
Seed Model Synthesis for Testing
Model-Based Mutation Operators

Pablo Gómez-Abajo1(B), Esther Guerra1, Juan de Lara1,
and Mercedes G. Merayo2

1 Modelling and Software Engineering Group,
Universidad Autónoma de Madrid, Madrid, Spain

{Pablo.GomezA,Esther.Guerra,Juan.deLara}@uam.es
http://miso.es

2 Design and Testing of Reliable Systems Group,
Universidad Complutense de Madrid, Madrid, Spain

mgmerayo@fdi.ucm.es

http://antares.sip.ucm.es/testing/

Abstract. In software engineering, mutation consists in injecting small
changes in artefacts – like models, programs, or data – for purposes like
(mutation) testing, test data generation, and all sorts of search-based
methods. These activities normally require the definition of sets of muta-
tion operators, which are often built ad-hoc because there is currently
poor support for their development and testing.

To improve this situation, in previous work we proposed a model-
based approach to create and execute mutation operators. Our proposal
represents the artefacts to be mutated as models and provides a domain-
specific language called Wodel to define the mutation operators. How-
ever, testing the operators is cumbersome, since it requires the manual
creation of input seed models. To facilitate this testing process, we pro-
pose a method – based on model finding – for the automated synthesis of
test models that exercise the defined mutation operators. We provide tool
support for our proposal, and illustrate its usage by defining mutation
operators for BPMN.

Keywords: Model-based mutation · Model-driven engineering · Model
synthesis · OCL · Wodel · BPMN

1 Introduction

Mutation consists in the selective introduction of modifications into sets of
seed artefacts, like models, programs or data. Mutation is at the core of many
techniques in software engineering, like mutation testing (where programs are
mutated with faults to evaluate the quality of a test suite) [5,14], test data
generation (like in mutation-based fuzzing, which introduces small changes to
existing test inputs) [26], and search-based software engineering (which applies

c© Springer Nature Switzerland AG 2020
N. Herbaut and M. La Rosa (Eds.): CAiSE Forum 2020, LNBIP 386, pp. 64–76, 2020.
https://doi.org/10.1007/978-3-030-58135-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58135-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-58135-0_6

Seed Model Synthesis for Testing Model-Based Mutation Operators 65

metaheuristic search techniques to software engineering problems, where candi-
date solutions are combined and mutated) [15]. Mutation has also been applied
for other purposes, like the automatic generation of exercises and quizzes [9] or
testing distributed applications in simulated environments [3].

Mutation-based methods require the creation of mutation operators able to
change the target artefacts in pertinent ways. For example, for mutation testing,
operators need to emulate common faults made by competent developers. Such
operators are typically defined over the abstract syntax tree of the program,
which makes them difficult to test since the input data of the operators are pro-
grams. Moreover, operators are often defined ad-hoc using general programming
languages not designed for mutating artefacts, like Java [19] or C [18], which is
costly and error-prone.

To improve this situation, we propose an approach to facilitate the creation
and testing of mutation operators. It is model-based to enable its application to
heterogeneous artefacts (programs, models, data). This means that the arte-
facts to mutate are represented as models conforming to a meta-model, for
which we rely on injection (artefact-to-model) and extraction (model-to-artefact)
transformations. Our solution includes a domain-specific language (DSL) called
Wodel [8,9] specially tailored to design mutation operators applicable over mod-
els. To help in the validation of the designed operators, we offer facilities for
synthesizing models over which the operators can be tested. Such models are
ensured to provide full statement coverage of the mutation program.

Our method is supported by the Wodel tool [10]. While the DSL Wodel

was introduced in [8,9], in this paper we focus on the facility for seed model
synthesis, based on constraint solving and model finding [20].

The rest of this paper is organized as follows. Section 2 introduces a running
example in the area of process modelling. Then, Section 3 describes the Wodel

DSL. Section 4 explains our methods to synthesize models for testing mutation
operators, and Sect. 5 describes our current tool support. Finally, Sect. 6 reviews
related work, and Sect. 7 concludes the paper.

2 Running Example: Mutation for Process Models

A number of research works have applied mutation to workflow languages for
different purposes, like evaluating the quality of test cases (as in [7] for WS-
BPEL), optimising process models (as in [16] for BPMN), or for process mining
using a genetic approach (as in [6] for process trees or [22] for Petri nets). As
an illustration, in this paper, we are defining a set of mutation operators for the
Business Process Model and Notation (BPMN)1.

