate this coupling to enhance the task scheduler.

Acknowledgments. This work was performed under the Exascale Computing
Research collaboration, with the support of CEA, Intel and UVSQ.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011). https://hal.inria.fr/inria-00550877

2. Bhandari, K., Chakrabarti, D.R., Boehm, H.J.: Makalu: fast recoverable allocation
of non-volatile memory. ACM SIGPLAN Not. 51(10), 677–694 (2016)

3. Brunie, H., Jaeger, J., Carribault, P., Barthou, D.: Profile-guided scope-based data
allocation method. In: MEMSYS 2018 - International Symposium on Memory Sys-
tems. Alexandria, United States (October 2018). https://hal.inria.fr/hal-01897917

4. Bueno, J., et al.: Productive programming of GPU clusters with OmpSs. In: 2012
IEEE 26th International Parallel and Distributed Processing Symposium, pp. 557–
568 (2012)

5. Butcher, N., Olivier, S.L., Berry, J., Hammond, S.D., Kogge, P.M.: Optimizing for
KNL usage modes when data doesn’t fit in MCDRAM. In: Proceedings of the 47th
International Conference on Parallel Processing, ICPP 2018. Association for Com-
puting Machinery, New York (2018). https://doi.org/10.1145/3225058.3225116

6. Cantalupo, C., Venkatesan, V., Hammond, J., Czurlyo, K., Hammond, S.D.:
memkind: an extensible heap memory manager for heterogeneous memory plat-
forms and mixed memory policies. Tech. rep., Sandia National Lab (SNL-NM),
Albuquerque, NM (United States) (2015)

7. Carribault, P., Pérache, M., Jourdren, H.: Enabling low-overhead hybrid
MPI/OpenMP parallelism with MPC. In: Sato, M., Hanawa, T., Müller, M.S.,
Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp.
1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13217-9 1

https://hal.inria.fr/inria-00550877
https://hal.inria.fr/hal-01897917
https://doi.org/10.1145/3225058.3225116
https://doi.org/10.1007/978-3-642-13217-9_1

326 A. Roussel et al.

8. Chandrasekar, K., Ni, X., Kale, L.V.: A memory heterogeneity-aware runtime sys-
tem for bandwidth-sensitive HPC applications. In: 2017 IEEE International Paral-
lel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1293–1300
(May 2017)

9. Demeshko, I., Salinger, A.G., Spotz, W.F., Tezaur, I.K., Guba, O., Heroux, M.A.:
Towards performance-portability of the Albany finite element analysis code using
the Kokkos library of Trilinos. Tech. rep., Sandia National Lab. (SNL-NM), Albu-
querque, NM (United States); Sandia (2016)

10. DeVito, Z., et al.: Liszt: a domain specific language for building portable mesh-
based PDE solvers. In: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2011. Association
for Computing Machinery, New York (2011). https://doi.org/10.1145/2063384.
2063396

11. Edwards, H.C., Sunderland, D.: Kokkos array performance-portable manycore pro-
gramming model. In: Proceedings of the 2012 International Workshop on Program-
ming Models and Applications for Multicores and Manycores, PMAM 2012, pp.
1–10. Association for Computing Machinery, New York (2012). https://doi.org/10.
1145/2141702.2141703

12. Gautier, T., Ferreira Lima, J.V., Maillard, N., Raffin, B.: XKaapi: a runtime sys-
tem for data-flow task programming on heterogeneous architectures. In: 27th IEEE
International Parallel & Distributed Processing Symposium (IPDPS), Boston,
Massachusetts, United States (May 2013). https://hal.inria.fr/hal-00799904

13. Goglin, B.: Exposing the locality of heterogeneous memory architectures to HPC
applications. In: Proceedings of the Second International Symposium on Memory
Systems, MEMSYS 2016, p. 30–39. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2989081.2989115

14. Goglin, B., Rubio Proaño, A.: Opportunities for partitioning non-volatile memory
DIMMs between co-scheduled Jobs on HPC Nodes. In: Euro-Par 2019: Parallel
Processing Workshops, Göttingen, Germany (August 2019). https://hal.inria.fr/
hal-02173336

15. Huang, H.F., Jiang, T.: Design and implementation of flash based NVDIMM.
In: 2014 IEEE Non-Volatile Memory Systems and Applications Symposium
(NVMSA), pp. 1–6. IEEE (2014)

16. Iwabuchi, K., Lebanoff, L., Gokhale, M., Pearce, R.: Metall: a persistent memory
allocator enabling graph processing. In: 2019 IEEE/ACM 9th Workshop on Irreg-
ular Applications: Architectures and Algorithms (IA3), pp. 39–44. IEEE (2019)

17. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Tech. Rep. LLNL-
TR-641973 (August 2013)

18. Kayraklioglu, E., Chang, W., El-Ghazawi, T.: Comparative performance and opti-
mization of chapel in modern manycore architectures. In: 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1105–
1114 (May 2017)

19. Kirk, R.O., Mudalige, G.R., Reguly, I.Z., Wright, S.A., Martineau, M.J., Jarvis,
S.A.: Achieving performance portability for a heat conduction solver mini-
application on modern multi-core systems. In: 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 834–841 (September 2017)

20. LLVM Foundation: LLVM Compiler Infrastructure, version 10.0.0 (2020). https://
llvm.org/releases/download.html#10.0.0

https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1145/2141702.2141703
https://doi.org/10.1145/2141702.2141703
https://hal.inria.fr/hal-00799904
https://doi.org/10.1145/2989081.2989115
https://hal.inria.fr/hal-02173336
https://hal.inria.fr/hal-02173336
https://llvm.org/releases/download.html#10.0.0
https://llvm.org/releases/download.html#10.0.0

OpenMP Memory Management Implementation 327

21. Nagasaka, Y., Matsuoka, S., Azad, A., Buluç, A.: High-performance sparse matrix-
matrix products on intel KNL and multicore architectures. In: Proceedings of
the 47th International Conference on Parallel Processing Companion, ICPP 2018.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3229710.3229720

22. OpenMP Architecture Review Board: OpenMP application program interface
version 5.0 (2018). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

23. Pérache, M., Jourdren, H., Namyst, R.: MPC: a unified parallel runtime for clusters
of NUMA machines. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85451-7 9

24. Reguly, I.Z., Mudalige, G.R., Giles, M.B.: Beyond 16GB: out-of-core stencil com-
putations. In: Proceedings of the Workshop on Memory Centric Programming for
HPC, MCHPC 2017, pp. 20–29. Association for Computing Machinery, New York
(2017). https://doi.org/10.1145/3145617.3145619

