
First Steps Towards a Runtime Analysis
When Starting with a Good Solution

Denis Antipov1,2(B), Maxim Buzdalov1, and Benjamin Doerr2

1 ITMO University, St. Petersburg, Russia
antipovden@yandex.ru

2 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
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Abstract. The mathematical runtime analysis of evolutionary algo-
rithms traditionally regards the time an algorithm needs to find a solu-
tion of a certain quality when initialized with a random population. In
practical applications it may be possible to guess solutions that are bet-
ter than random ones. We start a mathematical runtime analysis for such
situations. We observe that different algorithms profit to a very differ-
ent degree from a better initialization. We also show that the optimal
parameterization of the algorithm can depend strongly on the quality of
the initial solutions. To overcome this difficulty, self-adjusting and ran-
domized heavy-tailed parameter choices can be profitable. Finally, we
observe a larger gap between the performance of the best evolutionary
algorithm we found and the corresponding black-box complexity. This
could suggest that evolutionary algorithms better exploiting good initial
solutions are still to be found. These first findings stem from analyzing
the performance of the (1 + 1) evolutionary algorithm and the static,
self-adjusting, and heavy-tailed (1 + (λ, λ)) GA on the OneMax bench-
mark, but we are optimistic that the question how to profit from good
initial solutions is interesting beyond these first examples.

Keywords: Theory · Runtime analysis · Initialization of evolutionary
algorithms · Crossover · Fast mutation

1 Introduction

The mathematical runtime analysis (see, e.g,. [4,15,20,28]) has contributed to
our understanding of evolutionary algorithms (EAs) via rigorous analyses how
long an EA takes to optimize a particular problem. The overwhelming majority of
these results considers a random or worst-case initialization of the algorithm. In
this work, we argue that it also makes sense to analyze the runtime of algorithms
starting already with good solutions. This is justified because such situations
arise in practice and because, as we observe in this work, different algorithms
show a different runtime behavior when started with such good solutions. In
particular, we observe that the (1 + (λ, λ)) genetic algorithm ((1 + (λ, λ)) GA)
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profits from good initial solutions by much more than, e.g., the (1+1) EA. From
a broader perspective, this work suggests that the recently proposed fine-grained
runtime notions like fixed budget analysis [22] and fixed target analysis [6], which
consider optimization up to a certain solution quality, should be extended to also
take into account different initial solution qualities.

1.1 Starting with Good Solutions

As just said, the vast majority of the runtime analyses assume a random ini-
tialization of the algorithm or they prove performance guarantees that hold for
all initializations (worst-case view). This is justified for two reasons. (i) When
optimizing a novel problem for which little problem-specific understanding is
available, starting with random initial solutions is a recommended approach.
This avoids that a wrong understanding of the problem leads to an unfavor-
able initialization. Also, with independent runs of the algorithm automatically
reasonably diverse initializations are employed. (ii) For many optimizations pro-
cesses analyzed with mathematical means it turned out that there is not much
advantage of starting with a good solution. For this reason, such results are not
stated explicitly, but can often be derived from the proofs. For example, when
optimizing the simple OneMax benchmark via the equally simple (1 + 1) EA,
then results like [10,11,16,26] show a very limited advantage from a good ini-
tialization. When starting with a solution having already 99% of the maximal
fitness, the expected runtime has the same en ln(n) ± O(n) order of magnitude.
Hence the gain from starting with the good solution is bounded by an O(n)
lower order term. Even when starting with a solution of fitness n − √

n, that
is, with fitness distance

√
n to the optimum of fitness n, then only a runtime

reduction by asymptotically a factor of a half results. Clearly, a factor-two run-
time improvement is interesting in practice, but the assumption that an initial
solution can be found that differs from the optimum in only

