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Abstract. A decent number of lower bounds for non-elitist population-
based evolutionary algorithms has been shown by now. Most of them are
technically demanding due to the (hard to avoid) use of negative drift
theorems – general results which translate an expected progress away
from the target into a high hitting time.

We propose a simple negative drift theorem for multiplicative drift sce-
narios and show that it can simplify existing analyses. We discuss in more
detail Lehre’s (PPSN 2010) negative drift in populations method, one
of the most general tools to prove lower bounds on the runtime of non-
elitist mutation-based evolutionary algorithms for discrete search spaces.
Together with other arguments, we obtain an alternative and simpler
proof, which also strengthens and simplifies this method. In particular,
now only three of the five technical conditions of the previous result have
to be verified. The lower bounds we obtain are explicit instead of only
asymptotic. This allows to compute concrete lower bounds for concrete
algorithms, but also enables us to show that super-polynomial runtimes
appear already when the reproduction rate is only a (1−ω(n−1/2)) factor
below the threshold. As one particular result, we apply this method and
a novel domination argument to show an exponential lower bound for
the runtime of the mutation-only simple GA on OneMax for arbitrary
population size.

Keywords: Runtime analysis · Drift analysis · Lower bounds ·
Population-based algorithms · Theory · Discrete optimization

1 Introduction

Lower bounds for the runtimes of evolutionary algorithms are important as they
can warn the algorithm user that certain algorithms or certain parameter settings
will not lead to good solutions in acceptable time. Unfortunately, the existing
results in this direction, for non-elitist algorithms in particular, are very tech-
nical. In the case of Lehre’s powerful negative drift in populations method [24],
this also renders the method difficult to use.
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One reason for this high complexity is the use of drift analysis, which seems
hard to circumvent. Drift analysis [26] is a set of tools that all try to derive
useful information on a hitting time (e.g., the first time a solution of a certain
quality is found) from information on the expected progress in one iteration.
The hope is that the progress in a single iteration can be analyzed with only
moderate difficulty and then the drift theorem does the remaining work. While
more direct analysis methods exist and have been successfully used for simple
algorithms, for population-based algorithms and in particular non-elitist ones, it
is hard to imagine that the complicated population dynamics can be captured
in proofs not using more advanced tools such as drift analysis.

Drift analysis has been used with great success to prove upper bounds on
runtimes of evolutionary algorithms. Tools such as the additive [19], multiplica-
tive [13], and variable drift theorem [22,28] all allow to easily obtain an upper
bound on a hitting time solely from the expected progress in one iteration.
Unfortunately, proving matching lower bounds is much harder since here the
drift theorems also require additional technical assumptions on the distribution
of the progress in one iteration. This is even more true in the case of so-called
negative drift, where the drift is away from the target and we aim at proving a
high lower bound on the hitting time.

In this work, we propose a very simple negative drift theorem for the case
of multiplicative drift (Lemma 1). We briefly show that this result can simplify
two classic lower bound analyses (Sect. 2).

In more detail, we use the new drift theorem (and some more arguments)
to rework Lehre’s negative drift in populations method [24]. This highly general
analysis method allows to show exponential lower bounds on the runtime of
a large class of evolutionary algorithms solely by comparing the reproduction
rate of individuals in the population with a threshold that depends only on the
mutation rate.

The downside of Lehre’s method is that both the result and its proof is very
technical. To apply the general result (and not the specialization to algorithms
using standard bit mutation), five technical conditions need to be verified, which
requires the user to choose suitable values for six different constants; these have
an influence on the lower bound one obtains. This renders the method of Lehre
hard to use. Among the 54 citations to [24] (according to Google scholar on June
9, 2020), only the two works [6,25] apply this method. To hopefully ease future
analyses of negative drift in populations, we revisit this method and obtain the
following improvements.

A Simpler Result: We manage to show essentially the same lower bounds by
only verifying three of the five conditions Lehre was using (Theorem 2 and 3).
This also reduces the number of constants one needs to choose from six to four.