25. Schwalb, D., Berning, T., Faust, M., Dreseler, M., Plattner, H.: nvm malloc: mem-
ory allocation for NVRAM. ADMS@ VLDB 15, 61–72 (2015)

26. Sodani, A., et al.: Knights landing: second-generation Intel Xeon phi product. IEEE
Micro 36(2), 34–46 (2016)

27. Standard C++ Foundation: ISO International Standard ISO/IEC 14882:2017(E)
- Programming Language C++ (2017). https://isocpp.org/std/the-standard

28. Valat, S., Pérache, M., Jalby, W.: Introducing kernel-level page reuse for high per-
formance computing. In: Proceedings of the ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness, MSPC 2013. Association for Computing
Machinery, New York (2013). https://doi.org/10.1145/2492408.2492414

29. Virouleau, P., Roussel, A., Broquedis, F., Gautier, T., Rastello, F., Gratien, J.-M.:
Description, implementation and evaluation of an affinity clause for task directives.
In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS,
vol. 9903, pp. 61–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45550-1 5

30. Yoshida, T.: Fujitsu high performance CPU for the post-k computer. In: Hot Chips
30th Symposium (HCS) (August 2018)

https://doi.org/10.1145/3229710.3229720
https://doi.org/10.1145/3229710.3229720
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1145/3145617.3145619
https://isocpp.org/std/the-standard
https://doi.org/10.1145/2492408.2492414
https://doi.org/10.1007/978-3-319-45550-1_5
https://doi.org/10.1007/978-3-319-45550-1_5

A Study of Memory Anomalies
in OpenMP Applications

Lechen Yu1(B), Joachim Protze2, Oscar Hernandez3, and Vivek Sarkar1

1 Georgia Institute of Technology, Atlanta, GA, USA
{lechen.yu,vsarkar}@gatech.edu

2 RWTH Aachen University, Aachen, Germany
protze@itc.rwth-aachen.de

3 Oak Ridge National Laboratory, Oak Ridge, TN, USA
oscar@ornl.gov

Abstract. Incorrect usage of OpenMP constructs may cause different
kinds of defects in OpenMP applications. Most of the existing work
focuses on concurrency bugs such as data races and deadlocks, since con-
currency bugs are difficult to detect and debug. In this paper, we discuss
an under-examined defect in OpenMP applications: memory anomalies.
These occur when the application issues illegal memory accesses that
may result in a non-deterministic result or even a program crash. Based
on the latest OpenMP 5.0 specification, we analyze some OpenMP usage
errors that may lead to memory anomalies. Then we illustrate three kinds
of memory anomalies: use of uninitialized memory (UUM), use of stale
data (USD), and use after free (UAF). While all three anomalies can
occur in sequential programs, their manifestations in parallel OpenMP
programs can be different, and debugging such anomalies in the context
of parallel programs also imposes an additional complexity relative to
sequential programs. To measure the effectiveness of memory anomaly
detectors on OpenMP applications, we have evaluated three state-of-the-
art tools with a group of micro-benchmarks. These micro-benchmarks are
either selected from the DRACC benchmark suite or constructed from
our own experience. The evaluation result shows that none of these tools
can currently handle all three kinds of memory anomalies.

Keywords: Memory anomalies · OpenMP · Tools

1 Introduction

OpenMP is the de facto standard for on-node parallel programming in HPC. It
provides a unified execution model for parallel applications written in C/C++
and Fortran. OpenMP integrates multiple parallel paradigms in its execution
model, including task parallelism, single program multiple data (SPMD), and
heterogeneous parallelism. Each parallel paradigm is implemented by a set of
high-level constructs, and programmers can mix these paradigms in a single

c© The Author(s) 2020
K. Milfeld et al. (Eds.): IWOMP 2020, LNCS 12295, pp. 328–342, 2020.
https://doi.org/10.1007/978-3-030-58144-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58144-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-58144-2_21

A Study of Memory Anomalies in OpenMP Applications 329

OpenMP application. The unified execution model can help programmers fully
utilize computing resources in a single mainstream programming system.

The unified execution model brings about high expressibility, but it also
increases the complexity of OpenMP. According to Fig. 1, every time a new
paradigm is introduced into OpenMP, the size of the specification increases
significantly, e.g., when task parallelism was added in OpenMP 3.0, and het-
erogeneous parallelism was added in OpenMP 4.0 and 4.5). The latest OpenMP
5.0 [20] specification is now already larger than 600 pages. Correctly understand-
ing the semantics of OpenMP constructs becomes challenging even for experi-
enced programmers, which makes OpenMP applications error-prone. There has
been a large amount of prior work related to the correctness of OpenMP applica-
tions, including tools [3–5,7,11,16,21,24,26], benchmarks [1,9,12], and empirical
studies [13,14,17]. Most of this past work focuses on concurrency bugs such as
data races, deadlocks, and atomicity violations, since debugging concurrency
bugs are notoriously difficult for programmers. However, other types of bugs
may also be manifest at runtime, for example, memory anomalies [2]. To the
best of our knowledge, there has been no comprehensive study thus far to ana-
lyze memory anomalies in OpenMP applications.

Fig. 1. A comparison among the size of OpenMP specifications: OpenMP 1.0
and 2.0 have separate documents for Fortran and C/C++, so we show the accumulated
number of pages for each section. Starting from OpenMP 4.0, the examples appendix
became a standalone document; for comparison we include the OpenMP examples doc-
ument into the page count.

330 L. Yu et al.

Since C/C++ delegates the responsibility of memory management to pro-
grammers, memory anomaly is a common problem in C/C++ applications. It
happens when the program issues memory operations to certain memory regions
that are not ready for memory access (e.g., freed or uninitialized memory loca-
tions). Memory anomalies can be further classified into sub-categories according
to their runtime behavior, such as the use of uninitialized memory (UUM), use
of stale data (USD), and use after free (UAF). For C/C++ applications, mem-
ory anomalies have been well-studied, and several dynamic detectors are avail-
able. Prior work refers to memory anomalies also as memory vulnerabilities and
memory errors, and all these terms are used alternatively for the same group of
defects.

In this paper, we investigate the impact of memory anomalies on OpenMP
programs. We have conducted a study of memory anomalies in OpenMP appli-
cations, guided by the following research questions:

– RQ1 (Bug patterns): What are the common bug patterns of memory
anomalies in OpenMP? What are the root causes of these memory anomalies?

