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Abstract. The performance of Evolutionary Algorithms is frequently
hindered by arbitrarily large search spaces. In order to overcome this
challenge, domain-specific knowledge is often used to restrict the repre-
sentation or evaluation of candidate solutions to the problem at hand.
Due to the diversity of problems and the unpredictable performance
impact, the encoding of domain-specific knowledge is a frequent problem
in the implementation of evolutionary algorithms.

We propose the use of Refinement Typed Genetic Programming,
an enhanced hybrid of Strongly Typed Genetic Programming (STGP)
and Grammar-Guided Genetic Programming (GGGP) that features an
advanced type system with polymorphism and dependent and refined
types.

We argue that this approach is more usable for describing common
problems in machine learning, optimisation and program synthesis, due
to the familiarity of the language (when compared to GGGP) and the
use of a unifying language to express the representation, the phenotype
translation, the evaluation function and the context in which programs
are executed.

Keywords: Genetic Programming · Refined types · Search-based
software engineering

1 Introduction

Genetic Programming (GP) [28] has been successfully applied in different areas,
including bioinformatics [13], quantum computing [35], and supervised machine
learning [19]. One of the main challenges of applying GP to real-world prob-
lems, such as program synthesis, is the efficient exploration of the vast search
space. Frequently, domain knowledge can be used to restrict the search space,
making the exploration more efficient. Strongly Typed Genetic Programming
(STGP) [24] restricts the search space by ignoring candidates that do not type
check. To improve its expressive power, STGP has been extended with type
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inheritance [10], polymorphism [37] and a Hindley-Milner inspired type sys-
tem [22], the basis for those in Haskell, SML, OCaml or F�.

Grammar-Guided Genetic Programming (GGGP) [21] also restricts the
search space, sometimes enforcing the same rules as STGP, only allowing the gen-
eration of individuals that follow a given grammar. Grammar-based approaches
have also been developing towards restricting the search space. The initial pro-
posal [21] used context-free grammars (CFG) in the Backus Normal Form. The
GAUGE [31] system relies on attribute grammars to restrict the phenotype
translation from a sequence of integers. Christiansen grammars [6,33] can express
more restrictions than CFGs, but still have limitations, such as variable scoping,
polymorphism or recursive declarations.

We propose Refinement Typed Genetic Programming (RTGP) as a more
robust version of STGP through the use of a type system with refinements
and dependent types. Languages with these features have gained focus in the
Programming Languages (PL) research area: LiquidHaskell [36] is an extension
of Haskell that supports refinements; Agda [2] and Idris [3] are dependently-
typed languages that are frequently used as theorem provers. These languages
support the encoding of specifications within the type system. Previously, special
constructs were required to add specification verification within the source code.
This idea was introduced in Eiffel [23] and applied later to Java with the JML
specification language [18].

In particular, our major contributions are:

• A GP approach that relies on a simple grammar combined with a dependent
refined type system, with the argument that this approach is more expressive
than existing approaches;

• Concretisation of this approach in the Æon Programming Language.

These contributions advance GP through a new interface in which to define
representations and assess their success. One particular field where our approach
might have a direct impact is general program synthesis. We identify two dif-
ficulties in the literature [15]: a) the large search space that results from the
combination of language operators, grammar and available functions, and b) the
lack of a continuous fitness function. We address both aspects within the same
programming language.

In the remainder of the current paper we present: the Æon language for
expressing GP problems (Sect. 2); a method for extracting fitness functions from
Æon programs (Sect. 3); the Refined Typed Genetic Programming approach
(Sect. 4); examples of RTGP (Sect. 5); a comparison with other approaches,
from a usability point of view (Sect. 6); and concluding remarks (Sect. 7).

2 The Æon Programming Language

We introduce the Æon programming language as an example of a language
with polymorphism and non-liquid refinements. This language can be used as
the basis for RTGP due to its support of static verification of polymorphism and
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type Array<T> { size:Int } // size is a ghost variable

range : (mi:Int, ma:Int) → arr:Array<Int> where (ma > mi and arr.size == ma −
mi) = native;

append : (a:Array<T>, e:T) → n:Array<T> where (a.size + 1 == n.size) =
native;

listWith10Elements : (i:Int) → n:Array<Int> where (n.size == 10) {
append(range(0,i), 42) // Type error

}
fib : (n:Int) → f:Int where (n >= 0 and f >= n) {

if n < 2 then 1 else fib(n−1) + fib(n−2)
}
incomplete : (n:Int) → r:Int where (r > n && fib(r) % 100 == 0) {

�
}

Listing 1.1. An example of the Æon language

a subset of the refinements. However, RTGP is not restricted to this language
and could be applied to other languages that have similar type systems.