Figure 1 shows part of a simplified BPMN meta-model taken from an editor
built by a third-party2. A process defines a set of FlowObjects, which can be either
Activities (i.e., a work to be done), Events (to denote that something happens, such
as the start or end of the process), or Gateways (to fork or merge several paths).
1 http://www.bpmn.org/.
2 https://github.com/bluezio/simplified-bpmn-example.

http://www.bpmn.org/
https://github.com/bluezio/simplified-bpmn-example

66 P. Gómez-Abajo et al.

Depending on the kind of gateway, the execution of its outgoing paths can be
in parallel (AND), inclusive (OR, one or more paths are executed), or exclusive
(XOR, only a path is executed). The OCL invariant inv2 ensures that gateways
always have input and output paths. Finally, flow objects can be connected
through ConnectingObjects to specify the execution flow (Sequence), send messages
(Message), or associate artefacts to flow objects (Association). The OCL invariant
inv1 ensures that start events have no input flows, end events have no output
flows, and flow objects are not connected to themselves. To better illustrate
model synthesis in Sect. 4, we have restricted processes to have between 1 and
10 elements, as cardinality of reference BusinessProcess.elements indicates.

BPMNElement
name: String

Connec ngObject FlowObject
from

to

Message Sequence Associa on

Gateway Ac vity

XOR OR AND

DataObject

StartEv IntermediateEv EndEv

0..1

0..1

BusinessProcess 1..10
elements

inv1: not self.to.oclIsKindOf(StartEv) and
 not self.from.oclIsKindOf(EndEv) and
 self.from<>self.to

inv2:
Connec ngObject.allInstances()→exists(c|c.to=self) and
Connec ngObject.allInstances()→exists(c|c.from=self)

Fig. 1. Simplified BPMN meta-model.

Figure 2 shows a simple BPMN model in concrete syntax. It describes the
process to satisfy someone who is hungry. The process starts when a person
becomes hungry. The first activity is to buy food, followed by cooking the food.
Then, when the meal is ready, the person eats it, and this concludes the process.

hunger
no ced

buy
groceries cook

meal
ready

eat meal

hunger
sa sfied

start event

ac vity

intermediate
event

end event

legend

Fig. 2. An example BPMN model (using the standard concrete syntax).

In the next section, we introduce our DSL Wodel for model mutation, and
use it to define a set of mutation operators for BPMN.

Seed Model Synthesis for Testing Model-Based Mutation Operators 67

3 Wodel: A Domain Specific Language for Model
Mutation

Wodel [8,9] is a DSL for the specification of mutation operators. It is domain-
independent, and so it can be applied to arbitrary languages, or to other kinds of
artefacts like data. For this purpose, it relies on the provision of a domain meta-
model specifying the structure of the artefacts to be mutated. The execution
of a Wodel program yields a set of mutant models obtained by applying the
specified operators to a set of given seed models, using different policies. For
traceability, a registry with the mutations used to generate each mutant is also
produced. Wodel ensures that the created mutant models conform to the domain
meta-model and satisfy its OCL invariants.

Wodel provides mutation primitives to select, modify, create, delete, clone
and retype objects; and to create, modify and delete references. Its mutation
engine has built-in functionalities to ease the definition of mutation operators;
for example, new objects are automatically added to a suitable container ref-
erence, and mandatory attributes and references without an explicit value are
automatically initialized. Its editing environment [10] features code completion,
type checking, and generation of stand-alone Java code from Wodel programs
(cf. Sect. 5). The tool can be extended with post-processing applications. Two
examples are the framework for the automated generation of exercises presented
in [9], and the mutation testing development framework introduced in [11].

Listing 1 shows a simple Wodel program for defining a mutation operator
for BPMN. Line 1 specifies the strategy for mutant synthesis: generating either a
maximum number of mutants, or all possible ones by using the keyword exhaus-

tive. Line 2 states the output folder to store the mutants, and the input folder
with the seed models. Line 3 configures the meta-model in use (we use the on in
Fig. 2). The remainder of the program defines the mutation operators.

1 generate exhaustive mutants
2 in ”out/” from ”model/”
3 metamodel ”http://bpmn.com”
4

5 with blocks {
6 ev2ac {
7 retype
8 one [StartEv, IntermediateEv, EndEv]
9 as Activity

10 }
11 }

Listing 1. Defining a mutation operator for BPMN with Wodel.