√
n of the n bit

positions, is very optimistic.
Besides this justification for random initializations, we see a number of sit-

uations in which better-than-random solutions are available (and this is the
motivation of this work). The obvious one is that a problem is to be solved
for which some, at least intuitive, understanding is available. This is a realistic
assumption in scenarios where similar problems are to be solved over a longer
time period or where problems are solved by combining a human understand-
ing of the problem with randomized heuristics. A second situation in which we
expect to start with a good solution is reoptimization. Reoptimization [30,34]
means that we had already solved a problem, then a mild change of the prob-
lem data arises (due to a change in the environment, a customer being unhappy
with a particular aspect of the solution, etc.), and we react to this change not by
optimizing the new problem from scratch, but by initializing the EA with solu-
tions that were good in the original problem. While there is a decent amount of
runtime analysis literature on how EAs cope with dynamic optimization prob-
lems, see [27], almost all of them regard the situation that a dynamic change of
the instance happens frequently and the question is how well the EA adjusts to
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these changes. The only mathematical runtime analysis of a true reoptimization
problem we are aware of is [9]. The focus there, however, is to modify an existing
algorithm so that it better copes with the situation that the algorithm is started
with a solution that is structurally close to the optimum, but has a low fitness
obscuring to the algorithm that the current solution is already structurally good.

We note that using a known good solution to initialize a randomized search
heuristic is again a heuristic approach. It is intuitive that an iterative optimiza-
tion heuristic can profit from such an initialization, but there is no guarantee
and, clearly, there are also situations where using such initializations is detrimen-
tal. As one example, assume that we obtain good initial solutions from running a
simple hill-climber. Then these initial solutions could be local optima which are
very hard to leave. An evolutionary algorithm initialized with random solutions
might find it easier to generate a sufficient diversity that allows to reach the
basin of attraction of the optimum. So obviously some care is necessary when
initializing a search heuristic with good solutions. Several practical applications
of evolutionary algorithms have shown advantages of initializations with good
solutions, e.g., [24] on the open shop scheduling problem.

While there are no explicit mathematical runtime analyses for EAs starting
with a good solution, it is clear that many of the classic results in their proofs
reveal much information also on runtimes starting from a good solution. This is
immediately clear for the fitness level method [32], but also for drift arguments
like [12,19,23,25] when as potential function the fitness or a similar function is
used, and for many other results. By not making these results explicit, however,
it is hard to see the full picture and to draw the right conclusions.

1.2 The (1 + (λ, λ)) GA Starting with Good Solutions

In this work, we make explicit how the (1 + (λ, λ)) GA optimizes OneMax
when starting from a solution with fitness distance D from the optimum. We
observe that the (1 + (λ, λ)) GA profits in a much stronger way from such a
good initialization than other known algorithms. For example, when starting in
fitness distance D =

√
n, the expected time to find the optimum is only Õ(n3/4)

when using optimal parameters. We recall that this algorithm has a runtime of
roughly n

√
log n when starting with a random solution [7,8]. We recall further

that the (1+1) EA has an expected runtime of (1±o(1))12en ln(n) when starting
in fitness distance

√
n and an expected runtime of (1±o(1))en ln n when starting

with a random solution. So clearly, the (1 + (λ, λ)) GA profit to a much higher
degree from a good initialization than the (1 + 1) EA. We made this precise for
the (1+1) EA, but it is clear from other works such as [3,13,21,33] that similar
statements hold as well for many other (μ + λ) EAs optimizing OneMax, at
least for some ranges of the parameters.

The runtime stated above for the (1 + (λ, λ)) GA assumes that the algorithm
is used with the optimal parameter setting, more precisely, with the optimal
setting for starting with a solution of fitness-distance D. Besides that we usually
do not expect the algorithm user to guess the optimal parameter values, it is also
not very realistic to assume that the user has a clear picture on how far the initial
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solution is from the optimum. For that reason, we also regard two parameter-
less variants of the (1 + (λ, λ)) GA (where parameterless means that parameters
with a crucial influence on the performance are replaced by hyperparameters for
which the influence is less critical or for which we can give reasonable general
rules of thumb).

