
Exponential Upper Bounds for the
Runtime of Randomized Search Heuristics

Benjamin Doerr(B)

Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

doerr@lix.polytechnique.fr

Abstract. We argue that proven exponential upper bounds on run-
times, an established area in classic algorithms, are interesting also in
evolutionary computation and we prove several such results. We show
that any of the algorithms randomized local search, Metropolis algo-
rithm, simulated annealing, and (1+1) evolutionary algorithm can opti-
mize any pseudo-Boolean weakly monotonic function under a large set of
noise assumptions in a runtime that is at most exponential in the prob-
lem dimension n. This drastically extends a previous such result, limited
to the (1+1) EA, the LeadingOnes function, and one-bit or bit-wise prior
noise with noise probability at most 1/2, and at the same time simplifies
its proof. With the same general argument, among others, we also derive
a sub-exponential upper bound for the runtime of the (1, λ) evolutionary
algorithm on the OneMax problem when the offspring population size λ
is logarithmic, but below the efficiency threshold.

Keywords: Runtime analysis · Noisy optimization · Theory

1 Introduction

The mathematical analysis of runtimes of randomized search heuristics is an
established field of the general area of heuristic search [3,15,29,38]. The vast
majority of the results in this area show that a certain algorithm can solve
(or approximately solve) a certain problem within some polynomial runtime
(polynomial upper bound on the runtime) or show that this is not possible by
giving a super-polynomial, often exponential, lower bound on the runtime.

As a rare exception to this rule, in his extensive analysis of how the (1 + 1)
evolutionary algorithm ((1 + 1) EA)1 optimizes the LeadingOnes benchmark
in the presence of prior noise, Sudholt [45, Theorem 6] showed that for one-bit or
bit-wise noise with noise probability at most 1

2 , the (1+1) EA finds the optimum
of LeadingOnes in time at most 2O(n). While clearly a very natural result –
everyone would agree that also with such noise the unimodal LeadingOnes

1 See Section 2 for details on all technical terms used in this introduction.

For reasons of space, some technical details have been omitted from this extended
abstract. The interested reader can find them in the extended version [10].

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 619–633, 2020.
https://doi.org/10.1007/978-3-030-58115-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_43&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_43

620 B. Doerr

problem should not become harder than the needle-in-the-haystack problem –
the technical, long, and problem-specific proof of this result, despite following
the intuitive argument just laid out, suggests that such analyses can be harder
than one would expect.

In this work, we will argue that such exponential upper bounds are interesting
beyond completing a runtime picture of a given problem. We then show that with
a different analysis method such uncommon runtime questions can be analyzed
relatively easily. As one out of several results, we drastically extend the result
in [45] and show that an exponential runtime guarantee holds for

– any of the algorithms randomized local search, Metropolis algorithm, simu-
lated annealing, and (1 + 1) EA,

– when optimizing any weakly monotonic objective function, e.g., OneMax,
linear functions, monotone polynomials, LeadingOnes, plateau functions,
and the needle problem,

– in the presence of all common forms of prior and posterior noise with a noise
probability of at most 1 − ε, ε > 0 a constant.

1.1 Exponential Runtime Analysis

The area of mathematical runtime analysis, established as a recognized sub-
field of the theory of evolutionary algorithms by Ingo Wegener and his research
group around twenty years ago, seeks to understand the working principles of
evolutionary computation via rigorously proven results on the performance of
evolutionary algorithms and other search heuristics in a similar spirit as done in
classic algorithms analysis for much longer time.

Adopting the view of classic algorithmics that runtimes polynomial in the
problems size are efficient and larger runtimes are inefficient, the vast majority of
the results in this field prove polynomial upper bounds or super-polynomial lower
bounds. For two reasons, we feel that also super-polynomial and even exponential
runtime guarantees are desirable in the theory of evolutionary algorithms.

Our first set of arguments is identical to the arguments made in the clas-
sic algorithms field, which led to a shift in paradigms and established the
field of exact exponential algorithms [20,21]. These arguments are that (i) for
many important problems nothing better than exponential time algorithms are
known, so one cannot just ignore these problems in algorithms research, (ii) with
the increase of computational power, also exponential time algorithms can be
used for problems of moderate (and interesting) size, and (iii) that the exist-
ing research on exponential-time algorithms has produced many algorithms
that, while still exponential time, are much faster than classic exponential-time
approaches like exhaustive search.

Our second line of argument is that exponential time algorithms are of addi-
tional interest in evolutionary computation for the following reasons.