In this example, the operator ev2ac retypes an event of any kind into an activ-
ity (lines 7–9). This operator uses a single mutation primitive, but in general,
operators can use any number of mutation statements. For instance, Table 2 in
the appendix contains other more complex operators for BPMN, both proposed
in the literature [21] and created by us. Mutation primitives can be scheduled

68 P. Gómez-Abajo et al.

to be applied a random number of times within a given interval. If they do not
define an interval (as in the example), they are applied just once.

Figure 3 shows an application of the mutation operator in Listing 1 to the
BPMN model of Fig. 2. In the resulting mutant, the IntermediateEv ‘meal ready’
is replaced by an equally named Activity, and the incoming/outgoing references
are preserved by the operator.

hunger
no ced

buy
groceries cook

meal
ready

eat meal

hunger
sa sfied

hunger
no ced

buy
groceries cook eat meal

hunger
sa sfied

meal ready

Fig. 3. Application of the mutation operator in Listing 1 to a BPMN model.

4 Seed Model Synthesis Using Model Finding

As any other software, mutation programs need be tested to detect possible
errors, so that they can be fixed. In the case of Wodel, this implies the creation
of test models upon which the mutation programs can be executed. However,
creating test models manually is tedious and error-prone, and it is difficult to
ensure a full coverage of the program.

Therefore, to ease the testing of Wodel programs and operators, we propose
a method based on model finding [17] to automatically produce seed models over
which all instructions of the given Wodel program are applicable (if such models
exist in the given search scope).

Figure 4 outlines the seed model synthesis process. It relies on model search,
a technique which applies constraint resolution over models [17]. In particu-
lar, the synthesizer enriches the description of the domain meta-model and its
invariants with additional OCL constraints derived from the Wodel program.
These constraints express the requirements that a seed model must fulfil to
allow the application of each mutation operator included in the program. Next,
the enriched meta-model is loaded into a model finder [20], which performs a
bounded search of instances of the meta-model satisfying the OCL constraints. If
a model is found, then it ensures full statement coverage of the Wodel program
when executed with the model.

Table 1 shows the templates used to generate the OCL constraints for each
mutation primitive, as well as illustrative examples. For instance, the OCL tem-
plate for the object deletion primitive demands the existence of an object with
the specified type and feature values, and included in a container reference that
would not violate its lower cardinality bound if the object deletion takes place.

Seed Model Synthesis for Testing Model-Based Mutation Operators 69

OUTPUT

domain mm
+ OCL

OCL

Wodel
operators

seed model

INPUT

enriched mm

model finder

Fig. 4. Process for automated model synthesis.

The table shows as an example the deletion of an Activity: the derived OCL con-
straint checks that there exists some Activity, and the BusinessProcesses to which
it belongs contain other elements apart from the Activity (i.e., the size of refer-
ence BusinessProcess.elements is bigger than 1, and deleting the Activity would still
satisfy the reference cardinality).

Other OCL templates deal with object creation (which requires the existence
of a suitable container reference with enough space for the object), object cloning
(which in addition requires the existence of a candidate object to be cloned),
object retyping (which requires conditions equivalent to those for deleting and
creating objects for every container or regular reference that is not source- or
target-compatible with the new type), reference modification (which requires the
existence of an object of the target class), reference creation (which in addition
requires a reference with space to add the object of the target class), and refer-
ence deletion (which requires that the reference fulfils its lower cardinality after
taking one of its objects out).

For readability reasons, Table 1 shows the template associated to one occur-
rence of a mutation primitive. However, a program may apply the same primitive
with the same parameters more than once. This may occur because the primi-
tive is repeated, or because it defines an interval of applications bigger than one.
Hence, in the general case, we count how many times a same instruction appears
(i.e., is to be executed), and generate a slightly more complex constraint where
each such occurrence is represented as a variable. For instance, if the mutation
create Activity has to occur twice, we generate the constraint shown in Listing 2
(cf. Table 1).

BusinessProcess.allInstances()→exists(b1,b2 |
(b1 <> b2 and b1.elements→size() < 10 and b2.elements→size() < 10)
or b1.elements→size() < 9)

Listing 2. OCL invariant derived from a Wodel program creating two activities.