A Non-asymptotic Result: Our general tool proves explicit lower bounds, that
is, free from asymptotic notation or unspecified constants. Consequently, our
specialization to algorithms using standard bit mutation (Theorem 4) also gives
explicit bounds. This allows one to prove concrete bounds for specific situations
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(e.g., that the (μ, λ) EA with λ = 2µ needs more than 13 million fitness eval-
uations to find a unique optimum of problem defined over bit strings of length
n = 500, see the example following Theorem 4) and gives more fine-grained
theoretical results (by choosing Lehre’s constant δ as suitable function of the
problems size, we show that a super-polynomial runtime behavior is observed
already when the reproduction rate is only a (1 − ω(n1/2)) factor below the
threshold, see Corollary 5).

A Simple Proof: Besides the important aspect that a proof guarantees the result
to be mathematically correct, an understandable proof can also tell us why a
result is correct and give further insights into working principles of algorithms.
While every reader will have a different view on how the ideal proof looks like, we
felt that Lehre’s proof, combining several deep and abstract tools such as multi-
type branching processes, eigenvalue arguments, and Hajek’s drift theorem [17],
does not easily give a broader understanding of the proof mechanics and the
working principles of the algorithms analyzed. Our proof, based on a simple
potential function argument together with our negative drift theorem, hopefully
is more accessible.

Finally, we analyze an algorithm using fitness proportionate selection. The
negative drift in populations method is not immediately applicable to such algo-
rithms since it is hard to provide a general unconditional upper bound on the
reproduction rate. We show that at all times all search points are at least as
good (in the stochastic domination sense) as random search points. This gives a
simple proof of an exponential lower bound for the mutation-only simple genetic
algorithm with arbitrary population size optimizing the simple OneMax bench-
mark, improving over the mildly sub-exponential lower bound in [29] and the
exponential lower bound only for large population sizes in [25].

1.1 Related Works

A number of different drift theorems dealing with negative drift have been proven
so far, among other, in [18,23,27,31,32,34,35,39]. They all require some addi-
tional assumptions on the distribution of the one-step progress, which makes
them non-trivial to use. We refer to [26, Section 2.4.3] for more details. Another
approach to negative drift was used in [2,8,9]. There the original process was
transformed suitably (via an exponential function), but in a way that the drift
of the new process still is negative or at most very slowly approaches the target.
To this transformed process the lower bound version of the additive drift theo-
rem [19] was applied, which gave large lower bounds since the target, due to the
exponential rescaling, now was far from the starting point of the process.

In terms of lower bounds for non-elitist algorithms, besides Lehre’s general
result [24], the following results for particular algorithms exist (always, n is the
problem size, ε can be any positive constant, and e ≈ 2.718 is the base of the
natural logarithm). Jägersküpper and Storch [21, Theorem 1] showed that the
(1, λ) EA with λ ≤ 1

14 ln(n) is inefficient on any pseudo-Boolean function with
a unique optimum. The asymptotically tight condition λ ≤ (1 − ε) log e

e−1
n to



Lower Bounds via Multiplicative Drift 607

yield a super-polynomial runtime was given by Rowe and Sudholt [35]. Happ,
Johannsen, Klein, and Neumann [18] showed that two simple (1+1)-type hill-
climbers with fitness proportionate selection cannot optimize efficiently any lin-
ear function with positive weights. Neumann, Oliveto, and Witt [29] showed that
a mutation-only variant of the simple genetic algorithm (simple GA) with fitness
proportionate selection is inefficient on the OneMax function when the popu-
lation size μ is at most polynomial, and it is inefficient on any pseudo-Boolean
function with unique global optimum when μ ≤ 1

4 ln(n). The mildly subexpo-
nential lower bound for OneMax was improved to an exponential lower bound
by Lehre [25], but only for μ ≥ n3. In a series of remarkable works up to [34],
Oliveto and Witt showed that the true simple GA using crossover cannot opti-
mize OneMax efficiently when μ ≤ n

1
4−ε. None of these results gives an explicit

lower bound or specifies the base of the exponential function. In [2], an explicit
lower bound for the runtime of the (μ, λ) EA is proven (but stated only in the
proof of Theorem 3.1 in [2]). Section 3 of [2] bears some similarity with ours, in
fact, one can argue that our work extends [2, Section 3] from a particular algo-
rithm to the general class of population-based processes regarded by Lehre [24]
(where, naturally, [2] did not have the negative multiplicative drift result and
therefore did not obtain bounds that hold with high probability).