(i) To increase our understanding of the working principles of evolutionary
algorithms. There is a large number of exponential lower bounds in our field,
but for essentially none of them an upper bound better than the trivial nO(n)

Exponential Upper Bounds 621

bound exists. It is clear that matching upper and lower bounds tell us most, not
only about the runtimes, but also about the working principles of EAs. Tight
bounds naturally have to grasp the true way the EA progresses better than
loose bounds. For example, the general nO(n) upper bound for all algorithms
using standard bit mutation is based on the simple argument that the optimum
can be generated from any search point with probability at least n−n. Besides
being very pessimistic, this argument does not tell us a lot on how really the EA
optimizes the problem at hand (except for the very particular case that the EA
is stuck in a local optimum in Hamming distance n to the global optimum). In
contrast, as a positive example, the matching (1 ± o(1))en ln n upper [35] and
lower [24] bound for the runtime of the (1 + 1) EA on OneMax together with
their proofs shows that for this optimization process, the effect of mutations
flipping more than one bit has no influence on the runtime apart from lower
order terms. In a broader sense, this insight suggests that flipping larger number
of bits is mainly useful to leave local optima, but not to make fast progress along
easy slopes of the fitness landscape.

(ii) Because understanding runtimes in the exponential and super-exponential
regime is important for the application of EAs. Many classic evolutionary algo-
rithms can easily have a super-exponential runtime. For example, Witt [48] has
shown that the simple (1 + 1) EA has an expected runtime2 of nΘ(n) on the
minimum makespan scheduling problem. Hence knowing that an evolutionary
algorithm “only” has an exponential runtime can be interesting.

We note that for problems with exponential-size search spaces (such as the
search space {0, 1}n regarded exclusively in this work) blind random search and
exhaustive search are exponential-time alternatives. For that reason, in addition
to knowing that an EA has an exponential runtime guarantee (that is, a run-
time of at most Cn for some constant C > 1), it would be very desirable to also
have a good estimate for the base of the exponential function, that is, the con-
stant C. Unfortunately, at this moment where we just start reducing the trivial
nO(n) upper bound to exponential upper bounds, we are not yet in the position to
optimize the constants in the exponent. We are optimistic though (and give some
indication for this in Sect. 6) that our methods can be fine-tuned to give inter-
esting values for the base of the exponential function as well. We recall that such
an incremental progress is not untypical for the mathematical runtime analysis
of EAs – in the regime of polynomial bounds, subject to intensive research since
the 1990s, the leading constants for elementary problems such as LeadingOnes
and linear functions were only determined from 2010 on [6,44,49].

With this motivation in mind and spurred by the observation that exponen-
tial upper bounds are not trivial to obtain, we start in this work a first general
attack on the problem of proving exponential upper bounds.

2 As common both in classic algorithms and in our field, by runtime we mean the
worst-case runtime taken over all input instances.

622 B. Doerr

1.2 State of the Art

We are not aware of many previous works on exponential or super-exponential
upper bounds on runtimes of EAs. In the maybe first work proving an expo-
nential upper bound, Droste, Jansen, and Wegener [18, Theorem 9] show that
the (1 + 1) EA optimizes the Needle function (called peak function there) in
expected time at most (2π)−1n1/2 exp(2n). Only a year later, Garnier, Kallel,
and Schoenauer [24, Proposition 3.1] in a remarkably precise analysis showed
that the expected runtime of the (1 + 1) EA on the Needle function is
(1 ± o(1))(1 − 1

e)−12n.
A general upper bound of nn for the expected runtime of the (1+1) EA on any

pseudo-Boolean functions was given in [19, Theorem 6]. Analogous arguments
showed an upper bound of 4n log2 n for the (1 + 1) EA using the 2i/n mutation
rates in a cyclic fashion [30, Theorem 3] and an upper bound of O(nβ2n) for the
fast (1 + 1) EA with (constant) power-law exponent β > 1 [14, Theorem 5.3].

The general nO(n) upper bound of [19] is tight as witnessed, among others, by
the trap function [19, Theorem 8] and the minimum makespan scheduling prob-
lem [48]. There are a few analyses for parameterized problems showing bounds
that can become exponential or worse when the problem parameter is chosen in
an extreme manner. Here the Θ(nk) runtime bound for the (1+1) EA optimizing
jump functions with jump size k ≥ 2 [19, Theorem 25] is the best known exam-
ple. More interesting results have been derived in the context of parameterized
complexity [37], but again these results have been derived with small parameter
values in mind and thus are most interesting for this case.

In contrast to these sporadic upper bounds, there is a large number of expo-
nential lower bounds, e.g., for a broad class of non-elitist algorithms with too
low selection pressure [32], for some algorithms using fitness-proportionate selec-
tion [26], for the simple genetic algorithm with an only moderately large popu-
lation size [39], and for various problems in noisy optimization [25,41,45].

Apart from a single exception, for none of these lower bounds it is known
whether the runtime is really exponential or is higher, say nΘ(n). The excep-
tional exponential upper bound shown in [45, Theorem 6] reads as follows. Con-
sider optimizing the LeadingOnes benchmark function defined on bit strings of
length n via the (1+1) EA. Assume that in each iteration, the fitness evaluation
of both parent and offspring is subject to stochastically independent prior noise
of one of the following two types. (i) With probability p ≤ 1

2 , not the true fitness
is returned, but the fitness of a random Hamming neighbor. (ii) With probability
p′ ∈ [0, 1], the search point to be evaluated is disturbed by flipping each bit inde-
pendently with some probability q ≤ 1

2 and the fitness of this disturbed search
point is returned, with probability 1 − p′, the fitness of the original search point
is returned; here we assume that p′ min{1, qn} ≤ 1

2 . Then the expected opti-
mization time, that is, the number of iterations until the optimum is sampled,
is at most exponential in n.