70 P. Gómez-Abajo et al.

Table 1. Templates to generate OCL constraints from mutation primitives.

Conditions to check OCL template Example
Object filter:
Auxiliary template used to
check that an object has the
given feature values.

o.〈feat1〉 = 〈val1〉 ... and
o.〈featn〉 = 〈valn〉

Object selection,
object modification:
There is an object with the
given type and feature val-
ues.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉)

Wodel:modify one Activity
where {name = ’InitialName’}
with {name = ’ModifiedName’}

OCL: Activity.allInstances()
→exists(a | a.name = ’InitialName’)

Object creation:
There is a container refer-
ence of the object’s type
with space to add more ob-
jects.

〈Container〉.allInstances()
→exists(o |
o.〈ref〉→size() < 〈upB〉)

Wodel: a = create Activity
OCL: BusinessProcess.allInstances()

→exists(b |
b.elements→size() < 10)

Object deletion:
There is an object with the
given type and feature val-
ues, and its deletion does
not violate the lower bound
of any reference of the ob-
ject’s type.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉 and

〈Container〉.allInstances()
→forAll(c |
c.〈ref〉→includes(o) implies
c.〈ref〉→size() > 〈lowB〉))

Wodel: remove one Activity
OCL: Activity.allInstances()→exists(a |

BusinessProcess.allInstances()
→forAll(b |
b.elements→includes(a) implies
b.elements→size() > 1))

Object cloning:
There is an object with the
given type and feature val-
ues, and a container refer-
ence of that type with space
to add more objects.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉) and

〈Container〉.allInstances()
→exists(o |
o.〈ref〉→size() < 〈upB〉)

Wodel: deep clone one Sequence
OCL: Sequence.allInstances()

→exists(s | true) and
BusinessProcess.allInstances()

→exists(b |
b.elements→size() < 10)

Object retyping:
There is an object with the
given source type and fea-
ture values. If the target
type is not compatible with
the container of the source
type, conditions to delete a
source object and create a
target one are required (and
similar for refs not compat-
ible with target type). Or-
catenate for each considered
source/target type.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉 [and

〈SrcContainer〉.allInstances()
→forAll(c |
c.〈ref〉→includes(o) implies
c.〈ref〉→size() > 〈lowB〉)
and
〈TrgContainer〉.allInstances()

→exists(c |
c.〈ref〉→size() < 〈upB〉)]1)

1add condition if 〈SrcContainer〉.〈ref〉
is not compatible with target type

Wodel: retype one Activity as DataObject
OCL: Activity.allInstances()

→exists(a |
ConnectingObject.allInstances()

→forAll(c |
(c.to→includes(a) implies
c.to→size()>0) and
(c.from→includes(a) implies
c.from→size()>0)))

−− the checks on references to
−− and from are performed because
−− they are not compatible with
−− DataObjects

Reference creation:
There is an object of the
reference type, and a refer-
ence to which we can add
the object without violating
the upper bound.

〈TgtClass〉.allInstances()
→exists(o | 〈object−filter〉) and

〈SrcClass〉.allInstances()
→exists(o |

〈object−filter〉 and
o.〈ref〉→size() < 〈upB〉)

Wodel: create reference ˆto
to one Activity
in one Sequence

OCL: Activity.allInstances()→exists(a | true)
and Sequence.allInstances()

→exists(s | s.to→size() < 1)
Reference modification:
There is a non-empty refer-
ence of the given kind, and
more than one object of the
reference target type.

〈SrcClass〉.allInstances()
→exists(o | o.〈ref〉→notEmpty())

and
〈TgtClass〉.allInstances()

→size() > 1

Wodel: modify target ˆto
from one Sequence
to other FlowObject

OCL: Sequence.allInstances()
→exists(s | s.to→notEmpty()) and

FlowObject.allInstances()→size() > 1
Reference deletion:
There is a reference from
which we can remove an ob-
ject without violating the
lower bound.

〈Class〉.allInstances()
→exists(o |

〈object−filter〉 and
o.〈ref〉→size() > 〈lowB〉)

Wodel: a = select one Sequence
remove a→ˆto

OCL: Sequence.allInstances()
→exists(s | s.to→size() > 0)

Overall, the model synthesis process starts with the domain meta-model and
its invariants. The meta-model is added an auxiliary mandatory class named
Dummy. Then, the process uses the templates of Table 1 to generate the OCL
constraints for each mutation operator in the provided Wodel program. These
constraints are added as invariants of the Dummy class. Finally, the model finder
is invoked with this enriched meta-model as input.