Listing 1.1 presents a simple example in Æon. To keep Æon a pure language,
several low-level details are implemented in a host language, which Æon can
interact with using the native construct. The range function is an example of a
function whose definition is done in the native language of the interpreter1.

What distinguishes Æon from strongly typed mainstream languages like C or
Java is that types can have refinements that express restrictions over the types.
For instance, the refinements on range specify that the second argument must be
greater than the first, and the output array has size equal to their different.

The range call in the listWith10Elements function throws a compile error
because i is an Integer, and there are integers that are not greater than 0 (the
first argument). The i argument should have been of type i:Int — i ¿ 0. How-
ever, there is another refinement being violated because if i = 1, the size of the
output will be 2 and not 10 as expected. The correct input type should have
been {i:Int where i==9} for the function to compile.

It should now be clear how a language like Æon can be used to express
domain-knowledge in GP problems. A traditional STGP solution would accept
any integer value as the argument for range and would result in a runtime-
error that would be penalized in the fitness function. Individual repair is not
trivial to implement without resorting to symbolic execution, which is more
computationally intensive than the static verification applied here.

The incomplete function, while very basic, is a simple example of the definition
of a search problem. The function receives any integer (as there are no restrictions)

1 We have developed a compiler from Æon to Java and an Æon interpreter in Python.
In each case, the range function would have to be defined in Java and Python.
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and returns an integer greater than the one received andwhoseFibonacci number is
divisible by 100. A placeholder hole (�) is left as the implementation of this func-
tion (inspired by Haskell’s and Agda’s ??name holes [8]). The placeholder allows
the program to parse, typecheck, but not execute2. Typechecking is required to
describe the search problem:Acceptable solutions are those that inhabit the type of
the hole, r:Int where r > n and fib(r)% 100 == 0 . This is an example of a depen-
dent refined type as the type of r depends on the value of n in the context. This
approach of allowing the user to define a structure and let the search fill in the
details has been used with success in sketch and SMT-based approaches [34].

While the Æon language does not make any distinction, there are two
classes of refinements for the purpose of RTGP: liquid and non-liquid refine-
ments. Liquid refinements are those whose satisfiability can be statically ver-
ified, usually through the means of an SMT solver. One such example is
x:Integer where x.size % 2 == 0 SMT solvers can solve this kind of linear arith-

metic problems. Another example is {x:Array<Integer> where x.size > 0} because
x.size is the same as size(x) where size is an uninterpreted function in SMT
solving.

Non-liquid refinements are those that SMT solvers are not able to reason
about. These are typically not allowed in languages like LiquidHaskell [36]. One
example is the second refinement of incomplete function, because
the verification of correctness requires the execution of the fib function, which
can only be called during runtime [7], typically for runtime verification. Another
example of a non-liquid refinement would be the use of any natively defined
function because the SMT cannot be sure of its behaviour other than the liquid
refinement expressed in its type. For instance, when considering a native function
that makes an HTTP request, an SMT solver cannot guess statically what kind
of reply the server would send.

3 Refinements in GP

Now that we have addressed the difference between liquid and non-liquid refined
types, we will see how both are used in the RTGP process. Figure 1 presents an
overview of the data flow of the evolutionary process, starting from the prob-
lem formulation in Æon and ending in the solution found, also in Æon. The
architecture identifies compiler components and the Æon code that is either
generated or manipulated by those components.