With a noise probability of at most 1
2 and a weakly monotonic, that is, weakly

preferring 1-bits over 0-bits, fitness function one would think that this optimiza-
tion process in some suitable sense is at least as good as the corresponding process

Exponential Upper Bounds 623

on theNeedle function, where absolutely no fitness signal guides the search. This
is indeed true, as the proof in [45] shows. Surprisingly, as this proof also shows, it is
highly non-trivial to make this intuitive argument mathematically rigorous. The
proof in [45] is around four pages long (including the one of the preliminary lemma)
and builds on a technical estimate of the mixing time, which heavily exploits char-
acteristics of the LeadingOnes objective function. Consequently, this proof does
not easily generalize to other easy benchmark functions such asOneMax or linear
functions.

1.3 Our Results

Observing that the natural approach taken in [45] is unexpectedly difficult, we
develop an alternative approach to proving exponential upper bounds. It builds
on the following elementary observation. In the, slightly extremal, situation
that we aim at an exponential upper bound, we can wait for an exponentially
unlikely “lucky” way to generate the optimum. Being at most exponentially
unlikely, that is, having a probability of p = 2−O(n), it takes 2O(n) attempts
until we succeed. Hence if each attempt takes at most exponential time T0 (all
our attempts will only take polynomial time), we obtain an exponential upper
bound on the expected runtime, and moreover, the distributional bound that the
runtime is stochastically dominated by T0 times a geometric distribution with
success rate p. This general argument (without the elementary rephrasing in the
stochastic domination language) was already used in the proof of the poly(n)e2n

upper bound on the expected runtime of the (1 + 1) EA on the Needle func-
tion by Droste, Jansen, and Wegener [18] more than twenty years ago. It is
apparently not very well known in the community, most likely due to the fact
that only one year later, Garnier, Kallel, and Schoenauer [24] presented a much
tighter analysis of this runtime via different methods. We are not aware of any
other use of this argument, which might explain why it was overlooked in [45]
(and we give in that we also learned it only very recently).

How powerful this simple approach is, naturally, depends on how easy it
is to exhibit lucky ways to find the optimum fast. As we demonstrate, this
is in fact often easy. For example (see Theorem 3 for the details), it suffices
that in each iteration the probability to move to a Hamming neighbor one step
closer to the optimum is Ω(n−1). From this, we can show that from any starting
point, the probability to reach the optimum in at most n iterations is at least
2−O(n). As argued in the preceding paragraph, this yields an expected runtime
of n2O(n) = 2O(n). This argument, without noise and used for the (1 + 1) EA
only, was also used in the Needle analysis in [18].

Together with some elementary computations, this approach suffices to show
that a large number of (1 + 1)-type algorithms in the presence of a large variety
of types of noise with noise probability at most 1− ε, ε > 0 a constant, optimize
any weakly monotonic function (including, e.g., OneMax, LeadingOnes, and
the needle function) in at most exponential time (Theorem 4).

With a few additional arguments, we apply our general approach to a variety
of other problems and show exponential upper bounds (i) for the (1 + 1) EA

624 B. Doerr

optimizing jump functions with jump size at most n
lnn (Theorem 5), (ii) for any

of the above-described algorithms optimizing OneMax in the presence of prior
noise flipping each bit independently with probability at most 1−ε, where ε > 0
can be any constant (Theorem 6), and (iii) for the (1 + 1) EA with fitness-
proportionate selection optimizing any linear function (Theorem 7). Finally, as
an example that our approach can also yield sub-exponential upper bounds,
we show that the (1, λ) EA with λ ≥ (1 − ε) log e

e−1
(n), and thus potentially

below the threshold for polynomial time, optimizes OneMax in time exp(O(nε))
(Theorem 8).

2 Preliminaries

In this section, we briefly describe the algorithms, the noise models, and the
benchmark problems considered in this work. We only consider optimization
problems defined on the search space {0, 1}n of bit strings of length n; we thus
also formulate all algorithms only for this setting. We have not doubt, though,
that our methods can also be applied to other discrete optimization problems.

We write [a..b] := {z ∈ Z | a ≤ z ≤ b} and denote by H(x, y) := |{i ∈ [1..n] |
xi = yi}| the Hamming distance of two bit strings x, y ∈ {0, 1}n. We denote
by Geom(p) the geometric distribution with success rate p ∈ (0, 1]. Hence if
a random variable X is geometrically distributed with parameter p, we write
X ∼ Geom(p) to denote this, then Pr[X = k] = (1 − p)k−1p for all k ∈ Z≥1.
For two random variables X,Y we write X � Y to denote that Y stochastically
dominates X, that is, that Pr[X ≥ λ] ≤ Pr[Y ≥ λ] for all λ ∈ R.