– RQ2 (Bugfix): How to fix memory anomalies in an OpenMP application?
– RQ3 (Tool effectiveness): What is the effectiveness of state-of-art memory

anomaly detectors on OpenMP applications?

To answer RQ1–RQ3, we have examined the semantics of OpenMP con-
structs that are related to memory allocation/deallocation. We found that mem-
ory anomalies may result from incorrect settings of the data-sharing attribute
and map-type. These two properties indicate a variable’s visibility among threads
and devices. If these two properties are not explicitly set up by programmers,
OpenMP will apply a complex rule-based mechanism to determine them at run-
time. To illustrate probable memory anomalies in OpenMP applications and ana-
lyze their relationship with data-sharing attribute and map-type, we constructed
a group of benchmarks with memory anomalies, based on our own experience
as well as collected memory anomalies from open-source benchmarks, We lever-
aged these micro-benchmarks to evaluated three state-of-art memory anomaly
detectors: AddressSanitizer (ASan) [22], MemorySanitizer (MSan) [23], and
Valgrind [18]. The evaluation result shows that the three tools can precisely
detect a subset of memory anomalies in OpenMP applications, and none of
them can tackle all three kinds of memory anomalies.

The rest of this paper is organized as follows. Section 2 introduces data-
sharing attributes and map-types, as well as the rule-based inference mechanism.
Section 3 illustrates UUM, USD, and UAF with some buggy examples. In Sect. 4,
we present an evaluation of three memory anomaly detectors and discuss the
evaluation results. We summarize related work in Sect. 5, and finally, in Sect. 6,
we conclude and mention possible directions for future work.

2 OpenMP’s Data-Sharing Attribute and Map-Type

In this section, we outline the data-sharing attribute and map-type. These two
properties are commonly used in OpenMP to specify variables’ visibility. Due

A Study of Memory Anomalies in OpenMP Applications 331

to their effect on memory access, incorrect settings of data-sharing attribute
or map-type may result in unexpected behavior, which is the major source of
memory anomalies in OpenMP applications.

2.1 Semantics

According to the OpenMP specification [20], an OpenMP application starts exe-
cution on the host (CPU) and may offload computations and data to other
target devices (accelerators). Each device (host and target devices) has a group
of threads and an independent memory space, and threads are not migratable
among devices. By invoking corresponding OpenMP constructs, an OpenMP
application can utilize any supported parallel paradigm (tasking constructs for
task parallelism, parallel and worksharing constructs for SPMD, target con-
structs for heterogeneous parallelism). Multiple paradigms may be cooperatively
applied in a single OpenMP application, to separate the workload into available
computing resources properly.

OpenMP uses the data-sharing attribute to define the intra-device visibility
of allocated variables. The data-sharing attribute allows two types of visibility:
private and shared. Memory accesses to a shared variable operate on the vari-
able’s original memory region, and proper synchronization needs to be carried
out to avoid race conditions. For a private variable, each (implicit or explicit)
task creates a local instance of the variable. Memory accesses in a particular
thread are performed on the local instance, which is not visible to other threads.
In addition, there are two variants of the private visibility: first-private and last-
private. The former declares the initialization of the local instance by the original
variable. The latter denotes that the original variable is to be updated by the
last assigned value.

When it comes to heterogeneous parallelism, a variable may have multiple
storages on different devices. Since a device’s memory space may not be visible
to threads on other devices, programmers need to specify data transfers through
map-types to synchronize these independent storages. For variables accessed by
target regions (code sections executing on the target device), their map-types
needs to be correctly set up to avoid potential memory anomalies. In total, there
are five available options:

– to: copy the variable from host to target device
– alloc: allocate an uninitialized storage on the target
– from: copy the variable from the target device to host
– delete/release: deallocate the storage on the target device
– tofrom: a combination of ‘to’ and ‘from’.

During the execution of an OpenMP application, the underlying OpenMP run-
time automatically issues necessary data transfers according to the specified
map-types. For map-type ‘to’ and ‘alloc’, the corresponding data transfer is car-
ried out before the target region, while for map-type ‘from’, ‘delete’, and ‘release’,
the data transfer is inserted at the end of the target region.

332 L. Yu et al.

2.2 Determining Data-Sharing Attribute and Map-Type

According to the OpenMP specification, specifying the data-sharing attribute
for every variable is not mandatory. OpenMP defines a set of inference rules to
determine the data-sharing attribute at runtime, which helps reduce the pro-
gramming effort. Table 1 lists all inference rules for the data-sharing attribute.
The first column describes these rules’ preconditions. For a particular variable,
the data-sharing attribute is determined by the variable type, enclosing con-
struct, and the default value. The second and third columns show each rule’s type
and output, where PRE, EXP, and IMP stand for ‘predetermined’, ‘explicit’, and
‘implicit’, respectively.

For certain OpenMP constructs, the specification defines a number of prede-
termined rules for associated data sharing attributes. Most of these rules cannot
be overwritten by programmer-specified data-sharing attributes1. If no predeter-
mined rules match and the data-sharing attribute is unspecified in the program,
OpenMP turns to implicit rules. The output of implicit rules depends on the
default data-sharing attribute. When no default clauses present in an OpenMP
application, OpenMP sets the default data-sharing attribute to ‘shared’ for a
parallel construct, and ‘first-private’ for a tasking and target constructs.

The reduction clause is a special case in terms of data-sharing attributes.
For each variable appearing in a reduction clause, the OpenMP implementa-
tion needs to allocate a local instance for each task. At the end of the scope,
the runtime combines the original value with each local instance’s final value.
Therefore, the data-sharing semantics of the reduction clause is a combination
of first-private and last-private.

OpenMP also defines inference rules for map-type. Compared to the data-
sharing attribute, map-type’s inference rules are much more straightforward. For
a variable accessed by a target region and having no explicit map-type: a) If the
variable is a scalar, then it is not mapped, and its data-sharing attribute is set
to ‘first-private’ by the predetermined inference rule; b) Otherwise, it is mapped
to the target device with map-type ‘tofrom’.

3 Memory Anomalies in OpenMP Applications

To answer the three research questions proposed in Sect. 1, we have conducted a
study on OpenMP to find out probable memory anomalies. By scrutinizing the
semantics of OpenMP constructs, we found that incorrect OpenMP usage may
lead to three kinds of memory anomalies: use of uninitialized memory (UUM),
use after free (UAF), and use of stale data (USD). We devised a few buggy
examples from our own experiences as well as collected defects in open-source
benchmarks. In this section, we illustrate these examples and talk about our
findings related to RQ1 and RQ2.