3.1 Liquid Refinements for Constraining the Search Space

Liquid Refinements, the ones supported by Liquid Types [30], are conjunctions
of statically verifiable logical predicates of data. We define all other refinements

2 Replacing the hole by a crash-inducing expression allows the program to compile or
be interpreted. While this is out of scope, the reader may find more in [25].
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Fig. 1. Architecture of the proposed approach.

as non-liquid refinements. An example of a liquid type is {x:Int where x > 3 and

x < 7}, where x > 3 and x < 7 are liquid refinements.
In our approach, liquid refinements are used to constraint the generation of

candidate programs. Through the usage of a type-checker that supports Liquid
Types, we are preventing candidates that are known to be invalid from being
generated in the first place. However, the use of a type-checker is not ideal, as
several invalid candidates might be generated before one that meets the liquid
refinement is found. Synquid [29] is a first step in improving the performance
of liquid type synthesis. Synquid uses an enumerative approach and an SMT-
solver to synthesize programs from a Liquid Type. However, Synquid has several
limitations for this purpose: it is unable to synthesize simple refinements related
to numerical values (such as the previous example), it is deterministic since
it uses an enumerative approach, and while it is presented as complete with
regards to the semantic values (can generate all programs that can be expressed
in the subset of supported Liquid Types), it it not complete with regards to
the syntactic expression. As an example, Synquid is able to synthesize 2 as an
integer, but not 1+1, since the semantic values are equivalent. For the purposes
of GP, not being able to synthesize more complex representations of the same
program prevents recombination and mutation from exploring small alternatives.
We are in the process of formalizing an algorithm that is more complete than
Synquid for this purpose.

The RTGP algorithm (Sect. 4) uses the liquid type synthesis algorithm for:

• Generating random input arguments in fitness evaluation (Sect. 3.2);
• Generating a random individual in the initial population;
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Table 1. Conversion function f between boolean expressions and continuous values.

Boolean Continuous

true, false 0.0, 1.0

x = y norm(|x − y|)
x �= y 1 − f(x == y)

a ∧ b (f(a) + f(b))/2

a ∨ b min(f(a), f(b))

(continued)

a → b f(¬a ∨ b)

¬a 1 − f(a)

x ≤ y norm((x − y))

x < y norm((x − y + δ))

• Generating a subtree in the mutation operator;
• Generating a subtree in the recombination operator, when the other parent

does not have a compatible node.

3.2 Non-liquid Refinements to Express Fitness Functions

A good fitness function is ideally continuous and should be able to measure
how close to the real solution a potential solution is. However, fulfiling a given
specification is a boolean criterion: it either is fulfilled or not. While previous
work [15] has used the number of passed tests as the fitness function, we aim to
have a more fine-grained measurement of how far each test is from passing. In
particular, we consider the overall error as the fitness value, and the search as a
minimization problem.

We propose the use of non-liquid refinement types to synthesize a continuous
fitness criteria from the specification (depicted in Fig. 1) that, together with
randomly generated input values, is used to obtain the fitness function.

f : (n:{Int | n > 0 }, a:{Array<String> | a.size == 3}) → r:Int where (r > n &&
fib(r) % 100 == 0 and (n > 4 → serverCheck(r) == 3) ) { � }

Listing 1.2. An example of a specification that corresponds to a bi-objective problem

Listing 1.2 shows an example with a liquid refinement (r > n) and two non-liquid
clauses in the refinement. Each of these two clauses is handled individually as in
a multi-objective problem. Each clause is first reduced to the conjunctive normal
form (CNF) and then converted from a predicate into a continuous function that,
given the input and expected output, returns a floating point number between
0.0 and 1.0, where the value represents the error. For instance, the example in
Listing 1.2 is converted to two functions:

Table 1 shows the conversion rules between boolean expressions and corre-
sponding continuous values. The function f , which is defined using these rules,
is applied recursively until a final continuous expression is generated. This app-
roach is an extension of that presented in [12].
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Since the output of f is an error, the value true is converted to 0.0, stat-
ing that condition holds, otherwise 1.0, this being the maximum value of not
complying with the condition. Variables and function calls are also converted to
0.0 and 1.0 on whether the condition holds or not. Equalities of numeric values
are converted into the normalized absolute difference between the arguments.
The normalization is required as it allows different clauses to have the same
importance on the given specification. Inequalities are converted to equalities
and its difference with 1, negating the fitness result from equality. Conjunc-
tions are converted to the average of the sum of the fitness extraction of both
operands. Disjunctions value is obtained by extracting the minimum fitness value
of both clauses. The minimum value indicates what clause is the closest to no
error. Conditional statements fitness is recursively extracted by using the mate-
rial implication rule. Similarly to inequalities, the negation of conditions denies
the value returned by the truth of the condition. Numeric value comparisons
represented a harder challenge as there are intervals where the condition holds.
We use the difference of values to represent the error. In the < and > rules, the δ
constant depends on the type of the numerical value, 1.0 for integers and 0.00001
for doubles, and is essential for the extra step required for the condition to hold
its truth value. A rectifier linear unit was used to ensure that if the condition
holds, it is set to the maximum between the negative number and 0, otherwise,
if the value is greater than 0, the positive fitness value is normalized.