Algorithms. We call a randomized search heuristic single-trajectory search algo-
rithm if it is an iterative heuristic which starts with a single solution x(0) and
in each iteration t = 1, 2, . . . updates this solution to a solution x(t). We do not
make any assumption on how this update is computed. In particular, the next
solution may be computed from more than one solution candidate sampled in
this iteration. We do, in principle, allow that information other than the search
point x(t−1) is taken into iteration t. However, in our main technical result we
require that the key condition can be checked only from the search point x(t−1).
Formally speaking, this means that for any possibly history of the search process
up to this point, when conditioning on this history, the key condition is true. To
ease the language, we shall write “regardless of what happened in the first t − 1
iterations” to express this conditioning.

Examples for single-trajectory algorithms are (randomized) local search, the
Metropolis algorithm, simulated annealing, and evolutionary algorithms working
with a parent population of size one, such as the (1 + 1) EA, the fast (1 +
1) EA [14], (1+λ) EA, (1, λ) EA, (1+(λ, λ)) GA [11], and SSWM algorithm [40].
We call a single-trajectory algorithm (1+1)-type algorithm if in each iteration t
it generates one solution y and takes as next parent individual x(t) either y
or x(t−1). Among the above examples, exactly (randomized) local search, the

Exponential Upper Bounds 625

Metropolis algorithm, simulated annealing, and the (fast) (1+1) EA are (1+1)-
type algorithms.

We spare further details on these algorithms and refer the reader to the
classic literature for the standard algorithms and to the references given above
for the more recent algorithms. For evolutionary algorithms using standard bit
mutation, we shall assume that the standard mutation rate p = 1

n is used. For
our purposes, we mostly need the following property, which in simple words says
that the algorithms move to any Hamming neighbor that is not worse than the
parent with probability Ω(1

n).

Proposition 1. For any (1+1)-type algorithm A named above (and any choice
of the parameters not fixed yet), there is a constant cA > 0 such that the following
holds.

For any iteration t and any z with H(z, x(t−1)) = 1, and regardless of what
happened in the previous iterations, the offspring y generated by A in iteration t
satisfies Pr[y = z] ≥ cA

n . If f(y) ≥ f(x(t−1)), then also Pr[x(t) = z] ≥ cA

n .

Noise Models. Optimization in the presence of noise, that is, stochastically dis-
turbed access to the problem instance, is an important topic in the optimization
of real-world problems. The most common form are noisy objective functions,
that is, that the optimization algorithm does not always learn the correct quality
(fitness) of a search point. Randomized search heuristics are generally believed
to be reasonably robust to noise, see, e.g., [5,31], which differs from problem-
specific deterministic algorithms, which often cannot cope with any noise. Some
theoretical work exists on how randomized search heuristics cope with noise,
started by the seminal paper of Droste [17] and, quite some time later, contin-
ued with, among others, [1,4,8,9,16,22,23,25,41,42,45,46]. We refer to the later
papers or the survey [36] for a detailed discussion of the state of the art.

In theoretical studies on how randomized search heuristics cope with noise,
the usual assumption is that all fitness evaluations are subject to independently
sampled noise. Also, it is usually assumed that whenever the fitness of a search
point is used, say in a selection step, then it is evaluated anew. In prior noise
models, the search point x to be evaluated is subject to a stochastic modifica-
tion and the algorithm learns the fitness f of the disturbed search point (but not
the disturbed search point itself). In one-bit noise with probability p, with
probability p the fitness of a random Hamming neighbor of x is returned, other-
wise the correct fitness f(x) is returned. In independent bit-flip noise with
rate q, from x a search point y is obtained by flipping each bit independently
with probability q; then f(y) is returned. In (p, q)-noise, with probability p a
search point y is obtained from x by flipping each bit independently with prob-
ability q and f(y) is returned; otherwise, f(x) is returned.

In the posterior noise model, the search point x is first correctly evaluated,
but then the obtained fitness f(x) is disturbed. The most common posterior noise
is additive noise, that is, the returned fitness is f(x)+X, where X is a random
variable sampled from some given distribution, which does not depend on x (that
is, for all search points the difference between the true and the noisy fitness is

626 B. Doerr

identically distributed). The most common setting is that X follows a Gaussian
distribution. We note that regardless of X, independent additive posterior noise
gives a correct comparison of two search points of different quality with probability
at least 1

2 .
Since our aim is showing that also in the presence of extreme noise we still

have at most exponential runtimes, we also consider the following unrestricted
adversarial noise with probability p. In this model, with probability 1 − p
the true fitness is returned. With probability p, however, an all-powerful adver-
sary decides the returned fitness value. This adversary knows the algorithm, the
optimization problem, and the full history of the optimization process. He does
not know, though, the outcome of future random events (both concerning the
algorithm and the noise).

Complementing the corresponding statement for posterior noise, the follow-
ing basic observation estimates the probability that a noisy fitness comparison
gives the right result.