1 Iteration variable is an exception. Its data-sharing attribute can be overwritten to
private or last-private, according to the enclosing construct.

A Study of Memory Anomalies in OpenMP Applications 333

Table 1. Inference rules for data-sharing attributes

Precondition Rule type Data-sharing

attribute

Declared inside a construct PRE private

Static class member, objects with dynamic storage duration PRE shared

A loop iteration variable in a for, parallel for, task loop,

or distribute construct

PRE private

A loop iteration variable in a simd or loop construct PRE last-private

Listed in a reduction clause EXP private

Listed in a data-sharing attribute clause

(programmer-specified data-sharing attribute)

EXP Determined

by the clause

An unmapped variable in a target construct IMP first-private

default clause is not present In a parallel construct IMP shared

In a task, taskloop, target, target enter data,

target exit data, target update construct

IMP first-private

default clause is present In a parallel and teams construct IMP Determined by

default clause

In a task, taskloop, target, target enter data,

target exit data, target update construct

IMP

3.1 Use of Uninitialized Memory

Programmers may specify incorrect data-sharing attributes in an OpenMP appli-
cation. Typically these incorrect settings will introduce bugs. If a private variable
is set to be shared, then a data race may occur. If a shared variable is set to
private, then subsequent memory accesses to this variable may become UUMs.

In Fig. 2, we present a few examples of UUMs. The first UUM is in line 8, and
its root cause is the incorrect data-sharing attribute set in line 5. This error can
be fixed by setting the data-sharing attribute to ‘shared’, removing the private
clause, or using a sum reduction.

Incorrect map-type is another source of UUMs. We show an example in Fig. 3.
In line 10, the map-type is set to ‘alloc’, so that a storage for array b is allocated
but not initialized on the target device. The subsequent read in line 17 is a UUM
since b is uninitialized. To fix this error, b’s map-type should be set to ‘to’ or
‘tofrom’.

In some cases, OpenMP constructs are not the root cause of memory anoma-
lies, but they make memory anomaly detection difficult, such as the two UUMs
in Fig. 2 (in line 23 and 29). These two UUMs are associated with OpenMP con-
structs (reduction clause and atomic construct). The memory anomaly detector
must take OpenMP constructs into account, and correctly model their seman-
tics. Otherwise, the memory anomaly detector may cause false alarms or miss
some bugs when examining an OpenMP application.

3.2 Use After Free

Figure 4a displays an example of UAF. The outer task spawns the inner task
in line 6, and the inner task tries to access a in line 9 and 10. However, the
generating task does not suspend after creating the inner task. It may terminate

334 L. Yu et al.

Fig. 2. UUMs in parallel for constructs

before the inner task issues the two read operations. So that these two reads
become UAF since a has been deallocated. To avoid such errors, programmers
need to understand a variable’s lifetime correctly, and pay special attention to
shared variables.

3.3 Use of Stale Data

USDs are defined against the dataflow. For example, Cilk proposed a notion
serial elision that a parallel application’s dataflow needs to be consistent with
its sequential version [10]. Based on the serial elision property, a USD happens
when a Cilk application generates an inconsistent dataflow with the sequential
version. However, in OpenMP applications, the serial elision property may not
hold since the specification does not enforce it.

A Study of Memory Anomalies in OpenMP Applications 335

Fig. 3. A UUM resulting from incorrect map-type

We redefine USDs in OpenMP applications with regard to the uncertainty
of unified memory. An OpenMP implementation may activate unified mem-
ory when executing target regions. By the requires(unified shared memory)
directive, programmers can notify the OpenMP implementation that unified
memory is indispensable for the correctness of the results. Otherwise, the
OpenMP implementation assumes that the application always generates correct
and consistent results regardless of unified memory.

To distinguish the executions with and without unified memory, we refer to
the execution with unified memory enabled as the unified memory version, and
the execution without unified memory as the original version. USDs are defined
against these two versions:

Definition 1 (Use of Stale Data). For an OpenMP application without
require directives, A USD happens if the original version has inconsistent
dataflow with the unified memory version.

Similar to UUMs, USDs may also arise from incorrect data-sharing rules and
map-types. Figure 4b shows an example of USD. For the unified memory version,
map clauses are optional since the effect of memory accesses are observable to
any devices. So that the print statement in line 18 returns the value written by
line 16. For the original version, each device’s memory space is isolated. Because
array a’s map-type is set to ‘to’ in line 10, the value of array a on the target
device is not copied back to the host. Thus the print statement returns the initial
value of a[0], which is inconsistent with the unified memory version. To fix this
USD, array a’s map-type should be set to ‘from’ or ‘tofrom’.

336 L. Yu et al.

Fig. 4. UAF and USD

4 Evaluation of Memory Anomaly Detectors

In this section, we try to answer RQ3. We present the evaluation of three state-
of-the-art memory anomaly detectors. All experiments were performed on a com-
pute node of CLAIX cluster running CentOS 7, and all benchmarks are compiled
with LLVM 10.0.

4.1 Memory Anomaly Detectors and Benchmarks

We evaluated three dynamic memory anomaly detectors and compared their
effectiveness. All three tools are commonly used when debugging C/C++ appli-
cations. ASan is a dynamic analysis tool developed by Google. It can detect a
variety of memory anomalies related to pointer dereference (e.g., UAF, buffer
overflow). MSan is another dynamic detector from Google. Is uses the same
infrastructure as ASan, but is designed to detect UUMs. Valgrind is a debugging
and profiling tool suite running on top of a dynamic instrumentation framework.
The memcheck tool is capable of detecting memory anomalies and memory leaks.
In our evaluation, we used ASan and MSan implemented in LLVM 10.0, and the
memcheck tool in Valgrind 3.14.0.

To measure the effectiveness of the three detectors, we constructed a bench-
mark suite consisting of 22 small OpenMP applications. 15 benchmarks were
chosen from DRACC [1] and each of them contains a memory anomaly caused
by incorrect data transfer. The remaining seven benchmarks are created by our-
selves. Since in DRACC there exist no memory anomalies resulting from the

A Study of Memory Anomalies in OpenMP Applications 337

data-sharing attribute, we devised the seven benchmarks based on our experi-
ence on OpenMP to improve the benchmark suite’s coverage2.