The fitness function is the result of applying each fi for each non-liquid
refinement to a set of randomly generated (using the liquid synthesis algorithm
in Sect. 3.1) input values. The fitness of an individual is the combination of all
fi for all random input values.

4 The RTGP Algorithm

The proposed RTGP algorithm follows the classical STGP [24] in its structure
but differs in the details. Just like in all GP approaches, multiple variants can
be obtained by changing or swapping some of the components presented here.

4.1 Representation

RTGP can have either a bitstream representation (e.g., [31]) or a direct repre-
sentation (e.g., [24]). For the sake of simplicity, let us consider the direct repre-
sentation in the remainder of the paper.

4.2 Initialization Procedure

To generate random individuals, the algorithm mentioned in Sect. 3.1 is used
with the context and type of the � as arguments. This is repeated until the
population has the desired size. Koza proposed the combination of full and grow
as ramped-half-and-half [14], which is used in classical STGP. In RTGP, the full
method is not always possible, since no valid expression with that given depth
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may exist in the language. If, for instance, we want an expression of type X and
the only function that returns X is the constructor without any parameters. In
this case, it is impossible to have any expression of type X with d greater than
1. Unlike in the STGP full method, a tree is used in the initial population, even
if it does not have the predetermined depth.

4.3 Evaluation

The goal of the search problem is the minimization of the error between the
observed and the expressed specification. Non-liquid refinements are translated
to multi-objective criteria (following the approach explained in Sect. 3.2). The
input values are randomly generated at each generation to prevent overfitting [9].
A fitness of 0.0 for one clause represents that all sets of inputs have passed that
condition successfully. The overall objective of the candidate is to obtain a 0.0
fitness in all clauses.

4.4 Selection and Genetic Operators

Recent work has provided significant insights on parent selection in program
synthesis [11]. A variant of lexicase selection, dynamic ε-Lexicase [17] selection,
has been used to allow near-elite individuals to be chosen in continuous search
spaces.

The mutation operator chooses a random node from the candidate tree. A
replacement is randomly generated by providing the node type to the expression
synthesis algorithm along with the current node depth, fulfiling the maximum
tree depth requirement. The valid subtrees of the replaced node are provided as
genetic material to the synthesizer, allowing partial mutations on the candidate.

The crossover operator selects two random parents using the dynamic ε-
lexicase selection algorithm. A random node is chosen from the first parent, and
nodes with the same type from the second parent are selected for transplantation
into the first parent. If no compatible nodes are found, the expression synthesizer
is invoked using the second parent valid subtrees, and the remaining first parent
subtrees as genetic material. This is similar to how STGP operates, with the
distinction that subtyping in Liquid Types refers to the implication of semantic
properties. Thus, unsafe recombinations and mutations will never occur.

4.5 Stopping Criteria

The algorithm iterates over generations of the population until one or multiple
of the following criteria are met: a) there is an individual of fitness 0.0; b)
a predefined number of generations have been iterated; c) a predefined time
duration has passed.
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5 Examples of RTGP

This section introduces three examples from the literature implemented in Æon.