Proposition 2. Let ε > 0. Let f : {0, 1}n → R. Let x, y ∈ {0, 1}n such that
f(x) ≤ f(y). Consider any noise model described above except the one of additive
posterior noise. Assume that p ≤ 1−ε in the case of one-bit noise or unrestricted
adversarial noise, (1 − q)n ≥ ε in the case of bit-wise noise, 1 − p(1 − (1 −
q)n) ≥ ε in the case of (p, q)-noise. Denote by f̃ the noisy version of f with our
convention that each noise evaluation of f uses fresh independent randomness.
Then Pr[f̃(x) ≤ f̃(y)] ≥ ε2.

Proof. Under the conditions named above, with probability at least ε the noisy
fitness returns the true fitness value. Consequently, with probability at least ε2

this happens for both x and y and we have thus f̃(x) ≤ f̃(y).

Benchmark Problems. We now briefly describe those benchmark problems
for which the particular structure is important in the remainder. For further
details on these and on all other problems only mentioned in this work, we refer
to the literature [3,15,29,38].

As said earlier, we only regard problems defined on bit-strings of length n,
hence all functions are {0, 1}n → R. The easiest in many respects benchmark
problem is the function OneMax defined by OneMax(x) = ‖x‖1 =

∑n
i=1 xi

for all x = (x1, . . . , xn) ∈ {0, 1}n. Still unimodal, but not anymore strictly
monotonic is the classic LeadingOnes function, which counts the number of
ones up to the first zero. Formally, LeadingOnes(x) := max{i ∈ [0..n] | ∀j ∈
[1..i] : xj = 1}. A classic multimodal benchmark is the class of jump functions.
The jump function with jump parameter (jump size) k ∈ [1..n] is defined by

Jumpnk(x) =

{
‖x‖1 + k if ‖x‖1 ∈ [0..n − k] ∪ {n},
n − ‖x‖1 if ‖x‖1 ∈ [n − k + 1 .. n − 1].

Hence for k = 1, we have a fitness landscape isomorphic to the one of OneMax,
but for larger values of k there is a fitness valley (“gap”) Gnk := {x ∈ {0, 1}n |
n−k < ‖x‖1 < n}, which is impossible or hard to cross for most iterative search
heuristics.

Exponential Upper Bounds 627

3 Proving Exponential Upper Bounds

We now state our general technical result which in many situations allows one to
prove exponential upper bounds without greater difficulties. We formulate our
result for single-trajectory algorithms since this is notationally convenient and
covers all our applications (which, in fact, all even concern only (1 + 1)-type
algorithms), but we are optimistic that it extends to more general settings. The
result is formulated for hitting a general search point x∗ as this might turn out
to be useful in some applications, but the natural application will be for x∗ being
the optimum solution.

We remind the reader that the key argument of the proof, running from an
arbitrary search point to the target in time O(n) with probability e−O(n), has
already appeared in the conference paper [18], but to the best of our knowledge
has not been used again since then.

Theorem 3. Let A be a single-trajectory search algorithm for the optimization
of pseudo-Boolean functions. Let f : {0, 1}n → R and let x∗ ∈ {0, 1}n. Assume
that we use A to optimize f , possible in the presence of noise. Assume that this
optimization process satisfies the following property.

(A) There is a number 0 < c ≤ 1 such that the following is true. Let t ≥ 1 and
x, z ∈ {0, 1}n such that x �= x∗, H(x, z) = 1, and H(x, x∗) = H(z, x∗) + 1.
Regardless of what happened in the first t−1 iterations of optimization process,
if x(t−1) = x, then Pr[x(t) = z] ≥ c

n .

Let T = min{t ≥ 0 | x(t) = x∗}. Then T is stochastically dominated by
nGeom((c

e)n). In particular, E[T] ≤ n(e
c)n.

4 Noisy Optimization of Weakly Monotonic Functions

We now prove that all (1 + 1)-type algorithms discussed in Sect. 2 optimize any
weakly monotonic function in at most exponential time even in the presence of
any noise discussed in Sect. 2 as long as the noise probability is at most 1 − ε,
ε > 0 a constant, in the cases of prior or adversarial noise. We recall that the
only previous result in this direction [45] shows this claim in the particular case
of the (1 + 1) EA optimizing the LeadingOnes function subject to one-bit or
(p, q) prior noise with noise probability at most 1

2 .
We say that a function f : {0, 1}n → R is weakly monotonic (or weakly mono-

tonically increasing) if for all x, y ∈ {0, 1}n the condition x ≤ y (component-
wise) implies f(x) ≤ f(y). The class of weakly monotonic functions includes,
obviously, all strictly monotonic functions [7,13,28,33] and thus in particular
the classic benchmarks OneMax and linear functions with non-negative coeffi-
cients [12,19,49]. However, this class also contains more difficult functions like
LeadingOnes, monotonic polynomials [47], plateau functions [2], and the nee-
dle function.