2 Negative Multiplicative Drift

The following elementary result allows to prove lower bounds on the time to
reach a target in the presence of multiplicative drift away from the target. While
looking innocent, it has the potential to replace more the complicated lower
bound arguments previously used in analyses of non-elitist algorithms such as
simplfied drift theorems ([29, Theorem 1], [33, Theorem 22], [34, Theorem 2]).
We discuss this briefly at the end of this section.

Lemma 1 (Negative multiplicative drift theorem). Let X0,X1, . . . be a
random process in a finite subset of R≥0. Assume that there are Δ, δ > 0 such
that for each t ≥ 0, the following multiplicative drift condition with additive
disturbance holds:

E[Xt+1] ≤ (1 − δ)E[Xt] + Δ. (1)

Assume further that E[X0] ≤ Δ
δ . Then the following two assertions hold.

– For all t ≥ 0, E[Xt] ≤ Δ
δ .

– Let M > Δ
δ and T = min{t ≥ 0 | Xt ≥ M}. Then for all integers L ≥ 0,

Pr[T ≥ L] ≥ 1 − L
Δ

δM
,

and E[T ] ≥ δM
2Δ − 1

2 .
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The proof is an easy computation of expectations and an application of
Markov’s inequality similar to the direct proof of the multiplicative drift the-
orem in [12]. We do not see a reason why the result should not also hold for
processes taking more than a finite number of values, but since we are only
interested in the finite setting, we spare us the more complicated world of con-
tinuous probability spaces.

Proof (of Lemma 1). If E[Xt] ≤ Δ
δ , then E[Xt+1] ≤ (1 − δ)E[Xt] + Δ ≤

(1 − δ)Δ
δ = Δ

δ by (1). Hence the first claim follows by induction. To prove
the second claim, we compute

Pr[T < L] ≤ Pr[X0 + · · · + XL−1 ≥ M ] ≤ E[X0 + · · · + XL−1]
M

≤ LΔ

δM
,

where the middle inequality follows from Markov’s inequality and the fact that
the Xt by assumption are all non-negative. From this estimate, using the short-
hand s = � δM

Δ �, we compute E[T ] =
∑∞

t=1 Pr[T ≥ t] ≥ ∑s
t=1(1 − tΔ

δM ) =
s− 1

2s(s+1) Δ
δM ≥ δM

2Δ − 1
2 , where the first equality is a standard way to express

the expectation of a random variable taking non-negative integral values and the
last inequality is an elementary computation omitted here. ��

We note that in the typical application of this result (as in the proof of
Theorem 2 below), we expect to see the condition that for all t ≥ 0,

E[Xt+1 | Xt] ≤ (1 − δ)Xt + Δ. (2)

Clearly, this condition implies (1) by the law of total expectation.
We now argue that our negative multiplicative drift theorem is likely to find

applications beyond ours to the negative drift in populations method in the
following section. To this aim, we regard two classic lower bound analyses of
non-elitist algorithms and point out where our drift theorem would have eased
the analysis.

In [29], Neumann, Oliveto, and Witt show that the variant of the simple
genetic algorithm (simple GA) not using crossover needs time 2n1−O(1/ log log n)

to optimize the simple OneMax benchmark. The key argument in [29] is as
follows. The potential Xt of the population P (t) in iteration t is defined as
Xt =

∑
x∈P (t) 8OneMax(x). For this potential, it is shown [29, Lemma 7] that if

Xt ≥ 80.996n, then E[Xt+1] ≤ (1 − δ)Xt for some constant δ > 0. By bluntly
estimating E[Xt+1] in the case that Xt < 80.996n, this bound could easily be
extended to E[Xt+1|Xt] ≤ (1 − δ)Xt + Δ for some number Δ. This suffices to
employ our negative drift theorem and obtain the desired lower bound. Without
our drift theorem at hand, in [29] the potential Yt = log8(Xt) was considered, it
was argued that it displays an additive drift away from the target and that Yt

satisfies certain concentration statements necessary for the subsequent use of a
negative drift theorem for additive drift.