5.1 Santa Fe Ant Trail

The Santa Fe Ant Trail problem is frequently used as a benchmark for GP. In
[26], the authors propose a grammar-based approach to solve this problem. In
RTGP, if-then-else conditions and auxiliary functions (via lambda abstraction)
are embedded in the language, making this a very readable program.

type Map;
food present : (m:Map) → Int = native;
food ahead : (m:Map) → Boolean = native;
left : (m:Map) → Map = native;
right : (m:Map) → Map = native;
move : (m:Map) → Map = native;
program : (m:Map) → m2:Map where ( food present(m2) == 0 ) { � }

Listing 1.3. Santa Fe Ant Trail

5.2 Super Mario Bros Level Design

The second example defines the search for an interesting design for a Super Mario
Bros level that maximizes the engagement, minimizes frustration and maximizes
challenge. These functions are defined according to a model that can easily be
implemented in Æon (Listing 1.4). We present this as a more usable alternative
to the one that uses GGGP [32].

type X as {x:Integer | 5 <= x && x <= 95 }
type Y as {x:Integer | 3 <= x && x <= 5 }
type Wg as {x:Integer | 2 <= x && x <= 5 }
type W as {x:Integer | 2 <= x && x <= 7 }
type Wb as {x:Integer | 2 <= x && x <= 6 }
type Wa as Wb
type Wc as W
type Level as Pair<List<Chunk>, {enemies:List<Enemy> | 2 <= enemies.size &&

enemies.size <= 10}>;
type BoxType;
block coin() → BoxType = native;
rock coin() → BoxType = native;
block powerup() → BoxType = native;
rock empty() → BoxType = native;
type Chunk;
gap(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
platform(x:X, y:Y, w:W) → Level = native;
hill(x:X, y:Y, w:W) → Level = native;
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cannon hill(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
tube hill(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
coin(x:X, y:Y, w:Wc) → Level = native;
cannon(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
tube(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
boxes(t:BoxType, b:{List<Pair<X,Y〉| 2 <= b.size && b.size <= 6 }) → Level =

native;
type Enemy;
koopa(x:X) → Enemy = native;
goompa(x:X) → Enemy = native;

generateLevel() → l:Level where ( @maximize(engagement(l)) and
@minimize(frustration(l)) and @maximize(challenge(l) ) { � }

Listing 1.4. Super Mario Bros Level Design

Compared with the proposed grammar [32], the complexity is similar and
productions in either version are directly correspondent. The Æon version is
arguably more expressive because the combinations of repetitions of objects
with minimum and maximum number of repetitions can be bounded using types
(enemies and boxes).

5.3 Logical Gates

The third example is taken from [27], where the goal is to “given any logical
function, find a logically equivalent symbolic expression that uses only the oper-
ators in one of the three following complete sets: and, or, not, nand, nor”. The
authors propose a Christiansen grammar, which is context-sensitive, to express
this problem. Listing 1.5 presents a more simple implementation of the problem
using Æon. It can be argued that the implementation using refinements comes
more directly from the problem statement than the complex dynamic grammar
used in [27]. Furthermore, the implementation of the operations can be done
directly in the same language.

set(x:Boolean) → y:Boolean = uninterpreted;
andG(x:Boolean, y:Boolean) → z:Boolean where ( set(x) == 1 and set(y) == 1

and set(z) == 1 ) = { x && y }
or(x:Boolean, y:Boolean) → z:Boolean where ( set(x) == 1 and set(y) == 1 and

set(z) == 1 ) = { x || y }
not(x:Boolean) → z:Boolean where ( set(x) == 1 and set(z) == 1 ) = { !x }
nand(x:Boolean, y:Boolean) → z:Boolean where ( set(x) == 2 and set(y) == 2

and set(z) == 2 ) = { !(x && y) }
nor(x:Boolean, y:Boolean) → z:Boolean where ( set(x) == 3 and set(y) == 3 and

set(z) == 3 ) = { !(x || y) }
target : (x:Boolean, ..., z:Boolean) → e:Boolean where ( e == f(x,...z) ) { � }

Listing 1.5. Equivalent Logical Gates to a given function f.
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6 Discussion

This section compares RTGP with GGGP and presents arguments why RTGP
could be used instead of GGGP. Because Dependent Types can encode gram-
mars [5], the performance of both approaches is equivalent.

6.1 A Direct Comparison with GGGP

A survey on GGGP [21] identified the advantages and disadvantages of GGGP.
We compare with RTGP on the advantages:

• Ability to declaratively restrict the search space—A type system is
used instead of a grammar to express the restriction.

• Problem Structure—Problem domains that already follow a grammar
structure can be easily encoded in RTGP. RTGP can more directly encode
several problems than a grammar. Two examples are General-purpose pro-
gramming and the Logical Gates problem (Sect. 5.3).