628 B. Doerr

Theorem 4. Let ε > 0 be a constant. Let A be one of the randomized search
heuristics RLS, the Metropolis algorithm, simulated annealing, or the (1+1) EA
using standard bit mutation with mutation rate 1

n or using the fast mutation
operator with β > 1. Let f : {0, 1}n → R be any weakly monotonic function.
Assume that A optimizes f under one of the following noise assumptions: one-
bit noise or unrestricted adversarial noise with p ≤ 1 − ε, bit-wise noise with
(1 − q)n ≥ ε, (p, q)-noise with 1 − p(1 − (1 − q)n) ≥ ε, or posterior noise with
an arbitrary noise distribution.

Then there is a constant C > 1, depending only on ε and the choice of A,
such that the time T to sample the optimum (1, . . . , 1) of f is stochastically
dominated by nGeom(C−n). In particular, the expected optimization time is at
most E[T] ≤ nCn.

Proof. By Theorem 3, it suffices to show that condition (A) is satisfied for x∗ =
(1, . . . , 1). To this aim, let x, z ∈ {0, 1}n such that H(x, z) = 1 and H(x, x∗) =
H(z, x∗) + 1. Assume that for some iteration t the parent individual satisfies
x(t−1) = x. By Proposition 1, there is a constant cA such that the offspring
y generated by A in this iteration is equal to z with probability at least cA

n .
By the weak monotonicity of f , we have f(z) ≥ f(x). By Proposition 2 or
the corresponding statement for additive posterior noise, there is a constant
cN = min{ 1

2 , ε2} depending on the noise model such that the noisy evaluations
of both x(t−1) and y = z in iteration t return an at least as good fitness value
for z as for x. In this case, A accepts z with probability one, that is, we have
x(t) = z. In summary, we have shown Pr[x(t) = z] ≥ cAcN

n as desired. Now
Theorem 3 immediately gives the claim with C = e

cAcN
.

5 Other Applications of Our Method

To show the versatility of our general approach, we continue with a number of
results of varying flavor.

Noisy Optimization of Jump Functions. We first show that the (1+1) EA
can optimize noisy jump functions with jump size at most n

lnn in exponential
time. The main argument is that as lucky event we can regard the event that the
algorithm progresses towards the optimum by one Hamming step per iteration
until the local optimum is reached and then the optimum is reached in one step.
The probability of this event is different from the one regarded before and the
number of ways to approach the optimum is smaller by a factor of k! (which
counts against us), but with the assumption k ≤ n

lnn we obtain the desired
exponential runtime.

Theorem 5. The result of Theorem 4 holds also for the (1 + 1) EA optimizing
Jumpnk when k ≤ n

lnn .

Optimization of OneMax Under Extreme Bit-Wise Noise. The following
result shows that our general method can also exploit particular noise models.

Exponential Upper Bounds 629

Here, for example, we show that OneMax can be optimized in exponential time
even in the presence of bit-wise noise with constant rate q < 1. Recall that this
means that the search point to be evaluated is disturbed in an expected number
of qn bits! To prove this result, we cannot simply invoke Proposition 2, since
with probability 1 − o(1) the noisy fitness differs from the true fitness. Instead,
we show that despite the noise, with probability at least 1

2 (1 − q)2 the better
offspring is accepted.

Theorem 6. Let ε > 0 be a constant. Let A be one of the randomized search
heuristics RLS, the Metropolis algorithm, simulated annealing, or the (1+1) EA
using standard bit mutation with mutation rate 1

n or using the fast mutation
operator with β > 1. Consider optimizing the OneMax benchmark function via
A in the presence of bit-wise noise with rate q ≤ 1 − ε. Then the expected time
to find the optimum is at most nKn, where K is a constant depending on ε and
the algorithm used.

Fitness Proportionate Selection. We now prove an upper bound matching
an exponential lower bound proven in [26], namely that the (1 + 1) EA needs at
least exponential time to optimize any linear function with positive coefficients
when the usual elitist selection is replaced by fitness-proportionate selection.
Here an offspring y of the parent x is accepted with probability f(y)

f(x)+f(y) (and
with probability 1

2 when f(x)+f(y) = 0). We now show that this result is tight,
that is, that an exponential number of iterations suffices to optimize any linear
function with this algorithm. This follows easily from Theorem 3 by noting that
in the selection step a Hamming neighbor with better fitness is accepted with
probability at least 1

2 .

Theorem 7. Let A be the (1 + 1) EA with fitness-proportionate selection. Let
f be any linear function with positive coefficients. Then the first iteration T in
which the optimum of f is generated satisfies E[T] ≤ (2e2)n.