A second example using similar techniques, and thus most likely profiting
from our drift theorem, is the work of Oliveto and Witt [33,34] analyzing the
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simple GA with crossover optimizing OneMax. Due to the use of crossover,
this work is much more involved, so without much detail we point the reader
interested in the details to the location where we feel that our drift theorem
would have eased the analysis. In Lemma 19 of [34], again a multiplicative drift
statement (away from the target) is proven. To use a negative drift theorem for
additive drift (Theorem 2 in [34]), in the proof of Lemma 20 the logarithm of
the original process is regarded. So here again, we feel that a direct application
of our drift theorem would have eased the analysis.

3 Negative Drift in Populations Revisited

In this section, we use our negative multiplicative drift result and some more
arguments to rework Lehre’s negative drift in populations method [24] and obtain
Theorem 2 further below. This method allows to analyze a broad class of evolu-
tionary algorithms, namely all that give rise to the following population selection-
mutation (PSM) process (identical to the one defined in [24] even though we use
a slightly more algorithmic language). Let Ω be a finite set. We call Ω the search
space and its elements solution candidates or individuals. Let λ ∈ N be called
the population size of the process. An ordered multi-set of cardinality λ, in other
words, a λ-tuple, over the search space Ω is called a population. Let P = Ωλ be
the set of all populations. For P ∈ P, we write P1, . . . , Pλ to denote the elements
of P . We also write x ∈ P to denote that there is an i ∈ [1..λ] such that x = Pi.

A PSM process starts with some, possibly random, population P (0). In each
iteration t = 1, 2, . . . , a new population P (t) is sampled from the previous one
P (t−1) as follows. Via a (possibly) randomized selection operator sel(·), a λ-tuple
of individuals is selected and then each of them creates an offspring through the
application of a randomized mutation operator mut(·).

The selection operator can be arbitrary except that it only selects individuals
from P (t−1). In particular, we do not assume that the selected individuals are
independent. Formally speaking, the outcome of the selection process is a ran-
dom λ-tuple Q = sel(P ) ∈ [1..λ]λ such that P

(t−1)
Q1

, . . . , P
(t−1)
Qλ

are the selected
parents.

From each selected parent P
(t−1)
Qi

, a single offspring P
(t)
i is generated

via a randomized mutation operator P
(t)
i = mut(P (t−1)

Qi
). Formally speaking,

for each x ∈ Ω, mut(x) is a probability distribution on Ω and we write
y = mut(x) to indicate that y is sampled from this distribution. We assume
that each sample, that is, each call of a mutation operator, uses indepen-
dent randomness. With this notation, we can write the new population as
P (t) =

(
mut(P (t−1)

sel(P )1
), . . . ,mut(P (t−1)

sel(P )λ
)
)
. From the definition it is clear that

a PSM process is a Markov process with state space P.
The following characteristic of the selection operator was found to be crucial

for the analysis of PSM processes in [24]. Let P ∈ P and i ∈ [1..λ]. Then the
random variable R(i, P ) = |{j ∈ [1..λ] | sel(P )j = Pi}|, called reproduction
number of the i-th individual in P , denotes the number of times Pi was selected
from P as parent. Its expectation E[R(i, P )] is called reproduction rate.
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Our version of the negative drift in populations method now is the following.

Theorem 2. Consider a PSM process (P (t))t≥0 as described above. Let g : Ω →
Z≥0, called potential function, and a, b ∈ Z≥0 with a ≤ b. Assume that for all
x ∈ P (0) we have g(x) ≥ b. Let T = min{t ≥ 0 | ∃i ∈ [1..λ] : g(P (t)

i ) ≤ a}
the first time we have a search point with potential a or less in the population.
Assume that the following three conditions are satisfied.

(i) There is an α ≥ 1 such that for all populations P ∈ P with min{g(Pi) | i ∈
[1..λ]} > a and all i ∈ [1..λ] with g(Pi) < b, we have E[R(i, P )] ≤ α.

(ii) There is a κ > 0 and a 0 < δ < 1 such that for all x ∈ Ω with a < g(x) < b
we have

E[exp(−κg(mut(x)))] ≤ 1
α

(1 − δ) exp(−κg(x)).