• Homologous Operators—Both GGGP and RTGP restrict the replacement
of one component by another of similar close values.

• Flexible Extension—Extensions to GP can be encoded both in grammars
and dependent types. Both approaches can be used as engines to test other
GP concepts.

And disadvantages:

• Feasibility Constraints—Both GGGP and RTGP make the design of new
operators a more significant challenge than in STGP, given that operators
should follow the constraints imposed by the system. All RTGP operators
are shared among any problem and rely solely on two algorithms: the type
checker and expression synthesis.

• Repair Mechanisms—Implementing repairing in GGGP often depends on
the grammar. RTGP relies on n expression synthesis algorithm (Sect. 3.1)
that generates individuals in a way that constraints are never violated. The
same has been done for the mutation and crossover operators. However, a
repair mechanism is straightforward: the type-checker identifies the malign
node, and expression synthesis generates a replacement.

• Limited Flexibility—GGGP is flexible when the program can be directly
encoded in a context-free grammar. Some GGGP approaches use context-
sensitive grammars (CSGP) [27], but readability can become a problem
(explained in Sect. 6.2).

• Turing Incompleteness—GGGP supports grammars with semantics that
allow the encoding of Turing-complete and incomplete problems. As such,
GGGP does not offer any additional support for computation paradigms such
as recursion and iteration, like other GP systems. RTGP supports both recur-
sion and iteration directly, unless otherwise specified.
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6.2 Usability

Instead, the main argument for RTGP over GGGP is one that concerns with
usability. First, RTGP provides an integrated environment for describing the
context, the problem, the search space and the solutions. Taking Æon as an
example of RTGP, the environment in which the final program will execute
can be defined, relying on native functions to use software written in other
programming languages. The problem is defined using refined types for the goal
of the system, and a hole marker (�) is left as a placeholder for the program
we are looking for. The search space is defined by the types used in the problem
definition. Finally, the solution is a program in the same language as everything
else, so it is ready to execute (and be evaluated).

On the other hand, if one were to use GGGP, one would have to create each
of these components individually. The lack of a de-facto standard framework
for GGGP helps this argument, in which interfacing with the context can be
more complicated than implementing GGGP itself. GGGP concerns only with
the description of the search space, while RTGP provides an integrated view of
using GP.

The strongest point for RTGP is that it does not require the user to define
a grammar. Just by placing holes in a program, users can use RTGP without
even knowing how to define a grammar. Instead, they need to know how to use a
familiar programming language (which to implement GGGP is already required)
and to know how to express desired properties in refined types. While refined
types have not yet become mainstream, several languages have feature subsets of
its features for a long time. Eiffel [23] supported pre- and post-conditions since
1986. Ada is another language that supports design by contract [4], and it is
very popular for critical embedded development, being used for large projects
in air traffic control [16] with more than 1 million lines of code. Advanced type
systems have become more popular to prevent bugs from existing in codebases.
Mozilla created Rust to avoid concurrency issues in the Firefox browser [20],
and Microsoft is using PL and SMT-based techniques to verify low-level critical
components of the kernel and drivers [1].

7 Conclusions and Future Work

We have presented Refinement Typed Genetic Programming (RTGP) as an app-
roach to describe search problems in an integrated programming language. We
have introduced a language, Æon, capable of expressing the environment, the
fitness function, the search space, and the solution. The language features an
advanced type system with liquid and non-liquid types. We have provided a
methodology to generate the fitness function from non-liquid refined types, and
we have introduced an algorithm that generates expressions from any inhabitable
type in this language.

In Sect. 6 we have compared RTGP against GGGP, concluding that they
are equivalent in expressiveness. However, we argue that RTGP provides better
usability for end-users than GGGP, in which all aspects of the evolution have
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to be implemented. Furthermore, expressing restrictions in types allows more
modular programs and better readability inside an integrated experience for
defining and using RTGP.

There are still some aspects to explore with regards to RTGP: identifying
the most efficient representation; improving the liquid type synthesis; finding the
best representation for non-functional properties of programs; how to integrate
this synthesis in an integrated editor; and to perform a exhaustive benchmark
performance analysis.
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