Subexponential Upper Bounds. Finally, we show that our method is not
restricted to showing runtime bounds that are exponential in the problem dimen-
sion. We recall that the (1, λ) EA is a simple non-elitist algorithm working with a
parent population of size one, initialized with a random individual. In each iter-
ation, the algorithm creates independently λ offspring via standard bit mutation
(here: with mutation rate 1

n) and takes a random best offspring as new parent.
In their very precise determination of the efficiency threshold of the (1, λ) EA on
OneMax, Rowe and Sudholt [43] showed that the (1, λ) EA has a runtime of at
least exp(Ω(nε/2)) when λ ≤ (1 − ε) log e

e−1
(n), ε > 0 a constant. We now show

an upper bound of exp(O(nε)) for this runtime. We do not know what is the
right asymptotic order of the exponent. From the fact that there is a consider-
able negative drift when the fitness distance is below nε

2λ , we would rather suspect
that also a lower bound of exp(Ω(nε

λ)) iterations, and hence λ exp(Ω(nε

λ)) fitness
evaluations, comes true. Since this is not the main topic of this work, we leave
this an open problem.

630 B. Doerr

Theorem 8. Let 0 < ε < 1 be a constant. Then there is a constant Cε such that
for all λ ≥ (1 − ε) log e

e−1
(n) the expected runtime of the (1, λ) EA on OneMax

is at most exp(Cεn
ε).

The main proof idea is to first exploit additive drift [27,34] to reach in a short
polynomial time of O(n2−ε) a search point in Hamming distance d0 = 2e2nε

λ .
We then use an argument analogous to Theorem 3 to show that from such a
search point, with probability at least exp(−O(nε)) the optimum is reached in
d0 iterations. This then easily yields the claim.

6 Conclusion and Outlook

In this work, we argued for proving exponential runtime guarantees for evolution-
ary algorithms. With Theorem 3, we provided a simple and general approach to
such problems. It easily gave exponential upper bounds for various algorithmic
settings.

In this first work on exponential-time evolutionary algorithms, we have surely
not developed the full potential of this perspective in evolutionary computation.
The clearly most important question for future work is what can be said about
the constant C in the poly(n)Cn runtime guarantee. A C less than 2 shows
that the algorithm is superior to random or exhaustive search. Taking again the
field of classic algorithms as example, another interesting question is if there are
EAs with “nice” exponential runtimes such as, e.g., the 1.0836n runtime of the
algorithm of Xiao and Nagamochi [50] for finding maximum independent sets in
graphs with maximum degree 3.

Concerning the constant C, we note that the proof of [45], which also is
not optimized for giving good constants, shows an upper bound that is at least
exp(3en) ≥ (3480)n. Under the noise assumptions taken in [45], we have a prob-
ability of at least cN ≥ 1

4 that parent and offspring are not subject to noise.
Regarding the (1 + 1) EA, the probability that a particular Hamming neighbor
of the parent is generated as offspring is at least cA ≥ 1

en . This gives a runtime
bound of at most n(e

cAcN
)n = n(4e2)n ≤ n(30)n. We are optimistic that with

more problem-specific arguments, the constant can be lowered further, possibly
below the 2n barrier. For example, (i) when optimizing any weakly monotonic
function subject to 1-bit noise, we accept an offspring strictly dominating the
parent (as in the proof of Theorem 3) unless the noise flips a zero-bit of the
parent or a one-bit of the offspring. This undesired event happens with prob-
ability at most cN = 1

2 (instead of cN = 1
4), (ii) when optimizing OneMax

subject to 1-bit noise, then a better offspring is discarded only if both a one-
bit of the offspring and a zero-bit of the parent is flipped. This allows to take
cN = (1 − O(1

n))1516 , (iii) when using the (1 + 1) EA, instead of waiting for the
lucky event that in each iteration we approach the target by one Hamming step,
we do so with two steps; this reduces the number of different ways to go from
a starting point to the optimum by a factor of 2n/2, but also saves n

2 times the
factor of 1

e for flipping exactly one bit, giving an improvement by a factor of

Exponential Upper Bounds 631

(2/e)n/2. These and further ideas give us some optimism that the constant C
can be lowered, possibly to less than 2 (which would prove the algorithm superior
to random search).

References

1. Akimoto, Y., Morales, S.A., Teytaud, O.: Analysis of runtime of optimization algo-
rithms for noisy functions over discrete codomains. Theor. Comput. Sci. 605, 42–50
(2015)

2. Antipov, D., Doerr, B.: Precise runtime analysis for plateaus. In: Auger, A., Fon-
seca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11102, pp. 117–128. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99259-4 10

3. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Sci-
entific Publishing (2011)

4. Bian, C., Qian, C., Tang, K.: Towards a running time analysis of the (1 + 1)-
EA for OneMax and LeadingOnes under general bit-wise noise. In: Auger, A.,
Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN
2018. LNCS, vol. 11102, pp. 165–177. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99259-4 14

5. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8, 239–287
(2009). https://doi.org/10.1007/s11047-008-9098-4

6. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

7. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone!
In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 753–
760. ACM (2014)

8. Dang, D., Lehre, P.K.: Simplified runtime analysis of estimation of distribution
algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2015,
pp. 513–518. ACM (2015)

9. Dang-Nhu, R., Dardinier, T., Doerr, B., Izacard, G., Nogneng, D.: A new analysis
method for evolutionary optimization of dynamic and noisy objective functions. In:
Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1467–1474.
ACM (2018)