4.2 Evaluation Result

Table 2 lists the evaluation result on the 15 DRACC benchmarks. Columns 1–2
record the benchmark name and the error type. Columns 3–5 indicate the result
of memory anomaly detection. Here we apply the same group of notions used
in [12] and [5], where TP denotes that the tool correctly reports the error, and
FN denotes the tool misses the known error.

Out of the 15 known errors, ASan and MSan successfully reported 6 and 5
memory anomalies. ASan detected all buffer overflows and MSan pinpointed all
UUMs. These results match our expectation because their detection algorithms
are customized for a specific set of memory anomalies. Valgrind detected 9 out
of 15 memory anomalies, which outperforms the other two detectors. However,
Valgrind’s bug report is quite noisy. It reported a large number of memory
anomalies in system libraries, making the bug report difficult to understand.
On the other hand, all three detectors missed USDs. To detect USDs, memory
anomaly detectors need to model an OpenMP applications’ dataflow correctly.
Currently, none of the three detectors takes the dataflow into account.

Table 3 lists the evaluation result on the remaining seven benchmarks. Simi-
lar to Table 2, Valgrind outperforms ASan and MSan on the number of detected
errors. In addition, ASan failed to detect a UAF, and MSan missed two UUMs in
DAS OMP 003 and DAS OMP 005. These three memory anomalies are expected
to be detected. One possible reason is that ASan and MSan handle some
OpenMP constructs improperly, since both benchmarks use the atomic con-
struct to protect memory accesses to an uninitialized variable.

4.3 Lesson Learned

The evaluation result indicates that none of the three tools can handle all mem-
ory anomalies. Because different kinds of memory anomalies have distinct run-
time behavior, it is challenging for a single detector to capture all memory
anomalies. To reduce the possibility of missing memory anomalies, program-
mers could apply multiple detectors simultaneously when debugging an OpenMP
application.

5 Related Work

In this section, we relate our study on OpenMP to representative work in memory
anomaly detection and bug studies.

2 https://github.com/FuriousBerserker/MemoryAnomalyBench.

https://github.com/FuriousBerserker/MemoryAnomalyBench

338 L. Yu et al.

Table 2. Evaluation result on DRACC benchmarks

Benchmark Memory anomaly Effectiveness

ASan MSan Valgrind

DRACC OMP 022 UUM FN TP FN

DRACC OMP 023 Buffer overflow TP FN TP

DRACC OMP 024 UUM FN TP FN

DRACC OMP 025 Buffer overflow TP FN TP

DRACC OMP 026 USD FN FN FN

DRACC OMP 027 USD FN FN FN

DRACC OMP 028 Buffer overflow TP FN TP

DRACC OMP 029 Buffer overflow TP FN TP

DRACC OMP 030 Buffer overflow TP FN TP

DRACC OMP 031 Buffer overflow TP FN TP

DRACC OMP 032 USD FN FN FN

DRACC OMP 033 USD FN FN FN

DRACC OMP 049 UUM FN TP TP

DRACC OMP 050 UUM FN TP TP

DRACC OMP 051 UUM FN TP TP

Overall 6/15 5/15 9/15

Table 3. Evaluation result on additional benchmarks

Benchmark Memory anomaly Effectiveness

ASan MSan Valgrind

DSA OMP 001 UUM FN TP TP

DSA OMP 002 UUM FN TP TP

DSA OMP 003 UUM FN FN TP

DSA OMP 004 UUM FN TP TP

DSA OMP 005 UUM FN FN TP

DSA OMP 006 UAF FN TP FN

DSA OMP 007 USD FN FN FN

Overall 0/7 4/7 5/7

5.1 Memory Anomaly Detection

Memory anomalies in C/C++ applications have been comprehensively studied in
the past decades, and a large number of memory anomaly detectors have been
proposed [6,8,18,22,23]. These detectors monitor the execution of a C/C++
application, recording relevant metadata for each memory locations (e.g., status,
base address, bound). When a memory location is accessed, the tools examine

A Study of Memory Anomalies in OpenMP Applications 339

associated metadata to check the legality of the memory access. These detec-
tors can pinpoint memory anomalies at runtime, with acceptable overhead to
the program execution. When applied to OpenMP applications, these detectors
may generate false positives and false negatives due to the misunderstanding of
OpenMP constructs.

To the best of our knowledge, currently, there exists no memory anomaly
detector designed for OpenMP applications. Since manually detecting memory
anomalies is time-consuming, memory anomaly detectors are indispensable when
testing an OpenMP application. Our study provides an overview of memory
anomalies in OpenMP applications, which can serve as guidance for tool devel-
opers in future development.

5.2 Bug Studies

There have been several bug studies on OpenMP. Münchhalfen et al. conducted a
study on OpenMP 4.0 and proposed a classification of OpenMP usage errors [17].
The study comprehensively scrutinized the semantics of OpenMP constructs,
including tasking and target constructs, illustrating potential incorrect usages
and discussing their harmful effects on the program execution. These usage errors
are further categorized into syntactic defects, semantic defects, and performance
defects according to each error’s root cause and runtime behavior. However,
this study only covered a subset of memory anomalies (UUM and USD on the
accelerator), and did not provide any concrete examples.

By analyzing data races in real-world OpenMP applications, Liao et al. cre-
ated DataRaceBench, a micro-benchmark suite designed to evaluate the effec-
tiveness of data race detectors [12]. DataRaceBench contains more than 100
micro-benchmarks with and without data races. Through the provided evalu-
ation script, DataRaceBench can automatically calculate the precision, recall,
and accuracy of a data race detector. To further improve the OpenMP stan-
dard coverage of DataRaceBench, Liao et al. carried out a study on OpenMP
4.5. They classified OpenMP constructs and clauses into three categories, paral-
lel semantics, shared semantics, and synchronization semantics. Each category
is summarized as a group of semantics labels. For any uncovered label, a new
micro-benchmark is added to DataRaceBench to enhance coverage.

Apart from OpenMP, there also exist bug studies targeting other program-
ming languages. Lu et al. conducted a concurrency bug study on real-world
applications [15]. They examined 105 randomly selected real-world concurrency
bugs from four open-source server and client applications. Wang et al. conducted
a concurrency bug study on Node.js [25]. They collected 57 real bug cases from
GitHub and organized them into a benchmark suite. Nong et al. conducted a
comparison of five state-of-art memory anomaly detectors [19]. They used 520
C/C++ programs to measure the effectiveness and efficiency of these detectors.
The result indicates that the effectiveness of these detectors varies widely due to
the applied detection technique, while the performance is similar. Although all
three studies are not related to OpenMP, we picked up some analysis methods
when carrying out our study.