(iii) There is a D ≥ δ such for all x ∈ Ω with g(x) ≥ b, we have

E[exp(−κg(mut(x)))] ≤ D exp(−κb).

Then

– E[T ] ≥ δ
2Dλ exp(κ(b − a)) − 1

2 , and
– for all L ≥ 1, we have Pr[T < L] ≤ LλD

δ exp(−κ(b − a)).

Before proceeding with the proof, we compare our result with Theorem 1
of [24]. We first note that, apart from a technicality which we discuss toward the
end of this comparison, the assumptions of our result are weaker than the ones
on [24] since we do not need the technical fourth and fifth assumption of [24],
which in our notation would read as follows.

– There is a δ2 > 0 such that for all i ∈ [a..b] and all k, 
 ∈ Z with 1 ≤ k + 

and all x, y ∈ Ω with g(x) = i and g(y) = i − 
 we have

Pr[g(mut(x)) = i − 
 ∧ g(mut(y)) = i − 
 − k]
≤ exp(κ(1 − δ2)(b − a)) Pr[g(mut(x)) = i − k − 
].

– There is a δ3 > 0 such that for all i, j, k, 
 ∈ Z with a ≤ i ≤ b and 1 ≤ k+
 ≤ j
and all x, y ∈ Ω with g(x) = i and g(y) = i − k we have

Pr[g(mut(x)) = i − j] ≤ δ3 Pr[g(mut(y)) = i − k − 
].

The assertion of our result is of the same type as in [24], but stronger in terms
of numbers. For the probability Pr[T < L] to find a potential of at most a in
time less than L, a bound of

O(λL2D (b − a) exp(−κδ2(b − a)))

is shown in [24]. Hence our result is smaller by a factor of Ω(L(b − a)
exp(−κ(1 − δ2)(b − a)). In addition, our result is non-asymptotic, that is, the
lower bound contains no asymptotic notation or unspecified constants.
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The one point where Lehre’s [24] result potentially is stronger is that it needs
assumptions only on the average drift, whereas we require the same assertion
on the point-wise drift. More concretely, Lehre uses the notation (Xt)t≥0 to
denote the Markov process on Ω associated with the mutation operator (it is
not said in [24] what is X0, that is, how this process is started). Then Δt(i) =
(g(Xt+1 − g(Xt) | g(Xt) = i) defines the potential gain in step t when the
current state has potential i. With this notation, instead of our second and third
condition, Lehre [24] requires only the weaker conditions (here again translated
into our notation).

(ii’) For all t ≥ 0 and all a < i < b, E[exp(−κΔt(i))] < 1
α (1 − δ).

(iii’) For all t ≥ 0, E[exp(−κ(g(Xt+1) − b)) | g(Xt) ≥ b] < D.

So Lehre only requires that the random individual at time t, conditional
on having a certain potential, gives rise to a certain drift, whereas we require
that each particular individual with this potential gives rise to this drift. On
the formal level, Lehre’s condition is much weaker than ours (assuming that the
unclear point of what is X0 can be fixed). That said, to exploit such weaker
conditions, one would need to be able to compute such average drifts and they
would need to be smaller than the worst-case point-wise drift. We are not aware
of many examples where average drift was successfully used in drift analysis
(one is Jägersküpper’s remarkable analysis of the linear functions problem [20])
despite the fact that many classic drift theorems only require conditions on the
average drift to hold.

We now prove Theorem 2. Before stating the formal proof, we describe on a
high level its main ingredients and how it differs from Lehre’s proof.

The main challenge when using drift analysis is designing a potential function
that suitablymeasures theprogress. For simple hillclimbers andoptimizationprob-
lems, the fitness of the current solution may suffice, but already the analysis of the
(1 + 1) EA on linear functions resisted such easy approaches [13,16,19,38]. For
population-based algorithms, the additional challenge is to capture the quality of
the whole population in a single number. We note at this point that the notion of
“negative drift in populations” was used in Lehre to informally describe the charac-
teristic of the population processes regarded, but drift analysis as a mathematical
tool was employed only on the level of single individuals and the resulting findings
were lifted to the whole population via advanced tools like branching processes and
eigenvalue arguments.