Seed Model Synthesis for Testing Model-Based Mutation Operators 71

As an example, Listing 3 shows the OCL constraint generated from the pro-
gram in Listing 1. As the retype operation considers three types, and or with
three cases is generated.

1 context Dummy
2

3 inv mut1 :
4 StartEv.allInstances()→exists(a | true) or
5 IntermediateEv.allInstances()→exists(a | true) or
6 EndEv.allInstances()→exists(a | true)

Listing 3. OCL constraint derived from Listing 1.

Figure 5 shows a seed model returned by the model finder for the previous
constraint. It satisfies the constraint of Listing 3, and those of the original meta-
model.

ac vity-1

start-event

Fig. 5. Generated seed model.

Please note that seed models satisfying the synthesized constraints enable
the application of all statements in the Wodel program. However, they do not
guarantee that, after applying the program, the resulting mutant satisfies the
existing invariants of the domain meta-model. This would require from tech-
niques for advancing constraints to model operations [4], which is left for future
work.

5 Tool Support

The Wodel development environment is available as an Eclipse plugin at http://
miso.es/tools/Wodel.html, together with examples and videos. The implemen-
tation is based on EMF [24], and expects the meta-models of the artefacts to be
mutated to be specified using Ecore.

Figure 6 shows the Wodel IDE. The IDE features a textual editor (label
1 in the figure) to create Wodel programs. The editor is built with Xtext and
supports features like code completion. Label 2 in the figure shows the explorer
with a typical Wodel organization. The src folder contains Wodel programs
with the defined mutation operators. These operators are compiled into Java
programs, and stored in the src-gen folder. The generated Java programs can be
executed within the IDE to produce mutants from the seed models, which are
saved in the out folder.

http://miso.es/tools/Wodel.html
http://miso.es/tools/Wodel.html

72 P. Gómez-Abajo et al.

12

3

4

Fig. 6. Wodel IDE and seed model synthesizer.

To support the contributions presented in this paper, we have extended the
Wodel environment to support the synthesis of seed models for testing mutation
programs. The seed model synthesis for a given program can be configured by
means of the wizard marked with label 3 in the figure. This wizard allows setting
the maximum number of seed models to be generated, the mutation operators
used in the seed model generation process (either all operators in the program
or a subset), additional model requirements expressed by OCL, and optionally,
an EMF model to be used as seed of the model search. Moreover, a preference
page allows customizing the minimum and maximum number of objects and ref-
erences that the produced seed models should have. The search of seed models is
performed using the Use Validator model finder [20]. The generated seed mod-
els are converted from the USE format to EMF, and stored in the model folder
(see the explorer view). The generated models can be used to test the designed
operators, and can be visualized using, e.g., the EMF tree editor, or dedicated
graphical editors, such as the one with label 4 in the figure.

6 Related Work

Next, we review works related to the main elements of our approach: languages
tailored to define or synthesize mutation operators, and model synthesis from
requirements.

DSLs for Mutation Operators, and Operator Synthesis. Some model-based muta-
tion approaches use general-purpose model transformation languages to define

Seed Model Synthesis for Testing Model-Based Mutation Operators 73

mutation operators. In [12], the authors present an MDE approach to define
mutation testing tools, where programs are represented as models, and opera-
tors are encoded in QVT-o. Mutation operators have also been defined using
Henshin in [2], and ATL in [25]. Instead, Wodel is a DSL targeted to define
mutation operators, giving support for specific mutation actions (e.g., retyping,
cloning), the automatic initialization of object features and containers, and the
configuration of the number of mutants to generate. Works like [25] miss such
policies and only produce one mutant per input model.

Major [19] is a mutation testing tool for Java that includes a scripting lan-
guage to perform small customizations in mutation operators. For example, it
allows configuring the replacement lists of mutation operators like Arithmetic
Operator Replacement (AOR). Instead, Wodel is more expressive as it enables
the selection, creation, deletion and retyping of elements. Moreover, Wodel is
language-independent, as one can define operators for arbitrary meta-models.