Already in [8], a self-adjusting choice based on the one-fifth success rule of the
parameters of the (1 + (λ, λ)) GA was proposed. This was shown to give a linear
runtime on OneMax in [7]. We note that this is, essentially, a parameterless
algorithm since the target success rate (the “one-fifth”) and the update factor
had only a small influence on the result provided that they were chosen not
too large (where the algorithm badly fails). See [7, Sect. 6.4] for more details.
For this algorithm, we show that it optimizes OneMax in time O(

√
nD) when

starting in distance D. Again, this is a parameterless approach (when taking the
previous recommendations on how to set the hyperparameters).

A second parameterless approach for the (1 + (λ, λ)) GA was recently ana-
lyzed in [1], namely to choose the parameter λ randomly from a power-law distri-
bution. Such a heavy-tailed parameter choice was shown to give a performance
only slightly below the one obtainable from the best instance-specific values for
the (1 + 1) EA optimizing jump functions [14]. Surprisingly, the (1 + (λ, λ)) GA
with heavy-tailed parameter choice could not only overcome the need to specify
parameter values, it even outperformed any static parameter choice and had
the same O(n) runtime that the self-adjusting (1 + (λ, λ)) GA had [1]. When
starting with a solution in fitness distance D, this algorithm with any power-law
exponent equal to or slightly above two gives a performance which is only by a
small factor slower than O(

√
nD).

1.3 Experimental Results

We support our theoretical findings with an experimental validation, which
shows that both the self-adjusting and the heavy-tailed version of the
(1 + (λ, λ)) GA indeed show the desired asymptotic behavior and this with only
moderate implicit constants. In particular, the one-fifth self-adjusting version
can be seen as a very confident winner in all cases, and the heavy-tailed versions
with different power-law exponents follow it with the accordingly distributed
runtimes. Interestingly enough, the logarithmically-capped self-adjusting ver-
sion, which has been shown to be beneficial for certain problems other than
OneMax [5] and just a tiny bit worse than the basic one-fifth version on
OneMax, starts losing ground to the heavy-tailed versions at distances just
slightly smaller than

√
n.

1.4 Black-Box Complexity and Lower Bounds

The results above show that some algorithms can profit considerably from good
initial solutions (but many do not). This raises the question of how far we can
go in this direction, or formulated inversely, what lower bounds on this runtime
problem we can provide. We shall not go much into detail on this question, but
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note here that one can define a black-box complexity notion for this problem.
Informally speaking, the input to this problem is an objective function from a
given class of functions and a search point in Hamming distance D from the opti-
mum. The unrestricted black-box complexity is the smallest expected number of
fitness evaluations that an otherwise unrestricted black-box algorithm performs
to find the optimum (of a worst-case input).

If the class of functions consists of all OneMax-type functions, that is,
OneMax and all functions with an isomorphic fitness landscape, then the classic
argument via randomized search trees and Yao’s minimax principle from [17]1

shows that the black-box complexity is at least Ω(D log(n/D)
log n ). A matching upper

bound follows from evaluating random search points until all evaluation results
leave only one solution (out of the originally

(
n
D

)
ones) fitting to the evaluations

results (this is the classic random guessing strategy of [18]). For small D, this
black-box complexity of order Θ(D log(n/D)

log n ) is considerably lower than our upper
bounds. Also, this shows a much larger gap between black-box complexity and
EA performance than in the case of random initialization, where the black-box
complexity is Θ( n

log n ) and simple EAs have an O(n log n) performance.

1.5 Synopsis and Structure of the Paper

Overall, our results show that the question of how EAs work when started with
a good initial solution is far from trivial. Some algorithms profit more from this
than others, the question of how to set the parameters might be influenced by the
starting level D and this may make parameterless approaches more important,
and the larger gap to the black-box complexity could suggest that there is room
for further improvements.