To prove upper bounds, in [1,3–5,14,25,37], implicitly or explicitly poten-
tial functions were used that build on the fitness of the best individual in the
population and the number of individuals having this fitness. Regarding only
the current-best individuals, these potential functions might not be suitable for
lower bound proofs.

The lower bound proofs in [2,29,33,34] all define a natural potential for
single individuals, namely the Hamming distance to the optimum, and then lift
this potential to populations by summing over all individuals an exponential
transformation of their base potential (this ingenious definition was, to the best
of our knowledge, not known in the theory of evolutionary algorithms before
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the work of Neumann, Oliveto, and Witt [29]). This is the type of potential we
shall use as well, and given the assumptions of Theorem 2, it is not surprising
that

∑
x∈P exp(−κg(x)) is a good choice. For this potential, we shall then show

with only mild effort that it satisfies the assumptions of our drift theorem, which
yields the desired lower bounds on the runtime (using that a single good solution
in the population already requires a very high potential due to the exponential
scaling). We now give the details of this proof idea.

Proof (of Theorem 2). We consider the process (Xt) defined by Xt =
∑λ

i=1 exp(−κg(P (t)
i )). To apply drift arguments, we first analyze the expected

state after one iteration, that is, E[Xt | Xt−1]. To this end, let us consider a
fixed parent population P = P (t−1) in iteration t. Let Q = sel(P ) be the indices
of the individuals selected for generating offspring.

We first condition on Q (and as always on P ), that is, we regard only the
probability space defined via the mutation operator, and compute

E[Xt | Q] = E

⎡

⎣
λ∑

j=1

exp(−κg(mut(PQj
)))

⎤

⎦

=
λ∑

i=1

(R(i, P ) | Q)E[exp(−κg(mut(Pi)))].

Using that
∑λ

i=1 R(i, P ) = λ and not anymore conditioning on Q, by the law of
total expectation, we have

E[Xt] = EQ[E[Xt | Q]]

=
λ∑

i=1

E[R(i, P )]E[exp(−κg(mut(Pi)))]

=
∑

Pi:g(Pi)<b

αE[exp(−κg(mut(Pi)))] +
∑

Pi:g(Pi)≥b

E[R(i, P )]D exp(−κb)

≤
∑

Pi:g(Pi)<b

α · 1
α

(1 − δ) exp(−κg(Pi)) + λ · D exp(−κb)

≤ (1 − δ)Xt−1 + λD exp(−κb)

and recall that this is conditional on P (t−1), hence also on Xt−1.
Let Δ = λD exp(−κb). Since P (0) contains no individual with potential

below b, we have X0 ≤ λ exp(−κb) = Δ
D ≤ Δ

δ . Hence also the assumption
E[X0] ≤ Δ

δ of Lemma 1 is fulfilled.
Let M = exp(−κa) and T ′ := min{t ≥ 0 | Xt ≥ M}. Note that T , the

first time to have an individual with potential at least a in the population,
is at least T ′. Now the negative multiplicative drift theorem (Lemma 1) gives
Pr[T < L] ≤ Pr[T ′ < L] ≤ LΔ

Mδ = LλD exp(−κ(b−a))
δ and E[T ] ≥ E[T ′] ≥

δM
2Δ − 1

2 = δ
2Dλ exp(κ(b − a)) − 1

2 . ��
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We note that the proof above actually shows the following slightly stronger
statement, which might be useful when working with random initial populations.

Theorem 3. Theorem 2 remains valid when the assumption that all ini-
tial individuals have potential at least b is replaced by the assumption
∑λ

i=1 E[exp(−κg(P (0)
i ))] ≤ λD exp(−κb)

δ .

4 Processes Using Standard Bit Mutation

Since many EAs use standard bit mutation, as in [24] we now simplify our main
result for processes using standard bit mutation and for g being the Hamming
distance to a target solution. Hence in this section, we have Ω = {0, 1}n and
y = mut(x) is obtained from x by flipping each bit of x independently with
probability p. Since our results are non-asymptotic, we can work with any p ≤ 1

2 .