340 L. Yu et al.

6 Conclusion

In this paper, we presented a study of memory anomalies that can occur in
OpenMP programs. Memory anomalies are common errors in C/C++ applica-
tions. For OpenMP applications, memory anomalies may arise if programmers
specify erroneous data-sharing attributes or map-types. We have compared the
effectiveness of three state-of-the-art memory anomaly detectors. The evalua-
tion results indicate that no single tool can detect all memory anomalies in an
OpenMP application.

For future research, we plan to compare the performance of memory anomaly
detectors on OpenMP applications. We also plan to extend current tools with
new detection algorithms.

Acknowledgment. This research was supported in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration, in particular its subproject
on Scaling OpenMP with LLVM for Exascale performance and portability (SOLLVE).
This work has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement 824080.

References

1. DataRaceOnAccelerator (2019). https://github.com/RWTH-HPC/DRACC
2. Kloeckner, A., Berger, M.: Shared memory and OpenMP (2012). https://cims.nyu.

edu/∼stadler/hpc17/material/ompLec.pdf. Accessed 15 May 2020
3. Atzeni, S., et al.: Archer: effectively spotting data races in large OpenMP applica-

tions. In: 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 53–62. IEEE (2016)

4. Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Laguna, I., Lee, G.L., Ahn, D.H.:
Sword: a bounded memory-overhead detector of OpenMP data races in production
runs. In: 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 845–854. IEEE (2018)

5. Bora, U., Das, S., Kureja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: Llov: a fast
static data-race checker for OpenMP programs. arXiv preprint arXiv:1912.12189
(2019)

6. Cai, Y., et al.: Detecting concurrency memory corruption vulnerabilities. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 706–
717 (2019)

7. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model for
SPMD programs and its use in static data race detection. In: Ding, C., Criswell, J.,
Wu, P. (eds.) LCPC 2016. LNCS, vol. 10136, pp. 106–120. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52709-3 10

8. Chen, Z., Yan, J., Kan, S., Qian, J., Xue, J.: Detecting memory errors at runtime
with source-level instrumentation. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 341–351 (2019)

https://github.com/RWTH-HPC/DRACC
https://cims.nyu.edu/~stadler/hpc17/material/ompLec.pdf
https://cims.nyu.edu/~stadler/hpc17/material/ompLec.pdf
http://arxiv.org/abs/1912.12189
https://doi.org/10.1007/978-3-319-52709-3_10

A Study of Memory Anomalies in OpenMP Applications 341

9. Diaz, J.M., Pophale, S., Hernandez, O., Bernholdt, D.E., Chandrasekaran, S.:
OpenMP 4.5 validation and verification suite for device offload. In: de Supinski,
B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP
2018. LNCS, vol. 11128, pp. 82–95. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98521-3 6

10. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, pp. 212–223 (1998)

11. Gu, Y., Mellor-Crummey, J.: Dynamic data race detection for OpenMP programs.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, p. 61. IEEE Press (2018)

12. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a bench-
mark suite for systematic evaluation of data race detection tools. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14 (2017)

13. Liao, C., Lin, P.-H., Schordan, M., Karlin, I.: A semantics-driven approach to
improving DataRaceBench’s OpenMP standard coverage. In: de Supinski, B.R.,
Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP 2018.
LNCS, vol. 11128, pp. 189–202. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98521-3 13

14. Lin, P.H., Liao, C., Schordan, M., Karlin, I.: Exploring regression of data race
detection tools using DataRaceBench. In: 2019 IEEE/ACM 3rd International
Workshop on Software Correctness for HPC Applications (Correctness), pp. 11–18.
IEEE (2019)

15. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 329–339 (2008)

16. Matar, H.S., Unat, D.: Runtime determinacy race detection for OpenMP tasks. In:
Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014,
pp. 31–45. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1 3

17. Münchhalfen, J.F., Hilbrich, T., Protze, J., Terboven, C., Müller, M.S.: Classifica-
tion of common errors in OpenMP applications. In: DeRose, L., de Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 58–72. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11454-5 5

18. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM Sigplan Not. 42(6), 89–100 (2007)

19. Nong, Y., Cai, H.: A preliminary study on open-source memory vulnerability detec-
tors. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 557–561. IEEE (2020)

20. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face 5.0 (2018). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf. Accessed 5 Aug 2019

21. Protze, J., Hahnfeld, J., Ahn, D.H., Schulz, M., Müller, M.S.: OpenMP tools inter-
face: synchronization information for data race detection. In: de Supinski, B.R.,
Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017.
LNCS, vol. 10468, pp. 249–265. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65578-9 17

22. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: a fast
address sanity checker. In: Presented as Part of the 2012 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 2012), pp. 309–318 (2012)

https://doi.org/10.1007/978-3-319-98521-3_6
https://doi.org/10.1007/978-3-319-98521-3_6
https://doi.org/10.1007/978-3-319-98521-3_13
https://doi.org/10.1007/978-3-319-98521-3_13
https://doi.org/10.1007/978-3-319-96983-1_3
https://doi.org/10.1007/978-3-319-11454-5_5
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-319-65578-9_17
https://doi.org/10.1007/978-3-319-65578-9_17

342 L. Yu et al.

23. Stepanov, E., Serebryany, K.: MemorySanitizer: fast detector of uninitialized mem-
ory use in C++. In: 2015 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pp. 46–55. IEEE (2015)

24. Swain, B., Huang, J.: Towards incremental static race detection in OpenMP pro-
grams. In: 2018 IEEE/ACM 2nd International Workshop on Software Correctness
for HPC Applications (Correctness), pp. 33–41. IEEE (2018)

25. Wang, J., et al.: A comprehensive study on real world concurrency bugs in Node.js.
In: 2017 32nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 520–531. IEEE (2017)

26. Ye, F., Schordan, M., Liao, C., Lin, P.H., Karlin, I., Sarkar, V.: Using polyhedral
analysis to verify OpenMP applications are data race free. In: 2018 IEEE/ACM
2nd International Workshop on Software Correctness for HPC Applications (Cor-
rectness), pp. 42–50. IEEE (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Ahmed, Hadia 37
Alon, Lee-Or 247
Araujo, Guido 231
Araya-Polo, Mauricio 67
Aumage, Olivier 197