The rest of the paper is organized as follows. In Sect. 2 we formally define the
considered algorithms and the problem and collect some useful analysis tools. In
Sect. 3 we prove the upper bounds on the runtime of the algorithms and deliver
general recommendations on how to use each algorithm. In Sect. 4 we check how
our recommendations work in experiments.

2 Preliminaries

2.1 The (1 + (λ, λ)) GA and Its Modifiactions

We consider the (1 + (λ, λ)) GA, which is a genetic algorithm for the optimiza-
tion of n-dimensional pseudo-Boolean functions, first proposed in [8]. This algo-
rithm has three parameters, which are the mutation rate p, the crossover bias c,
and the population size λ.

1 This argument can be seen as a formalization of the intuitive argument that there are(
n
D

)
different solution candidates, each fitness evaluation has up to n + 1 different

answers, hence if the runtime is less than logn+1

(
n
D

)
then there are two solution

candidates that receive the same sequence of answers and hence are indistinguishable.
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The (1 + (λ, λ)) GA stores the current individual x, which is initialized with
a random bit string. Each iteration of the algorithm consists of a mutation phase
and a crossover phase. In the mutation phase we first choose a number � from the
binomial distribution with parameters n and p. Then we create λ offsprings by
flipping � random bits in x, independently for each offspring. An offspring with
the best fitness is chosen as the mutation winner x′ (all ties are broken uniformly
at random). Note that x′ can and often will have a worse fitness than x.

In the crossover phase we create λ offspring by applying a biased crossover
to x and x′ (independently for each offspring). This biased crossover takes each
bit from x with probability (1 − c) and from x′ with probability c. A crossover
offspring with best fitness is selected as the crossover winner y (all ties are broken
uniformly at random). If y is not worse than x, it replaces the current individual.
The pseudocode of the (1 + (λ, λ)) GA is shown in Algorithm 1.

Algorithm 1: The (1 + (λ, λ)) GA maximizing a pseudo-Boolean func-
tion f .
1 x ← random bit string of length n;
2 while not terminated do
3 Mutation phase:
4 Choose � ∼ Bin (n, p);
5 for i ∈ [1..λ] do

6 x(i) ← a copy of x;

7 Flip � bits in x(i) chosen uniformly at random;

8 end
9 x′ ← arg maxz∈{x(1),...,x(λ)} f(z);

10 Crossover phase:
11 for i ∈ [1..λ] do

12 Create y(i) by taking each bit from x′ with probability c and from x
with probability (1 − c);

13 end
14 y ← arg maxz∈{y(1),...,y(λ)} f(z);

15 if f(y) ≥ f(x) then
16 x ← y;
17 end

18 end

Based on intuitive considerations and rigorous runtime analyses, a standard
parameter settings was proposed in which the mutation rate and crossover bias
are defined via the population size, namely, p = λ

n and c = 1
λ .

It was shown in [8] that with a suitable static parameter value for λ, this
algorithm can solve the OneMax function in O(n

√
log(n)) fitness evaluations

(this bound was minimally reduced and complemented with a matching lower
bound in [7]). The authors of [8] noticed that with the fitness-dependent
parameter λ =

√
n
d the algorithm solves OneMax in only Θ(n) iterations.
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The fitness-depending parameter setting was not satisfying, since it is too
problem-specific and most probably does not work on practical problems. For
this reason, also a self-adjusting parameter choice for λ was proposed
in [8] and analyzed rigorously in [7]. It uses a simple one-fifth rule, multiply-
ing the parameter λ by some constant A > 1 at the end of the iteration when
f(y) ≤ f(x), and dividing λ by A4 otherwise (the forth power ensures the desired
property that the parameter does not change in the long run when in average
one fifth of the iterations are successful). This simple rule was shown to keep the
parameter λ close to the optimal fitness-dependent value during the whole opti-
mization process, leading to a Θ(n) runtime on OneMax. However, this method
of parameter control was not efficient on the MAX-3SAT problem, which has
a lower fitness-distance correlation than OneMax [5]. Therefore, capping the
maximal value of λ at 2 ln(n + 1) was needed to obtain a good performance on
this problem.