Theorem 4. Consider a PSM process with search space Ω = {0, 1}n, using
standard bit mutation with mutation rate p ∈ [0, 1

2 ] as mutation operator, and
such that P

(0)
i is uniformly distributed in Ω for each i ∈ [1..λ]. Let x∗ ∈ Ω be the

target of the process. For all x ∈ Ω, let g(x) := H(x, x∗) denote the Hamming
distance from the target.

Let α > 1 and 0 < δ < 1 such that ln( α
1−δ ) < pn, that is, such that 1 −

1
pn ln( α

1−δ ) =: ε > 0. Let B = 2
ε . Let a, b be integers such that 0 ≤ a < b and

b ≤ b̃ := n 1
B2−1 .

Selection condition: Assume that for all populations P ∈ P with min{g(Pi) |
i ∈ [1..λ]} > a and all i ∈ [1..λ] with g(Pi) < b, we have E[R(i, P )] ≤ α.

Then the first time T := min{t ≥ 0 | ∃i ∈ [1..λ] : g(P (t)
i ) ≤ a} that the

population contains an individual in distance a or less from x∗ satisfies

E[T ] ≥ 1
2λ

min
{

δα

(1 − δ)
, 1

}

exp

(

ln

(
2

1 − 1
pn ln( α

1−δ )

)

(b − a)

)

− 1
2
,

Pr[T < L] ≤ Lλ max
{

(1 − δ)
δα

, 1
}

exp

(

− ln

(
2

1 − 1
pn ln( α

1−δ )

)

(b − a)

)

.

We have to defer the elementary proof, a reduction to Theorem 2, to the
extended version [10] for reasons of space. To show that the second and third
condition of Theorem 2 are satisfied, one has to estimate E[exp(−κ(g(mut(x))−
g(x))], which is not difficult since g(mut(x)) − g(x) can be written as sum of
independent random variables. With a similar computation, we show that the
weaker starting condition of Theorem 3 is satisfied.

As a simple example for an application of this result, let us consider the
classic (μ, λ) EA (with uniform selection for variation, truncation selection for
inclusion into the next generation, and mutation rate p = 1

n ) with λ = 2μ
optimizing some function f : {0, 1}n → R, n = 500, with unique global optimum.
For simplicity, let us take as performance measure λT , that is, the number of
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fitness evaluations in all iterations up to the one in which the optimum was
found. Since λ = 2μ, we have α = 2. By taking δ = 0.01, we obtain a concrete
lower bound of more than 13 million fitness evaluations until the optimum is
found (regardless of μ and f).

Since the result above is slightly technical, we now formulate the follow-
ing corollary, which removes the variable δ without significantly weakening the
result. We note that the proof of this result applies Theorem 4 with a non-
constant δ, so we do not see how such a result could have been proven from
Lehre’s result [24].

Corollary 5. Consider a PSM process as in Theorem 4. Let x∗ ∈ Ω be the
target of the process. For all x ∈ Ω, let g(x) := H(x, x∗) denote the Hamming
distance from the target. Assume that there is an α > 1 such that

– ln(α) ≤ p(n − 1), which is equivalent to γ := 1 − lnα
pn ≥ 1

n ;
– there is an a ≤ b := �(1− 4

n )n 1
4

γ2 −1
� such that for all populations P ∈ P with

min{g(Pi) | i ∈ [1..λ]} > a and for all i ∈ [1..λ], we have E[R(i, P )] ≤ α.

Then the first time T := min{t ≥ 0 | ∃i ∈ [1..λ] : g(P (t)
i ) ≤ a} that the

population contains an individual in distance a or less from x∗ satisfies

E[T ] ≥ pα

4λn
min

{

1,
2n

pα

}

exp
(

ln
(

2
γ

)

(b − a)
)

− 1
2
,

Pr[T < L] ≤ 2Lλn

pα
max

{
1,

pα

2n

}
exp

(

− ln
(

2
γ

)

(b − a)
)

.

In particular, if a ≤ (1−ε)b for some constant ε > 0, then T is super-polynomial
in n (in expectation and with high probability) when γ = ω(n−1/2) and exponen-
tial when γ = Ω(1).

We omit the proof for reasons of space. It can be found in [10]. The main
argument is employing Theorem 4 with the δ = p

2n and computing that this
small δ has no significant influence on the exponential term of the bounds.