10. Doerr, B.: Exponential upper bounds for the runtime of randomized search heuris-
tics. CoRR abs/2004.05733 (2020)

11. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

12. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250
(2013). https://doi.org/10.1007/s00453-011-9585-3

13. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotone functions. Evol. Comput. 21, 1–21 (2013)

14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

https://doi.org/10.1007/978-3-319-99259-4_10
https://doi.org/10.1007/978-3-319-99259-4_10
https://doi.org/10.1007/978-3-319-99259-4_14
https://doi.org/10.1007/978-3-319-99259-4_14
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/978-3-642-15844-5_1
https://doi.org/10.1007/s00453-011-9585-3

632 B. Doerr

15. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Devel-
opments in Discrete Optimization. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-29414-4

16. Doerr, B., Sutton, A.M.: When resampling to cope with noise, use median, not
mean. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp.
242–248. ACM (2019)

17. Droste, S.: Analysis of the (1 + 1) EA for a noisy OneMax. In: Deb, K. (ed.)
GECCO 2004. LNCS, vol. 3102, pp. 1088–1099. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24854-5 107

18. Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions
with the (1+1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0056845

19. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

20. Fomin, F.V., Kaski, P.: Exact exponential algorithms. Commun. ACM 56, 80–88
(2013)

21. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

22. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant colony
optimization to noise. In: Genetic and Evolutionary Computation Conference,
GECCO 2015, pp. 17–24. ACM (2015)

23. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme Gaussian noise. IEEE Trans. Evol. Comput. 21,
477–490 (2017)

24. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations.
Evol. Comput. 7, 173–203 (1999)

25. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments.
Algorithmica 75, 462–489 (2016). https://doi.org/10.1007/s00453-015-0072-0

26. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-
proportional selection for optimizing linear functions. In: Genetic and Evolutionary
Computation Conference, GECCO 2008, pp. 953–960. ACM (2008)

27. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127, 51–81 (2001)

28. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Tou-
ssaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp.
54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6 4

29. Jansen, T.: Analyzing Evolutionary Algorithms. The Computer Science Perspec-
tive. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

30. Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J.
Discrete Algorithms 4, 181–199 (2006)

31. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. Evol. Comput. 9, 303–317 (2005)

32. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 25

33. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D.
(eds.) PPSN 2018. LNCS, vol. 11102, pp. 3–15. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99259-4 1

https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-540-24854-5_107
https://doi.org/10.1007/BFb0056845
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/s00453-015-0072-0
https://doi.org/10.1007/978-3-540-73482-6_4
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1007/978-3-319-99259-4_1
https://doi.org/10.1007/978-3-319-99259-4_1

Exponential Upper Bounds 633

34. Lengler, J.: Drift analysis. Theory of Evolutionary Computation. NCS, pp. 89–131.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

35. Mühlenbein, H.: How genetic algorithms really work: mutation and hill climbing.
In: Parallel problem solving from nature, PPSN 1992, pp. 15–26. Elsevier (1992)

36. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algo-
rithms in dynamic and stochastic environments. Theory of Evolutionary Compu-
tation. NCS, pp. 323–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-29414-4 7

37. Neumann, F., Sutton, A.M.: Parameterized complexity analysis of random-
ized search heuristics. Theory of Evolutionary Computation. NCS, pp. 213–248.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 4

38. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
-Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

39. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic
algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

40. Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: Towards a runtime compar-
ison of natural and artificial evolution. Algorithmica 78, 681–713 (2017)

41. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the (1 + 1)-
EA for OneMax and LeadingOnes under bit-wise noise. Algorithmica 81, 749–795
(2019)

42. Qian, C., Yu, Y., Zhou, Z.: Analyzing evolutionary optimization in noisy environ-
ments. Evol. Comput. 26, 1–41 (2018)

43. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

44. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

45. Sudholt, D.: Analysing the robustness of evolutionary algorithms to noise:refined
runtime bounds and an example where noise is beneficial. Algorithmica (2020, to
appear). https://doi.org/10.1007/s00453-020-00671-0

46. Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic shortest
path problems. Algorithmica 64, 643–672 (2012). https://doi.org/10.1007/s00453-
011-9606-2

47. Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple
randomized search heuristics. Comb. Probab. Comput. 14, 225–247 (2005)

48. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9 4

49. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

50. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple
maximum independent set algorithm in degree-3 graphs. Theoret. Comput. Sci.
469, 92–104 (2013)

https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-030-29414-4_4
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/s00453-020-00671-0
https://doi.org/10.1007/s00453-011-9606-2
https://doi.org/10.1007/s00453-011-9606-2
https://doi.org/10.1007/978-3-540-31856-9_4

	Exponential Upper Bounds for the Runtime of Randomized Search Heuristics
	1 Introduction
	1.1 Exponential Runtime Analysis
	1.2 State of the Art
	1.3 Our Results

	2 Preliminaries
	3 Proving Exponential Upper Bounds
	4 Noisy Optimization of Weakly Monotonic Functions
	5 Other Applications of Our Method
	6 Conclusion and Outlook
	References