Baker, Matthew 181
Boushehrinejadmoradi, Nader 149

Carribault, Patrick 313
Catalán, Sandra 115
Chapman, Barbara 67, 280, 295
Cox, Alan L. 212
Curtis, Anthony 295

Daley, Christopher 37
Daoudi, Idriss 197
de Carvalho, João P. L. 231
de Supinski, Bronis R. 85
Doerfert, Johannes 3
Drebes, Andi 165

Gautier, Thierry 52, 197
Georgakoudis, Giorgis 3

Harel, Re’Em 247
Hernandez, Oscar 181, 295, 328
Honorio, Bruno Chinelato 231
Huthmann, Jens 265

Jaeger, Julien 313

Kale, Vivek 295
Koch, Andreas 265

Labarta, Jesús 115
Laguna, Ignacio 3
Lu, Wenbin 295

Malik, Abid M. 280, 295
Martorell, Xavier 115
Meng, Jie 67
Mishra, Alok 280
Mosseri, Idan 247

Nagarakatte, Santosh 149
Neill, Richard 165
Neth, Brandon 85

Olivier, Stephen L. 18
Oren, Gal 247
Orland, Fabian 130

Perez, Christian 52
Podobas, Artur 265
Pop, Antoniu 165
Protze, Joachim 328

Raut, Eric 67
Rixner, Scott 212
Roussel, Adrien 313
Rouzaud-Cornabas, Jonathan 52

Sano, Kentaro 265
Sarkar, Vivek 328
Scogland, Thomas R. W. 3, 85
Skaf, Munir 231
Sommer, Lukas 265
Strout, Michelle Mills 85

Terboven, Christian 130
Thibault, Samuel 197
Toledo, Leonel 115
Turpin, Laurent 52

Usui, Tetsuzo 115

Valero-Lara, Pedro 115
Virouleau, Philippe 197

Wang, Anjia 98
Williams, Samuel 37
Wodiany, Igor 165
Wright, Nicholas 37

Yan, Yonghong 98
Yi, Xinyao 98
Yoga, Adarsh 149
Young, Jeffrey 181
Yu, Lechen 328

Zhang, Runhua 212

344 Author Index

	Preface
	Organization
	Contents
	Performance Methodologies
	FAROS: A Framework to Analyze OpenMP Compilation Through Benchmarking and Compiler Optimization Analysis
	1 Introduction
	2 FAROS: Design and Implementation
	2.1 Harness and Configuration
	2.2 Analyzing Compiler Optimization and Performance

	3 Evaluation
	4 Related Work
	5 Conclusion and Future Work
	References

	Evaluating the Efficiency of OpenMP Tasking for Unbalanced Computation on Diverse CPU Architectures
	1 Introduction
	2 UTS: The Benchmark and Its Implementation
	3 Test Problem
	4 Experimental Setup
	5 Results
	5.1 Comparing Parallel Efficiency
	5.2 Thread Scalability and Simultaneous Multithreading
	5.3 Quantifying Load Balancing Operations

	6 Related Work
	7 Conclusions
	References

	Applications
	A Case Study of Porting HPGMG from CUDA to OpenMP Target Offload
	1 Introduction
	2 Related Work
	3 The HPGMG Mini Application
	3.1 HPGMG-CUDA
	3.2 Porting HPGMG-CUDA to OpenMP Target Offload
	3.3 Adding Explicit Data Management to HPGMG

	4 Experimental Methodology
	4.1 Hardware and Software Environment
	4.2 Application Configuration

	5 Performance Evaluation
	5.1 Performance When Using Managed Memory
	5.2 Performance When Using Explicit Data Management

	6 Discussion
	6.1 Assessment of OpenMP Abstractions
	6.2 Assessment of Compiler Maturity and Performance

	7 Conclusion
	References

	P-Aevol: An OpenMP Parallelizationpg of a Biological Evolution Simulator, Through Decomposition in Multiple Loops
	1 Introduction
	2 Aevol, An Irregular Stochastic Program
	2.1 Aevol: A Simulation of Darwinian Evolution
	2.2 Computational Workflow of Aevol
	2.3 Dynamic Characterization of the Computation

	3 Parallelization of the Evolutionary Loop
	3.1 Straightforward Performance with OpenMP Loop Schedulers
	3.2 Scheduling Iterations Based on Their Data
	3.3 Predicting the Execution Time
	3.4 LDNA, A Scheduling Algorithm for Aevol
	3.5 OpenMP Implementation of LDNA

	4 Experimental Results
	4.1 Protocol of Experimentation
	4.2 Results
	4.3 Evaluation on Larger Populations

	5 Related Work
	6 Conclusion and Future Work
	References

	Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application
	1 Introduction
	2 Related Work
	3 Minimod Description
	4 Code Structure and Taskification of Minimod
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Discussion
	7 Conclusions
	References

	OpenMP Extensions
	Unified Sequential Optimization Directives in OpenMP
	1 Introduction
	2 Sequential Optimizations
	2.1 Aliasing
	2.2 Inlining
	2.3 Optimization Control
	2.4 Side Effects
	2.5 Alignment

	3 Directive Interaction
	4 Case Study: Inlining in RAJA
	4.1 RAJA
	4.2 Evaluation

	5 Conclusion
	References

	Supporting Data Shuffle Between Threads in OpenMP
	1 Introduction
	2 Motivation
	2.1 CUDA shuffle Instruction for NVIDIA GPUs
	2.2 Cross-Lane Operations of AMD GPUs
	2.3 Shuffle Data Between SIMD/Vector Lanes

	3 Using Shuffle to Implement the reduction Clause
	4 Proposing shuffle Clause and Directive for OpenMP
	4.1 Stencil Example

	5 Experimental Results
	5.1 Reduction
	5.2 2D Stencil

	6 Related Work
	7 Conclusion
	References

	Performance Studies
	Towards an Auto-Tuned and Task-Based SpMV (LASs Library)
	1 Introduction
	2 State of the Art
	3 Parallelizing SpMV
	3.1 One Task Per Row
	3.2 Blocking
	3.3 Taskloop
	3.4 Grouping

	4 Performance Analysis
	5 Optimizing the taskloop implementation
	5.1 Taskloop Grainsize Selection
	5.2 Taskloop + Nesting

	6 Conclusions and Future Work
	References

	A Case Study on Addressing Complex Load Imbalance in OpenMP
	1 Introduction
	2 Related Work
	3 Complex Load Imbalance
	3.1 Generalized Minimal Residual Method
	3.2 Parallel GMRES
	3.3 Convergence Dependent Load Imbalance