5 Fitness Proportionate Selection

In this section, we apply our method to a mutation-only version of the simple
genetic algorithm (simple GA). This algorithm starts with a population of μ
random bit strings of length n. In each iteration, it computes a new population
by μ times independently selecting an individual from the existing population
via fitness proportionate selection and mutating it via standard bit mutation
with mutation rate p = 1

n .
The first work [29, Theorem 8] analyzing this algorithm showed that with μ ≤

poly(n) it needs with high probability more than 2n1−O(1/ log log n)
iterations to find

the optimum of the OneMax function or any search point in Hamming distance
at most 0.003n from it. Hence this is only a subexponential lower bound. In [25,
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Corollary 13], building on the lower bound method from [24], a truly exponential
lower bound is shown for the task of finding a search point in Hamming distance
at most 0.029n from the optimum, but only for a relatively large population size
of μ ≥ n3 (and again μ ≤ poly(n)).

We now extend this result to arbitrary μ, that is, we remove the conditions
μ ≥ n3 and μ ≤ poly(n). To obtain the constant 0.029, we have to compromise
with the constants in the runtime, which consequently are only of a theoretical
interest. We therefore do not specify the base of the exponential function or
the leading constant. We note that this would have been easily possible since we
only use a simple additive Chernoff bound and Corollary 5. We further note that
Lehre [25] also shows lower bounds for a scaled version of fitness proportionate
selection and a general Θ(1/n) mutation rate. This would also be possible with
our approach and would again remove the conditions on λ, but we do not see
that the additional effort is justified here.

Theorem 6. There is a T = exp(Ω(n)) such that the mutation-only simple GA
optimizing OneMax with any population size μ with probability 1−exp(−Ω(n))
does not find any solution x with OneMax(x) ≥ 0.971n within T fitness
evaluations.

The main difficulty for proving lower bounds for algorithms using fitness
proportionate selection (and maybe the reason why [24] does not show such
bounds) is that the reproduction number is non-trivial to estimate. If all but
one individual have a fitness of zero, then this individual is selected μ times.
Hence μ is the only general upper bound for the reproduction number. The
previous works and ours overcome this difficulty by arguing that the average
fitness in the population cannot significantly drop below the initial value of n/2,
which immediately yields that an individual with fitness k has a reproduction
number of roughly at most k

n/2 .
While it is natural that the typical fitness of an individual should not drop

far below n/2, informally arguing that the individuals should be at least as
good as random individuals, making this argument precise is not completely
trivial. In [29, Lemma 6], it is informally argued that the situation with fitness
proportionate selection cannot be worse than with uniform selection and for the
latter situation a union bound over all lineages of individuals is employed and
a negative-drift analysis from [30, Section 3] is used for a single lineage. The
analysis in [25, Lemma 9] builds on the (positive) drift stemming from standard
bit mutation when the fitness is below n/2 (this argument needs a mutation rate
of at least Ω(1/n)) and the independence of the offspring (here the lower bound
λ ≥ n3 is needed to allow the desired Chernoff bound estimates).

Our proof relies on a natural domination argument that shows that at all
times all individuals are at least as good as random individuals in the sense
of stochastic domination (see, e.g., [7]) of their fitness. This allows to use a
simple Chernoff bound to argue that with high probability, for a long time all
individuals have a fitness of at least (12 − ε)n. The remainder of the proof is an
application of Corollary 5. Clearly, Lehre’s lower bound [24, Theorem 4] would
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have been applicable as well with the main difference being that one has to deal
with the constant δ, which does not exist in Corollary 5. The full proof can again
be found in [10].

6 Conclusion and Outlook

In this work, we have proven two technical tools which might ease future lower
bound proofs in discrete evolutionary optimization. The negative multiplicative
drift theorem has the potential to replace the more technical negative drift theo-
rems used so far in different contexts. Our strengthening and simplification of the
negative drift in populations method should help increasing our not very devel-
oped understanding of population-based algorithms in the future. Clearly, it is
restricted to mutation-based algorithms – providing such a tool for crossover-
based algorithms and extending our understanding how to prove lower bounds
for these beyond the few results [11,15,34,36] would be a great progress.
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