Inspired by [14], the recent paper [1] proposed use a heavy-tailed random λ,
which gave a birth to the fast (1 + (λ, λ)) GA. In this algorithm the parameter λ
is chosen from the power-law distribution with exponent β and with upper limit
u. Here for all i ∈ N we have

Pr[λ = i] =

{
Cβ,ui−β , if i ∈ [1..u],
0, otherwise,

where Cβ,u = (
∑u

j=1 j−β)−1 is the normalization coefficient. It was proven that
the fast (1 + (λ, λ)) GA finds the optimum of OneMax in Θ(n) fitness evalua-
tions if β ∈ (2, 3) and u is large enough. Also it was empirically shown that this
algorithm without further capping of λ is quite efficient on MAX-3SAT.

When talking about the runtime of the (1 + (λ, λ)) GA, we denote the num-
ber of iterations until the optimum is found by TI and the number of fitness
evaluations until the optimum is found by TF . We denote the distance of the
current individual to the optimum by d.

2.2 Problem Statement

The main object of this paper is the runtime of the algorithms discussed in
Sect. 2.1 when they start in distance D from the optimum, where D should be
smaller than the distance of a random solution. For this purpose we consider the
classic OneMax function, which is defined on the space of bit strings of length
n by

OneMax(x) = OM(x) =
n∑

i=1

xi.

2.3 Probability for Progress

To prove our upper bounds on the runtimes we use the following estimate for
the probability that the (1 + (λ, λ)) GA finds a better solution in one iteration.
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Lemma 1. The probability that OM(y) > OM(x) is Ω(min{1, dλ2

n }).

To prove this lemma we use the following auxiliary result from [1], a slight
adaptation of [29, Lemma 8].

Lemma 2 (Lemma 2.2 in [1]). For all p ∈ [0, 1] and all λ > 0 we have

1 − (1 − p)λ ≥ λp

1 + λp
.

Proof (of Lemma 1). By Lemma 7 in [8] the probability to have a true progress
in one iteration is Ω(1 − (n−d

n )
λ2
2 ). By Lemma 2 this is at least Ω(min{1, dλ2

n }).

3 Runtime Analysis

In this section we conduct a rigorous runtime analysis for the different variants
of the (1 + (λ, λ)) GA and prove upper bounds on their runtime when they start
in distance D from the optimum. We start with the standard algorithm with
static parameters.

Theorem 3. The expected runtime of the (1 + (λ, λ)) GA with static parameter λ
(and mutation rate p = λ

n and crossover bias c = 1
λ as recommended in [8]) on

OneMax with initialization in distance D from the optimum is

E[TF ] = O
(n

λ
ln

( n

λ2

)
+ Dλ

)

fitness evaluations. This is minimized by λ =
√

n ln(D)
D , which gives a runtime

guarantee of E[TF ] = O(
√

nD ln(D) ).

We omit the proof for reasons of space2. We move on to the (1 + (λ, λ)) GA
with optimal fitness-dependent parameters.

Theorem 4. The expected runtime of the (1 + (λ, λ)) GA with fitness-dependent
λ = λ(d) =

√
n
d on OneMax with initialization in distance D from the optimum

is E[TF ] = O(
√

nD).

We omit the proof for reasons of space and since it trivially follows from
Lemma 1.

The one-fifth rule was shown to be to keep the value of λ close to its optimal
fitness-dependent value, when starting in the random bit string. The algorithm
is initialized with λ = 2, which is close-to-optimal when starting in a random bit
string. In the following theorem we show that even when we start in a smaller
distance D, the one-fifth rule is capable to quickly increase λ to its optimal value
and keep it there.

2 All the omitted proofs can be found in preprint [2].
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Theorem 5. The expected runtime of the (1 + (λ, λ)) GA with self-adjusting λ
(according to the one-fifth rule) on OneMax with initialization in distance D
from the optimum is E[TF ] = O(

√
nD).