In [1], the authors propose a set of mutation primitives to define mutation
operators for Ecore meta-models. However, it is not a full-fledged DSL, missing
essential features like the possibility of selecting elements, and there is no tool
support for execution. The approach in [2] generates operators that guarantee the
consistency of the mutated models with the meta-model multiplicity constraints.
The operators are encoded as graph transformation rules. In comparison, Wodel

considers more advanced primitives, like cloning, modifying the source or target
of references, and retyping. Our techniques for model synthesis (for testing) could
be a complement to these two approaches.

Model Synthesis. The MDE community has used model finders (like USE [20]
or Alloy [17]) for activities like model completion, test model generation, or
transformation analysis. For example, model finding is used in [13] to gener-
ate test models for transformations based on specifications. For this purpose,
the specifications are transformed into OCL. In our case, the novelty yields in
the encoding of the semantics of the Wodel program into OCL, ensuring full
statement coverage of the program.

Overall, to the best of our knowledge, environments to support the creation
and testing of model-based mutation operators are currently lacking. Hence, we
have designed Wodel, and its seed model generation capabilities to fill this gap.

7 Conclusions and Future Work

Given the recurrent need to develop sets of mutation operators, we propose
a model-based approach to facilitate their definition, testing, and application.
This way, we provide a DSL – called Wodel – for their description, and model
synthesis capabilities – based on model finding – for their testing and validation.
Our approach is supported by an Eclipse plugin, and we have illustrated the
approach in the context of the BPMN language.

We are currently extending the model synthesis process in two ways. First,
to generate models where the operators are not applicable but are close to being
applicable, so called near misses [23]. Second, to generate seed models ensuring

74 P. Gómez-Abajo et al.

that the execution of the Wodel program leads to a correct model. For this pur-
pose, we may use techniques to advance OCL constraints as preconditions, based
on [4]. We also plan to work on static analysis techniques, e.g., to detect operator
conflicts and dependencies. Finally, we are currently working on a methodology
supporting the integral engineering of mutation operators.

Acknowledgments. Work funded by the Spanish Ministry of Science (projects MAS-
SIVE, RTI2018-095255-B-I00 and FAME, RTI2018-093608-B-C31) and the R&D pro-
gramme of Madrid (project FORTE, P2018/TCS-4314).

A BPMN Mutation Operators

Table 2 encodes the BPMN mutation operators proposed in [21] using Wodel.

Table 2. Wodel mutation operators for BPMN.

Mutation operator Wodel code
Insert activity s = select one Sequence where {ˆto not typed EndEv}

f = select one FlowObject in s0→ˆto
a = create Activity with {name = ’newActivity’}
modify target ˆto from s to a
create Sequence with {name = ’newSeq’, ˆfrom = a, ˆto = f}

Remove activity s0 = select one Sequence where {ˆto is typed Activity}
a = select one Activity in s0→ˆto
s1 = select one Sequence where {ˆfrom = a}
f = select one FlowObject in s1→ˆto
remove a, s1
modify target ˆto from s0 to f

Move activity a = select one Activity
s0 = select one Sequence where {ˆto = a and ˆfrom <> null}
s1 = select one Sequence where {ˆfrom = a and ˆto <> null}
o = select one FlowObject where {self = s1→ˆto}
s2 = select one Sequence where {ˆfrom = o and ˆto <> null}
modify s0 with {ˆto = o},
s1 with {ˆfrom = o, ˆto = a},
s2 with {ˆfrom = a}

Mutation operator Wodel code
Replace activity a0 = select one Activity

src0 = select one Sequence where {ˆto = a0}
tar0 = select one Sequence where {ˆfrom = a0}
a1 = select one Activity where {self <> a0}
src1 = select one Sequence where {ˆto = a1}
tar1 = select one Sequence where {ˆfrom = a1}
modify src0 with {ˆto = a1}, tar0 with {ˆfrom = a1},

src1 with {ˆto = a0}, tar1 with {ˆfrom = a0}
Retype gateway retype one [AND, OR, XOR] as [AND, OR, XOR]

References

1. Alhwikem, F., Paige, R.F., Rose, L., Alexander, R.: A systematic approach for
designing mutation operators for MDE languages. In: MODEVA, CEUR Workshop
Proceedings, vol. 1713, pp. 54–59 (2016). CEUR-WS.org

http://www.CEUR-WS.org

Seed Model Synthesis for Testing Model-Based Mutation Operators 75

2. Burdusel, A., Zschaler, S., John, S.: Automatic generation of atomic consistency
preserving search operators for search-based model engineering. In: MODELS, pp.
106–116. IEEE (2019)