	4 Load Balance Strategies
	4.1 Tasking
	4.2 Conditional Nested Tasks
	4.3 Conditional Nested Parallel Region

	5 Results
	5.1 Tasking
	5.2 Conditional Nested Tasks
	5.3 Conditional Nested Parallel Region

	6 Future Work
	7 Conclusions
	References

	Tools
	On-the-fly Data Race Detection with the Enhanced OpenMP Series-Parallel Graph
	1 Introduction
	2 Overview of OMP-RACER
	3 OMP-RACER Approach
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	AfterOMPT: An OMPT-Based Tool for Fine-Grained Tracing of Tasks and Loops
	1 Introduction
	2 Aftermath
	3 Tracing Using OMPT Callbacks
	3.1 Labeling Instances
	3.2 Tracing Loops
	3.3 Tracing Tasks
	3.4 Tracing Synchronization Events and Regions

	4 Case Studies
	4.1 Experimental Setup
	4.2 Identifying Slow Iterations in Unbalanced Loops
	4.3 Comparison of Loop-Based and Task-Based Implementations

	5 Overhead Analysis
	6 Related Work
	7 Conclusion and Future Work
	References

	Co-designing OpenMP Features Using OMPT and Simulation Tools
	1 Introduction
	2 Background and Related Work
	2.1 OpenMP Tools Interface
	2.2 Gem5 Simulator
	2.3 Arm Instruction Emulator
	2.4 Future Work - Measuring ROI in OpenMP Applications with BarrierPoint

	3 Sample OMP Tools for Codesign
	4 Experimental Setup
	4.1 ArmIE Emulator Setup
	4.2 Simulator Setup

	5 Results
	6 Conclusion
	References

	NUMA
	sOMP: Simulating OpenMP Task-Based Applications with NUMA Effects
	1 Introduction
	2 Related Work
	3 sOMP: Simulating Task-Based OpenMP Applications
	3.1 TiKKi: Tracing with OMPT
	3.2 Modeling of NUMA Architectures with SimGrid
	3.3 Task-Based Applications Simulation

	4 Implementation
	4.1 sOMP Architecture
	4.2 Managing Data Locality

	5 Evaluation
	5.1 Methodology
	5.2 Latency and Bandwidth Measurements
	5.3 Results

	6 Conclusion
	References

	Virtflex: Automatic Adaptation to NUMA Topology Change for OpenMP Applications
	1 Introduction
	2 Background
	2.1 Virtualization
	2.2 Linux NUMA Support Limitations

	3 Virtflex Design and Implementation
	3.1 Hypervisor-Guest OS Boundary
	3.2 Guest OS-Application Boundary
	3.3 End-to-End Operation

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	Compilation Techniques
	Using OpenMP to Detect and Speculate Dynamic DOALL Loops
	1 Introduction
	1.1 Motivating Example

	2 Background
	3 Extending OpenMP to Enable Loop Profiling
	3.1 Metrics
	3.2 General Overview of the Profiling Tool
	3.3 The Check Clause
	3.4 Implementation of the Check Clause

	4 Experimental Results
	4.1 Methodology
	4.2 Identifying Parallelization Opportunities via LoopAnalyzer

	5 Conclusion
	References

	ComPar: Optimized Multi-compiler for Automatic OpenMP S2S Parallelization
	1 Introduction
	2 Related Work
	3 ComPar's S2S Automatic Parallelization Compilers
	4 ComPar: From Theory to Practice
	4.1 Characteristics, Architecture and Workflow
	4.2 Interface

	5 Experiments and Discussion
	5.1 NAS Parallel Benchmarks
	5.2 PolyBench Benchmarks

	6 Conclusions and Future Work
	References

	Heterogeneous Computing
	OpenMP Device Offloading to FPGAs Using the Nymble Infrastructure
	1 Introduction
	2 Motivation
	3 The Nymble OpenMP Infrastructure
	3.1 Compilation Flow
	3.2 Hardware Architecture
	3.3 Performance Visualization

	4 Evaluation
	4.1 Case Study: GEMM

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Data Transfer and Reuse Analysis Tool for GPU-Offloading Using OpenMP
	1 Introduction
	1.1 GPU Offloading Using OpenMP
	1.2 The Problem
	1.3 Our Solution

	2 Motivating Examples
	3 Data Reuse Optimization
	3.1 Problem with OpenMP Implicit Data Transfer
	3.2 Our Approach
	3.3 Implementation

	4 Experimental Setup
	5 Results and Analysis
	6 Related Work
	7 Conclusion
	8 Future Work
	References

	Toward Supporting Multi-GPU Targets via Taskloop and User-Defined Schedules
	1 Introduction
	2 Motivation Through Use Case Applications
	2.1 Autodock
	2.2 DMRG++
	2.3 Formulating Our Problem with a Representative Benchmark

	3 Using OpenMP Offload on Multiple GPUs Efficiently
	4 Results
	4.1 Impact of Task-to-GPU Scheduling Strategies
	4.2 Detailed Profiling

	5 Discussion on Results and Proposed Extensions
	6 Related Work
	7 Conclusions
	References

	Memory
	Preliminary Experience with OpenMP Memory Management Implementation
	1 Introduction
	2 Memory Management in OpenMP 5.0
	3 Related Work
	4 Application- and Runtime-Level OpenMP Memory Management
	4.1 Runtime System Design for Memory Management Integration
	4.2 Enabling Portable Application Memory Management

	5 Experimental Results
	5.1 Coarse-Grain OpenMP Memory Allocation
	5.2 Fine-Grain OpenMP Memory Allocation
	5.3 Portabilty Across Hardware Platforms

	6 Conclusion and Future Work
	References

	A Study of Memory Anomalies in OpenMP Applications
	1 Introduction
	2 OpenMP's Data-Sharing Attribute and Map-Type
	2.1 Semantics
	2.2 Determining Data-Sharing Attribute and Map-Type

	3 Memory Anomalies in OpenMP Applications
	3.1 Use of Uninitialized Memory
	3.2 Use After Free
	3.3 Use of Stale Data

	4 Evaluation of Memory Anomaly Detectors
	4.1 Memory Anomaly Detectors and Benchmarks
	4.2 Evaluation Result
	4.3 Lesson Learned

	5 Related Work
	5.1 Memory Anomaly Detection
	5.2 Bug Studies

	6 Conclusion
	References

	Author Index