We only sketch the proof for reasons of space. We first show that there is some
distance d ≤ D at which the algorithm reaches the optimal fitness-dependent
value of λ for the first time. This happens in a relatively short time after the
start of the algorithm. In a similar manner as in [7] we show that from that
moment on the value of λ always stays close to the optimal fitness-dependent
one, yielding asymptotically the same runtime.

For the fast (1 + (λ, λ)) GA with different parameters of the power-law dis-
tribution, we show the following runtimes.

Theorem 6. The expected runtime of the fast (1 + (λ, λ)) GA on OneMax
with initialization in distance D from the optimum is as shown in Table 1. The
runtimes for β > 2 hold also for all u ≥ √

n.

We omit the proof for reasons of space, but sketch the main arguments. We
deliver the upper bounds for the fast (1 + (λ, λ)) GA in two steps. First we find
an upper bound on the expected number of iterations E[TI ] of the algorithm in
the same way as in Theorem 3.1 in [1]. Then we use Lemma 3.5 in the same paper
to find the expected cost of one iteration, which is 2E[λ]. Finally, by the Wald’s
equation [31] we compute the expected number of iterations E[TF ] = 2E[λ]E[TI ].

Table 1. Runtime of the heavy-tailed (1 + (λ, λ)) GA for different ranges of β and for
two variants of choosing u. The best possible fitness dependent choice of u =

√
n
d

is
given rather for reasons of comparison. The best fitness-independent choice is u =

√
n,

but larger values of u are not harmful when β > 2 (for β = 2, the log n is actually a
log u, so the influence of u is small). Our recommendation when D is not known is to
use β = 2 and u =

√
n.

β E[TF ] with u =
√

n
d

E[TF ] with u =
√

n

(0, 1) O(
√

nD
√

n
D

1−β
) O(

√
nD

√
Dβn1−β)

= 1 O(
√

nD log( n
D

)) O(
√

nD log(n))

(1, 2) O(
√

nD) O(
√

nD
√

D
2−β

)

= 2 O(
√

nD log( n
D

)) O(
√

nD log(n))

(2, 3) O(
√

nD
√

n
D

β−2
)

= 3 O(n log(D)
log(n)

)

> 3 O(n log(D))

From Table 1 we see that choosing β = 2 and u =
√

n is the most universal
option. The empirical results in [14] let us assume that different values of β, but
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close to two might also be effective in practice. The results of our experiments
provided in the Sect. 4 confirm this and show that using β < 2 with u =

√
n can

be beneficial when starting from a small distance.

4 Experiments

To highlight that the theoretically proven behavior of the algorithms is not
strongly affected by the constants hidden in the asymptotic notation, we con-
ducted experiments with the following settings:

– fast (1 + (λ, λ)) GA with β ∈ {2.1, 2.3, 2.5, 2.7, 2.9} and the upper limit u =
n/2;

– self-adjusting (1 + (λ, λ)) GA, both in its original uncapped form and with λ
capped from above by 2 log(n + 1) as proposed in [5];

– the mutation-only algorithms (1 + 1) EA and RLS.

In all our experiments, the runtimes are averaged over 100 runs, unless said
otherwise.

In Fig. 1 we show the mean running times of these algorithms when they
start in Hamming distance roughly

√
n from the optimum. For this experiment,

to avoid possible strange effects from particular numbers, we used a different
initialization for all algorithms, namely that in the initial individual every bit
was set to 0 with probability 1√

n
and it was set to 1 otherwise. As the figure

shows, all algorithms with a heavy-tailed choice of λ outperformed the mutation-
based algorithms, which struggled from the coupon-collector effect.

We can also see that the logarithmically capped self-adjusting version,
although initially looking well, starts to lose ground when the problem size grows.
For n = 222 it has roughly the same running time as the (1 + (λ, λ)) GA with
β ≤ 2.3. To see whether this effect is stronger when the algorithm starts closer
to the optimum, we also conducted the series of experiments when the initial
distance to the optimum being only logarithmic. The results are presented in
Fig. 2. The logarithmically capped version loses already to β = 2.5 this time,
indicating that the fast (1 + (λ, λ)) GA is faster close to the optimum than that.