3. Cañizares, P.C., Núñez, A., Merayo, M.G.: Mutomvo: mutation testing framework
for simulated cloud and HPC environments. J. Syst. Softw. 143, 187–207 (2018)

4. Cuadrado, J.S., Guerra, E., de Lara, J., Clarisó, R., Cabot, J.: Translating target
to source constraints in model-to-model transformations. In: MODELS, pp. 12–22.
IEEE Computer Society (2017)

5. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. IEEE Comput. 11(4), 34–41 (1978)

6. van Eck, M.L., Buijs, J.C.A.M., van Dongen, B.F.: Genetic process mining:
alignment-based process model mutation. In: Fournier, F., Mendling, J. (eds.) BPM
2014. LNBIP, vol. 202, pp. 291–303. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-15895-2 25

7. Estero-Botaro, A., Palomo-Lozano, F., Medina-Bulo, I., Domı́nguez-Jiménez, J.J.,
Garćıa-Domı́nguez, A.: Quality metrics for mutation testing with applications to
WS-BPEL compositions. Softw. Test. Verif. Reliab. 25(5–7), 536–571 (2015)

8. Gómez-Abajo, P., Guerra, E., de Lara, J.: Wodel: a domain-specific language for
model mutation. In: SAC, pp. 1968–1973. ACM (2016)

9. Gómez-Abajo, P., Guerra, E., de Lara, J.: A domain-specific language for model
mutation and its application to the automated generation of exercises. Comput.
Lang. Syst. Struct. 49, 152–173 (2017)

10. Gómez-Abajo, P., Guerra, E., de Lara, J., Merayo, M.G.: A tool for domain-
independent model mutation. Sci. Comput. Program. 163, 85–92 (2018)

11. Gómez-Abajo, P., Guerra, E., de Lara, J., Merayo, M.G.: Mutation testing for
DSLs (tool demo). In: DSM, pp. 60–62. ACM (2019)

12. González, A., Luna, C., Bressan, G.: Mutation testing for Java based on model-
driven development. In: CLEI-SLISW (2018). (in Spanish)

13. Guerra, E., Soeken, M.: Specification-driven model transformation testing. Softw.
Syst. Model. 14(2), 623–644 (2015)

14. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Software
Eng. 3(4), 279–290 (1977)

15. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

16. Herbert, L., Hansen, Z., Jacobsen, P., Cunha, P.: Evolutionary optimization of
production materials workflow processes. Procedia CIRP 25, 53–60 (2014)

17. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019)

18. Jia, Y., Harman, M.: MILU: a customizable, runtime-optimized higher order muta-
tion testing tool for the full C language. In: TAICPART, pp. 94–98 (2008)

19. Just, R.: The major mutation framework: efficient and scalable mutation analysis
for Java. In: ISSTA, pp. 433–436. ACM (2014)

20. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33666-9 27

21. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based
on high-level change operations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.)
ER 2008. LNCS, vol. 5231, pp. 248–264. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87877-3 19

https://doi.org/10.1007/978-3-319-15895-2_25
https://doi.org/10.1007/978-3-319-15895-2_25
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-540-87877-3_19
https://doi.org/10.1007/978-3-540-87877-3_19

76 P. Gómez-Abajo et al.

22. de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: an exper-
imental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)

23. Montaghami, V., Rayside, D.: Bordeaux: a tool for thinking outside the box. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 22–39. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 2

24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional, Boston (2008)

25. Troya, J., Bergmayr, A., Burgueño, L., Wimmer, M.: Towards systematic muta-
tions for and with ATL model transformations. In: ICST Workshops, pp. 1–10
(2015)

26. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: Mutation-based fuzzing.
In: The Fuzzing Book. Saarland University (2019). https://www.fuzzingbook.org/
html/MutationFuzzer.html. Accessed Oct 2019

https://doi.org/10.1007/978-3-662-54494-5_2
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html

	Seed Model Synthesis for Testing Model-Based Mutation Operators
	1 Introduction
	2 Running Example: Mutation for Process Models
	3 Wodel: A Domain Specific Language for Model Mutation
	4 Seed Model Synthesis Using Model Finding
	5 Tool Support
	6 Related Work
	7 Conclusions and Future Work
	A BPMN Mutation Operators
	References