In order to understand better how different choices for β behave in practice
when the starting point also varies, we conducted additional experiments with
problem size n = 222, but with expected initial distances D equal to 2i for
i ∈ [0..21]. We also normalize all the expected running times by

√
nD, but this

time we vary D. The results are presented in Fig. 3, where the results are averaged
over 10 runs for distances between 29 and 220 due to the lack of computational
budget. At distances smaller than 212 the smaller β > 2 perform noticeably
better, as specified in Table 1, however for larger distances the constant factors
start to influence the picture: for instance, β = 2.1 is outperformed by β = 2.3
at distances greater than 213.

We also included in this figure a few algorithms with β < 2, namely β ∈
{1.5, 1.7, 1.9}, which have a distribution upper bound of

√
n, for which running

times are averaged over 100 runs. From Fig. 3 we can see that the running time of
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24 26 28 210 212 214 216 218 220 222
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103

Problem size n

E
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/
√ n

D
λ ∈ [1..2 ln(n + 1)] λ ∈ [1..n]

λ ∼ pow(2.1) λ ∼ pow(2.3)

λ ∼ pow(2.5) λ ∼ pow(2.7)

λ ∼ pow(2.9) (1+1) EA

RLS

Fig. 1. Mean runtimes and their standard deviation of different algorithms on OneMax
with initial Hamming distance D from the optimum equal to

√
n in expectation. By λ ∈

[1..u] we denote the self-adjusting parameter choice via the one-fifth rule in the interval
[1..u]. The indicated confidence interval for each value X is [E[X]−σ(X), E[x]+σ(X)],
where σ(X) is the standard deviation of X. The runtime is normalized by

√
nD, so

that the plot of the self-adjusting (1 + (λ, λ)) GA is a horizontal line.

24 26 28 210 212 214 216 218 220 222
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/
√ n

D

λ ∈ [1..2 ln(n + 1)] λ ∈ [1..n]

λ ∼ pow(2.1) λ ∼ pow(2.3)

λ ∼ pow(2.5) λ ∼ pow(2.7)

λ ∼ pow(2.9) (1+1) EA

RLS

Fig. 2. Mean runtimes and their standard deviation of different algorithms on OneMax
with initial Hamming distance D from the optimum equal to log(n+1) in expectation.
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these algorithms increases with decreasing β just as in Table 1 for comparatively
large distances (212 and up), however for smaller distances their order is reversed,
which shows that constant factors still play a significant role.

2−2 23 28 213 218 223

101

102

103

104

Distance to optimum D

E
va
lu
at
io
ns

/
√ n

D

λ ∈ [1..2 ln(n + 1)]

λ ∈ [1..n]

λ ∼ pow(2.1)

λ ∼ pow(2.3)

λ ∼ pow(2.5)

λ ∼ pow(2.7)

λ ∼ pow(2.9)

(1+1) EA

RLS

λ ∼ pow(1.5)∗
λ ∼ pow(1.7)∗
λ ∼ pow(1.9)∗

Fig. 3. Mean runtimes and their standard deviation of different algorithms on OneMax
with problem size n = 222 and with initial Hamming distances of the form D = 2i for
0 ≤ i ≤ 21. The starred versions of the fast (1 + (λ, λ)) GA have a distribution upper
bound of

√
n.

5 Conclusion

In this paper we proposed a new notion of the fixed-start runtime analysis, which
in some sense complements the fixed-target notion. Among the first results in
this direction we observed that different algorithms profit differently from having
an access to a solution close to the optimum.

The performance of all observed algorithms, however, is far from the theo-
retical lower bound. Hence, we are still either to find the EAs which can benefit
from good initial solutions or to prove a stronger lower bounds for unary and
binary algorithms.
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